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Abstract  

Performance in speech recognition systems has progressed to the point where it is now realistic to begin 
integrating speech with natural language systems to produce spoken language systems. Two factors have 
contributed to the advances in speech: statistical modeling of the input signal and language constraints. 
To produce spoken language systems, then, the grammar formalisms used in natural language systems 
must incorporate statistical information and efficient parsers for these stochastic language models must be 
developed. In this paper we outline how chart parsing techniques provide advantages in both computation 
and accuracy for spoken language systems. We describe a system that models all levels of the spoken language 
system using stochastic language models and present experimental results. 

Introduction 

Speech technology has recently made tremendous progress toward speaker-independent large-vocabulary 
speech recognition (e.g., Lee and Hon, 1988). These sorts of systems rely on Hidden Markov Models (HMMs) 
of the speech signal and language constraints of the application to achieve good performance. It is important 
to observe that the language model provides top-down information to reduce the search space during pro- 
cessing. Kubala et al (1988) have shown that the perplexity (roughly the number of choices) of the language 
model correlates with recognition performance. Because of the tendency for Finite State language models 
to drastically increase in perplexity as coverage increases, it is unlikely that these systems will extend to 
spoken language systems. 

Natural language technology has steadily moved toward the unification grammar paradigm (Shieber, 
1986). These formalisms allow various kinds of agreement by generalizing the notion of a grammar symbol 
to include features and variables. This approach offers advantages in elegantly integrating syntax, semantics 
and pragmatics while providing domain independence (Mani and Hemphill, 1988). The combination of these 
constraints during sentence processing can be used to greatly reduce perplexity, but unification grammars 
have not yet been integrated with speech systems. To do this, the parser must support stochastic grammars 
(grammars with rule probabilities), comprehend probabilistic hypotheses, and operate frame-synchronously 
to mesh with the speech system. 

Various bottom-up approaches to combining speech and natural language have been tried (e.g., Tomita, 
1986). These systems suffer from many problems: top-down information is not available for lower levels, 
separate grammars must be used for both systems, missing words in the word lattice prove fatal, and 
probability is usually not available for pruning. Ney (1987) describes a combined top-down and bottom-up 
approach using the CYK algorithm, but this algorithm has bad average time complexity (the number of 
input frames cubed). 
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Our experience with unification grammars has shown us that word hypotheses may be efficiently produced 
during sentence processing (Hemphill et al, 1987). To facilitate integration with speech, we have developed a 
chart parser specialized to process N levels of stochastic regular grammars. This enables a conceptual shift 
from the paths and state probabilities found in current systems to symbols that best explain a segment of 
speech data. We have also constructed a probabilistic version of Earley's algorithm based on observations 
found in Aho and Peterson (1972). We are currently extending this latter algorithm to support the style of 
unification grammars found in our earlier work. 

We demonstrate the feasibility of a completely symbol-based approach to speech processing by achieving 
the same performance with layers of stochastic regular grammars as our best FSA-based system (Picone et 
al, 1988). HMMs easily map to both stochastic RGs and FSAs, but the combined top-down and bottom-up 
parsing algorithm used in this system differs substantially from FSA processing techniques. Most impor- 
tantly, the parsing algorithm offers computational advantages when hypothesis are needed more than once 
at the same time frame. This occurs frequently in large grammars and the proper treatment of this condition 
is essential for processing unification grammars appropriate for spoken language. 

Stochastic Spoken Language Models and Parsing 
Finite State Automata (FSA) have traditionally been used in speech processing, but they are clearly 

inappropriate for spoken language systems. In this section, we contrast unification grammars (UGs) with 
Context-Free grammars (CFGs) and discuss extensions needed for spoken language systems. These exten- 
sions involve both the formalism and the parser. 

Natural language systems have benefited significantly from the advent of unification grammars. These 
grammars allow a significant reduction in the number of grammar rules required to represent an application. 
For example, the following unification grammar rule represents a simple modifying phrase for a relation (R) 
and attribute (A) in a database: 

rood(R) ~ whose, attr(R, A), is, value(R, A). 
This rule allows phrases such as "Find parts whose color ks red." If this rule were expanded for a CFG-based 
system, it would result in a number of rules equal to the number of all attributes for all relations. This problem 
becomes even larger in a complete grammar. For example, an interface using only 41 unification grammar 
rules has been constructed for the Force Requirements Expert System (FRESH), but when expanded to 
CFG rules, over 1000 rules result. Furthermore, processing the unification grammar rules requires less time 
and space and allows more flexibility in coverage. 

The FRESH interface deals primarily with semantic agreement, but UGs also model syntactic and prag- 
matic phenomena well (Mani and Hemphill, 1988). These three sources of information may be combined 
in on-line parsing to reduce the search space during processing. On-line processing refers to left-to-right 
processing of the input as it becomes available. This allows the prediction of needed words at each point in 
processing, making the method appropriate for spoken language systems. 

On-line parsing is normally achieved by chart parsing algorithms (Winograd 1983). These algorithms 
provide mechanisms for efficiently processing grammars by avoiding duplicate work when expanding sym- 
bols. Grammars associate symbols with both observations (terminal symbols) and alternate explanations 
(nonterminal symbols), allowing the elimination of duplicate work in re-hypotheslzing the same observations 
and partial sentence hypotheses. 

Spoken language systems, however, deal with probabilistic symbols and both the grammar formalism 
and the parsing algorithm must accommodate these (Hemphill and Picone, 1989). We have developed a 
chart parsing algorithm that allows on-line parsing and correctly operates with probabilities. Basically, it 
is similar to Earley's algorithm (Earley, 1970), augmented with unification (Pereira and Warren, 1983) and 
probability (Paeseler, 1987), but with a delayed commitment approach to scoring (Aho and Peterson, 1972). 
This algorithm operates from left to right in a combined bottom-up and top-down fashion, providing terminal 
hypotheses at each time frame to lower levels and accepting completed hypotheses that began at some time 
in the past. The algorithm has not yet been fully implemented for UGs, but the following section explores 
the ramifications of this type of approach. 
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Figure h Effect of chart parsing on pruning. 

Probabilistic Chart Parsing 

In this section, we describe the chart parser as applied to stochastic regular grammars. This provides 
an indication that the ideas are appropriate for speech processing and calibrates the system with respect to 
existing FSA-based HMM systems. Three concepts found in speech systems are then applied to the chart 
parsing framework: pruning, garbage collection, training. 

The chart parser can process N layers of stochastic regular grammars. The layers allow expansion of more 
than one symbol in a rule as in CFGs, but without recursive ability. Specifically, terminal symbols at one 
layer correspond to start symbols at the next layer. The layers correspond to such things as sentence, word, 
and phone-model grammars. The top level grammar dictates which hypotheses propagate to lower levels 
at each frame. Each grammar level in turn propagates hypotheses needed in order to successfully return 
complete observations. The last level includes a set of grammars that represent an HMM for each acoustic 
model. Appropriate reference data from this level is compared with the current input speech vector. The 
processor then incorporates the reference probabilities into the current state of the parse and any completed 
hypotheses pass to the next higher level as observations. Hypotheses and observations at each level propagate 
down and up at each frame until all of the speech data may be explained by the formation of a complete 
sentence. 

As a practical consideration, treatment of symbols in this manner interacts with pruning. This is illus- 
trated in Figure 1 for a standard beam search pruning strategy. In stochastic chart parsing, the same symbol 
may be needed for several different explanations of the speech signal, but only the most likely representative 
actually becomes hypothesized (tl). The probability of the completed observation is then used in extending 
hypotheses awaiting that observation (t~). This leads to a situation where a lower probability explanation 
of the symbol may not only survive where it otherwise would have been pruned (tj), but the subsequent 
hypotheses using this symbol may actually give the more probable explanation (tz). Furthermore, since the 
chart parser expands only the most likely symbol, the less likely hypotheses cause no additional computation 
during evaluation of the symbol. 

Pruning helps reduce the amount of memory required during processing, but not sufficiently. Spoken 
language systems will contain large vocabularies and require processing of long sentences and sentences in 
discourse. To address this problem, we have embedded a time-stamp garbage collection scheme into the 
chart parser. This algorithm reduces memory requirements by an order of magnitude and adds only a small 
fraction to processing time. Because the algorithm operates on symbols, it applies to stochastic spoken 
language models in general. 
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Table h Grammars in the experiments. 
Task Level Rules Nonterms 
ULCD 0 14 1 

1 1994 1172 

RM 0 21025 4744 
1 1017 578 
2 26111 13017 

CKCD 0 83688 I 8781 
i 4026 I 1919 

Terminals 
13 

517 

578 
1017 

12001 

21 
711 

Finally, to become fully general, spoken language systems must support training. The layered grammar 
approach, although not strictly necessary with CFGs and UGs, allows training above the acoustic model 
level. For example, phone transition probabilities may be obtained using maximum likelihood training (Fu, 
1982). This technique applies to symbols generalized with feature sets and logical variables and will be 
important  as unification grammars find their way into the phonetic level. 

Experimental Results 
Three recognition experiments have been performed to calibrate the system with respect to an existing 

FSA system (Picone et al, 1988): unknown length continuous digit (ULCD) strings (Doddington, 1989), the 
1O00-word Resource Management (RM) task (Price et al, 1988), and fixed length continuous digit strings 
with a checksum encoded in the grammar (CKCD). The first two systems use 18-element reference vectors 
with a 20 rnsec frame period and pooled covariance. The third experiment uses only 16-element reference 
vectors. Because of the grammars involved, chart parsing offers no advantage in the first experiment, a 
small advantage in the second, and maximal advantage in the third. In all experiments, both systems obtain 
identical results when pruning is not a factor (i.e.,  errors occur because of the models, not pruning). Table 1 
indicates the relative size of the grammars. 

The ULCD experiment consists of two levels of grammars. The first grammar allows zero or more 
occurrences of oh,  z e ro  - n ine ,  a silence model, and a null-speech model. The second grammar contains 
the HMMs for each of these. Although multiple hypotheses of the same symbol at the same time occur in 
the HMM grammar, the hypotheses at this level correspond to reference vectors of one frame in duration 
and the FSA-based system evaluates these only once. Additionally, the FSA system evaluates hypotheses 
once per source node, making the one node sentence automata especially favorable for this system. 

The RM experiment consists of three levels of grammars. The first contains a canonicalized gram- 
mar representing the various sentence patterns desired for the task, the second maps word types (e.g., 
'<sh ip -name> ' )  to words, and the third defines the HMM models for the words. Only the first level in this 
experiment benefits from the chart parsing approach. 

The CKCD experiment consists of two levels of grammars. The first grammar allows a fixed number 
of the digits z e ro  - n i n e  (with a male and female model for each) and a silence model. This grammar 
implements a checksum function with the last two digits serving as the checksum. The bot tom level again 
contains HMM word models. The large branching factor in the sentence grammar creates a situation where 
chart parsing can help tremendously. 

Table 2 summarizes the ratio of chart parsing time to FSA processing time for each experiment. The first 
experiment indicates that  the overhead of chart parsing is at most a factor of two. The second experiment 
shows that  even for small perplexity grammars (perplexity 9 for RM), the benefits of chart parsing begin 
to compensate for the overhead in the lower levels. The third experiment was conducted for three different 
normalized pruning values: 0.2 and 0.3, 0.35. The lower value greatly reduces the number of evaluated 
hypotheses and therefore favors the FSA processor. However, at this pruning level, the FSA processor 
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Table 2: Time ratios for RG and FSA processors. Table 3: Effects of pruning on accuracy for CKCD. 

Task RG/FSA time 
ULCD 

RM 
CKCD (0.20) 
CKCD (0.30) 
CKCD (0.35) 

1.9 
I . I  
1.21" 
0.7 
o.6t 

Beam 
0.20 
0.30 
0.35 

FSA Sent Corr 
90~ 
98% 
96%~ 

RG Sent Corr 
94% 
98% 
98% 

t sub-optimal results 
memory overflows in FSA system 

Table 4: Garbage collection in chart parsing. 

Task Ave. Peak Ave. Total 
ULCD 

RM 
CKCD (0.20) 
CKCD (0.30) 
CKCD (0.35) 

2023 39074 
8461 120227 
5692 254879 

22241 668659 
43576 1013254 

correctly recognizes 90% of the sentences while the chart parsing technique recognizes 94% (Table 3). This 
provides evidence for the phenomena illustrated in Figure 1. At 0.3, both methods recognize 98% of the 
sentences, with a time advantage for the chart parsing approach. At 0.35, the time advantage increases 
for the chart parsing approach and, additionally, the FSA method exhausts memory when processing some 
sentences. 

Table 4 summarizes the effect of garbage collection on space requirements for the chart parser in each 
of the experiments. The average peak memory column indicates the peak memory requirements over all 
frames for each sentence. The average total memory column indicates the amount of memory needed for 
each sentence without garbage collection. Note that the memory savings is in addition to pruning. As can 
be seen, there is a substantial savings, and in fact, the last two experiments could not be performed without 
this algorithm. The FSA system also uses this same method, but pursuing each hypothesis separately results 
in memory overflow in the last experiment. 

Con c lu s ion s  

We have demonstrated that chart parsing techniques successfully apply to stochastic language models. 
In the process, we have demonstrated an approach to speech recognition in which the entire recognition 
process, including acoustic processing, consists of a hierarchy of grammars. A shift from automata to 
grammars allows efficient processing of complex language models by hypothesizing symbols once per frame, 
no matter how many times they are needed. We have further shown that pruning, garbage collection, and 
training algorithms may be successfully incorporated into a chart parser for stochastic language models. 

The layers of regular grammars used in the experiments are completely compatible with a unification 
grammar framework. We believe that the further development of efficient parsers for stochastic unification 
grammars is a required step toward spoken language systems. Future work will focus on development of these 
parsers, grammars that make effective use of contextual information, and more robust distance measures 
that comprehend this information. 
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