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Abstract 

This paper presents comparative experimen-
tal results on four techniques of language 
model adaptation, including a maximum a 
posteriori (MAP) method and three dis-
criminative training methods, the boosting 
algorithm, the average perceptron and the 
minimum sample risk method, on the task of 
Japanese Kana-Kanji conversion. We evalu-
ate these techniques beyond simply using 
the character error rate (CER): the CER re-
sults are interpreted using a metric of do-
main similarity between background and 
adaptation domains, and are further evalu-
ated by correlating them with a novel metric 
for measuring the side effects of adapted 
models. Using these metrics, we show that 
the discriminative methods are superior to a 
MAP-based method not only in terms of 
achieving larger CER reduction, but also of 
being more robust against the similarity of 
background and adaptation domains, and 
achieve larger CER reduction with fewer 
side effects.  

1 Introduction 

Language model (LM) adaptation attempts to ad-
just the parameters of a LM so that it performs well 
on a particular (sub-)domain of data. Currently, 
most LMs are based on the Markov assumption 
that the prediction of a word depends only on the 
preceding n–1 words, but such n-gram statistics are 
known to be extremely susceptible to the charac-
teristics of training samples. This is true even when 
the data sources are supposedly similar: for exam-
ple, Rosenfeld (1996) showed that perplexity dou-
bled when a LM trained on the Wall Street Journal 
(1987-1989) was tested on the AP newswire stories 

of the same period. This observation, coupled with 
the fact that training data is available in large quan-
tities only in selected domains, facilitates the need 
for LM adaptation.  

There have been two formulations of the LM 
adaptation problem. One is the within-domain ad-
aptation, in which adapted LMs are created for 
different topics in a single domain (e.g., Seymore 
and Rosenfeld, 1997; Clarkson and Robinson, 
1997; Chen et al., 1998). In these studies, a domain 
is defined as a body of text originating from a sin-
gle source, and the main goal of LM adaptation is 
to fine-tune the model parameters so as to improve 
the LM performance on a specific sub-domain (or 
topic) using the training data at hand.  

The other formulation, which is the focus of the 
current study, is to adapt a LM to a novel domain, 
for which only a very small amount of training 
data is available. This is referred to as cross-
domain adaptation. Following Bellegarda (2001), 
we call the domain used to train the original model 
the background domain, and the novel domain 
with a small amount of training data as the adapta-
tion domain. Two major approaches to cross-
domain adaptation have been investigated: maxi-
mum a posteriori (MAP) estimation and discrimi-
native training methods. In MAP estimation 
methods, adaptation data is used to adjust the pa-
rameters of the background model so as to maxi-
mize the likelihood of the adaptation data. Count 
merging and linear interpolation of models are the 
two MAP estimation methods investigated in 
speech recognition experiments (Iyer et al., 1997; 
Bacchiani and Roark, 2003), with count merging 
reported to slightly outperform linear interpolation. 

Discriminative approaches to LM adaptation, on 
the other hand, aim at using the adaptation data to 
directly minimize the errors on the adaptation data 
made by the background model. These techniques 
have been applied successfully to the task of lan-
guage modeling in non-adaptation (Roark et al., 
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2004) as well as adaptation (Bacchiani et al., 2004) 
scenarios.  

In this paper, we present comparative experi-
mental results on four language model adaptation 
techniques and evaluate them from various angles, 
attempting to elucidate the characteristics of these 
models. The four models we compare are a maxi-
mum a posteriori (MAP) method and three dis-
criminative training methods, namely the boosting 
algorithm (Collins, 2000), the average perceptron 
(Collins, 2002) and the minimum sample risk 
method (Gao et al., 2005). Our evaluation of these 
techniques is unique in that we go beyond simply 
comparing them in terms of character error rate 
(CER): we use a metric of distributional similarity 
to measure the distance between background and 
adaptation domains, and attempt to correlate it with 
the CER of each adaptation method. We also pro-
pose a novel metric for measuring the side effects 
of adapted models using the notion of backward 
compatibility, which is very important from a soft-
ware deployment perspective.  

Our experiments are conducted in the setting of 
Japanese Kana-Kanji conversion, as we believe 
this task is excellently suited for evaluating LMs. 
We begin with the description of this task in the 
following section.  

2 Language Modeling in the Task of IME 

This paper studies language modeling in the con-
text of Asian language (e.g., Chinese or Japanese) 
text input. The standard method for doing this is 
that the users first input the phonetic strings, which 
are then converted into the appropriate word string 
by software. The task of automatic conversion has 
been the subject of language modeling research in 
the context of Pinyin-to-Character conversion in 
Chinese (Gao et al., 2002a) and Kana-Kanji con-
version in Japanese (Gao et al., 2002b). In this pa-
per, we call the task IME (Input Method Editor), 
based on the name of the commonly used Win-
dows-based application.  

The performance of IME is typically measured 
by the character error rate (CER), which is the 
number of characters wrongly converted from the 
phonetic string divided by the number of charac-
ters in the correct transcript. Current IME systems 
exhibit about 5-15% CER on real-world data in a 
wide variety of domains.  

In many ways, IME is a similar task to speech 
recognition. The most obvious similarity is that 
IME can also be viewed as a Bayesian decision 
problem: let A be the input phonetic string (which 
corresponds to the acoustic signal in speech); the 
task of IME is to choose the most likely word 
string W* among those candidates that could have 
been converted from A: 

)|()(maxarg)|(maxarg*
)()(

WAPWPAWPW
AWAW GENGEN ∈∈

==  (1) 

where GEN(A) denotes the candidate set given A.  
Unlike speech recognition, however, there is no 

acoustic ambiguity in IME, because the phonetic 
string is provided directly by users. Moreover, we 
can assume a unique mapping from W to A in IME, 
i.e., P(A|W) = 1. So the decision of Equation (1) 
depends solely on P(W), which makes IME ideal 
for testing language modeling techniques. Another 
advantage of using IME for language modeling 
research is that it is relatively easy to convert W to 
A, which facilitates the creation of training data for 
discriminative learning, as described later.  

From the perspective of LM adaptation, IME 
faces the same problem speech recognition faces: 
the quality of the model depends heavily on the 
similarity of the training and test data. This poses a 
serious challenge to IME, as it is currently the most 
widely used method of inputting Chinese or Japa-
nese characters, used by millions of users for in-
putting text of any domain. LM adaptation in IME 
is therefore an imminent requirement for improv-
ing user experience, not only as we build static 
domain-specific LMs, but also in making online 
user adaptation possible in the future.  

3 Discriminative Algorithms for LM Ad-
aptation 

This section describes three discriminative training 
methods we used in this study. For a detailed de-
scription of each algorithm, readers are referred to 
Collins (2000) for the boosting algorithm, Collins 
(2002) for perceptron learning, and Gao et al. 
(2005) for the minimum sample risk method. 

3.1 Definition 

The following set-up, adapted from Collins (2002), 
was used for all three discriminative training meth-
ods:  
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•  Training data is a set of input-output pairs. In the 
task of IME, we have training samples {Ai, Wi

R}, 
for i = 1…M, where each Ai is an input phonetic 
string and each Wi

R is the reference transcript of Ai. 
•  We assume a set of D + 1 features fd(W), for d = 
0…D. The features could be arbitrary functions 
that map W to real values. Using vector notation, 
we have f(W)∈ℜD+1, where f(W) = {f0(W), f1(W), 
…, fD(W)}. The feature f0(W) is called the base 
model feature, and is defined as the log probability 
that the word trigram model assigns to W. The fea-
tures fd(W) for d = 1…D are defined as the word n-
gram counts (n = 1 and 2 in our experiments) in W. 
•  The parameters of the model form a vector of D 
+ 1 dimensions, one for each feature function, λ= 
{λ0, λ1, …, λD}. The likelihood score of a word 
string W can then be written as 

)(),( WWScore λfλ = ∑
=

=
D

d
dd Wfλ

0

)( . (2) 

Given a model λ and an input A, the decision rule 
of Equation (1) can then be rewritten as 

).,(maxarg),(*
λλ
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WScoreAW

(A)W ∈
=  (3) 

We can obtain the number of conversion errors in 
W by comparing it with the reference transcript WR 
using an error function Er(WR,W), which is an edit 
distance in our case. We call the sum of error 
counts over the training set the sample risk (SR). 
Discriminative training methods strive to optimize 
the parameters of a model by minimizing SR, as in 
Equation (4). 

∑
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However, (4) cannot be optimized directly by regu-
lar gradient-based procedures as it is a piecewise 
constant function of λ and its gradient is undefined. 
The discriminative training methods described be-
low differ in how they achieve the optimization: 
the boosting and perceptron algorithms approxi-
mate SR by loss functions that are suitable for op-
timization; the minimum sample risk method, on 
the other hand, uses a simple heuristic training pro-
cedure to minimize SR directly without resorting 
to an approximated loss function. 

3.2 The boosting algorithm  

The boosting algorithm we used is based on 
Collins (2000). Instead of measuring the number of 
conversion errors directly, it uses a loss function 

that measures the number of ranking errors, i.e., 
cases where an incorrect candidate W receives a 
higher score than the correct conversion WR. The 
margin of the pair (WR, W) with respect to the 
model λ is given by 

),(),(),( λλ WScoreWScoreWWM RR −=  (5) 

The loss function is then defined as 
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where I[π] = 1 if π ≤ 0, and 0 otherwise. Note that 
RLoss takes into account all candidates in GEN(A).  

Since optimizing (6) is NP-complete, the boost-
ing algorithm optimizes its upper bound:  

∑ ∑
= ∈

−=
Mi AW

i
R

i

ii

WWM
...1 )(

)),(exp()ExpLoss(
GEN

λ
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Figure 1 summarizes the boosting algorithm we 
used. After initialization, Step 2 and 3 are repeated 
N times; at each iteration, a feature is chosen and 
its weight is updated. We used the following up-
date for the dth feature fd:  
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εδ
+
+

=
+

_log
2
1  (8) 

where Cd+ is a value increasing exponentially with 
the sum of margins of (WR, W) pairs over the set 
where fd is seen in WR but not in W; Cd-  is the value 
related to the sum of margins over the set where fd 

is seen in W but not in WR. ε is a smoothing factor 
(whose value is optimized on held-out data) and Z 
is a normalization constant. 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Select a feature fd which has largest estimated im-

pact on reducing ExpLoss of Equation (7) 
3 Update λd by Equation (8), and return to Step 2 

Figure 1: The boosting algorithm 

3.3 The perceptron algorithm 

The perceptron algorithm can be viewed as a form 
of incremental training procedure that optimizes a 
minimum square error (MSE) loss function, which 
is an approximation of SR (Mitchell, 1997). As 
shown in Figure 2, it starts with an initial parame-
ter setting and updates it for each training sample. 
We used the average perceptron algorithm of 
Collins (2002) in our experiments, a variation that 
has been proven to be more effective than the stan-
dard algorithm shown in Figure 2. Let λd

t,i be the 
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value for the dth parameter after the ith training 
sample has been processed in pass t over the train-
ing data. The average parameters are defined as  

)./()()(
1 1

, MT
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M

i

it
davgd ⋅= ∑∑

= =

λλ  
(9) 

3.4 The minimum sample risk method 

The minimum sample risk (MSR, Gao et al., 2005) 
training algorithm is motivated by analogy with the 
feature selection procedure for the boosting algo-
rithm (Freund et al., 1998). It is a greedy procedure 
for selecting a small subset of the features that 
have the largest contribution in reducing SR in a 
sequential manner. Conceptually, MSR operates 
like any multidimensional function optimization 
approach: a direction (i.e., feature) is selected and 
SR is minimized along that direction using a line 
search, i.e., adjusting the parameter of the selected 
feature while keeping all other parameters fixed. 
This is repeated until SR stops decreasing.  

Regular numerical line search algorithms cannot 
be applied directly because, as described above, 
the value of a feature parameter versus SR is not 
smooth and there are many local minima. MSR 
thus adopts the method proposed by Och (2003). 
Let GEN(A) be the set of n-best candidate word 
strings that could be converted from A. By adjust-
ing λd for a selected feature fd, we can find a set of 
intervals for λd within which a particular candidate 
word string is selected. We can compute Er(.) for 
the candidate and use it as the Er(.) value for the 
corresponding interval. As a result, we obtain an 
ordered sequence of Er(.) values and a correspond-
ing sequence of λ intervals for each training sample. 
By summing Er(.) values over all training samples, 
we obtain a global sequence of SR and the corre-
sponding global sequence of λd intervals. We can 
then find the optimal λd as well as its correspond-
ing SR by traversing the sequence. 

Figure 3 summarizes the MSR algorithm. See 
Gao et al. (2005) for a complete description of the 

MSR implementation and the empirical justifica-
tion for its performance.   

4 Experimental Results 

4.1 Data  

The data used in our experiments come from five 
distinct sources of text. A 36-million-word Nikkei 
newspaper corpus was used as the background 
domain. We used four adaptation domains: Yomi-
uri (newspaper corpus), TuneUp (balanced corpus 
containing newspaper and other sources of text), 
Encarta (encyclopedia) and Shincho (collection of 
novels). The characteristics of these domains are 
measured using the information theoretic notion of 
cross entropy, which is described in the next sub-
section.  

 For the experiment of LM adaptation, we used 
the training data consisting of 8,000 sentences and 
test data of 5,000 sentences from each adaptation 
domain. Another 5,000-sentence subset was used 
as held-out data for each domain, which was used 
to determine the values of tunable parameters. All 
the corpora used in our experiments are pre-
segmented into words using a baseline lexicon 
consisting of 167,107 entries.  

4.2 Computation of domain characteristics 

Yuan et al. (2005) introduces two notions of do-
main characteristics: a within-domain notion of 
diversity, and a cross-domain concept of similarity. 
Diversity is measured by the entropy of the corpus 
and indicates the inherent variability within the 
domain. Similarity, on the other hand, is intended 
to capture the difficulty of a given adaptation task, 
and is measured by the cross entropy.  

For the computation of these metrics, we ex-
tracted 1 million words from the training data of 
each domain respectively, and created a lexicon 
consisting of the words in our baseline lexicon plus 
all words in the corpora used for this experiment 
(resulting in 216,565 entries) to avoid the effect of 
out-of-vocabulary items. Given two domains A and 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 For t = 1…T (T = the total number of iterations) 
3    For each training sample (Ai, Wi

R), i = 1…M 
4       Choose the best candidate Wi from GEN(Ai)   

      according to Equation (3) 
5       For each λd (η = size of learning step) 
6           λd = λd + η(fd(Wi

R) – fd(Wi))          

Figure 2: The perceptron algorithm 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Rank all features by its expected impact on reduc-

ing SR and select the top N features 
3 For each n = 1…N  
4    Update the parameter of f using line search  

Figure 3: The MSR algorithm 
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B, we then trained a word trigram model for each 
domain B, and used the resulting model in comput-
ing the cross entropy of domain A. For simplicity, 
we denote this as H(A,B).  

Table 1 summarizes our corpora along this di-
mension. Note that the cross entropy is not sym-
metric, i.e., H(A,B) is not necessarily the same as 
H(B,A), so we only present the average cross en-
tropy in Table 1. We can observe that Yomiuri and 
TuneUp are much more similar to the background 
Nikkei corpus than Encarta and Shincho.  

H(A,A) along the diagonal of Table 1 (in bold-
face) is the entropy of the corpus, indicating the 
corpus diversity. This quantity indeed reflects the 
in-domain variability of text: newspaper and ency-
clopedia articles are highly edited text, following 
style guidelines and often with repetitious content. 
In contrast, Shincho is a collection of novels, on 
which no style or content restriction is imposed. 
We use these metrics in the interpretation of CER 
results in Section 5. 

4.3 Results of LM adaptation 

The discriminative training procedure was carried 
out as follows: for each input phonetic string A in 
the adaptation training set, we produced a word 
lattice using the baseline trigram models described 
in Gao et al. (2002b). We kept the top 20 hypothe-
ses from this lattice as the candidate conversion set 
GEN(A). The lowest CER hypothesis in the lattice 
rather than the reference transcript was used as WR. 
We used unigram and bigram features that oc-
curred more than once in the training set.  

We compared the performance of discriminative 
methods against a MAP estimation method as the 
baseline, in this case the linear interpolation 

method. Specifically, we created a word trigram 
model using the adaptation data for each domain, 
which was then linearly interpolated at the word 
level with the baseline model. The probability ac-
cording to the combined model is given by 

)|()1()|()|( hwPhwPhwp iAiBi λλ −+= ,  

where PB is the probability of the background 
model, PA the probability of the adaptation model, 
and the history h corresponds to two preceding 
words. λ was tuned using the held-out data.  

In evaluating both MAP estimation and dis-
criminative models, we used an N-best rescoring 
approach. That is, we created N best hypotheses 
using the baseline trigram model (N=100 in our 
experiments) for each sentence in the test data, and 
used adapted models to rescore the N-best list. The 
oracle CERs (i.e., the minimal possible CER given 
the available hypotheses) ranged from 1.45% to 
5.09% depending on the adaptation domain.  

The results of the experiments are shown in Ta-
ble 2. We can make some observations from the 
table. First, all discriminative methods signifi-
cantly outperform the linear interpolation (statisti-
cally significant according to the t-test at p < 0.01). 
In contrast, the differences among three discrimi-
native methods are very subtle and most of them 
are not statistically significant. Secondly, the CER 
results correlate well with the metric of domain 
similarity in Table 1 (r=0.94 using the Pearson 
product moment correlation coefficient). This is 
consistent with our intuition that the closer the ad-
aptation domain is to the background domain, the 
easier the adaptation task.  

Regarding the similarity of the adaptation do-
main to the background, we also observe that the 
CER reduction of the linear interpolation model is 
particularly limited when the adaptation domain is 
similar to the background domain: the CER reduc-
tion of the linear interpolation model for Yomiuri 
and TuneUp over the baseline is 0% and 1.89% 
respectively, in contrast to ~22% and ~5.8% im-
provements achieved by the discriminative models. 
The discriminative methods are therefore more 
robust against the similarity of the adaptation and 
background data than the linear interpolation.  

Our results differ from Bacchiani et al. (2004) in 
that in our system, the perceptron algorithm alone 
achieved better results than MAP estimation. 
However, the difference may only be apparent, 
given different experimental settings for the two 

 N Y T E S 
Nikkei 3.94 7.46 7.65 9.81 10.10 

Yomiuri  4.09 7.82 8.96 9.29 
TuneUp   4.41 8.82 8.56 
Encarta    4.40 9.20 
Shincho     4.61 

Table 1: Cross entropy 

Domain Base LI MSR Boost Percep 
Yomiuri 3.70 3.69 2.89 2.88 2.85 
TuneUp 5.81 5.70 5.48 5.47 5.47 
Encarta 10.24 8.64 8.39 8.54 8.34 
Shincho 12.18 11.47 11.05 11.09 11.20 

Table 2: CER results (%) (Base=baseline model; 
LI=linear interpolation) 
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studies. We used the N-best reranking approach 
with the same N-best list for both MAP estimation 
and discriminative training, while in Bacchiani et 
al. (2004), two different lattices were used: the per-
ceptron model was applied to rerank the lattice 
created by the background model, while the MAP 
adaptation model was used to produce the lattice 
itself. The fact that the combination of these mod-
els (i.e., first use the MAP estimation to create hy-
potheses and then use the perceptron algorithm to 
rerank them) produced the best results indicates 
that given a candidate lattice, the perceptron algo-
rithm is effective in candidate reranking, thus mak-
ing our results compatible with theirs. 

5 Discussion 

The results in Section 4 demonstrate that discrimi-
native training methods for adaptation are overall 
superior to MAP adaptation methods. In this sec-
tion, we show additional advantages of discrimina-
tive methods beyond simple CER improvements.   

5.1 Using metrics for side effects  

In the actual deployment of LM adaptation, one 
issue that bears particular importance is the num-
ber of side effects that are introduced by an 
adapted model. For example, consider an adapted 
model which achieves 10% CER improvements 
over the baseline. Such a model can be obtained by 
improving 10%, or by improving 20% and by in-
troducing 10% of new errors. Clearly, the former 
model is preferred, particularly if the models be-
fore and after adaptation are both to be exposed to 
users. This concept is more widely acknowledged 
within the software industry as backward compati-
bility – a requirement that an updated version of 
software supports all features of its earlier versions. 
In IME, it means that all phonetic strings that can 
be converted correctly by the earlier versions of the 
system should also be converted correctly by the 
new system as much as possible. Users are typi-
cally more intolerant to seeing errors on the strings 
that used to be converted correctly than seeing er-
rors that also existed in the previous version. 
Therefore, it is crucial that when we adapt to a new 
domain, we do so by introducing the smallest 
number of side effects, particularly in the case of 
an incremental adaptation to the domain of a par-
ticular user, i.e., to building a model with incre-
mental learning capabilities.   

5.2 Error ratio 

In order to measure side effects, we introduce the 
notion of error ratio (ER), which is defined as  

||

||

B

A

E

E
ER = , 

 

where |EA| is the number of errors found only in the 
new (adaptation) model, and |EB| the number of 
errors corrected by the new model. Intuitively, this 
quantity captures the cost of improvement in the 
adaptation model, corresponding to the number of 
newly introduced errors per each improvement. 
The smaller the ratio is, the better the model is at 
the same CER: ER=0 if the adapted model intro-
duces no new errors, ER<1 if the adapted model 
makes CER improvements, ER=1 if the CER im-
provement is zero (i.e., the adapted model makes 
as many new mistakes as it corrects old mistakes), 
and ER>1 when the adapted model has worse CER 
performance than the baseline model.  

Given the notion of CER and ER, a model can 
be plotted on a graph as in Figure 4: the relative 
error reduction (RER, i.e., the CER difference be-
tween the background and adapted models) is plot-
ted along the x-axis, and ER along the y-axis. 
Figure 4 plots the models obtained after various 
numbers of iterations for MSR training and at vari-
ous interpolation weights for linear interpolation 
for the TuneUp domain. The points in the upper-
left quadrant, ER>1 and RER<0, are the models 
that performed worse than the baseline model 
(some of the interpolated models fall into this cate-
gory); the shaded areas (upper-right and lower-left 
quadrants) are by definition empty. The lower-
right quadrant is the area of interest to us, as they 
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Figure 4: RER/ER plot for MSR and LI models for 

TuneUp domain 
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represent the models that led to CER improve-
ments; we will focus only on this area now in 
Figure 5. 

In this figure, a model is considered to have 
fewer side effects when the ER is smaller at the 
same RER (i.e., smaller value of y for a fixed value 
of x), or when the RER is larger at the same ER 
(i.e., larger value of x at the fixed y). That is, the 
closer a model is plotted to the corner B of the 
graph, the better the model is; the closer it is to the 
corner A, the worse the model is.  

5.3 Model comparison using RER/ER 

From Figure 5, we can clearly see that MSR mod-
els have better RER/ER-performance than linear 
interpolation models, as they are plotted closer to 
the corner B. Figure 6 displays the same plot for all 
four domains: the same trend is clear from all 

graphs. We can therefore conclude that a discrimi-
native method (in this case MSR) is superior to 
linear interpolation not only in terms of CER re-
duction, but also of having fewer side effects. This 
desirable result is attributed to the nature of dis-
criminative training, which works specifically to 
adjust feature weights so as to minimize error.  

 
Figure 7: RER/ER plot for MSR, boosting and percep-
tron models (X-axis is normalized to represent relative 

error rate reduction) 

Figure 7 compares the three discriminative 
models with respect to RER/ER by plotting the 
best models (i.e., models used to produce the re-
sults in Table 1) for each algorithm. We can see 
that even though the boosting and perceptron algo-
rithms have the same CER for Yomiuri and 
TuneUp from Table 2, the perceptron is better in 
terms of ER; this may be due to the use of expo-
nential loss function in the boosting algorithm 
which is less robust against noisy data (Hastie et al., 
2001). We also observe that Yomiuri and Encarta 
do better in terms of side effects than TuneUp and 
Shincho for all algorithms, which can be explained 
by corpus diversity, as the former set is less stylis-
tically diverse and thus more consistent within the 
domain.  

5.4 Overfitting and side effects 

The RER/ER graph also casts the problem of over-
fitting in an interesting perspective. Figure 8 is de-
rived from running MSR on the TuneUp test 
corpus, which depicts a typical case of overfitting: 
the CER drops in the beginning, but after a certain 
number of iterations, it goes up again. The models 
indicated by α and β in the graph are of the same 
CER, and as such, these models are equivalent. 
When plotted on the RER/ER graph in Figure 5, 
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Figure 5: RER/ER plot for the models with ER<1 and 
RER>0 for TuneUp domain. See Figure 8 for the de-

scription of α and β  
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Figure 6: RER/ER plot for all four domains  
x-axes: RER (%); y-axes: ER  

￮: linear interpolation models; ×:MSR models 
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however, it is clear that the overfit model β has the 
worse ER than the non-overfit counterpart α. In 
other words, models α and β have the same CER, 
but they are not equivalent: model β is not only 
worse in light of containing more features, but also 
in terms of causing more side effects.  

6 Conclusion and Future Work 

We have presented a comparison of three discrimi-
native learning approaches with a MAP estimation 
method in the task of LM adaptation for IME. We 
have shown that all discriminative models are sig-
nificantly better than the linear interpolation 
method, in that they achieve larger CER reduction 
with fewer side effects across different domains.  

One direction of future research is to apply this 
technique to an incremental learning scenario, i.e., 
to incrementally build models using incoming data 
for adaptation, taking all previously available data 
as background corpus. The new metric for back-
ward compatibility we proposed in the paper will 
play a particularly important role in such a scenario. 
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Figure 8: MSR test error curve for TuneUp 
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