
B I D I R E C T I O N A L P A R S I N G O F
L E X I C A L I Z E D T R E E A D J O I N I N G G R A M M A R S *

Alberto Lavelli and Giorgio Satta
Istituto per ia Ricerca Scientifica e Teenologica

I - 38050 Povo TN, Italy
e-mail: lavelli/satta@irst.it

A b s t r a c t

In this paper a bidirectional parser for Lexicalized
Tree Adjoining Grammars will be presented. The
algorithm takes advantage of a peculiar characteristic
of Lexicalized TAGs, i.e. that each elementary tree is
associated with a lexical item, called its anchor. The
algorithm employs a mixed strategy: it works bot-
tom-up from the lexical anchors and then expands
(partial) analyses making top-down predictions. Even
if such an algorithm does not improve tim worst-case
time bounds of already known TAGs parsing meth-
ods, it could be relevant from the perspective of
linguistic information processing, because it em-
ploys lexical information in a more direct way.

1 . I n t r o d u c t i o n

Tree Adjoining Grammars (TAGs) are a formal-
ism for expressing grammatical knowledge that ex-
tends the domain of locality of context-free gram-
mars (CFGs). TAGs are tree rewriting systems spec-
ified by a finite set of elementary trees (for a detailed
description of TAGs, see (Joshi, 1985)). TAGs can
cope with various kinds of unbounded dependencies
in a direct way because of their extended domain of
locality; in fact, the elementary trees of TAGs are
the appropriate domains for characterizing such de-
pendencies. In (Kroch and Joshi, 1985) a detailed dis-
cussion of the linguistic relevance of TAGs can be
found.

Lexicalized Tree Adjoining Grammars (Schabes et
al., 1988) are a refinement of TAGs such that each
elementary tree is associated with a lexieal item,
called the anchor of the tree. Therefore, Lexicalized
TAGs conform to a common tendency in modem
theories of grammar, namely the attempt to embed
grammatical information within lexical items.
Notably, the association between elementary trees
and anchors improves also parsing performance, as
will be discussed below.

Various parsing algorithms for TAGs have been
proposed in the literature: the worst-case time com-
plexity varies from O(n 4 log n) (Harbusch, 1990) to
O(n 6) (Vijay-Shanker and Joshi, 1985, Lang, 1990,
Schabes, 1990) and O(n 9) (Schabes and Joshi, 1988).

*Part of this work was done while Giorgio Satta was
completing his Doctoral Dissertation at the
University of Padova (Italy). We would like to thank
Yves Schabes for his valuable comments. We would
also like to thank Anne Abeill6. All errors are of
c o u r s e o u r o w n .

As for Lexicalized TAGs, in (Schabes et al., 1988) a
two step algorithm has been presented: during the
first step the trees corresponding to the input string
are selected and in the second step the input string is
parsed with respect to this set of trees. Another paper
by Schabes and Joshi (1989) shows how parsing
strategies can take advantage of lexicalization in
order to improve parsers' performance. Two major
advantages have been discussed in the cited work:
grammar filtering (the parser can use only a subset
of the entire grammar) and bottom-up information
(further constraints are imposed on the way trees can
be combined). Given these premises and starting
from an already known method for bidirectional CF
language recognition (Satta and Stock, 1989), it
seems quite natural to propose an anchor-driven bidi-
rectional parser for Lexicalized TAGs that tries to
make more direct use of the information contained
within the anchors. The algorithm employs a mixed
strategy: it works bottom-up from the lexical an-
chors and then expands (partial) analyses making
top-down predictions.

2 . O v e r v i e w o f t h e A l g o r i t h m

The algorithm that will be presented is a recog-
nizer for Tree Adjoining Languages: a parser can be
obtained from such a recognizer by additional pro-
cessing (see final section). As an introduction to the
next section, an informal description of the studied
algorithm is here presented. We assume the follow-
ing definition of TAGs.

Definition 1 A Tree Adjoining Grammar (TAG)
is a 5-tuple G=(VN, Vy, S, l, A), where VN is a
finite set of non-terminal symbols, Vy is a finite set
of terminal symbols, Se VN is the start symbol, 1
and A are two finite sets of trees, called initial trees
and auxiliary trees respectively. The trees in the set
IuA are called elementary trees.

We assume that the reader is familiar with the
definitions of adjoining operation and foot node (see
0oshi, 1985)).

The proposed algorithm is a tabular method that
accepts a TAG G and a string w as input, and decides
whether w e L (G) . This is done by recovering
(partial) analyses for substrings of w and by combin-
ing them. More precisely, the algorithm factorizes
analyses of derived trees by employing a specific
structure called state. Each state retains a pointer to a
node n in some tree ae l u A , along with two addi-
tional pointers (called Idol and rdot) to n itself or to

- 2 7 -

its children in a. Let an be a tree obtained from the
maximal subtree of a with root n, by means of
some adjoining operations. Informally speaking and
with a little bit of simplification, the two following
cases are possible. First, ff ldot, rdo~n, state s indi-
cates that the part of an dominated by the nodes
between ldot and rdot has already been analyzed by
the algorithm. Second, if ldot=rdot=n, state s indi-
cates that the whole of an has already been analyzed,
including possible adjunctions to its root n.

Each state s will be inserted into a recognition
matrix T, which is a square matrix indexed from 0 to
nw, where nw is the length of w. If state s belongs
to the component tij of T, the partial analysis (the
part of an) represented by s subsumes the substring
of w that starts from position i and ends at position
j, except for the items dominated by a possible foot
node in an (this is explicitly indicated within s).

The algorithm performs the analysis of w start-
ing from the anchor node of every tree in G whose
category is the same as an item in w. Then it tries to
extend each partial analysis so obtained, by climbing
each tree along the path that connects the anchor
node to the root node; in doing this, the algorithm
recognizes all possible adjunctions that are present in
w. Most important, every subtree 7'of a tree derived
from a E l u A , such that 7'd0es not contain the an-
chor node of a, is predicted and analyzed by the algo-
rithm in a top-down fashion, from right to left (left
to right) if it is located to the left (right) of the path
that connects the anchor node to the root node in a.

The combinations of partial analyses (states) and
the introduction of top-down prediction states is car-
ried out by means of the application of six proce-
dures that will be defined below. Each procedure ap-
plies to some states, trying to "move" outward one
of the two additional pointers within each state.

The algorithm stops when no state in T can be
further expanded. If some state has been obtained that
subsumes the input string and that represents a com-
plete analysis for some tree with the root node of
category S, the algorithm succeeds in the recogni-
tion.

3 . T h e A l g o r i t h m

In the following any (elementary or derived) tree
will be denoted by a pair (N, E), where N is a finite
set of nodes and E is a set of ordered pairs of nodes,
called arcs. For every tree a=(N, E), we define five
functions of N into N u {_1_} ,l called father, leftmost-
child, rightmost-child, left-sibling, and right-sibling
(with the obvious meanings). For every tree a=(N,
E) and every node n~N, a function domaina is de-
fined such that domaindn)-'~, where/3 is the maxi-
mal subtree in a whose root is n.

IThe symbol "_1_" denotes here the undefined element.

F o r any TAG G and for every node n in some
tree in G, we will write cat(n)=X, X~ V N u V Z ,
whenever X is the symbol associated to n in G. For
every node n in some tree in G, such that
cat(n)~ VN, the set Adjoin(n) contains all root nodes
of auxiliary trees that can be adjoined to n in G.
Furthermore, a function x is defined such that, for
every tree a~ l u A , it holds that z(a)=n, where n
indicates the anchor node of a. In the following we
assume that the anchor nodes in G are not labelled
by the null (syntactic) category symbol e. The set of
all nodes that dominate the anchor node of some tree
in I uA will be called Middle-nodes (anchor nodes
included); for every tree a=(N, E), the nodes nEN in
Middle-nodes divide a in two (possibly empty) left
and right portions. The set Left-nodes (Right-nodes)
is defined as the set of all nodes in the left (right)
portion of some tree in IuA. Note that the three sets
Middle-nodes, Left-nodes and Right-nodes constitute
a partition of the set of all nodes of trees in IuA.
The set of all foot nodes in the trees in A will be
called Foot-nodes:

Let w---a I ... anw, nw >1, be a symbol string; we
will say that nw is the length of w.

Definition 2 A state is defined to be any 8-tuple
[n, ldot, lpos, rdot, rpos, fl, fr, m] such that:

n, ldot, rdot are nodes in some tree ~ IuA;
lpos, rpos~ {left, right};
fl, fr are either the symbol "-" or indices in the
input string such thatfl<fr;
mE {-, rm, Ira}.

The first component in a state s indicates a node
n in some tree a , such that s represents some partial
analysis for the subtree domaina(n). The second
component (ldot) may be n or one of its children in

if lpos=left, domaina(ldot) is included in the par-
tial analysis represented by s, otherwise it is not.
The components rdot and rpos have a symmetrical
interpretation. The pair fl, fr represents the part of
the input string that is subsumed by the possible
foot node in domaina(n). A binary operator indicated
with the symbol • is defined to combine the com-
ponents fl, fr in different states; such an operator is
defined as follows: f ~ f equals f i f f= -, it equalsf if
f= -, and it is undefined otherwise. Finally, the com-
ponent m is a marker that will be used to block ex-
pansion at one side for a state that has already been
subsumed at the other one. This particular technique
is called subsumption test and is discussed in (Satta
and Stock, 1989). The subsumption test has the
main purpose of blocking analysis proliferation due
to the bidirectional behaviour of the method.

Let IS be the set of all possible states; we will
use a particular equivalence relation O.C- Isxls de-
fined as follows. For any pair of states s, s', sO.s"
holds if and only if every component in s but the
last one (the m component) equals the corresponding

- 2 8 -

component in s'.

The algorithm that will be presented employs the
following function.

Definition 3 A function F is defined as follows: 2
F: V~, -.> ~(Is)
F(a) = {s I s=[father(n), n, left, n, right, -, -, -],

cat(n)=a and z(oO=n for some tree
ot~ IuA }

The details of the algorithm are as follows.

A l g o r i t h m 1
Let G=(VN, Vy, S, I, A) be a TAG and let w=al ...
anw, nw >--1, be any string in V~*. Let T b e a recogni-
tion matrix of size (nw+l)x(nw+l) whose compo-
nents tij are indexed from 0 to nw for both sides.
Developmatrix T in the following way (a new slate
s is added to some entry in T only if SOjq does not
hold for any slate Sq already present in that entry).
1. For every slate se F(ai), l<i<-nw, add s to ti-l,i.
2. Process each slate s added to some entry in T by

means of the following procedures (in any order):
Left-expander(s), Right-expander(s),
Move-dot-left(s), Move-dot-right(s),
C o m p l e t e r (s) , Ad jo iner (s) ;
until no state can be further added.

3. if s=[n, n, left, n, right,-, -, -]e to,nw for some
node n such that cat(n)=S and n is the root of a
tree in I, then output(true)', else output(false).

C3

The six procedures mentioned above are defined
in the following.

Procedure 1 Left-expander
Input A state s=[n, ldot. lpos, rdot, rpos, fl, fr, m]
in ti,j.
Precondition me-Ira, ldot~n and lpos=right.
Description
Case 1: ldot~ VN, ldot~ Foot-nodes.

Step 1: For every state s'~[ldot, ldot, left, ldot,
right, fl", fr", -] in ti',i, i'<_i, add slate s'=[n,
ldot, left, rdot, rpos, f l~fl '', frOfr '', -] to ti,j;
set m=rm in s if left-expansion is successful:,

Step 2: Add state s'=[ldot, ldot, right, ldot, right,
-, -, -] to ti, i. For every state s"=[n", n", left,
n", right, f l" , f r" , "] in t i ' , i , i ' < i ,
n" ~ Adjoin(ldot), add state s'=[ldot, ldot, right,
ldot, right, -, -, -] to tfr"fr".

Case 2: ldotE V~.. 3
If ai=cat(ldot), add state s~[n, ldot, left, rdot,
rpos, fi, fr,-] to ti-Ij (if eat(ldot)=e, i.e. the null
category symbol, add state s' to tij); set m=rm
in s if left-expansion is successful.

Case 3: ldot~ Foot-nodes.
Add state s~[n, ldot, left, rdot, rpos, i', i, -] to

2Given a generic set ;1, the symbol P(.,q) denotes the
set of all the subsets of .,~ (the power set of ,~).
3We assume that a 0 is undefined.

ti, J, for every i'<~, and set m=rm in s. Q

Procedure 2 Right-expander
Input A slate s=[n, ldot, lpos, rdot, rpos, fl, fr, m]
in tij .
Precondition m # m , rdotg-n and rpos=-left.
Description
Case 1: rdot~ VN, rdot~ Foot-nodes.

Step 1: For every slate s"=[rdot, rdot, left, rdot.
• t e t o ° . ~ , t t rtght, fl , fr , "] m tj,j,, j~_j , add state s =[n,

ldot, lpos, rdot, right, flOfl", fr~fr", "] to
ti "'; set m = l m in s if lef t-expansion is d
successful;

Step 2: Add state s~[rdot, rdot, left, rdot, left, -o
-, -] to tjj. For every slate s"--[n", n", left,
n'~, right, f l " , f r ' . "] in t j , j . , j < j ' ,
n" ~ Adjoin(rdot), add state s'=[rdot, rdot, left,
rdot, left, -, -, -] to tfr"f/'.

Case 2: rdote V~. 4
If aj+l=cat(rdot), add state s~[n, ldot, lpos, rdot,
rigl~t, f l , fr , "] to ti,j+l (if cat(rdot)=e, i.e. the
null category symbol, add state s' to tij); set
m=Im in s if right-~xpansion is successful.

Case 3: rdot¢ Foot-nodes.
Add state s - in , ldot, lpos, rdot, right, j, j', -] to
tij', for every j<j', and set m=lm in s. t3

Procedure 3 Move-dot-left
Input A slate s=[n, ldot, lpos, rdot, rpos, fl, fr, m]
in tij.
Precondit ion m~lm, and ldot~n, lpos=left, or
ldot=n, lpos=right.
Description
Case 1: lpos=right. ~

Add slate s~[n, rightmost-child(n), right, rdot,
rpos, fl, fr, -] to tij; set m=rm in s;

Case 2: lpos=left, left-sibling(n)~l.
Add state s'=[n, left-sibling(ldot), right, rdot,
rpos, fl, fr, "] to tij; set m=rm in s.

Case 3: lpos=-left, left-sibling(ldot)=±.
Add slate s'=[n, n, left, rdot, rpos, fl, fr, -] to tij
and set m=rm in s. (3

Procedure 4 Move-dot-right
Input A slate s=[n, ldot, lpos, rdot, rpos, f l , fr, m]
in tij.
Precondition m#rm, and rdot~n, rpos=right, or
rdot=n, rpos=-left.
Description
Case 1: rpos=left.

Add slate s'=[n, ldot, lpos, leftmost-child(n), left,
fl, fr, -] to tij; set m=lm in s;

Case 2: rpos=right, right-sibling(n)~Z.
Add state s~[n, ldot, lpos, right-sibling(rdoO,
left, fl, fr, "] to ti4; set m=lm in s.

Case 3: rpos=right, rtght-sibling(ldot)=±.
Add state s'=[n, ldot, lpos, n, right, f l , fr , -] to
tij and set m=lm in s. Q

4See note 3.

- 2 9 -

P r o c e d u r e 5 Completer
Input A state s=[n, n, left, n, right, fl, fr, m] in tij.
Precondition n is not the root of an auxiliary tree.
Description
Case 1: nE Middle-nodes.

Add state s'=[father(n), n, left, n, right, fl, fr, -]
to ti~ j.

Case 2: n~Left-nodes.
For every state s"=[n", Idol", right, rdot, rpos,
fl", fr", m"] in t'f,j ,J'>J', such ,that ldot"=n and
m"~lm, add state s =[n , idol', left, rdot, rpos,
f l u f f ' , fr@fr", "] in t i f ; i f left-expansion is
successful for slate s', set m =rm in s .

Case 3: nERight-nodes.
For every state s"=[n", Idol, lpos, rdot", left, f f ' ,
f ,", m'q in ti',i, i'<i, such that rdot"=n and
m"#rm, add state s - [n", Idol, lpos, rdot", right,

H p t • , • • * ffi~ft , f,~gf, , -] m ti',j, ff nght-expansmn is
successful for state s", set m"--lm in s". ~.

Procedure 6 Adjoiner
Input A state s=[n, n, left, n, right, fl, fr, m] in tij.
Precondition Void.
Description
Case 1: apply always.

For every state s"=[n", n", left, n ", right, i, j, -]
• ~ . t ~ • . • t ¢ • •

m ti'~, t _t,j~_j, n eAdjom(n), add state s'=[n,
n, lelt, n, right, fl, fr, "] to ti'd'.

Case 2: n is the root of an auxiliary tree.
Step 1: For every state s"=[n", n", left, n",

~l_,fn such that right, f f ' , fr", "] in ", n , left, n ,
n~ Adjoin(n"), add state "'
right, f f ' , fr", -] to ti~; ,

Step 2: For every state s =[n', Idol", right, rdot,
rpos, ft", fr", m"] in tj.j,,,j'>j, such that
ne Adjoin(Idol") and m ~lm, add state
s'=[ldot", Idol", right, Idol", right, -, -, -] to

Stepl~/:r'For every state s"=[n", Idol, lpos, rdot",
left, ft", fr", m'q in ti',i, i" <i, such that
n~Adjo in (rdo t ") and m"~rm, add state
s'=[rdot", rdot", left, rdot", left, -, -, -] to
tftft. (:2

4. Formal Results

Some definitions will be introduced in the fol-
lowing, in order to present some interesting proper-
ties of Algorithm I. Formal proofs of the statements
below can be found in (Satta, 1990).

Let n be a node in some tree a~l~A. Each state
s=[n, Idol, lpos, rdot, rpos, fl, fr, m] in I S identifies
a tree forest ¢(s) composed of all maximal subtrees
in a whose roots are "spanned" by the two positions
Idol and rdot. If ldot~n, we assume that the maximal
subtree in a whose root is Idol is included in ¢(s) if
and only if lpos=left (the mirror case holds w.r.t.
rdot). We define the subsumption relation < on I S as
follows: s~_s' iff state s has the same first component
as state s' and ¢(s) is included in ¢(s9. We also say

that a forest ¢(s) derives a forest ~ (¢(s) =~ ~)
whenever I//can be obtained from ~(s) by means of
some adjoining operations. Finally, E denotes the
immediate dominance relation on nodes of ae IuA,
and ~(a) denotes the foot node of a (if a~ A). The
following statement characterizes the set of all states
inserted in T by Algorithm 1.

Theorem 1 Let n be a node in a~ I u A and let n'
be the lowest node in a such that n'~ Middle-nodes
and (n, n°)EE*; let also s=[n, Idol, lpos, rdot, rpos,
fl, fr, m] be a state in I S. Algorithm 1 inserts a state

. ~ 0 • • s , s_s , m t i h ~j+h , hl,ha->O, if and only if one of
. . " | . .

the following condl~ons is met:

(i) n ~ Middle-nodes (n'=n) and ¢(s) =~ IV, where !//
spans ai+l ... aj (with the exception of string
af.t+ 1 ... aft if ~(a) is included in qJ(s)) (see
Figure 1),

(ii) n~ Left-nodes, s=s' , hl=h2=O and ¢(s) ~ V/' ,
where ~: spans ai+t ... aj (with the exception of
string aA+ 1 ... a f if ~(a) is included in ¢(s)).
Moreover', n' is t ~ root of a (maximal) subtree z
in a such thai z ~ ~, IV strictly includes i f and
every t r e e / ~ A that has been adjoined to some
node in the path from n' to n spans a string that
is included in al ... ai (see Figure 2);

(iii) the symmetrical case of (ii).

a i +1 "'" af t X af ,+1 "" ai
Figure 1.

n "

y a i + l . . a f l X a f r + l . aj -

Figure 2.

In order to present the computational complexity
of Algorithm 1, some norms for TAGs are here in~
troduced. Let A be a set of nodes in some trees of a
TAG G, we define

IGIA, k = ~ Ichildren(n)l k •

nE .91

:The following result refers to the Random Access
Machine model of computation.

- 3 0 -

Theorem 2 If some auxiliary structures (vector of
lists) are used by Algorithm t for the bookkeeping
of all states that correspond to completely analyzed
auxiliary trees, a string can be recognized in
O(nt.IAI.max{IGIN.M,I+IGIM,2}) time, where M
=Middle-nodes and N denotes the set of all nodes in
the trees of G.

5. A Linguistic Example
In order to gain a better understanding of

Algorithm 1 and to emphasize the linguistic rele-
vance of TAGs, we present a running example. In
the following we assume the formal framework of
X-bar Theory (Jackendoff, 1977). Given the sen-
tence:
(1) Gianni incontra Maria per caso

lit. Gianni meets Maria by chance
we will propose here the following analysis (see
Figure 4):

(2) [ca [c' lip [NP Gianni] [r inc°ntrai [vp* [vP
[w e i [~ Maria]]] [pp per caso]]]]]]

Note that the Verb incontra has been moved to the
Inflection position. Therefore, the PP adjunction
stretches the dependency between the Verb incontra
and its Direct Object Maria. These cases may raise
some difficulties in a context-free framework, be-
cause the lack of the head within its constituent
makes the task of predicting the object(s) rather inef-
ficient.

Assume a TAG G=(VN, VZ, S, I, A), where
VN={IP, r , vP, v ' , NP}, V~:={Gianni, Maria,
incontra, PP},I={o~} andA={fl} (see Figure 3; each
node has been paired with an integer which will be
used as its address). In order to simplify the compu-
tation, we have somewhat reduced the initial tree a
and we have considered the constituent PP as a ter-
minal symbol. In Figure 4 the whole analysis tree
corresponding to (2) is reported.

Let x(a)=5, z(fl)=13; from Definition 3 it fol-
lows that:

F(5)= {[4, 5, left, 5, right, -, -, -]},
F(13)={[ll, 13, left, 11, right,-,-,-]}.

A run of Algorithm 1 on sentence (1) is simpli-
fied in the following steps (only relevant steps are
reported).
First of all, the two anchors are recognized:

1) s1=[4, 5, left, 5, right, -, -, -] is inserted in tl.2
and s2=[l l , 13, left, 13, right, -, -, -] is
inserted in t3,4, by line 1 of the algorithm.

Then, auxiliary tree fl is recognized in the following
steps:

2) s3=[ll, 12, right, 13, right, -, -, -] is inserted
in t3. 4 and m is set to rm in state s2, by Case
2 of the move-dot-left procedure;

3) s4=[ll, 12, left, 13, right, 2, 3, -] is inserted
in t2.4 and m is set to rm in state s3, by Case

3 of the left-expander procedure;
4) ss=[l l , 11, left, 13, right, 2, 3, -] is inserted

in t2,4 and m is set to rm in state s4, by Case
3 of the move.dot-left procedure;

5) st=[11, 11, left, 11, right, 2, 3, -] is inserted
in h,4 and m is set to lm in state Ss, by Case
3 of the move-dot-right procedure.

Or: IP (I)

(2) NP

I
O) Gianni

r (4)

incontra i (5) VP (6)

I
V' G)

(8) e i NP

I
Mma

(9)

(1o)

: VP 0;)

(12) VP PP (13)

per caso

Figure 3.

IP

NP I'

Giar~ mcomra i VP

VP PP

per caso

V'

¢i NP

I
Maria

Figure 4.

After the insertion of state s7--[4, 5, left, 6, left, -, -,
-1 in tl,2 by Case 2 of the move-dot-right procedure,
the VP node (6) is hypothesized by Case 1 (Step 2,
via state s6) of the right-expander procedure with the
insertion of state ss-[6, 6, left, 6, left, -, -, -1 in t2. 2.
The whole recognition of node (6) takes place with
the insertion of state s9;[6, 6, left, 6, right, -, -, -1
in: t2,3. Then we have the following step:

6) s10=[6, 6, left, 6, right, -, -, -] is inserted in

- 3 1

t2,4, by the adjoiner procedure.
The analysis proceeds working on tree a and reach-
ing a final configuration in which state s~t=[1, 1,
left, 1, right, -, -, -] belongs to to,4.

6 , D i s c u s s i o n

Within the perspective of Lexicalized TAGs,
known methods for TAGs recognition/parsing pre-
sent some limitations: these methods behave in a
left-to-right fashion (Schabes and Joshi, 1988) or
they are purely bottom-up (Vijay-Shanker and Joshi,
1985, Harbusch, 1990), hence they cannot take ad-
vantage of anchor information in a direct way. The
presented algorithm directly exploits both the advan-
tages of lexicalization mentioned in the paper by
Schabes and Joshi (1989), i.e. grammar filtering and
bottom-up information. In fact, such an algorithm
starts partial analyses from the anchor elements, di-
rectly selecting the relevant trees in the grammar,
and then it proceeds in both directions, climbing to
the roots of these trees and predicting the rest of the
structures in a top-down fashion. These capabilities
make the algorithm attractive from the perspective of
linguistic information processing, even if it does not
improve the worst-case time bounds of already
known TAGs parsers.

The studied algorithm recognizes auxiliary trees
without considering the substring dominated by the
foot node, as is the case of the CYK-like algorithm
in Vijay-Shanker and Joshi (1985). More precisely,
Case 3 in the procedure Left-expander nondeterminis-
tically jumps over such a substring. Note that the
alternative solution, which consists in waiting for
possible analyses subsumed by the foot node, would
prevent the algorithm from recognizing particular
configurations, due to the bidirectional behaviour of
the method (examples are left to the reader). On the
contrary, Earley-like parsers for TAGs (Lang, 1990,
Schabes, 1990) do care about substrings dominated
by the foot node. However, these algorithms are
forced to start at each foot node the recognition of all
possible subtrees of the elementary trees whose roots
can be the locus of an adjunction.

In this work, we have discussed a theoretical
schema for the parser, in order to study its formal
properties. In practical cases, such an algorithm
could be considerably improved. For example, the
above mentioned guess in Case 3 of the procedure
Left-expander could take advantage of look-ahead
techniques. So far, we have not addressed topics such
as substitution or on-line recognition. Our algorithm
can be easily modified in these directions, adopting
the same proposals advanced in (Schabes and Joshi,
1988).

Finally, a parser for Lexicalized TAGs can be
obtained from Algorithm 1. To this purpose, it suf-
fices to store elements in IS into the recognition
matrix T along with a list of pointers to those en-

tries that caused such elements to be placed in the
matrix. Using this additional information, it is not
difficult to exhibit an algorithm for the construction
of the desired parser(s).

R e f e r e n c e s
Harbusch, Karin, 1990. An Efficient Parsing

Algorithm for TAGs. In Proceedings of the 28th
Annual Meeting of the Association for Computational
Linguistics. Pittsburgh, PA.

Jackendoff, Ray, 1977. X.bar Syntax: A Study of
Phrase Structure. The M1T Press, Cambridge, MA.

Joshi, Aravind K., 1985. Tree Adjoining
Grammars: How Much Context-Sensitivity Is Required
to Provide Reasonable Structural Descriptions?. In: D.
Dowty et al. (eds). Natural Language Parsing:
Psychological, Computational and Theoretical
Perspectives. Cambridge University Press, New York,
NY.

Kroch, Anthony S. and Joshi, Aravind K., 1985.
Linguistic Relevance of Tree Adjoining Grammars.
Technical Report MS-CIS-85-18, Department of
Computer and Information Science, University of
Pennsylvania.

Lang, Bernard, 1990. The Systematic Construction
of Earley Parsers: Application to the Production of
O(n 6) Earley Parsers for Tree Adjoining Grammars. In
Proceedings of the 1st International Workshop on
Tree Adjoining Grammars. Dagstuhl Castle, F.R.G..

Satta, Giorgio, 1990. Aspetti computazionali della
Teoria della Reggenza e del Legamento. Doctoral
Dissertation, Univ'ersity of Padova, Italy.

Satta, Giorgio and Stock, Oliviero, 1989. Head-
Driven Bidirectional Parsing: A Tabular Method. In
Proceedings of the 1st International Workshop on
Parsing Technologies. Pittsburgh, PA.

Schabes, Yves, 1990. Mathematical and
Computational Aspects of Lexicalized Grammars. PhD
Thesis, Department of Computer and Information
Science, University of Pennsylvania.

Schabes, Yves; Abeill6, Anne and Joshi, Aravind
K., 1988. Parsing Strategies for 'Lexicalized'
Grammars: Application to Tree Adjoining Grammars.
In Proceedings of the 12th International Conference
on Computational Linguistics. Budapest, Hungary.

Schabes, Yves and Joshi, Aravind K., 1988. An
Earley-Type Parsing Algorithm for Tree Adjoining
Grammars. In Proceedings of the 26th Annual
Meeting of the Association for Computational
Linguistics. Buffalo, NY.

Schabes, Yves and Joshi, Aravind K., 1989. The
Relevance of Lexicalization to Parsing. In
Proceedings of the 1st International Workshop on
Parsing Technologies. Pittsburgh, PA. To also appear
under the title: Parsing with Lexicalized Tree
Adjoining Grammar. In: M. Tomita (ed.). Current
Issues in Parsing Technologies. The MIT Press.

Vijay-Shanker, K. and Joshi, Aravind K., 1985.
Some Computational Properties of Tree Adjoining
Grammars. In Proceedings of the 23rd Annual
Meeting of the Association for Computational
Linguistics. Chicago, IL.

- 3 2 -

