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Abstract 
For large-vocabulary continuous speech recognition, 

the goal of training is to model phonemes with enough 
precision so that from the models one could reconstruct a 
sequence of acoustic parameters that accurately represents the 
spectral characteristics of any naturally-occurring sentence, 
including all coarticuladon effects that arise either between 
phonemes in a word or across word boundaries. The aim at 
Dragon Systems is to collect and process enough training 
data to accomplish this goal for all of natural spoken 
English rather than for any one restricted task. 

The basic unit that must be trained is the "phoneme in 
context" (PIC), a sequence of three phonemes accompanied 
by a code for prepausal lengthening. At present, syllable 
and word boundaries are ignored in defining PICs. 

More than 16,000 training tokens, half isolated words 
and half short phrases, were phonemically labeled by a semi- 

. automatic procedure using hidden Markov models. To model 
a phoneme in a specific context, a weighted average is 
constructed from training data involving the desired context 
and acoustically similar contexts. 

For use in HMM continuous-speech recognition, each 
PIC is converted to a Markov model that is a concatenation 
of one to six node models. No phoneme, in all its contexts, 
requires more than 64 distinct nodes, and the total number of 
node models ("phonemic segments") required to construct all 
PICs is only slightly more than 2000. As a result, the entire 
set of PICs can be adapted to a new speaker on the basis of a 
couple of thousand isolated words or a few hundred sentences 
of connected speech. 

The advantage of this approach to training is that it is 
not task-specific. From a single training database, Dragon 
Systems has constructed models for use in a 30,000-word 
isolated-word recognizer, for connected digits, and for two 
different thousand-word continuous-speech tasks. 

1. Introduction 
The nature of the training process for a speech- 

recognition system changes radically once the size of the 

vocabulary becomes larger than the number of words for 
which a user is willing to provide training tokens. Below 
this threshold, it is reasonable to make an independent model 
for each word in the vocabulary. Such a model, based on 
data from that word and no others, can in principle capture 
all the acoustic-phonetic subtleties of the word, even though 
the phonetic spelling of the word is not even used in 
constructing the model. 

For continuous speech recognition, the quantity of data 
required for complete training grows much more rapidly than 
vocabulary. In the simple case of a recognizer for three-digit 
strings, for example, each digit should at a minimum be 
trained in initial, medial, and final position, while for 
optimum performance all digit triples should be included in 
the training data. 

The approach to training at Dragon Systems has been 
to regard the recognition task as all of natural English, 
whether isolated words or connected speech. We have 
developed a training database from which we have 
constructed recognition models for a 30,000 word isolated- 
word recognizer and for two different 1000-word connected 
speech tasks. All these recognition models are based on the 
same set of "phonemes in context." 

2. Phonemes in Context 
A speaker of English, given a phonemic spelling of an 

unfamiliar word from a dictionary, can pronounce the word 
recognizably or recognize the word when it is spoken. On 
the other hand, it is impossible to put together an "alphabet" 
of recorded phonemes which, when concatenated, will sound 
like natural English words. Speakers of English apply a host 
of duration and coarticulation rules when combining 
phonemes into words and sentences, and they employ the 
same rules in recognizing spoken language. It comes as a 
surprise to most speakers, for example, to discover that the 
vowels in "will" and "kick", which are identical according to 
dictionary pronunciations, are as different in their spectral 
characteristics as the vowels in "not" and "nut", or that the 
vowel in "size" has more than twice the duration of the same 
vowel in "seismograph". 
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In the Dragon Systems family of speech recognizers, 
the fundamental unit of speech to be trained is the "phoneme 
in context" (PIC)[3]. Ultimately the defining property of a 
PIC is that by concatenating a sequence of PICs for an 
utterance one can construct an accurate simulated spectrum 
for the utterance. In the present implementation, a PIC is 
taken as completely specified by a phoneme accompanied by 
a preceding phoneme (or silence), a succeeding phoneme (or 
silence), and a duration code that indicates the degree of 
prepausal lengthening. To restrict the proliferation of PICs, 
syllable boundaries, even word boundaries, are currently 
ignored 

The set of phonemes is taken from The R a n d o m  
House® Unabridged Dictionary. The stress of each syllable 
is regarded as a property of the vowel or syllabic consonant 
in that syllable• Excluding pronunciations which are 
explicitly marked as foreign, there are 17 vowels, each with 
three possible stress levels, plus 26 consonants and syllabic 
consonants. 

A duration code of 3 indicates absence of prepausal 
lengthening. This will always be the case except in the last 
two syllables of an utterance. 

A duration code of 6 indicates prepausal lengthening to 
approximately twice the normal duration. This occurs for the 
vowel in the final syllable of an utterance and for any 
consonant that follows that vowel, unless the vowel is 
followed by one of the unvoiced consonants k, p, t, th or ch. 
For example, in the word "harmed" every PIC except the one 
for the initial 'h' will have a duration code of 6. 

A duration code of 4 indicates prepausal lengthening 
by a factor of approximately 4/3. This occurs in two cases: 

• In the final syllable when the vowel is followed by k, p, 
t, ch, or th: for example, in both PICS of "at" and in 
the last three PICS of "bench". 

• For consonants that precede the vowel in the final 
syllable: for example, the 's' in "beside". 

PICs contain almost enough information to predict the 
acoustic realization of a phoneme. For example, the PIC for 

't ' is different in the word "mighty" (where the 't '  is usually 
realized as a flap) and in the phrase "my tea" (where the 't' is 
clearly aspirated). This distinction is made, even though 
syllable and word boundaries, are ignored, because the stress 
of the following vowel is part of the context• Similarly, 
PICs capture the information that the final 't '  in "create" 
(preceded by a stressed vowel) is more strongly released that 
in "probate" (preceded by an unstressed vowel), that the 's' 
in "horseshoe" is realized as an "sh", that the 'n' in "San 
Francisco" or "NPR" is realized almost like an 'm', and that 
the 'n' in "month" or "in the" is the dental allophone of 'n'. 

3. Selection of PICs for Training 
For isolated-word recognition, one could in principle 

enumerate all PICs by processing phonetic spellings for all 
the words in an unabridged dictionary. For the 25,000 words 
in the DragonDictate recognizer, there are approximately 
30,000 PICs. A subset of 8,000 words can be chosen that 
includes all but about 1,000 of these PICs, most of them 
occurring in only a single word. Increasing the vocabulary 
size to 64,000 words would increase the number of PICS 
only slightly, to about 32,000. 

For connected speech the goal of including all possible 
PICs is unachievable because of the wide variety of PICs 
that can arise through coarticulation across word boundaries. 
For example, the sentence "Act proud when you're dubbed 
Gareth" contains the PICs "ktp" and "bdg', neither of which 
occurs in any common English word. A further 
complication is that each PIC in a final syllable can occur in 
a sentence either with or without prepausal lengthening. 

For the sort of connected-speech task which can be 
carried out in close to real time on today's microcomputers, 
the majority of PICs already arise only as a result of 
coarticulation across word boundaries. The 1023 
pronunciations for the 842 words in the mammography 
vocabulary that is used for research at Dragon Systems 
include 2681 PICs. A set of 3000 sentences using this 
vocabulary includes only 1929 of these PICs, plus another 
4610 that are not present in the isolated words• A different 
set of 3000 sentences, reserved for testing, includes yet 
another 1326 new PICs. Among the 121 PICs, not present 
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in isolated words, that occur 100 or more times in the 
sentences are the vowel in the suffix "ation" without 
prepausal lengthening, the dental "n" of "in the" and "on 
the", and the "zs" combination of"is  seen". 

The Dragon Systems training set currently includes 
about 8000 isolated words and about 8000 short phrases, 
each limited in duration to about 2.4 seconds. Although the 
total number of words in the training set is no greater than 
in the 6000 mammography sentences, the training set 
includes 37,423 distinct PICs. It is still far from complete. 
For example, a a set of 800 phrases drawn from a 
Hemingway short story and a newspaper article on parallel 
processing includes slightly more than 1000 PICs that were 
not in the training set (most, however, occurred only once). 

The problem of finding the smallest training 
vocabulary that includes a given set of PICs is probably NP- 
complete. Still, it is easy to find a reasonably good 
approximation to the solution of the problem. In 6000 
isolated words one can include about 22,000 different PICs. 
Beyond this point it becomes difficult to find words that 
include more than one or two new PICs, but short phrases 
of diverse text which contain three or more new PICs are 
still easy to find. By using such phrases to enlarge the 
training vocabulary, we hope to acquire training data for 
50,000 PICs within the next year. 

4. Modeling PICs by Phonemic 
Segments 

A "vocabulary" of 50,000 independent PICs would be 
no more manageable than a vocabulary of  50,000 
independent isolated words, but PICs are not independent. 
Most of the PICs for a stop consonant, for example, involve 
an identical segment of silence, for example, while all PICs 
for the sibilant "s" are characterized by the absence of low- 
frequency energy. One can hope, therefore, to represent the 
thousand or so PICs that represent the same phoneme in 
various contexts in terms of a much smaller number of 
"phonemic segments". For phonemes that exhibit a great 
deal of allophonic variation, such as "t", "k", and schwa, as 
many as 64 different segment models may be required, while 

for phonemes like "s" and "sh" that are little influenced by 
context, as few as ten may suffice. For the complete set of 
77 phonemes used in English, slightly more than 2000 
segment models suffice. In [4], an approach to modeling 
allphonic models using a small number of distributions was 
described. Similarly, in [5], an alternate way of performing 
parameter tying across distinct triphones using a triphone 
clustering procedure was described. 

A phonemic segment can be characterized in two 
alternative ways. At the simpler level, it can be regarded as a 
fragment of the sort of acoustic data that would be generated 
by the "front end" of a speech-recognition system. In the 
case of the current Dragon recognizer, this is nothing more 
than a simulated spectrum based on an amplitude parameter 
and several spectral parameters. At a more sophisticated 
level, a phonemic segment includes enough information to 
generate a probability distribution for use in hidden Markov 
modeling. For the current Dragon recognizer, this requires 
calculation of the absolute deviation from the mean, as well 
as the mean for each acoustic parameter. The same 
distinction between what will be called a "spectral model" 
and what will be called a "Markov model" applies also to 
continuous parameters that have no direct spectral 
interpretation (cepstral parameters, for example), or to 
discrete parameters. In the following discussion, the term 
"spectrum" should be interpreted to mean any sequence of 
parameters that results from processing a speech waveform, 
while "Markov model" should be interpreted as a random 
process capable of generating such sequences. 

One may think of a PIC as a probabilistic model for a 
portion of a speech spectrogram corresponding to a single 
phoneme. The problem of representing this PIC as a 
sequence of phonemic segments is solved by hidden Markov 
modeling. The sequence may be from one to six segments in 
length, and the same segment may occur in more than one 
position in the sequence. There is no constraint on the order 
of segments within the sequence.Thus the model for a 
phoneme with n segments is represented by the diagram 
below. 

sta n d 

Figure 5. A Markov Model for a Single PIC 

The arcs labeled 1, 2 . . . .  n correspond to one or more 
frames of acoustic data corresponding to the single segment 
1, 2 . . . .  n. The arcs labeled x permit a given phoneme to 
have a sequence of fewer than six phonemes associated with 

it. These null arcs are assigned slightly higher transition 
probabilities than the arcs associated with phonemic 
segments. 
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Thus a PIC may be represented very compactly as a 
sequence of one to six pairs, each pair consisting of a 
phonemic segment and a duration.This sequence may be 
regarded as the best piecewise-constant approximation to the 
spectrogram. 

For speaker adaptation, the phonemic segment is the 
basic unit. It is assumed that the representation of a PIC in 
terms of segments is valid for all speakers, so that adapting 
the small number of segments for a phoneme will have the 
effect of adapting the much larger number of PICs. Segment 
durations within a PIC can also be adapted, but only by 
acoustic data involving that particular PIC. 

5. Labeling Training Data 
To build a spectral model for a PIC, one must find 

one or more spectrograms that involve that PIC, then extract 
from these spectrograms the data for the phoneme in the 
desired PIC. Thus phonemically labeled training data are 
required. 

Given a complete set of hidden Markov models 
representing PICs, the labeling problem could easily be 
solved by dynamic programming and traceback. This 
approach is the correct one to use for implementing 
adaptation, but it is inappropriate for training, since the 
labeled training data would be required in order to produce the 
PIC models in the first place. To do semiautomatic labeling 
with an incomplete set of phonemic segments and with no 
PIC models, a simpler scheme must be used, one which 
deals gracefully with the situation where PIC models have 
not yet been created and where some portions of 
spectrograms cannot yet be labeled. 

The full Markov model for a word is a sequence of 
models for the phonemes of the word, starting and ending 
with silence. Silence is modeled, like any other phoneme, 
by a set of segments. Between the phoneme models are 
"transition nodes" with fixed transition probabilities that are 
chosen to be slightly lower than the typical probability for 
the best phoneme segment. Thus the model for "at" might 
be represented as follows: 

I - - -  silence 

t ransit ion transi t ion transi t ion 
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Figure 6.A Markov Model for "at". 

Each box represents a phoneme model of one to six 
states, as described above. 

Once the best path has been found by dynamic 
programming, traceback at the phoneme level assigns a start 
time and end time to each phoneme. If a complete set of 
phonemic segments has been constructed, the start time for 
each phoneme coincides with the end time for its predecessor 
phoneme. To the extent that there are acoustic segments that 
are not yet well modeled by any phonemic segment, the data 
that correspond to this segment will be assigned to an 
interphoneme transition. 

The phoneme-level traceback is recorded within each 
training token. This makes it possible, without repeating 
the dynamic programming, to identify the portion of a given 
training token that correspond to a specified phoneme--an 
important step in locating training data for a specific PIC. 

Traceback can also be performed at a lower level in 
order to determine the sequence of phonemic segments that 
corresponds to an individual PIC. The data thus assigned to a 
segment may then be used as ~aining data for that segment 
to improve the estimates of the means and variances for the 
acoustic parameters of that segment. 

The net effect of dynamic programming followed by 
traceback at the word level and at the phoneme level is to 
assign to each "frame" of acoustic data of the word a 
phoneme segment label, subject to the following 
constraints: 

• Phonemes appear in the order specified by the 
pronunciation of the word. 

• For each phoneme, there are no more than five 
transitions from one segment to another. 

• Transition frames with no segment assignment may 
occur only between phonemes. 

The process of labeling the training data is not 
completely automatic, but it becomes more and more nearly 
so as the set of phonemic segments increases in size. In 
practice, phonemic segments are initialized "by hand". On a 
spectral display of a training token, a sequence of frames is 
selected. The means and variances for the acoustic parameters 
of those frames provide the initial estimates for the segment 
parameters. Even in the absence of any previously labeled 
segments, it is a straightforward matter to initialize a set of 
segments that will provide a correct phonemic labeling of a 
single token, and these segments in turn prove useful in 
labeling other tokens. As more and more tokens are labeled 
in this manner, a set of segments develops that suffices to 
label a greater and greater fraction of new tokens, until 
eventually any new token can be labeled without the need for 
interphoneme transitions. 

As new segments are created during the labeling 
process, occasionally the limit of 64 segments for a 
phoneme is reached. Whenever this occurs, the two 
segments that are most similar are automatically combined 
into a single segment. 

Once a thousand or so training tokens have been 
labeled, transition segments that are more than about thirty 
milliseconds long become difficult to find. At this point the 
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best strategy is to label all the training tokens 
automatically, then to search for the longest transition 
segments and to use them to create new phonemic segments. 
This process can be iterated until no transition segments 
remain. 

To make use of duration constraints in labeling, an 
alternative version of the dynamic programming is used 
which closely resembles the one used by Dragon's small- 
vocabulary recognition and training algorithm. To each 
phoneme in the word, an expected duration in milliseconds 
is assigned. To the extent that the actual duration of the 
speech assigned to that phoneme is less than or greater than 
the expected duration, a duration penalty is added to the 
dynamic programming score. The traceback is then 
determined both by acoustic match and by duration 
constraints. While a clear-cut phoneme boundary such as one 
before or after an 's' will be little affected by duration 
constraints, a boundary that is associated with almost no 
acoustic feature (between two stops, for example) will be 
assigned primarily on the basis of durations. 

In order to estimate durations, the hypothesis is made 
that changing the left or right context of a phoneme has 
little effect on the duration of  that phoneme except in the 
case where the context is silence. As stated above, the 
duration of the final T in "all" ought to be the same as the 
duration of the final T in "wheel", "bell", or other words 
where there is a clear formant transition into the 'T'. As 
another example, the 'p' and 't' in "opted" should each have 
a duration close to that of a single intervocalic stop. 

For each PIC, an expected duration is determined by 
averaging together four quantities: 

• the duration of the phoneme in the precise context 
specified by the PIC (which may occur only once in the 
training vocabulary). 

• the duration of the phoneme with the specified left 
context and an arbitrary right context. 

• the duration of the phoneme with the specified right 
context and an arbitrary left context. 

• the duration of the phoneme with both left and right 
context arbitrary. 

In no case, however, is a silence context substituted for a 
non-silence context or vice versa. 

The semiautomatic labeling process described above 
has been under development for more than a year, with 
results that appear more and more satisfactory as the new 
phonemic segments are identified and duration estimates are 
improved. By using a set of about 2000 segments and 
imposing duration constraints on the dynamic programming, 
it is possible to achieve automatic phonemic labeling that 
agrees with hand labeling in almost every case and that is 
probably more consistent than hand labeling with regard to 
such difficult, arbitrary decisions as placing boundaries 
between adjacent front vowels or between glides and vowels. 
Most labels that a human labeler might question can be 
located by looking just at the small fraction of words for 
which the actual and expected duration of a phoneme differ 
significantly. 

By exploring situations in which the expected 
durations of phonemes in correctly labeled words are 

systematically in error, it is possible to discover new 
duration rules which can be incorporated into more refined 
characterization of PICs. Each such rule, though, leads to 
an increase in the total number of PICs that must be trained. 

6. Building Models for PICs 
Given a sufficiently large quantity of training data, one 

can create an excellent model for a PIC by averaging 
together all examples of that PIC in the training vocabulary. 
For example, a model can be built for the phoneme "sh" in 
the context "ation" by averaging together the data labeled as 
"sh" in words such as "nation", "creation", and "situation". 
Unfortunately, the assumption of a large quantity of training 
data for each PIC is unrealistic. There are, for example, 
about 1500 contexts in the DragonDictate 25,000 word 
vocabulary, and many contexts in connected speech, for 
which even the current training set of 16,000 items provides 
no examples. For thousands of other PICs there is only a 
single example in the training set. Thus, in modeling a PIC, 
it is important to employ training data from closely related 
PICs. 

In most cases the left context of a phoneme influences 
primarily the first half of the phoneme, while the right 
context influences primarily the second half. Furthermore, 
there are groups of phonemes which give rise to almost 
identical coarticulation effects: different stress levels of the 
same vowel, for example. 

The general strategy for building a model for a 
phoneme in a given context is to compute a weighted 
average of all the data in the training vocabulary for the 
given phoneme in the desired context or any similar context. 
The weight assigned to a context depends upon how well it 
matches the desired context. 

Weights are assigned separately for the left context and 
the right context, and two models are constructed. The first 
of these, where a high weight implies that the left context is 
very close to the desired left context (although the right 
context may be wrong) is used for the first half of the 
model. The second model, where a high weight implies that 
the right context is correct, is used for the second half of the 
model. 

Each phoneme is assigned both to a "left context 
group" and to a "fight context group". The phonemes in left 
context group should all produce similar coarticulation 
effects at the start of a phoneme, while those in the same 
right context group should produce similar effects at the end 
of a phoneme. 

To build a model for a PIC, all examples of contexts 
similar to the desired PIC are extracted from the training 
vocabulary. Each context is assigned a "left weight" and a 
"right weight" according to the degree of match between the 
desired context in the PIC and the actual context in the 
training item. 

From the data a weighted average of the durations is 
now computed. Tokens for which the duration is close to the 
average are doubled in weight, while those that are far from 
the average duration are halved in weight. 

Finally all the examples of the desired phoneme are 
averaged together using a linear alignment algorithm which 
normalizes all examples so that they have the same length, 
then averages together acoustic parameters at intervals of 10 
milliseconds. This procedure is carried out twice, once with 
left weights, once with right weights. The first half of the 
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"left model" and the second half of the "right model" are 
concatenated to form the final spectral model for the PIC. 

Models for initial and final silence in each context are 
created by averaging the initial silence from training words 
that begin with the desired phoneme and by averaging the 
final silence from words that end with the desired phoneme. 

Consider, for example, the comparatively unusual PIC 
"lak" (secondary stress on vowel, no prepausal lengthening). 
No word in the training set contains this PIC, although 
"Cadillacs" has the same PIC with prepausal lengthening. 
The "left" model, built from "implants", "overlap shadows", 
"eggplant", "Cadillacs", and "mainland gale", captures well 
the second formant transition between the 'T' and the vowel. 
The "fight" model captures the spectrum of the vowel before 
"k". The concatenated model has both features well 
modeled. 

These spectral models for PICs are not yet hidden 
Markov models, since they include only the means of 
acoustic parameters, but not the variances. They also have 
no direct connection with phonemic segments. The final 
step in the training process is to convert them to adaptable 
Markov models that are based on phonemic segments. 

Converting a spectral model for a PIC to a Markov 
model for that PIC employs the same algorithm that is used 
for labeling training data. Dynamic programming is used to 
determine the sequence of phonemic segments that has the 
greatest likelihood of generating the spectral model for the 
PIC. These phonemic segments become the nodes of the 
Markov model for the PIC. Concatenating the parameter 
means for the nodes, with each node given the duration 
determined by the dynamic programming, produces the 
optimal piecewise-constant approximation to the spectral 
model for the PIC. 

The variances in the parameters for each phonemic 
segment correctly reflect the fact that each segment appears 
in many different PICs. Because training tokens are already 
averages of three utterances, the variances underestimate the 
variation in parameters from one utterance to another. To 
compensate for this, the variances in the phonemic segment 
models that are used for recognition are made somewhat 
larger than the estimates that arise from training. 

Because the large number of PIC models are all 
constructed from about 2000 phonemic segments, they adapt 
quickly to a new speaker. The strategy for adaptation is 
simply to treat each utterance as if it were new training data. 
By dynamic programming the utterance is segmented into 
PICs, which are in turn subdivided in phonemic segments. 
The acoustic data assigned to each segment are used to 
reesfimate the means and variance for that segment. For the 
mammography task, a set of 500 sentences to be used for 
adaptation has been developed that includes more than 90% 
of the PICs used by the recognizer. Since most phonemic 
segments occur in many different PICs, these 500 sentences 
provide diverse training data for almost all segments, 
sufficient to provide good estimates of their parameter means 
and variances for a new speaker. Estimates of segment 
durations for each PIC are also improved as a result of 
adaptation, although for this purpose the 500 sentences 
provide much less data. 

To achieve real-time recognition of connected speech, a 
rapid-match algofithm is used to reduce the number of words 
for which full dynamic programming is carried out[l]. This 
algorithm requires models which incorporate accurate 
duration information and which capture coarticulation effects 

averaged over all possible contexts for a word. The training 
for the rapid-match model for a word makes use of a 
concatenation of spectral models for the PICs of the word, 
with a "generic speech" left context used for the first 
phoneme and a "genetic speech" fight context used for the 
last phoneme of the word. 

7.Recognition Performance 
The training strategy described here is intended to yield 

a set of PICs that will serve for any isolated-word or 
connected-speech recognition task in English. Testing has 
been carried out on four tasks, as follows. 

1. The DragonDictate isolated-word recognition system 
uses 25,000 word models based on PICs and phonemic 
segments, built from the same database of training 
utterances that is used for connected speech. Recognition 
performance for two diverse texts, a short story by 
Hemingway and a newspaper article on parallel processing, 
was 83% correct on the first 500 words. After adaptation on 
1500 words, performance rose to 89% correct for the speaker 
who recorded the training database. For two other speakers, 
performance without adaptation was dismal (45% for a male 
speaker, 18% for a female speaker), but it rose after 
adaptation on 2500 words to 87% for the male speaker and 
85% for the female. 

2. For connected digit recognition, the error rate on 
five-digit strings was less than half a percent for each of 
three different speakers after adaptation. Less than 0.2% of 
the training database consists of digit strings. 

3. For the mammography task used in testing the real- 
time implementation of continuous-speech recognition[2] 
(842 words, 1023 distinct pronunciations), recognition was 
tested on a set of 1000 sentences which had not been used 
either in selecting training utterances or in determining 
which PICs should be modeled. Several hundred of the PICs 
in this test data did not occur in any of the "practice" 
sentences that had been for training; these PICs were 
modeled only by genefic PICs in which an average was 
taken over all left and fight contexts. About 15% of the 
training database consists of short phrases extracted from the 
3000 practice sentences. On this task, whose perplexity is 
about 66, 96.6% of words were recognized correctly. 
Performance was slightly better on the "practice" sentences 
that had been used to construct the set of PICs to be 
modeled, sentences for which no generic PICs were required. 
Preliminary results indicate that after several hundred 
sentences of adaptation, performance close to this level can 
be achieved for other speakers. 

4. As a test of performance on a connected-speech task 
which was not so heavily used in constructing the training 
database, recognition was carried out on the 600 training 
sentences of the Resource Management task using the word- 
pair grammar. This task has a perplexity of about 60, 
comparable to that of the mammography task. PICs were 
built from the same training database as descfibed above, in 
which about 5% of the tokens are phrases based on the 
resource management vocabulary. Recognition performance 
was 97.3% correct on a per-word basis. For this task, as for 
the mammography "practice" sentences, all PICs had been 
modeled, so that no genetic PICs were required. 
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