
Making Abduct ion More Efficient

Douglas Appe l t and Jerry R. Hobbs

SRI International
Menlo Park, California

Introduct ion
The TACITUS system uses a cost-based abduction
scheme for finding and choosing among possible inter-
pretations for natural language texts. Ordinary Prolog-
style, backchaining deduction is augmented with the ca-
pability of making assumptions and of factoring two goal
literals that are unifiable (see Hobbs et al., 1988).

Deduction is combinatorially explosive, and since the
abduction scheme augments deduction with two more
options at each node--assumpt ion and factor ing-- i t is
even more explosive. We have been engaged in an empiri-
cal investigation of the behavior of this abductive scheme
on a knowledge base of nearly 400 axioms, performing
relatively sophisticated linguistic processing. So far, we
have begun to experiment, with good results, with three
different techniques for controlling abduct ion- -a type hi-
erarchy, unwinding or avoiding transitivity axioms, and
various heuristics for reducing the branch factor of the
search.

The T y p e Hierarchy
The first example on which we tested the abductive
scheme was the sentence

There was adequate lube oil.

The system got the correct interpretation, that the lube
oil was the lube oil in the lube oil system of the air com-
pressor, and it assumed that that lube oil was adequate.
But it also got another interpretation. There is a men-
tion in the knowledge base of the adequacy of the lube
oil pressure, so it identified that adequacy with the ade-
quacy mentioned in the sentence. It then assumed that
the pressure was lube oil.

It is clear what went wrong here. Pressure is a magni-
tude whereas lube oil is a material, and magnitudes can't
be materials. In principle, abduction requires a check for
the consistency of what is assumed, and our knowledge
base should have contained axioms from which it could
be inferred that a magnitude is not a material. In prac-
tice, unconstrained consistency checking is undecidable
and, at best, may take a long time. Nevertheless, one
can, through the use of a type hierarchy, eliminate a very
large number of possible assumptions that are likely to

result in an inconsistency. We have consequently imple-
mented a module that specifies the types that various
predicate-argument positions can take on, and the likely
disjointness relations among types. This is a way of ex-
ploiting the specificity of the English lexicon for com-
putational purposes. This addition led to a speed-up of
two orders of magnitude.

A further use of the type hierarchy speeds up process-
ing by a factor of 2 to 4. The types provide prefiltering
of relevant axioms for compound nominal, coercion, and
other very general relations. Suppose, for example, that
we wish to prove rel(a, b), and we have the two axioms

Without a type hierarchy we would have to backchain on
both of these axioms. If, however, the first of the axioms
is valid only when x and y are of types t l and t2, respec-
tively, and the second is valid only when x and y are of
types t3 and t4, respectively, and a and b have already
been determined to be of types t l and t2, respectively,
then we need only backchain on the first of the axioms.

There is a problem with the type hierarchy, however.
In an ontologically promiscuous notation, there is no
commitment in a primed proposition to t ruth or exis-
tence in the real world. Thus, lube-oill(e,o) does not
say that o is lube oil or even that it exists; rather it
says that e is the eventuality of o's being lube oil. This
eventuality may or may not exist in the real world. If
it does, then we would express this as Rexists(e), and
from that we could derive from axioms the existence of o
and the fact that it is lube oil. But e's existential status
could be something different. For example, e could be
nonexistent, expressed as not(e) in the notation, and in
English as "The eventuality e of o's being lube oil does
not exist," or simply as "o is not lube oil." Or e may
exist only in someone's beliefs or in some other possible
world. While the axiom

(Vx)press=re(x) l be-oiZ(x)

is certainly true, the axiom

(V e:, x)pressure'(el, x) D

6 0

would not be true. The fact that a variable occupies
the second argument position of the predicate lube-oil ~
does not mean it is lube oil. We cannot properly restrict
that argument position t o b e lube oil, or fluid, or even a
material , for tha t would rule out perfectly true sentences
like "Truth is not lube oil."

Generally, when one uses a type hierarchy, one as-
sumes the types to be disjoint sets with cleanly defined
boundaries, and one assumes that predicates take argu-
ments of only certain types. There are a lot of problems
with this idea. In any case, in our work, we are not buy-
ing into this notion tha t the universe is typed. Rather
we are using the type hierarchy strictly as a heuristic, as
a set of guesses not about what could or could not be but
about what it would or would not occur to someone to
say. When two types are declared to be disjoint, we are
saying that they are certainly disjoint in the real world,
and that they are very probably disjoint everywhere ex-
cept in certain bizarre modal contexts. This means, how-
ever, that we risk failing on certain rare examples. We
could not, for example, deal with the sentence, "It then
assumed that the pressure was lube oil."

Unwinding or Avoid ing Transitiv-
ity A x i o m s
In general, one must exercise a certain discipline in the
axioms one writes. At one point, in order to conclude
from the sentence

Bombs exploded at the offices of French-owned
firms in Catalonia.

tha t the country in which the terrorist incident occurred
was Spain, we wrote the following axiom:

(V x, y, z) in(x, y) A partof (y , z) D in(x, z)

Tha t is, if x is in y and y is a par t of z, then x is also
in z. The interpretation of this sentence was taking an
extraordinarily long time. When we examined the search
space, we discovered tha t it was dominated by this one
axiom. We replaced the axiom with several axioms that
limited the depth of recursion to three, and the problem
disappeared.

In general, one must exercise a certain discipline in
the axioms one writes. Which kinds of axioms cause
trouble and how to replace them with adequate but less
dangerous axioms is a mat te r of continuing investigation.

Reduc ing the Branch Factor of
the Search
It is always useful to reduce the branch factor of the
search for a proof wherever possible. There are several
heuristics we have devised so far for accomplishing this.

The first heuristic is to prove the easiest, most specific
conjuncts first, and then to propagate the instantiations.
For example, in the domain of naval operations reports,

words like "Lafayette" are treated as referring to classes
of ships rather than to individual ships. Thus, in the
sentence

Lafayette sighted.

"Lafayette" must be coerced into a physical object that
can be sighted. We must prove the expression

(3 x, y) Lafayette(x) A tel(y, x)

The predicate Lafayette is true only of the entity
LAFA YETTE-CLASS . Thus, rather than trying to prove
tel(y, x) first, leading to a very explosive search, we try
first to prove Lafayette(x). We succeed immediately, and
propagate the value L A F A Y E T T E - C L A S S for x. We
thus have to prove rel(y, L A F A Y E T T E - C L A S S) . Be-
cause of the type of L A F A Y E T T E - C L A S S , only one ax-
iom applies, namely, the one allowing coercions from
types to tokens tha t says that y must be an instance
of L A F A Y E T T E - C L A S S .

Similar heuristics involve solving reference problems
before coercion problems and proving conjuncts whose
source is the head noun of a noun phrase before proving
conjuncts derived from adjectives.

Another heuristic is to eliminate assumptions wher-
ever possible. We are bet ter off if at any node, rather
than having either to prove an atomic formula or to as-
sume it, we only have to prove it. Some predicates are
therefore marked as nonassumable. One category of such
predicates are the "closed-world predicates", those pred-
icates such tha t we know all entities of which the predi-
cate is true. Predicates representing proper names, such
as Enterprise , and classes, such as LafayeLte, are exam-
ples. We don ' t assume these predicates because we know
tha t if they are true of some entity, we will be able to
prove it.

Another category of such predicates is the "schema-
related" predicates. In the naval operations domain,
the task is to characterize the part icipants in incidents
described in the message. This is done, as described
in Section 5.4. A schema is encoded by means of a
schema predication, with an argument for each role in
the schema. Lexical realizations and other consequences
of schemas are encoded by means of schema axioms.
Thus, in the jargon of naval operations reports, a plane
can splash another plane. The underlying schema is
called Ini t-Act . There is thus an axiom

(V x, y, . . .)Init-Act(x, y, a t tack , . . .) D
splash(x, y)

Schema-related predicates like splash occurring in the
logical form of a sentence are given very large assump-
tion costs, effectively preventing their being assumed.
The weight associated with the antecedent of the schema
axioms is very very small, so tha t the schema predication
can be assumed very cheaply. This forces backchaining
into the schema.

In addition, in the naval operations application, co-
ercion relations are never assumed, since this is what
drives the use of the type hierarchy.

61

Factoring also multiplies the size of the search tree
wherever it can occur. As explained above, it is a very
powerful method for coreference resolution. It is based
on the principle that where it can be inferred that two
entities have the same property, there is a good possibil-
ity that the two entities are identical. However, this is
true only for fairly specific properties. We don't want to
factor predicates true of many things. For example, to
resolve the noun phrase

ships and planes

we need to prove the expression

(3 x, sl, y, s2)Plural(x, sl) A ship(x) A
Plural(u, s2) ^ plane(u)

where Plural is taken to be a relation between the
typical element of a set and the set itself. If we ap-
plied factoring indiscriminately, then we would factor the
conjuncts Plural(x, sl) and Plural(y, s2), identifying x
with y and Sl with s2. If we were lucky, this interpre-
tation would be rejected because of a type viola t ion--
planes aren' t ships. But this would waste time. It is
more reasonable to say that very general predicates such
as Plural provide no evidence for identity.

The type hierarchy, the discipline imposed in writing
axioms, and the heuristics for limiting search all make
the system less powerful than it would otherwise be, but
we implement these techniques for the sake of efficiency.
There is a kind of scale, whose opposite poles are effi-
ciency and power, on which we are trying to locate the
system. It is a mat ter of ongoing investigation where on
that scale we achieve optimal performance.

R e f e r e n c e s
[1] Hobbs, Jerry R., Mark Stickel, Paul Martin, and

Douglas Edwards, 1988. "Interpretation as Abduc-
tion", Proceedings, 26th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 95-103,
Buffalo, New York, June 1988.

5 2

