
DANISH FIELD GRAMMAR IN TYPED PROLOG 

Henrik Rue 
UNI-C, Danish Computing Center for Research and Education 

Vermundsgade 5, DK 2100 @, Copenhagen, Denmark 

ABSTRACT 

This paper describes a field grammar for 
Danish and its implementations in a Prolog 
version with predeclared types. In compa- 
rison to the ususal S -> NP VP schema, 
this kind of grammar, where the first rule 
is S -> CNF FF NF CF enhances analysis 
effeciency because the fields specify 
constituents and syntactic function at the 
same time. The field grammar tradition is 
outlinedand an overview of the major rules 
of the Prolog program, which implements 
the grammar, is given. 

FIELD GRAMMAR 

A Syntactic Strategy 

In terms of computational linguistics, 
field grammar may be viewed as a syntactic 
strategy, which offers the user the imme- 
diate constituents while at the same time 
giving their syntactic functions and the 
functional sentence perspective, in part 
at least. Field grammar furthermore faci- 
litates the handling of discontinuous con- 
stituents, as will be shown. 

Background 

The field grammar of the Danish linguist 
Paul Diderichsen adequately describes con- 
stituent structure in Danish, while at the 
same time capturing both topicalization 
and syntactic roles. Diderichsens grammar 
"Elementmr dansk grammatik" (1946) was 
developed from the 1940's onwards with the 
intention that it should be used as a 
common framework for grammar teaching in 
secondary school as well as on university 
level. This grammar has since served as 
one cornerstone of Danish grammatical 
thought. 

Diderichsen's grammar is distinguished 
by a high degree of formalization, and it 
is one of the aims of the work presented 
in this paper to see how much of the 
original formalism can be implemented 
directly as a Prolog program, and whether 
it is necessary to make substantial chan- 

ges in the definition and inventory of 
fields in order to make an executable 
program. 

Prolog Dialect 

The Prolog dialect used is the Danish 
prototype of Borland's TurboProlog. This 
is a typed prolog, and may be termed a 
hybrid between Prolog and Pascal. When 
seeing a sample grammar written in this 
dialect, one is impressed by the clarity 
it achieves: grammatical structures are 
statically described in the declaration of 
types. The dynamic part which enables one 
to get at these structures are the rules 
of the program. A further aim of this 
work, then, is to explore whether this 
clarity will prevail also in an elaborate 
grammar program. 

Other Purposes 

Apart from the purpose implicit in the 
aims we believe that field theory offers a 
sound (read: economic) starting point for 
a great variety of parsing purposes. As 
mentioned, the theory offers a combina- 
tion of constituent structure analysis 
with syntactic and thematic analysis. 

This will not only hold for the Scandi- 
navian languages, but presumably also for 
other Germanic language like English, 
where one might abandon the S -> NP VP in 
favour of something on the lines of the 
SVC SVA SV SVO etc. clause patterns of 
Quirk (1972) et al. 

In the work presented here, however, 
there is no exploitation of the topicali- 
zation facilities offered by the grammar. 

A DANISH FIELD GRAMMAR 

According to Diderichsen, the Danish 
sentence structure has four major fields, 
the connector field, the fundament field, 
the nexus field and the content field. 

The four types are present in main sen- 
tences 

167 



S -> CONN FF NF CF 

and three of them in subordinate ones: 

SS -> CONN S-NF CF 

where all fields except the nexus field 
(NF or S-NF) may be empty. 

The CONN is the field for conjunctions. 

The FF (for Fundament Field, which is 
the Danish topicalization device) may 
contain any complete constituent, which is 
there as a result of a movement from its 
field in the sentence: 'Moderen giver 
drengen gaven' vs. 'Gaven giver moderen 
drengen', ('The mother gives the boy a 
gift') where the second version differes 
in its thematical content only: it stres- 
ses the direct object as the theme. 

The NF, for Nexus Field, contains a 
finite verbform, a possible subject plus 
adverbials modifying the verb; the inter- 
nal structure of the nexus field differs 
in main and subordinate clauses. 

The CF, for Content Field, contains two 
possible infinite verbforms, the objects 
and predicates plus adverbial and other 
modifiers. 

The Grammar Declaration 

So far the project has implemented field 
analysis of both main and subordinate 
sentences. However, not all topicaliza- 
tions are handled yet: in questions, the 
fundament field may be empty too, but this 
is not incorporated in the program, as it 
remains to be seen whether an anlysis with 
the finite topicalized, that is moved into 
the fundament field, would be more fit for 
the purpose. 

Clause structure 

The following declarations describe main 
and subordinate clauses and furthermore 
the internal structure of the major 
fields: 

S : s( CONN, FUNDF, NEXUSF, CONTENTF ); 
nil; 
s_s( CONN, NEXUSF_S, CONTENTF ) 

CONN = 
nil; 
konj( KONJ ) 

FUNDF = fundf n( NOMINAL ); /* No nil */ 
fundf--a( ADVERBIAL ); 
fundf--i( INF ); 
fundfZc( CONTENTF ) 

NEXUSF : nexusf( FINIT, SUBJ, NADV ) 

NEXUSF_S : nexusf_s( SUBJ, NADV, FINIT ) 

CONTENTF = nil; 
contentf( INFFLD, OBJFLD, 

CADVFLD ) 

These are the major fields. They may in 
turn be divided into subfields: 

INFFLD : nil; 
inffld( INFI, INF2 ) 

means that Danish has a possibility of two 
auxiliaries, (the finite + one infinite), 
and implicitly that if INF2 is filled, 
then this will be the content verb. This 
treatment is not quite adequate, actually, 
but it follows Diderichsen's schema. 

OBJFLD : nil; 
obJfld( NOMINAL, PREPG, NOMINAL ) 

the object field, which at the moment con- 
tains a quick-and-dirty solution to the 
problem that the indirect object may be 
expressed by a prepositional phrase in 
Danish, the solution being the incorpora- 
tion of an unwarranted PREP subfield. 

It should be noted in passing, that the 
connector field in Diderichsen's formalism 
is one of the places where the system will 
not be able to hold on to the original. 
This field is part of scemata not only for 
sentences, but also for noun- and adver- 
bial phrases, where it may contain i.a. 
preposition. The system thus has to di- 
stinguish between the two types of connec- 
tor fields in order to avoid the genera- 
tion of spurious analysis results. 

Discontinuous Verbal Particles 

In Danish some verbs are either prefi- 
gated or obligatorly constructed with a 
particle, a preposition actually, which 
moves to the end of the sentence with all 
finite forms: 'oplade' ('charge') but 'han 
lader batteriet op', ('he charges the 
battery'); 'lukke op' ('open up') but 'ban 
lukker d~ren op' ('he opens the-door up'). 
The same phenomenon exists in German: 
'Peter gab sein rauchen auf'. This is one 
of the places where field grammar shows 
its force as a syntactic strategy, because 
the phenomenon of discontinuity is handled 
in a straightforward way at the first 
level of analysis: 

ADVFLD = nil; 
cadvfld( CADF, CADF ) 

with 

CADF = nil; 
prep( PREP ); 
cadf( ADVERBIAL ) 

where CADF is the field for i.a. conten- 
tial adverbs, but also for disjunct verbal 

168 



particles. These are acommodated by split- 
ting the original Diderichsen subfield for 
content adverbials into two further sub- 
fields, one of which will contain the 
verbal particle (if any) the other the 
regular content adverbials. This is suffi- 
cient for the declaration of the grammar; 
how our analysis handles the various 
fields will be shown in a later section. 

Phrasal structure 

Syntagmatic structures are also divided 
into fields. As the system stands it is 
implemented for adverbial phrases, but not 
yet for noun phrases. These are at the 
moment structured in a way, that is pretty 
much on the NP -> Det AdjP N lines. As 
regards adverbials, the structure given is 
only one of several possible: 

NOMINAL = nil; 
nominal( ART, ADJEKTIVAL, SUBKERN 

PREPP, CS ) 

ADVERBIAL : nil; 
adverbial( CONN, 
DEGREEF, SITUATF, ADVKERN, 
PREPP, CS ) 

The CS is a symbol representing subordi- 
nate sentences, which have the form: 

CS = nil; 
cs( S, SYNT ) 

where S is the field structure, and SYNT 
the corresponding syntactical structure of 
the subordinate sentence represented by 
the token of the symbol type CS. 

Verb phrases, on the other hand, do not 
exist as such. Instead we have: 

FINIT = finit( VERB, VERB, TEMPG ) 
INFINIT = infinit( VERB, VERB, TEMPG ) 

VERB = Symbol 

which means that a verb, whether it be 
finite or infinite, is described by a 
structure, which consists of I) the verbal 
form itself as it is found in the sentence 
(the first 'VERB'), 2) a lexical unit, 
(the second 'VERB', which will be found as 
a result of the analysis of the sentence, 
and which will leave the fields for infi- 
nite form empty) and 3) a complex descrip- 
tion, TEMPG, of tense, aspect, voice, 
modality and the telic/atelic property of 
the situation described by the verb. This 
TEMPG is used of the sentence as a whole 
also. 

In this way a 'FINIT' in a sentence will 
have either an auxiliary, a finite verb- 
form missing the verbal prefix or the 
full, finite form of the content verb in 

the first 'VERB' slot when field analysis 
is carried out. The result of the syntac- 
tical analysis which follows, will be in 
the second 'VERB' slot. 

Syntax 

The system also comprises a syntactic 
part, based on traditional school grammar: 

SYNT = synt( SUBJ, VERB, NADV, SUBJPRED, 
OBJ, OBJPRED, IOBJ, CADV, 
TEMPG ) 

where NADV and CADV are the adverbial 
modifiers of the nexus and the con- 
tentfield respectivily. The other mnemo- 
nics should be self evident. 

T h e  Dictionary 

As the dictionary of the system has not 
been given much attention yet, and as it 
works on a purely ad hoc basis, it will 
not be treated in this paper. 

ANALYSIS 

Analysis runs in two steps, one carrying 
out the field analysis, the other handling 
the syntactical interpretation of the 
result of the field analysis. 

Field Analysys 

Field analysis is carried out by a call to 
the following major rule: 

is_s( I, O, s( CONN, FUNDF, NEXUSF, 
CONTENTF ) ):- 

is forb( I, II, CONN, FEATC ), 

FEATC <> subord, 
is fundf( II, I2, FUNDF ), 
is--nexusf( I2, I3, NEXUSF ), 
is--contentf( I3, O, CONTENTF ). 

which applies the following rules in order 
to succeed (or fail): 

is_fundf( I, O, fundf n( NOMINAL ) ):- 
is nomen( I, O, NOMINAL ), I <> O. 

is_fundf( I, O, fundf a( ADVERBIAL ) ):- 
is adverbial( I, O, ADVERBIAL, ), 
I~> O. 

is_nexusf( I, O, nexusf( FINIT, NOMINAL, 
ADVERBIAL ) ):- 

is finit( I, II, FINIT ), 
is-nomen( II, I2, NOMINAL, _, _ ), 
is~adverbial( I2, O, ADVERBIAL, _ ). 

a n d  

169 



is contentf( I, O, contentf( INFFLD, 
-- OBJFLD, CADVFLD ) ):- 

is inffld( I, II, INFFLD ), 
is--objfld( II, I2, OBJFLD ), 
is--cadvfld( I2, O, CADVFLD ), 
I~> O. 

is contentf( I, I, nil ). 

As a consequence of having a possible nil- 
filling for a major field, the content 
field, it becomes necessary to explode the 
number of rules which identify and collect 
compound verb forms, or in other words 
what is gained in the simplicity of the 
grammar is lost again by the number of 
rules. 

Discontinous Verbal Particles 

As an example of the rules handling the 
major fields, we shall take a look at the 
rule, which picks out discontinous verbal 
particles. 

The rules which handle the adverbial sub- 
field of the content field contain a spe- 
cification for the particles, as they 
allow for the class of prepositional ad- 
verbs: 

is cadvfld( I, O, cadvfld( PREPG, 
- -  C ADVERBIAL ) ):- 

is_advprep( I, II,--PREPG ), 
is c adverbial( II, O, C ADVERBIAL ), 
I <> O. 

is cadvfld( I, O, cadvfld( C ADVERBIAL, 
- PREPG ) ) :- 

is c adverbial( I, 11, C ADVERBIAL ), 
is--advprep( II, O, PREPG- ), 
no~_nom( 0 ), I <> O. 

The prepositional adverbs are then picked 
up by the rule: 

is advprep( I, O, prep( PREP ) ):- 
fronttoken( I, PREP, 0 ), 
dic_prep( X ), X = PREP. 

which in fact is an ad hoc rule to circum- 
vent the restrictions posed on the system 
be the typing facility. During syntactic 
analysis the disjunct particles are col- 
lected with the verb by the rule 
extract disco vpart, as will be demon- 
strated-in th~ following. 

Syntactic Analysis 

There is one major clause for syntactic 
analysis, 'is_syn', which is called by the 
top level anlysis clause 'start': 

start:- 
write("Skriv en smtning"),nl, 
readln( Line ), 
is s( Line, "", S ), 
is~syn( S, SYNT ), 
nl, write("Feltanalyse:"),nl, 
skriv s( S, 0 ), nl, 
nl, w~ite("Syntaktisk analyse:"), nl, 
skriv( SYNT, 0 ), nl, fail. 

is_syn( S, SYNT ):- 
extract_vg( S, VERBI, TEMPG ), 
extract disco vpart( VERBI, S, VERB ), 
extract~advg(--S, NADV, CADV ), 
interpret_nominals( S, VERB, SUBJ, 

SUBJPRED, OBJ, 
OBJPRED, IOBJ ), 

collect_synt( VERB, NADV, SUBJ, 
SUBJPRED, OBJ, OBJPRED, 
IOBJ, CADV, TEMPG, SYNT ). 

is_syn( nil, nai ). 

The claim was that field grammar facili- 
tates syntactic analysis, and we shall now 
endeavour to support this claim by looking 
at the handling of the noun phrases. 

The major rule is 'interpretnominals', 
which has the form: 

interpret nominals( 
s( _, FUNDF, NEXUSF, CONTENTF ), 
VERB, SUBJ, SUBJPRED, 

OBJ, OBJPRED, IOBJ ):- 
syn_nomfund( FUNDF, NEXUSF, CONTENTF, 

VERB, SUBJ, SUBJPRED, 
OBJ, OBJPRED, IOBJ). 

For transitive verbs the following 
version of a 'synnomfund' rule 
generates the filler in the fundament 
field as subject, and two fillers to the 
object and indirect object slots; if there 
is only one filler in the object subfield 
this will be the object: 

syn nomfund( 
~undf n( FUNDFN I ), 
nexus~( _, nil, _ ), 
CONTENTF, 
VERB, subj( FUNDFN 0 ), nil, 
OBJS, nil, IOBJS )T- 

trans verb( VERB, DITRANS ), 
check--sentcomp( FUNDFN I, FUNDFN 0 ), 
extra~t_obj( nil, DITRANS, CONTENTF, 

OBJS, IOBJS ),!. 

where the interesting call is the one to 
'extract obj', where the following will 
match (the 'check_sentcomp' in the follo- 
wing rules should be disregarded, as it 
has nothing to do with the analysis of the 
arguments proper, it only activates a 
syntactic analysis of a possible clausal 
complement to the given nominal kernels): 

170 



extract obj( nil, _, 

contentf( _, objfld( NOM_I, nil, nil ), 
), 

obj( NOM O--), nil ):- 
check~sentcomp( NOM I, NO~O ),!, 
is_noprep( NOM_O ). 

extract_obJ( nil, DITRA, 
contentf( _, 

objfld( NOMI_I, nil, NOM2_I ), 
), 

obj( NOM20 ), iobj( NOMI O ) ):- 
DITRA--<> nil, 
is noprep( NOMI I ), 
check_sentcomp(--NOM1 I, NOMI 0 ), 
check_sentcomp( NOM2~I, NOM2~O ),l. 

extract_obj( nil, DITRA, 
contentf( _, 

objfld( NOMI_I, prep( PREP ), 
NOM2 I ), 

), 
obj( NOMI O ), iobj( NOM20 ) ):- 

DITRA--<> nil, 
is_noprep( NOMI I ), 
check tilfor( PREP ), 
check~sentcomp( NOMI I, NOMI 0 ), 
check_sentcomp( NOM2~I, NOM2ZO ),!. 

extract_obJ( nil, _, 
contentf()_, nil, _ ), 
nil, nil . 

extract_obJ( nil, _, nil, nil, nil ). 

Even if simplicity is in the eye of the 
beholder, we are confident that the rules 
above are not very complicated. 

It is evident, however, that at least 
one necessary modification to the claim 
must be that the two structures for 'The 
mother gives the boy a present' example: 

s(fundf n(X),nexusf(finit(Y),nil,_), 
conte~tf(obJfld(nominal(XX)i , 

nominal(YY) 

s(fundf n(X),nexusf(finit(Y),subj(Z), ), 
contentf(objfld(obJ1(XX),_,nil)) 

can only be distinguished from each other 
in analysis by a call to a rule that 
operates at the lexical level of the verb 
and its arguments. 

Discontinouos Verbal Particles 

In the syntactic analysis, a possible 
discontinous verbal particles is disco- 
vered by the rule extract disco vpart, 
which has the form: 

extract disco_vpart( 
VERBIN, 
S( _, , __, 

contentf( , _, 
cadvfld( prep( PREPIN ), 

))), 
VERBOUT ):- 

dic v( VERB, _,_,_,_, ,_,_, discon, _ ), 
VERB = VERBIN, 
dic v discon( VERB, PREP, , ), 
VER~ ~ VERBIN, PREPIN = PREP,- 
concat( VERB, " ", X ), 
concat( X, PREP, VERBOUT ). 

PERFORMANCE 

The system consists of 35 complex gramma- 
tical objects, eg. FUNDF, NOMINAL, with a 
total of 69 possible internal structu- 
rings. There are 18 simple grammatical 
types, eg. INF, ADV. 

There are 77 predicate types for the 
analysis proper, and another 36 types used 
for prettyprinting the results of the 
analysis. 

There are 72 rules for the handling of 
the field grammar analysis, and 74 rules 
for the syntactic analysis. 

Finally there are 70 actual rules to the 
36 types of prettyprinting. 

This reflects on one of the shortcomings 
of the typing system: you need a separate 
predicate for each object type you want to 
type out. Up to a certain point one may 
have one predicate type handle several 
object types, but what happens is that 
instead the compiler generates different 

predicate types behind your back. All in 
all one must say, that running on an IBM 
XT you will very soon hit the upper limits 
of the various tables in the compiler, 
when you attempt to exploit the typing 
facilities offered. 

The sentence 'den meget gode dreng som 
giver moderen gaven lukker ¢i op med et 
redskab' ('The very good boy who gives 
the-mother the-gift opens beer up with a 
tool') takes a total of 21.13 seconds in 
field and syntactic analysis: 

Field analysis: 
FUNDAMENTFIELD 

FUNDF 
NOM dreng 

DET den 
ADJ gode 

ADV meget 

171 



CONJ som 
NEXUSFIELD 

FINIT 
VERB giver 

CONTENTFIELD 
OBJ-SUBPRED FIELD 

OBJI/SP 
NOM moderen 

OBJ2/OP gaven 

NEXUSFIELD 
FINIT 

VERB lukker 
CONTENTFIELD 

OBJ-SUBPRED FIELD 
OBJI/SP 

NOM ¢i 
CONTENT ADVERBIAL FIELD 

VB-PART op 
CF-ADV 

PREP med 
NOM redskab 

DET et 

SYNTACTIC ANALYSIS 
SUBJ NOM dreng 

DET den 
ADJ gode 

ADV meget 
SUBJ NOM RelT A 
VERB give 
DIR-OBJ NOM gaven 
DAT-OBJ NOM moderen 
TEMP tempg(pres,contmp,act, 

nil,imperf,atelic) 
VERB oplukke 
DIR-OBJ NOM ¢i 
CF-ADV PREP med 

NOM redskab 
DET et 

present'): 1.21 seconds before, 1:60 after 
the extension. 

Experience has also shown that typed 
Prolog is a hindrance for the writing of 
rules, which handle different construc- 
tors: the compiler generates separate 
rules for each cnstructor, and that leaves 
you with a severe problem of adequacy of 
space in the rule tables, when running on 
an IBM XT. 

REFERENCES 

Paul Diderichsen, Elementmr dansk gram- 
matik, Copenhagen 1946 

Randolph Quirk, Sidney Greenbaum, Geof- 
fry Leech & Jan Svartvik, A Grammar of 
Contemporary English, London 1972 

PC PROLOG, Tutorial and User's guide, 
Prolog Development Center, Copenhagen 
1985, 1986. 

CONCLUSIONS 

As the project is still running, it is 
too early to propose any firm conclusions. 
It has been seen ,though, that a field 
analysis for Danish is easily implemented 
in Prolog, that for the most part short- 
cuts are merely programming conveniences, 
and that typed Prolog using mnemotecnic 
variable names enhance readability and 
thereby adaptability. 

On the other hand, our experience has 
shown that expanding the system is easy 
but expensive in process time. When eg. 
subordinate clauses were introduced to 
noun phrases and adverbial phrases, this 
was a very simple operation in the grammar 
(it required the addition of a single 
symbol) but it had severe consequenses for 
execution time: roughly a 25% increase in 
analysis time for the sentence 'den meget 
gode dreng vil gerne f~ givet moderen den 
gode gave' ('The very good boy will be- 
happy-to manage-to give the-mother the- 


