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Abstract 
The paper  describes a parser for Catego- 
rial G r a m m a r  which provides fully word 
by word incremental interpretation. The 
parser does not require fragments of sen- 
tences to form constituents, and thereby 
avoids problems of spurious ambiguity. 
The paper  includes a brief discussion of 
the relationship between basic Catego- 
rial G r a m m a r  and other formalisms such 
as HPSG, Dependency G r a m m a r  and 
the Lambek Calculus. I t  also includes 
a discussion of some of the issues which 
arise when parsing lexicalised grammars ,  
and the possibilities for using statistical 
techniques for tuning to particular lan- 
guages. 

1 Introduction 
There is a large body of psycholinguistic evidence 
which suggests that  meaning can be extracted be- 
fore the end of a sentence, and before the end 
of phrasal constituents (e.g. Marslen-Wilson 1973, 
Tanenhaus et al. 1990). There is also recent evi- 
dence suggesting that ,  during speech processing, 
partial  interpretations can be built extremely ra- 
pidly, even before words are completed (Spivey- 
Knowlton et al. 1994) 1. There are also potential  
computat ional  applications for incremental inter- 
pretation, including early parse filtering using sta- 
tistics based on logical form plausibility, and in- 
terpretat ion of fragments of dialogues (a survey 
is provided by Milward and Cooper, 1994, hence- 
forth referred to as M&:C). 

In the current computat ional  and psycholingui- 
stic l i terature there are two main approaches to 
the incremental construction of logical forms. One 
approach is to use a g rammar  with 'non-s tandard '  
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and Engineering Research Council, grant RR30718. 
I am grateful to Patrick Sturt, Carl Vogel, and the 
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1Spivey-Knowlton et al. reported 3 experiments. 
One showed effects before the end of a word when 
there was no other appropriate word with the same 
initial phonology. Another showed on-line effects 
from adjectives and determiners during noun phrase 
processing. 

constituency, so that  an initial fragment of a sen- 
tence, such as John likes, can be treated as a con- 
stituent, and hence be assigned a type and a se- 
mantics. This approach is exemplified by Com- 
binatory Categorial Grammar ,  CCG (Steedman 
1991), which takes a basic CG with just applica- 
tion, and adds various new ways of combining ele- 
ments together 2. Incremental  interpretat ion can 
then be achieved using a s tandard bot tom-up shift 
reduce parser, working from left to right along 
the sentence. The alternative approach, exempli- 
fied by the work of Stabler on top-down parsing 
(Stabler 1991), and Pulman on left-corner parsing 
(Pulman 1986) is to associate a semantics directly 
with the partial  structures formed during a top- 
down or left-corner parse. For example, a syntax 
tree missing a noun phrase, such as the following 

s 

/ \  
np vp 

John / \ 
v np" 

likes 

can be given a semantics as a function from enti- 
ties to t ruth values i.e. Ax. l i ke s ( j ohn , x ) ,  with- 
out having to say that  John likes is a constituent. 

Neither approach is without problems. If a 
g rammar  is augmented with operations which are 
powerful enough to make most initial fragments 
constituents, then there may be unwanted inter- 
actions with the rest of the g rammar  (examples 
of this in the case of CCG and the Lambek Cal- 
culus are given in Section 2). The addition of 
extra operations also means that ,  for any given 
reading of a sentence there will generally be many  
different possible derivations (so-called 'spurious '  
ambiguity), making simple parsing strategies such 
as shift-reduce highly inefficient. 

The limitations of the parsing approaches be- 
come evident when we consider g rammars  with 
left recursion. In such cases a simple top-down 
parser will be incomplete, and a left corner parser 
will resort to buffering the input (so won' t  be fully 

2Note that CCG doesn't provide a type for all in- 
itial fragments of sentences. For example, it gives a 
type to John thinks Mary, but not to John thinks each. 
In contrast the Lambek Calculus (Lambek 1958) pro- 
vides an infinite number of types for any initial sen- 
tence fragment. 
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word-by-word). M&C illustrate the problem by 
considering the fragment Mary thinks John. This 
has a small number of possible semantic repre- 
sentations (the exact number depending upon the 
grammar) e.g. 

),P.thinks (mary, P (john)) 
AP.AQ. Q (thinks(mary,P (john))) 
),P.AR. (R(Ax.thinks(x,P (john)))) (mary) 

The second representation is appropriate if the 
sentence finishes with a sentential modifier. The 
third allows there to be a verb phrase modifier. 

If the semantic representation is to be read off 
syntactic structure, then the parser must provide 
a single syntax tree (possibly with empty nodes). 
However, there are actually any number of such 
syntax trees corresponding to, for example, the 
first semantic representation, since the np  and the 
s can be arbitrarily far apart.  The following tree is 
suitable for the sentence Mary thinks John shaves 
but not for e.g. Mary thinks John coming here was 
a mistake. 

S 

/ \  
np vp 

Mary / \ 
V S 

thinks / \ 

np vp^ 
John 

M&C suggest various possibilities for packing the 
partial syntax trees, including using Tree Adjoi- 
ning Grammar  (Joshi 1987) or Description Theory 
(Marcus et al. 1983). One further possibility is to 
choose a single syntax tree, and to use destructive 
tree operations later in the parse a. 

The approach which we will adopt here is based 
on Milward (1992, 1994). Partial  syntax trees can 
be regarded as performing two main roles. The 
first is to provide syntactic information which gui- 
des how the rest of the sentence can be integrated 
into the tree. The second is to provide a basis for a 
semantic representation. The first role can be cap- 
tured using syntactic types, where each type corre- 
sponds to a potentially infinite number of partial 
syntax trees. The second role can be captured by 
the parser constructing semantic representations 
directly. The general processing model therefore 
consists of transitions of the form: 

Syntactic type i -+ Syntactic typei+ 1 
Semantic repi Semantic repi+ 1 

3This might turn out to be similar to one view of 
Tree Adjoining Grammar, where adjunction adds into 
a pre-existing well-formed tree structure. It is also 
closer to some methods for incremental adaptation of 
discourse structures, where additions are allowed to 
the right-frontier of a tree structure (e.g. Polanyi and 
Scha 1984). There are however problems with this 
kind of approach when features are considered (see 
e.g. Vijay-Shanker 1992). 

This provides a state-transition or dynamic model 
of processing, with each state being a pair of a 
syntactic type and a semantic value. 

The main difference between our approach and 
that  of Milward (1992, 1994) is that  it is based 
on a more expressive grammar formalism, Appli- 
cative Categorial Grammar,  as opposed to Lexi- 
calised Dependency Grammar.  Applicative Cate- 
gorial Grammars allow categories to have argu- 
ments which are themselves functions (e.g. v e r y  
can be treated as a function of a function, and gi- 
ven the type ( n / n ) / ( n / n )  when used as an adjec- 
tival modifier). The ability to deal with functions 
of functions has advantages in enabling more ele- 
gant linguistic descriptions, and in providing one 
kind of robust parsing: the parser never fails until 
the last word, since there could always be a final 
word which is a function over all the constituents 
formed so far. However, there is a corresponding 
problem of far greater non-determinism, with even 
unambiguous words allowing many possible tran- 
sitions. It therefore becomes crucial to either per- 
form some kind of ambiguity packing, or language 
tuning. This will be discussed in the final section 
of the paper. 

2 Applicative Categorial Grammar 

Applicative Categorial Grammar  is the most ba- 
sic form of Categorial Grammar,  with just a single 
combination rule corresponding to function appli- 
cation. It was first applied to linguistic descrip- 
tion by Adjukiewicz and Bar-Hillel in the 1950s. 
Although it is still used for linguistic description 
(e.g. Bouma and van Noord, 1994), it has been 
somewhat overshadowed in recent years by HPSG 
(Pollard and Sag 1994), and by Lambek Cate- 
gorial Grammars (Lambek 1958). It is therefore 
worth giving some brief indications of how it fits 
in with these developments. 

The first directed Applicative CG was proposed 
by Bar-Hillel (1953). Functional types included a 
list of arguments to the left, and a list of argu- 
ments to the right. Translating Bar-Hillel's nota- 
tion into a feature based notation similar to that  
in HPSG (Pollard and Sag 1994), we obtain the 
following category for a ditransitive verb such as 
put: 

r s ] Unp> 

L r(np, pp> 

The list of arguments to the left are gathered un- 
der the feature, l, and those to the right, an n p  
and a p p  in that  order, under the feature r. 

Bar-Hillel employed a single application rule, 
which corresponds to the following: 
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ix 1 L~ . . .  L1 I ( L 1  . .  • Ln) R1 . .. Rn ~ X 
r(R1 .. .R~> 

The result was a system which comes very close to 
the formalised dependency grammars of Gaifman 
(1965) and Hays (1964). The only real difference 
is that  Bar-Hillel allowed arguments to themsel- 
ves be functions. For example, an adverb such as 
slowly could be given the type 4 

LrO 
An unfortunate aspect of Bar-Hillel's first system 
was that  the application rule only ever resulted 
in a primitive type. Hence, arguments with fun- 
ctional types had to correspond to single lexical 
items: there was no way to form the type n p \ s  ~ 
for a non-lexical verb phrase such as likes Mary. 

Rather  than adapting the Application Rule to 
allow functions to be applied to one argument at a 
time, Bar-Hillel's second system (often called AB 
Categorial Grammar,  or Adjukiewicz/Bar-Hillel 
CG, Bar-Hillel 1964) adopted a 'Curried' nota- 
tion, and this has been adopted by most CGs 
since. To represent a function which requires an 
np  on the left, and an np  and a pp  to the right, 
there is a choice of the following three types using 
Curried notation: 

np \ ( ( s /pp ) /np )  
(np \ ( s /pp ) ) /np  
( (np \ s ) /pp ) /np  

Most CGs either choose the third of these (to give 
a vp  structure), or include a rule of Associativity 
which means that  the types are interchangeable 
(in the Lambek Calculus, Associativity is a conse- 
quence of the calculus, rather than being specified 
separately). 

The main impetus to change Applicative CG 
came from the work of Ades and Steedman (1982). 
Ades and Steedman noted that  the use of function 
composition allows CGs to deal with unbounded 
dependency constructions. Function composition 
enables a function to be applied to its argument, 
even if that  argument is incomplete e.g. 

s /pp  + pp /np  --+ s /np 

This allows peripheral extraction, where the 'gap' 
is at the start  or the end of e.g. a relative clause. 
Variants of the composition rule were proposed 
in order to deal with non-peripheral extraction, 

4 T h e  reformulation is not entirely faithful here to 
Bar-Hillel, who used a slightly problematic 'double 
slash' notation for functions of functions. 

5Lambek notation (Lambek 1958). 

but this led to unwanted effects elsewhere in the 
grammar (Bouma 1987). Subsequent treatments 
of non-peripheral extraction based on the Lambek 
Calculus (where standard composition is built in: 
it is a rule which can be proven from the calcu- 
lus) have either introduced an alternative to the 
forward and backward slashes i.e. / and \ for nor- 
mal args, ? for wh-args (Moortgat 1988), or have 
introduced so called modal operators on the wh- 
argument (Morrill et al. 1990). Both techniques 
can be thought of as marking the wh-arguments as 
requiring special treatment,  and therefore do not 
lead to unwanted effects elsewhere in the gram- 
mar. 

However, there are problems with having just 
composition, the most basic of the non-applicative 
operations. In CGs which contain functions of 
functions (such as very, or slowly), the addition of 
composition adds both new analyses of sentences, 
and new strings to the language. This is due to 
the fact that  composition can be used to form a 
function, which can then be used as an argument 
to a function of a function. For example, if the 
two types, n / n  and n / n  are composed to give the 
type n / n ,  then this can be modified by an adjec- 
tival modifier of type ( n / n ) / ( n / n ) .  Thus, the 
noun very old dilapidated car can get the unac- 
ceptable bracketing, [[very [old dilapidated]] car]. 
Associative CGs with Composition, or the Lam- 
bek Calculus also allow strings such as boy with 
the to be given the type n / n  predicting very boy 
with the car to be an acceptable noun. Although 
individual examples might be possible to rule out 
using appropriate features, it is difficult to see how 
to do this in general whilst retaining a calculus 
suitable for incremental interpretation. 

If wh-arguments need to be treated specially 
anyway (to deal with non-peripheral extraction), 
and if composition as a general rule is proble- 
matic, this suggests we should perhaps return to 
grammars which use just Application as a gene- 
ral operation, but  have a special t reatment  for 
wh-arguments. Using the non-Curried notation 
of Bar-Hillel, it is more natural to use a separate 
wh-list than to mark wh-arguments individually. 
For example, the category appropriate for relative 
clauses with a noun phrase gap would be: 

lO 
|,:o / 

It is then possible to specify operations which act 
as purely applicative operations with respect to 
the left and right arguments lists, but more like 
composition with respect to the wh-list. This is 
very similar to the way in which wh-movement 
is dealt with in GPSG (Gazdar et al. 1985) and 
HPSG, where wh-arguments are treated using 
slash mechanisms or feature inheritance principles 
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which correspond closely to function composition. 
Given that  our arguments have produced a cate- 

gorial grammar which looks very similar to HPSG, 
why not use HPSG rather than Applicative CG? 
The main reason is that  Applicative CG is a much 
simpler formalism, which can be given a very sim- 
ple syntax semantics interface, with function ap- 
plication in syntax mapping to function applica- 
tion in semantics 6'7. This in turn makes it relati- 
vely easy to provide proofs of soundness and com- 
pleteness for an incremental parsing algorithm. 
Ultimately, some of the techniques developed here 
should be able to be extended to more complex 
formalisms such as HPSG. 

3 A B  C a t e g o r i a l  g r a m m a r  w i t h  

A s s o c i a t i v i t y  ( A A C G )  

In this section we define a grammar similar to Bar- 
Hillel's first grammar. However, unlike Bar-Hillel, 
we allow one argument to be absorbed at a time. 
The resulting grammar is equivalent to AB Cate- 
gorial Grammar  plus associativity. 

The categories of the grammar are defined as 
follows: 

1. If X is a syntactic type (e.g. s, np), then 

10 is a category. 
r0  

2. If X is a syntactic type, and L and R are lists 
of categories, then 

Application to the right is defined by the ruleS: 

6One area where application based approaches to 
semantic combination gain in simplicity over unifica- 
tion based approaches is in providing semantics for 
functions of functions. Moore (1989) provides a treat- 
ment of functions of functions in a unification based 
approach, but only by explicitly incorporating lambda 
expressions. Pollard and Sag (1994) deal with some 
functions of functions, such as non-intersective adjec- 
tives, by explicit set construction. 

7As discussed above, wh-movement requires some- 
thing more like composition than application. A sim- 
ple syntax semantics interface can be retained if the 
same operation is used in both syntax and semantics. 
Wh-arguments can be treated as similar to other ar- 
guments i.e. as lambda abstracted in the semantics. 
For example, the fragment: John found a woman who 
Mary can be given the semantics ,kP.3x. woman(x)  
&: found(john,x)  g~ P(mary ,  x), where P is a fun- 
ction from a left argument Mary of type e and a wh- 
argument, also of type e. 

s,., is list concatenation e.g. (np)-(s) equals (np,s). 

j j 
Application to the left is defined by the rule: 

L=R [=RJ 
The basic grammar provides some spurious deri- 
vations, since sentences such as John likes Mary 
can be bracketed as either ((John likes) Mary) 
or (John (likes Mary)). However, we will see 
that these spurious derivations do not translate 
into spurious ambiguity in the parser, which maps 
from strings of words directly to semantic repre- 
sentations. 

4 A n  I n c r e m e n t a l  P a r s e r  

Most parsers which work left to right along an 
input string can be described in terms of state 
transitions i.e. by rules which say how the current 
parsing state (e.g. a stack of categories, or a chart) 
can be transformed by the next word into a new 
state. Here this will be made particularly explicit, 
with the parser described in terms of just two rules 
which take a state, a new word and create a new 
state 9. There are two unusual features. Firstly, 
there is nothing equivalent to a stack mechanism: 
at all times the state is characterised by a single 
syntactic type, and a single semantic value, not 
by some stack of semantic values or syntax trees 
which are waiting to be connected together. Se- 
condly, all transitions between states occur on the 
input of a new word: there are no 'empty '  tran- 
sitions (such as the reduce step of a shift-reduce 
parser). 

The two rules, which are given in Figure 1 t°, are 
difficult to understand in their most general form. 
Here we will work upto the rules gradually, by con- 
sidering which kinds of rules we might need in par- 
ticular instances. Consider the following pairing 
of sentence fragments with their simplest possible 
CG type: 

Mary thinks: s/s 
Mary thinks John: s / (np\s)  
Mary thinks John likes: s /np 
Mary thinks John likes Sue: s 

Now consider taking each type as a description of 
the state that the parser is in after absorbing the 
fragment. We obtain a sequence of transitions as 
follows: 

9This approach is described in greater detail in Mil- 
ward (1994), where parsers are specified formally in 
terms of their dynamics. 

l°Li, Ri,  Hi are lists of categories, li and ri are lists 
of variables, of the same length as the corresponding 
Li and Ri. 
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State-Application: 

Y 
1<> 

1Lo ) .  R2 
r( [ rP~o 

hHo 

h<> 

F 

State-Prediction: 

Y 
10 

ILl "Lo 
r< rRo ) • R2 

hL1, Ho 

hO 
F 

¢{W ~ __} rRI"R2 
h<> 

Ar~. F(G(r,))  

Y 
I<> 

X 

rR1 • < 
rRo 

hO 

~rl.(ah. F(all. (h( ar (((G rl)r)ll))))) 

Figure h Transition Rules 

• L0 

> .R2 

.H0 

where W: 

where W: 

1Xo 
rRI"Ro 
h<> 

G 

IZLI ,,L 
r R 1 . R  
h0 

G 

"John . . . .  likes . . . .  Sue" 
s/s -~ s / (np\s)  -~ s/np --~ s 

If an embedded sentence such as John likes Sue 
is a mapping from an s / s  to an s, this suggests 
that  it might be possible to treat all sentences as 
mapping from some category expecting an s to 
that category i.e. from X / s  to X. Similarly, all 
noun phrases might be treated as mappings from 
an X / n p  to an X. 

Now consider individual transitions. The sim- 
plest of these is where the type of argument ex- 
pected by the state is matched by the next word 
i.e. 

"Sue" 
s/np -~ s where: Sue: np 

This can be generalised to the following rule, 
which is similar to Function Application in stan- 
dard CG 11 

X /Y  "~"  X where: W: Y 

A similar transition occurs for likes. Here an n p \ s  
was expected, but likes only provides part of this: 

n i t  differs in not being a rule of grammar: here 
the functor is a state category and the argument is a 
lexical category. In standard CG function application, 
the functor and argument can correspond to a word 
or a phrase. 

it requires an np  to the right to form an n p \ s .  
Thus after likes is absorbed the state category will 
need to expect an np. The rule required is similar 
to Function Composition in CG i.e. 

,{W~ 
X/Y ~ X/Z where: W: Y/Z 

Considering this informally in terms of tree struc- 
tures, what is happening is the replacement of an 
empty node in a partial tree by a second partial 
tree i.e. 

X 
/ \  

U Y^ 

x 
/ \  

+ Y => U Y 
/ \  / \  

V z ̂  V Z ̂  

The two rules specified so far need to be further 
generalised to allow for the case where a lexical 
item has more than one argument (e.g. if we re- 
place likes by a di-transitive such as gives or a 
tri-transitive such as bets). This is relatively tri- 
vial using a non-curried notation similar to that 
used for AACG. What  we obtain is the single rule 
of State-Application, which corresponds to appli- 
cation when the list of arguments, R1, is empty, 
to function composition when R1 is of length one, 
and to n-ary composition when R1 is of length n. 
The only change needed from AACG notation is 
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8 

I(> 

r(8> 

h(> 

AQ.Q 

"John" --+ 

S 

I<> 

l(np> 
r< / > 

L h<np) 

h0 

AH. (n(john')) 

"likes" rs 1 1<> 
| r(np> 

t hO 
AY.likes'(john',Y) 

Figure 2: Possible state transitions 

i<> 

r(> | 
h<>J 

likes'(john',sue') 

the inclusion of an extra  feature list, the h list, 
which stores information about  which arguments 
are waiting for a head (the reasons for this will be 
explained later). The lexicon is identical to that  
for a s tandard AACG, except for having h-lists 
which are always set to empty. 

Now consider the first transition. Here a sen- 
tence was expected, but what was encountered 
was a noun phrase, John. The appropriate  rule 
in CG notat ion would be: 

" W "  
X / Y  -+ X / ( Z \ Y )  where: W: Z 

This rule states tha t  if looking for a Y and get a 
Z then look for a Y which is missing a Z. In tree 
structure terms we have: 

X X 
/ \  / \  

U Y^ + Z => U Y 
/\ 

z zkY ~ 

The rule of State-Predict ion is obtained by further 
generalising to allow the lexical i tem to have mis- 
sing arguments,  and for the expected argument  to 
have missing arguments.  

State-Application and State-Prediction to- 
gether provide the basis of a sound and complete 
parser 12. Parsing of sentences is achieved by star- 
ting in a s tate  expecting a sentence, and apply- 
ing the rules non-deterministically as each word 
is input. A successful parse is achieved if the fi- 
nal s tate expects no more arguments.  As an ex- 
ample, reconsider the string John likes Sue. The 
sequence of transitions corresponding to John li- 
kes Sue being a sentence, is given in Figure 2. 
The transit ion on encountering John is determini- 
stic: State-Applicat ion cannot apply, and State- 
Prediction can only be instantiated one way. The 
result is a new state  expecting an argument  which, 
given an n p  could give an s i.e. an n p \ s .  

12The parser accepts the same strings as the gram- 
mar and assigns them the same semantic values. This 
is slightly different from the standard notion of so- 
undness and completeness of a parser, where the par- 
ser accepts the same strings as the grammar and as- 
signs them the same syntax trees. 

The transition on input of likes is non- 
deterministic. State-Application can apply, as in 
Figure 2. However, State-Predict ion can also ap- 
ply, and can be instantiated in four ways (these 
correspond to different ways of cutt ing up the 
left and right subcategorisation lists of the le- 
xical entry, likes, i.e. as (np> • 0 or 0 • (np>). 
One possibility corresponds to the prediction of 
an s \ s  modifier, a second to the prediction of an 
( n p \ s ) \ ( n p \ s )  modifier (i.e. a verb phrase too- 
differ), a third to there being a function which 
takes the subject and the verb as separate  argu- 
ments, and the fourth corresponds to there being a 
function which requires an s / n p  argument .  The 
second of these is perhaps the most  interesting, 
and is given in Figure 3. I t  is the choice of this 
particular transition at this point which allows 
verb phrase modification, and hence, assuming the 
next word is Sue, an implicit bracketing of the 
string fragment as (John (likes Sue)). Note tha t  
if State-Application is chosen, or the first of the 
State-Prediction possibilities, the fragment  John 
likes Sue retains a flat structure. If there is to 
be no modification of the verb phrase, no verb 
phrase structure is introduced. This relates to 
there being no spurious ambiguity: each choice of 
transition has semantic consequences; each choice 
affects whether a particular par t  of the semantics 
is to be modified or not. 

Finally, it is worth noting why it is necessary to 
use h-lists. These are needed to distinguish bet- 
ween cases of real functional arguments  (of func- 
tions of functions), and functions formed by State- 
Prediction. Consider the following trees, where 
the n p \ s  node is empty. 

S S 

/ \  / \  
s / s  s np n p \ s  

/ \  / \  
np n p \ s "  ( n p \ s ) / ( n p \ s )  n p \ s  ^ 

Both trees have the same syntactic type,  however 
in the first case we want to allow for there to be 
an s \ s  modifier of the lower s, but  not in the se- 
cond. The headed list distinguishes between the 
two cases, with only the first having an n p  on its 
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S 

i0 

l(np> 
r< I r<) > 

! 
L h<np) 

hO 

AH. (H(john')) 

"lik_~s" 

"S 

1<> 

S 

l(np) 
1( / rO , up> 

! 
L h0 

r(np, ) 
r<) 

1 (np) 
h( / rO , np> 

! 
L hO 

h(> 

AY.AK. (K(AX.likes'(X,Y))) (john) 

where W: 

Figure 3: Example instantiation of State-Prediction 

8 

l(np> 
| r(np> 

Lh<> 
AY.AX.Iikes'(X,Y) 

headed list, allowing prediction of an s modifier. 

5 Parsing Lexicalised Grammars  

When we consider full sentence processing, as op- 
posed to incremental processing, the use of lexi- 
calised grammars has a major advantage over the 
use of more standard rule based grammars. In 
processing a sentence using a lexicalised formalism 
we do not have to look at the grammar as a whole, 
but only at the grammatical information indexed 
by each of the words. Thus increases in the size 
of a grammar don' t  necessarily effect efficiency of 
processing, provided the increase in size is due to 
the addition of new words, rather than increased 
lexical ambiguity. Once the full set of possible le- 
xical entries for a sentence is collected, they can, 
if required, then be converted back into a set of 
phrase structure rules (which should correspond 
to a small subset of the rule based formalism equi- 
valent to the whole lexicalised grammar), before 
being parsing with a standard algorithm such as 
Earley's (Earley 1970). 

In incremental parsing we cannot predict which 
words will appear in the sentence, so cannot use 
the same technique. However, if we are to base a 
parser on the rules given above, it would seem that 
we gain further. Instead of grammatical informa- 
tion being localised to the sentence as a whole, it 
is localised to a particular word in its particular 
context: there is no need to consider a pp  as a 
start of a sentence if it occurs at the end, even if 
there is a verb with an entry which allows for a 
subject pp.  

However there is a major problem. As we noted 
in the last paragraph, it is the nature of parsing 
incrementally that we don' t  know what words are 
to come next. But here the parser doesn't even 
use the information that the words are to come 

from a lexicon for a particular language. For ex- 
ample, given an input of 3 nps, the parser will 
happily create a state expecting 3 nps to the left. 
This might be a likely state for say a head final 
language, but an unlikely state for a language such 
as English. Note that incremental interpretation 
will be of no use here, since the semantic represen- 
tation should be no more or less plausible in the 
different languages. In practical terms, a naive in- 
teractive parallel Prolog implementation on a cur- 
rent workstation fails to be interactive in a real 
sense after about 8 words 13. 

What  seems to be needed is some kind of langu- 
age tuning 14. This could be in the nature of fixed 
restrictions to the rules e.g. for English we might 
rule out uses of prediction when a noun phrase is 
encountered, and two already exist on the left list. 
A more appealing alternative is to base the tuning 
on statistical methods. This could be achieved by 
running the parser over corpora to provide pro- 
babilities of particular transitions given particu- 
lar words. These transitions would capture the 
likelihood of a word having a particular part  of 
speech, and the probability of a particular transi- 
tion being performed with that part of speech. 

13This result should however be treated with some 
caution: in this implementation there was no attempt 
to perform any packing of different possible transiti- 
ons, and the algorithm has exponential complexity. In 
contrast, a packed recogniser based on a similar, but 
much simpler, incremental parser for Lexicalised De- 
pendency Grammar has O(n a) time complexity (Mil- 
ward 1994) and good practical performance, taking a 
couple of seconds on 30 word sentences. 

14The usage of the term language tuning is perhaps 
broader here than its use in the psycholinguistic lite- 
rature to refer to different structural preferences bet- 
ween languages e.g. for high versus low attachment 
(Mitchell et al. 1992). 
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There has already been some early work done on 
providing statistically based parsing using transi- 
tions between recursively structured syntactic ca- 
tegories (Tugwell 1995) 15. Unlike a simple Markov 
process, there are a potentially infinite number of 
states, so there is inevitably a problem of sparse 
data. It  is therefore necessary to make various 
generalisations over the states, for example by ig- 
noring the R2 lists. 

The full processing model can then be either 
serial, exploring the most  highly ranked transiti- 
ons first (but allowing backtracking if the seman- 
tic plausibility of the current interpretation drops 
too low), or ranked parallel, exploring just the n 
paths ranked highest according to the transition 
probabilities and semantic plausibility. 

6 C o n c l u s i o n  

Tim paper  has presented a method for providing 
interpretat ions word by word for basic Categorial 
Grammar .  The  final section contrasted parsing 
with lexicalised and rule based grammars ,  and ar- 
gued tha t  statistical language tuning is particu- 
larly suitable for incremental, lexicalised parsing 
strategies. 
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