
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 170–174,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Effective search space reduction for spell correction using character
neural embeddings

Harshit Pande
Smart Equipment Solutions Group

Samsung Semiconductor India R&D
Bengaluru, India

pandeconscious@gmail.com

Abstract

We present a novel, unsupervised, and dis-
tance measure agnostic method for search
space reduction in spell correction using
neural character embeddings. The embed-
dings are learned by skip-gram word2vec
training on sequences generated from dic-
tionary words in a phonetic information-
retentive manner. We report a very high
performance in terms of both success rates
and reduction of search space on the Birk-
beck spelling error corpus. To the best of
our knowledge, this is the first application
of word2vec to spell correction.

1 Introduction

Spell correction is now a pervasive feature, with
presence in a wide range of applications such
as word processors, browsers, search engines,
OCR tools, etc. A spell corrector often re-
lies on a dictionary, which contains correctly
spelled words, against which spelling mistakes
are checked and corrected. Usually a measure
of distance is used to find how close a dictio-
nary word is to a given misspelled word. One
popular approach to spell correction is the use of
Damerau-Levenshtein distance (Damerau, 1964;
Levenshtein, 1966; Bard, 2007) in a noisy chan-
nel model (Norvig, 2007; Norvig, 2009). For
huge dictionaries, Damerau-Levenshtein distance
computations between a misspelled word and all
dictionary words lead to long computation times.
For instance, Korean and Japanese may have as
many as 0.5 million words1. A dictionary fur-
ther grows when inflections of the words are also
considered. In such cases, since an entire dic-
tionary becomes the search space, large number

1http://www.lingholic.com/how-many-words-do-i-need-
to-know-the-955-rule-in-language-learning-part-2/

of distance computations blows up the time com-
plexity, thus hindering real-time spell correction.
For Damerau-Levenshtein distance or similar edit
distance-based measures, some approaches have
been tried to reduce the time complexity of spell
correction. Norvig (2007) does not check against
all dictionary words, instead generates all possi-
ble words till a certain edit distance threshold from
the misspelled word. Then each of such generated
words is checked in the dictionary for existence,
and if it is found in the dictionary, it becomes a
potentially correct spelling. There are two short-
comings of this approach. First, such search space
reduction works only for edit distance-based mea-
sures. Second, this approach too leads to high time
complexity when the edit distance threshold is
greater than 2 and the possible characters are large.
Large character set is real for Unicode characters
used in may Asian languages. Hulden (2009) pro-
poses a Finite-State-Automata (FSA) algorithm
for fast approximate string matching to find sim-
ilarity between a dictionary word and a misspelled
word. There have been other approaches as well
using FSA, but such FSA-based approaches are
approximate methods for finding closest match-
ing word to a misspelled word. Another more re-
cent approach to reduce the average number of dis-
tance computations is based on anomalous pattern
initialization and partition around medoids (de
Amorim and Zampieri, 2013).

In this paper, we propose a novel, unsuper-
vised, distance measure agnostic, highly accurate,
method of search space reduction for spell cor-
rection with a high reduction ratio. Our method
is unsupervised because we use only a dictionary
of correctly spelled words during the training pro-
cess. It is distance measure agnostic because once
the search space has been reduced then any dis-
tance measure of spell correction can be used. It
is novel because to the best of our knowledge, it

170

is the first application of neural embeddings learn-
ing word2vec techniques (Mikolov et al., 2013a;
Mikolov et al., 2013b) to spell correction. The
goal of this paper is not to find a novel spell cor-
rection algorithm. Rather, the goal is to reduce the
time complexity of spell correction by reducing
the search space of words over which the search
for correct spelling is to be done. The reduced
search space contains only a fraction of words of
the entire dictionary, and we refer to that fraction
as reduction ratio. So, our method is used as a
filter before a spell correction algorithm. We dis-
cuss a closely related work in Section 2, which is
followed by description of our method in Section
3. Then we present our experiments and results in
Section 4, which demonstrates the effectiveness of
our approach.

2 Related Work

As discussed in Section 1, there have been studies
to reduce the time complexity of spell correction
by various methods. However, the recent work of
de Amorim and Zampieri (2013) is closest to our
work in terms of the goal of the study. We briefly
describe their method and evaluation measure, as
it would help us in comparing our results to theirs,
though the results are not exactly comparable.

De Amorim and Zampieri (2013) cluster a dic-
tionary based on anomalous pattern initialization
and partition around medoids, where medoids be-
come the representative words of the clusters and
the candidacy of a good cluster is determined by
computing the distance between the misspelled
word and the medoid word. This helps in reduc-
ing the average number of distance computations.
Then all the words belonging to the selected clus-
ters become candidates for further distance com-
putations. Their method on average needs to per-
form 3,251.4 distance calculations for a dictionary
of 57,046 words. This amounts to 0.057 reduction
ratio. They also report a success rate of 88.42%
on a test data set known as Birkbeck spelling er-
ror corpus.2 However, it is important to note that
they define success rate in a rather relaxed manner
- one of the selected clusters contains either the
correct spelling or contains a word with a smaller
distance to the misspelled word than the correct
word. Later in Section 4, we define a stricter and
natural definition of success rate for our studies.
This difference in relaxed vs strict success rates

2http://www.dcs.bbk.ac.uk/ ROGER/corpora.html

along with the inherent differences in approach
render their method and our method not entirely
comparable.

3 Method

Recent word2vec techniques (Mikolov et al.,
2013a; Mikolov et al., 2013b) have been very ef-
fective for representing symbols such as words in
an n-dimensional space Rn by using information
from the context of the symbols. These vectors are
also called neural embeddings because of the one
hidden layer neural network architecture used to
learn these vectors. In our method, the main idea
is to represent dictionary words as n-dimensional
vectors, such that with high likelihood the vec-
tor representation of the correct spelling of a mis-
spelled word is in the neighborhood of the vector
representation of the misspelled word. To quickly
explore the neighborhood of the misspelled word
vector, fast k-nearest-neighbor (k-NN) search is
done using a Ball Tree (Omohundro, 1989; Liu et
al., 2006; Kibriya and Frank, 2007). A Ball Tree
(aka Metric Tree) retrieves k-nearest-neighbors of
a point in time complexity that is logarithmic of
the total number of points (Kibriya and Frank,
2007). There are other methods, such as Locally-
Sensitive Hashing (LSH) and KD-Tree, which can
also be used to perform fast k-NN search. We use
Ball Tree because in our experiments, Ball Tree
outperforms both KD-Tree and LSH in terms of
speed of computation.

We treat a word as a bag of characters. For each
character, an n-dimensional vector representation
is learned using all the words from a dictionary of
correctly spelled words. Each word is then repre-
sented as an n-dimensional vector formed by sum-
ming up the vectors of the characters in that word.
Then in a similar manner, a vector is obtained for
the misspelled word by summing up the vectors
of the characters in the misspelled word. We start
with a few notations:

• n : dimension of neural embedding
• m : window size for word2vec training
• W : set of all dictionary words
• w : input misspelled word
• k : size of the reduced search space
• C : set of all the language characters present

in W

• C2V map : a map of all characters in C to
their n-dimensional vector representations

171

• V 2Wmap : a map of vectors to the list of
words represented by the vectors3

• BT : a Ball Tree of all the vectors

Our method is divided into two procedures.
The first procedure is a preprocessing step, which
needs to be done only once, and the second proce-
dure is the search space reduction step.

3.1 Procedure 1: preprocessing

1. Prepare sequences for word2vec training:
each word w′ in W is split into a sequence
such that each symbol of such sequence con-
tains the longest possible contiguous vowels4

or consonants but not both. E.g. “affiliates”
generates the sequence “a ff i l ia t e s”

2. Train skip-gram word2vec model with se-
quences generated in the previous step with
hidden layer size as n and window size as m.
Training yields neural embeddings for sym-
bols present in training sequences. For each
character c in C, store the neural embeddings
in C2V map for future retrieval.

3. For each word w′ in W , compute the
n-dimensional vector representation of w′

by summing up neural embeddings (using
C2V map) of the characters in w′.

4. Fill V 2Wmap with key as vector computed
in the previous step and value as list of words
represented by that vector. Also construct
BT for the word vectors computed in the pre-
vious step.

The peculiar way of sequence generation in step
1 of Procedure 1 is chosen for both empirical and
intuitive reasons. Experimentally, we tried mul-
tiple ways of sequence generation, such as sim-
ply breaking a word into all it’s characters, mak-
ing symbols that are longest possible contiguous
consonants but each vowel is a separate symbol,
making symbols that are longest possible contigu-
ous vowels but each consonant is a separate sym-
bol, and the one given in the step 1 of Procedure
1. We found that the sequence generation given in
step 1 of Procedure 1 gives the best success rates.
An intuitive reasoning is that if each symbol of a
sequence contains the longest possible contiguous

3multiple words may have same vector representation,
e.g. anagrams

4we include character y in the vowel set

vowels or consonants but not both, then it retains
phonetic information of a word. Phonetic infor-
mation is vital for correcting spelling mistakes.

3.2 Procedure 2: search space reduction

1. Compute vw, the n-dimensional vector repre-
sentation of misspelled word w, by summing
up the vector representations of the characters
in w (using C2V map).

2. Find kNearNeighb : k nearest-neighbors of
vw using BT .

3. Using V 2Wmap fetch the reduced search
space of words corresponding to each vector
in kNearestNeighb

Once the reduced search space of words is ob-
tained as in step 3 of procedure 2, then any spell
correction algorithm can be used to find the correct
spelling of misspelled word w. This also means
that our search space reduction method is com-
pletely decoupled from the final spell correction
algorithm.

4 Experiments and Evaluation

In this section, we describe our experiments and
their effectiveness in search space reduction of
spell correction. As discussed in Section 2, recent
work of de Amorim and Zampieri (2013) is clos-
est to our work in terms of the goal of the study,
so we make comparisons with their work wherever
possible.

4.1 Data

We chose a dictionary W containing 109,582
words5, which is almost twice the size of dictio-
nary used by de Amorim and Zampieri (2013).
For testing, we use the same Birkbeck spelling er-
ror corpus as used by de Amorim and Zampieri
(2013). However, de Amorim and Zampieri
(2013) remove those test cases from the Birkbeck
corpus for which the correctly spelled word is not
present in their dictionary. We on the other hand
include such words in our dictionary and enhance
the size of our dictionary. This leads to the final
size of 109,897 words in the enhanced dictionary.
It is also worth mentioning that Birkbeck corpus is
a very challenging test data set, with some spelling
mistakes as wide as 10 edit distances apart.

5http://www-01.sil.org/linguistics/wordlists/english/

172

4.2 Evaluation Measure

We use success rate as a measure of accuracy. De
Amorim and Zampieri (2013) used a relaxed def-
inition of success rate (see Section 2), which we
call relaxed success rate. We have a stricter defi-
nition of success rate, where success is defined as
occurrence of the correct spelling of a misspelled
word in the reduced search space. Reduction ra-
tio for our method is 1.1k/|W |. The 1.1 factor
is present because average number of words per
vector in V 2Wmap is 1.1. Thus, on average, we
need to do 1.1k distance computations post search
space reduction. It is worth noting that k is in
fact flexible, and thus it is vital that k << |W |
to achieve a significant improvement in time com-
plexity of spell correction.

4.3 Experimental Setup

We implemented the procedures given in Section 3
partly in Java and partly in Python. For word2vec
training Deep Learning library DL4J6 was used,
and Scikit-learn (Pedregosa et al., 2011) library
was used for Ball Tree7 to facilitate fast k-NN
search. All the experiments were conducted on an
Ubuntu 16.04 machine with Intel® CoreTM 2 Duo
CPU P8800 @ 2.66GHz with 8 GB of RAM.

4.4 Results

In Section 3.1, we already discussed how the se-
quence generation given in step 1 of Procedure 1
gave the best success rates as compared to other
sequence generation methods. Similarly, window
size m = 4 in word2vec training gave best success
rates. Also for k-NN using BT , we experimented
with various metrics and found Euclidean metric
to be giving best success rates. For reporting, we
vary k and n because they directly influence the re-
duction ratio and time complexity of search space
reduction. Table 1 shows success rates for various
values of k and n.

k

n

1000 2000 5000
25 76.26 81.13 87.00
50 77.96 82.39 87.95
100 76.82 82.52 88.20

Table 1: Success rates (%) for various k and n

6http://deeplearning4j.org/
7http://scikit-learn.org/stable/modules/generated/

sklearn.neighbors.BallTree.html

For k = 5000 and n = 100, we achieve a suc-
cess rate of 88.20% for a strict (and natural) defini-
tion of success rate (defined in Section 4.2) while
de Amorim and Zampieri (2013) report a success
rate of 88.42% for a relaxed definition of success
rate (defined in Section 2). Further, k = 5000
boils down to reduction ratio of 0.050, which is
an improvement over reduction ratio of 0.057 re-
ported by de Amorim and Zampieri (2013). It is
also important to note that even at low dimensions
of neural embeddings such as n = 25, the success
rates are only slightly lower than those at n = 100.
This means that other fast k-NN retrieval methods
such as KD-Trees (Kibriya and Frank, 2007) may
also be used because they are quite efficient at such
low dimensions. Also, smaller dimensions further
speed up computations because of speeding up of
vector similarity computations. This is a useful
trade-off, where small decrease in accuracy can be
traded off for more increase in computation speed.
We see such flexibility of choosing k and n as an
advantage of our method.

In practice, a large number of spelling mistakes
occur within few edit distances of their correct
spelling. Thus we also present extremely high
success rates of our method for k = 5000 and
n = 100 for the subset of Birkbeck corpus hav-
ing Damerau-Levenshtein distances between mis-
spelled word and correct spelling within 2, 3, and
4. These results are shown in Table 2

Damerau-Levenshtein distance Success Rate
≤ 2 99.59
≤ 3 97.87
≤ 4 94.72

Table 2: Success rates (%) for test data with mis-
takes within various Damerau-Levenshtein dis-
tances (for k = 5000 and n = 100)

For k = 5000 with n = 100, the search
space reduction followed by success rate evalua-
tion took on average 52 ms per test case on the
modest system configurations given in Section 4.3.
This shows that our method has real-time response
times. For larger dictionaries, the effect would
be more profound as the time complexity of our
method is logarithmic in the size of dictionary.

5 Conclusions and Future Work

In this paper, we proposed a novel, unsupervised,
distance-measure agnostic method of search space

173

reduction for spell correction. Our method out-
performs one of the recent methods, both in terms
of the extent of search space reduction and suc-
cess rates. For common spelling mistakes, which
are usually within a few edit distances, our method
has extremely high success rates, for example, we
achieved success rate of 99.6% and 97.9% for
spelling mistakes within edit distance 2 and 3 re-
spectively.

As we noticed, sequence generation for
word2vec training does influence success rates,
so we are currently exploring further ways of se-
quence generation. We would also like to intro-
duce mild supervision element by generating more
data for word2vec training by mutating dictionary
words using confusion sets (Pedler and Mitton,
2010). We would also like to explore the effec-
tiveness of our approach on languages other than
English.

Acknowledgments

We are grateful to the anonymous reviewers for
providing reviews that led to improvement to the
paper. We also thank Aman Madaan and Priyanka
Patel for making useful comments, which were in-
corporated in the final draft of the paper.

References
Gregory V. Bard. 2007. Spelling-error tolerant,

order-independent pass-phrases via the damerau-
levenshtein string-edit distance metric. In Proceed-
ings of the fifth Australasian Symposium on ACSW
Frontiers, volume 68, pages 117–124, Ballarat, Aus-
tralia, January. Australian Computer Society, Inc.

Fred J. Damerau. 1964. A technique for computer de-
tection and correction of spelling errors. Communi-
cations of the ACM, 7(3):171–176, March.

Renato Cordeiro de Amorim and Marcos Zampieri.
2013. Effective spell checking methods using clus-
tering algorithms. In Proceedings of the Inter-
national Conference Recent Advances in Natural
Language Processing RANLP 2013, pages 172–
178, Hissar, Bulgaria, September. INCOMA Ltd.
Shoumen, BULGARIA.

Mans Hulden. 2009. Fast approximate string matching
with finite automata. Procesamiento del Lenguaje
Natural, 43:57–64.

Ashraf M. Kibriya and Eibe Frank. 2007. An empirical
comparison of exact nearest neighbour algorithms.
In Proceedings of the 11th European Conference on
Principles of Data Mining and Knowledge Discov-
ery in Databases, pages 140–151, Warsaw, Poland,
September. Springer-Verlag.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet Physics Doklady, volume 10, pages 707–710,
Soviet Union, February.

Ting Liu, Andrew W. Moore, and Alexander Gray.
2006. New algorithms for efficient high-
dimensional nonparametric classification. Journal
of Machine Learning Research, 7:1135–1158, June.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119, Lake Tahoe, Nevada,
USA, December. Curran Associates, Inc.

Peter Norvig. 2007. How to write a spelling corrector.
http://norvig.com/spell-correct.
html. [Online; accessed 12-November-2016].

Peter Norvig. 2009. Natural language corpus data. In
Beautiful Data, chapter 14, pages 219–242. O’Reilly
Media, Sebastopol, California, USA.

Stephen M. Omohundro. 1989. Five Balltree Con-
struction Algorithms. International Computer Sci-
ence Institute, Berkeley, California, USA.

Jennifer Pedler and Roger Mitton. 2010. A large list
of confusion sets for spellchecking assessed against
a corpus of real-word errors. In Proceedings of the
Seventh International Conference on Language Re-
sources and Evaluation, pages 755–762, Valletta,
Malta, May. European Language Resources Asso-
ciation.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, Oc-
tober.

174

