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Abstract

Dictionaries and word translation models
are used by a variety of systems, espe-
cially in machine translation. We build
a multilingual dictionary induction system
for a family of related resource-poor lan-
guages. We assume only the presence
of a single medium-length multitext (the
Bible). The techniques rely upon lexical
and syntactic similarity of languages as
well as on the fact that building dictionar-
ies for several pairs of languages provides
information about other pairs.

1 Introduction and Motivation

Modern statistical natural language processing tech-
niques require large amounts of human-annotated
data to work well. For practical reasons, the required
amount of data exists only for a few languages of
major interest, either commercial or governmental.
As a result, many languages have very little com-
putational research done in them, especially outside
the borders of the countries in which these languages
are spoken. Some of these languages are, however,
major languages with hundreds of millions of speak-
ers. Of the top 10 most spoken languages, Lin-
guistic Data Consortium at University of Pennsyl-
vania, the premier U.S. provider of corpora, offers
text corpora only in 7 (The World Factbook (2004),
2000 estimate) Only a few of the other languages
(French, Arabic, and Czech) have resources pro-
vided by LDC. Many Asian and Eastern European
languages number tens of millions of speakers, yet
very few of these seem to have any related compu-

tational linguistics work, at least as presented at the
international conferences, such as the ACL.1

The situation is not surprising, nor is it likely to
significantly change in the future. Luckily, most
of these less-represented languages belong to lan-
guage families with several prominent members. As
a result, some of these languages have siblings with
more resources and published research.2 Inter-
estingly, the better-endowed siblings are not always
the ones with more native speakers, since political
considerations are often more important.3 If one
is able to use the resources available in one lan-
guage (henceforth referred to assource) to facilitate
the creation of tools and resource in another, related
language (target), this problem would be alleviated.
This is the ultimate goal of this project, but in the
first stage we focus on multi-language dictionary in-
duction.

Building a high-quality dictionary, or even bet-
ter, a joint word distribution model over all the lan-
guages in a given family is very important, because
using such a model one can use a variety of tech-
niques to project information across languages, e.g.
to parse or to translate. Building a unified model for
more than a pair of languages improves the quality
over building several unrelated pairwise models, be-
cause relating them to each other provides additional
information. If we know that worda in languageA
has as its likely translation wordb in languageB,
andb is translated asc in C, then we also know that
a is likely to be translated asc, without looking at

1The search through ACL Anthology, for e.g., Telugu (∼70
million speakers) shows only casual mention of the language.

2Telugu’s fellow Dravidian languageTamil (∼65 million
speakers) has seen some papers at the ACL

3This is the case with Tamil vs. Telugu.
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theA to C model.

2 Previous Work

There has been a lot of work done on building dic-
tionaries, by using a variety of techniques. One
good overview is Melamed (2000). There is work
on lexicon induction using string distance or other
phonetic/orthographic comparison techniques, such
as Mann and Yarowsky (2001) or semantic com-
parison using resources such as WordNet (Kondrak,
2001). Such work, however, primarily focuses on
finding cognates, whereas we are interested in trans-
lations of all words. Moreover, while some tech-
niques (e.g., Mann and Yarowsky (2001)) use mul-
tiple languages, the languages usedhaveresources
such as dictionaries between some language pairs.
We do not require any dictionaries for any language
pair.

An important element of our work is focusing on
more than a pair of languages. There is an active
research area focusing on multi-source translation
(e.g., Och and Ney (2001)). Our setting is the re-
verse: we do not use multiple dictionaries in order
to translate, but translate (in a very crude way) in
order to build multiple dictionaries.

Many machine translation techniques require dic-
tionary building as a step of the process, and there-
fore have also attacked this problem. They use a va-
riety of approaches (a good overview is Koehn and
Knight (2001)), many of which require advanced
tools for both languages which we are not able to
use. They also use bilingual (and to some extent
monolingual) corpora, which we do have available.
They do not, however, focus on related languages,
and tend to ignore lexical similarity4, nor are they
able to work on more than a pair of languages at a
time.

It is also worth noting that there has been some
MT work on related languages which explores lan-
guage similarity in an opposite way: by using dic-
tionaries and tools for both languages, and assum-
ing that a near word-for-word approach is reasonable
(Hajic et al., 2000).

4Much of recent MT research focuses on pairs of languages
which are not related, such as English-Chinese, English-Arabic,
etc.

3 Description of the Problem

Let us assume that we have a group of related lan-
guages,L1 . . . Ln, and a parallel sentence-aligned
multitext C, with corresponding portions in each
language denoted asC1 . . . Cn. Such a multitext ex-
ists for virtually all the languages in the form of the
Bible. Our goal is to create a multilingual dictionary
by learning the joint distributionP (x1 . . . xn)xi∈Li

which is simply the expected frequency of then-
tuple of words in a completely word-aligned mul-
titext. We will approach the problem by learning
pairwise language models, although leaving some
parameters free, and then combine the models and
learn the remaining free parameters to produce the
joint model.

Let us, therefore, assume that we have a set of
models{P (x, y|θij)x∈Li,y∈Lj}i6=j where θij is a
parameter vector for pairwise model for languages
Li andLj . We would like to learn how to combine
these models in an optimal way. To solve this prob-
lem, let us first consider a simpler and more general
setting.

3.1 Combining Models of Hidden Data

Let X be a random variable with distribution
Ptrue(x), such that no direct observations of it exist.
However, we may have some indirect observations
of X and have built several models ofX ’s distri-
bution,{Pi(x|θi)}n

i=1, each parameterized by some
parameter vectorθi. Pi also depends on some other
parameters that are fixed. It is important to note that
the space of models obtained by varyingθi is only a
small subspace of the probability space. Our goal is
to find a good estimate ofPtrue(x).

The main idea is that if somePi andPj are close
(by some measure) toPtrue, they have to be close
to each other as well. We will therefore make the
assumption that if some models ofX are close to
each other (and we have reason to believe they are
fair approximations of the true distribution) they are
also close to the true distribution. Moreover, we
would like to set the parametersθi in such a way
thatP (xi|θi) is as close to the other models as pos-
sible. This leads us to look for an estimate that is
as close to all of our models as possible, under the
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optimal values ofθi’s, or more formally:

Pest= arg min
P̂ (·)

min
θ1

. . .min
θn

d(P̂ (·), P1(·|θ1), . . . Pn(·|θn))

whered measures the distance betweenP̂ and all the
Pi under the parameter settingθi. Since we have no
reason to prefer any of thePi, we choose the follow-
ing symmetric form ford:

n∑
i=1

D(P̂ (·)||Pi(·|θi))

whereD is a reasonable measure of distance be-
tween probability distributions. The most appro-
priate and the most commonly used measure in
such cases in the Kullback-Leibler divergence, also
known as relative entropy:

D(p||q) =
∑
x

p(x) log
p(x)
q(x)

It turns out that it is possible to find the optimalP̂
under these circumstances. Taking a partial deriva-
tive and solving, we obtain:

P̂ (x) =
∏n

i=1 Pi(x|θi)1/n∑
x′∈X

∏n
i=1 Pi(x′|θi)1/n

Substituting this value into the expression for
function d, we obtain the following distance mea-
sure between thePi’s:

d′(P1(X|θ1) . . . Pn(X|θn))
= minP̂ d(P̂ , P1(X|θ1), . . . Pn(X|θn))
= − log

∑
x∈X

∏n
i=1 Pi(x|θi)1/n

This function is a generalization of the well-
known Bhattacharyya distance for two distributions
(Bhattacharyya, 1943):

b(p, q) =
∑

i

√
piqi

These results suggest the followingAlgorithm 1
to optimized (andd′):

• Set allθi randomly

• Repeat until change ind is very small:

– ComputeP̂ according to the above for-
mula

– For i from 1 ton

∗ Set θi in such a way as to minimize
D(P̂ (X)||Pi(X|θi))

– Computed according to the above for-
mula

Each step of the algorithm minimizesd. It is also
easy to see that minimizingD(P̂ (X)||Pi(X|θi)) is
the same as setting the parametersθi in order to max-
imize

∏
x∈X Pi(x|θi)P̂ (x), which can be interpreted

as maximizing the probability underPi of a cor-
pus in which wordx appearsP̂ (x) times. In other
words, we are now optimizingPi(X) given an ob-
served corpus ofX, which is a much easier problem.
In many types of models forPi the Expectation-
Maximization algorithm is able to solve this prob-
lem.

3.2 Combining Pairwise Models

Following the methods outlined in the previous
section, we can find an optimal joint probability
P (x1 . . . xn)xi∈Li if we are given several models
Pj(x1 . . . xn|θj). Instead, we have a number of pair-
wise models. Depending on which independence as-
sumptions we make, we can define a joint distribu-
tion over all the languages in various ways. For ex-
ample, for three languages,A, B, andC, and we can
use the following set of models:

P1(A,B, C) = P (A|B)P (B|C)P (C)
P2(A,B, C) = P (C|A)P (A|B)P (B)
P3(A,B, C) = P (B|C)P (C|A)P (A)

and

d′(P̂ , P1, P2, P3)
= D(P̂ ||P1) + D(P̂ ||P2) + D(P̂ ||P3)
= 2H(P̂ (A,C), P (A,C))
+ 2H(P̂ (A,B), P (A,B))
+ 2H(P̂ (B,C), P (B,C))− 3H(P̂ )
− H(P̂ (A), P (A))−H(P̂ (B), P (B))
− H(P̂ (C), P (C))

whereH(·) is entropy,H(·, ·) is cross-entropy, and
P̂ (A,B) meansP̂ marginalized to variablesA,B.
The last three cross-entropy terms involve monolin-
gual models which are not parameterized. The en-
tropy term does not involve any of the pairwise dis-
tributions. Therefore, ifP̂ is fixed, to maximized′
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we need to maximize each of the bilingual cross-
entropy terms.

This means we can apply the algorithm from
the previous section with a small modification
(Algorithm 2 ):

• Set all θij (for each language pairi, j) ran-
domly

• Repeat until change ind is very small:

– ComputePi for i = 1 . . . k wherek is the
number of the joint models we have cho-
sen

– ComputeP̂ from {Pi}
– For i, j such thati 6= j

∗ MarginalizeP̂ to (Li, Lj)
∗ Setθij in such a way as to minimize

D(P̂ (Li, Lj)||Pi(Li, Lj |θij))

– Computed according to the above for-
mula

Most of theθ parameters in our models can be
set by performing EM, and the rest are discrete with
only a few choices and can be maximized over by
trying all combinations of them.

4 Building Pairwise Models

We now know how to combine pairwise translation
models with some free parameters. Let us now dis-
cuss how such models might be built.

Our goal at this stage is to take a parallel bitext
in related languagesA andB and produce a joint
probability modelP (x, y), wherex ∈ A, y ∈ B.
Equivalently, since the modelsPA(x) and PB(y)
are easily estimated by maximum likelihood tech-
niques from the bitext, we can estimatePA→B(y|x)
or PB→A(x|y). Without loss of generality, we will
build PA→B(y|x).

The model we are building will have a number of
free parameters. These parameters will be set by the
algorithm discussed above. In this section we will
assume that the parameters are fixed.

Our model is a mixture of several components,

each discussed in a separate section below:

PA→B(y|x) = λfw(x)PfwA→B(y|x)
+ λbw(x)PbwA→B(y|x)
+ λchar(x)PcharA→B(y|x)
+ λpref (x)PprefA→B(y|x)
+ λsuf (x)PsufA→B(y|x)
+ λcons(x)PconsA→B(y|x)

(1)

where allλs sum up to one. Theλs are free pa-
rameters, although to avoid over-training we tie the
λs for x’s with similar frequencies. These lambdas
form a part of theθij parameter mentioned previ-
ously, whereLi = A andLj = B.

The components represent various constraints that
are likely to hold between related languages.

4.1 GIZA (forward)

This component is in fact GIZA++ software, origi-
nally created by John Hopkins University’s Summer
Workshop in 1999, improved by Och (2000). This
software can be used to create word alignments for
sentence-aligned parallel corpora as well as to in-
duce a probabilistic dictionary for this language pair.

The general approach taken by GIZA is as fol-
lows. Let LA and LB be the portions of the par-
allel text in languagesA and B respectively, and
LA = (xi)i=1...n and LB = (yi)i=1...m. We can
defineP (LB|LA) as

max
PA→B

max
Paligns

n∑
i=1

m∑
j=1

PA→B (yj |xi) Paligns(xi|j)

The GIZA software does the maximization by
building a variety of models, mostly described by
Brown et al. (1993). GIZA can be tuned in various
ways, most importantly by choosing which models
to run and for how many iterations. We treat these
parameters as free, to be set along with the rest at a
later stage.

As a side effect of GIZA’s optimization, we obtain
the PA→B(y|x) that maximizes the above expres-
sion. It is quite reasonable to believe that a model
of this sort is also a good model for our purposes.
This model is what we refer to asPfwA→B(y|x) in
the model overview.

GIZA’s approach is not, however, perfect. GIZA
builds several models, some quite complex, yet it
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does not use all the information available to it, no-
tably the lexical similarity between the languages.
Furthermore, GIZA tries to map words (especially
rare ones) into other words if possible, even if the
sentence has no direct translation for the word in
question.

These problems are addressed by using other
models, described in the following sections.

4.2 GIZA (backward)

In the previous section we discussed using GIZA to
try to optimizeP (LB|LA). It is, however, equally
reasonable to try to optimizeP (LA|LB) instead. If
we do so, we can obtainPfwB→A(x|y) that pro-
duces maximal probability forP (LA|LB). We,
however need a model ofPA→B(y|x). This is easily
obtained by using Bayes’ rule:

PbwA→B(y|x) =
PfwB→A(x|y)PB(y)

PA(x)

which requires us to havePB(y) andPA(x). These
models can be estimated directly fromLB andLA,
by using maximum likelihood estimators:

PA(x) =
∑

i δ(xi, x)
n

and

PB(y) =
∑

i δ(yi, y)
m

where δ(x, y) is the Kronecker’s delta function,
which is equal to 1 if its arguments are equal, and
to 0 otherwise.

4.3 Character-based model

This and the following models all rely on having a
model of PA→B(y|x) to start from. In practice it
means that this component is estimated following
the previous components and uses the models they
provide as a starting point.

The basic idea behind this model is that in related
languages words are also related. If we have a model
Pc of translating characters in language A into char-
acters in language B, we can define the model for
translating entire words.

Let word x in languageA consists of characters
x1 throughxn, and wordy in languageB consist of
charactersy1 throughym.

Let us define (the unnormalized) character model:

Puchar(y|x) = Pcharlen(y|x, m)Plength(m|x)

i.e., estimating the length ofy first, andy itself af-
terward. We make an independence assumption that
the length ofy depends only on length ofx, and are
able to estimate the second term above easily. The
first term is harder to estimate.

First, let us consider the case where lengths ofx
andy are the same (m = n). Then,

Pcharlen(y|x, n) =
n∏

i=1

Pc(yi|xi)

Let yj be wordy with j’s character removed. Let
us now consider the case whenm > n. We define
(recursively):

Pcharlen(y|x, m) =
m∑

i=1

1
m

Pcharlen(yi|x,m− 1)

Similarly, if n > m:

Pcharlen(y|x) =
n∑

i=1

1
n

Pcharlen(y|xi,m)

It is easy to see that this is a valid probability
model over all sequences of characters. However,
y is not a random sequence of characters, but a word
in languageB, moreover, it is a word that can serve
as a potential translation of wordx. So, to define a
proper distribution over wordsy given a wordx and
a set of possible translations ofx, T (x)

Pchar(y|x) = Puchar (y|x, y ∈ T (x))
= δy′∈T (x)

Puchar(y,y∈T (x)|x)∑
y′∈T (x)

Puchar(y′|x)

This is the complete definition ofPchar, except
for the fact that we are implicitly relying upon the
character-mapping model,Pc, which we need to
somehow obtain. To obtain it, we rely upon GIZA
again. As we have seen, GIZA can find a good word-
mapping model if it has a bitext to work from. If we
have aPA→B word-mapping model of some sort, it
is equivalent to having a parallel bitext with wordsy
andx treated as a sequence of characters, instead of
indivisible tokens. Each(x, y) word pair would oc-
cur PA→B(x, y) times in this corpus. GIZA would
then provide us with thePc model we need, by opti-
mizing the probabilityB language part of the model
given the languageA part.
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4.4 Prefix Model

This model and the two models that follow are built
on the same principle. Let there be a functionf :
A → CA and a functiong : B → CB. These func-
tions group words inA andB into some finite set of
classes. If we have somePA→B(y|x) to start with,
we can define

PfgA→B(y|x)
= P (y|g(y))P (g(y)|f(x))P (f(x)|x)

= P (y)
∑

x′:f(x′)=f(x)

∑
y′:g(y′)=g(y)

P (x′,y′)(∑
x′:f(x′)=f(x)

P (x′)

)(∑
y′:g(y′)=g(y)

P (y′)

)
For the prefix model, we rely upon the following

idea: words that have a common prefix often tend to
be related. Related words probably should translate
as related words in the other language as well. In
other words, we are trying to capture word-level se-
mantic information. So we define the following set
of f andg functions:

fn(x) = prefix(x, n)

gm(y) = prefix(y, m)

where n and m are free parameters, whose values we
will determine later. We therefore definePprefA→B

asPfg with f andg specified above.

4.5 Suffix Model

Similarly to a prefix model mentioned above, it is
also useful to have a suffix model. Words that have
the same suffixes are likely to be in the same gram-
matical case or share some morphological feature
which may persist across languages. In either case,
if a strong relationship exists between the result-
ing classes, it provides good evidence to give higher
likelihood to the word belonging to these classes. It
is worth noting that this feature (unlike the previous
one) is unlikely to be helpful in a setting where lan-
guages are not related.

The functionsf andg are defined based on a set of
suffixesSA andSB which are learned automatically.
f(x) is defined as the longest possible suffix ofx
that is in the setSA, andg is defined similarly, for
SB.

The setsSA andSB are built as follows. We start
with all one-character suffixes. We then consider
two-letter suffixes. We add a suffix to the list if it

occurs much more often than can be expected based
on the frequency of its first letter in the penultimate
position, times the frequency of its second letter in
the last position. We then proceed in a similar way
for three-letter suffixes. The threshold value is a free
parameter of this model.

4.6 Constituency Model

If we had information about constituent boundaries
in either language, it would have been useful to
make a model favoring alignments that do not cross
constituent boundaries. We do not have this infor-
mation at this point. We can assume, however, that
any sequence of three words is a constituent of sorts,
and build a model based on that assumption.

As before, letLA = (xi)i=1...n and LB =
(yi)i=1...m. Let us define asCA(i) a triple
of words (xi−1, xi, xi+1) and asCB(j) a triple
(yj−1, yj , yj+1). If we have some modelPA→B, we
can define

PCA→CB
(j|i) = 1

C
PA→B(yj−1|xi−1)PA→B(yj |xi)

× PA→B(yj+1|xi+1)

whereC is the sum overj of the above products, and
serves to normalize the distribution.

PconsA→B(y|x)
=

∑n

i=1

∑m

j=1
P (y|CB(j))PCA→CB

(j|i)P (CA(i)|x)

=
∑

i:xi=x

∑m
j=1 P (y|CB(j))PCA→CB

(j|i)
= 1∑

j=1
δ(yj ,y)

∑
i:xi=x

∑
j:yi=y PCA→CB

(j|i)

5 Evaluation

The output of the system so far is a multi-lingual
word translation model. We will evaluate it by pro-
ducing a tri-lingual dictionary (Russian-Ukrainian-
Belorussian), picking a highest probability transla-
tion for each word, from the corresponding Bibles.
Unfortunately, we do not have a good hand-built tri-
lingual dictionary to compare it to, but only one
good bilingual one, Russian-Ukrainian5. We will
therefore take the Russian-Ukrainian portion of our
dictionary and compare it to the hand-built one.

Our evaluation metric is the number of entries that
match between these dictionaries. If a word has sev-
eral translations in the hand-built dictionary, match-

5The lack of such dictionaries is preciselywhy we do this
work

880



ing any of them counts as correct. It is worth not-
ing that for all the dictionaries we generate, the to-
tal number of entries is the same, since all the words
that occur in the source portion of the corpus have an
entry. In other words, precision and recall are pro-
portional to each other and to our evaluation metric.

Not all of the words that occur in our dictionary
occur in the hand-built dictionary and vice versa. An
absolute upper limit of performance, therefore, for
this evaluation measure is the number of left-hand-
side entries that occur in both dictionaries.

In fact, we cannot hope to achieve this number.
First, because the dictionary translation of the word
in question might never occur in the corpus. Second,
even if it does, but never co-occurs in the same sen-
tence as its translation, we will not have any basis
to propose it as a translation.6. Therefore we have
a “achievable upper limit”, the number of words
that have their “correct” translation co-occur at least
once. We will compare our performance to this up-
per limit.

Since there is no manual tuning involved we do
not have a development set, and use the whole bible
for training (the dictionary is used as a test set, as
described above).

We evaluate the performance of the model with
just the GIZA component as the baseline, and add
all the other components in turn. There are two pos-
sible models to evaluate at each step. The pairwise
model is the model given in equation 1 under the
parameter setting given by Algorithm 2, with Be-
lorussian used as a third language. The joint model
is the full model over these three languages as es-
timated by Algorithm 2. In either case we pick a
highest probability Ukrainian word as a translation
of a given Russian word.

The results for Russian-Ukrainian bibles are pre-
sented in Table 1. The “oracle” setting is the set-
ting obtained by tuning on the test set (the dictio-
nary). We see that using a third language to tune
works just as well, obtaining the true global max-
imum for the model. Moreover, the joint model
(which is more flexible than the model in Equation
1) does even better. This was unexpected for us, be-

6Strictly speaking, we might be able to infer the word’s exis-
tence in some cases, by performing morphological analysis and
proposing a word we have not seen, but this seems too hard at
the moment

Table 1: Evaluation for Russian-Ukrainian (with Be-
lorussian to tune)

Stage Pair Joint
Forward (baseline) 62.3% 71.7%
Forward+chars 77.1% 84.2%
Forward+chars+backward 81.3% 84.1%
Fw+chars+bw+prefix 83.5% 84.5%
Fw+chars+bw+prefix+suffix 84.5% 85%
Fw+chars+bw+pref+suf+const84.5% 85.2%

“Oracle” setting forλ’s 84.6%

Table 2: Evaluation for Russian-Ukrainian (with Be-
lorussian and Polish)

Tuned by Pair Joint
Belorussian (prev. table) 84.5% 85.2% &
Polish 84.6% 78.6%
Both 84.5% 85.2%

“Oracle” tuning 84.5%

cause the joint model relies on three pairwise mod-
els equally, and Russian-Belorussian and Ukrainian-
Belorussian models are bound to be less reliable for
Russian-Ukrainian evaluation. It appears, however,
that our Belorussian bible is translated directly from
Russian rather than original languages, and parallels
Russian text more than could be expected.

To insure our results are not affected by this fact
we also try Polish separately and in combination
with Belorussian (i.e. a model over 4 languages),
as shown in Table 2.

These results demonstrate that the joint model
is not as good for Polish, but it still finds the
optimal parameter setting. This leads us to pro-
pose the following extension: let us marginalize
joint Russian-Ukrainian-Belorussian model into just
Russian-Ukrainian, and add this model as yet an-
other component to Equation 1. Now we cannot use
Belorussian as a third language, but we can use Pol-
ish, which we know works just as well for tuning.
The resulting performance for the model is85.7%,
our best result to date.
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6 Discussion and Future Work

We have built a system for multi-dictionary in-
duction from parallel corpora which significantly
improves quality over the standard existing tool
(GIZA) by taking advantage of the fact that lan-
guages are related and we have a group of more
than two of them. Because the system attempts to
be completely agnostic about the languages it works
on, it might be used successfully on many language
groups, requiring almost no linguistic knowledge on
the part of the user. Only the prefix and suffix com-
ponents are somewhat language-specific, but even
they are sufficiently general to work, with varying
degree of success, on most inflective and agglutina-
tive languages (which form a large majority of lan-
guages). For generality, we would also need a model
of infixes, for languages such as Hebrew or Arabic.
We must admit, however, that we have not tested
our approach on other language families yet. It is
our short term plan to test our model on several Ro-
mance languages, e.g. Spanish, Portuguese, French.

Looking at the first lines of Table 1, one can see
that using more than a pair of languages with a
model using only a small feature set can dramat-
ically improve performance (compare second and
third columns), while able to find the optimal val-
ues for all internal parameters.

As discussed in the introduction, the ultimate goal
of this project is to produce tools, such as a parser,
for languages which lack them. Several approaches
are possible, all involving the use of the dictionary
we built. While working on this project, we would
no longer be treating all languages in the same way.
We would use the tools available for that language to
further improve the performance of pairwise mod-
els involving that language and, indirectly, even the
pairs not involving this language. Using these tools,
we may be able to improve the word translation
model even further, simply as a side effect.

Once we build a high-quality dictionary for a spe-
cial domain such as the Bible, it might be possible to
expand to a more general setting by mining the Web
for potential parallel texts.

Our technique is limited in the coverage of the
resulting dictionary which can only contain words
which occur in our corpus. Whatever the corpus
may be, however, it will include the most common

words in the target language. These are the words
that tend to vary the most between related (and even
unrelated) languages. The relatively rare words (e.g.
domain-specific and technical terms) can often be
translated simply by inferring morphological rules
transforming words of one language into another.
Thus, one may expand the dictionary coverage us-
ing non-parallel texts in both languages, or even in
just one language if its morphology is sufficiently
regular.
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