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Abstract 
We present two efficient search algorithms for real-time spo- 
ken language systems. The first called the Word-Dependent 
N-Best algorithm is an improved algorithm for finding the 
top N sentence hypotheses. The new algorithm is shown 
to perform as well as the Exact Sentence-Dependent al- 
gorithm presented previously but with an order of mag- 
nitude less computation. The second algorithm is a fast 
match scheme for continuous speech recognition called the 
Forward-Backward Search. This algorithm, which is directly 
motivated by the Baum-Welch Forward-Backward training 
algorithm, has been shown to reduce the computation of a 
time-synchronous beam search by a factor of 40 with no 
additional search errors. 

1. Introduction 
In a Spoken Language System (SLS) we must use all avail- 
able knowledge sources (KSs) to decide on the spoken sen- 
tence. While there are many knowledge sources, they are 
often grouped together into speech models, statistical lan- 
guage model, and natural language understanding models. 
To optimize accuracy we must choose the sentence that has 
the highest score (probability) given all of the KSs. This 
potentially requires a very large search space. The N-Best 
paradigm for integrating several diverse KSs has been de- 
scribed previously [2, 10]. First, we use a subset of the KSs 
to choose a small number of likely sentences. Then these 
sentences are scored using the remainder of the KSs. 

In Chow et. al., we also presented an efficient speech 
recognition search algorithm that was capable of comput- 
ing the N most likely sentence hypotheses for an utterance, 
given the speech models and statistical language models. 
However, this algorithm greatly increases the needed com- 
putation over that needed for finding the best single sen- 
tence. In this paper we introduce two techniques that dra- 
matically decrease the computation needed for the N-Best 
search. These algorithms are being used in a real-time SLS 
[1]. In the remainder of the introduction we review the exact 
N-Best search briefly and describe its problems. In Section 
2 we describe two approximations to the exact algorithm 
and compare their accuracy with that of the exact algorithm. 

The resulting algorithm is still not fast enough for real- 
time implementation. In Section 3 we present a new 

sentence-level fast match scheme for continuous speech 
recognition. The algorithm is motivated by the mathematics 
of the Baum-Welch Forward-Backward training algorithm. 

The N-Best Paradigm 
The basic notion of the n-best paradigm is that, while we 
must ultimately use all the available KSs to improve recog- 
nition accuracy, the sources vary greatly in terms of per- 
plexity reduction and required complexity. For example, 
a first-order statistical language model can reduce perplex- 
ity by at least a factor of 10 with little computation, while 
applying complete natural language (NL) models of syn- 
tax and semantics to all partial hypotheses typically requires 
more computation for less perplexity reduction. (Murveit 
[6] has shown that the use of an efficiently implemented 
syntax within a recognition search actually slowed down the 
search unless it was used very sparingly.) Therefore it is 
advantageous to use a strategy in which we use the most 
powerful, efficient KSs first to produce a scored list of all 
the likely sentences. This list is then filtered and reordered 
using the remaining KSs to arrive at the best single sentence. 
Figure 1 contains a block diagram that illustrates this basic 
idea. In addition to reducing total computation the result- 
ing systems would be more modular ff we could separate 
radically different KSs. 

T h e  Exact Sentence-Dependent A l g o r i t h m  
We have previously presented an efficient time-synchronous 
algorithm for finding the N most likely sentence hypotheses. 
This algorithm was unique in that it computed the correct 
forward probability score for each hypothesis found. The 
way this is accomplished is that, at each state, we keep an 
independent score for each different preceding sequence of 
words. That is, the scores for two theories are added only 
if the preceding word sequences are identical. We preserve 
up to N different theories at each state, as long as they are 
above the pruning beamwidth. This algorithm guarantees 
finding the N best hypotheses within a threshold of the best 
hypothesis. The algorithm was optimized to avoid expen- 
sive sorting operations so that it required computation that 
was less than linear with the number of sentence hypotheses 
found. It is easy to show that the inaccuracy in the scores 
computed is bounded by the product of the sentence length 
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Figure 1: The N-best Search Paradigm. The most efficient 
knowledge sources, KS1, are used to find the N Best sen- 
tences. Then the remaining knowledge sources, KS2 are 
used to reorder the sentences and pick the most likely one. 

and the pruning beamwidth. For example, if a sentence 
is 1000 frarms long and a relative pruning beamwidth of 
10-15 is maintained throughout the sentence, then all scores 
are guaranteed to be accurate to within 10 -12 of the maxi- 
mum score. The proof is not given here, since it is not the 
subject of this paper. In the remainder of the paper we will 
refer to this particular algorithm as the Exact algorithm or 
the Sentence-Dependent algorithm. 

There is a problem associated with the use of this exact 
algorithm. If we assume that the probability of a single word 
being misrecognized is roughly independent of the position 
within a sentence, then we would expect that alonger sen- 
tence will have more errors. Consequently the typical rank 
of the correct answer will be lower (further from the top) on 
longer sentences. Therefore if we wanted the algorithm to 
find the correct answer within the list of hypotheses some 
fixed percentage of the time, the value of N will have to 
increase significantly for longer sentences. 

When we examine the different answers found we no- 
tice that, many of the different answers are simple one-word 
variations of each other. This is likely to result in much 
duplicated computation. One might imagine that if the dif- 
ference between two hypothesized word sequences were sev- 
eral words in the past then any difference in score due to 
that past word would remain constant. In the next section we 
present two algorithms that attempt to avoid these problems. 

2. Two Approximate N-Best Algorithms 
While the exact N-Best algorithm is theoretically interesting, 
we can generate lists of sentences with much less computa- 
tion if we are willing to allow for some approximations. As 
long as the correct sentence can be guaranteed to be within 
the list, the list can always be reordered by rescoring each 
hypothesis individually at the end. We present two such 
approximate algorithms with reduced computation. 

Lattice N-Best 
The first algorithm will derive an approximate list of the 
N Best sentences with no more computation than the usual 
1-Best search. Figure 2 illustrates the algorithm. Within 
words we use the time-synchronous forward-pass search al- 
gorithm [8], with only one theory at each state. We add the 
probabilities of all paths that come to each state. At each 
grammar node (for each frame) we simply store all of the 
theories that arrive at that node along with their respective 
scores in a traceback list. This requires no extra compu- 
tation above the 1-Best algorithm. The score for the best 
hypothesis at the grammar node is sent on as in the nor- 
rnal time-synchronous forward-pass search. A pointer to the 
saved list is also sent on. At the end of the sentence we 
simply search (recursively) through the saved Iraceback lists 
for all of the complete sentence hypotheses that are above 
some threshold below the best theory. This recursive Irace- 
back can be performed very quickly. (We typically extract 
the 100 best answers, which causes no noticeable delay.) 
We call this algorithm the Lattice N-Best algorithm since 
we essentially have a dense word lattice represented by the 
traceback information. Another advantage of this algorithm 
is that it naturally produces more answers for longer sen- 
t e n c e s .  
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Figure 2: The Lattice N-best Algorithm. We save all theo- 
ries at grammar nodes. Then we recursively Irace back all 
sequences. 

This algorithm is similar to the one suggested by Stein- 
biss [9], with a few differences. First, he uses the stan- 
dard Viterbi algorithm rather than the time-synchronous al- 
gorithm within words. That is he takes the maximum of the 
path probabilities at a state rather than the sum. We have 



observed a 20% higher error raate when using the maximum 
rather than the sum. The second difference is that when sev- 
eral word hypotheses come together at a common grammar 
node at the same lime, he traces back each of the choices 
and keeps the N (typically 10) best sentence hypotheses up 
to that lime and node. This step unnecessarily limits the 
o,mher of sentence hypotheses that are produced to N.  As 
above the score of  the best hypothesis is sent on to all words 
following the grammar node. At the end of the sentence he 
then has an approximation to the 3r best sentences. He re- 
ports that one third of the errors made by the 1-Best search 
are corrected in this way. However, as with a word lattice, 
many of the words are constrained to end at the same time 
- which leads to the main problem with this algorithm. 

The Lattice N-Best algorithm, while very fast, underesti- 
mates or misses high scoring hypotheses. Figure 3 shows 
an example in which two different words (words 1 and 2) 
can each be followed by the same word (word 3). Since 
there is only one theory at each state within a word, there is 
only one best beginning time. This best beginning time is 
determined by the best boundary between the best previous 
word (word 2 in the example) and the current word. But, as 
shown in Figure 3, the second-best theory involving a differ- 
ent previous word (word 1 in the example), would naturally 
end at a slightly different lime. Thus the best score for the 
second-best theory would be severely underestimated or lost 
altogether. 
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Figure 3: Alternate paths in the Lattice algorithm. The best 
path for words 2-3 overrides the best path for words 1-3. 

Word-Dependent N-Best 

As a compromise between the exact sentence-dependent 
algorithm and the lattice algorithm we devised a Word- 
Dependent N-Best algorithm_ We reason that while the best 
starting lime for a word does depend on the preceding word, 
it probably does not depend on any word before that. There- 
fore instead of separating theories based on the whole pre- 
ceding sequence, we separate them only ff previous word 
is different. At each state within the word we preserve the 
total probability for each of n ( < <  N) different preceding 
words. At the end of each word we record the score for 
each hypothesis along with the name of the previous word. 
Then we proceed on with a single theory with the name of 
the word that just ended. At the end of the sentence we per- 
form a recursive traceback to derive a large list of the most 
likely sentences. The resulting theory paths are illustrated 
schematically in Figure 4. Like the lattice algorithm the 
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Figure 4: Alternate paths in the Word-Dependent algorithm. 
Best path for words 1-3 is preserved along with path for 
words 2-3. 

word-dependent algorithm naturally produces more answers 
for longer sentences. However, since we keep multiple the- 
ories within the word, we correctly identify the second best 
path. While the computation needed is greater than for the 
lattice algorithm it is less than for the sentence-dependent al- 
gorithm, since the number of theories only needs to account 
for number of possible previous words - not all possible pre- 
ceding sequences. Therefore the number n, of theories kept 
locally only needs to be 3 to 6 instead of 20 to 100. 



Comparison of N-Best Algorithms 
We performed experiments to compare the behavior of the 
three N-Best algorithms. In all three cases we used the Class 
Grammar [3], a first-order statistical grammar based on 100 
word classes. All words within a class are assumed equally 
likely. The test set perplexity is approximately 100. The test 
set used was the June '88 speaker-dependent test set of 300 
sentences. To enable direct comparison with previous results 
we did not use models of triphones across word boundaries, 
and the models were not smoothed. We expect all three 
algorithms to improve significantly when the latest modeling 
methods are used. 
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Figure 5: Comparison of the Rank of the Correct Sentence 
for the Sentence-Dependent, Word-Dependent, and Latlice 
N-Best Algorithms. 

Figure 5 shows the cumulative distribution of the rank 
of the correct answer for the three algorithms. As can be 
seen, all three algorithms get the sentence correct on the first 
choice about 62% of the time. All three cumulative distri- 
butions increase substantially with more choices. However, 
we observe that the Word-Dependent algorithm yields accu- 
racies quite close to that of the Exact Sentence-Dependent 
algorithm, while the Lattice N-Best is substantially worse. 
In particular, the sentence error rate at rank 100 (8%) is dou- 
ble that of the Word-Dependent algorithm (4%). Therefore, 
ff we can afford the computation of the Word-Dependent 
algorithm it is clearly preferred. 

We also observe in Figure 5 that the Word-Dependent 
algorithm is actually better than the Sentence-Dependent al- 
gorithm for very high ranks. This is because the score of the 
correct word sequence fell outside the pruning beamwidth. 
However, in the Word-Dependent algorithm each hypothesis 
gets the benefit of the best theory two words back. Therefore 
the correct answer was preserved in the traceback. This is 
another advantage that both of the approximate algorithms 
have over the Sentence-Dependent algorithm. 

In the next section we describe a technique that can be 
used to speed up all of these time-synchronous search algo- 
rithms by a large factor. 

3. Forward-Backward Search 
The time-synchronous beam search follows a large number 
of theories on the off chance that they will get better during 
the remainder of the sentence. Typically, we must keep 
over 1000 theories to guarantee finding the highest answer. 
In some sense the computation for all but one answer will 
have been wasted. 

We need a way to speed up the beam search without caus- 
ing search errors. We could prune out most of the choices 
if we only knew the correct answer ahead of time or if we 
could look ahead at the remainder of the sentence. Several 
papers have described fast match schemes that look ahead 
(incurring a delay) to determine which words are likely (e.g. 
[4]). The basic idea is to perform some approximate match 
that can be used to eliminate most of the possible following 
words. However, since we cannot tell when words end in 
continuous speech, the predictions of the score for each word 
is quite approximate. In addition, even if a word matches 
well we cannot tell whether the remainder of the sentence 
will be consistent with that word without looking further 
ahead and incurring a longer delay. 

Let us consider the time-synchronous forward pass. The 
score at any given state and time at(s) is the probability of 
the input up to time t, summed over all of  the paths that 
get to state s at t. When these scores are normalized they 
give the relative probability of paths ending at this state as 
opposed to paths ending at any other state. These forward 
pass probabilities are the ideal measure to predict which 
theories in a backward search are expected to score well. 
Figure 6 illustrates several paths from the beginning of an 
utterance to different states at time t, and several theories 
from the end of the utterance T backward to time t. From 
the Baum-Welch Forward-Backward Iraining algorithm we 
have 

7t(s) 
GT 

where 7t(s) is the probability of the data given all paths 
through state s, divided by the probability of the data for 
all paths, which is the probability that slate s is appropriate 
at time t. aT is derived from the forward pass. Of course 
if we have already gone through the whole utterance in the 
forward direction we already know the most likely sentence. 

Now let us consider a practical Forward-Backward Search 
algorithm. First we perform a forward pass over the whole 
utterance using a simplified acoustics or language model. In 
each fran~ we save the highest forward probability and the 
probabilities of all words that have ending scores above the 
pruning beamwidth. Typically this includes about 20 words 
in each frame. Then we perform a search in the backward 
direction. This search uses the normal beam search within 
words. However, whenever a score is about to be trans- 
fered backwards through the language model into the end 
of a word we first check whether that word had an ending 
score for that frame in the forward pass. That is we ask, 
"Was there a reasonable path from the beginning of the ut- 
terance to this time ending with this word?" Again, referring 
to Figure 6, the backward theory that is looking for word 
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Figure 6: Forward-Backward Search. Forward and back- 
ward scores for the same state and time are added to predict 
final score for each theory extension. 

d cannot find any corresponding forward score, and so is 
aborted. When there is a score, as in the cases for words 
a,b,c, then we multiply the present backward score of the 
theory,/3t(s) by the forward pass score for this word; at(s),  
divided by the whole sentence score, aT.  Only if this ra- 
tio is greater than the pruning beamwidth do we extend the 
theory backwards by this word. For example, although the 
backward theory looking for word c has a good score, the 
corresponding forward score c'  is not good, and the product 
may be pruned out. 

The Forward-Backward search is only useful ff the for- 
ward pass is faster than the backward would have been. This 
can be true if we use a different grammar, or a less expensive 
acoustic model. If the forward acoustic models or language 
model is different than in the backward pass, then we must 
reestimate txa, before using it in the algorithm above. For 
simplicity we estimate txT at each time t as 

at(t)  = max at(s) maxB (s) 

the product of the maximum state scores in each direction. 
(Note that since the two maxima are not necessarily on the 
same state it would be more accurate to use 

a t ( t )  = m a x  a~(s)#t(s) 

forcing the two states to be the same. However, since most 
of the active states are internal to words, this would require 
a large computation and also require that we had stored all 
of the state scores in the forward direction for every time.) 

We observe that the average number of active phoneme 
arcs in the backward direction is reduced by a factor of 40 
(e.g. from. 800 to 20) - with a corresonding reduction in 
computation and with no increase in search errors. 

Uses of Forward-Backward Search 
As stated above, this algorithm is only useful when the for- 
ward pass can be computed differently (much more quicldy) 
than the backward (real) search. For example, we could use 
a null grammar in the forward direction and a more com- 
plex grammar in the backward search. We have used this 
extensively in our past work with very large RTN grammars 
or high-order statistical grammars [7]. When no grammar 
is used in the forward pass we can compact the entire dic- 
tionary into a phonetic tree, thereby greatly reducing the 
computation for large dictionaries. 

A variation on the above use is to use a simpler acous- 
tic model in the forward direction. For example restricting 
the model to triphones within words, using simpler HMM 
topologies, etc. 

A second use is for real-time computation of the N Best 
sentences [1]. First we perform a normal 1-Best search for- 
ward. The best answer can be processed by NL immediately 
(on another processor) while we perform the N-Best search 
backwards. We find that the backward N-Best search is sped 
up by a factor of 40 when using the forward pass scores for 
pruning. Thus the delay until we have the remainder of the 
answers is usually quite short. If the delay is less than the 
time required to process the first answer through NL, then 
we have lost no time. 

Finally, we can use the Forward-Backward Search to 
greatly reduce the time needed for experiments. Experi- 
ments involving expensive decoding conditions can be re- 
duced from days to hours. For example all of the exper- 
irnents with the Word-Dependent and Lattice N-Best algo- 
rithms were performed using the Forward-Backward Search. 

\ 

4 .  C o n c l u s i o n  

We have considered several approximations to the exact 
Sentence-Dependent N-Best algorithm, and evaluated them 
thoroughly. We show that an approximation that only sepa- 
rates theories when the previous words are different allows 
a significant reduction in computation, makes the algorithm 
scalable to long sentences and less susceptable to pruning 
errors, and does not increase the search errors measurably. 
In contrast, the Lattice N-Best algorithm, which is still less 
expensive, appears to miss twice as many sentences within 
the N-Best choices. 

We have introduced a new two-pass search strategy called 
the Forward-Backward Search, which is generally applicable 
to a wide range of problems. This strategy increases the 
speed of the recognition search by a factor of 40 with no 
additional pruning errors observed. 

1 0  



Acknowledgement 
This work was supported by the Defense Advanced Research 
Projects Agency and monitored by the Office of Naval Re- 
search under Contract No. N00014-89-C-0008. 

References 
[I] Austin, S., Peterson, P., Placeway, P., Schwartz, R, 

and Vandergrift, J., "Toward a Real-Time Commercial 
System Using Commercial Hardware". Proceedings of 
the DARPA Speech and Natural Language Workshop 
Hidden Valley, June 1990 (1990). 

[2] Chow, Y-L. and Schwartz, R.M., "The N-Best Algo- 
rithm: An Efficient Procedure for Finding Top N Sen- 
tence Hypotheses". Proceedings of the DARPA Speech 
and Natural Language Workshop Cape Cod, October 
1989 (1989). 

[3] Derr, A., and Schwartz, R.M., "A Simple Statisti- 
cal Class Grammar for Measuring Speech Recognition 
Performance". Proceedings of the DARPA Speech and 
Natural Language Workshop Cape Cod, October 1989 
(1989). 

[4] Bahl, L.R., de Souza, P., Gopalakrishnan, P.S., 
Kanevsky, D., and Nahamoo, D. "Constructing Groups 
of Acoustically Confusable Words". Proceedings of the 
ICASSP 90, April, 1990. 

[5] Fissore, L., Micca, G., and Pieraccini, R., "Very Large 
Vocabulary Isolated Utterance Recognition: A Com- 
parison Between One Pass and Two Pass Strategies". 
Proceedings of the ICASSP 88, pp. 267-270, April, 
1988. 

[6] Murveit, H., "Integrating Natural Language Constraints 
into HMM-based Speech Recognition". Proceedings of  
the ICASSP 90, April, 1990. 

[7] Rohlicek, J.A., Chow, Y-L., and Roucos, S., "Statis- 
tical Language Modeling Using a Small Corpus from 
an Application Domain". Proceedings of the DARPA 
Speech and Natural Language Workshop Cambridge, 
October 1987 (1987). Also in Proceedings of the 
ICASSP 88, pp. 267-270, April, 1988. 

[8] Schwartz, R.M., Chow, Y., Kimball, O., Roucos, S., 
Krasner, M., and Makhoul, J. "Context-Dependent 
Modeling for Acoustic-Phonetic Recognition of Con- 
tinuous Speech". Proceedings of  the ICASSP 85, pp. 
1205-1208, March, 1985. 

[9] V. Steinbiss (1989) "Sentence-Hypotheses Generation 
in a Continuous-Speech Recognition System," Proc. 
of the European Conf. on Speech Communciation and 
Technology, Paris, Sept. 1989, Vol. 2, pp. 51-54 

[10] Young, S. (1984) "Generating Multiple Solutions from 
Connected Word DP Recognition Algorithms". Proc. 
of the Institute of Acoustics, 1984, Vol. 6 Part 4, pp. 
351-354 

11 




