
ProFIT: Prolog with Features, Inheritance and Templates

Gregor Erbach
Universit~t des Saarl~ndes

Computerlinguistik
D-66041 Saarbrficken, Germany

e-mail: erbach~col i. uni-sb, de
URL : http ://coli. uni-sb, de/~ erbach/

Abstract

ProFIT is an extension of Standard Pro-
log with Features, Inheritance and Tem-
plates. P roFIT Mlows the programmer
or grammar developer to declare an in-
heritance hierarchy, features and tem-
plates. Sorted feature terms can be used
in ProFIT programs together with Pro-
log terms to provide a clearer descrip-
tion language for linguistic structures.
P roFIT compiles all sorted feature terms
into a Prolog term representation, so
that the built-in Prolog term unification
can be used for the unification of sorted
feature structures, and no special uni-
fication algorithm is needed. ProFIT
programs are compiled into Prolog pro-
grams, so that no meta-interpreter is
needed for their execution. P roFIT thus
provides a direct step from grammars de-
veloped with sorted feature terms to Pro-
log programs usable for practical NLP
systems.

1 Introduction
There are two key ingredients for building an NLP
system:

• a linguistic description

• a processing model (parser, generator etc.)

In the past decade, there have been diverging
trends in the area of linguistic descriptions and in
the area of processing models. Most large-scale
linguistic descriptions make use of sorted feature
formalisms, 1 but implementations of these for-
malisms are in general too slow for building prac-
tically usable NLP systems. Most of the progress
in constructing efficient parsers and generators
has been based on logic grammars that make use

1Sorted feature s t ructures are sometimes referred
to as typed feature structures, e.g. in Carpenter's
"Logic of Typed Feature Structures." We follow the
usage in Logic Programming and the recent HPSG
literature.

of ordinary prblog terms. We provide a general
tool that brings together these developments by
compiling sorted feature terms into a Prolog term
representation, so that techniques from logic pro-
gramming and logic grammars can be used to pro-
vide efficient processing models for sorted feature
grammars.

In this introductory section, we discuss the ad-
vantages of sorted feature formalisms, and of the
logic grammar paradigm, and show how the two
developments can be combined. The following
sections describe the ProFIT language which pro-
vides sorted feature terms for Prolog, and its im-
plementation.

1.1 G r a m m a r D e v e l o p m e n t in S o r t e d
F e a t u r e F o r m a l i s m s

Sorted feature formalisms are often used for the
development of large-coverage grammars, because
they are very well suited for a structured descrip-
tion of complex linguistic data. Sorted feature
terms have several advantages over Prolog terms
as a representation langauge.

1. They provide a compact notation. Features
that are not instantiated can be omitted;
there is no need for anonymous variables.

2. Features names are mnemonic, argument po-
sitions are not.

3. Adding a new feature to a sort requires
one change in a declaration, whereas adding
an argument to a Prolog functor requires
changes (mostly insertion of anonymous vari-
ables) to every occurence of the functor.

4. Specification of the subsort relationship is
more convenient than constructing Prolog
terms which mirror these subsumption rela-
tionships.

Implementations of sorted feature formalisms
such as TDL (Krieger and Sch~ifer, 1994), ALE
(Carpenter, 1993), CUF (DSrre and Dorna, 1993),
TFS (Emele and Zajac, 1990) and others have
been used successfully for the development and
testing of large grammars and lexicons, but they
may be too slow for actual use in applications

180

because they are generally built on top of Pro-
log or LISP, and can therefore not be as efficient
as the built-in unification of Prolog. There are
a few logic programming langauges, such as LIFE
(Ait-Kaci and Lincoln, 1989) or Oz (Smolka et al.,
1995), that provide sorted feature terms, but no
commercial implementations of these languages
with efficient compilers are yet available.

1.2 Eff ic ient P r o c e s s i n g b a s e d on Logic
Grammars

Much work on efficient processing algorithms has
been done in the logic grammar framework. This
includes work on

• Compiling grammars into efficient parsers
and generators: compilation of DCGs into
(top-down) Prolog programs, left-corner
parsers (BUP), LR parsers, head-corner
parsers, and semantic-head driven genera-
tors.

• Use of recta-programming for self-monitoring
to ensure generation of unambiguous utter-
ances (Neumann and van Noord, 1992)

• Work in the area of Explanation-Based
Learning (EBL) to learn frequently used'
structures (Samuelsson, 1994)

• Tabulation techniques, from the use of well-
formed substring tables to the latest devel-
opments in Earley deduction, and memoing
techniques for logic programming (Neumann,
1994)

• Work based on Constraint Logic Program-
ming (CLP) to provide processing models for
principle-based grammars (Matiasek, 1994)

• Using coroutining (dif, freeze etc.) to provide
more efficient processing models

• Partial deduction techniques to produce more
efficient grammars

• Using Prolog and its indexing facilities to
build up a lexicon database

Since much of this work involves compilation of
grammars into Prolog programs, such programs
can immediately benefit from any improvements
in Prolog compilers (for example the tabulation
provided by XSB Prolog can provide a more effi-
cient implementation of charts) which makes the
grammars more usable for NLP systems.

1.3 C o m b i n i n g Logic G r a m m a r s a n d
S o r t e d F e a t u r e F o r m a l i s m s

It has been noted that first-order Prolog terms
provide the equivalent expressive power as sorted
feature terms (Mellish, 1992). For example,
Carpenter's typed feature structures (Carpenter,
1992) can easily be represented as Prolog terms, if
the restriction is given up that the sort hierarchy
be a bounded complete partial order.

Such compilation of sorted feature terms into
Prolog terms has been successfully used in the
Core Language Engine (CLE) (Alshawi, 1991) and
in the Advanced Linguistic Engineering Platform
(ALEP), (Alshawi et al., 1991). 2 ProFIT ex-
tends the compilation techniques of these systems
through the handling of multi-dimensional inher-
itance (Erbach, 1994), and makes them generally
available for a wide range of applications by trans-
lating programs (or grammars) with sorted feature
terms into Prolog programs.

ProFIT is not a grammar formalism, but rather
extends any grammar formalism in the logic gram-
mar tradition with the expressive power of sorted
feature terms.

2 T h e P r o F I T L a n g u a g e

The set of ProFIT programs is a superset of Pro-
log programs. While a Prolog program consists
only of definite clauses (Prolog is an untyped lan-
guage), a ProFIT program consists of datatype
declarations and definite clauses. The clauses of a
ProFIT program can make use of the datatypes
(sorts, features, templates and finite domains)
that are introduced in the declarations. A ProFIT
program consists of:

• Declarations for sorts

• Declarations for features

• Declarations for templates

• Declarations for finite domains

• Definite clauses

2.1 Sor t Dec l a r a t i ons

In addition to unsorted Prolog terms, ProFIT al-
lows sorted feature terms, for which the sorts and
features must be declared in advance.

The most general sort is top, and all other sorts
must be subsorts of top. Subsort declarations
have the syntax given in (1). The declaration
states that all Subi are subsorts of Super, and
that all Subi are mutually exclusive.

Super >[Sub,,..., (1)
It is also possible to provide subsorts that are

not mutually exclusive, as in (2), where one sub-
sort may be chosen from each of the "dimensions"
connected by the * operator (Erbach, 1994).

Super > [Subl.l,...,Subl.n] *
: (2)

[Subk.l,..., Subk.m]
Every sort must only be defined once, i.e. it

can appear only once on the left-hand side of the
connective >.

2Similar, but less efficient compilation schemes are
used in Hirsh's P-PATR (Hirsh, 1986) and Coving-
ton's GULP system (Covington, 1989).

181

The sort hierarchy must not contain any cycles,
i.e. there must be no sorts A and B, such that
A # B , a n d A > B > A.

The immediate subsorts of t o p can be declared
to be extensional. Two terms which are of an
extensional sort are only identical if they.have a
most specific sort (which has no subsort), and if
all features are instantiated to ground terms. If a
sort is not declared as extensional, it is intensional.
Two intensional terms are identical only if they
have been unified.

2.2 F e a t u r e D e c l a r a t i o n s

Unlike unsorted feature formalisms (such as PATR-
II), where any feature can be added to any struc-
ture, P r o F I T follows the notion of appropriate-
ness in Carpenter ' s logic of typed feature struc-
tures (Carpenter, 1992), and introduces features
for particular sorts. For each sort, one must de-
clare which features are introduced by it. The
features introduced by a sort are inherited by all
its subsorts, which may also introduce additional
features. A feature must be introduced only at
one most general sort. This makes it possible to
provide a notat ion in which the sort name can be
omit ted since it can be inferred from the use of a
feature tha t is appropriate for that sort.

This notion of appropriateness is desirable for
structuring linguistic knowledge, as it prevents the
ad-hoc introduction of features, and requires a
careful design of the sort and feature hierarchy.
Appropriateness is also a prerequisite for compila-
tion of feature te rms into fixed-arity Prolog terms.

Each feature has a sortal restriction for its
value. If a feature 's value is only restricted to be of
sort top , then the sortal restriction can be omit-
ted. The syntax of feature declarations is given in
(3).

Sort i n t r o [Feature1 : Restr l ,

: (3)

Fea ture , : Restrn].

The following declaration defines a sort bi-
nary_tree with subsorts leaf and internaLnode.
The sort binary tree introduces the feature label
and its subsort adds the features lefl_daughler and
right_daughter. I f a sort has subsorts and intro-
duces features, these are combined in one declara-
tion.

binary_tree > Ileal, internal_node]
intro [label].

int ernal_node
intro [left_daughter:binary_tree,

right_daught er: binary_tree].

2.3 S o r t e d F e a t u r e T e r m s

On the basis of the declarations, sorted feature
te rms can be used in definite clauses in addition to

and in combination with Prolog terms. A Prolog
term can have a feature term as its argument , and
a feature can have a Prolog term as its value. This
avoids potential interface problems between dif-
ferent representations, since terms do not have to
be translated between different languages. As an
example, semantic representations in first-order
terms can be used as feature values, but do not
need to be encoded as feature terms.

Sorted feature terms consist of a specification
of the sort of the term (4), or the specification of
a feature value (5), or a conjunction of terms (6).
A complete BNF of all P roFIT terms is given in
the appendix.

< Sort (4)
Feature ! Value (5)

Term ~ Term (6)

The following clauses (based on HPSG) state
tha t a structure is saturated if its subcat value
is the empty list, and that a structure satisfies
the Head Feature Principle (hfp) if its head fea-
tures are identical with the head features of its
head daughter. 3 Note that these clauses provide
a concise notation because uninstant iated features
can be omitted, and the sorts of structures do not
have to be specified explicitly because they can be
infered from use of the features.

saturated (synsem ! local ! cat ! subcat ! <elist).

hfp (synsem ! local ! cat ! head ! X
dtrs ! head_dr r ! synsem ! local ! cat ! head ! X).

Note tha t conjunction also provides the possi-
blity to tag a Prolog term or feature te rm with a
variable (Var ~ Term).

2.4 F e a t u r e S e a r c h

In the organisation of linguistic knowledge, feature
structures are often deeply embedded, due to the
need to group together sets of features whose value
can be structure-shared. In the course of g rammar
development, it is often necessary to change the
"location" of a feature in order to get the right
structuring of information.

Such a change of the '~feature geometry" makes
it necessary to change the pa th in all references
to a feature. This is often done by introducing
templates whose sole purpose is the abbreviat ion
of a path to a feature.

P roFIT provides a mechanism to search for
paths to features automatical ly provided tha t the
sortal restrictions for the feature values are strong
enough to ensure tha t there is a unique minimal
path. A path is minimal if it does not contain any
repeated features or sorts.

3These clauses assume appropriate declarations for
the sort e l i s t , and for the features synsem, l oca l ,
cat , subcat , head, d t r s and head_dtr.

182

The sort from which to start the feature search
must either be specified explicitly (7) or implicitly
given through the sortal restriction of a feature
value, in which case the sort can be omitted and
the expression (8) can be used.

Sort > > > Feature ! Term (7)

> > > Feature ! Term (8)

The following clause makes use of feature search
to express the Head Feature Principle (hfp).

hfp(sign>>>head !X

dtrs!head_dtr} >>>head!X).

While this abbreviation for feature paths is new

for formal description languages, similar abbrevi-
atory conventions are often used in linguistic pub-
lications. They are easily and unambiguously un-
derstood if there is only one unique path to the
feature which is not embedded in another struc-
ture of the same sort.

2.5 T e m p l a t e s

The purpose of templates is to give names to
frequently used structures. In addition to being
an abbreviatory device, the template mechanism
serves three other purposes.

• Abstraction and interfacing by providing a
fixed name for a value that may change,

• Partial evaluation,

• Functional notation that can make specifica-
tions easier to understand.

Templates are defined by expressions of the
form (9), where Name and Value can be arbitrary
ProFIT terms, including variables, and template
calls. There can be several template definitions
with the same name on the left-hand side (rela-
tional templates). Since templates are expanded
at compile time, template definitions must not be
recursive.

Name := Value, (9)
Templates are called by using the template

name prefixed with © in a ProFIT term.
Abstraction makes it possible to change data

structures by changing their definition only at one
point. Abstraction also ensures that databases
(e.g. lexicons) which make use of these abstrac-
tions can be re-used in "different kinds of appli-
cations where different datastructures represent
these abstractions.

Abstraction through templates is also useful for
defining interfaces between grammars and pro-
cessing modules. If semantic processing must
access the semantic representations of different
grammars, this can be done if the semantic mod-
ule makes use of a template defined for each gram-
mar that indicates where in the feature structure
the semantic information is located, as in the fol-
lowing example for HPSG.

semantics (synsem ! local !cont ! Sem) : = Sem.

Partial evaluation is achieved when a structure
(say a principle of a grammar) is represented by
a template that gets expanded at compile time,
and does not have to be called as a goal during
processing.

We show the use of templates for providing
functional notation by a simple example, in which
the expression © f i r s t (X) stands for the first ele-
ment of list X, and ~ re s t (X) stands for the tail
of list X, as defined by the following template def-
inition.

first([First J Rest]) := First.

rest([FirstlRest]) := Rest.

The member relation can be defined with the
following clauses, which correspond very closely
to the natural-language statement of the member
relation given as comments. Note that expansion
of the templates yields the usual definition of the
member relation in Prolog.
Y, The first element of a list
~, is a member of the list.
member (@first (List), List).

~, Element is a member of a list
Y, if it is a member of the rest of the list
member(Element,List) :-

member (Element, @rest (List)).

The expressive power of an n-place template is
the same as that of an n + l place fact.

2.6 D i s j u n c t i o n

Disjunction in the general case cannot be encoded
in a Prolog term representation. 4 Since a general
treatment of disjunction would involve too much
computational overhead, we provide disjunctive
terms only as syntactic sugar. Clauses containing
disjunctive terms are compiled to several clauses,
one for each consistent combination of disjuncts.
Disjunctive terms make it possible to state facts
that belong together in one clause, as the follow-
ing formulation of the Semantics Principle (s em_p)
of HPSG, which states that the content value of a
head-adjunct structure is the content value of the
adjunct daughter, and the content value of the
other headed structures (head-complement, head-
marker, and head-filler structure) is the content
value of the head daughter.
sem_p ((<head_adj

>>>cont!X ~ >>>adj dtr!>>>cont!X)
or

((<head_comp
or <head_marker
or <head_filler

) ~

>>>coat !Y ~ >>>head_dtr !>>>coat !Y)
).

For disjunctions of atoms, there exists a Prolog
term representation, which is described below.

4see the complexity analysis by Brew (Brew, 1991).

183

2.7 F i n i t e D o m a i n s

For domains involving only a finite set of atoms as
possible values, it is possible to provide a Prolog
term representation (due to Colmerauer, and de-
scribed by Mellish (Mellish, 1988)) to encode any
subset of the possible values in one term.

Consider the agreement features person (with
values 1, 2 and 3) and number (with values sg
and p l) . For the two features together there
are six possible combinations of values (l&;sg,
2&sg, 3&sg, l&pl, 2&pl, 3&pl). Any subset of
this set of possible values can be encoded as one
Prolog term. The following example shows the
declaration needed for this finite domain, and
some clauses that refer to subsets of the possi-
ble agreement values by making use of the logi-
cal connectives " (negation), & (conjunction), or
(disjunction).5

agr fin_dom [1 ,2 ,3] * [sg,pl].

verb(sleeps,3&sg).
verb(sleep, - (3&sg)) .
verb(am, l&sg).
verb(is, 3&sg).
verb(are, 2 or pl).

n p (' I ' , l&sg) .
np(you, 2~agr) .

This kind of encoding is only applicable to do-
mains which have no coreferences reaching into
them, in the example only the agreement features
as a whole can be coreferent with other agreement
features, but not the values of person or number
in isolation. This kind of encoding is useful to
avoid the creation of choice points for the lexicon
of languages where one inflectional form may cor-
respond to different feature values.

2.8 Cyc l i c T e r m s

Unlike Prolog, the concrete syntax of ProFIT al-
lows to write down cyclic terms by making use of
conjunction:

x & ~(x).

Cyclic terms constitute no longer a theoretical
or practical problem in logic programming, and al-
most all modern Prolog implementations can per-
form their unification (although they can't print
them out). Cyclic terms arise naturally in NLP
through unification of non-cyclic terms, e.g., the
Subcategorization Principle and the Spec Princi-
ple of HPSG.

ProFIT supports cyclic terms by being able to
print them out as solutions. In order to do this,

SThe syntax for finite domain
terms is Terra,Domain. However, when atoms from a
finite domains are combined by the conjunction, dis-
junction and negation connectives, the specification
of the domain can be omitted. In the example, the
domain must only be specified for the value 2, which
could otherwise be confused with the integer 2.

the dreaded occur check must be performed. Since
this must be done only when results are printed
out as ProFIT terms, it does not affect the run-
time performance.

3 From P r o F I T t e rms to Prolog
t e rms

3.1 C o m p i l a t i o n o f S o r t e d F e a t u r e T e r m s

The compilation of sorted feature terms into a
Prolog term representation is based on the follow-
ing principles, which are explained in more detail
in (Mellish, 1988; Mellish, 1992; Schgter, 1993;
Erbach, 1994).

• The Prolog representation of a sort is an in-
stance of the Prolog representation of its su-
persorts.

• Features are represented by arguments. If a
feature is introduced by a subsort, then the
argument is added to the term that further
instantiates its supersort.

• Mutually exclusive sorts have different func-
tots at the same argument position, so that
their unification fails.

We illustrate these principles for compiling
sorted feature terms into Prolog terms with an
example from aPse . The following declaration
states that the sort s i g n has two mutually ex-
clusive subsorts l e x i c a l and p h r a s a l and intro-
duces four features.

sign > [lexical,phrasal]
intro [phon,

synsem,
qstore,
retrieved].

In the corresponding Prolog term representa-
tion below, the first argument is a variable whose
only purpose is being able to test whether two
terms are coreferent or whether they just happen
to have the same sort and the same values for all
features. In case of extensional sorts (see section
2.1), this variable is omitted. The second argu-
ment can be further instantiated for the subsorts,
and the remaining four arguments correspond to
the four features.

$s ign (Var, LexPhras, Phon, Synsem, qstore, Retriev)

The following declaration introduces two sort
hierarchy "dimensions" for subsorts of p h r a s a l ,
and one new feature. The corresponding Prolog
term representation instantiates the representa-
tion for the sort s i g n further, and leaves argument
positions that can be instantiated further by the
subsorts of p h r a s a l , and for the newly introduced
feature daughters.

phrasal > [headed,non_headed] * [decl,int,rel]
intro [daughters].

184

$sign(yar ,
$phrasal(Phrasesort,Clausesort,Dtrs),
Phon,
Synsem,
Qstore,
Retrieved)

3.2 Compi lat ion of Finite Domains
The compilation of finite domains into Prolog
terms is performed by the "brute-force" method
described in (Mellish, 1988). A finite domain with
n possible domain elements is represented by a
Prolog term with n + 1 arguments. Each domain
element is associated with a pair of adjacent argu-
ments. For example, the agreement domain agr
from section 2.7 with its six elements (l&sg, 2&sg,
3&sg, l~:pl, 2~:pl, 3&pl) is represented by a Pro-
log term with seven arguments.

Sagr(1,A,B,C,D,E,O)
Note that the first and last argument must be

different. In the example, this is achieved by in-
stantiation with different atoms, but an inequal-
ity constraint (Prolog I['s d i f) would serve the
same purpose. We assume that the domain el-
ement l~zsg corresponds to the first and second
arguments, 2&sg to the second and third arguem-
nts, and so on, as illustrated below.

Sagr (1 , h , B , C , D , E , 0)
lsg 2sg 3sg lpl 2pl 3pl

A domain description is translated into a Pro-
log term by unifying the argument pairs that are
excluded by the description. For example, the
domain description 2 or p l excludes l&sg and
3&sg, so that the the first and second argument
are unified (l~sg) , as well as the third and fourth
(3&sg).

$ a g r (1 , 1 , X , X , D , E , 0)

When two such Prolog terms are unified, the
union of their excluded elements is computed by
unificatation, or conversely the intersection of the
elements which are in the domain description.
The unification of two finite domain terms is suc-
cessful as long as they have at least one element
in common. When two terms are unified which
have no element in common, i.e., they exclude all
domain elements, then unification fails because all
arguments become unified with each other, includ-
ing the first and last arguments, which are differ-
ent.

4 Implementation
ProFIT has been implemented in Quintus and Sic-
stus Prolog, and should run with any Prolog that
conforms to or extends the proposed ISO Prolog
standard.

All facilities needed for the development of ap-
plication programs, for example the module sys-
tem and declarations (dynamic, multifile etc.) are
supported by ProFIT.

Compilation of a ProFIT file generates two
kinds of files as output.

1. Declaration files that contain information for
compilation, derived from the declarations.

2. A program file (a Prolog program) that con-
tains the clauses, with all ProFIT terms com-
piled into their Pro]og term representation.

The program file is compiled on the basis of
the declaration files. If the input and output of
the program (the exported predicates of a mod-
ule) only make use of Prolog terms, and feature
terms are only used for internal purposes, then the
program file is all that is needed. This is for ex-
ample the case with a grammar that uses feature
terms for grammatical description, but whose in-
put and output (e.g. graphemic form and logical
form) are represented as normal Prolog terms.

Declarations and clauses can come in any or-
der in a ProFIT file, so that the declarations can
be written next to the clauses that make use of
them. Declarations, templates and clauses can be
distributed across several files, so that it becomes
possible to modify clauses without having to re-
compile the declarations, or to make changes to
parts of the sort hierarchy without having to re-
compile the entire hierarchy.

Sort checking can be turned off for debug-
ging purposes, and feature search and handling
of cyclic terms can be turned off in order to speed
up the compilation process if they are not needed.

Error handling is currently being improved to
give informative and helpful warnings in case of
undefined sorts, features and templates, or cyclic
sort hierarchies or template definitions.

For the development of ProFIT programs and
grammars, it is necessary to give input and out-
put and debugging information in ProFIT terms,
since the Pro]og term representation is not very
readable. ProFIT provides a user interface which

* accepts queries containing ProFIT terms, and
translates them into Prolog queries,

• converts the solutions to the Prolog query
back into ProFIT terms before printing them
out,

• prints out debugging information as ProFIT
terms.

When a solution or debugging information is
printed out, uninstantiated features are omit-
ted, and shared structures are printed only once
and represented by variables on subsequent oc-
curences.

A pretty-printer is provided that produces a
neatly formatted screen output of ProFIT terms,
and is configurable by the user. ProFIT terms can
also be output in IATEX format, and an interface
to the graphical feature editor Fegramed is fore-
seen.

185

In order to give a rough idea of the efficiency
gains of a compilation into Prolog terms instead
of using a feature term unification algorithm im-
plemented on top of Prolog, we have compared
the runtimes with ALE and the Eisele-DSrre al-
gorithm for unsorted feature unification for the
following tasks: (i) unification of (unsorted) fea-
ture structures, (ii) unification of inconsistent fea-
ture structures (unification failure), (iii) unifica-
tion of sorts, (iv) lookup of one of I0000 feature
structures (e.g. lexical items), (v) parsing with
an HPSG grammar to provide a mix of the above
tasks.

The timings obtained so far indicate that
ProFIT is 5 to 10 times faster than a system which
in~plements a unification algorithm on top of Pro-
log, a result which is predicted by the studies of
SchSter (SchSter, 1993) and the experience of the
Core Language Engine.

The ProFIT system and documentation are
available free of charge by anonymous ftp (server:
ftp.coli.uni-sb.de, directory: pub/profit).

5 C o n c l u s i o n

ProFIT allows the use of sorted feature terms in
Prolog programs and Logic Grammars without
sacrificing the efficiency of Prolog's term unifi-
cation. It is very likely that the most efficient
commercial Prolog systems, which provide a ba-
sis for the implementation of NLP systems, will
conform to the proposed ISO standard. Since the
ISO standard includes neither inheritance hierar-
chies nor feature terms (which are indispensible
for the development of large grammars, lexicons
and knowledge bases for NLP systems), a tool
like ProFIT that compiles sorted feature terms
into Prolog terms is useful for the development of
grammars and lexicons that can be used for ap-
plications. ProFIT is not a grammar formalism,
but rather aims to extend current and future for-
malisms and processing models in the logic gram-
mar tradition with the expressive power of sorted
feature terms. Since the output of ProFIT com-
pilation are Prolog programs, all the techniques
developed for the optimisation of logic programs
(partial evaluation, tabulation, indexing, program
transformation techniques etc.) can be applied
straightforwardly to improve the performance of
sorted feature grammars.

6 A c k n o w l e d g e m e n t s

This work was supported by

• The Commission of the European Com-
munities through the project LRE-61-061
"Reusable Gratnmatical Resources", where it
has been (ab-)used in creative ways to proto-
type extensions for the ALEP formalism such
as set descriptions, linear precedence con-

straints and guarded constraints (Manand-
hat, 1994; Manandhar, 1995).

* Deutsche Forschungsgemeinschaft, Special
Research Division 314 "Artificial Intelli-
gence - Knowledge-Based Systems" through
project N3 "Bidirectional Linguistic Deduc-
tion" (BiLD), where it is used to compile
typed feature grammars into logic grammars,
for which bidirectional NLP algorithms are
developed, and

• Cray Systems (formerly PE-Luxembourg),
with whom we had fruitful interaction con-
cerning the future development of the ALEP
system-.

Some code for handling of finite domains was
adapted from a program by Gertjan van Noord.
Wojciech Skut and Christian Braun were a great
help in testing and improving the system. Thanks
to all the early users and ~-testers for discover-
ing bugs and inconsistencies, and for providing
feedback and encouragement. Special thanks for
service with a smiley :-).

R e f e r e n c e s

Hassan A'it-Kaci and Patrick Lincoln. 1989. Life,
a naturM language for natural language. T. A.
Informations, 30(1-2):37 - 67.

H. Alshawi, D. J. Arnold, R. Backofen, D. M.
Carter, J. Lindop, K. Netter, :I. Tsujii, and
H. Uszkoreit. 1991. Eurotra 6/1: Rule for-
mMism and virtual machine design study - - Fi-
nal report. Technical report, SRI International,
Cambridge.

Hiyan Alshawi, editor. 1991. The Core Language
Engine. MIT Press.

Chris Brew. 1991. Systemic classification and its
efficiency. Computational Linguistics, 17(4):375
- 408.

Bob Carpenter. 1992. The logic of typed feature
structures. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press,
Cambridge.

Bob Carpenter, 1993. ALE Version ~: User Man-
ual. University of Pittsburgh.

Michael Covington. 1989. GULP 2.0: an exten-
sion of Prolog for unification-based grammar.
Technical Report AI-1989-01, Advanced Com-
putational Methods Center, University of Geor-
gia.

Jochen DLrre and Michael Dorna. 1993. CUF -
A formalism for linguistic knowledge represen-
tation. In Jochen DLrre, editor, Computational
Aspects of Constraint-Based Linguistic Descrip-
tion. Deliverable RI.P.A. DYANA-2 - ESPRIT
Basic Research Project 6852.

186

Martin Emele and R4mi Zajac. 1990. Typed
unification grammars. In Proceedings of the
13th International Conference on Computa-
tional Linguistics, Helsinki.

Gregor Erbach. 1994. Multi-dimensional inheri-
tance. In H. Trost, editor, Proceedings of KON-
VENS '9.~, pages 102 - 111, Vienna. Springer.

Susan Beth Hirsh. 1986. P-PATth A compiler
for unification-based grammars. Master's the-
sis, Stanford University, Stanford, CA.

Draft ISO Standard for the Prolog language,
ISO/IEC JTC1 SC22 WG17 Nl10 "Prolog:
Part 1, General core".

Hans-Ulrich Krieger and Ulrich Schlfer.
1994. 7-79£--a type description language for
constraint-based grammars. In Proceedings of
the 15th International Conference on Computa-
tional Linguistics, COLING-94, Kyoto, Japan.

Suresh Manandhar. 1994. An attributive logic
of set descriptions and set operations. In 32nd
Annual Meeting of the Association for Compu-
tational Linguistics (A CL), pages 255 - 262, Las
Cruces, NM.

Suresh Manandhar. 1995. Deterministic con-
sistency checking of LP constraints. In Sev-
enth Conference of the European Chapter of
the Association for Computational Linguistics
(EA CL), Dublin.

Johannes Matiasek. 1994 . Conditional con-
straints in a CLP-based HPSG implementation.
In Harald Trost, editor, KONVENS '94, pages
230 - 239, Vienna.

Christopher S. Mellish. 1988. hnplementing sys-
temic classification by unification. Computa-
tional Linguistics, 14(1):40-51.

Christopher S. Mellish. 1992. Term-encodable de-
scription spaces. In D. R. Brough, editor, Logic
Programming: New Frontiers, pages 189 - 207.
Intellect, Oxford.

Giinter Neumann and Gertjan van Noord. 1992.
Self-monitoring with reversible grammars. In
Proceedings of the 14th International Confer-
ence on Computational Linguistics, Nantes, F.

Giinter Neumann. 1994. A Uniform Computa-
tional Model for Natural Language Parsing and
Generation. Ph.D. thesis, Universitit des Saar-
landes, Saabriicken.

Christer Samuelsson. 1994. Fast Natural-
Language Parsing Using Explanation-Based
Learning. Ph.D. thesis, The Royal Institute of
Technology and Stockholm University, Stock-
holm.

Andreas P. SchSter. 1993. Compiling feature
structures into terms: A case study in Prolog.
Technical Report RP-55, University of Edin-
burgh, Centre for Cognitive Science.

Gert Smolka, Martin Henz, and J6rg Wiirtz.
1995. Object-oriented concurrent constraint
programming in Oz. In P. van Hentenryck and
V. Saraswat, editors, Principles and Practice of
Constraint Programming, chapter 2, pages 27-
48. The MIT Press.

Appendix: B N F for ProFIT Terms

PFT := <Sort
Feature!PFT
PFT & PFT
PROLOGTEKM
FINDOM
@Template
, FFT
'' PFT
>>>Feature!PFT
Sort>>>Feature!PFT
PFT or PFT

[I.
[2.
[3
[4
Is
[6
['z
[8
[9
[10.
[11.

FINDOM := FINDOM@FiniteDomainName
I -FINDOM
I FINDOM & FINDOM
[FINDOM or FINDOM
[Atom

Term of a sort Sort]
Feature-Value pair]
Conjunction of terms]
Any Prolog term]
Finite Domain term, BNF see below]
Template call]
Quoted term, is not translated]
Double-quoted, main functor not translated]
Search for a feature]
short for <Sort • >>>Feature!PFT]
Disjunction; expands to multiple terms]

187

