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Abstract

We focus on named entity recognition
(NER) for Chinese social media. With
massive unlabeled text and quite lim-
ited labelled corpus, we propose a semi-
supervised learning model based on B-
LSTM neural network. To take advan-
tage of traditional methods in NER such
as CRF, we combine transition probabil-
ity with deep learning in our model. To
bridge the gap between label accuracy and
F-score of NER, we construct a model
which can be directly trained on F-score.
When considering the instability of F-
score driven method and meaningful in-
formation provided by label accuracy, we
propose an integrated method to train on
both F-score and label accuracy. Our in-
tegrated model yields substantial improve-
ment over previous state-of-the-art result.

1 Introduction

With the development of Internet, social media
plays an important role in information exchange.
The natural language processing tasks on social
media are more challenging which draw attention
of many researchers (Li and Liu, 2015; Habib and
van Keulen, 2015; Radford et al., 2015; Cherry
and Guo, 2015). As the foundation of many down-
stream applications (Weissenborn et al., 2015;
Delgado et al., 2014; Hajishirzi et al., 2013) such
as information extraction, named entity recogni-
tion (NER) deserves more research in prevailing
and challenging social media text. NER is a task
to identify names in texts and to assign names with
particular types (Sun et al., 2009; Sun, 2014; Sun
et al., 2014; He and Sun, 2017). It is the informal-
ity of social media that discourages accuracy of
NER systems. While efforts in English have nar-

rowed the gap between social media and formal
domains (Cherry and Guo, 2015), the task in Chi-
nese remains challenging. It is caused by Chinese
logographic characters which lack many clues to
indicate whether a word is a name, such as capi-
talization. The scant labelled Chinese social me-
dia corpus makes the task more challenging (Nee-
lakantan and Collins, 2015; Skeppstedt, 2014; Liu
et al., 2015).

To address the problem, one approach is to use
the lexical embeddings learnt from massive unla-
beled text. To take better advantage of unlabeled
text, Peng and Dredze (2015) evaluates three types
of embeddings for Chinese text, and shows the
effectiveness of positional character embeddings
with experiments. Considering the value of word
segmentation in Chinese NER, another approach
is to construct an integrated model to jointly train
learned representations for both predicting word
segmentations and NER (Peng and Dredze, 2016).

However, the two above approaches are imple-
mented within CRF model. We construct a semi-
supervised model based on B-LSTM neural net-
work to learn from the limited labelled corpus by
using lexical information provided by massive un-
labeled text. To shrink the gap between label ac-
curacy and F-Score, we propose a method to di-
rectly train on F-Score rather than label accuracy
in our model. In addition, we propose an inte-
grated method to train on both F-Score and label
accuracy. Specifically, we make contributions as
follows:

• We propose a method to directly train on F-
Score rather than label accuracy. In addition,
we propose an integrated method to train on
both F-Score and label accuracy.

• We combine transition probability into our B-
LSTM based max margin neural network to
form structured output in neural network.
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• We evaluate two methods to use lexical em-
beddings from unlabeled text in neural net-
work.

2 Model

We construct a semi-supervised model which is
based on B-LSTM neural network and combine
transition probability to form structured output.
We propose a method to train directly on F-Score
in our model. In addition, we propose an inte-
grated method to train on both F-Score and label
accuracy.

2.1 Transition Probability
B-LSTM neural network can learn from past in-
put features and LSTM layer makes it more effi-
cient (Hammerton, 2003; Hochreiter and Schmid-
huber, 1997; Chen et al., 2015; Graves et al.,
2006). However, B-LSTM cannot learn sentence
level label information. Huang et al. (2015) com-
bine CRF to use sentence level label informa-
tion. We combine transition probability into our
model to gain sentence level label information. To
combine transition probability into B-LSTM neu-
ral network, we construct a Max Margin Neural
Network (MMNN) (Pei et al., 2014) based on B-
LSTM. The prediction of label in position t is
given as:

yt = softmax(Why ∗ ht + by) (1)

where Why are the transformation parameters, ht

the hidden vector and by the bias parameter. For a
input sentence c[1:n] with a label sequence l[1:n], a
sentence-level score is then given as:

s(c[1:n], l[1:n], θ) =
n∑

t=1

(Alt−1lt + fΛ(lt|c[1:n]))

wherefΛ(lt|c[1:n]) indicates the probability of la-
bel lt at position t by the network with parameters
Λ, A indicates the matrix of transition probability.
In our model, fΛ(lt|c[1:n]) is computed as:

fΛ(lt|c[1:n]) = −log(yt[lt]) (2)

We define a structured margin loss ∆(l, l) as Pei
et al. (2014):

∆(l, l) =
n∑

j=1

κ1{lj 6= lj} (3)

where n is the length of setence x, κ is a discount
parameter, l a given correct label sequence and l

a predicted label sequence. For a given training
instance (xi, yi), our predicted label sequence is
the label sequence with highest score:

l∗i = arg max
li∈Y (xi)

s(xi, li, θ)

The label sequence with the highest score can be
obtained by carrying out viterbi algorithm. The
regularized objective function is as follows:

J(θ) =
1
m

m∑
i=1

qi(θ) +
λ

2
||θ||2 (4)

qi(θ) = max
li∈Y (xi)

(s(xi, li, θ)+∆(li, li))−s(xi, li, θ)

By minimizing the object, we can increase the
score of correct label sequence l and decrease the
score of incorrect label sequence l.

2.2 F-Score Driven Training Method

Max Margin training method use structured mar-
gin loss ∆(l, l) to describe the difference between
the corrected label sequence l and predicted la-
bel sequence l. In fact, the structured margin loss
∆(l, l) reflect the loss in label accuracy. Consider-
ing the gap between label accuracy and F-Score in
NER, we introduce a new training method to train
directly on F-Score. To introduce F-Score driven
training method, we need to take a look at the sub-
gradient of equation (4):

∂J

∂θ
=

1
m

m∑
i=1

(
∂s(x, lmax, θ)

∂θ
− ∂s(x, l, θ)

∂θ
) + λθ

In the subgradient, we can know that structured
margin loss ∆(l, l) contributes nothing to the
subgradient of the regularized objective function
J(θ). The margin loss ∆(l, l) serves as a trig-
ger function to conduct the training process of B-
LSTM based MMNN. We can introduce a new
trigger function to guide the training process of
neural network.
F-Score Trigger Function The main criterion of
NER task is F-score. However, high label accu-
racy does not mean high F-score. For instance,
if every named entity’s last character is labeledas
O, the label accuracy can be quite high, but the
precision, recall and F-score are 0. We use the F-
Score between corrected label sequence and pre-
dicted label sequence as trigger function, which
can conduct the training process to optimize the
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F-Score of training examples. Our new structured
margin loss can be described as:

∆̃(l, l) = κ ∗ FScore (5)

where FScore is the F-Score between corrected
label sequence and predicted label sequence.
F-Score and Label Accuracy Trigger Function
The F-Score can be quite unstable in some situa-
tion. For instance, if there is no named entity in
a sentence, F-Score will be always 0 regardless of
the predicted label sequence. To take advantage
of meaningful information provided by label ac-
curacy, we introduce an integrated trigger function
as follows:

∆̂(l, l) = ∆̃(l, l) + β ∗∆(l, l) (6)

where β is a factor to adjust the weight of label
accuracy and F-Score.

Because F-Score depends on the whole label se-
quence, we use beam search to find k label se-
quences with top sentece-level score s(x, l, θ) and
then use trigger function to rerank the k label se-
quences and select the best.

2.3 Word Segmentation Representation

Word segmentation takes an important part
in Chinese text processing. Both Peng and
Dredze (2015) and Peng and Dredze (2016) show
the value of word segmentation to Chinese NER
in social media. We present two methods to use
word segmentation information in neural network
model.
Character and Position Embeddings To incor-
porate word segmentation information, we at-
tach every character with its positional tag. This
method is to distinguish the same character at dif-
ferent position in the word. We need to word seg-
ment the text and learn positional character em-
beddings from the segmented text.

Character Embeddings and Word Segmenta-
tion Features We can treat word segmentation as
discrete features in neural network model. The
discrete features can be easily incorporated into
neural network model (Collobert et al., 2011). We
use word embeddings from a LSTM pretrained on
MSRA 2006 corpus to initialize the word segmen-
tation features.

3 Experiments and Analysis

3.1 Datasets

Named Nominal
Train set 957 898

Development set 153 226
Test set 209 196

Unlabeled Text 112,971,734 Weibo messages

Table 1: Details of Weibo NER corpus.

We use a modified labelled corpus1 as Peng
and Dredze (2016) for NER in Chinese social
media. Details of the data are listed in Table
1. We also use the same unlabelled text as Peng
and Dredze (2016) from Sina Weibo service in
China and the text is word segmented by a Chi-
nese word segmentation system Jieba2 as Peng and
Dredze (2016) so that our results are more compa-
rable to theirs.

3.2 Parameter Estimation

We pre-trained embeddings using word2vec
(Mikolov et al., 2013) with the skip-gram train-
ing model, without negative sampling and other
default parameter settings. Like Mao et al. (2008),
we use bigram features as follow:

CnCn+1(n = −2,−1, 0, 1) and C−1C1

1We fix some labeling errors of the data.
2https://github.com/fxsjy/jieba.
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Methods Named Entity Nominal Mention
Precision Recall F1 Precision Recall F1

Character+Segmentation 48.52 39.23 43.39 58.75 47.96 52.91
Character+Position 65.87 39.71 49.55 68.12 47.96 56.29

Table 2: Two methods to incorporate word segmentation information.

Models Named Entity Nominal Mention
Precision Recall F1 Precision Recall F1 Overall OOV

(Peng and Dredze, 2015) 57.98 35.57 44.09 63.84 29.45 40.38 42.70 -
(Peng and Dredze, 2016) 63.33 39.18 48.41 58.59 37.42 45.67 47.38 -

B-LSTM 65.87 39.71 49.55 68.12 47.96 56.29 52.81 13.97
B-LSTM + MMNN 65.29 37.80 47.88 73.53 51.02 60.24 53.86 17.90

F-Score Driven I (proposal) 66.67 39.23 49.40 69.50 50.00 58.16 53.64 17.03
F-Score Driven II (proposal) 66.93 40.67 50.60 66.46 53.57 59.32 54.82 20.96

Table 3: NER results for named and nominal mentions on test data.

We use window approach (Collobert et al., 2011)
to extract higher level Features from word feature
vectors. We treat bigram features as discrete fea-
tures (Collobert et al., 2011) for our neural net-
work. Our models are trained using stochastic gra-
dient descent with an L2 regularizer.
As for parameters in our models, window size
for word embedding is 5, word embedding di-
mension, feature embedding dimension and hid-
den vector dimension are all 100, discount κ in
margin loss is 0.2, and the hyper parameter for the
L2 is 0.000001. As for learning rate, initial learn-
ing rate is 0.1 with a decay rate 0.95. For inte-
grated model, β is 0.2. We train 20 epochs and
choose the best prediction for test.

3.3 Results and Analysis

We evaluate two methods to incorporate word seg-
mentation information. The results of two meth-
ods are shown as Table 2. We can see that posi-
tional character embeddings perform better in neu-
ral network. This is probably because positional
character embeddings method can learn word seg-
mentation information from unlabeled text while
word segmentation can only use training corpus.

We adopt positional character embeddings in
our next four models. Our first model is a B-
LSTM neural network (baseline). To take advan-
tage of traditional model (Chieu and Ng, 2002;
Mccallum et al., 2001) such as CRF, we com-
bine transition probability in our B-LSTM based
MMNN. We design a F-Score driven training
method in our third model F-Score Driven Model
I . We propose an integrated training method in
our fourth model F-Score Driven Model II .The re-

sults of models are depicted as Figure 1(a). From
the figure, we can know our models perfrom better
with little loss in time.

Table 3 shows results for NER on test sets. In
the Table 3, we also show micro F1-score (Over-
all) and out-of-vocabulary entities (OOV) recall.
Peng and Dredze (2016) is the state-of-the-art
NER system in Chinese Social media. By compar-
ing the results of B-LSTM model and B-LSTM +
MTNN model, we can know transition probability
is significant for NER. Compared with B-LSTM +
MMNN model, F-Score Driven Model I improves
the result of named entity with a loss in nominal
mention. The integrated training model (F-Score
Driven Model II) benefits from both label accu-
racy and F-Score, which achieves a new state-of-
the-art NER system in Chinese social media. Our
integrated model has better performance on named
entity and nominal mention.

To better understand the impact of the factor β,
we show the results of our integrated model with
different values of β in Figure 1(c). From Figure
1(c), we can know that β is an important factor for
us to balance F-score and accuracy. Our integrated
model may help alleviate the influence of noise in
NER in Chinese social media.

4 Conclusions and Future Work

The results of our experiments also suggest direc-
tions for future work. We can observe all models
in Table 3 achieve a much lower recall than pre-
cision (Pink et al., 2014). So we need to design
some methods to solve the problem.
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