
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 939–946, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Integrating linguistic knowledge in passage retrieval for question answering

Jörg Tiedemann
Alfa Informatica, University of Groningen

Oude Kijk in ’t Jatstraat 26
9712 EK Groningen, The Netherlands

j.tiedemann@rug.nl

Abstract

In this paper we investigate the use of lin-
guistic knowledge in passage retrieval as
part of an open-domain question answer-
ing system. We use annotation produced
by a deep syntactic dependency parser for
Dutch, Alpino, to extract various kinds of
linguistic features and syntactic units to
be included in a multi-layer index. Sim-
ilar annotation is produced for natural lan-
guage questions to be answered by the
system. From this we extract query terms
to be sent to the enriched retrieval index.
We use a genetic algorithm to optimize the
selection of features and syntactic units
to be included in a query. This algo-
rithm is also used to optimize further pa-
rameters such as keyword weights. The
system is trained on questions from the
competition on Dutch question answering
within the Cross-Language Evaluation Fo-
rum (CLEF). We could show an improve-
ment of about 15% in mean total recip-
rocal rank compared to traditional infor-
mation retrieval using plain text keywords
(including stemming and stop word re-
moval).

1 Introduction

Improving information retrieval (IR) through natu-
ral language processing (NLP) has been the goal
for many researchers. NLP techniques such as

lemmatization and compound splitting have been
used in several studies (Krovetz, 1993; Hollink et al.,
2003). Linguistically motivated syntactic units such
as noun phrases (Zhai, 1997), head-modifier pairs
(Fagan, 1987; Strzalkowski et al., 1996) and subject-
verb-object triples (Katz and Lin, 2003) have also
been integrated in information retrieval. However,
most of these studies resulted in only little success
or even decreasing performance. It has been argued
that NLP and especially deep syntactic analysis is
still too brittle and ineffective (Katz and Lin, 2003).

Integrating NLP in information retrieval seems
to be very hard because the task here is to match
plain text keywords to natural language documents.
In question answering (QA), however, the task is
to match natural language questions to relevant an-
swers within document collections. For this, we
have to analyze the question in order to determine
what kind of answer the user is expecting. Tradi-
tional information retrieval is used in QA systems to
filter out relevant passages from the document col-
lection which are then processed to extract possible
answers. Hence, the performance of this passage re-
trieval component (especially in terms of recall) is
crucial for the success of the entire system. NLP
tools and linguistic resources are frequently used in
QA systems, e.g. (Bernardi et al., 2003; Moldovan
et al., 2002), although not very often for passage
retrieval (some exceptions are (Strzalkowski et al.,
1996; Katz and Lin, 2003; Neumann and Sacaleanu,
2004)).

Our goal is to utilize information that can be ex-
tracted from the analyzed question in order to match
linguistic features and syntactic units in analyzed

939



documents. The main research question is to find
appropriate units and features that actually help to
improve the retrieval component. Furthermore, we
have to find an appropriate way of combining query
terms to optimize IR performance. For this, we ap-
ply an iterative learning approach based on example
questions annotated with their answers.

In the next section we will give a brief description
of our question answering system with focus on the
passage retrieval component. Thereafter we will dis-
cuss the query optimization algorithm followed by a
section on experimental results. The final section
contains our conclusions.

2 Question answering with dependency
relations

Our Dutch question answering system, Joost
(Bouma et al., 2005), consists of two streams: a table
look-up strategy using off-line information extrac-
tion and an on-line strategy using passage retrieval
and on-the-fly answer extraction. In both strate-
gies we use syntactic information produced by a
wide-coverage dependency parser for Dutch, Alpino
(Bouma et al., 2001). In the off-line strategy we use
syntactic patterns to extract information from unre-
stricted text to be stored in fact tables (Jijkoun et
al., 2004). For the on-line strategy, we assume that
there is a certain overlap between syntactic relations
in the question and in passages containing the an-
swers. Furthermore, we also use strategies for rea-
soning over dependency rules to capture semantic
relationships that are expressed by different syntac-
tic patterns (Bouma et al., 2005).

Our focus is set on open-domain question an-
swering using data from the CLEF competition on
Dutch QA. We have parsed the entire corpus pro-
vided by CLEF with about 4,000,000 sentences in
about 190,000 documents. The dependency trees are
stored in XML and are directly accessible from the
QA system. Syntactic patterns for off-line informa-
tion extraction are run on the entire corpus. For the
on-line QA strategy we use traditional information
retrieval to select relevant passages from the corpus
to be processed by the answer extraction modules.
This step is necessary to reduce the search space for
the QA system to make it feasible to run on-line QA.
As segmentation level we used paragraphs marked

in the corpus (about 1.1 million).
Questions are parsed within the QA system using

the same parser. Using their analysis, the system de-
termines the question type and, hence, the expected
answer type. According to the type, we try to find
the answer first in the fact database (if an appropri-
ate table exists) and then (as fallback) in the corpus
using the on-line QA strategy.

2.1 Passage retrieval in Joost

Information retrieval is one of the bottle-necks in the
on-line strategy of our QA system. The system re-
lies on the passages retrieved by this component and
fails if IR does not provide relevant documents. Tra-
ditional IR uses a bag-of-words approach using plain
text keywords to be matched with word-vectors de-
scribing documents. The result is usually a ranked
list of documents. Simple techniques such as stem-
ming and stop word removal are used to improve the
performance of such a system. This is also the base-
line approach for passage retrieval in our QA sys-
tem.

The passage retrieval component in Joost includes
an interface to seven off-the shelf IR systems. One
of the systems supported is Lucene from the Apache
Jakarta project (Jakarta, 2004). Lucene is a widely-
used open-source Java library with several exten-
sions and useful features. This was the IR engine of
our choice in the experiments described here. For
the base-line we use standard settings and a pub-
lic Dutch text analyzer for stemming and stop word
removal. Now, the goal is to extend the base-line
by incorporating linguistic information produced by
the syntactic analyzer. Figure 1 shows a dependency
tree produced for one of the sentences in the CLEF
corpus. We like to include as much information from
the parsed data as possible to find better matches be-
tween an analyzed question and passages that con-
tain answers. From the parse trees, we extract vari-
ous kinds of linguistic features and syntactic units to
be stored in the index. Besides the dependency rela-
tions the parser also produces part-of-speech (POS)
tags, named entity labels and linguistic root forms. It
also recognizes compositional compounds and par-
ticle verbs. All this information might be useful for
our passage retrieval component.

Lucene supports multiple index fields that can be
filled with different types of data. This is a useful

940



top
smain

su
1
np

det
det
het0

hd
noun

embargo1

mod
pp

hd
prep

tegen2

obj1
name
Irak3

vc
ppart

obj1
1

hd
verb

stel in5

mod
pp

hd
prep
na6

obj1
np

det
det
de7

hd
noun
inval8

mod
pp

hd
prep
in9

obj1
name

Koeweit10

mod
pp

hd
prep
in11

obj1
noun

199012

hd
verb

word4

Figure 1: A dependency tree produced by Alpino:
Het embargo tegen Irak werd ingesteld na de inval
in Koeweit in 1990. (The embargo against Iraq has
been declared after the invasion of Kuwait in 1990.)

feature since it allows one to store various kinds of
information in different fields in the index. Hence-
forth, we will call these data fields index layers and,
thus, the index will be called a multi-layer index. We
distinguish between token layers, type layers and an-
notation layers. Token layers include one item per
token in the corpus. Table 1 lists token layers de-
fined in our index.

Table 1: Token layers

text plain text tokens
root root forms
RootPOS root form + POS tag
RootHead root form + head
RootRel root form + relation name
RootRelHead root form + relation + head

We included various combinations of features de-
rived from the dependency trees to make it possi-
ble to test their impact on IR. Features are simply
concatenated (using special delimiting symbols be-
tween the various parts) to create individual items in
the layer. For example, the RootHead layer contains
concatenated dependent-head bigrams taken from
the dependency relations in the tree. Tokens in the
text layer and in the root layer have been split at hy-
phens and underscores to split compositional com-
pounds and particle verbs (Alpino adds underscores

top
whq

whd
1

adv
wanneer0

body
sv1

mod
1

hd
verb

stel in1

su
np

det
det
de2

hd
name

Verenigde Naties3

obj1
np

det
det

een5

hd
noun

embargo6

svp
part
in7

mod
pp

hd
prep

tegen8

obj1
name
Irak9

Figure 2: A dependency tree for a question: Wan-
neer stelde de Verenigde Naties een embargo in
tegen Irak? (When did the United Nations declare
the embargo against Iraq?)

between the compositional parts). Type layers in-
clude only specific types of tokens in the corpus, e.g.
named entities or compounds (see table 2).

Table 2: Type layers

compound compounds
ne named entities
neLOC location names
nePER person names
neORG organization names

Annotation layers include only the labels of (certain)
token types. So far, we defined only one annotation
layer for named entity labels. This layer may contain
the items ’ORG’, ’PER’ or ’LOC’ if such a named
entity occurs in the text passage.

3 Query formulation

Questions are analyzed in the same way as sentences
in documents. Hence, we can extract appropriate
units from analyzed questions to be matched with
the various layers in the index. For example, we
can extract root-head word pairs to be matched with
the RootHead layer. In this way, each layer can be
queried using keywords of the same type. Further-
more, we can also use linguistic labels to restrict our
query terms in several ways. For example, we can
use part-of-speech labels to exclude keywords of a
certain word class. We can also use the syntactic re-
lation name to define query constraints. Each token
layer can be restricted in this way (even if the feature
used for the restriction is not part of the layer). For

941



example, we can limit our set of root keywords to
nouns even though part-of-speech labels are not part
of the root layer. We can also combine constraints,
for example, RootPOS keywords can be restricted to
nouns that are in an object relation within the ques-
tion.

Another feature of Lucene is the support of key-
word weights. Keywords can be “boosted” using so-
called “boost factors”. Furthermore, keywords can
also be marked as “required”. These two features
can be applied to all kinds of keywords (token layer,
type layer, annotation layer keywords, and restricted
keywords).

The following list summarizes possible keyword
types in our passage retrieval component:

basic: a keyword in one of the index layers

restricted: token-layer keywords can be restricted to a certain
word class and/or a certain relation type. We use only the
following word class restrictions: noun, name, adjective,
verb; and the following relation type restrictions: direct
object, modifier, apposition and subject

weighted: keywords can be weighted using a boost factor

required: keywords can be marked as required

Query keywords from all types can be combined into
a single query. We connect them in a disjunctive way
which is the default operation in Lucene. The query
engine provides ranked query results and, therefore,
each disjunction may contribute to the ranking of the
retrieved documents but does not harm the query if
it does not produce any matching results. We may,
for example, form a query with the following ele-
ments: (1) all plain text tokens; (2) named entities
(ne) boosted with factor 2; (3) RootHead bigrams
where the root is in an object relation; (4) RootRel
keywords for all nouns. Applying these parame-
ters to the question in figure 2 we get the following
query:1

text:(Irak embargo Verenigde Naties stelde)
ne:(Irakˆ2 Verenigde_Natiesˆ2)
RootHead:(Irak/tegen embargo/stel_in)
RootRel:(embargo/obj1)

Now, query terms from various keyword types may
refer to the same index layer. For example, we may
use weighted plain text keywords restricted to nouns
together with unrestricted plain text keywords. To

1Note that stop words have been removed.

combine them we use a preference mechanism to
keep queries simple and to avoid disjunctions with
conflicting keyword parameters: (a) Restricted key-
word types are more specific than basic keywords;
(b) Keywords restricted in relation type and POS are
more specific than keywords with only one restric-
tion; (c) Relation type restrictions are more specific
than POS restrictions. Using these rules we define
that weights of more specific keywords overwrite
weights of less specific ones. Furthermore, we de-
fine that the “required-marker” (’+’) overwrites key-
word weights. Using these definitions we would get
the following query if we add two elements to the
query from above: (5) plain text keywords in an ob-
ject relation with boost factor 3 and (6) plain text
keywords labeled as names marked as required.

text:(Irakˆ3 embargoˆ3 +Verenigde +Naties
stelde)
ne:(Irakˆ2 Verenigde_Natiesˆ2)
RootHead:(Irak/tegen embargo/stel_in)
RootRel:(embargo/obj1)

Finally, we can also use the question type deter-
mined by question analysis in the retrieval compo-
nent. The question type corresponds to the expected
answer type, i.e. we expect an entity of that type in
the relevant text passages. In some cases, the ques-
tion type can be mapped to one of the named entity
labels assigned by the parser, e.g. a name question is
looking for names of persons (ne = PER), a question
for a capital is looking for a location (ne = LOC) and
a question for organizations is looking for the name
of an organization (ne = ORG). Hence, we can add
another keyword type, the expected answer type to
be matched with named entity labels in the ne layer,
cf. (Prager et al., 2000).

There are many possible combinations of restric-
tions even with the small set of POS labels and rela-
tion types listed above. However, many of them are
useless because they cannot be instantiated. For ex-
ample, an adjective cannot appear in subject relation
to its head. For simplicity we limit ourselves to the
following eight combined restrictions (POS + rela-
tion type): names + {direct object, modifier, apposi-
tion, subject} and nouns + {direct object, modifier,
apposition, subject}. These can be applied to all to-
ken layers in the same way as the other restrictions
using single constraints.

Altogether we have 109 different keyword types

942



using the layers and the restrictions defined above.
Now the question is to select appropriate keyword
types among them with the optimal parameters
(weights) to maximize retrieval performance. The
following section describes the optimization proce-
dure used to adjust query parameters.

4 Optimization of query parameters

In the previous sections we have seen the internal
structure of the multi-layer index and the queries we
use in our passage retrieval component. Now we
have to address the question of how to select layers
and restrict keywords to optimize the performance
of the system according to the QA task. For this
we employ an automatic optimization procedure that
learns appropriate parameter settings from example
data. We use annotated training material that is de-
scribed in the next section. Thereafter, the optimiza-
tion procedure is introduced.

4.1 CLEF questions and evaluation

We used results from the CLEF competition on
Dutch QA from the years 2003 and 2004 for train-
ing and evaluation. They contain natural language
questions annotated with their answers found in the
CLEF corpus (answer strings and IDs of documents
in which the answer was found). Most of the ques-
tions are factoid questions such as ’Hoeveel inwon-
ers heeft Zweden?’ (How many inhabitants does
Sweden have?). Altogether there are 631 questions
with 851 answers.2

Standard measures for evaluating information re-
trieval results are precision and recall. However,
for QA several other specialized measures have
been proposed, e.g. mean reciprocal rank (MRR)
(Vorhees, 1999), coverage and redundancy (Roberts
and Gaizauskas, 2004). MRR accounts only for the
first passage retrieved containing an answer and dis-
regards the following passages. Coverage and re-
dundancy on the other hand disregard the ranking
completely and focus on the sets of passages re-
trieved. However, in our QA system, the IR score

2Each question may have multiple possible answers. We
also added some obvious answers which were not in the original
test set when encountering them in the corpus. For example,
names and numbers can be spelled differently (Kim Jong Il vs.
Kim Jong-Il, Saoedi-Arabië vs. Saudi-Arabië, bijna vijftig jaar
vs. bijna 50 jaar)

(on which the retrieval ranking is based) is one of
the clues used by the answer identification modules.
Therefore, we use the mean of the total reciprocal
ranks (MTRR), cf. (Radev et al., 2002), to combine
features of all three measures:

MTRR =
1

x

x∑

i=1

∑

d∈Ai

1

rankRi
(d)

Ai is the set of retrieved passages containing an
answer to question number i (subset of Ri) and
rankRi

(d) is the rank of document d in the list of
retrieved passages Ri.

In our experiments we used the provided answer
string rather than the document ID to judge if a re-
trieved passage was relevant or not. In this way,
the IR engine may provide passages with correct an-
swers from other documents than the ones marked in
the test set. We do simple string matching between
answer strings and words in the retrieved passages.
Obviously, this introduces errors where the match-
ing string does not correspond to a valid answer in
the context. However, we believe that this does not
influence the global evaluation figure significantly
and therefore we use this approach as a reasonable
compromise when doing automatic evaluation.

4.2 Learning query parameters

As discussed earlier, there is a large variety of possi-
ble keyword types that can be combined to query the
multi-layer index. Furthermore, we have a number
of parameters to be set when formulating a query,
e.g. the keyword weights. Selecting the appropri-
ate keywords and parameters is not straightforward.
We like to carry out a systematic search for optimiz-
ing parameters rather than using our intuition. Here,
we use the information retrieval engine as a black
box with certain input parameters. We do not know
how the ranking is done internally or how the output
is influenced by parameter changes. However, we
can inspect and evaluate the output of the system.
Hence, we need an iterative approach for testing sev-
eral settings to optimize query parameters. The out-
put for each setting has to be evaluated according to
a certain objective function. For this, we need an au-
tomatic procedure because we want to check many
different settings in a batch run. The performance of
the system can be measured in several ways, e.g. us-

943



ing the MTRR scores described in the previous sec-
tion. We have chosen to use this measure and the
annotated CLEF questions to evaluate the retrieval
performance automatically.

We decided to use a simplified genetic algorithm
to optimize query parameters. This algorithm is
implemented as an iterative “trial-and-error beam
search” through possible parameter settings. The
optimization loop works as follows (using a sub-set
of the CLEF questions):

1. Run initial queries (one keyword type per IR run) with
default weights.

2. Produce a number of new settings by combining two pre-
vious ones (= crossover). For this, select two settings
from an N-best list from the previous IR runs. Apply mu-
tation operations (see next step) until the new settings are
unique (among all settings we have tried so far).

3. Change some of the new settings at random (= mutation)
using pre-defined mutation operations.

4. Run the queries using the new settings and evaluate the
retrieval output (determine fitness).

5. Continue with 2 until some stop condition is satisfied.

This optimization algorithm is very simple but re-
quires some additional parameters. First of all, we
have to set the size of the population, i.e. the num-
ber of IR runs (individuals) to be kept for the next
iteration. We decided to keep the population small
with only 25 individuals. Then we have to decide
how to evaluate fitness to rank retrieval results. This
is done using the MTRR measure. Natural selection
using these rankings is simplified to a top-N search
without giving individuals with lower fitness values
a chance to survive. This also means that we can
update the population directly when a new IR run is
finished. We also have to set a maximum number of
new settings to be created. In our experiments we
limit the process to a maximum of 50 settings that
may be tried simultaneously. A new setting is cre-
ated as soon as there is a spot available.

An important part of the algorithm is the com-
bination of parameters. We simply merge the set-
tings of two previous runs (parents) to produce a
new setting (a child). That means that all keyword
types (with their restrictions) from both parents are
included in the child’s setting. Parents are selected at
random without any preference mechanism. We also

use a very simple strategy in cases where both par-
ents contain the same keyword type. In these cases
we compute the arithmetic mean of the weight as-
signed to this type in the parents’ settings (default
weight is one). If the keyword type is marked as re-
quired in one of the parents, it will also be marked as
required in the child’s setting (which will overwrite
the keyword weight if it is set in the other parent).

Another important principle in genetic optimiza-
tion is mutation. It refers to a randomized modifi-
cation of settings when new individuals are created.
First, we apply mutation operations where new set-
tings are not unique.3 Secondly, mutation operations
are applied with fixed probabilities to new settings.

In most genetic algorithms, settings are converted
to genes consisting of bit strings. A mutation op-
eration is then defined as flipping the value of one
randomly chosen bit. In our approach, we do not
use bit strings but define several mutation operations
to modify parameters directly. The following opera-
tions have been defined:

• a new keyword type is added to new settings
with a chance of 0.2

• a keyword type is removed from the settings
with a chance of 0.1

• a keyword weight (boost factor) is modified by
a random value between -5 and 5 with a chance
of 0.2 (but only if the weight remains a positive
value)

• a keyword type is marked as required with a
chance of 0.01

All these parameters are intuitively chosen. We as-
signed rather high probabilities to the mutation op-
erations to reduce the risk of local maximum traps.
Note that there is no obvious condition for termi-
nation. In randomized approaches like this one the
development of the fitness score is most likely not
monotonic and therefore, it is hard to predict when
we should stop the optimization process. However,
we expect the scores to converge at some point and
we may stop if a certain number of new settings does
not improve the scores anymore.

3We require unique settings in our implementation because
we want to avoid re-computation of fitness values for settings
that have been tried already. “Good” settings survive anyway
using our top-N selection approach.

944



5 Experiments

We selected a random set of 420 questions from the
CLEF data for training and used the remaining 150
questions for evaluation. We used the optimization
algorithm with the settings as described above. IR
was run in parallel on 3-7 Linux workstations on a
local network. We retrieved a maximum of 20 pas-
sages per question. For each setting we computed
the fitness scores for the training set and the eval-
uation set using MTRR. The top scores have been
printed after each 10 runs and compared to the eval-
uation scores. Figure 3 shows a plot of the fitness
score development throughout the optimization pro-
cess in comparison with the evaluation scores.

 0.85

 0.9

 0.95

 1

 1.05

400 800 1200 1600 2000 2400 2800 3200

an
sw

er
 s

tr
in

g 
M

T
R

R

number of settings

evaluation base-line: 0.8799

training
evaluation

Figure 3: Parameter optimization

The base-line of 0.8799 refers to the retrieval re-
sult on evaluation data when using traditional IR
with plain text keywords only (i.e. using the text
layer, Dutch stemming and stop word removal). The
base-line performance on training data is slightly
worse with 0.8224 MTRR. After 1130 settings the
MTRR scores increased to 0.9446 for training data
and 1.0247 for evaluation data. Thereafter we can
observe a surprising drop in evaluation scores to
around 0.97 in MTRR. This might be due to over-
fitting although the drop seems to be rather radi-
cal. After that the curve of the evaluation scores
goes back to about the same level as achieved be-
fore and the training curve seems to level out. The
MTRR score after 3200 settings is at 1.0169 on eval-
uation data which is a statistically significant im-
provement of the baseline score (tested using the
Wilcoxon matched-pairs signed-ranks test at p <

0.01). MTRR measured on document IDs and eval-

uation data did also increase from 0.5422 to 0.6215
which is statistically significant at p¡0.02. Coverage
went up from 78.68% to 81.62% on evaluation data
and the redundancy was improved from 3.824 to
4.272 (significance tests have not been carried out).
Finally, the QA performance using Joost with only
the IR based strategy was increased from 0.289 (us-
ing CLEF scores) to 0.331. This, however, is not sta-
tistically significant according to the Wilcoxon test
and may be due to chance.

Table 3: Optimized parameters (3200 settings)

weighted keywords required keywords
layer restriction weight layer restriction

text 7.43 root name
text name 11.94
text adj 9.14 RootPOS
text mod 5.83 RootPOS obj1
text verb 4.33 RootPOS noun-mod
text noun-app 3.70
root 4.45 RootRel
root noun-su 2.65 RootRel app
root name-mod 9.71 RootRel noun-app
root noun-obj1 0.09 RootRel noun-mod
root mod 0.81 RootRel noun-obj1
root verb 0.01
RootHead noun-app 7.65 RootRelHead su
RootHead noun-mod 5.24 RootRelHead adj
RootHead name-su 1 RootRelHead name-app
RootRel mod 4.45
RootRel name-app 2.17 Q-type
RootRel noun 2.49
RootRelHead obj1 1.60
RootRelHead name-su 1
nePER 0.91

Table 3 shows the features and weights selected in
the training process. The largest weights are given
to names in the text layer, to root forms of names in
modifier relations and to plain text adjectives. Many
keyword types use ’name’ or ’noun’ as POS restric-
tion. A surprisingly large number of keyword types
are marked as required. Some of them overlap with
each other and are therefore redundant. For exam-
ple, all RootPOS keywords are marked as required
and therefore, the restrictions of RootPOS keywords
are useless because they do not alter the query. How-
ever, in other cases overlapping keyword type defini-
tions do influence the query. For example, RootRel
keywords in general are marked as required. How-
ever, other type definitions replace some of them
with weighted keywords, e.g., RootRel noun key-

945



words. Finally, some of them may be changed back
to required keywords, e.g., RootRel keywords of
nouns in a modifier relation.

6 Conclusions

In this paper we describe an approach for integrat-
ing linguistic information derived from dependency
analyses in passage retrieval for question answer-
ing. Our retrieval component uses a multi-layer in-
dex containing various combinations of linguistic
features and syntactic units extracted from a fully
analyzed corpus of unrestricted Dutch text. Natu-
ral language questions are parsed in the same way.
Their analyses are used to build complex queries to
our extended index. We demonstrated a genetic al-
gorithm for optimizing query parameters to improve
the retrieval performance. The system was trained
on questions from the CLEF competition on open-
domain question answering for Dutch which are an-
notated with corresponding answers in the corpus.
We could show a significant improvement of about
15% in mean total reciprocal rank using extended
queries with optimized parameters compared with
the base-line of traditional information retrieval us-
ing plain text keywords.

References

Raffaella Bernardi, Valentin Jijkoun, Gilad Mishne, and
Maarten de Rijke. 2003. Selectively using linguistic
resources throughout the question answering pipeline.
In Proceedings of the 2nd CoLogNET-ElsNET Sympo-
sium.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2001. Alpino: Wide coverage computational analysis
of Dutch. In Computational Linguistics in the Nether-
lands CLIN, 2000. Rodopi.

Gosse Bouma, Jori Mur, and Gertjan van Noord. 2005.
Reasoning over dependency relations for QA. In
Knowledge and Reasoning for Answering Questions
(KRAQ’05), IJCAI Workshop, Edinburgh, Scotland.

Joel L. Fagan. 1987. Automatic phrase indexing for
document retrieval. In SIGIR ’87: Proceedings of
the 10th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 91–101, New York, NY, USA. ACM Press.

Vera Hollink, Jaap Kamps, Christof Monz, and Maarten
de Rijke. 2003. Monolingual document retrieval for
European languages. Information Retrieval, (6).

Apache Jakarta. 2004. Apache Lucene - a high-
performance, full-featured text search engine library.
http://lucene.apache.org/java/docs/index.html.

Valentin Jijkoun, Jori Mur, and Maarten de Rijke. 2004.
Information extraction for question answering: Im-
proving recall through syntactic patterns. In Proceed-
ings of COLING-2004.

Boris Katz and Jimmy Lin. 2003. Selectively using re-
lations to improve precision in question answering. In
Proceedings of the EACL-2003 Workshop on Natural
Language Processing for Question Answering.

Robert Krovetz. 1993. Viewing morphology as an infer-
ence process,. In Proceedings of the Sixteenth Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 191–
203.

Dan Moldovan, Sanda Harabagiu, Roxana Girju, Paul
Morarescu, Finley Lacatusu, Adrian Novischi, Adri-
ana Badulescu, and Orest Bolohan. 2002. LCC tools
for question answering. In Proceedings of TREC-11.

Günter Neumann and Bogdan Sacaleanu. 2004. Experi-
ments on robust NL question interpretation and multi-
layered document annotation for a cross-language
question/answering system. In Proceedings of the
CLEF 2004 working notes of the QA@CLEF, Bath.

John Prager, Eric Brown, Anni Cohen, Dragomir Radev,
and Valerie Samn. 2000. Question-answering by
predictive annotation. In In Proceedings of the 23rd
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
Athens, Greece, July.

Dragomir R. Radev, Hong Qi, Harris Wu, and Weiguo
Fan. 2002. Evaluating web-based question answering
systems. In Proceedings of LREC, Las Palmas, Spain.

Ian Roberts and Robert Gaizauskas. 2004. Evaluating
passage retrieval approaches for question answering.
In Proceedings of the 26th European Conference on
Information Retrieval (ECIR), pages 72–84.

Tomek Strzalkowski, Louise Guthrie, Jussi Karlgren, Jim
Leistensnider, Fang Lin, José Pérez-Carballo, Troy
Straszheim, Jin Wang, and Jon Wilding. 1996. Nat-
ural language information retrieval: TREC-5 report.

Ellen M. Vorhees. 1999. The TREC-8 question answer-
ing track report. In Proceedings of TREC-8, pages 77–
82.

Chengxiang Zhai. 1997. Fast statistical parsing of noun
phrases for document indexing. In Proceedings of the
fifth conference on Applied natural language process-
ing, pages 312–319, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

946


