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Abstract

In this paper we consider the problem of
analysing sentence-level discourse struc-
ture. We introduce discourse chunking
(i.e., the identification of intra-sentential
nucleus and satellite spans) as an al-
ternative to full-scale discourse parsing.
Our experiments show that the proposed
modelling approach yields results com-
parable to state-of-the-art while exploit-
ing knowledge-lean features and small
amounts of discourse annotations. We also
demonstrate how discourse chunking can
be successfully applied to a sentence com-
pression task.

1 Introduction

The computational treatment of discourse phenom-
ena has recently attracted much attention, partly due
to their increasing importance for potential appli-
cations. In summarisation, for example, the extrac-
tion of sentences to include in a summary crucially
depends on their rhetorical status (Marcu, 2000;
Teufel and Moens, 2002); one might want to extract
contrastive or explanatory statements while omit-
ting sentences that contain background information.
In information extraction, discourse-level knowl-
edge can be used to identify co-referring events
(Humphreys et al., 1997) and to determine their tem-
poral order. Discourse processing could further en-
hance question answering systems by interpreting
the user’s question either in isolation or in the con-
text of preceding questions (Chai and Jing, 2004).

Discourse analysis is often viewed as a parsing
task. Rhetorical Structure Theory (RST, Mann and
Thomson, 1988), one of the most influential frame-
works in discourse processing, represents texts by
trees whose leaves correspond to elementary dis-
course units (edus) and whose nodes specify how

these and larger units (e.g., multi-sentence seg-
ments) are linked to each other by rhetorical rela-
tions (e.g.,Contrast, Elaboration). Discourse units
are further characterised in terms of their text im-
portance:nuclei denote central segments, whereas
satellitesdenote peripheral ones.

Recent advances in discourse modelling have
greatly benefited from the availability of resources
annotated with discourse-level information such as
the RST Discourse Treebank (RST-DT, Carlson et
al., 2002). Even though discourse parsing at the
document-level still poses a significant challenge to
data-driven methods, sentence-level discourse mod-
els (e.g., Soricut and Marcu, 2003) trained on the
RST-DT have attained accuracies comparable to hu-
man performance. The availability of discourse an-
notations is partly responsible for the success of
these models. Another important reason is the devel-
opment of robust syntactic parsers (e.g., Charniak,
2000) that can be used to provide critical structural
and lexical information to the discourse parser. Un-
fortunately, discourse annotated corpora are largely
absent for languages other than English. Further-
more, reliance on syntactic parsing renders dis-
course parsing practically impossible for languages
for which state-of-the-art parsers are unavailable.

In this paper we propose discourse chunking as an
alternative to discourse parsing. Analogous to sen-
tence chunking, discourse chunking is an interme-
diate step towards full parsing. Following an RST-
style analysis, we focus solely on two subtasks:
(a) discourse segmentation, i.e., determining which
word sequences formedusand (b) inferring whether
theseedusfunction as nuclei or satellites. The moti-
vation for tackling these subtasks is two-fold. First,
they are of crucial importance for full-scale dis-
course parsing. For example, Soricut and Marcu
(2003) show that perfect discourse segmentation de-
livers an error reduction of 29% in the performance
of their discourse parser. Second, some applications
may not require full-scale discourse parsing. For ex-
ample, it has been shown that nuclearity is important
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for summarisation, i.e., nuclei are more likely to be
retained when summarising than satellites (Marcu,
2000). While nuclearity alone may not be sufficient
for document summarisation (Marcu, 1998), such
knowledge could prove useful at the sentence level,
for example for producing sentence compressions.

The algorithms introduced in this paper are pur-
posely knowledge-lean. We abstain from using syn-
tactic parsers or semantic databases such as Word-
Net (Fellbaum, 1998), thus exploring the portabil-
ity of our methods to languages for which such
resources are not available. We employ lexical
and low-level syntactic information (e.g., parts of
speech, syntactic chunks) and show that the perfor-
mance of our discourse chunker on the two subtasks
(mentioned above) is comparable to that of a state-
of-the-art sentence-level discourse parser (Soricut
and Marcu, 2003). We also assess its application po-
tential on a sentence compression task (Knight and
Marcu, 2003).

2 Related Work

Initial work towards the development of discourse
parsers has primarily relied on hand-crafted rules for
specifying world knowledge or constraints on tree
structures (e.g., Hobbs 1993). Recent work has seen
the emergence of treebanks annotated with discourse
structure, thus enabling the development of more
robust, data-driven models. Marcu (2000) presents
a shift-reduce parsing model that segments texts
into edusand determines how they should be as-
sembled into rhetorical structure trees. Soricut and
Marcu (2003) introduce a syntax-based sentence-
level discourse parser, which consists of two compo-
nents: a statistical segmentation model and a parser
working on the output of the segmenter. Both com-
ponents are trained on the RST-DT and exploit lexi-
cal features as well as syntactic dominance features
(which are taken from syntactic parse trees).

Given that discourse-level information plays an
important role in human summarisation (Endres-
Niggemeyer, 1998), it is not surprising that mod-
els of discourse structure have found use in auto-
matic summarisation. For instance, Marcu (2000)
proposes a summarisation algorithm that builds an
RST tree for the entire text, and identifies its most
important parts according to discourse salience.

Our work differs from previous approaches in
two key respects. First, we do not attempt to pro-
duce a hierarchical discourse structure. We intro-
duce discourse chunking, a less resource demanding
task than full discourse parsing. We show that good

said Mr. Smith as the market plunged.

Nucleus Satellite Satellite

Attribution

Nucleus
Circumstance

"I am optimistic"

Figure 1: Discourse Tree in RST-DT

chunking performance can be achieved with low-
level information. Second, we apply our discourse
chunker to sentence compression. Although previ-
ous approaches have utilised discourse information
for document summarisation, its application to sen-
tence condensation is novel to our knowledge.

3 Discourse Chunking

3.1 Data and Representation
We propose a supervised machine learning approach
to discourse chunking. Our data were obtained from
the RST-DT (Carlson et al., 2002), which consists of
385 Wall Street Journal articles manually annotated
with discourse structures in the framework of Mann
and Thompson (1987). An example of an RST-based
tree representation is shown in Figure 1; rectangu-
lar boxes denoteedusand arcs indicate which re-
lations (e.g.,Circumstanceor Attribution) hold be-
tween them. Relations are typically binary with one
unit being the nucleus (indicated by arrows in Fig-
ure 1) and the other the satellite, but multi-nuclear
and non-binary relations are also possible.

We are only interested in the lowest level of the
tree, i.e., we aim to identify theedusand determine
whether they are nuclei or satellites. For example,
in the sentence in Figure 1 we want to identify the
threeedus“I am optimistic”, said Mr. Smith, andas
the market plunged. and determine that the first of
these functions as a nucleus at the lowest level of
the tree whereas the latter two function as satellites.
We do not try to determine that the first twoedus
are merged at a higher level and then function as the
overall nucleus of the sentence.

The discourse chunking task assumes a non-
hierarchical representation. We converted each
sentence-level discourse tree into a flat chunk rep-
resentation by assigning each token (i.e., word or
punctuation mark) a tag encoding its nuclearity sta-
tus at theedu level. We adopted the chunk repre-
sentation proposed by Ramshaw and Marcus (1995)
and used four different tags:B-NUC andB-SAT for
nucleus and satellite-initial tokens, andI-NUC and
I-SAT for non-initial tokens, i.e., tokens inside a nu-
cleus and satellite span. As all tokens belong either
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to a nucleus or a satellite span, we do not need a spe-
cial tag (typically denoted byO in syntactic chunk-
ing) to indicate elements outside a chunk. The chunk
representation for the sentence in Figure 1 is thus:

“/ B-NUC I/ I-NUC am/I-NUC optimistic/I-NUC

”/ I-NUC said/B-SAT Mr./I-SAT Smith/I-SAT

as/B-SAT the/I-SAT market/I-SAT plunged/I-
SAT ./I-SAT

Discourse and sentence structure do not always
correspond, and for 5% of sentences in the RST-DT
no discourse tree exists. We excluded these from our
data. We also disregarded sentences without internal
structure, i.e., those which consist of only oneedu.
The RST-DT is partitioned into a training (342 arti-
cles) and test set (43 articles). We preserved this split
in all our experiments. 52 articles in the RST-DT are
doubly annotated. We used these to compute human
agreement on the discourse chunking task (see Sec-
tion 4.1).

3.2 Modelling
Using a chunk-based representation effectively ren-
ders discourse processing a sequence labelling task.
Two modelling approaches are possible. The sim-
plest model performs segmentation and labelling si-
multaneously. In our case this involves training a
classifier that labels each token with one of our four
tags (i.e.,B-NUC, I-NUC, B-SAT, I-SAT). Alterna-
tively, we could treat discourse chunking as two dis-
tinct subtasks involving two binary classifiers: a seg-
menter, which determines the chunk boundaries and
assigns each token a chunk-initial (B) or non-chunk-
initial tag (I), and a labeller, which classifies each
chunk identified by the segmenter as either nucleus
(NUC) or satellite (SAT).1

The second approach has a number of advantages.
First, abstracting away from a token-based represen-
tation in the second step makes it easier to model
sentence-level distributional properties of nuclei and
satellites, e.g., the fact that every sentence has at
least one nucleus. This can be achieved by incor-
porating additional features into the labeller, such
as the number of chunks in the sentence or the
length of the current chunk. A two-step approach
also avoids the creation of illegal chunk sequences,
such as “B-SAT I-NUC”. However, a potential draw-
back is that the number of training examples for the
labeller is reduced as the instances to be classified
are chunks rather than tokens. We explore the per-
formance of the one-step and the two-step methods
in Sections 4.2 and 4.3, respectively.

1A similar approach has been proposed for syntactic chunk-
ing, e.g., Tjong Kim Sang (2000).

A variety of learning schemes can be employed
for the discourse chunking task. We have experi-
mented with Boosting (Schapire and Singer, 2000),
Conditional Random Fields (Lafferty et al., 2001),
and Support Vector Machines (Vapnik, 1998). Dis-
cussion of our results focuses exclusively on boost-
ing, since it had a slight advantage over the other
methods. Boosting combines many simple, mod-
erately accurate categorisation rules into a sin-
gle, highly accurate rule. We used BoosTexter’s
(Schapire and Singer, 2000) implementation, which
combines boosting with simple decision rules. The
system permits three different types of features:
numeric, nominal and “text”. Text-valued features
can, for example, encode sequences of words or
parts of speech. BoosTexter appliesn-gram mod-
els when forming classification hypotheses for text-
valued features.

3.3 Features for the Token-Based Models
While we use similar features for all our classifiers,
their concrete implementation depends on whether
the classifier is token-based (i.e., the one-step model
and the segmenter in the two-step method) or span-
based (i.e., the labeller in the two-step method). We
first describe the features for the former.

Each token is represented as a feature vector en-
coding information about the token itself and its con-
text. We intentionally limited our features to a basic
set representing grammatical, syntactic, and lexical
information.

Tokens This feature simply encodes the identity
of the current token; we used raw tokens, without
lemmatisation or stemming.

Part-of-Speech Tags Tokens were also anno-
tated with parts of speech using a publicly available
state-of-the-art tagger (Mikheev, 1997).

Syntactic Chunks Chunk information is a valu-
able cue for determining discourse segments; it is
unlikely that a segment boundary occurs within a
syntactic chunk. We applied a chunker (Mikheev,
1997) to our data to discover noun and verb phrase
chunks. The chunker assigned one of five labels to
each token, encoding the first element of a noun or
verb chunk (B-NP and B-VP, respectively), a non-
initial element in a chunk (I-NP and I-VP), and an
element outside a chunk (O). We used these chunk
labels directly as features and also encoded gener-
alisations over chunk and boundary types (i.e.,VP

vs. NP andB vs. I, respectively).

Clause Information Knowing where clause
boundaries lie is important for segmentation, since
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discourse segments often correspond to clauses. We
used a rule-based algorithm (Leffa, 1998) to iden-
tify clauses from the syntactic chunker’s output and
recorded for every token whether it is clause-initial
(S) or not (X).

Discourse Connectives Discourse connectives
such asbut often indicate which rhetorical relation
holds between two spans. While we do not aim to in-
fer the relation proper, knowing the type of relation
holding between spans often helps in determining
whether they should be labelled as nucleus or satel-
lite. For example,Contrastrelations (e.g., signalled
by but) hold between two nuclei whereasCausere-
lations (e.g., signalled bybecause) hold between a
nucleus and a satellite. Hence, we recorded the pres-
ence of discourse connectives in a sentence to cap-
ture, albeit in a shallow manner, the interdependency
between rhetorical relations and nuclearity.

We used Knott’s (1996) inventory of discourse
connectives and encoded two types of information
for each token: (a) whether the token is a connective
(C) or not (X) and (b) the identity of the connective
if the token is a connective (zero otherwise).2

Token Position For each token we calculated its
relative position in the sentence (defined as the to-
ken position divided by the number of tokens). This
information is useful to capture potential positional
differences between nuclei and satellites, i.e., it may
be that nuclei are more likely at the beginning of a
sentence than at the end.

Context In addition to the nine features above,
which encode information about the token itself, we
also implemented 16 contextual features to encode
information about its neighbouring tokens. Syntac-
tic chunking approaches typically capture contextual
information by defining a small window of a few to-
kens to the left and right of the current token (see
Veenstra, 1998). However, we used the whole sen-
tence as context, since BoosTexter is fairly good at
determining automatically relevantn-grams within a
longer string of tokens. We included this contextual
information for all nominal features; that is, we en-
coded not only the string of preceding and following
tokens but also the string of preceding and following
part-of-speech tags, syntactic chunk labels, clause
labels, and connectives. For example, we had three
token features, one encoding the current token itself,
and two contextual features (one encoding the string

2Some words can have syntactic as well as discourse mark-
ing functions (e.g.,but sometimes functions as a synonym for
except rather than as aContrastmarker). We do not disam-
biguate between these two usages.

of preceding tokens, and one encoding the string of
following tokens); similarly we had three part-of-
speech features, nine syntactic chunk features three
using the complete chunk tags, three using only the
chunk type, and three using the boundary type), and
so on.

3.4 Features for the Span-Based Model
For the labeller we encoded information about
spans rather than tokens. This gave rise to six non-
contextual, text-valued features: the string of tokens
in the current span, their parts of speech, syntactic
chunk tags, clause tags, and the presence and iden-
tity of connectives. The positional feature was re-
defined in terms of relative span position, i.e., the
position of the current span divided by the number
of spans in the sentence. We restricted contextual
features to information about immediately preced-
ing and following spans (within a sentence). We did
not include information about non-adjacent spans
because only a minority of sentences in our data con-
tained more than three spans. Again, we included
contextual information for all nominal features. Fi-
nally, to capture intra-sentential span-structure, we
added the following features:

Span Length Span length was measured in
terms of the number of tokens in it and was repre-
sented by three features: the length of the current
span, and the lengths of its adjacent spans. Span
length information captures differences in the aver-
age length of nuclei and satellite spans.

Number of Spans We encoded the number of
spans in the sentence overall and the number of
spans preceding and following the current span.

4 Experiments

In this section we describe the experiments that as-
sess the merits of the discourse chunking framework
introduced above. We also give details regarding pa-
rameter estimation and training for our models and
introduce the baseline and state-of-the-art methods
used for comparison with our approach.

4.1 Upper Bound
Before presenting the results of our modelling ex-
periments, it is worth considering how well humans
agree on discourse chunk segmentation and labelling
in order to establish an upper bound for the task. We
measured both unlabelled and labelled agreement on
the 52 doubly annotated RST-DT texts. The former
measures whether humans agree in placing chunk
boundaries, whereas the latter additionally measures
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whether humans agree in assigning chunk labels.
To facilitate comparison with our models we report
inter-annotator agreement in terms of accuracy and
F-score.3 For the unlabelled case we also reportWin-
dow Difference(WDiff), a commonly used evalua-
tion measure for segmentation tasks (Pevzner and
Hearst, 2002). It returns values between 0 (identical
segmentations) and 1 (maximally different segmen-
tations) and differs from accuracy in that predicted
boundaries which are only slightly off are penalised
less than those which are completely wrong.

Human agreement is relatively high4 on both seg-
mentation and span labelling (see Table 1), which
can be explained by the fact that (i) the RST-DT
annotators were given very detailed and precise in-
structions and (ii) assigning boundaries and labels
is an easier task than creating full-scale discourse
trees.

4.2 One-Step Chunking
For the one-step chunking method, our training set
consists of approximately 130,000 instances (i.e., to-
kens). We set aside 10% as a development set for
optimising BoosTexter’s parameters (i.e., the num-
ber of training iterations and the maximal length of
then-grams considered for text-valued features). We
then re-trained BoosTexter with the optimal setting
(700 iterations,n = 2) and applied it to the test set,
which contained around 15,500 instances.

By default, the one-step method treats every token
in isolation, i.e., it assigns each token a tag without
taking its neighbouring tags into account. This is not
an entirely adequate model, since the likelihood of a
tag is influenced by its surrounding tags. For exam-
ple, the probability of a token being tagged asI-NUC

should increase if the preceding token was tagged
as B-NUC. One way to take information about sur-
rounding tags into account is by stacking classifiers,
i.e., adding the output of one classifier to the input
of another. Stacking is frequently used in chunking
tasks (e.g., Veenstra, 1998). We stack two BoosTex-
ter classifiers, by adding the string of all preceding
and following tags (within a given sentence) to each
token’s feature vector for the second classifier.

It would be possible to generate training mate-
rial for the second classifier directly from the orig-
inal training set by using the gold standard output
tags in the augmented feature vector. However, we

3For the unlabelled case, we report the F-score on bound-
aries; for the labelled case, we report the average F-score over
all class labels weighted by class frequency in the training set.

4Using the Kappa statistic agreement on segmentation
is K = .97 and on span labellingK = .81.

found that this leads BoosTexter to rely too much
on these tags, largely ignoring other features. This
causes problems when the model is applied to the
test set where the class tags are predicted and may
contain errors. Hence, we applied the original model
(BT-1-Step) to obtain predicted output tags for the
training data and then used these, rather than the
gold standard tags, to train the second classifier.
Similarly, during testing, we first applied BT-1-Step
and used its output tags to augmented the feature
vectors of the second classifier.

For comparison, we also applied two baseline
models to our data. The first (BaseMaj) is obtained
by always assigning the tag that is most common
in the training data (I-NUC). This strategy makes
no attempt at guessing span boundaries. The second
(BaseClMaj) indirectly assesses the importance of
clause boundary detection. It implements a strategy
which assumes that span boundaries always coin-
cide with clause boundaries. To obtain clause bound-
aries, we used the gold standard annotation of our
data in the Penn Treebank. We then labelled all
clause-initial tokens asB-NUC and all other tokens
as I-NUC. Note, that the use of gold standard clause
boundaries makes this a relatively high baseline. We
also applied Spade5, Soricut and Marcu’s (2003)
sentence-level discourse parser (see Section 2) to
our test set. For evaluation purposes, Spade’s out-
put was converted to our chunk representation. It is
important to note that Spade is a much more sophis-
ticated model than the ones presented in this paper.
We therefore do not expect to be able to obtain a bet-
ter performance. It is nevertheless interesting to see
how far one can go with a modest feature space and
considerably less structural information.

Table 1 shows the results. A set of diacritics is
used to indicate significance (on accuracy) through-
out this paper, see Table 2. On the segmentation task
(unlabelled) BT-1-Step and its stacked variant sig-
nificantly outperform the majority baseline (Base-
Maj) but are significantly less accurate than Base-
ClMaj, which uses gold standard clause boundaries.
The two BoosTexter models also perform signifi-
cantly worse than Spade on segmentation. However,
the higher WDiff for Spade on the segmentation task
suggests that the boundaries predicted by our mod-
els contain more “near misses” than those predicted
by Spade. When segmentation and span labelling are
taken into account (labelled), our one-step models
significantly outperform both baselines but are sig-
nificantly less accurate than Spade. Classifier stack-

5The software is publicly available fromhttp://www.isi.
edu/licensed-sw/spade/.
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unlabelled labelled
Models Acc % F-score WDiff Acc % F-score

BaseMaj 88.50 – .4021 53.87 38.77
BaseClMaj 93.51 70.06 .2008 56.64 43.62
BT-1-Step 90.07∗†‡$ 64.64 .2148 74.40∗†‡$ 74.13
BT-1-Step, stacked 91.86∗6 †‡$ 68.95 .1795 75.55∗†‡$ 75.37
BT-2-Step 97.37∗†‡$ 88.28 .0733 78.27∗†6 ‡$ 78.38
BT-2-Step, stacked 97.41∗†‡$ 88.40 .0727 76.31∗†‡$ 76.34
Spade 93.49∗6 †$ 87.06 .5071 79.21∗†$ 80.91
Humans 99.05 97.96 .0012 89.10 89.03

Table 1: Results on discourse segmentation and span labelling

Symbols Meaning
∗ 6 ∗ (not) sig different from BaseMaj
† 6 † (not) sig different from BaseClMaj
‡ 6 ‡ (not) sig different from Spade
$ 6 $ (not) sig different from Humans

Table 2: Meaning of diacritics indicating statistical
significance (χ2 tests,p < 0.05)

ing leads to slight improvements over the simple
BoosTexter model, but the difference is not statis-
tically significant.

4.3 Two-Step Chunking

In the two-step model, chunking consists of two
separate subtasks: segmentation and labelling. To
generate training material for the segmenter, we re-
placed the four chunk labels in the original data set
by their corresponding boundary labels (B, I). For
the labeller, training instances are spans rather than
tokens. We used the gold standard span boundaries
to convert the original training set to a span-based
representation. This new training set contained
around 15,000 instances (compared to 130,000 in-
stances in the token-based set). For both the seg-
menter and labeller, we set aside 10% of the ma-
terial as development data to optimise BoosTexter’s
parameters (900 iterations,n = 3 for segmentation,
and 600 iterations,n = 2 for labelling).

For testing, we first applied the segmenter to ob-
tain discourse chunk boundaries. We then used the
predicted boundaries to convert the test data into a
span-based representation, which we then used as
input for the labeller. For evaluation, the output of
the labeller was converted back to a token-based rep-
resentation. As with one-step chunking, we also im-
plemented a stacked variant, stacking both the seg-
mentation and the labelling models.

It can be seen in Table 1 that the two-step mod-
els outperform the one-step models. This difference

is significant except for the stacked model on the la-
belling task (labelled). Both two-step models signif-
icantly outperform both baselines on segmentation
(unlabelled) and labelling (labelled). They also sig-
nificantly outperform Spade on the boundary pre-
diction task, which is in itself an important sub-
task for discourse parsing. The unstacked two-step
BoosTexter model performs comparably to Spade
with respect to labelled accuracy; the difference be-
tween the two models is not statistically signifi-
cant. Hence, we achieve results similar to Spade but
with much simpler and knowledge-leaner features.
As with the one-step method, the stacked model
performs (insignificantly) better than its unstacked
counterpart on the segmentation task. However, on
the labelling task, the stacked variant performs sig-
nificantly worse. We conjecture that the reduced
training set size for the labeller causes the stacked
model (which is effectively trained twice) to overfit.
Expectedly, all models perform significantly worse
than humans on both tasks.

To assess whether our discourse chunker could
be ported to languages for which discourse tree-
banks are not yet available, we investigated how
much annotated data is required to achieve satis-
factory results. Assuming that annotators proceed
sentence-by-sentence, we varied the amount of sen-
tences in our training data and determined its ef-
fect on the learner’s (BT-2-Step) performance. Fig-
ure 2 shows that satisfactory labelled and unlabelled
performance (86.52% and 74.64% F-score, respec-
tively) can be achieved with approximately half the
training data (i.e., around 2,000 sentences). In fact,
using the entire data set yields a moderate increase
of 1.78% for the unlabelled task and 3.68% for the
labelled task. Hence, it seems that our knowledge-
lean method is suitable even for relatively small
training sets. We next examine whether the two-step
chunking model can be usefully employed in a prac-
tical application such as sentence compression.
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Figure 2: Learning curve for discourse segmentation
(unlabelled) and span labelling (labelled)

4.4 Sentence Compression

Sentence compression can be likened to summari-
sation at the sentence level. The task has an imme-
diate impact on several applications ranging from
summarisation to audio scanning devices for the
blind and caption generation (see Knight and Marcu,
2002 and the references therein). Previous data-
driven approaches (Knight and Marcu, 2003; Riezler
et al., 2003) relied on parallel corpora to determine
what is important in a sentence. The models learned
correspondences between long sentences and their
shorter counterparts, typically employing a rich fea-
ture space induced from parse trees. The task is chal-
lenging since the compressed sentences should re-
tain essential information and convey it grammati-
cally.

Here, we propose a complementary approach
which utilises discourse chunking. A compressed
sentence can be obtained from the output of the
chunker simply by removing satellites. We thus cap-
italise on RST’s (Mann and Thompson, 1987) no-
tion of nuclearity and the widely held assumption
that spans functioning as satellites can often be
deleted without disrupting coherence. To evaluate
the compressions produced by our chunking model,
we elicited judgements from human subjects. We de-
scribe our elicitation study and results as follows.

Data We randomly selected 40 sentences from
the test portion of the RST-DT. Average sentence
length was 38.75. The sentences were compressed
by chunking them with our (unstacked) two-step
model (BT-2-Step) and then dropping satellites. We
applied the same strategy to derive compressed sen-
tences from the output of Spade (Soricut and Marcu,
2003), and also produced human compressions. Fi-

Original
Administration officials traveling with President Bush in
Costa Rica interpreted Mr. Ortega’s wavering as a sign that
he isn’t responding to the military attacks so much as he is
searching for ways to strengthen his hand prior to the elec-
tions.

Baseline
Administration officials interpreted Mr. Ortega’s wavering.

BT-2-Step
Administration officials interpreted Mr. Ortega’s wavering as
a sign that he isn’t responding to the military attacks so much
as he is searching for ways.

Spade
Administration officials traveling with President Bush in
Costa Rica interpreted Mr. Ortega’s wavering as a sign.

Human
Administration officials interpreted Mr. Ortega’s wavering as
a sign that he is searching for ways to strengthen his hand prior
to the elections.

Table 3: Example compressions

Compression AvgLen Rating
Baseline 9.70 1.93
BT-2-Step 22.06 3.21
Spade 19.09 3.10
Humans 20.07 3.83

Table 4: Mean ratings for automatic compressions

nally, we added a simple baseline compression al-
gorithm proposed by Jing and McKeown (2000)
which removed all prepositional phrases, clauses, to-
infinitives, and gerunds. Both the baseline and Spade
operate on parse trees which were obtained from
Charniak’s (2000) parser. Our set of experimental
materials contained 4×40= 160 compressions.

Procedure and Subjects We obtained com-
pression ratings during an elicitation study com-
pleted by 45 unpaid volunteers, all native speaker
of English. The study was conducted remotely over
the Internet. Participants first saw a set of instruc-
tions that explained the task, and defined sentence
compression using multiple examples. The materi-
als consisted of the original sentences together with
their compressed versions. They were randomised in
lists following a Latin square design ensuring that
no two compressions in a list were generated from
the same sentence. As in Knight and Marcu’s (2003)
study, participants were asked to use a five point
scale to rate the systems’ compressions (taking into
account the felicity of the compression as well as its
grammaticality); they were told that all outputs were
generated automatically. Examples of the compres-
sions our participants saw are given in Table 3.

Results We carried out an Analysis of Variance
(ANOVA) to examine the effect of different types
of compressions (Baseline, BT-2-Step, Spade, and
Human). Statistical tests were done using the mean
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of the ratings shown in Table 4. The ANOVA re-
vealed a reliable effect of compression type by sub-
jects (F1(3,90) = 149.50, p < 0.001) and by items
(F2(3;117) = 40.23, p < 0.001). Post-hoc Tukey
tests indicated that human compressions are per-
ceived as significantly better than the compressions
produced by the baseline, BT-2-Step, and Spade
(α = 0.01). The discourse chunker and Spade are
significantly better than the baseline (α = 0.01). The
Tukey test revealed no statistically significant dif-
ference between these two algorithms (α = 0.01).
To summarise, both BoosTexter and Spade perform
closer to human performance than the baseline; yet,
humans perform significantly better than our com-
pression algorithms.

5 Conclusions

In this paper we proposed discourse chunking as an
alternative to full-scale parsing. Central in our ap-
proach is the use of low-level syntactic and gram-
matical information which we argue holds promise
for the development of discourse processing mod-
els across languages and domains. We showed that
a knowledge-lean feature space achieves good per-
formance both on segmentation and span labelling.
Furthermore, we assessed the application potential
of our chunker and showed that it can be success-
fully employed to generate sentence compressions,
thus confirming one of RST’s main claims regard-
ing the nuclearity of discourse spans (at least on the
sentence-level).

An important future direction lies in extending
our model to the document-level and the assign-
ment of rhetorical relations, thus going beyond the
basic nucleus-satellite distinction. Our results indi-
cate that a modular approach to discourse process-
ing (i.e., treating segmentation as separate from la-
belling) could increase performance. In the future,
we plan to investigate how to combine our chunker
with models like Spade for improved prediction on
both local and global levels.
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