
A Tree.Trellis Based Fast Search for Finding the N Best Sentence
Hypotheses in Continuous Speech Recognition

Frank K. Soong
Eng-Fong Huang*

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In this paper a new, tree-trellis based fast search for
finding the N best sentence hypotheses in continuous
speech recognition is proposed. The search consists of
two parts: a forward, time-synchronous, trellis search and
a backward, time asynchronous, tree search. In the first
module the well known Viterbi algorithm is used for
finding the best hypothesis and for preparing a map of all
partial paths scores time synchronously. In the second
module a tree search is used to grow partial paths
backward and time asynchronously. Each partial path in
the backward tree search is rank ordered in a stack by the
corresponding full path score, which is computed by
adding the partial path score with the best possible score
of the remaining path obtained from the trellis path map.
In each path growing cycle, the current best partial path,
which is at the top of the stack, is extended by one arc
(word). The new tree-trellis search is different from the
traditional time synchronous Viterbi search in its ability
for finding not just the best but the N-best paths of
different word content. The new search is also different
from the A* algorithm, or the stack algorithm, in its
capability for providing an exact, full path score estimate
of any given partial (i.e., incomplete) path before its
completion. When compared with the best candidate
Viterbi search, the search complexities for finding the N-
best strings are rather low, i.e., only a fraction more
computation is needed.

I. Introduction

In a spoken language understanding (recognition) system,
the search space of possible sentence hypotheses are
determined by many factors such as the size of
recognition vocabulary, the rigidity of grammar, the
system dependency on specific speakers, etc. When these
constraining factors are relaxed, the space can be very
large and the effort for finding a global optimal
hypothesis may become expensive or even prohibitive.
Sometimes, even for a smaller scale problem, certain

* On leave from Telecommunication Labs, Chung-li, Taiwan.

language constraints can not be easily incorporated into a
low level, acoustic search. For example, a check-sum
grammar used for detecting error in a digit string, due to
its nonlinear and modulo arithmetic nature, can not be
built into a continuous digit recognizer except for some
trivial cases.

To reduce the search effort, a spoken language system is
in general divided into two stages: a continuous speech
recognition system followed by higher level language
processing modules. First, the frame level acoustic
information is processed by a continuous speech
recognizer. The output of a continuous speech recognizer,
sn'ings of symbols or words, are then fed into higher level
language modules such as a sentence parser, semantic
analysis modules, etc. for further processing.
Unforttmately, such a division was usually done at a price
of sacrificing the optimality of solutions and the final
output, in most cases, is only suboptimal or not optimal at
all. This compromise is not really necessary and global
optimality can be obtained if the following two conditions
are satisfied: first, the reduction of the search space in the
first stage should not too greedy to cause any hard errors
so that the optimal solution are dropped from being
considered for further processing in the first stage; and
second, the output of all processing modules should be
rank ordered according to some universal optimality
criteria like the likelihood scores.

To fulffill the above two conditions, it is important to to
devise an efficient search for the N-best sentence
hypotheses in the first stage where N should be adaptively
adjustable. By doing so, we can preserve the optimality
of final results while reducing the search space to a
manageable size, i.e., an N element subset of all possible
hypotheses. Existing efforts for finding N-best sentence
hypotheses were devised in the level building algorithm
by Meyer and Rabiner [1], a frame synchronous network
search by Lee and Rabiner [2] and recently a sentence
hypothesis search by Steinbiss [3]. The resultant N-best
hypotheses, however, are only optimal under constrained
conditions: lower ranked sentence candidates are derived

12

from the sentence segmentation of higher ranked
candidates. Due to the constraints, the top-N candidates
thus derived are not exact.

Recently an exact, top-N candidate search was proposed
by Chow and Schwartz [4]. The top-N string hypotheses
are obtained in a Viterbi-like, breadth-first search set-up in
the first stage and they are then processed by knowledge
sources in the second stage. Another approach, proposed
by Paul [5], is to use stack-based decoding
algorithms [6,7,8] as common tools for a continuous
speech recognizer and natural language processing
modules. Likelihood scores are used as a common metric
shared by both lhe recognizer and language modules. In
the same paper, a natural interface was proposed to link a
continuous speech recognizer and higher level language
modules.

In this paper, we present a newly proposed, fast tree-trellis
based N-best search [9] for finding the top-N sentence
hypotheses in a continuous speech recognizer. The search

A ° uses an algorithm for finding the top, N sentence
hypotheses. However, different from other A or the stack
algorithm where heuristic ways are used to evaluate path
scores before completion and optimalities of the solutions
are compromised, the new algorithm is an exact N-best
search and only exact, not heuristic, path scores are used.
The new algorithm generates the N-best hypotheses
sequentially. Furthermore, the number of hypotheses need
not to be preset and the algorithm can terminate at any
time whenever a string hypothesis is accepted as a valid
sentence. The search is also computationally efficient due
to its tree-trellis search nature. The new algorithm only
needs a fraction more computation than a normal Viterbi
search for finding the top N sentence hypotheses.

The rest of the paper is organized as follows. In the next
section, we present the fast tree-trellis algorithm. In
Section HI we discuss the optimality of the algorithm. In
Section IV we presem results obtained from testing the
algorithms on two different applications: connected digit
recognition using check-sum rules and the DARPA
Resource Management task using the word-pair grzmmar
and the original finite state automata of DARPA
sentences. In Section V we confirm the efficiency of the
tree-trellis search by presenting a CPU time breakdown of
differem computation modules.

If. The Tree-Trellis N-Best Search

The proposed algorithm, as its name indicates, is a fast
search by combining a tree search based A* [I0] (or
"stack") algorithm [6,7,8] with a trellis search based
modified Viterbi algorithm. A block diagram of the
algorithm is shown in Fig. I.

ACOUSTIC OBSERVA'I'IONS

1
, TRELUS

SEARCH(FORWARD) 1"

I IPA'r. I ST
,~ [STRING

FRAME-ASYNCHRONOUS [
TREE j=

SEARCH (BACKWARD) I
N-BEST STRINGS

HIGHER LEVEL
LANGUAGE
PROCESSING

UKELJHOOD '1

RECOGNIZED STRING
(UNDERSTOOD)

Fig. I. Block diagram of the trcc-tmRis search

As shown in the diagram, first, input acoustic
observations are compared with HMM models and a
corresponding log likelihood map is generated. The trellis
search is then performed time (frame) synchronously in
the forward (left-to-right) direction and the search is
guided by a given grammar and/or any knowledge source
which is incotporated into the Viterbi search. In addition
to output the best sentence hypothesis, a path map of all
partial paths is registered in the Viterbi search. The
partial path map contains scores of all partial paths that
lead to any grammar node at every time instant.

At the end of the trellis search, a new, tree search for
finding the best N sentence hypotheses is initiated. The
search is performed backward in time and frame
asynchronously. It is a best-first search implemented by
using an A* search or the stack algorithm. The N-best
candidates are found one at a time and each candidate is
then fed sequentially to higher level processing modules.
The final result of the whole system is a recognized
(understood) string. In the following subsections we
present individual modules of the trce-trctlls search in
detail.

11.1 Modified Viterbi Algorithm (MVA)

The Viterbi algorithm (trellis search) is modified in the
new tree-trellis search to generate a partial path map.
The map is needed by the A* tree search. The modified

13

Viterbi algorithm is given as follows.

Trell is Search (Modified Viterbi) Algor i thm

INITIALIZE: (1) path scores; (2) arc ranking indices;
(3) backpointers (optional)

LOOP I: loop over time indices from left to fight

LOOP II: loop over grammar nodes

LOOP III: loop over arcs of a grammar node

LOOP IV: loop over states of an arc (word)

Evaluate dynamic programming recursion

Update accumulated likelihood arrays
- - Update backpointer arrays (optional)

LOOP IV control

For every grammar node,

- - sort accumulated likelihood path scores
- - register arc ranking index arrays
- - register "from frame" arrays (optional)

LOOP III control

LOOP II control

LOOP I control

After all bookkeeping arrays are initiated, four nested
loops are performed. The dynamic programming starts
first from the outermost loop, a loop over the time indices
from left to right frame synchronously, over a loop of all
grammar nodes, then over all arcs (words) of a grammar
node and finally, over the innermost loop of all ,states
associated with an arc (word). Since the best path will be
obtained in the backward tree search as the first sentence
hypothesis output, it is not necessary to register any
backpointer arrays and all backtracking operations are
only optional. The arc (word) ranking index arrays are
recorded only when the number of possible arcs (words)
at a node exceeds N, the number of sentences hypotheses
to be found. In addition to the best partial path, an the
other partial paths that lead to a grammar node, are
recorded in the modified Viterbi algorithm.

II.2 Tree Search A ° Algori thm for Finding the N,best
Strings

At the end of the modified Viterbi search, a backward tree
search is initiated from a terminal node and the search is
performed time asynchronously in a backward (fight-to-
left) direction. The tree search is implemented using an
A* search or the stack algorithm. However, different
from a typical A ° search where the incomplete portion of
a partial path is estimated (or predicted) using ~some
heuristics, the tree search here uses the partial path map
prepared in the first stage trellis search ar 4 the score of

the incomplete portion of a path in the search tree is then
exactly known. The backward partial paths are rank
ordered in the stack based upon the exact scores of their
corresponding full but yet incomplete paths. The tree-
trellis search algorithm has other advantages over a
breadth-first N-best search in its ability to output
sequentially the N-best hypotheses, one at a time,
according to descending likelihood scores. The backward
tree search can be best illustrated by a conceptual diagram
depicted in Fig. 2.

o -

MAIN STACK J

I

/ I / I SECONDARY STACK

Fig. 2. Conceptual diagram of path growing in a tree

Two stacks, a main stack and a secondary stack, are two
list data structures for storing partial hypotheses. In the
main stack, all partial paths, are rank ordered according to
their likelihood scores. The best partial path at the top of
the main stack gets extended in every path growing cycle.
As shown in the figure, the top entry in the main stack is
first split into two parts, the best one word (arc) extension
and the set of remaining one word (arc) extensions.
These two extensions are stored temporaarily in the
secondary stack and then reinserted back into the main
stack so that all main stack entries are still rank ordered.
The modified A ° algorithm used to grow a tree is
summarized as foUows:

14

N-Best Tree Search (A °) Algorithm

INITIALIZE: put the root node in a rank
ordered list (main stack) to form a null partial path

LOOP: best first path growing loop

Take the top entry (the best partial path) off the main stack

IF the top entry is a single path (i.e., not a group of partial paths),
THEN

IF the best partial path is complete (i.e., leads to a
terminal node), THEN

output the path and increment the output
hypothesis counter by one

IF output counter equals N, THEN

stop

ENDIF

ELSE

ENDIF

Split the partial path into two sets: the best one-arc extension and the
remaining one-arc extensions.

Use the partial path map provided by the Viterbi algorithm in evaluating
the one-arc extensions.

Store the two sets temporarily into the secondary suck and then reinsert
them back into the main stack such that the main stack is still rank
ordered. Ranking is based upon complete path scores.

ELSE

Split the set of partial paths into two sets: the best partial path and the
remaining partial paths in the set.

Store them temporarily into the secondary stack and then reinsert them back
into the main stack such that the main stack is still rank ordered.

ENDIF

LOOP CONTROL

H.3 Partial Path Merging at a Grammar Node

The search of the N-best paths in continuous speech
recognition is somewhat more complicated than a typical
graph search problem due to the time varying nature of
the graph, i.e., the cost of a path varies with time. In other
words, a single path in a graph is actually a set of paths
of different time signatures (trajectories). Since we
consider only paths of different word content, paths of the
same word content but with different trajectories have to
be compared first and only the best path is retained and it

is then compared with other best paths of different word
coment. In search of the N-best sentence hypotheses, the
best paths between the start node and the terminal node
can pass any given node in-between at any time instants
should be compared. These paths can be filrther divided
into two sets of partial paths: backward partial paths
grown in the tree search with forward partial paths grown
in the trellis search at a specific grammar node as
illustrated in Fig. 3.

15

WORD I

11ME

BACKWARD t "T

-- T R E E S

/ / /
I / / I ~' 1 / J ' ~

I I ,,' / / " s ' " .4 ~

/ / / / / . . ~ - " \
/ //// ~ , ; . ; A " I-TRELLIS
I ! / / - f"~"

t-1 TIME
FORWARD

M th GRAMMAR
NODE

Fig. 3. Merging forward and backward partial paths

As shown in the figure, solid lines represent partial paths
grown by the backward tree search while broken lines
represent partial paths grown by the forward trellis search.
To be specific, partial paths leading to a grammar node,
say the N m node, from a terminal node and partial paths
stemming from the root node, passing a grammar node
which is a predecessor of the N-th node, say the M-th
node, along the arc of word i are merged at the N-th
node at matched time instants. The best path is the one
with the maximum summed likelihood scores.

Ill . Optimafity of the Tree-Trellis Search

The optimality of the A* search has been proven before,
e.g., [10]. It is stated as the admissibility of the A*
algorithm. That is, if there is a path from the root node
to a terminal node, A* terminates by finding an optimal
path. There is also an interesting property that associates
with any node n chosen for path growing. That is, the
path score, a summation of the computed partial path
score from the root node to the node n and the estimated
incomplete partial path score from node n to the terminal
node, is equal to or better than the optimal path score
between the root node and the terminal node. The
equality holds in our modified A* algorithm because the
exact rather than an estimated score of the incomplete
path between n and the terminal node is precomputed in
the first stage Viterbi search and is readily available. This
equality maximizes the A" search efficiency and
minimizes the main stack size to N, the number of

candidates. The search efficiency is maximized because
the exact score for the incomplete partial path is used
instead of an estimated upperbound.

In terms of the storage, a main stack of size N, is
sufficient to maintain the N-best hypotheses within the
search procedure because any partial path on the stack
does not change its optimal (complete) path score
throughout the search.

IV. Applications to Check-Sum Based Connected
Digit Recognition

The development of the fast tree-tretlis search for finding
the N-best candidate sentence strings was originally
motivated by a continuous digit recognition application.
The American Express (AMEX) credit card company
initiated a project recently to automate its procedure in
verifying the merchant I.D., the credit card number and
authorizing the dollar purchase m o u n t via telephone
calls. Currently all verifications and authorizations are
carried out by human operators and the final goal of the
project is to replace as many human operators as possible
by automatic speech recognizers while maintain
comparable recognition performance. Both credit card
numbers and merchant I.D.'s are fixed length digit strings,
i.e., 10 digits for a merchant I.D. and 15 digits for a credit
card number.

The last digit of each digit string (merchant I.D. or a
credit card, is a check-sum digit, which is a nonlinear,
modulo, combination of the previous digits. The check-
sum digit is installed for security reasons and the exact
formulas for generating the check-sum digit axe not given
here. The check-sum rules, despite their simplicity, can
not be incorporated directly into a continuous speech
recognizer. Because except by using an exhaustive, hence
prohibitive, finite state network, the check sum formulas
can not be tested before all digits in a string are available
(recognized). Consequently, the search for the correct
digit string is thus divided into two stages: a continuous
digit recognition and a check-sum test. The fast tree-
treU.is search for finding the top-N candidates is then ideal
for this two-stage processing. The sentence hypotheses
are found sequentially and they are tested against the
check-sum rules. If at any time, a string passes the
check-sum rules, search stops. Otherwise, the next digit
string with a lower likelihood score is then fetched and
tested.

Two digits strings (credit card number and merchant
I.D.) from each speaker were recorded over each local or
long distance telephone call to the American Express
processing facilities in Phoenix, Arizona. 1,800 digit
strings recorded by 900 speakers constitute the training

16

data base. Separate 100 strings of merchant I.D.'s and 114
strings of credit card numbers recorded by a different set
of speakers form the test data base. Various "real world"
conditions are present in the recordings, including:
speakers with a strong foreign accent, music or human
conversations in the background, tone noise, cross-channel
interference from different telephone lines, etc. The SNR
of the recordings is around 25 to 30 dB.

In constructing word-based HMMs, 13 words were chosen
to form the vocabulary, which consists of the ten digits,
i.e., { " 0 " to "9"} , "oh" , silence, and extraneous speech.
Two HMM models were built for each word in the
vocabulary. For each state in a word models, a 64 mixture
component continuous Gaussian mixture probability
density function was trained. Both the best string Viterbi
search and the top-N, tree-trellis search were used to
recognized the strings in the test data base.

The recognition results are tabulated in Table I by string
accuracies.

Type Top 1 Top 10 + check sum

Credit Card 84 98

Merchant I.D. 82 97

T a b l e L Recognition String Accuracy (%) for the
AMEX Trials

The string accuracies of the best word hypothesis obtained
from an unmodified Viterbi decoding are 84% and 82%
for the credit card and merchant I.D. recognition,
respectively. However, when we used the check-sum
rules to check the top-10 candidate obtained from the
tree-treUis search the string accuracy was improved from
84% to 98% for the credit card number recognition and
from 82% to 97% for the merchant I.D. recognition. This
high level of recognition performance has been reported
before e.g., [11], but it was achieved with a clean
microphone data base recorded in a sound booth. The
results of this experiment demonstrate that high
performance connected digit recognition in a real world
environment is achievable when simple error detection
rules are used in conjunction with the new tree-treUis
search algorithm. As an example, the top-10 candidates
of a merchant I.D. recognition trial is listed according to
their correspond decreasing likelihood scores.

1 4 2 8 4 11 2 7 11 5

time for likelihood map = 55.29

time for Viterbi = 37.06

1 19.25 1 4 2 8 4 11 2 7 11 5
2 19.19 1 4 2 7 4 11 2 7 0 5
3 19.18 1 4 2 8 4 I1 2 7 0 5
4 19.15 1 4 2 9 4 11 2 7 11 5
5 19.15 1 4 2 8 4 11 7 7 11 5
6 19.14 1 4 2 8 4 11 2 7 11 4
7 19.14 1 4 2 8 4 11 0 7 11 5
8 19 .13 1 4 2 7 4 11 2 7 0 5
9 19.12 1 4 2 6 4 11 2 7 11 5

10 19.12 1 4 2 2 4 11 2 7 11 5

time for multi-candidate tree search = 5.89

In this example, while the best digit string happens to be
the correct string, the rest 9 candidate suing are different
from the correct string only by one or two digits and ail
likelihood scores are very dose. Also shown are the CPU
lime breakdown for computing the likelihood map, the
trellis (Viterbi) search and the-tree search. The time
required in the tree search for finding the top-10 candidate
strings is only about 15% of the amount needed in the
forward trellis search. A different example of merchant
I.D. recognition is depicted in Fig. 4, where the 10-best
digit strings are displayed with corresponding word
boundaries, word likelihood scores (average) and their
rankings.

s t r 2 ? : 1 4 2 ° S 0 2 5 S 1

j :o ::2 : ' s ;;° '1 '
, ; ; ; ; ~ f l
~._..,,-.,-..: : , ', ,, ,,., : :,.,....,-~ ;._,.,;,.,.,.,,..~

, ;z ;° ;2 ;;0 is :o ,..., ~!s ;;s i~ ;
: ' ' :! " ;_~.~

i~ ;, 12 ~;0 ;s :o ~ ! , i ls ;i, ;, ;

il ;, :2 ::o :s ;o ;i' ~i s i~ s i ~ i
r = - " - = 5 r - . - - - - - i ~ _ j , , , , ,

;a ;° :2 ::0 :5 ;o ::o : : s ;;s ~l ;

; - - ' , ~ - - - 4 ' ' : 1 ,_.._,, ,1_._~ , " ' - - , L . . - , - - - -
;~ i° ;2 ;io ;s ;o ii' : !s ;i, ;, ;
J , * - , e j , , ,

;~ ;' i ' ii ° :, :o : : , : : ' ;;' i* i
o , ,

11 :~ :2 ::o :5 :o ::j ::s ;is ;t ;
, ; , ; ; ; ; 0, ; ;

11 ;']2 ilo is 1* ::2 .:i' ;;s ;° ;
i i i ** * i

1 t , . ', ',* :2 ::o '.s 'o "7 ' . :s ',',* ;t '
DCg, P ~ ' ' t

0 . 0
T l t b g |FPJU41E ~ 10181

Fig. 4. Multi-candidates and their segmentations

4 9 9 . 0

d

1

|

)

4

5

6

?

|

g

10

17

The segmented but unmarked portions in the figure were
recognized as either silence or extraneous speech, The
correct string, or the second best recognized string, is
different from the best recognized string by a single digit
confusion (" 2 " with "7") . Similar competing word
tokens can be collected for training discriminative HMM
models [12-15].

V. Applications to the DARPA Resource Management
Task

The new search procedure was also applied to the
DARPA resource management task and some preliminary
results are reported here. Forty seven context-independent
HMM phone models were trained by using 3,200
sentences (40 sentences/talker). Each phone HMM has 3
states and the output probability density function (pdf) of
each state is characterized by a 32-component, Gaussian
mixture densities. A 150-sentence test set used by
Lee [16] was used as a test set and recognition string
accuracies are given in Table III.

Type Top 1 : Top 100 + FSN check

CMU150 38 75

Table II. String accuracy (%) for the DARPA task

When a beam-search based Viterbi search was used to
decode an input string under a word-pair grammar
constraint, a sentence string accuracy of 38% was
obtained (perplexity 60). But when we used the tree-
trellis search and incorporated the finite state network
(i.e., a perplexity 9) as the second stage processing, the
sentence accuracy was almost doubled to 75% as shown
in the table. This result, in principle, can be similarly
achieved by using a full finite state grammar search but

with much higher search complexities. An example of the
top-10 candidates obtained in the search is given as
follows along with their CO1Tesponding average log
likelihood (per frame).

The correct string is the 7-th candidate with an average
log likelihood score of 11.806, only 0.03 less than the
string with the highest score. Almost all major content
words, especially those with longer durations, are
recognized in the top-10 strings. The extra computation
effort for finding the top--10 candidates in the tree search
is 1.8 sec, about 2.5% of the time needed for the forward
trellis beam search.

VI. Computation Breakdown of the Tree-Trellis
Algorithm

By breaking the search into a treUis (modified Viterbi)
and a tree search, the N-top sentence hypotheses can be
obtained sequentially and the search effort is greatly
reduced compared with other breadth-first based N-top
candidate search. We used the internal timing routines of
an Alliant computer to measure the CPU time spent on
each individual module in the AMEX digit recognition
trials. The breakdown is given in terms of percentage in
Table m.

Type Pementage (%)

Likelihood Map 56

Trellis 38

Tree (l o p 10 + checksum) 6

Table IIl . Computation breakdown (%) for the new
search

HOW SOON CAN ESTEEM CHOP TO ATLANTIC FLEET

time for likelihood map = 16.79

time for

1 11.836
2 11.824
3 11.823
4 11.823
5 11.811
6 11.811
7 11.806
8 11.804
9 11.804

10 11.799

Viterbi beam search = 71.29

HOW SOON CAN ESTEEM IN SOUTH TWO ATLANTIC FLEET
HOW SOON CAN ESTEEM A SOUTH TWO ATLANTIC FLEET
HOW SOON CAN ESTEEM IN SOUTH TWO ATLANTIC FI.EET TO
HOW SOON CAN ESTEEM IN SOUTH TWO ATLANTIC FLEET IN
HOW
HOW
HOW
HOW
HOW
HOW

SOON CAN ESTEEM A SOUTH TWO ATLANTIC FLEET TO
SOON CAN ESTEEM A SOUTH TWO ATLANTIC FLEET IN
SOON CAN ESTEEM CHOP TO ATLANTIC FLEET ***
SOON CAN ESTEEM TO SOUTH TWO ATLANTIC FLEET
SOON CAN ESTEEM THE SOUTH TWO ATLANTIC FLEET
SOON CAN ESTEEM IN SOUTH ATLANTIC FLEET

time for multi-candidate nee search = 1.79

1 8

As shown in the table, the likelihood map computation,
for the specific task (AMEX uials) and the HMMs used
constitutes about 56% of the total CPU time. More
efficient algorithm can be implemented, e.g., a partial
rather than a full table of likelihood functions can be
computed on demand, but it was not incorporated in our
implementation. The trellis search, or the modified
Viterbi algorithm, consumes about 38% of the CPU time
while the final top-10 candidate, tree-search needs the rest
6%. The check-sum test, based upon very simple
arithmetics, takes virtually no CPU time at all. The extra
computational needed for finding the top N candidates of
the tree-trellis search is minimal.

VII. Conclusion

In this paper, we propose a new, tree-trellis based, fast
search algorithm for finding the top N sentence
hypotheses in continuous speech recognition. The
algorithm uses a bi-directional search consisting of a
forward, time synchronous, trellis search and a backward,
time asynchronous, tree search. In the new algorithm, due
to the partial path map prepared in the trellis search, the
backward tree search is highly efficient and a shallow
stack, i.e., of a size N, is needed. The algorithm has been
tested successffially on two different data bases: the
American Express credit service data base and the
DARPA resource management data base. In the former
data base, multiple candidate digit strings were
successively generated and tested against some check-sum
rules, the digit string accuracy was improved by 14-15%.
For the DARPA database, when the finite state grammar
was used to screen out invalid sentence hypotheses in the
top 100 candidates, the string error was reduced by more
than a half. It was also shown in the experiments that the
top N candidates were obtained with a minimal
computational overhead.

References

[1] Meyer, C. S. and Rabiner, L. R., "Connected Digit
Recognition Using a Level Building DTW Algorithm,"
IEEE trans, on ASSP, Vol. ASSP-29, pp. 351-363, June
1981.

[2] Lee, C. H. and Rabiner, L. R., "A Frame Synchronous
Level Building Algorithm for Connected Word
Recognition," Comput. Speech Language, Vol. 1, no. 1,
pp. 29-45, Mar. 1986.

[3] Steinbiss, "Sentence Hypothesis Generation in a
Continuous Speech Recognition System," Proc.
European Conf. on Speech Comm. and Tecl. pp. 51-54,
Paris, Sept. 1989.

[4] Chow, Y. and Schwartz, R., "The N-Best Algorithm:
An Efficient Procedure for Finding top N Sentence
Hypotheses," Proc. Speech and Natural Language
Workshop, Oct., 1989, pp. 199-202, also Proc.
ICASSP-90, pp. 81-84, Apr. 1990, NM.

[5] Paul, D., "A CSR-NL Interface Specification,
Version 1.5," Proc. Speech and Natural Language
Workshop, Oct. 1989, pp. 203-214.

[6] Jelinek, F. "A Fast Sequential Decoding Algorithm
Using a Stack," IBM J. Res. Develop., Vol. 13,
pp. 675-685, Nov. 1969.

[7] Jelinek, F., Bahl, L. R., Mercer, R. L., "Design of a
Linguistic Statistical Decoder for the Recognition of
Continuous Speech," IEEE Trans. on Information
Theory, Vol. rl'-21, No. 3, pp. 250-256, May 1975.

[8] Sturtevant, D., "A Stack Decoder for Continuous
Speech Recognition," Proc. Speech and Natural
Language Workshop, Oct. 1989, pp. 193-198.

[9] Soong, F. K. and Huang, E.-F., "A Fast Tree-Trellis
Search for Finding the N-Best Sentence Hypotheses in
Continuous Speech Recognition," J. Acoust. Soc. AM.
S-I, Vol. 87, pp. 105-106, May 1990.

[10] Nilsson, N., Problem-Solving Methods in Artificial
Intelligence, NY, NY, McGraw Hill, 1971.

[11] Rabiner, L. R., Wilpon, J. G., Soong, F. K., "High
Performance Connected Digit Recognition Using Hidden
Markov Models," ~.1~1~ Trans. on AcousL Speech and
Sig. Proc., Vol. 37, No. 8, pp. 1214-1225, Aug. 1989.

[12] Bahl, L., Brown, P. DeSousa, P., and Mercer, R., "A
New Algorithm for the Estimation of Hidden Markov
Model Parameters," Proc. ICASSP-88, ppA93-496, Apr.
1988.

[13] Doddington, G., "Phonetically Sensitive Discriminants
fro Improved Speech Recognition," Proc. ICASSP-89,
pp. 556-559, May 1989.

[14] Huang. E.-F. and Soong, F. K., "A Probabilistic
Acoustic Map Based Discriminative H/VIM Training,"
Proc. ICASSP-90, pp.693-696, Apr. 1990.

[15] Chow, Y.-L., "Maximum Mutual Information
Estimation of H/vIM Parameters for Continuous Speech
Recognition Using the N-Best Algorithm," Proc.
ICASSP-90, pp.701-704, Apr. 1900.

[16] Lee, K.-F., Large Vocabulary Speaker-Independent
Continuous Speech Recognition: The Sphinx System,
Ph.D Dissertation, Computer Science Department,
Carnegie-Mellon Univ., Apr. 1988.

19

