
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 867–874, Vancouver, October 2005. c©2005 Association for Computational Linguistics

OCR Post-Processing for Low Density Languages

Okan Kolak
Computer Science and UMIACS

University of Maryland
College Park, MD 20742

okan@umiacs.umd.edu

Philip Resnik
Linguistics and UMIACS
University of Maryland

College Park, MD 20742
resnik@umiacs.umd.edu

Abstract

We present a lexicon-free post-processing
method for optical character recognition
(OCR), implemented using weighted fi-
nite state machines. We evaluate the
technique in a number of scenarios rele-
vant for natural language processing, in-
cluding creation of new OCR capabilities
for low density languages, improvement
of OCR performance for a native com-
mercial system, acquisition of knowledge
from a foreign-language dictionary, cre-
ation of a parallel text, and machine trans-
lation from OCR output.

1 Introduction

The importance of rapidly retargeting existing natu-
ral language processing (NLP) technologies to new
languages is widely accepted (Oard, 2003). Statisti-
cal NLP models have a distinct advantage over rule
based approaches to achieve this goal, as they re-
quire far less manual labor; however, training statis-
tical NLP methods requires on-line text, which can
be hard to find for so-called “low density” languages
— that is, languages where few on-line resources ex-
ist. In addition, for many languages of interest input
data are available mostly in printed form, and must
be converted to electronic form prior to processing.

Optical character recognition (OCR) is often the
only feasible method to perform this conversion,
owing to its speed and cost-effectiveness. Unfor-
tunately, the performance of OCR systems is far

from perfect and recognition errors significantly de-
grade the performance of NLP applications. This is
true both in resource acquisition, such as automated
bilingual lexicon generation (Kolak et al., 2003),
and for end-user applications such as rapid machine
translation (MT) in the battlefield for document fil-
tering (Voss and Ess-Dykema, 2000). Moreover, for
low density languages, there simply may not be an
OCR system available.

In this paper, we demonstrate that via statistical
post-processing of existing systems, it is possible
to achieve reasonable recognition accuracy for low
density languages altogether lacking an OCR sys-
tem, to significantly improve on the performance of
a trainable commercial OCR system, and even to
improve significantly on a native commercial OCR
system.1 By taking a post-processing approach, we
require minimal assumptions about the OCR system
used as a starting point.

The proper role of our post-processing approach
depends on the language. For languages with little
commercial potential for OCR, it may well provide
the most practical path for language-specific OCR
development, given the expensive and time consum-
ing nature of OCR development for new languages
and the “black box” nature of virtually all state-of-
the-art OCR systems. For languages where native
OCR development may take place, it is a fast, prac-
tical method that allows entry into a new language
until native OCR development catches up. For these,
and also for languages where native systems exist,

1Currently we assume the availability of an OCR system that
supports the script of the language-of-interest, or which is script
independent (Natarajan et al., 2001).

867

we show that post-processing can yield improve-
ments in performance.

Sections 2 and 3 describe the method and its im-
plementation. In Section 4 we cover a variety of rel-
evant NLP scenarios: Creating OCR capabilities for
Igbo, performing OCR on a dictionary for Cebuano,
using OCR to acquire the Arabic side of a common
parallel text, and evaluating the value of OCR post-
processing for machine translation of Arabic and
Spanish. In Sections 5 and 6 we discuss related work
and summarize our findings.

2 Post-Processing System

We use the noisy channel framework to formulate
the correction problem, revising our previous model
(Kolak et al., 2003). That model takes the form

P (O, b, a, C, W) =
P (O, b|a,C,W)P (a|C,W)P (C|W)P (W)

whose components are a word-level source model
P (W), a word-to-character modelP (C|W), a seg-
mentation modelP (a|C,W), and a model for char-
acter sequence transformation,P (O, b|a,C,W). W
is the correct word sequence andC is the corre-
sponding character sequence, which is recognized
asO by the OCR system.a andb are segmentation
vectors forC andO.

The original model requires a lexicon that covers
all words in the processed text — a strong assump-
tion, especially for low density languages. We con-
verted the model into a character-based one, remov-
ing the need for a lexicon. Generation ofW is re-
placed by generation ofC, which rendersP (C|W)
irrelevant, and the model becomes

P (O, b, a, C) = P (O, b|a,C)P (a|C)P (C)

Although word-based models generally perform bet-
ter, moving from words to characters is a necessary
compromise because word-based models are useless
in the absence of a lexicon, which is the case for
many low-density languages.

In addition to eliminating the need for a lexicon,
we developed a novel method for handling word
merge/split errors.2 Rather than modeling these er-

2A merge error occurs when two or more adjacent items are
recognized as one, and a split error occurs when an item is rec-
ognized as two or more items. These errors can happen both at
word level and character level.

rors explicitly using a segmentation model, we sim-
ply treat them as character deletion/insertion errors
involving the space character, allowing us to handle
them within the error model. The segmentation step
is absorbed into the character transformation step,
so a andb are no longer necessary, hence the final
equation becomes

P (O,C) = P (O|C)P (C)

which is a direct application of the noisy chan-
nel model. We can describe the new generative
process as follows: First, a sequence of charac-
ters C are generated, with probabilityP (C), and
the OCR system converts it intoO with probability
P (O|C). For example, if the actual input wasa car
and it was recognized asajar, P (ajar, a car) =
P (ajar|a car)P (a car). Using the channel model
to address word merge/split errors without actually
using a word level model is, to our knowledge, a
novel contribution of our approach.

3 Implementation

We implemented our post-processing system using
the framework of weighted finite state machines
(WFSM), which provides a strong theoretical foun-
dation and reduces implementation time, thanks to
freely available toolkits, such as the AT&T FSM
Toolkit (Mohri et al., 1998). It also allows easy
integration of our post-processor with numerous
NLP applications that are implemented using FSMs
(e.g. (Knight and Graehl, 1997; Kumar and Byrne,
2003)).

3.1 Source Model

The source model assigns probabilityP (C) to orig-
inal character sequences,C. We use character level
n-gram language models as the source model, since
n-gram models are simple, easy to train, and usually
achieve good performance. More complicated mod-
els that make use of constraints imposed by a par-
ticular language, such as vowel harmony, can be uti-
lized if desired. We used the CMU-Cambridge Lan-
guage Modeling Toolkit v2 (Clarkson and Rosen-
feld, 1997) for training, using Witten-Bell smooth-
ing and vocabulary type 1; all other parameters were
left at their default values.

868

3.2 Channel Model

The channel model assigns a probability toO given
that it was generated fromC. We experimented with
two probabilistic string edit distance models for im-
plementing the channel model. The first, following
our earlier model (2003), permits single-character
substitutions, insertions, and deletions, with associ-
ated probabilities. For example,P (ajar|a car) ≈
P (a7→a)P (7→ε)P (c7→j)P (a7→a)P (r 7→r). Note
that we are only considering the most likely edit se-
quence here, as opposed to summing over all pos-
sible ways to converta car to ajar. The second
is a slightly modified version of the spelling correc-
tion model of Brill and Moore (2000).3 This model
allows many-to-many edit operations, which makes
P (liter|litre) ≈ P (l 7→l)P (i7→i)P (tre7→ter) pos-
sible. We will refer to the these as the single-
character (SC) and multi-character (MC) error mod-
els, respectively.

We train both error models over a set of
corresponding ground truth and OCR sequences,
〈C,O〉. Training is performed using expectation-
maximization: We first find the most likely edit
sequence for each training pair to update the edit
counts, and then use the updated counts to re-
estimate edit probabilities. For MC, after finding the
most likely edit sequence, extended versions of each
non-copy operation that include neighboring charac-
ters are also considered, which allows learning any
common multi-character mappings. Following Brill
and Moore, MC training performs only one iteration
of expectation-maximization.

In order to reduce the time and space require-
ments of the search at correction time, we impose a
limit on number of errors per token. Note that this is
not a parameter of the model, but a limit required by
its computational complexity. A lower limit will al-
most always result in lower correction performance,
so the highest possible limit allowed by time and
memory constraints should be used. It is possible to
correct more errors per token by iterating the correc-
tion process. However, iterative correction cannot
guarantee that the result is optimal under the model.

3We ignore the location of the error within the word, since it
is not as important for OCR as it is for spelling.

3.3 Chunking

Since we do not require a lexicon, we work on
lines of text rather than words. Unfortunately the
search space for correcting a complete line is pro-
hibitively large and we need a way to break it down
to smaller, independent chunks. The chunking step
is not part of the model, but rather a pre-processing
step: chunks are identified, each chunk is corrected
independently using the model, and the corrected
chunks are put back together to generate the output.

Spaces provide a natural break point for chunks.
However, split errors complicate the process: if parts
of a split word are placed in different chunks, the er-
ror cannot be corrected. For example, in Figure 1,
chunking (b) allows the model to produce the de-
sired output, but chunking (a) simply does not allow
combining “sam” and “ple” into “sample”, as each
chunk is corrected independently.

Figure 1:Example of a bad and a good chunking

We address this by using the probabilities as-
signed to spaces by the source model for chunking.
We break the line into two chunks using the space
with the highest probability and repeat the process
recursively until all chunks are reduced to a rea-
sonable size, as defined by time and memory lim-
itations. Crucially, spurious spaces that cause split
errors are expected to have a low probability, and
therefore breaking the line using high probability
spaces reduces the likelihood of placing parts of a
split word in different chunks.

If a lexicon does happen to be available, we can
use it to achieve more reliable chunking, as follows.
The tokens of the input line that are present in the
lexicon are assumed to be correct. We identify runs
of out-of-lexicon tokens and attempt to correct them
together, allowing us to handle split errors. Note
that in this case the lexicon is used only to improve
chunking, not for correction. Consequently, cover-
age of the lexicon is far less important.

Our lexicon-free chunking algorithm placed an
erroneous boundary at 11.3% of word split points
for Arabic test data (Section 4.3). However, cor-
rection performance was identical to that of error-

869

Figure 2:A small excerpt from Aku.ko.

free chunking.4 Incorrect decisions did not hurt be-
cause the correction method was not able to fix those
particular split errors, regardless. The errors of the
chunking and correction models coincided as they
both rely on the same language model. Therefore,
chunking errors are unlikely to reduce the correction
performance.

3.4 Correction

Correction is performed by estimating the most
probable source character sequenceĈ for a given
observed character sequenceO, using the formula:

Ĉ = argmax
C

{P (O|C)P (C)}

We first encodeO as an FSA and compose it with
the inverted error model FST.5 The resulting FST is
then composed with the language model FSA. The
final result is a lattice that encodes all feasible se-
quencesC, along with their probabilities, that could
have generatedO. We take the sequence associated
with the most likely path through the lattice aŝC.

4 Evaluation

We evaluate our work on OCR post-processing in
a number of scenarios relevant for NLP, including
creation of new OCR capabilities for low density
languages, improvement of OCR performance for
a native commercial system, acquisition of knowl-
edge from a foreign-language dictionary, creation of
a parallel text, and machine translation from OCR
output. The languages studied include Igbo, Ce-
buano, Arabic, and Spanish.

For intrinsic evaluation, we use the conventional
Word Error Rate (WER) metric, which is defined as

WER(C,O) =
WordEditDistance(C,O)

WordCount(C)

4Ignoring errors that result in valid words, lexicon-based
chunking is always error-free.

5Inversion reverses the direction of the error model, map-
ping observed sequences to possible ground truth sequences.

We do not use the Character Error Rate (CER) met-
ric, since for almost all NLP applications the unit of
information is the words. For extrinsic evaluation of
machine translation, we use the BLEU metric (Pap-
ineni et al., 2002).

4.1 Igbo: Creating an OCR System

Igbo is an African language spoken mainly in Nige-
ria by an estimated 10 to 18 million people, written
in Latin script. Although some Igbo texts use dia-
critics to mark tones, they are not part of the official
orthography and they are absent in most printed ma-
terials. Other than grammar books, texts for Igbo,
even hardcopy, are extremely difficult to obtain. To
our knowledge, the work reported here creates the
first OCR system for this language.

For the Igbo experiments, we used two sources.
The first is a small excerpt containing 6727 words
from the novel “Juo Obinna” (Ubesie, 1993). The
second is a small collection of short stories named
“Aku.ko. Ife Nke Ndi. Igbo” (Green and Onwua-
maegbu, 1970) containing 3544 words. We will re-
fer to the former as “Juo” and the latter as “Aku.ko.”
hereafter. We generated the OCR data using a com-
mercial English OCR system.6 Juo image files were
generated by scanning 600dpi laser printer output at
300dpi resolution. Aku.ko. image files were gener-
ated by scanning photocopies from the bound hard-
copy at 300dpi. Figure 2 provides a small excerpt
from the actual Aku.ko. page images used for recog-
nition. For both texts, we used the first two thirds for
training and the remaining third for testing.

We trained error and language models (EMs and
LMs) using the training sets for Juo and Aku.ko. sep-
arately, and performed corrections of English OCR
output using different combinations of these mod-
els on both test sets. Table 1 shows the results for
the Juo test set while Table 2 presents the results
for Aku.ko.. The relative error reduction ranges from
30% to almost 80%. The SC error model performs
better than the MC error model under all conditions.

6Abby Fine Reader Professional Edition Version 7.0

870

Conditions Results
LM Data EM Data EM type WER (%) Red. (%)

Juo Juo MC 8.66 74.18
Juo Aku.ko. MC 15.23 54.59

Aku.ko. Juo MC 13.25 60.49
Aku.ko. Aku.ko. MC 19.08 43.11

Juo Juo SC 7.11 78.80
Juo Aku.ko. SC 11.49 65.74

Aku.ko. Juo SC 13.42 59.99
Aku.ko. Aku.ko. SC 18.92 43.59

Original OCR Output 35.44 -

Table 1:Post-correction WER for English OCR on Juo

Conditions Results
LM Data EM Data EM type WER (%) Red. (%)

Juo Juo MC 21.42 36.33
Juo Aku.ko. MC 18.08 46.25

Aku.ko. Juo MC 21.51 36.06
Aku.ko. Aku.ko. MC 18.16 46.02

Juo Juo SC 19.92 40.78
Juo Aku.ko. SC 16.49 50.98

Aku.ko. Juo SC 19.92 40.78
Aku.ko. Aku.ko. SC 16.40 51.25

Original OCR Output 33.64 -

Table 2:Post-correction WER for English OCR on Aku.ko.

This is due to the fact that MC requires more train-
ing data than SC. Furthermore, most of the errors in
the data did not require many-to-many operations.
Results in Tables 1 and 2 are for 6-gram language
model and error limit of 5; corresponding 3-gram
error rates were 1% to 2% (absolute) higher.

The best correction performance is achieved when
both the EM and LM training data come from the
same source as the test data, almost doubling the
performance achieved when they were from a dif-
ferent source.7 Note that the amount of training data
is small, four to eight pages, so optimizing perfor-
mance via manual entry of document-specific train-
ing text is not unrealistic for scenarios involving
long documents such as books.

4.1.1 Using a Trainable OCR System

In an additional experiment with Igbo, we found that
post-processing can improve performance substan-
tially even when an OCR system trained on Igbo
characters is the starting point. In particular, the
commercial OCR system used for Igbo experiments
supports user-trained character shape models. Us-

7There was no overlap between training and test data under
any circumstance.

Conditions Results
LM Data EM Data WER (%) Red. (%)

Juo Juo 3.69 50.34
Juo Aku.ko. 5.24 29.48

Aku.ko. Juo 5.08 31.63
Aku.ko. Aku.ko. 7.38 0.67

Original OCR Output 7.43 -

Table 3:Post-correction WER for trained OCR system on Juo

ing Juo as the source, we trained the commercial
OCR system manually on Igbo characters, result-
ing in a 7.43% WER on Juo without postprocess-
ing.8 Note that this is slightly higher than the 7.11%
WER achieved using an English OCR system to-
gether with our post-processing model. We used a
6-gram LM, and a SC EM with error limit of 5. Ta-
ble 3 shows that by post-processing the Igbo-trained
OCR system, we reduce the word error rate by 50%.

4.2 Cebuano: Acquiring a Dictionary

Cebuano is a language spoken by about 15 million
people in the Philippines, written in Latin script.
The scenario for this experiment is converting a
Cebuano hardcopy dictionary into electronic form,
as in DARPA’s Surprise Language Dry Run (Oard,
2003). The dictionary that we used had diacritics,
probably to aid in pronunciation. The starting-point
OCR data was generated using a commercial OCR
system.9 The fact that the tokens to be corrected
come from a dictionary means (1) there is little con-
text available and (2) word usage frequencies are not
reflected. Character-based models may be affected
by these considerations, but probably not to the ex-
tent that word-based models would be.

Table 4 shows WER for Cebuano after post-
processing. Thesizecolumn represents the number
of dictionary entries used for training, where each
entry consists of one or more Cebuano words. As
can be seen from the table, our model reduces WER
substantially for all cases, ranging from 20% to 50%
relative reduction. As expected, the correction per-
formance increases with the amount of training data;
note, however, that we achieve reasonable correction
performance even using only 500 dictionary entries
for training.

8The system trains by attempting OCR on a document and
asking for the correct character whenever it is not confident.

9ScanSoft Developer’s Kit 2000, which has no built-in sup-
port for Cebuano.

871

Conditions Results
Size LM EM WER (%) Red. (%)
500 3-gram SC 5.37 33.04
500 3-gram MC 5.05 37.03
500 6-gram SC 6.41 20.07
500 6-gram MC 5.33 33.54
1000 3-gram SC 5.33 33.54
1000 3-gram MC 4.63 42.27
1000 6-gram SC 5.58 30.42
1000 6-gram MC 4.67 41.77
27363 3-gram SC 4.34 45.89
27363 3-gram MC 4.14 48.38
27363 6-gram SC 4.55 43.27
27363 6-gram MC 3.97 50.50
Original OCR Output 8.02 -

Table 4:Post-correction WER for Cebuano

Contrary to the Igbo results, the MC error model
performs better than the SC error model. And, inter-
estingly, the 3-gram language model performs better
than the 6-gram model, except for the largest train-
ing data and MC error model combination. Both dif-
ferences are most likely caused by the implications
of using a dictionary as discussed above.

4.3 Arabic: Acquiring Parallel Text

We used Arabic to illustrate conversion from hard-
copy to electronic text for a widely available paral-
lel text, the Bible (Resnik et al., 1999; Kanungo et
al., 2005; Oard, 2003). We divided the Bible into
ten equal size segments, using the first segment for
training the error model, the first nine segments for
the language model, and the first 500 verses from
the last segment for testing. Since diacritics are only
used in religious text, we removed all diacritics. The
OCR data was generated using a commercial Ara-
bic OCR system.10 Note that this evaluation differs
from Igbo and Cebuano, as the experiments were
performed using an existingnativeOCR system. It
also allowed us to evaluate chunking, as Arabic data
has far more word merge/split errors compared to
Igbo and Cebuano.

Table 5 shows the correction performance for
Arabic under various conditions. TheLimit col-
umn lists the maximum number of errors per to-
ken allowed and theM/S column indicates whether
correction of word merge/split errors was allowed.
We achieve significant reductions in WER for Ara-
bic. The first two rows show that the 6-gram lan-

10Sakhr Automatic Reader Version 6.0

Conditions Results
M/S LM Limit WER (%) Red. (%)
no 3-gram 2 22.14 10.33
no 6-gram 2 17.99 27.14
yes 3-gram 2 18.26 26.04
yes 3-gram 4 17.74 28.15
yes 5-gram 2 20.74 16.00
Original OCR Output 24.69 -

Table 5:Post-correction WER for Arabic

guage model performs much better than the 3-gram
model. Interestingly, higher ordern-grams perform
worse when we allow word merge/split errors. Note
that for handling word merge/split errors we need to
learn the character distributions within lines, rather
than within words as we normally do. Consequently,
more training data is required for reliable parameter
estimation. Handling word merge/split errors im-
prove the performance, which is expected. Allow-
ing fewer errors per token reduces the performance,
since it is not possible to correct words that have
more character errors than the limit. Unfortunately,
increasing the error limit increases the search space
exponentially, making it impossible to use high lim-
its. As mentioned in Section 3.2, iterative correction
is a way to address this problem.

4.4 Extrinsic Evaluation: MT

While our post-processing methods reduce WER,
our main interest is their impact on NLP applica-
tions. We have performed machine translation ex-
periments to measure the effects of OCR errors and
the post-processing approach on NLP application
performance.

For Arabic, we trained a statistical MT system us-
ing the first nine sections of the Bible data. The lan-
guage model is trained using the CMU-Cambridge
toolkit and the translation model using the GIZA++
toolkit (Och and Ney, 2000). We used the ReWrite
decoder (Germann, 2003) for translation.

BLEU scores for OCR, corrected, and clean text
were 0.0116, 0.0141, and 0.0154, respectively. This
establishes that OCR errors degrade the performance
of the MT system, and we are able to bring the per-
formance much closer to the level of performance
on clean text by using post-processing. Clearly the
BLEU scores are quite low; we are planning to per-
form experiments on Arabic using a more advanced
translation system, such as Hiero (Chiang, 2005).

872

MT System Input Text BLEU Score
Systran OCR 0.2000
Systran Corrected 0.2606
Systran Clean 0.3188
ReWrite OCR 0.1792
ReWrite Corrected 0.2234
ReWrite Clean 0.2590

Table 6:Spanish-English translation results

In order to test in a scenario with better trans-
lation performance, we performed MT evaluations
using Spanish. We used a commercial translation
system, Systran, in addition to statistical translation.
More resources being available for this language,
corrected text for Spanish experiments was obtained
using our original model that takes advantage of a
lexicon (2003). Table 6 shows that scores are much
higher compared to Arabic, but the pattern of im-
provements using post-processing is the same.

5 Related Work

There has been considerable research on automatic
error correction in text. Kukich (1992) provides a
general survey of the research in the area. Unfor-
tunately, there is no standard evaluation benchmark
for OCR correction, and implementations are usu-
ally not publicly available, making a direct compar-
ison difficult.

Most correction methods are not suitable for
low density languages as they rely on lexicons.
Goshtasby and Ehrich (1988) present a lexicon-free
method based on probabilistic relaxation labeling.
However, they use the probabilities assigned to in-
dividual characters by the OCR system, which is
not always available. Perez-Cortes et al. (2000) de-
scribe a method which does not have this limitation.
They use a stochastic FSM that accepts the smallest
k-testable language consistent with a representative
sample. While the method can handle words not in
its lexicon in theory, it was evaluated using a large
k to restrict corrections to the lexicon. They report
reducing error rate from 33% to below 2% on OCR
output of hand-written Spanish names.

In addition to providing alternatives, the litera-
ture provides complementary methods. Guyon and
Pereira (1995) present a linguistic post-processor
based on variable memory length Markov models
that is designed to be used as the language model

component of character recognizers. Their model
can be used as the source model for our method.
Since it is a variable length model, it can allow us
to handle higher ordern-grams.

A script-independent OCR system is presented by
Natarajan et al. (2001). The system is evaluated
on Arabic, Chinese, and English, achieving 0.5% to
5% CER under various conditions. Since our post-
processing method can be used to reduce the error
rate of a trained OCR system, the two methods can
be combined to better adapt to new languages.

Voss and Ess-Dykema (2000) evaluated the ef-
fects of OCR errors on MT in the context of the
FALCon project, which combines off-the-shelf OCR
and MT components to provide crude translations
for filtering. They report significant degradation in
translation performance as a result of OCR errors.
For instance, for the Spanish system, OCR process
reduced the number of words that can be recognized
by the translation module by more than 60%.

6 Conclusions

We have presented a statistical post-processing
method for OCR error correction that requires mini-
mal resources, aimed particularly at low density lan-
guages and NLP scenarios. The technique gains
leverage from existing OCR systems, enabling both
minimal-labor adaptation of systems to new low
density languages and improvements in native OCR
performance.

We rigorously evaluated our approach using real
OCR data, and have shown that we can achieve
recognition accuracy lower than that achieved by a
trainable OCR system for a new language. For Igbo,
a very low density language, adapting English OCR
achieved relative error reductions as high as 78%, re-
sulting in 7.11% WER. We also showed that the er-
ror rate of a trainable OCR system after training can
be further reduced up to 50% using post-processing,
achieving a WER as low as 3.7%. Post-processing
experiments using Cebuano validate our approach in
a dictionary-acquisition scenario, with a 50.5% rel-
ative reduction in error rate from 8.02% to 3.97%.
Evaluation on Arabic demonstrated that the error
rate for a native commercial OCR system can be re-
duced by nearly 30%. In addition, we measured the
impact of post-processing on machine translation,

873

quantifying OCR degradation of MT performance
and showing that our technique moves the perfor-
mance of MT on OCR data significantly closer to
performance on clean input. See Kolak (forthcom-
ing) for more details and discussion.

One limitation of our approach is its reliance on
an existing OCR system that supports the script of
the language of interest. Trainable OCR systems
are the only option if there is no OCR system that
supports the script of interest; however, training an
OCR system from scratch is usually a tedious and
time consuming task. Post-processing can be used
to reduce the training time and improve recognition
accuracy by aiding generation of more training data
once basic recognition capability is in place.

Acknowledgments

This research was supported in part by Department
of Defense contract RD-02-5700 and DARPA/ITO
Cooperative Agreement N660010028910. We are
grateful to Mohri et al. for the AT&T FSM
Toolkit and Clarkson and Rosenfeld for the CMU-
Cambridge Toolkit. We thank David Doermann
and his students for the Cebuano text; Chinedu
Uchechukwu for the Igbo text and useful informa-
tion on the language. We also thank Mustafa Murat
Tıkır for his help in generating Igbo ground truth for
Aku.ko., and for useful discussion.

References

Eric Brill and Robert C. Moore. 2000. An improved model
for noisy channel spelling correction. InProceedings of the
ACL-00, Hong Kong, China, October.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. InProceedings of the ACL-
05, pages 263–270, Ann Arbor, Michigan, USA, June.

Philip Clarkson and Ronald Rosenfeld. 1997. Statistical lan-
guage modeling using the CMU-Cambridge toolkit. InPro-
ceedings of the ESCA Eurospeech, Rhodes, Greece.

Ulrich Germann. 2003. Greedy decoding for statistical ma-
chine translation in almost linear time. InProceedings of the
HLT-NAACL-03, Edmonton, Alberta, Canada, May.

Ardeshir Goshtasby and Roger W. Ehrich. 1988. Contex-
tual word recognition using probabilistic relaxation labeling.
Pattern Recognition, 21(5):455–462.

M. M. Green and M. O. Onwuamaegbu, editors. 1970.Aku. ko.
Ife Nke Ndi. Igbo. Oxford University Press, Ibadan, Nigeria.

Isabelle Guyon and Fernando Pereira. 1995. Design of a lin-
guistic postprocessor using variable memory length Markov
models. InProceedings of the ICDAR-95, volume 1, Mon-
treal, Quebec, Canada, August.

Tapas Kanungo, Philip Resnik, Song Mao, Doe wan Kim, and
Qigong Zheng. 2005. The Bible and multilingual opti-
cal character recognition.Communications of the ACM,
48(6):124–130.

Kevin Knight and Jonathan Graehl. 1997. Machine translitera-
tion. In Proceedings of the ACL-97, Madrid, Spain, July.

Okan Kolak, William Byrne, and Philip Resnik. 2003. A
generative probabilistic OCR model for NLP applications.
In Proceedings of the HLT-NAACL-03, Edmonton, Alberta,
Canada, May.

Okan Kolak. forthcoming.Cross-Lingual Utilization of NLP
Resources for New Languages. Ph.D. thesis, University of
Maryland, College Park, Maryland, USA.

Karen Kukich. 1992. Techniques for automatically correct-
ing words in text.ACM Computing Surveys, 24(4):377–439,
December.

Shankar Kumar and William Byrne. 2003. A weighted finite
state transducer implementation of the alignment template
model for statistical machine translation. InProceedings of
the HLT-NAACL-03, Edmonton, Alberta, Canada, May.

Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley.
1998. A rational design for a weighted finite-state transducer
library. Lecture Notes in Computer Science, 1436.

Premkumar Natarajan, Zhidong Lu, Richard Schwartz, Issam
Bazzi, and John Makhoul. 2001. Multilingual machine
printed ocr. International Journal of Pattern Recognition
and Artificial Intelligence, 15(1):43–63.

Douglas W. Oard. 2003. The surprise language exercises.
ACM Transactions on Asian Language Information Process-
ing (TALIP), 2(2):79–84, June.

Franz. J. Och and Hermann Ney. 2000. Improved statistical
alignment models. InProceedings of the ACL-00, pages
440–447, Hongkong, China, October.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of ma-
chine translation. InProceedings of the ACL-02, Philedel-
phia, Pennsylvania, USA, July.

Juan Carlos Perez-Cortes, Juan-Carlos Amengual, Joaquim Ar-
landis, and Rafael Llobet. 2000. Stochastic error-correcting
parsing for OCR post-processing. InProceedings of the
ICPR-00, Barcelona, Spain, September.

Philip Resnik, Mari Broman Olsen, and Mona Diab. 1999. The
Bible as a parallel corpus: Annotating the ‘Book of 2000
Tongues’. Computers and the Humanities, 33(1-2):129–
153.

Tony Uchenna Ubesie. 1993.Juo Obinna. University Press
PLC, Ibadan, Nigeria. ISBN: 19575395X.

Clare R. Voss and Carol Van Ess-Dykema. 2000. When is an
embedded MT system ‘good enough’ for filtering? InPro-
ceedings of the Workshop on Embedded MT Systems, ANLP-
NAACL-00, Seattle, Washington, USA, May.

874

