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Abstract

We present a new Lexical Simplification
approach that exploits Neural Networks to
learn substitutions from the Newsela cor-
pus - a large set of professionally produced
simplifications. We extract candidate sub-
stitutions by combining the Newsela cor-
pus with a retrofitted context-aware word
embeddings model and rank them using
a new neural regression model that learns
rankings from annotated data. This strat-
egy leads to the highest Accuracy, Pre-
cision and F1 scores to date in standard
datasets for the task.

1 Introduction

In Lexical Simplification (LS), words and expres-
sions that challenge a target audience are replaced
with simpler alternatives. Early lexical simplifiers
(Devlin and Tait, 1998; Carroll et al., 1998) com-
bine WordNet (Fellbaum, 1998) and frequency
information such as Kucera-Francis coefficients
(Rudell, 1993). Modern simplifiers are more so-
phisticated, but most of them still adhere to the
following pipeline: Complex Word Identification
(CWI) to select words to simplify; Substitution
Generation (SG) to produce candidate substitu-
tions for each complex word; Substitution Selec-
tion (SS) to filter candidates that do not fit the con-
text of the complex word; and Substitution Rank-
ing (SR) to rank them according to their simplicity.

The most effective LS approaches exploit Ma-
chine Learning techniques. In CWI, ensembles
that use large corpora and thesauri dominate the
top 10 systems in the CWI task of SemEval
2016 (Paetzold and Specia, 2016d). In SG, Horn
et al. (2014) extract candidates from a parallel
Wikipedia and Simple Wikipedia corpus, yield-
ing major improvements over previous approaches

(Devlin, 1999; Biran et al., 2011). Glavaš and
Štajner (2015) and Paetzold and Specia (2016f)
employ word embedding models to generate can-
didates, leading to even better results.

In SR, the state-of-the-art performance is
achieved by employing supervised approaches:
SVMRank (Horn et al., 2014) and Boundary
Ranking (Paetzold and Specia, 2015). Supervised
approaches have the caveat of requiring annotated
data, but as a consequence they can adapt to the
needs of a specific target audience.

Recently, (Xu et al., 2015) introduced the
Newsela corpus, a new resource composed of
thousands of news articles simplified by profes-
sionals. Their analysis reveals the potential use of
this corpus in simplification, but thus far no sim-
plifiers exist that exploit this resource. The scale
of this corpus and the fact that it was created by
professionals opens new avenues for research, in-
cluding using Neural Network approaches, which
have proved promising for many related problems.

Neural Networks for supervised ranking have
performed well in Information Retrieval (Burges
et al., 2005), Medical Risk Evaluation (Caruana et
al., 1995) and Summarization (Cao et al., 2015),
among other tasks, which suggests that they could
be an interesting approach to SR. In the context of
LS, existing work has only exploited word embed-
dings as features for SG, SS and SR.

In this paper, we introduce an LS approach that
uses the Newsela corpus for SG and employs a
new regression model for Neural Ranking in SR
that addresses the task in three steps: Regression,
Ordering and Confidence Check.

2 Hybrid Substitution Generation

Our approach combines candidate substitutions
from two sources: the Newsela corpus and
retrofitted context-aware word embedding models.
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2.1 SG via Parallel Data

The Newsela corpus1 (version 2016-01-29.1) con-
tains 1,911 news articles in their original form, as
well as up to 5 versions simplified by trained pro-
fessionals to different reading levels. It has a total
of 10,787 documents, each with a unique article
identifier and a version indicator between 0 and 5,
where 0 refers to the article’s original form, and 5
to its simplest version.

To employ the Newsela corpus in SG, we first
produce sentence alignments for all pairs of ver-
sions of a given article. To do so, we use paragraph
and sentence alignment algorithms from (Paetzold
and Specia, 2016g). They align paragraphs with
sentences that have high TF-IDF similarity, con-
catenate aligned paragraphs, and finally align con-
catenated paragraphs at sentence-level using the
TF-IDF similarity between them. Using this algo-
rithm, we produce 550,644 sentence alignments.

We then tag sentences using the Stanford Tagger
(Toutanvoa and Manning, 2000), produce word
alignments using Meteor (Denkowski and Lavie,
2011), and extract candidates using a strategy sim-
ilar to that of Horn et al. (2014). First we con-
sider all aligned complex-to-simple word pairs as
candidates. Then we filter them by discarding
pairs which: do not share the same POS tag, have
at least one non-content word, have at least one
proper noun, or share the same stem. After filter-
ing, we inflect all nouns, verbs, adjectives and ad-
verbs to all possible variants. We then complement
the candidate substitutions from the Newsela cor-
pus using the following word embeddings model.

2.2 SG via Context-aware Word Embeddings

Paetzold and Specia (2016f) present a state-of-
the-art simplifier that generates candidates from
a context-aware word embeddings model trained
over a corpus composed of words concatenated
with universal POS tags. We take this approach
a step further by incorporating another enhance-
ment: lexicon retrofitting.

Faruqui et al. (2015) introduce an algorithm
that allows for typical embeddings to be retrofitted
over lexicon relations, such as synonymy, hyper-
nymy, etc. To retrofit the context-aware mod-
els from (Paetzold and Specia, 2016f), we con-
catenate the words in WordNet (Fellbaum, 1998)
with their universal POS tag, create a dictionary
containing mappings between word-tag pairs and

1https://newsela.com/data

their synonyms, then use the algorithm described
in (Faruqui et al., 2015).

We train a bag-of-words (CBOW) model
(Mikolov et al., 2013b) of 1,300 dimensions with
word2vec (Mikolov et al., 2013a) using a corpus
of over 7 billion words that includes the SubIMDB
corpus (Paetzold and Specia, 2016b), UMBC web-
base2, News Crawl3, SUBTLEX (Brysbaert and
New, 2009), Wikipedia and Simple Wikipedia
(Kauchak, 2013). We retrofit the model over
WordNet’s synonym relations only. We choose
this model training configuration because it has
been shown to perform best for LS in a recent ex-
tensive benchmarking (Paetzold, 2016).

For each target word in the Newsela vocabu-
lary we then generate as complementary candidate
substitutions the three words in the model with the
lowest cosine distances from the target word that
have the same POS tag and are not a morphologi-
cal variant. As demonstrated by Paetzold and Spe-
cia (2016a), in SG parallel corpora tend to yield
higher Precision, but noticeably lower Recall than
embedding models. We add only three candidates
in order increase Recall without compromising the
high Precision from the Newsela corpus.

3 Unsupervised Substitution Selection

We pair our generator with the Unsupervised
Boundary Ranking SS approach from (Paetzold
and Specia, 2016f). They learn a supervised rank-
ing model over data gathered in unsupervised fash-
ion. Candidates are ranked according to how well
they fit the context of the target word, and a per-
centage of the worst ranking candidates is dis-
carded.

For training, the approach requires a set of com-
plex words in context along with candidate substi-
tutions for it. To produce this data, we generate
candidates for the complex words in all 929 sim-
plification instances of the BenchLS dataset (Paet-
zold and Specia, 2016a) using our SG approach.
The selector assigns label 1 to the complex words
and 0 to all candidates, then trains the model over
this data. During SS, we discard 50% of candi-
dates with the worst rankings. We chose this pro-
portion through experimentation. As features, we
use the same described in (Paetzold and Specia,
2016f).

2http://ebiquity.umbc.edu/resource/html/id/351
3http://www.statmt.org/wmt11/translation-task.html

35



4 Neural Substitution Ranking

Our approach performs three steps: Regression,
Ordering and Confidence Check.

4.1 Regression
In this step, we employ a multi-layer perceptron
to determine the ranking between candidate sub-
stitutions. The network (Figure 1) takes as input a
set of features from two candidates, and produces
a single value that represents how much simpler
candidate 1 is than candidate 2. If the value is
negative, then candidate 1 is simpler than 2, if it
is positive, candidate 2 is simpler than 1.

Figure 1: Architecture of neural ranker

Our network has three hidden layers with eight
nodes each. For training we use the LexMTurk
dataset (Horn et al., 2014), which contains 500 in-
stances composed of a sentence, a target complex
word and candidate substitutions ranked by sim-
plicity. Let c1 and c2 be a pair of candidates from
an instance, r1 and r2 their simplicity ranks, and
Φ(ci) a function that maps a candidate ci to a set
of feature values. For each possible pair in each
instance of the LexMTurk dataset we create two
training instances: one with input [Φ(c1) , Φ(c2)]
and reference output r1−r2, and one with input
[Φ(c2) , Φ(c1)] and reference output r2−r1. We
train our model for 500 epochs. We use the same
n-gram probability features from SubIMDB used
by (Paetzold and Specia, 2015). Hidden layers use
the tanh activation function, and the output node
uses a linear function with Mean Average Error.

4.2 Ordering
Once the model is trained, we rank candidates by
simplicity. Let M(ci, cj) be the value estimated
by our model for a pair of candidates ci and cj of a
generated set C. During the ordering, we calculate
the final score R(ci) of all candidates ci (Eq. 1).

R(ci) =
∑

cj 6=ci∈C

M(ci, cj) (1)

Then, we simply rank all candidates based on
R: the lower the score, the simpler a candidate is.

4.3 Confidence Check

Once candidates are ranked, in order to increase
the reliability of our simplifier, instead of replac-
ing the target complex word with the simplest can-
didate, we first compare the use of this candidate
against the original word in context, which can be
seen as a Confidence Check.

The target t is only replaced by the simplest
candidate c if the language model probability of
the trigram Sj−1

j−2 t, in which Sj−1
j−2 is the bigram

of words preceding t in position j of sentence S,
is smaller than that of trigram Sj−1

j−2 c. This type
of approach has been proved a reliable alternative
to simply adding the target complex word to the
candidate pool during ranking (Glavaš and Štajner,
2015).

To calculate probabilities, we train a 5-gram
language model over SubIMDB, since its word
and n-gram frequencies have been shown to cor-
relate with simplicity better than those from other
larger corpora (Paetzold and Specia, 2016b). We
henceforth refer to our LS approach (SG+SS+SR)
as NNLS.

5 Substitution Generation Evaluation

Here we assess the performance of our SG ap-
proach in isolation (NNLS/SG), and when paired
with our SS strategy (NNLS/SG+SS), as described
in Sections 2 and 3. We compare them to the gen-
erators of all approaches featured in the bench-
marks of Paetzold and Specia (2016a): Devlin
(Devlin and Tait, 1998), Biran (Biran et al., 2011),
Yamamoto (Kajiwara et al., 2013), Horn (Horn
et al., 2014), Glavas (Glavaš and Štajner, 2015)
and Paetzold (Paetzold and Specia, 2015; Paetzold
and Specia, 2016f). These SG strategies extract
candidates from WordNet, Wikipedia and Simple
Wikipedia articles, Merriam dictionary, sentence-
aligned Wikipedia and Simple Wikipedia articles,
typical word embeddings and context-aware word
embeddings, respectively. They are all available in
the LEXenstein framework (Paetzold and Specia,
2015).

We use two common evaluation datasets for
LS: BenchLS (Paetzold and Specia, 2016a), which
contains 929 instances and is annotated by English
speakers from the U.S, and NNSEval (Paetzold
and Specia, 2016f), which contains 239 instances
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and is annotated by non-native English speakers.
Each instance is composed of a sentence, a tar-
get complex word, and a set of gold candidates
ranked by simplicity. We use the same metrics
featured in (Paetzold and Specia, 2016a), which
are the well known Precision, Recall and F1. No-
tice that, since these datasets already provide tar-
get words deemed complex by human annotators,
we do not address CWI in our evaluations.

The results in Table 1 reveal that our SG ap-
proach outperforms all others in Precision and F1
by a considerable margin, and that our SS ap-
proach leads to noticeable increases in Precision
at almost no cost in Recall.

BenchLS NNSeval
P R F1 P R F1

Devlin 0.133 0.153 0.143 0.092 0.093 0.092
Biran 0.130 0.144 0.136 0.084 0.079 0.081
Yamamoto 0.032 0.087 0.047 0.026 0.061 0.037
Horn 0.235 0.131 0.168 0.134 0.088 0.106
Glavas 0.142 0.191 0.163 0.105 0.141 0.121
Paetzold 0.180 0.252 0.210 0.118 0.161 0.136
NNLS/SG 0.270 0.209 0.236 0.186 0.136 0.157
NNLS/SG+SS 0.337 0.206 0.256 0.231 0.135 0.171

Table 1: SG benchmarking results

6 Substitution Ranking Evaluation

We also compare our Neural Ranking SR ap-
proach (NNLS/SR) to the rankers of all aforemen-
tioned lexical simplifiers. The Devlin, Biran, Ya-
mamoto, Horn, Glavas and Paetzold rankers ex-
ploit Kucera-Francis coefficients (Rudell, 1993),
hand-crafted complexity metrics, a supervised
SVM ranker, rank averaging and Boundary Rank-
ing, respectively. In this experiment we disregard
the step of Confidence Check, since we aim to
analyse the performance of our ranking strategy
alone.

The datasets used are those introduced for the
English Lexical Simplification task of SemEval
2012 (Specia et al., 2012), to which dozens of
systems were submitted. The training and test
sets are composed of 300 and 1,710 instances, re-
spectively. Each instance is composed of a sen-
tence, a target complex word, and a series of can-
didate substitutions ranked by simplicity. We use
TRank, the official metric of the SemEval 2012
task, which measures the proportion of instances
for which the candidate with the highest gold-
rank was ranked first, as well Pearson (p) correla-
tion. While TRank best captures the reliability of

rankers in practice, Pearson correlation shows how
well the rankers capture simplicity in general.

Table 2 reveals that, much like our SG ap-
proach, our Neural Ranker performs well in isola-
tion, offering the highest scores among all strate-
gies available.

TRank p

Devlin 0.596 0.614
Biran 0.513 0.505
Yamamoto 0.604 0.649
Horn 0.639 0.673
Glavas 0.632 0.644
Paetzold 0.653 0.677
NNLS/SR 0.658 0.677

Table 2: SR benchmarking results

7 Full Pipeline Evaluation

We then evaluate our approach in two settings:
with (NNLS) and without (NNLS-C), the Con-
fidence Check (Section 4.3). The evaluation
datasets used are the same described in Section 5,
and the metrics are:

• Accuracy: The proportion of instances in
which the target word was replaced by a gold
candidate.

• Precision: The proportion of instances in
which the target word was either replaced by
a gold candidate or not replaced at all.

BenchLS NNSeval
P A P A

Devlin 0.309 0.307 0.335 0.117
Biran 0.124 0.123 0.121 0.121
Yamamoto 0.044 0.041 0.444 0.025
Horn 0.546 0.341 0.364 0.172
Glavas 0.480 0.252 0.456 0.197
Paetzold 0.423 0.423 0.297 0.297
NNLS 0.642 0.434 0.544 0.335
NNLS-C 0.543 0.538 0.397 0.393

Table 4: Full pipeline evaluation results

Notice that, unlike in SG, Recall and F1 are not
applicable in this form of evaluation. Table 4 re-
veals that, without the confidence check, our ap-
proach yields an average increase of 10.5% in Ac-
curacy over the former state-of-the-art simplifier.
With the confidence check, it yields the highest
Precision while retaining the highest Accuracy.
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2A 2B 3A 3B 4 5 1
SE Devlin 0 (0%) 689 (74%) 86 (36%) 34 (14%) 60 (50%) 17 (14%) 43 (36%)
SE Horn 0 (0%) 689 (74%) 76 (32%) 43 (18%) 74 (61%) 15 (12%) 32 (26%)
SE Glavas 0 (0%) 689 (74%) 70 (29%) 23 (10%) 81 (55%) 20 (14%) 46 (31%)
SE Paetzold 0 (0%) 689 (74%) 59 (25%) 21 (9%) 68 (42%) 28 (18%) 64 (40%)
SE NNLS 0 (0%) 689 (74%) 40 (17%) 30 (12%) 34 (20%) 45 (26%) 91 (54%)
PV Devlin 84 (9%) 232 (25%) 146 (61%) 22 (9%) 35 (49%) 8 (11%) 29 (40%)
PV Horn 84 (9%) 232 (25%) 123 (51%) 30 (12%) 50 (57%) 13 (15%) 24 (28%)
PV Glavas 84 (9%) 232 (25%) 127 (53%) 12 (5%) 46 (46%) 17 (17%) 38 (38%)
PV Paetzold 84 (9%) 232 (25%) 126 (52%) 9 (4%) 39 (37%) 14 (13%) 52 (50%)
PV NNLS 84 (9%) 232 (25%) 110 (46%) 17 (7%) 14 (12%) 26 (23%) 73 (65%)

Table 3: Error categorisation results

8 Error Analysis

In this Section we analyse NNLS to understand the
sources of its errors. For that, we use PLUMBErr
(Paetzold and Specia, 2016c; Shardlow, 2014), a
method that assesses all steps taken by LS systems
and identifies five types of errors:

• 1: No error during simplification.

• 2A: Complex word classified as simple.

• 2B: Simple word classified as complex.

• 3A: No candidate substitutions produced.

• 3B: No simpler candidates produced.

• 4: Replacement compromises the sentence’s
grammaticality or meaning.

• 5: Replacement does not simplify the word.

Errors of type 2 are made during CWI, 3 during
SG/SS, and 4 and 5 during SR. We pair ours, De-
vlin’s, Horn’s, Glavas’ and Paetzold’s simplifiers
with two CWI approaches: one that simplifies ev-
erything (SE), and the Performance-Oriented Soft
Voting approach (PV), which won the CWI task of
SemEval 2016 (Paetzold and Specia, 2016e).

Table 3 shows the count and proportion (in
brackets) of instances in BenchLS in which each
error was made. It shows that our approach cor-
rectly simplifies the largest number of problems,
while making the fewest errors of type 3A and
4. However, it can be noticed that NNLS makes
many errors of type 5. By analysing the output
produced after each step, we found that this is
caused by the inherently high Precision of our ap-
proach: by producing a smaller number of spuri-
ous candidates, our simplifier reduces the occur-
rences of ungrammatical and/or incoherent sub-
stitutions, but also disregards many candidates

that are simpler than the target complex word.
Nonetheless, this noticeably increases the number
of correct simplifications made.

9 Conclusions

We introduced an LS approach that extracts can-
didate substitutions from the Newsela corpus and
retrofitted context-aware word embedding models,
selects them with Unsupervised Boundary Rank-
ing, and ranks them using a new Neural Ranking
strategy.

We found that: (i) our generator achieves the
highest Precision and F1 scores to date, (ii) our
Neural Ranking strategy leads to the top scores
on the English Lexical Simplification task of Se-
mEval 2012, (iii) and their combination offers the
highest Precision and Accuracy scores in two stan-
dard evaluation datasets. An error analysis reveals
that our LS approach makes considerably fewer
grammaticality/meaning errors than former state-
of-the-art simplifiers.

In future work, we aim to investigate new archi-
tectures for our Neural Ranking model, as well as
to test our approach in other NLP tasks. An im-
plementation of our Substitution Generation, Se-
lection and Ranking approaches can be found in
the LEXenstein framework4.
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