
I n c r e m e n t a l I n t e r p r e t a t i o n o f Categor ia l G r a m m a r *

David Milward
Centre for Cognitive Science

University of Edinburgh
2 Buccleuch Place, Edinburgh, EH8 9LW, U.K.

davidm@cogsci.ed.ac.uk

Abstract
The paper describes a parser for Catego-
rial G r a m m a r which provides fully word
by word incremental interpretation. The
parser does not require fragments of sen-
tences to form constituents, and thereby
avoids problems of spurious ambiguity.
The paper includes a brief discussion of
the relationship between basic Catego-
rial G r a m m a r and other formalisms such
as HPSG, Dependency G r a m m a r and
the Lambek Calculus. I t also includes
a discussion of some of the issues which
arise when parsing lexicalised grammars ,
and the possibilities for using statistical
techniques for tuning to particular lan-
guages.

1 Introduction
There is a large body of psycholinguistic evidence
which suggests that meaning can be extracted be-
fore the end of a sentence, and before the end
of phrasal constituents (e.g. Marslen-Wilson 1973,
Tanenhaus et al. 1990). There is also recent evi-
dence suggesting that , during speech processing,
partial interpretations can be built extremely ra-
pidly, even before words are completed (Spivey-
Knowlton et al. 1994) 1. There are also potential
computat ional applications for incremental inter-
pretation, including early parse filtering using sta-
tistics based on logical form plausibility, and in-
terpretat ion of fragments of dialogues (a survey
is provided by Milward and Cooper, 1994, hence-
forth referred to as M&:C).

In the current computat ional and psycholingui-
stic l i terature there are two main approaches to
the incremental construction of logical forms. One
approach is to use a g rammar with 'non-s tandard '

*This research was supported by the U.K. Science
and Engineering Research Council, grant RR30718.
I am grateful to Patrick Sturt, Carl Vogel, and the
reviewers for comments on an earlier version.

1Spivey-Knowlton et al. reported 3 experiments.
One showed effects before the end of a word when
there was no other appropriate word with the same
initial phonology. Another showed on-line effects
from adjectives and determiners during noun phrase
processing.

constituency, so that an initial fragment of a sen-
tence, such as John likes, can be treated as a con-
stituent, and hence be assigned a type and a se-
mantics. This approach is exemplified by Com-
binatory Categorial Grammar , CCG (Steedman
1991), which takes a basic CG with just applica-
tion, and adds various new ways of combining ele-
ments together 2. Incremental interpretat ion can
then be achieved using a s tandard bot tom-up shift
reduce parser, working from left to right along
the sentence. The alternative approach, exempli-
fied by the work of Stabler on top-down parsing
(Stabler 1991), and Pulman on left-corner parsing
(Pulman 1986) is to associate a semantics directly
with the partial structures formed during a top-
down or left-corner parse. For example, a syntax
tree missing a noun phrase, such as the following

s

/ \
np vp

John / \
v np"

likes

can be given a semantics as a function from enti-
ties to t ruth values i.e. Ax. l i ke s (j ohn , x) , with-
out having to say that John likes is a constituent.

Neither approach is without problems. If a
g rammar is augmented with operations which are
powerful enough to make most initial fragments
constituents, then there may be unwanted inter-
actions with the rest of the g rammar (examples
of this in the case of CCG and the Lambek Cal-
culus are given in Section 2). The addition of
extra operations also means that , for any given
reading of a sentence there will generally be many
different possible derivations (so-called 'spurious '
ambiguity), making simple parsing strategies such
as shift-reduce highly inefficient.

The limitations of the parsing approaches be-
come evident when we consider g rammars with
left recursion. In such cases a simple top-down
parser will be incomplete, and a left corner parser
will resort to buffering the input (so won' t be fully

2Note that CCG doesn't provide a type for all in-
itial fragments of sentences. For example, it gives a
type to John thinks Mary, but not to John thinks each.
In contrast the Lambek Calculus (Lambek 1958) pro-
vides an infinite number of types for any initial sen-
tence fragment.

119

word-by-word). M&C illustrate the problem by
considering the fragment Mary thinks John. This
has a small number of possible semantic repre-
sentations (the exact number depending upon the
grammar) e.g.

),P.thinks (mary, P (john))
AP.AQ. Q (thinks(mary,P (john)))
),P.AR. (R(Ax.thinks(x,P (john)))) (mary)

The second representation is appropriate if the
sentence finishes with a sentential modifier. The
third allows there to be a verb phrase modifier.

If the semantic representation is to be read off
syntactic structure, then the parser must provide
a single syntax tree (possibly with empty nodes).
However, there are actually any number of such
syntax trees corresponding to, for example, the
first semantic representation, since the np and the
s can be arbitrarily far apart. The following tree is
suitable for the sentence Mary thinks John shaves
but not for e.g. Mary thinks John coming here was
a mistake.

S

/ \
np vp

Mary / \
V S

thinks / \

np vp^
John

M&C suggest various possibilities for packing the
partial syntax trees, including using Tree Adjoi-
ning Grammar (Joshi 1987) or Description Theory
(Marcus et al. 1983). One further possibility is to
choose a single syntax tree, and to use destructive
tree operations later in the parse a.

The approach which we will adopt here is based
on Milward (1992, 1994). Partial syntax trees can
be regarded as performing two main roles. The
first is to provide syntactic information which gui-
des how the rest of the sentence can be integrated
into the tree. The second is to provide a basis for a
semantic representation. The first role can be cap-
tured using syntactic types, where each type corre-
sponds to a potentially infinite number of partial
syntax trees. The second role can be captured by
the parser constructing semantic representations
directly. The general processing model therefore
consists of transitions of the form:

Syntactic type i -+ Syntactic typei+ 1
Semantic repi Semantic repi+ 1

3This might turn out to be similar to one view of
Tree Adjoining Grammar, where adjunction adds into
a pre-existing well-formed tree structure. It is also
closer to some methods for incremental adaptation of
discourse structures, where additions are allowed to
the right-frontier of a tree structure (e.g. Polanyi and
Scha 1984). There are however problems with this
kind of approach when features are considered (see
e.g. Vijay-Shanker 1992).

This provides a state-transition or dynamic model
of processing, with each state being a pair of a
syntactic type and a semantic value.

The main difference between our approach and
that of Milward (1992, 1994) is that it is based
on a more expressive grammar formalism, Appli-
cative Categorial Grammar, as opposed to Lexi-
calised Dependency Grammar. Applicative Cate-
gorial Grammars allow categories to have argu-
ments which are themselves functions (e.g. v e r y
can be treated as a function of a function, and gi-
ven the type (n / n) / (n / n) when used as an adjec-
tival modifier). The ability to deal with functions
of functions has advantages in enabling more ele-
gant linguistic descriptions, and in providing one
kind of robust parsing: the parser never fails until
the last word, since there could always be a final
word which is a function over all the constituents
formed so far. However, there is a corresponding
problem of far greater non-determinism, with even
unambiguous words allowing many possible tran-
sitions. It therefore becomes crucial to either per-
form some kind of ambiguity packing, or language
tuning. This will be discussed in the final section
of the paper.

2 Applicative Categorial Grammar

Applicative Categorial Grammar is the most ba-
sic form of Categorial Grammar, with just a single
combination rule corresponding to function appli-
cation. It was first applied to linguistic descrip-
tion by Adjukiewicz and Bar-Hillel in the 1950s.
Although it is still used for linguistic description
(e.g. Bouma and van Noord, 1994), it has been
somewhat overshadowed in recent years by HPSG
(Pollard and Sag 1994), and by Lambek Cate-
gorial Grammars (Lambek 1958). It is therefore
worth giving some brief indications of how it fits
in with these developments.

The first directed Applicative CG was proposed
by Bar-Hillel (1953). Functional types included a
list of arguments to the left, and a list of argu-
ments to the right. Translating Bar-Hillel's nota-
tion into a feature based notation similar to that
in HPSG (Pollard and Sag 1994), we obtain the
following category for a ditransitive verb such as
put:

r s] Unp>

L r(np, pp>

The list of arguments to the left are gathered un-
der the feature, l, and those to the right, an n p
and a p p in that order, under the feature r.

Bar-Hillel employed a single application rule,
which corresponds to the following:

120

ix 1 L~ . . . L1 I (L 1 . . • Ln) R1 . .. Rn ~ X
r(R1 .. .R~>

The result was a system which comes very close to
the formalised dependency grammars of Gaifman
(1965) and Hays (1964). The only real difference
is that Bar-Hillel allowed arguments to themsel-
ves be functions. For example, an adverb such as
slowly could be given the type 4

LrO
An unfortunate aspect of Bar-Hillel's first system
was that the application rule only ever resulted
in a primitive type. Hence, arguments with fun-
ctional types had to correspond to single lexical
items: there was no way to form the type n p \ s ~
for a non-lexical verb phrase such as likes Mary.

Rather than adapting the Application Rule to
allow functions to be applied to one argument at a
time, Bar-Hillel's second system (often called AB
Categorial Grammar, or Adjukiewicz/Bar-Hillel
CG, Bar-Hillel 1964) adopted a 'Curried' nota-
tion, and this has been adopted by most CGs
since. To represent a function which requires an
np on the left, and an np and a pp to the right,
there is a choice of the following three types using
Curried notation:

np \ ((s /pp) /np)
(np \ (s /pp)) /np
((np \ s) /pp) /np

Most CGs either choose the third of these (to give
a vp structure), or include a rule of Associativity
which means that the types are interchangeable
(in the Lambek Calculus, Associativity is a conse-
quence of the calculus, rather than being specified
separately).

The main impetus to change Applicative CG
came from the work of Ades and Steedman (1982).
Ades and Steedman noted that the use of function
composition allows CGs to deal with unbounded
dependency constructions. Function composition
enables a function to be applied to its argument,
even if that argument is incomplete e.g.

s /pp + pp /np --+ s /np

This allows peripheral extraction, where the 'gap'
is at the start or the end of e.g. a relative clause.
Variants of the composition rule were proposed
in order to deal with non-peripheral extraction,

4 T h e reformulation is not entirely faithful here to
Bar-Hillel, who used a slightly problematic 'double
slash' notation for functions of functions.

5Lambek notation (Lambek 1958).

but this led to unwanted effects elsewhere in the
grammar (Bouma 1987). Subsequent treatments
of non-peripheral extraction based on the Lambek
Calculus (where standard composition is built in:
it is a rule which can be proven from the calcu-
lus) have either introduced an alternative to the
forward and backward slashes i.e. / and \ for nor-
mal args, ? for wh-args (Moortgat 1988), or have
introduced so called modal operators on the wh-
argument (Morrill et al. 1990). Both techniques
can be thought of as marking the wh-arguments as
requiring special treatment, and therefore do not
lead to unwanted effects elsewhere in the gram-
mar.

However, there are problems with having just
composition, the most basic of the non-applicative
operations. In CGs which contain functions of
functions (such as very, or slowly), the addition of
composition adds both new analyses of sentences,
and new strings to the language. This is due to
the fact that composition can be used to form a
function, which can then be used as an argument
to a function of a function. For example, if the
two types, n / n and n / n are composed to give the
type n / n , then this can be modified by an adjec-
tival modifier of type (n / n) / (n / n) . Thus, the
noun very old dilapidated car can get the unac-
ceptable bracketing, [[very [old dilapidated]] car].
Associative CGs with Composition, or the Lam-
bek Calculus also allow strings such as boy with
the to be given the type n / n predicting very boy
with the car to be an acceptable noun. Although
individual examples might be possible to rule out
using appropriate features, it is difficult to see how
to do this in general whilst retaining a calculus
suitable for incremental interpretation.

If wh-arguments need to be treated specially
anyway (to deal with non-peripheral extraction),
and if composition as a general rule is proble-
matic, this suggests we should perhaps return to
grammars which use just Application as a gene-
ral operation, but have a special t reatment for
wh-arguments. Using the non-Curried notation
of Bar-Hillel, it is more natural to use a separate
wh-list than to mark wh-arguments individually.
For example, the category appropriate for relative
clauses with a noun phrase gap would be:

lO
|,:o /

It is then possible to specify operations which act
as purely applicative operations with respect to
the left and right arguments lists, but more like
composition with respect to the wh-list. This is
very similar to the way in which wh-movement
is dealt with in GPSG (Gazdar et al. 1985) and
HPSG, where wh-arguments are treated using
slash mechanisms or feature inheritance principles

121

which correspond closely to function composition.
Given that our arguments have produced a cate-

gorial grammar which looks very similar to HPSG,
why not use HPSG rather than Applicative CG?
The main reason is that Applicative CG is a much
simpler formalism, which can be given a very sim-
ple syntax semantics interface, with function ap-
plication in syntax mapping to function applica-
tion in semantics 6'7. This in turn makes it relati-
vely easy to provide proofs of soundness and com-
pleteness for an incremental parsing algorithm.
Ultimately, some of the techniques developed here
should be able to be extended to more complex
formalisms such as HPSG.

3 A B C a t e g o r i a l g r a m m a r w i t h

A s s o c i a t i v i t y (A A C G)

In this section we define a grammar similar to Bar-
Hillel's first grammar. However, unlike Bar-Hillel,
we allow one argument to be absorbed at a time.
The resulting grammar is equivalent to AB Cate-
gorial Grammar plus associativity.

The categories of the grammar are defined as
follows:

1. If X is a syntactic type (e.g. s, np), then

10 is a category.
r0

2. If X is a syntactic type, and L and R are lists
of categories, then

Application to the right is defined by the ruleS:

6One area where application based approaches to
semantic combination gain in simplicity over unifica-
tion based approaches is in providing semantics for
functions of functions. Moore (1989) provides a treat-
ment of functions of functions in a unification based
approach, but only by explicitly incorporating lambda
expressions. Pollard and Sag (1994) deal with some
functions of functions, such as non-intersective adjec-
tives, by explicit set construction.

7As discussed above, wh-movement requires some-
thing more like composition than application. A sim-
ple syntax semantics interface can be retained if the
same operation is used in both syntax and semantics.
Wh-arguments can be treated as similar to other ar-
guments i.e. as lambda abstracted in the semantics.
For example, the fragment: John found a woman who
Mary can be given the semantics ,kP.3x. woman(x)
&: found(john,x) g~ P(mary , x), where P is a fun-
ction from a left argument Mary of type e and a wh-
argument, also of type e.

s,., is list concatenation e.g. (np)-(s) equals (np,s).

j j
Application to the left is defined by the rule:

L=R [=RJ
The basic grammar provides some spurious deri-
vations, since sentences such as John likes Mary
can be bracketed as either ((John likes) Mary)
or (John (likes Mary)). However, we will see
that these spurious derivations do not translate
into spurious ambiguity in the parser, which maps
from strings of words directly to semantic repre-
sentations.

4 A n I n c r e m e n t a l P a r s e r

Most parsers which work left to right along an
input string can be described in terms of state
transitions i.e. by rules which say how the current
parsing state (e.g. a stack of categories, or a chart)
can be transformed by the next word into a new
state. Here this will be made particularly explicit,
with the parser described in terms of just two rules
which take a state, a new word and create a new
state 9. There are two unusual features. Firstly,
there is nothing equivalent to a stack mechanism:
at all times the state is characterised by a single
syntactic type, and a single semantic value, not
by some stack of semantic values or syntax trees
which are waiting to be connected together. Se-
condly, all transitions between states occur on the
input of a new word: there are no 'empty ' tran-
sitions (such as the reduce step of a shift-reduce
parser).

The two rules, which are given in Figure 1 t°, are
difficult to understand in their most general form.
Here we will work upto the rules gradually, by con-
sidering which kinds of rules we might need in par-
ticular instances. Consider the following pairing
of sentence fragments with their simplest possible
CG type:

Mary thinks: s/s
Mary thinks John: s / (np\s)
Mary thinks John likes: s /np
Mary thinks John likes Sue: s

Now consider taking each type as a description of
the state that the parser is in after absorbing the
fragment. We obtain a sequence of transitions as
follows:

9This approach is described in greater detail in Mil-
ward (1994), where parsers are specified formally in
terms of their dynamics.

l°Li, Ri, Hi are lists of categories, li and ri are lists
of variables, of the same length as the corresponding
Li and Ri.

122

State-Application:

Y
1<>

1Lo) . R2
r([rP~o

hHo

h<>

F

State-Prediction:

Y
10

ILl "Lo
r< rRo) • R2

hL1, Ho

hO
F

¢{W ~ __} rRI"R2
h<>

Ar~. F(G(r,))

Y
I<>

X

rR1 • <
rRo

hO

~rl.(ah. F(all. (h(ar (((G rl)r)ll)))))

Figure h Transition Rules

• L0

> .R2

.H0

where W:

where W:

1Xo
rRI"Ro
h<>

G

IZLI ,,L
r R 1 . R
h0

G

"John likes Sue"
s/s -~ s / (np\s) -~ s/np --~ s

If an embedded sentence such as John likes Sue
is a mapping from an s / s to an s, this suggests
that it might be possible to treat all sentences as
mapping from some category expecting an s to
that category i.e. from X / s to X. Similarly, all
noun phrases might be treated as mappings from
an X / n p to an X.

Now consider individual transitions. The sim-
plest of these is where the type of argument ex-
pected by the state is matched by the next word
i.e.

"Sue"
s/np -~ s where: Sue: np

This can be generalised to the following rule,
which is similar to Function Application in stan-
dard CG 11

X /Y "~" X where: W: Y

A similar transition occurs for likes. Here an n p \ s
was expected, but likes only provides part of this:

n i t differs in not being a rule of grammar: here
the functor is a state category and the argument is a
lexical category. In standard CG function application,
the functor and argument can correspond to a word
or a phrase.

it requires an np to the right to form an n p \ s .
Thus after likes is absorbed the state category will
need to expect an np. The rule required is similar
to Function Composition in CG i.e.

,{W~
X/Y ~ X/Z where: W: Y/Z

Considering this informally in terms of tree struc-
tures, what is happening is the replacement of an
empty node in a partial tree by a second partial
tree i.e.

X
/ \

U Y^

x
/ \

+ Y => U Y
/ \ / \

V z ̂ V Z ̂

The two rules specified so far need to be further
generalised to allow for the case where a lexical
item has more than one argument (e.g. if we re-
place likes by a di-transitive such as gives or a
tri-transitive such as bets). This is relatively tri-
vial using a non-curried notation similar to that
used for AACG. What we obtain is the single rule
of State-Application, which corresponds to appli-
cation when the list of arguments, R1, is empty,
to function composition when R1 is of length one,
and to n-ary composition when R1 is of length n.
The only change needed from AACG notation is

123

8

I(>

r(8>

h(>

AQ.Q

"John" --+

S

I<>

l(np>
r< / >

L h<np)

h0

AH. (n(john'))

"likes" rs 1 1<>
| r(np>

t hO
AY.likes'(john',Y)

Figure 2: Possible state transitions

i<>

r(> |
h<>J

likes'(john',sue')

the inclusion of an extra feature list, the h list,
which stores information about which arguments
are waiting for a head (the reasons for this will be
explained later). The lexicon is identical to that
for a s tandard AACG, except for having h-lists
which are always set to empty.

Now consider the first transition. Here a sen-
tence was expected, but what was encountered
was a noun phrase, John. The appropriate rule
in CG notat ion would be:

" W "
X / Y -+ X / (Z \ Y) where: W: Z

This rule states tha t if looking for a Y and get a
Z then look for a Y which is missing a Z. In tree
structure terms we have:

X X
/ \ / \

U Y^ + Z => U Y
/\

z zkY ~

The rule of State-Predict ion is obtained by further
generalising to allow the lexical i tem to have mis-
sing arguments, and for the expected argument to
have missing arguments.

State-Application and State-Prediction to-
gether provide the basis of a sound and complete
parser 12. Parsing of sentences is achieved by star-
ting in a s tate expecting a sentence, and apply-
ing the rules non-deterministically as each word
is input. A successful parse is achieved if the fi-
nal s tate expects no more arguments. As an ex-
ample, reconsider the string John likes Sue. The
sequence of transitions corresponding to John li-
kes Sue being a sentence, is given in Figure 2.
The transit ion on encountering John is determini-
stic: State-Applicat ion cannot apply, and State-
Prediction can only be instantiated one way. The
result is a new state expecting an argument which,
given an n p could give an s i.e. an n p \ s .

12The parser accepts the same strings as the gram-
mar and assigns them the same semantic values. This
is slightly different from the standard notion of so-
undness and completeness of a parser, where the par-
ser accepts the same strings as the grammar and as-
signs them the same syntax trees.

The transition on input of likes is non-
deterministic. State-Application can apply, as in
Figure 2. However, State-Predict ion can also ap-
ply, and can be instantiated in four ways (these
correspond to different ways of cutt ing up the
left and right subcategorisation lists of the le-
xical entry, likes, i.e. as (np> • 0 or 0 • (np>).
One possibility corresponds to the prediction of
an s \ s modifier, a second to the prediction of an
(n p \ s) \ (n p \ s) modifier (i.e. a verb phrase too-
differ), a third to there being a function which
takes the subject and the verb as separate argu-
ments, and the fourth corresponds to there being a
function which requires an s / n p argument . The
second of these is perhaps the most interesting,
and is given in Figure 3. I t is the choice of this
particular transition at this point which allows
verb phrase modification, and hence, assuming the
next word is Sue, an implicit bracketing of the
string fragment as (John (likes Sue)). Note tha t
if State-Application is chosen, or the first of the
State-Prediction possibilities, the fragment John
likes Sue retains a flat structure. If there is to
be no modification of the verb phrase, no verb
phrase structure is introduced. This relates to
there being no spurious ambiguity: each choice of
transition has semantic consequences; each choice
affects whether a particular par t of the semantics
is to be modified or not.

Finally, it is worth noting why it is necessary to
use h-lists. These are needed to distinguish bet-
ween cases of real functional arguments (of func-
tions of functions), and functions formed by State-
Prediction. Consider the following trees, where
the n p \ s node is empty.

S S

/ \ / \
s / s s np n p \ s

/ \ / \
np n p \ s " (n p \ s) / (n p \ s) n p \ s ^

Both trees have the same syntactic type, however
in the first case we want to allow for there to be
an s \ s modifier of the lower s, but not in the se-
cond. The headed list distinguishes between the
two cases, with only the first having an n p on its

124

S

i0

l(np>
r< I r<) >

!
L h<np)

hO

AH. (H(john'))

"lik_~s"

"S

1<>

S

l(np)
1(/ rO , up>

!
L h0

r(np,)
r<)

1 (np)
h(/ rO , np>

!
L hO

h(>

AY.AK. (K(AX.likes'(X,Y))) (john)

where W:

Figure 3: Example instantiation of State-Prediction

8

l(np>
| r(np>

Lh<>
AY.AX.Iikes'(X,Y)

headed list, allowing prediction of an s modifier.

5 Parsing Lexicalised Grammars

When we consider full sentence processing, as op-
posed to incremental processing, the use of lexi-
calised grammars has a major advantage over the
use of more standard rule based grammars. In
processing a sentence using a lexicalised formalism
we do not have to look at the grammar as a whole,
but only at the grammatical information indexed
by each of the words. Thus increases in the size
of a grammar don' t necessarily effect efficiency of
processing, provided the increase in size is due to
the addition of new words, rather than increased
lexical ambiguity. Once the full set of possible le-
xical entries for a sentence is collected, they can,
if required, then be converted back into a set of
phrase structure rules (which should correspond
to a small subset of the rule based formalism equi-
valent to the whole lexicalised grammar), before
being parsing with a standard algorithm such as
Earley's (Earley 1970).

In incremental parsing we cannot predict which
words will appear in the sentence, so cannot use
the same technique. However, if we are to base a
parser on the rules given above, it would seem that
we gain further. Instead of grammatical informa-
tion being localised to the sentence as a whole, it
is localised to a particular word in its particular
context: there is no need to consider a pp as a
start of a sentence if it occurs at the end, even if
there is a verb with an entry which allows for a
subject pp.

However there is a major problem. As we noted
in the last paragraph, it is the nature of parsing
incrementally that we don' t know what words are
to come next. But here the parser doesn't even
use the information that the words are to come

from a lexicon for a particular language. For ex-
ample, given an input of 3 nps, the parser will
happily create a state expecting 3 nps to the left.
This might be a likely state for say a head final
language, but an unlikely state for a language such
as English. Note that incremental interpretation
will be of no use here, since the semantic represen-
tation should be no more or less plausible in the
different languages. In practical terms, a naive in-
teractive parallel Prolog implementation on a cur-
rent workstation fails to be interactive in a real
sense after about 8 words 13.

What seems to be needed is some kind of langu-
age tuning 14. This could be in the nature of fixed
restrictions to the rules e.g. for English we might
rule out uses of prediction when a noun phrase is
encountered, and two already exist on the left list.
A more appealing alternative is to base the tuning
on statistical methods. This could be achieved by
running the parser over corpora to provide pro-
babilities of particular transitions given particu-
lar words. These transitions would capture the
likelihood of a word having a particular part of
speech, and the probability of a particular transi-
tion being performed with that part of speech.

13This result should however be treated with some
caution: in this implementation there was no attempt
to perform any packing of different possible transiti-
ons, and the algorithm has exponential complexity. In
contrast, a packed recogniser based on a similar, but
much simpler, incremental parser for Lexicalised De-
pendency Grammar has O(n a) time complexity (Mil-
ward 1994) and good practical performance, taking a
couple of seconds on 30 word sentences.

14The usage of the term language tuning is perhaps
broader here than its use in the psycholinguistic lite-
rature to refer to different structural preferences bet-
ween languages e.g. for high versus low attachment
(Mitchell et al. 1992).

125

There has already been some early work done on
providing statistically based parsing using transi-
tions between recursively structured syntactic ca-
tegories (Tugwell 1995) 15. Unlike a simple Markov
process, there are a potentially infinite number of
states, so there is inevitably a problem of sparse
data. It is therefore necessary to make various
generalisations over the states, for example by ig-
noring the R2 lists.

The full processing model can then be either
serial, exploring the most highly ranked transiti-
ons first (but allowing backtracking if the seman-
tic plausibility of the current interpretation drops
too low), or ranked parallel, exploring just the n
paths ranked highest according to the transition
probabilities and semantic plausibility.

6 C o n c l u s i o n

Tim paper has presented a method for providing
interpretat ions word by word for basic Categorial
Grammar . The final section contrasted parsing
with lexicalised and rule based grammars , and ar-
gued tha t statistical language tuning is particu-
larly suitable for incremental, lexicalised parsing
strategies.

R e f e r e n c e s
Ades, A. ga Steedman, M.: 1972, 'On the Order of

Words', Linguistics ~d Philosophy 4, 517-558.
Bar-Hillel, Y.: 1953, 'A Quasi-Arithmetical Notation

for Syntactic Description', Language 29, 47-58.
Bar-Hillel, Y.: 1964, Language ~d Information:

Selected Essays on Their Theory ~4 Application,
Addison-Wesley.

Bouma, G.: 1987, 'A Unification-Based Analysis of
Unbounded Dependencies', in Proceedings of the
6th Amsterdam Colloquium, ITLI, University of
Amsterdam.

Bouma, G. & van Noord, G.: 1994, 'Constraint-Based
Categorial Grammar', in Proceedings of the 32nd
ACL, Las Cruces, U.S.A.

Earley, J.: 1970, 'An Efficient Context-free Parsing
Algorithm', ACM Communications 13(2), 94-102.

Gaifman, H.: 1965, 'Dependency Systems L: Phrase
Structure Systems', Information ~ Control 8: 304-
337.

Gazdar, G., Klein, E., Pullum, G.K., & Sag,
I.A.: 1985, Generalized Phrase Structure Gram-
mar, Blackwell, Oxford.

Hays, D.G.: 1964, 'Dependency Theory: A Forma-
lism ~z Some Observations', Language 40, 511-525.

Joshi, A.K.: 1987, 'An Introduction to Tree Adjoining
Grammars', in Manaster-Ramer (ed.), Mathema-
tics of Language, John Benjamins, Amsterdam.

l~Tugwell's approach does however differ in that the
state transitions are not limited by the rules of State-
Prediction and State-Application. This has advanta-
ges in allowing the grammar to learn phenomena such
as heavy NP shift, but has the disadvantage of suf-
fering from greater sparse data problems. A compro-
mise system using the rules here, but allowing reorde-
ring of the r-lists might be preferable.

Lambek, J.: 1958, 'The Mathematics of Sentence
Structure', American Mathematical Monthly 65,
154-169.

Marcus, M., Hindle, D., & Fleck, M.: 1983, 'D-
Theory: Talking about Talking about Trees', in
Proceedings of the 21st ACL, Cambridge, Mass.

Marslen-Wilson, W.: 1973, 'Linguistic Structure &
Speech Shadowing at Very Short Latencies', Na-
ture 244, 522-523.

Milward, D.: 1992, 'Dynamics, Dependency Gram-
mar & Incremental Interpretation', in Proceedings
of COLING 92, Nantes, vol 4, 1095-1099.

Milward, D. & Cooper, R.: 1994, 'Incremental Inter-
pretation: Applications, Theory &; Relationship to
Dynamic Semantics', in Proceedings of COLING
93, Kyoto, Japan, 748-754.

Milward, D.: 1994, 'Dynamic Dependency Grammar' ,
to appear in Linguistics ~d Philosophy 17, 561-605.

Mitchell, D.C., Cuetos, F., &= Corley, M.M.B.: 1992,
'Statistical versus linguistic determinants of par-
sing bias: cross-linguistic evidence'. Paper presen-
ted at the 5th Annual CUNY Conference on Hu-
man Sentence Processing, New York.

Moore, R.C.: 1989, 'Unification-Based Semantic In-
terpretation', in Proceedings of the 27th ACL, Van-
couver.

Moortgat, M.: 1988, Categorial Investigations: Logi-
cal ed Linguistic Aspects of the Lambek Calculus,
Foris, Dordrecht.

Morrill, G., Leslie, N., Hepple, M. & Barry, G.: 1990,
'Categorial Deductions ~z Structural Operations',
in Barry, G. ~z Morrill, G. (eds.), Studies in Ca-
tegorial Grammar, Edinburgh Working Papers in
Cognitive Science, 5.

Polanyi, L. & Scha, R.: 1984, 'A Syntactic Approach
to Discourse Semantics', in Proceedings of CO-
LING 8~, Stanford, 413-419.

Pollard, C. &: Sag, I.A.: 1994, Head-Driven Phrase
Structure Grammar, University of Chicago Press
&: CSLI Publications, Chicago.

Pulman, S.G.: 1986, 'Grammars, Parsers, ~z Memory
Limitations', Language ~d Cognitive Processes 1(3),
197-225.

Spivey-Knowlton, M., Sedivy, J., Eberhard, K., & Ta-
nenhaus, M.: 1994, 'Psycholinguistic Study of the
Interaction Between Language & Vision', in Pro-
ceedings of the 12th National Conference on AI,
AAAI-9~.

Stabler, E.P.: 1991, 'Avoid the Pedestrian's Paradox',
in Berwiek, R.C. et al. (eds.), Principle-Based Par-
sing: Computation ~d Psyeholinguistics, Kluwer,
Netherlands, 199-237.

Steedman, M.J.: 1991, 'Type-Raising 8z Directiona-
lity in Combinatory Grammar', in Proceedings of
the 29th ACL, Berkeley, U.S.A.

Tanenhaus, M.K., Garnsey, S., ~ Boland, J.: 1990,
'Combinatory Lexical Information &: Language
Comprehension', in Altmann, G.T.M. Cognitive
Models of Speech Processing, MIT Press, Cam-
bridge Ma.

Tugwell, D.: 1995, 'A State-Transition Grammar for
Data-Oriented Parsing', in Proceedings of the 7th
Conference of the European ACL, EACL-95, Dub-
lin, this volume.

Vijay-Shanker, K.: 1992, 'Using Descriptions of Trees
in a Tree Adjoining Grammar', Computational
Linguistics 18(4), 481-517.

126

