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Abstract 
The problem of extending the lexicon of words in an automatic speech recognition system is com- 

monly referred to as the the new word problem. When encountered in the context of an embedded speech 

recognition system this problem can be be divided into the following sub-problems. First, identify the 

presence of a new word. Second, acquire a phonetic transcription of the new word. Third, acquire the 

orthographic transcription (spelling) of the new word. In this paper we present the results of a preliminary 

study that employs a novel approach to the problem of acquiring the orthographic transcription through 

the use of an n-gram language model of english spelling and a quad-letter labeling of acoustic models that 

when taken together potentially produce an acoustic to spelling transcription of any spoken input. 

Introduction 
This paper focuses on t_he problem of acquiring the orthographic transcription of new words and 

explicitly ignores the problems of identifying the presence of a new word and generating the phonetic 

base-form of the new word. The approach that we employ here is to map directly from the acoustic 

evidence to an orthographic transcription. In other words we model the acoustics of our training set based 

on the readily available orthographic transcription of the sentence instead of a phonetic transcription. The 

language model that we employ is the familiar n-gram model. Our model consists of a five gram with 27 

tokens, A through Z plus blank. One may reasonably ask what led us to think that a reasonable level of 

performance would be possible. A question is the answer in this case. Ask yourself how many guesses 

you might require to get the fifth letter correct in a five letter sequence if you had been given the previous 

4 letters? We guessed that a perplexity of english spelling might be somewhere between two and five for 

a five gram language model. A more detailed analysis of the perplexity of english spelling can be found 

in [Shannon 51]. Given such a low perplexity we believed it would be possible to overcome much of the 

inherent ambiguity in english spelling. 

Acoustic Models 

Signal Processing 
The signal processing front-end used in this work is identical to the Sphinx front-end [Lee 89]. We 

computed power and 12 bilinear-transformed LPC cepstral coefficients, which are then quantized into 

three different codebooks: (1) 12 stationary coefficients, (2) 12 differential coefficients, and (3) power 

and differenced power. Each codebook has 256 entries, thereby reducing each centisecond of speech into 

three bytes. 
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HMM Inventory 
In most speech recognition systems, subword units are based on phonemes, which we believe to be 

most appropriate for this task as well. However, deriving orthography from phonemic units requires a 

probabilistic phoneme-to-spelling component, as well as a complex search algorithm that satisfies or- 

thographic as well as phonemic context constraints. This was considerably more effort than warranted for 

a preliminary study such as this one. Therefore, we compromised some accuracy by using letters of  the 

alphabet and blank as our speech unit. In other words, a hidden Markov model represents each letter of  

the alphabet. 

One serious problem with letter models is that letters are highly context-dependent -- much more so 

than phonemes. For example, the "h" in "sh", "ch", "th", "eh", are extremely different. In order to deal 

with this problem, we modeled the letters in a context-dependent fashion. Since there are only 28 units 

(26 letters, blank, and silence), we could afford to train very detailed units that model each letter in the 

context of  its two left letters and one right letter. We shall refer to this model as the quad-lener model. 

For example, the letter "h" in the word "school" is aware that its two left neighbors are "s" and "c", and 

that its right neighbor is "o". From this information, the proper pronunciation of each letter can be 

inferred, and context can be modeled in the same spirit as triphones [Schwartz 85]. Since not all quad- 

letters occur frequently enough, we model only those that occur often enough. The less frequent ones 

would be merged into tri-letter (one left and one right context) or bi-letter (right context only) models. 

This resulted in a total of  1427 quad-letter models. 

Another problem is that letters do not always have acoustic realizations. For example, the letters 

"g" and "h" are silent in night. In order to deal with this problem, we used a hidden Markov model that 

allowed the entire model to be skipped. Our model is shown in Figure 1. Since this skip probability is 

context-dependent, silent letters will have very high probabilities of  being skipped. 

B M E 

\ _./  
Figure h The Quad-Letter HMM 
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HMM Training 
We used a total of  15,000 training sentences to train the quad-letter models. The training data 

included Resource Management, TIMIT, as well as locally-recorded Harvard sentences and General 

English database. These databases are described in [Hon 89]. 

First, an inventory of  1427 models was detemined by examining the frequencies of the quad-letters 

in the training set. These models are trained on sentences of connected speech, using an initialization 

from the context-independent letter models. During the quad-letter training, for each sentence, the cor- 

responding quad-letters of  each word are concatenated. Two words are connected by a blank, and silence 

models are used in the beginning and the end of  the sentence. Thus, the blank model could correspond to 

silence, glottal stop, or nothing. Therefore, we model blank in a context-dependent fashion, in the same 

manner as quad-letters. A single silence model is used, but silence is used as a letter-context for quad- 

letters. 

Two iterations of the forward-backward algorithm were run, and the resulting quad-letter models are 

smoothed by deleted interpolation [Jelinek 80] with contextlindependent letter models. 

Language Models 
The language model used here is a five gram model where we determine P(14/11121315) based on a 

training set. It is possible to train this five gram model because the size of the lexicon is only 27, ie. the 

letters A through Z plus blank. So there are potentially 275 (14,348,907) probabilities to determine. To 

train this model we chose a suitably large data base in the digital version of the Academic American 

Encyclopedia. The encyclopedia was preprocessed to remove tokens that were not part of  the the 27 

token lexicon as well as tokens that were likely to add noise to the language model. Examples of such 

'noise' tokens would be those tokens that appeared between delimiters such as 0 and [] and those tokens 

that appeared in sentences that were fewer than ten tokens in length. After preprocessing 45 million 

tokens remained from which two language models were developed. The first language model included the 

blank token and modeled spelling across word boundaries. The second model did not contain the blank 
token and modeled the spelling of words in an unspecified context. Finally, in each of  these language 

models, the five grams where interpolated with their four grams and the four grams with their three grams 

etc. when the number of  observations was below a specified threshold. For the sake of  simplicity in the 

recognizer five grams that were not observed are assumed to have a probability of  zero. We note here that 

all of  the five grams in our test happened to be modeled in the training set even though the two data sets 

were disjoint. 

Recognition System 
The recognition system used is a version of the one used in Sphinx [Lee 89] with the following 

additions. First we adapted it to compute the additional null transition in the acoustic models and second 

we adapted it to be able to manipulate our simplified five gram language model. 
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Results for continuous speech 
Two experiments were perfomaed. The first experiment was performed on a set of  25 general 

english sentences from 5 different speakers. For this experiment the language model that included blank 

was used. The results were a letter accuracy of 59.3% and an error rate of  54.3%. The spelling perplexity 

of this test set was 2.09. One problem we observed was that the system was unable to reliably fred correct 

word boundaries and that this was a source of many errors. Below we present the two most accurately 

transcribed sentences from this experiment. 

SENTENCE 1 (ge4214) 
Correct = 77.1%, Errors = 43.8% 

REF:he was also NOUr*IsH**inG A h*atRed** OF*** intellectu*als 
HYP:he was also MARRY sTRAin* **hEat*ed A UNDED intellectuRals 

SENTENCE 23 (ge4262) 
Correct = 79.4%, Errors = 33.3% 

REF:Hoffer EAr*nED his living asA dish*wash**e**R 
HYP:Coffer *PrIn*G his living as**dish washIReD A 

REF : Lumber** jackAND migrant 
HYP :NumberG jack*IM*migrant 

Results for end point detected embedded words 
The second experiment perhaps is more indicative of the conditions an acoustic to spelling 

transcriber will be expected to operate in. In this experiment we identified 30 ship and place names from 

the 1987 Resource Management test set. Using the begin and end times identified by the Sphinx recog- 

nizer we analyzed this portion of the utterance with the second language model (the one that does not 

contain blank). The results were a letter accuracy of 72.7% and an error rate of 39.3% and a string 

accuracy of 21.1%. The spelling perplexity of the test set words was 4.04. It is not surprising that this 

perplexity is twice as large as the General English test set since the spelling for names is not as well 

constrained as the rest of  english spelling. Despite this higher perplexity, the accuracy is much improved 

over the previous experiment though it remains to be seen if the end points of  unknown words can be 

determined as accurately as the end points determined by Sphinx when it knew the word in question. 

S u m m a r y  

The performance is still too low to suggest that this approach be employed to address the new word 

problem. In future work we will address the use of phonetic units for acoustic modeling with an inter- 

mediate mapping from phonetic units to english spelling or perhaps to the syllable level and then to 

english spelling. Also the problems of identifying the presence of a new word and of creating the base- 

form for the new word must be addressed before we can fully integrate the new word into a speech 

recognizer. 
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