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Preface: General Chair

Welcome to the EACL 2017, the 15th Conference of the European Chapter of the Association for
Computational Linguistics! This is the largest ever EACL in terms of the number of papers being
presented. We have a strong scientific program, including 14 workshops, six tutorials, a demos
session, and a student research workshop. EACL received a record number of sumbissions this year,
approximately 1,000 long and short papers combined, which reflects how broad and active our field is.
We are also fortunate to have three excellent invited speakers: David Blei (University of Columbia),
Devi Parikh (Virginia Tech), and Hinrch Schütze (LMU Munich). I hope that you will enjoy both the
conference and Valencia.

I am deeply indebted to the Program Committee Chairs, Alexander Koller and Phil Blunsom, for their
hard work. They put together a team of 27 area chairs who in turned assembled many reviewers and
handled a large number of papers. The Workshop Chairs, Laura Rimmell and Richard Johansson,
coordinated with the workshop chairs for ACL 2017 and EMNLP 2017 and succeeded in putting together
an exciting and broad programme including 14 workshops. The student research workshop was organised
by the student members of the EACL board — John Camilleri, Mariona Coll Ardanuy Uxoa Iñourrieta,
and Florian Kunneman. With the help of Barbara Plank (Faculty advisor), they issued the call, organised
a team of reviewers, assigned papers, coordinated and mediated among reviewers, and finally constructed
a schedule consisting of 12 papers.

The Tutorial Chairs, Lucia Specia and Alexandre Klementiev, put together a very strong programme
of six tutorials, which I hope many of us will attend. The publication chairs, Maria Liakata and Chris
Biemann, have been short of amazing. They undertook the complex task of producing the conference
proceedings and managed to make it seem easy, while being extremely thorough and paying attention
to every detail. Chris Biemann deserves a double thank you for being Sponsorship Chair. Our demo
chairs, Anselmo Peñas and André Martins, did a fantastic job selecting 30 demos for our demo session
which I encourage you all to attend. I would also like to thank David Weir our publicity chair and
the ACL business manager Priscilla Rassmussen, who knows more about our conferences than anyone
else. Sincere thanks are due to the various sponsors for their generous contribution. I am grateful to all
members of the EACL board for their advice and guidance, in particular to Lluís Márques and Walter
Daelemans.

Last, but not least, this conference could not have taken place without the local organising committee
who have worked tremendously hard to make EACL 2017 a success. The Local Chair, Paolo and Andrea
Aldea from Groupo Pacifico, have brought together a fantastic local team and have dealt with many of
the day-to-day tasks arising in organizing such a large conference expertly and efficiently.

I am always amazed by the dedication of our colleagues and their willingness to share knowledge and
invest precious time in order to make our conferences a success. On that note, I would like to thank
the authors who submitted their work to EACL and everyone else involved: area chairs, workshop
organizers, tutorial presenters, reviewers, demo presenters, and participants of the conference.

Welcome to EACL 2017!

Mirella Lapata
General Chair
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Preface: Programme Chairs

Welcome to the 15th Conference of the European Chapter of the Association for Computational
Linguistics! In these proceedings you will find all the papers accepted for presentation at the conference
in Valencia from the 3rd to the 7th of April 2017. The main conference program consists of both oral
and poster presentations and also includes additional presentations of papers from the Transaction of the
Association for Computational Linguistics (TACL), posters from the Student Research Workshop, and
two demonstration sessions.

We received considerably more paper submissions than previous meetings of the EACL: 441 Long Papers
and 502 Short Papers (excluding papers withdrawn or rejected for incorrect formatting). The Short Paper
deadline was set after that for Long Papers and it is notable that we received more submissions of Short
than Long papers. After the commendable reviewing efforts of our Program Committee we accepted
119 Long Papers, 78 as oral presentations and 41 posters, and 120 Short Papers, 47 orals and 73 posters.
Overall the acceptance rates where 27% and 24% for the Long and Short Paper tracks respectively. The
EACL 2017 programme also contained the oral presentations of four papers published in TACL.

It would not have been possible to produce such a high quality programme without the amazing effort
and dedication of our Program Committee. We would like to than all of those who served on the
committee, which consisted of 27 Area Chairs and 612 Reviewers, drawn from a diverse range of fields
and from both Europe and further afield. Each paper received at least three reviews. We selected the final
programme based on the recommendations of the Area Chairs and reviewers, while aiming to ensure
the representation of a wide variety of research areas. The Area Chairs were each asked to nominate
candidate papers for the Outstanding Papers sessions, of which the Programme Chairs and General Chair
selected three Long Papers and one Short Paper. These were allocated extra time in the programme for
their oral presentations.

Following the precedent set at ACL 2016, we decided to allocate Long Paper and Short Paper oral
presentations 20 minute and 15 minute slots respectively, including time for questions and changing
speakers. While this shorter scheduling requires presenters to be more concise in their presentation, it
allowed us to accommodate a larger program of talks in the space available at the venue.

In addition to the main conference programme, a Student Research Workshop was held which selected 12
papers for presentation as posters, and two demonstration sessions were held during the evening poster
sessions. We are particularly grateful to our three distinguished invited speakers, Devi Parikh (Georgia
Tech), David Blei (Columbia University), and Hinrich Schütze (LMU Munich). They represent the
amazing diversity of contemporary research being conducted across Computational Linguistics, Artificial
Intelligence, and Machine Learning.

In total the programme contains 126 talks and 126 posters, making this the largest EACL conference by
a considerable margin. Firstly this would not be possible without the authors who chose to submit there
research papers for publication at EACL, and we thank them for choosing our conference. Obviously
coordinating such a programme requires contributions from many people beyond the Programme Chairs.
We would like to thank our Area Chairs who ensured the smooth running of the two reviewing cycles.
We are also thankful for the support we received from the rest of the organising committee, including the
Publication Chairs, Local Organisers, Workshop Chairs, Tutorial Chairs, Demo Chairs, the Handbook
Chair, and the Student Research Workshop Chair, all listed in full later in the proceedings. We are also
grateful for the technical support received form the START team. We would like to thank the Programme
Chairs for ACL 2016, Katrin Erk and Noah Smith, who generously provided many insights and tips from
their own experience to help us avoid pitfalls and ensure the smooth running of the reviewing process.
Finally, we are thankful to have been blessed with an exceptionally calm and organised General Chair in
Mirella Lapata, who ensured the smooth running of the organising process and the ultimate success of
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this conference.

We hope you enjoy EACL 2017 in Valencia!

Phil Blunsom and Alexander Koller
EACL 2017 Programme Chairs
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Abstract

Universal Dependencies (UD) is becom-
ing a standard annotation scheme cross-
linguistically, but it is argued that this
scheme centering on content words is
harder to parse than the conventional one
centering on function words. To improve
the parsability of UD, we propose a back-
and-forth conversion algorithm, in which
we preprocess the training treebank to in-
crease parsability, and reconvert the parser
outputs to follow the UD scheme as a post-
process. We show that this technique con-
sistently improves LAS across languages
even with a state-of-the-art parser, in par-
ticular on core dependency arcs such as
nominal modifier. We also provide an
in-depth analysis to understand why our
method increases parsability. 1

1 Introduction

As shown in Figure 1 there are several variations
in annotations of dependencies. A famous exam-
ple is a head choice in a prepositional phrase (e.g,
to a bar), which diverges in the two trees. Though
various annotation schemes have been proposed
so far (Hajic et al., 2001; Johansson and Nugues,
2007; de Marneffe and Manning, 2008; McDon-
ald et al., 2013), recently the Universal Dependen-
cies (UD) (de Marneffe et al., 2014) gains much
popularity and is becoming the annotation stan-
dard across languages. The upper tree in Figure
1 is annotated in UD.

Practically, however, UD may not be the opti-
mal choice. In UD a content word consistently
dominates a function word, but past work points
out that this makes some parser decisions more

1Our conversion script is available at
https://github.com/kohilin/MultiBFConv

Joe saw that Bob went to a bar
NOUN VERB SCONJ NOUN VERB ADP DET NOUN

nsubj

root

mark

nsubj

ccomp

case

det

nmod

mark
ccomp

case
nmod

Figure 1: Dependency trees with content head
(above) and function head (below).

difficult than the conventional style centering on
function words, e.g., the tree in the lower part of
Figure 1 (Schwartz et al., 2012; Ivanova et al.,
2013).

To overcome this issue, in this paper, we
show the effectiveness of a back-and-forth conver-
sion approach where we train a model and parse
sentences in an anontation format with higher
parsability, and then reconvert the parser output
into the UD scheme. Figure 1 shows an example
of our conversion. We use the function head trees
(below) as an intermediate representation.

This is not the first attempt to improve depen-
dency parsing accuracy with tree conversions. The
positive result is reported in Nilsson et al. (2006)
using the Prague Dependency Treebank. For the
conversion of content and function head in UD,
however, the effect is still inconclusive. Using En-
glish UD data, Silveira and Manning (2015) report
the negative result, which they argue is due to error
propagation at backward conversions, in particu-
lar in copula constructions that often incur drastic
changes of the structure. Rosa (2015) report the
advantage of funcion head in the adposition con-
struction, but the data is HamleDT (Zeman et al.,
2012) rather than UD and the conversion target is
conversely too restrictive.

Our main contribution is to show that the back-
and-forth conversion can bring consistent accu-
racy improvements across languages in UD, by

1



POS Label Example

ADP
case ... a post about fault ...
dep (ja) Taro ni ha ...
mark ... opinions on how it ...

SCONJ mark I think that ...
ADV mark ... feet when you ...

PART case Elena ’s motor cycle ...
mark ... Sharon to make ...

Table 1: The set of conversion targets. (ja) is an
example in Japanese.

limiting the conversion targets to simpler ones
around function words while covering many lin-
guistic phenomena. Another limitation in previous
work is the parsers: MSTParser or MaltParser is
often used, but they are not state-of-the-art today.
We complement this by showing the effectiveness
of our approach even with a modern parser with
rich features. We also provide an in-dpeth analy-
sis to explore when and why our conversion brings
higher parsability than the orignal UD.

2 Conversion method

Let us define notations first. For the i-th word wi

in a sentence, pi denotes its POS tag, hi the head
index, li the dependency label, and lefti (righti) the
list of indexes of left (right) children for wi. For
instance in the upper tree in Figure 1, w5 = went,
p5 = VERB, h5 = 2, l5 = ccomp, and left5 = [3, 4].

Forward Conversion The forward algorithm
receives the original UD tree and converts it to a
function head tree by modifying hi. Figure 1 is
an example, and Algorithm 1 is the pseudo-code;
root(y) returns the root word index of tree y.

The algorithm traverses the tree in a top-down
fashion and modifies the deepest node first. The
modifications such as changing the mark arc from
went to that in Figure 1 occur when it detects a
word wi (that, in this case), for which the pair
(pi, li) exists in the set of conversion targets, which
is listed in Table 1 and is denoted by T in Algo-
rithm 1. Let wj be the head of the detected word
wi. Then, we reattach the arcs so that wi’s head
becomes wj’s head and wj’s new head becomes
wi. Note that we modify heads (hi) only and keep
labels (li). We skip the children of the root word
(line 13); otherwise, an arc with root label will ap-
pear at an intermediate node. We operate only on
the outermost child when multiple candidates are
found (line 11).

Backward Conversion In contrast, the back-
ward algorithm receives a function head tree and

Algorithm 1 Forward conversion
Input: a dependency tree y and the set of targets T .
Output: modified y after applying CONV(root(y)).

1: procedure CONV(j)
2: for i in leftj do
3: CONV(i)
4: CHANGEDEP(SEARCH(leftj), j)
5: for i in rightj do
6: CONV(i)
7: CHANGEDEP(SEARCH(reverse(rightj)), j)
8: procedure SEARCH(children)
9: for i in children do

10: if (pi, li) ∈ T then . T is the set of targets.
11: return i . The first found candidate is

outermost. We only change this.
12: procedure CHANGEDEP(i, j)
13: if lj 6= root then . We skip the root.
14: hi ← hj ; hj ← i

reconverts it to a UD-style tree. Algorithm 2 is the
pseudo-code.

There are two main differences between the for-
ward and backward algorithms. The first is the
relative position of a target node (one of Table 1)
among the operated nodes; in the forward algo-
rithm they are the target node, its parent (head),
and its grandparent, while in the backward algo-
rithm they are the target node, its head, and its
children. The second is how we reattach the nodes
at the CHANGEDEP operation, in particular when
the target node has multiple children. While the
forward algorithm modifies only two arcs at once,
the backward algorithm may modify more than
two arcs considering possible parse errors at pre-
diction. Specifically, when we find a target node
having multiple children, we change the head of
all these children to the head of the target (exclud-
ing those with the mwe label)2. We choose the
intermost child as the new head of the target word
(line 17).

Remarks The target list in Table 1 is developed
for covering main constructions in English and
Japanese while keeping the backward conversion
accuracy high. We do not argue this list is perfect,
and seeking better one is an important future work.
Note also that we use this list across all languages.

One possible drawback of our method is that it
may introduce additional non-projective arcs. In
fact, we found that the ratio of non-projective arcs
in the training sets increases by 10% points on av-

2In the original UD, tokens with mwe label sometimes at-
tach to a function word, which may be the current target. To
avoid flipping the relationship of mwe components, our back-
ward algorithm skips them in the CHANGEDEP operation.
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Algorithm 2 Backward conversion
Input: a dependency tree y and the set of targets T .
Output: reconverted y after applying CONV(root(y)).

1: procedure CONV(j)
2: for i in leftj do
3: CONV(i)
4: if (pj , lj) ∈ T then
5: CHANGEDEP(leftj , j)
6: for i in rightj do
7: CONV(i)
8: if (pj , lj) ∈ T then
9: CHANGEDEP(reverse(rightj), j)

10: procedure CHANGEDEP(children, j)
11: lastchild← −1 . -1 is dummy.
12: for i in children do
13: if li 6= mwe then . We skip mwes.
14: lastchild← i
15: hi ← hj

16: if lastchild 6= −1 then
17: hj ← lastchild . The last chid is innermost.

erage. We argue this is not a serious restriction
since UD already contains moderate amount of
non-projective arcs and the parser should be able
to handle them. In practice, this complication does
not lead to performance degradation; when we em-
ploy non-projective parsers, the scores increase re-
gardless of the increased non-projectivity.

3 Experiment

3.1 Experimental Setting

For each treebank and parser, we train two differ-
ent models: one with the original trees (UD) and
another with the converted trees (CONV). Recon-
verting CONV’s output into the UD scheme by the
backward algorithm, we can evaluate the outputs
of both models against the same UD test set.

For parsers, we use two non-projective parsers:
second-order MSTParser (MST) (McDonald et al.,
2005) 3 and RBGParser (RBG) (Lei et al., 2014) 4

with the default settings, which utilizes the third-
order features and is much stronger .

We choose 19 langueges from UD ver.1.3 con-
sidering the sizes and typological variations.5 The
ratio of converted tokens is 6.3% on average
(2.3%-15.6%). The failed backward conversions
rarely occur at most 0.01% (0.002% on average)
in the training data. We use gold POS tags, and
exclude punctuations from evaluation.

3https://sourceforge.net/projects/mstparser/
4https://github.com/taolei87/RBGParser
5We exclude Arabic and French since they caused prob-

lems in training with RBG in a preliminary study.

3.2 Result

Attachment scores Table 2 shows the main re-
sult and we can see that the improvements are re-
markable in the labeled attachment score (LAS):
For MST, the scores increase more than 1.0 point
in many languages (11 out of 19), and for RBG,
though the changes are smaller, more than 0.5
points improvements are still observed in 10 lan-
guages. The differences in the unlabelled attach-
ment score (UAS) are modest, implying that our
conversion contributes in particular to find correct
arc labels rather than head words themselves. On
the other hand, LAS of Hindi decreases with RBG.
One possible explanation for this is that the score
of original UD is sufficiently high (91.74) and our
conversion may impede parsability in such cases.

These overall improvements are not observed in
past work (Silveira and Manning, 2015). One rea-
son of our success seems that we restrict our con-
version to simpler constructions and operations.
We do not modify copula and auxiliary construc-
tions, which involve more complex changes, am-
plifying error propagation in backward conver-
sion. Our conversion also suffers from such prop-
agation (see below) but in a lesser extent, suggst-
ing that it may achieve a good balance between
parsability and simplicity.

As the whole trends of the two parsers are simi-
lar, we mainly foucs on RBG in the analysis below.

What kinds of errors are reduced by our con-
version? To inspect this, we compare F1-scores
of each arc label. Table 3 summarizes the results
for the frequent labels, and interestingly we can
see that the improvements are observed for more
semantically crucial, core relations such as dobj
(+0.81), nmod (+2.34), and nsubj (+2.01).6 This
is not surprising as these relations are involved in
most of our conversion. See Figure 1, on which
in the original tree, nmod arc connects two con-
tent words (went and bar) while in the converted
tree, they are connected via a function word to.
The result suggests that this latter structure is more
parsable than the original one, possibly because
directly connecting content words is harder due to
the sparsity. We further investigate this hypothesis
quantitatively later.

The F1-scores degrade in some functional
lables, such as mark (-2.74) and case (-0.85). In-

6In the following, by core labels we mean the labels in the
“core” row at Table 3 while by functional labels we mean the
other labels (func).
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L.
UAS LAS CNC

MST RBG MST RBG RBG

UD CONV UD CONV UD CONV UD CONV UD CONV

bg 88.39 88.86 90.33 90.74 81.63 82.63 84.85 85.64 80.74 81.92
cs 86.65 87.20 91.40 91.67 79.85 80.65 87.25 87.22 85.23 85.21
da 82.03 83.46 86.08 86.51 76.81 78.52 82.13 82.65 78.42 79.54
de 84.69 84.66 87.19 86.68 75.47 77.69 79.39 80.63 72.03 74.10
en 85.97 86.30 89.69 89.65 80.67 81.89 86.32 86.50 82.30 82.83
es 85.98 86.47 89.02 89.21 80.13 81.95 84.98 85.75 77.33 79.00
et 81.04 80.81 87.67 87.60 71.28 71.56 83.84 84.07 82.58 82.99
fa 83.26 84.25 82.83 84.37 78.43 80.10 78.64 80.56 74.53 77.47
fi 76.76 76.42 85.57 85.80 68.24 68.55 81.69 82.46 80.46 81.22
hi 89.80 92.14 95.10 94.99 84.11 87.20 91.74 90.76 87.96 87.22
hu 79.31 79.94 84.53 84.15 66.47 67.26 79.53 79.94 77.19 78.06
it 88.82 89.48 92.14 92.83 83.90 85.94 89.22 90.25 83.31 85.27
ja 87.67 90.20 91.58 92.24 79.96 85.41 87.70 87.62 81.09 81.14
no 89.14 89.44 91.57 91.57 84.06 85.23 88.31 88.32 84.81 85.14
pl 88.10 87.71 92.25 92.47 80.20 80.73 87.51 87.70 85.08 85.64
pt 85.82 85.34 90.51 91.04 80.16 80.53 86.79 87.47 80.30 81.90
ru 81.46 81.91 86.76 87.13 74.79 75.86 83.15 83.92 81.01 82.04
tr 79.02 78.90 85.10 85.13 62.56 62.66 75.33 75.57 73.70 74.19
zh 79.28 79.07 85.75 85.48 73.44 74.72 80.91 81.68 79.43 80.45

Avg. 84.38 84.87 88.69 88.91 76.96 78.37 84.17 84.67 80.40 81.33

Table 2: Comparison of unlabelled (UAS) and labelled (LAS) attachment scores. See body for CNC. A
bold score means that the difference is more than 0.1 points.

Type Label Ratio UD CONV

core

advmod 4.9% 79.24 79.15
amod 6.3% 92.41 92.46
conj 4.4% 66.56 68.07
dobj 5.7% 81.92 82.73

nmod 14.6% 76.52 78.86
nsubj 7.3% 80.19 82.20

func

case 11.4% 95.54 94.69
cc 3.3% 79.47 80.00
det 6.6% 94.99 94.95

mark 2.9% 87.39 84.65

Table 3: F1-scores (UD and CONV) and the av-
erage ratio in the test set (Ratio) of the frequent
labels.

specting the outputs, we find that this essentially
arises in our backward conversion, which induces
errors on these arcs even when they are correctly
attached in the (CONV) parser output, if another
core label arc following them, such as nmod, at-
taches wrong. Figure 2 describes the situation.
In the initial parser output (above), the case arc
to in is correct although it misattaches groups as
a child of in (the correct head is provides). By

... provides in a single glass all four essential groups
case

nmod

case

nmod

Figure 2: A failed output of CONV model (above),
which induces an additional error on case with the
backward conversion (below).

the backward conversion, then, it induces a wrong
case arc from groups to in, which hurts both pre-
cision and recall. In summary, we can say that
just predicting correct functional arcs (e.g., case)
is equally easy for both representations, but our
method needs correct analysis on both functional
and core arcs, to recover the true functional arcs.

Although this additional complexity seems de-
ficiency, the oveall scores (FAS) increase, which
suggests that the majority case is successful pre-
dictions of both arcs thanks to our conversion.
In other words, though our method slightly drops
scores of functional arcs, it saves much more arcs
of core relations, which are generally harder.

CNC To further verify the intuition above, now
we introduce another metric called the CNC score,
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which is recently proposed in Nivre (2016) for UD
evaluation purpose and calculates LAS excluding
functional arcs7. The last column in Table 2 shows
the results, where the improvements are clearer
than LAS, +0.9 points on average. The results
confirm the above observation that our method fa-
cilitates to find core grammatical arcs at a slight
sacrifice of functional arcs.

Head word vocabulary entropy Finally, we
provide an analysis to answer the question why our
method improves the scores of core dependency
arcs. As we mentioned above, this may be rel-
evant to the ease of sparseness by placing func-
tion words between two content words. We verify
this intuition quantitatively in terms of the entropy
reduction of head word vocabulary. Schwartz et
al. (2012) hypothesize about such correlation be-
tween entropy and parsability, although no qunati-
tative verification has been carried out yet.

For each dependency hyl
w from h to w with

label l in the training data, we extract a pair
((p, l, w), h) where p is the POS tag of w. We then
discard the pairs such that a tuple (p, l, w) appears
less than five times, and calculate the entropy of
head word, Hl(h) from the conditional probablity
P (h|p, l, w). We perform this both for the original
UD and converted data, and calculate the differ-
ence for each label Horig

l (h)−Hconv
l (h).

See Figure 3 above, where many nmods appear
on the upper left side, meaning that the reduction
of entropy contributes to the larger improvements
cross-linguistically. Other points on this area in-
clude dobjs of Japanese and Persian, both of which
employ case constructions for expressing objects.

We also explore the correlation between LAS
and the averaged reduction of entropy per a to-
ken in each language. Figure 3 below shows
a negative correlation, which means the reduc-
tion of entropy as a whole by the conversion re-
lates with the overall improvement. In particu-
lar in MST, we find a strong negative correlation
(r = −.75; p < .01). RBG, on the other hand,
has a weaker, non-significant negative correlation
(r = −.35; p = .14) when excluding Hindi, which
seems an outlier. These correlations imply that the
variation of entropy can be a metric of assessing
an annotation framework, or a conversion method.

7Arcs with the following relations: aux, auxpass, case,
cc, cop, det, mark, and neg.
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Figure 3: The reduction of entropy and the im-
provement of F1-score (above) and LAS (below)

4 Conclusion and Future Work

We have shown that our back-and-forth conversion
around function words reduces head word vocab-
ulary, leading to improvements of parsability and
labelled attachment scores. This is the first empir-
ical result on UD showing the parser preference to
the function head scheme across languages. The
method is modular, and can be combined with any
parsing systems as pre- and post-processing steps.

Recently there has been a big success in the
transition-based neural dependency parsers, which
we have not tested mainly because the most such
systems currently available, such as SyntaxNet
(Andor et al., 2016) and LSTMParser (Dyer et al.,
2015), do not support non-projective parsing. The
neural parsers are advantageous in that the bilex-
ical sparsity problem, the main challenge in UD
parsing for the ordinary feature-based systems,
might be alleviated thanks to word embeddings. It
is thus an interesting and important future work to
develop a neural dependency parser designed for
non-projective parsing and see whether our con-
version is still effective for such stronger system.
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Abstract

We introduce the URIEL knowledge
base for massively multilingual NLP and
the lang2vec utility, which provides
information-rich vector identifications of
languages drawn from typological, ge-
ographical, and phylogenetic databases
that are normalized to have straightfor-
ward and consistent formats, naming,
and semantics. The goal of URIEL
and lang2vec is to enable multilingual
NLP, especially on less-resourced lan-
guages and make possible types of exper-
iments (especially but not exclusively re-
lated to NLP tasks) that are otherwise dif-
ficult or impossible due to the sparsity and
incommensurability of the data sources.
lang2vec vectors have been shown to
reduce perplexity in multilingual language
modeling, when compared to one-hot lan-
guage identification vectors.

1 Introduction

This article introduces lang2vec1, a database
and utility representing languages as information-
rich typological, phylogenetic, and geographical
vectors. lang2vec feature primarily represent
binary language facts (e.g., that negation precedes
the verb or is represented as a suffix, that the lan-
guage is part of the Germanic family, etc.) and are
sourced and predicted from a variety of linguis-
tic resources including WALS (Dryer and Haspel-
math, 2013), PHOIBLE (Moran et al., 2014), Eth-
nologue (Lewis et al., 2015), and Glottolog (Ham-
marström et al., 2015).

1www.cs.cmu.edu/˜dmortens/downloads/
uriel_lang2vec_latest.tar.xz

Despite the heterogeneity of its sources,
lang2vec provides a simple interface with con-
sistent formats, featuring naming, language codes,
and feature semantics. lang2vec takes as its in-
put a list of ISO 639-3 codes and outputs a ma-
trix of [0.0, 1.0] feature values (like those in Table
1), allowing straightforward “plug and play” ex-
perimentation where different sources or types of
information can easily be combined or contrasted.
lang2vec is a release of the URIEL project,

a compendium of tools and resources to bet-
ter enable multilingual NLP, especially in less-
resourced languages where conventional NLP re-
sources like parallel corpora are limited.

2 Motivation

The recent success of “polyglot” models (Her-
mann and Blunsom, 2014; Faruqui and Dyer,
2014; Ammar et al., 2016; Tsvetkov et al., 2016;
Daiber et al., 2016), in which a language model
is trained on multiple languages and shares repre-
sentations across languages, represents a promis-
ing avenue for NLP, especially for less-resourced
languages, as these models appear to be able to
learn useful patterns from better-resourced lan-
guages even when training data in the target lan-
guage is limited.

Just as neural NLP raises many questions about
the best representations of words and sentences,
these models raise the question of the representa-
tion of languages. Tsvetkov et al. (2016) shows
that vectors that represent information about the
language outperform a simple “one-hot” represen-
tation where each language is represented by a 1 in
a single dimension. This result parallels the results
of other recent work in sound/character represen-
tation, in which vectors of linguistically-aware
features outperform one-hot character represen-
tations on some tasks (Bharadwaj et al., 2016;
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S SUBJECT- S SUBJECT- S ADPOSITION- S ADPOSITION-
BEFORE VERB AFTER VERB BEFORE NOUN AFTER NOUN

eng 1 0 1 0
mlg 0 1 1 0
kaz 1 0 0 1

Table 1: Truncated lang2vec syntax vectors for English, Malagasy, and Kazakh, representing binary
feature values converted from multi-class features in WALS (Dryer and Haspelmath, 2013) (§3.1), ex-
tracted by text-mining prose descriptions in Ethnologue (Lewis et al., 2015) (§3.1), and imputed by
k-nearest-neighbors classification from related, nearby, and similar languages (§4).

Training set baseline id id+phonology+inventory
Italian monolingual 4.36 — —

Italian, French, Romanian 5.73 4.93 4.24 (-26.0%)
Italian, French, Romanian, Hindi 5.88 4.98 4.41 (-25.0%)

Hindi monolingual 3.70 — —
Hindi, Tamil, Telegu 4.14 3.78 3.35 (-19.1%)

Hindi, Tamil, Telegu, English 4.29 3.82 3.42 (-20.3%)

Table 2: Perplexity of monoglot and polyglot language models in Italian and Hindi (Tsvetkov et
al., 2016), when the languages are not identified to the model (baseline), when the languages are
represented as one-hot vectors (id), and when languages are represented as lang2vec vectors
(id+phonology+inventory).

Rama, 2016).
Sample results from Tsvetkov et al. (2016) are

reproduced in Table 2, measuring the perplexity of
monolingual and polyglot models, trained on pro-
nunciation dictionaries in several languages and
tested on Italian and Hindi. We can see that train-
ing on a set of three similar languages, and a set
of four similar and dissimilar languages, raises
perplexity above the baseline monolingual model,
even when the language is identified to the model
by a one-hot (id) vector. However, perplexity is
lowered by the introduction of phonological fea-
ture vectors for each language (the phonology
and inventory vector types described in §3.1),
giving consistently lower perplexity than even the
monolingual baseline.

Providing such vectors for many languages,
however, is made difficult by the somewhat piece-
meal digital representation of language informa-
tion. There exist many information-rich sources
of language data, but each source covers differ-
ent sets of languages in different levels of detail,
has different formats and semantics (ranging from
binary features to trees to English prose descrip-
tions), uses different identifiers for languages and
different names for features, etc.

It does not take long in collecting a “polyglot”
experiment like those in Ammar et al. (2016),

Tsvetkov et al. (2016), or Daiber et al. (2016)
before one adds a language for which an ex-
pected feature is missing, present only in another
database or not present in any database; this prob-
lem is compounded when working on genuinely
less-studied languages. The initial motivation for
the URIEL knowledge base and the lang2vec
utility is to make such research easier, allow-
ing different sources of information to be easily
used together or as different experimental condi-
tions (e.g., is it better to provide this model in-
formation about the syntactic features of the lan-
guage, or the phylogenetic relationships between
the languages?). Standardizing the use of this
kind of information also makes it easier to repli-
cate and expand on previous work, without need-
ing to know how the authors processed, for exam-
ple, WALS feature classes or PHOIBLE invento-
ries into model input.

While lang2vec was originally conceived as
providing rich language representations to “poly-
glot” models, it can be utilized in a variety of
kinds of research projects (O’Horan et al., 2016):
helping to choose “bridge” or “pivot” languages
for cross-lingual transfer (Deri and Knight, 2016),
directly providing feature values to systems in-
terested in those specific features, or acting as
a dataset for the prediction of unknown or un-
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recorded language facts (Daumé III and Camp-
bell, 2007; Daumé III, 2009; Coke et al., 2016).
By normalizing information from a variety of data
sources, it can also allow the comparison of re-
sources, due to format and semantic differences,
that were difficult to compare directly before, and
help to quantify knowledge gaps concerning world
languages.

3 Vector types

lang2vec offers a variety of vector representa-
tions of languages, of different types and derived
from different sources, but all reporting feature
values between 0.0 (generally representing the ab-
sence of a phenomenon or non-membership in a
class) and 1.0 (generally representing the pres-
ence of a phenomenon or membership in a class).
This normalization makes vectors from different
sources more easily interchangeable and more eas-
ily predictable for each other (§4).

As in SSWL (Collins and Kayne, 2011), differ-
ent features are not held to be mutually exclusive;
the features S SVO and S SOV can both be 1 if
both orders are normally encountered in the lan-
guage.

Phylogeny, geography, and identity vectors are
complete—they have no missing values, due to the
nature of how they are calculated. The typological
features (syntax, phonology, and inventory), how-
ever, have missing values, reflecting the coverage
of the original sources; missing values are repre-
sented in the output as “--”. Predicted typological
vectors (§4) attempt to impute these values based
on related, neighboring, and typologically similar
languages.

All vectors within the syntax, phonology,
and inventory categories have the same dimen-
sionality as other types of vectors in the same cat-
egory, even though the sources themselves may
only represent a subset of these values, to allow
straightforward element-wise comparison of val-
ues. (This way, when WALS happens not to con-
tain a feature value that SSWL does, they can eas-
ily be combined by a vector operation, without
needing to track down specific feature names or
go back to the original sources. In general, users
will probably want to use the union or average of
relevant sources, or use the knn predictions.)

3.1 Typological vectors

The syntax features are adapted (after conver-
sion to binary features) from the World Atlas of
Language Structures (WALS) (Dryer and Haspel-
math, 2013), directly from Syntactic Structures
of World Languages (Collins and Kayne, 2011)
(whose features are already binary), and indirectly
by text-mining the short prose descriptions on ty-
pological features in Ethnologue (Lewis et al.,
2015).2

The phonology features are adapted in the
same manner from WALS and Ethnologue.

The phonetic inventory features are adapted
from the PHOIBLE database, itself a collec-
tion and normalization of seven phonological
databases (Moran et al., 2014; Chanard, 2006;
Crothers et al., 1979; Hartell, 1993; Michael et
al., 2012; Maddieson and Precoda, 1990; Ra-
maswami, 1999). The PHOIBLE-based features
in lang2vec primarily represent the presence or
absence of natural classes of features (e.g., inter-
dental fricatives, voiced uvulars, etc.), with 1 rep-
resenting the presence of at least one sound of
that class and 0 representing absence. They are
derived from PHOIBLE’s phonetic inventories by
extracting each segment’s articulatory features us-
ing the PanPhon feature extractor (Mortensen et
al., 2016), and using these features to determine
the presense or absence of the relevant natural
classes.

3.2 Phylogeny vectors

The fam vectors express shared membership in
language families, according to the world lan-
guage family tree in Glottolog (Hammarström et
al., 2015). Each dimension represents a lan-
guage family or branch thereof (such as “Indo-
European” or “West Germanic” in Table 4).

3.3 Geography vectors

Although another component of URIEL (to be de-
scribed in a future publication) provides geograph-
ical distances between languages, geo vectors ex-
press geographical location with a fixed number
of dimensions and each dimension representing
the same feature even when different sets of lan-
guages are considered. Each dimension represents

2Descriptions of well-studied typological features are of-
ten expressed formulaically in prose (“SVO”, “adjective be-
fore noun”, “(C)(C)v(C)”, etc.), and are relatively straightfor-
ward to extract given regular expressions and some Boolean
logic (e.g., if “CV” and not “CCV” and ...).
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Vector type #Languages #Features #Data points %Coverage
Syntax (from sources)
syntax wals 1808 98 78732 44%
syntax sswl 230 33 6404 84%
syntax ethnologue 1336 30 18105 45%
Syntax (averaged over sources)
syntax avg 2654 103 94227 34%
Syntax (predicted)
syntax knn 7970 103 820910 100%
Phonology (from sources)
phonology wals 832 27 14358 64%
phonology ethnologue 543 8 1017 23%
Phonology (averaged over sources)
phonology avg 1296 28 15303 42%
Phonology (predicted)
phonology knn 7970 28 223160 100%
Inventory (from sources)
inventory phoible aa 202 158 31916 100%
inventory phoible gm 428 158 67624 100%
inventory phoible ph 404 158 63832 100%
inventory phoible ra 100 158 15800 100%
inventory phoible saphon 334 158 52772 100%
inventory phoible spa 219 158 34602 100%
inventory phoible upsid 334 158 75050 100%
Inventory (averaged over sources)
inventory avg 1715 158 270970 100%
Inventory (predicted)
inventory knn 7970 158 1259260 100%

Table 3: Typological vectors available in lang2vec, along with the number of languages and features,
the number of individual data points, and the percentage of those language/feature pairs for which that
data point exists.

Indo-European Germanic West Germanic Romance North Germanic
deu 1 1 1 0 0
eng 1 1 1 0 0
fra 1 0 0 1 0
swe 1 1 0 0 1
mlg 0 0 0 0 0

Table 4: Truncated lang2vec phylogeny vectors for German, English, French, Swedish, and Malagasy,
where 1 represents membership in a particular language family or branch.
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the orthodromic distance—that is, the “great cir-
cle” distance—from the language in question to a
fixed point on the Earth’s surface. These distances
are expressed as a fraction of the Earth’s antipodal
distance, so that values will always be in between
0.0 (directly at the fixed point) and 1.0 (at the an-
tipode of the fixed point).

Figure 1: Example of a Fibonacci lattice over-
laid on the Earth’s surface, representing the “fixed
points” of a geo vector (§3.3). (Map data:
Google.)

The fixed points were derived by generating
a spherical Fibonacci lattice (González, 2009;
Keinert et al., 2015), a technique that approxi-
mates with high precision a uniform distribution
of points on a sphere. Language points are derived
from Glottolog, WALS, and SSWL’s declarations
of language location.3

3.4 Identity vectors

The id vector is simply a one-hot vector iden-
tifying each language. These vectors can serve
as simple identifiers of languages to a system,
serve as the control in an experiment in introduc-
ing (say) typological information to a system, as
in Tsvetkov et al. (2016), or serve in combination
with other vectors (such as fam) that do not al-
ways identify a language uniquely.

4 Feature prediction

One of the major difficulties in using typological
features in multilingual processing is that many
languages, and many features of individual lan-
guages, happen to be missing from the databases.

3It should be emphasized that these points are abstractions
rather than precise facts; there is no one point on Earth that
best specifies “English”, and no definition of the “center” of
a language’s area would have a known and an unambiguous
answer for every language. About 2% of language codes had
no corresponding geographical information in any database;
we filled these in manually where possible.

For example, no relevant syntactic features
from Slovak were available in any of the source
databases.4 It is not a mystery, however, what sort
of language Slovak is; it is probably very similar
to Czech, somewhat similar to other West Slavic
languages, etc. Likewise, it is probably more sim-
ilar overall to nearby languages than far-away lan-
guages. 5

The question of how we can best predict un-
known typological features is a larger question
(Daumé III and Campbell, 2007; Daumé III, 2009;
Coke et al., 2016) than this article can capture
in detail, but nonetheless we can offer a prelim-
inary attempt at providing practically useful ap-
proximations of missing features by a k-nearest-
neighbors approach. By taking an average of ge-
netic, geographical, and feature distances between
languages, and calculating a weighted 10-nearest-
neighbors classification, we can predict feature
missing values with an accuracy of 92.93% in 10-
fold cross-validation. (We will describe these pro-
cedures, the exact notions of distance involved, al-
ternative prediction methods that we also investi-
gated, and their results in more detail in a future
article.)

5 Conclusion

While there are many language-information re-
sources available to NLP, their heterogeneity in
format, semantics, language naming, and feature
naming makes it difficult to combine them, com-
pare them, and use them to predict missing val-
ues from each other. lang2vec aims to make
cross-source and cross-information-type experi-
ments straightforward by providing standardized,
normalized vectors representing a variety of infor-
mation types.
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Álvaro González. 2009. Measurement of areas on a
sphere using Fibonacci and latitude–longitude lat-
tices. Mathematical Geosciences, 42(1):49–64.

Harald Hammarström, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2015. Glottolog 2.6.
Max Planck Institute for the Science of Human His-
tory, Jena.

Rhonda L. Hartell. 1993. Alphabets des langues
africaines. UNESCO and Socit Internationale de
Linguistique.

Karl Moritz Hermann and Phil Blunsom. 2014. Mul-
tilingual models for compositional distributed se-
mantics. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 58–68, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Benjamin Keinert, Matthias Innmann, Michael Sänger,
and Marc Stamminger. 2015. Spherical Fi-
bonacci mapping. ACM Transactions on Graphics,
34(6):193:1–193:7, October.

M. Paul Lewis, Gary F. Simons, and Charles D. Fennig.
2015. Ethnologue: Languages of the World, Eigh-
teenth edition. SIL International, Dallas, Texas.

Ian Maddieson and Kristin Precoda. 1990. Updat-
ing UPSID. In UCLA Working Papers in Phonetics,
pages 104–111. Department of Linguistics, UCLA.

Lev Michael, Tammy Stark, and Will Chang. 2012.
South American Phonological Inventory Database.
University of California, Berkeley.

Steven Moran, Daniel McCloy, and Richard Wright.
2014. PHOIBLE Online. Max Planck Institute for
Evolutionary Anthropology, Leipzig.

David R. Mortensen, Patrick Littell, Akash Bharadwaj,
Kartik Goyal, Chris Dyer, and Lori Levin. 2016.
PanPhon: A resource for mapping IPA segments to
articulatory feature vectors. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3475–3484, Osaka, Japan, December. The COLING
2016 Organizing Committee.

Helen O’Horan, Yevgeni Berzak, Ivan Vulic, Roi Re-
ichart, and Anna Korhonen. 2016. Survey on
the use of typological information in natural lan-
guage processing. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1297–1308,
Osaka, Japan, December. The COLING 2016 Orga-
nizing Committee.

13



Taraka Rama. 2016. Siamese convolutional networks
for cognate identification. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
1018–1027, Osaka, Japan, December. The COLING
2016 Organizing Committee.

N. Ramaswami. 1999. Common Linguistic Features in
Indian Languages: Phonetics. Central Institute of
Indian Languages.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and
Chris Dyer. 2016. Polyglot neural language
models: A case study in cross-lingual phonetic
representation learning. pages 1357–1366, June.

14



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 15–20,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

An experimental analysis of Noise-Contrastive Estimation: the noise
distribution matters

Matthieu Labeau and Alexandre Allauzen
LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay
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Abstract

Noise Contrastive Estimation (NCE) is a
learning procedure that is regularly used
to train neural language models, since
it avoids the computational bottleneck
caused by the output softmax. In this pa-
per, we attempt to explain some of the
weaknesses of this objective function, and
to draw directions for further develop-
ments. Experiments on a small task show
the issues raised by the unigram noise
distribution, and that a context dependent
noise distribution, such as the bigram dis-
tribution, can solve these issues and pro-
vide stable and data-efficient learning.

1 Introduction

Statistical language models (LMs) play an impor-
tant role in many tasks, such as machine trans-
lation and speech recognition. Neural models,
with various neural architectures (Bengio et al.,
2001; Mikolov et al., 2010; Chelba et al., 2014;
Józefowicz et al., 2016), have recently achieved
great success. However, most of these neural ar-
chitectures have a common issue: large output vo-
cabularies cause a computational bottleneck due to
the output normalization.

Different solutions have been proposed, as
shortlists (Schwenk, 2007), hierarchical soft-
max (Morin and Bengio, 2005; Mnih and Hin-
ton, 2009; Le et al., 2011), or self-normalisation
techniques (Devlin et al., 2014; Andreas et al.,
2015; Chen et al., 2016). Sampling-based tech-
niques explore a different solution, where a limited
number of negative examples are sampled to re-
duce the normalization cost. The resulting model
is theoretically unnormalized. Apart from impor-
tance sampling (Bengio and Sénécal, 2008; Jean et
al., 2015), the noise contrastive estimation (NCE)

provides a simple and efficient sampling strategy,
which our work focuses on.

Introduced by (Gutmann and Hyvärinen, 2010),
NCE proposes an objective function that replaces
the conventional log-likelihood by a binary classi-
fication task, discriminating between the real ex-
amples provided by the data, and negative ex-
amples sampled from a chosen noise distribution.
This allows the model to learn indirectly from the
data distribution. NCE was first applied to lan-
guage modeling by (Mnih and Teh, 2012), and
then to various models, often in the context of ma-
chine translation (Vaswani et al., 2013; Baltescu
and Blunsom, 2015; Zoph et al., 2016). However,
recently, a comparative study of methods for train-
ing large vocabulary LMs (Chen et al., 2016) high-
lighted the inconsistency of NCE training when
dealing with very large vocabularies, showing very
different perplexity results for close loss values. In
another work (Józefowicz et al., 2016), NCE was
shown far less data-efficient than the theoretically
similar importance sampling.

In this paper, we focus on a small task to provide
an in-depth analysis of the results. NCE relies on
the definition of an artificial classification task that
must be monitored. Indeed, using a unigram noise
distribution as usually advised leads to an ineffec-
tive solution, where the model almost systemati-
cally classifies words in the noise class. This can
be explained by the inability to sample rare words
from the noise distribution, yielding inconsistent
updates for the most frequent words. We explore
other noise distributions and show that designing a
more suitable classification task, with for instance
a simple bigram distribution, can efficiently cor-
rect the weaknesses of NCE.
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2 Theoretical background

A neural probabilistic language model with pa-
rameters θ outputs, for an input context H , a con-
ditional distribution PHθ for the next word, over
the vocabulary V . This conditional distribution is
defined using the softmax activation function:

PHθ (w) =
exp sθ(w,H)∑

w′∈V
exp sθ(w′, H)

(1)

Here, sθ(w,H) is a scoring function which de-
pends on the network architecture. The denomina-
tor is the partition function Z(H), which is used to
ensure output scores are normalized into a proba-
bility distribution.

2.1 Maximum likelihood training
Maximum likelihood training is realized by mini-
mizing the negative log-likelihood. Parameter up-
dates will be made using this objective gradient

∂

∂θ
logPHθ (w) =

∂

∂θ
sθ(w,H)

−
∑

w′∈V,w′ 6=w
PHθ (w′)

∂

∂θ
sθ(w′, H)

(2)

increasing the positive output’s score, while de-
creasing the score of the rest of the vocabu-
lary. Unfortunately, both output normalization and
gradient computation require computation of the
score for every word in V , which is the bottleneck
during training, since it implies product of very
large matrices (|V| being usually anywhere from
tens to hundreds of thousand words).

2.2 Noise contrastive estimation
The idea behind noise contrastive estimation is to
learn the relative description of the data distribu-
tion Pd to a reference noise distribution Pn, by
learning their ratio Pd/Pn. This is done by draw-
ing samples from the noise distribution and learn-
ing to discriminate between the two sets via a clas-
sification task. Considering a mixture of the data
and noise distribution, for each example w with
a context H from the data D, we draw k noise
samples from PHn . With the logistic regression,
we want to estimate the posterior probability of
which class C (C = 1 for the data, C = 0 for
the noise) the sample comes from. Since we want
to approach the data distribution with our model
of parameters θ the conditional class probabilities
are:

PH(w|C = 1) = PHθ (w)

and
PH(w|C = 0) = PHn (w)

which gives posterior class probabilities:

PH(C = 1|w) =
PHθ (w)

PHθ (w) + kPHn (w)
(3)

which can be rewritten as:

PH(C = 1|w) = σk

(
log

PHθ (w)
PHn (w)

)
(4)

with:

σk(u) =
1

1 + k exp(−u)
The reformulation obtained in equation 4 shows

that training a classifier based on a logistic re-
gression will estimate the log-ratio of the two dis-
tributions. This allows the learned distribution
to be unnormalized, as the partition function is
parametrized separately. A normalizing parame-
ter cH is added, as following:

PHθ (w) = sθ0(w,H) exp(cH)

However, this parametrization is context-
dependent. In (Mnih and Teh, 2012), the authors
argue that these context-dependent parameters cH

can be put to zero, and that given the number of
free parameters, the output scores for each context
sθ0(•, H) will self-normalize.

The objective function is given by maximizing
the log-likelihood of the true example w to belong
to class C = 1 and the noise samples (wnj )1≤j≤k
to C = 0, which is, for one true example1:

JHθ (w) = log
sθ(w,H)

sθ(w,H) + kPHn (w)

+
∑

1≤j≤k
log

kPHn (wnj )
sθ(wnj , H) + kPHn (wnj )

(5)
In order to obtain the global objective to maxi-

mize, we sum on all examples (H,w) ∈ D:

Jθ =
∑

H,w∈D
JHθ (w) (6)

1We keep the notation sθ(w,H) instead of sθ0(w,H) for
readability.
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Figure 1: Comparative training of 3-grams neural language models with k = 25 noise samples by
positive example, with the unigram, uniform, and bigram distribution as noise distributions. Data are
recorded over the first epoch. In the first column are shown minus the NCE score, and its fraction
concerning true data. In the middle, are shown the negative log-likelihood and the log of the partition
function. In the last column, are shown the mean posterior probabilities of classifying data as data, and
noise as noise.

3 Experimental set-up

Noise contrastive estimation offers theoretical
guarantees (Gutmann and Hyvärinen, 2010). First,
the maximum for a global objective defined on an
unlimited amount of data is reached for sθ∗ =
logPd, and is the only extrema under mild con-
ditions on the noise distribution. Secondly, the
parameters that maximize our experimental objec-
tive converge to θ∗ in probability as the amount of
data grows. Finally, as the number k of noise sam-
ples by example increases, the choice of the noise
distribution Pn has less impact on the estimation
accuracy. Still, the noise distribution should be
chosen close to the data distribution, to avoid a
too simplistic classification task which could stop
the learning process too early. To a certain extent,
we can describe it as a trade-off between the num-
ber of samples and the effort we need to put on a
’good’ noise distribution.

Considering these properties, we investigate the
impact of the noise distribution on the training of
language models. (Mnih and Teh, 2012) exper-
imented with uniform and unigram distributions,
while most of the subsequent literature used the

unigram, excepted for (Zoph et al., 2016), who
used the uniform with a very large vocabulary.

To monitor the training process with Noise-
contrastive estimation, we report the average neg-
ative log-likelihood of the model, and its average
log-partition function ( 1

|D|
∑

(H,w)∈D
logZ(H)). In

addition to the NCE score, we consider its true
data term, defined by log sθ(w,H)

sθ(w,H)+kPHn (w)
, which

quantifies how well the model is able to recognize
examples from true data as such, and can be used
to estimate the posterior probabilities of each class
during training (as described in equation 3).

Training was made on a relatively short En-
glish corpus (news-commentary 2012) of 4.2M
words with a full vocabulary of ∼ 70K words.
We trained simple feed-forward n-grams neural
language models with Tensorflow (Abadi et al.,
2015)2. Results are recorded on the training data3.

2As our goal is not performance, we choose a simple and
time-efficient model, with a context of 3 words, one hidden
layer, and embedding and hidden dimension of 50 and 100.

3We use a validation set to avoid overfitting.
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4 Experiments and Results

The first series of experiments compares different
choices of noise distribution (uniform, unigram
and bigram) for various vocabulary sizes (from
∼25K to the full vocabulary of∼70K words). Fig-
ure 1 gathers the evolution of different quantities
observed during the first training epoch when se-
lecting all words appearing more than once (∼40K
words). The same trend is observed for all vocab-
ulary sizes.

For the three noise distributions, the NCE score
seems to converge. However, for the unigram dis-
tribution, the log-partition function does not de-
crease, thus neither does the log-likelihood. Inter-
estingly, the posterior classification probabilities
shown in the third column reveal a very ineffec-
tive behaviour: almost all the positive examples
are classified in the noise class.

On the contrary, the use of the uniform distribu-
tion yields more consistent results, despite the fact
that it is slow to learn.

Finally, learning with the bigram noise distribu-
tion shows a very consistent behaviour with a log
partition function converging steadily to zero, as
well as a negative log-likelihood on par with MLE
training. It is moreover very data-efficient, com-
pared to the uniform distribution.

k 25 100 200 500

Uniform 20.9 10.5 8.1 7.1
Unigram 29.7 32.9 30.5 18.5
Unigram (α = 0.25) 25.0 8.1 6.9 6.6
Bigram 6.6 6.5 6.5 6.5

Table 1: Negative log-likelihood after one epoch
of training with a full vocabulary, for various noise
distributions and a varying number of noise sam-
ples k

Table 1 shows the negative log-likelihood
reached after one epoch of training, for a vary-
ing number of noise samples. For the sake of
efficiency with context-independant noise distri-
butions, we used for these experiments the NCE
implementation native to Tensorflow, for which
the noise samples are re-used for all the positive
examples in the training batch. While this cer-
tainly lowers the performance of the algorithm, we
believe it still demonstrates how importantly the
convergence speed is impacted by the number of

noise samples for context-independant noise dis-
tributions, compared to the bigram distribution.

However, using the bigram distribution implies
to maintain bigram counts. This can be costly
with a large vocabulary size, but not prohibitive.
We thus make further experiments with context-
independent noise distributions.

A common trick, when using any kind of neg-
ative sampling, is to employ a distortion coeffi-
cient 0 < α < 1 to smooth the unigram distri-
bution, by raising every count c(w) to c(w)α, as
it is done in (Mikolov et al., 2013). We can then
try to get the ’good’ of each distribution, which
is a balance between the sampling of frequent and
rare words as noise, while staying close to the data.
Results are shown on figure 2. Distortion heavily
influences how the model converges: being closer
to the uniform distribution makes training easier,
while retaining the unigram distribution’s shape is
still needed. This is also shown in table 1.

To get a better idea of the differences between
those distributions, we first examine the ability of
the models to recognize positive examples as such
for a portion of the vocabulary containing the most
frequent words. The two top graphs of figure 3
show that both the uniform and a distorted uni-
gram distribution help the model to learn to clas-
sify the 1000 most frequent words, while almost
no information seems to be kept on the rest (which
represents ∼ 1

4 of the training data). However,
the model using a distorted unigram seems a little
more balanced in what it learns, for about the same
average performance. The third graph shows that
its log-partition function is behaving quite better,
which explains the negative log-likelihood gap ob-
served in figure 2 between these two distributions.

0 1 2 3 4 5
0
5

10
15
20
25
30
35
40

a=0
a=0.25
a=0.5
a=0.75
a=1

Figure 2: Comparative training of full vocabulary
models with k = 100 noise samples for a varying
distortion, on 5 epochs.
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Figure 3: Mean posterior probabilities of recog-
nizing true examples coming from the training
data as such, for the 1K most frequent words,
the rest of the vocabulary, and the average, for
a uniform and a unigram distribution with dis-
tortion. The bottom graph shows the two log-
partition functions. Training is done on full vo-
cabulary models, with k = 100 noise samples, on
5 epochs.

These results show how changing the shape of
the noise distribution can positively affect train-
ing: using distortion allows to smooth the uni-
gram distribution, avoiding to sample only fre-
quent words, while reaching a better negative log-
likelihood than with a uniform distribution. How-
ever, as indicated by table 1, models trained with a
bigram noise distribution need far less noise sam-
ples or data.

5 Conclusion

Given the difficulty to train neural language mod-
els with NCE for large vocabularies, this paper
aimed to get a better understanding of its mech-
anisms and weaknesses. Our results indicate that
the theoretical trade-off between the number of
noise samples and the effort we need to put on
a ’good’ noise distribution is verified in practice.
It also impacts the quantity of training data re-
quired, and the training stability. Notably, a con-
text dependent noise distribution yields a satisfac-
tory classification task, along with a faster and
steadier training. In the future, we project to work
on an intermediate context-dependent noise dis-
tribution, which would be able to scale well with
large vocabularies.
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Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the

International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bot-
tou, editors, Advances in Neural Information Pro-
cessing Systems 21, pages 1081–1088. Curran As-
sociates, Inc.

Andriy Mnih and Yee Whye Teh. 2012. A fast and
simple algorithm for training neural probabilistic
language models. In Proceedings of the 29th In-
ternational Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Robert G. Cowell and Zoubin Ghahramani, editors,
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, pages 246–252.
Society for Artificial Intelligence and Statistics.

Holger Schwenk. 2007. Continuous space language
models. Comput. Speech Lang., 21(3):492–518,
July.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum,
and David Chiang. 2013. Decoding with large-
scale neural language models improves translation.
In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1387–1392, Seattle, Washington, USA, Oc-
tober. Association for Computational Linguistics.

Barret Zoph, Ashish Vaswani, Jonathan May, and
Kevin Knight. 2016. Simple, fast noise-contrastive
estimation for large rnn vocabularies. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1217–1222, San Diego, California, June. Associa-
tion for Computational Linguistics.

20



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 21–27,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Robust Training under Linguistic Adversity

Yitong Li and Trevor Cohn and Timothy Baldwin
Department of Computing and Information Systems

The University of Melbourne, Australia
yitongl4@student.unimelb.edu.au, {tcohn,tbaldwin}@unimelb.edu.au

Abstract

Deep neural networks have achieved re-
markable results across many language
processing tasks, however they have been
shown to be susceptible to overfitting and
highly sensitive to noise, including ad-
versarial attacks. In this work, we pro-
pose a linguistically-motivated approach
for training robust models based on ex-
posing the model to corrupted text exam-
ples at training time. We consider sev-
eral flavours of linguistically plausible cor-
ruption, include lexical semantic and syn-
tactic methods. Empirically, we evaluate
our method with a convolutional neural
model across a range of sentiment analy-
sis datasets. Compared with a baseline and
the dropout method, our method achieves
better overall performance.

1 Introduction

Deep learning has achieved state-of-the-art results
across a range of computer vision (Krizhevsky
et al., 2012), speech recognition (Graves et al.,
2013), and natural language processing tasks
(Bahdanau et al., 2015; Kalchbrenner et al., 2014;
Bitvai and Cohn, 2015). However, deep mod-
els tend to be overconfident in their predictions
over noisy test instances, including adversarial ex-
amples (Szegedy et al., 2014; Goodfellow et al.,
2015). A range of methods have been proposed to
train models to be more robust, such as injecting
noise into the data and hidden layers (Jiang et al.,
2009), dropout (Srivastava et al., 2014), and the
incorporation of explicit regularization terms into
the training objective (Ng, 2004; Li et al., 2016).

In this work, we propose a linguistically-
motivated method customised to text applications,
based on injecting different kinds of word- and
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Figure 1: Accuracy (%) drops as we increase ad-
versarial noise to word embeddings, as evaluated
on binary classification dataset MR.

sentence-level linguistic noise into the input text,
inspired by adversarial examples (Goodfellow et
al., 2015). Our method has its origins in computer
vision, where it has been shown that small pixel
perturbations indiscernible to humans can signif-
icantly distort the predictions of state-of-the-art
deep models (Szegedy et al., 2014; Nguyen et al.,
2015), an observation that has been harnessed in
recent work on adversarial training (Goodfellow et
al., 2015). This kind of noise is cheap to generate
for images and is transferable between different
models, but it is less clear how to generate analo-
gous textual noise while preserving the fidelity of
the training data, due to text being discrete and se-
quential in nature, with latent syntactic structure.
Based on the same linguistic intuition, adversarial
evaluation for natural language processing mod-
els was proposed by Smith (2012). Also, adver-
sarial learning for text, such as perceptron learn-
ing (Søgaard, 2013) and unsupervised estimation
methods (Smith and Eisner, 2005), have been stud-
ied in the language area.

Word embeddings learned from WORD2VEC
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(Mikolov et al., 2013) and GLOVE (Pennington
et al., 2014) are now widely used as input to lan-
guage processing models, however these represen-
tations are highly susceptible to noise. For ex-
ample, Figure 1 shows that as we add adversarial
noise η = ε∇xLoss(x, y, θ) to WORD2VEC rep-
resentations, classification accuracy for a convolu-
tional model (Kim, 2014) over a sentiment classi-
fication task (Pang and Lee, 2008) drops apprecia-
bly, such that with only 1% perturbations, a state-
of-the-art model drops to the level of a random
classifier.

Word embeddings are not an intuitive represen-
tation of human language, and it is not immedi-
ately clear how to generate adversarial noise over
the raw text input without affecting the fidelity of
the data. In human-to-human textual communi-
cation such as chat and microblogs, humans are
remarkably resilient to “noise”, in terms of typos,
lexical and syntactic disfluencies, and the large va-
riety of semantically-equivalent ways of express-
ing the same content (Han and Baldwin, 2011;
Eisenstein, 2013; Baldwin et al., 2013; Pavlick
and Callison-Burch, 2016). These observations
are the inspiration for this work, in proposing a
training strategy based on the explicit generation
of linguistic corruption over the source training in-
stances, to train robust text models. Empirically,
we demonstrate the effectiveness of our method
over a range of sentiment analysis datasets us-
ing a state-of-the-art convolutional neural network
model (Kim, 2014). In this, we show that our
method is superior to a baseline and dropout (Sri-
vastava et al., 2014) using MAP training.1

2 Generating Text Noise

Our method involves the explicit generation of
several kinds of linguistic corruption, to train more
robust deep models. The first question is how to
generate the linguistic noise, focusing on English
for the purposes of this paper. We focus on the
generation of two classes of text noise: (1) syntac-
tic noise; and (2) semantic noise.2

Syntactic Noise The first class of linguistic
noise is syntactic, focusing on the syntactic struc-

1The implementation is freely available at https://
github.com/lrank/Linguistic_adversity.

2We also experimented with a method which generates
lexical noise, but for the purposes of our experiments here, as
the vast majority of the generated candidates are OOV words,
it is largely equivalent to word dropout, and omitted from this
paper.

ture of the input, either through explicit parsing
and generation using a deep linguistic parser, or
sentence compression.

For the deep linguistic parser, we use the LinGO
English Resource Grammar (“ERG”: Copestake
and Flickinger (2000)) with the ACE parser, based
on pyDelphin.3 The ERG supports both pars-
ing and generation, via the semantic formalism
of Minimal Recursion Semantics (“MRS”: Copes-
take et al. (2005)). To generate paraphrases with
the ERG, we simply parse a given input, select
the preferred parse using a pretrained parse selec-
tion model (Oepen et al., 2002), and exhaustively
generate from the resultant MRS. We then use uni-
form random sampling to select from the genera-
tor outputs, which potentially numbers in the thou-
sands of variants. To handle unknown words dur-
ing parsing and generation, we use POS mapping
and introduce a unique relation for each unknown
word, which we use to substitute the unknown
word back in to the generation output. In practice,
the primary sources of “noise” introduced by the
ERG are due to topicalisation, adjective ordering,
fronting of adverbial phrases, and relativisation of
modifiers.

The second approach to syntactic noise is based
on sentence compression (“COMP”: Knight and
Marcu (2000)), which aims to “trim” an input of
peripheral content, while maintaining grammati-
cality, and also the syntax of the original as much
as possible. While the state-of-the-art in sentence
compression is based on deep learning methods
such as recurrent neural networks (Filippova et
al., 2015), we implement a simple parser-based
model, due to the lack of large-scale annotated
data for training and the fact that a relative lack
of precision in the output may ultimately help our
method. First, we parse the sentence using the
Stanford CoreNLP constituency parser (Chen and
Manning, 2014). Next, we model the conditional
probability of deleting a sub-tree C with label S
given its parent node with labelR by p(C|S,R) =

p(C,S,R)
ΣCp(C,S,R) , trained on the sentence compression
corpora of Clarke and Lapata (2006),4 made up of
a few hundred labelled instances.

Semantic Noise The second class of linguistic
noise is semantic noise. Semantic noise is more
subtle than syntactic noise, as we must be careful

3https://github.com/delph-in/pydelphin
4http://jamesclarke.net/research/

resources/
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not to impact on the fidelity of the original labels,
which can readily occur with full paraphrasing or
abstractive summarisation. As such, we focus on
lexical substitution of near-synonyms of words in
the original text, and experiment with two methods
for generating near-synonyms.

Our approach to generating semantic noise pro-
ceeds as follows. First, we apply filters to iden-
tify words which should not be candidates for lex-
ical substitution, namely words which are parts
of named entities or function words. As such,
we use the Stanford CoreNLP POS tagger and
named entity recogniser (Finkel et al., 2005; Chen
and Manning, 2014), and identify “substitutable
words” as those which are nouns, verbs, adjectives
or adverbs, and not part of a named entity. For
each substitutable word w, we generate the set of
substitution candidates s(w). For each candidate
wi ∈ {w}∪ s(w) we allow the original word to be
preserved with p(wi) = α, and share the remain-
ing 1−α proportional to the language model score
based on substituting wi into the original text. For
this, we use the pre-trained US English language
model from the CMU Sphinx Speech Recognition
toolkit.5 Finally, we sample from the probability
distribution {p(wi) : wi ∈ {w} ∪ s(w)} for each
substitutable word w to generate a semantically-
corrupted version of the original.

We experiment with two approaches to gen-
erating the substitution candidates. The first is
based on Princeton WordNet (“WN”: Miller et
al. (1990)), over all synsets that a given substi-
tutable word occurs in, using the NLTK API (Bird,
2006). The second is based on the “counter-
fitting” method of Mrkšić et al. (2016) (“CFIT”),
whereby word embeddings from WORD2VEC are
projected based on a supervised objective func-
tion which penalises similarity between antonym
pairs, and rewards similarity between synonym
pairs, as trained on 10k English news sentences
from WMT14 (Bojar et al., 2014).

Word Dropout As a standard approach to train-
ing robust models, we use word dropout (Srivas-
tava et al., 2014; Pham et al., 2014). Dropout can
be viewed as a method for zeroing out noise, and
is first-order equivalent to an `2 regularizer applied
after feature scaling (Wager et al., 2013).

5https://sourceforge.net/projects/
cmusphinx/

Method Example

Original The cat sat on the mat .
ERG On the mat sat the cat .
COMP The cat sat on � mat �
WN The

:::
kat sat on the

:::::::
flatness .

CFIT The
:::
pet

:::::
stood

::::
onto the mat .

Table 1: Examples of generated sentences across
four proposed methods. Modified words are
marked by “

:::::::::
underwave” and omitted words are de-

noted with a “�”.

Table 1 shows an example sentence and sample
corrupted outputs after applying each type of lin-
guistic noise. The ERG seldom changes words,
and instead tends to reorder the words based on
syntactic alternation. COMP performs like word
dropout in that it tends to remove tokens with low
semantic content and to generate complete sen-
tences. WN and CFIT both only modify the text at
the word level, based on near-synonyms and words
with similar semantic function, respectively.

3 Models and Training

We evaluate our methods on several sentence clas-
sification tasks, using a convolutional neural net-
work (“CNN”) model (Kim, 2014). Note that our
method corrupts the input directly, and is thus eas-
ily transferrable to other classes of models (e.g.,
other deep learning or linear models).

Convolutional Neural Network The CNN op-
erates at the sentence level by first embedding
each word using a lookup table which is stacked
into the sentence matrix ES. A 1d convolutional
layer is then applied to ES, which applies a se-
ries of filters over each window of t words, with
each filter employing a rectifier transform func-
tion. MaxPooling is applied over each set of fil-
ter outputs to result in a fixed-size sentence repre-
sentation.6 The sentence vector is fed into a final
Softmax layer to generate a probability distribu-
tion over classification labels.

The model is trained to minimise the cross-
entropy between the ground-truth and the model
prediction, using the Adam Optimizer (Kingma
and Ba, 2015) with learning rate 10−4 and a

6We use window widths of size t ∈ {3, 4, 5}, and 128 fil-
ters for each size. MaxPooling is applied to each of the three
sizes separately, and the resulting vectors are concatenated to
form the sentence representation.
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batch size of 128. We initialise the embedding
with dimension m = 300 Google pre-trained
WORD2VEC word embeddings (Mikolov et al.,
2013). Words not in the pre-trained vocabulary are
initialized randomly using a uniform distribution
U([−0.25, 0.25)m).

Injecting Noise during Training Our proposed
method involves corrupting the training input with
adversarial noise of various kinds. All the meth-
ods are non-deterministic, involving random sam-
pling. They are applied afresh every epoch, such
that each time an instance is processed, it will
have a different input form.7 The two semantic
approaches (WN and CFIT) support configurable
noise rates in terms of the proportion of substi-
tutable words that are corrupted. Accordingly,
we experiment with two thresholds on the random
variable for substitution of each word: low (“lo”;
α = 0.5) and high (“hi”; α = 0). Besides the
above methods which employ a single type noise,
we experiment with a combination (COMB) of the
four different noise types (ERG + COMP + WNlo
+ CFITlo), by uniformly randomly choosing one
of the four methods for noise generation each time
we process a training instance.

Datasets We experiment on the following
datasets:
• MR: sentence polarity dataset from movie re-

views (Pang and Lee, 2008)8

• CR: customer review dataset (Hu and Liu,
2004)9

• Subj: subjectivity dataset (Pang and Lee,
2005)8

• SST: Stanford Sentiment Treebank, using
the 2-class configuration (Socher et al.,
2013)10

We evaluate using classification accuracy, based
on both in-domain evaluation11 and a cross-
domain setting, in which we evaluate a model
trained on MR and tested on CR, and vice versa.
This last setting characterises a realistic applica-

7Using a single application of noise is less effective, but
still yields improvements over baseline methods including
dropout.

8https://www.cs.cornell.edu/people/
pabo/movie-review-data/

9http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html

10http://nlp.stanford.edu/sentiment/
11Where there is no pre-defined training/test split for a

given dataset, we use 10-fold cross validation. See Kim
(2014) for more details on the datasets and evaluation set-
tings.

tion scenario, where robustness to vocabulary shift
and other differences in the input is paramount.

4 Experimental Results and Analysis

Table 2 presents the results of training with dif-
ferent sources of linguistic corruption in the in-
domain and cross-domain settings. In general, the
proposed methods perform better than the base-
line and dropout, and semantic noise using WN
achieves consistent improvements across all set-
tings. The COMB method uniformly outperforms
the other methods for all in-domain evaluations,
indicating that the improvements from training
with different types of noise are orthogonal. Note
that improvements are smaller on SST and MR
than CR and Subj for all methods. Almost ev-
ery method improves over word dropout, except
counter-fitting at a high noise level. Also surpris-
ing is the fact that dropout shows no improvement
over standard training, and is overall mildly detri-
mental.

Our intuition behind why WN consistently out-
performs the baseline methods and other single
sources of noise is it sometimes performs sim-
ilarity to dropout, in replacing common words
with rare ones, and sometimes substitutes frequent
words for frequent words, leading to better gen-
eralisation in the word embeddings. To test this
hypothesis, we computed nearest neighbours in
the word embedding space for both the baseline
method and the WN method. For example, the
top-3 nearest neighbours for superior in CR are
exceptional, excellent and unmatched for WN,
while for the baseline, they are inferior, excep-
tional and excellent. That is, similar to the intu-
ition behind counter-fitting, the methods appears
to learn to differentiate between synonyms and
antonyms, in a manner which is sensitised to the
target domain.

Although similar in function to WN, the
counter-fitting based method performs unexpect-
edly poorly. This appears to be a consequence of
the training of these embeddings, namely that the
corpus was much smaller than that used for the
WORD2VEC training, and consequently coverage
on our corpora was substantially lower, leading
to the approach making inappropriate substitutions
and not aiding model robustness.

Sentence compression was found to be highly
effective. To illustrate by example, the sentence
Player has a problem with dual-layer dvd’s such
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Method
In domain Cross domain

MR CR Subj SST MR/CR CR/MR

baseline 80.4 82.6 92.4 84.5 67.0 67.2

dropout 80.1 82.4 92.6 84.5 67.7 67.4

ERG 80.0 82.8 92.9 84.4 68.1 67.3
COMP 79.5 83.1 93.2 84.3 68.1 67.5
WNlo 80.9 83.2 93.1 84.3 68.5 67.3
WNhi 81.2 83.8 92.9 84.6 67.9 67.5

CFITlo 79.8 82.7 92.6 84.1 68.9 67.3
CFIThi 76.2 78.9 91.0 80.3 67.4 64.2

COMB 81.4 84.3 93.6 84.8 68.4 67.4

Table 2: Accuracy (%) of the CNN, in four in-domain settings, and two cross-domain settings, with
word dropout (“dropout”), or linguistic corruption based on different sources of syntactic and semantic
corruption. The best result for each dataset is indicated in bold.

as Alias seasons 1 and season 2 is compressed
into has a problem with dual-layer dvd which pre-
serves the key information that we expect to be
useful for model learning. This allows the model
to better learn the components of the input that are
predictive of sentiment.

Syntactic paraphrasing (ERG) tends to primar-
ily corrupt the word order, with fewer lexical sub-
stitutions. Thus, the model is less prone to over-
fitting to local n-gram features, and focuses on
learning words and phrases that are genuinely pre-
dictive of sentiment.

5 Conclusions

In this paper, we present a training method that
corrupts training examples with linguistic noise,
in order to learn more robust models. Based on
evaluation over several sentiment analysis datasets
with convolutional neural networks, we show that
this method outperforms standard training and
dropout, both for in-domain and out-of-domain
application. Our approach has wide-spread po-
tential to also benefit other types of discriminative
model and in a range of other language processing
tasks.
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Abstract

We explore whether social media can pro-
vide a window into community real estate
— foreclosure rates and price changes —
beyond that of traditional economic and
demographic variables. We find language
use in Twitter not only predicts real estate
outcomes as well as traditional variables
across counties, but that including Twit-
ter language in traditional models leads
to a significant improvement (e.g. from
Pearson r = .50 to r = .59 for price
changes). We overcome the challenge of
the relative sparsity and noise in Twitter
language variables by showing that train-
ing on the residual error of the traditional
models leads to more accurate overall as-
sessments. Finally, we discover that it is
Twitter language related to business (e.g.
‘company’, ‘marketing’) and technology
(e.g. ‘technology’, ‘internet’), among oth-
ers, that yield predictive power over eco-
nomics.

1 Introduction

The massive amount of text provided by users
of social media like Facebook and Twitter give
researchers the opportunity to investigate topics
that were not previously tangible. Specifically,
the study of economic outcomes has been turn-
ing to the use of social media data in order cap-
ture non-traditional factors like consumer mood.
For instance, researchers have attempted to predict
the stock market by measuring mood from twitter
feeds (Bollen et al., 2011), used Twitter data to
measure socio-economic indicators and financial
markets (Mao, 2015), shown correlation of con-
sumer confidence with sentiment word frequen-
cies in twitter messages over time (O’Connor et
al., 2010), and predicted movie revenue using so-

cial media and text mining (Asur and Huberman,
2010; Joshi et al., 2010; Yu et al., 2012).

Here, we attempt to leverage social media to
understand another economic phenomena, real es-
tate. Our goal is to determine whether language
from Twitter can predict real-estate foreclosure
rates and price changes, cross-sectionally across
counties, beyond that of traditional economic vari-
ables. We suspect this is possible because a com-
munity’s language in social media may capture
economic-related community characteristics that
are not otherwise easily available. However, the
challenge is incorporating noisy high-dimensional
language features in such a way that they can con-
tribute beyond the robust low-dimensional tradi-
tional predictors (i.e. demographics, median in-
come, education rates, unemployment rates).

The contributions of this paper follow. First, we
show that county real estate market outcomes can
be predicted from language in social media be-
yond traditional factors. Second, we address the
challenge of effectively leveraging multi-modal
feature types (i.e. socioeconomic variables, which
are individually very predictive (Nguyen, 2016);
and social media linguistic features, which are in-
dividually noisy) by demonstrating that a 2-step
residualized control approach to learning a pre-
dictive model leads to more accuracy than jointly
learning all feature parameters at once. This rep-
resents the first work to investigate the use of lan-
guage in Twitter to predict real estate related out-
comes – foreclosure and increased price rates.

2 Related Work

Much of the research on prediction of hous-
ing markets has focused on economic condi-
tions. For instance, others have found strong re-
lationships between housing prices and the stock
market(Gyourko and Keim, 1992; Case et al.,
2005), credit and income (Ortalo-Magne and
Rady, 2006), past market prices (Ghysels et al.,

28



Figure 1: Procedure of building language model over the residual error of the control model.

2012; Tse, 1997), and market sentiment (i.e. from
surveys) (Hui and Wang, 2014).

Except Kaplanski et al. (2012), who looked at
daylight hours, few have ventured beyond direct
economic factors as predictors of real estate out-
comes. Our belief is that language analyses in so-
cial media can offer predictive value beyond that
of economics in that they capture aspects of peo-
ple’s daily life that are not traditionally available
to economists.

While exploiting social media language has not
been studied in the real estate domain, use of
language predictors has been increasing for other
economic-related applications, like measuring the
public health using analysis of messages in so-
cial media (Paul and Dredze, 2011; Eichstaedt
et al., 2015; Culotta, 2014), in addition to pre-
dicting stock market exploiting text in social me-
dia (Bollen et al., 2011; Zhang et al., 2011; Tsola-
cos, 2012), and predicting political behaviour con-
sidering tweets (DiGrazia et al., 2013). Perhaps
the most similar work to ours used manually se-
lected keywords in Google searches to predict the
overall US housing market (Wu and Brynjolfsson,
2013). Still, while Google has allowed researchers
to tap into one aspect of the online world, search
data is only available for specific scales and rely-
ing on manually-chosen keywords can restrict pre-
dictive performance (Schwartz et al., 2013). We
leverage open-vocabulary features (i.e. not based
on manual keyword lists) and attempt to predict
real-estate at the level of US counties.

3 Language Model

We learn a model from the Twitter language of
US counties to predict real estate outcomes. We
extract community language features from tweets
and then we learn models for the cross-county
prediction task, handling both traditional predic-
tors and linguistic predictors. We focus on two

outcomes per county, foreclosure and increased
price rates (zillow website, 2016), and consider
a wide variety of traditional socioeconomic and
demographic predictors to compare. Specifically,
socioeconomic variables include median income,
unemployment rate and percentage with bachelors
degrees while demographic variables include me-
dian age; percentage: female, black, hispanic, for-
eign born, married; and population density. All
variables were obtained from US Census (census
bureau, 2010), and we henceforth refer to them as
a whole as controls.

3.1 Features
We build feature vectors from the raw tweets by
extracting 1, 2, and 3-grams as well as mentions
of 2000 LDA topics based on posteriors we down-
loaded which were previously estimated from so-
cial media (Schwartz et al., 2013). Features were
limited to those mentioned by at least 25% of
counties, leaving us with 13, 359 1to3-grams and
all 2, 000 topics.

Since there are only 1, 347 counties, to which
we plan to apply the model (data described in
evaluation) but tens of thousands of predictors,
we utilize feature selection and dimensional re-
duction to avoid overfitting. We limit ourselves
to features with at least a small linear relation-
ship to the outcome, having a family-wise er-
ror alpha of 200 (Efron, 2012). Then, we per-
form randomized principal components analysis
(RPCA) , an approximate PCA based on stochastic
re-sampling(Rokhlin et al., 2009), which in effect
combines co-varying features and leaves a more
reasonable number of parameters to estimate dur-
ing learning.1

1Since the topic features are already a combination of n-
grams, they are less sparse and presumably less noisy. Thus,
we apply the feature selection and dimensionality reduction
steps for n-grams and topics independently, keeping 90 di-
mensions of topics and 45 dimensions of n-grams.
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socioeconomics demographics socioeconomics + demographics

Fc Ip Fc Ip Fc Ip

no lang 0.34 0.42 0.24 0.44 0.37 0.50

with lang (residualized control) 0.41 0.56 0.39 0.57 0.42 0.59

Table 1: Comparing the Pearson r of adding language model over the residual of the control model
vs. control model for ’foreclosure’ and ’increased price’ rates. Fc stands for foreclosure rate and Ip is
increased-price rate. bold indicates significant improvement (p < 0.05) over no language.

3.2 Learning

We learn four different models: (1) a control
model using the socioeconomic & demographic
variables, (2) a language model using only tweet-
derived features, (3) a combined model using both
socioeconomics & demographics and language in
a single model, and (4) a language over residual-
ized control model fitting language to the residual
error of the control model. With the control model
as our baseline, we investigate whether language
alone (model 2) or adding language to the control
model (models 3 and 4) increases accuracy. All
models except the 4th are learned via L2 penal-
ized (“ridge”) regression (Goeman et al., 2016).2

Residualized Control Approach In order to ef-
fectively exploit Twitter language in our model,
we suspect that we need to treat the language fea-
tures (which are numerous, noisy, more biased,
and non-normal) differently than the control vari-
ables (which are few, mostly unbiased, and mostly
normal). In other words, simply combining the
two may lead to losing the importance of the con-
trols amongst the numerous features.3 As depicted
in Figure 1, we build a language model over the
residual error of the control model, allowing in-
dependent consideration of the two sets of fea-
tures and different penalties. More specifically,
the training phase consists of three steps: (1) train
a model using the socioeconomics & demograph-
ics, which is the control model, as in Eq.1, (2)
calculate the training errors and consider this er-
ror as our new label, described in Eq.2, and (3)
train a language model over this new data, which
is shown in Eq.3. In the end, our model is depicted
in Eq.4. In these equations α and γ are the coef-
ficient of control features and language features,
and β and λ are the interceptions. For testing pur-

2For the control model, which has few features by com-
parison, the ridge penalty is essentially zero and standard
multivariate linear regression produces comparable results

3In fact, our results show such a combined model per-
forms only marginally better than a language alone model.

pose we feed each data to both control model and
language model, and then report the summation of
their predictions as the final predicted label.

ŷ = α×Xcontrol + β (1)

ε = y − ŷ (2)

ε ' γ ×Xlanguage + λ (3)

⇒ y ' α×Xcontrol+γ×Xlanguage+(λ+β) (4)

The resulting model, a combination of the control
model and language model, is still an affine model
w.r.t. the language and control features. Thus,
its possible ridge-regression over all the features
at once could give us the same result (i.e. hy-
perplane). However, since we suspect that each
socioeconomic and demographic feature are more
informative and less noisy than the Twitter fea-
tures, we explore this two-stage learning proce-
dure in order to bias our model toward favoring
the role of socioeconomics & demographics over
language features.

4 Evaluation

Here we evaluate the power of Twitter language
to predict cross-county real-estate outcomes com-
pared to demographic and socioeconomic factors.

4.1 Data Set
We are using 3 different sources of data: a lan-
guage dataset from Twitter messages, a control
dataset of socioeconomic and demographic vari-
ables, and an outcome dataset of housing related
data. Our language data was derived from Twit-
ter’s 1% random stream collected from 2011 to
2013 and included 131 million tweets that are
mapped to 1, 347 counties based on their self-
reported location following the procedure of Eich-
staedt et al. (2015). Our control data included
the previously mentioned socioeconomic and de-
mographic variables which were obtained from
2010 US Census data (census bureau, 2010). This
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Foreclosure Increased-price

language 0.38 0.48

combined 0.40 0.49

residualized control 0.42 0.59

Table 2: Comparing the Pearson r of building lan-
guage model over residual of control model vs.
combining the language and the control features
into a single model. bold indicates significant im-
provement (p < 0.05) over combined model.

dataset is only collected every 10 years, so the
2010 US Census is the most recent dataset for all
of the socioeconomic and demographic variables
at the county level.

As outcomes, our real estate data, including
the foreclosure rate (the number of homes (per
10,000 homes sold) that were foreclosed) and
increased-price rate (the percentage of homes with
values that have increased in the past year) were
downloaded from Zillow and covering 2011 to
2013 (zillow website, 2016). Considering all these
data sets, we end up with 427 counties having fore-
closure rate outcome data, and 717 counties hav-
ing increase price rate data.4.

4.2 Results

Table 1 reports the effect of building a language
model over the residual of socioeconomics, de-
mographics, and socioeconomics & demograph-
ics by comparing them with the control models.
All of the results were produced by 10 fold cross-
validation. We see a significant improvement of
exploiting language (p < 0.05 according to paired
t-test) above and beyond socioeconomic and de-
mographic factors for both the outcomes of fore-
closures (from r = .37 to r = .42) and increased
price (from r = .50 to r = .59). This suggests
that language on Twitter does, in fact, capture in-
formation about a community that is not captured
by the traditional predictors.

We next explored whether building language
model using the residualized control approach
performs better than a model combining control
and language features in a single learning step.
Results are in Table 2, showing that building lan-
guage model over residual performs significantly
better than a combined model for both of the out-

4The control and real estate datasets can be found here:
http://www3.cs.stonybrook.edu/˜mzamani/
datasets/eacl2017/

comes. In fact, the gap is .10 in Pearson r for in-
creased price. Further, it also appears possible that
the combined feature model could perform worse
than the control model in some cases, presumably
because the controls are lost when being fit with
the language. In a sense, the residualized con-
trol approach utilizes a prior that each socioeco-
nomic and demographic feature are more informa-
tive than a single word and should thus receive a
different penalty parameter or be fit independently.
It worth noting that this method is applicable for
many different learning algorithms (e.g. SVM,
deep convolutional net).

As mentioned previously, one limitation of the
traditional predictors is that many are only avail-
able every 10 years as part of the US Census. We
primarily focused on Twitter data that was a cou-
ple years removed from the last census, which may
explain the improvement. Thus, we also ran an ex-
periment using the Twitter data from (Schwartz et
al., 2013) which spans 2009 to 2010, and found
similar results: the residualized control approach
improved the Pearson r for ‘increased price‘ from
0.36 to 0.44 and for ‘foreclosure‘ from 0.65 to
0.69. Thus, the improvements provided by the
residualized control approach do not appear to be
due to the fact that twitter data are newer than con-
trol data.

We have shown that Twitter language is adding
predictive information about the real estate mar-
ket beyond that of traditional socioeconomic pre-
dictors. So, just what exactly are tweets captur-
ing that socioeconomics are not? Toward this,
we ran a differential language analysis to iden-
tify the top 50 most predictive features (indepen-
dently) of increased price, the outcome which we
performed the best. Figure 2 shows the results
controlled by socioeconomic and location features
(US state indicator), limited to those passing a
Benjamini-Hochberg False Discovery rate alpha
of 0.01 (Benjamini and Hochberg, 1995). We see
that, although each displayed n-gram was predic-
tive beyond socioeconomics, many of them sug-
gest a more nuanced economic characterization of
a community (e.g. ‘technology’, ‘media’, ‘inter-
net’, and ‘marketing’), suggesting avenues of fu-
ture exploration for better understanding the hous-
ing market.
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Figure 2: N-grams most predictive of ’Increased price rate’ controlled by socioeconomics and location.

5 Conclusion

While the real estate market of a community is be-
lieved to be affected by many factors, traditionally
only coarse economic and demographic variables
have been accessible at scale to market researchers
and forecasters. Here, we explored the predic-
tion power of language in the real estate mar-
ket as compared to traditional predictors, show-
ing that language in twitter is predictive of fore-
closure rates and price increases and that a residu-
alized control approach to combine language fea-
tures with traditional variables can lead to more
accurate models. We believe this can open the
door to more a nuanced and precise understanding
of the real-estate market.
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Abstract

We present a new Lexical Simplification
approach that exploits Neural Networks to
learn substitutions from the Newsela cor-
pus - a large set of professionally produced
simplifications. We extract candidate sub-
stitutions by combining the Newsela cor-
pus with a retrofitted context-aware word
embeddings model and rank them using
a new neural regression model that learns
rankings from annotated data. This strat-
egy leads to the highest Accuracy, Pre-
cision and F1 scores to date in standard
datasets for the task.

1 Introduction

In Lexical Simplification (LS), words and expres-
sions that challenge a target audience are replaced
with simpler alternatives. Early lexical simplifiers
(Devlin and Tait, 1998; Carroll et al., 1998) com-
bine WordNet (Fellbaum, 1998) and frequency
information such as Kucera-Francis coefficients
(Rudell, 1993). Modern simplifiers are more so-
phisticated, but most of them still adhere to the
following pipeline: Complex Word Identification
(CWI) to select words to simplify; Substitution
Generation (SG) to produce candidate substitu-
tions for each complex word; Substitution Selec-
tion (SS) to filter candidates that do not fit the con-
text of the complex word; and Substitution Rank-
ing (SR) to rank them according to their simplicity.

The most effective LS approaches exploit Ma-
chine Learning techniques. In CWI, ensembles
that use large corpora and thesauri dominate the
top 10 systems in the CWI task of SemEval
2016 (Paetzold and Specia, 2016d). In SG, Horn
et al. (2014) extract candidates from a parallel
Wikipedia and Simple Wikipedia corpus, yield-
ing major improvements over previous approaches

(Devlin, 1999; Biran et al., 2011). Glavaš and
Štajner (2015) and Paetzold and Specia (2016f)
employ word embedding models to generate can-
didates, leading to even better results.

In SR, the state-of-the-art performance is
achieved by employing supervised approaches:
SVMRank (Horn et al., 2014) and Boundary
Ranking (Paetzold and Specia, 2015). Supervised
approaches have the caveat of requiring annotated
data, but as a consequence they can adapt to the
needs of a specific target audience.

Recently, (Xu et al., 2015) introduced the
Newsela corpus, a new resource composed of
thousands of news articles simplified by profes-
sionals. Their analysis reveals the potential use of
this corpus in simplification, but thus far no sim-
plifiers exist that exploit this resource. The scale
of this corpus and the fact that it was created by
professionals opens new avenues for research, in-
cluding using Neural Network approaches, which
have proved promising for many related problems.

Neural Networks for supervised ranking have
performed well in Information Retrieval (Burges
et al., 2005), Medical Risk Evaluation (Caruana et
al., 1995) and Summarization (Cao et al., 2015),
among other tasks, which suggests that they could
be an interesting approach to SR. In the context of
LS, existing work has only exploited word embed-
dings as features for SG, SS and SR.

In this paper, we introduce an LS approach that
uses the Newsela corpus for SG and employs a
new regression model for Neural Ranking in SR
that addresses the task in three steps: Regression,
Ordering and Confidence Check.

2 Hybrid Substitution Generation

Our approach combines candidate substitutions
from two sources: the Newsela corpus and
retrofitted context-aware word embedding models.
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2.1 SG via Parallel Data

The Newsela corpus1 (version 2016-01-29.1) con-
tains 1,911 news articles in their original form, as
well as up to 5 versions simplified by trained pro-
fessionals to different reading levels. It has a total
of 10,787 documents, each with a unique article
identifier and a version indicator between 0 and 5,
where 0 refers to the article’s original form, and 5
to its simplest version.

To employ the Newsela corpus in SG, we first
produce sentence alignments for all pairs of ver-
sions of a given article. To do so, we use paragraph
and sentence alignment algorithms from (Paetzold
and Specia, 2016g). They align paragraphs with
sentences that have high TF-IDF similarity, con-
catenate aligned paragraphs, and finally align con-
catenated paragraphs at sentence-level using the
TF-IDF similarity between them. Using this algo-
rithm, we produce 550,644 sentence alignments.

We then tag sentences using the Stanford Tagger
(Toutanvoa and Manning, 2000), produce word
alignments using Meteor (Denkowski and Lavie,
2011), and extract candidates using a strategy sim-
ilar to that of Horn et al. (2014). First we con-
sider all aligned complex-to-simple word pairs as
candidates. Then we filter them by discarding
pairs which: do not share the same POS tag, have
at least one non-content word, have at least one
proper noun, or share the same stem. After filter-
ing, we inflect all nouns, verbs, adjectives and ad-
verbs to all possible variants. We then complement
the candidate substitutions from the Newsela cor-
pus using the following word embeddings model.

2.2 SG via Context-aware Word Embeddings

Paetzold and Specia (2016f) present a state-of-
the-art simplifier that generates candidates from
a context-aware word embeddings model trained
over a corpus composed of words concatenated
with universal POS tags. We take this approach
a step further by incorporating another enhance-
ment: lexicon retrofitting.

Faruqui et al. (2015) introduce an algorithm
that allows for typical embeddings to be retrofitted
over lexicon relations, such as synonymy, hyper-
nymy, etc. To retrofit the context-aware mod-
els from (Paetzold and Specia, 2016f), we con-
catenate the words in WordNet (Fellbaum, 1998)
with their universal POS tag, create a dictionary
containing mappings between word-tag pairs and

1https://newsela.com/data

their synonyms, then use the algorithm described
in (Faruqui et al., 2015).

We train a bag-of-words (CBOW) model
(Mikolov et al., 2013b) of 1,300 dimensions with
word2vec (Mikolov et al., 2013a) using a corpus
of over 7 billion words that includes the SubIMDB
corpus (Paetzold and Specia, 2016b), UMBC web-
base2, News Crawl3, SUBTLEX (Brysbaert and
New, 2009), Wikipedia and Simple Wikipedia
(Kauchak, 2013). We retrofit the model over
WordNet’s synonym relations only. We choose
this model training configuration because it has
been shown to perform best for LS in a recent ex-
tensive benchmarking (Paetzold, 2016).

For each target word in the Newsela vocabu-
lary we then generate as complementary candidate
substitutions the three words in the model with the
lowest cosine distances from the target word that
have the same POS tag and are not a morphologi-
cal variant. As demonstrated by Paetzold and Spe-
cia (2016a), in SG parallel corpora tend to yield
higher Precision, but noticeably lower Recall than
embedding models. We add only three candidates
in order increase Recall without compromising the
high Precision from the Newsela corpus.

3 Unsupervised Substitution Selection

We pair our generator with the Unsupervised
Boundary Ranking SS approach from (Paetzold
and Specia, 2016f). They learn a supervised rank-
ing model over data gathered in unsupervised fash-
ion. Candidates are ranked according to how well
they fit the context of the target word, and a per-
centage of the worst ranking candidates is dis-
carded.

For training, the approach requires a set of com-
plex words in context along with candidate substi-
tutions for it. To produce this data, we generate
candidates for the complex words in all 929 sim-
plification instances of the BenchLS dataset (Paet-
zold and Specia, 2016a) using our SG approach.
The selector assigns label 1 to the complex words
and 0 to all candidates, then trains the model over
this data. During SS, we discard 50% of candi-
dates with the worst rankings. We chose this pro-
portion through experimentation. As features, we
use the same described in (Paetzold and Specia,
2016f).

2http://ebiquity.umbc.edu/resource/html/id/351
3http://www.statmt.org/wmt11/translation-task.html
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4 Neural Substitution Ranking

Our approach performs three steps: Regression,
Ordering and Confidence Check.

4.1 Regression
In this step, we employ a multi-layer perceptron
to determine the ranking between candidate sub-
stitutions. The network (Figure 1) takes as input a
set of features from two candidates, and produces
a single value that represents how much simpler
candidate 1 is than candidate 2. If the value is
negative, then candidate 1 is simpler than 2, if it
is positive, candidate 2 is simpler than 1.

Figure 1: Architecture of neural ranker

Our network has three hidden layers with eight
nodes each. For training we use the LexMTurk
dataset (Horn et al., 2014), which contains 500 in-
stances composed of a sentence, a target complex
word and candidate substitutions ranked by sim-
plicity. Let c1 and c2 be a pair of candidates from
an instance, r1 and r2 their simplicity ranks, and
Φ(ci) a function that maps a candidate ci to a set
of feature values. For each possible pair in each
instance of the LexMTurk dataset we create two
training instances: one with input [Φ(c1) ,Φ(c2)]
and reference output r1−r2, and one with input
[Φ(c2) ,Φ(c1)] and reference output r2−r1. We
train our model for 500 epochs. We use the same
n-gram probability features from SubIMDB used
by (Paetzold and Specia, 2015). Hidden layers use
the tanh activation function, and the output node
uses a linear function with Mean Average Error.

4.2 Ordering
Once the model is trained, we rank candidates by
simplicity. Let M(ci, cj) be the value estimated
by our model for a pair of candidates ci and cj of a
generated setC. During the ordering, we calculate
the final score R(ci) of all candidates ci (Eq. 1).

R(ci) =
∑

cj 6=ci∈C

M(ci, cj) (1)

Then, we simply rank all candidates based on
R: the lower the score, the simpler a candidate is.

4.3 Confidence Check

Once candidates are ranked, in order to increase
the reliability of our simplifier, instead of replac-
ing the target complex word with the simplest can-
didate, we first compare the use of this candidate
against the original word in context, which can be
seen as a Confidence Check.

The target t is only replaced by the simplest
candidate c if the language model probability of
the trigram Sj−1

j−2 t, in which Sj−1
j−2 is the bigram

of words preceding t in position j of sentence S,
is smaller than that of trigram Sj−1

j−2 c. This type
of approach has been proved a reliable alternative
to simply adding the target complex word to the
candidate pool during ranking (Glavaš and Štajner,
2015).

To calculate probabilities, we train a 5-gram
language model over SubIMDB, since its word
and n-gram frequencies have been shown to cor-
relate with simplicity better than those from other
larger corpora (Paetzold and Specia, 2016b). We
henceforth refer to our LS approach (SG+SS+SR)
as NNLS.

5 Substitution Generation Evaluation

Here we assess the performance of our SG ap-
proach in isolation (NNLS/SG), and when paired
with our SS strategy (NNLS/SG+SS), as described
in Sections 2 and 3. We compare them to the gen-
erators of all approaches featured in the bench-
marks of Paetzold and Specia (2016a): Devlin
(Devlin and Tait, 1998), Biran (Biran et al., 2011),
Yamamoto (Kajiwara et al., 2013), Horn (Horn
et al., 2014), Glavas (Glavaš and Štajner, 2015)
and Paetzold (Paetzold and Specia, 2015; Paetzold
and Specia, 2016f). These SG strategies extract
candidates from WordNet, Wikipedia and Simple
Wikipedia articles, Merriam dictionary, sentence-
aligned Wikipedia and Simple Wikipedia articles,
typical word embeddings and context-aware word
embeddings, respectively. They are all available in
the LEXenstein framework (Paetzold and Specia,
2015).

We use two common evaluation datasets for
LS: BenchLS (Paetzold and Specia, 2016a), which
contains 929 instances and is annotated by English
speakers from the U.S, and NNSEval (Paetzold
and Specia, 2016f), which contains 239 instances
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and is annotated by non-native English speakers.
Each instance is composed of a sentence, a tar-
get complex word, and a set of gold candidates
ranked by simplicity. We use the same metrics
featured in (Paetzold and Specia, 2016a), which
are the well known Precision, Recall and F1. No-
tice that, since these datasets already provide tar-
get words deemed complex by human annotators,
we do not address CWI in our evaluations.

The results in Table 1 reveal that our SG ap-
proach outperforms all others in Precision and F1
by a considerable margin, and that our SS ap-
proach leads to noticeable increases in Precision
at almost no cost in Recall.

BenchLS NNSeval
P R F1 P R F1

Devlin 0.133 0.153 0.143 0.092 0.093 0.092
Biran 0.130 0.144 0.136 0.084 0.079 0.081
Yamamoto 0.032 0.087 0.047 0.026 0.061 0.037
Horn 0.235 0.131 0.168 0.134 0.088 0.106
Glavas 0.142 0.191 0.163 0.105 0.141 0.121
Paetzold 0.180 0.252 0.210 0.118 0.161 0.136
NNLS/SG 0.270 0.209 0.236 0.186 0.136 0.157
NNLS/SG+SS 0.337 0.206 0.256 0.231 0.135 0.171

Table 1: SG benchmarking results

6 Substitution Ranking Evaluation

We also compare our Neural Ranking SR ap-
proach (NNLS/SR) to the rankers of all aforemen-
tioned lexical simplifiers. The Devlin, Biran, Ya-
mamoto, Horn, Glavas and Paetzold rankers ex-
ploit Kucera-Francis coefficients (Rudell, 1993),
hand-crafted complexity metrics, a supervised
SVM ranker, rank averaging and Boundary Rank-
ing, respectively. In this experiment we disregard
the step of Confidence Check, since we aim to
analyse the performance of our ranking strategy
alone.

The datasets used are those introduced for the
English Lexical Simplification task of SemEval
2012 (Specia et al., 2012), to which dozens of
systems were submitted. The training and test
sets are composed of 300 and 1,710 instances, re-
spectively. Each instance is composed of a sen-
tence, a target complex word, and a series of can-
didate substitutions ranked by simplicity. We use
TRank, the official metric of the SemEval 2012
task, which measures the proportion of instances
for which the candidate with the highest gold-
rank was ranked first, as well Pearson (p) correla-
tion. While TRank best captures the reliability of

rankers in practice, Pearson correlation shows how
well the rankers capture simplicity in general.

Table 2 reveals that, much like our SG ap-
proach, our Neural Ranker performs well in isola-
tion, offering the highest scores among all strate-
gies available.

TRank p

Devlin 0.596 0.614
Biran 0.513 0.505
Yamamoto 0.604 0.649
Horn 0.639 0.673
Glavas 0.632 0.644
Paetzold 0.653 0.677
NNLS/SR 0.658 0.677

Table 2: SR benchmarking results

7 Full Pipeline Evaluation

We then evaluate our approach in two settings:
with (NNLS) and without (NNLS-C), the Con-
fidence Check (Section 4.3). The evaluation
datasets used are the same described in Section 5,
and the metrics are:

• Accuracy: The proportion of instances in
which the target word was replaced by a gold
candidate.

• Precision: The proportion of instances in
which the target word was either replaced by
a gold candidate or not replaced at all.

BenchLS NNSeval
P A P A

Devlin 0.309 0.307 0.335 0.117
Biran 0.124 0.123 0.121 0.121
Yamamoto 0.044 0.041 0.444 0.025
Horn 0.546 0.341 0.364 0.172
Glavas 0.480 0.252 0.456 0.197
Paetzold 0.423 0.423 0.297 0.297
NNLS 0.642 0.434 0.544 0.335
NNLS-C 0.543 0.538 0.397 0.393

Table 4: Full pipeline evaluation results

Notice that, unlike in SG, Recall and F1 are not
applicable in this form of evaluation. Table 4 re-
veals that, without the confidence check, our ap-
proach yields an average increase of 10.5% in Ac-
curacy over the former state-of-the-art simplifier.
With the confidence check, it yields the highest
Precision while retaining the highest Accuracy.
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2A 2B 3A 3B 4 5 1
SE Devlin 0 (0%) 689 (74%) 86 (36%) 34 (14%) 60 (50%) 17 (14%) 43 (36%)
SE Horn 0 (0%) 689 (74%) 76 (32%) 43 (18%) 74 (61%) 15 (12%) 32 (26%)
SE Glavas 0 (0%) 689 (74%) 70 (29%) 23 (10%) 81 (55%) 20 (14%) 46 (31%)
SE Paetzold 0 (0%) 689 (74%) 59 (25%) 21 (9%) 68 (42%) 28 (18%) 64 (40%)
SE NNLS 0 (0%) 689 (74%) 40 (17%) 30 (12%) 34 (20%) 45 (26%) 91 (54%)
PV Devlin 84 (9%) 232 (25%) 146 (61%) 22 (9%) 35 (49%) 8 (11%) 29 (40%)
PV Horn 84 (9%) 232 (25%) 123 (51%) 30 (12%) 50 (57%) 13 (15%) 24 (28%)
PV Glavas 84 (9%) 232 (25%) 127 (53%) 12 (5%) 46 (46%) 17 (17%) 38 (38%)
PV Paetzold 84 (9%) 232 (25%) 126 (52%) 9 (4%) 39 (37%) 14 (13%) 52 (50%)
PV NNLS 84 (9%) 232 (25%) 110 (46%) 17 (7%) 14 (12%) 26 (23%) 73 (65%)

Table 3: Error categorisation results

8 Error Analysis

In this Section we analyse NNLS to understand the
sources of its errors. For that, we use PLUMBErr
(Paetzold and Specia, 2016c; Shardlow, 2014), a
method that assesses all steps taken by LS systems
and identifies five types of errors:

• 1: No error during simplification.

• 2A: Complex word classified as simple.

• 2B: Simple word classified as complex.

• 3A: No candidate substitutions produced.

• 3B: No simpler candidates produced.

• 4: Replacement compromises the sentence’s
grammaticality or meaning.

• 5: Replacement does not simplify the word.

Errors of type 2 are made during CWI, 3 during
SG/SS, and 4 and 5 during SR. We pair ours, De-
vlin’s, Horn’s, Glavas’ and Paetzold’s simplifiers
with two CWI approaches: one that simplifies ev-
erything (SE), and the Performance-Oriented Soft
Voting approach (PV), which won the CWI task of
SemEval 2016 (Paetzold and Specia, 2016e).

Table 3 shows the count and proportion (in
brackets) of instances in BenchLS in which each
error was made. It shows that our approach cor-
rectly simplifies the largest number of problems,
while making the fewest errors of type 3A and
4. However, it can be noticed that NNLS makes
many errors of type 5. By analysing the output
produced after each step, we found that this is
caused by the inherently high Precision of our ap-
proach: by producing a smaller number of spuri-
ous candidates, our simplifier reduces the occur-
rences of ungrammatical and/or incoherent sub-
stitutions, but also disregards many candidates

that are simpler than the target complex word.
Nonetheless, this noticeably increases the number
of correct simplifications made.

9 Conclusions

We introduced an LS approach that extracts can-
didate substitutions from the Newsela corpus and
retrofitted context-aware word embedding models,
selects them with Unsupervised Boundary Rank-
ing, and ranks them using a new Neural Ranking
strategy.

We found that: (i) our generator achieves the
highest Precision and F1 scores to date, (ii) our
Neural Ranking strategy leads to the top scores
on the English Lexical Simplification task of Se-
mEval 2012, (iii) and their combination offers the
highest Precision and Accuracy scores in two stan-
dard evaluation datasets. An error analysis reveals
that our LS approach makes considerably fewer
grammaticality/meaning errors than former state-
of-the-art simplifiers.

In future work, we aim to investigate new archi-
tectures for our Neural Ranking model, as well as
to test our approach in other NLP tasks. An im-
plementation of our Substitution Generation, Se-
lection and Ranking approaches can be found in
the LEXenstein framework4.
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Abstract

This paper discusses some central caveats
of summarisation, incurred in the use of
the ROUGE metric for evaluation, with re-
spect to optimal solutions. The task is NP-
hard, of which we give the first proof. Still,
as we show empirically for three central
benchmark datasets for the task, greedy al-
gorithms empirically seem to perform op-
timally according to the metric. Addition-
ally, overall quality assurance is problem-
atic: there is no natural upper bound on
the quality of summarisation systems, and
even humans are excluded from perform-
ing optimal summarisation.

1 Introduction
Research in automatic summarisation today has
reached a stalemate. Despite continuing innova-
tion of promising algorithms for carrying out au-
tomatic summarisation, recent research over con-
ventional benchmark datasets has suggested the
following: according to the most widely accepted
automatic evaluation metric, ROUGE, there has
been no substantial improvement in performance
on central datasets in the field in the last decade
(Hong et al., 2014). Additionally, according to
ROUGE, there seems to be little significant ben-
efit to supervised over unsupervised learning, or
to exact over greedy approximate algorithmic so-
lutions. Moreover, there is little understanding as
to what a perfect score is according to ROUGE, or
how naturally this describes a human’s idea of an
optimal summary.

In this paper we substantiate these issues with
evidence, observing that by ROUGE numbers:
(1) Perfect scores for extractive summari-

sation are theoretically computationally
hard to achieve. We provide the first proof

of NP-hardness for optimisation of extractive
summarisation with respect to ROUGE. Yet
empirically the metric shows that greedy and
exact global decoding method performances
are similar.

(2) 100% perfect scores are impossible for
higher quality datasets. The metric returns
an average of ROUGE scores over multi-
ple reference summaries in order to avoid
bias (Nenkova and Passonneau, 2004). This
means that it is impossible to obtain 100%
ROUGE-n scores unless the reference sum-
maries contain precisely the same n-grams.

(3) Relative perfect scores are highly diverse
and unattainable by humans. ROUGE
scores are generally rather low for short sum-
maries and seem to get higher for datasets
with longer summary length budgets, even
when document length also substantially in-
creases. We know that 100% perfect scores
are impossible, so what is a perfect score
according to ROUGE? How do we know
when no improvement is possible? Previous
research on evaluation metrics for automatic
summarisation has tried to empirically show
a correlation between human judgments and
system output quality (Lin, 2004; Lin and
Hovy, 2003; Liu and Liu, 2008; Graham,
2015). But this does not address the upper
bound issue. Indeed, we demonstrate there
is no possible relative perfect score, even if
one has access to the sentences of the refer-
ence summaries. So, for example, even hu-
mans are doomed to perform sub-optimally
(Cf. Marujo et al. (2016)).

(4) State-of-the-art automatic summarisation
is unsupervised. There have been recent ad-
vances in supervised summarisation mainly
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with respect to supervised learning using
neural networks (for example (Rush et al.,
2015; Chopra et al., 2016)). However, due
to data size requirements, these systems are
constrained to title generation systems and
therefore not in the scope of this work. Hong
et al. (2014) survey the state-of-the-art us-
ing the central DUC 2004 dataset. Of these,
ICSISum (Gillick and Favre, 2009) is the
only global summariser using an exact al-
gorithm; it obtains the best ROUGE-2 score
without supervision. All the other approaches
use greedy strategies/approximations, even
if they intend to model global optimisation.
This raises the following important question:
If one shifts from a greedy strategy to an ex-
act global one, does supervision give substan-
tial system performance improvement?

In this paper, we do not consider or compare
evaluation metrics. This work is all under the as-
sumption that ROUGE (under its currently used
parameters) provides an accurate account of sum-
marisation quality.1

Throughout, we refer to as reference sum-
maries the gold standard that accompanies the
summarisation dataset. Reference summaries are
probably abstractive. On the other hand, by gold
summaries, we refer to optimal summaries con-
sisting of sentences from the input document.

2 Preliminaries
ROUGE. Let g be an n-gram and R and S be
multiset representations of reference and system
summaries, respectively. We define the intersec-
tion A ∩ B of two multisets A, B as a multiset
containing all multiples of their shared elements.

ROUGE-n(S) :=

∑
g∈S |{g|g ∈ S} ∩ {g|g ∈ R}|∑

g∈R |{g|g ∈ R}|
(1)

When there is more than one reference sum-
mary, then the individual ROUGE scores are cal-
culated per reference and the average is returned.

The data. Empirical results of this paper are cal-
culated over datasets from three separate domains.
duc04: 30 newswire article set-summary set pairs
first used in the DUC 2004 summarisation task 2.2

1We use the current version ROUGE-1.5.5 http://
www.berouge.com, with the following parameters unless
otherwise stated: -n 2 -m -x -f A -t 0 {-b|-l}
[length] -a -r 1000 -c 95.

2http://duc.nist.gov/duc2004/

We use both the original 665 bytes summary bud-
get as well as the 100 word summary budget used
by (Hong et al., 2014).
echr: judgment-summary pairs scraped from the
European Court of Human Rights case-law web-
site, HUDOC.3 The test set consists of 138 pairs.
We adopt the same summary budget length: 805
words used by Schluter and Søgaard (2015).
wiki: Wikipedia leading paragraphs-article pairs
(all labeled “good article”) from a comprehen-
sive dump of English language Wikipedia arti-
cles.4 The test set consists of 111 pairs. We use
the same summary budget of 335 used by Schluter
and Søgaard (2015).

3 ROUGE optimisation for extraction
We now provide a proof of NP-hardness of ex-
act oracle extractive summarisation with respect to
ROUGE. We first prove the result for ROUGE-1
and later extend the result to ROUGE-n.

Theorem 1. Given a document, its manually writ-
ten non-extractive summary, and the ROUGE-1
metric for N ∈ Z+, building an extractive sum-
mary that maximises the ROUGE-1 metric is NP-
hard.

Proof. The objective is to optimise ROUGE-1 by
maximising the number of word tokens paired up
between system and reference summaries. That is,
one is trying to choose the sentences, within bud-
get, that cumulatively maximise the number of un-
igram tokens that can be paired with those of refer-
ence summaries. We can reduce the NP-hard max
k-weighted dominating set problem to the oracle
extractive summarisation problem with ROUGE-1
as the metric.

Given a graph G = (V,E), the max k-
dominating set problem requires a solution of k
vertices that are adjacent to the maximum num-
ber of vertices in G. The max k-dominating set
problem is NP-hard, even for cubic graphs (graphs
in which the degree of all vertices is equal to 3)
(Garey and Johnson, 1979).

Suppose further that each vertex s ∈ V is as-
sociated with a weight wv. The max k′-weighted
dominating set problem consists in determining a
subset of vertices of total weight k′ that are adja-
cent with the maximum number of vertices in G.

3http://hudoc.echr.coe.int/
4https://dumps.wikimedia.org/

enwiki/latest/enwiki-latest-pages
-articles-multistream.xml.bz2
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In particular, if we setwv = 1 for each vertex, then
the two problems are identical, showing the corre-
sponding NP-hardness of this weighted version of
the problem.

Let G = (V,E) be a cubic graph. Let N(v)
be the neighbourhood of vertex v. Now let the
weight of each vertex wv be |N(v) ∪ {v}| = 4.
With k′ = 4k it is easy to see that the max
k′-weighted dominating set problem is equivalent
to the max k-dominating set problem for cubic
graphs. A solution is a dominating set S′ such that
|{u | u ∈ (N(v) ∪ {v}), v ∈ S′}| is maximised
for
∑

v∈S′ w(v) = 4k.
We reduce the 4k-weighted dominating set

problem to the problem of exact summarisation
with respect to ROUGE-1 as follows.

We create an input document D = {sv | v ∈
V }, where sv := N(v) ∪ {v} is a sentence (its
components written in any order). Evaluation is
carried out against a single reference summary V
(the set of vertices of our original graph written out
in any order). Let S be an output extractive sum-
mary from D within our budget of size 4k. We
want to maximise

ROUGE-1(S) =

=

∑
w |{w|w ∈

⋃
sv∈S sv} ∩ {w|w ∈ V }|∑

w{w|w ∈ V }

=
|(⋃sv∈S sv) ∩ V |

|V | =
|(⋃sv∈S sv)|
|V |

=
|{u | u ∈ (N(v) ∪ {v}), sv ∈ S}|

|V | (2)

where the second equality follows from the fact
that no vertex occurs more than once in the refer-
ence summary V .

Maximising the last term (2) is the same as
maximising without its denominator. Take S′ :=
{v | sv ∈ S} for the solution of the original 4k-
weighted dominating set problem. Suppose S′ was
not a maximum solution. Then there is a better so-
lution Ŝ of weight 4k. But then {sv | v ∈ Ŝ} is
a better solution for summarisation. This gives the
result.

We can extend the reduction in the proof of The-
orem 1 from 4k-weighted dominating set to ex-
tractive summarisation with respect to ROUGE-
n with budget 2 · (4k) by introducing a dummy
symbol d into our documents and summaries for

padding sentences. We first introduce some nota-
tion for the new sentences of documents and refer-
ence summaries.

We will now write sentences sv from the proof
of Theorem 1 with the superscript 1, s1v, corre-
sponding to the type of gram (1-gram) measured
in ROUGE-1. We set an ordering on V , numbering
the vertices so that V := {v1, . . . , v|V |} (though
this ordering is purely for ease in description). In-
stead of simply choosing any order to write the
nodes from N(vi1) ∪ {vi1} = {vi1 , vi2 , vi3 , vi4},
we write s1vi1

according to the ordering of the
node indices. So, if i1 < i2 < i3 < i4, then
s1vi1

= vi1vi2vi3vi4 .
We generalise this to order-n sentences. The

order-n sentence sn
v is just s1v (first order sen-

tence) with each vertex padded to the right
by the string d(n−1), and prefixed with d(n−1)

to the resulting string, where d is a dummy
symbol not in V . For example, s2vi1

=
dvi1dvi2dvi3dvi4d, and in general, sn

vi1
=

d(n−1)vi1d
(n−1)vi2d

(n−1)vi3d
(n−1)vi4d

(n−1). So
order-n sentences have length 4 + 5(n − 1).
Order-n sentences will be used for creating doc-
uments Dn and reference summaries Vn for the
NP-hardness proof of exact oracle summarisa-
tion with respect to ROUGE-n, with a budget of
k(4 + 5(n− 1)).

Note how if v occurs in a first order sentence
s1, then there are exactly 2 bigrams containing
v in the corresponding second order sentence s2:
dv and vd. Similarly, there are exactly n n-grams
containing v in the corresponding sentence sn:
d(n−1)v, d(n−2)vd, . . . , dvd(n−2), vd(n−1). This is
the set-up for the document Dn in the reduction of
(4k)-weighted dominating set to exact extractive
summarisation with respect to ROUGE-n.

We set up the reference summary in a similar
way. For V = V1, we write the vertices in or-
der. For Vn we pad the right of each symbol in V1

with the string d(n−1) and attach the same string
as a prefix. So, once again, a 1-gram in V1 corre-
sponds to exactly n n-grams in Vn. ROUGE-n is
maximised when the number of matched n-grams
of Vn is maximised, which is precisely when the
number of 1-grams of V1 is maximised. The reduc-
tion from (4k)-weighted dominating set to exact
extractive summarisation with respect to ROUGE-
n and with budget (4+5(n−1))k follows, yielding
the following generalisation of Theorem 1.

Theorem 2. Given a document, its manually writ-
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ten non-extractive summary, and the ROUGE-n
metric for n ∈ Z+, building an extractive sum-
mary that maximises the ROUGE-n metric is NP-
hard.

Because the ROUGE optimisation problem is
NP-hard, one may suspect that exchanging a
greedy strategy out for an exact global approach
would lead to substantial improvements in system
performance. Therefore, for our three datasets, we
generate gold extractive summaries using both ex-
act and greedy global oracle approaches. If our
suspicions are true, then we expect these ap-
proaches to generate poor quality gold extractive
summaries with the greedy algorithm in compari-
son to exact one.

opt Greedy Exact
w.r.t. R1 R2 R1 R2

duc04 R1 50.5 13.87 49.91 13.98
R2 48.27 19.61 46.92 16.79

wiki R1 64.14 22.49 63.41 21.81
R2 59.68 27.81 59.43 27.11

echr R1 83.57 51.01 84.17 50.34
R2 81.38 57.31 82.04 56.67

Table 1: Exact and greedy oracle summarisation
ROUGE-n scores in percentages, for n ∈ [2].

We use an open source solver to find exact op-
timal solutions.5 Note that in the exact set-up sen-
tences cannot be clipped to meet the boundary
budget constraint, which is a more natural setting
for automatic summarisation. To build an extrac-
tive summary greedily, we iteratively add the sen-
tence with highest ROUGE score to the summary,
normalising by sentence length. The measure au-
tomatically chops sentences that otherwise bring
summary lengths over the limit. Table 1 gives the
results for greedy and exact oracle gold extractive
summaries across our three domains.

Greedy is good. We observe that across the
board, the greedy strategy performs comparably to
the exact strategy for global optimisation. With the
shorter summaries required by the duc04 dataset,
the greedy strategy yields higher ROUGE scores,
possibly by chopping the last sentence of sum-
maries. This chopping reward lessens, it seems, as
summary budgets increase, but the two methods

53gnu.org/software/glpk

stay competitive with each other.

No data necessary. This also provides good ev-
idence that is no substantial benefit in switch-
ing from unsupervised exact global state-of-the-
art approaches to supervised exact global ap-
proaches for extractive summarisation on conven-
tional datasets.

Far from perfection. For extractive summarisa-
tion, the perfect scores (in Table 1) are far from
100% as well as diverse, according to dataset.

Evaluation against multiple, rather than sin-
gle reference summaries is generally recognised
as leading to fairer, better quality, evaluation:
different human summaries appear to be good
even though they do not have identical content
(Nenkova and Passonneau, 2004). However, aver-
aging ROUGE scores across multiple summaries,
as is standard practice, makes a perfect 100%
score unattainable, even for abstractive systems.
This is because the word frequencies required by
ROUGE suddenly become unattainable.

Figure 1: Stemmed word frequencies for refer-
ence summary set d30001t from duc04: averaged
across all reference summaries and for single ref-
erence summaries.

As illustration, consider the frequencies re-
quired by the reference summaries for a duc2004
document set in Figure 1. The number of 1-grams
to match has increased: this was the original in-
tent—to allow for equally important but different
content. We have gone from around 60 stemmed
words to 160 stemmed words. However, for ex-
ample, in the case of our example summary set,
136/160 matches are really only part matches
(with weight < 1).

This leads to the contradictory situation where,
according to the ROUGE metric, humans cannot
summarise well (though they are thought to be
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able to judge summary quality accurately). In-
deed, evaluating one reference summary against
the other three for the duc04 dataset achieves
39.92 ROUGE-1 and 9.39 ROUGE-2—far below
optimal performance. Since humans are generally
abstractive summarisers this provides a sort of up-
per bound on abstractive summarisation perfor-
mance according to ROUGE.

4 Concluding remarks
Previous work on summarisation evaluation has
mainly considered the positive aspects of ROUGE;
namely correlation to human judgments. In this
paper we hope to have raised some concerns with
respect to ROUGE and our expectations for op-
timal summarisers. We have also given the first
NP-hardness proof for global optimisation with
respect to ROUGE.
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Abstract

We present an iterative annotation pro-
cess for producing aligned, parallel cor-
pora of abstractive and extractive sum-
maries for narrative. Our approach
uses a combination of trained annotators
and crowd-sourcing, allowing us to elicit
human-generated summaries and align-
ments quickly and at low cost. We
use crowd-sourcing to annotate aligned
phrases with the text-to-text generation
techniques needed to transform each
phrase into the other. We apply this pro-
cess to a corpus of 476 personal narratives,
which we make available on the Web.

1 Introduction

With the tremendous amounts of text published on
the Web every day, automatic text summarization
is more relevant than ever. Web content must com-
pete for readers’ attention, and the existence of
click bait links shows that content providers are
very aware that a short, appealing summary may
be their only chance to attract readers. For the
readers’ part, summaries stating exactly what a
piece of content is about protects them from wast-
ing time on topics that do not interest them.

Research on summarization has long focused
on extraction: selecting the most salient sentences
from a text without any modifications. These sum-
maries can be incoherent or incomprehensible due
to unresolved pronouns and references, and sen-
tences containing irrelevant information (Nenkova
and McKeown, 2011), and this is particularly
problematic with informal web text. Thus abstrac-
tive summarization is critical for the web, with
rewriting of extracted sentences, as humans write
summaries (Jing and McKeown, 1999).

To develop an abstractive summarization sys-
tem, we need data: parallel corpora that align
extractive summaries with abstractive summaries.
Such corpora would allow researchers to develop
text-to-text generation approaches to produce ab-
stractive summaries from extractive ones. While
there are many summarization copora available,
most provide abstractive summaries only (Meyer
et al., 2016), extractive summaries only or un-
aligned abstractive and extractive summaries (e.g.,
as in (Over et al., 2007; Dang and Owczarzak,
2008)).

In this work, we present an iterative annotation
process for producing aligned summaries anno-
tated with text-to-text generation techniques. Fig-
ure 1 shows a human-written abstractive summary
and human-selected extractive summary from our
corpus. The extractive summary suggests the nar-
rator was already uneasy and leaves the reader
wondering why. This information is unimpor-
tant, but the extractive summary must include it
because it is in the same sentence as the bloody
woman, just as it must include an extra character:
the man in medical attire. Text-to-text generation
techniques, such as sentence compression, could
be used to rewrite this extractive summary to more
closely match the abstractive summary.

Abstractive: While driving home I saw a woman cov-

ered in blood standing by the side of the road. As I passed

she attempted to launch herself at my car.

Extractive: As I’m looking around as to what the fuck is

going on, we approach the roundabout and there is a man

in medical attire next to a woman in white pyjamas, with

blood covering her clothing. I go straight, and as we go

past the woman attempts to launch herself at my car.

Figure 1: Abstractive and extractive summaries.

While the extractive summary contains some
extraneous information, it does include every-
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thing present in the abstractive summary. We use
crowd-sourcing with Amazon Mechanical Turk
(AMT) to produce our extractive summaries, and
workers are given the abstractive summaries as
a prompt, ensuring high-quality extractive sum-
maries despite using inexpensive crowd-sourcing.
In the next stage of our annotation process, we
use AMT workers (Turkers) to align phrases from
the extractive summaries to the abstractive sum-
maries. Finally, we use Turkers to annotate the
aligned phrases with the five rewriting operations
identified by Jing and McKeown (1999) – re-
duction (compression), combination (fusion), syn-
tactic transformation, lexical paraphrasing, gen-
eralization/specification – indicating how best to
rewrite each extracted phrase. We make our cor-
pus available on the Web1.

2 Related Work

Text-to-text generation for abstractive summa-
rization is the task of revising extracted sen-
tences using techniques such as sentence compres-
sion (Knight and Marcu, 2000; Lin, 2003; Zajic et
al., 2007; Liu and Liu, 2009) and fusion (Barzi-
lay and McKeown, 2005). Unfortunately, cor-
pora for text-to-text generation are rare and time-
consuming to produce. Marcu (1999) created a
corpus of nearly 7,000 abstractive and extractive
summaries of news articles by automatically ex-
tracting sentences based on a human-written sum-
mary, building a large corpus at the cost of some
noise. Murray et al (2005) created a corpus of 61
paired, human-written abstractive/extractive sum-
maries of meeting transcripts, but the gain in sum-
mary quality achieved using human annotators is
offset by the small size of the corpus.

This work uses personal narratives, widely
found on social networks, weblogs, and online
forums. The availability of online narrative be-
gins to address a problem facing the text-to-text
generation approach to summarization: lack of
data. Gordon and Swanson (2009) trained a clas-
sifier to identify narratives in blog posts with 75%
precision and built a corpus of 937,994 narra-
tives. Ouyang and McKeown (2015) created a
corpus of 4,647 narratives collected automatically
from Reddit, achieving 94% precision in collect-
ing only narrative text. They argue that the Most
Reportable Event (MRE) is the most salient event

1www.cs.columbia.edu/∼ouyangj/aligned-
summarization-data

and thus the shortest possible summary; they an-
notated a subset of 476 narratives by extracting
sentences that referred to MREs.

The Murray et al corpus includes alignments
between phrases in the extractive summaries and
sentences in the abstractive summaries. How-
ever, none of the corpora described above pro-
vides an analysis of how a summarizer might
transform an extracted phrase into its abstractive
form. While corpora exist for some rewrites in
McKeown and Jing (1999), such as compression
(Ziff-Davis, Filippova and Altun (2013), Kaji-
wara and Komachi (2016)), fusion (McKeown et
al (2010)), and lexical paraphrasing/syntactic re-
ordering (Ganitkevitch et al (2013)), these corpora
exist in isolation. A human summarizer may apply
multiple rewrites to a single phrase, and our work
captures this information with annotations for all
of the rewrites over each alignment.

3 Data Collection

We use the annotated subset of 476 personal nar-
ratives in Ouyang and McKeown (2015), although
we do not use their annotations.

3.1 Stage One: Abstractive Summaries

We partitioned the 476 stories into 7 slices of 68
narratives. The narratives were written for 19 dif-
ferent prompts, which roughly correspond to top-
ics (eg. “Your best ‘Accidentally Racist’ story?”).
We randomly assigned an equal number of narra-
tives from each prompt to each of the seven slices.

We trained four graduate student annotators
from our university’s Department of English and
Comparative Literature. Each was assigned four
slices: one in common with each other annotator,
and one among all annotators. Each participated
in a 30-minute training session: they were told to
imagine they were about to tell a story to a friend
and wanted to ask, “Did I tell you about. . . ?” They
should write one or two sentences to complete the
question and include any context they thought nec-
essary for their friend to understand it.

We evaluated interannotator agreement on this
task using an AMT HIT (Human Intelligence
Task) where Turkers were shown summaries writ-
ten by two different annotators, but not the narra-
tive itself. We then asked the Turkers to decide
whether or not the summaries described the same
event, and if so, whether one or both of the sum-
maries contained important information not found
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in the other. We required Turkers to complete a
qualification test before working on the HIT, en-
suring they had read and understood the task in-
structions. The test consisted of pairs of example
summaries constructed so that the correct answers
to our two questions were clear: the paired sum-
maries were identical except for pieces of extra in-
formation that we inserted into one or both sum-
maries. Three Turkers worked on each hit, and we
considered a pair of summaries to be in agreement
if at least two out of three Turkers indicated that
the summaries described the same event.

Abstract A: My neighbor’s mom saved me from being

kidnapped into a car when I was six.

Abstract B: Someone tried to kidnap me when I was six,

but a neighbor’s mom grabbed me before they got me.

(a) Agreeing abstractive summaries.

Abstract A: I ran my mouth off at this rude woman.

Abstract B: I held a door for a lady and she told someone

on the phone that I had rudely ran around her.

(b) Disagreeing abstractive summaries.

Figure 2: Examples of agreeing and disagreeing abstractive
summaries for two different narratives.

Our annotators achieved 90.38% observed
agreement, producing a total of 1088 different ab-
stractive summaries. Figure 2 shows a pair of
agreeing and a pair of disagreeing abstractive sum-
maries. With the disagreeing summaries, we see
that annotators A and B focused on different as-
pects of the narrative: A summarized the narra-
tor’s confrontation with the rude woman, while
B explains why the narrator was angry with the
woman. Figure 3 shows a pair of agreeing sum-
maries where Turkers indicated that both sum-
maries contained important information not found
in the other summary. We see that annotator A
focused on the event’s emotional effect on the nar-
rator, while annotator C emphasized the irrespon-
sible friend’s bad behavior.

Abstract A: This one friend never gave back the 360 and

netbook I let him borrow, so now I have a hard time doing

good deeds for other people.

Abstract C: I lent my friend my netbook and xbox 360

and he broke the netbook and claimed the 360 was stolen.

He only ever gave me 100 bucks for it.

Figure 3: Extra information in a agreeing summaries.

3.2 Stage Two: Extractive Summaries

To produce the corresponding extractive sum-
maries, we created another HIT that showed Turk-
ers a narrative, one of its abstractive summaries,
and instructions to compose an equivalent sum-
mary by selecting as few sentences as possible
from the narrative. We once again required Turk-
ers to complete a qualification test before working
on our HITs. The test consisted of a single story
and abstractive summary, written so that the sum-
mary was a word-for-word paraphrase of a single
sentence in the narrative that did not overlap with
any other sentences. We also required that Turk-
ers be at least 18 years old and have completed at
least 10,000 HITs with 98% acceptance on pre-
vious HITs. Three Turkers worked on each of
our HITs, and Turkers achieved substantial agree-
ment on which sentences they selected: Fleiss’s κ
of 0.748. Figure 4 shows an extractive summary
where they achieved perfect agreement.

Abstractive: At a concert, I grabbed a chunk of dirt in

mid-air that was being thrown at a woman, and security

thought I was throwing the dirt.

Extractive: There is a woman standing next to me when

a huge piece of dirt comes flying straight at her face. I

grab the chunk inches from her face mid-air. Security

sees me with a chunk of dirt in my hand and instantly

grab and pull me out of the crowd.

Figure 4: Perfect agreement among Turkers in constructing
the extractive summary.

Combining our abstractive and extractive sum-
maries, we have 476 narratives, 408 with two ab-
stractive summaries and 68 with four. For each
abstractive summary, we have six extractive sum-
maries, one for each Turker and an additional three
created by aggregating the Turkers’ summaries:
sentences selected by at least one (union), two
(majority), and all three (intersect) Turkers.

3.3 Stage Three: Phrase Alignments

We used another AMT HIT to produce phrase
alignments between the extractive and abstractive
summaries. We showed Turkers one of the ab-
stractive summaries produced in Stage One and
its corresponding extractive summary produced in
Stage Two (using union aggregation). The task
was to align phrases between the summaries, and
to submit as many alignments as they could find.

To avoid confusing terminology, the instruc-
tions referred to the abstractive summary as the
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Figure 5: Highlighting interface for Phrase Alignment HIT.

“summary” and the extractive summary as the “ex-
cerpt.” We defined aligning as “matching phrases
from the summary with phrases from the excerpt
that effectively mean the same things.” The HIT
interface (Figure 5), allowed Turkers to select
phrases by highlighting, save alignments as they
went along, and submit all their saved alignments
at the end. Three Turkers worked on each HIT.

As in the previous stages, we required Turkers
to complete a qualification test where we showed
Turkers one phrase from an abstractive summary
and four phrases from the corresponding extrac-
tive summary and asked them to decide which of
the four extractive options would make a good
alignment with the abstractive phrase. We also
presented them with a link to a demo of the in-
terface, so that they could try the highlighting and
saving functions before working on the actual HIT.

3.4 Stage Four: Rewriting Operations

Our final HIT asked Turkers to review the align-
ments produced in Stage Three, and to identify
the rewrite operation(s) involved in transforming
the extractive phrase into the abstractive phrase.
When performing the task, Turkers were only con-
cerned with one rewrite at a time, and simply
had to select whether the presented alignment em-
ployed that rewrite or not. We designed our task
in this way because an alignment could employ
more than one rewrite, and we wanted the Turk-
ers to consider each rewrite independently.

We defined the rewrite operations for the Turk-
ers as follows, and provided examples of each.
• Reduction keeps key parts word-for-word

and removes less important information.
• Lexical paraphrasing replaces words or

word sequences with paraphrases, ie. other
words that have the same meaning.
• Syntactic reordering changes the grammat-

ical structure (eg. passive vs active).

• Generalization replaces longer strings of de-
tail with shorter, more general descriptions.
• Specification replaces short, general descrip-

tions with longer strings of detail.
As in Stages Two and Three, we tested the

Turkers’ understanding of the task before allow-
ing them to work on the HITs. Since we ask
about one rewrite operation at a time, we designed
separate qualification tests for each rewrite. For
each test, we selected one abstractive/extractive
summary pair and constructed two different align-
ment examples where one alignment employed the
rewrite in question and the other did not. The
Turkers were asked whether or not the rewrite was
used in each of the two alignments.

Rewrite Operation Counts

Reduction 216 Generalization 3359
Lexical Para. 1218 Specification 1250
Syntactic Reor. 916

Table 1: Rewrite operation counts.

For each alignment, we put up four HITs (we
combined generalization and specification so that
Turkers could choose one or neither, but not both).
Table 1 lists each rewrite and how many align-
ments used it; we include an alignment when at
least 2 out of 3 Turkers agreed it used the rewrite.
We found that generalization was by far the most
popular rewrite operation, and reduction was the
least, likely because reduction’s definition was
the most demanding, as it required word-for-word
matching outside of the removed parts. Figure 6
shows an example each of generalization and its
counterpart specification from our annotations.

Generalization: Very rarely do I ever get a ”thanks” or a

smile of appreciation. → I never get any thanks.

Specification: I had the alien abduction dream. → I had

a sleep paralysis dream where I was abducted by aliens.

Figure 6: Examples of the two most common rewrite opera-
tions, generalization and specification.
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Fusion Reduction Lexical Para. Syntactic Reor. Generalization Specification

Fusion 1052 36 214 151 695 165
Reduction 185 34 32 113 24
Lexical Para. 1068 179 564 237
Syntactic Reor. 772 391 165
Generalization 2802 0
Specification 1093

Table 2: Rewrite co-occurences produced from confident and precise alignments.

3.5 Discussion

We evaluated our Stage Three and Four data from
the Turkers by assigning confidence levels to the
alignments and judging annotator agreement on
the rewrite labels. It would be difficult to deter-
mine interannotator agreement in Stage Three be-
cause Turkers could submit any number of align-
ments of any size for each HIT. Instead, we evalu-
ated on the level of individual alignments. A con-
fident alignment had to agree with another align-
ment, where two alignments agreed if (1) differ-
ent Turkers submitted them; (2) the selected ab-
stractive phrases overlapped enough that at least
half of the shorter phrase was covered by the over-
lap; and (3) the selected extractive phrases over-
lapped enough that at least half of the shorter was
covered. A precise alignment does not contain
an extractive phrase that was over two sentences
long, because the longer the alignment, the more
difficult to identify the rewrite components in-
volved. Thus a confident alignment is one where at
least two different Turkers aligned the same spans,
within a margin of error of a few words, while a
precise alignment is one where it is easier to pin-
point the spans where rewrite operations apply.

Out of the 6173 alignments the Turkers pro-
duced, 5836 (95%) were confident, 5602 (91%)
were precise, and 5281 (86%) were both. When
we evaluated the rewrite labels produced for these
confident and precise alignments, we found that
many were labeled for multiple rewrite techniques
at once, indicating that quality phrase transforma-
tions often involved stitching together rewrites in-
stead of performing them separately. Figure 7
below displays an example of such an align-
ment, which was labeled for lexical paraphrasing
(3/3 Turker agreement), syntactic reordering (2/3
agreement), and generalization (2/3 agreement).

Table 2 further displays the interactions be-
tween rewrites in the form of a co-occurence ma-
trix of the five rewrites we tested on AMT, plus
fusion, which we identified automatically.

Extractive: My SO at the time had been de-
pressed/suicidal and I had been making posts in rele-
vant subs with a different account asking for advice. I

didn’t really have any experience with depression/suicide

at the time, so it was a very scary situation for me . . .

Abstractive: My friend identified some of my Reddit

posts about my suicidal SO at the time, and I was kind

of relieved that I ended up getting to confide in him about

the situation.

Figure 7: A confident and precise alignment (in bold) with
multiple rewrite labels: lexical paraphrasing, syntactic re-
ordering, and generalization. The extractive summary shown
is truncated due to length.

4 Conclusion

We have presented a new corpus of 1088 aligned
abstractive and extractive summaries, totaling
6173 phrase-level alignments, each annotated with
rewrite operations, which we make available on
the Web. Our iterative annotation process uses
trained annotators to generate abstractive sum-
maries and Amazon Mechanical Turk to pro-
duce extractive summaries, phrase alignments,
and rewrite annotations. We found substantial
agreement among annotators and Turkers for all
tasks, demonstrating our ability to elicit high-
quality summaries and alignments despite using
inexpensive crowd-sourcing.

Our corpus provides summaries of a very dif-
ferent type of text from the traditional newswire
articles: personal narratives, a genre that natural
language processing research is just beginning to
explore. This data is widely found on the Web and
brings challenges such as informal language and
extreme content. We hope that others will make
use of these aligned, personal narrative summaries
and their annotated rewrite operations, which we
make available on the Web. Our next step will be
to exploit this data to create an abstractive sum-
marization system using text-to-text generation.
We also hope that the success of our annotation
method, using both trained annotators and crowd-
sourcing, will encourage other researchers to cre-
ate similar corpora.
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Abstract

Progress in text understanding has been
driven by large datasets that test partic-
ular capabilities, like recent datasets for
reading comprehension (Hermann et al.,
2015). We focus here on the LAMBADA
dataset (Paperno et al., 2016), a word
prediction task requiring broader context
than the immediate sentence. We view
LAMBADA as a reading comprehension
problem and apply comprehension models
based on neural networks. Though these
models are constrained to choose a word
from the context, they improve the state
of the art on LAMBADA from 7.3% to
49%. We analyze 100 instances, finding
that neural network readers perform well
in cases that involve selecting a name from
the context based on dialogue or discourse
cues but struggle when coreference reso-
lution or external knowledge is needed.

1 Introduction

The LAMBADA dataset (Paperno et al., 2016)
was designed by identifying word prediction tasks
that require broad context. Each instance is drawn
from the BookCorpus (Zhu et al., 2015) and con-
sists of a passage of several sentences where the
task is to predict the last word of the last sen-
tence. The instances are manually filtered to find
cases that are guessable by humans when given
the larger context but not when only given the last
sentence. The expense of this manual filtering has
limited the dataset to only about 10,000 instances
which are viewed as development and test data.
The training data is taken to be books in the corpus
other than those from which the evaluation pas-
sages were extracted.

Paperno et al. (2016) provide baseline results
with popular language models and neural network
architectures; all achieve zero percent accuracy.
The best accuracy is 7.3% obtained by randomly
choosing a capitalized word from the passage.

Our approach is based on the observation that
in 83% of instances the answer appears in the con-
text. We exploit this in two ways. First, we auto-
matically construct a large training set of 1.8 mil-
lion instances by simply selecting passages where
the answer occurs in the context. Second, we treat
the problem as a reading comprehension task sim-
ilar to the CNN/Daily Mail datasets introduced by
Hermann et al. (2015), the Children’s Book Test
(CBT) of Hill et al. (2016), and the Who-did-What
dataset of Onishi et al. (2016). We show that stan-
dard models for reading comprehension, trained
on our automatically generated training set, im-
prove the state of the art on the LAMBADA test
set from 7.3% to 49.0%. This is in spite of the fact
that these models fail on the 17% of instances in
which the answer is not in the context.

We also perform a manual analysis of the LAM-
BADA task, provide an estimate of human perfor-
mance, and categorize the instances in terms of
the phenomena they test. We find that the com-
prehension models perform best on instances that
require selecting a name from the context based on
dialogue or discourse cues, but struggle when re-
quired to do coreference resolution or when exter-
nal knowledge could help in choosing the answer.

2 Methods

We now describe the models that we employ for
the LAMBADA task (Section 2.1) as well as our
dataset construction procedure (Section 2.2).

2.1 Neural Readers
Hermann et al. (2015) developed the CNN/Daily
Mail comprehension tasks and introduced ques-
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tion answering models based on neural networks.
Many others have been developed since. We re-
fer to these models as “neural readers”. While a
detailed survey is beyond our scope, we briefly
describe the neural readers used in our exper-
iments: the Stanford (Chen et al., 2016), At-
tention Sum (Kadlec et al., 2016), and Gated-
Attention (Dhingra et al., 2016) Readers. These
neural readers use attention based on the question
and passage to choose an answer from among the
words in the passage. We use d for the context
word sequence, q for the question (with a blank to
be filled), A for the candidate answer list, and V
for the vocabulary. We describe neural readers in
terms of three components:

1. Embedding and Encoding: Each word in d
and q is mapped into a v-dimensional vector via
the embedding function e(w) ∈ Rv, for all w ∈
d ∪ q.1 The same embedding function is used
for both d and q. The embeddings are learned
from random initialization; no pretrained word
embeddings are used. The embedded context
is processed by a bidirectional recurrent neural
network (RNN) which computes hidden vectors
hi for each position i:

h→ = fRNN (θ→d , e(d))
h← = bRNN (θ←d , e(d))
h = 〈h→, h←〉

where θ→d and θ←d are RNN parameters, and
each of fRNN and bRNN return a sequence of
hidden vectors, one for each position in the in-
put e(d). The question is encoded into a single
vector g which is the concatenation of the final
vectors of two RNNs:

g→ = fRNN (θ→q , e(q))

g← = bRNN (θ←q , e(q))

g = 〈g→|q|, g←0 〉

The RNNs use either gated recurrent
units (Cho et al., 2014) or long short-term
memory (Hochreiter and Schmidhuber, 1997).

2. Attention: The readers then compute atten-
tion weights on positions of h using g. In
general, we define αi = softmax(att(hi, g)),
where i ranges over positions in h. The
1We overload the e function to operate on sequences and

denote the embedding of d and q as matrices e(d) and e(q).

att function is an inner product in the At-
tention Sum Reader and a bilinear product in
the Stanford Reader. The computed attentions
are then passed through a softmax function to
form a probability distribution. The Gated-
Attention Reader uses a richer attention archi-
tecture (Dhingra et al., 2016); space does not
permit a detailed description.

3. Output and Prediction: To output a prediction
a∗, the Stanford Reader computes the attention-
weighted sum of the context vectors and then an
inner product with each candidate answer:

c =
|d|∑
i=1

αihi a∗ = argmax
a∈A

o(a)>c

where o(a) is the “output” embedding function.
As the Stanford Reader was developed for the
anonymized CNN/Daily Mail tasks, only a few
entries in the output embedding function needed
to be well-trained in their experiments. How-
ever, for LAMBADA, correct answers can range
over the entirety of V , making the output em-
bedding function difficult to train. Therefore we
also experiment with a modified version of the
Stanford Reader that uses the same embedding
function e for both input and output words:

a∗ = argmax
a∈A

e(a)>W c (1)

whereW is an additional parameter matrix used
to match dimensions and model any additional
needed transformation.

For the Attention Sum and Gated-Attention
Readers the answer is computed by:

∀a ∈ A, P (a|d,q) =
∑

i∈I(a,d)

αi

a∗ = argmax
a∈A

P (a|d,q)

where I(a,d) is the set of positions where a ap-
pears in context d.

2.2 Training Data Construction

Each LAMBADA instance is divided into a con-
text (4.6 sentences on average) and a target sen-
tence, and the last word of the target sentence
is the target word to be predicted. The LAM-
BADA dataset consists of development (DEV) and
test (TEST) sets; Paperno et al. (2016) also provide
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a control dataset (CONTROL), an unfiltered sample
of instances from the BookCorpus.

We construct a new training dataset from the
BookCorpus. We restrict it to instances that con-
tain the target word in the context. This decision
is natural given our use of neural readers that as-
sume the answer is contained in the passage. We
also ensure that the context has at least 50 words
and contains 4 or 5 sentences and we require the
target sentences to have more than 10 words.

Some neural readers require a candidate target
word list to choose from. We list all words in the
context as candidate answers, except for punctu-
ation.2 Our new dataset contains 1,827,123 in-
stances in total. We divide it into two parts, a
training set (TRAIN) of 1,618,782 instances and a
validation set (VAL) of 208,341 instances. These
datasets can be found at the authors’ websites.

3 Experiments

We use the Stanford Reader (Chen et al., 2016),
our modified Stanford Reader (Eq. 1), the Atten-
tion Sum (AS) Reader (Kadlec et al., 2016), and
the Gated-Attention (GA) Reader (Dhingra et al.,
2016). We also add the simple features from Wang
et al. (2016) to the AS and GA Readers. The fea-
tures are concatenated to the word embeddings in
the context. They include: whether the word ap-
pears in the target sentence, the frequency of the
word in the context, the position of the word’s first
occurrence in the context as a percentage of the
context length, and whether the text surrounding
the word matches the text surrounding the blank
in the target sentence. For the last feature, we only
consider matching the left word since the blank is
always the last word in the target sentence.

All models are trained end to end without any
warm start and without using pretrained embed-
dings. We train each reader on TRAIN for a max
of 10 epochs, stopping when accuracy on DEV de-
creases two epochs in a row. We take the model
from the epoch with max DEV accuracy and eval-
uate it on TEST and CONTROL. VAL is not used.

We evaluate several other baseline systems in-
spired by those of Paperno et al. (2016), but we fo-
cus on versions that restrict the choice of answers
to non-stopwords in the context.3 We found this

2This list of punctuation symbols is at https:
//raw.githubusercontent.com/ZeweiChu/
lambada-dataset/master/stopwords/
shortlist-stopwords.txt

3We use the stopword list from Richardson et al. (2013).

Method TEST CONTROL
all all context

Baselines (Paperno et al., 2016)
Random in context 1.6 0 N/A
Random cap. in context 7.3 0 N/A
n-gram 0.1 19.1 N/A
n-gram + cache 0.1 19.1 N/A
LSTM 0 21.9 N/A
Memory network 0 8.5 N/A
Our context-restricted non-stopword baselines
Random 5.6 0.3 2.2
First 3.8 0.1 1.1
Last 6.2 0.9 6.5
Most frequent 11.7 0.4 8.1
Our context-restricted language model baselines
n-gram 10.7 2.2 15.6
n-gram + cache 11.8 2.2 15.6
LSTM 9.2 2.4 16.9
Our neural reader results
Stanford Reader 21.7 7.0 49.3
Modified Stanford Reader 32.1 7.4 52.3
AS Reader 41.4 8.5 60.2
AS Reader + features 44.5 8.6 60.6
GA Reader 45.4 8.8 62.5
GA Reader + features 49.0 9.3 65.6
Human 86.0∗ 36.0† -

Table 1: Accuracies on TEST and CONTROL

datasets, computed over all instances (“all”) and
separately on those in which the answer is in
the context (“context”). The first section is from
Paperno et al. (2016). ∗Estimated from 100
randomly-sampled DEV instances. †Estimated
from 100 randomly-sampled CONTROL instances.

strategy to consistently improve performance even
though it limits the maximum achievable accuracy.

We consider two n-gram language model base-
lines. We use the SRILM toolkit (Stolcke, 2002)
to estimate a 4-gram model with modified Kneser-
Ney smoothing on the combination of TRAIN and
VAL. One uses a cache size of 100 and the other
does not use a cache. We use each model to score
each non-stopword from the context. We also
evaluate an LSTM language model. We train it on
TRAIN, where the loss is cross entropy summed
over all positions in each instance. The output
vocabulary is the vocabulary of TRAIN, approxi-
mately 130k word types. At test time, we again
limit the search to non-stopwords in the context.

We also test simple baselines that choose partic-
ular non-stopwords from the context, including a
random one, the first in the context, the last in the
context, and the most frequent in the context.

4 Results

Table 1 shows our results. We report accuracies
on the entirety of TEST and CONTROL (“all”), as
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well as separately on the part of CONTROL where
the target word is in the context (“context”). The
first part of the table shows results from Paperno
et al. (2016). We then show our baselines that
choose a word from the context. Choosing the
most frequent yields a surprisingly high accuracy
of 11.7%, which is better than all results from Pa-
perno et al.

Our language models perform comparably, with
the n-gram + cache model doing best. By forcing
language models to select a word from the con-
text, the accuracy on TEST is much higher than the
analogous models from Paperno et al., though ac-
curacy suffers on CONTROL.

We then show results with the neural readers,
showing that they give much higher accuracies on
TEST than all other methods. The GA Reader with
the simple additional features (Wang et al., 2016)
yields the highest accuracy, reaching 49.0%. We
also measured the “top k” accuracy of this model,
where we give the model credit if the correct an-
swer is among the top k ranked answers. On TEST,
we reach 65.4% top-2 accuracy and 72.8% top-3.

The AS and GA Readers work much better than
the Stanford Reader. One cause appears to be that
the Stanford Reader learns distinct embeddings for
input and answer words, as discussed above. Our
modified Stanford Reader, which uses only a sin-
gle set of word embeddings, improves by 10.4%
absolute. Since the AS and GA Readers merely
score words in the context, they do not learn sepa-
rate answer word embeddings and therefore do not
suffer from this effect.

We suspect the remaining accuracy difference
between the Stanford and the other readers is due
to the difference in the output function. The
Stanford Reader was developed for the CNN and
Daily Mail datasets, in which correct answers are
anonymized entity identifiers which are reused
across instances. Since the identifier embeddings
are observed so frequently in the training data,
they are frequently updated. In our setting, how-
ever, answers are words from a large vocabulary,
so many of the word embeddings of correct an-
swers may be undertrained. This could potentially
be addressed by augmenting the word embeddings
with identifiers to obtain some of the modeling
benefits of anonymization (Wang et al., 2016).

All context restricted models yield poor accu-
racies on the entirety of CONTROL. This is due
to the fact that only 14.1% of CONTROL instances

label # GA+ human
single name cue 9 89% 100%
simple speaker tracking 19 84% 100%
basic reference 18 56% 72%
discourse inference rule 16 50% 88%
semantic trigger 20 40% 80%
coreference 21 38% 90%
external knowledge 24 21% 88%
all 100 55% 86%

Table 2: Labels derived from manual analysis of
100 LAMBADA DEV instances. An instance can
be tagged with multiple labels, hence the sum of
instances across labels exceeds 100.

have the target word in the context, so this sets the
upper bound that these models can achieve.

4.1 Manual Analysis
One annotator, a native English speaker, sampled
100 instances randomly from DEV, hid the final
word, and attempted to guess it from the context
and target sentence. The annotator was correct
in 86 cases. For the subset that contained the
answer in the context, the annotator was correct
in 79 of 87 cases. Even though two annotators
were able to correctly answer all LAMBADA in-
stances during dataset construction (Paperno et al.,
2016), our results give an estimate of how often a
third would agree. The annotator did the same on
100 instances randomly sampled from CONTROL,
guessing correctly in 36 cases. These results are
reported in Table 1. The annotator was correct on
6 of the 12 CONTROL instances in which the an-
swer was contained in the context.

We analyzed the 100 LAMBADA DEV in-
stances, tagging each with labels indicating the
minimal kinds of understanding needed to answer
it correctly.4 Each instance can have multiple la-
bels. We briefly describe each label below:

• single name cue: the answer is clearly a name
according to contextual cues and only a single
name is mentioned in the context.

• simple speaker tracking: instance can be an-
swered merely by tracking who is speaking
without understanding what they are saying.

• basic reference: answer is a reference to some-
thing mentioned in the context; simple under-
standing/context matching suffices.
4The annotations are available from the authors’ websites.
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• discourse inference rule: answer can be found
by applying a single discourse inference rule,
such as the rule: “X left Y and went in search
of Z”→ Y 6= Z.

• semantic trigger: amorphous semantic informa-
tion is needed to choose the answer, typically re-
lated to event sequences or dialogue turns, e.g.,
a customer says “Where is the X?” and a sup-
plier responds “We got plenty of X”.

• coreference: instance requires non-trivial coref-
erence resolution to solve correctly, typically
the resolution of anaphoric pronouns.

• external knowledge: some particular external
knowledge is needed to choose the answer.

Table 2 shows the breakdown of these labels
across instances, as well as the accuracy on each
label of the GA Reader with features.

The GA Reader performs well on instances in-
volving shallower, more surface-level cues. In 9
cases, the answer is clearly a name based on con-
textual cues in the target sentence and there is only
one name in the context; the reader answers all but
one correctly. When only simple speaker tracking
is needed (19 cases), the reader gets 84% correct.

The hardest instances are those that involve
deeper understanding, like semantic links, coref-
erence resolution, and external knowledge. While
external knowledge is difficult to define, we chose
this label when we were able to explicitly write
down the knowledge that one would use when
answering the instances, e.g., one instance re-
quires knowing that “when something explodes,
noise emanates from it”. These instances make
up nearly a quarter of those we analyzed, making
LAMBADA a good task for work in leveraging ex-
ternal knowledge for language understanding.

4.2 Discussion

On CONTROL, while our readers outperform our
other baselines, they are outperformed by the lan-
guage modeling baselines from Paperno et al. This
suggests that though we have improved the state of
the art on LAMBADA by more than 40% absolute,
we have not solved the general language modeling
problem; there is no single model that performs
well on both TEST and CONTROL. Our 36% esti-
mate of human performance on CONTROL shows
the difficulty of the general problem, and reveals a
gap of 14% between the best language model and
human accuracy.

A natural question to ask is whether applying
neural readers is a good direction for this task,
since they fail on the 17% of instances which
do not have the target word in the context. Fur-
thermore, this subset of LAMBADA may in fact
display the most interesting and challenging phe-
nomena. Some neural readers, like the Stanford
Reader, can be easily used to predict target words
that do not appear in the context, and the other
readers can be modified to do so. Doing this will
require a different selection of training data than
that used above. However, we do wish to note that,
in addition to the relative rarity of these instances
in LAMBADA, we found them to be challenging
for our annotator (who was correct on only 7 of
the 13 in this subset).

We note that TRAIN has similar characteristics
to the part of CONTROL that contains the answer
in the context (the final column of Table 1). We
find that the ranking of systems according to this
column is similar to that in the TEST column. This
suggests that our simple method of dataset cre-
ation could be used to create additional training or
evaluation sets for challenging language modeling
problems like LAMBADA, perhaps by combining
it with baseline suppression (Onishi et al., 2016).

5 Conclusion

We constructed a new training set for LAMBADA
and used it to train neural readers to improve the
state of the art from 7.3% to 49%. We also pro-
vided results with several other strong baselines
and included a manual evaluation in an attempt
to better understand the phenomena tested by the
task. Our hope is that other researchers will seek
models and training regimes that simultaneously
perform well on both LAMBADA and CONTROL,
with the goal of solving the general problem of
language modeling.
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Abstract

Several corpora have been annotated with
negation scope—the set of words whose
meaning is negated by a cue like the
word “not”—leading to the development
of classifiers that detect negation scope
with high accuracy. We show that for
nearly all of these corpora, this high ac-
curacy can be attributed to a single fact:
they frequently annotate negation scope as
a single span of text delimited by punc-
tuation. For negation scopes not of this
form, detection accuracy is low and under-
sampling the easy training examples does
not substantially improve accuracy. We
demonstrate that this is partly an artifact of
annotation guidelines, and we argue that
future negation scope annotation efforts
should focus on these more difficult cases.

1 Introduction

Textual negation scope is the largest span affected
by a negation cue in a negative sentence (Morante
and Daelemans, 2012).1 For example, given the
marker not in (1), its scope is use the 56k conex-
tant modem.2

(1) I do not [use the 56k conextant modem] since
I have cable access for the internet

Fancellu et al. (2016) recently presented a model
that detects negation scope with state-of-the-art
accuracy on the Sherlock Holmes corpus, which
has been annotated for this task (SHERLOCK;
Morante and Daelemans, 2012). Encoding an

1Traditionally, negation scope is defined on logical forms,
but this definition grounds the phenomenon at word level.

2For all examples in this paper, negation cues are in bold,
human-annotated negation scope is in square brackets [ ], and
automatically predicted negation scope is underlined.

input sentence and cue with a bidirectional LSTM,
the model predicts, independently for each word,
whether it is in or out of the cue’s scope.

But SHERLOCK is only one of several corpora
annotated for negation scope, each the result of
different annotation decisions and targeted to spe-
cific applications or domains. Does the same ap-
proach work equally well across all corpora? In
answer to this question, we offer two contribu-
tions.

1. We evaluate Fancellu et al. (2016)’s model
on all other available negation scope corpora in
English and Chinese. Although we confirm that it
is state-of-the-art, we show that it can be improved
by making joint predictions for all words, incor-
porating an insight from Morante et al. (2008) that
classifiers tend to leave gaps in what should other-
wise be a continuous prediction. We accomplish
this with a sequence model over the predictions.

2. We show that in all corpora except SHER-
LOCK, negation scope is most often delimited by
punctuation. That is, in these corpora, examples
like (2) outnumber those like (1).

(2) It helps activation , [not inhibition of ibrf1
cells] .

Our experiments demonstrate that negation scope
detection is very accurate for sentences like (2)
and poor for others, suggesting that most clas-
sifiers simply overfit to this feature of the data.
When we attempt to mitigate this effect by under-
sampling examples like (2) in training, our system
does not improve on examples like (1) in test, sug-
gesting that more training data is required to make
progress on the phenomena they represent. Given
recent interest in improving negation annotation
(e.g. Ex-Prom workshop 2016), we recommend
that future negation scope annotations should fo-
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cus on these cases.3

2 Models

We use the bi-directional LSTM of Fancellu et
al. (2016). The input to the network is a nega-
tive sentence w = w1...w|w| containing a negation
cue. If there is more than one cue, we consider
each cue and its corresponding scope as a sepa-
rate classification instance. Given a representation
c of the cue, our model must predict a sequence
s = s1...s|w|, where si = 1 if wi is in the scope
defined by c, and 0 otherwise. We model this as
|w| independent predictions determined by proba-
bility p(si|w, c), where the dependence onw and c
is modeled by encoding them using a bidirectional
LSTM; for details refer to Fancellu et al. (2016).

Although this model is already state-of-the-art,
it is natural to model a dependence between the
predictions of adjacent tokens. For the exper-
iments in this paper, we introduce a new joint
model p(s|w, c), defined as:

p(s|w, c) =
n∏

i=1

p(si|si−1, w, c)

The only functional change to the model of Fan-
cellu et al. (2016) is the addition of a 4-parameter
transition matrix to create the dependence on si−1,
enabling the use of standard inference algorithms.
This enables us to train the model end-to-end.

3 Experiments

We experiment with two English corpora: the
SFU product review corpus (Konstantinova et al.,
2012); and the BioScope corpus (Vincze et al.,
2008). The latter consists of three subcorpora: ab-
stracts of medical papers (ABSTRACT), full papers
(FULL) and clinical reports (CLINICAL).

We also experiment with the Chinese Negation
and Speculation (CNeSp) corpus (Zhou, 2015),
which also consisting of three subcorpora: prod-
uct reviews (PRODUCT), financial articles (FINAN-
CIAL) and computer-related articles (SCIENTIFIC).

3.1 Corpus differences

Although they all define the scope as the tokens
in a sentence affected by a negation cue (Morante
and Daelemans, 2012), these corpora are quite
different from SHERLOCK, which deals with a

3http://www.cse.unt.edu/exprom2016/

wider range of complex phenomena including el-
lipsis, long-range dependencies and affixal nega-
tion. Though widely used (e.g. Qian et al. (2016)),
the SFU, BioScope and CNeSp corpora contain
simplifications that are sometimes hard to justify
linguistically. In SFU and BioScope, for instance,
scope is usually annotated only to the right of the
cue, as in (1). The only exception is passive con-
structions, where the subject to the left is also an-
notated:

(3) [This book] wasn’t [published before the
year 2000.]

On the other hand, in the CNeSp corpus, subjects
are usually annotated as part of the scope, except
in cases like VP-coordination (4). This is to ensure
that the scope is always a continuous span.

(4) 酒店有高档的配套设施,然而却[不不不能能能多给
我们提供一个枕头]
The hotel are furnished with upscale facili-
ties, but [cannot offer us one more pillow]

Unlike in the other corpora, in SHERLOCK, nega-
tion scope frequently consists of multiple disjoint
spans of text, including material that is omitted
in CNeSp. In addition to annotating the subject,
as shown above, this corpus also annotates auxil-
iaries (5) and entire clauses (6).

(5) [...] the ground [was] damp and [the night]
in[clement].

(6) [An investigator needs] facts and not [leg-
ends or rumours] .

Sherlock also annotates scope inside NPs, for ex-
ample, when the the adjective bears affixal nega-
tion:

(7) I will take [an] un[pleasant remembrance]
back to London with me tomorrow

3.2 Experimental parameters
All of our corpora are annotated for both cue
and scope. Since we focus on scope detection,
we use gold cues as input. We train and test on
each corpus separately. We first extract only those
sentences containing at least one negation cue
(18% and 52% for English and Chinese respec-
tively) and create a 70%/15%/15% split of these
for training, development and test respectively.
We use a fixed split in order to define a fixed
development set for error analysis, but this setup
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precludes direct comparison to most prior work,
since, except for Fancellu et al. (2016), most has
used 10-fold cross-validation. Nevertheless, we
felt a data analysis was crucial to understanding
these systems, and we wanted a clear distinction
between test (for reporting results) and develop-
ment (for analysis).

Model parameters and initialization are the
same as in Fancellu et al. (2016). We pretrain
our Chinese word embeddings on wikipedia and
segment using NLPIR.4,5 For Chinese, we exper-
imented with both word and character representa-
tions but found no significant difference in results.

Baseline. In preliminary experiments, we no-
ticed many sentences where negation scope was
a single span delimited by punctuation, as in (2).
To assess how important this feature is, we imple-
mented a simple baseline in three lines of python
code: we mark the scope as all tokens to the left
or right of the cue up until the first punctuation
marker or sentence boundary.

3.3 Results

We evaluate our classifier in two ways. First, we
compute the percentage of correct scopes (PCS),
the proportion of negation scopes that we fully
and exactly match in the test corpus. Second, we
measure token-level F1 over tokens identified
as within scope. To understand the impor-
tance of continuous spans in scope detection, we
also report the number of gaps in predicted scopes.

Results are shown in Table 1, including those
on SHERLOCK for comparison.6 It is clear that
the LSTM system improves from joint predic-
tion, mainly by predicting more continuous spans,
though it performs poorly on CNeSp-SCIENTIFIC,
which we believe is due to the small size of the
corpus. More intriguingly, the baseline results
clearly demonstrate that punctuation alone iden-
tifies scope in the majority of cases for SFU, Bio-
Scope, and CNeSp.

4Data from https://dumps.wikimedia.org/
5NLPIR: https://github.com/NLPIR-team/

NLPIR
6Unlike all other corpora where the scope if always con-

tinuous and where the joint prediction helps to ensure no gaps
are present, in Sherlock the gold scope is often discontinuous;
this is the reason why we also cannot test for gaps.

Data System F1 PCS gaps

Sherlock
Baseline 68.31 26.20 -

Fancellu et al. (2016) 88.72 63.87 -
+joint 87.93 68.93 -

SFU

Baseline 87.07 77.90 -
Cruz et al. (2015)∗ 84.07 58.69 -

Fancellu et al. (2016) 89.83 74.85 17
+joint 88.34 78.09 0

BioScope
Abstract

Baseline 82.75 64.59 -
Zou et al. (2013)∗ - 76.90 -

Fancellu et al. (2016) 91.35 73.72 37
+joint 92.11 81.38 4

BioScope
Full

Baseline 75.30 50.41 -
Velldal et al. (2012)∗ - 70.21 -
Fancellu et al. (2016) 77.85 51.24 20

+joint 77.73 54.54 6

BioScope
Clinical

Baseline 97.76 94.73 -
Velldal et al. (2012)∗ - 90.74 -
Fancellu et al. (2016) 97.66 95.78 4

+joint 97.94 94.21 1

CNeSp
Abstract

Baseline 81.70 70.57 -
Zhou (2015)∗ - 60.93 -

Fancellu et al. (2016) 90.13 67.35 26
+joint 90.58 71.94 0

CNeSp
Financial

Baseline 90.84 58.87 -
Zhou (2015)∗ - 56.07 -

Fancellu et al. (2016) 94.88 75.05 6
+joint 93.58 74.03 0

CNeSp
Scientific

Baseline 83.43 31.81 -
Zhou (2015)∗ - 62.16 -

Fancellu et al. (2016) 81.30 40.90 4
+joint 80.90 59.09 0

Table 1: Results for the English corpora (Sher-
lock, SFU & BioScope) and for Chinese corpora
(CNeSp). ∗ denotes results provided for context
that are not directly comparable due to use 10-fold
cross validation, which gives a small advantage in
training data size.

Data Punctuation Other
Sherlock 68% 45%

SFU 92% 23%
BioScope Abstract 88% 51%

BioScope Full 84% 30%
BioScope Clinical 98% 47%

CNeSp Product 80% 37%
CNeSp Financial 84% 66%
CNeSp Scientific 20% 41%

Total 85% 40%
Average 85% 40%

Table 2: PCS results on the development set,
split into cases where punctuation exactly delimits
negation scope in the gold annotation, and those
where it does not.
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4 Error analysis

The baseline results suggest that punctuation alone
is a strong predictor of negation scope, so we fur-
ther analyze this on the development set by divid-
ing the negation instances into those whose scopes
(in the human annotations) are precisely delimited
by the innermost pair of punctuation markers con-
taining the cue, and those which are not. The re-
sults (Table 2) confirm a huge gap in accuracy be-
tween these two cases. The model correctly learns
to associate surrounding punctuation with scope
boundaries, but when this is not sufficient, it un-
derpredicts, as in (8), or overpredicts, as in (9).

(8) surprisingly , expression of [neither
bhrf1 nor blc-2 in a b-cell line , bjab , pro-
tected by the cells from anti-fas-mediated
apostosis] ...

(9) ...,下次是肯定[不不不会再住锦地星座了]

Next time (I) [won’t live again in Pingdi
Xingzuo] for sure

A closer inspection reveals that in SHERLOCK,
where this gap is narrower, we correctly detect
a greater absolute number of the difficult punc-
tuation scopes, though accuracy for these is still
lower. The results on CNESP- SCIENTIFIC may
again be due to the small corpus size.

To understand why the system is so much bet-
ter on punctuation-delimited scope, we examined
the training data to see how frequent this pattern
is (Table 3). The results suggest that our model
may simply be learning that punctuation is highly
indicative of scope boundaries, since this is empir-
ically true in the data; the fact that the SHERLOCK

and CNESP-SCIENTIFIC are the exception to this
is in line with the observations above.

This result is important but seems to have
been overlooked: previous work in this area has
rarely analyzed the contribution of each feature to
classification accuracy. This applies to older CRF
models (e.g. Morante et al. (2008)), as well as to
more recent neural architectures (e.g. CNN, Qian
et al. (2016)), where local window based features
were used.

In order to see whether training imbalance was
at play, we experimented with training by under-
sampling from training examples that can be pre-

Data Total Punctuation
Sherlock 984 40%

SFU 2450 80%
BioScope Abstract 1190 64%

BioScope Full 210 54%
BioScope Clinical 560 93%

CNeSp Product 2744 71%
CNeSp Financial 1053 58%
CNeSp Scientific 109 22%

Table 3: Training instances by corpus, showing
total count and percentages whose scope is pre-
dictable by punctuation boundaries only.
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Figure 1: PCS accuracy on development and test
sets divided into instances where the punctua-
tion and scope boundaries coincide (punct.) and
instances where they do not (no punct.), when
punct. instances are incrementally removed from
the training data.

dicted by scope boundaries only. We report re-
sults on using incrementally bigger samples of the
majority class. Figure 1 shows the results for the
SFU corpus, which is a representative of a trend
we observed in all of the other corpora. There does
indeed seem to be a slight effect where the classi-
fier overfits to punctuation as delimiter of negation
scope, but in general, classification of the other
cases improves only slightly from under-sampling.
This suggests that the absolute number of training
instances for these cases is insufficient, rather than
their ratio.

5 Re-annotation of negation scope

At this point it is worth asking: is negation scope
detection easy because most of the instances in
real data are easy? Or is it because the annota-
tion guidelines made it easy? Or is it because of
the domain of the data? To answer these ques-

61



tions we conducted a small experiment on SFU,
BioScope-abstract and CNeSp-financial, each rep-
resenting a different domain. For each, we ran-
domly selected 100 sentences and annotated scope
following the Sherlock guidelines. If the guide-
lines are indeed responsible for making scope de-
tection easy, we should observe relatively fewer
instances predictable by punctuation alone in these
new annotations. If instead, easy instances still
outnumber more difficult ones, we can conclude
that detecting negation scope is less easy on Sher-
lock Holmes because of the domain of the data.
Comparing the results in Table 4 with the one in
Table 3, the Sherlock-style annotation produces
more scopes that are not predictable by punctu-
ation boundaries than those that are. We attribute
this to the fact that by capturing elliptical construc-
tions, the Sherlock guidelines require the annota-
tion of complex, discontinuous scopes, as in (10).

(10)

BIOSCOPE : second , t cells , which lack cd45
and can not [signal via the tcr] , supported
higher levels of viral replication and gene
expression .

BIOSCOPE-SHERLOCK : second , [t cells] ,
which lack cd45 and can not [signal via the
tcr] , supported higher levels of viral replica-
tion and gene expression .

In contrast with the original SFU and BioScope
annotation, always annotating the subject pro-
duces negation scopes that are not bound by punc-
tuation, since in both English and Chinese, sub-
jects generally appear to the left of the cue and are
less often delimited by any punctuation (11).

(11)

SFU : i ’m sure she felt rather uncomfortable
having to ask us at all , but she thought it was
strange that we ’d not [mentioned it] .

SFU-SHERLOCK :i ’m sure she felt rather un-
comfortable having to ask us at all , but she
thought it was strange that [we ’d] not [men-
tioned it] .

Data Punct. No Punct.
SFU 42% 58%

BioScope Abstract 34% 64%
CNeSp Financial 45% 55%

Table 4: Percentages of scope instances pre-
dictable (punct.) and not predictable (no punct.)
by punctuation boundaries only on 100 randomly
selected sentences annotated following the Sher-
lock guidelines for each of the three corpora con-
sidered.

6 Discussion and Recommendation

We have demonstrated that in most corpora used
to train negation scope detection systems, scope
boundaries frequently correspond to punctuation
tokens. The main consequence of this is in
the interpretation of the results: although neural
network-based sequence classifiers are highly ac-
curate quantitatively, this appears to be so because
they are simply picking up on easier cases that
are detectable from punctuation boundaries. Ac-
curacy on difficult cases not delimited by punc-
tuation is poor. Under-sampling easy training in-
stances seems to have little effect.

For future research in this area we make two
strong recommendations. (1) Our data-oriented
recommendation is to adopt a more linguistically-
motivated annotation of negation, such as the one
used in the SHERLOCK annotation, and to fo-
cus annotation on the more difficult cases. (2)
Our model-oriented recommendation is to explore
more recursive neural models that are less sensi-
tive to linear word-order effects such as punctua-
tion.
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Abstract

Cross-lingual information extraction is the
task of distilling facts from foreign lan-
guage (e.g. Chinese text) into represen-
tations in another language that is pre-
ferred by the user (e.g. English tuples).
Conventional pipeline solutions decom-
pose the task as machine translation fol-
lowed by information extraction (or vice
versa). We propose a joint solution with
a neural sequence model, and show that it
outperforms the pipeline in a cross-lingual
open information extraction setting by 1-4
BLEU and 0.5-0.8 F1.

1 Introduction

Suppose an English-speaking user is faced with
the daunting task of distilling facts from a col-
lection of Chinese documents. One solution is
to first translate the Chinese documents into En-
glish using a Machine Translation (MT) service,
then extract the facts using an English-based In-
formation Extraction (IE) engine. Unfortunately,
imperfect translations negatively impact the IE en-
gine, which may have been trained to expect nat-
ural English input (Sudo et al., 2004). Another
approach is to first run a Chinese-based IE engine
and then translate the results, but this relies on IE
resources in the source language. Such problems
with pipeline systems compound when the IE en-
gine relies on parsers or other analytics as features.

We propose to solve the cross-lingual IE task
with a joint approach. Further, we focus on Open
IE, which allows for an open set of semantic rela-
tions between a predicate and its arguments. Open
IE in the monolingual setting has shown to be
useful in a wide range of tasks, such as question
answering (Fader et al., 2014), ontology learn-
ing (Suchanek, 2014), and summarization (Chris-

克里斯想造一艘船。

(a)

Chris Chriswants build

ARG ARG

ARG ARG

a boat

ARG

(b)

Figure 1: Example of input (a) and output (b) of
cross-lingual Open IE.

tensen et al., 2013). A variety of work has
achieved compelling results at monolingual Open
IE (Banko et al., 2007; Fader et al., 2011; An-
geli et al., 2015). But we are not aware of efforts
that focus on both the cross-lingual and open as-
pects of cross-lingual Open IE, despite significant
work in related areas, such as cross-lingual IE on
a closed, pre-defined set of events/entities (Sudo
et al., 2004; Parton et al., 2009; Ji, 2009; Snover
et al., 2011; Ji et al., 2016), or bootstrapping
of monolingual Open IE systems in multiple lan-
guages (Faruqui and Kumar, 2015; Kozhevnikov
and Titov, 2013; van der Plas et al., 2014).

Inspired by the recent success of neural models
in machine translation (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Bahdanau et al.,
2014), syntactic parsing (Vinyals et al., 2015;
Choe and Charniak, 2016), and semantic pars-
ing (Dong and Lapata, 2016), we propose a
sequence-to-sequence model that enables end-to-
end cross-lingual Open IE. Essentially, we recast
the problem as structured translation: the model
encodes natural-language sentences and decodes
predicate-argument forms (Figure 1). We show
that the joint approach outperforms the pipeline on
various metrics, and that the neural model is criti-
cal for the joint approach because of its capability
in generating complex open IE patterns.
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2 Cross-lingual Open IE Framework

Open IE involves the extraction of relations whose
schema need not be specified in advance; typi-
cally the relation name is represented by the text
linking the arguments, which can be identified by
manually-written patterns and/or parse trees. We
define our extractions based on PredPatt1 (White
et al., 2016), a lightweight tool for identifying
predicate-argument structures with a set of Uni-
versal Dependencies (UD) based patterns.

PredPatt represents predicates and arguments in
a tree structure where a special dependency ARG is
built between a predicate head token and its argu-
ments’ head tokens, and original UD dependencies
within predicate phrases and argument phrases are
kept. For example, Fig 1b shows a tree structure
identified by PredPatt from the sentence: “Chris
wants to build a boat.”

Our framework assumes the availability of a bi-
text, e.g. a corpus of Chinese sentences and their
English translations. We run PredPatt on the tar-
get side (e.g. English) to obtain (Chinese sentence,
English PredPatt) pairs. This is used to train a
cross-lingual Open IE system that maps directly
from Chinese sentence to English PredPatt rep-
resentations. Besides the UD parser required for
running PredPatt on the target side, our framework
requires no additional resources.

Compared to existing Open IE (Banko et al.,
2007; Fader et al., 2011; Angeli et al., 2015), the
use of manual patterns on Universal Dependencies
means that the rules are interpretable, extensible
and language-agnostic, which makes PredPatt a
linguistically well-founded component for cross-
lingual Open IE. Note that our joint model is ag-
nostic to the IE representation, and can be adapted
to other Open IE frameworks.

3 Proposed Method

Our goal is to learn a model which directly maps
a sentence input A in the source language into
predicate-argument structures output B in the tar-
get language. Formally, we regard the input as a
sequence A = x1, · · · , x|A|, and use a linearized
representation of the predicate-argument structure
as the output sequence B = y1, · · · , y|B|. While
tree-based decoders are conceivable (Zhang et al.,
2016), linearization of structured outputs to se-
quences simplifies decoding and has been shown

1https://github.com/hltcoe/PredPatt

effective in, e.g. (Vinyals et al., 2015), especially
when a model with strong memory capabilities
(e.g. LSTM’s) are employed. Our model maps
A into B using a conditional probability which is
decomposed as:

P (B | A) =
|B|∏
t=1

P (yt | y1, · · · , yt−1, A) (1)

3.1 Linearized PredPatt Representations
We begin by defining a linear form for our Pred-
Patt predicate-argument structures. To convert a
tree structure such as Figure 1b to a linear se-
quence, we first take an in-order traversal of ev-
ery node (token). We then label each token with
the type it belongs to: p for a predicate token, a
for an argument token, ph for a predicate head to-
ken, and ah for an argument head token. We insert
parentheses to either the beginning or the end of an
argument, and we insert brackets to either the be-
ginning or the end of a predicate. Fig 2 shows the
linearized PredPatt for the sentence: “Chris wants
to build a boat.”.

[(Chris:ah) wants:ph [(Chris:ah) build:ph (a:a boat:ah)]]

Figure 2: Linearized PredPatt Output

To recover the predicate-argument tree struc-
ture, we simply build it recursively from the out-
ermost brackets. At each layer of the tree, paren-
theses help recover argument nodes. The labels ah

and ph help identify the head token of a predicate
and an argument, respectively. We define that an
auto-generated linearized PredPatt is malformed
if it has unmatched brackets or parentheses, or a
predicate (or an argument) has zero or more than
one head token.

3.2 Seq2Seq Model
Our sequence-to-sequence (Seq2Seq) model con-
sists of an encoder which encodes a sentence in-
put A into a vector representation, and a decoder
which learns to decode a sequence of linearized
PredPatt output B conditioned on encoded vector.

We adopt a model similar to that which is used
in neural machine translation (Bahdanau et al.,
2014). The encoder uses an L-layer bidirectional
RNN (Schuster and Paliwal, 1997) which con-
sists of a forward RNN reading inputs from x1

to x|A| and a backward RNN reading inputs in

reverse from x|A| to x1. Let
−→
hl

i ∈ Rn denote
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the forward hidden state at time step i and layer
l; it is computed by states at the previous time-

step and at a lower layer:
−→
hl

i =
−→
f (
−−→
hl

i−1,
−−→
hl−1

i )
where

−→
f is a nonlinear LSTM unit (Hochreiter

and Schmidhuber, 1997). The lowest layer
−→
h0

i is
the word embedding of the token xi. The back-

ward hidden state
←−
hl

i is computed similarly us-
ing another LSTM, and the representation of each
token xi is the concatenation of the top-layers:

ht = [
−→
hL

i

ᵀ
,
←−
hL

i

ᵀ
]
ᵀ
.

The decoder is an L-layer RNN which predicts
the next token yi, given all the previous words
y<i = y1, · · · , yi−1 and the context vector ci that
captures the attention to the encoder side (Bah-
danau et al., 2014; Luong et al., 2015), computed
as a weighted sum of hidden representations: ci =∑l

j=1 aijhj . The weight aij is computed by

aij =
exp (eij)∑l

k=1 exp (eik)

eij = vᵀ
a tanh(

L∑
l=1

W l
as

l
i−1 + Uahj)

(2)

where va ∈ Rn, W l
a ∈ Rn×n and Ua ∈ Rn×2n

are weight matrices.
The conditional probability of the next token yi

is defined as:

P (yi | y<i, A) = g(yi, s
L
i , ci)

= softmax(Uos
L
i + Coci)[yi]

where Uo ∈ R|VB |×n and Co ∈ R|VB |×2n are
weight matrices.[j] indexes jth element of a vec-
tor. sL

i is the top-layer hidden state at time step
i, computed recursively by sl

i = f(sl
i−1, s

l−1
i , ci)

where s0
i = WB[yi−1] is the word vector of the

previous token yi−1, with WB ∈ R|VB |×n being a
parameter matrix.
Training: The objective function is to minimize
the negative log likelihood of the target linearized
PredPatt given the sentence input:

minimize−
∑

(A,B)∈D

|A|∑
i

logP (yi | y<i, A) (3)

where D is the batch of training pairs, and P (yi |
y<i, A) is computed by Eq.(3).
Inference: We use greedy search to decode tokens
one by one: ŷi = arg maxyi∈VB

P (yi|ŷ<i, A)

4 Experiments

We describe the data for evaluation, hyperparam-
eters, comparing approaches and evaluation re-
sults.2

Data: We choose Chinese as the source language
and English as the target language. To prepare
the data for evaluation, we first collect about 2M
Chinese-English parallel sentences3. We then tok-
enize Chinese sentences using Stanford Word Seg-
menter (Chang et al., 2008), and generate En-
glish linearized PredPatt by running SyntaxNet
Parser (Andor et al., 2016) and PredPatt (White et
al., 2016) on English sentences. After removing
long sequences (length>50), we result in 990K
pairs of Chinese sentences and English linearized
PredPatt, which are then randomly divided for
training (950K), validation (10K) and test (40K).
Fig 3 shows the statistics of the data. Note that in
general, the linearized PredPatt sequences are not
short, and can contain multiple predicates.

10 20 30 40 50

(a)

0

5K

10K

15K

20K

25K

30K

10 20 30 40 50

(b)

1

2

3

4

5

6

7

Figure 3: Data Statistics: (a) Number of data pairs
with respect to the lengths of English linearized
PredPatt; (b) Boxplot of numbers of English pred-
icate with respect to the lengths of English lin-
earized PredPatt.

Hyperparameters: Our proposed model (Joint-
Seq2Seq) is trained using the Adam opti-
miser (Kingma and Ba, 2014), with mini-batch
size 64 and step size 200. Both encoder and de-
coder have 2 layers and hidden state size 512,
but different LSTM parameters sampled from U(-
0.05,0.05). Vocabulary size is 40K for both sides.
Dropout (rate=0.5) is applied to non-recurrent
connections (Srivastava et al., 2014). Gradients
are clipped when their norm is bigger than 5 (Pas-
canu et al., 2013). We use sampled softmax to
speed up training (Jean et al., 2015).
Comparisons: As an alternative, we train
a phrase-based machine translation system,

2The code is available at https://github.com/
sheng-z/cross-lingual-open-ie.

3The data comes from the GALE project; the largest bi-
texts are LDC2007E103 and LDC2006G05
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Moses (Koehn et al., 2007), directly on the same
data we used to train Joint-Seq2Seq, i.e. pairs of
Chinese sentences and English linearized Pred-
Patt. We call this system Joint-Moses. We also
train a Pipeline system which consists of a Moses
system that translates Chinese sentence to English
sentence, followed by SyntaxNet Parser (Andor
et al., 2016) for Universal Dependency parsing
on English, and PredPatt for predicate-argument
identification.
Results: We regard the generation of linearized
PredPatt or linearized predicates4 as a translation
problem, and use BLEU score (Papineni et al.,
2002) for evaluation. As shown in Table 1, Joint
Seq2Seq achieves the best BLEU scores, with an
improvement 1.7 BLEU for linearized PredPatt
and improvement of 4.3 BLEU for linearized pred-
icates compared to Pipeline.

PredPatt Predicates

Pipeline 17.19 17.24

Joint Moses 18.34 16.43
Joint Seq2Seq 18.94 21.55

Table 1: Evaluation results (BLEU) of linearized
PredPatt and linearized predicates.

We also evaluate predicates in the same vein as
event detection evaluation using the weighted F1

score.5 There are totally 9,535 predicate tokens in
the test data. To enable a coarser-grain evaluation,
we also partitioned these predicates into k clusters
(k ∈ {150, 1252}) and evaluated F1 on the clus-
ter identities.The clusters are obtained by running
Bisecting k-Means algorithm on pre-trained word
embeddings (Rastogi et al., 2015).6 Table 2 shows
the F1 scores: Joint Seq2Seq outperforms Pipeline
by 0.5-0.8 at different granularities.

An important aspect of the auto-generated lin-
earized PredPatt is its recoverability. Table 3
shows the number of unrecoverable outputs (in-
cluding empty or malformed ones). Since the last
step in Pipeline is to run PredPatt, Pipeline gen-
erates no malformed output. However, 15% of its

4In linearized predicates, arguments are replaced by
placeholders. For example, the linearized PredPatt in Fig 2
becomes “[ ?arg wants:ph Sth:= [ ?arg build:ph ?arg ] ]” after
replacement.

5Weighted F1 is the weighted average of individual F1

for each predicate, with weights proportional to predicate fre-
quencies in the test data. We use token-level F1 score (Liu et
al., 2015) which gives partial credits to partial matches.

6Downloaded from: https://github.com/se4u/
mvlsa.

k=150 k=1252 k=9535

Pipeline 32.95 28.73 27.20

Joint Moses 32.56 27.94 25.43
Joint Seq2Seq 33.67 29.21 28.03

Table 2: Evaluation results (weighted F1) of pred-
icates at different cluster granularities.

outputs are empty. In contrast, Joint Seq2Seq gen-
erates no empty output and very few malformed
ones (1%). Joint Moses also generates no empty
output, but a large amount (84%) of its outputs is
malformed.

Pipeline Joint Moses Joint Seq2Seq

5965(15%) 33178(84%) 557(1%)

Table 3: Number of unrecoverable outputs.

Table 4 shows an example output. While some
arguments (e.g., “The focus of focus” in Table 4)
are not correct, the output of Joint Seq2Seq is clos-
est to the gold in terms of translation. Pipeline has
the higher precision in predicting the same predi-
cate head tokens as the gold, but its overall mean-
ing is less close. Joint Moses often generates un-
recoverable outputs (e.g., the predicate in Table 4
has two head tokens: “focus” and “related”.)

zh sent: 重点 审计 关注 与 老百姓 生活 密切 相
关的专项资金 .

en sent: The focus of the auditing will be on special
item funds that are closely related to people
’s living .

gold: [(The focus of the auditing) will be on spe-
cial special funds [(special item funds) are
closely related to (people ’s living)]]

Pipeline: [(the key auditing concern and ordinary peo-
ple) are closely related to (the life of the spe-
cial funds)]

Joint-
Moses:

[(the auditing focus (attention) to (life) with
(ordinary people) are closely related to (the
special funds)]

Joint-
Seq2Seq:

[(The focus of focus) focused on (the special
collection of the specific funds) [(the special
funds) related to (people ’s lives)]]

Table 4: Example output. Arguments are shown in
blue, and predicates shown in purple. Head tokens
are underlined in bold. Token labels are omitted.

5 Conclusions

We focus on the problem of cross-lingual open
IE, and propose a joint solution based on a neu-
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ral sequence-to-sequence model. Our joint ap-
proach outperforms the pipeline solution by 1-4
BLEU and 0.5-0.8 F1. Future work includes min-
imum risk training (Shen et al., 2016) for directly
optimizing the cross-lingual open IE metrics of in-
terest. Furthermore, as PredPatt works on any lan-
guage that has UD parsers available, we plan to
evaluate cross-lingual Open IE on other target lan-
guages. We are also interested in exploring how
our cross-lingual open IE output, which contains
rich information about predicates and arguments,
can be used to facilitate existing IE tasks like rela-
tion extraction, event detection, and named entity
recognition in a cross-lingual setting.
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Abstract

We learn a mapping that negates adjectives
by predicting an adjective’s antonym in
an arbitrary word embedding model. We
show that both linear models and neural
networks improve on this task when they
have access to a vector representing the se-
mantic domain of the input word, e.g. a
centroid of temperature words when pre-
dicting the antonym of ‘cold’. We intro-
duce a continuous class-conditional bilin-
ear neural network which is able to negate
adjectives with high precision.

1 Introduction

Identifying antonym pairs such as hot and cold
in a vector space model is a challenging task,
because synonyms and antonyms are both dis-
tributionally similar (Grefenstette, 1992; Moham-
mad et al., 2008). Recent work on antonymy has
learned specialized word embeddings using a lex-
ical contrast objective to push antonyms further
apart in the space (Pham et al., 2015; Ono et al.,
2015; Nguyen et al., 2016; Mrkšić et al., 2016),
which has been shown to improve both antonym
detection and the overall quality of the vectors for
downstream tasks. In this paper we are interested
in a related scenario: given an arbitrary word em-
bedding model, with no assumptions about pre-
training for lexical contrast, we address the task
of negation, which we define as the prediction of
a one-best antonym for an input word. For exam-
ple, given the word talkative, the negation map-
ping should return a word from the set quiet, taci-
turn, uncommunicative, etc.

We focus on the negation of adjectives. The in-
tuition behind our approach is to exploit a word’s
semantic neighborhood to help find its antonyms.
Antonym pairs share a domain, or topic—e.g. tem-

perature; but differ in their value, or polarity—e.g.
coldness (Turney, 2012; Hermann et al., 2013).
Negation must alter the polarity while retaining
the domain information in the word embedding.
We hypothesize that a successful mapping must
be conditioned on the domain, since the relevant
features for negating, say, a temperature adjective,
differ from those for an emotion adjective. In-
spired by Kruszewski et al. (2016), who find that
nearest neighbors in a vector space are a good ap-
proximation for human judgements about nega-
tion, we represent an adjective’s domain by the
centroid of nearest neighbors in the embedding
space or cohyponyms in WordNet.

We introduce a novel variant of a bilinear re-
lational neural network architecture which has
proven successful in identifying image transfor-
mations in computer vision (Memisevic, 2012;
Rudy and Taylor, 2015), and which learns a nega-
tion mapping conditioned on a gate vector repre-
senting the semantic domain of an adjective. Our
model outperforms several baselines on a multiple
choice antonym selection task, and learns to pre-
dict a one-best antonym with high precision. In
addition to the negation task, this model may be of
interest for other NLP applications involving lexi-
cal or discourse relations.

2 Relational Encoders

Our task is to map a word embedding vector x, e.g.
hot, to an antonym vector y in the same space, e.g.
cold, conditioned on the semantic domain, which
is represented by a vector z (see Sec 3.2 for how
this vector is obtained). We learn this mapping
using a relational neural network, which we intro-
duce in the following sections.

2.1 Relational Autoencoders: Background
Relational autoencoders (RAE), also known as
gated autoencoders (GAE), have been used in
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(a) Relational Autoencoder (b) CCRAE (c) CCCRE

Figure 1: Neural network architectures and training signal for (a) RAE (Memisevic, 2013), (b) Class-
Conditional RAE (Rudy and Taylor, 2015), and Continuous Class-Conditional RE (this paper). Figures
based on Memisevic (2013).

computer vision to learn representations of trans-
formations between images, such as rotation or
translation (Memisevic and Hinton, 2007; Memi-
sevic, 2012, 2013). RAEs are a type of gated net-
work, which contains multiplicative connections
between two related inputs. The “gating” of one
image vector by another allows feature detectors
to concentrate on the correspondences between the
related images, rather than being distracted by the
differences between untransformed images. See
Figure 1(a). Multiplicative connections involve a
weight for every pair of units in the input vector
and gate vector. For an overview of RAEs see
Memisevic (2013) and Sigaud et al. (2015).

RAE gates perform a somewhat different func-
tion than LSTM gates (Hochreiter and Schmidhu-
ber, 1997). Both architectures use a nonlinearity to
modulate the contents of a product; in an RAE this
is an outer (bilinear) product while in an LSTM it
is a Hadamard (element-wise) product. However,
LSTM memory gates represent an internal hidden
state of the network, while RAE gates are part of
the network input.

An Autoencoder (AE) can be defined as in Eq 1
(we omit bias terms for simplicity), where We

are the encoder weights and Wd are the decoder
weights. In autoencoders, weights are typically
tied so that Wd = We

T .

h = f(x) = σ(Wex)
y = g(h) = Wdh

(1)

For an RAE, we have two inputs x and z. Instead
of a weight matrix W we have a weight tensor
W ∈ RnH×nX×nZ . The RAE is defined in Eq 2.

h = f(x, z) = σ((Wez)x)

y = g(h, z) = σ((Wdh)z)
(2)

Rudy and Taylor (2015) introduce a class-
conditional gated autoencoder in which the gate
is a one-hot class label, rather than a transformed
version of the input image. For example, in the
MNIST task the label represents the digit. Effec-
tively, an autoencoder is trained per class, but with
weight sharing across classes. See Figure 1(b).

2.2 Continuous Class-Conditional Relational
Encoders

Our bilinear model is a continuous class-
conditional relational encoder (CCCRE). The
model architecture is the same as an RAE with
untied encoder and decoder weights (Eq 2). How-
ever, the training signal differs from a classic RAE
in two ways. First, it is not an autoencoder, but
simply an encoder, because it is not trained to
reproduce the input but rather to transform the
input to its antonym. Second, the encoder is
class-conditional in the sense of Rudy and Taylor
(2015), since the gate represents the class. Un-
like the one-hot gates of Rudy and Taylor (2015),
our gates are real-valued, representing the seman-
tic domain of the input vector. See Figure 1(c).
Analogous to the case of image transformation de-
tection, we want the model to learn the changes
relevant to negation without being distracted by
cross-domain differences.

We approximate the semantic domain as the
centroid of a set of related vectors (see Sec 3.2).
This approach is inspired by Kruszewski et al.
(2016), who investigate negation of nouns, which
typically involves a set of alternatives rather than
an antonym. It is natural to finish the statement
That’s not a table, it’s a ... with desk or chair, but
not pickle. Kruszewski et al. (2016) find that near-
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est neighbors in a vector space are a good approx-
imation for human judgements about alternatives.
We hypothesize that a set of alternatives can stand
in for the semantic domain. Note that each word
has its own domain, based on its WordNet or dis-
tributional neighbors; however, similar words will
generally have similar gates.

3 Experiments

3.1 Models
We compare the CCCRE with several baselines.
The simplest is Cosine similarity in the original
vector space. We train a linear model (Linear)
which maps the input word to its antonym (Eq 3),

y = Wx (3)
an Untied Encoder (UE) with a bottleneck hid-
den layer, and a shallow feed-forward model (FF)
with a wide hidden layer rather than a bottleneck
(both as in Eq 1 with different hidden layer sizes).
To test whether the semantic domain is helpful in
learning negation, each of these models has a Con-
cat version in which the input consists of the con-
catenated input word and gate vectors x||z, rather
than x.

3.2 Experimental Settings
We use publicly-available1 300-dimensional em-
beddings trained on part of the Google News
dataset using skip-gram with negative sampling
(SGNS) (Mikolov et al., 2013). Antonym training
data was obtained from WordNet (Miller, 1995)
(hereafter WN), resulting in approximately 20K
training pairs. Training data always excludes
antonym pairs where the input word is an input
word the test set. Exclusion of pairs where the tar-
get word is a target in the test set depends on the
training condition.

Gate vectors were obtained under two condi-
tions. In the standard condition we begin with
all WN cohyponyms of an input word. If there
are fewer than ten, we make up the difference with
nearest neighbors from the vector space. The gate
vector is the vector centroid of the resulting word
list. In the standard training condition, we do not
exclude antonym pairs with the target word in the
test set, since we hypothesize it is important for the
model to see other words with a similar semantic
domain in order to learn the subtle changes nec-
essary for negation. For example, if the pair (hot,

1https://code.google.com/archive/p/
word2vec/

cold) is in the test set, we exclude (hot, cold), (hot,
freezing), etc. from training; but we do not exclude
(icy, hot) or (burning, cold) from training.

In the unsupervised gate condition we do not
use WN, but rather the ten nearest neighbors from
the vector space. Note that it is only the gates
which are unsupervised, not the word pairs: the
training targets are still supervised.

We also use a restricted training condition, to
test whether it is important for the model to have
training examples from a similar semantic domain
to the test examples. E.g. if (hot, cold) is in the
test set, is it important for the model to have other
temperature terms in the training data? We remove
all WN cohyponyms of test input words from the
training data, e.g. hot, cool, tepid etc. if cold is
a test input word. Although we do not explicitly
remove training examples with the target word in
the test set, these are effectively removed by the
nature of the semantic relations. We use standard
(supervised) gates in this condition.

In all conditions, the input word vector is never
part of the gate centroid, and we use the same gate
type at training and test time.

Hyperparameters were tuned on the GRE devel-
opment set (Sec 3.3). All models were optimized
using AdaDelta (ρ = 0.95) to minimize Mean
Squared Error loss. The FF and CCCRE networks
have hidden layers of 600 units, while UE has 150
and UE-Concat has 300. Minibatch size was 48
for CCCRE and 16 for all other networks. The
linear models were trained for 100 epochs, FF net-
works for 400, UE for 300, and CCCRE for 200.

3.3 Evaluation
Experiment 1 uses the Graduate Record Examina-
tion (GRE) questions of Mohammad et al. (2013).
The task, given an input word, is to pick the best
antonym from five options. An example is shown
in (4), where the input word is piquant and the cor-
rect answer is bland. We use only those questions
where both input and target are adjectives.

piquant: (a) shocking (b) jovial (c) rigorous
(d) merry (e) bland (4)

We evaluate a model by predicting an antonym
vector for the input word, and choosing the multi-
ple choice option with the smallest cosine distance
to the predicted vector. We report accuracy, i.e.
percentage of questions answered correctly.

Experiment 2 evaluates the precision of the
models. A natural criterion for the success of a
negation mapping is whether the model returns a
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Training Condition
Method Stand. Unsup. Restr.
Random 0.20 — —
Cosine 0.50 — —
Linear 0.56 0.56 0.53
Linear-Concat 0.66 0.59 0.63
UE 0.57 0.55 0.52
UE-Concat 0.63 0.58 0.61
FF 0.58 0.54 0.51
FF-Concat 0.65 0.56 0.63
CCCRE 0.69 0.60 0.65

Table 1: Accuracy on the 367 multiple-choice ad-
jective questions in the GRE test set.

good antonym at rank 1, or several good antonyms
at rank 5, rather than returning any particular
antonym as required by the GRE task.

We use two datasets: the GRE test set (GRE),
and a set of 99 adjectives and their antonyms from
a crowdsourced dataset collected by Lenci and
Benotto acccording to the guidelines of Schulte
im Walde and Köper (2013) (LB). For each input
word we retrieve the five nearest neighbors of the
model prediction and check them against a gold
standard. Gold standard antonyms for a word in-
clude its antonyms from the test sets and WN. Fol-
lowing Gorman and Curran (2005), to minimize
false negatives we improve the coverage of the
gold standard by expanding it with antonyms from
Roget’s 21st Century Thesaurus, Third Edition.2

4 Results and Discussion

Table 1 shows the results of Experiment 1. A ran-
dom baseline results in 0.20 accuracy. The cosine
similarity baseline is already fairly strong at 0.50,
suggesting that in general about two out of the five
options are closely related to the input word.

Information about the semantic domain clearly
provides useful information for this task, because
the Concat versions of the Linear, UE, and FF
models achieve several points higher than the
models using only the input word. The Linear-
Concat model achieves a surprisingly high 0.66
accuracy under standard training conditions.

CCCRE achieves the highest accuracy across
all training conditions, and is the only model that
beats the linear baseline, suggesting that bilinear
connections are useful for antonym prediction.

All the models show a notable loss of accuracy
in the unsupervised condition, suggesting that the
alternatives found in the vector neighborhood are

2http://thesaurus.com

less useful than supervised gates. Even in this
setting, however, CCCRE achieves a respectable
0.60. In the restricted condition, all non-Concat
models perform near the cosine baseline, suggest-
ing that in the standard setting they were mem-
orizing antonyms of semantically similar words.
The Concat models and CCCRE retain a higher
level of accuracy, indicating that they can general-
ize across different semantic classes.

We are unable to compare directly with previous
results on the GRE dataset, since our evaluation is
restricted to adjectives. As an indicative compar-
ison, Mohammad et al. (2013) report an F-score
of 0.69 on the full test dataset with a thesaurus-
based method, while Zhang et al. (2014) report
an F-score of 0.62 using a vector space induced
from WN and distributional vectors, and 0.82 with
a larger thesaurus. (Previous work reported F-
score rather than accuracy due to out-of-coverage
terms.)

Although CCCRE achieves the highest accu-
racy in Experiment 1, the GRE task does not re-
flect our primary goal, namely to negate adjectives
by generating a one-best antonym. CCCRE some-
times fails to choose the target GRE antonym,
but still makes a good overall prediction. For in-
put word doleful, the model fails to choose the
GRE target word merry, preferring instead socia-
ble. However, the top three nearest neighbors for
the predicted antonym of doleful are joyful, joyous,
and happy, all very acceptable antonyms.

Table 2 shows the results of Experiment 2. On
the GRE dataset, under standard training condi-
tions, CCCRE achieves an impressive P@1 of
0.66, i.e. two thirds of the time it is able to pro-
duce an antonym of the input word as the nearest
neighbor of the prediction. All of the other models
score less than 0.40. In the unsupervised and re-
stricted training conditions CCCRE still predicts
a one-best antonym about half the time.

The LB dataset is more challenging, because it
contains a number of words which lack obvious
antonyms, e.g. taxonomic, quarterly, psychiatric,
and biblical. However, CCCRE still achieves the
highest precision on this dataset. Interestingly,
precision does not suffer as much in the less super-
vised training conditions, and P@1 even improves
with the unsupervised nearest neighbor gates. We
speculate that nearest distributional neighbors cor-
respond better than the WN ontology to the crowd-
sourced antonyms in this dataset. LB antonyms for
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GRE LB
Stand. Unsup. Restr. Stand. Unsup. Restr.

Method P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5
Cosine 0.05 0.07 — — — — 0.13 0.10 — — — —
Linear 0.36 0.29 0.34 0.29 0.32 0.28 0.29 0.25 0.30 0.24 0.29 0.23
Linear-Concat 0.39 0.33 0.43 0.34 0.36 0.31 0.33 0.28 0.31 0.27 0.32 0.27
UE 0.38 0.33 0.36 0.32 0.37 0.31 0.28 0.22 0.27 0.23 0.23 0.20
UE-Concat 0.38 0.33 0.43 0.38 0.27 0.31 0.33 0.28 0.34 0.27 0.28 0.25
FF 0.37 0.32 0.34 0.30 0.08 0.15 0.30 0.24 0.27 0.23 0.22 0.19
FF-Concat 0.36 0.30 0.46 0.40 0.37 0.34 0.34 0.26 0.28 0.26 0.34 0.27
CCCRE 0.66 0.49 0.52 0.42 0.52 0.38 0.39 0.32 0.46 0.32 0.34 0.30

Table 2: Precision at ranks 1 and 5 on the GRE and Lenci and Benotto datasets.

Method Top 5 Predictions
CCCRE ornate: unadorned, inelegant, banal, oversweet, unembellished

ruthless: merciful, compassionate, gentle, righteous, meek
FF-Concat ornate: unadorned, unornamented, overdecorated, elegant, sumptuousness

ruthless: merciless, heartless, meek, merciful, unfeeling

Table 3: Samples of top five nearest neighbors of predicted antonym vectors for CCCRE and FF-Concat.

psychiatric include normal, well, sane, and bal-
anced. The unsupervised model predicts sane as
the top neighbor, while standard predicts psychi-
atrists. The sense in which sane is an antonym
of psychiatric is an extended sense, of a form un-
likely to be found in WN training data.

Table 3 shows sample predictions for the
CCCRE and FF-Concat models. It can be seen that
CCCRE has more antonyms at the highest ranks.

5 Related Work

Previous work on negation has focused on pattern-
based extraction of antonym pairs (Lin et al., 2003;
Lobanova, 2012). Such bootstrapped lexical re-
sources are useful for the negation task when the
input words are covered. Turney (2008); Schulte
im Walde and Köper (2013); Santus et al. (2014,
2015) use pattern-based and distributional features
to distinguish synonym and antonym pairs.

Schwartz et al. (2015) build a vector space using
pattern-based word co-occurrence, which can be
tuned to reduce the cosine similarity of antonyms.
Yih et al. (2012); Chang et al. (2013) use LSA
to induce antonymy-sensitive vector spaces from
a thesaurus, while Zhang et al. (2014) use tensor
decomposition to induce a space combining the-
saurus information with neural embeddings. Pham
et al. (2015); Ono et al. (2015); Nguyen et al.
(2016) learn embeddings with an objective that
increases the distance between antonyms, while
Nguyen et al. (2016); Mrkšić et al. (2016) re-
weight or retrofit embeddings to fine-tune them for
antonymy. Our approach differs in that we learn a
negation mapping in a standard embedding space.

Mohammad et al. (2013) use a supervised
thesaurus-based method on the GRE task. Pham
et al. (2015) learn negation as a linear map, finding
it more accurate at predicting a one-best antonym
when using vectors trained for lexical contrast.

RAEs and related architectures have been used
in computer vision for a number of applications
including recognizing transformed images (Memi-
sevic and Hinton, 2007), recognizing actions (Tay-
lor et al., 2010), learning invariant features from
images and videos (Grimes and Rao, 2005; Zou
et al., 2012), and reconstructing MNIST digits and
facial images (Rudy and Taylor, 2015). Wang et al.
(2015) use RAEs for tag recommendation, but to
our knowledge RAEs have not been previously
used in NLP.

6 Conclusion

We have shown that a representation of the seman-
tic domain improves antonym prediction in linear
and non-linear models, and that the multiplicative
connections in a bilinear model are effective at
learning to negate adjectives with high precision.

One direction for future improvement is to
make the model more efficient to train, by re-
ducing the number of parameters to be learned in
the relational network (Alain and Olivier, 2013).
Future work will address negation of nouns and
verbs, especially the cases requiring prediction of
a set of alternatives rather than a true antonym (e.g.
desk, chair, etc. for table). Bilinear models may
also be useful for NLP tasks involving other lexi-
cal and discourse relations that would benefit from
being conditioned on a domain or topic.
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Abstract

Instances (“Mozart”) are ontologically dis-
tinct from concepts or classes (“com-
poser”). Natural language encompasses
both, but instances have received compar-
atively little attention in distributional se-
mantics. Our results show that instances
and concepts differ in their distributional
properties. We also establish that instanti-
ation detection (“Mozart – composer”) is
generally easier than hypernymy detection
(“chemist – scientist”), and that results on
the influence of input representation do not
transfer from hyponymy to instantiation.

1 Introduction

Distributional semantics (Turney and Pantel, 2010),
and data-driven, continuous approaches to lan-
guage in general including neural networks (Ben-
gio et al., 2003), are a success story in both Compu-
tational Linguistics and Cognitive Science in terms
of modeling conceptual knowledge, such as the
fact that cats are animals (Baroni et al., 2012), sim-
ilar to dogs (Landauer and Dumais, 1997), and
shed fur (Erk et al., 2010). However, distribu-
tional representations are notoriously bad at han-
dling discrete knowledge (Fodor and Lepore, 1999;
Smolensky, 1990), such as information about spe-
cific instances. For example, Beltagy et al. (2016)
had to revert from a distributional to a symbolic
knowledge source in an entailment task because
the distributional component licensed unwarranted
inferences (white man does not entail black man,
even though the phrases are distributionally very
similar). This partially explains that instances have
received much less attention than concepts in dis-
tributional semantics.

This paper addresses this gap and shows that
distributional models can reproduce the age-old

ontological distinction between instances and con-
cepts. Our work is exploratory: We seek in-
sights into how distributional representations mir-
ror the instance/concept distinction and the hyper-
nymy/instantiation relations.

Our contributions are as follows. First, we build
publicly available datasets for instantiation and hy-
pernymy (Section 2).1 Second, we carry out a
contrastive analysis of instances and concepts, find-
ing substantial differences in their distributional
behavior (Section 3). Finally, in Section 4, we com-
pare supervised models for instantiation detection
(Lincoln – president) with such models for hyper-
nymy detection (19th century president – presi-
dent). Identifying instantiation turns out to be eas-
ier than identifying hypernymy in our experiments.

2 Datasets

We focus on “public” named entities such as Abra-
ham Lincoln or Vancouver, as opposed to “private”
named entities like my neighbor Michael Smith or
unnamed entities like the bird I saw today), because
for public entities we can extract distributional rep-
resentations directly from corpus data.2

No existing dataset treats entities and concepts
on a par, which would enable a contrastive analysis
of instances and concepts. Therefore, we create
the data for our study, building two comparable
datasets around the binary semantic relations of
instantiation and hypernymy (see Table 2). This
design enables us to relate our results to work on
hypernymy (see Section 5), and provides a rich re-
lational perspective on the instance–concept divide:
In both cases, we are dealing with the relationship

1Available from http://www.ims.uni-stuttgart.
de/data/Instantiation.html.

2Note that, for feasibility reasons, our distributional repre-
sentations are made up of explicit mentions of proper nouns
(Abraham Lincoln, Lincoln), without taking into account other
referential expressions (he, the 16th president of the United
States, the president). We leave these to future work.
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INSTANCE HYPERNYM

Total 28,424 30,488
Positive 7,106 7,622
Unique inst./hypo. 5,847 7,622
Unique conc./hyper. 540 2,369

Table 1: Dataset statistics. Total number of data-
points, Positive cases, unique instances/hyponyms
and unique concepts/hypernyms.

INSTANCE HYPERNYM

Positive Mozart – composer chemist – scientist

NOTINST/ Mozart – garden chemist –
NOTHYP communication

INVERSE composer – Mozart scientist – chemist

I2I/C2C Mozart – O. Robertson chemist – diadem

Table 2: Positive examples and confounders.

between a more general (concept/hypernym) and a
more specific object (instance/hyponym), but, from
an ontological perspective, hyponym concepts, as
classes of individuals, are considered to be com-
pletely different from instances, both in theoretical
linguistics and in AI (Dowty et al., 1981; Lenat and
Guha, 1990; Fellbaum, 1998).

We construct both datasets from the WordNet
noun hierarchy. Its backbone is formed by hy-
ponymy (Fellbaum, 1998) and it was later ex-
tended with instance-concept links marked with the
Hypernym Instance relation (Miller and Hris-
tea, 2006). We sample the items from WordNet
that are included in the space we will use in the
experiments, namely, the word2vec entity vector
space, which is, to our knowledge, the largest ex-
isting source for entity vectors.3 The space was
trained on Google News, and contains vectors for
nodes in FreeBase which covers millions of entities
and thousands of concepts. This enables us to per-
form comparative analyses, as we sample instances
and concepts from a common resource, and that we
have compatible vector representations for both.

INSTANCE. This dataset contains around 30K
datapoints for instantiation (see Table 1 for statis-
tics and Table 2 for examples).4 It contains 7K
positive cases (e.g., Vancouver-city), namely all
pairs of instances and their concepts from Word-
Net that are covered by the word2vec entity vector

3https://code.google.com/p/word2vec
4Each instance can belong to multiple concepts

(Vancouver-city and Vancouver-port), and different in-
stances/hyponyms can belong to the same concept/hypernym.

Global sim. Local sim.

Instances 0.045 (0.02) 0.528 (0.16)
Concepts 0.037 (0.02) 0.390 (0.12)

Instance-Concept 0.021 (0.01) 0.379 (0.12)

Table 3: Cosine similarities for within-type and
across-type pairs (means and standard deviations).

space. For each positive example, we create three
confounders, or negative examples, as follows:

1. The NOTINST subset pairs the instance with
a wrong concept, to ensure that we do not
only spot instances vs. concepts in general,
but truly detect the instantiation relationship.

2. The INVERSE subset switches instance and
concept, to check that we are capturing the
asymmetry in the relationship.

3. The I2I (instance-to-instance) subset pairs the
instance with a random instance from another
concept, a sanity check to ensure that we are
not thrown off by the high similarity among
instances (see Section 3).

HYPERNYMY. This dataset contains hypernymy
examples which are as similar to the INSTANCE

dataset as possible. The set of potential hyponyms
are obtained from the intersection between the
nouns in the word2vec entity space and WordNet,
excluding instances. Each of the nouns that has a di-
rect WordNet hypernym as well as a co-hyponym is
combined with the direct hypernym into a positive
example. The confounders are then built in parallel
to those for INSTANCE. Note that in this case the
equivalent of NOTINST is actually not-hypernym
(hence NOTHYP in the results discussion), and the
equivalent of I2I is concept-to-concept (C2C).5

3 Instances and Concepts

We first explore the differences between instances
and concepts by comparing the distribution of sim-
ilarities of their word2vec vectors (cf. previous
section). We use both a global measure of simi-
larity (average cosine to all other members of the
respective set), and a local measure (cosine to the
nearest neighbor). The results, shown in Table 3,
indicate that instances exhibit substantially higher
similarities than concepts, both at the global and at

5This does not reduce to co-hyponymy, because the hy-
ponym is randomly paired with another hyponym.
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the local level.6 The difference holds even though
we consider more unique concepts than instances
(Table 1), and might thus expect the concepts to
show higher similarities, at least at the local level.
The global similarity of instances and concepts is
the lowest (see last row in Table 3), suggesting that
instances and concepts are represented distinctly
in the space, even when they come from the same
domain (here, newswire).

Taken together, these observations indicate that
instances are semantically more coherent than con-
cepts, at least in our space. We believe a crucial
reason for this is that instances share the same speci-
ficity, referring to one entity, while concepts are of
widely varying specificity and size (compare pres-
ident of the United States with artifact). Further
work is required to probe this hypothesis.

It is well established in lexical semantics that
cosine similarity does not distinguish between hy-
pernymy and other lexical relations, and in fact
hyponyms and hypernyms are usually less simi-
lar than co-hyponyms like cat–dog or antonyms
like good–bad (Baroni and Lenci, 2011). This
result extends to instantiation: The average simi-
larity of each instance to its concept is 0.110 (stan-
dard deviation: 0.12), very low compared to the
figures in Table 3. The nearest neighbors of in-
stances show a wide range of relations similar to
those of concepts, further enriched by the instance-
concept axis: Tyre – Syria (location), Thames river
– estuary (“co-hyponym class”), Luciano Pavarotti
– soprano (“contrastive class”), Joseph Goebels –
bolshevik (“antonym class”), and occasionally true
instantiation cases like Sidney Poitier – actor.

4 Modeling Instantiation vs. Hypernymy

The analysis in the previous section suggests
clearly that unsupervised methods are not adequate
for instantiation, so we turn to supervised methods,
which have also been used for hypernymy detec-
tion (Baroni et al., 2012; Roller et al., 2014). Also
note that unsupervised asymmetric measures pre-
viously used for hypernymy (Lenci and Benotto,
2012; Santus et al., 2014) are only applicable to
non-negative vector spaces, which excludes predic-
tive models like the one we use.

We use a logistic regression classifier, partition-
ing the data into train/dev/test portions (80/10/10%)
and ensuring that instances/hyponyms are not

6Both differences are statistically significant at α=0.001
according to a Kruskal-Wallis test.

reused across partitions. We report F-scores for
the positive class on the test sets.

Table 4 shows the results. Rows correspond
to experiments. The task is always to detect in-
stantiation (left) or hypernymy (right), but the con-
founders differ: We combine the positive exam-
ples with each of the individual negative datasets
(NOTINST/NOTHYP, INVERSE, I2I/C2C, cf. Sec-
tion 2, all balanced setups) and with the union of all
negative datasets (UNION, 25% positive examples).
The columns correspond to feature sets. We con-
sider two baselines: Freq for most frequent class,
1Vec for a baseline where the classifier only sees
the vector for the first component of the input pair –
for instance, for NOTINST, only the instance vector
is given. This baseline tests possible memoriza-
tion effects (Levy et al., 2015). For instantiation,
we have a third baseline, Cap. It makes a rule-
based decision on the basis of capitalization where
available and guesses randomly otherwise. The
remaining columns show results for three repre-
sentations that have worked well for hypernymy
(see Roller et al. (2014) and below for discussion):
Concatenating the two input vectors (Conc), their
difference (Diff ), and concatenating the difference
vector with the squared difference vector (DDSq).

Instantiation. Instantiation achieves overall
quite good results, well above the baselines and
with nearly perfect F-score for the INVERSE and
I2I cases. Recall that these setups basically require
the classifier to characterize the notion of instance
vs. concept, which turns out to be an easy task,
consistent with the analysis in the previous section.
Indeed, for INVERSE, the 1Vec and Cap baselines
also achieve (near-)perfect F-scores of 0.96 and
1.00 respectively; in this case, the input is either an
instance or a concept vector, so the task reduces to
instance identification. The distributional models
perform at the same level (0.98-0.99).

The most difficult setup is NOTINST, where the
model has to decide whether the concept matches
the instance, with 0.79 best performance. Since the
INVERSE and I2I cases are easy, the combined task
is about as difficult as NOTINST, and the best result
for UNION is the same (0.79). The very bad perfor-
mance of 1Vec in this case excludes memorization
as a significant factor in our setup.

Instantiation vs. Hypernymy. Table 4 shows
that, in our setup, hypernymy detection is consid-
erably harder than instantiation: Results are 0.57-
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INSTANCE Freq 1Vec Cap Conc Diff DDSq HYPERNYM Freq 1Vec Conc Diff DDSq

NOTINST 0.49 0.32 0.67 0.79 0.77 0.78 NOTHYP 0.51 0.29 0.55 0.53 0.57
INVERSE 0.5 0.96 1.00 0.98 0.99 0.99 INVERSE 0.5 0.65 0.75 0.78 0.78
I2I 0.5 0.31 0.80 0.97 0.94 0.94 C2C 0.51 0.29 0.64 0.58 0.62
UNION 0.25 0.01 0.57 0.79 0.74 0.74 UNION 0.25 0.00 0.31 0.26 0.30

Table 4: Supervised modeling results (rows: datasets/tasks, columns: feature sets)

0.78 for the individual hypernymy tasks, compared
to the 0.79-0.99 range of instantiation.7 The differ-
ence is even more striking for UNION, with 0.31
vs. 0.79. Our interpretation is that, in contrast to
instantiation, the individual tasks for hypernymy
are all nontrivial, such that modeling them together
is substantially more difficult. INVERSE and C2C
require the classifier to model the notion of concept
specificity (other concepts may be semantically re-
lated, but what distinguishes hypernymy is the fact
that hyponyms are more specific), which is appar-
ently more difficult than characterizing the notion
of instance as opposed to concept.

Frequency Effects. We now test the effect of fre-
quency on our best model (Conc) on the most in-
teresting dataset family (UNION). The word2vec
vectors do not provide absolute frequencies, but
frequency ranks. Thus, we rank-order our two
datasets, split each into ten deciles, and compute
new F-Scores. The results in Figure 1 show that
there are only mild effects of frequency, in particu-
lar compared to the general level of inter-bin vari-
ance: for INSTANCE, the lowest-frequency decile
yields an F-Score of 76% compared to 81% for the
highest-frequency one. The numbers are compa-
rable for the HYPERNYM dataset, with 28% and
36%, respectively. We conclude that frequency is
not a decisive factor in our present setup.

Input Representation. Regarding the effect of
the input representation, we reproduce Roller et
al.’s (2014) results that DDSq works best for hyper-
nymy detection in the NOTHYP setup. In contrast,
for instantiation detection it is the concatenation
of the input vectors that works best (cf. NOTINST

row in Table 4). Difference features (Diff, DDSq)
perform a pre-feature selection, signaling system-
atic commonalities and differences in distributional
representations as well as the direction of feature in-

7Our hypernymy results are lower than previous work. E.g.
Roller et al. (2014) report 0.85 maximum accuracy on a task
analogous to NOTHYP, compared to our 0.57 F-score. Since
our results are not directly comparable in terms of evalua-
tion metric, dataset, and space, we leave it to future work to
examine the influence of these factors.

clusion; Roller et al. (2014) argued that the squared
difference features “identify dimensions that are
not indicative of hypernymy”, thus removing noise.
Concatenating vectors, instead, allows the classifier
to combine the information in the features more
freely. We thus take our results to suggest that
the relationship between instances and their con-
cept is overall less predictable than the relation-
ship between hyponyms and hypernyms. This ap-
pears plausible given the tendency of instances to
be more “crisp”, or idiosyncratic, in their proper-
ties than concepts (compare the relation between
Mozart or John Lennon and composer with that of
poet or novelist and writer). This interpretation is
also consistent with the fact that difference features
work best for the INVERSE case, which requires
characterizing the notion of inclusion, and con-
catenation works best for the I2I and C2C cases,
where instead we are handling potentially unrelated
instances or concepts.

Error analysis. An error analysis on the most
interesting INSTANCE setup (UNION dataset with
Conc features) reveals errors typical for distribu-
tional approaches. The first major error source is
ambiguity. For example, WordNet often lists mul-
tiple “senses” for named entities (Washington as
synonym for George Washington and a city name,
a.o.). The corresponding vector representations are
mixtures of the contexts of the individual entities
and consequentely more difficult to process, no
matter which sense we consider. The second major
error source is general semantic relatedness. For
instance, the model predicts that the writer Franz
Kafka is a Statesman, presumably due to the bureau-
cratic topics of his novels that are often discussed
in connection with his name. Similarly, Arnold
Schönberg – writer is due to Schönberg’s work as
a music theorist. Finally, Einstein – river com-
bines both error types: Hans A. Einstein, Albert
Einstein’s son, was an expert on sedimentation.

5 Related Work

Recent work has started exploring the representa-
tion of instances in distributional space: Herbe-
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Figure 1: Performance by frequency bin

lot and Vecchi (2015) and Gupta et al. (2015) ex-
tract quantified and specific properties of instances
(some cats are black, Germany has 80 million in-
habitants), and Kruszewski et al. (2015) seek to
derive a semantic space where dimensions are sets
of entities. We instead analyze instance vectors.
A similar angle is taken in Herbelot and Vecchi
(2015), for “artificial” entity vectors, whereas we
explore “real” instance vectors extracted with stan-
dard distributional methods. An early exploration
of the properties of instances and concepts, limited
to a few manually defined features, is Alfonseca
and Manandhar (2002).

Some previous work uses distributional repre-
sentations of instances for NLP tasks: For instance,
Lewis and Steedman (2013) use the distributional
similarity of named entities to build a type system
for a semantic parser, and several works in Knowl-
edge Base completion use entity embeddings (see
Wang et al. (2014) and references there).

The focus on public, named instances is shared
with Named Entity Recognition (NER; see Lample
et al. (2016) and references therein); however, we
focus on the instantiation relation rather than on
recognition per se. Also, in terms of modeling,
NER is typically framed as a sequence labeling
task to identify entities in text, whereas we do clas-
sification of previously gathered candidates. In
fact, the space we used was built on top of a cor-
pus processed with a NER system. Named Entity
Classification (Nadeau and Sekine, 2007) can be
viewed as a limited form of the instantiation task.
We analyze the entity representations themselves
and tackle a wider set of tasks related to instantia-
tion, with a comparative analysis with hypernymy.

There is a large body of work on hypernymy
and other lexical relations in distributional seman-
tics (Geffet and Dagan, 2005; Kotlerman et al.,
2010; Baroni and Lenci, 2011; Lenci and Benotto,
2012; Weeds et al., 2014; Rimell, 2014; Roller et

al., 2014; Santus et al., 2014; Levy et al., 2015; San-
tus et al., 2016; Roller and Erk, 2016; Shwartz et
al., 2016). Many studies, notably studies of textual
entailment, include entities, but do not specifically
investigate their properties and contrast them with
concepts: This is the contribution of our paper.

6 Conclusions

The ontological distinction between instances and
concepts is fundamental both in theoretical studies
and practical implementations. Our analyses and
experiments suggest that the distinction is recover-
able from distributional representations. The good
news is that instantiation is easier to spot than hy-
pernymy, consistent with it lying along a greater on-
tological divide. The bad (though expected) news
is that not all extant results for concepts carry over
to instances, for instance regarding input represen-
tation in classification tasks.

More work is required to better assess the prop-
erties of instances as well as the effects of design
factors such as the underlying space and dataset
construction. An extremely interesting (and chal-
lenging) extension is to tackle “anonymous” enti-
ties for which standard distributional techniques do
not work (my neighbor, the bird we saw this morn-
ing), in the spirit of Herbelot and Vecchi (2015)
and Boleda et al. (2017).
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pages 75–79, Montréal, Canada, 7-8 June. Associa-
tion for Computational Linguistics.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976, Denver, Colorado, May–June. Association
for Computational Linguistics.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. Transactions
of the Association for Computational Linguistics,
1:179–192.

84



George A. Miller and Florentina Hristea. 2006. Word-
net nouns: Classes and instances. Computational
Linguistics, 32(1):1–3, 2016/12/15.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvis-
ticae Investigationes, 30(1):3–26.

Laura Rimell. 2014. Distributional lexical entailment
by topic coherence. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 511–519,
Gothenburg, Sweden, April. Association for Compu-
tational Linguistics.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst pat-
terns in distributional vectors for lexical entailment.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2163–2172, Austin, Texas, November. Association
for Computational Linguistics.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1025–
1036, Dublin, Ireland, August. Dublin City Univer-
sity and Association for Computational Linguistics.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in vec-
tor spaces with entropy. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, volume 2: Short
Papers, pages 38–42, Gothenburg, Sweden, April.
Association for Computational Linguistics.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin
Lu, and Chu-Ren Huang. 2016. What a nerd!
Beating students and vector cosine in the ESL and
TOEFL datasets. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European
Language Resources Association (ELRA).

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2389–2398, Berlin, Germany, August.
Association for Computational Linguistics.

Paul Smolensky. 1990. Tensor product variable bind-
ing and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46(1-
2):159–216.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly em-
bedding. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1591–1601, Doha, Qatar, October.
Association for Computational Linguistics.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hy-
pernyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259, Dublin, Ireland, August. Dublin City
University and Association for Computational Lin-
guistics.

85



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 86–91,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Is this a Child, a Girl or a Car? Exploring the Contribution of
Distributional Similarity to Learning Referential Word Meanings

Sina Zarrieß and David Schlangen
Dialogue Systems Group // CITEC // Faculty of Linguistics and Literary Studies

Bielefeld University, Germany
{sina.zarriess,david.schlangen}@uni-bielefeld.de

Abstract

There has recently been a lot of work try-
ing to use images of referents of words for
improving vector space meaning represen-
tations derived from text. We investigate
the opposite direction, as it were, trying to
improve visual word predictors that iden-
tify objects in images, by exploiting dis-
tributional similarity information during
training. We show that for certain words
(such as entry-level nouns or hypernyms),
we can indeed learn better referential word
meanings by taking into account their se-
mantic similarity to other words. For other
words, there is no or even a detrimental
effect, compared to a learning setup that
presents even semantically related objects
as negative instances.

1 Introduction

Someone who knows the meaning of the word
child will most probably know a) how to distin-
guish children from other entities in the real world
and b) that child is related to other words, such as
girl, boy, mother, etc. Traditionally, these two as-
pects of lexical meaning—which, following (Mar-
coni, 1997), we may call referential and inferen-
tial, respectively—have been modeled in quite dis-
tinct settings. Semantic similarity has been a pri-
mary concern for distributional models of word
meaning that treat words as vectors which are ag-
gregated over their contexts, cf. (Turney and Pan-
tel, 2010; Erk, 2016). Identifying visual referents
of words, on the other hand, is a core require-
ment for verbal human/robot interfaces (HRI) (Roy
et al., 2002; Tellex et al., 2011; Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013; Kenning-
ton and Schlangen, 2015). Here, word meanings
have been modeled as predictors that can be ap-

plied to the visual representation of an object and
predict referential appropriateness for that object.

This paper extends upon recent work on learn-
ing models of referential word use on large-scale
corpora of images paired with referring expres-
sions (Schlangen et al., 2016). As in previous
approaches in HRI, that work treats words during
training and application as independent predictors,
with no relations between them. Our starting as-
sumption here is that this misses potentially use-
ful information: e.g., that the costs for confusing
referents of child vs. boy should be much lower
than for confusing referents of child vs. car. We
thus investigate whether knowledge about seman-
tic similarities between words can be exploited to
learn more accurate visual word predictors, ac-
counting for this intuition that certain visual ob-
ject distinctions are semantically more important
or costly than others.

We explore two methods for informing visual
word predictors about semantic similarities in a
distributional space: a) by sampling negative in-
stances of word such that they contain more dis-
similar objects, b) by labeling instances with a
more fine-grained real-valued supervision signal
derived from pairwise distributional similarities
between object names. We find that the latter,
similarity-based training method leads to substan-
tial improvements for particular words such as
entry-level nouns or hypernyms, whereas predic-
tors for other words such as adjectives do not ben-
efit from distributional knowledge. These results
suggest that, in principle, semantic relatedness
might be promising knowledge source for training
more accurate visual models of referential word
use, but it also supports recent findings showing
that distributional models do not capture all as-
pects of semantic relatedness equally well (Rubin-
stein et al., 2015; Nguyen et al., 2016).
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2 Models for Referential Word Meaning

We model referential word meanings as predictors
that can be applied to the visual representation of
an object and return a score indicating the appro-
priateness of the word for denoting the object. We
describe now different ways of defining these pre-
dictors with respect to semantic similarity.

Words as Predictors (WAP) We train a binary
classifier for each word w in the vocabulary. The
training set for each word w is built as follows:
all visual objects in an “image + referring expres-
sion” corpus that have been referred to as w are
used as positive instances, the remaining objects
as negative instances. Thus, the set of object im-
ages divides into w and ¬w, with the consequence
that all negative instances are considered equally
dissimilar from w. The classifiers are trained with
logistic regression (using `1 penalty). (This is the
(Schlangen et al., 2016) model.)

Undersampling similar objects (WAP-NOSIM)
As discussed above, it is intuitive to assume that
a visual classifier that distinguishes referents of a
word from other objects in an image should be
less penalized for making errors on objects that
are categorically related. For instance, the clas-
sifier for child should be less penalized for giving
high probabilities to referents of boy than to ref-
erents of car. A straightforward way to introduce
these differences during training is by undersam-
pling negative instances that have been referred to
by very similar words. (E.g., undersampling boy
instances as negative instances for the child classi-
fier.) This should allow the word classifier to focus
on visual distinctions between objects that are se-
mantically more important. When compiling the
training set of a WAP-NOSIM classifier for wordw,
we look at its 10 most similar words in the vocab-
ulary according to a distributional model (trained
with word2vec, see below) and remove their in-
stances from the set of negative instances ¬w.

Word as Similarity Predictors (SIM-WAP) In-
stead of removing similar objects from the training
set of a word model, we can task the model with
directly learning similarities, by training it as a lin-
ear regression on a continuous output space. When
building the training set for such a word predictor
w, instead of simply dividing objects into w and
¬w instances, we label each object with a real-
valued similarity obtained from cosine similarity

between w and v in a distributional vector space,
where v is the word used to refer to the object.
Object instances where v = w (i.e., the positive
instances in the binary setup) have maximal simi-
larity; the remaining instances have a lower value
which is more or less close to maximal similarity.
This then yields a more fine-grained labeling of
what is uniformly considered as negative instances
in the binary set-up.

We transform the cosine similarities between
words in our vocabulary into standardised z scores
(mean: 0, sd: 1). When there are several word can-
didates used for an object in the corpus, we sim-
ply use the word v that has maximal similarity to
our target word w. The predictors are trained with
Ridge Regression.

3 Experimental Set-up

We focus on assessing to what extent similarity-
based visual word predictors capture the referen-
tial meaning of a word in a more accurate way, and
distinguish its potential referents from other ran-
dom objects. To factor out effects of composition-
ality and context that arise in reference generation
or resolution, we measure how well a predictor for
a word w is able to retrieve from a sampled test set
objects that have been referred to by w (Schlangen
et al., 2016; Zarrieß and Schlangen, 2016a) evalu-
ate on full referring expressions).

Data As training data, we use the training split
of the REFERIT corpus collected by (Kazemzadeh
et al., 2014), which is based on the medium-sized
SAIAPR image collection (Grubinger et al., 2006)
(99.5k image regions). For testing, we use the
training section of REFCOCO corpus collected by
(Yu et al., 2016), which is based on the MSCOCO

collection (Lin et al., 2014) containing over 300k
images with object segmentations. This gives us
a large enough test set to make stable predictions
about the quality of individual word predictors,
which often only have a few positive instances in
the test set of the REFERIT corpus. We follow
(Schlangen et al., 2016) and select words with a
minimum frequency of 40 in these two data sets,
which gives us a vocabulary of 793 words.

Evaluation For each word, we sample a test set
that includes all its positive instances, and posi-
tive vs. negative instances at a ratio of 1:100. We
apply the word classifier to all test instances and
assess how well it identifies (retrieves) its posi-
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Avg. Precision
referit refcoco

Vocab

# samples (avg.) 1055 8176
WAP 0.369 0.183
WAP-NOSIM 0.358 0.179
SIM-WAP 0.354 0.188

Entry-level Nouns

# samples (avg.) 2143 11275
WAP 0.506 0.228
WAP-NOSIM 0.497 0.211
SIM-WAP 0.489 0.296

Table 1: Mean average precision for word predic-
tors, on small (referit) and large (refcoco) test set

tive instances, i.e. visual objects that have been re-
ferred to by the word. We measure this using aver-
age precision, corresponding to the area under the
curve (AUC) metric. In Section 4, we report per-
formance over the entire vocabulary and the subset
of entry-level nouns extracted from annotations in
the REFERIT corpus (Kazemzadeh et al., 2014).

Image and Word Embeddings Following
(Schlangen et al., 2016), we derive representa-
tions of our visual inputs with a convolutional
neural network, “GoogLeNet” (Szegedy et al.,
2015), that was trained on data from the ImageNet
corpus (Deng et al., 2009), and extract the final
fully-connected layer before the classification
layer, to give us a 1024 dimensional representation
of the region. We add 7 features that encode infor-
mation about the region relative to the image: the
(relative) coordinates of two corners, its (relative)
area, distance to the center, and orientation of the
image. The full representation hence is a vector of
1031 features. As distributional word vectors, we
use the word2vec representations provided by
Baroni et al. (2014) (trained with 5-word context
window, 10 negative samples, 400 dimensions).

4 Results

Overall In Table 1, we show the means of the
average precision scores achieved by the individ-
ual word predictors. Generally, the differences be-
tween the overall means for the different models
are mostly small, but we will see below that there
are more pronounced differences when looking at
particular parts of the vocabulary. On the REFERIT

test set, the simple binary classifiers (WAP) have
a slight advantage over the similarity-based meth-
ods. On REFCOCO, SIM-WAP performs best, im-
proving slightly over wac on the entire vocabulary
and substantially when looking at the subset of
entry-level nouns. By contrast, the WAP-NOSIM

Avg. Prec.
word WAP SIM-WAP #train #test most similar to
animal 0.45 0.60 37 533 animals, dog, cat
animals 0.31 0.53 9 13 animal, birds, sheep
plant 0.41 0.68 41 123 plants, shrubs, flower
plants 0.58 0.82 18 17 plant, shrubs, flowers
bird 0.58 0.76 45 196 birds, parrot, turtle
birds 0.06 0.22 11 7 bird, animals, parrot
vehicle 0.44 0.67 9 101 car, cars, truck
food 0.21 0.44 13 669 meat, drink, eating

Table 2: Evaluation of word predictors for hyper-
nyms in singular and plural on REFCOCO

classifiers (trained with under sampling of simi-
lar objects) perform slightly worse as compared
to the standard binary classifiers on all test sets.
First, this suggests that there is an effect of cor-
pus or domain. Performance is substantially lower
on REFCOCO than on REFERIT, but the similarity-
based predictors generalize better across the data
sets. Second, this shows that under sampling is not
a good way of dealing with similar objects when
training word predictors whereas in similarity-
based training the model does take advantage of
distributional knowledge, at least in certain cases.

Individual Words As shown in Table 1, the
similarity-based training has a strong positive ef-
fect for entry-level nouns, whereas the effect on
the overall vocabulary is rather small. This further
suggests that distributional similarities improve
certain word predictors substantially, whereas oth-
ers might be affected even negatively. Therefore,
in the following, we report average precision for
individual words, namely for those cases where
similarity-based regression has the strongest posi-
tive or negative effect as compared to binary clas-
sification (see Tables 3 and 4 showing average pre-
cision scores, number of positive instances of the
word in the train and test set, and their seman-
tic neighbours in the vocabulary, according to the
vector space). We also look at hypernyms (Table
2) which are not easy to learn in realistic referring
expression data as more specific nouns are usually
more common or natural (Ordonez et al., 2016).

Where similarities help Table 3 shows results
for words where SIM-WAP improves most over
the binary WAP model on REFCOCO. It seems
that especially some low-frequent words benefit
from knowledge about object similarities, improv-
ing their average precision by more than 30% or
40% on the test set that contains more positive in-
stances even than were observed during training.
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AP
word WAP SIM-WAP # train # test most similar to

# positive training instances < 50
trailer 0.16 0.54 1 28 truck, vehicle, car
suv 0.42 0.79 2 40 vehicle, car, cars
pillow 0.21 0.57 2 66 pillows, bed, nightstand
doors 0.10 0.44 6 11 door, curtains, window
sheep 0.40 0.74 1 524 lamb, goat, animals

# positive training instances > 50
kid 0.22 0.43 74 1641 kids, boy, girl
boy 0.22 0.41 55 1330 girl, boys, kid
bike 0.50 0.69 76 842 bicycle, motorcycle, car
horse 0.57 0.73 55 757 dog, donkey, cow
bottle 0.39 0.55 61 213 bottles, jar, glasses

Table 3: Top 5 improvements for SIM-WAP over
WAP, for rare and more-frequent words

Similarly, predictors for hypernyms and their plu-
ral versions improve substantially, see Table 2. All
of these example words have semantic neighbours
that are also visually similar. Similarity-based
training of word predictors hence is very bene-
ficial for rare words (during training) that have
near-synonymy relations to other words in the cor-
pus. The positive effect here probably relates to
“feature-sharing”, as the predictor for “trailer” is
allowed to learn from the positive instances of
“truck”, rather than having to discriminate be-
tween the referents of the two words.

Where similarities do not help In Table 4, we
can see results for words where similarity-based
training does not help. For words with more
than 50 training instances, distributional similar-
ities degrade performance most for adjectives and
words expressing visual attributes (color, shape,
location). In these cases, distributional similarities
group attributes from the same scale (color or loca-
tion), but do not account for the fact that these are
visually distinct, such as in the case of e.g ’upper’
and ’lower’. Similarly, distributional similarities
between colors seem to be misleading rather than
helpful, cf. (Zarrieß and Schlangen, 2016b) for a
study on color adjectives on the same corpus. This
effect seems to be related to findings on antonyms
in distributional modeling (Nguyen et al., 2016).
Overall, as words corresponding to attributes are
quite frequent in the referring expression data, the
negative effect of similarity-based training seems
to balance out the positive effect found for certain
nouns in the overall evaluation. Similar effects can
also be found for nouns where semantic similar-
ities predicted by a distributional model seem to
diverge strongly from visual similarity that would

AP
word wac SIM-WAP #train #test most similar to

# positive training instances < 50
pie 0.44 0.10 1 86 cake, cheese, pastry
surf 0.56 0.20 1 43 surfboard, snowboard
number 0.44 0.07 1 172 four, two, three
anywhere 0.59 0.21 88 34 anything, anyone
monitor 0.65 0.15 2 228 watch, handle, laptop

# positive training instances > 50
pink 0.18 0.10 52 814 purple, blue, yellow
green 0.19 0.11 257 1393 blue, yellow, greens
area 0.17 0.09 167 253 city, land, square
big 0.15 0.06 74 737 huge, bigger, biggest
upper 0.25 0.07 116 633 lower, middle

Table 4: Top 5 degradations for SIM-WAP over
WAP, shown for rare and frequent words

be helpful for learning the referential meaning of
the word, e.g. ‘monitor’ and ‘watch’.

5 Discussion and Conclusion

Even with access to powerful state-of-the-art ob-
ject recognizers that classify objects in images into
thousands of categories with high accuracy, it is
still a challenging task to model referential mean-
ings of individual words and to capture various vi-
sual distinctions between semantically similar and
dissimilar words and their referents. In contrast to
abstract objects labels that are annotated consis-
tently in image corpora, word use in referring ex-
pressions is more flexible, and subject to a range
of communicative factors, in such a way that e.g.
some instances of child will be named not by this
but by similar words.

Our findings suggest that linking distributional
similarity to models for visual word predictors
capturing referential meaning is promising to ac-
count for the fact that the negative instances used
for training word predictors vary in their degree
of semantic similarity to the positive instances of
a word. We explored two different ways of inte-
grating this information—by undersampling and
by directly predicting similarity—and found the
prediction approach to work better, especially for
low- and medium-frequent words that have a range
of lexically similar neighbors in the model’s vo-
cabulary.

In a similar vein, zero-shot learning approaches
to object recognition (Frome et al., 2013; Lazari-
dou et al., 2014; Norouzi et al., 2013) have
transferred visual knowledge from known object
classes to unknown classes via distributional simi-
larity. Here, we show that visual knowledge can be
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transferred between words in a corpus of referring
expressions, by taking into account their semantic
relation while learning.

Our results suggest that the exploration of joint
improvement of inferential (i.e., similarity-based)
and referential aspects of meaning should be a
fruitful avenue for future work.
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Abstract

We propose the semantic proto-role
linking model, which jointly induces both
predicate-specific semantic roles and
predicate-general semantic proto-roles
based on semantic proto-role property
likelihood judgments. We use this model
to empirically evaluate Dowty’s thematic
proto-role linking theory.

1 Introduction

A linking theory explains how predicates’ se-
mantic arguments—e.g. HITTER, HITTEE, and
HITTING-INSTRUMENT for hit—are mapped to
their syntactic arguments—e.g. subject, direct ob-
ject, or prepositional object (see Fillmore 1970;
Zwicky 1971; Jackendoff 1972; Carter 1976;
Pinker 1989; Grimshaw 1990; Levin 1993).

(1) a. [John]HITTER hit [the fence]HITTEE.
b. [The stick]INST hit [the fence]HITTEE.

A semantic role labeling (SRL) system imple-
ments the inverse of a linking theory: where a
linking theory maps a predicate’s observed seman-
tic arguments to its latent syntactic arguments, an
SRL system maps a predicate’s observed syntac-
tic arguments to its latent semantic arguments (see
Gildea and Jurafsky 2002; Litkowski 2004; Car-
reras and Marquez 2004; Marquez et al. 2008).

SRL is generally treated as a supervised task—
requiring semantic role annotation, which is ex-
pensive, time-consuming, and hard to scale. This
has led to the development of unsupervised sys-
tems for semantic role induction (SRI), which in-
duce predicate-specific roles—cf. PropBank roles
(Palmer et al., 2005)—from syntactic and lexical
features of a predicate and its arguments.

One approach to SRI that has proven fruitful
is to explicitly implement linking as a compo-

nent of generative (cf. Grenager and Manning,
2006) or discriminative (cf. Lang and Lapata,
2010) models. But while most SRI systems have
some method for generalizing across predicate-
specific roles, few explicitly induce predicate-
general roles—cf. VerbNet roles (Kipper-Schuler,
2005)—separately from predicate-specific roles.
This is a missed opportunity, since the nature of
such roles is a contentious topic in the theoreti-
cal literature, and the SRI task seems likely to be
useful for approaching questions about them in an
empirically rigorous way.

We focus in particular on empirically assess-
ing the semantic proto-role theory developed by
Dowty (1991). We propose the semantic proto-
role linking model (SPROLIM), which jointly in-
duces both predicate-specific roles and predicate-
general semantic proto-roles (Dowty, 1991) based
on semantic proto-role property likelihood judg-
ments (Reisinger et al., 2015; White et al., 2016).

We apply SPROLIM to Reisinger et al.’s proto-
role property annotations of PropBank. To
evaluate SPROLIM’s ability to recover predicate-
specific roles, we compare the predicate-specific
roles it induces against PropBank, finding that
SPROLIM outperforms baselines that do not dis-
tinguish predicate-specific and predicate-general
roles. We then compare the predicate-general
roles that SPROLIM induces against those Dowty
proposes, finding a predicate-general role that
matches Dowty’s PROTOAGENT. Finally, our
work could be viewed as an approach to associat-
ing a vector-space semantics to the categorical la-
bels of existing type-level semantic role resources,
and so we release a resource that maps from Prop-
Bank roles to semantic vectors as fit by SPROLIM.

2 Related work

Prior work in SRI has tended to focus on using
syntactic and lexical features to cluster arguments
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into semantic roles. Swier and Stevenson (2004)
introduce the first such system, which uses a boot-
strapping procedure to first associate verb tokens
with frames containing typed slots (drawn from
VerbNet), then iteratively compute probabilities
based on cooccurrence counts and fill unfilled slots
based on these probabilities.

Grenager and Manning (2006) introduce the
idea of generating syntactic position based on a
latent semantic role representation learned from
syntactic and selectional features. Lang and La-
pata (2010) expand on Grenager and Manning
(2006) by introducing the notion of a canonical-
ized linking. The idea behind canonicalization is
to account for the fact that the syntactic argument
that a particular semantic argument is mapped to
can change depending on the syntax. For instance,
when hit is passivized, the HITTEE argument is
mapped to subject position, where it would nor-
mally be mapped to object position.

(2) [The fence]HITTEE was hit.

We incorporate both ideas into our Semantic
Proto-Role Linking Model (SPROLIM).

SRI approaches that do not explicitly incorpo-
rate the idea of a linking theory have also been
popular. Lang and Lapata (2011a, 2014) use graph
clustering methods and Lang and Lapata (2011b)
use a split-merge algorithm to cluster arguments
based on syntactic context. Titov and Klementiev
(2011) use a non-parametric clustering method
based on the Pitman-Yor Process, and Titov and
Klementiev (2012) propose nonparametric cluster-

Algorithm 1 Semantic Proto-Role Linking Model
1: for verb type v ∈ V do
2: for argument type i ∈ Av do
3: draw semantic protorole zvi ∼ Cat(θvi)

4: for verb token j ∈ Cv do
5: draw canonicalization k ∼ Cat(φv|Tvj |)
6: cvj ← element of symmetric group S|Tvj |,k
7: let r : |Tvj |-length tuple
8: for argument token t ∈ Tvj do
9: rt ← semantic protorole zvcvjt

10: for property p ∈ P do
11: draw avjt ∼ Bern(ηrvjtp)
12: if avjt = 1 then
13: draw lvjt ∼ Cat(Ordκ(µrtp))

14: let ρ : |S|Tvj ||-length vector
15: for linking s′ ∈ S|Tvj | do
16: ρs′ ←

∏
t softmax

(
ψrt +

∑
o6=t δs′

ts′
o

)
17: draw linking k ∼ Cat(ρ)

18: svj ← S|Tvj |
k

ing models based on the Chinese Restaurant Pro-
cess (CRP) and distance dependent CRP.

While each of these SRI systems have some
method for generalizing across predicate-specific
roles, few induce explicit predicate-general roles,
like AGENT and PATIENT, separately from
predicate-specific roles. One obstacle is that there
is no agreed upon set of roles in the theoretical
literature, making empirical evaluation difficult.
One reason that such a set does not exist is that
reasonably wide-coverage linking theories require
an ever-growing number of roles to capture linking
regularities—a problem that Dowty (1991) refers
to as role fragmentation (see also Dowty, 1989).

As a solution to role fragmentation, Dowty
proposes the proto-role linking theory (PRLT).
Instead of relying on categorical roles, such as
AGENT and PATIENT—like traditional linking the-
ories do—PRLT employs a small set of relational
properties (e.g. volition, instigation, change of
state, etc.) that a predicate can entail about its ar-
guments. Dowty partitions these relational prop-
erties into two sets, indexed by two proto-roles:
PROTOAGENT and PROTOPATIENT. The syntac-
tic position that a particular predicate-specific role
is mapped to is then determined by how many
properties from each set hold of arguments that
fill that role. The reason PROTOAGENT and PRO-
TOPATIENT are known as proto-roles is that they
amount to role prototypes (Rosch and Mervis,
1975): a particular predicate-specific role can be
closer or further from a PROTOAGENT or PRO-
TOPATIENT depending on its properties.

Reisinger et al. (2015) crowd-sourced annota-
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Figure 2: Linking model factor graph for token j of predi-
cate v with three arguments.

tions of Dowty’s proto-role properties by gather-
ing answers to simple questions about how likely,
on a five-point scale, it is that particular relational
properties hold of arguments in PropBank (cf.
Kako, 2006; Greene and Resnik, 2009; Hartshorne
et al., 2013). We use these annotations, known as
SPR1 (White et al., 2016), to train our semantic
proto-role linking model (SPROLIM).1

3 Semantic Proto-Role Linking Model

SPROLIM implements a generalization of Dowty’s
semantic proto-role linking theory that allows for
any number of proto-roles—i.e. predicate-general
roles. Figure 1 shows a plate diagram for the full
model, and Algorithm 1 gives its generative story.
There are two main components of SPROLIM: (i)
the property model and (ii) the mapping model.

Property model The property model relates
each predicate-general role—i.e. proto-role—to
(i) the likelihood that a property is applicable to an
argument with that role and, (ii) if applicable, how
likely it is the property holds of that argument.

We implement this model using a cumulative
link logit hurdle model (see Agresti, 2014). In this
model, each semantic proto-role r ∈ R is associ-
ated with two |P|-length real-valued vectors: ηr,
which gives the probability that each property p is
applicable to an argument that has role r, and µr,
which corresponds to the likelihood of each prop-
erty p ∈ P when an argument has role r.

In the hurdle portion of the model, a Bernoulli
probability mass function for applicability a ∈
{0, 1} is given by P(a | η) = ηa(1− η)1−a. What
makes this a hurdle model is that the rating prob-
ability only kicks in if the rating crosses the ap-
plicability “hurdle” (cf. Mullahy, 1986). The pro-

1SPR1 is available at http://decomp.net.

cedural way of thinking about this is that, first, a
rater decides whether a property is applicable; if
it is not, they stop; if it is, they generate a rating.
The joint probability of l and a is then defined as

P(l, a | µ, η,κ) ∝ P(a | η)P(l | µ,κ)a

In the cumulative link logit portion of the model, a
categorical probability mass function with support
on the property likelihood ratings l ∈ {1, . . . , 5}
is determined by a latent µ and a nondecreasing
real-valued cutpoint vector κ.

P(l = j | µ,κ) =

{
1− qj−1 if j = 5
qj − qj−1 otherwise

where qj ≡ logit−1(κj+1 − µ) and q0 ≡ 0. In
Algorithm 1, we denote the parameters of this dis-
tribution as Ordκ(µ).

Mapping model The mapping model has two
components: (i) the canonicalizer, which maps
from argument tokens to predicate-specific roles,
and (ii) the linking model, which maps from
predicate-specific roles to syntactic positions.

We implement the canonicalizer by assuming
that, for each predicate (verb) v, there is some
canonical ordering of its predicate-specific roles
and that for each sentence (clause) j ∈ Cv that
v occurs in, there is some permutation of v’s argu-
ment tokens in that sentence that aligns them with
their predicate-specific role in the canonical order.
Denoting the set of argument tokens in sentence j
with Tvj , the set of possible mappings is the sym-
metric group S|Tvj |. We place a categorical distri-
bution with parameter φv on this group.

We implement the linking model using the con-
ditional random field whose factor graph is de-
picted in Figure 2. This diagram corresponds to
the s node and all of its parents in Figure 1.

4 Experiments

In this experiment, we fit SPROLIM to the SPR1
data and investigate the predicate-specific and
predicate-general roles it learns.2

Baseline models We use two kinds of Gaus-
sian Mixture Models (GMMs) as baselines: one
that uses only the property judgments associated
with each argument and another that uses both

2All code, along with the learned predicate and role rep-
resentations, are available at http://decomp.net.
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Figure 3: Cluster purity for predicate-specific roles with
baselines and SPROLIM.

those property judgments and the syntactic posi-
tion. We treat each GMM component as a seman-
tic role, extracting each argument’s role by taking
the maximum over that argument’s mixture distri-
bution. Since there is no principled distinctions
among GMM components, these baselines imple-
ment systems that does not distinguish between
predicate-specific and predicate-general roles.

Model fitting To fit SPROLIM, we use projected
gradient descent with AdaGrad (Duchi et al.,
2011) to find an approximation to the maximum
likelihood estimates for Θ, Φ, M, E, Ψ, ∆, and
κ, with the categorical variables Z and C inte-
grated out of the likelihood. To fit the GMM base-
lines, we use Expectation Maximization.

Results Following Lang and Lapata (2010) and
others, we evaluate the model using cluster purity.

purity(C, T ) =
|C|∑
i

1
|ci| max

j
|ci ∩ tj |

where C = {ci} is the partition of a predicate’s ar-
guments given by a model, and T = {tj} is some
ground truth partition—here, PropBank roles.

Figure 3 shows the micro- and macro-average
cluster purity for both the GMM baselines and
SPROLIM fit with differing numbers of semantic
roles. We see that even with only two predicate-
general proto-roles, SPROLIM is better able to as-
sign correct predicate-specific roles than the two
baseline GMMs. SPROLIM reaches maximum
cluster purity at six proto-roles.

Figure 4 shows the estimates of the property
likelihood centroids L for |R| ∈ {2, 6}. Columns
give the prototype centroid for a single proto-role.

At |R| = 2, the first proto-role centroid corre-
sponds nearly perfectly to the PROTOAGENT role
proposed by Dowty. Furthermore, by inspect-
ing the role-syntax associations Ψ, we see that
this proto-role is more strongly associated with
the subject position than proto-role 2, and so we
henceforth refer to it as the PROTOAGENT role.

A proto-role analogous to the PROTOAGENT

role is found for all other values of |R| that we fit.
For instance, at |R| = 6, the first proto-role cen-
troid is highly correlated with the first proto-role
centroid at |R| = 2. The only difference between
this centroid and the one found at |R| = 2 is that
the one at |R| = 6 loads even more positively on
Dowty’s proto-agent properties.

At |R| = 6, the second proto-role centroid ap-
pears to be a modified version of the PROTOA-
GENT role that does not require physical exis-
tence or sentience and is negatively associated
with physical contact. By investigating the proto-
role mixtures Θ for each argument, we see that
this captures cases of nonsentient or abstract—but
still agentive—subjects—e.g. Mobil in (3).

(3) Mobil restructured the entire company dur-
ing an industrywide shakeout.

The rest of the roles are more varied. For |R| =
2, the second proto-role centroid loads negatively
(or near zero) on all PROTOAGENT properties, and
really, all other properties besides MANIPULATED

BY ANOTHER. This non-PROTOAGENT role ap-
pears to split into four separate roles at |R| = 6,
three of which load heavily on manipulated by an-
other (proto-roles 4-6) and the fourth of which
(proto-role 3) requires makes physical contact.
Each of these four non-PROTOAGENT roles might
be considered to be different flavors of PROTOPA-
TIENT, which does not appear to be a unified con-
cept. This is corroborated by examples of argu-
ments that load on each of these four proto-roles.

For instance, the objects of sign, want, and di-
vert load heavily on the third proto-role.

(4) a. President Bush signed a disaster decla-
ration covering seven CA counties.

b. The U.S. wants a higher won to make
South Korea ’s exports more expensive
and help trim Seoul’s trade surplus.
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c. They divert law-enforcement resources
at a time they are most needed for pro-
tecting lives and property.

The subjects of verbs like date, stem, and recover
(in their intransitive form) load heavily on the
fourth proto-role.

(5) a. His interest in the natural environment
dates from his youth.

b. Most of the telephone problems
stemmed from congestion.

c. Junk bonds also recovered somewhat,
though trading remained stalled.

The objects of verbs like reduce, lower, and slash
load heavily on the fifth proto-role.

(6) a. The firm reduced those stock holdings
to about 70%.

b. It also lowered some air fares.
c. Robertson Stephens slashed the value of

the offering by 7%.

And the objects of verbs like gain, lose, and drop,
which tend to involve measurements, load heavily
on the sixth proto-role.

(7) a. Fujisawa gained 50 to 2,060.
b. A&W Brands lost 1/4 to 27 .
c. B.F. Goodrich dropped 1 3/8 to 49 1/8 .

This last category is interesting because it raises
a question about how sensitive SPROLIM is to the
particular domain on which the proto-role prop-
erties are annotated. For instance, outside of
newswire, the senses of the verbs in (7) are less
likely to include measure arguments, and so per-
haps SPROLIM would not find such a proto-role in
annotations of text from a different genre.

We believe this warrants further investigation.
But we also note that (7) does not exhaust the
kinds of arguments that load heavily on the sixth
proto-role: the objects of consume and borrow
(among many others) also do so.

(8) a. In fact, few consume much of anything.
b. All they are trying to do is borrow some

of the legitimacy of the Bill of Rights.

The fact that the arguments in (8) are at least su-
perficially unlike the measure arguments found in
(7) may suggest that SPROLIM is discovering that
measure arguments such as those in (7) fall into a
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Figure 4: Heatmap of prototype centroids for property like-
lihood ratings for models with 2 proto-roles and 6 proto-roles.
Black is + and red is −.

larger category, in spite of genre-related biases.

5 Conclusion

In this paper, we proposed the semantic proto-
role linking model, which jointly induces both
predicate-specific semantic roles and predicate-
general semantic proto-roles based on semantic
proto-role property likelihood judgments. We
used this model to empirically evaluate Dowty’s
thematic proto-role linking theory, confirming the
existence of Dowty’s PROTOAGENT role but find-
ing evidence that his PROTOPATIENT role may
consist of at least four subtypes.

We have three aims for future work: (i) to as-
sess how robust the proto-roles we induce here are
to genre effects; (ii) to assess whether languages
differ in the set of proto-roles they utilize; and
(iii) to extend this model to incorporate annota-
tions that semantically decompose noun meanings
and verb meanings in theoretically motivated ways
(cf. White et al., 2016).
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Abstract

There is a relationship between what we
say and where we say it. Word embed-
dings are usually trained assuming that
semantically-similar words occur within
the same textual contexts. We investigate
the extent to which semantically-similar
words occur within the same geospatial
contexts. We enrich a corpus of ge-
olocated Twitter posts with physical data
derived from Google Places and Open-
StreetMap, and train word embeddings us-
ing the resulting geospatial contexts. In-
trinsic evaluation of the resulting vectors
shows that geographic context alone does
provide useful information about semantic
relatedness.

1 Introduction

Words follow geographic patterns of use. At times
the relationship is obvious; we would expect to
hear conversations about actors in and around a
movie theater. Other times the connection be-
tween location and topic is less clear; people are
more likely to tweet about something they love
from a bar than from home, but vice versa for
something they hate.1 Distributional semantics
is based on the theory that semantically similar
words occur within the same textual contexts. We
question the extent to which similar words occur
within the same geospatial contexts.

Previous work validates the relationship be-
tween the content of text and its physical origin.
Geographically-grounded models of language en-
able toponym resolution (DeLozier et al., 2015),

1Under our GEO30 word embeddings, the word love
is closer to the context GooglePlaces:bar than to high-
way:residential. The relationship is inverted for the word
hate.

document origin prediction, (Wing and Baldridge,
2011; Hong et al., 2012; Han et al., 2012b; Han
et al., 2013; Han et al., 2014) and tracking re-
gional variation in word use (Eisenstein et al.,
2010; Eisenstein et al., 2014; Bamman et al.,
2014; Huang et al., 2016). Our work differs
from earlier models; rather than modeling lan-
guage with respect to an absolute, physical loca-
tion (like a geographic bounding box), we model
language with respect to attributes describing a
type of location (like amenity:movie theater or
landuse:residential). This allows us to model the
impact of geospatial context independently of lan-
guage and region.

We enrich a corpus of geolocated tweets with
geospatial information describing the physical en-
vironment where they were posted. We use
the geospatial contexts to train geo-word embed-
dings with the skip-gram with negative sampling
(SKIPGRAM) model (Mikolov et al., 2013) as
adapted to support arbitrary contexts (Levy and
Goldberg, 2014). We then demonstrate the seman-
tic value of geospatial context in two ways. First,
using intrinsic methods of evaluation, we show
that the resulting geo-word embeddings them-
selves encode information about semantic related-
ness. Second, we present initial results suggest-
ing that because the embeddings are trained with
language-agnostic features, they give a potentially
useful signal about bilingual translation pairs.

2 Geo-enriching Tweets

We collected 6.2 million geolocated English
tweets in 20 metro areas from Jan-Mar 2016.2 The

2The metro areas, chosen based on high volume of ge-
olocated tweets collected during an initial trial period, were
Atlanta, Bandung, Bogota, Buenos Aires, Chicago, Dal-
las, Washington DC, Houston, Istanbul, Jakarta, Los An-
geles, London, Madrid, Mexico City, Miami, New York
City, Philadelphia, San Francisco Bay Area, Singapore, and
Toronto. We used only tweets explicitly tagged with geo-
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tokens in these tweets were normalized by con-
verting to lowercase, replacing @-mentions, num-
bers, and URLs with special symbols, and apply-
ing the lexical normalization dictionary of Han et
al. (2012a).

To enrich our collected tweets with geospa-
tial features, we used publicly-available geospatial
data from OpenStreetMap and the Google Places
API. OpenStreetMap (OSM) is a crowdsourced
mapping initiative. Users provide surveyed data
such as administrative boundaries, land use, and
road networks in their local area. In addition to ge-
ographic coordinates, each shape in the data set in-
cludes tags describing its type and attributes, such
as shop:convenience and building:retail for a con-
venience store. We downloaded metro extracts for
our 20 cities in shapefile format. To maximize
coverage, we supplemented the OSM data with
Google Places data from its web API, consisting of
places tagged with one or more types (i.e. aquar-
ium, ATM, etc).

We enrich each geolocated tweet by finding
the coordinates and tags for all OSM shapes and
Google Places located within 50m of the tweet’s
coordinates. The enumerated tags become geo-
graphic contexts for training word embeddings.
Figure 1 gives an example of geospatial data col-
lected for a single tweet.

3 Geo-Word Embeddings

SKIPGRAM learns latent fixed-length vector rep-
resentations vw and vc for each word and context
in a corpus such that vw · vc is highest for fre-
quently observed word-context pairs. Typically a
word’s context is modeled as a fixed-length win-
dow of words surrounding it. Levy and Gold-
berg (2014) generalized SKIPGRAM to accept ar-
bitrary contexts as input. We use their software
(word2vecf) to train word embeddings using
geospatial contexts.
word2vecf takes a list of (word, context)

pairs as input. We train 300-dimensional geo-word
embeddings denoted GEOD – whereD indicates a
radius – as follows. For each length-n tweet, we
find all shapes within D meters of its origin and
enumerate the length-m list of the shapes’ geo-
graphic tags. The tweet in Figure 1, for example,
has m = 10 tags as context when training GEO30
embeddings. Under our model, each token in the
tweet shares the same contexts. Thus the input

graphic coordinates.

Radius
(m)

Intersecting Shapes Geographic Tags

15 line575 route:bus
line580 highway:tertiary

30 poly1903 building:yes,
GP:university

poly3301 building:university,
GP:university

poly5146 building:university,
GP:university

point7728 tourism:information,
poi:marker

50 poly5146 building:yes,
GP:university

point3971 highway:crossing
GooglePlaces2948 GP:bus station

Figure 1: Geoenriching an example tweet with ge-
ographic contexts at increasing radii D (meters).
For each D ∈ {15, 30, 50}, geographic contexts
include all tags belonging to shapes within D me-
ters of the origin. In this example there are 10 tags
for the tweet at D = 30m. GP denotes tags ob-
tained via Google Places; others are from Open-
StreetMap.

to word2vecf for training GEO30 embeddings
produced by the example tweet is an m× n list of
(word, context) pairs:

(it’s, route:bus),
(good, route:bus),
...
(#TechTuesday, poi:marker),
(#UPenn, poi:marker)

The mean number of tags (m) per tweet under
each threshold is 12.3 (GEO15), 21.9 (GEO30),
and 38.6 (GEO50). The mean number of tokens
(n) per tweet is 15.7.

4 Intrinsic Evaluation

To determine the extent to which geo-word em-
beddings capture useful semantic information, we
first evaluate their performance on three seman-
tic relatedness and four semantic similarity bench-
marks (listed in Table 1). In each case we calcu-
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late Spearman’s rank correlation between numer-
ical human judgements of semantic similarity or
relatedness for a large set of word pairs, and the
cosine similarity between the same word pairs un-
der the geo-word embedding models.

To understand the impact of geographic con-
texts on the embedding model, we compare
GEO15, GEO30, and GEO50 geo-word embed-
dings to the following baselines:

TEXT5: Using our corpus of geolocated tweets,
we train word embeddings with word2vecf us-
ing traditional linear bag-of-words contexts with
window width 5.

GEO30+TEXT5: We also evaluate the impact
of combining textual and geospatial contexts. We
train a model over the geolocated tweets corpus
using both the geospatial contexts from GEO30
and the textual contexts from TEXT5.

RAND30: Because our GEOD models assign
the same geospatial contexts to every token in
a tweet, we need to rule out the possibility that
GEOD models are simply capturing relatedness
between words that frequently appear in the same
tweets, like movie and theater. We implement
a random baseline model that captures similar-
ities arising from tweet co-location alone. For
each tweet, we enumerate the geospatial tags (i.e.
contexts) for shapes within 30m of the tweet ori-
gin. Then, before feeding the m × n list of
(word, context) pairs to word2vecf for train-
ing, we randomly map each tag type to a dif-
ferent tag type within the context vocabulary.
For example, route:bus could be mapped to
amenity:bank for input to the model. We redo
the random tag mapping for each tweet. In this
way, vectors for words that always appear together
within tweets are trained on the same set of associ-
ated contexts. But the randomly mapped contexts
do not model the geographic distribution of words.

4.1 Intrinsic Evaluation Results

Qualitatively, we find that strongly locational
words, like #nyc, and words frequently associated
with a type of place, like burger and baseball, tend
to have the most semantically and topically simi-
lar neighbors (Table 2) . Function words and oth-
ers with geographically independent use (i.e. man)
have less semantically-similar neighbors.

We can also qualitatively examine the ge-
ographic context embeddings vc output by
word2vecf. Recall that the SKIPGRAM objec-

Target Most similar (GEO30 ) Most similar (TEXT5)

baseball #baseball, softball,
marlins, nem, dodgers

softball, lacrosse,
#baseball, soccer,
tourney

history
natural, dinosaurs,
#naturalhistorymuseum,
museum, museums

#naturalhistorymuseum,
smithsonian’s,
#museumselfie,
#dinosaur, dinosaurs

#nyc

nyc, #newyorkcity,
#manhattan, #ny,

#ny, #iloveny,
#nyclife, #ilovenewyork,
#newyorknewyork

burger
, #burger, delicious,

,

#burger, , fries,
cheeseburger,
burgers

man have, that, years,
not, don’t

dude, guy, woman,
hugging, he

when like, my, but, so, it’s because, whenever, that,
tfw, sometimes

Table 2: Most similar words based on cosine sim-
ilarity of embeddings trained using geographic
contexts within a radius of 30m (GEO30) and tex-
tual contexts with a window of 5 words (TEXT5).

tive function pushes the vectors for frequently co-
occurring vc and vw close to one another in a
shared vector space. Thus we can find the words
(Table 4) and other contexts (Table 3) most closely
associated with each geographic context on the ba-
sis of cosine similarity. We find qualitatively that
the word-context and context-context associations
make intuitive sense.

In our intrinsic evaluation (Table 1), geo-word
embeddings outperformed the random baseline in
six of seven benchmarks. These results are sig-
nificant (p < .01) based on the Minimum Re-
quired Difference for Significance test of Rastogi
et al. (2015). This indicates that geospatial in-
formation does provide some useful semantic in-
formation. However, the GEOD embeddings un-
derperformed the TEXT5 embeddings in all cases.
And although the combined GEO30+TEXT5 em-
beddings outperformed the TEXT5 embeddings
in 2 of 3 semantic relatedness benchmarks, the
results were significant only in the case of the
MEN dataset (p < .05). This suggests, incon-
clusively, that geospatial contextual information
may improve the semantic relatedness content of
word embeddings in some cases, but that geospa-
tial context is no substitute for textual context in
capturing semantic relationships. Nevertheless,
geospatial context does provide some signal for
semantic relatedness that may be useful in com-
bination with other multimodal signals. Finally,
it should be noted that the Spearman correlation
achieved by all models in our tests is significantly
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Data Set Data Type Rand30 Geo15 Geo30 Geo50 Geo30+Text5 Text5 Ref
MEN rel 0.1372 0.319 0.337 0.298 0.5281 0.514 (Bruni et al., 2012)
MTURK-771 rel 0.0762 0.224 0.225 0.206 0.357 0.364 (Halawi and Dror, 2012)
WS353-R rel 0.0952 0.312 0.334 0.244 0.396 0.382 (Agirre et al., 2009)
WS353-S sim 0.0522 0.314 0.275 0.249 0.525 0.555 (Agirre et al., 2009)
RW sim 0.0122 0.176 0.167 0.167 0.323 0.3621 (Luong et al., 2013)
SCWS sim 0.3162 0.392 0.383 0.385 0.470 0.4991 (Huang et al., 2012)
SimLex sim 0.081 0.069 0.068 0.052 0.100 0.1921 (Hill et al., 2015)

1 Indicates a significant difference between TEXT5 and GEO30+TEXT5 results (p < 0.05, (Rastogi et al., 2015))
2 Indicates RAND30 results are significantly lower than any GEO or WORD embedding results (p < 0.01, (Rastogi et al., 2015))

Table 1: We calculate the Spearman correlation between pairwise human semantic similarity (sim) and
relatedness (rel) judgements, and cosine similarity of the associated word embeddings, over 7 benchmark
datasets.

Geographic context 5-most-similar contexts

GP.restaurant

GP.food,
GP.point of interest,
GP.establishment,
GP.cafe,
GP.bar

landuse.residential

boundary.postal code,
place.neighbourhood,
landuse.commercial,
landuse.retail,
operator.metro

amenity.place of worship

religion.christian,
building.church,
GP.place of worship,
GP.church,
religion.muslim

GP.home goods store

GP.furniture store,
GP.store,
GP.point of interest,
GP.establishment,
GP.electrician

Table 3: Most similar contexts, based on cosine
similarity of the associated GEO30 context vec-
tors.

below the current state-of-the-art; this is to be ex-
pected given the relatively small size of our train-
ing corpus (approx. 400M tokens).

5 Translation Prediction

Our intrinsic evaluation established that geospa-
tial context provides semantic information about
words, but it is weaker than information provided
by textual context. So a natural question to ask
is whether geospatial context can be useful in any
setting. One potential strength of word embed-
dings trained using geospatial contexts is that the
features are language-independent. Thus we in-

Geospatial context Most similar words (GEO30)

GP.aquarium , , ,
#aquarium, #jellyfish

natural.peak #hike, overlook, #hiking,
coit, mulholland

amenity.museum
history, #dinosaur,
#naturalhistorymuseum,
american, natural

GP.bowling alley , saray, bowling,
idarts, #bowling

religion.muslim camii, masjid, sultan,
mosque, ahmed

man made.bridge

#bridge, #manhattanbridge,
#brooklynbridge, #eastriver,

Table 4: Most similar words for target contexts,
based on cosine similarity of their associated
GEO30 word and context vectors.

fer that training geo-word embeddings jointly over
two languages might yield translation pairs that
are close to one another in vector space. This type
of model could be applicable in a low-resource
language setting where large parallel texts are un-
available but geolocated text is. To test this hy-
pothesis, we collect an additional 236k geolocated
Turkish tweets and re-train GEO30, TEXT5, and
GEO30+TEXT5 vectors on the larger set.

Similar to Irvine and Callison-Burch (2013), we
use a supervised method to make a binary trans-
lation prediction for Turkish-English word pairs.
We build a dataset of positive Turkish-English
word pairs by all Turkish words in a Turkish-
English dictionary (Pavlick et al., 2014) that ap-
pear in our vector vocabulary and do not translate
to the same word in English (528 words in total).
We add these words and their translations to our
dataset as positive examples. Then, for each Turk-
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ish word in the dataset we also select a random
English word and add this pair as a negative ex-
ample. Our resulting data set has 1056 word pairs,
50% of which are correct translations. We split
this into 80% train and 20% test examples.

We construct a logistic regression model, where
the input for each word pair is the difference be-
tween its Turkish and English word vectors, vf −
ve. We evaluate the results using precision, recall,
and F-score of positive translation predictions.

Table 5 gives our results, which we compare to
a model that makes a random guess for each word
pair. Combining geographic and textual contexts
to train embeddings leads to better translation per-
formance than using textual or geospatial contexts
in isolation. In particular, with a seed dictionary
of just 528 Turkish words and monolingual text of
just 236k tweets, our supervised method is able to
predict correct translation pairs with 67.8% preci-
sion. While the not signficant under McNemar’s
test (p=0.07), they are suggestive that geospatial
contextual information may provide a useful sig-
nal for bilingual lexicon induction when used in
combination with other methods, as in Irvine and
Callison-Burch (2013).

Vector Precision Recall FScore
Text5 0.600 0.574 0.587
Geo30 0.570 0.542 0.556
Geo30+Text5 0.678 0.588 0.630
Random 0.500 0.500 0.500

Table 5: We make a binary translation prediction
for Turkish-English word pairs using their embed-
dings in a simple logistic regression model.

6 Conclusion

Typically word embeddings are generated using
the text surrounding a word as context from which
to derive semantic information. We explored what
happens when we use the geospatial context – in-
formation about the physical location where text
originates – instead. Intrinsic evaluation of word
embeddings trained over a set of geolocated Twit-
ter data, using geospatial information derived from
OpenStreetMap and the Google Places API as
context, indicated that the geospatial context does
encode information about semantic relatedness.

We also suggested an extrinsic evaluation
method for geo-word embeddings: predicting
translation pairs without bilingual parallel cor-
pora. Our experiments suggested that while

geospatial context is not as semantically-rich as
textual context, it does provide useful semantic re-
latedness information that may be complementary
as part of a multimodal model. As future work,
another extrinsic evaluation task that may be ap-
propriate for geo-word embeddings is geolocation
prediction.
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Abstract

Emojis are ideograms which are natu-
rally combined with plain text to visually
complement or condense the meaning of
a message. Despite being widely used
in social media, their underlying seman-
tics have received little attention from a
Natural Language Processing standpoint.
In this paper, we investigate the relation
between words and emojis, studying the
novel task of predicting which emojis are
evoked by text-based tweet messages. We
train several models based on Long Short-
Term Memory networks (LSTMs) in this
task. Our experimental results show that
our neural model outperforms two base-
lines as well as humans solving the same
task, suggesting that computational mod-
els are able to better capture the underly-
ing semantics of emojis.

1 Introduction

The advent of social media has brought along a
novel way of communication where meaning is
composed by combining short text messages and
visual enhancements, the so-called emojis. This
visual language is as of now a de-facto standard
for online communication, available not only in
Twitter, but also in other large online platforms
such as Facebook, Whatsapp, or Instagram.

Despite its status as language form, emojis have
been so far scarcely studied from a Natural Lan-
guage Processing (NLP) standpoint. Notable ex-
ceptions include studies focused on emojis’ se-
mantics and usage (Aoki and Uchida, 2011; Barbi-
eri et al., 2016a; Barbieri et al., 2016b; Barbieri et
al., 2016c; Eisner et al., 2016; Ljubešic and Fišer,
2016), or sentiment (Novak et al., 2015). How-
ever, the interplay between text-based messages

and emojis remains virtually unexplored. This pa-
per aims to fill this gap by investigating the rela-
tion between words and emojis, studying the prob-
lem of predicting which emojis are evoked by text-
based tweet messages.

Miller et al. (2016) performed an evaluation
asking human annotators the meaning of emojis,
and the sentiment they evoke. People do not al-
ways have the same understanding of emojis, in-
deed, there seems to exist multiple interpretations
of their meaning beyond their designer’s intent or
the physical object they evoke1. Their main con-
clusion was that emojis can lead to misunderstand-
ings. The ambiguity of emojis raises an interesting
question in human-computer interaction: how can
we teach an artificial agent to correctly interpret
and recognise emojis’ use in spontaneous conver-
sation?2 The main motivation of our research is
that an artificial intelligence system that is able
to predict emojis could contribute to better natu-
ral language understanding (Novak et al., 2015)
and thus to different natural language processing
tasks such as generating emoji-enriched social me-
dia content, enhance emotion/sentiment analysis
systems, and improve retrieval of social network
material.

In this work, we employ a state of the art clas-
sification framework to automatically predict the
most likely emoji a Twitter message evokes. The
model is based on Bidirectional Long Short-term
Memory Networks (BLSTMs) with both standard
lookup word representations and character-based
representation of tokens. We will show that the
BLSTMs outperform a bag of words baseline, a
baseline based on semantic vectors, and human
annotators in this task.

1https://www.washingtonpost.com/news/the-
intersect/wp/2016/02/19/the-secret-meanings-of-emoji/

2http://www.dailydot.com/debug/emoji-
miscommunicate/
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100.7 89.9 59 33.8 28.6 27.9 22.5 21.5 21 20.8

19.5 18.6 18.5 17.5 17 16.1 15.9 15.2 14.2 10.9

Table 1: The 20 most frequent emojis that we use
in our experiments and the number of thousand
tweets they appear in.

2 Dataset and Task

Dataset: We retrieved 40 million tweets with the
Twitter APIs3. Tweets were posted between Oc-
tober 2015 and May 2016 geo-localized in the
United States of America. We removed all hyper-
links from each tweet, and lowercased all textual
content in order to reduce noise and sparsity. From
the dataset, we selected tweets which include one
and only one of the 20 most frequent emojis, re-
sulting in a final dataset4 composed of 584,600
tweets. In the experiments we also consider the
subsets of the 10 (502,700 tweets) and 5 most fre-
quent emojis (341,500 tweets). See Table 1 for the
20 most frequent emojis that we consider in this
work.
Task: We remove the emoji from the sequence of
tokens and use it as a label both for training and
testing. The task for our machine learning models
is to predict the single emoji that appears in the
input tweet.

3 Models

In this Section, we present and motivate the mod-
els that we use to predict an emoji given a tweet.
The first model is an architecture based on Recur-
rent Neural Networks (Section 3.1) and the sec-
ond and third are the two baselines (Section 3.2.1
and 3.2.2). The two major differences between the
RNNs and the baselines, is that the RNNs take into
account sequences of words and thus, the entire
context.

3.1 Bi-Directional LSTMs
Given the proven effectiveness and the impact
of recurrent neural networks in different tasks
(Chung et al., 2014; Vinyals et al., 2015; Dzmitry
et al., 2014; Dyer et al., 2015; Lample et al., 2016;
Wang et al., 2016, inter-alia), which also includes
modeling of tweets (Dhingra et al., 2016), our
emoji prediction model is based on bi-directional

3https://dev.twitter.com
4Available at http://sempub.taln.upf.edu/tw/eacl17

Long Short-term Memory Networks (Hochreiter
and Schmidhuber, 1997; Graves and Schmidhu-
ber, 2005). The B-LSTM can be formalized as
follows:

s = max {0,W[fw;bw] + d}
where W is a learned parameter matrix, fw is the
forward LSTM encoding of the message, bw is
the backward LSTM encoding of the message, and
d is a bias term, then passed through a component-
wise ReLU. The vector s is then used to compute
the probability distribution of the emojis given the
message as:

p(e | s) =
exp

(
g>e s + qe

)∑
e′∈E exp

(
g>e′s + qe′

)
where ge′ is a column vector representing the (out-
put) embedding5 of the emoji e, and qe is a bias
term for the emoji e. The set E represents the list
of emojis. The loss/objective function the network
aims to minimize is the following:

Loss = −log(p(em | s))
where m is a tweet of the training set T , s is the

encoded vector representation of the tweet and em

is the emoji contained in the tweet m . The inputs
of the LSTMs are word embeddings6. Following,
we present two alternatives explored in the exper-
iments presented in this paper.
Word Representations: We generate word em-
beddings which are learned together with the up-
dates to the model. We stochastically replace
(with p = 0.5) each word that occurs only once in
the training data with a fixed represenation (out-
of-vocabulary words vector). When we use pre-
trained word embeddings, these are concatenated
with the learned vector representations obtaining
a final representation for each word type. This is
similar to the treatment of word embeddings by
Dyer et al. (2015).
Character-based Representations: We compute
character-based continuous-space vector embed-
dings (Ling et al., 2015b; Ballesteros et al., 2015)
of the tokens in each tweet using, again, bidi-
rectional LSTMs. The character-based approach
learns representations for words that are ortho-
graphically similar, thus, they should be able to
handle different alternatives of the same word type
occurring in social media.

5The output embeddings of the emojis have 100 dimen-
sions.

6100 dimensions.
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3.2 Baselines

In this Section we describe the two baselines. Un-
like the previous model, the baselines do not take
into account the word order. However, in the sec-
ond baseline (Section 3.2.2) we abstract on the
plain word representation using semantic vectors,
previously trained on Twitter data.

3.2.1 Bag of Words
We applied a bag of words classifier as baseline,
since it has been successfully employed in se-
veral classification tasks, like sentiment analysis
and topic modeling (Wallach, 2006; Blei, 2012;
Titov and McDonald, 2008; Maas et al., 2011;
Davidov et al., 2010). We represent each mes-
sage with a vector of the most informative to-
kens (punctuation marks included) selected using
term frequency−inverse document frequency (TF-
IDF). We employ a L2-regularized logistic regres-
sion classifier to make the predictions.

3.2.2 Skip-Gram Vector Average
We train a Skip-gram model (Mikolov et al., 2013)
learned from 65M Tweets (where testing instances
have been removed) to learn Twitter semantic vec-
tors. Then, we build a model (henceforth, AVG)
which represents each message as the average of
the vectors corresponding to each token of the
tweet. Formally, each message m is represented
with the vector Vm :

V m =

∑
t∈Tm

St

|Tm|
Where Tm are the set of tokens included in the
message m , St is the vector of token t in the Skip-
gram model, and |Tm | is the number of tokens in
m . After obtaining a representation of each mes-
sage, we train a L2-regularized logistic regression,
(with ε equal to 0.001).

4 Experiments and Evaluation

In order to study the relation between words and
emojis, we performed two different experiments.
In the first experiment, we compare our machine
learning models, and in the second experiment, we
pick the best performing system and compare it
against humans.

4.1 First Experiment

This experiment is a classification task, where
in each tweet the unique emoji is removed and

5 10 20
P R F1 P R F1 P R F1

BOW .59 .60 .58 .43 .46 .41 .32 .34 .29
AVG .60 .60 .57 .44 .47 .40 .34 .36 .29

W .59 .59 .59 .46 .46 .46 .35 .36 .33
C .61 .61 .61 .44 .44 .44 .36 .37 .32

W+P .61 .61 .61 .45 .45 .45 .34 .36 .32
C+P .63 .63 .63 .48 .47 .47 .42 .39 .34

Table 2: Results of 5, 10 and 20 emojis. Precision,
Recall, F-measure. BOW is bag of words, AVG
is the Skipgram Average model, C refers to char-
BLSTM and W refers to word-BLSTM. +P refers
to pretrained embeddings.

used as a label for the entire tweet. We use
three datasets, each containing the 5, 10 and 20
most frequent emojis (see Section 2). We ana-
lyze the performance of the five models described
in Section 3: a bag of words model, a Bidirec-
tional LSTM model with character-based repre-
sentations (char-BLSTM), a Bidirectional LSTM
model with standard lookup word representa-
tions (word-BLSTM). The latter two were trained
with/without pretrained word vectors. To pretrain
the word vectors, we use a modified skip-gram
model (Ling et al., 2015a) trained on the English
Gigaword corpus7 version 5.

We divide each dataset in three parts, train-
ing (80%), development (10%) and testing (10%).
The three subsets are selected in sequence start-
ing from the oldest tweets and from the training
set since automatic systems are usually trained on
past tweets, and need to be robust to future topic
variations.

Table 2 reports the results of the five models
and the baseline. All neural models outperform
the baselines in all the experimental setups. How-
ever, the BOW and AVG are quite competitive,
suggesting that most emojis come along with spe-
cific words (like the word love and the emoji ).
However, considering sequences of words in the
models seems important for encoding the mean-
ing of the tweet and therefore contextualize the
emojis used. Indeed, the B-LSTMs models always
outperform BOW and AVG. The character-based
model with pretrained vectors is the most accurate
at predicting emojis. The character-based model
seems to capture orthographic variants of the same
word in social media. Similarly, pretrained vec-
tors allow to initialize the system with unsuper-

7https://catalog.ldc.upenn.edu/LDC2003T05
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vised pre-trained semantic knowledge (Ling et al.,
2015a), which helps to achieve better results.

Emoji P R F1 Rank Num
0.48 0.74 0.58 2.12 783
0.32 0.74 0.45 1.59 757
0.35 0.22 0.27 3.58 470
0.31 0.15 0.21 4.2 260
0.24 0.1 0.14 4.39 212
0.46 0.49 0.47 3.76 207

1 0 0.01 4.69 206
0.44 0.19 0.27 5.15 200
0.44 0.54 0.48 4.71 165
0.33 0.11 0.17 5.79 150
0.3 0.12 0.17 5.78 148

0.54 0.11 0.18 6.73 131
0.45 0.19 0.27 6.43 120
0.56 0.09 0.15 7.58 112
0.2 0.01 0.02 9.01 110

0.46 0.33 0.39 5.83 108
0.5 0.08 0.13 4.9 105

0.32 0.25 0.28 6.13 89
0.44 0.53 0.48 5.35 34
0.22 0.67 0.33 1.67 3

Table 3: Precision, Recall, F-measure, Ranking
and occurrences in the test set of the 20 most fre-
quent emojis using char-BLSTM + Pre.

Qualitative Analysis of Best System: We an-
alyze the performances of the char-BLSTM with
pretrained vectors on the 20-emojis dataset, as it
resulted to be the best system in the experiment
presented above. In Table 3 we report Precision,
Recall, F-measure and Ranking8 of each emoji.
We also added in the last column the occurrences
of each emoji in the test set.

The frequency seems to be very relevant. The
Ranking of the most frequent emojis is lower than
the Ranking of the rare emojis. This means that if
an emoji is frequent, it is more likely to be on top
of the possible choices even if it is a mistake. On
the other hand, the F-measure does not seem to de-
pend on frequency, as the highest F-measures are
scored by a mix of common and uncommon emo-
jis ( , , , and ) which are respectively the

8The Ranking is a number between 1 and 20 that repre-
sents the average number of emojis with higher probability
than the gold emoji in the probability distribution of the clas-
sifier.

first, second, the sixth and the second last emoji in
terms of frequencies.

The frequency of an emoji is not the only im-
portant variable to detect the emojis properly; it is
also important whether in the set of emojis there
are emojis with similar semantics. If this is the
case the model prefers to predict the most frequent
emojis. This is the case of the emoji that is al-
most never predicted, even if the Ranking is not
too high (4.69). The model prefers similar but
most frequent emojis, like (instead of ). The
same behavior is observed for the emoji, but
in this case the performance is a bit better due
to some specific words used along with the blue
heart: “blue”, “sea” and words related to child-
hood (e.g. “little” or “Disney”).

Another interesting case is the Christmas tree
emoji , that is present only three times in the
test set (as the test set includes most recent tweets
and Christmas was already over; this emoji is
commonly used in tweets about Christmas). The
model is able to recognize it twice, but missing
it once. The correctly predicted cases include the
word “Christmas”; and it fails to predict: “get-
ting into the holiday spirit with this gorgeous pair
of leggings today ! #festiveleggings”, since there
are no obvious clues (the model chooses instead
probably because of the intended meaning of “hol-
iday” and “gorgeous”.).

In general the model tends to confuse similar
emojis to and , probably for their higher fre-
quency and also because they are used in multiple
contexts. An interesting phenomenon is that is
often confused with . The first one represent a
small face crying, and the second one a small face
laughing, but the results suggest that they appear
in similar tweets. The punctuation and tone used is
often similar (many exclamation marks and words
like “omg” and “hahaha”). Irony may also play a
role to explain the confusion, e.g. “I studied jour-
nalism and communications , I’ll be an awesome
speller! Wrong. haha so much fun”.

4.2 Second Experiment

Given that Miller et al. (2016) pointed out that
people tend to give multiple interpretations to
emojis, we carried out an experiment in which
we evaluated human and machine performances
on the same task. We randomly selected 1,000
tweets from our test set of the 5 most frequent
emojis used in the previous experiment, and asked
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Humans B-LSTM
Emo P R F1 P R F1

0.73 0.56 0.63 0.7 0.84 0.77
0.53 0.51 0.52 0.61 0.78 0.69
0.43 0.38 0.4 0.52 0.3 0.38
0.19 0.4 0.26 0.62 0.26 0.37
0.24 0.26 0.25 0.66 0.51 0.58

Avg 0.53 0.48 0.50 0.65 0.65 0.65

Table 4: Precision, Recall and F-Measure of hu-
man evaluation and the character-based B-LSTM
for the 5 most frequent emojis and 1,000 tweets.

humans to predict, after reading a tweet (with the
emoji removed), the emoji the text evoked. We
opted for the 5 emojis task to reduce annotation
efforts. After displaying the text of the tweet, we
asked the human annotators “What is the emoji
you would include in the tweet?”, and gave the
possibility to pick one of 5 possible emojis ,

, , , and . Using the crowdsourcing plat-
form ‘’CrowdFlower”, we designed an experiment
where the same tweet was presented to four anno-
tators (selecting the final label by majority agree-
ment). Each annotator assessed a maximum of
200 tweets. The annotators were selected from
the United States of America and of high qual-
ity (level 3 of CrowdFlower). One in every ten
tweets, was an obvious test question, and anno-
tations from subjects who missed more than 20%
of the test questions were discarded. The overall
inter-annotator agreement was 73% (in line with
previous findings (Miller et al., 2016)). After cre-
ating the manually annotated dataset, we com-
pared the human annotation and the char-BLSTM
model with the gold standard (i.e. the emoji used
in the tweet).

We can see in Table 4, where the results of the
comparison are presented, that the char-BLSTM
performs better than humans, with a F1 of 0.65
versus 0.50. The emojis that the char-BLSTM
struggle to predict are and , while the human
annotators mispredict and mostly. We can
see in the confusion matrix of Figure 1 that is
misclassified as by both human and LSTM, and
the emoji is mispredicted as and . An in-
teresting result is the number of times was cho-
sen by human annotators; this emoji occurred 100
times (by chance) in the test set, but it was chosen
208 times, mostly when the correct label was the
laughing emoji . We do not observe the same be-

Figure 1: Confusion matrix of the second experi-
ment. On the left the human evaluation and on the
right the char-BLSTM model.

havior in the char-BLSTMs, perhaps because they
encoded information about the probability of these
two emojis and when in doubt, the laughing emoji
was chosen as more probable.

5 Conclusions

Emojis are used extensively in social media, how-
ever little is known about their use and seman-
tics, especially because emojis are used differently
over different communities (Barbieri et al., 2016a;
Barbieri et al., 2016b). In this paper, we provide
a neural architecture to model the semantics of
emojis, exploring the relation between words and
emojis. We proposed for the first time an auto-
matic method to, given a tweet, predict the most
probable emoji associated with it. We showed
that the LSTMs outperform humans on the same
emoji prediction task, suggesting that automatic
systems are better at generalizing the usage of
emojis than humans. Moreover, the good accuracy
of the LSTMs suggests that there is an important
and unique relation between sequences of words
and emojis.

As future work, we plan to make the model able
to predict more than one emoji per tweet, and ex-
plore the position of the emoji in the tweet, as
close words can be an important clue for the emoji
prediction task.
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Abstract

A traditional claim in linguistics is that all
human languages are equally expressive—
able to convey the same wide range of
meanings. Morphologically rich lan-
guages, such as Czech, rely on overt in-
flectional and derivational morphology to
convey many semantic distinctions. Lan-
guages with comparatively limited mor-
phology, such as English, should be able
to accomplish the same using a combi-
nation of syntactic and contextual cues.
We capitalize on this idea by training a
tagger for English that uses syntactic fea-
tures obtained by automatic parsing to re-
cover complex morphological tags pro-
jected from Czech. The high accuracy
of the resulting model provides quantita-
tive confirmation of the underlying lin-
guistic hypothesis of equal expressivity,
and bodes well for future improvements in
downstream HLT tasks including machine
translation.

1 Introduction

Different languages use different grammatical
tools to convey the same meanings. For ex-
ample, to indicate that a noun functions as a
direct object, English—a morphologically poor
language—places the noun after the verb, while
Czech—a morphologically rich language—uses
an accusative case suffix. Consider the follow-
ing two glossed Czech sentences: ryba jedla (“the
fish ate”) and oni jedli rybu (“they ate the fish”).
The key insight is that the morphology of Czech
(i.e., the case ending -u), carries the same seman-
tic content as the syntactic structure of English

(i.e., the word order) (Harley, 2015). Theoreti-
cally, this common underlying semantics should
allow syntactic structure to be transformed into
morphological structure and vice versa. We ex-
plore the veracity of this claim computationally
by asking the following: Can we develop a tag-
ger for English that uses the signal available in
English-only syntactic structure to recover the rich
semantic distinctions conveyed by morphology in
Czech? Can we, for example, accurately detect
which English contexts would have a Czech trans-
lation that employs the accusative case marker?

Traditionally, morphological analysis and tag-
ging is a task that has been limited to morphologi-
cally rich languages (MRLs) (Hajič, 2000; Drábek
and Yarowsky, 2005; Müller et al., 2015; Buys
and Botha, 2016). In order to build a rich mor-
phological tagger for a morphologically poor lan-
guage (MPL) like English, we need some way to
build a gold standard set of richly tagged English
data for training and testing. Our approach is to
project the complex morphological tags of Czech
words directly onto the English words they align
to in a large parallel corpus. After evaluating the
validity of these projections, we develop a neural
network tagging architecture that takes as input a
number of English features derived from off-the-
shelf dependency parsing and attempts to recover
the projected Czech tags.

A tagger of this sort is interesting in many ways.
Whereas the best NLP tools are typically available
for English, morphological tagging at this gran-
ularity has until now been applied almost exclu-
sively to MRLs. The task is also scientifically in-
teresting, in that it takes semantic properties that
are latent in the syntactic structure of English and
transforms them into explicit word-level annota-
tions. Finally, such a tool has potential utility in a
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Subtag Values
GENDER FEM, MASC, NEUT
NUMBER SG, DU, PL
CASE NOM, GEN, DAT, ACC, VOC, ESS, INS
PERSON 1, 2, 3
TENSE FUT, PRS, PST
GRADE CMPR, SPRL
NEGATION POS, NEG
VOICE ACT, PASS

Table 1: The subset of the UniMorph Schema used here.

range of downstream tasks, such as machine trans-
lation into MRLs (Sennrich and Haddow, 2016).

2 Projecting Morphological Tags

Training a system to tag English text with multi-
dimensional morphological tags requires a corpus
of English text annotated with those tags. Since
no such corpora exist, we must construct one.
Past work (focused on translating out of English
into MRLs) assigned a handful of morphologi-
cal annotations using manually-developed heuris-
tics (Drábek and Yarowsky, 2005; Avramidis and
Koehn, 2008), but this is hard to scale. We there-
fore instead look to obtain rich morphological tags
by projecting them (Yarowsky et al., 2001) from
a language (such as Czech) where such rich tags
have already been annotated.

We use the Prague Czech–English Dependency
Treebank (PCEDT) (Hajič et al., 2012), a com-
plete translation of the Wall Street Journal por-
tion of the Penn Treebank (PTB) (Marcus et al.,
1993). Each word on the Czech side of the
PCEDT was originally hand-annotated with com-
plex 15-dimensional morphological tags contain-
ing positional subtag values for morphological cat-
egories specific to Czech.1 We manually mapped
these tags to the UniMorph Schema tagset (Sylak-
Glassman et al., 2015), which provides a uni-
versal, typologically-informed annotation frame-
work for representing morphological features of
inflected words in the world’s languages. Uni-
Morph tags are in principle up to 23-dimensional,
but tags are not positionally dependent, and not
every dimension needs to be specified. Table 1
shows the subset of UniMorph subtags used here.
PTB tags have no formal internal subtag structure.

1For our purposes, a morphological tag is a complex,
multiclass entity comprising the morphological features that
a word bears across many different inflectional categories
(e.g., CASE, NUMBER, and so on). We call these features sub-
tags, and each takes one of several values (e.g., PRS ‘present’
in the TENSE category of the UniMorph Schema).

PTB Expected UM Match %
NN SG 87.8

NNP SG 73.9
NNS PL 83.3

NNPS PL 65.1
JJR CMPR 89.0
JJS SPRL 79.3

RBR CMPR 76.3
RBS SPRL 68.7
VBZ SG 91.3
VBZ 3 90.7
VBZ PRS 89.4
VBG PRS 55.9
VBP PRS 87.2
VBD PST 93.9
VBN PST 78.7

Average Match % 80.7

Table 2: To evaluate the validity of projecting morpholog-
ical tags from Czech onto English text, we compare these
projected features to features obtained from the original PTB
tags (listed on the left). The expected UniMorph (UM) sub-
tag (center) is from a manual ‘translation’ of PTB tags into
UniMorph tags. The match percentage indicates how often
the feature projected from a UniMorph ‘translation’ of the
original PCEDT annotation of Czech matches the feature that
would be expected subtag. Note that the core part-of-speech
must agree as a precondition for further evaluation.

See Figure 1 for a comparison of the PCEDT, Uni-
Morph, and PTB tag systems for a Czech word and
its aligned English translation.

The PCEDT also contains automatically gener-
ated word alignments produced by using GIZA++
(Och and Ney, 2003) to align the Czech and En-
glish sides of the treebank. We use these align-
ments to project morphological tags from the
Czech words to their English counterparts through
the following process. For every English word,
if the word is aligned to a single Czech word,
take its tag. If the word is mapped to multiple
Czech words, take the annotation from the align-
ment point belonging to the intersection of the
two underlying GIZA++ models used to produce
the many-many alignment.2 If no such alignment
point is found, take the leftmost aligned word. Un-
aligned English words get no annotation.

3 Validating Projections

If we believe that we can project semantic distinc-
tions over bitext, we must ensure that the elements
linked by projection in both source and target lan-
guages carry roughly the same meaning. This is
difficult to automate, and no gold-standard dataset
or metric has been developed. Thus, we offer the
following approximate evaluation.

2This intersection is marked as int.gdfa in the PCEDT.
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Czech PCEDT tag UniMorph tag = English PTB tag
je VB-S---3P-AA--- V;ACT;POS;PRS;3;SG is VBZ

Figure 1: The PCEDT tag of the Czech word je was mapped to an equivalent UniMorph tag. The English translation of je,
which is the copula is, has the PTB tag VBZ. While the PCEDT and UniMorph tags are composed of subtags, the PTB tag has
no formal internal composition.

English is not bereft of morphological marking,
and its use of it, though limited, does sometimes
coincide with that of Czech. For example, both
languages use overt morphology to mark nouns
as singular or plural, adjectives and adverbs as
superlative or comparative, and verbs as either
present or past.3 In these cases it is possible to
directly map word-level PTB tags in English to
word-level UniMorph tags in Czech, and to com-
pare how often projected tags conform to this ex-
pected mapping. For example, the PTB tag VBZ
is mapped to the UniMorph tag V;PRS;3;SG. Ta-
ble 2 shows a set of expected projections along
with how often the expectations are met across the
PCEDT. In particular, we calculate the percent-
age of cases when an English word with a partic-
ular PTB tag has the expected Czech tag projected
onto it. This calculation is only performed in those
cases where where the aligned words agree in their
core part of speech, since we would not expect, for
example, verbs to have superlative/comparative
morphology.

A qualitative examination of these results sug-
gests that projections are usually valid in at least
those cases where our limited linguistic intuitions
predict they should be. For example, the dual
number feature (DU) was projected in only 12 in-
stances, but was almost always projected to the
English words “two,” “eyes,” “feet,” and “hands.”
These concepts naturally come in pairs, and this
distinction is explicitly marked in Czech, but not
English. We interpret this evaluation as suggesting
that we can trust projection even in cases where we
do not have pre-existing expectations of how En-
glish and Czech grammars should align.

4 Neural Morphological Tag Prediction

4.1 Features

With our projections validated, we turn to the pre-
diction model itself. Based on the idea that lan-
guages with rich morphology use that morphol-
ogy to convey similar distinctions in meaning to

3English also uses morphology to mark the 3rd person sin-
gular verb form.

that conveyed by syntax in a morphologically poor
language, we extract lexical and syntactic features
from English text itself as well as both depen-
dency and CFG parses. We use the following
basic features derived directly from the text: the
word itself, the single-word lexical context, and
the word’s POS tag neighbors. We also use fea-
tures derived from dependency trees.

• Head features. The word’s head word, and
separately, the head word’s POS.

• Head chain POS. The chain of POS tags be-
ginning with the word and moving upward
along the dependency graph.

• Head chain labels. The chain of dependency
labels moving upward.

• Child words. The identity of any child word
having an arc label of det or case, under the
Universal Dependency features.4

Finally, we use features from CFG parsing:

• POS features. A word’s part-of-speech
(POS) tag, its parent’s, and its grandparent’s.

• Chain features. We compute chains of the
tree nodes, starting with its POS tag and mov-
ing upward (NN NP S).

• The distance to the root.

Non-lexical features are treated as real-valued
when appropriate (such as in the case of the dis-
tance to the root), while all others are treated as
binary. For lexical features, we use pretrained
GLoVe embeddings, specifically 200-dimensional
400K-vocab uncased embeddings from Penning-
ton et al. (2014). This is an approach similar to
Tran et al. (2015), but we additionally augment
the pretrained embeddings with randomly initial-
ized embeddings for vocabulary items outside of
the 400K lexicon.

4.2 Neural Model

In order to take advantage of correlated informa-
tion between subtags, we present a neural model

4universaldependencies.org
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Other companies are introducing related products
PL, NOM PL, NOM ACT, 3, PRS, PL ACT, 3, PRS, PL PL, ACC PL, ACC

Table 3: An English sentence from the test set, WSJ §22, tagged with rich morphological tags by our neural tagger. Note, for
example, that case is tagged correctly, with Other companies tagged as nominative and related products tagged as accusative.
Legend here: CASE (NOM = nominative, ACC = accusative), TENSE (PRS = present), NUMBER (PL = plural), VOICE (ACT
= active), and PERSON (3).

which learns a common representation of input to-
kens, and passes it on to a series of subtag classi-
fiers that are trained jointly. Informally, this means
that we learn a shared representation in the hid-
den layers and then use separate weight functions
to predict each component of the morphological
analysis from this shared representation of the in-
put. We use a feed-forward neural net with two
hidden layers and rectified linear unit (ReLU) ac-
tivation functions (Glorot et al., 2011). A Uni-
Morph tag m can be decomposed into its N sub-
tags as m = [m(1),m(2), . . . ,m(N)], where each
m(i) may be represented as a one-hot vector. The
weight matrices (W (1), W (2)) and bias vectors
(b(1), b(2)) connecting the hidden layers are pa-
rameters for the whole model, but each of the
N subtag classes has its own weight matrix and
bias vector W (3)

i , b
(3)
i . All are randomly initial-

ized from truncated normal distributions. Given
an input vector x, we first compute a new input
x′ = [xnon-lex : Exlex0 : Exlex1 : . . . : Exlexn ],
where [a : b] represents vector concatenation. All
lexical features xlexi

are replaced by their embed-
dings from the embedding matrix E.

f(x′)=relu
(
b(2)+W (2)relu

(
b(1)+W (1)x′

))
(1)

p(m(i) |x, θ)=softmax
(
b
(3)
i +W (3)

i f(x′)
)

(2)

Then the definition of p(m) follows:

p(m | x, θ) =
N∏

i=1

p(m(i) | x, θ) (3)

The set of parameters is θ = {E,W (1), b(1),W (2),

b(2),W
(3)
1 , b

(3)
1 , . . . ,W

(3)
N , b

(3)
N }. The loss is de-

fined as the cross-entropy, and the model is trained
using gradient descent with minibatches. The
models were trained using TensorFlow (Abadi et
al., 2015). We complete a coarse-grained grid
search over the learning rate, hidden layer size,
and batch size. Based on performance on the de-
velopment set, we choose a hidden layer size of

1000. We tune model parameters on whole-tag ac-
curacy on WSJ §00. We find that a learning rate of
0.01 and batch size of 50 work best.

5 Experiment Setup

Our goal is to predict rich morphological tags for
monolingual English text. The tagger was trained
on §02–21 of the WSJ portion of the PTB. §00 was
used for tuning. Training tags were projected from
the equivalent Czech portion of the PCEDT, across
the standard alignments provided by the PCEDT,
as described in §2. Projected tags were treated
as a gold standard to be recovered by the tagger.
The full training set consisted of 39,832 sentences
(726,262 words). Evaluation of the tagger was
done on §22 of the WSJ portion of the PCEDT.

6 Results and Analysis

Table 4 shows the accuracy of the neural tagger for
each subtag category from Table 1, indicating how
often the tagger recovered the English projections
of the Czech subtags. Baseline 1 is computed by
selecting the most common Czech (sub)tag value
in every case.

Baseline 2 is computed similarly to the evalu-
ation of projection validity presented in §3. For
each English word, the UniMorph subtag values
which can be obtained by translating the PTB tag
are compared to the projected subtag value in the
same category (e.g. TENSE). This baseline penal-
izes cases in which a value for a category exists in
the gold projection, but the value from the PTB tag
translation either does not match or is not present
at all. The poor performance of this baseline high-
lights how little information can be gleaned from
traditional English PTB tags themselves, which is
caused by the poverty of English inflectional mor-
phology. In baselines 2 and 3, values for negation
and voice were never present from the PTB tags
since both negation and passive voice are indicated
by separate words in English.5

5The tag VBN cannot be used in isolation to conclusively
find use of the passive voice since it may occur in construc-
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source case tense per num neg grade voice all
Baseline 1 35.0 86.7 94.2 45.6 68.8 99.0 86.7 14.1
Baseline 2 0.7 61.5 29.3 46.0 — 62.6 — 4.3
Baseline 3 46.4 89.1 99.8 86.3 — 99.5 — 8.6
PCEDT 69.1 93.3 96.5 78.3 89.4 99.5 93.7 54.7

Table 4: Performance of the neural tagger on §22 of the WSJ
portion of the PTB. We report both subtag and whole tag ac-
curacies. Baseline 1 simply outputs the most frequent subtag
value. Baseline 2 outputs the subtag value that can be ob-
tained from a human-annotated PTB tag with the gold subtag,
and penalizes both values from the PTB tag that are either in-
correct or missing. Baseline 3 does the same comparison,
but penalizes only incorrect values, not those which are miss-
ing. Accuracy which exceeds or equals all baselines is bolded
while that which exceeds only baselines 1 and 2 is italicized.

In baseline 3, we remove the effect of morpho-
logical poverty from consideration by comparing
the values obtained from PTB tag translation to
gold projected values only when both sources pro-
vide a value for a given category. The strong per-
formance of this baseline, particularly in person
and number, may be partly due to the fact that the
tags are human-annotated as well as the fact that
fewer comparisons are made in an attempt to iso-
late the effects of morphological poverty. In addi-
tion, baseline 3 need only predict instances of 3rd
person, since person is only marked by PTB tags
for one tag, VBZ. Similarly, PTB tags only ex-
plicitly mark number for the tags VBZ, NN, NNS,
NNP, and NNPS.

The neural tagger outperforms baselines 1 and
2 everywhere, showing that the syntactic structure
of English does contain enough signal to recover
the complex semantic distinctions that are overt
in Czech morphology. For case, especially, accu-
racy is nearly double that of baseline 1. Table 3
shows an example English sentence, where case
and number have been tagged correctly. We ex-
amined the contribution of different grammatical
aspects of English by training standard MaxEnt
classifiers for each subtag using different subsets
of features. The individual classifiers were trained
with Liblinear’s (Fan et al., 2008) MaxEnt model.
We varied the regularization constant from 0.001
to 100 in multiples of 10, choosing the value in
each situation that maximized performance on the
dev set, PCEDT §00. Table 5 contains the re-
sults. First, word identity contributes more than
POS on its own. This suggests that the distribution
of morphological features is at least partially con-
ditioned by lexical factors, in addition to grammat-

tions such as ‘have given’ in which the VP as a whole is not
passive.

features case tense person num. neg. grade voice
POS 46.4 91.2 95.3 68.7 84.2 99.3 91.8
Word 56.2 91.5 95.5 72.4 85.9 99.4 91.9
Word, POS 58.6 92.1 95.9 74.4 88.3 99.4 92.6
Word, POS, POS ctxt 63.8 92.7 96.1 77.5 89.1 99.5 93.2
CFG 65.0 92.7 96.2 77.5 88.8 99.4 93.1
dep 67.0 92.9 96.3 77.9 89.3 99.5 93.2
dep, CFG 69.1 92.9 96.4 78.0 89.2 99.5 93.2
dep, CFG, lex. ctxt 69.0 93.2 96.6 79.1 89.8 99.5 93.7

Table 5: Performance of the PCEDT-trained MaxEnt clas-
sifiers on §22 of the WSJ portion of the Penn Treebank.
Bolding indicates the highest performance among the Max-
Ent classifiers.

ical properties such as POS. The addition of POS
context, which includes the POS of the preceding
and the following word, yields modest gains, ex-
cept for case, in which it leads to a 5.2% increase
in accuracy. POS context can be viewed as an ap-
proximation of true syntactic features, which yield
greater improvements. Dependency parse features
are particularly effective in helping to predict case
since case is typically assigned by a verb govern-
ing a noun in a head-dependency relationship. The
direct encoding of this relationship yields an espe-
cially salient feature for the case classifier. Even
with these improvements, the case feature remains
the most difficult to predict, suggesting that even
more salient features have yet to be discovered.

7 Conclusion

To our knowledge, this is the first work to con-
struct a rich morphological tagger for English that
does not rely on manually-developed syntactic
heuristics. This significantly extends the applica-
bility and usability of the proposed general tagging
framework, which offers the ability to use auto-
matic parsing features in one language and (poten-
tially automatically generated) morphological fea-
ture annotation in the other. Validating the claim
that languages apply different aspects of gram-
mar to represent equivalent meanings, we find that
English-only lexical, contextual, and syntactic fea-
tures derived from off-the-shelf parsing tools en-
code the complex semantic distinctions present in
Czech morphology. In addition to allowing this
scientific claim to be computationally validated,
we expect this approach to generalize to tagging
any morphologically poor language with the mor-
phological distinctions made in another morpho-
logically rich language.
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Abstract

Derivational morphology is a fundamen-
tal and complex characteristic of language.
In this paper we propose the new task of
predicting the derivational form of a given
base-form lemma that is appropriate for
a given context. We present an encoder–
decoder style neural network to produce a
derived form character-by-character, based
on its corresponding character-level repre-
sentation of the base form and the context.
We demonstrate that our model is able to
generate valid context-sensitive derivations
from known base forms, but is less accurate
under a lexicon agnostic setting.

1 Introduction

Understanding how new words are formed is a
fundamental task in linguistics and language mod-
elling, with significant implications for tasks with
a generation component, such as abstractive sum-
marisation and machine translation. In this paper
we focus on modelling derivational morphology, to
learn, e.g., that the appropriate derivational form of
the verb succeed is succession given the context As
third in the line of . . . , but is success in The
play was a great .

English is broadly considered to be a morpho-
logically impoverished language, and there are cer-
tainly many regularities in morphological patterns,
e.g., the common usage of -able to transform a verb
into an adjective, or -ly to form an adverb from an
adjective. However there is considerable subtlety
in English derivational morphology, in the form
of: (a) idiosyncratic derivations; e.g. picturesque
vs. beautiful vs. splendid as adjectival forms of
the nouns picture, beauty and splendour, respec-
tively; (b) derivational generation in context, which
requires the automatic determination of the part-

of-speech (POS) of the stem and the likely POS
of the word in context, and POS-specific deriva-
tional rules; and (c) multiple derivational forms
often exist for a given stem, and these must be se-
lected between based on the context (e.g. success
and succession as nominal forms of success, as
seen above). As such, there are many aspects that
affect the choice of derivational transformation, in-
cluding morphotactics, phonology, semantics or
even etymological characteristics. Earlier works
(Thorndike, 1941) analysed ambiguity of deriva-
tional suffixes themselves when the same suffix
might present different semantics depending on the
base form it is attached to (cf. beautiful vs. cup-
ful). Furthermore, as Richardson (1977) previously
noted, even words with quite similar semantics and
orthography such as horror and terror might have
non-overlapping patterns: although we observe reg-
ularity in some common forms, for example, hor-
rify and terrify, and horrible and terrible, nothing
tells us why we observe terrorize and no instances
of horrorize, or horrid, but not terrid.

In this paper, we propose the new task of pre-
dicting a derived form from its context and a base
form. Our motivation in this research is primarily
linguistic, i.e. we measure the degree to which it
is possible to predict particular derivation forms
from context. A similar task has been proposed in
the context of studying how children master deriva-
tions (Singson et al., 2000). In their work, children
were asked to complete a sentence by choosing
one of four possible derivations. Each derivation
corresponded either to a noun, verb, adjective, or
adverbial form. Singson et al. (2000) showed that
childrens’ ability to recognize the correct form cor-
relates with their reading ability. This observation
confirms an earlier idea that orthographical regular-
ities provide a clearer clues to morphological trans-
formations comparing to phonological rules (Tem-
pleton, 1980; Moskowitz, 1973), especially in lan-
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guages such as English where grapheme-phoneme
correspondences are opaque. For this reason we
consider orthographic rather than phonological rep-
resentations.

In our approach, we test how well models in-
corporating distributional semantics can capture
derivational transformations. Deep learning mod-
els capable of learning real-valued word embed-
dings have been shown to perform well on a range
of tasks, from language modelling (Mikolov et al.,
2013a) to parsing (Dyer et al., 2015) and machine
translation (Bahdanau et al., 2015). Recently, these
models have also been successfully applied to mor-
phological reinflection tasks (Kann and Schütze,
2016; Cotterell et al., 2016a).

2 Derivational Morphology

Morphology, the linguistic study of the internal
structure of words, has two main goals: (1) to de-
scribe the relation between different words in the
lexicon; and (2) to decompose words into mor-
phemes, the smallest linguistic units bearing mean-
ing. Morphology can be divided into two types:
inflectional and derivational. Inflectional morphol-
ogy is the set of processes through which the word
form outwardly displays syntactic information, e.g.,
verb tense. It follows that an inflectional affix typi-
cally neither changes the part-of-speech (POS) nor
the semantics of the word. For example, the En-
glish verb to run takes various forms: run, runs
and ran, all of which convey the concept “mov-
ing by foot quickly”, but appear in complementary
syntactic contexts.

Derivation, on the other hand, deals with the
formation of new words that have semantic shifts
in meaning (often including POS) and is tightly
intertwined with lexical semantics (Light, 1996).
Consider the example of the English noun discon-
tentedness, which is derived from the adjective
discontented. It is true that both words share a
close semantic relationship, but the transformation
is clearly more than a simple inflectional marking
of syntax. Indeed, we can go one step further and
define a chain of words content 7→ contented 7→
discontented 7→ discontentedness.

In this work, we deal with the formation of dever-
bal nouns, i.e., nouns that are formed from verbs.
Common examples of this in English include agen-
tives (e.g., explain 7→ explainer), gerunds (e.g.,
explain 7→ explaining), as well as other nominal-
isations (e.g., explain 7→ explanation). Nominal-
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Figure 1: The encoder–decoder model, showing the stem
devastate in context producing the form devastation. Coloured
arrows indicate shared parameters

isations have varyingly different meanings from
their base verbs, and a key focus of this study is
the prediction of which form is most appropriate
depending on the context, in terms of syntactic and
semantic concordance. Our model is highly flex-
ible and easily applicable to other related lexical
problems.

3 Related Work

Although in the last few years many neural mor-
phological models have been proposed, most of
them have focused on inflectional morphology (e.g.,
see Cotterell et al. (2016a)). Focusing on deriva-
tional processes, there are three main directions
of research. The first deals with the evaluation of
word embeddings either using a word analogy task
(Gladkova et al., 2016) or binary relation type clas-
sification (Vylomova et al., 2016). In this context,
it has been shown that, unlike inflectional mor-
phology, most derivational relations cannot be as
easily captured using distributional methods. Re-
searchers working on the second type of task at-
tempt to predict derived forms using the embedding
of its corresponding base form and a vector encod-
ing a “derivational” shift. Guevara (2011) notes
that derivational affixes can be modelled as a geo-
metrical function over the vectors of the base forms.
On the other hand, Lazaridou et al. (2013) and Cot-
terell and Schütze (2017) represent derivational
affixes as vectors and investigate various functions
to combine them with base forms. Kisselew et al.
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(2015) and Padó et al. (2016) extend this line of
research to model derivational morphology in Ger-
man. This work demonstrates that various factors
such as part of speech, semantic regularity and ar-
gument structure (Grimshaw, 1990) influence the
predictability of a derived word. The third area of
research focuses on the analysis of derivationally
complex forms, which differs from this study in
that we focus on generation. The goal of this line
of work is to produce a canonicalised segmenta-
tion of an input word into its constituent morphs,
e.g., unhappiness7→un+happy+ness (Cotterell et
al., 2015; Cotterell et al., 2016b). Note that the
orthographic change y7→i has been reversed.

4 Dataset

As the starting point for the construction of our
dataset, we used the CELEX English dataset
(Baayen et al., 1993). We extracted verb–noun
lemma pairs from CELEX, covering 24 differ-
ent nominalisational suffixes and 1,456 base lem-
mas. Suffixes only occurring in 5 or fewer lemma
pairs mainly corresponded to loan words and con-
sequently were filtered out. We augmented this
dataset with verb–verb pairs, one for each verb
present in the verb–noun pairs, to capture the case
of a verbal form being appropriate for the given
context.1 For each noun and verb lemma, we gener-
ated all their inflections, and searched for sentential
contexts of each inflected token in a pre-tokenised
dump of English Wikipedia.2 To dampen the effect
of high-frequency words, we applied a heuristic log
function threshold which is basically a weighted
logarithm of the number of the contexts. The final
dataset contains 3,079 unique lemma pairs repre-
sented in 107,041 contextual instances.3

5 Experiments

In this paper we model derivational morphology
as a prediction task, formulated as follows. We
take sentences containing a derivational form of a
given lemma, then obscure the derivational form by
replacing it with its base form lemma. The system
must then predict the original (derivational) form,
which may make use of the sentential context. Sys-
tem predictions are judged correct if they exactly

1We also experimented without verb–verb pairs and didn’t
observe much difference in the results.

2Based on a 2008/03/12 dump. Sentences shorter than 3
words or longer than 50 words were removed from the dataset.

3The code and the dataset are available at https://
github.com/ivri/dmorph

match the original derived form.

5.1 Baseline
As a baseline we considered a trigram model with
modified Kneser-Ney smoothing, trained on the
training dataset. Each sentence in the testing data
was augmented with a set of confabulated sen-
tences, where we replaced a target word with other
its derivations or a base form. Unlike the general
task, where we generate word forms as character
sequences, here we use a set of known inflected
forms for each lemma (from the training data). We
then use the language model to score the collections
of test sentences, and selected the variant with the
highest language model score, and evaluate accu-
racy of selecting the original word form.

5.2 Encoder–Decoder Model
We propose an encoder–decoder model. The en-
coder combines the left and the right contexts as
well as a character-level base form representation:

t = max(0, H · [h→left; h
←
left; h

→
right; h

←
right;

h→base; h
←
base] + bh),

where h→left, h←left, h→right, h←right, h→base,h←base corre-
spond to the last hidden states of an LSTM (Hochre-
iter and Schmidhuber, 1997) over left and right
contexts and the character-level representation of
the base form (in each case, applied forwards and
backwards), respectively; H ∈ R[h×l×1.5,h×l×6] is
a weight matrix, and bh ∈ R[h×l×1.5] is a bias term.
[; ] denotes a vector concatenation operation, h is
the hidden state dimensionality, and l is the number
of layers.

Next we add an extra affine transformation, o =
T · t + bo, where T ∈ R[h×l×1.5,h×l] and bo ∈
R[h×l], then o is then fed into the decoder:

g(cj+1|cj ,o, lj+1) =
softmax(R · cj + max (B · o, S · lj+1) + bd),

where cj is an embedding of the j-th character of
the derivation, lj+1 is an embedding of the corre-
sponding base character, B,S,R are weight matri-
ces, and bd is a bias term.

We now elaborate on the design choices behind
the model architecture which have been tailored to
our task. We supply the model with the lj+1 char-
acter prefix of the base word to enable a copying
mechanism, to bias the model to generate a derived
form that is morphologically-related to the base
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Shared Split

baseline 0.63 —
biLSTM+BS 0.58 0.36
biLSTM+CTX 0.80 0.45
biLSTM+CTX+BS 0.83 0.52
biLSTM+CTX+BS+POS 0.89 0.63
LSTM+CTX+BS+POS 0.90 0.66

Table 1: Accuracy for predicted lemmas (bases and deriva-
tions) on shared and split lexicons

verb. In most cases, the derived form is longer than
its stem, and accordingly, when we reach the end of
the base form, we continue to input an end-of-word
symbol. We provide the model with the context
vector o at each decoding step. It has been previ-
ously shown (Hoang et al., 2016) that this yields
better results than other means of incorporation.4

Finally, we use max pooling to enable the model to
switch between copying of a stem or producing a
new character.

5.3 Settings

We used a 3-layer bidirectional LSTM network,
with hidden dimensionality h for both context
and base-form stem states of 100, and charac-
ter embedding cj of 100.5 We used pre-trained
300-dimensional Google News word embeddings
(Mikolov et al., 2013a; Mikolov et al., 2013b). Dur-
ing the training of the model, we keep the word em-
beddings fixed, for greater applicability to unseen
test instances. All tokens that didn’t appear in this
set were replaced with UNK sentinel tokens. The
network was trained using SGD with momentum
until convergence.

5.4 Results

With the encoder–decoder model, we experimented
with the encoder–decoder as described in Sec-
tion 5.2 ( “biLSTM+CTX+BS”), as well as several
variations, namely: excluding context information
(“biLSTM+BS”), and excluding the bidirectional
stem (“biLSTM+CTX”). We also investigated how
much improvement we can get from knowing the
POS tag of the derived form, by presenting it ex-
plicitly to the model as extra conditioning context
(“biLSTM+CTX+BS+POS”). The main motiva-
tion for this relates to gerunds, where without the

4We tried to feed the context information at the initial step
only, and this led to worse prediction in terms of context-aware
suffixes.

5We also experimented with 15 dimensions, but found this
model to perform worse.

Figure 2: An example of t-SNE projection (Maaten and Hin-
ton, 2008) of context representations for simulate

POS, the model often overgenerates nominalisa-
tions. We then tried a single-directional context
representation, by using only the last hidden states,
i.e., h→left and h←right, corresponding to the words to
the immediate left and right of the wordform to be
predicted (“LSTM+CTX+BS+POS”).

We ran two experiments: first, a shared lexicon
experiment, where every stem in the test data was
present in the training data; and second, using a
split lexicon, where every stem in the test data was
unseen in the training data. The results are pre-
sented in Table 1, and show that: (1) context has a
strong impact on results, particularly in the shared
lexicon case; (2) there is strong complementarity
between the context and character representations,
particularly in the split lexicon case; and (3) POS
information is particularly helpful in the split lexi-
con case. Note that most of the models significantly
outperform our baseline under shared lexicon set-
ting. The baseline model doesn’t support the split
lexicon setting (as the derivational forms of interest,
by definition, don’t occur in the training data), so
we cannot generate results in this setting.

5.5 Error Analysis

We carried out error analysis over the produced
forms of the LSTM+CTX+BS+POS model. First,
the model sometimes struggles to differentiate be-
tween nominal suffixes: in some cases it puts an
agentive suffix (-er or -or) in contexts where a non-
agentive nominalisation (e.g. -ation or -ment) is
appropriate. As an illustration of this, Figure 2 is a
t-SNE projection of the context representations for
simulate vs. simulator vs. simulation, showing that
the different nominal forms have strong overlap.
Secondly, although the model learns whether to
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copy or produce a new symbol well, some forms
are spelled incorrectly. Examples of this are studint,
studion or even studyant rather than student as the
agentive nominalisation of study. Here, the issue
is opaqueness in the etymology, with student be-
ing borrowed from the Old French estudiant. For
transformations which are native to English, for
example, -ate 7→ -ation, the model is much more
accurate. Table 2 shows recall values achieved for
various suffix types. We do not present precision
since it could not be reliably estimated without
extensive manual analysis.

In the split lexicon setting, the model sometimes
misses double consonants at the end of words, pro-
ducing wraper and winer and is biased towards
generating mostly productive suffixes. An exam-
ple of the last case might be stoption in place of
stoppage. We also studied how much the training
size affects the model’s accuracy by reducing the
data from 1,000 to 60,000 instances (maintaining
a balance over lemmas). Interestingly, we didn’t
observe a significant reduction in accuracy. Finally,
note that under the split lexicon setting, the model
is agnostic of existing derivations, sometimes over-
generating possible forms. A nice illustration of
that is trailation, trailment and trailer all being pro-
duced in the contexts of trailer. In other cases, the
model might miss some of the derivations, for in-
stance, predicting only government in the contexts
of governance and government. We hypothesize
that it is either due to very subtle differences in
their contexts, or the higher productivity of -ment.

Finally, we experimented with some nonsense
stems, overwriting sentential instances of tran-
scribe to generate context-sensitive derivational
forms. Table 3 presents the nonsense stems, the
correct form of transcribe for a given context, and
the predicted derivational form of the nonsense
word. Note that the base form is used correctly
(top row) for three of the four nonsense words, and
that despite the wide variety of output forms, they
resemble plausible words in English. By looking at
a larger slice of the data, we observed some regu-
larities. For instance, fapery was mainly produced
in the contexts of transcript whereas fapication
was more related to transcription. Table 3 also
shows that some of the stems appear to be more
productive than others.

Affix R Affix R Affix R Affix R
-age .93 -al .95 -ance .75 -ant .65
-ation .93 -ator .77 -ee .52 -ence .82
-ent .65 -er .87 -ery .84 -ion .93
-ist .80 -ition .89 -ment .90 -or .64
-th .95 -ure .77 -y .83 NULL .98

Table 2: Recall for various suffix types. Here “NULL” corre-
sponds to verb–verb cases

Original Target Lemma

transcribe laptify fape crimmle beteive

transcribe laptify fape crimmle beterve
transcription laptification fapery crimmler betention
transcription laptification fapication crimmler beteption
transcription laptification fapionment crimmler betention
transcription laptification fapist crimmler betention
transcription laptification fapist crimmler beteption
transcript laptification fapery crimmler betention
transcript laptification fapist crimmler beteption

Table 3: An experiment with nonsense “target” base forms
generated in sentence contexts of the “original” word tran-
scribe

6 Conclusions and Future Work

We investigated the novel task of context-sensitive
derivation prediction for English, and proposed
an encoder–decoder model to generate nominalisa-
tions. Our best model achieved an accuracy of 90%
on a shared lexicon, and 66% on a split lexicon.
This suggests that there is regularity in derivational
processes and, indeed, in many cases the context
is indicative. As we mentioned earlier, there are
still many open questions which we leave for future
work. Further, we plan to scale to other languages
and augment our dataset with Wiktionary data, to
realise much greater coverage and variety of deriva-
tional forms.
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Abstract

What is the information captured by neural
network models of language? We address
this question in the case of character-level
recurrent neural language models. These
models do not have explicit word repre-
sentations; do they acquire implicit ones?
We assess the lexical capacity of a network
using the lexical decision task common in
psycholinguistics: the system is required
to decide whether or not a string of charac-
ters forms a word. We explore how accu-
racy on this task is affected by the architec-
ture of the network, focusing on cell type
(LSTM vs. SRN), depth and width. We
also compare these architectural properties
to a simple count of the parameters of the
network. The overall number of parame-
ters in the network turns out to be the most
important predictor of accuracy; in partic-
ular, there is little evidence that deeper net-
works are beneficial for this task.

1 Introduction

Neural networks have rapidly become ubiquitous
in natural language processing systems, but our
ability to understand those networks has not kept
pace: we typically have little understanding of a
typical neural network beyond its accuracy on the
task it was trained to do. One potential way to gain
insight into the ability of a trained model is to eval-
uate it on an interpretable auxiliary task that is dis-
tinct from the task that the network was trained on:
a network that performs a particular auxiliary task
successfully is likely to have internal representa-
tions that encode the information relevant for that
task (Adi et al., 2017; Mikolov et al., 2013). Lin-
guistics and psycholinguistics offer a rich reper-
toire of tasks that have been used for decades to

study the components of the human mind; it is nat-
ural to use these tasks to understand the abilities
of artificial neural networks (Dunbar et al., 2015;
Linzen et al., 2016).

The present work takes up character-level neu-
ral network language models. Such models
have been surprisingly competitive in applica-
tions, even though they do not explicitly represent
words (Chung et al., 2016; Kim et al., 2016). Our
goal is to shed light on the ability of character-
level models to implicitly learn a lexicon. We
use a task designed to investigate humans lexical
processes. This task is based on a simple ques-
tion: how well can the subject distinguish real
words from character strings that do not belong
to the language (nonwords)? Since character-level
language models define a probability distribution
over all character strings, we can perform this
task in a particularly straightforward way: given a
word and a nonword that are matched on low-level
properties such as length and character bigram fre-
quency, we expect the probability of the word to be
higher than the probability of the nonword.

We systematically explore how the performance
of the network on this task is affected by three ar-
chitectural parameters. First, we vary the depth
of the network (number of layers); second, we
vary the number of units in each layer; and finally,
we compare simple recurrent networks (SRN)
to networks with long short-term memory cells
(LSTM). We find that the main factor that deter-
mines the lexical capacity of the network is the to-
tal number of parameters rather than any one of
these architectural properties.

2 Lexical decision

The lexical decision task is widely used in cog-
nitive psychology to probe human lexical repre-
sentations (Meyer and Schvaneveldt, 1971; Balota
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et al., 2006). In the standard version of the task,
which we refer to as yes/no lexical decision, the
subject is presented with a string of characters—
e.g., horse in one trial or porse in another—and
is requested to indicate whether or not the string
makes up a word. A large array of properties of
the word (or nonword) have been found to influ-
ence human performance on the task, measured
in accuracy and reaction time; most famously, hu-
mans recognize frequent words more quickly and
accurately than infrequent ones.

Our goal is to administer the lexical decision
task to a character-level language model. Such a
language model should assign a higher probability
to words than to nonwords. At first blush, it ap-
pears straightforward to perform the task by fixing
a probability threshold and classifying all of the
strings whose probability falls above this threshold
as words and all of the strings that fall below it as
nonwords. In preliminary experiments, however,
we found it difficult to define such a threshold. At
a minimum, the probability assigned by the model
to strings strongly depends on their length, so nor-
malization for length is essential (see Lau et al.
(2016) for discussion); even after normalization,
however, it remained challenging to set a thresh-
old distinguishing words from nonwords.

Instead of the standard yes/no lexical decision
task, then, we use a forced choice variant of the
task (Baddeley et al., 1993). In this version, two
strings are simultaneously presented, one of which
is always a word and the other always a nonword;
subjects are instructed to select the item that they
believe is a word. The advantage of this setup is
that we can match each word with a nonword that
is maximally similar to it in length or any other
properties that may be relevant, thus avoiding
complicated probability normalization schemes.

3 Models

We tested two types of recurrent units: the classic
Elman (1990) architecture, which we refer to as
simple recurrent network (SRN), and Long Short-
Term Memory units, or LSTM (Hochreiter and
Schmidhuber, 1997). Since each LSTM unit con-
tains several gates and a memory cell, it has ap-
proximately four times as many connections as an
SRN unit, and therefore four times as many pa-
rameters.

The first layer of each network is a character
embedding. This layer is followed by one or more

recurrent layers with a tanh nonlinearity, each fol-
lowed by a batch normalization layer (Ioffe and
Szegedy, 2015). A pair of ‘view’ layers then re-
shape the tensor with a linear transformation be-
tween them, yielding predicted scores for each el-
ement of the vocabulary. Finally, the output is pro-
duced by a softmax layer that gives a probability
distribution over the next character.

How many parameters does each network have?
Let n be its number of recurrent layers, V the size
of the vocabulary (all possible characters), D the
size of the character embedding, and H the num-
ber of units per layer. Table 1 shows the number
of parameters in each layer:

Layer Parameters

Character embedding layer V D
First SRN layer H(D +H + 1)
First LSTM layer 4H(D +H + 1)
Additional SRN layer H(2H + 1)
Additional LSTM layer 4H(2H + 1)
Batch normalization layers H
First ‘view’ H
Linear transformation HV
Second ‘view’ V

Table 1: Number of parameters in each of the com-
ponents of the model.

In addition to the RNNs, we test two simple
baselines: a bigram and a unigram model of the
training set. The goal of these baselines is to eval-
uate the nonwords: if a unigram model can reli-
ably distinguish nonwords from words, the non-
words are not sufficiently challenging; this could
happen, for example, if the nonwords tend to have
rare characters such as Q or Z.

4 Methods

Corpus: We trained our language models on a
subset of the movie book project corpus (Zhu
et al., 2015); the subset contained approximately
50M characters (10M words). The corpus was
lowercased by its creators. We split the corpus
into training, validation and test sets (80%, 10%
and 10% of the data, respectively); this test set
was used only to calculate perplexity (see below).
The vocabulary we used to test our network in the
lexical decision task only included words that oc-
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Figure 1: Accuracy as a function of the complexity of the network. The dashed line represents chance
accuracy (50%). Each dot represents a single run.) (a) Detailed results by architecture, number of units
per layer (16, 32, 64 or 128) and number of layers. (b) Relationship between accuracy and total number
of parameters (on a logarithmic scale).

curred in the training set.1

Nonword generation: We generated nonwords
using a slightly modified version of Wuggy
(Keuleers and Brysbaert, 2010); we refer the
reader to the original paper and our published code
for further details.

The algorithm takes a list of words as its input
and outputs a matching nonword for each word of
the list. Matching is performed using a phono-
tactic grammar of the lexicon. This phonotactic
grammar is based on a segmentation of the words
into syllables and subsyllabic elements (onset, nu-
cleus and coda). A syllabification dictionary splits
the words into a sequence of syllables. Each syl-
lable is then segmented into subsyllabic elements
using a grammar of legal subsyllabic sequences.
Each subsyllabic element is represented by a tuple
that records its letters, position in the word, total
number of subsyllabic elements in the word and
the subsyllabic element that follows it. The first
three elements of the tuples form a “link”. The
frequency of a link is computed from the lexicon,
along with its possible next subsyllabic elements.
This makes up a “bigram chain” that describes the
phonotactics of the lexicon. For a given word, a
nonword is generated by the bigram chain with pa-
rameters as similar as possible as the input word.

1A network may be able to correctly perform a lexical
decision on words to which it has not been exposed if those
words follow the word formation rules of the language (e.g.,
Frenchify); we are exploring this issue in ongoing work.

Such parameters defined by the bigram chain can
be, but are not limited to, the total length of the
word and the transition probabilities between its
subsyllabic elements.

Task: The RNN defines a probability distribu-
tion over character strings. We performed the
forced choice task by calculating the probability
of the word and the probability of the nonword,
and selecting the string that had a higher proba-
bility; trials in which the probability of nonword
was higher were considered to be errors. To en-
sure that we were computing the probability of a
word rather than a prefix or suffix (e.g., cat as a
prefix of category), we added spaces on either side
of the word; e.g., we computed the probability of
‘ cat ’ rather than ‘cat’. We transformed the train-
ing corpus accordingly, to ensure that all words en-
countered during training contribute to the lexical
decision, including words preceded or followed by
a punctuation mark or a sentence boundary.

Experiments: We trained networks with all
combinations of unit type (LSTM or SRN), width
(16, 32, 64 or 128 hidden units per layer) and
depth (one, two or three hidden layers). To es-
timate the impact of random initialization on the
results, we trained six networks with each combi-
nation of parameters.2

We used a slightly modified version of Justin

2Our code can be found at https://github.com/
bootphon/char_rnn_lexical_decision.
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Figure 2: The relationship between character-level
perplexity and lexical decision accuracy. Each
point represent a single fitted model.

Johnson’s Torch implementation of character-level
RNNs.3 To prevent overfitting, the networks
were trained using early stopping based on vali-
dation set loss. They were optimized using Adam
(Kingma and Ba, 2015) with a learning rate of
2e−3. The number of distinct characters was
95, and the dimension of the character embed-
dings was 64. During training, the networks op-
erated over minibatches of size 50 and sequences
of length 50.

5 Results

The accuracy of the unigram and bigram baselines
was 49.6% and 52.1% respectively, very close to
chance accuracy (50%). This suggests that the
nonwords we generated were sufficiently difficult
to distinguish from the words. The results of the
RNNs we trained are shown in Figure 1a. All
of the three architectural parameters affected per-
formance in the task: networks with LSTM cells
performed better than SRNs with the same num-
ber of units and layers. Increasing the number
of units per layer was beneficial across the board.
Additional layers improved performance as well,
though the addition of the third layer was often
less beneficial than the addition of the second one.
Given a fixed budget of units, it was more useful
to deploy them in a wide and shallow network than
a narrow and deep network (e.g., an SRN with 32
hidden units in one layer outperformed an SRN
with 16 hidden units in two layers).

3https://github.com/jcjohnson/
torch-rnn

How much of the advantage of LSTMs is due to
the fact that they have more parameters per unit?
Figure 1b plots the accuracy of the same networks,
this time against the log-transformed number of
parameters. While there remains a slight advan-
tage for LSTMs over SRNs, especially as the num-
ber of parameters increases, it is evident that the
number of parameters is an excellent predictor of
the performance of the network. Of course, since
the dependencies that the network needs to model
to perform the lexical decision task are relatively
short, this task may not bring out the competitive
advantage of LSTMs, which are argued to excel in
tasks that require long dependencies.

We plot the relationship between the perplexity
of the language model and its accuracy in the lex-
ical decision task in Figure 2. This relationship is
not entirely surprising, given that low perplexity
indicates that the model assigns high likelihood to
the character sequences that occurred in the test
set, which are of course much more likely to be
words than nonwords. The two measures are far
from being identical, however. Perplexity incor-
porates the model’s ability to predict dependencies
across words; this is not the case for lexical deci-
sion, where performance may in fact be hindered
by irrelevant contextual information, as it is for hu-
mans (McDonald and Shillcock, 2001). Perplexity
also weights accurate prediction of frequent words
much more highly than infrequent words. Given
these differences, the measures could potentially
diverge in subsets of the lexicon.

6 Discussion

The lexical capacity measure that we have pro-
posed assigns the same weight to rare and frequent
words. As such, it may provide an alternative eval-
uation metric for character-based language mod-
els, supplementing the more standard measure of
perplexity, which is biased in favor of frequent
words and conflates lexical knowledge with longer
dependencies across words.

One advantage of the evaluation metric we have
proposed is that it is in principle possible to com-
pare it to human performance. This contrasts
with perplexity, which does not map onto any task
that can be given to humans, especially when the
model is at the character level. For example, our
preliminary analyses showed that the model makes
more errors on low-frequency than high-frequency
words, a pattern that is qualitatively similar to hu-
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mans (Ratcliff et al., 2004).
Some challenges remain, however, before a

quantitative comparison before humans and neu-
ral network language models can be performed.
Existing large-scale human behavioral datasets are
based on a speeded yes/no version of the task, in
which participants are instructed to make a lex-
ical decision on a single string of characters as
quickly as possible (Balota et al., 2007), whereas
our evaluation is based on the forced choice task
and does not incorporate time pressure. A be-
havioral dataset with the paradigm we have used
should be easy to collect using crowdsourcing. Al-
ternatively, direct comparison to existing human
datasets could be made possible by developing re-
liable ways to map language model probabilities
onto timed yes/no lexical decisions; our initial ex-
periments suggest that some nontrivial challenges
would need to be overcome before this direction
can be pursued.

Our work is related to early work that aimed
to measure the phonotactic knowledge of recur-
rent networks (Stoianov et al., 1998; Stoianov
and Nerbonne, 2000). This idea was developed
by Testolin et al. (2016), who use the lexical de-
cision task to measure the orthographic knowl-
edge of various neural networks and n-gram mod-
els. The Naive Discriminative Learner (Baayen
et al., 2011), which can be seen as a simple non-
recurrent neural network, has been used to model
human lexical decision reaction times. Finally, our
work is related to work on syntax that evaluated
whether a word-level language model assigns a
higher probability to an grammatical sentence than
to a minimally different ungrammatical one (Lau
et al., 2016; Linzen et al., 2016; Sennrich, 2017).

In summary, the main result of this study is that
with a sufficient number of parameters character-
level neural networks are able to perform lexical
decisions with high levels of performance, despite
not being trained on this task. A second important
result is that the main predictor of lexical decision
accuracy was the total number of parameters in the
network; we found no evidence that deep networks
are superior to shallow and wide ones on this task.

Acknowledgements

We thank Emmanuel Keuleers for his assistance
with the Wuggy nonword generator. This research
was supported by the European Research Coun-
cil (grant ERC-2011-AdG 295810 BOOTPHON)

and the Agence Nationale pour la Recherche
(grants ANR-10-IDEX-0001-02 PSL and ANR-
10-LABX-0087 IEC).

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In International Conference on Learning
Representations.

R. Harald Baayen, Petar Milin, Dusica F. Djurdjević,
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Abstract

In this paper we argue that the distribution
of article omission in newspaper headlines
is constrained by information-theoretical
principles (Shannon 1948). To this effect,
we present corpus data and results from an
acceptability rating study. Both point in
the same direction: In our corpus, articles
are significantly more frequent, when they
precede a less predictable head noun. And
subjects perceive article omission as more
acceptable, if the head noun is (compara-
bly) more predictable. This is in line with
the information-theoretical prediction that
article omission should be preferred over
the overt realization of an article (provided
that article omission is grammatical in the
first place), if the head noun is comparably
predictable in its local context.

1 Introduction

Functional deletion, that is the non-realization of,
for example, complementizers (1), or articles (2),
is a frequent phenomenon across text types.

(1) My boss thinks (that) I’m absolutely crazy.
(Jaeger 2010:31)

(2) Gündogan set to miss ∅ rest of ∅ season
with ∅ cruciate injury.

(guardian.co.uk, 16.12.2016)

As the brackets in example (1) indicate, functional
deletion is typically optional. However, if it is in
fact an optional process (in a given genre), this
raises the question why functional expressions are
overtly realized in some cases, but not in others.
In this paper, we want to argue that Information

∗ We would like to thank four anonymous reviewers
for valuable comments and suggestions. All remaining errors
are, of course, ours.

Theory is at least part of the story. This has al-
ready been shown in Jaeger (2010) with respect to
the phenomenon of complementizer deletion, and
we would like to add further evidence in support
of this hypothesis from article omission.

In contrast to standard written German, see (4),
newspaper headlines in German (and many other
languages) allow for bare singular noun phrases
(NPs), see for example the headline in (3) from the
online newspaper Zeit.de (2016/12/01); for a more
thorough overview over the phenomenon, see e.g.
Sandig (1971), Stowell (1996), or Reich in press
as well as the references cited therein.

(3) ∅
∅

Niederlage
defeat

für
for

die
the

ganze
whole

Gesellschaft
society

(4) Er
he

berichtet
reports

von
of

*(einer)
*(a)

Niederlage
defeat

für
for

die
the

ganze
whole

Gesellschaft
society

Like complementizer deletion, article omission in
newspaper headlines is an optional process. Both
the attested Niederlage für die ganze Gesellschaft
and the constructed Eine Niederlage für die ganze
Gesellschaft are, at least in principle, grammatical
/ acceptable newspaper headlines in German.

Previous research on article omission focused
on specific structural constraints (e.g. to account
for the structural asymmetry in article omission
observed in Stowell 1996), and on specific con-
structions (like article omission in the complement
of a preposition; see Kiss 2010), but less so on
the question why in a given utterance token in a
specific context an article is or is not realized. A
notable exception is the work by De Lange and
colleagues (see for example De Lange 2008, De
Lange et al. 2009). De Lange and colleagues,
however, investigate article omission in newspa-
per headlines primarily from a typological per-
spective and relate omission frequencies (on the
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basis of Information Theory) to the overall com-
plexity of the respective article systems along the
following lines: The more complex an article sys-
tem is, the less predictable is a given article (like
German der, die or das, for example); and the
less predictable a given article is, the more pres-
sure there is to overtly realize the article. Like De
Lange and colleagues, we will also argue in the
following that information-theoretical considera-
tions are relevant in the description and analysis
of article omission. In contrast to De Lange and
colleagues, however, we consider article omission
as a function of the predictability of the follow-
ing head noun in a given local linguistic context
(rather than as a function of the predictability of
an article relative to a given article system).

2 Background: Information Theory and
functional deletion

Information Theory relies on a probabilistic no-
tion of information, whereby the amount of in-
formation conveyed by some unit is derived from
its probability to occur given the previous con-
text. Applied to sentence comprehension, the in-
formation, or surprisal (Hale 2001), of a word α
in a given context c is calculated as the negative
logarithm of the probability of α in c , in short
Surprisal(α) = −log2P(α|c). Hence, highly pre-
dictable words are less informative while highly
unpredictable words are more informative. Com-
munication is modeled as occurring through a
noisy channel with limited capacity, which speak-
ers should approximate in order to communicate
efficiently. Exceedance of channel capacity is to
be avoided and penalized with additional process-
ing load. Consequently, speakers tend to distribute
information uniformly across an utterance at a
transmission rate close to channel capacity. This
is argued for by Aylett & Turk (2004), De Lange
et al. (2009), Genzel & Charniak (2002), Levy &
Jaeger (2007), among others. In Jaeger (2010) the
principle guiding the speaker in choosing between
grammatical alternatives is called the Uniform In-
formation Density Hypothesis (UID):

Uniform Information Density (UID)
Within the bounds defined by grammar,
speakers prefer utterances that distribute
information uniformly across the signal
(information density). Where speakers
have a choice between several variants
to encode their message, they prefer the

variant with more uniform information
density (ceteris paribus).

(Jaeger 2010: 25)

To get an idea of how the UID might relate to arti-
cle omission, consider figure 1. Figure 1 illustrates
the surprisal profiles of three different encodings
of one and the same message (that tomorrow the
judge pronounces the sentence). These encodings
only differ in the (non-)realization of the relevant
articles. As is apparent from the surprisal profiles,
the low surprisal values of the articles der and das
create substantial troughs. As a result, the sur-
prisal profile of the encoding with overt articles is
significantly less uniform than the surprisal profile
without articles. The UID thus predicts that, other
things being equal, the latter encoding should be
preferred over the former encoding.

Figure 1: The surprisal profile of the headline
Morgen verkündet der Richter das Urteilis more
uniform in case of article omission across the
board (based on trigrams calculated on the FraC
corpus)

Jaeger (2010) argues, based on a corpus study, that
the UID constrains the distribution of complemen-
tizer deletion in English. He shows that the inser-
tion of a complementizer systematically reduces
the surprisal on the following word(s). Thus, if
the occurrence of a complement clause is highly
unpredictable, the insertion of a complementizer
might lead to a more uniform surprisal profile
by significantly reducing the high surprisal of the
word(s) to follow. On the other hand, if a comple-
ment clause is highly predictable and its onset less
informative, dropping the complementizer might
be the better option with respect to the UID.
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A similar reasoning could apply to article omis-
sion: Again, speakers have to choose between
grammatical alternatives which convey essentially
the same proposition, which however differ in the
way they distribute the relevant information across
the utterance. Horch & Reich (2016) argue, based
on language models trained on POS tags, that the
insertion of an article systematically lowers the
surprisal of the following noun. Now, given the
results in Jaeger (2010), it seems straightforward
to assume that speakers also exploit this kind of
variation in order to optimize the surprisal pro-
files of their utterances. Specifically, speakers are
expected to prefer overt articles if they precede
nouns with rather high surprisal, and to prefer ar-
ticle omission, if they precede nouns with rather
low surprisal (in order to raise the surprisal on
the noun and to distribute the information encoded
more uniformly across the utterance).

3 Corpus study

If speakers (and writers) try to optimize their ut-
terances w.r.t. information-theoretic constraints,
this should be reflected in production preferences
and therefore in corpora of text types which allow
for the respective omissions. However, accurately
finding all instances of article omission is not a
trivial issue, as there are several special cases of
singular nouns which allow for or even require ar-
ticle omission even in standard written German,
e.g. predicative (5a) or mass nouns (5b). The dis-
tinction between those cases and “genuine” cases
of article omission thus requires a corpus, in which
the relevant cases are explicitly annotated.

(5) a. Ich
I

bin
am

(ein)
a

Student.
student.

I am a student.
b. Wir

We
brauchen
need

noch
still

(*ein/#das)
a/the

Mehl.
flour
We still need flour.

Therefore, we tested our hypothesis on the FraC
corpus (Horch 2016), which is text type-balanced
and has been annotated by hand for different types
of ellipses. Omitted articles are annotated with
a placeholder NoArt in the corpus. The corpus
contains about 17 different text types (2.000 sen-
tences each) ranging from prototypically written
(e.g. newspaper articles) to prototypically spoken

(e.g. dialogues) text types.
We pre-processed the corpus by removing all ar-

ticles and lemmatizing it. Then we computed each
word’s surprisal by training a bigram language
model using Kneser-Ney smoothing (Kneser &
Ney 1995) in an interpolated backing-off scheme
(Katz 1987) with the SRILM toolkit (SRI Interna-
tional). Bigram surprisal was chosen in order to
obtain a sensible measure given the small size of
the corpus.

For reasons of comparison, we restricted our in-
vestigation to noun phrases that immediately fol-
low a finite verb. The (bigram) surprisal of a noun
is then equivalent to −log2p(noun|verb). Due to
the elimination of the articles from the training set,
this figure only reflects the subcategorization pref-
erences of the verb lemma in question and is not
affected by the occurrence of an article in the orig-
inal corpus. We take this to be a psychologically
sensible measure of noun informativity.

For the analysis, we extracted all 131 postver-
bal nouns from the corpus. 50 of these are headed
by an overt article, while the remaining 81 are
not. The histogram in figure 2 shows the distribu-
tion of article omission across surprisal values and
indicates that article omission is preferred more
strongly for less informative nouns. We analyzed
the data with a mixed effects logistic regression
with random intercepts for noun lemmata and verb
lemmata using the lme4 (Bates et al., 2015) pack-
age in R (R Core Team, 2016). The integration of
random slopes into the model were not appropri-
ate due to the small size of the data set. A likeli-
hood ratio test computed with the anova function
in R shows that the model containing SURPRISAL

as main effect fits significantly better to the data
than a baseline model with random effects and the
intercept only (χ2 = 9.7, p < 0.01). The main ef-
fect of SURPRISAL indicates that, as predicted by
the UID, article omission is more likely the less
informative the corresponding noun is.

4 Experimental study

The corpus study provides first support for our hy-
pothesis, but the amount of appropriate data in the
FraC headlines is rather small in absolute terms. It
would be desirable to test the validity of the hy-
pothesis on a larger corpus, but this is complicated
by the reasons discussed in the previous section.

If speakers have a general preference for encod-
ings conforming to UID though, these are proba-
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Figure 2: Histogram of NPs with and without
overt articles in the headlines in FraC.

bly not only reflected in their production choices
but also in the perception of well-formedness. We
therefore shifted towards investigating our hypoth-
esis with an acceptability rating study, which com-
pared the acceptability of ARTICLEOMISSION as
a function of SURPRISAL of a postverbal noun in
constructed newspaper headlines a 2 × 2 design.

In order to obtain verb subcategorization pref-
erences from a larger corpus, in this occasion
we used the German Reference Corpus DeReKo
(Kupietz & Keibel 2009), which contains mostly
written text of different text types, e.g. scientific
literature, fiction and newspaper articles. The cor-
pus is accessible and searchable with the COS-
MAS II web interface, which we used to extract
around 3.1 M instances of immediately postverbal
nouns from the corpus. By “immediately postver-
bal” we understand such nouns that are at most
separated by an article and/or one adjective from
the preceding verb. The data set was pre-processed
by removing all intervening articles and adjec-
tives between noun and verb and lemmatized. Af-
ter that, we computed surprisal as Surprisal =
−log2p(noun|verb). Our measure of surprisal is
hence identical to the one used in the corpus study
and reflects the subcategorization preference of the
verb.

A sample item is given in (6). We constructed
versions of the items with and without article
omission and with a low (Projekt in (6)) and a
highly informative noun (Klage), yielding 4 condi-
tions. While surprisal was treated as a binary vari-
able for distributing the materials across subjects,
in the statistical analysis it was a numeric predictor
in order to account for relative differences between

more and less informative nouns.

(6) Papst
pope

Franziskus
Francis

unterstützt
supports

(das| ∅)
(das|∅)

(Projekt|Klage)
(project|claim)

gegen
against

Kinderarbeit.
child.labor

‘Pope Francis supports the project/claim
against child labor.’

74 subjects rated 28 items (7 per condition) which
were mixed with 92 unrelated fillers (constructed
headlines as well) in a web-based questionnaire on
a 7-point Likert scale. Subjects participated in a
lottery of 10 × 30 euros as a reward. The rolling
averages plot in figure 3 provides an overview of
the distribution of ratings across the range of sur-
prisal values tested and indicates that article omis-
sion is preferred for uninformative nouns.

5.00
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6.00

4 6 8 10 12
Interval mean

M
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Figure 3: Rolling averages plot for the rating data.
The plot shows mean ratings for all items con-
tained in an interval of size 3, whose mean is dis-
played on the x-axis of the plot. For instance, the
value at x = 6 is equivalent to the mean rating of
all items ranging from a noun surprisal of 4.5 to
7.4. This smoothing technique allows to observe a
general trend by averaging over individual values.

We analyzed the data with Cumulative Link
Mixed Models for ordinal data with the ordinal
package in R (Christensen, 2015). Besides a gen-
eral preference for article omission across our
items in fillers which is in line with the prefer-
ence for article omission in the postverbal NPs
in the corpus and is thus not of theoretic inter-
est to us on itself, there is a significant interac-
tion (z = 2.9, p < 0.01) between ARTICLEOMIS-
SION and NOUNPREDICTABILITY indicating that
article omission is specifically preferred for low
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informative nouns, while the difference between
conditions vanishes for informative nouns. This
indicates that the article is specifically redundant
in the context of uninformative nouns.

5 Discussion and outlook

Starting from the observation that the insertion of
articles lowers the surprisal of the following noun
(Horch & Reich 2016), we investigated in this pa-
per whether article omission is the more preferred
the less informative the following head noun is,
as predicted by Information Theory. We modeled
the linguistic context by falling back on the sub-
categorization preferences of verbs and confirmed
our hypothesis with both a corpus study on article
omission in German newspaper headlines and an
acceptability rating study. The rating study sug-
gests that subjects are in fact aware of the sub-
tle and gradient contrasts in terms of information
density and indicates that their preferences mirror
the corpus data. Our results are thus in line with
Jaeger’s (2010) study on complementizer deletion
and provide further evidence for the usefulness of
applying information-theoretical concepts to the
analysis of natural language.

It would be desirable, of course, to confirm
these results with larger corpora and for a larger
variety of contexts. This, however, requires high
quality automatic annotation of article omissions
in large-scale corpora, which is to the best of our
knowledge currently not yet available.
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Abstract

We present a computational analysis of the
language of drug users when talking about
their drug experiences. We introduce a
new dataset of over 4,000 descriptions of
experiences reported by users of four main
drug types, and show that we can predict
with an F1-score of up to 88% the drug be-
hind a certain experience. We also perform
an analysis of the dominant psycholinguis-
tic processes and dominant emotions asso-
ciated with each drug type, which sheds
light on the characteristics of drug users.

1 Introduction

The World Drug Report globally estimated that in
2012, between 162 million and 324 million peo-
ple, corresponding to between 3.5 per cent and
7.0 per cent of the world population aged 15-64,
had used an illicit drug (United Nations Office,
2014). Moreover, in recent years, drug users have
started to share their experiences on Web forums.1

The availability of this new and very large form
of data presents new opportunities to analyse and
understand the “drug use phenomenon.” Recent
studies have shown how by processing these data
with language processing techniques, it is possible
to perform tasks of toxicovigilance, e.g., finding
new drugs trends, adverse reactions, geographic
and demographic characterizations (Chary et al.,
2013). Other studies have also focused on the phe-
nomenon of intoxication (Schuller et al., 2014).
However, despite the interest around these topics,
as far as we know, textual corpora of drug addicts
experiences are not yet available.

1www.erowid.org: 95000 unique visitor per day;
www.drugs-forum.com: 210000 members with 3.6 mil-
lion unique visitor per month; www.psychonaut.com:
46000 members.

In this paper we introduce a corpus that can be
exploited as a basis for a number of computational
explorations on the language of drug users. One
of the most controversial and interesting issues in
addictionology studies is to understand why drug
consumers prefer a particular type of drug over an-
other. Actually differentiating drugs with respect
to their subjective effects can have an important
impact on clinical drug treatment, since it can al-
low clinicians to better characterize the patient in
therapy, with regard to the effect they seek through
the drugs they use.

The paper is organized as follows. We first re-
view the related work, followed by a description of
the dataset of drug addict experiences that we con-
structed. Next, we present a classification experi-
ment on predicting the drug behind an experience.
We then present specific analyses of the language
of drug users, i.e. their psycholinguistic processes
and the emotions associated with an experience.
Lastly, we conclude the paper and present some
directions for future work.

2 Related Work

An important research on texts from social me-
dia was the platform PreDOSE (Cameron et al.,
2013), designed to facilitate the epidemiologi-
cal study of prescription (and related) drug abuse
practices, or its successors: eDrugTrends2 and
iN3.3 Another significant work was that of Paul
and Dredze (2012; 2013). They developed a
new version of Blei’s LDA, factorial LDA, and
for each drug, they were able to collect multi-
ple topics (route of administration, culture, chem-
istry, etc.) over posts collected from the website
www.drugs-forum.com. The main directions

2http://medicine.wright.edu/citar/edrugtrends
3http://medicine.wright.edu/citar/nida-national-early-

warning-system-network-in3-an-innovative-approach
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of research on the state of consciousness are fo-
cused on alcoholic intoxication and mostly per-
formed on the Alcohol Language Corpus (Schiel
et al., 2012), only available in German: for ex-
ample, speech analysis (Wang et al., 2013; Bone
et al., 2014) and a text based system (Jauch et
al., 2013) were used to analyse this data. Re-
garding alcohol intoxication detection, (Joshi et
al., 2015) developed a system for automatic de-
tection of drunk people by using their posts on
Twitter. (Bedi et al., 2014) performed their anal-
ysis on transcriptions from a free speech task,
in which the participants were volunteers previ-
ously administered with a dose of MDMA (3,4-
methylenedioxy-methamphetamine). Even if this
is an ideal case study for analyzing cognitively the
intoxication state, it is difficult to replicate on a
large scale. Finally, as far as we know, the only
attempt to classify and characterize experiences
over different kinds of drugs was the project of
(Coyle et al., 2012). Using a random-forest clas-
sifier over 1,000 random-collected reports of the
website www.erowid.org they identified sub-
sets of words differentiated by drugs.

Our research is also related to the broad theme
of latent user attribute prediction, which is an
emerging task within the natural language process-
ing community, having recently been employed
in fields such as public health (Coppersmith et
al., 2015) and politics (Conover et al., 2011; Co-
hen and Ruths, 2013). Some of the attributes tar-
geted for extraction focus on demographic related
information, such as gender/age (Koppel et al.,
2002; Mukherjee and Liu, 2010; Burger et al.,
2011; Van Durme, 2012; Volkova et al., 2015),
race/ethnicity (Pennacchiotti and Popescu, 2011;
Eisenstein et al., 2011; Rao et al., 2011; Volkova
et al., 2015), location (Bamman et al., 2014), yet
other aspects are mined as well, among them emo-
tion and sentiment (Volkova et al., 2015), per-
sonality types (Schwartz et al., 2013; Volkova et
al., 2015), user political affiliation (Cohen and
Ruths, 2013; Volkova and Durme, 2015), men-
tal health diagnosis (Coppersmith et al., 2015)
and even lifestyle choices such as coffee prefer-
ence (Pennacchiotti and Popescu, 2011). The task
is typically approached from a machine learning
perspective, with data originating from a variety
of user generated content, most often microblogs
(Pennacchiotti and Popescu, 2011; Coppersmith
et al., 2015; Volkova et al., 2015), article com-

ments to news stories or op-ed pieces (Riordan
et al., 2014), social posts (originating from sites
such as Facebook, MySpace, Google+) (Gong et
al., 2012), or discussion forums on particular top-
ics (Gottipati et al., 2014). Classification labels
are then assigned either based on manual annota-
tions (Volkova et al., 2015), self identified user at-
tributes (Pennacchiotti and Popescu, 2011), affilia-
tion with a given discussion forum type, or online
surveys set up to link a social media user iden-
tification to the responses provided (Schwartz et
al., 2013). Learning has typically employed bag-
of-words lexical features (ngrams) (Van Durme,
2012; Filippova, 2012; Nguyen et al., 2013), with
some works focusing on deriving additional sig-
nals from the underlying social network structure
(Pennacchiotti and Popescu, 2011; Yang et al.,
2011; Gong et al., 2012; Volkova and Durme,
2015), syntactic and stylistic features (Bergsma
et al., 2012), or the intrinsic social media gener-
ation dynamic (Volkova and Durme, 2015). We
should note that some works have also explored
unsupervised approaches for demographic dimen-
sions extraction, among them large-scale cluster-
ing (Bergsma et al., 2013) and probabilistic graph-
ical models (Eisenstein et al., 2010).

3 Dataset

A corpus of drug experiences was collected from
the user forum section of the www.erowid.
org website. The data collection was performed
semi-automatically, considering the most well-
known drugs and those with a large number of re-
ports. The corpus consists of 4,636 documents,
any user ID removed, split into four main cate-
gories according to their main effects (U.S. De-
partment of Justice, 2015): (1) Empathogens
(EMP), covering the following substances: MDA,
MDAI, MDE, MBDB, MDMA; (2) Hallu-
cinogens (HAL), which include 5-MeO-DiPT,
ayahuasca, peyote, cacti (trichocerus pachanoi,
peruvianus, terschekcii, cuzcoensis, bridgesi and
calea zachatechichi), mescaline, cannabis, LSD,
belladonna, DMT, ketamine, salvia divinorum,
hallucinogen mushrooms (psilocybe cubensis,
semilanceata, ‘magic mushrooms’), PCP, 2C-B
and its derivatives (2C-B-FLY, 2C-E, 2C-I, 2C-
T-2,2C-T-7); (3) Sedatives (SED), which in-
clude alcohol, barbitures, buprenorphine, heroin,
morphine, opium, oxycodone, oxymorphone, hy-
drocodone, hydromorphone, methadone, nitrous-
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oxide, DXM (dextromethorphan) and benzodi-
azepines (alprazolam, clonazepam, diazepam, flu-
nitrazepam, flurazepam, lorazepam, midazolam,
phenazepam, temazepam); (4) Stimulants (STI),
including cocaine, caffeine, khata edulis, nicotine,
tobacco, methamphetamines, amphetamines.

In the scientific literature about drug users,
“purists” (i.e., consumers of only one specific sub-
stance) are rare. Nonetheless, when collecting the
data, we decided to consider only reports describ-
ing one single drug in order to avoid the pres-
ence of a report in multiple categories, as well as
to avoid descriptions of the interaction of multi-
ple drugs, which are hard to characterize and still
mostly unknown. Table 1 presents statistics on the
dataset, while Table 2 shows excerpts from expe-
riences reported for each drug type.4

Drug type Number reports Total words
EMP 399 378,478
HAL 2,806 3,494,223
SED 954 692,121
STI 480 449,596

Table 1: Corpus statistics.

4 Predicting the Drug behind an
Experience

To determine if an automatic classifier is able to
identify the drug behind a certain reported expe-
rience, we create a document classification task
using Multinomial Naı̈ve Bayes, and use the de-
fault information gain feature weighting associ-
ated with this classifier. Each document corre-
sponds to a report labelled with its corresponding
drug category. Only minimal preprocessing was
applied, i.e., part-of-speech tagging and lemma-
tization. No particular feature selection was per-
formed, only stopwords were removed, keeping
nouns, adjectives, verbs, and adverbs. Since the
major class in the experiment was the hallucino-
gens category, we set the baseline corresponding
to its percentage: 61%. In evaluating the sys-
tem we perform a five-fold cross-validation, with
an overall F1-score (micro-average) of 88%, in-
dicating that good separation can be obtained by

4Note that each report is annotated with a set of metadata
attributes, such as gender, age at time of experience, dose and
number of views; these attributes are not used in the exper-
iments reported in this paper, but we plan to use them for
additional analyses in the future.

an automatic classifier (see Table 3). Not surpris-
ingly, the hallucinogen experiences are the easiest
to classify, probably due to the larger amount of
data available for this drug.

Table 4 shows a sample of the most informa-
tive features for the four categories. For exam-
ple, we can observe that those using emphatogens
are more “night”-oriented, while those addicted to
sedatives and stimolants are “day”-oriented. In-
stead, the use of hallucinogens seems to be as-
sociated with a perceptual visual experience (i.e.,
see#v).

5 Understanding Drug Users

5.1 Psycholinguistic Processes

To gain a better understanding of the character-
istics of drug users, we analyse the distribution
of psycholinguistic word classes according to the
Linguistic Inquiry and Word Count (LIWC) lex-
icon – a resource developed by Pennebaker and
colleagues (Pennebaker and Francis, 1999). The
2015 version of LIWC includes 19,000 words and
word stems grouped into 73 broad categories rele-
vant to psychological processes. The LIWC lexi-
con has been validated by showing significant cor-
relation between human ratings of a large number
of written texts and the rating obtained through
LIWC-based analyses of the same texts.

For each drug type T , we calculate the domi-
nance score associated with each LIWC class C
(Mihalcea and Strapparava, 2009). This score is
calculated as the ratio between the percentage of
words that appear in T and belong to C, and the
percentage of words that appear in any other drug
type but T and belong to C. A score significantly
higher than 1 indicates a LIWC class that is dom-
inant for the drug type T , and thus likely to be a
characteristic of the experiences reported by users
of this drug.

Table 5 shows the top five dominant psycholin-
guistic word classes associated with each drug
type. Interestingly, descriptions of experiences
reported by users of empathogens are centered
around people (e.g., Affiliation – which includes
words such as club, companion, collaborate; We;
Friend). Hallucinogens result in experiences that
relate to the human senses (e.g., See, Hear, Per-
ception). The experiences of users of sedatives
and stimulants appear to be more concerned with
mundane topics (e.g., Money, Work, Health).

To quantify the similarity of the distributions
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Drug Type Example
EMP I found myself witnessing an argument between a man and a woman whom I’ve never met. I felt empathetic

towards both of them, recognizing their struggle, he meant well, but couldn’t find the right words, she, ob-
viously cared a great deal for him but was doubtful of his intentions. The Argument escalated and I became
very disturbed...I had to open my eyes again. My heart rate was up, my breathing was heavy, I had found a
window to my own fears, to see what frustrates you the most, and not be able to do anything about it.

HAL After watching TV for a bit I looked around the room and was suddenly jerked awake, I felt vibrant, alive and
aware of my entire physical body. The friction of blood in my veins, the movement of my diaphragm, the
tensing of muscles, the clenching of my heart. I looked down at my hands and was acutely aware of the bones
within, I could feel the flesh sliding over the bone internally while my normal sense of touch was reduced so
every thing felt like cold chrome.

SED Feeling kind of nausea, but I’m not worried about throwing up. Shooting great pool, I’m making several shots
in a row. I’m so happy right now, I would like to be like this all day. I’m begining to notice that I’m having
slight audio hallucinations, like hearing small noises that aren’t there. Also some slight visual hallucinations,
thinking I see something move nearby but nothing alive is even close to me.

STI I get up in the morning for work and do about two lines while I’m getting ready and somehow manage to
make it through work without a line. Not that I don’t want to only because of the fear of getting caught. I can
say that it takes the edge off things at work though. Through the evening I do a line whenever I feel like it. At
bedtime I tell myself over and over that it’s time to go to sleep. Sometimes I sleep but if I can’t I know I have
my friend to help me through the next day.

Table 2: Sample entries in the drug dataset.

Prec. Rec. F1
EMP 0.84 0.71 0.77
HAL 0.93 0.92 0.92
SED 0.86 0.86 0.86
STI 0.73 0.85 0.78
micro-average 0.88

Table 3: Naı̈ve Bayes classification performance.

EMP experience#n good#a pill#n people#n
about#r drug#n night#n start#v

HAL see#v experience#n trip#n look#v
back#r say#v try#v down#r as#r

SED day#n drug#n start#v about#r try#v
good#a hour#n still#r effect#n

STI day#n drug#n coke#n good#a try#v
start#v about#r want#v really#r

Table 4: Most informative features (words and
parts-of-speech).

of psycholinguistic processes across the four drug
types, we also calculate the Pearson correla-
tion between the dominance scores for all LIWC
classes. As seen in Table 6, empathogens appear
to be the most dissimilar with respect to the other
drug types. Hallucinogens instead seem to be most
similar to stimulants and sedatives.

5.2 Emotions and Drugs

Another interesting dimension to explore in rela-
tion to drug experiences is the presence of various
emotions. To quantify this dimension, we use a

methodology similar to the one described above,
and calculate the dominance score for each of six
emotion word classes: anger, disgust, fear, joy,
sadness, and surprise (Ortony et al., 1987; Ekman,
1993). As a resource, we use WordNet Affect
(Strapparava and Valitutti, 2004), in which words
from WordNet are annotated with several emo-
tions. As before, the dominance scores are cal-
culated for the experiences reported for each drug
type when compared to the other drug types.

Table 7 shows the scores for the four drug types
and the six emotions. A score significantly higher
than 1 indicates a class that is dominant in that
category. Clearly, interesting differences emerge
from this table: the use of emphathogens leads
to experiences that are high on joy and surprise,
whereas the dominant emotion in the use of hallu-
cinogens as compared to the other drugs is fear.
Sedatives lead to an increase in disgust, while
stimulants have a mix of anger and joy.

6 Conclusions

Automating language assessment of drug addict
experiences has a potentially large impact on both
toxicovigilance and prevention. Drug users are in-
clined to underreport symptoms to avoid negative
consequences, and they often lack the self aware-
ness necessary to report a drug abuse problem. In
fact, often times people with drug misuse prob-
lems are reported on behalf of a third party (social
services, police, families), when the situation is no
longer ignorable.

In this paper, we introduced a new dataset
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EMP HAL SED STI
Affiliation 1.76 See 1.81 Health 2.26 Money 2.25
We 1.63 Relig 1.72 Ingest 1.59 Ingest 1.75
Friend 1.46 Hear 1.44 Money 1.51 Work 1.64
Positive Emotions 1.41 Perception 1.24 Bio 1.50 Sexual 1.58
Sexual 1.34 Home 1.23 Swear 1.40 Swear 1.39

Table 5: Psycholinguistic word classes dominant for each drug type.

EMP HAL SED STI
EMP 1.00 0.34 0.03 0.15
HAL 1.00 0.80 0.83
SED 1.00 0.67
STI 1.00

Table 6: Pearson correlations of the LIWC domi-
nance scores.

EMP HAL SED STI
Anger 1.09 0.91 1.01 1.13
Disgust 0.82 0.53 2.68 0.94
Fear 0.89 1.26 0.78 0.84
Joy 1.26 0.85 1.07 1.11
Sadness 1.08 0.95 0.96 1.09
Surprise 1.46 0.92 0.94 0.90

Table 7: Emotion word classes dominant for each
drug type. Dominance scores larger than 1.10 are
shown in bold face.

of drug use experiences, which can facilitate
additional research in this space. We have
described preliminary classification experiments,
which showed that we can predict the drug behind
an experience with a performance of up to 88%
F1-score. To better understand the characteristics
of drug users, we have also presented an analysis
of the psycholinguistic process and emotions as-
sociated with different drug types.

We would like to continue the present work
along the following directions: (i) Extend the cor-
pus with texts written by people who supposedly
do not ordinarily make use of drugs, using pa-
tient submitted forum posts when talking about
ordinary medicines. The style of such patient
submitted posts is expected to be similar to the
one of drug experience reports, since both address
writing about an experience with some particu-
lar substance; (ii) Explore the association between
drug preferences and personality types. Following
Khantzian’s hypothesis (Khantzian, 1997), certain

personalities may be more prone to a particular
drug with respect to its subjective effects. Char-
acterizing subjects by their potential drug prefer-
ences could enable clinicians, like in a reversed
“recommender system,” to explicitly warn their
patients to avoiding particular kind of substances
since they could become addictive.

The dataset introduced in this paper is available
for research purposes upon request to the authors.
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Abstract

Latent structured prediction theory pro-
poses powerful methods such as Latent
Structural SVM (LSSVM), which can po-
tentially be very appealing for coreference
resolution (CR). In contrast, only small
work is available, mainly targeting the la-
tent structured perceptron (LSP). In this
paper, we carried out a practical study
comparing for the first time online learn-
ing with LSSVM. We analyze the intrica-
cies that may have made initial attempts
to use LSSVM fail, i.e., a huge training
time and much lower accuracy produced
by Kruskal’s spanning tree algorithm. In
this respect, we also propose a new effec-
tive feature selection approach for improv-
ing system efficiency. The results show
that LSP, if correctly parameterized, pro-
duces the same performance as LSSVM,
being at the same time much more effi-
cient.

1 Introduction

Recent research on CR has shown effective ap-
plications of structured prediction, e.g., the latent
structured perceptron (LSP) by Fernandes et al.
(2014) obtained the top rank in the CoNLL-2012
Shared Task (Pradhan et al., 2012). There has been
an exploration of LSP variants (Chang et al., 2011;
Björkelund and Kuhn, 2014; Lassalle and De-
nis, 2015), and also of SGD-like methods (Chang
et al., 2013; Peng et al., 2015; Kummerfeld et al.,
2015). Surprisingly, no study was devoted to
LSSVM by Yu and Joachims (2009), which of-
fers theoretical guarantees on reducing the error
upper-bound. The major advantage of such a the-
ory is the possibility to stop the optimization pro-
cess, carried out using the Concave-Convex Pro-
cedure (CCCP) by Yuille and Rangarajan (2003),

when the approximation to the optimum is close
as much as we want. In contrast, the gradient de-
scent operated by perceptron-like algorithms does
not allow us to estimate how much our solution is
far away from the optimum. In other words, we
do not know at which epoch our algorithm should
stop. Thus, LSSVM holds an important advantage
over online methods.

In this paper, we empirically compare LSSVM
with two online learning algorithms, LSP and
LSPA (a structured passive-aggressive (PA) algo-
rithm (Crammer et al., 2006) that we extended
with latent variables) using the exact setting of the
CoNLL-2012 dataset. This preserves comparabil-
ity with the work in CR. For example, we use the
latest version of the MELA scorer1.

It should be noted that implementing a sound
comparison was rather complex as it required test-
ing all the algorithms in the same conditions and
optimally setting their parameters. In particu-
lar, LSSVM and LSP adopt different graph mod-
els and use different methods to extract spanning
trees from a document graph, namely, Kruskal’s
(Kruskal, 1956) and Edmonds’ (Chu and Liu,
1965; Edmonds, 1967). Although both extract op-
timal spanning trees, they provide different solu-
tions, which critically impact on accuracy and ef-
ficiency. The latter is problematic as LSSVM re-
quires too long time for convergence on the large
CoNLL dataset.

To tackle this issue, we applied two kinds of ef-
ficiency boost: feature and mention pair selection.
Feature selection was rather challenging as the CR
feature space is different from a standard text cat-
egorization setting. We could not apply a filtering
threshold on simple and effective statistics such as
document frequency since almost all the features
appear in many documents. For solving this prob-
lem, we explored the use of efficient binary SVMs
for computing feature weights, which we used for

1conll.cemantix.org/2012/software.html
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our selection. Additionally, we also provided a
parallelized version of LSSVM to afford the com-
putation requirement of the full CoNLL dataset.

The results of our study show that LSSVM can
be trained on large data and achieve the state of
the art of online methods. However, the latter us-
ing optimal parameters can even surpass its accu-
racy and outperform the current state of the art of
LSP by 2 points. Finally, our feature selection al-
gorithm is rather efficient and effective.

2 Related Work

The first work of structured prediction for CR is
an SVMcluster approach by Finley and Joachims
(2005), who couple the structural SVM (Tsochan-
taridis et al., 2004) with approximate clustering
inference. They maximize the clustering objec-
tive by either (i) a simple greedy approach or (ii) a
relaxation of the correlation clustering technique.
Both methods resulted computationally very ex-
pensive. To overcome such inefficiency, Yu and
Joachims (2009) proposed LSSVM performing in-
ference on undirected (latent) graphs built on doc-
ument mentions using Kruskal’s spanning algo-
rithm.

Fernandes et al. (2014) specialized the la-
tent structured perceptron proposed by Sun et al.
(2009) for solving CR tasks (LSP). This is based
on (i) the Minimum Spanning Tree algorithm on
the directed mention graph and (ii) the structured
perceptron, updated on a per-document basis.

The same approach, referred to as antecedent
trees, is included in the generalized latent structure
framework of Martschat and Strube (2015). The
authors report that the mention-ranking approach,
which uses the LSP inference and mention-based
updates2, produces slightly better results.

It should be noted that the LSP inference is
equivalent to the best-left-link inference of Chang
et al. (2013), who coupled it with SGD updates
on a per-mention basis. Chang et al. (2011, 2012,
2013); Peng et al. (2015) reformulated the best-
left-link in terms of Integer Linear Programming
inference.

Björkelund and Kuhn (2014) experimented with
updates both on a per-mention and document basis
to enable inference with non-local features. Las-
salle and Denis (2015) experimented with a sim-
ilar inference procedure by also jointly modeling

2A perceptron update is performed after selecting the best
antecedent for a mention.

Model Parameters
LSSVMK C = 100.0 r = 0.5
LSSVME C = 100.0 r = 1.0
LSPK C = 1000.0 r = 0.1
LSPE C = 1000.0 r = 1.0

Table 1: Best parameter combinations.

anaphoricity and mention coreference.

In summary, although many models have been
tested, LSSVM has never been trained on a re-
alistic CR dataset. Chang et al. (2013) tested it
on the CoNLL-2012 dataset but they could not
use CCCP, exactly for efficiency reasons, and thus
they applied an SGD approach.

2.1 Algorithm Equivalence

LSSVM, LSP, LSPA can reach the same accuracy
subject to different convergence rates and bounds.
Indeed, LSSVM solves an optimization problem
using a CCCP iteration, the cost of the latter is
nearly a cost of one SVMstruct problem, which in
turn is polynomial.

LSP and LSPA require linear times, however, in
contrast to LSSVM, they do not have stopping cri-
teria - the number of epochs T has to be set. The
CCCP procedure is guaranteed to converge to a lo-
cal minimum or a saddle point. LSP and LSPA,
in essence, perform an update, which is equiva-
lent, up to some constant, to an SGD update of the
LSSVM objective, with a gradient taken w.r.t. a
document variable.

They can approach the local minimum as close
as possible, which is supported by our experi-
ments, reflecting the results compatible among the
three algorithms. For LSP and LSPA though, we
do not know a priori when to stop training. While,
for LSPA, there are error bounds derived by Cram-
mer et al. (2006), there are no bounds for LSP at
all.

However, for CR, as it can be seen from our
experiments, values of T for LSP and LSPA
can be reliably selected on a validation set for
a fixed training data size and a choice of fea-
tures/instances. Since the algorithms optimize a
surrogate objective, it is often the case that accu-
rately tuned LSP and LSPA result in higher perfor-
mance than LSSVM, not mentioning an excessive
complexity of the latter.
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Figure 1: LSP learning curves, with 100 random
documents used for training (all the features, all
the edges), tested on all the dev. documents.

3 Experiments

3.1 Setup

Data We performed our experiments on the En-
glish part of the corpus from CoNLL 2012-Shared
Task3, containing 2,802, 343 and 348 documents
for training, development and test sets, respec-
tively.

Evaluation measure We report our coreference
results in terms of the MELA score (Pradhan et al.,
2012) computed using the version 8 of the official
CoNLL scorer.

Models and software As baselines, we used
(i) the original implementation of the Latent
SVMstruct 4 (denoted as LSSVMK) performing
inference on undirected graphs using Kruskal’s
spanning algorithm, (ii) LSPE – our implemen-
tation of the LSP algorithm with a tree mod-
eling of Fernandes et al. (2014) and Edmonds’
spanning tree algorithm, (iii) cort – coreference
toolkit by Martschat and Strube (2015), precisely
its antecedent tree approach, encoding, as well as
LSPE , the modeling of Fernandes et al. (denoted
as LSPO, where ”O” stands for Original).

In LSPE , the candidate graph, by construction,
does not contain cycles, and the inference by Ed-
monds’ algorithm is reduced to selecting for each
node an incoming edge with a maximum weight,
in other words, the best antecedent or no an-
tecedent for each mention. Thus, the difference
between our LSPE and cort is only due to a differ-
ent implementation.

3conll.cemantix.org/2012/data.html
4www.cs.cornell.edu/˜cnyu/latentssvm/

Model Dev. Test Tbest Time, h
LSSVMK 61.03 59.89 – 1164.09
LSSVME 62.91 61.88 – 210.01
LSPK 61.08 60.00 10 27.77
LSPE 64.01 63.04 43 32.55
LSPAK 61.15 60.16 6 47.73
LSPAE 64.14 62.81 8 37.33
LSPO 62.92 62.00 5 –
∗LSPO 62.31 61.24 5 5 –

Table 2: Main results for the systems evaluated on
CoNLL-2012 English development and test sets,
using all the training documents for training. Tbest

is evaluated on the development set and used on
the test set. ∗LSPO is the result published in
Martschat and Strube (2015).

Along with the baselines, we consider the fol-
lowing models: (i) LSSVME , i.e., LSSVM with
the latent trees and Edmonds’, (ii) LSPK , i.e., LSP
using Kruskal’s on undirected graphs, and (iii) two
structured versions of the PA online learning algo-
rithms, LSPAE and LSPAK .

We employed the cort toolkit both to preprocess
the CoNLL data and to extract candidate mentions
and features (the basic cort feature set).

As emphasized by Fernandes et al., averaging
the perceptron weights renders the learning curve
rather smooth. We applied weight averaging in all
the LSP and LSPA variants.

Parametrization All the models require tuning
of a regularization parameter C and of a specific
loss parameter r. In LSSVMK and LSPK , r is a
penalty for adding an incorrect edge; in LSSVME

and LSPE , r is a penalty for selecting an incor-
rect root arc. We selected the parameters on the
entire development set by training on 100 random
documents from the training set. We picked a C
from {1.0, 100.0, 1000.0, 2000.0}, the r values for
LSSVMK and LSPK from {0.05, 0.1, 0.5}, and
the r values for LSSVME and LSPE from the in-
terval [0.5, 2.5] with step 0.5. The values reported
in Table 1 were used for all our experiments.

3.2 Selecting the epoch number

A standard previous work setting for the number
of epochs T of the online learning algorithms is
5 (Martschat and Strube, 2015). Fernandes et al.

5This result is obtained using a concatenation of the train-
ing and the development set.
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Figure 2: LSPE training time and accuracy with
respect to the number of features N , selected ac-
cording to the binary classifier weights.

(2014) noted that T = 50 was sufficient for con-
vergence. Figure 1 shows that setting T is cru-
cial for achieving a high accuracy. We also note
that the dataset size and the selected sets of fea-
tures and/or instances highly affect the best epoch
number, thus, for each particular experiment, we
selected the best T from 1 to 50 on the dev. set.

3.3 Model Comparison

Table 2 reports the results of the models trained on
the entire training set, and the numbers of epochs
Tbest for LSP and LSPA, tuned on the develop-
ment set. LSPO denotes the result of our run of the
original cort software. We note that (i) LSP and
LSPA perform on a par in both the settings; (ii) the
latent trees used with Edmonds’ algorithm outper-
form the undirected graphs used with Kruskal’s;
(iii) LSSVME is around one point less than LSPE

and LSPAE ; (iv) the training time of LSSVME is
one order of magnitude longer than that of LSPE ;
and (v) LSSVMK took more than 1.5 months to
converge.

3.4 Feature Selection

The number of distinct features extracted from
cort and used for training in the above experiments
is around 16.8 millions. Training systems with
such a large model size is nearly prohibitive, this
especially concerns SVMs, which may require a
substantial number of iterations for convergence.
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Figure 3: LSPE training time and accuracy with
respect to d (max number of candidate antecedent
edges for each mention).

We tried to filter out less relevant features re-
moving those that appear in a fewer number of
documents but these were too few, e.g., less than
1% of all features have document frequency ≤ 3.

Thus, we proposed a feature selection technique
consisting in (i) training a binary classification
model, ~w, on all mention-pair feature vectors and
(ii) removing features with lower absolute weights
in ~w. Figure 2 plots the accuracy of CR models,
using different numbers of features selected as de-
scribed above. Interestingly, only retaining 5% of
the features (N = 106) results in a small loss.

3.5 Candidate edge selection

Using all the candidate edges in the CR graph is
another cause of computational burden, which is
overcome by the best CR systems by exploiting
heuristic linguistic filters.

In cort, filtering is not implemented and all the
candidate edges are used for training. We simply
adopted one of the filters, the so-called sieves, of
Fernandes et al. (2014) to reduce the number of
candidate links. Such a sieve retains links between
two mentions only if their distance is lower than
or equal to d, i.e., we consider only links (mi,mj)
with |j − i| ≤ d. Fernandes et al. use d = 8.

Figure 3 shows that, although the training time
is reduced considerably, the accuracy suffers. In
our experiments, we used d = 20, which causes
a loss smaller than 0.5 in MELA. It should be
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noted that we also had to enable the LSSVM
implementation to operate on non-complete can-
didate graphs as it was originally designed for
making inference on fully-connected graphs only
(Haponchyk and Moschitti, 2014).

3.6 Results on Filtered Data
Table 3 reports the results using filtering corre-
sponding to the settingN = 106, d = 20. We note
that (i) the training time is reduced by more than
10 times; (ii) LSSVMK is outperformed by LSPK

(2 points) and performs worse than LSSVME ; (iii)
LSPAK seems to generalize better on filtered data
than LSPK ; and (iv) w.r.t. no filtering, LSSVME

faces a lower drop in performance than LSPE

does, approaching nearer to the latter.

3.7 Discussion
The results of our study are the following:

(i) for the first time, we show that LSSVM
can be applied to a realistic CR dataset and
achieve the same state of the art of the online
methods;

(ii) although the optimum found by CCCP pro-
duces better results than online learning algo-
rithms, the latter, when parameterized, pro-
vide similar accuracy, while at the same time
being much more efficient;

(iii) in this respect, we studied the optimal model
parameterization and found that LSP can be
highly improved, almost 2 points (63.04 vs.
61.24) over the previous best LSP result, by
accurately selecting the number of epochs on
a validation set;

(iv) the results of all the approaches using
an undirected graph model coupled with
Kruskal’s are 3 − 7 absolute percent points
lower than their results obtained with a di-
rected tree model coupled with Edmonds’.
Our outcome is supported by Chang et al.
(2013) who employed a fast SGD approach
with the best-left-link inference, which is
equivalent to Edmonds’ algorithm applied to
the directed latent trees. They compared the
previous inference approach with the span-
ning graph algorithm by Kruskal on undi-
rected graphs. They explain that the better
accuracy of the first method is due to the fact
that the latent tree structure considers the or-
der of the mentions in the document. Apart

Model Dev. Test Tbest Time, h
LSSVMK 56.16 54.50 – 23.06
LSSVME 62.82 61.75 – 24.09
LSPK 57.98 56.81 6 1.82
LSPE 63.11 61.98 49 1.62
LSPAK 58.69 57.38 3 3.50
LSPAE 63.28 62.11 6 1.98

Table 3: Main results for the systems evaluated on
CoNLL-2012 English development and test sets,
using all training documents with filtered features
(N=106) and edges (d=20).

from that, by using an artificial root, it implic-
itly models the cluster initial elements (i.e.,
discourse-new mentions).

(v) The use of direct trees in Edmonds’ method
delivers comparable results among all the al-
gorithms; and

(vi) our new approach to feature selection based
on binary SVMs turned out to be efficient and
effective and, together with mention pair in-
stance filtering, sped up training by 88% only
losing 0.15 of a point in accuracy.

4 Conclusions

This work provides a comparative analysis of on-
line and batch methods for structured prediction in
CR. Although LSSVM can reliably select a stop-
ping point of its learning, LSP and LSPA, when
well parameterized, can achieve the same accu-
racy. This empirically demonstrates that all these
methods, inherently optimizing the same objec-
tive, are able to achieve the same optimum.

Additionally, we show a very positive impact of
our new feature selection method for CR, based on
a pairwise classifier, which we can efficiently train
thanks to linear SVMs.

Finally, we also demonstrate that a noticeable
benefit to all online methods comes from accu-
rately parameterizing the epoch number. The lat-
ter is rather stable between development and test
sets but must be parametrized when using differ-
ent training data, feature or instance sets.
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Abstract

The task of implicit discourse relation
classification has received increased atten-
tion in recent years, including two CoNNL
shared tasks on the topic. Existing ma-
chine learning models for the task train
on sections 2-21 of the PDTB and test on
section 23, which includes a total of 761
implicit discourse relations. In this paper,
we’d like to make a methodological point,
arguing that the standard test set is too
small to draw conclusions about whether
the inclusion of certain features constitute
a genuine improvement, or whether one
got lucky with some properties of the test
set, and argue for the adoption of cross val-
idation for the discourse relation classifi-
cation task by the community.

1 Introduction

Discourse-level relation analysis is relevant to
a variety of NLP tasks such as summarization
(Yoshida et al., 2014), question answering (Jansen
et al., 2014) and machine translation (Meyer et al.,
2015). Recent years have seen more and more
works on this topic, including two CoNNL shared
tasks (Xue et al., 2015; Xue et al., 2016). The
community most often uses the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008) as a re-
source, and has adopted the usual split into train-
ing and test data as used for other tasks such as
parsing. Because discourse relation annotation is
at a higher level than syntactic annotation, this
however means that the test set is rather small,
and with the amount of alternative features and,
more recently, neural network architectures being
applied to the problem, we run a serious risk as a
community of believing in features that are suc-
cessful in getting some improvement on the spe-

cific test set but don’t generalize at all.
In discourse relation parsing, we usually distin-

guish between implicit and explicit discourse re-
lations. Explicit relations are marked with a dis-
course connective such as “because”, “but”, “if”,
while implicit discourse relations are not marked
with any discourse connective. The connective
serves as a strong cue for the discourse relation,
as the example below demonstrates:

“ Typically, money-fund yields beat compara-
ble short-term investments because portfolio man-
agers can vary maturities and go after the highest
rates” (Explicit, Contingency.Cause)

“ They desperately needed somebody who
showed they cared for them, who loved them.
(But) The last thing they needed was an-
other drag-down blow.” (Implicit, Compari-
son.Contrast)

Previous studies show that the presence of con-
nectives can greatly help with classification of the
relation and can be disambiguated with 0.93 accu-
racy (4-ways) solely on the discourse relation con-
nectives (Pitler et al., 2008). In implicit relations,
no such strong cue is available and the discourse
relation instead needs to be inferred based on the
two textual arguments.

In recent studies, various classes of features
are explored to capture lexical and semantic reg-
ularities for identifying the sense of implicit re-
lations, including linguistically informed features
like polarity tags, Levin verb classes, length of
verb phrases, language model based features, con-
textual features, constituent parse features and de-
pendency parse features (Lin et al., 2009; Pitler et
al., 2009; Zhou et al., 2010; Zhang et al., 2015;
Chen et al., 2016). For some of second-level rela-
tions (a level of granularity that should be much
more meaningful to downstream tasks than the
four-way distinction), there are only a dozen in-
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stances, so that it’s important to make maximal
use of both the data set for training and testing.
The test set that is currently most often used for 11
way classification is section 23 (Lin et al., 2009;
Ji and Eisenstein, 2015; Rutherford et al., 2017),
which contains only about 761 implicit relations.
This small size implies that a gain of 1 percentage
point in accuracy corresponds to just classifying
an additional 7-8 instances correctly.

This paper therefore aims to demonstrate the
degree to which conclusions about the effective-
ness of including certain features would depend on
whether one evaluates on the standard test section
only, or performs cross validation on the whole
dataset for second-level discourse relation classi-
fication. The model that we use is a neural net-
work that takes the words occurring in the rela-
tion arguments as input, as well as traditional fea-
tures mentioned above, to make comparisons with
most-used section splits. To our knowledge, this is
the first paper that systematically evaluates the ef-
fect of the train/test split for the implicit discourse
relation classification task on PDTB. We report the
classification performances on random and con-
ventional split sections.

As a model, we use a neural network that also
includes some of the surface features that have
been shown to be successful in previous work. Our
model is competitive with the state of the art. The
experiments here are exemplary for what kind of
conclusions we would draw from the cross valida-
tion vs. from the usual train-test split. We find that
results are quite different in the different splits of
dataset, which we think is a strong indication that
cross validation is important to adopt as a stan-
dard practice for the discourse relation classifica-
tion community. We view cross validation as an
important method in case other unseen datasets are
not available (note that at least for English, new
datasets have recently been made available as part
of the shared task (Xue et al., (2015; 2016); as well
as Rehbein et al., (2016)).

2 Background on Discourse Relation
Parsing

Soricut and Marcu (2003) firstly addressed the
task of parsing discourse structure within the same
sentence. Many of the useful features proposed
by them, syntax in particular, revealed that both
arguments of the connectives are found in the
same sentence. The release of PDTB, the largest

available annotated corpora of discourse relations,
opened the door to machine learning based dis-
course relation classification.

Feature-based methods exploit discriminative
features for implicit relation classification. Pitler
et al. (2009) demonstrated that features developed
to capture word polarity, verb classes and orienta-
tion, as well as some lexical features are strong
indicator of the type of discourse relation. Lin
et al. (2009) further introduced contextual, con-
stituent and dependency parse features. They
achieved an accuracy of 40.2% for 11-way classi-
fication, a 14.1% absolute improvement over the
baseline. With these features, Park and Cardie
(2012) provided a systematic study of previously
proposed features and identified feature combina-
tions. Additional features proposed later include
relation specific word similarity (Biran and McK-
eown, 2013), Brown clusters and Coreference Pat-
terns (Rutherford and Xue, 2014).

Data selection and extension is another main
aspect for discourse relation classification, given
that the number of training instances is limited and
only from a single domain. Wang et al. (2012) pro-
posed a novel single centroid clustering algorithm
to differentiate typical and atypical examples for
each discourse relation. Mihil et al. (2014) and
Hernault et al. (2010) proposed semi-supervised
learning methods to recognise relations. Ruther-
ford and Xue (2015) collected additional training
data from unannotated data, selecting instances
based on two criteria (the degree to which a con-
nective can generally be omitted and the degree
to which a connective typically changes the inter-
pretation of the relation) improved the inference
of implicit discourse relation. Hidey and McK-
eown (2016), Quirk and Poon (2016) extended
training data with weakly labeled data which are
cheaply obtained by distant-supervised learning.

Recently the distributed word representations
(Bengio et al., 2003; Mikolov et al., 2013) have
shown an advantage in dealing with data sparsity
problem (Braud and Denis, 2015). Many deep
learning methods have been proved to be helpful
in discourse relation parsing and achieved some
significant progresses. Zhang et al. (2015) pro-
posed a shallow convolutional neural network for
implicit discourse recognition to alleviate the over-
fitting problem and help preserve the recognition
and generalization ability with the model. Ji et
al. (2015) computed distributed meaning represen-
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tations for each discourse argument with recur-
sive neural network. Ji et al. (2016) introduced
a latent variable to recurrent neural network and
outperformed in two tasks. Chen et al. (2016)
adopted a gated relevance network to capture the
semantic interaction between word pairs. Zhang
et al. (2016) proposed a neural discourse relation
recognizer with a semantic memory and attention
weights for implicit discourse relation recognition.

The model we use in this paper is most closely
related to the neural network model proposed in
Rutherford et al. (2017). The model also has
access to the traditional features, which are con-
catenated to the neural representations of the argu-
ments in the output layer. In order to simulate what
conclusions we would be drawing from comparing
the contributions of the handcrafted surface fea-
tures, we calculate accuracy for each of the hand-
crafted features.

3 Corpora

The Penn Discourse Treebank (PDTB) We use
the Penn Discourse Treebank (Prasad et al., 2008),
the largest available manually annotated corpora
of discourse on top of one million word tokens
from the Wall Street Journal (WSJ). The PDTB
provides annotations for explicit and implicit dis-
course relations. By definition, an explicit relation
contains an explicit discourse connective while the
implicit one does not. The PDTB provides a three
level hierarchy of relation tags for its annotation.
Previous work in this task has been done over two
schemes of evaluation: first-level 4-ways classi-
fication (Pitler et al., 2009; Rutherford and Xue,
2014; Chen et al., 2016), second-level 11-way
classification (Lin et al., 2009; Ji and Eisenstein,
2015). The distribution of second-level relations
in PDTB is illustrated in Table 1.

We follow the preprocessing method in (Lin et
al., 2009; Rutherford et al., 2017). If the instance
is annotated with two relations, we adopt the first
one shown up, and remove those relations with
too few instances. We treat section 2-21 as train-
ing set, section 22 as development set and section
23 as test set for our results reported as “most-
used split”. In order to investigate whether the re-
sults for benefit of including a certain feature to
the model are stable, we conduct 10-fold cross-
validation on the whole corpus including sections
0-24. Note that we here included also the valida-
tion section for our experiments, to have maximal

data for our demonstration of variability between
folds. For best practice when testing new mod-
els, we instead recommend to keep the validation
set completely separate and do cross-validation for
the remaining data. Also note that you might want
to choose repeated cross-validation (which simply
repeats the cross-validation step several times with
the data divided up into different folds) as an alter-
native to simple cross-validation performed here.
For a more in-detail discussion of cross validation
methods, see (Kim, 2009; Bengio and Grandvalet,
2005).

In Table 1, we can see that the different re-
lations’ proportions on the training and test set
are quite different in the most-used split. For in-
stance, temporal relations are under-represented
which may lead to a misestimation of the useful-
ness of features that are relevant for classifying
temporal relations. For our cross validation ex-
periments, we evenly divided all the instances in
section 0-24 into 10 balanced folds1. The propor-
tions of each class in the training and testing set are
identical. With the same distribution of each class,
we here avoid having an unbalanced number of in-
stances per class among training and testing set.

4 Model

The task is to predict the discourse relation given
the two arguments of an implicit instance. As a la-
bel set, we use 11-way distinction as proposed in
Lin et al., (2009); Ji and Eisenstein (2015). Word
Embeddings are trained with the Skip-gram archi-
tecture in Word2Vec (Mikolov et al., 2013), which
is able to capture semantic and syntactic patterns
with an unsupervised method, on the training sec-
tions of WSJ data.

Our model is illustrated in Figure 1. Each
word is represented as a vector, which is found
through a look-up word embedding. Then we get
the representations of argument 1 and argument 2
separately after transforming semantic word vec-
tors into distributed continuous-value features by
LSTM recurrent neural network. With concate-
nating feature vector and the instance’s representa-
tion, we classify it with a softmax layer and output
its label.
Implementation All the models are implemented

1While we here chose balanced distributions, other de-
signs of splitting up the data into folds such that different
folds have organically different distributions of classes can
alternatively be argued for, on the basis of more accurately
representing new in-domain data distributions.
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Figure 1: Long Short-Term Memory Model with surface features.

Relation
Most-used Split Cross Validation *

Train Test Train Test
Temporal.Asynchronous 542 (4.25%) 12 (1.58%) 583 65
Temporal.Synchrony 150 (1.18%) 5 (0.66%) 155 18
Contingency.Cause 3259 (25.53%) 193 (25.36%) 3581 398
Contingency.Pragmatic cause 55 (0.43%) 5 (0.66%) 61 7
Comparison.Contrast 1600 (12.54%) 126 (16.56%) 1843 205
Comparison.Concession 189 (1.48%) 5 (0.66%) 194 22
Expansion.Conjunction 2869 (22.48%) 116 (15.24%) 3075 342
Expansion.Instantiation 1130 (8.85%) 69 (9.07%) 1254 140
Expansion.Restatement 2481 (19.44%) 190 (24.97%) 2792 311
Expansion.Alternative 151 (1.18%) 15 (1.97%) 160 18
Expansion.List 337 (2.64%) 25 (3.29%) 347 39
Total 12763 761 14045 1565
* Numbers are averaged over different folds

Table 1: The distribution of training and test sets in Most-used Split and Cross Validation
on level 2 relations in PDTB. Five types that have only have very few training instances are
removed.

Models Most-used Split Cross Validation
Most common class 25.36 25.59
Lin et al. (2009) 40.20 -1

Ji & Eisenstein (2015) (surface features only) 40.66 -
Rutherford et al. (2017) 39.56 -

N
eu

ra
lN

et
w

or
k No additional surface features 37.68 34.44 (±1.37)

Inquirer Tags 40.46 33.58 (±1.36) (2+,8-)
BrownCluster 38.77 33.83 (±1.59) (3+,7-)
Levin Class 40.92 34.17 (±1.48) (4+,6-)
Verbs 40.21 34.26 (±1.22) (5+,5-)
Modality 40.82 37.65 (±1.83) (6+,4-)
All Features above 38.56 35.90 (±1.32) (2+,8-)

1 “-” means no result currently.

Table 2: Performance comparison of different features in Most-used Split and Cross Validation on
second-level relations. Numbers for cross validation indicate the mean accuracy across folds, the
standard deviation, and the number of folds that show better vs. worse performance when including
the feature.
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in Keras2, which runs on top of Theano. The archi-
tecture of the model we use is illustrated in Figure
1. Regarding the initialization, regularization and
learning algorithm, we follow all the settings in
(Rutherford et al., 2017). We adopt cross-entropy
as our cost function, adagrad as the optimization
algorithm, initialized all the weights in the model
with uniform random and set dropout layers after
the embedding and output layer with a drop rate of
0.2 and 0.5 respectively.

5 Features

For the sake of our cross-validation argument,
we choose five kinds of most popular features in
discourse relation classification, namely Inquirer
Tags (semantic classification tags), Brown Clus-
ters, Verb features, Levin classes and Modality.

6 Results

We tested five frequently-used surface features
with our model. Results are shown in Table 2. We
can see that our implemented model is comparable
with state of the art models. Our main point here is
however not to argue that we outperform any par-
ticular model, but rather we’d like to discuss what
conclusions we’d be drawing from adding surface
features to our NN model if using the standard test
set vs. doing cross validation.

For each cross validation with different features,
the separation into train and test sets are identical.
We can see that the performances on Most-used
Split section is generally 3-7% better than the re-
sults for the rest of the corpus. While we would
also conclude from our model when evaluated on
the standard test set that each of these features
contribute some useful information, we can also
see that we would come to very different conclu-
sions if actually running the cross-validation ex-
periment.

Cross Validation is primarily a way of measur-
ing the predictive performance of a model. With
such a small test set, improvements on the classifi-
cation could be the results of many factors. For
instance, take a look at the effectiveness of in-
cluding Inquirer Tags: these lead to an increase
in performance by 2.8% in Most-used Split, but
actually only helped on two out of 10-fold in the
cross-validation set, overall leading to a small de-
crease in performance of the classifier. Similarly,

2https://keras.io/

the verb features seem to indicate a substantial im-
provement in relation classification accuracy on
the standard test set, but there is no effect at all
across the folds.

Other works, such as Berg-Kirkpatrick et
al. (2012) strongly recommend significance test-
ing to validate metric gains in NLP tasks, even
though the relationship between metric gain and
statistical significance is complex. We observed
that recent papers in discourse relation parsing
do not always perform significance testing, and if
they do report significance, then oftentimes they
do not report the test that was used. We would
here like to argue in favour of significance testing
with cross validation, as opposed to boot strapping
methods that only use the standard test set. Due to
the larger amount of data, calculating significance
based on the cross validation will give us substan-
tially better estimates about the robustness of our
results, because it can quantify more exactly the
amount of variation with respect to transferring to
a new (in-domain) dataset.

7 Conclusion

We have argued that the standard test section of
the PDTB is too small to draw conclusions about
whether a feature is generally useful or not, espe-
cially when using a larger label set, as is the case
in recent work using second level labels. While
these ideas are far from new and apply also to
other NLP tasks with small evaluation sets, we
think it is important to discuss this issue, as recent
work in the field of discourse relation analysis has
mostly ignored the issue of small test set sizes in
the PDTB. Our experiments support our claim by
showing that features that may look like they im-
prove performance on the 11-way classification on
the standard test set, did not always show a consis-
tent improvement when the training / testing was
split up differently. This means that we run a large
risk of drawing incorrect conclusions about which
features are helpful if we only stick out our small
standard test set for evaluation.
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Chloé Braud and Pascal Denis. 2015. Comparing
word representations for implicit discourse relation
classification. In Empirical Methods in Natural
Language Processing (EMNLP 2015), pages 2201–
2211, Lisbonne, Portugal. Association for Computa-
tional Linguistics.

Jifan Chen, Qi Zhang, Pengfei Liu, Xipeng Qiu, and
Xuanjing Huang. 2016. Implicit discourse rela-
tion detection via a deep architecture with gated rel-
evance network. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 1726–1735, Berlin, Germany.
Association for Computational Linguistics.

Hugo Hernault, Danushka Bollegala, and Mitsuru
Ishizuka. 2010. A semi-supervised approach to
improve classification of infrequent discourse rela-
tions using feature vector extension. In Proceed-
ings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 399–409,
MIT, Massachusetts, USA. Association for Compu-
tational Linguistics.

Christopher Hidey and Kathleen McKeown. 2016.
Identifying causal relation using parallel wikipedia
articles. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1424–1433, Berlin,Germany. Associa-
tion for Computational Linguistics.

Peter Jansen, Mihai Surdeanu, and Peter Clark. 2014.
Discourse complements lexical semantics for non-
factoid answer reranking. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 977–986, Baltimore,
Maryland, USA. Association for Computational
Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associ-
ation for Computational Linguistics, volume3:329–
344.

Yangfeng Ji, Gholamreza Haffari, and Jacob Eisen-
stein. 2016. A latent variable recurrent neural net-
work for discourse relation language models. In
Proceedings of NAACL-HLT 2016, pages 332–342,
San Diego, California. Association for Computa-
tional Linguistics.

Ji-Hyun Kim. 2009. Estimating classification error
rate: Repeated cross-validation, repeated hold-out
and bootstrap. Computational Statistics & Data
Analysis, volume53(11):3735–3745.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the penn
discourse treebank. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 343–351, Singapore. Association
for Computational Linguistics.

Thomas Meyer, Najeh Hajlaoui, and Andrei Popescu-
Belis. 2015. Disambiguating discourse connec-
tives for statistical machine translation. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 23(7):1184–1197.
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Abstract

We study the topmost weight matrix of
neural network language models. We
show that this matrix constitutes a valid
word embedding. When training language
models, we recommend tying the input
embedding and this output embedding.
We analyze the resulting update rules and
show that the tied embedding evolves in
a more similar way to the output embed-
ding than to the input embedding in the
untied model. We also offer a new method
of regularizing the output embedding. Our
methods lead to a significant reduction in
perplexity, as we are able to show on a va-
riety of neural network language models.
Finally, we show that weight tying can re-
duce the size of neural translation models
to less than half of their original size with-
out harming their performance.

1 Introduction

In a common family of neural network language
models, the current input word is represented as
the vector c ∈ IRC and is projected to a dense
representation using a word embedding matrix U .
Some computation is then performed on the word
embedding U>c, which results in a vector of ac-
tivations h2. A second matrix V then projects h2

to a vector h3 containing one score per vocabulary
word: h3 = V h2. The vector of scores is then con-
verted to a vector of probability values p, which
represents the models’ prediction of the next word,
using the softmax function.

For example, in the LSTM-based language
models of (Sundermeyer et al., 2012; Zaremba
et al., 2014), for vocabulary of size C, the one-
hot encoding is used to represent the input c and
U ∈ IRC×H . An LSTM is then employed, which

results in an activation vector h2 that similarly to
U>c, is also in IRH . In this case, U and V are of
exactly the same size.

We call U the input embedding, and V the out-
put embedding. In both matrices, we expect rows
that correspond to similar words to be similar: for
the input embedding, we would like the network
to react similarly to synonyms, while in the out-
put embedding, we would like the scores of words
that are interchangeable to be similar (Mnih and
Teh, 2012).

While U and V can both serve as word embed-
dings, in the literature, only the former serves this
role. In this paper, we compare the quality of the
input embedding to that of the output embedding,
and we show that the latter can be used to improve
neural network language models. Our main results
are as follows: (i) We show that in the word2vec
skip-gram model, the output embedding is only
slightly inferior to the input embedding. This is
shown using metrics that are commonly used in or-
der to measure embedding quality. (ii) In recurrent
neural network based language models, the output
embedding outperforms the input embedding. (iii)
By tying the two embeddings together, i.e., enforc-
ing U = V , the joint embedding evolves in a more
similar way to the output embedding than to the in-
put embedding of the untied model. (iv) Tying the
input and output embeddings leads to an improve-
ment in the perplexity of various language mod-
els. This is true both when using dropout or when
not using it. (v) When not using dropout, we pro-
pose adding an additional projection P before V ,
and apply regularization to P . (vi) Weight tying
in neural translation models can reduce their size
(number of parameters) to less than half of their
original size without harming their performance.
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2 Related Work

Neural network language models (NNLMs) assign
probabilities to word sequences. Their resurgence
was initiated by (Bengio et al., 2003). Recur-
rent neural networks were first used for language
modeling in (Mikolov et al., 2010) and (Pascanu
et al., 2013). The first model that implemented
language modeling with LSTMs (Hochreiter and
Schmidhuber, 1997) was (Sundermeyer et al.,
2012). Following that, (Zaremba et al., 2014) in-
troduced a dropout (Srivastava, 2013) augmented
NNLM. (Gal, 2015; Gal and Ghahramani, 2016)
proposed a new dropout method, which is referred
to as Bayesian Dropout below, that improves on
the results of (Zaremba et al., 2014).

The skip-gram word2vec model introduced
in (Mikolov et al., 2013a; Mikolov et al., 2013b)
learns representations of words. This model learns
a representation for each word in its vocabulary,
both in an input embedding matrix and in an out-
put embedding matrix. When training is com-
plete, the vectors that are returned are the input
embeddings. The output embedding is typically
ignored, although (Mitra et al., 2016; Mnih and
Kavukcuoglu, 2013) use both the output and input
embeddings of words in order to compute word
similarity. Recently, (Goldberg and Levy, 2014)
argued that the output embedding of the word2vec
skip-gram model needs to be different than the in-
put embedding.

As we show, tying the input and the output em-
beddings is indeed detrimental in word2vec. How-
ever, it improves performance in NNLMs.

In neural machine translation (NMT) mod-
els (Kalchbrenner and Blunsom, 2013; Cho et
al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2014), the decoder, which generates the trans-
lation of the input sentence in the target lan-
guage, is a language model that is conditioned on
both the previous words of the output sentence
and on the source sentence. State of the art re-
sults in NMT have recently been achieved by sys-
tems that segment the source and target words
into subword units (Sennrich et al., 2016a). One
such method (Sennrich et al., 2016b) is based on
the byte pair encoding (BPE) compression algo-
rithm (Gage, 1994). BPE segments rare words into
their more commonly appearing subwords.

Weight tying was previously used in the log-
bilinear model of (Mnih and Hinton, 2009), but the
decision to use it was not explained, and its effect

on the model’s performance was not tested. In-
dependently and concurrently with our work (Inan
et al., 2016) presented an explanation for weight
tying in NNLMs based on (Hinton et al., 2015).

3 Weight Tying

In this work, we employ three different model cat-
egories: NNLMs, the word2vec skip-gram model,
and NMT models. Weight tying is applied sim-
ilarly in all models. For translation models, we
also present a three-way weight tying method.

NNLM models contain an input embedding ma-
trix, two LSTM layers (h1 and h2), a third hidden
scores/logits layer h3, and a softmax layer. The
loss used during training is the cross entropy loss
without any regularization terms.

Following (Zaremba et al., 2014), we employ
two models: large and small. The large model em-
ploys dropout for regularization. The small model
is not regularized. Therefore, we propose the fol-
lowing regularization scheme. A projection matrix
P ∈ IRH×H is inserted before the output embed-
ding, i.e., h3 = V Ph2. The regularizing term
λ‖P‖2 is then added to the small model’s loss
function. In all of our experiments, λ = 0.15.

Projection regularization allows us to use the
same embedding (as both the input/output embed-
ding) with some adaptation that is under regular-
ization. It is, therefore, especially suited for WT.

While training a vanilla untied NNLM, at
timestep t, with current input word sequence
i1:t = [i1, ..., it] and current target output word
ot, the negative log likelihood loss is given by:
Lt = − log pt(ot|i1:t), where pt(ot|i1:t) =

exp (V >ot
h
(t)
2 )∑C

x=1 exp(V >x h
(t)
2 )

, Uk (Vk) is the kth row of U (V ),

which corresponds to word k, and h(t)
2 is the vector

of activations of the topmost LSTM layer’s output
at time t. For simplicity, we assume that at each
timestep t, it 6= ot. Optimization of the model is
performed using stochastic gradient descent.

The update for row k of the input embedding is:

∂Lt

∂Uk
=

{
(
∑C

x=1 pt(x|i1:t) · V >x − V >ot
)

∂h
(t)
2

∂Uit
k = it

0 k 6= it

For the output embedding, row k’s update is:
∂Lt

∂Vk
=

{
(pt(ot|i1:t)− 1)h

(t)
2 k = ot

pt(k|i1:t) · h(t)
2 k 6= ot

Therefore, in the untied model, at every timestep,
the only row that is updated in the input embed-
ding is the row Uit representing the current input
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word. This means that vectors representing rare
words are updated only a small number of times.
The output embedding updates every row at each
timestep.

In tied NNLMs, we set U = V = S. The
update for each row in S is the sum of the updates
obtained for the two roles of S as both an input and
output embedding.

The update for row k 6= it is similar to the up-
date of row k in the untied NNLM’s output embed-
ding (the only difference being that U and V are
both replaced by a single matrix S). In this case,
there is no update from the input embedding role
of S.

The update for row k = it, is made up of a term
from the input embedding (case k = it) and a term
from the output embedding (case k 6= ot). The
second term grows linearly with pt(it|i1:t), which
is expected to be close to zero, since words sel-
dom appear twice in a row (the low probability
in the network was also verified experimentally).
The update that occurs in this case is, therefore,
mostly impacted by the update from the input em-
bedding role of S.

To conclude, in the tied NNLM, every row of S
is updated during each iteration, and for all rows
except one, this update is similar to the update of
the output embedding of the untied model. This
implies a greater degree of similarity of the tied
embedding to the untied model’s output embed-
ding than to its input embedding.

The analysis above focuses on NNLMs for
brevity. In word2vec, the update rules are simi-
lar, just that h(t)

2 is replaced by the identity func-
tion. As argued by (Goldberg and Levy, 2014), in
this case weight tying is not appropriate, because
if pt(it|i1:t) is close to zero then so is the norm
of the embedding of it. This argument does not
hold for NNLMs, since the LSTM layers cause a
decoupling of the input and output embedddings.

Finally, we evaluate the effect of weight ty-
ing in neural translation models. In this model:

pt(ot|i1:t, r) =
exp(V >ot

G(t))∑Ct
x=1 exp(V >x G(t))

where r =

(r1, ..., rN ) is the set of words in the source sen-
tence, U and V are the input and output embed-
dings of the decoder and W is the input embed-
ding of the encoder (in translation models U, V ∈
IRCt×H and W ∈ IRCs×H , where Cs / Ct is the
size of the vocabulary of the source / target). G(t)

is the decoder, which receives the context vector,
the embedding of the input word (it) in U , and its

Language Subwords Subwords Subwords
pairs only in source only in target in both
EN→FR 2K 7K 85K
EN→DE 3K 11K 80K

Table 1: Shared BPE subwords between pairs of languages.

previous state at each timestep. ct is the context
vector at timestep t, ct =

∑
j∈r atjhj , where atj

is the weight given to the jth annotation at time t:
atj = exp(etj)∑

k∈r exp(eik) , and etj = at(hj), where a is
the alignment model. F is the encoder which pro-
duces the sequence of annotations (h1, ..., hN ).

The output of the decoder is then projected to
a vector of scores using the output embedding:
lt = V G(t). The scores are then converted to prob-
ability values using the softmax function.

In our weight tied translation model, we tie the
input and output embeddings of the decoder.

We observed that when preprocessing the ACL
WMT 2014 EN→FR1 and WMT 2015 EN→DE2

datasets using BPE, many of the subwords ap-
peared in the vocabulary of both the source and
the target languages. Tab. 1 shows that up to
90% (85%) of BPE subwords between English and
French (German) are shared.

Based on this observation, we propose three-
way weight tying (TWWT), where the input em-
bedding of the decoder, the output embedding of
the decoder and the input embedding of the en-
coder are all tied. The single source/target vocab-
ulary of this model is the union of both the source
and target vocabularies. In this model, both in the
encoder and decoder, all subwords are embedded
in the same duo-lingual space.

4 Results

Our experiments study the quality of various em-
beddings, the similarity between them, and the
impact of tying them on the word2vec skip-gram
model, NNLMs, and NMT models.

4.1 Quality of Obtained Embeddings
In order to compare the various embeddings, we
pooled five embedding evaluation methods from
the literature. These evaluation methods involve
calculating pairwise (cosine) distances between
embeddings and correlating these distances with
human judgments of the strength of relationships
between concepts. We use: Simlex999 (Hill et al.,

1
http://statmt.org/wmt14/translation-task.html

2
http://statmt.org/wmt15/translation-task.html
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Input Output Tied
Simlex999 0.30 0.29 0.17
Verb-143 0.41 0.34 0.12
MEN 0.66 0.61 0.50
Rare-Word 0.34 0.34 0.23
MTurk-771 0.59 0.54 0.37

Table 2: Comparison of input and output embeddings
learned by a word2vec skip-gram model. Results are also
shown for the tied word2vec model. Spearman’s correlation ρ
is reported for five word embedding evaluation benchmarks.

PTB text8
Embedding In Out Tied In Out Tied
Simlex999 0.02 0.13 0.14 0.17 0.27 0.28
Verb143 0.12 0.37 0.32 0.20 0.35 0.42
MEN 0.11 0.21 0.26 0.26 0.50 0.50
Rare-Word 0.28 0.38 0.36 0.14 0.15 0.17
MTurk771 0.17 0.28 0.30 0.26 0.48 0.45

Table 3: Comparison of the input/output embeddings of the
small model from (Zaremba et al., 2014) and the embeddings
from our weight tied variant. Spearman’s correlation ρ is pre-
sented.

2016), Verb-143 (Baker et al., 2014), MEN (Bruni
et al., 2014), Rare-Word (Luong et al., 2013) and
MTurk-771 (Halawi et al., 2012).

We begin by training both the tied and untied
word2vec models on the text83 dataset, using a
vocabulary consisting only of words that appear
at least five times. As can be seen in Tab. 2,
the output embedding is almost as good as the
input embedding. As expected, the embedding
of the tied model is not competitive. The situa-
tion is different when training the small NNLM
model on either the Penn Treebank (Marcus et
al., 1993) or text8 datasets (for PTB, we used the
same train/validation/test set split and vocabulary
as (Mikolov et al., 2011), while on text8 we used
the split/vocabulary from (Mikolov et al., 2014)).
These results are presented in Tab. 3. In this case,
the input embedding is far inferior to the output
embedding. The tied embedding is comparable to
the output embedding.

A natural question given these results and the
analysis in Sec. 3 is whether the word embedding
in the weight tied NNLM model is more similar to
the input embedding or to the output embedding
of the original model. We, therefore, run the fol-
lowing experiment: First, for each embedding, we
compute the cosine distances between each pair of
words. We then compute Spearman’s rank corre-
lation between these vectors of distances. As can
be seen in Tab. 4, the results are consistent with

3
http://mattmahoney.net/dc/textdata

A B ρ(A,B) ρ(A,B) ρ(A,B)
word2vec NNLM(S) NNLM(L)

In Out 0.77 0.13 0.16
In Tied 0.19 0.31 0.45
Out Tied 0.39 0.65 0.77

Table 4: Spearman’s rank correlation ρ of similarity values
between all pairs of words evaluated for the different embed-
dings: input/output embeddings (of the untied model) and the
embeddings of our tied model. We show the results for both
the word2vec models and the small and large NNLM models
from (Zaremba et al., 2014).

Model Size Train Val. Test
Large (Zaremba et al., 2014) 66M 37.8 82.2 78.4
Large + Weight Tying 51M 48.5 77.7 74.3
Large + BD (Gal, 2015) + WD 66M 24.3 78.1 75.2
Large + BD + WT 51M 28.2 75.8 73.2
RHN (Zilly et al., 2016) + BD 32M 67.4 71.2 68.5
RHN + BD + WT 24M 74.1 68.1 66.0

Table 5: Word level perplexity (lower is better) on PTB
and size (number of parameters) of models that use either
dropout (baseline model) or Bayesian dropout (BD). WD –
weight decay.

our analysis and the results of Tab. 2 and Tab. 3:
for word2vec the input and output embeddings are
similar to each other and differ from the tied em-
bedding; for the NNLM models, the output em-
bedding and the tied embeddings are similar, the
input embedding is somewhat similar to the tied
embedding, and differs considerably from the out-
put embedding.

4.2 Neural Network Language Models

We next study the effect of tying the embeddings
on the perplexity obtained by the NNLM models.
Following (Zaremba et al., 2014), we study two
NNLMs. The two models differ mostly in the size
of the LSTM layers. In the small model, both
LSTM layers contain 200 units and in the large
model, both contain 1500 units. In addition, the
large model uses three dropout layers, one placed
right before the first LSTM layer, one between h1

and h2 and one right after h2. The dropout proba-
bility is 0.65. For both the small and large models,
we use the same hyperparameters (i.e. weight ini-
tialization, learning rate schedule, batch size) as
in (Zaremba et al., 2014).

In addition to training our models on PTB and
text8, following (Miyamoto and Cho, 2016), we
also compare the performance of the NNLMs on
the BBC (Greene and Cunningham, 2006) and
IMDB (Maas et al., 2011) datasets, each of which
we process and split into a train/validation/test
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Model Size Train Val. Test
KN 5-gram 141
RNN 123
LSTM 117
Stack RNN 8.48M 110
FOFE-FNN 108
Noisy LSTM 4.65M 111.7 108.0
Deep RNN 6.16M 107.5
Small model 4.65M 38.0 120.7 114.5
Small + WT 2.65M 36.4 117.5 112.4
Small + PR 4.69M 50.8 116.0 111.7
Small + WT + PR 2.69M 53.5 104.9 100.9

Table 6: Word level perplexity on PTB and size for mod-
els that do not use dropout. The compared models are:
KN 5-gram (Mikolov et al., 2011), RNN (Mikolov et al.,
2011), LSTM (Graves, 2013), Stack / Deep RNN (Pas-
canu et al., 2013), FOFE-FNN (Zhang et al., 2015), Noisy
LSTM (Gülçehre et al., 2016), and the small model from
(Zaremba et al., 2014). The last three models are our models,
which extend the small model. PR – projection regulariza-
tion.

Model Small S + WT S + PR S + WT + PR

te
xt

8 Train 90.4 95.6 92.6 95.3
Val. - - - -
Test 195.3 187.1 199.0 183.2

IM
D

B Train 71.3 75.4 72.0 72.9
Val. 94.1 94.6 94.0 91.2
Test 94.3 94.8 94.4 91.5

B
B

C Train 28.6 30.1 42.5 45.7
Val. 103.6 99.4 104.9 96.4
Test 110.8 106.8 108.7 98.9

Table 7: Word level perplexity on the text8, IMDB and
BBC datasets. The last three models are our models, which
extend the small model (S) of (Zaremba et al., 2014).

split (we use the same vocabularies as (Miyamoto
and Cho, 2016)).

In the first experiment, which was conducted
on the PTB dataset, we compare the perplexity
obtained by the large NNLM model and our ver-
sion in which the input and output embeddings are
tied. As can be seen in Tab. 5, weight tying sig-
nificantly reduces perplexity on both the valida-
tion set and the test set, but not on the training set.
This indicates less overfitting, as expected due to
the reduction in the number of parameters. Re-
cently, (Gal and Ghahramani, 2016), proposed a
modified model that uses Bayesian dropout and
weight decay. They obtained improved perfor-
mance. When the embeddings of this model are
tied, a similar amount of improvement is gained.
We tried this with and without weight decay and
got similar results in both cases, with slight im-
provement in the latter model. Finally, by re-
placing the LSTM with a recurrent highway net-
work (Zilly et al., 2016), state of the art results are
achieved when applying weight tying. The contri-

Size Validation Test
EN→FR Baseline 168M 29.49 33.13

Decoder WT 122M 29.47 33.26
TWWT 80M 29.43 33.46

EN→DE Baseline 165M 20.96 16.79
Decoder WT 119M 21.09 16.54
TWWT 79M 21.02 17.15

Table 8: Size (number of parameters) and BLEU score of
various translation models. TWWT – three-way weight tying.

bution of WT is also significant in this model.

Perplexity results are often reported separately
for models with and without dropout. In Tab. 6, we
report the results of the small NNLM model, that
does not utilize dropout, on PTB. As can be seen,
both WT and projection regularization (PR) im-
prove the results. When combining both methods
together, state of the art results are obtained. An
analog table for text8, IMDB and BBC is Tab. 7,
which shows a significant reduction in perplexity
across these datasets when both PR and WT are
used. PR does not help the large models, which
employ dropout for regularization.

4.3 Neural Machine Translation

Finally, we study the impact of weight tying in at-
tention based NMT models, using the DL4MT4

implementation. We train our EN→FR models
on the parallel corpora provided by ACL WMT
2014. We use the data as processed by (Cho et al.,
2014) using the data selection method of (Axelrod
et al., 2011). For EN→DE we train on data from
the translation task of WMT 2015, validate on
newstest2013 and test on newstest2014 and new-
stest2015. Following (Sennrich et al., 2016b) we
learn the BPE segmentation on the union of the
vocabularies that we are translating from and to
(we use BPE with 89500 merge operations). All
models were trained using Adadelta (Zeiler, 2012)
for 300K updates, have a hidden layer size of 1000
and all embedding layers are of size 500.

Tab. 8 shows that even though the weight tied
models have about 28% fewer parameters than the
baseline models, their performance is similar. This
is also the case for the three-way weight tied mod-
els, even though they have about 52% fewer pa-
rameters than their untied counterparts.

4
https://github.com/nyu-dl/dl4mt-tutorial
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Abstract

Multi-task learning (MTL) in deep neural
networks for NLP has recently received in-
creasing interest due to some compelling
benefits, including its potential to effi-
ciently regularize models and to reduce the
need for labeled data. While it has brought
significant improvements in a number of
NLP tasks, mixed results have been re-
ported, and little is known about the con-
ditions under which MTL leads to gains in
NLP. This paper sheds light on the specific
task relations that can lead to gains from
MTL models over single-task setups.

1 Introduction

Multi-task learning is receiving increasing inter-
est in both academia and industry, with the po-
tential to reduce the need for labeled data, and
to enable the induction of more robust models.
The main driver has been empirical results push-
ing state of the art in various tasks, but prelimi-
nary theoretical findings guarantee that multi-task
learning works under various conditions. Some
approaches to multi-task learning are, for exam-
ple, known to work when the tasks share opti-
mal hypothesis classes (Baxter, 2000) or are drawn
from related sample generating distributions (Ben-
David and Borberly, 2003).

In NLP, multi-task learning typically involves
very heterogeneous tasks. However, while great
improvements have been reported (Luong et al.,
2016; Klerke et al., 2016), results are also of-
ten mixed (Collobert and Weston, 2008; Søgaard
and Goldberg, 2016; Martı́nez Alonso and Plank,
2017), and theoretical guarantees no longer apply.
The question what task relations guarantee gains
or make gains likely in NLP remains open.

∗Both authors contributed to the paper in equal parts.

Contributions This paper presents a systematic
study of when and why MTL works in the context
of sequence labeling with deep recurrent neural
networks. We follow previous work (Klerke et al.,
2016; Søgaard and Goldberg, 2016; Bollman and
Søgaard, 2016; Plank, 2016; Braud et al., 2016;
Martı́nez Alonso and Plank, 2017) in studying
the set-up where hyperparameters from the single
task architectures are reused in the multi-task set-
up (no additional tuning), which makes predict-
ing gains feasible. Running MTL experiments on
90 task configurations and comparing their per-
formance to single-task setups, we identify data
characteristics and patterns in single-task learn-
ing that predict task synergies in deep neural net-
works. Both the LSTM code used for our single-
task and multi-task models, as well as the script
we used for the analysis of these, are available at
github.com/jbingel/eacl2017_mtl.

2 Related work

In the context of structured prediction in NLP,
there has been very little work on the conditions
under which MTL works. Luong et al. (2016) sug-
gest that it is important that the auxiliary data
does not outsize the target data, while Benton et
al. (2017) suggest that multi-task learning is par-
ticularly effective when we only have access to
small amounts of target data. Martı́nez Alonso
and Plank (2017) present a study on different task
combinations with dedicated main and auxiliary
tasks. Their findings suggest, among others, that
success depends on how uniformly the auxiliary
task labels are distributed.

Mou et al. (2016) investigate multi-task learn-
ing and its relation to transfer learning, and un-
der which conditions these work between a set of
sentence classification tasks. Their main finding
with respect to multi-task learning is that success
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depends largely on “how similar in semantics the
source and target datasets are”, and that it gener-
ally bears close resemblance to transfer learning in
the effect it has on model performance.

3 Multi-task Learning

While there are many approaches to multi-task
learning, hard parameter sharing in deep neural
networks (Caruana, 1993) has become extremely
popular in recent years. Its greatest advantages
over other methods include (i) that it is known to
be an efficient regularizer, theoretically (Baxter,
2000), as well as in practice (Søgaard and Gold-
berg, 2016); and (ii) that it is easy to implement.

The basic idea in hard parameter sharing in deep
neural networks is that the different tasks share
some of the hidden layers, such that these learn
a joint representation for multiple tasks. Another
conceptualization is to think of this as regulariz-
ing our target model by doing model interpolation
with auxiliary models in a dynamic fashion.

Multi-task linear models have typically been
presented as matrix regularizers. The parame-
ters of each task-specific model makes up a row
in a matrix, and multi-task learning is enforced
by defining a joint regularization term over this
matrix. One such approach would be to define
the joint loss as the sum of losses and the sum
of the singular values of the matrix. The most
common approach is to regularize learning by the
sum of the distances of the task-specific models to
the model mean. This is called mean-constrained
learning. Hard parameter sharing can be seen as
a very crude form of mean-constrained learning,
in which parts of all models (typically the hidden
layers) are enforced to be identical to the mean.

Since we are only forcing parts of the models to
be identical, each task-specific model is still left
with wiggle room to model heterogeneous tasks,
but the expressivity is very limited, as evidenced
by the inability of such networks to fit random
noise (Søgaard and Goldberg, 2016).

3.1 Models

Recent work on multi-task learning of NLP mod-
els has focused on sequence labeling with recur-
rent neural networks (Klerke et al., 2016; Søgaard
and Goldberg, 2016; Bollman and Søgaard, 2016;
Plank, 2016; Braud et al., 2016; Martı́nez Alonso
and Plank, 2017), although sequence-to-sequence
models have been shown to profit from MTL as

well (Luong et al., 2016). Our multi-task learn-
ing architecture is similar to the former, with a
bi-directional LSTM as a single hidden layer of
100 dimensions that is shared across all tasks. The
inputs to this hidden layer are 100-dimensional
word vectors that are initialized with pretrained
GloVe embeddings, but updated during training.
The embedding parameters are also shared. The
model then generates predictions from the bi-
LSTM through task-specific dense projections.
Our model is symmetric in the sense that it does
not distinguish between main and auxiliary tasks.

In our MTL setup, a training step consists of
uniformly drawing a training task, then sampling a
random batch of 32 examples from the task’s train-
ing data. Every training step thus works on ex-
actly one task, and optimizes the task-specific pro-
jection and the shared parameters using Adadelta.
As already mentioned, we keep hyper-parameters
fixed across single-task and multi-task settings,
making our results only applicable to the scenario
where one wants to know whether MTL works in
the current parameter setting (Collobert and We-
ston, 2008; Klerke et al., 2016; Søgaard and Gold-
berg, 2016; Bollman and Søgaard, 2016; Plank,
2016; Braud et al., 2016; Martı́nez Alonso and
Plank, 2017).

3.2 Tasks

In our experiments below, we consider the follow-
ing ten NLP tasks, with one dataset for each task.
Characteristics of the datasets that we use are sum-
marized in Table 1.

1. CCG Tagging (CCG) is a sequence tagging
problem that assigns a logical type to every
token. We use the standard splits for CCG
super-tagging from the CCGBank (Hocken-
maier and Steedman, 2007).

2. Chunking (CHU) identifies continuous spans
of tokens that form syntactic units such as
noun phrases or verb phrases. We use the
standard splits for syntactic chunking from
the English Penn Treebank (Marcus et al.,
1993).

3. Sentence Compression (COM) We use the
publicly available subset of the Google Com-
pression dataset (Filippova and Altun, 2013),
which has token-level annotations of word
deletions.
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Task Size # Labels Tok/typ %OOV H(y) ||X||F JSD F1

CCG 39,604 1,285 23.08 1.13 3.28 981.3 0.41 86.1
CHU 8,936 22 12.01 1.35 1.84 466.4 0.47 93.9
COM 9,600 2 9.47 0.99 0.47 519.3 0.44 51.9
FNT 3,711 2 8.44 1.79 0.51 286.8 0.30 58.0
POS 1,002 12 3.24 14.15 2.27 116.9 0.24 82.6
HYP 2,000 2 6.14 2.14 0.47 269.3 0.48 39.3
KEY 2,398 2 9.10 4.46 0.61 289.1 0.39 64.5
MWE 3,312 3 9.07 0.73 0.53 217.3 0.18 43.3
SEM 15,465 73 11.16 4.72 2.19 614.6 0.35 70.8
STR 3,312 118 9.07 0.73 2.43 217.3 0.26 61.5

Table 1: Dataset characteristics for the individual tasks as defined in Table 2, as well as single-task model
performance on test data (micro-averaged F1).

4. Semantic frames (FNT) We use
FrameNet 1.5 for jointly predicting tar-
get words that trigger frames, and deciding
on the correct frame in context.

5. POS tagging (POS) We use a dataset of
tweets annotated for Universal part-of-speech
tags (Petrov et al., 2011).

6. Hyperlink Prediction (HYP) We use the hy-
pertext corpus from Spitkovsky et al. (2010)
and predict what sequences of words have
been bracketed with hyperlinks.

7. Keyphrase Detection (KEY) This task
amounts to detecting keyphrases in scientific
publications. We use the SemEval 2017 Task
10 dataset.

8. MWE Detection (MWE) We use the Streusle
corpus (Schneider and Smith, 2015) to learn
to identify multi-word expressions (on my
own, cope with).

9. Super-sense tagging (SEM) We use the stan-
dard splits for the Semcor dataset, predicting
coarse-grained semantic types of nouns and
verbs (super-senses).

10. Super-sense Tagging (STR) As for the MWE
task, we use the Streusle corpus, jointly pre-
dicting brackets and coarse-grained semantic
types of the multi-word expressions.

4 Experiments

We train single-task bi-LSTMs for each of the ten
tasks, as well as one multi-task model for each of

Data features

Size Number of training sentences.
# Labels The number of labels.
Tokens/types Type/token ratio in training data.
OOV rate Percentage of training words not in

GloVe vectors.
Label Entropy Entropy of the label distribution.
Frobenius norm ||X||F = [

∑
i,j
X2

i,j ]
1/2, where

Xi,j is the frequency of term j in
sentence i.

JSD Jensen-Shannon Divergence be-
tween train and test bags-of-words.

Learning curve features

Curve gradients See text.
Fitted log-curve See text.

Table 2: Task features

the pairs between the tasks, yielding 90 directed
pairs of the form 〈Tmain, {Tmain, Taux}〉. The
single-task models are trained for 25,000 batches,
while multi-task models are trained for 50,000
batches to account for the uniform drawing of the
two tasks at every iteration in the multi-task setup.
The relative gains and losses from MTL over the
single-task models (see Table 1) are presented in
Figure 1, showing improvements in 40 out of 90
cases. We see that chunking and high-level se-
mantic tagging generally contribute most to other
tasks, while hyperlinks do not significantly im-
prove any other task. On the receiving end, we
see that multiword and hyperlink detection seem
to profit most from several auxiliary tasks. Sym-
biotic relationships are formed, e.g., by POS and
CCG-tagging, or MWE and compression.

We now investigate whether we can predict
gains from MTL given features of the tasks and
single-task learning characteristics. We will use
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Figure 1: Relative gains and losses (in percent)
over main task micro-averaged F1 when incor-
porating auxiliary tasks (columns) compared to
single-task models for the main tasks (rows).

the induced meta-learning for analyzing what such
characteristics are predictive of gains.

Specifically, for each task considered, we ex-
tract a number of dataset-inherent features (see Ta-
ble 2) as well as features that we derive from the
learning curve of the respective single-task model.
For the curve gradients, we compute the gradients
of the loss curve at 10, 20, 30, 50 and 70 percent
of the 25,000 batches. For the fitted log-curve pa-
rameters, we fit a logarithmic function to the loss
curve values, where the function is of the form:
L(i) = a · ln(c ·i+d)+b. We include the fitted pa-
rameters a and c as features that describe the steep-
ness of the learning curve. In total, both the main
and the auxiliary task are described by 14 features.
Since we also compute the main/auxiliary ratios
of these values, each of our 90 data points is de-
scribed by 42 features that we normalize to the
[0, 1] interval. We binarize the results presented
in Figure 1 and use logistic regression to predict
benefits or detriments of MTL setups based on the
features computed above.1

4.1 Results

The mean performance of 100 runs of randomized
five-fold cross-validation of our logistic regression

1An experiment in which we tried to predict the magni-
tude of the losses and gains with linear regression yielded
inconclusive results.

Acc. F1 (gain)
Majority baseline 0.555 0.615
All features 0.749 0.669
Best, data features only 0.665 0.542
Best combination 0.785 0.713

Table 3: Mean performance across 100 runs of 5-
fold CV logistic regression.

model for different feature combinations is listed
in Table 3. The first observation is that there is a
strong signal in our meta-learning features. In al-
most four in five cases, we can predict the outcome
of the MTL experiment from the data and the sin-
gle task experiments, which gives validity to our
feature analysis. We also see that the features de-
rived from the single task inductions are the most
important. In fact, using only data-inherent fea-
tures, the F1 score of the positive class is worse
than the majority baseline.

4.2 Analysis

Table 4 lists the coefficients for all 42 features. We
find that features describing the learning curves
for the main and auxiliary tasks are the best pre-
dictors of MTL gains. The ratios of the learning
curve features seem less predictive, and the gra-
dients around 20-30% seem most important, af-
ter the area where the curve typically flattens a bit
(around 10%). Interestingly, however, these gradi-
ents correlate in opposite ways for the main and
auxiliary tasks. The pattern is that if the main
tasks have flattening learning curves (small neg-
ative gradients) in the 20-30% percentile, but the
auxiliary task curves are still relatively steep, MTL
is more likely to work. In other words, multi-task
gains are more likely for target tasks that quickly
plateau with non-plateauing auxiliary tasks. We
speculate the reason for this is that multi-task
learning can help target tasks that get stuck early in
local minima, especially if the auxiliary task does
not always get stuck fast.

Other features that are predictive include the
number of labels in the main task, as well as
the label entropy of the auxiliary task. The
latter supports the hypothesis put forward by
Martı́nez Alonso and Plank (2017) (see Related
work). Note, however, that this may be a side
effect of tasks with more uniform label distribu-
tions being easier to learn. The out-of-vocabulary
rate for the target task also was predictive, which
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Feature Task Coefficient
Curve grad. (30%) Main -1.566
Curve grad. (20%) Main -1.164
Curve param. c Main 1.007
# Labels Main 0.828
Label Entropy Aux 0.798
Curve grad. (30%) Aux 0.791

Curve grad. (50%) Main 0.781
OOV rate Main 0.697
OOV rate Main/Aux 0.678
Curve grad. (20%) Aux 0.575
Fr. norm Main -0.516
# Labels Main/Aux 0.504

Curve grad. (70%) Main 0.434
Label entropy Main/Aux -0.411
Fr. norm Aux 0.346
Tokens/types Main -0.297
Curve param. a Aux -0.297
Curve grad. (70%) Aux -0.279

Curve grad. (10%) Aux 0.267
Tokens/types Aux 0.254
Curve param. a Main/Aux -0.241
Size Aux 0.237
Fr. norm Main/Aux -0.233
JSD Aux -0.207

# Labels Aux -0.184
Curve param. c Aux -0.174
Tokens/types Main/Aux -0.117
Curve param. c Main/Aux -0.104
Curve grad. (20%) Main/Aux 0.104
Label entropy Main -0.102

Curve grad. (50%) Aux -0.099
Curve grad. (50%) Main/Aux 0.076
OOV rate Aux 0.061
Curve grad. (30%) Main/Aux -0.060
Size Main -0.032
Curve param. a Main 0.027

Curve grad. (10%) Main/Aux 0.023
JSD Main 0.019
JSD Main/Aux -0.015
Curve grad. (10%) Main 6 · 10−2

Size Main/Aux −6 · 10−3

Curve grad. (70%) Main/Aux −4 · 10−4

Table 4: Predictors of MTL benefit by logistic re-
gression model coefficient (absolute value).

makes sense as the embedding parameters are also
updated when learning from the auxiliary data.

Less predictive features include Jensen-
Shannon divergences, which is surprising, since
multi-task learning is often treated as a transfer
learning algorithm (Søgaard and Goldberg, 2016).
It is also surprising to see that size differences
between the datasets are not very predictive.

5 Conclusion and Future Work

We present the first systematic study of when MTL
works in the context of common NLP tasks, when
single task parameter settings are also applied for
multi-task learning. Key findings include that
MTL gains are predictable from dataset character-
istics and features extracted from the single-task
inductions. We also show that the most predictive
features relate to the single-task learning curves,
suggesting that MTL, when successful, often helps
target tasks out of local minima. We also observed
that label entropy in the auxiliary task was also
a good predictor, lending some support to the hy-
pothesis in Martı́nez Alonso and Plank (2017); but
there was little evidence that dataset balance is a
reliable predictor, unlike what previous work has
suggested.

In future work, we aim to extend our experi-
ments to a setting where we optimize hyperparam-
eters for the single- and multi-task models individ-
ually, which will give us a more reliable picture of
the effect to be expected from multi-task learning
in the wild. Generally, further conclusions could
be drawn from settings where the joint models do
not treat the two tasks as equals, but instead give
more importance to the main task, for instance
through a non-uniform drawing of the task con-
sidered at each training iteration, or through an
adaptation of the learning rates. We are also in-
terested in extending this work to additional NLP
tasks, including tasks that go beyond sequence la-
beling such as language modeling or sequence-to-
sequence problems.
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Abstract

We present a novel, unsupervised, and dis-
tance measure agnostic method for search
space reduction in spell correction using
neural character embeddings. The embed-
dings are learned by skip-gram word2vec
training on sequences generated from dic-
tionary words in a phonetic information-
retentive manner. We report a very high
performance in terms of both success rates
and reduction of search space on the Birk-
beck spelling error corpus. To the best of
our knowledge, this is the first application
of word2vec to spell correction.

1 Introduction

Spell correction is now a pervasive feature, with
presence in a wide range of applications such
as word processors, browsers, search engines,
OCR tools, etc. A spell corrector often re-
lies on a dictionary, which contains correctly
spelled words, against which spelling mistakes
are checked and corrected. Usually a measure
of distance is used to find how close a dictio-
nary word is to a given misspelled word. One
popular approach to spell correction is the use of
Damerau-Levenshtein distance (Damerau, 1964;
Levenshtein, 1966; Bard, 2007) in a noisy chan-
nel model (Norvig, 2007; Norvig, 2009). For
huge dictionaries, Damerau-Levenshtein distance
computations between a misspelled word and all
dictionary words lead to long computation times.
For instance, Korean and Japanese may have as
many as 0.5 million words1. A dictionary fur-
ther grows when inflections of the words are also
considered. In such cases, since an entire dic-
tionary becomes the search space, large number

1http://www.lingholic.com/how-many-words-do-i-need-
to-know-the-955-rule-in-language-learning-part-2/

of distance computations blows up the time com-
plexity, thus hindering real-time spell correction.
For Damerau-Levenshtein distance or similar edit
distance-based measures, some approaches have
been tried to reduce the time complexity of spell
correction. Norvig (2007) does not check against
all dictionary words, instead generates all possi-
ble words till a certain edit distance threshold from
the misspelled word. Then each of such generated
words is checked in the dictionary for existence,
and if it is found in the dictionary, it becomes a
potentially correct spelling. There are two short-
comings of this approach. First, such search space
reduction works only for edit distance-based mea-
sures. Second, this approach too leads to high time
complexity when the edit distance threshold is
greater than 2 and the possible characters are large.
Large character set is real for Unicode characters
used in may Asian languages. Hulden (2009) pro-
poses a Finite-State-Automata (FSA) algorithm
for fast approximate string matching to find sim-
ilarity between a dictionary word and a misspelled
word. There have been other approaches as well
using FSA, but such FSA-based approaches are
approximate methods for finding closest match-
ing word to a misspelled word. Another more re-
cent approach to reduce the average number of dis-
tance computations is based on anomalous pattern
initialization and partition around medoids (de
Amorim and Zampieri, 2013).

In this paper, we propose a novel, unsuper-
vised, distance measure agnostic, highly accurate,
method of search space reduction for spell cor-
rection with a high reduction ratio. Our method
is unsupervised because we use only a dictionary
of correctly spelled words during the training pro-
cess. It is distance measure agnostic because once
the search space has been reduced then any dis-
tance measure of spell correction can be used. It
is novel because to the best of our knowledge, it
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is the first application of neural embeddings learn-
ing word2vec techniques (Mikolov et al., 2013a;
Mikolov et al., 2013b) to spell correction. The
goal of this paper is not to find a novel spell cor-
rection algorithm. Rather, the goal is to reduce the
time complexity of spell correction by reducing
the search space of words over which the search
for correct spelling is to be done. The reduced
search space contains only a fraction of words of
the entire dictionary, and we refer to that fraction
as reduction ratio. So, our method is used as a
filter before a spell correction algorithm. We dis-
cuss a closely related work in Section 2, which is
followed by description of our method in Section
3. Then we present our experiments and results in
Section 4, which demonstrates the effectiveness of
our approach.

2 Related Work

As discussed in Section 1, there have been studies
to reduce the time complexity of spell correction
by various methods. However, the recent work of
de Amorim and Zampieri (2013) is closest to our
work in terms of the goal of the study. We briefly
describe their method and evaluation measure, as
it would help us in comparing our results to theirs,
though the results are not exactly comparable.

De Amorim and Zampieri (2013) cluster a dic-
tionary based on anomalous pattern initialization
and partition around medoids, where medoids be-
come the representative words of the clusters and
the candidacy of a good cluster is determined by
computing the distance between the misspelled
word and the medoid word. This helps in reduc-
ing the average number of distance computations.
Then all the words belonging to the selected clus-
ters become candidates for further distance com-
putations. Their method on average needs to per-
form 3,251.4 distance calculations for a dictionary
of 57,046 words. This amounts to 0.057 reduction
ratio. They also report a success rate of 88.42%
on a test data set known as Birkbeck spelling er-
ror corpus.2 However, it is important to note that
they define success rate in a rather relaxed manner
- one of the selected clusters contains either the
correct spelling or contains a word with a smaller
distance to the misspelled word than the correct
word. Later in Section 4, we define a stricter and
natural definition of success rate for our studies.
This difference in relaxed vs strict success rates

2http://www.dcs.bbk.ac.uk/ ROGER/corpora.html

along with the inherent differences in approach
render their method and our method not entirely
comparable.

3 Method

Recent word2vec techniques (Mikolov et al.,
2013a; Mikolov et al., 2013b) have been very ef-
fective for representing symbols such as words in
an n-dimensional space Rn by using information
from the context of the symbols. These vectors are
also called neural embeddings because of the one
hidden layer neural network architecture used to
learn these vectors. In our method, the main idea
is to represent dictionary words as n-dimensional
vectors, such that with high likelihood the vec-
tor representation of the correct spelling of a mis-
spelled word is in the neighborhood of the vector
representation of the misspelled word. To quickly
explore the neighborhood of the misspelled word
vector, fast k-nearest-neighbor (k-NN) search is
done using a Ball Tree (Omohundro, 1989; Liu et
al., 2006; Kibriya and Frank, 2007). A Ball Tree
(aka Metric Tree) retrieves k-nearest-neighbors of
a point in time complexity that is logarithmic of
the total number of points (Kibriya and Frank,
2007). There are other methods, such as Locally-
Sensitive Hashing (LSH) and KD-Tree, which can
also be used to perform fast k-NN search. We use
Ball Tree because in our experiments, Ball Tree
outperforms both KD-Tree and LSH in terms of
speed of computation.

We treat a word as a bag of characters. For each
character, an n-dimensional vector representation
is learned using all the words from a dictionary of
correctly spelled words. Each word is then repre-
sented as an n-dimensional vector formed by sum-
ming up the vectors of the characters in that word.
Then in a similar manner, a vector is obtained for
the misspelled word by summing up the vectors
of the characters in the misspelled word. We start
with a few notations:

• n : dimension of neural embedding
• m : window size for word2vec training
• W : set of all dictionary words
• w : input misspelled word
• k : size of the reduced search space
• C : set of all the language characters present

in W
• C2V map : a map of all characters in C to

their n-dimensional vector representations
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• V 2Wmap : a map of vectors to the list of
words represented by the vectors3

• BT : a Ball Tree of all the vectors

Our method is divided into two procedures.
The first procedure is a preprocessing step, which
needs to be done only once, and the second proce-
dure is the search space reduction step.

3.1 Procedure 1: preprocessing

1. Prepare sequences for word2vec training:
each word w′ in W is split into a sequence
such that each symbol of such sequence con-
tains the longest possible contiguous vowels4

or consonants but not both. E.g. “affiliates”
generates the sequence “a ff i l ia t e s”

2. Train skip-gram word2vec model with se-
quences generated in the previous step with
hidden layer size as n and window size as m.
Training yields neural embeddings for sym-
bols present in training sequences. For each
character c in C, store the neural embeddings
in C2V map for future retrieval.

3. For each word w′ in W , compute the
n-dimensional vector representation of w′

by summing up neural embeddings (using
C2V map) of the characters in w′.

4. Fill V 2Wmap with key as vector computed
in the previous step and value as list of words
represented by that vector. Also construct
BT for the word vectors computed in the pre-
vious step.

The peculiar way of sequence generation in step
1 of Procedure 1 is chosen for both empirical and
intuitive reasons. Experimentally, we tried mul-
tiple ways of sequence generation, such as sim-
ply breaking a word into all it’s characters, mak-
ing symbols that are longest possible contiguous
consonants but each vowel is a separate symbol,
making symbols that are longest possible contigu-
ous vowels but each consonant is a separate sym-
bol, and the one given in the step 1 of Procedure
1. We found that the sequence generation given in
step 1 of Procedure 1 gives the best success rates.
An intuitive reasoning is that if each symbol of a
sequence contains the longest possible contiguous

3multiple words may have same vector representation,
e.g. anagrams

4we include character y in the vowel set

vowels or consonants but not both, then it retains
phonetic information of a word. Phonetic infor-
mation is vital for correcting spelling mistakes.

3.2 Procedure 2: search space reduction

1. Compute vw, the n-dimensional vector repre-
sentation of misspelled word w, by summing
up the vector representations of the characters
in w (using C2V map).

2. Find kNearNeighb : k nearest-neighbors of
vw using BT .

3. Using V 2Wmap fetch the reduced search
space of words corresponding to each vector
in kNearestNeighb

Once the reduced search space of words is ob-
tained as in step 3 of procedure 2, then any spell
correction algorithm can be used to find the correct
spelling of misspelled word w. This also means
that our search space reduction method is com-
pletely decoupled from the final spell correction
algorithm.

4 Experiments and Evaluation

In this section, we describe our experiments and
their effectiveness in search space reduction of
spell correction. As discussed in Section 2, recent
work of de Amorim and Zampieri (2013) is clos-
est to our work in terms of the goal of the study,
so we make comparisons with their work wherever
possible.

4.1 Data

We chose a dictionary W containing 109,582
words5, which is almost twice the size of dictio-
nary used by de Amorim and Zampieri (2013).
For testing, we use the same Birkbeck spelling er-
ror corpus as used by de Amorim and Zampieri
(2013). However, de Amorim and Zampieri
(2013) remove those test cases from the Birkbeck
corpus for which the correctly spelled word is not
present in their dictionary. We on the other hand
include such words in our dictionary and enhance
the size of our dictionary. This leads to the final
size of 109,897 words in the enhanced dictionary.
It is also worth mentioning that Birkbeck corpus is
a very challenging test data set, with some spelling
mistakes as wide as 10 edit distances apart.

5http://www-01.sil.org/linguistics/wordlists/english/
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4.2 Evaluation Measure

We use success rate as a measure of accuracy. De
Amorim and Zampieri (2013) used a relaxed def-
inition of success rate (see Section 2), which we
call relaxed success rate. We have a stricter defi-
nition of success rate, where success is defined as
occurrence of the correct spelling of a misspelled
word in the reduced search space. Reduction ra-
tio for our method is 1.1k/|W |. The 1.1 factor
is present because average number of words per
vector in V 2Wmap is 1.1. Thus, on average, we
need to do 1.1k distance computations post search
space reduction. It is worth noting that k is in
fact flexible, and thus it is vital that k << |W |
to achieve a significant improvement in time com-
plexity of spell correction.

4.3 Experimental Setup

We implemented the procedures given in Section 3
partly in Java and partly in Python. For word2vec
training Deep Learning library DL4J6 was used,
and Scikit-learn (Pedregosa et al., 2011) library
was used for Ball Tree7 to facilitate fast k-NN
search. All the experiments were conducted on an
Ubuntu 16.04 machine with Intel® CoreTM 2 Duo
CPU P8800 @ 2.66GHz with 8 GB of RAM.

4.4 Results

In Section 3.1, we already discussed how the se-
quence generation given in step 1 of Procedure 1
gave the best success rates as compared to other
sequence generation methods. Similarly, window
sizem = 4 in word2vec training gave best success
rates. Also for k-NN using BT , we experimented
with various metrics and found Euclidean metric
to be giving best success rates. For reporting, we
vary k and n because they directly influence the re-
duction ratio and time complexity of search space
reduction. Table 1 shows success rates for various
values of k and n.

k

n

1000 2000 5000
25 76.26 81.13 87.00
50 77.96 82.39 87.95
100 76.82 82.52 88.20

Table 1: Success rates (%) for various k and n

6http://deeplearning4j.org/
7http://scikit-learn.org/stable/modules/generated/

sklearn.neighbors.BallTree.html

For k = 5000 and n = 100, we achieve a suc-
cess rate of 88.20% for a strict (and natural) defini-
tion of success rate (defined in Section 4.2) while
de Amorim and Zampieri (2013) report a success
rate of 88.42% for a relaxed definition of success
rate (defined in Section 2). Further, k = 5000
boils down to reduction ratio of 0.050, which is
an improvement over reduction ratio of 0.057 re-
ported by de Amorim and Zampieri (2013). It is
also important to note that even at low dimensions
of neural embeddings such as n = 25, the success
rates are only slightly lower than those at n = 100.
This means that other fast k-NN retrieval methods
such as KD-Trees (Kibriya and Frank, 2007) may
also be used because they are quite efficient at such
low dimensions. Also, smaller dimensions further
speed up computations because of speeding up of
vector similarity computations. This is a useful
trade-off, where small decrease in accuracy can be
traded off for more increase in computation speed.
We see such flexibility of choosing k and n as an
advantage of our method.

In practice, a large number of spelling mistakes
occur within few edit distances of their correct
spelling. Thus we also present extremely high
success rates of our method for k = 5000 and
n = 100 for the subset of Birkbeck corpus hav-
ing Damerau-Levenshtein distances between mis-
spelled word and correct spelling within 2, 3, and
4. These results are shown in Table 2

Damerau-Levenshtein distance Success Rate
≤ 2 99.59
≤ 3 97.87
≤ 4 94.72

Table 2: Success rates (%) for test data with mis-
takes within various Damerau-Levenshtein dis-
tances (for k = 5000 and n = 100)

For k = 5000 with n = 100, the search
space reduction followed by success rate evalua-
tion took on average 52 ms per test case on the
modest system configurations given in Section 4.3.
This shows that our method has real-time response
times. For larger dictionaries, the effect would
be more profound as the time complexity of our
method is logarithmic in the size of dictionary.

5 Conclusions and Future Work

In this paper, we proposed a novel, unsupervised,
distance-measure agnostic method of search space
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reduction for spell correction. Our method out-
performs one of the recent methods, both in terms
of the extent of search space reduction and suc-
cess rates. For common spelling mistakes, which
are usually within a few edit distances, our method
has extremely high success rates, for example, we
achieved success rate of 99.6% and 97.9% for
spelling mistakes within edit distance 2 and 3 re-
spectively.

As we noticed, sequence generation for
word2vec training does influence success rates,
so we are currently exploring further ways of se-
quence generation. We would also like to intro-
duce mild supervision element by generating more
data for word2vec training by mutating dictionary
words using confusion sets (Pedler and Mitton,
2010). We would also like to explore the effec-
tiveness of our approach on languages other than
English.
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Abstract
The popular skip-gram model induces word
embeddings by exploiting the signal from
word-context coocurrence. We offer a new
interpretation of skip-gram based on ex-
ponential family PCA—a form of matrix
factorization. This makes it clear that we
can extend the skip-gram method to tensor
factorization, in order to train embeddings
through richer higher-order coocurrences,
e.g., triples that include positional informa-
tion (to incorporate syntax) or morphologi-
cal information (to share parameters across
related words). We experiment on 40 lan-
guages and show that our model improves
upon skip-gram.

1 Introduction

Over the past years NLP has witnessed a verita-
ble frenzy on the topic of word embeddings: low-
dimensional representations of distributional infor-
mation. The embeddings, trained on extremely
large text corpora such as Wikipedia and Common
Crawl, are claimed to encode semantic knowledge
extracted from large text corpora.

Numerous methods have been proposed—the
most popular being skip-gram (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014)—for
learning these low-dimensional embeddings from a
bag of contexts associated with each word type.
Natural language text, however, contains richer
structure than simple context-word pairs. In this
work, we embed n-tuples rather than pairs, allow-
ing us to escape the bag-of-words assumption and
encode richer linguistic structures.

As a first step, we offer a novel interpretation of
the skip-gram model (Mikolov et al., 2013). We
show how skip-gram can be viewed as an applica-
tion of exponential-family principal components
analysis (EPCA) (Collins et al., 2001) to an integer
matrix of coocurrence counts. Previous work has

related the negative sampling estimator for skip-
gram model parameters to the factorization of a
matrix of (shifted) positive pointwise mutual infor-
mation (Levy and Goldberg, 2014b). We show the
skip-gram objective is just EPCA factorization.

By extending EPCA factorization from matrices
to tensors, we can consider higher-order cooccur-
rence statistics. Here we explore incorporating
positional and morphological content in the model
by factorizing a positional tensor and morphology
tensor. The positional tensor directly incorporates
word order into the model, while the morphology
tensor adds word-internal information. We validate
our models experimentally on 40 languages and
show large gains under standard metrics.1

2 Matrix Factorization

In this section, we briefly explain how skip-gram
is an example of EPCA. We are given data in the
form of a matrix X ∈ Rn1×n2 , where Xij is the
number of times that word j appears in context i
under some user-specified definition of “context.”
Principal components analysis (Pearson, 1901)
approximatesX as the product C>W of two matri-
ces C ∈ Rd×n1 and W ∈ Rd×n2 , whose columns
are d-dimensional vectors that embed the contexts
and the words, respectively, for some user-specified
d < min(n1, n2). Specifically, PCA minimizes2

∣∣∣∣∣∣X − C>W ∣∣∣∣∣∣2
F

=
∑
ij

(Xij − ci ·wj)
2 (1)

=
∑

j

∣∣∣∣∣∣xj − C>wj

∣∣∣∣∣∣2 (2)

where ci, wj , xj denote the ith column of C and
the jth columns ofW andX , and ci ·wj denotes an
inner product of vectors (sometimes called “cosine

1The code developed is available at https://github.
com/azpoliak/skip-gram-tensor.

2Singh and Gordon (2008) offer a comprehensive discus-
sion of PCA and other matrix factorization techniques in ML.
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xj

wjC

1 ≤ j ≤ n2

(a) Matrix factorization

X·jk

wjC

rk

1 ≤ j ≤ n2, 1 ≤ k ≤ n3

(b) Tensor factorization
Figure 1: Comparison of the graphical model for matrix fac-
torization (either PCA or EPCA) and 3-dimensional tensor
factorization. Priors are omitted from the drawing.

similarity”). Note that rank(C>W ) ≤ d, whereas
rank(X) ≤ min(n1, n2). Globally optimizing
equation (1) means finding the best approximation
to X with rank ≤ d (Eckart and Young, 1936), and
can be done by SVD (Golub and Van Loan, 2012).

By rewriting equation (1) as (2), both Roweis
(1997) and Tipping and Bishop (1999) observed
that the optimal values ofC andW can be regarded
as the maximum-likelihood parameter estimates for
the Gaussian graphical model drawn in Figure 1a.
This model supposes that the observed column vec-
tor xj equals C>wj plus Gaussian noise, specif-
ically xj ∼ N(C>wj , I). Equation (2) is this
model’s negated log-likelihood (plus a constant).3

However, recall that in our application, xj is a
vector of observed counts of the various contexts
in which word j appeared. Its elements are always
non-negative integers—so as Hofmann (1999) saw,
it is peculiar to model xj as having been drawn
from a Gaussian. EPCA is a generalization of
PCA, in which the observation xj can be drawn
according to any exponential-family distribution
(log-linear distribution) over vectors.4 The canon-
ical parameter vector for this distribution is given
by the jth column of C>W , that is, C>wj .5

3The graphical model further suggests that the ci and wj

vectors are themselves drawn from some prior. Specifying
this prior defines a MAP estimate of C and W . If we take the
prior to be a spherical Gaussian with mean 0 ∈ Rd, the MAP
estimate corresponds to minimizing (2) plus an L2 regularizer,
that is, a multiple of ||C||2F + ||W ||2F . We do indeed regularize
in this way throughout all our experiments, tuning the multi-
plier on a held-out development set. However, regularization
has only minor effects with large training corpora, and is not
in the original word2vec implementation of skip-gram.

4EPCA extends PCA in the same way that generalized lin-
ear models (GLMs) extend linear regression. The maximum-
likelihood interpretation of linear regression supposes that the
dependent variable xj is a linear function C of the indepen-
dent variable wj plus Gaussian noise. The GLM, like EPCA,
is an extension that allows other exponential-family distribu-
tions for the dependent variable xj . The difference is that in
EPCA, the representations wj are learned jointly with C.

5In the general form of EPCA, that column is passed
through some “inverse link” function to obtain the expected
feature values under the distribution, which in turn determines

EPCA allows us to suppose that each xj was
drawn from a multinomial—a more appropriate
family for drawing a count vector. Our observa-
tion is that skip-gram is precisely multinomial
EPCA with the canonical link function (Mo-
hamed, 2011), which generates xj from a multino-
mial with log-linear parameterization.That is, skip-
gram chooses embeddings C,W to maximize∑

j

∑
i

Xij log p(context i | word j) (3)

=
∑

j

∑
i

Xij log
exp (ci ·wj)∑
i′ exp (ci′ ·wj)

(4)

This is the log-likelihood (plus a constant) if we
assume that for each word j, the context vec-
tor xj was drawn from a multinomial with nat-
ural parameter vector C>wj and count parameter
Nj =

∑
iXij . This is the same model as in Fig-

ure 1a, but with a different conditional distribution
for xj , and with xj taking an additional observed
parent Nj (which is the token count of word j).

2.1 Related work

Levy and Goldberg (2014b) also interpreted skip-
gram as matrix factorization. They argued that skip-
gram estimation by negative sampling implicitly
factorizes a shifted matrix of positive empirical
pointwise mutual information values. We instead
regard the skip-gram objective itself as demanding
EPCA-style factorization of the count matrix X:
i.e., X arose stochastically from some unknown
matrix of log-linear parameters (column j of X
generated from parameter column j), and we seek
a rank-d estimate C>W of that matrix.

pLSI (Hofmann, 1999) similarly factors an
unknown matrix of multinomial probabilities,
which is multinomial EPCA with the identity
link function. In contrast, our unknown matrix
holds log-linear parameters—arbitrarily shifted log-
probabilities, not probabilities.

Our EPCA interpretation applies equally well to
the component distributions that are used in hierar-
chical softmax (Morin and Bengio, 2005), which is
an alternative to negative sampling. Additionally,
it yields avenues of future research using Bayesian
(Mohamed et al., 2008) and maximum-margin (Sre-
bro et al., 2004) extensions to EPCA.

the canonical parameters of the distribution. We use the so-
called canonical link, meaning that these two steps are inverses
of each other and thus the canonical parameters are themselves
a linear function of wj .
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3 Tensor Factorization

Having seen that skip-gram is a form of matrix
factorization, we can generalize it to tensors. In
contrast to the matrix case, there are several distinct
definitions of tensor factorization (Kolda and Bader,
2009). We focus on the polyadic decomposition
(Hitchcock, 1927), which yields a satisfying gen-
eralization. The tensor analogue to PCA is rank-d
tensor approximation, which minimizes

||X− C 1⊗1 W 1⊗1 R ||2F
=
∑
ijk

(Xijk−1 · (ci �wj � rk))2 (5)

=
∑
jk

∣∣∣∣∣∣X·jk − C>(wj � rk)
∣∣∣∣∣∣2 (6)

Given a tensor X ∈ Rn1×n2×n3 , this objective tries
to predict each entry as the three-way dot product
of the columns ci,wj , rk ∈ Rd, thus finding an
approximation to X that factorizes into C,W,R.
This polyadic decomposition of the approximating
tensor can be viewed as a Tucker decomposition
(Tucker, 1966) that enforces a diagonal core.

In our setting, the new matrix R ∈ Rd×n3 em-
beds types of context-word relations. The tensor X

can be regarded as a collection of n2n3 count vec-
tors X·jk ∈ Nn1 : the fibers of the tensor, each of
which provides the context counts for some (word
j, relation k) pair. Typically, X·jk counts which
context words i are related to word j by relation k.

We now move from third-order PCA to third-
order EPCA. Minimizing equation (6) corresponds
to maximum-likelihood estimation of the graph-
ical model in Figure 1b, in which each fiber of
X is viewed as being generated from a Gaussian
all at once. Our higher-order skip-gram (HOSG)
replaces this Gaussian with a multinomial. Thus,
HOSG attempts to maximize the log-likelihood∑

ijk

Xijk log p(context i | word j, relation k) (7)

=
∑
ijk

Xijk log
exp (1 · (ci �wj � rk))∑
i′ exp (1 · (ci′ �wj � rk))

(8)

Note that as before, we are taking the total count
Njk =

∑
i Xijk to be observed. So while our em-

bedding matrices must predict which words are
related to word j by relation k, we are not proba-
bilistically modeling how often word j participates
in relation k in the first place (nor how often word
j occurs overall). A simple and natural move in

future would be to extend the generative model to
predict these facts also from wj and rk, although
this weakens the pedagogical connection to EPCA.

We locally optimize the parameters of our prob-
ability model—the word, context and relation
embeddings—through stochastic gradient ascent
on (7). Each stochastic gradient step computes the
gradient of a single summand Xijk log p(i | j, k).
Unfortunately, this requires summing over n1 con-
texts in the denominator of (8), which is problem-
atic as n1 is often very large, e.g., 107. Mikolov
et al. (2013) offer two speedup schemes: negative
sampling and hierarchical softmax. Here we apply
the negative sampling approximation to HOSG; hi-
erarchical softmax is also applicable. See Goldberg
and Levy (2014) for an in-depth discussion.

HOSG is a bit slower to train than skip-gram,
since X yields up to n3 times as many summands
as X (but� n3 in practice, as X is often sparse).

4 Two Tensors for Word Embedding

As examples of useful tensors to factorize, we offer
two third-order generalizations of Mikolov et al.
(2013)’s context-word matrix. We are still predict-
ing the distribution of contexts of a given word type.
Our first version increases the number of param-
eters (giving more expressivity) by conditioning
on additional information. Our second version de-
creases the number of parameters (giving better
smoothing) by factoring the word type.

4.1 Positional Tensor

When predicting the context words in a window
around a given word token, Mikolov et al. (2013)
uses the same distribution to predict each of them.
We propose to use different distributions at dif-
ferent positions in the window, via a “positional
tensor”: X〈dog,ran,-2〉 is the number of times the
context word dog was seen two positions to the
left of ran. We will predict this count using
p(dog | ran,-2), defined from the embeddings
of the word ran, the position -2, and the context
word dog and its competitors. For a 10-word win-
dow, we have X ∈ R|V |×|V |×10. Considering word
position should improve syntactic awareness.

4.2 Compositional Morphology Tensor

For Mikolov et al. (2013), related words such as
ran and running are monolithic objects that do
not share parameters. We decompose each word
into a lemma j and a morphological tag k. The
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ar bg ca cs da de el en es et eu fa fi fo fr ga gl he hi
SG .25 .22 .41 .20 .21 .49 .58 .44 .41 .09 .41 .39 .20 .32 .41 .22 .43 .31 .10
HOSG .40 .46 .45 .36 .50 .48 .61 .48 .42 .28 .46 .43 .39 .40 .40 .29 .46 .44 .40
∆ +.15 +.24 +.14 +.16 +.29 −.01 +.03 +.04 +.01 +.19 +.05 +.04 +.19 +.08 −.01 +.07 +.03 +.13 +.30

c = 2 hr hu id it kk la lv nl no pl pt ro ru sl sv ta tr ug vi
SG .51 .36 .41 .45 .47 .42 .21 .42 .30 .43 .42 .28 .34 .13 .54 .60 .22 .53 .57
HOSG .53 .49 .43 .46 .43 .46 .38 .45 .47 .44 .42 .46 .33 .37 .51 .58 .41 .62 .60
∆ +.02 +.13 +.02 +.01 −.04 +.04 +.17 +.03 +.17 +.01 0.0 +.18 −.01 +.24 −.03 −.02 +.21 +.09 +.03

ar bg ca cs da de el en es et eu fa fi fo fr ga gl he hi
SG .24 .41 .39 .29 .44 .45 .54 .52 .45 .40 .40 .38 .37 .33 .39 .53 .40 .38 .48
HOSG .29 .47 .42 .36 .49 .52 .60 .54 .48 .42 .45 .44 .43 .41 .42 .56 .45 .43 .51
∆ +.05 +.06 +.03 +.07 +.04 +.07 +.06 +.02 +.03 +.02 +.05 +.06 +.06 +.08 +.08 +.06 +.06 +.05 +.03

c = 5 hr hu id it kk la lv nl no pl pt ro ru sl sv ta tr ug vi
SG .50 .46 .39 .42 .47 .43 .52 .43 .39 .41 .38 .38 .24 .40 .46 .59 .38 .57 .57
HOSG .53 .49 .44 .50 .40 .46 .54 .50 .44 .47 .44 .43 .34 .46 .52 .58 .43 .63 .61
∆ +.03 +.03 +.05 +.08 −.07 +.03 +.02 +.07 +.06 +.06 +.06 +.05 +.10 +.06 +.05 −.01 +.06 +.06 +.04

Table 1: The scores for QVEC-CCA for 40 languages. All embeddings were trained on the complete Wikipedia dump of September
2016. We measure correlation with universal POS tags from the UD treebanks.

contexts i are still full words.6 Thus, we predict the
count X〈dog,RUN,t〉 using p(dog | RUN, t), where t
is a morphological tag such as [pos=V,tense=PAST].

Our model is essentially a version of the skip-
gram method (Mikolov et al., 2013) that parameter-
izes the embedding of the word ran as a Hadamard
product wj�rk, where wj embeds RUN and rk em-
beds tag t. This is similar to the work of Cotterell
et al. (2016), who parameterized word embeddings
as a sum wj + rk of embeddings of the component
morphemes.7 Our Hadamard product embedding
is in fact more general, since the additive embed-
ding wj + rk can be recovered as a special case—it
is equal to (wj ; 1) � (1; rk), which uses twice as
many dimensions to embed each object.

5 Experiments

We build HOSG on top of the HYPERWORDS pack-
age. All models (both skip-gram and higher-order
skip-gram) are trained for 10 epochs and use 5
negative samples. All models for §5.1 are trained
on the Sept. 2016 dump of the full Wikipedia. All
models for §5.2 were trained on the lemmatized and
POS-tagged WaCky corpora (Baroni et al., 2009)
for French, Italian, German and English (Joubarne
and Inkpen, 2011; Leviant and Reichart, 2015). To
ensure controlled and fair experiments, we follow
Levy et al. (2015) for all preprocessing.

5.1 Experiment 1: Positional Tensor
We postulate that the positional tensor should en-
code richer notions of syntax than standard bag-

6If one wanted to extend the model to decompose the
context words i as well, we see at least four approaches.

7Cotterell et al. (2016) made two further moves that could
be applied to extend the present paper. First, they allowed a
word to consist of any number of (unordered) morphemes—
not necessarily two—whose embeddings were combined (by
summation) to get the word embedding. Second, this sum also
included word-specific random noise, allowing them to learn
word embeddings that deviated from compositionality.

of-words vectors. Why? Positional information
allow us to differentiate between the geometry of
the coocurrence, e.g., the is found to the left of the
noun it modifies and is—more often than—close
to it. Our tensor factorization model explicitly en-
codes this information during training.

To evaluate the vectors, we use QVEC (Tsvetkov
et al., 2016), which measures Pearson’s correla-
tion between human-annotated judgements and
the vectors using CCA. The QVEC metric will
be higher if the vectors better correlate with the
human-annotated resource. To measure the syntac-
tic content of the vectors, we compute the correla-
tion between our learned vector wi for each word
and its empirical distribution gi over universal POS
tags (Petrov et al., 2012) in the UD treebank (Nivre
et al., 2016). gi can be regarded as a vector on the
(|T| − 1)-dimensional simplex, where T is the tag
set. We report results on 40 languages from the UD
treebanks in Table 1, using 4-word or 10-word sym-
metric context windows (i.e., c ∈ {2, 5}). We find
that for 77.5% of the languages, our positional ten-
sor embeddings outperform the standard skip-gram
approach on the QVEC metric.

We highlight again that the positional tensor ex-
ploits no additional annotation, but better exploits
the signal found in the raw text. Of course, our
HOSG method could also be used to exploit anno-
tations if available: e.g., one would get different
embeddings by defining the relations of word j to
be the labeled syntactic dependency relations in
which it participates (Lin and Pantel, 2001; Levy
and Goldberg, 2014a).

5.2 Experiment 2: Morphology Tensor

Since the compositional morphology tensor allows
us to share parameters among related word forms,
we get a single embedding for each lemma, i.e.,
all the words ran, run and running now con-
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fr it de en
353 353 SIML RG-65 353 SIML Z222 RG-65 353 MEN MTURK SIML SIMV RW

SG 48.31 43.63 21.33 44.90 28.39 50.39 29.75 70.60 64.50 64.33 58.77 41.62 30.48 40.78
HOSG 58.21 45.00 28.54 68.08 40.09 53.97 31.11 71.71 63.72 66.66 62.64 49.70 29.96 42.40
∆ +9.90 +1.37 +7.21 +23.18 +11.7 +3.58 +1.36 +1.11 -0.78 +2.33 +3.87 +8.08 +0.52 +1.62

Table 2: Word similarity results comparing the compositional morphology tensor with the standard skip-gram model. Numbers
indicate Spearman’s correlation coefficient ρ between human similarity judgements and the cosine distances of vectors. For each
language, we compare on several sets of human judgments as listed by Faruqui et al. (2016, Table 2).

tribute signal to the embedding of run. We expect
these lemma embeddings to be predictive of human
judgments of lemma similarity.

We evaluate using standard datasets on four
languages (French, Italian, German and English).
Given a list of pairs of words (always lemmata),
multiple native speakers judged (on a scale of 1–
10) how “similar” those words are conceptually.
Our model produces a similarity judgment for each
pair using the cosine similarity of their lemma em-
beddings wj . Table 2 shows how well this learned
judgment correlates with the average human judg-
ment. Our model does achieve higher correlation
than skip-gram word embeddings. Note we did not
compare to a baseline that simply embeds lemmas
rather than words (equivalent to fixing rk = 1).

6 Related Work

Tensor factorization has already found uses in a few
corners of NLP research. Van de Cruys et al. (2013)
applied tensor factorization to model the composi-
tionality of subject-verb-object triples. Similarly,
Hashimoto and Tsuruoka (2015) use an implicit
tensor factorization method to learn embeddings
for transitive verb phrases. Tensor factorization
also appears in semantic-based NLP tasks. Lei et al.
(2015) explicitly factorize a tensor based on feature
vectors for predicting semantic roles. Chang et al.
(2014) use tensor factorization to create knowledge
base embeddings optimized for relation extraction.
See Bouchard et al. (2015) for a large bibliography.

Other researchers have likewise attempted to es-
cape the bag-of-words assumption in word embed-
dings, e.g., Yatbaz et al. (2012) incorporates mor-
phological and orthographic features into continu-
ous vectors; Cotterell and Schütze (2015) consider
a multi-task set-up to force morphological informa-
tion into embeddings; Cotterell and Schütze (2017)
jointly morphologically segment and embed words;
Levy and Goldberg (2014a) derive contexts based
on dependency relations; PPDB (Ganitkevitch et
al., 2013) employs a mixed bag of words, parts of
speech, and syntax; Rastogi et al. (2015) represent
word contexts, morphology, semantic frame rela-

tions, syntactic dependency relations, and multi-
lingual bitext counts each as separate matrices,
combined via GCCA; and, finally, Schwartz et
al. (2016) derived embeddings based on Hearst
patterns (Hearst, 1992). Ling et al. (2015) learn
position-specific word embeddings (§4.1), but do
not factor them as wj � rk to share parameters (we
did not compare empirically to this). As demon-
strated in the experiments, our tensor factorization
method enables us to include other syntactic proper-
ties besides word order, e.g. morphology. Poliak et
al. (2017) also create positional word embeddings.
Our research direction is orthogonal to these efforts
in that we provide a general purpose procedure for
all sorts of higher-order coocurrence.

7 Conclusion

We have presented an interpretation of the skip-
gram model as exponential family principal com-
ponents analysis—a form of matrix factorization—
and, thus, related it to an older strain of work.
Building on this connection, we generalized the
model to the tensor case. Such higher-order skip-
gram methods can incorporate more linguistic
structure without sacrificing scalability, as we il-
lustrated by making our embeddings consider word
order or morphology. These methods achieved
better word embeddings as evaluated by standard
metrics on 40 languages.
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Abstract

We present a dialogue generation model
that directly captures the variability in pos-
sible responses to a given input, which
reduces the ‘boring output’ issue of de-
terministic dialogue models. Experiments
show that our model generates more di-
verse outputs than baseline models, and
also generates more consistently accept-
able output than sampling from a deter-
ministic encoder-decoder model.

1 Introduction

The task of open-domain dialogue generation is an
area of active development, with neural sequence-
to-sequence models dominating the recently pub-
lished literature (Shang et al., 2015; Vinyals and
Le, 2015; Li et al., 2016b,a; Serban et al., 2016).
Most previously published models train to min-
imise the negative log-likelihood of the training
data, and then at generation time either perform
beam search to find the output Y which maximises
P (Y |input) (Shang et al., 2015; Vinyals and Le,
2015; Serban et al., 2016) (ML decoding), or sam-
ple from the resulting distribution (Serban et al.,
2016).

A notorious issue with ML decoding is that this
tends to generate short, boring responses to a wide
range of inputs, such as “I don’t know”. These
responses are common in the training data, and
can be replies to a wide range of inputs (Li et al.,
2016a; Serban et al., 2016). In addition, shorter
responses typically have higher likelihoods, and
so wide beam sizes often result in very short re-
sponses (Tu et al., 2017; Belz, 2007). To resolve
this problem, Li et al. (2016a) propose instead us-
ing maximum mutual information with a length
boost as a decoding objective, and report more in-
teresting generated responses.

Further, natural dialogue is not deterministic;
for example, the replies to “What’s your name and
where do you come from?” will vary from person
to person. Li et al. (2016b) have proposed learning
representations of personas to account for inter-
person variation, but there can be variation even
among a single person’s responses to certain ques-
tions.

Recently, Serban et al. (2017) have introduced
latent variables to the dialogue modelling frame-
work, to model the underlying distribution over
possible responses directly. These models have
the benefit that, at generation time, we can sample
a response from the distribution by first sampling
an assignment of the latent variables, and then de-
coding deterministically. In this way, we introduce
stochasticity without resorting to sampling from
the decoder, which can lead to incoherent output
– see Table 1 for examples.

In this paper, we present a latent variable model
for one-shot dialogue response, and investigate
what kinds of diversity the latent variables capture.
Our experiments show that our model has higher
lexical as well as sentential diversity than base-
line models. We also show that our model gener-
ates more acceptable diverse output than sampling
from a deterministic decoder. We end by noting
that all three methods proposed above to combat
the ‘maximum likelihood response’ are ways of
decreasing the probability of the generated out-
put, and report some preliminary results for how
response probability interacts with grammaticality
and interestingness.

2 A Latent Variable Dialogue Model

2.1 Model Description

Our task is to model the true probability of a re-
sponse Y given an input X . We denote our model
distribution by P (Y |X). We introduce a latent
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Prompt DIAL-LV Sampling (τ = 1.0)

the infection’s spreading.
he’s dead. he was lee .
nothing but no more. leave it a way.
i know what you’re doing there’s something going on in the phone rickshaw and put the afloat continuously...

we only have fourteen hours to
save the earth!

i’ve got no choice . can i win?
and then there’s something that’s what it’s like. go peacekeeper go.
well, we need the help of what’s happening. go to say hello again in this conversation.

why don’t i do some research
and send you an email?

well, we’re gonna have to make it. no disrespect team.
because i know how much it is. excuse me.
because it ’s not right. because i’m hotel.

Table 1: 3 random outputs for 3 random prompts from the dataset from our proposed model (DIAL-LV)
and naively sampling from the decoder of a deterministic encoder-decoder.

variable z with a standard Gaussian prior – i.e.
P (z) = N (0, In) – and factor P (Y |X) as:

P (Y |X) =
∫
z
P (Y |z,X)P (z)dz (1)

To motivate this model, we point out that ex-
isting encoder-decoder models encode an input X
as a single fixed representation. Hence, all of the
possible replies toX must be stored within the de-
coder’s probability distribution P (Y |X), and dur-
ing decoding it is hard to disentangle these possi-
ble replies.

However, our model contains a stochastic com-
ponent z in the decoder P (Y |z,X), and so by
sampling different z and then performing ML de-
coding on P (Y |z,X), we hope to tease apart
the replies stored in the probability distribution
P (Y |X), without resorting to sampling from the
decoder. This has the benefit that we use the de-
coder at generation time in a similar way to how
we train it, making it more likely that the output of
our model is grammatical and coherent. Further,
as we do not marginalize out z when decoding,
we no longer perform exact maximum likelihood
search for a reply Y , and so we hope to avoid the
boring reply problem.

At training time, we follow the variational au-
toencoder framework (Kingma and Welling, 2014;
Kingma et al., 2014; Sohn et al., 2015; Miao et al.,
2016) , and approximate the posterior P (z|X,Y )
with a proposal distribution Q(z|X,Y ), which in
our case is a diagonal Gaussian whose parame-
ters depend on X and Y . We thus have the fol-
lowing evidence lower bound (ELBO) for the log-
likelihood of the data:

logP (Y |X) ≥ −KL(Q(z|X,Y )||P (z))
+ Ez∼Q logP (Y |z,X) (2)

Note that this loss decomposes into two parts:
the KL divergence between the approximate pos-

Figure 1: A schematic of how our model is imple-
mented. Please see the text for full details.

terior and the prior, and the cross-entropy loss be-
tween the model distribution and the data distri-
bution. If the model can encode useful informa-
tion into z, then the KL divergence term will be
non-zero (Bowman et al., 2016). As our model
decoder is given a deterministic representation of
X already, z will then encode information about
the variation in replies to X .

2.2 Model Implementation
Given an input sentence X and a response Y , we
run two separate bidirectional RNNs over their
word embeddings xi and yi. We concatenate the
final states of each and pass them through a sin-
gle nonlinear layer to obtain our representations
hx and hy of X and Y . We use GRUs (Cho et al.,
2014) as our RNN cell as a compromise between
expressive power and computational cost.

We calculate the mean and variance of Q as:

µ = Wµ[hx hy] + bµ

log(Σ) = diag(WΣ[hx hy] + bΣ)
(3)
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where [a b] denotes the concatenation of a and b,
and diag denotes inserting along the diagonal of a
matrix.

We take a single sample z from Q using
the reparametrization trick (Kingma and Welling,
2014), concatenate hx and z, and initialize the hid-
den state of the decoder GRU with [hx z]. We then
train the decoder GRU to minimize the negative
log-likelihood of the response Y .

While training this model, we noted the same
difficulties as Bowman et al. (2016) – as RNNs are
powerful density estimators, the model will prefer
to ignore the latent variables and instead optimize
the data reconstruction term of the ELBO, while
forcing the KL term to 0. We overcome this using
similar techniques by gradually annealing the KL
term weight over the course of model training and
using word dropout in the decoder with a drop rate
of 0.5.

3 Experiments

We compare our model, DIAL-LV, to three base-
lines. The first is an encoder-decoder dialogue
model with ML decoding (DIAL-MLE). The sec-
ond baseline model implements the anti-LM de-
coder of Li et al. (2016a) (DIAL-MMI) on top
of the encoder-decoder, with no length normaliza-
tion. For these models, we use beam search with a
width of 2 to find the sentence Y which maximises
the decoding objective (either ML or MMI).

The final baseline uses the encoder-decoder
model, but instead samples from the decoder to
find Y (DIAL-SAMP). We found that naively sam-
pling from the decoder resulted in meaningless
jumbles of words. To solve this, we introduced
a temperature parameter τ ∈ (0, 1], which scales
the probability of each word of the decoder as
pw 7→ p

1/τ
w . This parameter serves to sharpen

the word distribution of the decoder. We found
τ = 0.35 to be a reasonable balance between pre-
serving stochasticity while also improving the co-
herence of the generated output.

We used the OpenSubtitles dataset of movie
subtitles to train our models (Tiedemann, 2012).
We took a random sample of 100K files from the
full dataset to train our models on, and then pruned
this of repeated files to leave roughly 95K files and
capped sentence length to 50. The total size of the
resulting corpus was around 731M tokens. Please
see the supplementary material for model hyper-
parameters and training details.

Model Zipf parameter NLL Unique %

DIAL-LV 1.39 15.54 76
DIAL-MLE 1.43 12.15 35
DIAL-MMI 1.60 15.12 62
DIAL-SAMP 1.53 16.66 78

Table 2: Some statistics pertaining to the re-
sponses generated by the models.

As seeds for our replies, we used list of 50
prompts: 150 lines from the OpenSubtitles dataset
outside of our training set which we judged to
make sense as independent sentences and 50 ques-
tions chosen from a list of suggested conversation
starters1.

3.1 Reply statistics
Previous work (e.g. Li et al. (2016a)) used type-
token ratio (TTR) to measure the diversity of the
generated output. However, as language follows a
Zipf distribution, TTR is affected by the length of
the generated replies (Mitchell, 2015). Hence, we
use the estimated parameter of a Zipf distribution
fitted to our replies as a proxy for the lexical diver-
sity of generated output, with more diverse output
having smaller scores. As ML decoding is known
to give the same few replies repeatedly, we also re-
port the percentage of unique replies, as a coarser
measure of sentential diversity compared to lexi-
cal diversity. Further, we give the negative log-
likelihood (NLL) as predicted by the deterministic
encoder-decoder model, to see what regions of the
probability space the replies occupy. We present
these statistics in Table 2.

We note that DIAL-LV generates more diverse
replies than the other deterministic models, mea-
sured in terms of percentage of unique responses.
Interestingly, the lexical diversity of DIAL-LV is
almost identical to DIAL-MLE, suggesting that
the latent variables help DIAL-LV avoid the bor-
ing output problem and generate more diverse out-
puts. We note that DIAL-LV even rivals DIAL-
SAMP in terms of sentential diversity, and beats
DIAL-SAMP in terms of lexical diversity. This
could be because DIAL-SAMP chooses words
greedily, and so is biased towards choosing high-
probability words at each timestep. This suggests
that maintaining a beam of hypotheses while sam-
pling could help sampling-based methods escape

1Obtained from http://conversationstartersworld.com/250-
conversation-starters/
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Model µ σ NLL Zipf Unique %

DIAL-LV 1.183 0.402 15.51 1.32 76.4
DIAL-SAMP 1.196 0.577 16.91 1.56 73.6

Table 3: Mean and std. dev. of average number of
acceptable replies generated by each model.

Shell radius Zipf parameter NLL Unique %

0 1.49 13.12 7
4 1.62 14.02 42.1
8 1.59 15.72 63.1
12 1.56 17.65 67.7
16 1.78 18.16 67.1

Table 4: Statistics of responses generated from the
DIAL-LV model from different regions of the hid-
den state space.

the trap of having to make near-greedy local deci-
sions.

3.2 Human acceptability judgments

We also tested whether DIAL-LV could gener-
ate a greater number of acceptable replies to a
prompt than DIAL-SAMP. We randomly selected
50 prompts from our list of 200, and generated 5
replies at random to each one using both models.
We then asked human annotators2 to judge how
many replies were appropriate replies, taking into
account grammaticality, coherence and relevance.
The results are shown in Table 3.

Interestingly, even though DIAL-LV has a
lower NLL score, both models generate roughly
the same number of acceptable replies. DIAL-LV
also has less variance in the number of acceptable
replies, suggesting that the outputs it generates are
more consistent than responses from DIAL-SAMP.
Finally, we note that DIAL-LV generates more di-
verse output than DIAL-SAMP in this scenario,
even thought its replies are judged equally accept-
able, suggesting that it is managing to produce a
wide range of coherent, fluent and appropriate out-
put.

3.3 Sampling from the latent variable space

We next explored the effect of sampling from dif-
ferent regions of the latent space. For each prompt
in the test set, we took 5 uniform samples from
shells of radius 0 (which collapses to determinis-

2We used 50 in total, 25 for each model

tic decoding), 4, 8, 12 and 16 in the latent space3

by sampling from P (z) = N (0, I) and then scal-
ing the sample z by the appropriate amount. We
then generated a response to the prompt using each
value of z, and measured some statistics of the
replies. The results are shown in Table 4.

As expected, samples with small radius show
less diversity in terms of unique outputs. Further,
we see a consistent trend that samples with greater
radius have a higher NLL score, showing the in-
fluence of the prior in Eqn. 1. However, at the
highest radius, we observe the highest NLLs, but
also the lowest lexical diversities, suggesting that
it manages to combine the words it produces in
many different ways.

4 Discussion

Taken together, our experiments show that ML de-
coding does not seem to be the best objective for
generating diverse dialogue, and so corroborates
the inadequacy of perplexity as an evaluation met-
ric for dialogue models (Liu et al., 2016). Indeed,
all three models which show a diversity gain over
the vanilla encoder-decoder with MLE decoding
try to instead sample responses from a lower-
probability region of the response space. However,
if the response probability is too low, it runs the
risk of being nonsensical. Hence, there appears to
be a ‘Goldilocks’ region of the probability space,
where the responses are interesting and coherent.
Finding ways of concentrating model samples to
this region is thus a potentially promising area of
research for open-domain dialogue agents.

We also note that our proposed model can be
combined with MMI decoding or temperature-
based sampling to get the benefits of both worlds.
While we did not do this in our experiments in or-
der to isolate the impact of our model, doing so im-
proves the diversity of our generated output even
more.

5 Conclusion

In this paper, we present a latent variable model to
generate responses to input utterances. We inves-
tigate the diversity of output generated from this
model, and show that it improces both lexical and
sentential diversity. It also generates more con-
sistently acceptable output as judged by humans
compared to sampling from a decoder.

3For a d-dim standard Gaussian, E(‖X‖) ≈ √d, and
V ar(‖X‖)→ 0 as d→∞. Here d = 64.
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A Model training information

We implemented all of our models using Keras
(Chollet, 2015) running on Theano (Theano De-
velopment Team, 2016). As vocabulary, we took
all words appearing at least 1000 times in the
whole corpus. As this amounted to ∼30K words,
we used a 2-level hierarchical approximation to
the full softmax to speed up model training (Morin
and Bengio, 2005), with random clustering. We
trained all our models for 3 epochs using the

Adadelta optimizer (Zeiler, 2012), with default
values for the optimizer parameters.

We used 512 dimensional word embeddings and
encoder hidden state sizes across all of our mod-
els. We used 64 latent dimensional latent vari-
ables, and so the decoder RNN for the DIAL-LV
model had hidden state size 574. The decoder
RNN for the DIAL-MLE model also had hidden
state size 574, to keep the capacity of the de-
coder comparable across the two models. We used
tanh non-linearities throughout our model. For
training the vanilla encoder-decoder, we also used
word dropout on the decoder input with a drop
rate of 0.5 to prevent overfitting. Each epoch took
roughly 4 days on a Titan Black.

For the MMI decoding, we used a LM penalty
weight of 0.45 and applied this for the first 6
words.
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Abstract

Children comprise a significant proportion
of TV viewers and it is worthwhile to cus-
tomize the experience for them. However,
identifying who is a child in the audience
can be a challenging task. We present ini-
tial studies of a novel method which com-
bines utterances with user metadata. In
particular, we develop an ensemble of dif-
ferent machine learning techniques on dif-
ferent subsets of data to improve child de-
tection. Our initial results show an 9.2%
absolute improvement over the baseline,
leading to a state-of-the-art performance.

1 Introduction

Building on recent breakthroughs on speech un-
derstanding, people ask their cellphones any ques-
tions and expect to get reasonable answers, or ask
their TVs for movie recommendations. The iden-
tity of the user plays a key role in personaliz-
ing and improving these actions. For instance, in
the case of movie request, a general, probabilistic
model will not work well. Consider a case when a
child asks to watch ”Ruby and Max,” an animated
television series, but the automatic speech recog-
nition system (ASR) mistakenly resolves it to the
popular ”Mad Max” movie in the downstream nat-
ural language processing (NLP) module. Having
the knowledge of the age, the system could fix
such errors by returning age-relevant results.

Unfortunately, this scenario is quite common
considering that even state-of-the-art ASR sys-
tems produce very bad results on understanding
children’s speech. There are a couple reasons for

1This work was done while the author was an intern at
Comcast Research.

this: 1) most ASR systems are trained to under-
stand adults, 2) children’s voices are hard to an-
alyze because of not fully developed vocal tracts
(Shivakumar et al., 2014). One way to improve
the performance is to add an intermediate system
that can identify users.

In this paper we investigate child identification
from voice commands, metadata and the combina-
tion of the two to improve classification accuracy.
Age and gender identification from speech is not
a new problem and much research has been done
in this area (sec.2), yet the results are far from
perfect. In particular, the task to identify adults
from kids becomes more challenging when the ut-
terances are only a couple of seconds long. We in-
vestigate a novel multimodel approach to improve
classifier accuracy by combining speech data with
rich usage metadata (sec.3). Specifically, we ex-
tract features separately from speech and usage
data, and build individual models that are fused
together (sec.4) to improve classifier performance.
The results are described in section 5.

2 Related Work

Speaker information, such as accent, gender or
age, can be used to improve speech understand-
ing (Abdulla et al., 2001), provide background
information, and advance human-computer inter-
actions. A human vocal tract undergoes changes
starting from birth and continues throughout one’s
life. Brown et al. (1991) found that fundamen-
tal frequencies directly correspond to the ages of
professional singers. Later, Naini and Homay-
ounpour (2006) investigated the correspondence
of MFCCs, shimmer, and jitter to a speaker’s age.
They found that jitter and shimmer do, indeed,
help distinguish ages, but only on wider age rages.
With application of more advanced machine learn-
ing techniques, Metze et al. (2007) achieved hu-
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man level performance on longer speech seg-
ments, while short utterances were challenging to
classify correctly. The recent work on a simi-
lar task of gender identification by Levitan et al.
(2016a), revealed that human level performance is
achievable on short utterances as well.

In this work, we build on the prominent research
approach, and investigate its performance on a
challenging real world data set: TV domain where
utterances are only about a second long. This is
why in addition to speech, we analyze metadata,
which is commonly ignored, to explore a fusion
of multiple models in the classification task. We
compare the performance of three models based
on SVM, random forest, and deep learning, then
report the results.

3 Data

The speech data is collected at random each week
for over a year’s time span and was manually
labeled by human annotators as ”MALE”, ”FE-
MALE”, or ”KID”. Since we don’t have ground
truth labels, we use these labels as the gold stan-
dard. ”MALE” and ”FEMALE” labels are com-
bined into one ”ADULT” class. Each audio is
a short, on average 1.2 seconds long, command
from a user to a TV box such as ”watch Sponge-
Bob” or ”CNN.” In total we have 15,001 instances
of labeled utterances where 3,848 were labeled as
”KID”. To normalize the data set, we at random
sampled 3,848 utterances with the ”ADULT” la-
bel. This is done to create a balanced dataset of
7,696 instances. The data was split into train and
test sets with 75:25 ratio leaving 5,772 for training
and 1,924 instances for testing sets. Cross valida-
tion on the train set was used as our development
set to optimize the algorithms. The final results are
reported on the test set.

In addition to the voice commands, we collected
user metadata. This data contains general usage
patterns such as date, time, and expected audience
type (children or adults) of the requested TV show.
The data covers only one month of activity which
makes the data meager. As a result, we ignore
dates and use weekdays instead. Additionally, we
calculate the likelihood of a request made for a
children’s show in a given weekday and hour. All
the times and date were converted to the user local
time zones. In addition, we use a hand written rule
that treats all commands between 11pm and 6am
as commands from adults. The reason is that most

of the time children are in bed during these hours
and in way we are eliminating false positives.

4 Methods

4.1 Feature Extraction

Before the feature extraction step, the audio was
preprocessed and normalized. In the preprocess-
ing step, all silences were removed to keep user
commands. In the normalization step, we try to
mitigate variance in speech by normalizing the
volume. This is a common preprocessing step that
is used in ASR systems. After these two prepro-
cessing steps, we extract features to use as an in-
put to train an acoustic model. In order to vali-
date the quality of the preprocessing steps, acous-
tic features are extracted from raw, preprocessed,
and normalized audio.

For acoustic feature extraction we use the open-
source tool openSMILE (Eyben et al., 2010).
OpenSMILE is a well known utility that pro-
duces state-of-the-art acoustic features and often
used during annual INTERSPEECH paralinguis-
tic challenges to define a baseline. The source
code includes a set of configuration files for differ-
ent features. The configuration file we use in our
experiments is ”paraling IS10.conf.” This version
was introduced during the INTERSPEECH 2010
Paralinguistic Challenge (Schuller et al., 2010).
The challenge was to create predictive models for
gender and age classification. We also tried to ex-
periment with other configuration files; however,
showed lower performance.

We extract 1582 acoustic features from each
user utterance. The features are created by first
extracting low level descriptors (LLDs) of 10ms
frame level step and 20ms window size. The LLDs
include a total of 34 features such as 12 MFCCs,
F0, energy, jitter, etc. After that, we derive 34
deltas from the LLDs and apply a set of 21 func-
tions. A list of the functions is shown in table 1
and complete feature description can be found in
(Schuller et al., 2010).

In addition to speech, we explore the user re-
quests. Despite ever-changing TV content, some
phrases or words can aid to identify the viewer’s
age. We use an ASR system on each utterance
to extract a transcript. Since the commands are
very short and specific to the domain, a simple
bag-of-word language model (Zhang et al., 2010)
is sufficient. From the dictionary of 5092 unique
words, 2000 of the most frequent words are used
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LLDs Functions
mfcc 0-14 mean/max/min Pos

pcm loudness linregc 1 2
logMelFreqBand 0-7 linregrr A Q
lspFreq from 8 LPC stddev, kurtosis

F0finEnv quartile 1,2,3
voicingFinalUnclipped percentile 1, 99

F0 prtl range 0,1
jitter L/DDP

shimmer

Table 1: Acoustic features

as a word feature vector.
For each utterance, we also use its metadata

such as weekday and hour. The intuition for in-
cluding this data is that some TV content is tar-
geted for a particular audience with respect to the
time of the day. For example, news tend to run
during evening hours and children oriented shows
are shown in the morning or during a day.

In addition, we use the show-type request dis-
tribution from a given device. The distribution
is derived by computing the percentage of chil-
dren’s shows against all shows watched during
the specific time. We derive this distribution as
a score from 0 to 1 for each hour, day, and en-
tire one month time period for a given device. If
a command comes between 11pm and 6am, we
mark it with 0, assuming that only adults can be
awake during these hours. As a result, two fea-
ture datasets were created: 1) time usage data that
contains usage frequency per hour and weekday
as well as content type, 2) ratio usage data that
includes distribution of kids and non-kids content
requested from a given device. The ratio is cal-
culated for each hour, day, and a given device in
general. Considering that usage patterns of users
with and without children vary, these datasets will
add important information to make better classifi-
cation decisions.

4.2 Classification

For classification, we use two well known algo-
rithms: support vector machines (SVM) (Suykens
and Vandewalle, 1999) and random forest (Liaw
and Wiener, 2002). Both algorithms show state-
of-the-art performances in speaker classification
tasks (Ahmad et al., 2015). SVM algorithm works
by creating support vectors that separating two
classes in n-dimensional space, where each dimen-

sion is represented by a feature. The separation is
done by finding the largest separation margin be-
tween the features from the two classes and a vec-
tor. Random forest is a tree based ensemble algo-
rithm that work by running multiple decision tree
algorithms, which are known as weak learners, at
the same time. Each algorithm at random selects
features and makes its decisions. At the end, all
the results from the each learner are combined to
provide the prediction. The models are trained us-
ing scikit-learn toolkit (Pedregosa et al., 2011), an
open-source machine learning library. Both algo-
rithms were used for training. However, only the
best algorithm is used on the test data.

Deep learning (LeCun et al., 2015) has shown
to be a useful technique in many areas including
audio processing. We build a deep network clas-
sifier with four hidden layers. Each layer is fully
connected with a 50% dropout rate to reduce over-
fitting (Srivastava et al., 2014) and a sigmoid acti-
vation function (Marreiros et al., 2008). The last
layer uses softmax activation and 0% dropout rate.
The size of each layer is chosen to first generalize
the features and then narrow the feature space size.
The best architecture has the following layer sizes
[1582, 1582*8, 2048, 512, 64, 2]. The first and
last layers are acoustic feature input and predicted
binary class output respectively. The network is
trained overnight on a consumer level GPU.

During the training, we start with audio prepro-
cessing by applying energy normalization and si-
lence removal techniques. While energy normal-
ization is a useful method to improve ASR per-
formance (Li et al., 2001), the results need to be
tested to determine if this approach is applicable
to our task. The removal of silences, on the other
hand, is a valid step to increase the accuracy. After
determining the best audio normalization, we train
a separate model for each feature set: 1) audio, 2)
time usage data, and 3) show-type request distri-
bution. The models are tested with cross valida-
tion and the scores are reported in section 5. The
test sets are used only at the end to evaluate the
models on previously unseen data. In this way we
avoid overfitting by tuning the algorithms on train
data with cross validation that we use as develop-
ment dataset. At this point we have three datasets,
which are acoustic data, time usage, and content
type ratio. Each model is evaluated separately on
the corresponding dataset.

Leveraging multi-domain data, we apply feature
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Classifiers WN EN SR
SVM 81.7% 79.8% 84.4%

Rand. Forest 81.3% 80.5% 86.7%

Table 2: Audio normalization of three subsets:
WN - without normalization, EN - energy normal-
ized, SR - silence removed.

and model level fusion methods. We experiment
with combining features from the three domains
into a single feature vector and train additional
model on these features. At the same time, we
perform model level fusion (Huang et al., 2011).
Each trained model’s output probability is used as
inputs to AdaBoost ensemble learning algorithm
(Rätsch et al., 2001). We apply this approach only
on the test data. The evaluation is done using cross
validation on the test dataset.

5 Results

5.1 Baseline
For the baseline, we use INTERSPEECH 2010
paralinguistic gender and age challenge’s pipeline
(Schuller et al., 2010). The data that was used for
the challenge is different from ours in terms of au-
dio domain, quality, and utterances were on aver-
age 2.2% longer. Longer audio segment provide
more information making the task easier. Further
more, the challenge was to classify users of 4 age
groups while we perform binary classification. For
this reason we cannot directly compare the scores.
However, we follow the steps to replicate the chal-
lenge’s pipeline on our unaltered data and use the
score as our baseline. The accuracy of the baseline
is defined at 81.7%.

5.2 Training results
The first step is to choose the best normalization
approach. We create three subsets of audio: with-
out normalization (WN), energy level normalized
(EN), and silence removed (SR) utterances. In or-
der to find which technique works the best, we ap-
ply SVM and random forest to each subset. The
results are shown in table 2.

From the table we can see that energy holds im-
portant information about the speaker and normal-
izing it worsens the predictions. In contrary, re-
moving silences significantly improves the results
in both classifiers. For this reason, we keep the
silence removal preprocessing step in our pipeline
and omit energy normalization. In addition, the

Classifiers Time Show-type BOW
SVM 53.4% 59.9% 64.7%

Rand. Forest 54.9% 56.8% 68.2%

Table 3: Training results on meta data

Audio DL Time Show-type BOW
86.6% 88.82 57.9% 55.8% 67.6%

Table 4: Test results

random forest outperforms the SVM algorithm in
the majority of cases and confirms the results of
(Levitan et al., 2016a; Levitan et al., 2016b) on
similar tasks. Random forest will be used in the
rest of our experiments as the main algorithm for
utterance classification.

Metadata and language features were also tested
with both SVM and random forest algorithms.
Each algorithm is applied to three datasets 1) time
usage data, 2) show-type request distribution, and
3) language bag-of-word (BOW) features. The
performance is described in table 3.

We can see that time usage and show-type ratio
provide very little information on who the user is.
Bag-of-word model shows a prediction accuracy
of 68.2%. This result better compares to metadata,
but is worse than acoustic features alone. Random
forest outperforms SVM on two out of three do-
main of the data. For this reason, we use random
forest as out main machine learning algorithm on
this data. All the experiments are tested by means
of cross validation on training set that we use as
our development set. Due to the time complexity
of deep learning algorithm, we do not use it dur-
ing cross validation. Having decided on the best
normalization and machine learning algorithm, we
are ready to see the performance on the test data
set.

5.3 Testing results

The results on the test data are comparable to what
we got during the cross validation on our train set.
Table 4 shows that the time based model provides
only 57.9% accuracy. The expectation was to get
a higher score on this data set. Our hypothesis
was that TV content providers use time slots to tar-
get different age groups of their audience. Week-
end mornings for animated shows and weekday
nights for news are examples of such. One rea-
son for this might be that the commands for chil-
dren shows come from parents. We also explored
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Baseline Feature Model
Accuracy 81.7% 86.3% 90.9%

Table 5: Feature and model level fusion results

Adult Kid
Adult 88% 7%
Kid 12% 93%

Table 6: Class confusion matrix

show-type requests for each device to capture user
interest. This turned out to be the least predictive
data model. The idea was that users with children
will request more child oriented content. How-
ever, insufficient data size of our show-type dis-
tribution can be attributed to such low result, and
larger data set may improve the performance. This
will need further investigation. Acoustic based
models are the most predictive. While random for-
est shows improved results compared to the base-
line, the deep learning method outperformed all
the models and showed 88.82% accuracy.

5.4 Feature and Model Fusion
We explore feature level and model level fusion
approaches to improve the results. Both tech-
niques are known ways to combine multi-domain
data. We concatenated features from all four
data sets and trained a new random forest model.
This produced somewhat of an unpredictable re-
sult. The accuracy of the model did not improve,
and even worsened producing 86.3% accuracy. It
seems that combining all the available features
into a single vector introduces noise and data spar-
sity problem. The acoustic model alone outper-
forms the feature lever fusion approach.

For our model level fusion approach, we
use ensemble algorithm AdaBoost (Freund and
Schapire, 1997). AdaBoost is an adaptive model
that iteratively boosts weak learner to focus on
harder cases in the training dataset. The input
to this model are class probabilities from each
of the five models, which are 1) random forest
based acoustic, 2) time usage, 3) show-type re-
quests, 4) bag-of-words language model, and 5)

Male Female Kid
Adult 49% 39% 7%
Kid 1% 11% 93%

Table 7: Gender confusion matrix

deep learning based acoustic model. The results
achieved by this approach produce 90.9% accu-
racy (table 5) manifesting in 9.2% absolute im-
provement. With closer investigation of the results
in table 6, we can see that the algorithm works bet-
ter to identify children with only 7% on false pos-
itives. However, the model produces higher error
predicting adult voices as children. Table 7 shows
gender based confusion matrix. From this table
we can observe that the algorithm makes the most
error distinguishing female from children voices.
This comes from the fact that female voices have
broader acoustic range compare to male and, as a
result, they overlap with children’s.

6 Conclusion

This work is focused on improving child and adult
user classification from voice and metadata. Meta-
data provides additional information about user
such as time, show-categories, and show-type dis-
tribution. This type of data is often ignored dur-
ing research. We found that multi-domain feature
level fusion did not help to improve the results.
However, by combining the models using ensem-
ble model fusion improves the performance. The
system achieves 90.9% accuracy on the task and
produces state-of-the-art results.

7 Future work

In our future work, we would like work to improve
our model by investigating and capturing acous-
tic differences between female and child voices,
since our current system produces the most er-
ror classifying these groups. Also, we would like
to compare the performance of human engineered
features and deep learning based feature represen-
tation. In addition, semi-supervised approaches
have gain popularity. Data labeling is a costly
and time consuming process that, for this problem,
requires human annotators. Leveraging the large
amount of unlabeled data can improve results even
further.
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Abstract

In this work, we tackle a problem of
speech emotion classification. One of the
issues in the area of affective computa-
tion is that the amount of annotated data
is very limited. On the other hand, the
number of ways that the same emotion
can be expressed verbally is enormous due
to variability between speakers. This is
one of the factors that limits performance
and generalization. We propose a simple
method that extracts audio samples from
movies using textual sentiment analysis.
As a result, it is possible to automatically
construct a larger dataset of audio samples
with positive, negative emotional and neu-
tral speech. We show that pretraining re-
current neural network on such a dataset
yields better results on the challenging
EmotiW corpus. This experiment shows a
potential benefit of combining textual sen-
timent analysis with vocal information.

1 Introduction

Emotion recognition recently gained a lot of atten-
tion in the literature. The evaluation of the human
emotional state and its dynamics can be very use-
ful for many areas such as safe human-robot inter-
action and health care. While recently deep neural
networks achieved significant performance break-
throughs on tasks such as image classification (Si-
monyan and Zisserman, 2014), speech recognition
(Hannun et al., ) and natural language understand-
ing (Sutskever et al., 2014), the performance on
emotion recognition benchmarks is still low. A
limited amount of annotated emotional samples is
one of the factors that negatively impacts the per-
formance. While obtaining such data is a cumber-
some and expensive process, there are plenty of

unlabelled audio samples that could be useful in
the classifier learning (Ghosh et al., 2016).

The majority of recent works use neural net-
works combining facial expressions and auditory
signals for emotion classification (Barros et al.,
2015; Yao et al., 2015; Chao et al., 2016). There
is a clear benefit of merging visual and auditory
modalities, but only in those situations when the
speaker’s face can be observed. In (Hines et al.,
2015) it was shown that incorporating linguistic
information along with acoustic representations
can improve performance. Semantic representa-
tions of spoken text can help in emotional class
disambiguation, but in this case, the model will
rely on the accuracy of the speech-to-text recogni-
tion system. Pretraining convolutional neural net-
work (Ebrahimi Kahou et al., 2015) on an external
dataset of faces improves the performance of the
emotion classification model. However, the prob-
lem of augmenting emotional datasets with audio
samples to improve the performance of solely au-
dio processing models remained unsolved.

Our motivation for this paper was to fill this gap
and conduct experiments on automatically gen-
erating a larger and potentially richer dataset of
emotional audio samples to make the classification
model more robust and accurate. In this work, we
describe a method of emotional corpus augmenta-
tion by extracting audio samples from the movies
using sentiment analysis over subtitles. Our intu-
ition is that there is a significant correlation be-
tween the sentiment of spoken text and an actu-
ally expressed emotion by the person. Following
this intuition we collect positive, neutral and neg-
ative audio samples and test the hypothesis that
such an additional dataset can be useful in learning
more accurate classifiers for the emotional state
prediction. Our contribution is two-fold: a) we in-
troduce a simple method to extract automatically
positive and negative audio training samples from
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full-length movies b) we demonstrate that using
an augmented dataset improves the results of the
emotion classification.

2 Models and experimental setup

2.1 Dataset

For our experiment, we have used the EmotiW
2015 dataset (Dhall et al., 2015), which is a well-
known corpus for emotional speech recognition
composed of short video clips annotated with cat-
egorical labels such as Happy, Sad, Angry, Fear,
Neutral, Disgust and Surprise. Each utterance
is approximately 1-5 seconds in duration. The
EmotiW dataset is considered as one of the most
challenging datasets as it contains samples from
very different actors and the lighting conditions,
background noise and other overlapping sounds
make the task even more difficult. The training
set and the validation set contains 580 and 383
video clips respectively. We have used the official
EmotiW validation set to report the performance
as the test set labels were not released and 10% of
the official training set as validation set for neural
network early stopping.

2.2 Generating emotional audio samples

As a source for emotional speech utterance can-
didates, we use full-length movies taking the list
of titles from the EmotiW corpus. For each of the
films, there are subtitles available, which can be
treated as a good approximation of a spoken text,
even though sometimes there can be inaccuracies
as producing subtitles is a manual process. Our
intuition is that the movies contain a large variety
of auditory emotional expressions by many differ-
ent speakers and is a potentially valuable source
of emotional speech utterances. For each of the
movies, sentiment score was calculated for each
of the subtitle phrases at the time of the utterance
with the NLTK (Bird et al., 2009) toolkit. Sen-
timent score represents how positive or negative
the text segment is. The NLTK sentiment analyzer
was used for simplicity and effectiveness. Phrases
longer than 100 characters and shorter than four
words were filtered out to avoid having very long
or very short utterances. Subtitle phrases with po-
larity score higher than 0.7 were treated as pos-
itive samples and the ones with sentiment score
lower than -0.6 as negative samples. The thresh-
olds were selected empirically to make the num-
ber of the positive and negative samples balanced.

Figure 1: Vizualization of the process of extraction
of positive and negative speech utterances, based
on sentiment analysis of the subtitles.

As the majority of the phrases were assigned a
value of sentiment close to 0, we treated them as
neutral and used only a random subsample of it.
Corresponding audio samples were cut from the
movie with respect to the timings of the subtitle
phrase. Overall 2100 positive, negative and neu-
tral speech utterances were automatically selected
from 59 movies and used as the additional dataset
for emotion classification for binary tasks and as a
dataset for model pre-training in multi-class setup.

2.3 Features extracted
We extracted FFT (Fast Fourier Transform) spec-
trograms from the utterances with a window
length of 1024 points and 512 points overlap. Fre-
quencies above 8kHz and below 60Hz were dis-
carded as higher frequencies usually contain more
noise and a log-scale in the frequency domain was
used as emphasizing lower frequencies appears to
be more significant for the emotional state predic-
tion (Ghosh et al., 2016). Maximum length of the
utterance in the dataset is 515 frames.

2.4 GRU model
The Gated-recurrent unit (GRU) (Bahdanau et al.,
2014) is a recurrent neural network (Elman, 1991)
model trained to classify a sequence of input vec-
tors. One of the main reasons for its success is
that the GRU is less sensitive to the vanishing gra-
dient problem during training, which is especially
crucial for acoustic processing as the length of the
sequences can easily reach hundreds or even thou-
sands of time steps, as opposed to NLP tasks.

As a first stage, a single layer bi-directional
GRU model has been used in our experiments with
a 32 dimension cell size. Temporal mean pooling
over all intermediate hidden memory representa-

195



tions was used to construct the final memory vec-
tor.

z = σ(xtU
z + st−1W

z) (1)

r = σ(xtU
r + st−1W

r) (2)

hfw = tanh(xtU
h + (sfw

t−1 ◦ r)W h) (3)

hbw = tanh(xtU
h + (sbw

t+1 ◦ r)W h) (4)

sfw
t = (1− z) ◦ hfw

t + z ◦ sfw
t−1 (5)

sbw
t = (1− z) ◦ hbw

t + z ◦ sbw
t+1 (6)

st = concat([sfw
t , sbw

t ]) (7)

c =
∑T

t=1 st

T
(8)

In these equations, the c vector is used to repre-
sent the whole speech utterance as an average of
intermediate memory vectors sfw

t and sbw
t , where

fw index corresponds to forward GRU execution
and bw for backward. xt is a spectrogram frame,
r and z represent resent and update gates and st

is a GRU memory representation at timestamp
t, following notation in (Bahdanau et al., 2014).
We have used Keras (Chollet, 2015) and Theano
(Bastien et al., 2012) frameworks for our imple-
mentation.

Figure 2: Recurrent neural network model for
emotion speech utterance classification with tem-
poral pooling.

2.5 Transfer learning
In multi-class setup, firstly we trained the neural
network on the augmented corpus predicting la-
bels generated by sentiment analyzer. We refer
to it as a pre-trained network. As our goal is to
predict emotional categories like happy or anger,
we afterward replaced the softmax layer of the
pre-trained network comprised of positive, neg-
ative and neutral classes with the new softmax

layer for emotion prediction with angry, happy,
sad and neutral classes. By using such a proce-
dure, GRU layer hopefully can grasp meaning-
ful representation of positive, neutral and negative
speech which, as a result, will be helpful for emo-
tion classification by means of transfer learning.
Fine-tuning was done on the training data of the
EmotiW corpus.

2.6 Results

We compare our results in three binary emo-
tion classification tasks: happy-vs-fear, happy-vs-
disgust and happy-vs-anger and multi-class setup,
where we considered Happy, Angry, Sad and Neu-
tral samples. For each of the tasks we treated gen-
erated negative samples as either fear, disgust or
anger samples respectively and positive samples
as happy. For the multi-class setup, we follow the
transfer learning routine by adapting neural net-
work trained on the augmented data to the 4-way
emotional classification. Accuracy is reported for
binary tasks and F-score for multi-class setup. Re-
sults are presented in Table 1. By using automati-
cally generated emotional samples there is a slight
decrease in the accuracy for happy-vs-anger task
and an improvement in the accuracy for happy-vs-
fear and happy-vs-disgust tasks. Also, in our ex-
periments, temporal pooling worked significantly
better than using the memory vector at the last
time step.

Table 1: Utterance level emotion classification
performance (accuracy) in 3 binary tasks: happy
vs fear, happy vs angry and happy vs disgust.
Also, multi-class performance (F-measure) is re-
ported with 4 basic emotions: Angry, Happy, Sad
and Neutral. BM - baseline method without aug-
mentation, PM - proposed method with augmenta-
tion.

Experiment BM PM
Binary classification:
Happy vs Fear 58.7 66.1
Happy vs Angry 70.7 68.9
Happy vs Disgust 61.1 64.1
Multi-class:
Angry, Happy, Sad, Neutral 36 38
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3 Conclusion

In this paper, we proposed a novel method for au-
tomatically generating positive, neutral and nega-
tive audio samples for emotion classification from
full-length movies. We experimented with three
different binary classification problems: happy vs
anger, happy vs fear and happy vs disgust and
found that for the latter two there is an improve-
ment in the accuracy on the official EmotiW val-
idation set. Also, we observed the improvements
of the results in multi-class setup. We found that
the augmented larger dataset even though contains
noisy and weak labels, contribute positively to the
accuracy of the classifier.

For future work, we want to explore jointly
learning sentiment and acoustic representations of
the spoken text, which appears to be beneficial for
accurate speech emotion classification, as it allows
to deal with the ambiguity of the spoken text sen-
timent.
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Abstract

On-line dialogue policy learning is the
key for building evolvable conversational
agent in real world scenarios. Poor initial
policy can easily lead to bad user experi-
ence and consequently fail to attract suf-
ficient real users for policy training. We
propose a novel framework, companion
teaching, to include a human teacher in
the on-line dialogue policy training loop
to address the cold start problem. Here,
dialogue policy is trained using not only
user’s reward but also teacher’s example
action as well as estimated immediate re-
ward at turn level. Simulation experiments
showed that, with a small number of hu-
man teaching dialogues, the proposed ap-
proach can effectively improve user expe-
rience at the beginning and smoothly lead
to good performance with more user inter-
action data.

1 Introduction

Statistical dialogue management has attracted
great interest in both academia and industry due to
its promise of data-driven interaction policy learn-
ing. Since policy learning is a sequential decision
problem, reinforcement learning (RL) has been
widely used for policy training. Partially observ-
able Markov decision process (POMDP) (Kael-
bling et al., 1998), as the mainstream approach,
has been reported to achieve impressive perfor-
mance gain compared to rule-based DM (Williams
and Young, 2007; Young et al., 2010). However, it
is still rarely used in real world scenarios. This is
largely because most POMDP based policy learn-
ing research is usually carried out using either a
user simulator or unreal users (such as lab users).

The off-line trained policy is not guaranteed to
work well in real world scenarios. Therefore, on-
line policy learning has been of great interest. We
believe that an ideal on-line policy learning frame-
work should be measured using two criteria:

• Efficiency reflects how long it takes for the
on-line policy learning algorithm to reach a
satisfactory performance level.

• Safety reflects whether the initial policy can
satisfy the quality-of-service requirement in
real-world scenarios during on-line policy
learning period.

Most previous studies of on-line policy learn-
ing have been focused on the efficiency issue,
such as Gaussian process reinforcement learning
(GPRL)(Gasic et al., 2010), deep reinforcement
learning (DRL) (Fatemi et al., 2016; Williams and
Zweig, 2016; Su et al., 2016), etc. On the other
side, safety is a pre-requisite for the efficiency to
be achieved. This is because, no matter how ef-
ficient the algorithm is, an unsafe on-line learned
policy can lead to bad user experience at the begin-
ning of learning period and consequently fail to at-
tract sufficient real users to continuously improve
the policy. Therefore, it is important to address the
safety issue, on which little work has been done.

In this paper, a novel safe on-line policy learn-
ing framework is proposed, referred to as com-
panion teaching. This is a human-machine hy-
brid RL framework. Different from the whole dia-
logue based human demonstration approach (Chi-
naei and Chaib-draa, 2012), here a human teacher
accompanies the machine and provides immediate
hands-on guidance at turn level during on-line pol-
icy learning period. This will lead to a safer policy
learning process since the learning is done before
any possible dialogue failure at the end.
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Figure 1: Companion Teaching Framework for On-line Policy Learning

A major contribution of the paper is to introduce
example actions of the human teacher to guide on-
line policy learning of the agent. Furthermore, we
combine example action based guidance with an
additional action prediction model to continuously
give extra supervision reward signal in teacher’s
absence. Simulated experiments using deep Q-
learning show that the combined teaching strategy
significantly improves both safety and efficiency
within a fixed time budget of the human teacher.

2 Companion Teaching for On-line
Dialogue Policy Learning

Including human in the loop has been recognized
as an effective way to accelerate on-line policy
learning (Thomaz and Breazeal, 2006; Khan et
al., 2011; Cakmak and Lopes, 2012; Loftin et al.,
2016). Most previous approaches employ teaching
signals at the end of dialogues, either the whole
human-to-human dialogue history or a single re-
ward to evaluate the human-machine dialogue per-
formance (Su et al., 2016; Ferreira and Lefèvre,
2015). Here, we propose a new three-party turn-
level human-machine hybrid learning framework
to address both the safety and the efficiency issues
of on-line policy learning.

2.1 Companion Teaching Framework

In the companion teaching framework, there
are three intelligent participants: machine dia-
logue manager (agent), human user and human
teacher. Dialogue manager consists of dialogue
state tracker and policy model. The goal of on-
line policy learning is to learn policy from data

via interaction with human users in real scenarios.
Here, human teacher is the extra party compared
with the classic statistical dialogue manager archi-
tecture (Young et al., 2013). The human teacher,
as a companion of the agent, guides policy learn-
ing at each turn, hence, referred to as companion
teaching. The framework is depicted in figure 1:

At each turn, the ASR/SLU module receives an
acoustic input signal from the human user and the
dialogue state tracker keeps the dialogue state up-
to-date in the form of dialogue act. In this pa-
per, it is assumed that the dialogue states from the
tracker are transparent to both policy model and
human teacher. The human teacher then deter-
mines whether to teach the policy model or not and
chooses an appropriate way to guide the learning
of the policy model. Once the policy model gets
a training signal, either from the teacher or from
the user, it can update the policy parameters us-
ing reinforcement learning. Since the “teaching”
is carried out at turn level with immediate effect,
it is likely that bad choices resulting from the poor
or unstable policy can be effectively reduced.

Note that the assumption of dialogue state shar-
ing between policy model and the human teacher
is consistent with realism for two reasons. First,
under the real work model of customer service,
call-center people needs to refer to database query
results given by the system, which must con-
tain the information of dialogue states inferred by
the system. Second, when support staffs reply
to clients, they often choose replies among sev-
eral recommended candidates rather than type an-
swers. This fact implies human can observe sys-
tem’s dialogue act and even reply in this format.
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2.2 Teaching Strategy

As indicated in figure 1, there are two switches
representing two strategies of teaching.

Teaching via Critic Advice (CA) corresponds
to the right switch in figure 1. The key idea is
for the human teacher to give the policy model
an extra immediate reward signal which differ-
entiates between good actions and bad actions.
CA is also referred to as turn-level reward shap-
ing, which has been investigated in various ap-
plications (Wiewiora et al., 2003; Thomaz and
Breazeal, 2008; Judah et al., 2010). Previous
works show that teaching agent via additional
turn-level critic advice can make agent signifi-
cantly outperform those under pure RL. A major
problem of Critic Advice based teaching is that the
critique signal can only be given after a hazardous
action is taken by the system. It may not be able to
dramatically improve system policy immediately.
Hence, it is hard to avoid unsafe situations while
system is trying to do exploration, especially, at
the beginning of learning.

To address the shortcoming of CA, we pro-
pose Teaching via Example Action (EA). It cor-
responds to the left switch in figure 1. Here,
the human teacher directly gives an example ac-
tion at a particular state. The system can learn
from teacher’s action by considering the action as
its own exploration action within the RL frame-
work. Note that this strategy is distinctly different
from imitation learning in (Abbeel and Ng, 2004).
The goal of imitation learning is to figure out the
teacher’s reward function rather than updating the
system’s policy parameters. In contrast, in the
companion teaching framework, the role of hu-
man teacher’s example action is more like a guid-
ance to agent exploration and agent will still get a
corresponding reward from the environment. This
training method is pragmatic since it prevents un-
safe situations during starting period by guiding
agent’s exploration. However, this EA approach
requires more time cost of the human teacher than
the CA approach.

The critic advice method can make the learning
more effective and the example action method can
make the learning process safer. In order to take
advantages of both EA and CA, we further pro-
pose to combine the two, i.e. Teaching via Ex-
ample Action with Predicted Critique (EAPC).
Here, the human teacher gives an example action
and meanwhile, an extra reward ct will be given

to the policy model as well. And this extra re-
ward signal lasts even in teacher’s absence. To
form this extra reward, the example actions with
corresponding dialogue states will be collected to
train a weak action prediction model. The input of
this model is the dialogue state, and the output is
the probabilities for each action. When the human

Algorithm 1 EAPC Algorithm
Require:

Observe No steps teaching before training the
action prediction model P . the interval Ni of
updating P , the maximal extra reward δ > 0.

1: Initialize policy model π and action prediction
model P

2: Initialize replay memory D = {} and teacher
experience E = {}

3: for episode = 1, N do
4: Update the dialogue state s0
5: for t = 0, T do
6: Set extra reward ct ← 0
7: Get system action asys

t ∼ π(·|st)
8: at ← asys

t

9: if human teaching is true then
10: Teacher gives the action atea

t

11: at ← atea
t

12: Set extra reward ct ← δ
13: Store the pairs (st, a

sys
t ) in E

14: if |E| > No and Ni%|E| = 0 then
15: Supervised training P on dataset E
16: end if
17: else
18: if |E| > No then
19: P(st) predicts a apred

t and tells the
estimated probability p

20: if asys
t = apred

t then
21: ct ← δp
22: else
23: ct ← −δp
24: end if
25: end if
26: end if
27: Give the action at to the environment,

observe the reward rt and update the di-
alogue state st+1

28: r′t = rt + ct
29: Store {st, at, r

′
t, st+1} in D

30: Update the policy model π by RL
31: end for
32: end for
33: return policy π
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teacher is not involved in, the supervised model
will predict the most probable teacher action under
the current dialogue state. If the predicted action
is same as the action given by the policy model,
the extra reward δ discounted by the probability
of the predicted action will be given to the policy
model. Otherwise, the extra reward−δ discounted
by the probability of the predicted action will be
given to the policy model. This method is shown
as algorithm 1.

2.3 Reinforcement Learning Algorithm

The companion teaching framework does not de-
pend on a specific reinforcement learning algo-
rithm, hence is compatible with all existing algo-
rithms. In this paper, we implement a Deep Q-
Network (DQN) (Mnih et al., 2015) with two hid-
den layers to map a belief state st to the values
of the possible actions at at that state, Q(st, at; θ),
where θ is the weight vector of the neural network.

In DQN, two techniques were proposed to over-
come the instability of neural network training,
namely experience replay and the use of a target
network (Mnih et al., 2015). At every turn, the
transition including the previous state st, previ-
ous action at, corresponding reward r′t and cur-
rent state st+1 is put in a finite pool D . When
the teaching method EA is used in the t-th turn,
at = atea

t , otherwise at = asys
t . When CA is

used, r′t = rt + ct, otherwise r′t = rt. Once
the pool has reached its maximum size, the oldest
transition will be deleted. During training, a mini-
batch of transitions is uniformly sampled from the
pool, i.e. (st, at, r

′
t, st+1) ∼ U(D). This method

removes the instability arising from strong corre-
lation between the subsequent transitions of a dia-
logue. Additionally, a target network with weight
vector θ− is used. This target network is similar
to the Q-network except that its weights are only
copied every K steps from the Q-network, and
remain fixed during all the other steps. The loss
function for the Q-network at each iteration takes
the following form:

L(θ) = E(st,at,r′
t,st+1)∼U(D)[(

r′t + γmax
at+1

Q(st+1, at+1; θ−)−Q(st, at; θ)
)2
]

where γ ∈ [0, 1] is the discount factor.

3 Experiments

Simulation experiments were performed to assess
the proposed companion teaching framework and
three different teaching strategies.

We implement an agenda-based user simulator
(Schatzmann et al., 2007) to emulate the behavior
of the human user, and use a well-trained policy
model with success rate 0.78 serving as the hu-
man teacher in our experiment. As for data set,
we use the Dialogue State Tracking Challenge 2
(DSTC2) dataset (Henderson et al., 2014), which
is in a restaurant information domain. This do-
main has 7 slots of which 4 can be used by the
system to constrain the database search. The sum-
mary action space consists of 16 summary actions.
We use a rule-based tracker (Sun et al., 2014) for
dialogue state tracking.

As the reward, at each turn, a reward of -1 was
given to the policy model, and at the end of the
dialogue a reward of +30 was given if the dialogue
finishes successfully. The maximal extra reward δ
is 1, and the maximum of turns is 20.

During training, the teacher has a fixed time
budget of 1500 turns to perform teaching at the
beginning. Intermediate policies were recorded at
every 500 dialogues. Each policy was then evalu-
ated using 1000 dialogues when testing.

3.1 Evaluation Metrics

We mainly care about safety and efficiency in
the comparison of different teaching strategies of
companion teaching for dialogue policy learning.

The degree of safety can be assessed by investi-
gating the moving success rate-#dialogue curve in
training, which reflects the real performance expe-
rienced by users when training our system on-line
with different teaching strategies. If the success
ratio keeps high in the curve, we think it is safe.

The efficiency should be evaluated by the learn-
ing speed: How fast our system can learn from
user interaction and human teaching. It can be
evaluated by the number of dialogues required to
achieve a reasonable performance in the testing
curve.

3.2 Experiment Results

We compared the moving average success rate 1

for three different teaching strategies and the re-
sults are given in Figure 2. We can figure out that

1For each point on the curve, the success rate is the aver-
age of previous 1000 dialogues when training.
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Figure 2: The training curves of moving aver-
age success rate. The top and the bottom are the
means and standard deviations of success rate re-
spectively for 3 trials.

the policy with EAPC teaching strategy performs
best when training, with always more than 70%
average success rate, which means that the learn-
ing with EAPC is safer. Better still, the standard
deviation is also the smallest, which indicates a
stable learning process. Besides, EA has similar
performance with EAPC, both of them can achieve
the requirement of safety when training.

In figure 3, we compared the testing curves
and investigated the learning efficiency of differ-
ent strategies. The results show that the learn-
ing with EAPC is more efficient and maintains the
lowest derivation during learning. After 500 dia-
logues interaction, it can obtain nearly 70% suc-
cess rate, 22.4% higher compared with the one
without teaching. And it is even about 10% higher
than that of only using EA method.

Taken together, the teaching strategy EAPC can
achieve the requirement safety and efficiency of
on-line dialogue policy learning.

4 Conclusion and Future Work

In this paper, we propose a novel framework, com-
panion teaching, to include a human teacher in the
dialogue policy training loop to make the learning
process safe and efficient. Three teaching ways are
realized and compared: critic-advice (CA) where
the teacher gives a reward, example action (EA)
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Figure 3: The testing curves of success rate. The
top and the bottom are the means and standard de-
viations of success rate respectively for 3 trials.

where the teacher gives an action, and a combi-
nation of both (EAPC). The experiments demon-
strated that our proposed EAPC teaching strategy
with a small number of teaching can achieve the
requirement of both safety and efficiency for on-
line dialogue policy learning.

Currently, the evaluation of our proposed frame-
work was only done in simulation experiments.
We expect to deploy our proposed framework with
real human teachers in real-world scenarios to ver-
ify the effectiveness of companion teaching. Fur-
thermore, in this paper, the teaching were all done
at the beginning of on-line training. This may be
too simplistic and uneconomic in real world appli-
cations. Further work will be needed to answer the
question of when for the human to teach.
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Abstract

This paper presents a hybrid dialog state
tracker enhanced by trainable Spoken
Language Understanding (SLU) for slot-
filling dialog systems. Our architecture
is inspired by previously proposed neural-
network-based belief-tracking systems. In
addition we extended some parts of our
modular architecture with differentiable
rules to allow end-to-end training. We hy-
pothesize that these rules allow our tracker
to generalize better than pure machine-
learning based systems. For evaluation
we used the Dialog State Tracking Chal-
lenge (DSTC) 2 dataset - a popular belief
tracking testbed with dialogs from restau-
rant information system. To our knowl-
edge, our hybrid tracker sets a new state-
of-the-art result in three out of four cate-
gories within the DSTC2.

1 Introduction

A belief-state tracker is an important component
of dialog systems whose responsibility is to pre-
dict user’s goals based on history of the dialog.
Belief-state tracking was extensively studied in
the Dialog State Tracking Challenge (DSTC) se-
ries (Williams et al., 2016) by providing shared
testbed for various tracking approaches. The
DSTC abstracts away the subsystems of end-to-
end spoken dialog systems, focusing only on the
dialog state tracking. It does so by providing
datasets of Automatic Speech Recognition (ASR)
and Spoken Language Understanding (SLU) out-
puts with reference transcriptions, together with
annotation on the level of dialog acts and user
goals on slot-filling tasks where dialog system
tries to fill predefined slots with values from
a known ontology (e.g. moderate value for a

pricerange slot).
In this work we improve state-of-the-art results

on DSTC2 (Henderson et al., 2014a) by com-
bining two central ideas previously proposed in
different successful models: 1) machine learn-
ing core with hand-coded1 rules, an idea already
explored by Yu et al. (2015) and Vodolán et al.
(2015) with 2) a complex neural network based
architecture that processes ASR features proposed
by Henderson et al. (2014b). Their network con-
sist of two main units. One unit handles generic
behaviour that is independent of the actual slot
value and the other depends on slot value and can
account for common confusions.

When compared to Henderson et al. (2014b)
that inspired our work: 1) our model does not re-
quire auto-encoder pre-training and shared initial
training on all slots which makes the training eas-
ier; 2) our approach combines a rule-based core of
the tracker and RNNs while their model used only
RNNs; 3) we use different NN architecture to pro-
cess SLU features.

In the next section we describe the structure of
our model, after that we detail how we evaluated
the model on the DSTC2 dataset. We close the
paper with a section on the lessons we learned.

2 Hybrid dialog state tracker model

The tracker operates separately on the probability
distribution for each slot. Each turn, the tracker
generates these distributions to reflect the user’s
goals based on the last action of the machine, the
observed user actions, the probability distributions
from the previous turn and an internal hidden state.
The probability distribution hs

t [v] is a distribution
over all possible values v from the domain of slot

1For historical reasons we adopted the hand-coded rules
term used throughout the belief tracking community. From
another viewpoint, our rules can be seen as a linear combina-
tion model.
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s at dialog turn t. The joint belief state is repre-
sented by a probability distribution over the Carte-
sian product of the individual slot domains.
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Turnt
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Figure 1: The structure of the Hybrid tracker at
turn t. It is a recurrent model that uses the proba-
bility distribution hs

t−1 and hidden state lst−1 from
the previous turn (recurrent information flow is
depicted by dashed blue lines). Inputs of the
machine-learned part of the model (represented by
functions G and F based on recurrent L) are the
turn and value features ft, fv and the hidden state.
The features are used to produce transition coeffi-
cients a for the R function which transforms the
output of the SLU us

t into belief hs
t .

In the following notation ist denotes a user
action pre-processed into a probability distribu-
tion of informed values for the slot s and turn t.
During the pre-processing, every Affirm() from the
SLU is transformed into Inform(s=v) depending
on a machine action of the turn. The ft denotes
turn features consisting of unigrams, bigrams,
and trigrams extracted from the ASR hypotheses
N -best list. They are weighted by the probability
of the corresponding hypothesis on the N -best
list. The same approach is used in Henderson et al.
(2014b). To make our system comparable to the
best-performing tracker (Williams, 2014) we also
included features from batch ASR (recognition
hypotheses and the unigram word-confusion ma-
trix). The batch ASR hypotheses are encoded in
the same way as hypotheses from the regular ASR.
The confusion matrix information is encoded as
weighted unigrams. The last part of the turn fea-
tures encodes machine-action dialog acts. We are
using trigram-like encoding dialogact-slot-value
with weight 1.0. The other features are value
features fvi created from turn features, which
contain occurrence of vi, by replacing occurrence
of the value vi and slot name s by a common tag
(inform-food-italian→ inform-<slot>-<value>).

This technique is called delexicalization by Hen-
derson et al. (2014b).

From a high-level perspective, our model con-
sists of a rule-based core represented by a func-
tion R that specifies how the belief state evolves
based on new observations. The rulesR depend on
the output of machine-learned SLU and on tran-
sition coefficients2 avi,vj that specify how easy it
would be to override a previously internalized slot
value vj with a new value vi in the given situa-
tion. The avi,vj transition coefficients are com-
puted as a sum of functions F and G where F
accounts for generic value-independent behavior
which can however be corrected by the value-
dependent function G. The structure of the tracker
is shown in Figure 1.

In the next subsection, we will describe the
rule-based component of the Hybrid tracker. Af-
terwards, in Section 2.2, we will describe the
machine-learned part of the tracker followed by
the description of the trainable SLU in Section 2.3.

2.1 Rule-based part

The rule-based part of our tracker, inspired
by Vodolán et al. (2015), is specified by a function
R(hs

t−1, u
s
t , a) = hs

t , which is a function of a slot–
value probability distribution hs

t−1 in the previous
turn, the output us

t of a trainable SLU and of tran-
sition coefficients awhich control how the new be-
lief hs

t is computed. The first equation specifies
the belief update rule for the probability assigned
to slot value vi:

hs
t [vi] = hs

t−1[vi]−h̃s
t [vi]+us

t [vi]·
∑

vj 6=vi

hs
t−1[vj ] · avivj

(1)
where h̃s

t [vi] expresses how much probability will
be transferred from hs

t−1[vj ] to other slot values in
hs

t . This is computed as:

h̃s
t [vi] = hs

t−1[vi] ·
∑

vj 6=vi

us
t [vj ] · avjvi (2)

where avivj is called the transition coefficient be-
tween values vi and vj . These coefficients are
computed by the machine-learned part of our
model.

2These coefficients were modelled by a so called durabil-
ity function in Kadlec et al. (2014).
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2.2 Machine-learned part
The machine-learned part modulates behavior of
the rule-based part R by transition coefficients
avivj that control the amount of probability which
is transferred from hs

t−1[vj ] to hs
t [vi] as in Vodolán

et al. (2015). However, our computation of the co-
efficients involves two different functions:

avivj = F (lt−1, ft, vi, vj) +G(ft, vi, vj) (3)

where the function F controls generic behavior of
the tracker, which does not take into account any
features about vi or vj . On the other hand, func-
tionG provides value-dependent corrections to the
generic behavior described by F .

Value Independent Model. F is specified as:

F (lt−1, ft, vi, vj) =

{
cnew if vi = None
coverride if vi 6= vj

(4)
where the F function takes values of cnew and

coverride from a function L. The function 〈cnew,
coverride, lt〉 = L(lt−1, ft) is a recurrent function
that takes its hidden state vector lt−1 from the pre-
vious turn and the turn features ft as input and it
outputs two scalars cnew, coverride and a new hidden
state lt. An interpretation of these scalar values is
the following:

• cnew — describes how easy it would be to
change the belief from hypothesis None to an
instantiated slot value,

• coverride — models a goal change, that is, how
easily it would be to override the current be-
lief with a new observation.

In our implementation, L is formed by 5
LSTM (Hochreiter and Schmidhuber, 1997) cells
with tanh activation. We use a recurrent network
for L since it can learn to output different values
of the c parameters for different parts of the dialog
(e.g., it is more likely that a new hypothesis will
arise at the beginning of a dialog). This way, the
recurrent network influences the rule-based com-
ponent of the tracker. The function L uses the turn
features ft, which encode information from the
ASR, machine actions and the currently tracked
slot.

Value Dependent Model. The function
G(ft, vi, vj) corrects the generic behavior of F .
G is implemented as a multi-layer perceptron

with linear activations, that is: G(ft, vi, vj) =
MLP (ft, fvi)|vj . The MLP uses turn features ft

together with delexicalized features fvi for slot
value vi. In our implementation the MLP com-
putes a whole vector with values for each vk at
once. However, in this notation we use just the
value corresponding to vj . To stress this we use
the restriction operator |vj .

2.3 Spoken Language Understanding part

softmax

ft

ft

fv
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hst-1

ft

fbritish

ibritish

ft

fitalian

iitalian

...

...

...

u1british u1italian ...

LSTM
B

LSTM
B

+ u2british u2italian ...

MLP
M

ubritish uitalian ...

hbritish hitalian ...

SL
U

Figure 2: The SLU consists of two units. The first
unit processes turn features ft, per-value features
fv, original informs is and belief from the previous
turn hs

t−1 by a bidirectional LSTM B and outputs
a vector u1. The second unit maps turn features ft

by an MLP M (with two linear hidden layers of
sizes 50 and 20 - effect of the first layer is to regu-
larize information passed through the M ) onto u2.
Softmaxed sum of those output vectors is used as
a probability distribution of informed values us

t .

The SLU part of the tracker shown in Figure 2
is inspired by an architecture, proposed in Hen-
derson et al. (2014b), consisting of two separate
units. The first unit works with value-independent
features fvi where slot values (like indian, italian,
north, etc.) from the ontology are replaced by tags.
This allows the unit to work with values that have
not been seen during training.

The features are processed by a bidirectional
LSTM B (with 10 tanh activated cells) which en-
ables the model to compare the likelihoods of the
values in the user utterance. Even though this is
not a standard usage of the LSTM it has proved
as crucial especially for estimating the None value
which means that no value from the ontology was
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mentioned3. The other benefit of this architecture
is that it can weight its output u1 according to how
many ontology values have been detected during
turn t.

However, not all ontology values can be re-
placed by tags because of speech-recognition er-
rors or simply because the ontology representa-
tion is not the same as the representation in nat-
ural language (e.g. dontcare~it does not matter).
For this purpose, the model uses a second unit that
maps untagged features directly into a value vector
u2. Because of its architecture, the unit is able to
work only with ontology values seen during train-
ing. At the end, outputs u1, u2 of the two units
are summed together and turned into a probabil-
ity distribution u via softmax. Since all parts of
our model (R, F , G, SLU) are differentiable, all
parameters of the model can be trained jointly by
gradient-descent methods.

3 Evaluation

Method. From each dialog in the dstc2 train data
(1612 dialogs) we extracted training samples for
the slots food, pricerange and area and used all of
them to train each tracker. The development data
dstc2 dev (506 dialogs) were used to select the ft

and fv features. We took the 2000 most frequent
ft features and the 100 most frequent fv features.

The cost that we optimized consists of a track-
ing cost, which is computed as a cross-entropy be-
tween a belief state hs

t and a goal annotation, and
of an SLU cost, which is a cross-entropy between
the output of the SLU us

t and a semantic annota-
tion. We did not use any regularization on model
parameters. We trained the model for 30 epochs
by SGD with the AdaDelta (Zeiler, 2012) weight-
update rule and batch size 16 on fully unrolled di-
alogs. We use the model from the best iteration ac-
cording to error rate on dstc2 dev. The evaluated
model was an ensemble of 10 best trackers (ac-
cording to the tracking accuracy on dstc2 dev) se-
lected from 62 trained trackers. All trackers used
the same training settings with difference in initial
parameter weights only). Our tracker did not track
the name slot because there are no training data
available for it. Therefore, we always set value for
the name to None.

3We also tested other models, such as max-pooling over
feature embeddings (to get extra information for None value),
however, these performed much worse on the validation
dataset.

Results. This section briefly summarizes re-
sults of our tracker on dstc2 test (1117 dialogs) in
all DSTC2 categories as can be seen in Table 1.
We also provide evaluation of the tracker without
specific components to measure their contribution
in the overall accuracy.

In the standard categories using Batch ASR and
ASR features, we set new state-of-the-art results.
In the category without ASR features (SLU only)
our tracker is slightly behind the best tracker (Lee
and Stent, 2016).

For completeness, we also evaluated our tracker
in the “non-standard” category that involves track-
ers using test data for validation. This setup was
proposed in Henderson et al. (2014a) where an en-
semble was trained from all DSTC2 submissions.
However, this methodology discards a direct com-
parison with the other categories since it can over-
fit to test data. Our tracker in this category is a
weighted4 averaging ensemble of trackers trained
for the categories with ASR and batch ASR.

We also tested contribution of specialization
components G and M by training new ensembles
of models without those components. Accuracy of
the ensembles can be seen in Table 1. From the re-
sults can be seen that removing either of the com-
ponents hurts the performance in a similar way.

In the last part of evaluation we studied impor-
tance of the bidirectional LSTM layer B by en-
sembling models with linear layer instead. From
the table we can see a significant drop in accuracy,
showing the B is a crucial part of our model.

4 Lessons learned

Originally we designed the special SLU unit M
with a sigmoid activation inspired by architecture
of (Henderson et al., 2014b). However, we found
it difficult to train because gradients were propa-
gated poorly through that layer causing its output
to resemble priors of ontology values rather than
probabilities of informing some ontology value
based on corresponding ASR hypotheses as sug-
gested by the network hierarchy. The problem re-
sulted in an inability to learn alternative wordings
of ontology values which are often present in the
training data. One such example can be “asian
food” which appears 16 times in the training data
as a part of the best ASR hypothesis while 13 times
it really informs about “asian oriental” ontology
value. Measurements on dstc2 dev have shown

4Validation was used for finding the weights only.
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dstc2 test
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SR
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SR
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L
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po
st

D
ST

C

te
st

va
lid

at
ed

Hybrid Tracker – this work
√ √

.810 .318
√ √

DST2 stacking ensemble (Henderson et al., 2014a)
√ √

.798 .308
√ √

Hybrid Tracker – this work
√ √

.796 .338
√

Williams (2014)
√ √

.784 .735
Hybrid Tracker – this work

√
.780 .356

√
Williams (2014)

√
.775 .758

Hybrid Tracker without G – this work
√

.772 .368
√

Hybrid Tracker without M – this work
√

.770 .373
√

Henderson et al. (2014b)
√

.768 .346
Hybrid Tracker without bidir – this work

√
.763 .375

√
Yu et al. (2015)

√
.762 .436

√
YARBUS (Fix and Frezza-buet, 2015)

√
.759 .358

√
Sun et al. (2014)

√
.750 .416

Neural Belief Tracker (Mrkšić et al., 2016)
√

.73? ???
√

TL-DST (Lee and Stent, 2016) .747 .451
√

Hybrid Tracker – this work .746 .414
√

Vodolán et al. (2015) .745 .433
√

Williams (2014) .739 .721
Henderson et al. (2014b) .737 .406
Knowledge-based tracker (Kadlec et al., 2014) .737 .429

√
Sun et al. (2014) .735 .433
Smith (2014) .729 .452
Lee et al. (2014) .726 .427
YARBUS (Fix and Frezza-buet, 2015) .725 .440

√
Ren et al. (2014) .718 .437
Focus baseline .719 .464
HWU baseline .711 .466

Table 1: Joint slot tracking accuracy and L2 (denotes the squared L2 norm between the estimated belief
distribution and correct distribution) for various systems reported in the literature. The trackers that used
ASR/Batch ASR have

√
in the corresponding column. The results of systems that did not participate

in DSTC2 are marked by
√

in the “post DSTC” column. The first group shows results of trackers that
used dstc test data for validation. The second group lists individual trackers that use ASR and Batch
ASR features. The third group lists systems that use only the ASR features. The last group lists baseline
systems provided by DSTC organizers.

that the SLU was not able to recognize this alias
anytime. We managed to solve this training issue
by simplifying the special SLU sigmoid to linear
activation instead. The resulting SLU is able to
recognize common alternative wordings as “asian
food” appearing more than 10 times in training
data, as well as rare alternatives like “anywhere”
(meaning area:dontcare) appearing only 5 times
in training data.

5 Conclusion

We have presented an end-to-end trainable belief
tracker with modular architecture enhanced by dif-
ferentiable rules. The modular architecture of our
tracker outperforms other approaches in almost all
standard DSTC categories without large modifi-
cations making our tracker successful in a wide

range of input-feature settings.
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Abstract

The task of morphological analysis is to
produce a complete list of lemma+tag
analyses for a given word-form. We pro-
pose a discriminative string transduction
approach which exploits plain inflection
tables and raw text corpora, thus obviat-
ing the need for expert annotation. Ex-
periments on four languages demonstrate
that our system has much higher cover-
age than a hand-engineered FST analyzer,
and is more accurate than a state-of-the-art
morphological tagger.

1 Introduction

The task of morphological analysis is to anno-
tate a given word-form with its lemma and mor-
phological tag. Since word-forms are often am-
biguous, the goal is to produce a complete list
of correct analyses, which may involve not only
multiple inflections, but also distinct lemmas and
parts of speech (c.f. Table 1). Hand-built lexi-
cons, such as CELEX (Baayen et al., 1995), con-
tain this kind of information, but they exist only
for a small number of languages, are expensive to
create, and have limited coverage. Finite-state an-
alyzers, such as Morphisto (Zielinski and Simon,
2009) and Omorfi (Pirinen, 2015), provide an al-
ternative to lexicons, but their construction also
requires expert knowledge and substantial engi-
neering effort. Furthermore, they are often more
general than lexicons, although they may require a
lemmatic lexicon to ensure high precision.

Morphological tagging is a distinct but related
task, which aims at determining a single correct
analysis of a word-form within the context of a
sentence. Machine learning taggers, such as Mor-
fette (Chrupała et al., 2008) and Marmot (Müller
et al., 2013), are capable of achieving high tagging

accuracy, but they need to be trained on morpho-
logically annotated corpora, which are unavailable
for most languages. Often, morphological tag-
ging can be performed as a downstream applica-
tion of morphological analysis: tools such as Mar-
mot and the Zurich Dependency Parser (Sennrich
et al., 2009) have the functionality to incorporate
the output of a morphological analyzer to perform
morphological tagging.

In this paper, we propose a novel discrimina-
tive string transduction approach to morphologi-
cal analysis, which is designed to be trained on
plain inflection tables, thus obviating the need for
expert rule engineering or morphologically anno-
tated corpora. Inflection tables are available for
many languages on web sites such as Wiktionary,
thanks to crowd-sourcing efforts of moderately-
skilled native speakers.1 In addition, our system
is capable of leveraging raw unannotated corpora
to refine its analyses by re-ranking. The accu-
racy of the system on German approaches that
of a hand-engineered FST analyzer, while having
much higher coverage. The experimental results
on English, Dutch, German, and Spanish demon-
strate that it also more accurate than the analysis
module of a state-of-the-art morphological tagger.

2 Methods

Our approach to morphological analysis is based
on string transduction between a word-form (e.g.
lüfte) and an analysis composed of a lemma and a
tag (e.g. lüften+1SIE), where the tag corresponds
to the predicted inflection slot. Our system con-
sists of four modules: alignment, transduction, re-
ranking, and thresholding.

1The Unimorph Project (unimorph.org) provides inflec-
tion tables for more than 350 languages.
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Lemma POS Inflection Tag
luft Noun Nom. Pl. NP
luft Noun Acc. Pl. AP
luft Noun Gen. Pl. GP

lüften Verb 1st Sg. Ind. Pres. 1SIE
lüften Verb 1st Sg. Subj. Pres. 1SKE
lüften Verb 3rd Sg. Subj. Pres. 3SKE
lüften Verb Sg. Imperative RS

Table 1: An example of morphological analy-
sis: multiple correct interpretations of the German
word-form lüfte.

2.1 Alignment

For the training of the string transduction models,
we need aligned source-target pairs. Monotonic
alignments are inferred with a modified version
of the M2M (many-to-many) aligner of Jiampo-
jamarn et al. (2007), which maximizes the joint
likelihood of the aligned source and target sub-
string pairs using the Expectation-Maximization
algorithm. A transduction from a word-form
which happens to be shorter than its lemma (e.g.
lüfte/lüften) could be achieved by including an in-
sertion operation (e.g. ε → n). However, in or-
der to avoid a prohibitively expensive transduc-
tion model, we model insertion as a many-to-many
alignment, which bounds the transduction opera-
tion to its context.

We modify the M2M aligner by allowing the
alignment to learn the likelihood of a generalized
identity alignment (i.e., i → i). Although inflec-
tion modifies some characters in a word, the ma-
jority of characters remain unchanged. This mod-
ification influences M2M towards small, single-
character alignments.

The alignment of tags (e.g. 1SIE) merits special
consideration. The tag is treated as a single indi-
visible unit, which is typically aligned to a sub-
string in the word-form that involves the corre-
sponding affix.2 We allow the maximum length
of the alignment substring to be longer for the tag
alignment than for the individual characters in the
lemma. After aligning the training data we record
all substring alignments that involve affixes and
tags. At test time, the source-target alignment is
implied by the substring transduction sequence.

2Although our method can handle multiple tags, one tag
is sufficient to represent the word-forms of the languages that
we consider in this paper. The only exception is the circumfix
of the German past participle.

s c h r e i b et
s c h r e i b en+2PKA X
s c h r e i b en+2PKE X
s c h r e i b en+3SIA ×
s c h r e i b en+3PIE ×
s c h r e i b en+2PIA X

Table 2: Example alignments of hypothetical anal-
yses of the German word-form schreibet. The
check marks indicate which of the analyses satisfy
the affix-match constraint.

We say that a lemma+tag analysis generated from
a word-form satisfies the affix-match constraint if
and only if the resulting affix-tag pair occurs in the
alignment of the training data. Table 2 shows the
alignments of five possible analyses to the corre-
sponding word-form schreibet, of which three sat-
isfy the affix-match constraint. Only analysis #2
(in bold) is correct.

2.2 Transduction

We train transduction models for transforming the
word-forms into analyses on the aligned source-
target pairs using a modified version of DI-
RECTL+ (Jiampojamarn et al., 2010). DIRECTL+
is a feature-rich, discriminative character trans-
ducer, which searches for a model-optimal se-
quence of character transformation rules for its
input. The core of the engine is a dynamic pro-
gramming algorithm capable of transducing many
consecutive characters in a single operation, also
known as a semi-Markov model. Using a struc-
tured version of the MIRA algorithm (McDonald
et al., 2005), training attempts to assign weights
to each feature so that its linear model separates
the gold-standard derivation from all others in its
search space.

DIRECTL+ uses a number of feature templates
to assess the quality of a rule: source context, tar-
get n-gram, and joint n-gram features. Context
features conjoin the rule with indicators for all
source character n-grams within a fixed window
of where the rule is being applied. Target n-grams
provide indicators on target character sequences,
describing the shape of the target as it is being pro-
duced, and may also be conjoined with our source
context features. Joint n-grams build indicators
on rule sequences, combining source and target
context, and memorizing frequently-used rule pat-
terns.
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Source Target
schreiben + 2PKA schriebet ×
schreiben + 2PKE schreibet X
schreiben + 3SIA schrieb ×
schrieben + 2PKE schriebet ×
schreiben + 2PIA schriebt ×

Table 3: Example source-target pairs of the inflec-
tor model. The check marks indicate which of the
analyses of the German word-form schreibet sat-
isfy the mirror constraint.

Following Toutanova and Cherry (2009), we
modify the out-of-the-box version of DIRECTL+
by augmenting it with an abstract copy feature
that indicates when a rule simply copies its source
characters into the target, e.g. b → b. The copy
feature has the effect of biasing the transducer
towards preserving the source characters during
transduction.

In addition to training an analyzer model that
transforms a word-form into an analysis, we also
train an inflector model that converts an analysis
back into a word-form. This opposite transforma-
tion corresponds to the task of morphological in-
flection (Cotterell et al., 2016). By deriving two
complementary models from the same training set,
we attempt to mimic the functionality of a genuine
finite-state transducer. We say that a lemma+tag
analysis generated by the analyzer model satis-
fies the mirror constraint if and only if the inflec-
tor model correctly reconstructs the original word-
form from the analysis by returning it as its top-1
prediction. Table 3 shows five possible analyses
of the word-form schreibet, of which only one sat-
isfies the mirror constraint. Only analysis #2 (in
bold) is correct.

2.3 Re-ranking

In order to produce multiple morphological anal-
yses, we take advantage of the capability of DI-
RECTL+ to output n-best lists of candidate target
strings. To promote the most likely lemma+tag
combinations, we re-rank the n-best lists using the
Liblinear SVM tool (Fan et al., 2008), converting
the classification task into the ranking task with
the method of Joachims (2002).

The re-ranker employs several features, which
are enumerated in Table 4. The first three features
consider the form of the predicted lemma. Fea-
ture 1 indicates whether the lemma occurs at least

Description Type
1 lemma in Corpus binary
2 LM score real
3 DIRECTL+ score real
4 affix match binary
5 no affix match binary
6 no affix match, top-1 binary
7 mirrored binary
8 not mirrored binary
9 not mirrored, top-1 binary

Table 4: Features of the re-ranker.

once in a text corpus. Feature 2 is set to the nor-
malized likelihood score of the lemma computed
with a 4-gram character language model that is de-
rived from the corpus. Feature 3 is the normalized
confidence score assigned by DIRECTL+.

Features 4-6 refer to the affix-match constraint
defined in Section 2.1, in order to promote anal-
yses that involve correct tags. Features 4 and 5
are complementary and indicate whether the align-
ment between the affix of the given word-form and
the tag of the predicted analysis was generated at
least once in the training data. Feature 6 accounts
for unusual affix-tag pairs that are unattested in the
training data: it fires if the affix-match constraint
in not satisfied but the analysis is deemed the most
likely by DIRECTL+.

Features 7-9 refer to the mirror constraint de-
fined in Section 2.2, in order to promote analy-
ses that the inflector model correctly transduces
back into the initial word-form. These three fea-
tures follow the same pattern as the affix-match
features.

2.4 Thresholding

Each word-form has at least one analysis, but the
number of correct analyses varies; for example,
lüfte has seven (Table 1). The system needs to de-
cide where to “draw the line” between the correct
and incorrect analyses in its n-best list. Apart from
the top-1 analysis, the candidate analyses are fil-
tered by a pair of thresholds which are defined as
percentages of the top analysis score. The thresh-
olds aim at reconciling two types of syncretism:
one that involves multiple inflections of the same
lemma, and the other that involves inflections of
different lemmas. The first threshold is uncondi-
tional: it allows any analysis with a sufficiently
high score. The second, lower threshold is con-
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ditional: it only allows a relatively high-scoring
analysis if its lemma occurs in one of the anal-
yses that clear the first threshold. For example,
the fourth analysis in Table 3, schrieben + 2PKE,
needs to clear both thresholds, because its lemma
differs from the top-1 analysis, schreiben + 2PKA.
Both thresholds are tuned on a development set.

3 Experiments

In this section, we evaluate our morphological an-
alyzer on English, German, Dutch, and Spanish,
and compare our results to two other systems.

3.1 Data

We extract complete inflection tables for English,
German, and Dutch from the CELEX lexical
database (Baayen et al., 1995). The number of in-
flectional categories across verbs, nouns, and ad-
jectives is 16, 50, and 24, respectively, in the three
languages. However, in order to test whether an
analyzer can handle arbitrary word-forms, the data
is not separated according to distinct POS sets. For
consistency, we ignore German noun capitaliza-
tion.

The Spanish data is from Wiktionary inflection
tables, as provided by Durrett and DeNero (2013).
and includes 57 inflectional categories of Spanish
verbs. We convert accented characters to their un-
accented counterparts followed by a special sym-
bol (e.g. cantó→ canto’), with no loss of infor-
mation.

The data is split into 80/10/10 train/dev/test
sets; for Spanish, we use the same splits as Dur-
rett and DeNero (2013). We eliminate duplicate
identical word-forms from the test data, and hold
out 20% of the development data to train the re-
ranker. The training instances are randomly shuf-
fled to eliminate potential biases.

For re-ranking, we extract word-form lists from
the first one million lines of the November 2, 2015
Wikipedia dump for the given language, and de-
rive our language models using the CMU Statisti-
cal Language Modeling Toolkit.3

3.2 Comparison to Morphisto

We first compare our German results against Mor-
phisto (Zielinski and Simon, 2009), an FST ana-
lyzer. Beyond morphological analysis, Morphisto
also performs some derivational analysis, convert-
ing compound segments back into lemmas. For a

3http://www.speech.cs.cmu.edu

fair comparison, we exclude compounds from the
test set. In addition, because the lexicon of Mor-
phisto has a limited coverage, we report micro-
averaged results in this section.

Table 5 shows that overall our system per-
forms much better on the test sets than the hand-
engineered Morphisto, which fails to analyze 43%
of the word-forms in the test set. If we disregard
the word-forms that Morphisto cannot handle, its
F-score is actually higher: 89.5% vs. 84.0%.

3.3 Comparison to Marmot

Marmot (Müller et al., 2013) is a state-of-the-
art, publicly available morphological tagger4, aug-
mented with a lemmatizing module (Müller et al.,
2015), which can also take advantage of unanno-
tated corpora. In order to make a fair comparison,
we train Marmot on the same data as our system,
with default parameters. Because Marmot is a
morphological tagger, rather than an analyzer, we
provide the training and test word-forms as single-
word sentences. In addition, we have modified
the source code to output a list of n-best analy-
ses instead of a single best analysis. No additional
re-ranking of the results is performed, as Marmot
already contains its own module for leveraging a
corpus, which is activated in these experiments.
Separate thresholds for each language are tuned on
the development sets. (c.f. Section 2.4).

Table 6 presents the results. We evaluate the
systems using macro-averaged precision, recall,
and F-score. Our system is consistently more ac-
curate, improving the F-score on each of the four
languages. Both systems make few mistakes on
Spanish verbs.

The English results stand out, with Marmot
achieving a higher recall at the cost of precision.
English contains more syncretic forms than the
other three languages: 3 different analyses per
word-form on average in the test set, compared to
1.9, 1.3, and 1.1 for German, Dutch, and Spanish,
respectively. Marmot’s edit-tree method of candi-
date selection favors fewer lemmas, which allows
the lemmatization module to run efficiently. On
the other hand, DIRECTL+ has no bias towards
lemmas or tags. This may be the reason of the
substantial difference between the two systems on
Dutch, where nearly a quarter of all syncretic test
word-forms involve multiple lemmas.

An example of an incorrect analysis is provided

4http://cistern.cis.lmu.de/marmot
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English German Dutch Spanish
P R F1 P R F1 P R F1 P R F1

DIRECTL+ 93.5 88.9 91.2 87.3 88.7 88.0 87.3 90.3 88.8 99.3 99.5 99.4
Marmot 87.5 94.3 90.8 85.3 88.5 86.9 81.3 84.7 82.9 99.2 98.9 99.1

Table 6: Macro-averaged results on four languages.

System P R F1
DIRECTL+ 78.7 92.6 85.1
Morphisto 65.1 52.7 58.2

Table 5: Micro-averaged results on German.

by Spanish lacremos. Both systems correctly iden-
tify it as a plural subjunctive form of the verb
lacrar. However, Marmot also outputs an al-
ternative analysis that involves a bizarre lemma
lacr. Our system is able to exclude this word-
form thanks to a low score from the character lan-
guage model, which is taken into consideration by
the re-ranker.

4 Conclusion

We have presented a transduction-based morpho-
logical analyzer that can be trained on plain inflec-
tion tables. Our system is highly accurate, and has
a much higher coverage than a carefully-crafted
FST analyzer. By eliminating the necessity of
expert-annotated data, our approach may lead to
the creation of analyzers for a wide variety of lan-
guages.
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Abstract
The Dravidian family is one of the most
widely spoken set of languages in the
world, yet there are very few annotated re-
sources available to NLP researchers. To
remedy this, we create DravMorph, a cor-
pus annotated formorphological segmenta-
tion and part-of-speech. Also, we exploit
novel features and higher-order models to
achieve promising results on these corpora
on both tasks, beating techniques proposed
in the literature by as much as 4 points in
segmentation F1.

1 Introduction

The Dravidian languages comprise one of the
world's major language families and are spoken
by over 300 million people in southern India (see
Figure 1). Despite their prevalence, they remain
low resource with respect to language technology.
We annotate new data and develop new models for
the most commonly spoken Dravidian languages:
Kannada, Malayalam, Tamil and Telugu.
We focus on the computational processing of

Dravidian morphology, a critical issue since the
family exhibits rich agglutinative inflectional
morphology as well as highly-productive com-
pounding. For example, Dravidian nouns are
typically inflected with gender, number and case
in addition to various postpositions. E.g., con-
sider the word ag niparvvatattinṟeyeāppam
(അഗ്നിപർവവ്തതത്ിനറ്െയോപപ്ം) in
Malayalam which is compromised of the
compound noun stem agni+paṟavvatam
(fire+mountain) and the following suffixes: tta
(inflectional increment), inṟe (genitive case
marker), ye (inflectional increment) and oppam
(postposition). These combine to give the mean-
ing of the English phrase ``with a volcano.''
This complexity makes morphological analysis
obligatory for the Dravidian languages.
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Abstract

1 Introduction

The Dravidian languages comprise one of the
world’s major language families and are spoken
by over 300 million people in southern India. De-
spite their prevalence, they remain—with respect
to language technology—low resource. Our cur-
rent work focuses on developing new models and
data for processing the four most commonly spo-
ken Dravidian languages: Kannada, Malayalam,
Tamil and Telugu. We present a brief overview of
the linguistic features that characterize the family
as whole and then describe the development of sta-
tistical models that utilize these specific features.
We focus on the computational processing of

Dravidian morphology, a critical issue since the
family exhibits rich agglutinative inflectional
morphology as well as highly-productive com-
pounding. For example, nouns are typically
inflected with gender, number, case in addition
to various postpositions. Consider the Malay-
alam word
(അĞിപർവതതിെɃേയാɕം), which consists
of the compound stem
(fire+mountain) and the following suffixes:

(inflictive increment), (genitive case
marker), (inflictive increment) and (post
position). These combine to give the meaning of
the English phrase “with a volcano”. The added
intra-word complexity makes morphological
analysis requisite for the Dravidian languages.
We make three contributions. First, we show

that a combination of higher-order models and
linguistically-motivated features yields state-of-
the-art accuracies on the task of morphological
segmentation in the four major Dravidian lan-
guages. Second, we show that training POS tag-

Tamil

Telugu
Kannada

Malayalam

India
Indo-Aryan

Figure 1: The Dravidian languages are spoken natively in
southern India, whereas languages belonging to the Indo-
Aryan family, a subbranch of the larger Indo-European fam-
ily, are spoken in the north.

gers that use the output of our segmenters as fea-
ture greatly improve tagging accuracy. This in-
dicates that for languages with rich morphology,
a more structured approach to character-level fea-
tures than simple prefix and suffix features is nec-
essary. Third, we release the annotated segmen-
tation and POS-tagged corpora as open-source re-
sources, encouraging future work on Dravidian
languages.

2 Morphological Segmentation

The task of morphological segmentation entails
breaking a word up into its constituent morphs.
For example, the English word can
be segmented as + + , uncovering
how the word was built and hinting at the seman-
tics of the resulting derived form. When process-
ing morphologically-rich languages, this helps re-
duce the sparsity created by the higher OOV rate
due to the productive morphology, and, empiri-

Figure 1: The Dravidian languages are spoken natively in
southern India, whereas languages belonging to the Indo-
Aryan family, a subbranch of the larger Indo-European family,
are spoken in the north.

Wemake three primary contributions: (i) We re-
lease DravMorph, a corpus annotated for morpho-
logical segmentation and part-of-speech (POS) as
an open-source resource, encouraging future work
on Dravidian languages; (ii) We show that a com-
bination of higher-order models and linguistically-
motivated features yields state-of-the-art accuracy
on the task of morphological segmentation on the
corpus; (iii) We show that training POS taggers
that use the output of our segmenters as features
significantly improves a state-of-the-art tagger.

2 DravMorph

A primary contribution of this work is the re-
lease of DravMorph,1 a corrected corpus for both
morphological segmentation and POS in the four

1The morphological analyzers and the code for correcting
the corpus available at https://github.com/Malkitti/
Corpusandcodes
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POS Segmentation Wiki Dump
Ka ILMT/IIIT-H ILMT/IIIT-H 2015-02-09
Ma ILMT/AM ILMT/AM 2015-05-08
Ta ILMT/AM ILMT/AM 2015-05-09
Te ILMT/AM ILMT/UoH 2015-02-03

Table 1: The origin of the ruled-based analyzers and tag-
gers. ILMT stands for Indian Language Machine Translation
Project, AM stands for Amrita University, IIIT-H stands for
IIIT-H University, UoH stands for University of Hyderabad.

most widely spoken Dravidian languages: Kan-
nada, Malayalam, Tamil and Telugu. The corpus
contains 4034-8600 annotated sentences and 3593-
4730 segmented types per language. The full statis-
tics are listed in Table 2. To the best of our knowl-
edge, this is themost comprehensive annotated cor-
pus of the Dravidian languages.
All the newly annotated corpora are based on

Wikipedia text in the respective languages (see Ta-
ble 1). To speed up annotation, we first ran closed-
source ruled-based morphological analyzers and
POS taggers produced by the government of India
and Indian universities. We remark that the exis-
tence of such rule-based tools does not diminish
the utility of the annotated corpus---our ultimate
goal is the adoption of modern statistical methods
for Dravidian NLP, which requires annotated data.
To ensure a gold standard corpus, we then hand-
corrected the resulting output. Additionally, we
standardized the POS tagging schemes across lan-
guages, using the IIIT-H POS tagset (Bharati et al.,
2006), which has 23 tags. Furthermore, we calcu-
lated inter-annotator agreement of two annotators
for morphological labels and all datasets have Co-
hen's κ (Cohen, 1968) > 0.80.

3 Morphological Segmentation

We first examine the task of morphological seg-
mentation in the Dravidian languages. The task en-
tails breaking aword up into its constituent morphs.
For example, the English word joblessness
can be segmented as job+less+ness. When
processing morphologically-rich languages, this
helps reduce the sparsity created by the higher
OOV rate due to productive morphology, and,
empirically, has shown to be beneficial in a di-
verse variety of down-stream tasks, e.g., machine
translation (Clifton and Sarkar, 2011), speech
recognition (Afify et al., 2006), keyword spot-
ting (Narasimhan et al., 2014) and parsing (Seeker
and Özlem Çetinoğlu, 2015). Both supervised

POS Tagging Segmentation
Lang # Sentences # Tokens # Types
Ka 8600 31364 3593
Ma 4034 34300 4730
Ta 4550 32400 4445
Te 5679 30625 4183

Table 2: Per language breakdown of size of the POS portion
and the morphological segmentation portion of DravMorph.
All train / dev / test splits used in the experiments will be re-
leased with the corpus.

and unsupervised approaches have been success-
ful, but, when annotated data is available, super-
vised approaches typically greatly outperform un-
supervised approaches (Ruokolainen et al., 2013).
In light of this, we adopt a fully supervised model
here.
We apply semi-Markov Conditional Random

Fields (S-CRFs) to the problem of morpholog-
ical segmentation (Sarawagi and Cohen, 2004;
Cotterell et al., 2015). S-CRFs have the ability
to jointly model both a segmentation and a
labeling. For example, consider the following the
Malayalam word kūṭṭukāranmāruṭeyēāppam
(കടൂട്കുാരനമ്ാരടുെയോപ്പം) (with (male)
friends):

kūṭṭukāranmāruṭeyēāppam︸ ︷︷ ︸
w

labeled segmentationZ===========⇒

[stem kūṭṭukāran]︸ ︷︷ ︸
s1,ℓ1

[suf mār]︸ ︷︷ ︸
s2,ℓ2

[suf uṭe]︸ ︷︷ ︸
s3,ℓ3

[suf yēāppam]︸ ︷︷ ︸
s4,ℓ4

.

A S-CRF models this transformation as

pθ(s, l |w)=
1

Zθ(w)
exp

(∑
i=1

θ⊤f(si, ℓi, ℓi−1)

)
,

where s is a segmentation, ℓ a labeling, θ ∈ Rd

is the parameter vector, f is a feature function2
and the partition function Zθ(w) ensures the dis-
tribution is normalized. Note that each ℓi is taken
from a set of labels L. In this work, we take
L = {prefix, stem, suffix}.
As an extension to the standard S-CRF Model,

we allow for higher-order segment interactions
(Nguyen et al., 2011). This allows for feature
functions to look at multiple adjacent segments si,

2Note we have omitted the dependency of f on the input
w and assumed padded input for notational convenience.
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si−1 and si−2 as well as multiple labels ℓi, ℓi−1

and ℓi−2. While higher-order S-CRFs have shown
performance improvements in various tasks, e.g.,
bibliography extraction and OCR (Nguyen et al.,
2014), they have yet to applied to morphology. We
posit that the increased model expressiveness will
help model more complex morphology.
We optimize the model parameters to maxi-

mize the L2 regularized likelihood of the train-
ing data using L-BFGS (Liu and Nocedal, 1989).
Computation of the likelihood and gradient can
be performed efficiently through a generalization
of the forward-backward algorithm that runs in
O(|w|n+2|L|m+1), where n is the number of ad-
jacent segments to be scored (n = 0 in a standard
S-CRF) and m is the number of adjacent labels to
be scored (m = 1 in a standard S-CRF). In this
work, we explore n ∈ {0, 1, 2} and m ∈ {1, 2, 3},
i.e., our features examine up to three adjacent seg-
ments and their labels.

3.1 Features
We apply a mixture of features standard for mor-
phological segmentation and novel features based
linguistic properties of the Dravidian languages.

Language Independent Feature Templates.
We include the following atomic feature templates
from Cotterell et al. (2015): (i) a binary indicator
feature for substring si of the training data, (ii)
character n-gram context features on the left and
right for each potential boundary and (iii) a binary
feature that fires if the segment si appears in a
spell-checker gazetteer, to determine if it itself is
a word. We also take conjunctions of all atomic
features and the labels. Note that in higher-order
models, we include the conjunction of all features
that fire on a given segment si with those that fire
on the adjacent segments.

Inflectional Increments. All Dravidian lan-
guages discussed in this work have semantically
vacuous segments known as inflectional incre-
ments that are inserted during word formation
between the stem and an inflectional ending. Con-
sider the example from Malayalam, marattinṟe
(മരത്തിനറ്െ) (tree), which consists of stem
mara, inflectional increment tt and genitive case
marker inte. Because they only appear between
morphs, inflectional increments serve as a cue
for morph boundaries. Luckily, each set of
inflectional increments is closed-class, allowing
us to create a gazetteer of all increments.

Orthographic Features. The orthography of the
Dravidian languages is an important factor that in-
teracts non-trivially with the morphology. Each
language uses an alpha-syllabic writing system,
where each symbol encodes a syllable, rather than
a single phoneme. Since boundaries typically oc-
cur between syllables, using a transliterated rep-
resentation would throw away information. To
remedy this, we include a binary feature that indi-
cates whether a boundary corresponds to a syllable
boundary in the original script. The orthographies
also contain digraphs, which represent a single
phoneme using a combination of two other graphs
in the system. These characters are typically pro-
duced when two syllables are joined together at
morpheme boundaries or word boundaries. Since
the number of digraph characters are fixed in the
orthography, we create another gazetteer for them.

Sandhi. Dravidian languages exhibit rich phono-
logical interactions known as sandhi that occur at
morph boundaries and word boundaries in the case
of compounding. We encode the major morpho-
phonological processes as features to capture this.
We include features for the assimilation, insertion,
and deletion of phonemes as these changes are
visible in the surface form and can easily be rep-
resented as features. Consider an example from
Malayalam, kuṭṭiyuṁ (കടുട്ിയംു) (child + also ),
in this case there are twomorphemes: the first mor-
pheme kuṭṭi, which ends with the front vowel i,
and the secondmorpheme um, which starts with the
back vowel u. Sandhi inserts a glide y between
them, marking the morpheme boundary.

4 Experiments and Results

Morphological Segmentation. On the task of
morphological segmentation, we experimented
with four languages from the Dravidian family in
our corpus: Kannada, Malayalam, Tamil and Tel-
ugu. We first performed a full ablation study (see
Table 3) on our model described in §3 to validate
that both the higher-order models and the linguis-
tic features have the desired effect. Indeed, both
significantly improve performance. We evaluate
using border F1 (Virpioja et al., 2011) against the
gold segmentation.
On test data, we compare our best system

from the ablation study against two models pre-
viously proposed in the literature. First, we com-
pare against the CRF model of Ruokolainen et al.
(2013) and, second, we compare against the S-CRF
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Ka Ma Ta Te
CRF 77.09 80.44 78.02 75.88
S-CRF (0, 1) 77.75 80.64 78.34 76.10
S-CRF (1, 2) 78.49 81.05 78.75 76.64

2n
d
or
de
r S-CRF (1, 2) +I 78.55 82.02 79.04 76.88

S-CRF (1, 2) +O 78.97 82.11 79.34 76.94
S-CRF (1, 2) +S 79.64 82.64 80.09 77.44
S-CRF (1, 2) +I+O 79.76 82.77 80.67 77.50
S-CRF (1, 2) +I+O+S 80.18 83.12 81.32 78.07

3r
d
or
de
r

S-CRF (2, 3) +I 80.34 83.26 81.40 78.77
S-CRF (2, 3) +O 80.65 83. 38 81.67 78.18
S-CRF (2, 3) +S 81.04 83.88 82.43 78.79
S-CRF (2, 3) +I+O 82.11 84.32 82.95 78.90
S-CRF (2, 3) +I+O+S 81.24 85.04 83.90 79.04

Table 3: Full ablation study on test data to test the effectiveness of our new features as well as the higher-order models. The
metric used is border F1. We denote higher-order models as S-CRF (n, m) where the integers n and m indicate the order of
the model, e.g., the S-CRF (1, 2) models scores pairs of segments and triplets of tags. Note that +I marks inflection increment
features, +O marks orthography features and +S marks sandhi features.

model of Cotterell et al. (2015), which is just a
1st-order S-CRF. We tune the regularization coef-
ficient for the L2 regularizer on held-out data.

Segmentation in POS Tagging. Next, we show
the efficacy of morphological segmentation used
as a preprocessing step for POS tagging (seen as a
downstream task). For each type in the POS cor-
pus, we take the MAP segmentation from the best
S-CRF segmenter. We train the Marmot (Müller
et al., 2013) using features derived from the seg-
mentation. Specifically, we create a binary feature
that fires on each segment in the training data. The
other features in Marmot are standard shape fea-
tures for POS tagging described in literature (Rat-
naparkhi and others, 1996; Manning, 2011). No-
tably, the primary source of morphological infor-
mation for the tagger is obtained through character
n-gram features on individual word forms. Some
of these features are not useful for the Dravidian
languages, e.g., the Dravidian scripts only have
lowercase.
In the Dravidian languages (and more generally

agglutinative languages), morphological segments
mark case, tense, aspect, gender, and number--
-categories indicative of the POS. For instance,
tense markers only appear with verbs. These fea-
tures have the potential to be more useful than the
dynamics of the tagger as Dravidian word-order is
relatively free.

Experiments and Results. We train the Marmot
system with and without the morphological seg-

mentation features. Following the procedure out-
lined inMüller et al. (2013), we train using stochas-
tic gradient descent for 10 epochs with a L1 reg-
ularizer with 0.1 coefficient. The results are re-
ported in Table 4. We see clear gains of up to
1.69% with the systems that use the segments as
features. This evinces that segmentation is a useful
preprocessing step for POS tagging in Dravidian
languages---character n-grams alone do not pick
up on the layers of affixes.

5 Related Work

Sequence models such as CRFs and S-CRFs are
used for segmentation tasks in NLP, e.g., Peng et
al. (2004) applied a CRF model for Chinese word
segmentation and Andrew (2006) followed with a
S-CRF model. In morphology, Ruokolainen et al.
(2013) train a CRF to perform morphological seg-
mentation. Later, Ruokolainen et al. (2014) extend
the work by adding semi-supervised features ex-
tracted from a large external corpus. Cotterell et
al. (2015) proposed a 1st order S-CRF model for
morphological segmentation, but did not explore
higher-order models. Additionally, we are the first
to explore rich phonological and orthographic fea-
tures in supervised segmentation models.
There are large amount of research literature on

construction of POS taggers for south Dravidian
languages and most of them are languages spe-
cific, e.g., Pandian and Geetha (2009). However,
some of the methods are applied to one or two lan-
guages in the family. P.V.S. and Karthik (2007) ap-
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Ka Ma Ta Te
Marmot 86.35 88.77 89.04 90.50
Marmot + seg 88.04 90.44 91.64 91.44

Table 4: Tagging results using the Marmot tagger on the four Dravidian languages studied in the paper. The results indicate
strongly that morphological segmentation---rather than simple prefix and suffixes n-gram features---is a useful step in handling
the agglutinative Dravidian languages.

ply linear-chain CRFs for POS tagging of Bengali,
Hindi and Telugu. Another approach that applied
to POS tagging of Dravidian language is to use
part-of-speech tagger of another similar languages.
More recently, Kumar et al. (2015) applied adaptor
grammars to unsupervised morphological segmen-
tation of Kannada, Malayalam and Tamil.

6 Conclusion

In this paper, we presented a higher-order semi-
CRF model for morphological segmentation for
the Dravidian languages of South India. Our re-
sults show that the modeling of higher-order de-
pendencies between segments and linguistically-
inspired features can greatly improve system per-
formance. We also showed that segmentation is
beneficial to the down-stream task of POS tag-
ging. To promote research on the Dravidian family,
we release hand-corrected corpora for both mor-
phological segmentation and POS tagging in four
low-resource languages. Future work should con-
centrate on canonical segmentation (Cotterell et
al., 2016a; Cotterell et al., 2016b; Cotterell and
Schütze, 2017), which may be a better fit for the
problem given the rich phonological changes in
Dravidian morphology. Also, we plan to map the
annotations to the universal POS set of Petrov et
al. (2012) and the UniMorph schema of Sylak-
Glassman et al. (2015).

Acknowledgments

The second author was supported by a DAAD
Long-TermResearch Grant and an NDSEG fellow-
ship.

References
Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff

Kuo, Laurent Besacier, and Yuqing Gao. 2006. On
the use of morphological analysis for dialectal ara-
bic speech recognition. In INTERSPEECH 2006 -
ICSLP, Ninth International Conference on Spoken
Language Processing, Pittsburgh, PA, USA, Septem-
ber 17-21, 2006.

Galen Andrew. 2006. A hybrid markov/semi-markov
conditional random field for sequence segmentation.
In Proceedings of the 2006 Conference on Empiri-
cal Methods in Natural Language Processing, pages
465--472, Sydney, Australia, July. Association for
Computational Linguistics.

Akshar Bharati, Rajeev Sangal, Dipti Misra Sharma,
and Lakshmi Bai. 2006. Anncorra: Annotating cor-
pora guidelines for POS and chunk annotation for In-
dian languages. LTRC-TR31.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 32--42, Portland, Oregon, USA, June. As-
sociation for Computational Linguistics.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Ryan Cotterell and Hinrich Schütze. 2017. Joint se-
mantic synthesis and morphological analysis of the
derived word. CoRR, abs/1701.00946.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015. Labeled morphological seg-
mentation with semi-markov models. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 164--174, Bei-
jing, China, July. Association for Computational Lin-
guistics.

Ryan Cotterell, Arun Kumar, and Hinrich Schütze.
2016a. Morphological segmentation inside-out. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2325--2330, Austin, Texas, November. Association
for Computational Linguistics.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze.
2016b. A joint model of orthography and morpho-
logical segmentation. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 664--669, San Diego,
California, June. Association for Computational Lin-
guistics.

Arun Kumar, Lluís Padró, and Antoni Oliver. 2015.
Learning agglutinative morphology of indian lan-
guages with linguistically motivated adaptor gram-
mars. In Proceedings of the International Confer-

221



ence Recent Advances in Natural Language Process-
ing, pages 307--312, Hissar, Bulgaria, September.
INCOMA Ltd. Shoumen, BULGARIA.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(1-3):503--528.

Christopher D. Manning. 2011. Part-of-speech tag-
ging from 97% to 100%: Is it time for some linguis-
tics? In Computational Linguistics and Intelligent
Text Processing - 12th International Conference, CI-
CLing 2011, Tokyo, Japan, February 20-26, 2011.
Proceedings, Part I, pages 171--189.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morphologi-
cal tagging. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 322--332, Seattle, Washington, USA, Oc-
tober. Association for Computational Linguistics.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword
spotting. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 880--885, Doha, Qatar, Octo-
ber. Association for Computational Linguistics.

Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and
Hai Leong Chieu. 2011. Semi-Markov conditional
random field with high-order features. In ICML
Workshop on Structured Sparsity: Learning and In-
ference.

Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and
Hai Leong Chieu. 2014. Conditional random field
with high-order dependencies for sequence labeling
and segmentation. Journal of Machine Learning Re-
search, 15(1):981--1009.

S. Lakshmana Pandian and T.V. Geetha. 2009. CRF
models for Tamil part of speech tagging and chunk-
ing. In International Conference on Computer
Processing of Oriental Languages, pages 11--22.
Springer.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. InProceedings
of Coling 2004, pages 562--568, Geneva, Switzer-
land, Aug 23--Aug 27. COLING.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2012. A universal part-of-speech tagset. In Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation, LREC 2012, Istan-
bul, Turkey, May 23-25, 2012, pages 2089--2096.

Avinesh P.V.S. and G. Karthik. 2007. Part-of-
speech tagging and chunking using conditional ran-
dom fields and transformation based learning. Shal-
low Parsing for South Asian Languages, 21.

Adwait Ratnaparkhi et al. 1996. A maximum en-
tropy model for part-of-speech tagging. In Proceed-
ings of the conference on empirical methods in natu-
ral language processing, volume 1, pages 133--142.
Philadelphia, USA.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morpholog-
ical segmentation in a low-resource learning setting
using conditional random fields. In Proceedings of
the Seventeenth Conference on Computational Nat-
ural Language Learning, pages 29--37, Sofia, Bul-
garia, August. Association for Computational Lin-
guistics.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and mikko kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional ran-
dom fields. In Proceedings of the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, volume 2: Short Papers, pages
84--89, Gothenburg, Sweden, April. Association for
Computational Linguistics.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In Advances in Neural Information Pro-
cessing Systems 17 [Neural Information Processing
Systems, NIPS 2004, December 13-18, 2004, Van-
couver, British Columbia, Canada], pages 1185--
1192.

Wolfgang Seeker andÖzlemÇetinoğlu. 2015. A graph-
based lattice dependency parser for joint morpholog-
ical segmentation and syntactic analysis. Transac-
tions of the Association for Computational Linguis-
tics, 3.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 674--
680, Beijing, China, July. Association for Computa-
tional Linguistics.

Sami Virpioja, Ville T. Turunen, Sebastian Spiegler, Os-
kar Kohonen, and Mikko Kurimo. 2011. Empirical
comparison of evaluation methods for unsupervised
learning of morphology. TAL, 52(2):45--90.

222



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 223–228,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

BabelDomains: Large-Scale Domain Labeling of Lexical Resources

Jose Camacho-Collados and Roberto Navigli
Department of Computer Science

Sapienza University of Rome
{collados,navigli}@di.uniroma1.it

Abstract

In this paper we present BabelDomains,
a unified resource which provides lexi-
cal items with information about domains
of knowledge. We propose an automatic
method that uses knowledge from various
lexical resources, exploiting both distri-
butional and graph-based clues, to accu-
rately propagate domain information. We
evaluate our methodology intrinsically on
two lexical resources (WordNet and Ba-
belNet), achieving a precision over 80% in
both cases. Finally, we show the potential
of BabelDomains in a supervised learning
setting, clustering training data by domain
for hypernym discovery.

1 Introduction

Since the early days of Natural Language Process-
ing (NLP) and Machine Learning, generalizing a
given algorithm or technique has been extremely
challenging. One of the main factors that has led
to this issue in NLP has been the wide variety of
domains for which data are available (Jiang and
Zhai, 2007). Algorithms trained on the business
domain are not to be expected to work well in biol-
ogy, for example. Moreover, even if we manage to
obtain a balanced training set across domains, our
algorithm may not be as effective on some specific
domain as if it had been trained on that same target
domain. This issue has become even more chal-
lenging and significant with the rise of supervised
learning techniques. These techniques are fed with
large amounts of data and ought to be able gen-
eralize to various target domains. Several studies
have proposed regularization frameworks for do-
main adaptation in NLP (Daumé III and Marcu,
2006; Daumé III, 2007; Lu et al., 2016). In this
paper we tackle this problem but approach it from

a different angle. Our main goal is to integrate
domain information into lexical resources, which,
in turn, could enable a semantic clusterization of
training data by domain, a procedure known as
multi-source domain adaptation (Crammer et al.,
2008). In fact, adapting algorithms to a particular
domain has already proved essential in standard
NLP tasks such as Word Sense Disambiguation
(Magnini et al., 2002; Agirre et al., 2009; Faralli
and Navigli, 2012), Text Categorization (Navigli
et al., 2011), Sentiment Analysis (Glorot et al.,
2011; Hamilton et al., 2016), or Hypernym Dis-
covery (Espinosa-Anke et al., 2016), inter alia.

The domain annotation of WordNet (Miller et
al., 1990) has already been carried out in previous
studies (Magnini and Cavaglià, 2000; Bentivogli
et al., 2004; Tufiş et al., 2008). Domain informa-
tion is also available in IATE1, a European Union
inter-institutional terminology database. The do-
main labels of IATE are based on the Eurovoc the-
saurus2 and were introduced manually. The fact
that each of these approaches involves manual cu-
ration/intervention limits their extension to other
resources, and therefore to downstream applica-
tions.

We, instead, have developed an automatic hy-
brid distributional and graph-based method for en-
coding domain information into lexical resources.
In this work we aim at annotating BabelNet (Nav-
igli and Ponzetto, 2012), a large unified lexical
resource which integrates WordNet and other re-
sources3 such as Wikipedia and Wiktionary, aug-
menting the initial coverage of WordNet by two
orders of magnitude.

1http://iate.europa.eu/
2http://eurovoc.europa.eu/drupal/?q=

navigation&cl=en
3See http://babelnet.org/about for a complete

list of the resources integrated in BabelNet.
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Animals Engineering and technology Language and linguistics Philosophy and psychology
Art, architecture and archaeology Food and drink Law and Crime Physics and astronomy

Biology Games and video games Literature and theatre Politics and government
Business, economics and finance Geography and places Mathematics Religion, mysticism and mythology

Chemistry and mineralogy Geology and geophysics Media Royalty and nobility
Computing Health and medicine Meteorology Sport and recreation

Culture and society Heraldry, honors and vexillology Music Transport and travel
Education History Numismatics and currencies Warfare and defense

Table 1: The set of thirty-two domains.

2 Methodology

Our goal is to enrich lexical resources with do-
main information. To this end, we rely on
BabelNet 3.0, which merges both encyclopedic
(e.g. Wikipedia) and lexicographic resources (e.g.
WordNet). The main unit in BabelNet, similarly to
WordNet, is the synset, which is a set of synony-
mous words corresponding to the same meaning
(e.g., {midday, noon, noontide}). In contrast to
WordNet, a BabelNet synset may contain lexical-
izations coming from different resources and lan-
guages. Therefore, the annotation of a BabelNet
synset could directly be expanded to all its associ-
ated resources.

As domains of knowledge, we opted for do-
mains from the Wikipedia featured articles page4.
This page contains a set of thirty-two domains
of knowledge.5 Table 1 shows the set of thirty-
two domains. For each domain, there is a set
of Wikipedia pages associated (127 on average).
For instance, the Wikipedia pages Kolkata and
Oklahoma belong to the Geography domain6.
Our methodology for annotating BabelNet synsets
with domains is divided into two steps: (1) we ap-
ply a distributional approach to obtain an extensive
distribution of domain labels in BabelNet (Section
2.1), and (2) we complement this first step with a
set of heuristics to improve the coverage and cor-
rectness of the domain annotations (Section 2.2).

2.1 Distributional similarity

We exploit the distributional approach of
Camacho-Collados et al. (2016, NASARI).
NASARI7 provides lexical vector representations
for BabelNet synsets. In order to obtain a full
distribution for each BabelNet synset, i.e. a list

4https://en.wikipedia.org/wiki/
Wikipedia:Featured_articles

5Biography domains are not considered.
6For simplicity we refer to each domain with its first word

(e.g., Geography to refer to Geography and Places).
7http://lcl.uniroma1.it/nasari/

of ranked domains associated, each domain is
first associated with a given vector. Then, the
Wikipedia pages from the featured articles page
are leveraged as follows. First, all Wikipedia
pages associated with a given domain are concate-
nated into a single text. Second, a lexical vector is
constructed for each text as in Camacho-Collados
et al. (2016), by applying lexical specificity
over the bag-of-word representation of the text.
Finally, given a BabelNet synset s, the similarity
between its respective NASARI lexical vector and
the lexical vector of each domain is calculated
using the Weighted Overlap comparison measure
(Pilehvar et al., 2013).8

This enables us to obtain, for each BabelNet
synset, scores for each domain label denoting their
importance. For notational brevity, we will refer
to the domain whose similarity score is highest
across all domains as its top domain. For instance,
the top domain of the BabelNet synset correspond-
ing to rifle is Warfare, while its second domain
is Engineering. In order to increase precision,
initially we only tag those BabelNet synsets whose
maximum score is higher than 0.35.9

2.2 Heuristics

We additionally propose three heterogeneous
heuristics to improve the quality and coverage of
domain annotations. These heuristics are applied
in cascade (in the same order as they appear on the
text) over the labels provided on the previous step.

Taxonomy. This first heuristic is based on the
BabelNet hypernymy structure, which is an inte-
gration of various taxonomies: WikiData, Word-
Net and MultiWiBi (Flati et al., 2016). The main
intuition is that, in general, synsets connected by a
hypernymy relation tend to share the same domain

8Weighted Overlap has been proved to suit interpretable
vectors better than cosine (Camacho-Collados et al., 2015).

9This value was set through observation to increase preci-
sion but without drastically decreasing recall.
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(Magnini and Cavaglià, 2000).10 This taxonomy-
based heuristic is intended to both increase cov-
erage and refine the quality of synsets annotated
by the distributional approach. First, if all the hy-
pernyms (at least two) of a given synset share the
same top domain, this synset is annotated (or re-
annotated) with that domain. Second, if the top
domain of an annotated synset is different from at
least two of its hypernyms, this domain tag is re-
moved.

Labels. Some Wikipedia page titles include gen-
eral information about the page between parenthe-
ses. This text between parentheses is known as a
label. For example, the Wikipedia page Orange
(telecommunications) has telecommunications as
its label. In BabelNet these labels are kept in the
main senses of many synsets, information which
is valuable for deciding their domain. For those
synsets sharing the same label, we create a dis-
tribution of domains, i.e. each label is associated
with its corresponding synsets and their domains.
Then, we tag (or retag) all the synsets contain-
ing the given label provided that the most frequent
domain for that label gets a number of instances
higher than 80% of the total of instances contain-
ing the same label.11 As an example, before apply-
ing this heuristic the label album contained 14192
synsets which were pre-tagged with a given do-
main. From those 14192 synsets, 14166 were pre-
tagged with the Music domain (99.8%). There-
fore, the remaining 26 synsets and all the rest con-
taining the album label were tagged or re-tagged
with the Music domain.

Propagation. In this last step we propagate the
domain annotations over the BabelNet semantic
network. First, given an unannotated input synset,
we gather a set with all its neighbours in the Ba-
belNet semantic network. Then we retrieve the
domain with the highest number of synsets associ-
ated among all annotated synsets in the set. Sim-
ilarly to the previous heuristic, if the number of
synsets of such domain amounts to 80% of the
whole set, we tag the input synset with that do-
main. Otherwise, we repeat the process with the

10In WordNet this property is satisfied most of the times.
However, in Wikipedia, especially given its large amount of
entities, this is not always the case. For instance, Microsoft is
a company (tagged with the Business domain) but it would
arguably better have Computing as its top domain.

11This threshold is set in order to improve the precision
of the system, as there are labels which might be ambiguous
within a domain (e.g., country names).

New Re-ann. Removed
Distributional 1.31M - -
Taxonomy 164K 32K 7K
Labels 94K 4K -
Propagation 1.11M - -
Total 2.68M - -

Table 2: Number of tagged synsets (new, re-
annotated and removed) in each of the domain an-
notation steps.

second-level neighbours and, if still not found,
with its third-level neighbours.

3 BabelDomains: Statistics and Release

We applied the methodology described in Sec-
tion 2 on BabelNet 3.0. This led to a total of
2.68M synsets tagged with a domain. Note that
this number greatly improves on the number given
in previous studies for WordNet. In our approach,
in addition to WordNet, we provide annotations
for other lexical resources such as Wikipedia or
Wiktionary. Table 2 shows some statistics of the
synsets tagged in each step of the whole domain
annotation process. The largest number of an-
notated synsets were obtained in the first distri-
butional step (1.31M) and the final propagation
(1.11M), while the taxonomy and labels heuris-
tics contributed to not only increasing the cover-
age, but also to refining potentially dubious anno-
tations.

BabelDomains is available for download at
lcl.uniroma1.it/babeldomains. In the
release we include a confidence score12 for each
domain label. Additionally, the domain labels
have been integrated into BabelNet13, both in the
API and in the online interface14.

4 Evaluation

We evaluated BabelDomains both intrinsically
(Section 4.1) and extrinsically on the hypernym
discovery task (Section 4.2).

12The confidence score for each synset’s domain label is
computed as the relative number of neighbours in the Babel-
Net semantic network sharing the same domain.

13In its current 3.7 release version we have included
two additional domains to the ones included in Table 1:
Farming and Textile and Clothing

14See http://babelnet.org/search?word=house&lang=EN
for an example of the domain annotations of all senses of
house in BabelNet.
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WordNet BabelNet
Precision Recall F-Measure Precision Recall F-Measure

BabelDomains 81.7 68.7 74.6 85.1 32.0 46.5
Distributional 84.0 59.8 69.9 78.1 16.0 26.6
Wikipedia-idf 45.9 29.7 36.1 8.8 6.5 7.5
WN-Taxonomy Prop. 71.3 70.7 71.0 - - -
BN-Taxonomy-Prop. 73.5 73.5 73.5 48.3 37.2 42.0
WN-Domains-3.2 93.6 64.4 76.3 - - -

Table 3: Precision, Recall and F-Measure percentages of different systems on the gold standard WordNet
and BabelNet domain-labeled datasets.

4.1 Intrinsic Evaluation

In this section we describe the evaluation of our
domain annotations on two different lexical re-
sources: BabelNet and WordNet. To this end,
we used the domain-labeled datasets released by
Camacho-Collados et al. (2016). The WordNet
dataset is composed of 1540 synsets tagged with
a domain. These domain labels were taken from
WordNet 3.0 and manually mapped to the domains
of the Wikipedia featured articles page. The Ba-
belNet dataset is composed of 200 synsets ran-
domly extracted from BabelNet 3.0 which were
manually annotated with domains.

As comparison systems we included a base-
line based on Wikipedia (Wikipedia-idf). This
baseline first constructs a tf-idf -weighted bag-of-
word vector representation of Wikipedia pages
and, similarly to our distributional approach, cal-
culates its similarity with the concatenation of all
Wikipedia pages associated with a domain in the
Wikipedia featured articles page.15 We addition-
ally compared with WN-Domains-3.2 (Magnini
and Cavaglià, 2000; Bentivogli et al., 2004),
which is the latest released version of WordNet
Domains16. However, this approach involves man-
ual curation, both in the selection of seeds and cor-
rection of errors. In order to enable a fair compar-
ison, we report the results of a system based on its
main automatic component. This baseline takes
annotated synsets as input and propagates them
through the WordNet taxonomy (WN-Taxonomy
Prop.). Likewise, we report the results of the same
baseline by propagating through the BabelNet tax-
onomy (BN-Taxonomy Prop.). These two systems
were evaluated by 10-fold cross validation on the

15For the annotation of WordNet we used the direct
Wikipedia-WordNet mapping from BabelNet.

16http://wndomains.fbk.eu/

corresponding datasets. Finally, we include the re-
sults of the distributional approach performed in
the first step of our methodology (Section 2.1).

Table 3 shows the results of our system and
four comparison systems. Our system achieves
the best overall F-Measure results, with precision
figures above 80% on both WordNet and Babel-
Net datasets. These results clearly improve the
results achieved by applying the first step of dis-
tributional similarity only, highlighting that the in-
clusion of the heuristics was beneficial. These pre-
cision figures are especially relevant considering
the large set of domains (32) used in our method-
ology. By analyzing the errors, we realized that
our system tends to provide domains close to the
gold standard. For instance, the synset referring
to entitlement17 was tagged with the Business
domain instead of the gold Law. Other do-
mains which produced imperfect choices due
to their close proximity were Mathematics-
Computing and Animals-Biology. As re-
gards the generally low recall on the BabelNet
dataset, we found that it was mainly due to the na-
ture of the dataset, including many isolated synsets
which are hardly used in practice.

4.2 Extrinsic Evaluation
One of the main applications of including domain
information in sense inventories is to be able to
cluster textual data by domain. Supervised sys-
tems may be particularly sensitive to this issue
(Daumé III, 2007), and therefore training data
should be clustered accordingly. In particular, two
recent studies found that clustering training data
was essential for distributional hypernym discov-
ery systems to perform accurately (Fu et al., 2014;
Espinosa-Anke et al., 2016). They discovered that

17Defined as right granted by law or contract (especially a
right to benefits).
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Art Bio Edu Geo Hea Med Mus Phy Tra War
BabelDomains 0.30 0.87 0.39 0.43 0.12 0.71 0.42 0.20 0.63 0.13
Distributional 0.18 0.41 0.30 0.26 0.10 0.46 0.43 0.08 0.56 0.11
Non-filtered 0.00 0.68 0.00 0.10 0.05 0.25 0.11 0.00 0.34 0.00

Table 4: MRR (Mean Reciprocal Rank) performance of TaxoEmbed in the hypernym discovery task by
filtering (BabelDomains and Distributional) or not filtering training data by domains.

hypernymy information is not encoded equally in
different regions of distributional vector spaces, as
it is stored differently depending on the domain.

The hypernym discovery task consists of, given
a term as input, finding its most appropriate hy-
pernym. In this evaluation we followed the ap-
proach of Espinosa-Anke et al. (2016, TaxoEm-
bed), who provides a framework to train a domain-
wise transformation matrix (Mikolov et al., 2013)
between the vector spaces of terms and hyper-
nyms. As in the original work, we used the sense-
level vector space of Iacobacci et al. (2015) and
training data from Wikidata.18 We used the do-
main annotations of BabelDomains for cluster-
ing the training data by domain, and compared it
with the domains obtained through the distribu-
tional step, as used in Espinosa-Anke et al. (2016).
We additionally included a baseline which did not
filter the training data by domain. The training
data19 was composed of 20K term-hypernym pairs
for the domain-filtered systems and 200K for the
baseline, while the test data was composed of 250
randomly-extracted terms with their correspond-
ing hypernyms in Wikidata.

Table 4 shows the results of TaxoEmbed in
the hypernym discovery task on the same ten do-
mains20 evaluated in Espinosa-Anke et al. (2016).
Our domain clusterization achieves the best over-
all results, outperforming the clusterization based
solely on distributional information in nine of the
ten domains. The results clearly show the need for
a pre-clusterization of the training data, confirm-
ing the findings of Espinosa-Anke et al. (2016) and
Fu et al. (2014). Training directly without pre-
clusterization leads to very poor results, despite
being trained on a larger sample. This baseline

18We used the code and data available at http://www.
taln.upf.edu/taxoembed

19Training data was extracted randomly from Wikidata, ex-
cluding the terms of the test data.

20Domains are represented by their three initial let-
ters. From left to right in the table: Art, Biology,
Education, Geography, Health, Media, Music,
Physics, Transport, and Warfare.

provides competitive results on Biology only,
arguably due to the distribution of Wikidata where
biology items are over-represented.

5 Conclusion

In this paper we presented BabelDomains, a re-
source that provides unified domain information in
lexical resources. Our method exploits at best the
knowledge available in these resources by com-
bining distributional and graph-based approaches.
We evaluated the accuracy of our approach on two
resources, BabelNet and WordNet. The results
showed that our unified resource provides reliable
annotations, improving over various competitive
baselines. In the future we plan to extend our set of
domains with more fine-grained information, pro-
viding a hierarchical structure following the line
of Bentivogli et al. (2004).

As an extrinsic evaluation we used BabelDo-
mains to cluster training data by domain prior to
applying a supervised hypernym discovery sys-
tem. This pre-clustering proved crucial for find-
ing accurate hypernyms in a distributional vector
space. We are planning to further use our resource
for multi-source domain adaptation on other NLP
supervised tasks. Additionally, since BabelNet
and most of its underlying resources are multi-
lingual, we plan to use our resource in languages
other than English.
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Abstract

We present a new parallel corpus, JHU
FLuency-Extended GUG corpus (JFLEG)
for developing and evaluating grammati-
cal error correction (GEC). Unlike other
corpora, it represents a broad range of lan-
guage proficiency levels and uses holistic
fluency edits to not only correct grammati-
cal errors but also make the original text
more native sounding. We describe the
types of corrections made and benchmark
four leading GEC systems on this corpus,
identifying specific areas in which they do
well and how they can improve. JFLEG

fulfills the need for a new gold standard
to properly assess the current state of GEC.

1 Introduction

Automatic grammatical error correction (GEC)
progress is limited by the corpora available for
developing and evaluating systems. Following
the release of the test set of the CoNLL–2014
Shared Task on GEC (Ng et al., 2014), systems
have been compared and new evaluation tech-
niques proposed on this single dataset. This cor-
pus has enabled substantial advancement in GEC

beyond the shared tasks, but we are concerned that
the field is over-developing on this dataset. This is
problematic for two reasons: 1) it represents one
specific population of language learners; and 2)
the corpus only contains minimal edits, which cor-
rect the grammaticality of a sentence but do not
necessarily make it fluent or native-sounding.

To illustrate the need for fluency edits, consider
the example in Table 1. The correction with only
minimal edits is grammatical but sounds awkward
(unnatural to native speakers). The fluency cor-
rection has more extensive changes beyond ad-
dressing grammaticality, and the resulting sen-

Original: they just creat impression such well that
people are drag to buy it .
Minimal edit: They just create an impression so
well that people are dragged to buy it .
Fluency edit: They just create such a good impres-
sion that people are compelled to buy it.

Table 1: A sentence corrected with just minimal edits com-
pared to fluency edits.

tence sounds more natural and its intended mean-
ing is more clear. It is not unrealistic to expect
these changes from automatic GEC: the current
best systems use machine translation (MT) and
are therefore capable of making broader sentential
rewrites but, until now, there has not been a gold
standard against which they could be evaluated.

Following the recommendations of Sakaguchi
et al. (2016), we release a new corpus for GEC, the
JHU FLuency-Extended GUG corpus (JFLEG),
which adds a layer of annotation to the GUG cor-
pus (Heilman et al., 2014). GUG represents a
cross-section of ungrammatical data, containing
sentences written by English language learners
with different L1s and proficiency levels. For each
of 1,511 GUG sentences, we have collected four
human-written corrections which contain holistic
fluency rewrites instead of just minimal edits. This
corpus represents the diversity of edits that GEC

needs to handle and sets a gold standard to which
the field should aim. We overview the current state
of GEC by evaluating the performance of four lead-
ing systems on this new dataset. We analyze the
edits made in JFLEG and summarize which types
of changes the systems successfully make, and
which they need to address. JFLEG will enable the
field to move beyond minimal error corrections.

2 GEC corpora
There are four publicly available corpora of non-
native English annotated with corrections, to our
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Mean chars Sents. Mean
Corpus # sents. per sent. changed LD
AESW 1.2M 133 39% 3
FCE 34k 74 62% 6
Lang-8 1M 56 35% 4
NUCLE 57k 115 38% 6
JFLEG 1,511 94 86% 13

Table 2: Parallel corpora available for GEC.

knowledge. The NUS Corpus of Learner English
(NUCLE) contains essays written by students at
the National University of Singapore, corrected by
two annotators using 27 error codes (Dahlmeier et
al., 2013). The CoNLL Shared Tasks used this
data (Ng et al., 2014; Ng et al., 2013), and the
1,312 sentence test set from the 2014 task has be-
come de rigueur for benchmarking GEC. This test
set has been augmented with ten additional anno-
tations from Bryant et al. (2015) and eight from
Sakaguchi et al. (2016). The Cambridge Learner
Corpus First Certificate in English (FCE) has es-
says coded by one rater using about 80 error types,
alongside the score and demographic information
(Yannakoudakis et al., 2011). The Lang-8 corpus
of learner English is the largest, with text from the
social platform lang-8.com automatically aligned
to user-provided corrections (Tajiri et al., 2012).
Unlimited annotations are allowed per sentence,
but 87% were corrected once and 12% twice. The
AESW 2016 Shared Task corpus contains text from
scientific journals corrected by a single editor. To
our knowledge, AESW is the only corpus that has
not been used to develop a GEC system.

We consider NUCLE1 and FCE to contain mini-
mal edits, since the edits were constrained by er-
ror codes, and the others to contain fluency ed-
its since there were no such restrictions. English
proficiency levels vary across corpora: FCE and
NUCLE texts were written by English language
learners with relatively high proficiency, but Lang-
8 is open to any internet user. AESW has technical
writing by the most highly proficient English writ-
ers. Roughly the same percent of sentences from
each corpus is corrected, except for FCE which has
significantly more. This may be due to the rigor of
the annotators and not the writing quality.

The following section introduces the JFLEG cor-
pus, which represents a diversity of potential cor-
rections with four corrections of each sentence.
Unlike NUCLE and FCE, JFLEG does not restrict
corrections to minimal error spans, nor are the er-

1Not including the additional fluency edits collected for
the CoNLL-2014 test set by Sakaguchi et al. (2016).

rors coded. Instead, it contains holistic sentence
rewrites, similar to Lang-8 and AESW, but con-
tains more reliable corrections than Lang-8 due to
perfect alignments and screened editors, and more
extensive corrections than AESW, which contains
fewer edits than the other corpora with a mean
Levenshtein distance (LD) of 3 characters. Table 2
provides descriptive statistics for the available cor-
pora. JFLEG is also the only corpus that provides
corrections alongside sentence-level grammatical-
ity scores of the uncorrected text.

3 The JFLEG corpus
Our goal in this work is to create a corpus of
fluency edits, following the recommendations of
(Sakaguchi et al., 2016), who identify the short-
falls of minimal edits: they artificially restrict the
types of changes that can be made to a sentence
and do not reflect the types of changes required
for native speakers to find sentences fluent, or nat-
ural sounding. We collected annotations on a pub-
lic corpus of ungrammatical text, the GUG (Gram-
matical/Ungrammatical) corpus (Heilman et al.,
2014). GUG contains 3.1k sentences written by
English language learners for the TOEFL R© exam,
covering a range of topics. The original GUG cor-
pus is annotated with grammaticality judgments
for each sentence, ranging from 1–4, where 4 is
perfect or native sounding, and 1 incomprehen-
sible. The sentences were coded by five crowd-
sourced workers and one expert. We refer to the
mean grammaticality judgment of each sentence
from the original corpus as the GUG score.

In our extension, JFLEG, the 1,511 sentences
which comprise the GUG development and test
sets were corrected four times each on Amazon
Mechanical Turk. Annotation instructions are in-
cluded in Table 3. 50 participants from the United
States passed a qualifying task of correcting five
sentences, which was reviewed by the authors
(two native and one proficient non-native speak-
ers of American English). Annotators also rated
how difficult it was for them to correct each sen-
tence on a 5-level Likert scale (5 being very easy
and 1 very difficult). On average, the sentences
were relatively facile to correct (mean difficulty of
3.5 ± 1.3), which moderately correlates with the
GUG score (Pearson’s r = 0.47), indicating that
less grammatical sentences were generally more
difficult to correct. To create a blind test set for
the community, we withhold half (747) of the sen-
tences from the analysis and evaluation herein.

230



Please correct the following sentence to make it sound
natural and fluent to a native speaker of (American) En-
glish. The sentence is written by a second language
learner of English. You should fix grammatical mistakes,
awkward phrases, spelling errors, etc. following stan-
dard written usage conventions, but your edits must be
conservative. Please keep the original sentence (words,
phrases, and structure) as much as possible. The ultimate
goal of this task is to make the given sentence sound nat-
ural to native speakers of English without making unnec-
essary changes. Please do not split the original sentence
into two or more. Edits are not required when the sen-
tence is already grammatical and sounds natural.

Table 3: JFLEG annotation instructions.

Error type in original
Awkward Ortho. Grammatical

E
di

t
ty

pe Fluency 38% 35% 32%
Minimal 82% 89% 85%

Table 4: Percent of sentences by error type that were changed
with fluency or minimal edits.

The mean LD between the original and cor-
rected sentences is more than twice that of existing
corpora (Table 2). LD negatively correlates with
the GUG score (r = −0.41) and the annotation dif-
ficulty score (−0.37), supporting the intuition that
less grammatical sentences require more extensive
changes, and it is harder to make corrections in-
volving more substantive edits. Because there is
no clear way to quantify agreement between an-
notators, we compare the annotations of each sen-
tence to each other. The mean LD between all
pairs of annotations is greater than the mean LD
between the original and corrected sentences (15
characters), however 36% of the sentences were
corrected identically by at least two participants.

Next, the English L1 authors examined 100 ran-
domly selected original and human-corrected sen-
tence pairs and labeled them with the type of er-
ror present in the sentence and the type of edit(s)
applied in the correction. The three error types
are sounds awkward or has an orthographic or
grammatical error.2 The majority of the original
sentences have at least one error (81%), and, for
68% of these sentences, the annotations are error
free. Few annotated sentences have orthographic
(4%) or grammatical (10%) errors, but awkward
errors are more frequent (23% of annotations were
labeled awkward)—which is not very surprising
given how garbled some original sentences are and
the dialectal variation of what sounds awkward.

The corrected sentences were also labeled with
2Due to their frequency, we separate orthographic errors

(spelling and capitalization) from other grammatical errors.

the type of changes made (minimal and/or fluency
edits). Minimal edits reflect a minor change to
a small span (1–2 tokens) addressing an immedi-
ate grammatical error, such as number agreement,
tense, or spelling. Fluency edits are more holistic
and include reordering or rewriting a clause, and
other changes that involve more than two contigu-
ous tokens. 69% of annotations contain at least
one minimal edit, 25% a fluency edit, and 17%
both fluency and minimal edits. The distribution
of edit types is fairly uniform across the error type
present in the original sentence (Table 4). Notably,
fewer than half of awkward sentences were cor-
rected with fluency edits, which may explain why
so many of the corrections were still awkward.

4 Evaluation

To assess the current state of GEC, we collected
automated corrections of JFLEG from four leading
GEC systems with no modifications. They take dif-
ferent approaches but all use some form of MT.
The best system from the CoNLL-2014 Shared
Task is a hybrid approach, combining a rule-based
system with MT and language-model reranking
(CAMB14; Felice et al., 2014). Other systems
have been released since then and report improve-
ments on the 2014 Shared Task. They include
a neural MT model (CAMB16; Yuan and Briscoe,
2016), a phrase-based MT (PBMT) with sparse
features (AMU; Junczys-Dowmunt and Grund-
kiewicz, 2016), and a hybrid system that incor-
porates a neural-net adaptation model into PBMT

(NUS; Chollampatt et al., 2016).
We evaluate system output against the four sets

of JFLEG corrections with GLEU, an automatic
fluency metric specifically designed for this task
(Napoles et al., 2015) and the Max-Match met-
ric (M2) (Dahlmeier and Ng, 2012). GLEU is
based on the MT metric BLEU, and represents the
n-gram overlap of the output with the human-
corrected sentences, penalizing n-grams that were
been changed in the human corrections but left un-
changed by a system. It was developed to score
fluency in addition to minimal edits since it does
not require an alignment between the original and
corrected sentences. M2 was designed to score
minimal edits and was used in the CoNLL 2013
and 2014 shared tasks on GEC (Ng et al., 2013;
Ng et al., 2014). Its score is the F0.5 measure of
word and phrase-level changes calculated over a
lattice of changes made between the aligned origi-
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Sentences
System TrueSkill GLEU M2 changed
Original -1.64 38.2 0.0 –
CAMB16 0.21 47.2 50.8 74%
NUS -0.20∗ 46.3 52.7 69%
AMU -0.46∗ 41.7 43.2 56%
CAMB14 -0.51∗ 42.8 46.6 58%
Human 2.60 55.3 63.2 86%

Table 5: Scores of system outputs. ∗ indicates no significant
difference from each other.

nal and corrected sentences. Since both GLEU and
M2 have only been evaluated on the CoNLL-2014
test set, we additionally collected human rankings
of the outputs to determine whether human judg-
ments of relative grammaticality agree with the
metric scores when the reference sentences have
fluency edits.

The two native English-speaking authors ranked
six versions of each of 150 JFLEG sentences: the
four system outputs, one randomly selected hu-
man correction, and the original sentence. The
absolute human ranking of systems was inferred
using TrueSkill, which computes a relative score
from pairwise comparisons, and we cluster sys-
tems with overlapping ranges into equivalence
classes by bootstrap resampling (Sakaguchi et al.,
2014; Herbrich et al., 2006). The two best ranked
systems judged by humans correspond to the two
best GLEU systems, but GLEU switches the order
of the bottom two. The M2 ranking does not per-
form as well, reversing the order of the top two
systems and the bottom two (Table 5).3 The upper
bound is GLEU = 55.3 and M2 = 63.2, the mean
metric scores of each human correction compared
to the other three. CAMB16 and NUS are halfway to
the gold-standard performance measured by GLEU

and, according to M2, they achieve approximately
80% of the human performance. The neural meth-
ods (CAMB16 and NUS) are substantially better
than the other two according to both metrics. This
ranking is in contrast to the ranking of systems
on the CoNLL-14 shared task test against mini-
mally edited references. On these sentences, AMU,
which was tuned to M2, achieves the highest M2

score with 49.5 and CAMB16, which was the best
on the fluency corpus, ranks third with 39.9.

We find that the extent of changes made in the
system output is negatively correlated to the qual-

3No conclusive recommendation about the best-suited
metric for evaluating fluency corrections can be drawn from
these results. With only four systems, there is no significant
difference between the metric rankings, and even the human
rank has no significant difference between three systems.
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Figure 1: GLEU score of system output by LD from input.
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Figure 2: Types of errors present in the original, annotated,
and system output sentences.

Error type in original
Awkward Ortho. Grammatical

AMU
F 2% 2% 2%
M 60% 60% 64%

CAMB14
F 2% 0% 2%
M 64% 69% 65%

CAMB16
F 8% 7% 6%
M 82% 85% 79%

NUS
F 4% 4% 3%
M 68% 81% 79%

Table 6: Percent of sentences by error type changed in sys-
tem output with fluency (F) and minimal (M) edits.

ity as measured by GLEU (Figure 1). The neu-
ral systems have the highest scores for nearly all
edit distances, and generate the most sentences
with higher LDs. CAMB14 has the most consis-
tent GLEU scores. The AMU scores of sentences
with LD > 6 are erratic due to the small number
of sentences it outputs with that extent of change.

5 Qualitative analysis

We examine the system outputs of the 100 sen-
tences analyzed in Section 3, and label them by
the type of errors they contain (Figure 2) and edit
types made (Table 6). The system rankings in Ta-
ble 5 correspond to the rank of systems by the
percent of output sentences with errors and the
percent of error-ful sentences changed. Humans
make significantly more fluency and minimal edits
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Original First , advertissment make me to buy some thing unplanly .
Human First , an advertisement made me buy something unplanned .
AMU First , advertissment makes me to buy some thing unplanly .
CAMB14 First , advertisement makes me to buy some things unplanly .
CAMB16 First , please let me buy something bad .
NUS First , advertissment make me to buy some thing unplanly .

Original For example , in 2 0 0 6 world cup form Germany , as many conch wanna term work .
Human For example , in the 2006 World Cup in Germany, many coaches wanted teamwork .
AMU For example , in the 2 0 0 6 world cup from Germany , as many conch wanna term work .
CAMB14 For example , in 2006 the world cup from Germany , as many conch wanna term work .
CAMB16 For example , in 2006 the world cup from Germany , as many conch , ’ work .
NUS For example , in 2 0 0 6 World Cup from Germany , as many conch wanna term work .

Table 7: Examples of how human and systems corrected GUG sentences.

than any of the systems. The models with neural
components, CAMB16 followed by NUS, make the
most changes and produce fewer sentences with
errors. Systems often change only one or two er-
rors in a sentence but fail to address others. Min-
imal edits are the primary type of edits made by
all systems (AMU and CAMB14 made one fluency
correction each, NUS two, and CAMB16 five) while
humans use fluency edits to correct nearly 30% of
the sentences.

Spelling mistakes are often ignored: AMU cor-
rects very few spelling errors, and even CAMB16,
which makes the most corrections, still ignores
misspellings in 30% of sentences. Robust spelling
correction would make a noticeable difference to
output quality. Most systems produce corrections
that are meaning preserving, however, CAMB16

changed the meaning of 15 sentences. This is a
downside of neural models that should be consid-
ered, even though neural MT generates the best
output by all other measures.

The examples in Table 7 illustrate some of these
successes and shortcomings. The first sentence
can be corrected with minimal edits, and both
AMU and CAMB14 correct the number agreement
but leave the incorrect unplanly and the infiniti-
val to. In addition, AMU does not correct the
spelling of advertissement or some thing. CAMB16

changes the meaning of the sentence altogether,
even though the output is fluent, and NUS makes
no changes. The next set of sentences contains
many errors and requires inference and fluency
rewrites to correct. The human annotator deduces
that the last clause is about coaches, not mollusks,
and rewrites it grammatically given the context of
the rest of the sentence. Systems handle the sec-
ond clause moderately well but are unable to cor-
rect the final clause: only CAMB16 attempts to cor-

rect it, but the result is nonsensical.

6 Conclusions

This paper presents JFLEG, a new corpus for de-
veloping and evaluating GEC systems with respect
to fluency as well as grammaticality.4 Our hope
is that this corpus will serve as a starting point for
advancing GEC beyond minimal error corrections.
We described qualitative and quantitative analysis
of JFLEG, and benchmarked four leading systems
on this data. The relative performance of these
systems varies considerably when evaluated on a
fluency corpus compared to a minimal-edit corpus,
underlining the need for a new dataset for evalu-
ating GEC. Overall, current systems can success-
fully correct closed-class targets such as number
agreement and prepositions errors (with incom-
plete coverage), but ignore many spelling mistakes
and long-range context-dependent errors. Neural
methods are better than other systems at making
fluency edits, but this may be at the expense of
maintaining the meaning of the input. As there is
still a long way to go in approaching the perfor-
mance of a human proofreader, these results and
benchmark analyses help identify specific issues
that GEC systems can improve in future research.
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Abstract

We present Arab-Acquis, a large publicly
available dataset for evaluating machine
translation between 22 European lan-
guages and Arabic. Arab-Acquis consists
of over 12,000 sentences from the JRC-
Acquis (Acquis Communautaire) corpus
translated twice by professional transla-
tors, once from English and once from
French, and totaling over 600,000 words.
The corpus follows previous data splits in
the literature for tuning, development, and
testing. We describe the corpus and how
it was created. We also present the first
benchmarking results on translating to and
from Arabic for 22 European languages.

1 Introduction

Statistical Machine Translation (SMT, henceforth
MT) is a highly data driven field that relies on
parallel language datasets for training, tuning and
evaluation. Prime examples of such modern-
day digital Rosetta Stones include the United Na-
tions corpus (six languages) and the European Par-
liamentary Proceedings corpus (20+ languages).1

MT systems use these resources for model devel-
opment and for evaluation. Large training data is
often not available and researchers rely on other
methods, such as pivoting to build MT systems.
And while this addresses the question of training,
there is still a need to tune and evaluate. In the case
of Arabic, most of MT research and MT evaluation
resources are focused on translation from Arabic
into English, with few additional resources pairing
Arabic with a half dozen languages. This paper

1The European Parliament has 24 official languages (Eu-
ropean Parliament, 2016); however the corpus we used only
contained 22, missing only Irish and Croatian (Steinberger et
al., 2006; Koehn et al., 2009).

showcases the effort to create a dataset, which we
dub Arab-Acquis, to support the development and
evaluation of machine translation systems from
Arabic to the languages of the European Union
and vice versa. Our approach is simply to exploit
the existence of the JRC-Acquis corpus (Stein-
berger et al., 2006; Koehn et al., 2009), which has
22 languages in parallel, and translate a portion of
it to Standard Arabic. We include two translations
in Arabic for each sentence in the set to support ro-
bust multi-reference evaluation metrics. This pro-
vides us with the largest (and first of its kind) set
of multilingual translation for Standard Arabic to
date. It allows us to evaluate the quality of trans-
lating into Arabic from a set of 22 languages, most
of which have no large high quality datasets paired
with Arabic.

2 Related Work

In the context of MT research in general, multi-
lingual resources (or parallel corpora) are central.
Some of these resources exist naturally such as
the United Nations corpus (Arabic, Chinese, En-
glish, French, Russian and Spanish) (Rafalovitch
et al., 2009), the Canadian Hansards (French and
English) (Simard et al., 1993), the European Par-
liament proceedings, EUROPARL, (21 languages
in its latest release) (Koehn, 2005), and the JRC-
Acquis (22 languages) (Steinberger et al., 2006;
Koehn et al., 2009). Translations may also be
commissioned to support MT research, as in the
creation of an Arabic dialect to English translation
corpus using crowdsourcing (Zbib et al., 2012).
Such resources are necessary for the development
of MT systems, and for the evaluation of MT sys-
tems in general. While training MT systems typi-
cally requires large collections in the order of mil-
lions of words, the automatic evaluation of MT re-
quires less data; but evaluation data is expected to
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have more than one human reference since there
are many ways to translate from one language to
another (Papineni et al., 2002). The number of lan-
guage pairs that are fortunate to have large parallel
data is limited. Researchers have explored ways to
exploit existing resources by pivoting or bridging
on a third language (Utiyama and Isahara, 2007;
Habash and Hu, 2009; El Kholy et al., 2013).
These techniques have shown promise but can ob-
viously only be pursued for languages with par-
allel evaluation datasets, which are not common.
In some cases, researchers translated commonly
used test sets to other languages to enrich the par-
allelism of the data, e.g., (Cettolo et al., 2011),
while working on Arabic-Italian MT, translated a
NIST MT eval dataset (Arabic to four English ref-
erences) to French and Italian. For Arabic MT, the
past 10 years have witnessed a lot of interest in
translating from Arabic to English mostly due to
large DARPA programs such as GALE and BOLT
(Olive et al., 2011). There have been some limited
efforts in comparison on translating into Arabic
from English (Hamon and Choukri, 2011; Al-Haj
and Lavie, 2012; El Kholy and Habash, 2012), but
also between Arabic and other languages (Boud-
abous et al., 2013; Habash and Hu, 2009; Shilon et
al., 2012; Cettolo et al., 2011). The JRC-Acquis
collection, of which we translate a portion, is pub-
licly available for research purposes and already
exists in 22 languages (and others ongoing). As
such, the Arab-Acquis dataset will open a path-
way for researchers to work on MT from a large
number of languages into Arabic and vice versa,
covering pairs that have not been researched be-
fore. The dataset enables us to compare translation
quality from different languages into Arabic with-
out data variation. In this paper, we also present
some initial benchmarking results using sentence
pivoting techniques between all JRC-Acquis lan-
guages and Arabic.

3 Approach and Development of
Arab-Acquis

We discuss next the design choices and the process
we followed to create Arab-Acquis.

3.1 Desiderata

As part of the process of creating the Arab-
Acquis translation dataset, we considered the fol-
lowing desiderata:

• The dataset should have a large number of

translations to maximize the parallelism.

• The original text should not have any restric-
tive copyrights.

• It is more desirable to extend datasets and
data splits that are already used in the field

• The dataset must be large enough to accom-
modate decent sized sets for tuning, develop-
ment, and one or two testing versions.

• Each sentence is translated at least twice, by
different translators from different languages.

• It is preferable to use professional translators
with quality checks than to use crowdsourc-
ing with lower quality translations.

3.2 Why JRC-Acquis?

Keeping these desiderata in mind, we decided to
use the JRC-Acquis dataset (Steinberger et al.,
2006; Koehn et al., 2009) as the base to select
translations from. JRC-Acquis is the JRC (Joint
Research Centre) Collection of the Acquis Com-
munautaire, which is the body of common rights
and obligations binding all the Member States to-
gether within the European Union (EU). By def-
inition, translations of this document collection
are therefore available in all official EU languages
(Steinberger et al., 2006). The corpus version we
use contains texts in 22 official EU languages (see
Table 2). The JRC-Acquis corpus text is mostly
legal in nature, but since the law and agreements
cover most domains of life, the corpus contains
vocabulary from a wide range of subjects, e.g.,
human and veterinary medicine, the environment,
agriculture, commerce, transport, energy, and sci-
ence (Koehn et al., 2009).

The JRC-Acquis is also a publicly available
dataset that has been heavily used as part of in-
ternational translation research efforts and shared
tasks. It has a lot of momentum that comes from
people having worked with. We follow the data
split guidelines used by Koehn et al. (2009) and
only translate portions that are intended for tun-
ing, development and testing. These portions sum
to about 12,000 sentences in total. All mentions of
JRC-Acquis in the rest of this document will refer
to the portion selected for translation into Arab-
Acquis and not the whole JRC-Acquis corpus.

3.3 Translating the JRC-Acquis

For each sentence in JRC-Acquis, we created two
Arabic references starting with English in one and
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French in the other. The choice of these two lan-
guages is solely reflective of their prominence in
the Arab World. The two languages also have dif-
ferent structures and features that seed differences
in wording, which is desirable for such a dataset.

We commissioned three individual companies
(from Egypt, Lebanon and Jordan each) to trans-
late the JRC-Acquis corpus into Arabic from both
English and French. On average, the transla-
tion from English cost USD $0.056 per word (for
327,466 words), and the translation from French
cost USD $0.073 per word (for 340,739 words).
In total the translation cost just over USD $43,200.
The files were distributed so that none of the com-
panies would get the same file in both English and
French. This allowed for two different translations
for each file. The companies took 44 to 90 days to
translate the files (65 working days on average).

We instructed the translation companies to
maintain the original line formatting. We also
stressed that the translation should be in the most
natural and fluent Arabic to the translators. We
did regular checks on the translations we received
from the translation companies, regarding both
translation and formatting.

JRC-Acquis Arab-Acquis
English French ArabicEn ArabicFr

Tune 108,405 112,984 107,271 113,942
Dev 109,611 114,327 114,903 114,795
Test 109,450 113,428 118,491 117,942
Total 327,466 340,739 340,665 346,679

Table 1: Arab-Acquis data set sizes, and the sizes
of the corresponding sentences (4,108 sentences
for Dev, 4,107 for rest) in JRC-Acquis.

3.4 Arab-Acquis Dataset
In Table 1, we present the final dataset sizes for
Arab-Acquis and the respective dataset sizes from
the JRC-Acquis English and French portions used
to translate it. In total, we created 687,344 trans-
lated words.

4 Translation Analysis

When analyzing the differences in the translations
from the English and French sources, we noticed
the most variations fall into two categories:

Source Language Bias Since different lan-
guages have different styles of writing, these dif-
ferences are reflected in translations from dif-
ferent language sources (Volansky et al., 2015).

An example of such differences includes direc-
tive numbers. For example, directives from the
European Economic Community include the ab-
breviation EEC in English, while in French it
becomes CEE for Communauté Économique Eu-
ropéenne: compare directives 75/34/EEC (En-
glish) and 75/34/CEE (French).

Valid Alternatives Arabic is a lexically and
morphologically rich language; and as such state-
ments can be expressed in different valid styles
and sentence structures, and using different alter-
native wordings that still convey the same mean-
ing. An example of such alternatives is the use of
yly2 ú
ÎK
 and yÂty ú


�G

AK
, which are both valid trans-

lations for the word ‘following.’
We consider these differences features that

make the corpus more suitable to evaluate MT
systems by providing more options to express the
same concept.

5 Machine Translation Results

In this section we present the first results ever re-
ported on benchmarking MT between Arabic and
22 European languages in both directions using
the same datasets and conditions.

5.1 JRC-Acquis MT Systems

We built 21 MT systems for translating from En-
glish toX and 21 MT systems for translating from
X to English, for X being all of the JRC-Acquis
languages, other than English. We built these MT
systems using the full JRC-Acquis corpus follow-
ing the same data splits for training, tuning, and
development used by Koehn et al. (2009), who
reported their work on developing 462 machine
translation systems based on the 22 languages of
the JRC-Acquis corpus. Their paper included
both direct and pivoting-based systems on multi-
ple languages. We replicated the MT systems in
(Koehn and Haddow, 2009), in an effort to pivot
from/to Arabic through English. We present the
MT results for the European languages with En-
glish in Table 2. Our results almost match those
at (Koehn et al., 2009). Any minor differences in
the scores are mainly attributed to the various up-
grades in the toolkits used and tuning variations.

We used the Moses toolkit (Koehn et al., 2007)
with default parameters to develop the systems,

2Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).
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along with the extra settings used at the origi-
nal paper; including limiting the training sentence
length to 80 words, and the tuning sentences to 8-
60 words long only. We used a 5-gram language
model. For systems evaluation, we also use BLEU
score (Papineni et al., 2002) through the scripts at
Moses. To match the settings used at Koehn’s pa-
per, we use the case insensitive evaluation feature
of BLEU. We used these settings across all exper-
iments, unless explicitly specified.

5.2 Arabic-English Systems
We used the Arabic-English parallel component of
the UN Corpus to train the Ar-En systems. The
UN Corpus has a close parliamentary-styled dis-
course to JRC-Acquis’s, which should reduce the
divergence with the rest of JRC-Acquis MT sys-
tems. We used about 9 million lines for the Ara-
bic and English language models (circa 286 mil-
lion words), 2.4 million parallel lines for train-
ing (circa 62 million words) and 2000 lines for
tuning. We tokenized the Arabic content using
the MADAMIRA toolkit (Pasha et al., 2014) with
the Alif/Ya normalized ATB scheme (Habash,
2010), and rule-based detokenization (El Kholy
and Habash, 2010) for the resulting translations.
The English content was tokenized using the avail-
able English tokenizer at Moses. For the transla-
tions to Arabic, we used the English and French
Arabic translations of the Arab-Acquis Dev files
as two references for BLEU evaluation. For sys-
tems translating from Arabic to English, we used
only the Arab-Acquis Arabic translation from the
English sources for our tuning.

We compared the performance on an in-domain
data set from the UN Corpus with the performance
on the Arabic-English dataset from Arab-Acquis.
The in-domain results were 43.09 and 39.29 for
Ar-En and En-Ar respectively, whereas the out-
of-domain scored 28.76 and 27.83. As expected,
the performance on in-domain data is much better
than on out-of-domain. The out-of-domain results
reflect the systems used in the pivoting.

5.3 Pivoting through English
We used the English part of the shared Arab-
Acquis content for pivoting from Arabic into the
remainder of the JRC-Acquis languages. This ap-
proach can be used to test and validate further piv-
oting research involving Arabic, with diverse tar-
get/input languages. Instead of building MT sys-
tems for a given language with Arabic, pivoting

can be used as a viable option in many scenar-
ios. We used simple chaining of the source-pivot
system and the pivot-target system when translat-
ing from/to Arabic and the various JRC-Acquis
languages, where the pivot language was always
English. We leave exploring more sophisticated
pivoting techniques (Utiyama and Isahara, 2007;
Habash and Hu, 2009; El Kholy et al., 2013)
and newer neural machine translation techniques
(Johnson et al., 2016) to future work. The results
are presented in Table 2.

5.4 Discussion
Table 2 specifies for each language X four BLEU
scores for translation from and to English (En→X
and X→En), and from and to Arabic via English
pivoting (Ar→En→X and X→En→Ar).

Direct English MT Our En→X and X→En re-
sults are generally comparable to those reported
by Koehn et al. (2009). The highest BLEU score
in the En→X direction is for French, and the
worst BLEU score is for Hungarian. The highest
BLEU score in the X→En direction is for Mal-
tese, and the worst BLEU score is for Hungar-
ian again. This high BLEU score for Maltese is
rather surprising, but consistent with (Koehn et
al., 2009). Although Maltese is a Semitic lan-
guage, it has a strong Italian (Romance) compo-
nent; and English is an official language of the
nation of Malta. Also, while Maltese is morpho-
logically rich, its writing system has heavy use of
hyphens (e.g., il-kondizzjonijiet ‘the-conditions’)
which allows for easy morphological tokenization
with simple white space and punctuation tokeniza-
tion technique used in Moses.

Pivoting through English The BLEU scores
for Ar→X and X→Ar via English pivot are to
our knowledge the first large scale benchmark of
a publicly available data set comparing machine
translation from/to Arabic across a large number
of languages under identical settings. Not surpris-
ingly, the correlation between the performance on
the direct-with-English and pivot-via-English sys-
tems is very high: X→En and X→En→Ar corre-
late at r = 0.97, and En→X and Ar→En→X cor-
relate at r = 0.93. As such, the highest BLEU
score in the Ar→En→X direction is for French
again, but the worst BLEU score is for Estonian (a
relative of Hungarian from the Finno-Ugric fam-
ily). The highest BLEU score in the X→En→Ar
direction is for Maltese again, and the worst BLEU
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Direct English Pivoting through English
Language Family Language X En→X X→En Ar→En→X X→En→Ar

Finno-Ugric Hungarian hu 36.1 48.0 19.1 18.9
Finnish fi 38.7 49.5 18.8 19.8

Estonian et 38.7 52.2 17.4 20.5
Baltic Lithuanian lt 39.2 51.9 19.6 20.4

Latvian lv 42.0 54.3 20.7 21.2
Germanic German de 46.5 53.5 22.7 21.3

Danish da 50.5 57.7 26.2 22.5
Dutch nl 52.3 56.8 27.0 22.1

Swedish sv 52.2 58.7 24.8 22.7
Greek Greek el 49.5 59.5 25.4 23.7
Slavic Slovak sk 45.3 61.0 21.9 24.1

Czech cs 53.1 58.5 22.4 23.2
Polish pl 48.2 61.1 24.3 24.2

Bulgarian bg 49.2 61.6 23.7 24.0
Slovene sl 51.0 60.9 24.8 24.2

Romance Romanian ro 49.2 60.8 25.4 24.0
Portuguese pt 55.1 60.6 27.2 23.5

Italian it 56.3 61.1 27.8 23.9
Spanish es 56.2 60.0 29.8 23.8
French fr 62.7 63.7 30.4 25.4

Semitic Maltese mt 47.2 72.3 20.5 26.2

Table 2: Pivoting through English and direct English results

score is for Hungarian again. The correlation
values between En→X and X→En; and between
Ar→En→X and X→En→Ar are not as high: r =
0.65 and r = 0.61, respectively.

Interestingly, the BLEU scores for En→X are
almost double those for Ar→En→X. This is ex-
pected but it highlights the need for better MT
models for Arabic to Europe’s languages.

Correlations Birch et al. (2008) demonstrated
that it is possible to predict MT performance using
a number of factors: the amount of reordering, the
morphological complexity of the target language
and the historical relatedness of the two languages.
These factors contributed 75% to the variability of
the performance of the system.

Our results are consistent with their claims, not
only for the direct models which are similar to
the models they used but also for those pivoting
through English to Arabic. In particular we find
the correlation between the word-per-sentence3

in X to correlate with En→X and Ar→En→X
BLEU by r = 0.82 and r = 0.91, respectively.

However the word-per-sentence does not corre-
late well when X is the source language: X→En
and X→En→Ar by r = 0.48 and r = 0.56,

3The number of words per sentence correlates highly with
other measures of morphological complexity like type-to-
token ratio (r = −0.96). The intuition here is that a language
that uses less words to capture the same sentence meaning
is more complex morphologically, e.g., while English aver-
age sentence length is 27 in our corpus, Arabic’s is 22, and
Finnish is 18.

respectively. Instead we observe that generally
the BLEU scores within each family tend to clus-
ter within a small range. Indeed, if we rank the
language families in the order shown in Table 2
form 1 to 7, the correlation between this rank
and the X→En BLEU and X→En→Ar BLEU are
r = 0.90 and r = 0.93, respectively; while the
correlation in the reverse direction does not hold
strongly: En→X BLEU and Ar→En→X BLEU
correlate with language family rank at r = 0.75
and r = 0.64, respectively.

6 Conclusions and Future Work

We have presented Arab-Acquis, a large profes-
sionally translated and publicly available dataset
for MT evaluation between 22 European lan-
guages and Arabic. We also presented first bench-
marking results on translating to and from Arabic
for 22 European languages using this dataset.

In the future, we plan to maximize the use of
this dataset by using it in improving MT between
all of the 22 languages and Arabic in both direc-
tions. We also plan to host a shared task on MT
evaluation using parts of Arab-Acquis.
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2École Normale Supérieure de Cachan, France

3University of Trento, Italy
{l.abzianidze,j.bjerva,k.evang}@rug.nl

{hessel.haagsma,r.i.k.van.noord,johan.bos}@rug.nl
pierre.ludmann@ens-cachan.fr

ducduy.nguyen@studenti.unitn.it

Abstract
The Parallel Meaning Bank is a cor-
pus of translations annotated with shared,
formal meaning representations compris-
ing over 11 million words divided over
four languages (English, German, Ital-
ian, and Dutch). Our approach is based
on cross-lingual projection: automatically
produced (and manually corrected) se-
mantic annotations for English sentences
are mapped onto their word-aligned trans-
lations, assuming that the translations are
meaning-preserving. The semantic anno-
tation consists of five main steps: (i) seg-
mentation of the text in sentences and lexi-
cal items; (ii) syntactic parsing with Com-
binatory Categorial Grammar; (iii) uni-
versal semantic tagging; (iv) symboliza-
tion; and (v) compositional semantic anal-
ysis based on Discourse Representation
Theory. These steps are performed us-
ing statistical models trained in a semi-
supervised manner. The employed annota-
tion models are all language-neutral. Our
first results are promising.

1 Introduction

There is no reason to believe that the ingredi-
ents of a meaning representation for one language
should be different from that for another language.
Hence, a meaning-preserving translation from a
sentence to another language should, arguably,
have equivalent meaning representations. Hence,
given a parallel corpus with at least one language
for which one can automatically generate mean-
ing representations with sufficient accuracy, indi-
rectly one also produces meaning representations

for aligned sentences in other languages. The aim
of this paper is to present a method that imple-
ments this idea in practice, by building a paral-
lel corpus with shared formal meaning representa-
tions, that is, the Parallel Meaning Bank (PMB).

Recently, several semantic resources—corpora
of texts annotated with meanings—have been de-
veloped to stimulate and evaluate semantic pars-
ing. Usually, such resources are manually or semi-
automatically created, and this process is expen-
sive since it requires training of and annotation
by human annotators. The AMR banks of Ab-
stract Meaning Representations for English (Ba-
narescu et al., 2013) or Chinese and Czech (Xue
et al., 2014) sentences, for instance, are the result
of manual annotation efforts. Another example is
the development of the Groningen Meaning Bank
(Bos et al., 2017), a corpus of English texts an-
notated with formal, compositional meaning rep-
resentations, which took advantage of existing se-
mantic parsing tools, combining them with human
corrections.

In this paper we propose a method for pro-
ducing meaning banks for several languages (En-
glish, Dutch, German and Italian), by taking ad-
vantage of translations. On the conceptual level
we follow the approach of the Groningen Mean-
ing Bank project (Basile et al., 2012), and use
some of the tools developed in it. The main rea-
son for this choice is that we are not only inter-
ested in the final meaning of a sentence, but also
in how it is derived—the compositional semantics.
These derivations, based on Combinatory Catego-
rial Grammar (CCG, Steedman, 2001), give us the
means to project semantic information from one
sentence to its translated counterpart.

The goal of the PMB is threefold. First, it will

242



Figure 1: Annotation pipeline of the PMB. Manual corrections can be added at each annotation layer.

serve as a test bed for cross-lingual compositional
semantics, enabling systematic studies of the chal-
lenges arising from loose translations and differ-
ent semantic granularities. The second goal is to
produce data for building semantic parsers for lan-
guages other than English. This, in turn, will help
with the third, long-term goal, which concerns the
process of translation itself. Human translators
purposely change meaning in translation to yield
better translations (Langeveld, 1986). The third
goal is thus to develop methods to automatically
detect such shifts in meaning.

2 Languages and Corpora

The foundation of the PMB is a large set of raw,
parallel texts. Ideally, each text has a parallel ver-
sion in every language of the meaning bank, but in
practice, having a version for the pivot language
(here: English) and one other language is suffi-
cient for our purposes. Another criterion for selec-
tion is that freely distributable texts are preferable
over texts which are under copyright and require
(paid) licensing.

Besides English we chose two other Germanic
languages, Dutch and German, because they are
similar to English. We also include one Romance
language, Italian, in order to test whether our
method works for languages which are typologi-
cally more different from English.

The texts in the PMB are sourced from twelve
different corpora from a wide range of gen-
res, including, among others: Tatoeba1, News-
Commentary (via OPUS, Tiedemann, 2012), Rec-
ognizing Textual Entailment (Giampiccolo et al.,
2007), Sherlock Holmes stories2, and the Bible
(Christodouloupoulos and Steedman, 2015).

These corpora are divided over 100 parts in a
balanced way. Initially, two of these parts, 00 and

1https://tatoeba.org
2http://gutenberg.org, http://etc.usf.

edu/lit2go, http://gutenberg.spiegel.de

10, are selected to be the gold standard (and thus
will be manually annotated). This ensures that the
gold standard represents the full range of genres.

The resulting corpus contains over 11.3 million
tokens, divided into 285,154 documents. All of
them have an English version. 72% have a German
version, 14% a Dutch one and 42% an Italian one.
9% have German and Dutch, 6% have Dutch and
Italian and 18% have Italian and German. 5% exist
in all four languages.

3 Automatic Annotation Pipeline

Our goal is first to richly annotate the English cor-
pus, with annotations ranging from segmentation
to deep semantics, and then project these annota-
tions to the other languages via alignment. The an-
notation consists of several layers, each of which
will be presented in detail below. Figure 1 gives
an overview of the pipeline while Figure 2 shows
the annotation example.

3.1 Segmentation

Text segmentation involves word and sentence
boundary detection. Multiword expressions that
represent constituents are treated as single tokens.
Closed compound words that have a semantically
transparent structure are decomposed. For exam-
ple, impossible is decomposed into im and possi-
ble while Las Vegas and 2 pm are analysed as a
single token. In this way we aim to assign ‘atomic’
meanings to tokens and avoid redundant lexical se-
mantics. Segmentation follows an IOB-annotation
scheme on the level of characters, with four labels:
beginning of sentence, beginning of word, inside a
word, and outside a word. We use the same sta-
tistical tokenizer, Elephant (Evang et al., 2013),
for all four languages, but with language-specific
models.
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Figure 2: Document 00/3178: Projection of the annotation from English to German. The source sentence
is annotated, in this order, with semtags, symbols, CCG categories and lexical semantics. The DRS for
the whole sentence is obtained compositionally from the lexical DRSs.

3.2 Syntactic Analysis
We use CCG-based derivations for syntactic anal-
ysis. The transparent syntax-semantic interface
of CCG makes the derivations suitable for wide-
coverage compositional semantics (Bos et al.,
2004). CCG is also a lexicalised theory of
grammar, which makes cross-lingual projection
of grammatical information from source to target
sentence more convenient (see Section 4).

The version of CCG that we employ differs
from standard CCG: in order to facilitate the cross-
lingual projection process and retain composition-
ality, type-changing rules of a CCG parser are
explicated by inserting (unprojected) empty ele-
ments which have their own semantics (see the to-
ken ∅ in Figure 2).

For parsing, we use EasyCCG (Lewis and
Steedman, 2014), which was chosen because it
is accurate, does not require part-of-speech anno-
tation (which would require different annotation
schemes for each language) and is easily adaptable
to our modified grammar formalism.

3.3 Universal Semantic Tagging
To facilitate the organization of a wide-coverage
semantic lexicon for cross-lingual semantic analy-
ses, we develop a universal semantic tagset. The
semantic tags (semtags, for short) are language-
neutral, generalise over part-of-speech and named
entity classes, and also add more specific infor-
mation when needed from a semantic perspective.

Given a CCG category of a token, we specify a
general schema for its lexical semantics by tagging
the token with a semtag.

Currently the tagset comprises 80 different fine-
grained semtags divided into 13 coarse-grained
classes (Bjerva et al., 2016). We do not list all
possible semtags here, but give some examples in-
stead. For instance, the semtag NOT marks nega-
tion triggers, e.g., not, no, without and affixes, e.g.,
im- in impossible; the semtag POS is assigned to
possibility modals, e.g., might, perhaps and can.
ROL identifies roles and professions, e.g., boxer
and semanticist, while CON is for concepts like ta-
ble and wheel. Distinguishing roles from concepts
is crucial to get accurate semantic behaviour. 3

We use the semantic tagger based on deep resid-
ual networks. It works directly on the words as in-
put, and therefore requires no additional language-
specific features. The first results on semantic tag-
ging, with an accuracy of 83.6%, are reported by
Bjerva et al. (2016).

3.4 Symbolization

The meaning representations that we use contain
logical symbols and non-logical symbols. The lat-
ter are based on the words mentioned in the input
text. We refer to this process as symbolization. It
combines lemmatization with normalization, and

3Roles are mostly consistent with each other while con-
cepts are not. For instance, an entity can be a boxer and a
semanticist at the same time but not a wheel and a table.
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performs some lexical disambiguation as well. For
example, male is the symbol of the pronouns he
and himself, europe of the adjective European,
and 14 :00 for the time expression 2 pm. A sym-
bol together with a CCG category and a semtag
are sufficient to determine the lexical semantics
of a token (see Figure 2). Some function words
do not need symbols since their semantics are ex-
pressed with logical symbols, e.g., auxiliary verbs,
conjunctions, and most determiners.

Notice that the employed symbols are not as
radical and verbalized as the concepts in AMRs,
e.g., the symbol of opinion is opinion rather than
opine. First, using deep forms as symbols often
makes it difficult to recover the original and se-
mantically related forms, e.g., if opinion had the
symbol opine, then it would be difficult to re-
cover opinion and its semantic relation with idea.
Second, alignment of translations does not al-
ways work well with deep forms, e.g., opinion can
be translated as parere in Italian and mening in
Dutch, but it is unnatural to align their symbols to
opine. After all, having such alignments would
make it difficult to judge good and bad transla-
tions, which is one of the goals of the PMB.

The symbolizer could either be implemented
as a rule-based system with multiple modules, or
as a system that learns the required transforma-
tions from examples. The advantage of the lat-
ter is that it is more robust to typos and other
spelling variants without manual engineering. To
evaluate the feasibility of this approach, we built a
character-based sequence-to-sequence model with
deep recurrent neural networks, which uses words,
semtags, and additional data from existing knowl-
edge sources, such as WordNet (Fellbaum, 1998),
Wikipedia, and UNECE codes for trade4, to do
symbolization. We are currently investigating how
the performance of machine learning-based sym-
bolizer compares to a rule-based one incorporating
the lemmatizer Morpha (Minnen et al., 2001).

3.5 Semantic Interpretation
Discourse Representation Theory (DRT, Kamp
and Reyle, 1993), is the semantic formalism that
is used as a semantic representation in the PMB. It
is a well-studied theory from a linguistic seman-
tic viewpoint and suitable for compositional se-
mantics.5 Expressions in DRT, called Discourse

4http://unece.org/cefact/codesfortrade
5In particular, we employ Projective DRT (Venhuizen,

2015)—an extension of DRT that accounts for presupposi-

Representation Structures (DRSs), have a recur-
sive structure and are usually depicted as boxes.
An upper part of a DRS contains a set of referents
while the lower part lists a conjunction of atomic
or compound conditions over these referents (see
an example of a DRS in the bottom of Figure 2).

Boxer (Bos, 2015), a system that employs
λ-calculus to construct DRSs in a compositional
way, is used to derive meaning representations
of the documents. However, the original ver-
sion of Boxer is tailored to the English language.
We have adapted Boxer to work with the univer-
sal semtags rather than English-specific part-of-
speech tags. Boxer also assigns VerbNet/LIRICS
thematic roles (Bonial et al., 2011) to verbs so
that the lexical semantics of verbs include the cor-
responding thematic predicates (see came in Fig-
ure 2).

Hence an input to Boxer is a CCG derivation
where all tokens are decorated with semtags and
symbols. This information is enough for Boxer to
assign a lexical DRS to each token and produce a
DRS for the entire sentence in a compositional and
language-neutral way (see Figure 2).

4 Cross-lingual Projection

The initial annotation for Dutch, German and Ital-
ian is bootstrapped via word alignments. Each
non-English text is automatically word-aligned
with its English counterpart, and non-English
words initially receive semtags, CCG categories
and symbols based on those of their English coun-
terparts (see Figure 2).

CCG slashes are flipped as needed, and 2:1
alignments are handled through functional com-
position. Then, the CCG derivations and DRSs
can be obtained by applying CCG’s combinatory
rules in such a way that the same DRS as for the
English sentence results (Evang and Bos, 2016;
Evang, 2016).

If the alignment is incorrect, it can be corrected
manually (see Section 5). The idea behind this
way of bootstrapping is to exploit the advanced
state-of-the-art of NLP for English, and to encour-
age parallelism between the syntactic and seman-
tic analyses of different languages.

To facilitate cross-lingual projection, alignment
has to be done at two levels: sentences and words.
Sentence alignment is initially done with a simple

tions, anaphora and conventional implicatures in a general-
ized way.
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one-to-one heuristic, with each English sentence
aligned to a non-English sentence in order, to be
corrected manually. Subsequently, we automati-
cally align words in the aligned sentences using
GIZA++ (Och and Ney, 2003).

Although we use existing tools for the initial an-
notation of English and projection as the initial an-
notation of non-English documents, our aim is to
train new language-neutral models. Training new
models on just the automatic annotation will not
yield better performance than the combination of
existing tools and projection. However, we im-
prove these models constantly by adding manual
corrections to the initial automatic annotation, and
retraining them. In addition, this approach lets us
adapt to revisions of the annotation guidelines.

5 Adding Bits of Wisdom

For each annotation layer, manual corrections can
be applied to any of the four languages. These an-
notations are called Bits of Wisdom (BoWs, fol-
lowing Basile et al. (2012)), and they overrule
the annotations of the models if they are in con-
flict. Based on the BoWs, we distinguish three
disjoint classes of annotation layers: gold standard
(manually checked), silver standard (including at
least one BoW) and bronze standard (no BoWs).
Table 1 shows how these classes are distributed
across languages and documents.

Layer Lang Gold Silver Bronze

Tokens

EN 6,810 2,548 275,796
DE 4,757 736 198,776
IT 2,843 384 117,792
NL 945 528 38,942

Semtags EN 316 17,479 267,359

Symbols EN 313 1,177 283,664

Table 1: Number of gold, silver and bronze doc-
uments per layer and language, as of 13-02-2017.

In addition to adding BoWs in general, we also
use annotations to improve the models in a more
targeted way, by focusing on annotation conflicts.
Annotation conflicts arise when a certain annota-
tion layer for a document has manually checked
and marked ‘gold’. When the automatic annota-
tion of such a layer changes, e.g., after retraining a
model, new annotation errors might be introduced,
and these are marked as annotation conflicts. The

annotation conflicts are then slated for resolution
by an expert annotator. This has two main ben-
efits: it concentrates human annotation efforts on
difficult cases, for which the models’ judgements
are still in flux, so that the bits of wisdom can steer
the model more effectively. In addition, by en-
forcing conflicts to be re-judged by a human, we
have a chance to correct human errors and incon-
sistencies, and, if necessary, improve the annota-
tion guidelines.

6 Conclusion

Our ultimate goal is to provide accurate, language-
neutral natural language analysis tools. In the
pipeline that we presented in this paper, we
have laid the foundation to reach this goal. For
every task in the pipeline—tokenization, pars-
ing, semantic tagging, symbolization, semantic
interpretation—we have a single component that
uses a language-specific model. We proposed new
language-neutral tagging schemes to reach this
goal (e.g., for tokenization and semantic tagging)
and adapted existing formalisms (making CCG
more general by introducing lexical categories for
empty elements).

Our first results for Dutch show that our method
is promising (Evang and Bos, 2016), but we still
need to assess how much manual effort is involved
in other languages, such as German and Italian.
We will also explore the idea of combining CCG
parsing with Semantic Role Labelling, following
Lewis et al. (2015), and whether we can derive
word senses in a data-driven fashion (Kilgarriff,
1997) rather than using WordNet. Furthermore,
we will assess whether our cross-lingual projec-
tion method yields accurate tools with time and
annotation costs lower than would be needed when
starting from scratch for a single language.

The annotated data of the PMB is now publicly
accessible through a web interface.6 Stable re-
leases will be made available for download peri-
odically.
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Abstract

We address the challenge of cross-lingual
POS tagger evaluation in absence of man-
ually annotated test data. We put forth
and evaluate two dictionary-based metrics.
On the tasks of accuracy prediction and
system ranking, we reveal that these met-
rics are reliable enough to approximate
test set-based evaluation, and at the same
time lean enough to support assessment
for truly low-resource languages.

1 Introduction

Cross-lingual learning of NLP models is currently
in an evaluation impasse. While we can create reli-
able cross-lingual taggers and parsers for hundreds
of low-resource languages (Agić et al., 2016), we
can only evaluate our models for languages where
some hand-annotated test data is available. The re-
quirement for the uniformity of annotations (Mc-
Donald et al., 2013) further strengthens the con-
straint. The set of languages with readily available
test data is very exclusive. Namely, they are the
resource-rich languages from the Universal De-
pendencies project (Nivre et al., 2015).1

Recent works have suggested to evaluate cross-
lingual approaches by proxy, e.g., by using crowd-
sourced tag dictionaries (Li et al., 2012; Agić et
al., 2015). In these works, though, the validity of
assessment by using tag dictionaries is left com-
pletely unaddressed.

Contributions. Our work poses the question:
How adequate are tag dictionaries for evaluating
POS taggers for low-resource languages? Across
25 languages, we compare the POS tagger rank-
ings induced by evaluation against dictionaries to

1http://universaldependencies.org/

those induced by evaluation on manually anno-
tated gold standards. We select the best out of five
competitive taggers for 14 out of 25 languages.
We also consider to what extent we can predict
true tagging scores. We find that as little as the 100
most frequent tokens with corresponding POS tags
suffice to provide reliable estimates of true scores.
Finally, we introduce a novel metric that presumes
nothing but an English tag dictionary and a small
bilingual dictionary for the target language. We
also find this metric to be a relatively robust esti-
mator for tagging accuracy. It finds the best tagger
for 11 out of 20 languages.

Our code and data are freely available.2

2 Metrics

In cross-lingual learning work, it is common to
evaluate POS taggers for accuracy by using test
data annotated by human experts. For a test set T
of n word-tag pairs (wi, ti) and its tagging T̂ , we
define the true accuracy Atrue as:

Atrue(T̂ , T ) = ∣{(wi, t̂i) ∈ T̂ ∣ t̂i = ti}n
i=1∣

∣T̂ ∣

T = {(wi, ti)}, T̂ = {(wi, t̂i)},1 ≤ i ≤ n

Obviously this metric can only be computed when
test data is available, which is not the case for the
vast majority of the world’s languages. Note that
while we use the term true accuracy, the adequacy
of the metric depends on how representative the
annotated data is of the underlying distribution.

Drawing from Li et al. (2012)—who compared
Wiktionaries to gold dictionaries extracted from
the tagger training sets—Agić et al. (2015) pro-
pose an approximate metric in absence of test data
T . They apply it to 10 low-resource languages by

2Wiktionaries included,
https://bitbucket.org/lowlands/release.
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using Wiktionaries ranging from only 50 to more
than 20k dictionary entries. We take their metric
as our starting point.

Soft accuracy. Given a dictionary D whose en-
tries are word forms with their ambiguous tag-
gings (w,Dw = {tw1 , ..., twk }), we express the ap-
proximate or soft accuracy Asoft as:

Asoft(T̂ ,D) = ∣{(wi,t̂i)∈T̂ ∣(wi,Dwi)∈D∧t̂i∈Dwi}
n
i=1∣

∣{(wi,t̂i)∈T̂ ∣(wi,Dwi)∈D}
n
i=1∣

In absence of true tags ti, we ambiguously tag T
using the tags from D, but only for the tokens wi

that are covered by the dictionary: (wi,Dwi) ∈ D.
We then count the tagger output t̂i as correct iff it
is warranted by the dictionary: t̂i ∈Dwi .

Problems. Crowd-sourced dictionaries can suf-
fer from limited coverage and poor quality. We
counter the first issue by covering the most fre-
quent words. We distinguish between Asoft with
frequency information (+freq), using the m most
frequent words, or without frequency information
(−freq), using m random words.

Tag lists Di can also be deficient: They can be
missing certain tags, or contain incorrect tags, or
both. For example, the Croatian Wiktionary only
notes the NOUN tagging of igra (en. game), but in
reality the word form also has a VERB tagging (en.
to play, third person singular).

We can gauge the quality of D in presence of a
high-quality dictionary G = {(wi,Gi)}∣G∣i=1 which
we can induce from a training set:

precision(D,G) = ∑∣D∣i=1
∣{Di∩Gi}∣

∣{t∈Di}∣

recall(D,G) = ∑∣D∣i=1
∣{Di∩Gi}∣

∣{t∈Gi}∣

Namely, for each word wi covered by both D and
G, we check how many tags Di and Gi intersect,
and then use the intersection to estimate dictionary
precision and recall.

Translated dictionaries. With low-resource
languages, we cannot presume the availability of
tag dictionaries. However, we often have high-
quality bilingual dictionaries with translations
of common words into a resource-rich language
such as English. With these in place, we can
“translate” the English dictionary into a low-
resource language and exploit the resulting Dtrans

in the evaluation for Asoft. We implement a very

simple form of dictionary lookup-based transla-
tion, whereby all words in the English word-tag
dictionary are replaced by target-language words
through bilingual dictionaries.

We expect this bilingual dictionary-based soft
metric Atrans to suffer from the same coverage
and quality problems as Asoft, and to introduce
additional “translation noise” on top of that. We
maintain that both metrics can still be reliable esti-
mators of tagging accuracy for truly low-resource
languages in absence of annotated test data.

3 Experiments

We perform two sets of experiments:

i) numerical score prediction, where we eval-
uate the approximate metricsAsoft andAtrans

as estimators of the true POS tagging accura-
cies Atrue, and

ii) rank prediction, where we test how well do
Asoft and Atrans perform in ranking several
POS taggers relative to Atrue.

In numerical score prediction, we evaluate the tag-
gers using all three metrics, and establish empiri-
cal relations between dictionary quality and size,
and the observed scores.

In rank prediction, we rank five POS taggers us-
ing Atrue, and then attempt to replicate the rank-
ing using Asoft and Atrans. We express the quality
of predicted rankings using precision (P@1) and
Kendall’s τb statistic (Knight, 1966).

Data. We train and test our taggers on data from
UD version 1.2 (Nivre et al., 2015). We inter-
sect this collection with the dictionaries we make
available for this experiment: 9 of the Wiktionar-
ies come from Li et al. (2012), and we collect 16
new on top of that. Thus, we experiment with a
total of 25 languages from the UD. We refer to the
9 languages of Li et al. (2012) as development lan-
guages. To make the Wiktionaries and the UD data
compatible, we map all POS tags to the tagset by
Petrov et al. (2012).

We estimate the frequencies for the +freq vari-
ants of the soft metrics by using the multilingual
Bible corpus by Christodouloupoulos and Steed-
man (2014) and the Watchtower corpus (Agić et
al., 2016) combined.

We translate the English Wiktionary from Li
et al. (2012) by using bilingual dictionaries from
Wiktionary to obtain Dtrans for 20 languages.3

3We choose the English Wiktionary rather than the En-
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Figure 1: Impact of dictionary size and frequency usage (−freq, +freq) on numerical score prediction
for nine development languages using the TnT tagger. The shaded regions represent 95% confidence
intervals forD− freq. The −freq dictionaries are randomly sampled 100 times for each size step, and the
steps range 100–10,000 entries both for −freq and +freq.

Taggers. We experiment with five POS taggers,
all run with their default settings:

a) bi-LSTM tagger (Plank et al., 2016),
b) CRF++ (Kudo, 2005),
c) MarMoT (Mueller et al., 2013),
d) TnT (Brants, 2000), and
e) TreeTagger (Schmid, 1994).

3.1 Results

Score prediction. Here, we discuss how well
our metric Asoft performs in guessing the true tag-
ger accuracies by using the Wiktionaries.

Figure 1 reveals that even large Wiktionaries do
not make for good accuracy estimators if they do
not exploit the frequencies. We see the evidence
for that in the very wide confidence intervals in
our Wiktionary sampling. In contrast, even the
smallest of frequency-aware Wiktionaries prove to
be much more reliable. They can contain as little
as 100 entries, especially if their tagging quality
is high. For example, a bad sample of 6k Span-
ish (es) words and tags might underestimate Atrue

by 10 points, while using the 100 most frequent
Spanish words get us as close as -4 points even
with erroneous tags.

We observe high negative correlations of Wik-
tionary F1 scores (Pearson’s ρ = −0.58) and test

glish UD training set due to much higher coverage in spite of
lower precision: F1 = 18.51 for the Wiktionary translations
(Dtrans), compared to F1 = 13.22 for the UD training set
translations (Gtrans) over 20 languages.

set coverages (ρ = −0.60) with the quality of accu-
racy estimation, expressed as absolute difference
of the two scores ∣Atrue−Asoft∣ for the data in Fig-
ure 1. In simpler terms: The higher i) the intrin-
sic quality of the Wiktionary and ii) its coverage,
the better the score estimation. There, the Wik-
tionaries are intrinsically evaluated with respect
to the training set dictionaries. We also note that
the noisy Wiktionaries (D) tend to underestimate
Atrue, while the more reliable gold dictionaries
(G) overestimate.

The translation-based metric Atrans approxi-
mates the true scores better thanAsoft for 7/20 lan-
guages, and is more stable across languages as all
Dtrans originate from English (en). See Table 1 for
the results on all 25 languages.

Rank prediction. In system ranking, we try to
select the best tagger for a given language through
our metrics. We note the task is rather hard as all
the taggers score very close to one another. Still,
we manage to find the best tagger for 14/25 lan-
guages with Asoft, and for 11/20 with Atrans.

For some languages, even in spite of Wiktionary
deficiency, we manage to i) select the best tag-
ger and to ii) improve the true score prediction
through translation from English. For example,
the high quality of Bulgarian (bg) Wiktionary is
outweighed by the high coverage of itsDtrans, and
there Atrans significantly improves the prediction.
For Farsi (fa), we improve both the score predic-

250



Wiktionary quality Metrics evaluation

D Dtrans Atrue Asoft Atrans

∣D∣ P R ∣D∣ P R Ātrue Āsoft P@1 τb Ātrans P@1 τb
Bulgarian (bg) 3 93.58 3.54 15 59.33 7.65 97.45±1.14 89.73±0.20 0 -0.2 95.54±0.18 0 -0.2

Czech (cs) 14 98.77 4.82 23 62.35 5.59 97.88±1.00 94.74±0.82 1 0.6 93.47±0.19 0 0.2
* Danish (da) 23 83.89 19.00 15 55.42 12.21 96.07±1.03 88.94±0.51 1 0.6 87.54±0.51 0 0.4

* German (de) 63 94.97 23.19 46 63.20 14.79 95.02±0.42 92.48±0.21 1 0.4 76.77±0.24 1 0.2
* Greek (el) 22 87.99 18.72 21 56.50 10.85 96.97±1.22 89.45±0.47 1 1.0 78.28±0.32 1 0.4

* English (en) 388 69.88 65.97 – – – 95.39±1.07 93.15±0.26 0 -0.4 – – –
* Spanish (es) 240 85.00 40.20 31 67.27 17.00 96.22±0.38 91.91±0.65 0 -0.2 79.39±0.36 1 0.4

Basque (eu) 1 90.43 1.49 – – – 95.08±1.33 74.90±1.25 1 0.8 – – –
Farsi (fa) 4 87.87 11.89 1 56.22 1.43 96.35±0.73 90.46±0.45 0 -0.2 94.05±0.54 1 0.6

Finnish (fi) 104 88.41 8.52 45 53.70 6.38 94.72±2.24 79.72±1.26 1 1.0 90.51±0.44 1 0.8

French (fr) 17 88.70 7.49 36 67.55 18.55 96.47±0.62 48.08±1.03 0 0.2 79.30±0.23 0 0.2
Irish (ga) 6 85.73 12.54 – – – 92.77±0.87 91.97±2.88 0 0.2 – – –

Ancient Greek (grc) 5 94.13 2.46 – – – 91.97±2.88 74.62±0.96 1 1.0 – – –
Hebrew (he) 4 83.12 5.04 7 58.37 5.06 95.69±1.15 86.23±0.65 1 0.6 79.84±0.57 1 0.4

Hindi (hi) 2 89.79 4.19 2 61.03 3.81 97.97±0.73 81.25±1.03 0 0.2 80.16±0.50 0 -0.4

Croatian (hr) 21 92.03 12.76 6 55.44 2.43 95.32±1.06 89.81±0.46 0 0.4 94.41±0.76 0 -0.2
Hungarian (hu) 14 84.01 15.29 17 49.78 10.75 92.46±2.35 86.22±2.43 0 -0.2 73.04±1.14 1 0.4

* Italian (it) 494 79.03 65.29 29 63.32 19.62 97.53±0.61 94.58±0.46 1 0.6 85.51±0.23 0 0.2
Latin (la) 30 68.15 7.80 – – – 91.24±2.27 68.24±2.11 1 1.0 – – –

* Dutch (nl) 55 83.67 35.25 29 57.45 16.92 92.38±2.11 92.85±0.74 0 0.2 86.58±0.76 1 0.6

Norwegian (no) 47 89.51 6.94 11 55.32 7.48 97.67±0.55 33.99±0.11 0 0.2 87.33±0.14 0 0.2
Polish (pl) 6 92.97 3.70 22 53.91 8.50 95.55±1.35 87.97±1.17 1 0.8 81.86±0.28 1 0.6

* Portuguese (pt) 42 90.55 18.38 26 62.10 17.98 97.22±0.69 92.39±0.22 1 0.6 82.46±0.27 0 0.2
Romanian (ro) 7 82.29 16.95 15 49.65 16.64 89.59±2.26 83.59±1.50 1 1.0 84.24±0.74 1 1.0
* Swedish (sv) 91 85.84 48.32 29 53.89 16.60 96.22±0.92 92.14±0.77 1 0.4 83.32±0.49 1 0.4

Mean – 86.81 18.38 – 58.09 11.01 95.25±0.89 83.27±5.69 14/25 0.42 86.40±2.89 11/20 0.27

Table 1: Wiktionary size and quality, and metrics evaluation. The dictionary sizes ∣D∣ are ×103 entries.
Wiktionaries are evaluated for precision (P) and recall (R) against the respective UD training set dictio-
naries (G). In metrics evaluation, scores are obtained by using the full Wiktionaries, averaged (Ā) over
five POS taggers. *: development languages, with Wiktionaries by Li et al. (2012). ±: 95% confidence
intervals; bold: best score estimates, i.e., lowest differences to true scores ∣Atrue −Asoft∣.

tion and the tagger selection.
Through Kendall’s τb statistic, we rate the qual-

ity of the entire rankings, not just of guessing the
best out of five taggers. We find that the true and
the estimated rankings are statistically dependent
at p < 0.05 for all languages. We also find that the
taggers are easier to rank when the true scores are
lower and further apart. For example, the French
(fr) and Spanish (es) taggers are hard to rank as
they all score very close to one another, while
we easily rank the taggers for Greek (el), Basque
(eu), Polish (pl), or Romanian (ro). We argue that
such ranking behavior favors evaluation for low-
resource languages, where insufficient data is very
likely to cause even greater disparity between dif-
ferent POS taggers.

3.2 Discussion

Sources of POS tags. Our work aims at support-
ing cross-lingual POS tagger evaluation. Why did

we then evaluate the metrics on outputs of fully su-
pervised taggers? In short, because higher tagging
scores are harder to estimate.

We experimented with: i) fully supervised tag-
gers, ii) actual cross-lingual taggers from Agić et
al. (2016), for which Ātrue = 70.56, and iii) artifi-
cial corruption of gold POS tags.

In artificial data corruption for the development
languages, we found that the score prediction error
correlates with the true score (ρ = 0.54). For the
corruption, we created 20 samples ofAtrue ∈ [0,1]
for each language with a 0.05 increment. Further,
we evaluated Asoft on the cross-lingual taggers.
There, we singled out the best taggers for 13/21 in-
tersecting languages, or for 2 languages more than
over fully supervised taggers (11/21). With trans-
lated dictionaries, i.e., through Atrans, we scored
13/20 (also +2 languages).

For these reasons, we decided to show how our
metrics perform in the most difficult case. Here,
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the additional experiments with different sources
of POS tags show that the metrics easily scale
down to evaluating cross-lingual taggers for low-
resource languages.

Held-out data. Annotating a handful of test sen-
tences could serve as an alternative to dictionary-
based evaluation. We find that ∼55±27 sentences
are needed on average to reach the system ranking
accuracy ofAtrans for our 20 languages. However,
the option of annotating test data might not be
feasible for many low-resource languages, while
Wiktionaries are currently readily available for
more than 300 languages. We also note that the
required sample size is negatively correlated with
tagging accuracy (ρ = −0.63): the lower the tagger
accuracy, the more sentences we need to reason-
ably estimate it.

4 Related work

Li et al. (2012) gauge 9 Wiktionaries against gold
dictionaries to strengthen the argument for their
weakly-supervised tagger. Agić et al. (2015) use
10 Wiktionaries to extend a cross-lingual tagger
evaluation to languages without test sets, but they
do so indiscriminately. Their Wiktionaries range
from only 50 to more than 20k random entries. To
the best of our knowledge, research on evaluating
POS taggers in absence of manually annotated test
data is novel to our work.

We collected 16 new Wiktionaries on top of
the 9 provided by Li et al. (2012) for our exper-
iment. Recently, larger Wiktionary datasets4 have
been made available, enabling further experiments
with cross-lingual tagging. The dataset of Sylak-
Glassman et al. (2015) covers more than 300 lan-
guages, and includes parts of speech and morpho-
logical features.

Plank et al. (2015) discuss how various metrics
for evaluating syntactic dependency parsing corre-
late with human judgments. We suggest that our
translation-based metrics might naturally extend
to dependency parsing by, e.g., treating an English
dependency relation dictionary as a tag dictionary.
The strong correlations between labeling (LA) and
attachment scores (UAS) in dependency parsing
favor our proposal.5

Garrette and Baldridge (2013) build taggers for
low-resource languages from just 2 hours of man-

4http://unimorph.org/
5Pearson’s ρ = 0.82; 0.91 (gold POS; predicted POS), UD

data for 20 languages, TurboParser (Martins et al., 2013).

ual annotation. Similarly, we show how to reliably
evaluate cross-lingual POS taggers by translating
as little as 100 most frequent English Wiktionary
entries to the target language.

5 Conclusions

We evaluated how well the quality of POS taggers
can be estimated without annotated test data. Our
work has obvious applications to developing un-
supervised or weakly supervised POS taggers for
low-resource languages.

We were able to reliably estimate tagging accu-
racies by using very small tag dictionaries. Dic-
tionaries with as little as 100 entries were in the
majority of cases sufficient to predict true accura-
cies within 5%. We only require that these 100 en-
tries be frequently used. Out of 5 competitive POS
taggers, we then single out the best ones using our
metric for 14/25 languages.

Finally, we showed that even if the dictionar-
ies are “translated” from the English Wiktionary
through a small list of bilingual word pairs we can
still predict what POS taggers are best for 11/20
languages. In other words, we found that it is suf-
ficient to translate a small list of frequent words
from English to start reliably evaluating cross-
lingual taggers for the true targets.
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dro Lenci, Nikola Ljubešić, Teresa Lynn, Christo-
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Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi
Zhu. 2015. Universal dependencies 1.2.

Slav Petrov, Dipanjan Das, and Ryan McDonald.
2012. A universal part-of-speech tagset. In Pro-
ceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC-2012),
pages 2089–2096. European Language Resources
Association (ELRA).
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Abstract

In this paper, we present a Wikipedia-
based approach to develop resources for
the legal domain. We establish a mapping
between a legal domain ontology, LKIF
(Hoekstra et al., 2007), and a Wikipedia-
based ontology, YAGO (Suchanek et al.,
2007), and through that we populate LKIF.
Moreover, we use the mentions of those
entities in Wikipedia text to train a specific
Named Entity Recognizer and Classifier.
We find that this classifier works well in
the Wikipedia, but, as could be expected,
performance decreases in a corpus of judg-
ments of the European Court of Human
Rights. However, this tool will be used as
a preprocess for human annotation.

We resort to a technique called curriculum
learning aimed to overcome problems of
overfitting by learning increasingly more
complex concepts. However, we find that
in this particular setting, the method works
best by learning from most specific to most
general concepts, not the other way round.

1 Introduction

Many legal ontologies have been proposed in
the literature with different purposes and ap-
plied to different sub-domains, e.g., (Ajani et al.,
2009; Hoekstra et al., 2007; Athan et al., 2015).
However, their manual creation and maintenance
is a very time-consuming and challenging task:
domain-specific information needs to be created
by legal experts to ensure the semantics of reg-
ulations is fully captured. Such ontologies have
little coverage, because they have a small number

∗The authors have received funding from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skodowska-Curie grant agreement
No 690974 for the project MIREL: MIning and REasoning
with Legal texts.

of entities or dwell only in concepts, not concrete
entities. Moreover, only very few annotated legal
corpora exist where entities can be gathered from.
All this constitutes an important barrier for Infor-
mation Extraction from legal text.

There is little work on increasing the cover-
age of legal ontologies. Bruckschen et al. (2010)
describe a legal ontology population approach
through an automatic NER to legal data. Lenci et
al. (2009)’s ontology learning system T2K extract
terms and their relations from Italian legal texts,
and it is able to identify the classes of the ontology.
Humphreys et al. (2015) extract norm elements
(norms, reasons, powers, obligations) from Euro-
pean Directives using dependency parsing and se-
mantic role labeling, taking advantage of the struc-
tured format of the Eunomos legal system. Boella
et al. (2014) exploit POS tags and syntactic rela-
tions to classify textual instances as legal concepts.
All these approaches rely on an important amount
of domain knowledge and hand-crafted heuristics
to delimit legal concepts and how they are ex-
pressed in text.

In contrast, we take an unexpensive approach,
exploiting the information already available in
Wikipedia and connecting it with ontologies. We
establish a mapping between the WordNet- and
Wikipedia-based YAGO ontology 1 and the LKIF
ontology2 for the legal domain. By doing this,
we are transferring the semantics of LKIF to
Wikipedia entities and populating the LKIF ontol-
ogy with Wikipedia entities and their mentions.

However, even using Wikipedia, many of the
classes have few instances. To adress the problems
of training with few instances, we apply a learning
strategy called curriculum learning (Bengio et al.,
2009). Roughly, curriculum learning is a method
that trains a model incrementally, by presenting

1www.yago-knowledge.org/
2http://www.estrellaproject.org/

lkif-core/
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to it increasingly more complex concepts. This
should allow to find the most adequate generaliza-
tions and avoid overfitting. However, we find that
curriculum learning does not produce the expected
improvements. On the contrary, reversed curricu-
lum learning, learning from most specific to most
general, produces better results, and it helps to in-
dicate that there may be incoherences in the map-
pings between ontologies.

2 Exploiting Wikipedia to populate an
ontology of the legal domain

Wikipedia has been used as a corpus for NERC be-
cause it provides a fair amount of naturally occur-
ring text where entities are tagged and linked to an
ontology, i.e., the DBpedia (Hahm et al., 2014) on-
tology. One of the shortcomings of such approach
is that not all entity mentions are tagged, but it is
a starting point to learn a first version of a NERC
tagger, which can then be used to tag further cor-
pora and alleviate the human annotation task.

2.1 Domain and classes to be learned

Our target domain is formally represented by
the well known LKIF ontology (Hoekstra et al.,
2007), which provides a model for core legal con-
cepts. In order to transfer the semantics of LKIF
to the relevant annotated entities in Wikipedia,
we manually define a mapping between the ex-
tended LKIF3 and YAGO (Suchanek et al., 2007),
a Wikipedia-based principled ontology.

We do not map relations but only classes. The
mapping is from a node in one ontology to another
node in the other ontology. All children nodes of a
connected node are connected by their most imme-
diate parent. Therefore, all children nodes of the
mapped YAGO nodes are effectively connected to
LKIF through this mapping.

There are a total of 69 classes in this portion of
the LKIF ontology, of which 30 could be mapped
to a YAGO node, either as children or as equiva-
lent classes. Two YAGO classes were mapped as
parent of an LKIF class, although these we are not
exploiting in this approach.

From YAGO, 47 classes were mapped to a LKIF
class, with a total of 358 classes considering their
children, and summing up 4’5 million mentions.

3The extended LKIF covers the classes in norm.owl,
legal-action.owl and legal-role.owl, which
covers core concepts of the legal domain, and not in the rest
of the LKIF ontology, which provides auxiliary concepts.

Level 2 Level 3 Level 4
NERC LKIF YAGO
(6 classes, (69 classes, (358 classes,
all populated) 21 populated) 122 populated)

Person Legal Role
judge
lawyer

... ...

Organization

Company
company
limited company

Corporation
corporation
foundation

Public Body court
... ...

Document
Regulation

legal code
law

Contract contract
... ...

Abstraction
Legal Doctrine case law

Right
liberty
indebtedness

... ...

Act
Statute legislative act
... ..

Figure 1: Levels of abstraction of our ontology.

Curriculum learning requires that concepts are
organized in a hierarchy. We did not use the
hierarchy provided by the two ontologies them-
selves because LKIF is not hierarchical, but more
aimed to represent interrelations and mereology.
That is why we developed a hierarchy of con-
cepts displayed in Figure 1. The top distinction
is between Named Entities and non-Named En-
tities, then within Named Entities we distinguish
Person, Organization, Document, Abstraction and
Act, within those we distinguish LKIF classes and
within those we distinguish YAGO classes.

2.2 Training corpus

To build our corpus, we considered as tagged en-
tities the spans of text that are an anchor for a
hyperlink whose URI is one of the mapped enti-
ties. Then, we extracted sentences that contained
at least one named entity.

Then, words within the anchor span belong to
the I class (Inside), outside the span, to the O
class. The O class made more than 90% of the in-
stances, so we randomly subsampled non-named
entity words to make it at most 50% of the corpus,
so that classifiers would not be too biased. Thus
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built, the corpus consists of 21 million words.
The corpus was divided into three parts: 80% of

the corpus for training, 10% for tuning and 10%
for testing. The elements on each part were ran-
domly selected to preserve the proportion of each
class in the original corpus, with a minimum of
one instance of each class appearing in each part.
We consider only entities with a Wikipedia page
and with more than 3 mentions in Wikipedia.

3 NERC with Curriculum Learning

Curriculum learning (CL) is a continuation
method (Allgower and Georg, 2012), i.e. an op-
timization strategy for dealing with minimizing
non-convex criteria, like neural networks classi-
fiers. The basic idea of this method is to first
optimize a smoothed objective, in our case, more
general concepts, and then gradually consider less
smoothing, in our case, more specific concepts.
The underlying intuition is that this approach re-
veals the global picture (Bengio et al., 2009).

We applied curriculum learning with the follow-
ing rationale. First, a neural network with ran-
domly set weights is trained to distinguish NE vs.
non-NE. Once this classifier has converged, the
weights obtained are used as the starting point of a
classifier with a similar architecture (in number of
layers and number of neurons per layer), but with
more specific classes. In our case, the classifica-
tion divides the examples in the six classes Per-
son, Organization, Document, Abstraction, Act,
non-NE. Again when this classifier converges, its
weights are used for the next level of classification,
the LKIF concepts, and finally the YAGO classes.

Let us consider the following example: we start
with the text “Treaty of Rome”, then in the first
iteration we train the classifier to learn it as a NE;
the second iteration classifies it as a Document; in
the third iteration it falls in the LKIF Treaty class,
and finally, in the last iteration, it is linked to the
YAGO wordnet treaty 106773434.

When we trained the neural network, We carried
out experiments with one, two and three hidden
layers, but a single hidden layer, smaller than the
input layer, performed better, so we set this as the
architecture for neural networks. In each iteration
of CL only the output layer is modified to suit the
abstraction of the classes to the corresponding step
of the CL iteration, leaving the hidden layer and
the weights from the input to the hidden layer.

3.1 Representation of examples

We represented examples with a subset of the fea-
tures proposed by (Finkel et al., 2005) for the Stan-
ford Parser CRF-model. For each instance (each
word) we used: current word, current word PoS-
tag, all the n-grams (1 <= n <= 6) of characters
forming the prefixes and suffixes of the word, the
previous and next word, the bag of words (up to
4) at left and right, the tags of the surrounding
sequence with a symmetric window of 2 words
and the occurrence of a word in a full or part of
a gazetteer. The final vector characterizing each
instance had more than 1.5e6 features, too large to
be handled due to memory limitations. In addition,
the matrix was largely sparse. As a solution, we
applied a simple feature selection technique using
Variance Threshold. We filtered out all features
with variance less than 2e-4, reducing the amount
of features to 10854.

4 Evaluation

We evaluated a neural network classifier compar-
ing batch learning and curriculum learning. As a
comparison ground, we also trained a linear clas-
sifier, namely a Support Vector Machine (SVM)
with a linear kernel, and the Stanford CRF Classi-
fier model for NER (Stanford NLP Group, 2016),
training it with our corpus with Wikipedia an-
notations for the LKIF classes. For the Stan-
ford NERC, we use the same features as the
MLP classifiers, except the features of presence
in gazetteers and the PoS tags of surrounding
words. Decision trees and Naive Bayes (NB) clas-
sifiers were discarded because the cardinality of
the classes was too large for those methods.

To evaluate the performance, we computed ac-
curacy, precision and recall in a word-to-word ba-
sis in the test portion of our corpus. For this par-
ticular problem, the performance for the major-
ity class, non-NE, eclipses the performance in the
rest. To have a better insight on the performance,
we also provide macro-average of precision and
recall without the non-NE class. Macro-average is
showing differences in all classes, with less popu-
lated classes comparable to more populated ones.

The difference in performance between differ-
ent classifiers was very small. To assess the
statistical significance of results, we applied a
Student’s t-test with paired samples comparing
classifiers. We divided the Wikipedia corpus
in five disjunct subcorpora, then divided those
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in train/validation/test, compared results and ob-
tained p-values for the comparison.

4.1 Performance in a legal corpus

In order to evaluate the performance of this ap-
proach in legal corpora like norms or case-law,
we manually annotated a corpus of judgments of
the European Court of Human Rights, identifying
NEs that belong to classes in our ontology or to
comparable classes that might be added to the on-
tology. We annotated excerpts from 5 judgments
of the ECHR, totalling 19,000 words. We identi-
fied 1,500 entities, totalling 3,650 words. Anno-
tators followed specific guidelines, inspired in the
LDC guidelines for annotation of NEs (Linguistic
Data Consortium, 2014).

There were 4 different annotators. The agree-
ment between judges ranged from κ = .4 to κ =
.61, without significant differences across levels of
granularity. Most of the disagreement between an-
notators was found for the recognition of NEs, not
for their classification. The inter-annotator agree-
ment obtained for this annotation is not high, and
does not guarantee reproducible results, but it is
useful for a first assessment of performance.

5 Analysis of results

The results on the test portion of our Wikipedia
corpus are reported in Table 1. We show over-
all accuracy, and the average recall and precision
across classes other than the non-NE class. It
can be seen that neural network classifiers perform
better than both SVM and the Stanford NER. Dif-
ferences are noticeable when the non-NE class is
not included in the metric, as in the non-weighted
average of precision and recall without non-NEs.

It can be observed that curriculum learning does
not introduce an improvement in accuracy over
batch learning in a neural network. As explained
in the previous Section, we applied the paired t-
test in five different samples of the corpus to assess
whether the difference between classifiers was sig-
nificant or not, and we found that two out of five
of the obtained results were not significantly dif-
ferent (p < 0.05), but the other three were. There-
fore, it seems that Curriculum Learning, at least
the way we applied it here, does not introduce an
improvement.

We further analyzed the results and we found
that the MLP classifier performs far better in
smaller classes (with less instances) than in big-

accuracy precision recall F1
NER (2 classes)

SVM 1.00 .54 .06 .11
Stanford .88 .87 .87 .87
MLP 1.00 1.00 1.00 1.00

NERC (6 classes)
SVM .97 .37 .18 .24
Stanford .88 .78 .82 .79
MLP .99 .89 .83 .85
CL .99 .91 .81 .85

LKIF (21 classes)
SVM .93 .53 .26 .35
Stanford .97 .84 .71 .77
MLP .97 .73 .65 .68
CL .97 .71 .62 .66

YAGO (122 classes)
SVM .89 .51 .25 .34
MLP .95 .76 .64 .69
CL .95 .77 .64 .68

Table 1: Results for the test portion of the
Wikipedia corpus. Accuracy figures consider non-
NEs, but precision and recall are an average of all
classes (macro-average) except the majority class
of non-NEs. The results for the NER level for Cur-
riculum Learning are the same as for MLP, and the
Stanford NER cannot handle the number of classes
in the YAGO level.

ger classes, for all levels of abstraction but most
dramatically for the LKIF level, where F-score for
the 20% biggest classes drops to .11 (in contrast
with .62 for NERC and .42 for YAGO), while for
the smallest classes it keeps within the smooth de-
crease of performance that can be expected from
the increase in the number of classes, and thus an
increase in the difficulty of classification.

These results corroborate an observation that
has already been anticipated in general results,
namely, that the LKIF level of generalization is
not adequate for automated NERC learnt from the
Wikipedia, because the NERC cannot distinguish
the classes defined at that level, that is, in the orig-
inal LKIF ontology. In contrast, the NERC does a
better job at distinguishing YAGO classes, which
are natively built from Wikipedia, even if the clas-
sification problem is more difficult because of the
bigger number of classes.

On the other hand, the fact that smaller classes
are recognized better than bigger classes indicates
that bigger classes are ill-delimited. It may be that
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these classes are built as catch-all classes, group-
ing heterogeneous subclasses. That indicates that
curriculum learning might work better learning
first from most concrete classes, then from more
general classes. In Table 2 we show the perfor-
mance of curriculum learning in reverse, that is,
from the smallest classes to the most general ones.

accuracy precision recall F1
NER (2 classes)

MLP 1.00 1.00 1.00 1.00
rev CL 1.00 1.00 1.00 1.00

NERC (6 classes)
MLP .99 .89 .83 .85
CL .99 .91 .81 .85
rev CL .99 .93 .83 .87

LKIF (21 classes)
MLP .97 .73 .65 .68
CL .97 .71 .62 .66
rev CL .97 .70 .62 .65

YAGO (122 classes)
MLP .95 .76 .64 .69
CL .95 .77 .64 .68

Table 2: Comparison of curriculum learning
strategies, from most general to most specific (CL)
and from most specific to most general (rev CL),
with accuracy including the class of non-NEs and
macro-average excluding the class of non-NEs.

It can be seen that curriculum learning from
most specific to most general provides the best
result for the NERC level of abstraction, outper-
forming the other two neural approaches. How-
ever, at the LKIF level, the batch approach per-
forms better. This seems to indicate that, for this
particular hierarchy and dataset, curriculum learn-
ing seems more adequately applied from most spe-
cific to most general. Moreover, the YAGO and
NERC levels seem to be coherent with each other,
while the LKIF level seems disconnected from the
other two.

Therefore, it seems that the chosen level of
granularity for legal NERC using our ontology
should be either the 6-class level or the YAGO
level, depending on the level of granularity that is
required. Moreover, the mapping between YAGO
and LKIF needs to be further consolidated.

5.1 Performance in a legal corpus
The results for different approaches to NERC
trained on Wikipedia, with the corpus of judg-

ments of the ECHR described in Section 4.1 are
shown in Table 3. We can see that the drop in per-
formance with respect to results on Wikipedia is
very important, but on the other hand this annota-
tor has no annotation cost, because examples are
obtained from Wikipedia, so it can be considered
as a preprocess for human validation / annotation
of legal text.

accuracy precision recall F1
NER (2 classes)

Stanford .78 .60 .35 .33
MLP .54 .76 .55 .43

NERC (6 classes)
Stanford .75 .38 .19 .19
MLP .53 .64 .25 .25

LKIF (21 classes)
Stanford .78 .09 .05 .05
MLP .77 .35 .15 .17

YAGO (122 classes)
MLP .89 .16 .08 .08

Table 3: Comparison of different strategies for
NERC trained on Wikipedia, as they perform in
ECHR judgments.

6 Conclusions and Future Work

We have presented an approach to ontology pop-
ulation in the legal domain by exploiting annota-
tions from Wikipedia, and mapping them to the
legal ontology LKIF via the YAGO ontology. We
have aligned the LKIF and YAGO ontologies, we
have obtained a Named Entity Recognizer and
Classifier for the legal domain, and we have popu-
lated the LKIF ontology at the same time.

We have shown that the machine learning tech-
nique of curriculum learning produces slightly
(but significantly) better classifiers than the same
classifier with batch learning, but only if applied
from most specific to most general classes, and
only in levels of generality that are coherent with
each other.

Further work will be aimed to a more insightful
error analysis with the aim to guide a better map-
ping between YAGO and LKIF. We will also en-
hance and consolidate the annotation of judgments
from the European Court on Human Rights using
these classifiers as pre-annotation, in combination
with the Stanford NERC, and resorting to Active
Learning techniques.
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Abstract
This paper presents a new resource, called
Content Types Dataset, to promote the
analysis of texts as a composition of
units with specific semantic and functional
roles. By developing this dataset, we also
introduce a new NLP task for the auto-
matic classification of Content Types. The
annotation scheme and the dataset are de-
scribed together with two sets of classifi-
cation experiments.

1 Introduction

This paper introduces a new resource and task for
NLP, namely the classification of Content Types.
The notion of Content Types differs from stan-
dard discourse relations, either based on rhetorical
structures or lexically-grounded approaches. Con-
tent Types provide cues to access the structure of a
document’s types of functional content. They con-
tribute to the overall message or purpose of a text
and make explicit the functional role of a discourse
segment with respect to its content, i.e. meaning.
Their identification may improve the performance
of more complex NLP tasks by targeting the por-
tions of the documents that are more relevant. For
example, when building a storyline it may be use-
ful to focus on the narrative segments of a text
(Vossen et al., 2015), while for sentiment analy-
sis the identification of evaluative clauses may be
beneficial (Liu, 2015).

Our contribution is threefold: i) we make avail-
able annotation guidelines with high reliability in
terms of inter-annotator agreement and applicable
to texts of different genres and period of publica-
tion; ii) we release the first version of a new dataset
(whose annotation is still in progress) that takes
into consideration both contemporary and histori-
cal texts, paving the way to a new NLP task, i.e.

Content Type Classification; and iii) we present
initial promising results for the automatic classi-
fication of Content Types by using the first ver-
sion of the dataset. All data are made available
on-line1.

The remainder of the paper is structured as fol-
lows: Section 2 illustrates the annotation scheme,
the composition of the dataset, and report the inter-
annotator agreement. Section 3 presents two sets
of experiments to automatically classify Content
Types. Related work is discussed in Section 4. Fi-
nally, conclusion and future work are reported in
Section 5.

2 Dataset Construction

Content Types (henceforth CTs) are text passages
with specific semantic and functional characteris-
tics. Their definition is based on linguistic fea-
tures, and the annotation is performed at clause
level. Clauses are considered as textual constituent
units (Polanyi, 1988), and defined as groups of
words related to each other, containing a finite
or non-finite verb, while the subject may be im-
plicit or shared with other clauses. This granular-
ity level of the mark-up was chosen to provide a
fine-grained annotation of CTs that can character-
ize different portions of the same sentence. Exam-
ple (1) is made of two clauses (divided by “//”):
the first narrates what the author is doing, the sec-
ond describes the place where she is.

(1) I am writing on a fine terrace overlooking
the sea,// where stone benches and tables are
conveniently arranged for our use.

We identify seven classes of CTs, five of which
are based from Werlich’s typology, while the last
two (OTHER and NONE) were introduced in our

1https://github.com/dhfbk/
content-types
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News Travel
Reports

Evaluative 0.82 0.90
Descriptive 0.84 0.86
Expository - 0.93
Instructive - 0.65
Narrative 0.86 0.88
None 1.0 1.0
Other - 0.92

Table 1: Inter Annotator Agreement: Cohen’s
kappa calculated at token level.

scheme to account for undefined or unclear cases:

• NARRATIVE: clauses containing events and
states that can be anchored to a hypothetical
timeline; e.g., We left Cava on Wednesday,//
and made the tour from there to Amalfi.

• EVALUATIVE: clauses with explicit evalua-
tion markers; e.g., Telerate’s two independent
directors have rejected as inadequate.

• DESCRIPTIVE: clauses presenting tangi-
ble and intangible characteristics of entities,
such as objects, persons or locations; e.g.,
The road winds above, beneath, and beside
rugged cliffs of great height.

• EXPOSITORY: clauses expressing general-
izations with respect to a class.; e.g., All Ital-
ians are dandies.

• INSTRUCTIVE: clauses expressing proce-
dural information; e.g., At last you cross that
big road // and strike the limestone rock.

• OTHER: clauses containing text in foreign
languages, phatic expressions, references to
the reader; e.g., Madame est servie.

• NONE: clauses that cannot be labeled with
any of the previous classes; e.g., Chapter IV.

This specific set of classes was selected because
it provides a good level of generalization for char-
acterizing the contents of non-standardized docu-
ments (e.g. news articles vs. scientific article), and
it can be applied across different domains and gen-
res. Each markable has a set of attributes used to:
(i) specify whether a CT is part of a direct or re-
ported speech , (ii) distinguish digressions from
the primary narration, (iii) indicate whether a de-
scription refers to a person, a location or another
kind of entity, and (iv) typify the clauses annotated
as OTHER .

To test the comprehensiveness of this scheme,
we annotate English texts from two different gen-
res and periods of publication: namely, contem-
porary news and travel reports published between
the end of the XIX Century and the beginning of
the XX Century. While the former are taken from
already available datasets, i.e., TempEval-3, Penn
Discourse Treebank, and MASC (UzZaman et al.,
2013; Prasad et al., 2008; Ide et al., 2010), the lat-
ter constitute a novel set of texts extracted from
the Gutenberg project2. The corpus is released un-
der the name of Content Types Dataset version 1.0
(CTD v1). The resource is still being extended
with new annotated texts, but in the remainder of
the paper we will refer to this first version.

The annotation was conducted by two expert
linguists following a multi-step process and us-
ing the web-based tool CAT (Bartalesi Lenzi et
al., 2012). In the first phase, annotators were al-
lowed to discuss disagreements based on a trial
corpus suggesting revisions to improve the guide-
lines. In the second phase, inter-annotator agree-
ment was calculated on a subset of the CTD v1 (a
total of 5,328 tokens and 526 clauses, with 2,500
tokens and about 250 clauses per genre). Table 1
reports the Cohen’s kappa on the number of to-
kens for both text genres. With the exception
of the INSTRUCTIVE CT, all the classes have
high scores, exceeding 0.8, usually set as a thresh-
old that guarantees good annotation quality (Art-
stein and Poesio, 2008). In the final phase, the
whole dataset was annotated using the latest ver-
sion of the guidelines which includes detailed de-
scriptions of the classes, examples for both genres,
and priority rules discriminating when more than
one CT class may apply to clauses. Table 2 illus-
trates the composition of CTD v1. The two gen-
res of texts show, for almost all the CT classes, a
statistically significant difference (at p<0.01 and
calculated with the z test) in their distribution.

3 Experiments

In this section we present initial experiments for
the automatic classification of clauses in CTs. At-
tribute classification was not targeted at this stage.
We conducted two sets of experiments to test dif-
ferent modeling assumptions. In all experiments
we use gold clause boundaries.

2http://www.gutenberg.org/
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News Travel Reports Total
Texts 84 25 109
Tokens 32,086 31,715 63,801
Clauses 3,038 3,158 6,196

C
on

te
nt

Ty
pe

Evaluative* 428 (14.09%) 618 (19.59%) 1,046 (16.88%)
Descriptive* 198 (6.52%) 480 (15.19%) 678 (10.94%)
Expository 58 (1.91%) 81 (2.56%) 139 (2.24%)
Instructive 5 (0.16%) 4 (0.13%) 9 (0.15%)
Narrative* 2,318 (76.30%) 1,738 (55.03%) 4,056 (65.46%)
None* 15 (0.49%) 38 (1.20%) 53 (0.86%)
Other* 16 (0.53%) 199 (6.30%) 215 (3.47%)

Table 2: Statistics of CTD v1: an asterisk indicates whether the content type has a statistically significant
difference in the distribution over the two genres.

Clause Component Features

Noun Phrase
phrase tokens, head token, head lemma, determiner type, person, number,
countability,head type, head POS, WordNet sense and supersense, WordNet
hypernyms, length of path to the top node in WordNet

Verb Phrase

phrase tokens, head token, head lemma, clause adverb, lemma of clause adverb,
coarse tense values (present, past, future), fine-grained tense values (present
perfect, etc.), voice, grammatical aspect (progressive, perfect), WordNet sense
and supersense, WordNet hypernyms, length of path to the top node in
WordNet, head POS

Table 3: Features of the clause components.

3.1 Feature Sets

We experiment two different types of features: the
first relies on distributional information extracted
through sentence embeddings (Le and Mikolov,
2014), while the second is linguistically motivated
and focuses on syntactic and semantic properties
of the main components of the clause, i.e. the
noun phrase(s) and the verb phrase. For the first
type, we extracted embeddings for each clause
using the doc2vec (Le and Mikolov, 2014) im-
plementation in gensim, with vector size = 50
and window = 5. For the second feature type,
all documents were pre-processed at clause level
with Stanford CoreNLP (Manning et al., 2014),
performing tokenization, lemmatization, POS tag-
ging, Named Entity recognition. The extraction
of basic syntactic and semantic properties of the
clause components has been performed with a
syntactic-semantic features toolkit (Friedrich and
Pinkal, 2015). This has allowed us to identify
four blocks of features for: (i) the noun phrase in
subject position (i.e. nsubj and nsubjpass),
(ii) the noun phrase in direct object position (i.e.
dobj and agent), (iii) the noun phrase in any

other syntactic relation, and (iv) the clause verb.
Details for noun phrase and verb phrase compo-
nents are reported in Table 3.

We extended the basic features with prior sen-
timent polarity scores for nouns, verbs, adjec-
tives, and adverbs in the clause via SentiWord-
Net (Baccianella et al., 2010). For each target
POS, polarity scores are aggregated per lemma
and averaged by the number of senses, thus pro-
viding a lemma-based prior polarity. Finally, the
lemma-based polarity scores are normalized by
the clause length and scaled between 0 and 1. Fi-
nally, we introduced a binary feature to mark the
presence/absence of a temporal expression in a
clause. These two additional blocks of features
have been selected following the definition of the
CTs in the annotation guidelines. In particular, the
presence of temporal expressions in a clause can
facilitate the distinction between the NARRATIVE
and the DESCRIPTIVE classes, while the polar-
ity features should facilitate the identification of
the EVALUATIVE class.
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3.2 Classification Experiments

We developed our models by dividing the an-
notated data in training (80%) and test sections
(20%), balancing the distribution in each section
across the two genres. The overall amount of
clauses in the training and test data is slightly
lower than the one of the manually annotated
clauses3: indeed, we excluded some clauses be-
cause the pre-processing tools were not able to
extract any relevant features from them. This is
mainly due to a failure of the syntactic-semantic
toolkit to process some gold clauses.

To better evaluate the performance of our mod-
els, we developed a baseline system by assigning
the most frequent CT per text genre on the basis
of the frequencies in the training data. Evaluation
has been computed by means of Precision, Recall,
and F1-score as implemented in scikit-learn (Pe-
dregosa et al., 2011).

Content-based Classification In this set of ex-
periments we aimed at verifying the fitness of
our features by assuming that CTs are indepen-
dent of each other and determined only by their
meaning. We developed four classifiers, by vary-
ing the combination of features, using two dif-
ferent learners, namely Support Vector Machines
(SVM) (Cortes and Vapnik, 1995) and Conditional
Random Fields (CRFs) (Lafferty et al., 2001):
• clause model has only basic clause fea-

tures plus the polarity scores and the pres-
ence/absence of temporal expressions.
• clause+doc2vec model has the
clause model feature set extended with
the doc2vec clause embeddings.

The SVM models have been implemented us-
ing LIBSVM (Chang and Lin, 2011) with Linear
Kernel. The CRF models have been implemented
with CRF++ toolkit 4 with default parameters.

Content and Functional Structure Classifi-
cation This set of experiments assumes an
alternative modeling strategy by viewing each
sentence as a sequence of CTs, each associated
with a clause. For this second set of experiments
we implemented two linear CRF classifiers by
extending the previously described models with a
context window of [+/-2] for all features.

35,503 vs. 5,536 in the training set; 653 vs. 660 in the test
set.

4https://taku910.github.io/crfpp/

Results are illustrated in Table 4. The
content-based classification experiments show
that CTs are subject to the functional structure of
the sentence and, more generally, of the document.
Only the CRF classifiers, i.e. sequence labeling
models, can beat the baseline, providing balanced
results for Precision and Recall, and improving
the F1 score by 0.11 (CRF-clauseC) and 0.10
points (CRF-clause+doc2vecC). The SVM
models, on the contrary, fail to beat the baseline.
This could be due to the imbalanced distribution
of CTs, and also to the fact that content features
alone are not enough to discriminate the different
CTs. The contribution of the doc2vec features is,
however, limited: they help increasing the Recall
values (+0.03 points) but have a little effect on
the Precision (+0.01 point) when considering the
CRF models. On the contrary, they do not provide
any improvements with the SVM models.

As for the content and functional structure
classification models, the results indicate that
context features positively contribute to the
improvement of the classification task (the CRF-
clauseCF with context features outperforms
its direct counterpart, CRF-clauseC, in the
content-based classification setting). It is interest-
ing to notice a redundancy between the doc2vec
features and the context window. In this case,
the CRF-clause+doc2vecCF has the lowest
results for Precision and F1, and a slight increase
in Recall (0.68 vs. 0.67).

4 Related Work

The classification of text passages has been stud-
ied in previous works considering different textual
units (e.g., clauses, sentences, and paragraphs) or
language patterns (Kaufer et al., 2004). Several
annotation schemes, often based on genre-specific
taxonomies, have been proposed. This is the case,
for example, of the detection of the main compo-
nents in scholarly publications (Teufel et al., 2009;
Liakata et al., 2012; De Waard and Maat, 2012;
Burns et al., 2016) or the annotation of content
zones, i.e., functional constituents of texts (Bieler
et al., 2007; Stede and Kuhn, 2009; Baiamonte et
al., 2016). On the contrary, the notion of Con-
tent Types that we have adopted applies across
genres. CTs are based on linguistic theories on
discourse/rhetorical strategies but differ from dis-
course relations. Over the years, different typolo-
gies have been proposed (Werlich, 1976; Biber,
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Content-based Classification
Model P R F1 Acc.
Baseline (NARRATIVE) 0.42 0.65 0.51 0.65
SVM-clause 0.42 0.65 0.51 0.65
SVM-clause+doc2vec 0.42 0.65 0.51 0.65
CRF-clauseC 0.61 0.65 0.62 0.66
CRF-clause+doc2vecC 0.62 0.68 0.61 0.67

Content and Functional Structure Classification
Model P R F1 Acc.
Baseline (NARRATIVE) 0.42 0.65 0.51 0.65
CRF-clauseCF 0.62 0.67 0.64 0.67
CRF-clause+doc2vecCF 0.60 0.68 0.61 0.68

Table 4: Results of the classification experiments.

1989; Chatman, 1990; Adam, 1985; Longacre,
2013) but have been rarely treated computation-
ally, with the exception of the work by Cocco et
al. (2011).

The theory of Discourse Modes (DMs) (Smith,
2003) is instead followed by Mavridou et al.
(2015) that apply it to a paragraph-based pilot an-
notation of a variety of documents such as nov-
els, news and European Parliament proceedings.
Annotators intuitively labeled DMs relying on a
very short manual: as a consequence, no formal
guidelines were made available and only a mod-
erate agreement was achieved. Moreover, the fi-
nal dataset is not publicly available and the recog-
nition of DMs has not been automated yet. Our
approach is different: we rely on Werlich’s typol-
ogy, we provide complete annotation guidelines,
we make available the annotated dataset, and we
experiment automatic classification of CTs.

5 Conclusion and Future Work

In this work, we presented a novel resource an-
notated with CTs and a set of experiments aimed
at automatically classifying clauses based on con-
tent and on their functional structure. Although
this work is still in progress, the proposed an-
notation scheme proved sound and the developed
corpus can already provide insights into the func-
tional role of discourse segments with respect to
the clause meaning.

In addition to SVM and CRFs, we experimented
with artificial neural networks (ANN) using the
Keras5 framework running on the TensorFlow im-
plementation (Abadi et al., 2015). We tested dif-
ferent configurations but results are not higher

5https://github.com/fchollet/keras

than those obtained with CRFs. We will investi-
gate the reasons and try other models. Similarly,
we will investigate whether SVM kernels other
than the linear one can do better.

In the future, we will continue the annotation of
the dataset, by introducing documents from other
text genres (e.g. travel guides, news editorials,
school textbooks) so as to re-balance the distri-
butions of the CTs in the dataset. Furthermore,
we plan to study whether information on content
types can contribute to other NLP tasks. For exam-
ple, we believe that identifying NARRATIVE and
EVALUATIVECTs may contribute to discriminat-
ing between clauses useful to build a storyline or a
timeline of events (the former) and clauses bearing
sentiment information (the latter).
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Abstract

This paper presents work on using con-
tinuous representations for authorship at-
tribution. In contrast to previous work,
which uses discrete feature representa-
tions, our model learns continuous repre-
sentations for n-gram features via a neu-
ral network jointly with the classification
layer. Experimental results demonstrate
that the proposed model outperforms the
state-of-the-art on two datasets, while pro-
ducing comparable results on the remain-
ing two.

1 Introduction

Authorship attribution is the task of identifying the
author of a text. This field has attracted attention
due to its relevance to a wide range of applications
including forensic investigation (e.g. identifying
the author of anonymous documents or phishing
emails) (Chaski, 2005; Grant, 2007; Lambers and
Veenman, 2009; Iqbal et al., 2010; Gollub et
al., 2013) and plagiarism detection (Kimler, 2003;
Gollub et al., 2013).

From a machine learning perspective, the task
can be treated as a form of text classification. Let
D = d1, d2, ..., dn be a set of documents and A =
a1, a2, ..., am a fixed set of candidate authors, the
task of authorship attribution is to assign an author
to each of the documents in D. The challenge in
authorship attribution is that identifying the topic
preference of each author is not sufficient; it is
necessary to also capture their writing style (Sta-
matatos, 2013). This task is more difficult than
determining the topic of a text, which is generally
possible by identifying domain-indicative lexical
items, since writing style cannot be fully captured
by an author’s choice of vocabulary.

Previous studies have found that word and
character-level n-grams are the most effective fea-
tures for identifying authors (Peng et al., 2003;
Stamatatos, 2013; Schwartz et al., 2013). Word
n-grams can represent local structure of texts
and document topic (Coyotl-Morales et al., 2006;
Wang and Manning, 2012). On the other hand,
character n-grams have been shown to be effective
for capturing stylistic and morphological informa-
tion (Koppel et al., 2011; Sapkota et al., 2015).

However, previous work relied on discrete fea-
ture representations which suffer from data spar-
sity and do not consider the semantic relatedness
between features. To address this problem we
propose the use of continuous n-gram representa-
tions learned jointly with the classifier as a feed-
forward neural network. Continuous n-grams rep-
resentations combine the advantages of n-grams
features and continuous representations. The pro-
posed method outperforms the prior state-of-the-
art approaches on two out of four datasets while
producing comparable results for the remaining
two.

2 Related Work

An extensive array of authorship attribution work
has focused on utilizing content words and charac-
ter n-grams. The topical preference of authors can
be inferred by their choice of content words. For
example, Seroussi et al. (2013) used the Author-
Topic (AT) model (Rosen-Zvi et al., 2004) — an
extension of Latent Dirichlet Allocation (Blei et
al., 2003) — to obtain author representations. Ex-
periments on several datasets yielded state-of-the-
art performance.

Character n-grams have been widely used and
have the advantage of being able to capture
stylistic information. By using only the 2,500
most frequent 3-grams, Plakias and Stamatatos
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(2008) successfully achieved 80.8% accuracy on
the CCAT10 dataset, while Sapkota et al. (2015)
reported slightly lower performance using only
affix and punctuation 3-grams. Escalante et al.
(2011) represent documents using a set of local
histograms. This approach achieved an accuracy
of 86.4%.

Beside being effective indicators of an author’s
writing style, both content words and character
n-grams are also straightforward to extract from
documents and are therefore widely used for au-
thor attribution. More complex features which re-
quire deeper textual analysis are also useful for
the problem but have been used less frequently
since the complexity of analysis required can hin-
der performance (Stamatatos, 2009). There have
been several attempts to utilize semantic features
for author attribution tasks, e.g. (McCarthy et al.,
2006; Argamon et al., 2007; Brennan and Green-
stadt, 2009; Bogdanova and Lazaridou, 2014).
These approaches commonly use WordNet as a
source of semantic information about words and
phrases. For example, McCarthy et al. (2006)
used WordNet to detect causal verbs while Bren-
nan and Greenstadt (2009) used it to extract word
synonyms. Our proposed model does not rely on
any external linguistic resources, such as Word-
Net, making it more portable to new languages and
domains.

3 Continuous n-grams Representations

This work focuses on learning continuous n-gram
representations for authorship attribution tasks.
Continuous representations have been shown to be
helpful in a wide range of tasks in natural lan-
guage processing (Bengio et al., 2003; Mikolov
et al., 2013). Unlike the previous authorship attri-
bution work which uses discrete representations,
we represent each n-gram as a continuous vector
and learn these representations in the context of
the authorship attribution tasks being considered.

To learn the n-gram feature representations
jointly with the classifier we adopt the shallow
neural network architecture of fastText, which was
recently proposed by Joulin et al. (2016). This
model is similar to a standard linear classifier, but
instead of representing a document with a discrete
feature vector, the model represents it with a con-
tinuous vector obtained by averaging the contin-
uous vectors for the features present. More for-
mally, fastText predicts the probability distribution

over the labels for a document as follows:

p(y|x) = softmax(BAx) (1)

where x is the frequency vector of features for the
document, the weight matrixA is a dictionary con-
taining the embeddings learned for each feature,
and B is a weight matrix that is learned to pre-
dict the label correctly using the learned represen-
tations (essentially averaged feature embeddings).

Since the documents in this model are repre-
sented as bags of discrete features, sequence in-
formation is lost. To recover some of this infor-
mation we will consider feature n-grams, similar
to the way convolutional neural network architec-
tures incorporate word order (Kim, 2014) but with
a simpler architecture.

The proposed model ignores long-range depen-
dencies that could conceivably be captured using
alternative architectures, such as recurrent neural
networks (RNN) (Mikolov et al., 2010; Luong et
al., 2013). However, topical and stylistic infor-
mation is contained in shorter word and character
sequences for which the shallow neural network
architectures with n-gram feature representations
are likely to be sufficient, while having the ad-
vantage of being much faster to run. This is par-
ticularly important for authorship attribution tasks
which normally involves documents that are much
longer than the single sentences which RNNs typ-
ically model.

4 Experiments

4.1 Datasets
We use four datasets in our experiments: Judg-
ment, CCAT10, CCAT50 and IMDb62. These
datasets have a different number of authors and
document sizes, which allows us to perform
experiments and test our approaches in different
scenarios. All datasets were made available by the
authors of their respective papers. Table 1 shows
descriptive statistics for the datasets.

Judgment (Seroussi et al., 2011). The Judg-
ment dataset was collected from judgment writing
of three Australian High Court’s judges (Dixon,
McTiernan, and Rich) on various topics. In this
dataset, the number of documents per author
is not fixed; there are 902 docs from Dixon,
253 docs from McTiernan and 187 docs from
Rich. Following Seroussi et al. (2013), we
only use documents with undisputed authorship
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Judgment CCAT10 CCAT50 IMDb62

# authors 3 10 50 62
# total documents 1,342 1,000 5,000 79,550
avg characters per document 11,957 3,089 3,058 1,401
avg words per document 2367 580 584 288

Table 1: Dataset statistics.

and run experiments with 10-fold cross-validation.

CCAT10 (Stamatatos, 2008). This dataset is a
subset of Reuters Corpus Volume 1 (RCV1) (Rose
et al., 2002) and consists of newswire stories by
10 authors labelled with the code CCAT (which
indicates corporate/industrial news). The corpus
was divided into 50 training and 50 test texts
per author. In the experiments we follow prior
work (Stamatatos, 2013) and measure accuracy
using the train/test partition provided.

CCAT50. This corpus is a larger version of
CCAT10. In total there are 5,000 documents from
50 authors. Same as CCAT10, for each of the
author there are 50 training and 50 test documents.

IMDb62 (Seroussi et al., 2010). The IMDb62
dataset consists of 62,000 movie reviews and
17,550 message board posts from 62 prolific
users of the Internet Movie database (IMDb,
www.imdb.com). Following Seroussi et al.
(2013), 10-fold cross-validation was used.

4.2 Model Variations

We perform experiments with three variations of
our approach:

• Continuous word n-grams. In this model
we use word uni-grams and bi-grams. We set
the 700 most common words as the vocabu-
lary.

• Continuous character n-grams. Follow-
ing previous work (Sanderson and Guenter,
2006), we use up to four-grams, as it is found
to be the best n value for short English text.
We follow Zhang et al. (2015) by setting the
vocabulary to 70 most common characters in-
cluding letters, digits, and some punctuation
marks.

• Continuous word and character n-grams.

This model combines word and character n-
grams features.

4.3 Hyperparameters Tuning and Training
Details

For all datasets, early stopping was used on the
development sets and models trained with the
Adam update rule (Kingma and Ba, 2015). Since
none of the datasets have a standard develop-
ment set, we randomly selected 10% of the train-
ing data for this purpose. Both word and char-
acter embeddings were initialized using Glorot
uniform initialization (Glorot and Bengio, 2010).
Keras’s (Chollet, 2015) implementation of fast-
Text was used for the experiments. The soft-
max function was used in the output layer with-
out the hashing trick, which was sufficient for
our experiments given the relatively small sized
datasets. Code to reproduce the experiments
is available from https://github.com/
yunitata/continuous-n-gram-AA.

For the Judgment, CCAT10 and CCAT50
datasets an embedding layer with embedding size
of 100, dropout rate of 0.75, learning rate of 0.001
and mini-batch size of 5 were used. The model
was trained for 150 epochs. The values for the
dropout rate and mini-batch size were chosen us-
ing a grid search on the CCAT10 devset. Other
hyperparameters values (i.e. learning rate and em-
bedding size) are fixed. For IMDb62, we used
the same dropout rate. In order to speed up the
training process on this dataset, the learning rate,
embedding size, mini-batch size and number of
epochs were set to 0.01, 50, 32 and 20 respec-
tively.

5 Results and Discussion

Table 2 presents the comparison of the proposed
approaches against the previous state-of-the-art
methods on the four authorship attribution datasets
considered. Overall, our results show the ef-
fectiveness of continuous n-grams representations
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Model Judgment CCAT10 CCAT50 IMDb62 Average

SVM with affix+punctuation 3-grams (Sapkota et al., 2015) - 78.80 69.30 - -

SVM with 2,500 most frequent 3-grams (Plakias and Sta-
matatos, 2008)

- 80.80 - - -

STM-Asymmetric cross (Plakias and Stamatatos, 2008) - 78.00 - - -

SVM with bag of local histogram (Escalante et al., 2011) - 86.40 - - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52 -

Authorship attribution with topic models (Seroussi et al., 2013) 93.64 - - 91.79 -

Continuous n-gram words (1,2) 90.31 77.80 70.16 87.87 81.54

Continuous n-gram char (2,3,4) 91.29 74.80 72.60 94.80 83.37

Continuous n-gram words (1,2) and char (2,3,4) 91.51 77.20 72.04 94.28 83.51

Table 2: Comparison against previous results.

which outperform the previous best results on the
CCAT50 and IMDb62 datasets. In the Judgment
dataset, our models obtain comparable results with
the previous best. However as can be seen in the
table, the accuracy on CCAT10 is substantially
worse than the one reported by Escalante et al.
(2011)’s result. Our attempt to reproduce their re-
sult failed by obtaining only 77% in the accuracy.
Another attempt by Potthast et al. (2016) reported
slightly worse accuracy of 75.4%.

Figure 1: Accuracy on IMDb62 data subset with
varying number of authors

5.1 Word vs Character

Table 2 demonstrates that the character models are
superior to the word models. In particular, we
found that models which employ character level
n-grams appear to be more suitable for datasets
with a large number of authors, i.e. CCAT50 and
IMDb62. To explore this further, we ran an addi-

tional experiment varying the number of authors
on a subset of IMDb62. For each of the authors
we use 200 documents, with 10% of the data used
as the development set and another 10% as the test
set. Figure 1 shows a steep decrease in the accu-
racy of word models when the number of authors
increases. The drop in accuracy of the character
n-gram model is less pronounced.

Character models also achieve a slightly better
result on the Judgment dataset which consists of
only three authors. This can be explained by the
fact that the documents in this corpus are signif-
icantly longer (almost ten and four times longer
than those in IMDb62 and CCAT50 respectively
(see Table 1). The large numbers of word n-grams
make it more difficult to learn good parameters
for them. Combining word and character n-grams
only produced a very small improvement on this
dataset.

5.2 Domain Influence

The majority previous work on authorship attribu-
tion has concluded that content words are more
effective for datasets where the authors can be
discriminated by the document topic (Peng et al.,
2004; Luyckx, 2010). Seroussi et al. (2013) show
that the Judgment and IMDb62 datasets fall into
this category and approaches based on topic mod-
els achieve high accuracy (more than 90%). How-
ever, our results demonstrate stylistic information
from continuous character n-grams can outper-
form word-based approaches on both datasets. In
addition, this results also support the superiority
of character n-grams that have been reported in
the previous work (Peng et al., 2003; Stamatatos,
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2013; Schwartz et al., 2013).

5.3 Feature Contributions

An ablation study was performed to further ex-
plore the influence of different types of features
by removing a single class of n-grams. For this
experiment the character model was used on the
two CCAT datasets. Three feature types are de-
fined including:

1. Punctuation N-gram: A character n-gram
which contains punctuations. There are 34
punctuation symbols in total.

2. Space N-gram: A character n-gram that con-
tains at least one whitespace character.

3. Digit N-gram: A character n-gram that con-
tains at least one digit.

In addition, we also assess the influence of the
length of the character n-grams. Results are pre-
sented in the Table 3.

CCAT10 CCAT50

all features (char model) 74.80 72.60
(–) punctuation n-grams 73.80 68.80
(–) space n-grams 71.80 70.20
(–) digit n-grams 75.60 71.28
(–) bi-grams 76.20 72.08
(–) tri-grams 74.80 71.84
(–) four-grams 74.40 71.16

Table 3: Results of feature ablation experiment.

Table 3 demonstrates that removing punctuation
and space n-grams leads to performance drops on
both of the datasets. On the other hand, leaving
out digit n-grams and bi-grams improves accuracy
on the CCAT10 dataset. Other n-gram types do
not seem to affect the results much.

6 Conclusion

This paper proposed continuous n-gram represen-
tations for authorship attribution tasks. Using four
authorship attribution datasets, we showed that
this model is effective for identifying writing style
of the authors. Our experimental results provide
evidence that continuous representations are suit-
able for a stylistic (as opposed to topical) text clas-
sification task such as authorship attribution.
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Abstract

In this paper, we address the (to the best
of our knowledge) new problem of ex-
tracting a structured description of real
estate properties from their natural lan-
guage descriptions in classifieds. We sur-
vey and present several models to (a) iden-
tify important entities of a property (e.g.,
rooms) from classifieds and (b) structure
them into a tree format, with the entities
as nodes and edges representing a part-of
relation. Experiments show that a graph-
based system deriving the tree from an ini-
tially fully connected entity graph, outper-
forms a transition-based system starting
from only the entity nodes, since it better
reconstructs the tree.

1 Introduction

In the real estate domain, user-generated free text
descriptions form a highly useful but unstructured
representation of real estate properties. How-
ever, there is an increasing need for people to find
useful (structured) information from large sets of
such descriptions, and for companies to propose
sales/rentals that best fit the clients’ needs, while
keeping human reading effort limited. For exam-
ple, real estate descriptions in natural language
may not be directly suited for specific search fil-
ters that potential buyers want to apply. On the
other hand, a hierarchical data structure represent-
ing the real estate property enables specialized fil-
tering (e.g., based on the number of bedrooms,
number of floors, or the requirement of having a
bathroom with a toilet on the first floor), and is ex-
pected to also benefit related applications such as
automated price prediction (Pace et al., 2000; Na-
garaja et al., 2011).

Our primary objective is to define the new real

estate structure extraction problem, and explore
its solution using combinations of state-of-the-art
methods, thus establishing its difficulty by obtain-
ing performance results for future reference. More
specifically, we contribute with: (i) the defini-
tion of the real estate extraction problem, amount-
ing to a tree-like structured representation of the
property (the property tree) based on its natu-
ral language description; (ii) the introduction of
structured learning methods that solve the newly
defined problem; and (iii) experimental evalua-
tion of the systems on a newly created and anno-
tated real-world data set. For part (ii), we break
down the problem into simpler components, using
(1) Conditional Random Fields (CRFs) for real es-
tate entity recognition (where entities are floors,
rooms, sub-spaces in rooms, etc.), (2) non-projec-
tive dependency parsing to predict the part-of re-
lationships between such entities (comparing lo-
cal and global graph-based, and transition-based
algorithms), and (3) a maximum spanning tree al-
gorithm for decoding the desired property tree.

2 Related work

The challenge in structured prediction largely
stems from the size of the output space. Specifi-
cally in NLP, for sequence labeling (e.g., named
entity recognition), which is the first building
block of our system, a number of different meth-
ods have been proposed, namely CRFs (Lafferty
et al., 2001), Maximum Margin Markov Network
(M3N) (Taskar et al., 2003), SVMstruct (Tsochan-
taridis et al., 2004) and SEARN (Daumé III et al.,
2009).

We exploit dependency parsing methods for the
construction of the property tree which is similar
to the problem of learning the dependency arcs
of a sentence. Dependency parsing research has
focused on both graph-based and transition-based
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parsers. McDonald et al. (2005; 2007) have shown
that treating dependency parsing as the search of
the highest scoring maximum spanning tree in
graphs yields efficient algorithms for both pro-
jective (dependencies are not allowed to cross)
and non-projective (crossing dependencies are al-
lowed) trees. Later, Koo et al. (2007), adapted
the Matrix-Tree Theorem (Tutte, 2001) for glob-
ally normalized training over all non-projective
dependency trees. On the other hand, transition-
based dependency parsing aims to predict a tran-
sition sequence from an initial to some termi-
nal configuration and handles both projective and
non-projective dependencies (Nivre, 2003; Nivre,
2009). Recent advances on those systems in-
volve neural scoring functions (Chen and Man-
ning, 2014) and globally normalized models (An-
dor et al., 2016).

More recently, a substantial amount of work
(Kate and Mooney (2010), Li and Ji (2014), Miwa
and Sasaki (2014) and Li et al. (2016)) jointly con-
sidered the two subtasks of entity recognition and
dependency parsing. Our work is different since
we aim to handle directed spanning trees, or equiv-
alently non-projective dependency structures (i.e.,
the entities involved in a relation are not necessar-
ily adjacent in the text since other entities may be
mentioned in between), which complicates pars-
ing.

3 Structured prediction of real estate
properties

We now present the real estate extraction problem
and our proposed proof-of-concept solutions.

3.1 Problem formulation

We define entities and entity types for our real es-
tate extraction task. We define an entity as an un-
ambiguous, unique part of a property with inde-
pendent existence (e.g., bedroom, kitchen, attic).
We define as entity mention, a textual phrase (e.g.,
“a small bedroom”) that we can potentially link
to one or more of the entities and whose seman-
tic meaning unambiguously represents a specific
entity. Each entity can occur several times in the
text, possibly with different mentions and we fur-
ther classify entities into types as listed in Table 1.

The goal of our structured prediction task is to
convert the given input text to a structured repre-
sentation in the form of a so-called property tree,
as illustrated in Fig. 1. That conversion implies

Entity type Description Examples

property The property. bungalow, apartment
floor A floor in a building. ground floor
space A room within the building. bedroom, bathroom
subspace A part of a room. shower, toilet
field An open space inside or out-

side the building.
bbq, garden

extra building An additional building which
is also part of the property.

garden house

Table 1: Real estate entity types.

O r i g i n a l ad :
The p r o p e r t y i n c l u d e s an a p a r t m e n t house
wi th a g a r a g e . The house has l i v i n g room ,
k i t c h e n and bathroom wi th shower .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Struc tured r e p r e s e n t a t i o n :
house | ment ion = ‘ a p a r t m e n t house ’

l i v i n g room | ment ion = ‘ l i v i n g room ’
k i t c h e n | ment ion = ‘ k i t c h e n ’
bathroom | ment ion = ‘ bathroom ’

shower | ment ion = ‘ shower ’
g a r a g e | ment ion = ‘ garage ’

Figure 1: Sample unstructured ad and correspond-
ing structured representation as a property tree.

both the detection of entities of various types (the
“house” property entity, and the spaces “living
room”, “kitchen”, etc.) as well as the part-of de-
pendencies between them (e.g., that the “kitchen”
is a part of the “house”). We cast the tree con-
struction given the entities as a dependency pars-
ing task over the search of the most probable prop-
erty tree, since (i) this means decisions on all pos-
sible part-of relations are taken jointly (e.g., a cer-
tain room can only be part of a single floor), and
(ii) we can deal with the fact that there are no hard
a priori constraints on the types of entities that can
be part of others (e.g., a room can be either part of
a floor, or the property itself, like an apartment).
It’s worth mentioning that dependency annotations
for our problem exhibit a significant number of
non-projective arcs (26%), meaning that entities
involved in the part-of relation are non-adjacent
(i.e., interleaved by other entities), as intuitively
expected.

3.2 Structured prediction model

We now describe the constituents of our pipeline
to solve the property tree extraction from natural
language ads, as sketched in Fig. 2: (1) recognize
the entity mentions (Section 3.2.1), then (2) iden-
tify the part-of dependencies between those en-
tity mentions (Section 3.2.2), and finally (3) con-
struct the tree structure of the property (e.g., as in
Fig. 1). In step (2), we focus on comparing lo-
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(1) entity
recognition

(2) part-of RE (3) tree
construction

...

(2+3) direct tree construction

Figure 2: The full structured prediction pipeline.

cally and globally trained graph-based models and
a transition-based one. We only explicitly perform
step (3) in graph-based models, by applying the
maximum spanning-tree algorithm (Chu and Liu,
1965; Edmonds, 1967) for the directed case (see
McDonald et al. (2005)). As an alternative, we
use a transition-based system, which by definition
deals with non-projective trees, and does not need
spanning tree inference.

3.2.1 Sequence labeling
The first step in our structured prediction baseline
is a sequence labeling task, similar to NER: given
a real estate ad’s plain text, we extract the entity
mention boundaries and map the type of the entity
mentions. We adopt linear chain CRFs, a special
case of the CRF algorithm (Lafferty et al., 2001;
Peng and McCallum, 2006), widely used for the
problem of sequence labeling.

3.2.2 Part-of tree construction
The aim of this component is to connect each en-
tity to its parent. This is similar to dependency
parsing but instead of mapping the whole sen-
tence, we map only the identified entity set x (e.g.,
house) to a dependency structure y. Given the en-
tity set x with n terms, a dependency is a tuple
(p, c) where p ∈ {0, ..., n} is the index of the par-
ent term in entity set x, p = 0 is the root-symbol
(only appears as parent) and c ∈ {1, ..., n} is the
index of the child term in the entity set. We use
D(x) to refer to all possible dependencies of x and
T (x) to all possible dependency structures.

We now present our approaches to solve this
part-of tree construction problem.

Locally trained model (Threshold/Edmonds)
We focus on local discriminative training meth-
ods (Yamada and Matsumoto, 2003) where a bi-
nary classifier learns the part-of relation model
(step (2)). Given a candidate parent-child pair,
the classifier scores reflect how likely the part-of
relation holds. The output is then used for the
next and final step (3) of constructing the prop-

erty tree. Specifically, we construct a fully con-
nected directed graph G = {V,E} with the en-
tities as nodes V , and edges E representing the
part-of relation with the respective classifier scores
as weights. A naive approach to obtain the tree
prediction is threshold-based: keep all edges with
weights exceeding a threshold. This is obviously
not guaranteed to end up being a tree and might
even contain cycles. Our approach directly aims
at finding the maximum spanning tree inside the
(directed) graph to enforce a tree structure. To this
end, techniques designed for dependency parsing
in natural text can be used, more in particular we
use Edmonds’ algorithm (McDonald et al., 2005).

Globally trained model (MTT)
The Matrix-Tree theorem (MTT) (Koo et al.,
2007) provides the algorithmic framework to train
globally normalized models that involve directed
spanning trees, i.e., score parse trees for a given
sentence. Assume we have a vector θ in which
each value θh,m ∈ R corresponds to a weight
∀(h,m) ∈ D(x). The conditional distribution
over all dependency structures y ∈ T (x) is:

P (y|x; θ) =
1

Z(x; θ)
exp

 ∑
h,m∈y

θh,m

 (1)

normalized by the partition function Z(x; θ),
which would require a summation over the expo-
nentially large number of all possible dependency
structures in T (x). However, the MTT allows di-
rectly computing Z(x; θ) as det(L(θ)), in which
L(θ) is the Laplacian matrix of the graph.

Transition-based dependency parsing (TB)
Given that our system needs to be able to han-
dle non-projective dependency arcs, we employ
a greedy transition-based parsing system (Nivre,
2009; Bohnet and Nivre, 2012) as the basis of
our parser. The system is defined as a configu-
ration C = (Σ, B,A) which consists of Σ the
stack, B the buffer and A the set of dependency
arcs. The aim is, given an initial configuration
and a set of permissible actions, to predict a tran-
sition sequence to some terminal configuration to
derive a dependency parse tree. We define the ini-
tial configuration for an entity set x = w1, ..., wn

to be ([root],[w1, ..., wn],{}) and the terminal con-
figuration ([0],[],A) (for any arc set A). The first
three actions (LEFT-ARC, RIGHT-ARC, SHIFT)
are defined similar to arc-standard systems (Nivre,
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Entity type TP FP FN Precision Recall F1

property 3170 1912 2217 0.62 0.59 0.61
floor 2685 515 529 0.84 0.84 0.84
space 11952 2053 2003 0.85 0.86 0.86
subspace 4338 575 1181 0.88 0.79 0.83
field 2083 700 718 0.75 0.74 0.75
extra building 253 34 143 0.88 0.64 0.74

Overall 24481 5789 6791 0.81 0.78 0.80

Table 2: Performance of the real estate entity
recognition with hyperparameter λCRF = 10.

2003) for projective dependency parsing. In ad-
dition, the SWAP operation reorders the input
words, thus allowing to derive non-projective trees
(Nivre, 2009).

4 Experimental results

We present results for the total real estate frame-
work as well as for each step individually.

4.1 Experimental setup
We collected 887,599 Dutch property advertise-
ments from a real estate company.1 Three hu-
man annotators manually annotated 2,318 ads (1
annotation per ad, ∼773 ads per annotator) by
creating the property tree of the advertisements.
The dataset is available for research purposes, see
our github codebase.2 In our experiments, we
use only the annotated text advertisements. We
implemented the local model, the MTT and the
non-projective transition-based system. The code
thereof is available on github.2 We also use our
own CRF implementation. We measure precision,
recall, and F1 on the test set, and report averaged
values in a 5-fold cross-validation setting.

4.2 Entity extraction
Table 2 presents our results for the sequence label-
ing subtask. We separately show the performance
of our model for each entity type (see Table 1).
Overall, the CRF performs well with a score of
F1 = 0.80. Specifically, space is the best perform-
ing entity type. Note that the space entity type is
the most frequent one in our table. On the other
hand, property is the least represented class, since
the ads usually mention the property type only
once. The performance of the property class is
lower because it can have a wide range of values
(e.g., “helios apartments”, “milos villa”). More-
over, the entity mentions for the space type are

1https://www.realo.be/en
2https://github.com/bekou/ad_data

Model TP FP FN Precision Recall F1

kn
ow

n
en

tit
ie

s Thresh. 15723 6365 16461 0.71 0.49 0.58
Edm. 22058 10126 10126 0.69 0.69 0.69
MTT 22361 9823 9823 0.70 0.70 0.70
TB 14816 17368 17368 0.46 0.46 0.46

fu
ll

pi
pe

lin
e Thresh. 9309 9846 22965 0.49 0.29 0.36

Edm. 12859 17417 19415 0.42 0.40 0.41
MTT 12426 17850 19848 0.41 0.39 0.40
TB 9677 19043 22507 0.34 0.30 0.32

Table 3: Performance of the three approaches on
the structured prediction task. The top half are
results for known entities (i.e., the gold standard
as annotated), while the bottom half starts from
the entities as found in step (1) of our end-to-end
pipeline (λCRF = 10 and C = 1).

better separable, as expected, since the mentions
do not vary a lot (e.g., “shower”, “bedroom”).

4.3 Dependency parsing

The upper part of Table 3 lists the performance for
the dependency parsing subtask by itself, assum-
ing perfect real estate entity recognition: for this
evaluation we used the gold standard provided by
the annotations. We measure the performance on
the threshold-based model, the logistic regression
and the MTT scorings followed by Edmonds’ al-
gorithm for directed graphs to enforce a tree struc-
ture and the transition-based (TB) model. Note
that in the case of known entities we have that
there are exactly as many false positives as false
negatives, since an incorrect edge prediction (FP)
implies that the correct one has not been predicted
(FN), and vice versa, because of the enforced tree
structure that has to cover all entities. As expected,
the MTT approach performs better than the others,
because the globally trained model learns directed
spanning trees. Predicting the maximum spanning
tree (Edmonds’) achieves higher F1 score than
simply considering the predictions of the classi-
fier without any structural enforcement (threshold-
based). The TB class of parsers is of great inter-
est because of their speed, state-of-the-art perfor-
mance (Andor et al., 2016) and the potential to be
extended towards joint models (future work), al-
though in our comparative study they tend to per-
form slightly worse than the graph-based parsers,
because of subsequent error propagation (Chen
and Manning, 2014).
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4.4 Pipeline approach
The bottom rows in Table 3 refer to the pipeline
approach combining both sequence labeling and
dependency parsing subtasks: input entities for the
parser are not necessarily correct. Given a new
real estate ad, first the CRF identifies the entity
mention token boundaries and then the tree struc-
ture among the extracted entities is constructed.
The locally trained approach yields marginally
better performance than MTT: MTT learns span-
ning tree sequences as a whole, so it is harder to
connect segments that are incorrect or incomplete.
The TB system exhibits the same performance as
in the case where entities were known, but we
think that incorporating neural scoring functions
(Chen and Manning, 2014) or using beam-search
instead of using the greedy approach will improve
performance (Andor et al., 2016).

5 Conclusion

In this paper, we presented a comparative study on
the newly defined problem of extracting the struc-
tured description of real estate properties. We di-
vided the problem into the sub-problems of se-
quence labeling and non-projective dependency
parsing since existing joint models are restricted
to non-crossing dependencies. Overall, MTT out-
performs other approaches when the entities are
known while adopting a maximum spanning tree
algorithm using individual scored edge weights
seems to be marginally better in our pipeline.
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Abstract

State-of-the-art neural machine translation
(NMT) systems are generally trained on
specific domains by carefully selecting the
training sets and applying proper domain
adaptation techniques. In this paper we
consider the real world scenario in which
the target domain is not predefined, hence
the system should be able to translate text
from multiple domains. We compare the
performance of a generic NMT system and
phrase-based statistical machine transla-
tion (PBMT) system by training them on a
generic parallel corpus composed of data
from different domains. Our results on
multi-domain English-French data show
that, in these realistic conditions, PBMT
outperforms its neural counterpart. This
raises the question: is NMT ready for de-
ployment as a generic/multi-purpose MT
backbone in real-world settings?

1 Introduction

Neural machine translation systems have recently
outperformed their conventional statistical coun-
terparts in the translation tasks in several domains
such as news (Sennrich et al., 2016a), UN docu-
ments (Junczys-Dowmunt et al., 2016), and spo-
ken language data (Luong and Manning, 2015).
One common pattern in all these cases is that the
target domain is always predefined, hence it is fea-
sible to perform domain adaptation techniques in
order to boost system performance for that par-
ticular application. However, in real-world appli-
cations it is very hard, if not impossible, to de-
velop and maintain several specific MT systems
for multiple domains. This is mostly due to the
fact that usually: i) the target domain is not known
in advance, and users might query different sen-

tences from different domains; ii) the application
domains are very diverse, which makes the pos-
sibility of developing and fine-tuning one system
for each domain unfeasible; iii) there is no (or
very limited amount of) in-domain training data
to train domain-specific MT engines. In this situ-
ation, it is necessary to have high quality MT sys-
tems that perform consistently well in all (or most
of) the domains. This problem becomes more im-
portant when we consider the case of small/mid-
size language service providers, and their limited
resources, which forces them to have few MT en-
gines, but as much accurate as possible.

Considering the challenges posed by real-world
applications, the recent NMT hype has hence to be
put into perspective, trying to understand whether,
in specific conditions, the neural paradigm is the
Holy Grail for MT or not. To this aim, in this pa-
per we compare the performance of phrase-based
SMT (PBMT) and neural MT (NMT) systems in
a real-world scenario in which the systems are
trained on a combination of multiple domains, and
analyse their differences and behaviours. Our ex-
periments on an English-French data set, suggest
that there is still some way to go to make NMT
really usable “into the wild” (i.e. to make it stable
and robust to multi-domain training data). In Sec-
tion 2 we review the state-of-the-art approaches of
multi-domain machine translation for both PBMT
and NMT. In Section 3 we describe our experi-
mental setup. The results are described and anal-
ysed in Section 4, where we compare different be-
haviours of PBMT and NMT in more details.

2 Multi-Domain Machine Translation

Multi-domain machine translation is very well-
studied in the field of statistical phrase-based MT.
The approaches proposed for this issue vary from
learning a single model from pooled training data,
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to more complicated (log-)linear interpolations of
multiple models using mixture models (Foster and
Kuhn, 2007) and linear mixture models (Carpuat
et al., 2014).

However, being a very new field of research,
to the best of our knowledge, there is no work
on developing multi-domain NMT systems. How-
ever, to the best of our knowledge, there is still
no work on developing multi-domain systems (i.e.
generic/multi-purpose systems trained with all the
data available at a given time) within the state-
of-the-art NMT framework. Indeed, though in-
teresting and well motivated from an application-
oriented perspective (e.g. think about a translation
company looking for a generic MT backbone us-
able for jobs coming from any domain), this is-
sue is still unexplored. The current state-of-the-
art research in NMT explored the effectiveness of
domain adaptation, and the approaches for how to
adapt existing NMT systems to a new domain (Lu-
ong and Manning, 2015). The assumption of these
works, however, is that the new target domains are
either known in advance or presented together af-
ter some sample data have been made available to
fine-tune the system. There exist an active field
of research that is trying to solve a quite differ-
ent issue that has a similar motivation, which is
multi-lingual NMT (Firat et al., 2016a; Firat et al.,
2016b; Johnson et al., 2016). The motivations be-
hind these works are very similar to the ones de-
scribed in Section 1, which is mostly simplifying
the deployment of MT engines in the production
lines. So, the final goal is to reduce the number
of final systems, trained with pooled multi-domain
data sets, without degrading the final performance.
As we will see in the remainder of this paper, this
issue is still open, especially when we embrace the
state-of-the-art NMT paradigm.

3 Experimental Setup

3.1 Data

To mimic the real-world applications, we trained
our generic systems on a collection of publicly
available English-French data from different do-
mains: European Central Bank (ECB), Gnome,
JRC-Acquis (JRC), KDE, OpenOffice (OOffice),
PHP, Ubuntu, and translated UN documents (UN-
TM).1 Since the size of these corpora are relatively
small for training robust data-driven MT systems,

1All these corpora are available in http://opus.lingfil.uu.se

Segments Tokens Types
ECB 147.7K 3.1M 40.9K
Gnome 238.4K 1.7M 16.8K
JRC 689.2K 10.8M 78.4K
KDE4 163.2K 1.0M 42.0K
OOffice 34.5K 389.0K 9.3K
PHP 38.4K 259.0K 9.7K
Ubuntu 9.0K 47.7K 8.6K
UN-TM 40.3K 913.8K 12.5K
CommonCrawl 2.6M 57.8M 759.4K
Europarl 1.7M 39.6M 111.0K

Table 1: Statistics of the English side of the origi-
nal corpora, after pre-processing.

Segments Tokens Types
ECB 1000 20.9K 3.8K
Gnome 982 7.3K 1.9K
JRC 757 14.8K 2.9K
KDE4 988 14.8K 2.1K
OOffice 976 11.1K 1.9K
PHP 352 5.3K 1.3K
Ubuntu 997 5.1K 1.9K
UN-TM 910 22.2K 3.1K

Table 2: Statistics of the English side of the test
corpora.

in particular NMT solutions, we used Common-
Crawl and Europarl corpora as out-domain data in
addition to the above-mentioned domain-specific
corpora, resulting in a parallel corpus of 5.5M
sentence pairs. The statistics of the corpora are
presented in Table 1. All the corpora are pre-
processed by normalizing punctuation, removing
special characters, tokenizing, truecasing, and re-
moving empty lines as well as sentences with
lengths greater than 50 and also the ones with
length ratio greater than (1:9), using the standard
Moses scripts. Then, a set of 500 sentence pairs
from each domain is selected randomly as de-
velopment and 1000 sentence pairs as held-out
test corpus; duplicated sentence pairs are then re-
moved from each corpus separately, resulting in a
total of 3,527 and 6,962 sentence pairs for dev and
test corpora for all the domains. The statistics of
the test corpora are reported in Table 2.

3.2 Phrase-based SMT

The experiments of the phrase-based SMT sys-
tems are carried out using the open source Moses
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toolkit (Koehn et al., 2007). The word alignment
models are trained using fast-align (Dyer et al.,
2013). In our experiments we used 5-gram lan-
guage models trained with modified Kneser-Ney
smoothing using KenLM toolkit (Heafield et al.,
2013). The weights of the parameters are tuned
with batch MIRA (Cherry and Foster, 2012) to
maximize BLEU on the development set. Devel-
opment set is a combination of all the development
corpora of all the domains.

3.3 Neural MT

All the experiments of the NMT systems are con-
ducted with the Nematus toolkit2 which is an im-
plementation of the attentional encoder-decoder
architecture (Bahdanau et al., 2014). Since han-
dling large vocabularies is one of the main bottle-
necks of the existing NMT systems, in practice the
state-of-the-art NMT systems are trained on the
training corpora in which the less frequent words
are segmented into their sub-word units (Sennrich
et al., 2016b) by applying the modified version of
the byte pair encoding (BPE) compression algo-
rithm (Gage, 1994). This makes the NMT systems
capable of dealing with new and rare words, re-
sulting in open-vocabulary translations. Following
the common practice in the field, we segmented
the training corpora using the scripts provided by
the Nematus toolkit. As recommended by (Sen-
nrich et al., 2016b), in order to increase the con-
sistency in segmenting the source and target text,
the source and target side of the training set are
combined and number of merge rules is set to
89,500, resulting in vocabularies of size 78K and
86K tokens for English and French languages, re-
spectively. We use mini-batches of size 100, word
embeddings of size 500, and hidden layers of size
1024. The maximum sentence length is set to 50
in our experiments. The models are trained using
Adagrad (Duchi et al., 2011), reshuffling the train-
ing corpora for each epoch. The models are eval-
uated every 10,000 mini-batches via BLEU (Pap-
ineni et al., 2002). It is worth mentioning that with
the same set-up we recently achieved state-of-the-
art performance in the International Workshop on
Spoken Language Translation evaluation (Farajian
et al., 2016).

2https://github.com/rsennrich/nematus

4 Analysis and Discussion

Table 3 presents the results of the generic systems
(PBMT gen. and NMT gen.) and the NMT system
adapted to the concatenation of all the eight spe-
cific domains (NMT-adp.jnt), as well as the NMT
systems which are specifically adapted to each do-
main separately (NMT-adp.sep). In the case of
NMT-adp.jnt and NMT-adp.sep we used the best
model of the NMT gen. and adapted it to their
corresponding training corpora by continuing the
training for several epochs, using the training data
of that specific domain.

4.1 NMT vs. PBMT in Multi-domain
scenario

As the results show, the generic PBMT system
outperforms its NMT counterpart in all the do-
mains by a very large margin; and as the NMT
system becomes more specific by observing more
domain-specific data, the gap between the per-
formances reduces until the NMT outperforms;
which confirms the results of the previous works in
this field (Luong and Manning, 2015). However, it
is interesting to see what is the reason behind the
very low performance of the generic NMT system
compared to the generic PBMT. First, we noticed
that in the case of PHP corpus, the text is very
noisy (ie. misaligned sentences) which makes it
hard for the system to learn reliably. For instance,
we observed that in one case, the same English
sentence is aligned with more than 20 French sent-
neces which are mostly wrong translations.

Second, by analysing the number of repeated
sentence pairs in the training corpora we observed
that Gnome corpus has the highest repetition rate
among all the domains (each sentence is repeated
4.6 times in average), hence leaving a large space
for NMT to memorize the translation patterns of
this specific domain. This can partially justify the
reason behind the very large gain after adapting
the NMT system in this domain.

Third, we noticed that in the case of Ubuntu do-
main, the gain of domain adaptation is very min-
imal for both of the adapted NMT systems. By
looking at the token/type ratios we observed that
this specific domain has the lowest ratio, 5.12,
which means each word is observed around 5
times in the corpus, while for the other corpora
is at least five times more; ranging from 25.35 in
the case of KDE corpus to 146.34 in the case of
JRC-Acquis. In our opinion there is a high rela-
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PBMT
gen.

NMT
gen.

NMT
adp.
jnt.

NMT
adp.
sep.

Overall 61.06 48.25 54.67 62.32
ECB 58.61 46.53 52.23 58.04
Gnome 90.54 61.49 79.26 93.76
JRC 66.26 56.49 61.00 62.62
KDE4 50.64 46.36 51.29 55.71
OOffice 37.11 31.75 35.45 39.85
PHP 47.04 33.43 34.23 39.73
Ubuntu 45.76 45.27 46.14 46.87
UN-TM 69.69 52.14 60.53 75.72

Table 3: Performance of the generic and adapted
systems in terms of BLEU score.

tion between the token/type ratio and the amount
of gain obtained in the domain adaptation phase.

4.2 Open Vocabulary Translation in
Technical Domains

The word segmentation approach proposed in
(Sennrich et al., 2016b) has been shown to be
very effective in obtaining open vocabulary trans-
lation with a fixed vocabulary in NMT. While this
holds true for several cases such as morpholog-
ically complex words, we noticed that in more
technical domains where the text contains techni-
cal words and terms, such as application names,
splitting the words into multiple tokens can make
the translation harder for the NMT systems. In
many of these cases we observed that the human
translators prefer not to translate the term and use
them as they are. In these cases, the PBMT system
that copies the unknown words into the output is
rewarded, while the NMT system often misses the
proper translation of at least one sub-word unit,
resulting in a wrong translation of the full word.
For example, let’s consider the out-of-vocabulary
word Bluetile, which belongs to the Ubuntu do-
main but was not seen during training. The PBMT
system copies the word in the output while the
NMT system segments it to Blu@@, eti@@, and le

and translates them into Blu@@, et@@, and le, re-
sulting in Bluetle.

Another interesting phenomenon that we ob-
served is that in some cases the NMT system
translates the sub-word units properly, while in
that context the word should not be translated and
copied in the target sentence as it is. For in-
stance, the following sentence which belongs to

the Ubuntu manual is just describing the usage
of an application and its corresponding options,
hence the switches should not be translated:

-D, --disconnect disconnect

In this case the token --disconnect is un-
known to both systems. The PBMT system
as described earlier copies the token, while
NMT first segments the token into --@@ and
disconnect, and then translates them as --@@ and
deconnexion, respectively.

These cases show that while sub-words ob-
tained by applying BPE are crucial to obtain open
vocabulary translation in generic domains, one
should be very careful in applying them in spe-
cific domains containing large number of technical
terms.

4.3 Is NMT Ready for Deployment?

Recently, (Junczys-Dowmunt et al., 2016) per-
formed a very extensive experiment in which the
performance of NMT is compared with PBMT and
hierarchical SMT on multiple language directions
and showed that NMT systems in almost all the
cases outperform their SMT counterparts and to
solve the only remaining issue which is the de-
coding time of the NMT systems, they introduce
an efficient neural decoder which makes it feasible
to deploy NMT systems in-production line. How-
ever, all their experiments are performed on one
single domain for which there exists a very large
training corpus.

In our experiment, we observed that the generic
NMT systems are by a large margin behind their
PBMT counterparts in the real-world scenarios
(48.25 versus 61.06 BLEU score) where the train-
ing data are very heterogeneous and are composed
of multiple corpora with different sizes (varying
from very few thousands to millions of sentence
pairs). This suggests that in order to be deployed
in production lines, NMT systems need to be
armed with more efficient mechanisms, which en-
ables them to deal with more heterogeneous data.

5 Conclusion

In this paper we studied the capability of neu-
ral machine translation systems in the real-world
applications were the training corpora consist of
text obtained from different domains; and com-
pared them with their phrase-based counterparts.
Our results on multi-domain English-French data
showed that, in these realistic conditions, PBMT
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outperforms NMT by a large margin.
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Abstract

Current evaluation metrics for timeline
summarization either ignore the tempo-
ral aspect of the task or require strict
date matching. We introduce variants
of ROUGE that allow alignment of daily
summaries via temporal distance or se-
mantic similarity. We argue for the suit-
ability of these variants in a theoretical
analysis and demonstrate it in a battery of
task-specific tests.

1 Introduction

There is an abundance of reports on events, crises
and disasters. Timelines summarize and date these
reports in an ordered overview to combat informa-
tion overload.

2010-05-06
BP tries to stop the spill by lowering a 98-ton “containment dome” over the
leak. The effort eventually fails, as crystallized gases cause the containment
dome to become unexpectedly buoyant.

2010-05-26
BP begins “top kill” attempt, shooting mud down the drillpipe in an attempt
to clog the leaking well. After several days, the effort is abandoned.

2010-05-27
President Obama announces a six-month moratorium on new deepwater
drilling in the gulf.

2010-05-14
Then-BP CEO Tony Hayward tells reporters that the amount of oil spilled is
relatively small given the Gulf of Mexico’s size.

2010-05-28
Hayward says the “top kill” effort to plug the well is progressing as planned
and had a 60 to 70 percent chance of success, the same odds he gave before
the maneuver. The next day the company announces that the effort failed.

Table 1: Excerpts from Washington Post (top) and
AP (bottom) timelines for the BP oil spill in 2010.

Table 1 shows parts of journalist-generated
timelines. Approaches for automatic timeline
summarization (TLS) use such edited timelines
as reference timelines to gauge their performance
(Chieu and Lee, 2004; Yan et al., 2011b; Tran et

al., 2013; Wang et al., 2016). For evaluation, most
research uses the standard summarization evalua-
tion metric ROUGE (Lin, 2004) without respect-
ing the specific characteristics of TLS.

In this paper, we identify weaknesses of cur-
rently used evaluation metrics for TLS. We devise
new variants of ROUGE to overcome these weak-
nesses and show the suitability of the variants with
a theoretical and empirical analysis. A toolkit that
implements our metrics is available for download
as open source.1

2 Task Description and Notation

Given a query (such as BP oil spill) TLS needs to
(i) extract the most important events for the query
and their corresponding dates and (ii) obtain con-
cise daily summaries for each selected date (Al-
lan et al., 2001; Chieu and Lee, 2004; Yan et al.,
2011b; Tran et al., 2015; Wang et al., 2016).

Formally, a timeline is a sequence
(d1, s1), . . . , (dk, sk) where the di are dates
and the si are summaries for the dates di. Given
are a query q and an associated corpus Cq that
contains documents relevant to the query. The
task of timeline summarization is to generate a
timeline sq based on the documents in Cq. The
number of dates in the generated timeline as
well as the length of the daily summaries are
typically controlled by the user. For evaluation we
assume access to one or more reference timelines
Rq = {rq

1, . . . , r
q
nq}. In our notation we usually

drop the query sub-/superscript.
For a timeline t, Dt denotes the set of days in t.

For a set of timelines T , we set DT = ∪t∈TDt.

3 Current Evaluation Metrics

We now describe evaluation metrics for TLS and
related tasks.

1http://smartschat.de/software
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3.1 ROUGE
Most work on TLS adopts the ROUGE toolkit that
is used for for standard summarization evaluation
(Lin, 2004). ROUGE metrics evaluate a system
summary s of one or more texts against a set R
of reference summaries (without accounting for
dating summaries). The most popular variants of
ROUGE are the ROUGE-N metrics which mea-
sure the overlap of N-grams in system and refer-
ence summaries. Several ROUGE metrics are well
correlated with human judgment (Graham, 2015).

For a summary c, let us define the set of c’s N-
grams as ng(c). cntc(g) is the number of occur-
rences of an N-gram g in c. For two summaries c1
and c2, cntc1,c2(g) = min{cntc1(g), cntc2(g)}
is the minimum number of occurrences of g in
both c1 and c2.

ROUGE-N recall is then defined as2

rec(R, s) =

∑
r∈R

∑
g∈ng(r) cntr,s(g)∑

r∈R

∑
g∈ng(r) cntr(g)

, (1)

while ROUGE-N precision is defined as

prec(R, s) =

∑
r∈R

∑
g∈ng(s) cntr,s(g)

|R|∑g∈ng(s) cnts(g)
. (2)

ROUGE-N F1 is the harmonic mean of recall and
precision.

Concatenation-based ROUGE. The simplest
and most popular way to apply ROUGE to TLS,
which we refer to as concat, is to run ROUGE on
documents obtained by concatenating the items of
the timelines (Takamura et al., 2011; Yan et al.,
2011a; Nguyen et al., 2014; Wang et al., 2016).
Given a timeline t = (d1, s1), . . . , (dk, sk), we
concatenate the si, which yields a document s′. In
s′ all date information is lost. We apply this trans-
formation to the reference and the system time-
lines and use ROUGE on the resulting documents.

This method discards any temporal information.
As a result, different datings of the same event are
not penalized. Most work does not address this is-
sue at all. An exception is Takamura et al. (2011),
who ignore word matches when the matched word
only appears in a summary where the time differ-
ence exceeds a pre-specified constant. However,
it is left open how to set this constant and differ-
ent datings of the same event below the threshold
difference would again not receive any penalty.

2We rely on the representation of ROUGE-N presented in
Lin and Bilmes (2011).

Date-agreement ROUGE. A more principled
method of accounting for temporal information is
to evaluate the quality of the summary for each day
individually (Tran et al., 2013; Wang et al., 2015).
We refer to this method as agreement. For a date d,
a set of reference timelines R and a system time-
line s, we setR(d) to the set of summaries for d in
R.3 R(d) can be empty if the date is not included
in any timeline. s(d) is the (possibly empty) sum-
mary of d in s. We define recall for a date d as

rec(d,R, s) =

∑
r∈R(d)

∑
g∈ng(r)

cntr,s(d)(g)∑
r∈R(d)

∑
g∈ng(r)

cntr(g)
. (3)

rec(d,R, s) can be extended to the set of dates
DR, typically by micro-averaging, that is

rec(R, s) =

∑
d∈DR

∑
r∈R(d)

∑
g∈ng(r)

cntr,s(d)(g)∑
d∈DR

∑
r∈R(d)

∑
g∈ng(r)

cntr(g)
.

(4)
The handling of precision is analogous: instead of
the formula for ROUGE recall we use the formula
for ROUGE precision and average with respect to
Ds instead of DR.

While this metric accounts for temporal infor-
mation, it requires that dates in reference and gen-
erated timelines match exactly. Otherwise, a score
of 0 is assigned. For example, in the BP oil spill
example in Table 1, the first timeline would get
a score of 0 when comparing it with the second
timeline, even though both timelines report on the
existence and later failure of the “top kill” effort,
although on different dates. This effect can be par-
ticularly problematic for longer-lasting events.

3.2 Other Metrics

Some work evaluates TLS manually (Chieu and
Lee, 2004; Tran et al., 2015). However, such eval-
uation is costly.

A related task to TLS is the TREC update sum-
marization task (Aslam et al., 2015). In contrast
to TLS, this task requires online summarization by
presenting the input as a stream of documents. The
metric employed relies on manually matching sen-
tences of reference and system timelines. Kedzie
et al. (2015) modify TREC metrics for a fully

3For convenience, we slightly overload notation. In the
definition of standard ROUGER and swere summaries, now
they are timelines which contain summaries.
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automatic setting, but still need a manually opti-
mized threshold for establishing semantic match-
ing. Moreover, the matching is binary: two sum-
maries either match or do not match. The metric
does not incorporate information about the degree
of similarity between two summaries.

Lastly, in the DUC 2007 and TAC 2008–2011
evaluation campaigns a different type of update
summarization was evaluated: the objective was
to create and then update a multi-document sum-
mary with new information (see, e.g., Owczarzak
and Dang (2011)). This task differs fundamen-
tally from TLS and TREC-style update summa-
rization, since no individual summaries for dates
have to be created. Evaluation metrics specifi-
cally designed for the task employ a combination
of ROUGE scores to simultaneously reward simi-
larity to human-generated summaries and penalize
redundancy with respect to the original machine-
generated summary (Conroy et al., 2011).

4 Alignment-based ROUGE

From the analysis in the previous section we see
that a metric for TLS should take temporal and se-
mantic similarity of daily summaries into account,
while not requiring an exact match between days.

We now propose variants of ROUGE that ful-
fill this desideratum. The main idea is that daily
summaries that are close in time and that describe
the same event or very similar events should be
compared for evaluation. For example, the daily
summaries that report on the “top kill” effort in
the example in Table 1 should be compared. To
do so, we first align dates in system and reference
timelines.4 ROUGE scores are then computed for
the summaries of the aligned dates.

4.1 Formal Definition

Let R be a set of reference timelines and let s be
a system timeline. The proposed alignment-based
ROUGE recall relies on a mapping

f : DR → Ds (5)

that assigns each date dr ∈ DR in some refer-
ence timeline a date ds ∈ Ds in the system time-
line. For evaluation, the summaries for the aligned
dates are compared.5

4We are inspired by Luo (2005) who devises an
alignment-based metric for coreference resolution.

5We only discuss how recall is computed. For computing
precision we instead consider alignments f : Ds → DR and

In order to penalize date differences when com-
paring summaries, each date pair (dr, ds) ∈ DR×
Ds is associated with a weighting factor tdr,ds . In
this paper, we only consider the weighting factor

tdr,ds =
1

|dr − ds|+ 1
(6)

where dr − ds is the difference between dr and
ds in number of days. Given some alignment
f , alignment-based ROUGE recall rec(R, s, f) is
then defined as∑

d∈DR

td,f(d)

∑
r∈R(d)

∑
g∈ng(r)

cntr,s(f(d))(g)∑
d∈DR

∑
r∈R(d)

∑
g∈ng(r)

cntr(g)
. (7)

4.2 Computing Alignments

For computing alignments, we associate to every
date pair (dr, ds) ∈ DR×Ds another value, which
is the cost cdr,ds of assigning dr to ds. We will
study costs that depend on date distance and/or se-
mantic similarity of the corresponding summaries.
The goal is to find a mapping f∗ : DR → Ds that
minimizes the sum of the costs, i.e.

f∗ = arg min
f

∑
dr∈DR

cdr,f(dr). (8)

4.3 Instantiations

We consider three instantiations of the alignment
problem presented above. They vary in the cost
function and with respect to constraints on the
alignment.

Date Alignment. For the first instantiation,
which we call date alignment or align, the cost
only depends on date distance, ignoring semantic
similarity. We set

cdr,ds = 1− 1
|dr − ds|+ 1

. (9)

We require that the alignment is injective.6

In Table 1, for example, the daily summaries for
2010-05-27 and 2010-05-28 would be aligned.

apply the corresponding formulas for precision as discussed
in Section 3.

6If |DR| > |Ds|, some dr ∈ DR will be unaligned. For
these dates we set the n-gram counts to 0 in the numerator of
Equation 7.
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Date-content Alignment. The second instanti-
ation, date-content alignment or align+, also in-
cludes semantic similarity in the costs. An ap-
proximation of semantic similarity is represented
by the ROUGE-1 F1 score between two daily sum-
maries. We set

cdr,ds =
(

1− 1
|dr − ds|+ 1)

)
· (1− R1(dr, ds)) , (10)

where R1(dr, ds) is the ROUGE-1 F1 score that
compares the reference summaries for date dr with
the system summary for date ds. Here, too, we
require that the alignment is injective.

The two daily summaries referring to the “top
kill” effort in Table 1 would be aligned when this
metric is employed.

Many-to-one Date-content Alignment. For
our last metric (many-to-one date-content align-
ment or align+ m:1) we drop the injectivity
requirement from align+.

4.4 Discussion

Complexity. If we require that f∗ is injective,
as in align and align+, we face a linear assign-
ment problem, for which polynomial-time algo-
rithms exist (Kuhn, 1955). The optimal assign-
ment for align+ m:1 can be computed by a simple
greedy algorithm: for every date in DR we choose
the date in Ds such that the cost is minimal.

Generalizing agreement. Note that agreement,
which relies on exact date match, also fits in our
framework: we require f∗ to be injective and set
tdr,ds = 1, cdr,ds = 0 iff dr = ds, and tdr,ds = 0,
cdr,ds =∞ otherwise for all (dr, ds) ∈ DR×Ds.

5 Tests for Metrics

An evaluation metric should behave as expected
when task-specific operations are performed on
output (Moosavi and Strube, 2016). For example,
in TLS, removing a date (and its summary) from
a reference timeline should decrease recall when
comparing the timeline to itself. A metric cannot
be suitable if it does not pass such tests.

We now devise and evaluate tests for the met-
rics discussed in this paper. Eventually, metrics
that pass the tests should be checked for correla-
tion with human judgment. We defer such an ex-
periment to future work.

5.1 Test Definitions

We derive tests that examine whether well-defined
basic operations on reference timelines affect the
metrics as expected. An example is the date re-
moval operation described above. Other basic op-
erations are date addition, merging and shifting.
In order to have a controlled environment we ap-
ply all operations to copies of reference timelines.
Comparing a reference timeline to itself gives pre-
cision, recall and F1 score of 1. Comparing a mod-
ified version to the original timeline should de-
crease precision and/or recall, depending on the
operation. We apply the following operations:
• Remove: remove a random date and its sum-

mary. Precision should stay 1, recall should
decrease.
• Add: for the first date not in the reference

timeline, add a summary consisting of the
first sentence of the first article of that day
from the associated corpus. Precision should
decrease, recall should stay 1.
• Merge: merge summaries of the closest pair

of dates, breaking ties by temporal order. Pre-
cision and recall should decrease slightly.
• Shift k days: shift each day by k days to the

future. Precision and recall should decrease.
The drop should increase as k increases.

5.2 Evaluation

We run the proposed tests7 on the publicly avail-
able timeline17 data set (Tran et al., 2013), which
contains 17 timelines across nine topics and asso-
ciated corpora. We apply each operation to each
timeline. We then compare each modified time-
line to the corresponding original timeline.

We evaluate using variants based on ROUGE-
1 and ROUGE-2, which are the most popu-
lar ROUGE-N metrics for evaluating TLS. Table
2 shows averaged results over all timelines for
ROUGE-1 (ROUGE-2 yielded similar results).

We find that the frequently used concat is not a
suitable metric for TLS. It is insensitive to merg-
ing and date shifting as it does not respect tempo-
ral information. agreement has the expected be-
havior for all tests, but, due to the required exact
date matching, faces a very high drop for even mi-
nor date shifting and does not differentiate well be-
tween shifting one day and shifting five days.

7We show results for the date-shifting test with k ∈
{1, 5}. Other values of k yield the expected behavior.
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Test Metric ∆P ∆R ∆F1

Remove

concat 0.000 -0.051 -0.026
agreement 0.000 -0.051 -0.026
align 0.000 -0.051 -0.026
align+ 0.000 -0.051 -0.026
align+ m:1 0.000 -0.045 -0.023

Add

concat -0.032 0.000 -0.016
agreement -0.032 0.000 -0.016
align -0.032 0.000 -0.016
align+ -0.032 0.000 -0.016
align+ m:1 -0.030 0.000 -0.015

Merge

concat 0.000 0.000 0.000
agreement -0.045 -0.045 -0.045
align -0.045 -0.045 -0.045
align+ -0.045 -0.045 -0.045
align+ m:1 -0.045 -0.023 -0.034

Shift 1 day

concat 0.000 0.000 0.000
agreement -0.887 -0.887 -0.887
align -0.679 -0.679 -0.679
align+ -0.500 -0.500 -0.500
align+ m:1 -0.500 -0.622 -0.569

Shift 5 days

concat 0.000 0.000 0.000
agreement -0.927 -0.927 -0.927
align -0.878 -0.878 -0.878
align+ -0.833 -0.833 -0.833
align+ m:1 -0.833 -0.817 -0.825

Table 2: Tests on timeline17. Numbers are differ-
ence to 1 according to ROUGE-1-based metrics.

The alignment-based metrics show the most de-
sirable behavior according to our criteria: they
pass all tests and the drops caused by shifts are
lower and differentiation is better than for agree-
ment. For the other tests, these metrics behave
similarly to agreement. Including semantic sim-
ilarity (align+) further decreases drops in date
shifting. Except for the Shift 1 day test, many-
to-one-alignments (align+ m:1) yield the most le-
nient results of all alignment-based metrics.

6 Conclusions and Future Work

Current evaluation metrics for TLS are not suit-
able. In a formal and empirical analysis we identi-
fied weaknesses of metrics encountered in the lit-
erature. We devised a family of alignment-based
ROUGE variants tailored to TLS. We found that
these metrics exhibit the desired behavior when
applying a battery of task-specific tests.

In future work we will study the correlation of
TLS metrics with human judgment. In order to
optimize correlation, we will also investigate more
content and date similarity measures for comput-
ing and weighting optimal alignments.
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Abstract

This paper tackles the reduction of re-
dundant repeating generation that is often
observed in RNN-based encoder-decoder
models. Our basic idea is to jointly esti-
mate the upper-bound frequency of each
target vocabulary in the encoder and con-
trol the output words based on the estima-
tion in the decoder. Our method shows
significant improvement over a strong
RNN-based encoder-decoder baseline and
achieved its best results on an abstractive
summarization benchmark.

1 Introduction

The RNN-based encoder-decoder (EncDec) ap-
proach has recently been providing signifi-
cant progress in various natural language gen-
eration (NLG) tasks, i.e., machine translation
(MT) (Sutskever et al., 2014; Cho et al., 2014)
and abstractive summarization (ABS) (Rush et al.,
2015). Since a scheme in this approach can be
interpreted as a conditional language model, it is
suitable for NLG tasks. However, one potential
weakness is that it sometimes repeatedly generates
the same phrase (or word).

This issue has been discussed in the neural MT
(NMT) literature as a part of a coverage prob-
lem (Tu et al., 2016; Mi et al., 2016). Such re-
peating generation behavior can become more se-
vere in some NLG tasks than in MT. The very
short ABS task in DUC-2003 and 2004 (Over et
al., 2007) is a typical example because it requires
the generation of a summary in a pre-defined lim-
ited output space, such as ten words or 75 bytes.
Thus, the repeated output consumes precious lim-
ited output space. Unfortunately, the coverage ap-
proach cannot be directly applied to ABS tasks
since they require us to optimally find salient ideas

from the input in a lossy compression manner, and
thus the summary (output) length hardly depends
on the input length; an MT task is mainly loss-less
generation and nearly one-to-one correspondence
between input and output (Nallapati et al., 2016a).

From this background, this paper tackles this is-
sue and proposes a method to overcome it in ABS
tasks. The basic idea of our method is to jointly
estimate the upper-bound frequency of each tar-
get vocabulary that can occur in a summary during
the encoding process and exploit the estimation to
control the output words in each decoding step.
We refer to our additional component as a word-
frequency estimation (WFE) sub-model. The
WFE sub-model explicitly manages how many
times each word has been generated so far and
might be generated in the future during the decod-
ing process. Thus, we expect to decisively prohibit
excessive generation. Finally, we evaluate the ef-
fectiveness of our method on well-studied ABS
benchmark data provided by Rush et al. (2015),
and evaluated in (Chopra et al., 2016; Nallapati
et al., 2016b; Kikuchi et al., 2016; Takase et al.,
2016; Ayana et al., 2016; Gulcehre et al., 2016).

2 Baseline RNN-based EncDec Model

The baseline of our proposal is an RNN-based
EncDec model with an attention mechanism (Lu-
ong et al., 2015). In fact, this model has al-
ready been used as a strong baseline for ABS
tasks (Chopra et al., 2016; Kikuchi et al., 2016) as
well as in the NMT literature. More specifically,
as a case study we employ a 2-layer bidirectional
LSTM encoder and a 2-layer LSTM decoder with a
global attention (Bahdanau et al., 2014). We omit
a detailed review of the descriptions due to space
limitations. The following are the necessary parts
for explaining our proposed method.

Let X = (xi)I
i=1 and Y = (yj)J

j=1 be input
and output sequences, respectively, where xi and
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Input: Hs = (hs
i)

I
i=1 . list of hidden states generated by encoder

Initialize: s← 0 . s: cumulative log-likelihood

Ŷ ← ‘BOS′ . Ŷ : list of generated words
Ht ←Hs . Ht: hidden states to process decoder

1: h← (s, Ŷ ,Ht) . triplet of (minimal) info for decoding process
2: Qw ← push(Qw, h) . set initial triplet h to priority queueQw

3: Qc ← {} . prepare queue to store complete sentences
4: Repeat
5: Õ ← () . prepare empty list
6: Repeat
7: h← pop(Qw) . pop a candidate history
8: õ← calcLL(h) . see Eq. 2

9: Õ ← append(Õ, õ) . append likelihood vector
10: UntilQw = ∅ . repeat untilQw is empty

11: {(m̂, k̂)z}K−C
z=1 ← findKBest(Õ)

12: {hz}K−C
z=1 ← makeTriplet({(m̂, k̂)z}K−C

z=1 )
13: Q′ ← selectTopK(Qc, {hz}K−C

z=1 )
14: (Qw,Qc)← SepComp(Q′) . separateQ′ intoQc orQw

15: UntilQw = ∅ . finish ifQw is empty
Output: Qc

Figure 1: Algorithm for a K-best beam search de-
coding typically used in EncDec approach.

yj are one-hot vectors, which correspond to the
i-th word in the input and the j-th word in the out-
put. Let Vt denote the vocabulary (set of words)
of output. For simplification, this paper uses the
following four notation rules:
(1) (xi)I

i=1 is a short notation for representing
a list of (column) vectors, i.e., (x1, . . . ,xI) =
(xi)I

i=1.
(2) v(a,D) represents a D-dimensional (column)
vector whose elements are all a, i.e., v(1, 3) =
(1, 1, 1)>.
(3) x[i] represents the i-th element of x, i.e., x =
(0.1, 0.2, 0.3)>, then x[2] = 0.2.
(4) M = |Vt| and, m always denotes the index of
output vocabulary, namely, m ∈ {1, . . . ,M}, and
o[m] represents the score of the m-th word in Vt,
where o ∈ RM .

Encoder: Let Ωs(·) denote the overall process
of our 2-layer bidirectional LSTM encoder. The
encoder receives input X and returns a list of final
hidden states Hs = (hs

i)
I
i=1:

Hs = Ωs(X). (1)

Decoder: We employ aK-best beam-search de-
coder to find the (approximated) best output Ŷ
given input X . Figure 1 shows a typical K-
best beam search algorithm used in the decoder
of EncDec approach. We define the (minimal) re-
quired information h shown in Figure 1 for the j-
th decoding process is the following triplet, h =
(sj−1, Ŷj−1,H

t
j−1), where sj−1 is the cumula-

tive log-likelihood from step 0 to j − 1, Ŷj−1

is a (candidate of) output word sequence gener-
ated so far from step 0 to j − 1, that is, Ŷj−1 =
(y0, . . . ,yj−1) and Ht

j−1 is the all the hidden
states for calculating the j-th decoding process.
Then, the function calcLL in Line 8 can be writ-
ten as follows:

õj = v
(
sj−1,M

)
+ log

(
Softmax(oj)

)
oj = Ωt

(
Hs,Ht

j−1, ŷj−1

)
, (2)

where Softmax(·) is the softmax function for a
given vector and Ωt(·) represents the overall pro-
cess of a single decoding step.

Moreover, Õ in Line 11 is a (M × (K − C))-
matrix, where C is the number of complete sen-
tences in Qc. The (m, k)-element of Õ repre-
sents a likelihood of them-th word, namely õj [m],
that is calculated using the k-th candidate in Qw

at the (j − 1)-th step. In Line 12, the function
makeTriplet constructs a set of triplets based
on the information of index (m̂, k̂). Then, in Line
13, the function selectTopK selects the top-K
candidates from union of a set of generated triplets
at current step {hz}K−C

z=1 and a set of triplets of
complete sentences in Qc. Finally, the function
sepComp in Line 13 divides a set of tripletsQ′ in
two distinct sets whether they are complete sen-
tences, Qc, or not, Qw. If the elements in Q′
are all complete sentences, namely, Qc = Q′ and
Qw = ∅, then the algorithm stops according to the
evaluation of Line 15.

3 Word Frequency Estimation

This section describes our proposed method,
which roughly consists of two parts: (1) a sub-
model that estimates the upper-bound frequencies
of the target vocabulary words in the output, and
(2) architecture for controlling the output words in
the decoder using estimations.

3.1 Definition
Let â denote a vector representation of the fre-
quency estimation. � denotes element-wise prod-
uct. â is calculated by:

â = r̂ � ĝ

r̂ = ReLU(r), ĝ = Sigmoid(g), (3)

where Sigmoid(·) and ReLu(·) represent the
element-wise sigmoid and ReLU (Glorot et al.,
2011), respectively. Thus, r̂ ∈ [0,+∞]M , ĝ ∈
[0, 1]M , and â∈ [0,+∞]M .
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We incorporate two separated components, r̂
and ĝ, to improve the frequency fitting. The pur-
pose of ĝ is to distinguish whether the target words
occur or not, regardless of their frequency. Thus,
ĝ can be interpreted as a gate function that re-
sembles estimating the fertility in the coverage (Tu
et al., 2016) and a switch probability in the copy
mechanism (Gulcehre et al., 2016). These ideas
originated from such gated recurrent networks as
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Chung et al., 2014). Then, r̂ can much fo-
cus on to model frequency equal to or larger than
1. This separation can be expected since r̂[m] has
no influence if ĝ[m]=0.

3.2 Effective usage
The technical challenge of our method is effec-
tively leveraging WFE â. Among several possible
choices, we selected to integrate it as prior knowl-
edge in the decoder. To do so, we re-define õj in
Eq. 2 as:

õj = v
(
sj−1,M

)
+ log (Softmax(oj)) + ãj .

The difference is the additional term of ãj , which
is an adjusted likelihood for the j-th step origi-
nally calculated from â. We define ãj as:

ãj = log (ClipReLU1(r̃j)� ĝ) . (4)

ClipReLU1(·) is a function that receives a vec-
tor and performs an element-wise calculation:
x′[m] = max (0,min(1,x[m])) for all m if it re-
ceives x. We define the relation between r̃j in
Eq. 4 and r̂ in Eq. 3 as follows:

r̃j =
{

r̂ if j = 1
r̃j−1 − ŷj−1 otherwise

. (5)

Eq. 5 is updated from r̃j−1 to r̃j with the estimated
output of previous step ŷj−1. Since ŷj ∈{0, 1}M
for all j, all of the elements in r̃j are monoton-
ically non-increasing. If r̃j′ [m] ≤ 0 at j′, then
õj′ [m]=−∞ regardless of o[m]. This means that
the m-th word will never be selected any more at
step j′ ≤ j for all j. Thus, the interpretation of
r̃j is that it directly manages the upper-bound fre-
quency of each target word that can occur in the
current and future decoding time steps. As a result,
decoding with our method never generates words
that exceed the estimation r̂, and thus we expect
to reduce the redundant repeating generation.

Note here that our method never requires
r̃j [m]≤ 0 (or r̃j [m] = 0) for all m at the last de-
coding time step j, as is generally required in the

Input: Hs = (hs
i)

I
i=1 . list of hidden states generated by encoder

Parameters: W r
1 ,W

g
1 ∈ RH×H , W r

2 ∈ RM×H , W g
2 ∈

RM×2H ,
1: Hr

1 ←W r
1 H

s . linear transformation for frequency model
2: hr

1 ←Hr
1v(1,M) . hr

1 ∈ RH , Hr
1 ∈ RH×I

3: r ←W r
2 h

r
1 . frequency estimation

4: Hg
1 ←W g

1 H
s . linear transformation for occurrence model

5: hg+
2 ← RowMax(Hg

1 ) . hg+
2 ∈ RH , and Hg

1 ∈ RH×I

6: hg−
2 ← RowMin(Hg

1 ) . hg−
2 ∈ RH , and Hg

1 ∈ RH×I

7: g ←W g
2

(
concat(hg+

2 ,hg−
2 )

)
. occurrence estimation

Output: (g, r)

Figure 2: Procedure for calculating the compo-
nents of our WFE sub-model.

coverage (Tu et al., 2016; Mi et al., 2016; Wu et
al., 2016). This is why we say upper-bound fre-
quency estimation, not just (exact) frequency.

3.3 Calculation
Figure 2 shows the detailed procedure for calcu-
lating g and r in Eq. 3. For r, we sum up all of the
features of the input given by the encoder (Line 2)
and estimate the frequency. In contrast, for g, we
expect Lines 5 and 6 to work as a kind of voting
for both positive and negative directions since g
needs just occurrence information, not frequency.
For example, g may take large positive or nega-
tive values if a certain input word (feature) has
a strong influence for occurring or not occurring
specific target word(s) in the output. This idea is
borrowed from the Max-pooling layer (Goodfel-
low et al., 2013).

3.4 Parameter estimation (Training)
Given the training data, let a∗ ∈ PM be a
vector representation of the true frequency of
the target words given the input, where P =
{0, 1, . . . ,+∞}. Clearly a∗ can be obtained by
counting the words in the corresponding output.
We define loss function Ψwfe for estimating our
WFE sub-model as follows:

Ψwfe
(
X,a∗,W) = d · v(1,M) (6)

d = c1 max
(
v(0,M), â− a∗ − v(ε,M)

)b
+ c2 max

(
v(0,M),a∗ − â− v(ε,M)

)b
,

where W represents the overall parameters. The
form of Ψwfe(·) is closely related to that used
in support vector regression (SVR) (Smola and
Schölkopf, 2004). We allow estimation â[m] for
all m to take a value in the range of [a∗[m] −
ε,a∗[m] + ε] with no penalty (the loss is zero). In
our case, we select ε = 0.25 since all the elements
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Source vocabulary † 119,507
Target vocabulary † 68,887

Dim. of embedding D 200
Dim. of hidden state H 400

Encoder RNN unit 2-layer bi-LSTM
Decoder RNN unit 2-layer LSTM with attention

Optimizer Adam (first 5 epoch)
+ SGD (remaining epoch) ?

Initial learning rate 0.001 (Adam) / 0.01 (SGD)
Mini batch size 256 (shuffled at each epoch)

Gradient clipping 10 (Adam) / 5 (SGD)
Stopping criterion max 15 epoch w/ early stopping

based on the val. set
Other opt. options Dropout = 0.3

Table 1: Model and optimization configurations in
our experiments. †: including special BOS, EOS,
and UNK symbols. ?: as suggested in (Wu et al.,
2016)

of a∗ are an integer. The remaining 0.25 for both
the positive and negative sides denotes the margin
between every integer. We select b = 2 to pe-
nalize larger for more distant error, and c1 < c2,
i.e., c1 = 0.2, c2 = 1, since we aim to obtain
upper-bound estimation and to penalize the under-
estimation below the true frequency a∗.

Finally, we minimize Eq. 6 with a standard neg-
ative log-likelihood objective function to estimate
the baseline EncDec model.

4 Experiments

We investigated the effectiveness of our method
on ABS experiments, which were first performed
by Rush et al., (2015). The data consist of ap-
proximately 3.8 million training, 400,000 valida-
tion and 400,000 test data, respectively2. Gener-
ally, 1951 test data, randomly extracted from the
test data section, are used for evaluation3. Addi-
tionally, DUC-2004 evaluation data (Over et al.,
2007)4 were also evaluated by the identical models
trained on the above Gigaword data. We strictly
followed the instructions of the evaluation setting
used in previous studies for a fair comparison. Ta-
ble 1 summarizes the model configuration and the
parameter estimation setting in our experiments.

4.1 Main results: comparison with baseline

Table 2 shows the results of the baseline EncDec
and our proposed EncDec+WFE. Note that the

2The data can be created by the data construction scripts
in the author’s code: https://github.com/facebook/NAMAS.

3As previously described (Chopra et al., 2016) we re-
moved the ill-formed (empty) data for Gigaword.

4http://duc.nist.gov/duc2004/tasks.html

G: china success at youth world
championship shows preparation for
#### olympics

A: china germany germany germany
germany and germany at world youth
championship

B: china faces germany at world youth
championship

G: British and Spanish governments leave
extradition of Pinochet to courts

A: spain britain seek shelter from
pinochet ’s pinochet case over
pinochet ’s

B: spain britain seek shelter over
pinochet ’s possible extradition from
spain

G: torn UNK : plum island juniper duo
now just a lone tree

A: black women black women black in
black code

B: in plum island of the ancient

Figure 3: Examples of generated summary. G:
reference summary, A: baseline EncDec, and
B: EncDec+WFE. (underlines indicate repeating
phrases and words)

DUC-2004 data was evaluated by recall-based
ROUGE scores, while the Gigaword data was
evaluated by F-score-based ROUGE, respec-
tively. For a validity confirmation of our EncDec
baseline, we also performed OpenNMT tool5.
The results on Gigaword data with B = 5
were, 33.65, 16.12, and 31.37 for ROUGE-
1(F), ROUGE-2(F) and ROUGE-L(F), respec-
tively, which were almost similar results (but
slightly lower) with our implementation. This sup-
ports that our baseline worked well as a strong
baseline. Clearly, EncDec+WFE significantly out-
performed the strong EncDec baseline by a wide
margin on the ROUGE scores. Thus, we conclude
that the WFE sub-model has a positive impact
to gain the ABS performance since performance
gains were derived only by the effect of incorpo-
rating our WFE sub-model.

4.2 Comparison to current top systems
Table 3 lists the current top system results. Our
method EncDec+WFE successfully achieved the
current best scores on most evaluations. This re-
sult also supports the effectiveness of incorporat-
ing our WFE sub-model.

MRT (Ayana et al., 2016) previously provided
the best results. Note that its model structure is
nearly identical to our baseline. On the contrary,
MRT trained a model with a sequence-wise min-

5http://opennmt.net
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DUC-2004 (w/ 75-byte limit) Gigaword (w/o length limit)
Method Beam ROUGE-1(R) ROUGE-2(R) ROUGE-L(R) ROUGE-1(F) ROUGE-2(F) ROUGE-L(F)
EncDec B=1 29.23 8.71 25.27 33.99 16.06 31.63
(baseline) B=5 29.52 9.45 25.80 †34.27 †16.68 †32.14
our impl.) B=10 † 29.60 † 9.62 † 25.97 34.18 16.51 31.97

EncDec+WFE B=1 31.92 9.36 27.22 36.21 16.87 33.55
(proposed) B=5 ?32.28 ?10.54 ?27.80 ?36.30 ?17.31 ?33.88

B=10 31.70 10.34 27.48 36.08 17.23 33.73
(perf. gain from † to ?) +2.68 +0.92 +1.83 +2.03 +0.63 +1.78

Table 2: Results on DUC-2004 and Gigaword data: ROUGE-x(R): recall-based ROUGE-x, ROUGE-
x(F): F1-based ROUGE-x, where x ∈ {1, 2, L}, respectively.

DUC-2004 (w/ 75-byte limit) Gigaword (w/o length limit)
Method ROUGE-1(R) ROUGE-2(R) ROUGE-L(R) ROUGE-1(F) ROUGE-2(F) ROUGE-L(F)
ABS (Rush et al., 2015) 26.55 7.06 22.05 30.88 12.22 27.77
RAS (Chopra et al., 2016) 28.97 8.26 24.06 33.78 15.97 31.15
BWL (Nallapati et al., 2016a)1 28.35 9.46 24.59 32.67 15.59 30.64

(words-lvt5k-1sent†) 28.61 9.42 25.24 35.30 †16.64 32.62
MRT (Ayana et al., 2016) †30.41 †10.87 †26.79 †36.54 16.59 †33.44
EncDec+WFE [This Paper] 32.28 10.54 27.80 36.30 17.31 33.88

(perf. gain from †) +1.87 -0.33 +1.01 -0.24 +0.72 +0.44

Table 3: Results of current top systems: ‘*’: previous best score for each evaluation. †: using a larger
vocab for both encoder and decoder, not strictly fair configuration with other results.

True a∗ \ Estimation â 0 1 2 3 4 ≥
1 7,014 7,064 1,784 16 4
2 51 95 60 0 0
3 ≥ 2 4 1 0 0

Table 4: Confusion matrix of WFE on Gigaword
data: only evaluated true frequency ≥ 1.

imum risk estimation, while we trained all the
models in our experiments with standard (point-
wise) log-likelihood maximization. MRT essen-
tially complements our method. We expect to fur-
ther improve its performance by applying MRT
for its training since recent progress of NMT has
suggested leveraging a sequence-wise optimiza-
tion technique for improving performance (Wise-
man and Rush, 2016; Shen et al., 2016). We leave
this as our future work.

4.3 Generation examples

Figure 3 shows actual generation examples. Based
on our motivation, we specifically selected the re-
dundant repeating output that occurred in the base-
line EncDec. It is clear that EncDec+WFE suc-
cessfully reduced them. This observation offers
further evidence of the effectiveness of our method
in quality.

4.4 Performance of the WFE sub-model

To evaluate the WFE sub-model alone, Table 4
shows the confusion matrix of the frequency esti-

mation. We quantized â by bâ[m]+0.5c for allm,
where 0.5 was derived from the margin in Ψwfe.
Unfortunately, the result looks not so well. There
seems to exist an enough room to improve the esti-
mation. However, we emphasize that it already has
an enough power to improve the overall quality as
shown in Table 2 and Figure 3. We can expect to
further gain the overall performance by improving
the performance of the WFE sub-model.

5 Conclusion

This paper discussed the behavior of redundant
repeating generation often observed in neural
EncDec approaches. We proposed a method for
reducing such redundancy by incorporating a sub-
model that directly estimates and manages the fre-
quency of each target vocabulary in the output.
Experiments on ABS benchmark data showed the
effectiveness of our method, EncDec+WFE, for
both improving automatic evaluation performance
and reducing the actual redundancy. Our method
is suitable for lossy compression tasks such as im-
age caption generation tasks.
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Abstract

Musical parody, i.e. the act of changing the
lyrics of an existing and very well-known
song, is a commonly used technique for
creating catchy advertising tunes and for
mocking people or events. Here we de-
scribe a system for automatically produc-
ing a musical parody, starting from a cor-
pus of songs. The system can automat-
ically identify characterizing words and
concepts related to a novel text, which are
taken from the daily news. These concepts
are then used as seeds to appropriately re-
place part of the original lyrics of a song,
using metrical, rhyming and lexical con-
straints. Finally, the parody can be sung
with a singing speech synthesizer, with no
intervention from the user.

It ain’t the melodies that’re important, man,
it’s the words.
- Bob Dylan

1 Introduction

Musical parody, “the humorous application of new
texts to preexistent vocal pieces” as defined by the
Encyclopædia Britannica, is a creative act that is
often used in advertising, for its comical results or
even for achieving “détournement”, i.e. reversing
the meaning of a song and turning it against itself.

Take for example the song “Girls” by the
Beastie Boys1, which was used in a 2013 commer-
cial2 for the company GoldieBlox (that produces
toys for girls). This parody modifies the lyrics
of the song to promote less “gender-stereotypical”
toys. As it often happens in these cases, the video
quickly went viral (Fell, 2013). The same song

1http://youtu.be/0e8j3-TuzCs
2http://youtu.be/M0NoOtaFrEs

was also covered by a Las Vegas artist3, who
changed just one word in the chorus to “defuse”
its sexist lyrics while keeping it extremely recog-
nizable (“Girls, all I really want is girls” becomes
“Girls, all they really want is girls”).

The effectiveness of creative modification, as
postulated by the Optimal Innovation Hypothesis
(Giora et al., 2004), can only be seen when the ob-
ject to be modified is well-known to the listener,
and for this reason musical parodies are usually
based on very popular songs. However, this ef-
fect is not limited to lyrics or text, but it is also
present when the music itself is modified (e.g. mu-
sical mashups, where two songs are combined by
blending the music of a song with the vocal track
of the other one) and even in the visual domain.

This paper will describe a system for automat-
ically generating musical parodies, starting from
a corpus of well-known songs and a novel text,
which provides the context for the parody. We take
novel, ever-changing texts from daily news feeds.
From these, new concepts and words to be inserted
in the parody are yielded. Words are replaced in
the song according to musical and linguistic con-
straints, and the new lyrics and the original music
are “reassembled”. Finally, a singing synthesizer
produces the musical realization of the parody.

2 Related Works

Much of lyric writing is technical and it certainly
falls under the area of creative writing. Compu-
tational linguistics has recently advanced into the
field of computational creativity.

Poetry generation systems face similar chal-
lenges to ours as they struggle to combine se-
mantic, lexical and phonetic features in a unified
framework. Greene et al. (2010) describe a model
for poetry generation in which users can control

3http://youtu.be/bRqW4PxipG4
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meter and rhyme scheme. Generation is modeled
as a cascade of weighted Finite State Transduc-
ers that only accept strings conforming to a user-
provided desired rhyming and stress scheme. The
model is applied to translation, making it possible
to generate translations that conform to the desired
meter. Toivanen et al. (2012) propose to generate
novel poems by replacing words in existing po-
etry with morphologically compatible words that
are semantically related to a target domain. Con-
tent control and the inclusion of phonetic features
are left as future work and syntactic information is
not taken into account.

Recently, some attempt has been made to gen-
erate creative sentences for educational and adver-
tising applications. Özbal et al. (2013) propose
an extensible framework called BRAINSUP for the
generation of creative sentences in which users are
able to force several words to appear in the sen-
tences. BRAINSUP makes heavy use of syntactic
information to enforce well-formed sentences and
to constraint the search for a solution, and provides
an extensible framework in which various forms
of linguistic creativity can easily be incorporated.
The authors evaluate the proposed model on auto-
matic slogan generation.

As a study focusing on the modification
of linguistic expressions, the system called
Valentino (Guerini et al., 2011) slants existing tex-
tual expressions to obtain more positively or nega-
tively valenced versions by using WordNet seman-
tic relations and SentiWordNet (Esuli and Sebas-
tiani, 2006). The slanting is carried out by modi-
fying, adding or deleting single words from exist-
ing sentences. Insertion and deletion of words is
performed by utilizing Google Web 1T 5-Grams
Corpus to extract information about the modifiers
of terms based on their part-of-speech. Valentino
has also been used to spoof existing ads by exag-
gerating them, as described in (Gatti et al., 2014),
which focuses on creating a graphic rendition of
each parodied ad. Lexical substitution has also
been commonly used by various studies focus-
ing on humor generation. Stock and Strappar-
ava (2006) generate acronyms based on lexical
substitution via semantic field opposition, rhyme,
rhythm and semantic relations provided by Word-
Net. The proposed model is limited to the gen-
eration of noun phrases. Valitutti et al. (2009)
present an interactive system which generates hu-
morous puns obtained by modifying familiar ex-

pressions with word substitution. The modifica-
tion takes place considering the phonetic distance
between the replaced and candidate words, and se-
mantic constraints such as semantic similarity, do-
main opposition and affective polarity difference.
Valitutti et al. (2013) propose an approach based
on lexical substitution to introduce adult humor in
SMS texts. A “taboo” word is injected in an exist-
ing sentence to make it humorous.

As another application of Optimal Innovation
Hypotesis, (Gatti et al., 2015) present a system
that produces catchy news headlines. The method-
ology takes existing well-known expressions and
innovates them by inserting a novel concept com-
ing from evolving news.

Finally, regarding our specific task of generat-
ing song parodies, we notice that in advertising,
music is a widely used element to improve the re-
call of the advertised product, attract the attention
of the consumers and aid to convey the message of
the advertised product (Heaton and Paris, 2006).
(North et al., 2004) demonstrated with their exper-
iments that the recall of a product in a radio ad-
vertisement was enhanced by the musical fit, and
the recall of the specific product claims could be
promoted by the voice fit.

3 Corpus

For this work we used the corpus developed by
Strapparava and Mihalcea (Mihalcea and Strap-
parava, 2012). The corpus contains 100 popular
songs (e.g., Dancing Queen by ABBA, Hotel Cal-
ifornia by the Eagles, Alejandro by Lady Gaga),
where the notes of the melody are strictly aligned
with the corresponding syllables in the lyrics.

The genres of the songs fall mainly into pop,
rock and evergreen. The corpus was built by align-
ing the melody contained within the MIDI tracks4

of a song with its lyrics.
In the corpus, several features are present for

each song. In the first place, the key of the song
(e.g., G major, C minor). At the note level: the
time code of the note with respect to the be-
ginning of the song (time attribute); the note
(orig-note) aligned with the corresponding
syllable (the content of a <token> tag); the dis-
tance of the note from the key of the song (tone);

4The MIDI format does not encode an analog audio sig-
nal, but the musical notation of songs: pitch and note length,
and other parameters such as volume, vibrato, panning and
cues and clock signals to set the tempo.
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<song filename="AHARDDAY.m2a">
<key time="0">G major</key>
<chorus>
<verse pvers="1">
<token time="5040" orig-note="B" tone="3" interval="210">IT</token>
<token time="5050" orig-note="B" tone="3" interval="210">’S </token>
<token time="5280" orig-note="C’" tone="4" interval="210">BEEN </token>
<token time="5520" orig-note="B" tone="3" interval="210">A </token>
<token time="5760" orig-note="D’" tone="5" interval="810">HARD </token>
<token time="6720" orig-note="D’" tone="5" interval="570">DAY</token>
<token time="6730" orig-note="D’" tone="5" interval="570">’S </token>
<token time="7440" orig-note="D’" tone="5" interval="690">NIGHT</token>

</verse>
<verse pvers="2">
<token time="8880" orig-note="C’" tone="4" interval="212">AND </token>
<token time="9120" orig-note="D’" tone="5" interval="210">I</token>
<token time="9130" orig-note="D’" tone="5" interval="210">’VE </token>
<token time="9360" orig-note="C’" tone="4" interval="210">BEEN </token>
<token time="9600" orig-note="D’" tone="5" interval="210">WOR</token>
<token time="9840" orig-note="F’" tone="7-" interval="930">KING </token>
<token time="10800" orig-note="D’" tone="5" interval="210">LI</token>
<token time="11040" orig-note="C’" tone="4" interval="210">KE </token>
<token time="11050" orig-note="C’" tone="4" interval="210">A </token>
<token time="11280" orig-note="D’" tone="5" interval="330">D</token>
<token time="11640" orig-note="C’" tone="4" interval="90">O</token>
<token time="11760" orig-note="B" tone="3" interval="330">G</token>

</verse>
...

</song>

Figure 1: Two lines of a corpus song: It’s been a hard day-’s night, And I’ve been wor-king li-ke a d-o-g

and the duration of the note (interval). An ex-
ample from the corpus, the first two lines from the
Beatles’ song A hard day’s night, is shown in Fig-
ure 1.

We enriched this annotation by adding new
tags (<bridge>, <chorus>, <strophe> and
<other>) that indicate the various parts of a
song, and an attribute (memorable="true")
that can be added to any of these parts to signal
the “memorable” part of a song (i.e., the part that
most people are supposed to quickly recognize).
We did this annotation manually for each entry
in the corpus, but this step could also be automa-
tized, in case new songs need to be added (Eronen,
2007).

4 Algorithm

The parody generation process is divided into four
basic steps: 1) retrieving the daily news and identi-
fying the most characterizing words of each news
piece; 2) finding new concepts and words evoking
the initial text; 3) generating parodies by replac-
ing words inside the chorus of a song with these
concepts, according to musical and linguistic con-
straints; 4) producing a final output file for each
song, where the words are converted to phonemes

and are then aligned with background music from
external MIDI files. The files produced by the
system are then played with a singing synthesizer,
where a virtual voice will actually sing the parody
thus created.

1) Key concepts from the news The process
starts by downloading the news of the day from
important news providers, such as the BBC and
the New York Times. Each news article is com-
posed of a headline and a short summary describ-
ing its content. Both the headline and the summary
are lemmatized and PoS-tagged using the Stanford
CoreNLP suite (Manning et al., 2014), which also
identifies any named entity present in the text.

The system then discards all the irrelevant to-
kens and lemmas by removing stop words and
keeping only the words that are more characteris-
tic of the specific text, appearing less frequently in
a news corpus (Parker et al., 2011). All the named
entities are considered relevant, and thus are never
removed.

As an example, let us take the headline “Mom
protects 2-year-old daughter by biting off dog’s
ear”, where the system will identify the nouns
“mom”, “dog” and “ear” and the verb “to bite” as
characterizing words.
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2) Search space expansion To increase the pos-
sibilities of finding a match in the third step, the
list of key concepts is expanded via WordNet
(Fellbaum, 1998), the Oxford Thesaurus (Urdang,
1993) and WikiData (Vrandečić and Krötzsch,
2014).

WordNet is used for finding synonyms and
derivationally related forms for lemmas that were
found in Step 1. However, words that are too poly-
semous5 are not subject to this expansion process,
since they might result in unrelated concepts be-
ing added to the list. The words thus retrieved are
again checked against their probability of being in
the news, to discard words that are not specific
enough. Similarly, synonyms for each word are
obtained through the Oxford thesaurus.

From WikiData the system can extract proper-
ties for the named entities found in the article.
In particular, it looks for capitals (for countries),
countries (for cities or regions) and demonyms
(for all the geographical locations), while for peo-
ple it extracts names, surnames, occupations and
fields of work.

Given the previous example, we obtain words
such as “mum”, “mummy”, “mama” (synonyms
of “mom”), “hound” (from “dog”), the nouns
“chomp” and “bite” and the verbs “to munch” and
“to chew” (all from the verb “to bite”).

3) Assembling the new song The system then
focuses on the most recognizable part of the song.
This is usually the chorus (Eronen, 2007), but the
XML annotation can indicate otherwise, as stated
in Section 3. The goal of this step is replacing
words or word sequences, according to various
constraints.

Given a word in a song, if the word is at the
end of a song line (the last complete word before
the </verse> tag in the XML file), it will re-
place it with a related concept only if the concept
i) rhymes (or is a near-rhyme) with the word; ii) it
has the same part of speech as the original word;
iii) they both have the same number of syllables.
If the word is in any other position, the rhyme con-
straint is not enforced. The rhyming information is
extracted from the CMU pronunciation dictionary
(Rudnicky, 2014).

These constraints are enforced to ensure that the
rhythmic properties of the lyrics keep unchanged.
In particular, keeping the count of syllables con-
stant means that the synthesizer should be able to

5We defined, empirically, a threshold of 6 senses.

sing the word at the same pace of the original,
while the rhyme at the end of a song line is main-
tained to avoid disrupting rhyming with other line
endings.

Non-content words are not modified and, when
multiple substitutions are possible, the system
chooses the one that better fits the context, accord-
ing to a language model (Brants and Franz, 2006).

For the song in Figure 1 the system would swap
“day” with “ear”, since they have the same part
of speech and the same number of syllables. The
word “night” at the end of the first song line would
be replaced with “bite”, since in this position there
is also the rhyming constraint.

4) Final output Finally, once the substitution
step is completed, the system needs to output a
file that can be opened in Vocaloid (Kenmochi
and Ohshita, 2007), a commercial singing syn-
thesizer. To do so, it has to consider, for each
word, whether it is all sung on the same note (e.g.
“been” or “hard” in Figure 1) or if instead it is split
across multiple notes (e.g. “working”, which is
split across two <token> tags, or “dog”, which
is sung as “d-o-g”).

In the first case, nothing has to be done, since
Vocaloid will automatically derive the correct pro-
nunciation for the word from its spelling.

For the other case, however, not only is a
grapheme-to-phoneme conversion (Black et al.,
1998) needed to get the pronunciation of the word,
but the system also needs to correctly split the
phonemes so they match how graphemes are di-
vided across notes.

Continuing with our example, the word
“munching” (that replaces “working”) will be con-
verted to “m V n tS I N”, i.e. its phonetic repre-
sentation in the X-SAMPA phonetic alphabet that
Vocaloid uses. Then, since “working” was split
as “wor” and “king”, the system has to divide the
pronunciation, so on the first note the synthesizer
will sing “m V n”, while on the second note it will
sing “tS I N”.

For every word it also considers the musical fea-
tures given from the corpus (e.g. pitch and dura-
tion), and uses all these to produce an XML output
file that can be read in the Vocaloid singing syn-
thesizer. A MIDI track is also added to provide
the background instruments.

Once this file is opened in Vocaloid, the parody
created by the system can be sung directly or ex-
ported to a WAV file.
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The resulting song can be listened to at http:
//youtu.be/jjv0TNFgkoo.

5 Discussion

Combining language and music is a natural and
very popular form of expression. Music frag-
ments tend to be easily recognizable and often it
gives pleasure to reproduce them, even reinforc-
ing their memorability. The rhythm and musical
constraints associated to the text, make the text it-
self easy to remember. Popular songs in particular
are an excellent candidate for optimal innovation,
i.e. changing some minimal elements in the text of
the songs so to obtain an evocative effect on some
other novel concept, while preserving the pleasure
of the recognition and appreciation of the well ac-
quainted song. In fact, this technique is often used
for mocking purposes and other entertainment set-
tings, but also in advertisements and other scenar-
ios oriented toward attention grabbing and influ-
encing the attitude of people.

In this paper we have presented a system
that applies well-established NLP techniques and
rhythm adaptation strategies to the domain of
songs, with the aim of minimally changing lyrics
to introduce or suggest a new concept, while keep-
ing all the metrical and musical aspects that guar-
antee that the outcome is still similar to the origi-
nal song. Minimal changes tend to emphasize the
difference and evoke the new concept brought into
the song.

An initial evaluation of the system is showing
promising results. We asked 3 CrowdFlower an-
notators to compare 10 parodies with the unmodi-
fied songs, both “performed” by Vocaloid, and de-
cide which ones are more grammatical (if any),
and whether the parody is more related to the
headline from which the key concepts are derived.
Finally, we also asked whether the parody was fun.
Each song was annotated 3 times, and the ratings
were aggregated using majority voting.

It is very interesting to note that the force of
music is so strong that small variations that have
very good properties of rhyming and rhythm co-
herence with the original song are often accept-
able, even if they do not obey grammatical or se-
mantic constraints. Considering the song we have
used throughout Section 4, for example, we have a
grammatically correct but semantically invalid re-
placement when “a hard day’s night” becomes “a
hard ear’s bite”, but the evaluation shows that even

grammatically incorrect lyrics can be rated as ac-
ceptable. More in general, 7 out of 10 modified
songs were rated as being as grammatical as the
originals. A more complete evaluation could pro-
vide insights for determining when to relax cor-
rectness in favor of the evocative power of words.

The relatedness ratings confirm the effective-
ness of the method for identifying key concepts
and expanding them: 9 out of 10 parodies are rated
as being more related than the original song, with
the remaining one being as related as the original
(due to the particular wording of the latter).

Finally, 6 out of 10 parodies were considered
fun. While this is still the majority of the paro-
dies, we would like to determine if this percentage
can increase when users are only shown parodies
of songs that they already know, a condition that
we did not test for. A more thorough evaluation,
that takes into account this and other problems, is
currently in progress. Once completed, we hope
to determine whether song parodies can positively
influence the recall of news at a later time.

Further enhancements to the system could be
developed. For example, in the current version,
Vocaloid is used for synthesizing the song with
the modified lyrics. However, the “singing” tech-
nology is in continuous and fast evolution, and
the modularity of the system allows for an easy
accommodation of any new synthesizer. For in-
stance, it could be integrated with the state of the
art in synthesizers (Bonada et al., 2016b; Bonada
et al., 2016a), where the quality of the gener-
ated voice is already much higher than the one of
Vocaloid. Other developments will include a se-
lection mechanism that, for each news article, se-
lects the best “disruptive” parody.

The results of this work suggest that our system
could be used for help in the production of con-
vincing musical parodies. As far as possible ap-
plications are concerned, we shall study the adap-
tation of the system to the advertising domain,
where these parodies are commonly used. In this
case, we plan to extract properties of the adver-
tised product and use those as concept words for
the modification step.
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Abstract

This paper presents an efficient and op-
timal parsing algorithm for probabilis-
tic context-free grammars (PCFGs). To
achieve faster parsing, our proposal em-
ploys a pruning technique to reduce un-
necessary edges in the search space. The
key is to repetitively conduct Viterbi in-
side and outside parsing, while gradually
expanding the search space to efficiently
compute heuristic bounds used for prun-
ing. This paper also shows how to extend
this algorithm to extract K-best Viterbi
trees. Our experimental results show that
the proposed algorithm is faster than the
standard CKY parsing algorithm. More-
over, its K-best version is much faster
than the Lazy K-best algorithm when K is
small.

1 Introduction

The CKY or Viterbi inside algorithm is a well-
known algorithm for PCFG parsing (Jurafsky and
Martin, 2000), which is a dynamic programming
parser using a chart table to calculate the Viterbi
tree. This algorithm is commonly used in natural
language parsing, but when the size of the gram-
mar is extremely large, exhaustive parsing be-
comes impractical. One way to reduce the compu-
tational cost of PCFG parsing is to prune the edges
produced during parsing. In fact, modern parsers
have often employed pruning techniques such as
beam search (Ratnaparkhi, 1999) and coarse-to-
fine search (Charniak et al., 2006).

Despite their practical success, both pruning
methods are approximate, so the solution of the
parser is not always optimal, i.e., the parser does
not always output the Viterbi tree. Recently, an-
other line of work has explored A* search algo-

rithms, in which simpler problems are used to
estimate heuristic scores for prioritizing edges to
be processed during parsing (Klein and Manning,
2003). If the heuristic is consistent, A* parsing
always outputs the Viterbi tree. As Tsuruoka and
Tsujii (2004) mentioned, however, A* parsing has
a serious difficulty from an implementation point
of view: “One of the most efficient way to im-
plement an agenda, which keeps edges to be pro-
cessed in A* parsing, is to use a priority queue,
which requires a computational cost of O(log(n))
at each action, where n is the number of edges in
the agenda. The cost of O(log(n)) makes it diffi-
cult to build a fast parser by the A* algorithm.”

This paper presents an alternative way of prun-
ing unnecessary edges while keeping the optimal-
ity of the parser. We call this algorithm itera-
tive Viterbi parsing (IVP) for the reason that the
iterative process plays a central role in our pro-
posal. The IVP algorithm conducts repetitively
Viterbi inside and outside parsing, while gradually
expanding the search space to efficiently compute
lower and upper bounds used for pruning. IVP is
easy to implement and is much faster in practice
than the standard CKY parsing algorithm.

In addition, we also show how to extend the
IVP algorithm to extract K-best Viterbi parse trees.
The idea is to integrate Huang and Chiang (2005)’s
K-best algorithm 3, which is called as Lazy, with
the iterative parsing process. Lazy performs a
Viterbi inside pass and then extracts K-best lists in
a top-down manner. Although especially the first
Viterbi inside pass is a bottleneck of the Lazy algo-
rithm, the K-best IVP algorithm avoids its amount
of work as well as in the 1-best case.

2 Iterative Viterbi Parsing

Following Pauls and Klein (2009), we define some
notations. The IVP algorithm takes as input a
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Figure 1: (a) An original chart table consisting of
non-terminal symbols only. (b) A coarse chart ta-
ble consisting of both non-terminal symbols and
shrinkage symbols. There exists a correspond-
ing derivation A(X2(B(X1 B) X2) X2) in (b) to
a derivation A(C(B(A B) C) D) in (a), both consist
of black-shaded symbols.

PCFG G and a sentence x consisting of terminal
symbols t0 . . . tn−1. Without loss of generality, we
assume Chomsky normal form: each non-terminal
rule r in G has the form r = A → B C with log
probability weight log q(r), where A, B and C are
elements inN , which is a set of non-terminal sym-
bols. Chart edges are labeled spans e = (A, i, j).
Inside derivations of an edge e = (A, i, j) are
trees rooted at A and spanning ti . . . tj−1. The
score of a derivation d is denoted by s(d)1. The
score of the best (maximum) inside derivation for
an edge e is called the Viterbi inside score β(e).
The goal of 1-best PCFG parsing is to compute the
Viterbi inside score of the goal edge (TOP, 0, n)
where TOP is a special root symbol. For the goal
edge, we call its derivation goal derivation. The
score of the best derivation of TOP→ t0 . . . ti−1 A
tj . . . tn−1 is called the Viterbi outside score α(e).

We assume N = {A,B,C,D}. By grouping
several symbols in the same cell of the chart ta-
ble, we can make a smaller table than the original
one. While the original chart table in Figure 1 (a)
contains non-terminal symbols only, the chart ta-
ble in Figure 1 (b) contains not only non-terminal

1The score of a derivation is the sum of rule weights for
all rules used in the derivation.
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Figure 2: The levels of non-terminal symbols.

symbols but also new symbols X1 and X2. The
new symbols, which are made by grouping several
non-terminal symbols, are refered to as shrinkage
symbols. For example, the shrinkage symbols X1
and X2 consist of non-terminal symbols {A,B}
and {C,D}, respectively.

In this paper, to make shrinkage symbols, we
use hierarchical clustering of non-terminal sym-
bols defined in (Charniak et al., 2006). Figure 2
shows a part of the hierarchical symbol definition.
Formally, we hierarchically cluster N into m + 1
sets N0 . . . Nm where N = Nm. For some i ∈
[0 . . .m − 1], we call an element in Ni i-th layer
shrinkage symbol. For some 0 ≤ i ≤ j ≤ m,
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Algorithm 1 Iterative Viterbi Parsing
1: lb← det(x,G) or lb← −∞
2: chart← init-chart(x,G)
3: for all i ∈ [1 . . . ] do
4: d̂← Viterbi-inside(chart)
5: if d̂ consists of non-terminals only then
6: return d̂
7: if lb < best(chart) then
8: lb← best(chart)
9: expand-chart(chart, d̂, G)

10: Viterbi-outside(chart)
11: prune-chart(chart, lb)

we define a mapping πi→j : Ni 7→ P(Nj) where
P(·) is the power set of ·. Taking a symbol HP
in Figure 2 as an example, π0→1(HP) = {S ,N }.
When i = j, for some i-th layer shrinkage sym-
bol A ∈ Ni, πi→j(A) returns a singleton {A}. For
all 0 ≤ i, j, k ≤ m, the rule parameter associated
with symbols Xi ∈ Ni, Xj ∈ Nj , Xk ∈ Nk is
defined as the following:

log q(Xi → Xj Xk) = max
A∈πi→m(Xi)
B∈πj→m(Xj)
C∈πk→m(Xk)

log q(A→ B C).

By this construction, each derivation in a coarse
chart gives an upper bound on its correspond-
ing derivation in the original chart (Klein and
Manning, 2003) and we can obtain the following
lemma:

Lemma 1. If the best goal derivation d̂ in the
coarse chart does not include any shrinkage sym-
bol, it is equivalent to the best goal derivation in
the original chart.

Proof . Let Y be the set of all goal derivations in
the original chart, Y ′ ⊂ Y be the subset of Y not
appearing in the coarse chart, and Y ′′ be the set of
all goal derivations in the coarse chart. For each
derivation d ∈ Y ′, there exists its unique corre-
sponding derivation d′ in Y ′′ (see Figure 1). Then,
we have

∀d ∈ Y ,∃d′ ∈ Y ′′, s(d) ≤ s(d′) < s(d̂)

and this means that d̂ is the best derivation in the
original chart. 2

Algorithm 1 shows the pseudo code for IVP.
The IVP algorithm starts by initializing coarse
chart, which consists of only 0-th layer shrinkage
symbols. It conducts Viterbi inside parsing to find
the best goal derivation. If the derivation does not
contain any shrinkage symbols, the algorithm re-
turns it and terminates. Otherwise, the chart table

is expanded, and the above procedure is repeated
until the termination condition is satisfied.

For efficient parsing, we integrate a pruning
technique with IVP. For an edge e = (A, i, j), we
denote by αβ(e) = α(e) + β(e) the score of the
best goal derivation which passes through e, where
β(e) and α(e) are Viterbi inside and outside scores
for e. Then, if we obtain a lower bound lb such
that lb ≤ maxd∈Y s(d) where Y is the set of all
goal derivations in the original chart, an edge e
with αβ(e) < lb is no longer necessary to be pro-
cessed. Though it is expensive to compute αβ(e)
in the original chart, we can efficiently compute by
Viterbi inside-outside parsing its upper bound in a
coarse chart table:

αβ(e) ≤ α̂(e) + β̂(e) = α̂β(e)

where α̂(e) and β̂(e) are the Viterbi inside and
outside scores of e in the coarse chart table. If
α̂β(e) < lb, we can safely prune the edge e away
from the coarse chart. Note that this pruning sim-
ply reduces the search space at each IVP iteration
and does not affect the number of iterations taken
until convergence at all.

We initialize the lower bound lb with the score
of a goal derivation obtained by deterministic pars-
ing det() in the original chart. The deterministic
parsing keeps only one non-terminal symbol with
the highest score per chart cell and removes the
other non-terminal symbols. The det() function is
very fast but causes many search errors. For effi-
cient pruning, a tighter lower bound is important,
thus we update the current lower bound with the
score of the best derivation, having non-terminals
only, obtained by the best() function in the current
coarse chart, if the former is less than the latter.

At line 9, IVP expands the current chart ta-
ble by replacing all shrinkage symbols in d̂ with
their next layer symbols using mapping π. While
this expansion cannot derive a reasonable worst
time complexity since it takes many iterations un-
til convergence, we show from our experimental
results that it is highly effective in practice.

3 K-best Extension

Algorihtm 2 shows the K-best IVP algorithm
which applies the iterative process to the Lazy
K-best algorithm of (Huang and Chiang, 2005).
If the best derivation is found, which consists of
non-terminal symbols only, this algorithm calls the
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Algorithm 2 K-best IVP
1: lb← beam(x,G, k) or lb← −∞
2: chart← init-chart(x,G)
3: for all i ∈ [1 . . . ] do
4: d̂1 ← Viterbi-inside(chart)
5: if d̂1 consists of non-terminals only then
6: [d̂2, . . . , d̂k]← Lazy K-best(chart)
7: if All of [d̂2, . . . , d̂k] consist of non-terminals only

then
8: return [d̂1, d̂2, . . . , d̂k]
9: else

10: d̂1 = getShrinkageDeriv([d̂2, . . . , d̂k])
11: if lb < k-best(chart, k) then
12: lb← k-best(chart, k)
13: expand-chart(chart, d̂1, G)
14: Viterbi-outside(chart)
15: prune-chart(chart, lb)

Lazy K-best algorithm. If all of the K-best deriva-
tions do not contain any shrinkage symbol, it re-
turns them and terminates.

The K-best IVP algorithm also prunes unnec-
essary edges and initializes the lower bound lb
with the score of the k-th best derivation ob-
tained by beam search parsing in the original chart.
For efficient pruning, we update lb with the k-th
best derivation, which consists of non-terminals
only, obtained by the k-best() function in the
current coarse chart. The getShrinkageDeriv()
function seeks the best derivation, which contains
shrinkage symbols, from [d̂2, . . . , d̂k]. The K-best
IVP algorithm inherits the other components from
standard IVP.

4 Experiments

We used the Wall Street Journal (WSJ) part of the
English Penn Treebank: Sections 02–21 were used
for training, sentences of length 1–35 in Section
22 for testing. We estimated a Chomsky normal
form PCFG by maximum likelihood from right-
branching binarized trees without function labels
and trace-fillers. Note that while this grammar is a
proof-of-concept, CKY on a larger grammar does
not work well even for short sentences.

Table 1 shows that the number of edges pro-
duced by the IVP algorithm is significantly smaller
than standard CKY. Moreover, many of the edges
are pruned during the iterative process. While IVP
takes many iterations util convergence, it is about
8 times faster than CKY. The fact means that the
computational cost of the Viterbi inside and out-
side algorithms on a small chart is negligible.

Next, we examine the K-best IVP algorithm.
Figure 3 shows parsing speed of Lazy and K-best

CKY IVP
len. edges time edges pruned iters time

20 10590 1.25 2864 2089 68 0.13
23 13938 1.76 2219 1462 41 0.06
22 12771 1.52 2204 1425 46 0.05
17 7701 0.72 1526 1119 32 0.03
28 20538 3.14 7306 5338 144 1.18
34 30141 5.44 6390 4634 98 0.49
...

...
...

21 12801 1.77 3502 2456 70 0.21

Table 1: The number of the edges produced in 1-
best parsing on testing set. Many of the edges are
pruned during the IVP parsing iterations. The last
row denotes the mean values.
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Figure 3: K-best Parsing time for various k.

IVP algorithms for various k (2 ∼ 128). When
k is small (2 ∼ 64), K-best IVP is much faster
than Lazy. However, K-best IVP did not work well
when setting k to more than 128. We show the
reason in Figure 4 where we plot the number of
edges in chart table at each K-best IVP iterations
for some test sentence with length 28. It is clear
that the smaller k is, the earlier it is convergent.
Moreover, when setting k too large, it is difficult to
compute a tight lower bound, i.e., K-best IVP does
not prune unnecessary edges efficiently. However,
in practice, this is not likely to be a serious prob-
lem since many NLP tasks use only very small k-
best parse trees (Choe and Charniak, 2016).

5 Related Work

Huang and Chiang (2005) presented an efficient
K-best parsing algorithm, which extracts K-best
lists after a Viterbi inside pass. Huang (2005) also
described a K-best extension of the Knuth pars-
ing algorithm (Knuth, 1977; Klein and Manning,
2004). Pauls and Klein (2009) successfully inte-
grated A* search with the K-best Knuth algorithm.

Tsuruoka and Tsujii (2004) proposed an itera-
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Figure 4: The plot of the number of edges in chart
table at each K-best IVP parsing iteration.

tive CKY algorithm, which is similar to our IVP
algorithm in that it conducts repeatedly CKY pars-
ing with a threshold until the best parse is found.
The main difference is that IVP employs a coarse-
to-fine chart expansion to compute better lower
and upper bounds efficiently. Moreover, Tsuruoka
and Tsujii (2004) did not mention how to extend
their algorithm to K-best parsing.

The coarse-to-fine parsing (Charniak et al.,
2006) is used in many practical parsers such
as Petrov and Klein (2007). However, the coarse-
to-fine search is approximate, so the solution of
the parser is not always optimal.

For sequential decoding, Kaji et al. (2010) also
proposed the iterative Viterbi algorithm. Huang et
al. (2012) extended it to extract K-best strings by
integrating the backward K-best A* search (Soong
and Huang, 1991) with the iterative process. Our
proposed algorithm can be regarded as a general-
ization of their methods to the parsing problem.

6 Conclusion and Future Work

This paper presents an efficient K-best parsing al-
gorithm for PCFGs. This is based on standard
Viterbi inside-outside algorithms and is easy to
implement. Now, we plan to conduct experi-
ments using latent-variable PCFGs (Matsuzaki et
al., 2005; Cohen et al., 2012) to prove that our
method is useful for a variety of grammars.
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Abstract

Prepositional phrase (PP) attachment is a
well known challenge to parsing. In this
paper, we combine the insights of differ-
ent works, namely: (1) treating PP attach-
ment as a classification task with an ar-
bitrary number of attachment candidates;
(2) using auxiliary distributions to aug-
ment the data beyond the hand-annotated
training set; (3) using topological fields
to get information about the distribution
of PP attachment throughout clauses and
(4) using state-of-the-art techniques such
as word embeddings and neural networks.
We show that jointly using these tech-
niques leads to substantial improvements.
We also conduct a qualitative analysis to
gauge where the ceiling of the task is in a
realistic setup.

1 Introduction

Prepositional phrase (PP) attachment is a well-
known structural ambiguity in natural language
parsing (Hindle and Rooth, 1993), that even mod-
ern parsers have difficulty coping with. For exam-
ple, Kummerfeld et al. (2012) investigated parsing
error types across a large number of parsers for
English and found that PP attachment and clause
attachment are the most difficult constructions.
Mirroshandel et al. (2012) show that in a second-
order graph parser for French, 8 of the 13 most
common error types relate to PP attachment. We
found in our experiments with the parser of de Kok
and Hinrichs (2016) that most errors were made in
PP attachment (18.42% of all labeled attachment
errors).

What makes PP attachment particularly difficult
is that the ambiguities can often not be solved us-
ing only structural preferences. Example 1 from

German shows the difficulty of the problem in
its full glory, where the preposition unter “un-
der/among” is attached to Neulinge “newcomers”.
However, the PP could attach to begrüßen “wel-
come” when the complement of the preposition
is a locative noun phrase (e.g. offenem Himmel
“open skies”).

(1)
Wir begrüßen die Neulinge unter uns .
We welcome the newcomers under/among us .

PP
PP

Spread throughout the literature, there are many
important observations about and approaches to
the task of PP attachment, but they have never
been properly combined. We will first discuss
them briefly below, and then summarize the con-
tributions of this paper.

Most work in PP attachment assumes that a
preposition attaches to either the immediately pre-
ceding noun (phrase) or the main verb (Hindle
and Rooth, 1993; Volk, 2002). Some other work
does take multiple nouns candidates into consid-
eration, but only nouns that are within a certain
window preceding the preposition (Ratnaparkhi,
1998; Belinkov et al., 2014) or all the nouns in the
sentence (Foth and Menzel, 2006). Using exam-
ples from German, de Kok et al. (2017) show that
these crude approaches are problematic. In Ger-
man, there are typically more than two possible
attachment sites. In fact, they show that 30% of
the training instances could not even be described
in this typical binary classification setup. More-
over, PPs can attach over relatively long distances
and the preposition can precede its head (e.g. in
PP topicalization). They also show that the task
of PP attachment with multiple noun candidates is
considerably more difficult than the traditional bi-
nary classification task. On the other hand, de Kok
et al. (2017) also show that many spurious heads
can be eliminated by exploiting relatively shallow
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clause structure annotations.

Previous work has shown that bi-lexical prefer-
ences are effective in solving PP attachment am-
biguities (Brunner et al., 1992; Whittemore et
al., 1990). Two words have a strong bi-lexical
preference if the words are likely to occur in a
head-dependent relation. These preferences are
usually stated in terms of information-theoretical
measures, such as point-wise mutual informa-
tion. Since hand-annotated treebanks usually do
not have enough material to obtain reliable bi-
lexical statistics, these statistics were extracted
from raw text (Volk, 2001), automatically tagged
(Ratnaparkhi, 1998), chunk parsed (Volk, 2002)
or parsed (Hindle and Rooth, 1993; Pantel and
Lin, 2000; Mirroshandel et al., 2012) corpora,
resulting in auxiliary distributions. Since these
seminal works in PP attachment, parsers have be-
come faster (Kübler et al., 2009) and more accu-
rate (Chen and Manning, 2014), opening the pos-
sibility to obtain better co-occurrence statistics.

Topological fields are commonly used to cap-
ture the regularities in German word order (Drach,
1937; Höhle, 1986). The distributions of syntac-
tic relations vary significantly across topological
fields, which can benefit dependency parsing of
German (de Kok and Hinrichs, 2016). We expect
topological fields to provide information about the
distribution of PP attachment throughout clauses
and thus benefit PP attachment disambiguation for
German in a similar way as in dependency parsing.

Many tasks in natural language processing have
seen substantial improvements in recent years
through the use of word embeddings in combi-
nation with neural networks. Word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) im-
prove the lexical coverage of systems beyond su-
pervised training sets by giving words that occur
in similar contexts similar vector representations.
Embeddings work especially well with neural net-
works, as neural networks are able to capture non-
linear interactions between features.

Considering these ideas and techniques that can
have an impact on modeling PP attachment, the
question we want to address is where do we stand
in PP attachment? Our contributions are three-
fold: (1) we evaluate PP attachment on a realis-
tic multiple-candidate PP attachment data set for
German; (2) we integrate the aforementioned ad-
vances in parsing and machine learning and con-
firm their usefulness for the task; and (3) we per-

form an error analysis to gauge how many of the
remaining errors can be attributed to the system.

2 PP attachment disambiguation model

Following the discussion in the Introduction, this
paper considers a realistic setup for PP attach-
ment disambiguation, where each disambiguation
instance involves choosing the correct attachment
site from an arbitrary number of candidates. As
the number of classes/candidates varies across dis-
ambiguation instances, it can not be modeled as
a typical multiclass classification. To tackle this
setup, we build a neural candidate scoring model
(Section 2.1) to estimate the probability that the at-
tachment candidate under consideration is the cor-
rect attachment site. Then, among all the candi-
dates for the same PP, the candidate with the high-
est probability is considered to be the correct at-
tachment site.

2.1 Neural candidate scoring model

Our neural candidate scoring model uses a feed-
forward neural network with three layers. The
input layer consists of featurized representations
of a <preposition, object of the preposition,
candidate> triple. These input features are dis-
cussed in more detail in Section 2.2. The net-
work uses a hidden layer with the ReLU activa-
tion function (Hahnloser et al., 2000) as its non-
linearity. Finally, the output layer uses the logistic
function as an activation function to model proba-
bilities. For regularization, dropout (Srivastava et
al., 2014) is applied to the input and hidden lay-
ers. Following the best practice, we apply batch
normalization (Ioffe and Szegedy, 2015) of param-
eters.

The model parameters are trained using (candi-
date, probability) pairs that are constructed from
the training data. Correct and incorrect attach-
ments are assigned probabilities 1 and 0 respec-
tively. To learn the model parameters, we mini-
mize the cross-entropy loss using mini-batch gra-
dient descent. During learning, the global learn-
ing rate follows an exponential decay and the per-
parameter learning rate is adjusted using Adagrad
(Duchi et al., 2011).

2.2 Feature set

Basic features. Following Kübler et al. (2007),
we use the word form and part-of-speech as fea-
tures for the preposition, object and candidate. We
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augment the absolute distance feature of Kübler
et al. (2007) that counts the number of words be-
tween the preposition and the candidate, with the
logarithm of this distance and the relative dis-
tance. The relative distance is the number of com-
peting candidates between the candidate and the
preposition.

Word and tag embeddings Traditional methods
for PP attachment represent the word and tag fea-
tures as one-hot vectors. For the embedding repre-
sentations of these two types of features, we use
the embeddings of de Kok (2015), which were
trained on corpora of 800 millions tokens, us-
ing WANG2VEC (Ling et al., 2015), a variation of
WORD2VEC that is tailored to syntactic tasks.

Topological fields As mentioned in the Introduc-
tion, topological fields are informative for the dis-
tributions of syntactic relations in general. Our
analysis of the TüBa-D/Z dependency treebank
(Telljohann et al., 2006) for German shows that
this observation also holds for the PP attachment
relation. For example, when the preposition is in
the initial field, the preposition is highly likely to
attach to the candidate in either the initial field or
the left bracket. We use the method of de Kok and
Hinrichs (2016) to predict the topological fields
for all three types of tokens: the preposition, ob-
ject and candidate. Each of these token will have
a corresponding one-hot vector that represents its
predicted topological field.

Auxiliary distributions of bi-lexical preferences
have been shown to be useful for resolving syn-
tactical ambiguities in general (Johnson and Rie-
zler, 2000; van Noord, 2007), besides their par-
ticular benefits for PP attachment as discussed
in Section 1. Such bi-lexical preferences can
be captured, for example, by point-wise mutual
information (PMI) that is estimated from large
machine-annotated corpora. Our approach makes
use of a state-of-the-art dependency parser (de
Kok and Hinrichs, 2016) to parse a large cor-
pus, namely articles from the German newspa-
per taz (die tageszeitung) from 1986 to 2009
(28.8 million sentences, 393.7 million tokens).
The parser-predicted PP attachments are repre-
sented as <preposition, object of the preposition,
candidate> triples, which we collect from both
ambiguous and unambiguous PP attachment re-
sults. Here, unambiguous attachments refer to
prepositions that only have one possible attach-
ment site (Ratnaparkhi, 1998).

For bi-lexical association scores, we compute
the normalized point-wise mutual information
(NPMI) (Bouma, 2009), a normalized version
of PMI, for three types of token pairs: (candi-
date, object), (candidate, preposition) and (candi-
date, preposition+object). For the last case, each
preposition-object combination is considered as
one token. NPMI is obtained by normalizing raw
PMI into the range [−1, 1], which is more favor-
able for learning. We also extend bi-lexical associ-
ation scores to tri-lexical association scores by us-
ing specific interaction information and total cor-
relation (Van de Cruys, 2011), both of which can
simultaneously take into account three variables,
which are the preposition, object and candidate in
our case. Overall, our auxiliary distributions con-
sist of 5 types of association scores that are esti-
mated from automatically parsed corpora.

3 Experiments

For evaluation, we use the recently created PP
attachment data set for German (de Kok et al.,
2017). In this data set each preposition has mul-
tiple head candidates. The average number of can-
didates per preposition is 3.15. The data set is ex-
tracted from TüBa-D/Z, using a set of rules de-
rived from the distributions of prepositions and
their heads across topological fields. From this
data set, we remove the instances that originate
from sentences that were used to train the parser
which was used in creating the auxiliary distri-
butions. We split the remaining 43,906 instances
with a 4:1 ratio for respectively training and eval-
uation. Initially, a subset of the training data is
used to tune hyper-parameters. Then we train
the model on the full training set using the cho-
sen hyper-parameters.1 Finally, the model per-
formance is evaluated on the test set, using stan-
dard per-preposition accuracy, i.e the percentage
of prepositions that are correctly attached.

3.1 Comparison with baselines

Ideally, we would like to compare the model pro-
posed in Section 2 to earlier approaches for Ger-
man PP attachment disambiguation, using the new
data set with multiple attachment candidates (see
Section 3). Previous approaches typically used
memory-based learning (Kübler et al., 2007) or

1The relevant hyper-parameters are: number of hid-
den units: 100; dropout probability input/hidden layers:
0.2/0.05; and word/part-of-speech embedding sizes: 50.
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linear SVMs (Volk, 2001). Since the running time
of the memory-based learning implementation on
the data set is extremely long and linear SVMs of-
ten yield results that are similar to logistic regres-
sion on NLP tasks, we build a logistic regression
model (LR) as the baseline. Logistic regression is
a representative linear model with high computa-
tional efficiency. The input representations, reg-
ularization and optimization algorithm remain the
same for both our model and the LR baseline.

3.2 Impact of embeddings and feed-forward
neural networks

In the upper half of Table 3.2, we compare the
LR baseline with two variations of the proposed
neural network model. The baseline and the first
variation (NN1) use the same one-hot feature vec-
tors as input, as previous approaches utilize such
feature representations. Our NN1 model outper-
forms the logistic regression baseline (LR) by
11.3% in terms of absolute accuracy improve-
ment. Note that our experiment only uses core fea-
tures without hand-crafting combinatory features,
which would have improved the performance of
the LR model. Thanks to the non-linearity, neu-
ral networks can implicitly capture useful fea-
ture combinations, thus leading to dramatic per-
formance improvement from LR to NN1. Another
substantial improvement (13.8%) is obtained by
representing the word forms and POS tags with
embeddings instead of one-hot vectors (compar-
ing NN2 with NN1). Our lexical coverage analy-
sis shows that the training set only covers 71.7% of
the word types that occur in the test set, while the
embeddings have the lexical coverage of 89.5%,
which can probably account for much of the im-
proved accuracy of NN2. Note that, in both cases,
the word forms are used without lemmatization or
morphological analyses. The high lexical cover-
age makes embeddings more robust when linguis-
tic pre-processing is absent or inaccurate.

3.3 Impact of topological fields and auxiliary
distributions

To test the benefits of using topological fields and
auxiliary distributions for the task, we conduct
further experiments to test three variations of our
model. The NN3 model extends the NN2 model
by adding the topological field features. The NN4
model further extends the NN3 model by adding
auxiliary distributions that are estimated from all
the PP attachments. Finally, the NN5 model ex-

Name Model Accuracy
LR LR with one-hot vectors 56.9%

NN1 NN with one-hot vectors 68.2%
NN2 NN with embeddings 82.0%
NN3 NN2 + topological fields 83.8%
NN4 NN3 + auxiliary all 86.5%
NN5 NN4 + auxiliary unamb. 86.7%

Table 1: Results on PP attachment disambiguation
on the logistic regression baseline (LR) and our
neural network models (NN*).

tends the NN4 model by adding auxiliary distribu-
tions using only the unambiguous PP attachments.
Although the unambiguous attachments are a sub-
set of the auxiliary all set, the lexical association
distributions of the two sets are different, thus pro-
viding extra information to the model. These re-
sults are shown in the lower half of Table 3.2.
By exploiting topological fields as extra features,
model NN3 obtains 1.8% absolute improvements
in accuracy over model NN2. Adding auxiliary all
features on top of NN3 leads to another 2.7% im-
provement in accuracy. The final 0.2% improve-
ment in accuracy is achieved by adding auxiliary
distributions using only the unambiguous PP at-
tachments. These results confirm the usefulness
of topological fields and auxiliary distributions.

4 Error analysis

To answer the final part of our question “where we
stand in PP attachment”, we take a random sample
of 100 instances that were incorrectly attached by
our most accurate model. We then analyzed each
instance by hand and assigned it to one of four
types of errors: (1) incorrect: the model made a
clear attachment error; (2) discourse: the attach-
ment can only be resolved with discourse-level
information; (3) irrelevant: there are two attach-
ment choices that give rise to the same interpre-
tation, where the gold-standard marked one while
the model marked the other (see Example 2). (4)
other: such as possible errors in the gold standard.
The results are shown in Table 2.

(2)
Sie ist Mitarbeiterin beim AKG Frauenpolitik bei den Grünen
She is employee at-the AKG Women-politics with the Greens

PP

PP

Based on this data analysis, we can conclude
that the ceiling for the task is lower than 100%.
The 36 irrelevant cases and 7 other cases could
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be seen as shortcomings of the data set, which
should mark multiple attachment sites when there
is no substantial shift in meaning. The 13 errors
that require discourse analysis cannot be resolved
as long as PP attachment and consequently pars-
ing are treated as sentence-level tasks. This leaves
44/100 errors that should be solvable be future ad-
vancements in PP attachment models, i.e. the ac-
curacy ceiling of the task on the dataset is expected
to be around 92.6%.

Type #
Incorrect 44
Irrelevant 36
Discourse 13
Other 7

Table 2: Error analysis of a random sample of 100
PPs that are incorrectly attached by the best model.

5 Conclusion

This paper evaluated a state-of-the-art PP attach-
ment model that combines various insights about
the task from the literature on a realistic data set
with multiple attachment sites per preposition. We
showed that by jointly using these insights, we ob-
tain a very substantial improvement over previous
approaches to the task. To answer the question
where we stand in PP attachment, we conducted
a manual analysis of attachment errors. This anal-
ysis showed that for this data set, the margin be-
tween the best models and the ceiling (approxi-
mately 92.6%) is quickly narrowing. Moreover,
any improvements beyond that ceiling requires
changes to gold standards to mark multiple correct
structures and that certain ambiguities in PP at-
tachment and parsing are resolved with discourse-
level information.

The system discussed in this paper is largely
language-independent, because it relies on word
embeddings and bi-lexical preferences as the pri-
mary features. The only exception to this are the
topological field features. However, we should
point out that the topological field model is also
used to describe clause structure in other Ger-
manic languages (e.g. Haeseryn et al. (1997) and
Zwart (2014)). Moreover, similar linear prece-
dence constraints have been found for other lan-
guage families, such as Slavic (Penn, 1999).

In the future, we would like to integrate and
evaluate the PP attachment model that was dis-

cussed in this work in a dependency parser. Our
aim is to use the representations formed by the
feed-forward neural network as additional inputs
to the transition classifier. This would combine the
power of phrasal representations similar to those
proposed by Belinkov et al. (2014) with bi-lexical
preferences trained on large corpora.
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Heike Zinsmeister, and Kathrin Beck. 2006. Style-
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Abstract

This paper formalizes a sound extension
of dynamic oracles to global training, in
the frame of transition-based dependency
parsers. By dispensing with the pre-
computation of references, this extension
widens the training strategies that can be
entertained for such parsers; we show this
by revisiting two standard training pro-
cedures, early-update and max-violation,
to correct some of their search space
sampling biases. Experimentally, on the
SPMRL treebanks, this improvement in-
creases the similarity between the train
and test distributions and yields perfor-
mance improvements up to 0.7 UAS, with-
out any computation overhead.

1 Introduction

Transition-based parsers with beam search are
among the most widely used models for depen-
dency parsing: they achieve state-of-the-art per-
formance while their training and inference, which
rely on approximate search, are very efficient.
Training a beam parser faces two difficulties: error
propagation and search errors (Huang et al., 2012).
Specific learning methods, early-update and max-
violation (presented in §2), have been designed to
address them. But they require to update the pa-
rameters on partial derivations only, which intro-
duces a discrepancy between the feature distribu-
tions seen during training and testing. Notably,
derivation endings are under-represented during
training, which hurts parsing performance.

In this work, we propose an improved train-
ing strategy that corrects such sampling biases for
beam parsers (§3). Experiments with the SPMRL
treebanks (Seddah et al., 2013), reported in §4,
show that the training configurations sampled by

this new strategy are closer to the parser configu-
rations seen at test time and result in increases up
to 0.7 UAS, with no computation time overhead.
These improvements rely on a sound extension of
dynamic oracles for global training, the lack of
which has repeatedly been pointed out (Goldberg
and Nivre, 2012; Sartorio, 2015). These global dy-
namic oracles have more general benefits than the
training strategy proposed here; for instance, they
allow to train beam parsers on partially annotated
data in a context of active learning or multilingual
transfer (Lacroix et al., 2016).

2 Training a Dependency Parser

In a transition-based parser (Nivre, 2008), a parse
is computed by performing a sequence of tran-
sitions building the parse tree in an incremen-
tal fashion. In the following, c denotes a parser
configuration representing a partially built depen-
dency tree. Applying transition t to configuration
c results in the parser moving to a successor of c,
denoted c ◦ t.

At each step of the parsing process, every pos-
sible transition is scored by a classifier, given a
feature representation of c and model parameters
θ; the score of a derivation (a sequence of transi-
tions) generating a given parse tree is the sum of
its transition scores. Parsing thus amounts to find-
ing the derivation having the highest score, usually
through greedy or beam search.

Parsers using beam search are typically trained
with a global criterion, that updates the parameters
once for each training sentence. Algorithm 1 sum-
marizes the training for each sentence x (with gold
parse y): INITIAL(x) denotes the initial configu-
ration for x and the procedure ORACLE performs
decoding to find configurations that play the role
of the ‘positive’ and ‘negative’ examples (resp. c+

and c−) required by the UPDATE operation (typi-
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Algorithm 1: Global training on one sen-
tence.
θ: model parameters, initialized to θ0 before
training
Function DPTRAINING(x,y)

c← INITIAL(x)
c+, c− ← ORACLE(c, y, θ)
θ ← UPDATE(θ, c+, c−)

cally a perceptron update rule (Collins and Roark,
2004) or a gradient computation with the globally
normalized loss of Andor et al. (2016)). Several
strategies, corresponding to various implementa-
tions of the ORACLE function, have been used to
find these examples.

In the early-update strategy (Collins and Roark,
2004; Zhang and Clark, 2008), a reference deriva-
tion is first computed, generally using hand-
crafted heuristics. The sentence is then parsed
using conventional beam decoding and an update
happens as soon as this pre-computed gold deriva-
tion falls off the beam, while the rest of the se-
quence is ignored. The top scoring configura-
tion at this step is penalized and the reference that
has just fallen off the beam is reinforced. An-
other strategy, max-violation (Huang et al., 2012),
is to continue decoding even though the refer-
ence has fallen off the beam, in order to find the
configuration having the largest gap between the
scores of the (partial) hypothesis and the (par-
tial) gold derivation. Compared to early-update,
max-violation speeds up convergence by covering
longer transition sequences and can yield slightly
better parsers.

3 Correction of Training Biases

Both standard learning strategies suffer from bi-
ases that introduce a discrepancy between the fea-
ture distributions seen during training and testing.

First, parameters updates reinforce only gold
derivations; at test time, the model might find
itself, after an error, in a part of the search
space where it was not trained to take good de-
cisions, thus propagating errors (Goldberg and
Nivre, 2012).1

Second, they both use a static oracle that relies
on the deterministic pre-computation of a canon-

1While beam search already addresses error propagation
issues that are due to inexact search, it does not handle this
kind of error propagation, which results from training issues.

ical reference. An update occurs as soon as the
parser strays from this particular gold derivation,
even when the reference tree could still be ob-
tained using an alternative derivation. Updating
in such cases raises the risk of lowering parser
performance. Indeed, we measured that a beam
parser trained with early-update and a static or-
acle counter-intuitively predicts correctly fewer
heads of the current sentence just after an update
than just before, for 15% of the updates (French
SPMRL, during 10th epoch).

Third, both the early-update and the max-
violation strategies consider only partial deriva-
tions when updating the model parameters. For in-
stance on the French SPMRL, when training with
an early-update strategy, the end of the derivation
is reached for only 41% of the examples at the 10th
epoch2 and, on average, only 57% of a derivation
is considered; the max-violation strategy, which
computes longer partial derivations, partly allevi-
ates this effect: these proportions raise, respec-
tively, to 53% and 81%. While the choice of
partial updates has been experimentally proved
(Huang et al., 2012) to be critical in achiev-
ing good performance, it prevents parsers from
visiting configurations corresponding to deriva-
tion endings. This explains why configurations
and transitions involving final punctuation marks,
verbs in SOV languages like Japanese or German
subordinate clauses, the ROOT token when placed
at the end (Ballesteros and Nivre, 2013), but also
stack features involving long distance siblings, are
too rarely seen in training, thereby hurting predic-
tions in such configurations.

In the following, we describe improvements ad-
dressing those issues.

Dynamic oracles The limits of static oracles
have already been highlighted for ARCEAGER

greedy parsers: Goldberg and Nivre (2012) show
how parsing performance can be significantly im-
proved with a dynamic oracle that computes a ref-
erence tailored to the current parser state. Dy-
namic oracles are at the heart of most state-of-
the-art parsers (Ballesteros et al., 2016; Coavoux
and Crabbé, 2016; Cross and Huang, 2016; Kiper-
wasser and Goldberg, 2016). But, to the best of
our knowledge, dynamic oracles have only been
partially generalized to beam parsers: Björkelund
and Nivre (2015)’s oracles address the second but

2On the French SPMRL treebank, at the 10th epoch, the
parser is close to convergence (see §4).
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not the first issue, while the dynamic oracle of the
YaraParser (Rasooli and Tetreault, 2015) arbitrar-
ily rules out some configurations that can generate
the reference tree.

Algorithm 2 shows how a dynamic oracle can
be integrated within the early-update learning
strategy; this extension can be done in the same
way for the max-violation strategy but is not de-
tailed here, for space reasons. The specificity of
that formalism is to consider that an error occurs
only when none of the configurations in the beam
can result in the dependency tree that was initially
the best reachable one, i.e. when all hypotheses in-
sert new erroneous dependencies.3

The Boolean function that tests this condition,
denoted CORRECTy(c′|c), can be efficiently com-
puted using the COSTy(t) function, formally de-
fined in Goldberg and Nivre (2013) as the num-
ber of dependencies of a gold parse tree y that
can no longer be predicted when transition t is
applied: a configuration c′ is considered as COR-
RECT in the context of a configuration c, if there
exists a sequence of transitions t1, . . . , tn such that
c′ = c ◦ t1 ◦ . . . ◦ tn and COSTy(t1) = · · · =
COSTy(tn) = 0.

Once an error is detected, the negative exam-
ple c− is chosen, as in the ‘standard’ early-update
strategy, as the top scoring configuration in the
beam. The positive example c+ is computed in
constant time, by choosing the top scoring config-
uration in the beam (just before k-best truncation)
for which CORRECT is true.

Restart Strategy To avoid over-representing the
beginning of derivations during training, we pro-
pose a new learning strategy: contrary to the base-
line training method (Algorithm 1) in which pars-
ing stops as soon as an error is detected and the
parameters updated, in our strategy (Algorithm 3)
decoding is restarted with a beam containing only
the positive configuration c+ and parsing contin-
ues until a new error is detected, triggering new
updates. The ORACLE function is then called from
several successive configurations, as many times
as needed to completely parse the sentence.

This training method ensures that configura-
tions that are close to derivations endings will be
seen more often during training.4

3While fairly simple, this formalism is a major change
from the traditional paradigm where references are explicitly
computed for each action.

4Standard training with full update also ensures this, but

Algorithm 2: Dynamic oracle for the early-
update strategy.

c0: configuration to start decoding from
topθ(·): best scoring element according to θ
NEXT(c): the set of all successors of c
Function EARLYUPDATEORACLE(c0, y, θ)

Beam← {c0}
while ∃c ∈ Beam,¬FINAL(c) do

S ← ∪c∈BeamNEXT(c)
Beam← k-best(S, θ)
if ∀c ∈ Beam,¬CORRECTy(c|c0)
then

gold←
{c ∈ S|CORRECTy(c|c0)}

return topθ(gold), topθ(Beam)

gold← {c ∈ Beam|CORRECTy(c|c0)}
return topθ(gold), topθ(Beam)

Algorithm 3: Global training with restart.
FINAL(·): true iff the whole sentence is
parsed
Function DPTRAININGRESTART(x,y)

c← INITIAL(x)
while ¬FINAL(c) do

c+, c− ← ORACLE(c, y, θ)
θ ← UPDATE(θ, c+, c−)
c← c+

Restarting with an oracle tailored to the restart
configuration is made possible by our global dy-
namic oracle. In this frame, the strategy can even
be further improved: similarly to their greedy
counterpart, global dynamic oracles enable to aug-
ment training with an error exploration component
by restarting from c− instead of c+ after an error,
thus addressing the first issue mentioned.

4 Experiments

Experimental Setup The validity of our ap-
proach is evaluated on the SPMRL treebank (Sed-
dah et al., 2013). We consider, as baselines,
a greedy parser trained with a dynamic oracle
(GREEDY DYN) and beam parsers trained with the
early-update and max-violation strategies and a
static oracle (resp. EARLY and MAXV). The im-

with the risk of divergence (Huang et al., 2012). Restarting
in c+ with a new beam has the same convergence guarantee
as standard early-update and max-violation.
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ar de eu fr he hu ko pl sv average

GREEDY DYN 83.98 90.73 84.00 84.23 83.78 84.33 82.79 87.66 86.35 85.32

EARLY 85.03 92.74 84.42 86.02 85.39 85.63 82.73 89.60 87.00 86.51
IMP-EARLY 85.27 92.89 84.59 86.26 85.84 85.74 82.98 89.55 87.37 86.72

MAXV 85.06 92.77 84.59 86.10 85.53 85.57 82.68 89.42 87.16 86.54
IMP-MAXV 85.04 92.90 84.68 86.26 85.83 85.55 82.94 90.12 87.31 86.74

Table 1: Performance (UAS) of the various training strategies on the SPMRL datasets.

provements of §3 are applied to these two strate-
gies (resp. IMP-EARLY and IMP-MAXV).

In all our experiments, we use our in-house,
open source implementation of a beam ARCEA-
GER parser in the PanParser framework (Aufrant
and Wisniewski, 2016),5 with the averaged struc-
tured perceptron (Collins, 2002), a beam size
of 8 and the ROOT placed at the end. We use
coarse gold PoS tags and the extended features
set of Zhang and Nivre (2011), without label in-
formation. These features, designed for English,
have not been adapted to the specificities of the
languages. All models are trained up to conver-
gence on a validation set. As a point of compar-
ison, on average over the treebank, our GREEDY

DYN baseline is 2.7 UAS higher than a MaltParser
trained with ARCEAGER and the same kind of in-
formation (coarse tags, no label).

Results Table 1 reports the performance of all
training strategies evaluated by the traditional
UAS on the projective test sets, ignoring punctua-
tion tokens. All reported scores are averaged over
5 runs. Results show that our learning strategy
consistently outperforms the corresponding base-
line, with average increases of 0.2 UAS, up to
0.7 UAS.

Discussion Table 2 shows the performance im-
balance between various positions in the sentence
and confirms that our improvements partly allevi-
ate this phenomenon: the scores on the first half
of the sentence are mostly unchanged, while large
gains are reported on the second half.

To assess that these UAS gains result from a bet-
ter matching of training and test configurations,
we compute the Kullback-Leibler divergence be-

5The oracle for beam parsers described in this work can
be used with any scoring function and learning method, such
as Andor et al. (2016). But its implementation may require to
change the whole code architecture as reference derivations
must be computed on the fly.

Quarter 1st 2nd 3rd 4th

EARLY 90.0 85.4 83.1 84.7
IMP-EARLY 90.0 85.3 84.2 85.1

Table 2: Performance (UAS) of the standard
and improved early-update strategies, depending
on the position in the sentence (French SPMRL
dataset, with similar results in other languages).
The first quarter corresponds to the attachment of
tokens in the first 25% of the sentence length.

Baseline Improved

EARLY 0.350 0.280
MAXV 0.357 0.277

Table 3: Effect of our improvements on the
Kullback-Leibler divergence between the train and
test feature distributions (French SPMRL dataset,
with similar results in other languages).

tween the probability distribution (estimated with
frequency counts and 0.1 Laplace smoothing) of
the features of all configurations in beam scored
during the 10th training epoch and the feature dis-
tribution seen at test time.

Table 3 reports the Kullback-Leibler diver-
gences induced by our refinements with respect to
the corresponding baselines. It clearly shows that
our ‘improved’ learning strategy considers train-
ing examples that are closer to test configurations.
Similar experiments on greedy parsers show that
their train-test divergence is reduced from 0.320
to 0.219 by the dynamic oracle and exploration
strategy of Goldberg and Nivre (2012). In these
two experiments, feature similarity correlates with
UAS improvements and can therefore provide a
new way to interpret oracle influence.

Finally, regarding efficiency, we observe (Fig-
ure 1) that IMP-EARLY converges in a number
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Figure 1: Learning curves on the validation set (SPMRL, fr). IMP-EARLY has the same update efficiency
as EARLY, but with the epoch and computation time convergence of MAXV.

of epochs similar to that of standard MAXV. De-
spite an increased number of updates, it is however
slightly faster (in CPU time) because it avoids the
extra reference pre-computation.

5 Conclusion

In this paper, we have extended the dynamic oracle
framework to global training, for transition-based
dependency parsers. This innovation lets us pro-
pose an alternative training strategy, that reduces
the discrepancy between the feature distributions
seen at train and test time that exists in state-of-
the-art methods. Experiments on the 9 SPMRL
treebanks show that our restart strategy improves
both parsing accuracy and model convergence. We
intend for future work to investigate other ways
to reduce the train-test distribution discrepancy in
structured prediction, using the new possibilities
offered by this extended framework.
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Abstract

In this paper, we propose efficient and
less resource-intensive strategies for pars-
ing of code-mixed data. These strategies
are not constrained by in-domain anno-
tations, rather they leverage pre-existing
monolingual annotated resources for train-
ing. We show that these methods can pro-
duce significantly better results as com-
pared to an informed baseline. Besides,
we also present a data set of 450 Hindi and
English code-mixed tweets of Hindi mul-
tilingual speakers for evaluation. The data
set is manually annotated with Universal
Dependencies.

1 Introduction

Code-switching or code-mixing is a sociolin-
guistic phenomenon, where multilingual speak-
ers switch back and forth between two or more
common languages or language varieties in a
single utterance1. The phenomenon is mostly
prevalent in spoken language and in informal set-
tings on social media such as in news groups,
blogs, chat forums etc. Computational model-
ing of code-mixed data, particularly from social
media, is presumed to be more challenging than
monolingual data due to various factors. The
main contributing factors are non-adherence to
a standard grammar, spelling variations and/or
back-transliteration. It has been generally ob-
served that traditional NLP techniques perform
miserably when processing code-mixed language
data (Solorio and Liu, 2008b; Vyas et al., 2014;
Çetinoğlu et al., 2016).

1For brevity, we will not differentiate between intra- and
inter-sentential mixing of languages and use the terms code-
mixing and code-switching interchangeably throughout the
paper.

More recently, there has been a surge in stud-
ies concerning code-mixed data from social media
(Solorio and Liu, 2008a; Solorio and Liu, 2008a;
Vyas et al., 2014; Sharma et al., 2016; Rudra et al.,
2016; Joshi et al., 2016, and others). Besides these
individual research articles, a series of shared-
tasks and workshops on preprocessing and shallow
syntactic analysis of code-mixed data have also
been conducted at multiple venues such as Em-
pirical Methods in NLP (EMNLP 2014 and 2016),
International Conference on NLP (ICON 2015 and
2016) and Forum for Information Retrieval Evalu-
ation (FIRE 2015 and 2016). Most of these works
are an attempt to address preprocessing issues–
such as language identification and transliteration–
that any higher NLP application may face in pro-
cessing such data.

Due to paucity of annotated resources in code-
mixed genre, the performance of monolingual
parsing models is yet to be evaluated on code-
mixed structures. This paper serves to fill this gap
by presenting an evaluation set annotated with de-
pendency structures. Besides, we also propose dif-
ferent parsing strategies that exploit nothing but
the pre-existing annotated monolingual data. We
show that by making trivial adaptations, monolin-
gual parsing models can effectively parse code-
mixed data.

2 Parsing Strategies

We explore three different parsing strategies to
parse code-mixed data and evaluate their perfor-
mance on a manually annotated evaluation set.
These strategies are distinguished by the way they
use pre-existing treebanks for parsing code-mixed
data.

• Monolingual: The monolingual method uses
two separate models trained from the respective
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monolingual treebanks of the languages which
are present in the code-mixed data. We can
use the monolingual models in two different
ways. Firstly, we can parse each code-mixed
sentence by intelligently choosing the monolin-
gual model based on the matrix language of
the sentence.2 A clear disadvantage of this
method is that the monolingual parser may not
accurately parse those fragments of a sentence
which belong to a language unknown to the
model. Therefore, we consider this as the base-
line method. Secondly, we can linearly interpo-
late the predictions of both monolingual models
at the inference time. The interpolation weights
are chosen based on the matrix language of each
parsing configuration. The interpolated oracle
output is defined as:

y = argmax(λm ∗ f(φ(cm))+
(1− λm) ∗ f(φ(cs)))

(1)

where f(·) is a softmax layer of our neural
parsing model, φ(cm) and φ(cs) are the fea-
ture functions of the matrix and subordinate lan-
guages respectively and λm is the interpolation
weight for the matrix language (see Section §5
for more details on the parsing model).

Instead of selecting the matrix language at sen-
tence level, we define the matrix language in-
dividually for each parsing configuration. We
define the matrix language of a configuration
based on the language tags of top 2 nodes in the
stack and buffer belonging to certain syntactic
categories such as adposition, auxiliary, particle
and verb.
• Multilingual: In the second approach, we train

a single model on a combined treebank of the
languages represented in the code-mixed data.
This method has a clear advantage over the
baseline Monolingual method in that it would
be aware of the grammars of both languages of
the code-mixed data. However, it may not be
able to properly connect the fragments of two
languages as the model lacks evidence for such
mixed structures in the augmented data. This
would particularly happen if the code-mixed
languages are typologically diverse.
2In any code-mixed utterance, the matrix language defines

the overall grammatical structure of an utterance, while sub-
ordinate language represents any individual words or phrases
embedded in the matrix language. We use a simple count-
based approach to identify the matrix and subordinate lan-
guages of a code-mixed sentence.

Moreover, training a parsing model on aug-
mented data with more diverse structures will
worsen the structural ambiguity problem. But
we can easily circumvent this problem by in-
cluding token-level language tag as an addi-
tional feature in the parsing model (Ammar et
al., 2016).
• Multipass: In the Multipass method, we train

two separate models like the Monolingual
method. However, we apply these models on
the code-mixed data differently. Unlike Mono-
lingual method, we use both models simultane-
ously for each sentence and pass the input to the
models twice. There are two possible ways to
accomplish this. We can first parse all the frag-
ments of each language using their respective
parsing models one by one and then the root
nodes of the parsed fragments would be parsed
by the matrix language parsing model. Or, we
can parse the subordinate language first and then
parse the root of the subordinate fragments with
the fragments of matrix language using the ma-
trix language parser. In both cases, monolingual
parsers would not be affected by the cross lan-
guage structures. More importantly, matrix lan-
guage parser in the second pass would be unaf-
fected by the internal structure of the subordi-
nate language fragments. But there is a caveat,
we need to identify the code-mixed fragments
accurately, which is a non-trivial task. In this
paper, we use token-level language information
to segment tweets into subordinate or matrix
language fragments.

3 Code-mixed Dependency Annotations

To the best of our knowledge, there is no avail-
able code-mixed data set that contains dependency
annotations. There are, however, a few available
code-mixed data sets that provide annotations re-
lated to language of a token, its POS and chunk
tags. For an intrinsic evaluation of our parsing
models on code-mixed texts, we manually an-
notated a data set of Hindi-English code-mixed
tweets with dependency structures. The code-
mixed tweets were sampled from a large set of
tweets of Indian language users that we crawled
from Twitter using Tweepy3–a Twitter API wrap-
per. We used a language identification system
(see §4) to filter Hindi-English code-mixed tweets
from the crawled Twitter data. Only those tweets

3http://www.tweepy.org/
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were selected that satisfied a minimum ratio of
30:70(%) code-mixing. From this data set, we
manually selected 450 tweets for annotation. The
selected tweets are thoroughly checked for code-
mixing ratio. While calculating the code-mixing
ratio, we do not consider borrowings from En-
glish as an instance of code-mixing. For POS
tagging and dependency annotation, we used Uni-
versal dependency guidelines (De Marneffe et al.,
2014), while language tags are assigned based on
the tagset defined in (Solorio et al., 2014; Jamatia
et al., 2015). The annotations are split into test-
ing and tuning sets for evaluation and tuning of
our models. The tuning set consists of 225 tweets
(3,467 tokens) with a mixing ratio of 0.54 and the
testing set contains 225 tweets (3,322 tokens) with
a mixing ratio of 0.53. Here mixing ratio is defined
as:

1
n

n∑
s=1

Hs

Hs + Es
(2)

where n is the number of sentences in the data
set, Hs and Es are the number of Hindi words and
English words in sentence s respectively.

4 Preprocessing

The parsing strategies that we discussed above for
code-mixed texts heavily rely on language identi-
fication of individual tokens. Besides we also need
normalization of non-standard word forms preva-
lent in code-mixed social media content and back-
transliteration of Romanized Hindi words. Here
we discuss both preprocessing steps in brief.

Language Identification We model language
identification as a classification problem where
each token needs to be classified into one of
the following tags: ‘Hindi’ (hi), ‘English’ (en),
‘Acronym’ (acro), ‘Named Entity’ (ne) and ‘Uni-
versal’ (univ). For this task, we use the feed-
forward neural network architecture of Bhat et al.
(2016)4 proposed for Named Entity extraction in
code mixed-data of Indian languages. We train
the network with similar feature representations
on the data set provided in ICON 20155 shared
task on language identification. The data set con-
tains 728 Facebook comments annotated with the
five language tags noted above. We evaluated the

4Due to space limitation we don’t discuss the system ar-
chitecture in detail. The interested reader can refer to the
original paper for a detailed description.

5http://ltrc.iiit.ac.in/icon2015/

predictions of our identification system against the
gold language tags in our code-mixed develop-
ment set and test set. Even though the model is
trained on a very small data set, its prediction ac-
curacy is still above 96% for both the development
set and the test set. The results are shown in Table
1.

Normalization and Transliteration We model
the problem of both normalization and back-
transliteration of (noisy) Romanized Hindi words
as a single transliteration problem. Our goal is
to learn a mapping for both standard and non-
standard Romanized Hindi word forms to their
respective standard forms in Devanagari. For
this purpose, we use the structured perceptron of
Collins (Collins, 2002) which optimizes a given
loss function over the entire observation sequence.
For training the model, we use the translitera-
tion pairs (87,520) from the Libindic transliter-
ation project6 and Brahmi-Net (Kunchukuttan et
al., 2015) and augmented them with noisy translit-
eration pairs (63,554) which are synthetically gen-
erated by dropping non-initial vowels and replac-
ing consonants based on their phonological prox-
imity. We use Giza++ (Och and Ney, 2003) to
character align the transliteration pairs for train-
ing.

At inference time, our transliteration model
would predict the most likely word form for each
input word. However, the single-best output from
the model may not always be the best option con-
sidering an overall sentential context. Contracted
word forms in social media content are quite of-
ten ambiguous and can represent different stan-
dard word forms such as ‘pt’ may refer to ‘put’,
‘pit’, ‘pat’, ‘pot’ and ‘pet’. To resolve this ambi-
guity, we extract n-best transliterations from the
transliteration model using beam-search decod-
ing. The best word sequence is then decoded
using an exact search over bn word sequences7

scored by a tri-gram language model. The lan-
guage model is trained on monolingual data us-
ing IRSTLM-Toolkit (Federico et al., 2008) with
Kneser-Ney smoothing. For English, we use a
similar model for normalization which we trained
on the noisy word forms (3,90,000) synthetically
generated from the English vocabulary.

6https://github.com/libindic/indic-trans
7b is the size of beam-width and n is the sentence length.

For each word, we extract five best transliterations or normal-
izations i.e., b=5.
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Label Development-Set Test-Set
Precision Recall F1-Score Count Precision Recall F1-Score Count

acro 0.920 0.742 0.821 31 0.955 0.724 0.824 29
en 0.962 0.983 0.972 1303 0.952 0.981 0.966 1290
hi 0.971 0.975 0.973 1545 0.968 0.964 0.966 1460
ne 0.915 0.701 0.794 154 0.889 0.719 0.795 167

univ 0.982 0.995 0.989 434 0.987 1.000 0.993 376
Accuracy 0.967 3467 0.961 3322

Table 1: Language Identification results on code-mixed development set and
test set.

5 Experimental Setup

The parsing experiments reported in this paper
are conducted using a non-linear neural network-
based transition system which is similar to (Chen
and Manning, 2014). The models are trained on
Universal Dependency Treebanks of Hindi and
English released under version 1.4 of Universal
Dependencies (Nivre et al., 2016).

Parsing Models Our parsing model is based
on transition-based dependency parsing paradigm
(Nivre, 2008). Particularly, we use an arc-eager
transition system (Nivre, 2003). The arc-eager
system defines a set of configurations for a sen-
tence w1,...,wn, where each configuration C = (S,
B, A) consists of a stack S, a buffer B, and a
set of dependency arcs A. For each sentence, the
parser starts with an initial configuration where S =
[ROOT], B = [w1,...,wn] and A = ∅ and terminates
with a configuration C if the buffer is empty and
the stack contains the ROOT. The parse trees de-
rived from transition sequences are given by A. To
derive the parse tree, the arc-eager system defines
four types of transitions (t): 1) Shift, 2) Left-Arc,
3) Right-Arc, and 4) Reduce.

Similar to (Chen and Manning, 2014), we use
a non-linear neural network to predict the transi-
tions for the parser configurations. The neural net-
work model is the standard feed-forward neural
network with a single layer of hidden units. We
use 200 hidden units and RelU activation func-
tion. The output layer uses softmax function for
probabilistic multi-class classification. The model
is trained by minimizing cross entropy loss with
an l2-regularization over the entire training data.
We also use mini-batch Adagrad for optimization
(Duchi et al., 2011) and apply dropout (Hinton et
al., 2012).

From each parser configuration, we extract fea-
tures related to the top four nodes in the stack, top
four nodes in the buffer and leftmost and rightmost
children of the top two nodes in the stack and the
leftmost child of the top node in the buffer.

POS Models We train POS tagging models us-
ing a similar neural network architecture as dis-

cussed above. Unlike (Collobert et al., 2011), we
do not learn separate transition parameters. In-
stead we include the structural features in the in-
put layer of our model with other lexical and non-
lexical units. We use second-order structural fea-
tures, two words to either side of the current word,
and last three characters of the current word.

We trained two POS tagging models: Mono-
lingual and Multilingual. In the Monolingual ap-
proach, we divide each code-mixed sentence into
contiguous fragments based on the language tags
assigned by the language identifier. Words with
language tags other than ‘Hi’ and ‘En’ (such as
univ, ne and acro) are merged with the preced-
ing fragment. Each fragment is then individually
tagged by the monolingual POS taggers trained on
their respective monolingual POS data sets. In the
Multilingual approach, we train a single model on
combined data sets of the languages in the code-
mixed data. We concatenate an additional 1x2
vector8 in the input layer of the neural network
representing the language tag of the current word.
Table 2 gives the POS tagging accuracies of the
two models.

Model LID Development-Set Test-Set
HIN ENG Total HIN ENG Total

Monolingual G 0.849 0.903 0.873 0.832 0.889 0.860
A 0.841 0.892 0.866 0.825 0.883 0.853

Multilingual G 0.835 0.903 0.867 0.798 0.892 0.843
A 0.830 0.900 0.862 0.790 0.888 0.836

Table 2: POS Tagging accuracies for monolingual and multilingual models.
LID = Language tag, G = Gold LID, A = Auto LID.

Word Representations For both POS tagging
and parsing models, we include the lexical fea-
tures in the input layer of the Neural Network
using the pre-trained word representations while
for the non-lexical features, we use randomly
initialized embeddings within a range of −0.25
to +0.25.9 We use Hindi and English monolin-
gual corpora to learn the distributed representa-
tion of the lexical units. The English monolingual
data contains around 280M sentences, while the
Hindi data is comparatively smaller and contains
around 40M sentences. The word representations
are learned using Skip-gram model with negative
sampling which is implemented in word2vec
toolkit (Mikolov et al., 2013). For multilingual
models, we use robust projection algorithm of Guo
et al. (2015) to induce bilingual representations

8In our experiments we fixed these to be {-0.25,0.25} for
Hindi and {0.25,-0.25 } for English

9Dimensionality of input units in POS and parsing mod-
els: 80 for words, 20 for POS tags, 2 for language tags and
20 for affixes.
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Gold (POS + language tag) Auto (POS + language tag)
Data-set Monolingual Interpolated Multilingual Multipassf Multipasss Monolingual Interpolated Multilingual Multipassf Multipasss

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
CMd 60.77 49.24 74.62 64.11 75.77 65.32 69.37 58.83 70.23 59.64 55.80 43.36 68.24 56.07 67.71 55.18 63.34 52.22 64.60 53.03
CMt 60.05 48.52 74.40 63.65 74.16 64.11 68.54 57.87 69.12 58.64 54.95 43.03 65.14 54.00 66.18 54.40 62.37 51.11 63.74 52.34
HINt 93.29 90.60 92.61 89.64 91.96 88.46 93.29 90.60 93.29 90.60 91.92 88.39 91.82 88.34 89.52 84.83 91.92 88.39 91.92 88.39
ENGt 85.12 82.86 84.21 81.82 85.16 82.79 85.12 82.86 85.12 82.86 83.28 79.90 82.08 78.54 82.53 79.11 83.28 79.90 83.28 79.90

Table 3: Accuracy of different parsing strategies on Code-mixed as well as Hindi and English evaluation sets. CMd|t = Code-mixed development and testing sets;
HINt = Hindi test set; ENGt = English test set; Multipassf|s = fragment-wise and subordinate-first parsing methods.

using the monolingual embedding space of En-
glish and a bilingual lexicon of Hindi and English
(∼63,000 entries). We extracted the bilingual lex-
icon from ILCI and Bojar Hi-En parallel corpora
(Jha, 2010; Bojar et al., 2014).

6 Experiments and Results

We conducted multiple experiments to measure ef-
fectiveness of the proposed parsing strategies in
both gold and predicted settings. In predicted set-
tings, we use the monolingual POS taggers for
all the experiments. We used the Monolingual
method as the baseline for evaluating other parsing
strategies. The baseline model parses each sen-
tence in the evaluation sets by either using Hindi
or English parsing model based on the matrix lan-
guage of the sentence. For baseline and the Mul-
tipass methods, we use bilingual embedding space
derived from matrix language embedding space
(Hindi or English) to represent lexical nodes in the
input layer of our parsing architecture. In the In-
terpolation method, we use separate monolingual
embedding spaces for each model. The interpola-
tion weights are tuned using the development set
and the best results are achieved at λm ranging
from 0.7 to 0.8 (see eq. 1). The results of our ex-
periments are reported in Table 3. Table 4 shows
the impact of sentential decoding for choosing the
best normalized and/or back-transliterated tweets
on different parsing strategies (see §4).

First Best K-Best
Data-set Multilingual Interpolated Multilingual Interpolated

UAS LAS UAS LAS UAS LAS UAS LAS
CMd 66.21 53.55 66.70 53.68 67.71 55.18 68.24 56.07
CMt 65.87 53.92 64.26 53.35 66.18 54.40 65.14 54.00

Table 4: Parsing accuracies with exact search and k-best search (k = 5). CMd|t
= Code-mixed development and testing sets.

All of our parsing models produce results that
are at-least 10 LAS points better than our baseline
parsers which otherwise provide competitive re-
sults on Hindi and English evaluation sets (Straka
et al., 2016).10 Among all the parsing strategies,
the Interpolated methods perform comparatively

10Our results are not directly comparable to (Straka et al.,
2016) due to different parsing architectures. While we use
a simple greedy, projective transition system, Straka et al.
(2016) use a search-based swap system.

better on both monolingual and code-mixed eval-
uation sets. Interpolation method manipulates the
parameters of both languages quite intelligently at
each parsing configuration. Despite being quite
accurate on code-mixed evaluation sets, the Mul-
tilingual model is less accurate in single language
scenario. Also the Multilingual model performs
worse for Hindi since its lexical representation is
derived from English embedding space. It is at-
least 2 LAS points worse than the Interpolated
and the Multipass methods. However, unlike the
latter methods, the Multilingual models do not
have a run-time and computational overhead. In
comparison to Interpolated and Multilingual meth-
ods, Multipass methods are mostly affected by
the errors in language identification. Quite often
these errors lead to wrong segmentation of code-
mixed fragments which adversely alter their inter-
nal structure.

Despite higher gains over the baseline models,
the performance of our models is nowhere near the
performance of monolingual parsers on newswire
texts. This is due to inherent complexities of
code-mixed social media content (Solorio and Liu,
2008b; Vyas et al., 2014; Çetinoğlu et al., 2016).

7 Conclusion

In this paper, we have evaluated different strate-
gies for parsing code-mixed data that only lever-
age monolingual annotated data. We have shown
that code-mixed texts can be efficiently parsed by
the monolingual parsing models if they are intel-
ligently manipulated. Against an informed mono-
lingual baseline, our parsing strategies are at-least
10 LAS points better. Among different strategies
that we proposed, Multilingual and Interpolation
methods are two competitive methods for parsing
code-mixed data.

The code of the parsing models is available
at the GitHub repository https://github.
com/irshadbhat/cm-parser, while the
data can be found under the Universal Depen-
dencies of Hindi at https://github.com/
UniversalDependencies/UD_Hindi.
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Abstract

We introduce a constituency parser based
on a bi-LSTM encoder adapted from re-
cent work (Cross and Huang, 2016b;
Kiperwasser and Goldberg, 2016), which
can incorporate a lower level character bi-
LSTM (Ballesteros et al., 2015; Plank et
al., 2016). We model two important in-
terfaces of constituency parsing with aux-
iliary tasks supervised at the word level:
(i) part-of-speech (POS) and morpholog-
ical tagging, (ii) functional label predic-
tion. On the SPMRL dataset, our parser
obtains above state-of-the-art results on
constituency parsing without requiring ei-
ther predicted POS or morphological tags,
and outputs labelled dependency trees.

1 Introduction

Recent work has shown the efficacy of bidi-
rectional long short-term memory network (bi-
LSTM) encoders in parsing (Kiperwasser and
Goldberg, 2016; Cross and Huang, 2016b; Cross
and Huang, 2016a). In these parsers, a bi-LSTM
encodes the sentence and constructs context-aware
embeddings for each word. Then a standard
transition-based parser uses these embeddings as
input to score parsing actions. In such architec-
tures, the bi-LSTM component lends itself to aux-
iliary tasks of sequence prediction at the word
level as illustrated for multilingual POS tagging
by Plank et al. (2016).

In this paper, we present a constituency pars-
ing model based on a bi-LSTM encoder, and use
the bi-LSTM component to model two natural in-
terfaces of constituency parsing — morphology
and functional labelling — as word-level auxiliary
tasks.

Morphological information is crucial for phrase
structure parsing of morphologically rich lan-
guages (Seddah et al., 2013; Björkelund et al.,
2013; Crabbé, 2015). Most multilingual parsers
use a morphological tagger as the first step of a
pipeline approach. As a first auxiliary task, we
perform morphological analysis (prediction of the
POS tags and of additional language-specific mor-
phological attributes such as case, tense). We com-
pare the resulting model to a pipeline approach.

As the second auxiliary task, we predict the
functional label that links each word to its head.
Overall, we evaluate to which extent these auxil-
iary tasks can both improve parsing and enrich the
output of the parser. This paper makes the follow-
ing contributions:

1. We introduce a single greedy parser which
does not need predicted POS tags or morpho-
logical tags at inference time, and yet out-
performs the best published results on the
SPMRL dataset (Björkelund et al., 2014).1

2. We present the first experiments with multi-
task learning for multilingual lexicalized con-
stituency parsing.

3. We further observe that a lexicalized con-
stituency parser produces surprisingly accu-
rate labelled dependency trees in a multilin-
gual context.

2 Constituent Parsing with bi-LSTMs

Lexicalized transition-based constituent parsing
generally derives from the work of Sagae and
Lavie (2005) and subsequent work (Sagae and
Lavie, 2006; Zhu et al., 2013, among others). We
use the set of parse actions described by Sagae and
Lavie (2005). It is a standard shift-reduce transi-
tion system which distinguishes left- and right- re-

1The code of the parser is available for download at
https://github.com/mcoavoux/mtg/.
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Aux task input 

Parsing input

tokeni-1 char-bi-lstm
(tokeni-1) 

tokeni char-bi-lstm
(tokeni) 

tokeni+1 char-bi-lstm
(tokeni+1) 

……

a1 aj aA
…… ……Aux-task

 output

a1 aA aAaj aja1

Figure 1: Deep bi-LSTM encoder with auxiliary
tasks supervised at the first layer.

duce actions to assign heads to new constituents.
We present the algorithm as a deduction system in
Figure 3 of Appendix A.

Each action has a set of preconditions to make
sure that the transition system always terminates
and always outputs a well-formed lexicalized tree
(Table 3 of Appendix A). For exemple, it is im-
possible to shift if B is empty.

To make the algorithm deterministic, we use a
neural network to score actions at each parsing
step. The first component of the network is a
bi-LSTM encoder (Hochreiter and Schmidhuber,
1997) which builds contextual representations for
every token in the sentence. The second compo-
nent uses these representations as input to produce
a distribution over possible actions at each parsing
step. Both components are trained simultaneously.

2.1 Bi-LSTM representation of the input

The use of a bi-LSTM encoder in parsing was pro-
posed independently by Kiperwasser and Gold-
berg (2016) and Cross and Huang (2016a). Its
role is to provide contextual representations for
each token. In transition-based parsing, bi-LSTMs
can give a finite representation of the potentially
unbounded buffer (Dyer et al., 2015), and model
span (Cross and Huang, 2016b).

Each token is a tuple of typed symbols, consist-
ing minimally of a word-form. The other types
of symbols are POS tags and language-dependent
morphological attributes. Each type of symbol has
its own embedding look-up table.

In our architecture (Figure 1), the input to the
bi-LSTM encoder at step i is the concatenation
of the embeddings of each typed symbol compos-
ing token i. The output for the same token is the
concatenation of the forward and backward LSTM

Parser configuration:
s1 CATs2 CAT s0 CAT

b0RC RC RCLCLC headhead
Parsing input ,

Template set: s0.CAT, s0.LC, s0.RC, s0.head, s1.CAT,
s1.LC, s1.RC, s1.head, s2.CAT, s2.RC, b0

Figure 2: Parsing Templates. s and b respectively
address symbols in the stack and the buffer.

states at step i. We use a two-layer bi-LSTM en-
coder, the input to the second layer being the out-
put of the first one. Intuitively, the lower layer en-
codes a representation suitable for the word-level
auxiliary tasks while the upper layer builds a rep-
resentation for the parsing task itself.

On some experimental setups, we also use a
single-layer of character bi-LSTM encoder for
each word form, using the sequence of its charac-
ters, and concatenate its output to the input of the
higher-level bi-LSTM, as has been done by Plank
et al. (2016), Ballesteros et al. (2015), among oth-
ers.

2.2 Output layers

To compute transition scores, we use a simple
two-layer feedforward neural network. The input
of this network consists of embeddings extracted
from symbols in the stack (S) and the buffer (B).
The symbols used are presented as feature tem-
plates in Figure 2.

These features are either instantiated with non-
terminal embeddings or by the contextual token
embedding produced by the bi-LSTM encoder.
For example, s0.L(eft)C(orner) is instantiated by
the bi-LSTM output of the left-most token encom-
passed by the constituent s0.

2.3 Auxiliary Tasks

We use the bi-LSTM states of the lower layer
of the encoder to predict word-level attributes.
Intuitively, the auxiliary tasks should make the
lower layer representations good at predicting
some word-level attributes known to be informa-
tive for parsing. The upper layer constructs more
abstract features from these intermediate represen-
tations.

We experiment with two types of auxiliary
tasks: morphology and functional labels.
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Experimental conditions Decoding Development F1 (EVALBSPMRL)

TOK+CLSTM greedy 82.97 86.88 81.97 87.91 88.43 89.91 86.12 92.13 77.08 85.93
TOK+CLSTM+M greedy 83.03 87.93 82.0 88.32 89.42 89.98 86.71 92.8 78.4 86.51
TOK+CLSTM+M+D greedy 83.04 87.93 82.19 88.7 89.64 90.52 86.78 93.23 79.14 86.8

TOK greedy 80.97 76.28 79.93 85.52 85.82 81.88 72.97 82.8 72.95 79.9
TOK+MMT greedy 82.75 88.25 82.5 88.5 90.31 91.22 86.53 93.53 79.39 87.0
TOK+MMT+D greedy 83.07 88.35 82.35 88.75 90.34 91.22 86.55 94.0 79.64 87.14

Experimental Conditions Test F1 (EVALBSPMRL)

TOK+CLSTM+M+D greedy 82.92 87.87 82.1 85.12 89.19 90.95 85.89 92.67 83.44 86.68
TOK+MMT+D greedy 82.77 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0 87.26

Björkelund et al. (2014) ens+reranker 81.32a 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Table 1: Results on development and test corpora (SPMRL evaluator). aBjörkelund et al. (2013).

Arabic Basque Frenchc German Hebrewc Hungarian Koreanc Polishc Swedishc

Experimental Conditions Decoding Development results – POS-Taggingd

TOK+CLSTM+M greedy 97.66 95.7 97.58 98.39 95.71 98.06 94.42 97.02 96.88
MarMoTa CRF+lexicons 97.38 97.02 97.61 98.10 97.09 98.72 94.03 98.12 97.27

Test results – UAS/LAS

TOK+CLSTM+M+D greedy 81.5/78.7 75.8/68.9 88.0/83.1 67.1/64.1 84.5/75.3 74.5/69.5 89.9/87.3 88.2/80.0 86.3/76.5
TOK+MMT+D greedy 81.3/78.6 76.8/71.2 87.8/83.5 67.2/64.7 85.8/77.3 75.9/72.0 89.6/87.5 89.6/83.1 86.7/78.5
Ballesteros et al. (2015) greedy 86.1/83.4 85.2/78.6 86.2/82.0 87.3/84.6 80.7/72.7 80.9/76.3 88.4/86.3 87.1/79.8 83.4/76.4

Best publishedb ens+reranker 88.3/86.2 90.0/85.7 89.0/85.7 91.6/89.7 87.4/81.7 89.8/86.1 89.1/87.3 91.8/87.1 88.5/82.8

Table 2: Dependency and tagging results. aUses external morphological lexicons (Björkelund et al.,
2013). bEither Björkelund et al. (2013) or Björkelund et al. (2014). cLanguages with few head mis-
matches between the dependency and the constituency corpora (Crabbé, 2015). dTagging is evaluated
with the dependency treebanks (the tagsets used in the constituency treebanks might differ).

Morphology Each token is annotated with its
tag and a sequence of language-specific morpho-
logical attributes such as gender, case or tense.
Whereas the tagging has often been addressed
with parsing as a joint task, to the best of our
knowledge, no model has proposed to perform full
morphological analysis in a multi-task framework.
For this task, we use one softmax output layer per
available morphological attribute, including POS
tags (Figure 1).

Functional Labels Both to improve con-
stituency parsing and to enrich constituency
trees with functional information, we propose a
novel auxiliary task consisting in predicting the
functional label of a token, i.e. its syntactic role
with respect to its head. This task is constructed
as a simple sequence prediction task without any
information about the parse tree.

2.4 Loss function

The objective function for a single sentence wn
1

whose gold derivation is the sequence of actions

aT
1 is defined as follows:

L(aT
1 , w

n
1 ; θ) =

T∑
i=1

log p(ai|a1, . . . ai−1;wn
1 ,θ)+

n∑
i=1

A∑
j=1

log p(wi,j |wn
1 ; θ)

where wi,j denotes the attribute j of token i, A
is the total number of attributes used as auxiliary
tasks and θ is the set of all parameters.

3 Experiments

Our model combine constituency parsing with two
of its natural interfaces, morphology and func-
tional structure. We designed experiments to as-
sess to which extent modelling these interfaces as
auxiliary tasks can improve parsing and enrich the
output of the parser.

We performed two sets of experiments to han-
dle two questions: we compare the integration
of morphological information as respectively pro-
vided by an external tagger in a pipeline architec-
ture or as an auxiliary prediction task for the neural
model. For each of those setup, we test to which
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extent we can also accurately predict functional la-
bels as an auxiliary task.

In a first set of experiments, we evaluated the
model with a character-level bi-LSTM and either
no auxiliary task (TOK+CLSTM), morphological
tagging as an auxiliary task (TOK+CLSTM+M), or
morphological tagging and dependency label pre-
dictions as auxiliary tasks (TOK+CLSTM+M+D).
In those three models, the input to the sentence-
level bi-LSTM is the concatenation of a word em-
bedding and a character-based embedding.

In a second set of experiments, the input to the
sentence-level bi-LSTM is either a word embed-
ding (TOK) or the concatenation of a word embed-
ding and embeddings for each available morpho-
logical tag (TOK+MMT), predicted by a morpho-
logical tagger (Mueller et al., 2013, MarMoT). We
compare the latter setup with an additional func-
tional prediction as auxiliary task (TOK+MMT+D).

This last model will give upper-bound accura-
cies against which we can compare the model with
all auxiliary tasks (TOK+CLSTM+M+D), which is
the focus of the paper.

Data We evaluate our models on the SPMRL
dataset (Seddah et al., 2013). This dataset contains
constituency and dependency treebanks aligned at
the word level for 9 morphologically righ lan-
guages. These treebanks are annotated with POS
tags and morphological attributes (such as case,
mood, tense, number).

In the experiments where morphology is pre-
dicted as an auxiliary task, we use the gold tags
and morphological annotations at training time
and none of this information at test time.

In the other experiments, we use the POS
and morphological tags predicted by MarMoT
(Mueller et al., 2013),2 for training and parsing.
Following Björkelund et al. (2013), we used fine
pos-tags for all languages except Korean.

As our parsing model is lexicalized, each con-
stituent in the training set must be annotated with
its head. We used the procedure described by
Crabbé (2015) to do so. This procedure uses
the alignement between constituency trees and
dependency trees to determine the head of each
phrase, and uses heuristics to solve mismatch
cases.3 We binarize trees with an order-0 head-
Markovization and collapse unary productions ex-

2These are available on MarMoT website.
3Mismatches could be caused by irreducible structure dif-

ference between both treebanks (Crabbé, 2015).

cept those which produce pre-terminals.

Protocol We trained every model with ASGD
(Polyak and Juditsky, 1992) and shuffle the train-
ing set before each iteration. When using auxiliary
losses, we repeat the two following steps. First, we
make predictions for every auxiliary task, assign
POS tags to tokens (POS tags of tokens are non-
terminals once shifted onto S), then backpropa-
gate and update the parameters. In the second step,
we compute the primary loss (over the gold se-
quence of actions for the current sentence), then
backpropagate the gradient and update the param-
eters.

For each model, we calibrated the learning rate
and the number of iterations on the development
set, but did not do any other hyperparameter tun-
ing. The complete list of hyperparameters used is
shown in Table 4 in Appendix A.

Results and Discussion Results on develop-
ment and test sets are presented in Table 1. First
we observe that our baseline (TOK+CLSTM) is
nearly as accurate as the best published results
on the SPMRL dataset. The use of morphology
as auxiliary tasks (TOK+CLSTM+M) improves the
baseline by 0.5 F1 on average on the test sets.
While being greedy, and needing neither predicted
POS nor morphological tags, the resulting parser
outperforms the product of grammar and reranker
combination of Björkelund et al. (2014).

Furthermore, on average, it is only 0.5 F1 be-
hind the model which uses predicted morphology
as input to the bi-LSTM (TOK+MMT). Across
languages, the performance difference between
the two models can be partly explained by the
difference in tagging accuracy (Table 2). The
TOK+CLSTM+M model matches MarMoT tagging
results for several languages, but is not as good
overall. MarMoT uses morphological lexicons as
an additional source of information, which might
be crucial for languages such as Basque.

Second, the dependency label auxiliary task im-
proves constituency parsing by a small but con-
sistent margin. As our model is lexicalized, it is
able to output unlabelled dependency trees. As a
byproduct of this task, we can obtain labelled de-
pendency trees instead. Thus, we also evaluate the
output of our parser against the dependency cor-
pora using the evaluator provided with the shared
task. Results are shown in Table 2. Our parser
outperforms Ballesteros et al. (2015), the best pub-
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lished results with a greedy parser, on 5 languages
out of 9. Unsurprisingly, these languages corre-
spond to the corpora, identified by Crabbé (2015),
which contain very few mismatch cases between
the dependency and the constituency treebank.

This result is in keeping with Cer et al. (2010)
who has shown that constituency parsers are very
good at recovering dependency structures for En-
glish. Our experiments confirm this finding in a
novel multilingual setting where labelled depen-
dency trees are directly predicted by the parser,
rather than obtained by conversion of predicted
constituency trees.

4 Conclusion

We have investigated to which extent modelling
morphological analysis and functional label pre-
diction as auxiliary tasks could benefit parsing.
The parser we described does not need pre-
dicted morphological information at test time,
and yet obtains state-of-the-art results in con-
stituency parsing. Since the parser is lexicalized,
it models both constituency and dependency and
can therefore output directly labelled dependency
trees without involving any additional conversion
heuristic.
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A Supplemental Material

Action Conditions

SH B is not empty.

U-X The last action is SHIFT.
X is an axiom iff this is a one-word sentence.

(R|L)-X S has at least 2 elements.
X is an axiom iff B is empty, and S
has exactly one element.
If X is a temporary symbol and if B is empty,
s2 must not be a temporary symbol.

R-X s1 is not a temporary symbol.

L-X s0 is not a temporary symbol.

Table 3: List of preconditions on actions. Tempo-
rary symbols are symbols introduced by the bina-
rization process.

SH(IFT)
〈S,w|B〉
〈S|w,B〉

(REDUCE-)U(NARY)-X
〈S|s0[h], B〉
〈S|X[h], B〉

(REDUCE-)R(IGHT)-X
〈S|s1[h]|s0[h′], B〉
〈S|X[h′], B〉

(REDUCE-)L(EFT)-X
〈S|s1[h]|s0[h′], B〉
〈S|X[h], B〉

Figure 3: Lexicalized shift-reduce transition sys-
tem. X[h] denotes a non-terminal X and its
head h. Each action has a set of preconditions to
make sure that the transition system always ter-
minates and always outputs a well-formed lexical-
ized tree. These preconditions are described in Ta-
ble 3 of Appendix A.

Hyperparameters Values

Optimisation

Iterations {4, 8, 12, . . . 28, 30}
Initial learning rate {0.01, 0.02}
Learning rate decay constant 10−6

Hard gradient clipping 5.0
Gaussian noise σ 0.01
Parameter initialisation Xavier initialisation
Embedding initialisation Uniform([−0.01, 0.01])

Output layers

Number of hidden layers 2
Size of hidden layers 128
Activation rectifiers

Word level bi-LSTM

Depth 2
Size of LSTM states 128
Word embeddingsa 32
Non-terminal embeddings 16
Morphological embeddingsb 4, 8 or 16c

Char-level bi-LSTMa

Depth 1
Size of LSTM states 32
Character embeddings 32

Table 4: Hyperparameters.
aFollowing Kiperwasser and Goldberg (2016), we

stochastically replace a word by an unknown symbol with
probability p(w) = α

#{w}+α , where #{w} is the raw fre-
quency of w in the training corpus. Following Cross and
Huang (2016b), we used α = 0.8375.

bWhen applicable.
cDepending on number of possible values for this at-

tribute.
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Abstract

People can refer to quantities in a visual scene
by using either exact cardinals (e.g. one, two,
three) or natural language quantifiers (e.g. few,
most, all). In humans, these two processes
underlie fairly different cognitive and neural
mechanisms. Inspired by this evidence, the
present study proposes two models for learn-
ing the objective meaning of cardinals and
quantifiers from visual scenes containing mul-
tiple objects. We show that a model capitaliz-
ing on a ‘fuzzy’ measure of similarity is effec-
tive for learning quantifiers, whereas the learn-
ing of exact cardinals is better accomplished
when information about number is provided.

1 Introduction

In everyday life, people can refer to quantities by
using either cardinals (e.g. one, two, three) or nat-
ural language quantifiers (e.g. few, most, all). Al-
though they share a number of syntactic, semantic
and pragmatic properties (Hurewitz et al., 2006),
and they are both learned in a fairly stable order of
acquisition across languages (Wynn, 1992; Katsos
et al., 2016), these quantity expressions underlie
fairly different cognitive and neural mechanisms.
First, they are handled differently by the language
acquisition system, with children recognizing their
disparate characteristics since early development,
even before becoming ‘full-counters’ (Hurewitz et
al., 2006; Sarnecka and Gelman, 2004; Barner et
al., 2009). Second, while the neural processing
of cardinals relies on the brain region devoted to
the representation of quantities, quantifiers rather
elicit regions for general semantic processing (Wei
et al., 2014). Intuitively, cardinals and quantifiers
refer to quantities in a different way, with the for-
mer representing a mapping between a word and
the exact cardinality of a set, the latter expressing
a ‘fuzzy’ numerical concept denoting set relations

Figure 1: How many are dogs? Three/Most.

or proportions of sets (Barner et al., 2009). As a
consequence, speakers can reliably answer ques-
tions involving quantifiers even in contexts that
preclude counting (Pietroski et al., 2009), as well
as children lacking exact cardinality concepts can
understand and appropriately use quantifiers in
grounded contexts (Halberda et al., 2008; Barner
et al., 2009). That is, knowledge about (large) pre-
cise numbers is neither necessary nor sufficient for
learning the meaning of quantifiers.

Inspired by this evidence, the present study pro-
poses two computational models for learning the
meaning of cardinals and quantifiers from visual
scenes. Our hypothesis is that learning cardinals
requires taking into account the number of in-
stances of the target object in the scene (e.g. num-
ber of dogs in Figure 1). Learning quantifiers, in-
stead, would be better accomplished by a model
capitalizing on a measure evaluating the ‘fuzzy’
amount of target objects in the scene (e.g. pro-
portion of ‘dogness’ in Figure 1). In particular,
we focus on those cases where both quantification
strategies might be used, namely scenes contain-
ing target (dogs) and distractor objects (cats). Our
approach is thus different from salient objects de-
tection, where the distinction targets/distractors is
missing (Borji et al., 2015; Zhang et al., 2015;
Zhang et al., 2016). With respect to cardinals, our
approach is similar to (Seguí et al., 2015), who
propose a model for counting people in natural
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scenes, and to more recent work aimed at counting
either everyday objects in natural images (Chat-
topadhyay et al., 2016) or geometrical objects
with attributes in synthetic scenes (Johnson et al.,
2016). With respect to quantifiers, our approach
is similar to (Sorodoc et al., 2016), who use quan-
tifiers no, some, and all to quantify over sets of
colored dots. Differently from ours, however, all
these works tackle the issue as either a classifica-
tion problem or a Visual Question Answering task,
with less focus on learning the meaning represen-
tation of each cardinal/quantifier. To our knowl-
edge, this is the first attempt to jointly investigate
both mechanisms and to obtain the meaning rep-
resentaton of each cardinal/quantifier as resulting
from a language-to-vision mapping.

Based on their geometric intepretation, we pro-
pose to use cosine and dot product similarity be-
tween the target object and the scene as our mea-
sures for quantifiers and cardinals, respectively.
The former, ranging from -1 to 1, evaluates the
similarity between two vectors with respect to
their orientation and irrespectively of their mag-
nitudes. That is, the more two vectors are overall
similar, the closer they are. Ideally, cosine sim-
ilarity between an image depicting a dog and a
scene containing either 3 or 10 dogs without dis-
tractors (hence, ‘all’) should be equal to 1. There-
fore, it would indicate that the proportion of ‘dog-
ness’ in the scene is highest. Dot product, on the
other hand, is defined as the product of the cosine
between two vectors and their Euclidean magni-
tudes. By taking into account the magnitudes, this
measure ideally encodes information regarding the
number of times a target object is repeated in the
scene. In the above-mentioned example, indeed,
dot product would be 3 and 10, respectively. In
this simplified setting, thus, it would be equal to
the number of dogs.

Furthermore, we propose that the ‘objective’
meaning of each cardinal/quantifier can be learned
by means of a cross-modal mapping (see Figure 4)
between the linguistic representation of the target
object and its quantity (either exact or fuzzy) in
a visual scene. To test our hypotheses, we carry
out a proof-of-concept on the synthetic datasets we
describe in Section 2. First, we explore our visual
data by means of the two proposed similarity mea-
sures (§ 3.1). Second, we learn the meaning repre-
sentations of cardinals and quantifiers and evaluate
them in the task of retrieving unseen combinations

of targets/distractors (§ 3.2). As hypothesized, the
two quantification mechanisms turn out to be bet-
ter accounted for by models capitalizing on the ex-
pected similarity measures.

2 Data

In order to test our hypothesis, we need a dataset of
visual scenes which crucially include multiple ob-
jects. Moreover, some objects in the scene should
be repeated, so that we might say, for instance,
that out of 5 objects ‘three’/‘most’ are dogs. Al-
though a large number of image datasets are cur-
rently available (see Lin et al. (2014) among many
others), no one fully satisfies these requirements.
Typically, images depict one salient object and
even when multiple salient objects are present,
only a handful of cases contain both targets and
distractors (Zhang et al., 2015; Zhang et al., 2016).
To bypass these issues, in the present work we
experiment with synthetic visual scenes (hence,
scenarios) that are made up by at most 9 images
each representing one object. The choice of using
a ‘patchwork’ of object-depicting images is mo-
tivated by the need of representing a reasonably
large variability (e.g. ‘few’ refer to scenes con-
taining 2 target objects out of 7 as well as 1/5,
4/9, etc.). This way, we avoid matching a quan-
tifier always with the same number of target ob-
jects (except no, that is always represented by 0
targets), and allow cardinals to be represented by
scenes with different numbers of distractors. At
the same time, we get rid of any issues related to
object localization.

We experiment with quantifiers (hence, Qs) no,
few, most, and all, which we defined a priori by ra-
tios 0%, 1-49%, 51-99% and 100%, respectively.
Consistently with our goals, this arguably simpli-
fied setting does neither take into account prag-
matic uses of Qs (i.e. we treat them as lying on
an ordered scale) nor reflect possible overlappings.
For these reasons, we avoid using quantifiers as
some whose meaning overlaps with the meaning
of many others. As far as cardinals (hence, Cs)
are concerned, we experiment with scenarios in
which the cardinality of the targets ranges from
1 to 4. Cs up to 4 are acquired by children in-
crementally at subsequent stages of their develop-
ment, with higher numbers being learned upon this
knowledge with the ability of counting (Barner et
al., 2009). Also, Cs ranging from 1 to 3-4 are
widely known to exhibit some peculiar properties
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Train-q Train-c
no few most all one two three four
0/1 1/6 2/3 1/1 1/1 2/2 3/3 4/4
0/2 2/5 3/4 2/2 1/3 2/3 3/4 4/5
0/3 2/7 3/5 3/3 1/4 2/5 3/5 4/6
0/4 3/8 4/5 4/4 1/6 2/7 3/8 4/7

Test-q Test-c
no few most all one two three four
0/5 1/7 4/6 5/5 1/2 2/4 3/7 4/8
0/8 4/9 6/8 9/9 1/7 2/9 3/9 4/9

Table 1: Combinations in Train and Test.

(i.e. their exact number can be immediately and
effortlessly grasped) due to which they are usu-
ally referred to as ‘subitizing’ range (Piazza et al.,
2011; Railo et al., 2016).

2.1 Building the scenarios

We use images from ImageNet (Deng et al., 2009).
Starting from the full list of 203 concepts and cor-
responding images extracted by Cassani (2014),
we discarded those concepts whose corresponding
word had low/null frequency in the large corpus
used in (Baroni et al., 2014). To get rid of issues
related to concept identification, we used a single
representation for each of the 188 selected con-
cepts. Technically, we computed a centroid vec-
tor by averaging the 4096-dimension visual fea-
tures of the corresponding images, which were
extracted from the fc7 of a CNN (Simonyan and
Zisserman, 2014). We used the VGG-19 model
pretrained on the ImageNet ILSVRC data (Rus-
sakovsky et al., 2015) implemented in the Mat-
ConvNet toolbox (Vedaldi and Lenc, 2015). Cen-
troid vectors were reduced to 100-d via PCA and
further normalized to length 1 before being used to
build the scenarios. When building the scenarios,
we put the constraint that distractors have to be
different from each other. Moreover, only distrac-
tors whose visual cosine similarity with respect to
the target is lower than the average are selected.
For each scenario, target and distractor vectors are
summed together. As a result, each scenario is rep-
resented by a 100-d vector.

We also experimented with scenarios where
vectors are concatenated to obtain a 900-d vector
(empty ‘cells’ are filled with 0s vectors) and fur-
ther reduced to 100-d via PCA. Since the pattern
of results in the only-vision evaluation (see § 3.1)
turned out to be similar to the results obtained in
the ‘summed’ setting, due to space limitations we
will only focus on the ‘summed’ setting.

Figure 2: Left: quantifiers against cosine distance.
Right: cardinals against dot product.

2.2 Datasets
We built one dataset for Cs and one for Qs, each
containing 4512 scenarios.1 We then split each
of the two in one 3008-datapoint Training Dataset
(Train) for training and validation and one 1504-
datapoint Testing Dataset (Test) for testing. The
two datasets were split according to their ‘com-
binations’, that is the mixture of targets and dis-
tractors in the scenario. As reported in Table 1,
we kept 4 different combinations for each C/Q
in Train and 2 in Test. Note that the numerator
refers to the number of targets, the denominator to
the total number of objects. The number of dis-
tractors is thus given by the difference between
the two values. To illustrate, in Train-q ‘few’ is
represented by scenarios 1/6, 2/5, 2/7, and 3/8,
whereas in Test-q ‘few’ is represented by scenarios
1/7 and 4/9. The initial 4512 scenarios have been
obtained by building a total of 24 different sce-
narios (6 combinations * 4 C/Q classes) for each
of the 188 objects. A particular effort has been
paid in making the datasets as balanced as pos-
sible. When designing the combinations for ‘few’
and ‘most’, for example, we controlled for the pro-
portion of targets in the scene, in order to avoid
making one of the two easier to learn. Also, com-
binations were thought to avoid biasing cardinals
toward fixed proportions of targets/distractors.

3 Experiments

3.1 Only-vision evaluation
As a first step, we carry out a preliminary evalu-
ation aimed at exploring our visual data. If our
intuition about the information encoded by the
two similarity measures is correct (see § 1), we

1A visual representation of our scenarios is provided in
the rightmost side of Figure 4, while Figure 1 is only intended
to provide a more intuitive overview of the task.
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Figure 3: Left: quantifiers against dot product.
Right: cardinals against cosine distance.

should observe that cosine is more effective than
dot product in distinguishing between different
Qs, while the latter should be better than cosine
for Cs. Moreover, Qs/Cs should lie on an ordered
scale. To test our hypothesis, we compute cosine
distances (i.e. 1−cosine, to avoid negative values)
and dot product similarity for each target-scenario
pair in both Train and Test (e.g. dog vs 2/5 dogs).
Figure 2 reports the distribution of Qs with respect
to cosine (left) and Cs with respect to dot product
(right) in Train. As can be seen from the boxplots,
both Qs and Cs are ordered on a scale. In par-
ticular, cosine distance is highest in no scenarios
(where the target is not present), lowest in all sce-
narios. For Cs, dot product is highest in four sce-
narios, lowest in one scenarios.

Our intuition is further confirmed by the results
of a radial-kernel SVM classifier fed with either
cosine or dot product similarities as predictors.2

Qs are better predicted by cosine than dot product
(78.6% vs 63.8%), whereas dot product is a better
predictor of Cs than cosine (68.7% vs 44.7%). As
shown in Figure 3, the ordered scale is indeed rep-
resented to a much lesser extent when Qs are plot-
ted against dot product (left) and Cs against cosine
(right). A similar pattern of SVM results and sim-
ilar plots emerged when experimenting with Test.

3.2 Cross-modal mapping
Our core proposal is that the meaning of each C/Q
can be learned by means of a cross-modal map-
ping between the linguistic representation of the
target object (e.g. dog, mug, etc.) and a num-
ber of scenarios representing the target object in
a given C/Q setting (e.g. ‘two’/‘few’ dogs). In our
approach, each word (e.g. dog) is represented by

2We experimented with linear, polynomial, and radial ker-
nels. We only report results obtained with default radial ker-
nel, that turned out to be the overall best model.

Figure 4: One learning event of our proposed
cross-modal mapping. Cosine is used for quan-
tifiers (few), dot product for cardinals (two).

a 400-d embedding built with the CBOW architec-
ture of word2vec (Mikolov et al., 2013) and the
best-predictive parameters of Baroni et al. (2014)
on a 2.8B tokens corpus. The original 400-d vec-
tors are further reduced to 100-d via PCA before
being fed into the model.

Figure 4 reports a single learning event of our
proposed model. Each C/Q (e.g. two, few) is
learned as a separate function that maps each
of the 188 words representing our selected con-
cepts to its corresponding 4 scenarios in Train (see
§ 2.2). To illustrate, the meaning of few is learned
by mapping each word into the 4 visual scenes
where the amount of ‘targetness’ is less than 50%
(see § 2), whereas two is learned by mapping each
word to the scenarios where the number of tar-
gets is 2, and so on. This mapping, we conjec-
ture, would mimic the multimodal mechanism by
which children acquire the meaning of both Cs and
Qs (see Halberda et al. (2008)). Once learned, the
function representing each C/Q can be evaluated
against scenarios containing an unseen mixture of
(known) target objects and distractors. If it has
encoded the correct meaning of the quantified ex-
pression, the function will retrieve the unseen sce-
narios containing the correct quantity (either exact
or fuzzy) of target objects.

We experiment with three different models: lin-
ear (lin), cosine neural network (nn-cos), dot-
product neural network (nn-dot). The first model
is a simple linear mapping. The second is a single-
layer neural network (activation function ReLU)
that maximizes the cosine similarity between input
(linguistic) and output vector (visual). The third is
a similar neural network that approximates to 1 the
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lin nn-cos nn-dot
mAP P2 mAP P2 mAP P2

no 0.78 0.65 0.87 0.77 0.54 0.37
few 0.59 0.39 0.68 0.51 0.59 0.43
most 0.61 0.36 0.60 0.29 0.62 0.45
all 0.75 0.66 1 1 0.33 0.12
one 0.44 0.30 0.38 0.21 0.61 0.45
two 0.35 0.15 0.38 0.21 0.57 0.43
three 0.38 0.16 0.36 0.13 0.56 0.40
four 0.65 0.47 0.75 0.60 0.76 0.61

Table 2: R-target. mAP and P2 for each model.

dot product between input and output. We evalu-
ate the mapping functions by means of a retrieval
task aimed at picking up the correct scenarios from
Test among the set of 8 scenarios built upon the
same target object. Recall that in Test there are 2
combinations * 4 C/Q classes for each concept.

Results As reported in Table 2, nn-cos is over-
all the best model for Qs, whereas nn-dot is the
best model for Cs. In particular, mean average
precision (mAP) is higher in nn-cos for 3 out of
4 Qs, with only most reaching slightly better mAP
in Q nn-dot due to the high number of cases con-
founded with all by the Q nn-cos model (see Ta-
ble 3). Conversely, both mAP and precision at top-
2 positions (P2) for Cs are always higher in nn-dot
compared to the other models. From a qualita-
tive analysis of the results, it emerges that both the
best-predictive models make ‘plausible’ errors, i.e.
they confound Cs/Qs that are close to each other
in the ordered scale. Table 3 reports the confu-
sion matrices for the best performing models. Be-
sides retrieving more cases of all instead of (cor-
rect) most, the Q nn-cos model often confounds
few with no. Similarly, the C nn-dot model often
confounds three with four, one with two, two with
three, and so on. Overall, both models pick up
very few or no responses that are on the opposite
end of the ‘scale’, thus suggesting that the mean-
ing representation they learn encodes, to a certain
extent, information about the ordered position of
the quantified expressions.

4 Discussion

We propose that the meaning of Cs and Qs can
be learned by means of a language-to-vision map-
ping, and we show that two models capitalizing on
dot product and cosine better account for Cs and
Qs, respectively. In future research, we plan to fur-
ther investigate this issue by using real-scene im-
ages to avoid constraining the visual data. More-
over, we plan to experiment with a broader set of

no few most all
no 288 88 0 0
few 141 191 38 6
most 0 0 111 265
all 0 0 0 376

one two three four
one 168 113 54 41
two 64 136 124 52
three 23 80 130 145
four 10 24 72 272

Table 3: Top: Q nn-cos, number of cases retrieved
in top-2 positions. Bottom: same for C nn-dot.

quantifiers (e.g. some, almost all, etc.) and higher
cardinals. The latter investigation, in particular,
would allow us to verify whether our approach is
suitable for the (potentially infinite) set of ‘car-
dinal functions’ beyond the subitizing range. If
so, we might observe that the models keep mak-
ing cognitively plausible errors, picking items that
are close to the target one in the ordered scale.
This evidence, we believe, would further motivate
our ‘one quantifed expression, one function’ ap-
proach, which is partially inspired by the evidence
that, in human brain, so-called number neurons are
tuned to preferred numbers (Nieder, 2016). Sim-
plifying somewhat, each number would activate
specific neurons. Finally, we believe that taking
into account speakers’ uses of Cs and Qs would
constitute the natural next step toward a complete
modelling of the meaning of quantified expres-
sions.
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Abstract

While dependency parsers reach very
high overall accuracy, some dependency
relations are much harder than others.
In particular, dependency parsers per-
form poorly in coordination construction
(i.e., correctly attaching the conj relation).
We extend a state-of-the-art dependency
parser with conjunction-specific features,
focusing on the similarity between the
conjuncts head words. Training the ex-
tended parser yields an improvement in
conj attachment as well as in overall de-
pendency parsing accuracy on the Stan-
ford dependency conversion of the Penn
TreeBank.

1 Introduction

Advances in dependency parsing result in impres-
sive overall parsing accuracy. For the most part,
the advances are due to general improvements
in parsing technology or feature representation,
and do not explicitly target any specific language
or syntactic construction. However, despite the
high overall accuracy, parsers are still persistently
wrong in attaching certain relations. In the at-
tachments predicted by BIST-parser (Kiperwasser
and Goldberg, 2016), the F1 score for the labels
nn, nsubj, pobj, and others is 95% and above;
while the F1 scores for advmod, conj and prep
are 83.3%, 82.5% and 87.4% respectively. Con-
junction holds the lowest F1 score, ignoring rare
labels, dep and punct. Other parsers behave simi-
larly. Conjunction mistakes occurs also in simple
sentences such as:

(1) “Those machines are still considered novelties,
with keyboards only a munchkin could love and
screens to match.”

(2) “In the year-earlier period, CityFed had net
income of $ 485,000, but no per-share earnings.”

BIST-parser (Kiperwasser and Goldberg, 2016) at-
taches screens and love instead screens and key-
boards in (1); and earnings and had instead earn-
ings and income in (2).

The parsers low performance on conjunction is
disappointing given that conjunction is a common
and important syntactic phenomena, appearing in
almost 40% of the sentences in the Penn Tree-
Bank (Marcus et al., 1993), as well constitutes
2.82% of the Stanford dependency conversion of
the Penn TreeBank (De Marneffe and Manning,
2008) edges.

In this work we focus on improving conj attach-
ment accuracy by extending a dependency parser
with features that specifically target the coordinat-
ing conjunction structures. Similar efforts were
done for constituency parsing in previous work
(Hogan, 2007; Charniak and Johnson, 2005).

As previously explored, conjuncts tend to be
semantically related and have a similar syntac-
tic structure (Shimbo and Hara, 2007; Hara et
al., 2009; Hogan, 2007; Ficler and Goldberg,
2016; Charniak and Johnson, 2005; Johnson et al.,
1999). For example: “for China and for India”,
“1.86 marks and 139.75 yen”, “owns 33 % of
Moleculons stocks and holds 27.5 % of Datapoints
shares”. Such cases are common but still there are
many cases where symmetry between conjuncts is
less straightforward such as in (1), which includes
the conjuncts “keyboards only a munchkin could
love” and “screens to match”; and (2), which in-
cludes “net income of $ 485,000” and “no per-
share earnings”. For many cases of this type,
the head words of the conjuncts are similar, e.g.
(keyboards,screens) in (1) and (income,earnings)
in (2).

We extend BIST-parser, the Bi-LSTM based
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parser by Kipwasser and Goldberg (2016), by
adding explicit features that target the conjunction
relation and focus on various aspects of symmetry
between the potential conjuncts’ head words. We
show improvement in dependency parsing scores
and in conj attachment.

2 Symmetry between Conjuncts

It is well known that conjuncts tend to be seman-
tically related and often have a similar syntactic
structure. This property of coordination was used
as a guiding principle in previous work on coordi-
nation disambiguation (Hara et al., 2009; Hogan,
2007; Shimbo and Hara, 2007; Ficler and Gold-
berg, 2016). While these focus on symmetry be-
tween conjuncts in constituency structures, we use
the symmetry assumption for the purpose of im-
proving dependency parsing. Here is a simple ex-
ample of dependency tree that include conjunc-
tion:

The bond fund will invest in high-grade or medium-grade bonds

det

nn

nsubj

aux prep

amod

cc

conj

pobj

The edge labeled with conj connects the first con-
junct head to the heads of the other conjuncts. In
more complex conjuncts, the subtrees under the
nodes connected by conj are often similar such as
the following examples:

to a stock fund , an annuity and a money-market fund

pobj

det

nn

conj

cc

det

conj

det

nn

handled four World Series teams and now handles the Gold Coast Suns

dobj

cc

advmod

conj

num

nn

nn

dobj

det

nn

nn

However, there are also cases where the conjuncts
structures are non-similar such as in:

Hani Zayadi was appointed president and chief executive officer of ...

nn

nsubjpass

auxpass xcomp cc

conj

prep

amod

nn

Yet, some form of symmetry (or anti-symmetry)
usually holds between the conjuncts head words.
Table 1 lists the most common coordinated words
in the PTB.

(Head,Modifier)
1. ($,$) 13. (chairman,executive)
2. ($,cents) 14. (on,on)
3. (president,officer) 15. (by,by)
4. (%,%) 16. (at,at)
5. (chairman,officer) 17. ($,%)
6. (securities,exchange) 18. (marks,yen)
7. (in,in) 19. (president,executive)
8. (standard,poor) 20. (savings,association)
9. (to,to) 21. (chairman,president)
10. (buy,sell) 22. (inc.,inc.)
11. (for,for) 23. (from,from)
12. (corp.,corp.) 24. (shares,%)

Table 1: The most common conj attachments in
the Penn TreeBank dependency conversion.

3 Conjunction Features

We suggest a set of features that are designed
specifically for the conjunction relation, and tar-
get the symmetry aspect of the head words. The
features look at a pair of head and modifier words,
and are based on properties that appear frequently
in conjunctions in the Stanford Dependencies ver-
sion of the PTB. The features are summarized in
Table 2, and are detailed below:
CAP – The case where both conjuncts head words
start with a capital letter is much more common
(> 3×) than the case where only one of the head
words starts with a capital letter. These cases are
usually names of people, countries and organi-
zations; and common phrases such as “Mac and
Cheese”. This property is rare in other labels ex-
cept nn. We capture this property with a boolean
feature that indicates whether both conjuncts head
words start with a capital letter.
SUF – In some of the conjunctions, the head
words have a similar form, as in (codification,
clarification), (demographic, geographic), (high-
grade, medium-grade), (backwards, forwards).
The cases where the longest common suffix be-
tween the words is at least 3 is 8% in the case of
conj and much lower for the other labels. We cap-
ture this tendency using a numeric feature that in-
dicated the length of the common suffix between
the head words.
LEM – Conjuncts heads often share the same
lemma. These are usually different inflections of
the same verb (e.g. sells,sold); or singular/plural
forms of the same noun (e.g. table,tables). This is
also a tendency that is more common in conj la-
bel than the other labels. We capture these, with a
boolean feature indicating whether the lemmas of
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Description Type Examples
CAP Whether both words start with a capital letter boolean (Corp.,Inc.), (Poland,Hungary)
SUF The length of the longer common suffix between the words numeric (men,women), (three-month,six-month )
LEM Whether the words lemmas are identical boolean (say,said), (handled,handles)
SYM The cosine distance between the words embeddings numeric (reported,said), (president,director)
SENT-H Whether the head word sentiment is positive, negative or neutral 1,-1, or 0

(up,down), (confirmed,declined)
SENT-M Whether the modifier word sentiment is positive, negative or neutral 1,-1, or 0

Table 2: Summary of the conjunction-specific features.

the conjuncts head words are identical. Lemmas
are obtained using the NLTK (Bird, 2006) inter-
face to WordNet (Miller, 1995).
SYM – The conjuncts head words usually have a
strong semantic relation. For example (fund, an-
nuity), (same, similar), (buy, sell), (dishes, glass).
SYM is a numeric feature that scores the similar-
ity between the conjuncts heads words. The score
is computed as the cosine-similarity between word
embeddings of the head words (these embeddings
are initialized with pre-trained vector from Dyer et
al. (2015)).
SENT – In some cases, both conjunct’s head
words sentiments are not neutral. Here are some
examples from the PTB where both words are with
positive sentiments: (enjoyable,easy), (comple-
mentary,interesting), (calm,rational); where both
words are with negative sentiments: (slow,dump),
(insulting,demeaning), (injury,death); and where
one word is positive and the other is neg-
ative: (winners,losers), (crush,recover), (suc-
ceeded,failed). Having non-neutral sentiment for
both words is not very common for conj relation
(2.3% of the cases), but it much less common for
the other relations. Therefore we add features that
indicate the sentiment (positive, negative or neu-
tral) for each of the coordinated words. We use
lists of positive and negative words from work on
airline consumer sentiment (Breen, 2012).

4 Incorporating conjunction features

We incorporate the above features in the freely
available BIST-parser (Kiperwasser and Gold-
berg, 2016). This parser is a greedy transition-
based parser, using the archybrid transition system
(Kuhlmann et al., 2011). At each step of the pars-
ing process, the parser chooses one of 2∗|labels|+
1 possible transitions: SHIFT, RIGHT(rel) and
LEFT(rel). The LEFT and RIGHT transitions add a
dependency edge with the label rel. At each step,
all transitions are scored, and the highest scoring
transition is applied.

The Stanford Dependencies scheme specifies

that the conj relation appears as a right edge, and
so it can only be produced by a RIGHT(conj) tran-
sition. We compute a score Sconj which is added
to the score of the RIGHT(conj) transition that was
produced by the parser. Sconj is computed by an
MLP that receives a feature vector that is a con-
catenation of the original parser’s features and the
conjunction specific features. The scoring MLP
and the parser are trained jointly.

5 Experiments

We evaluate the extended parsing model on the
Stanford Dependencies (De Marneffe and Man-
ning, 2008) version of the Penn Treebank. We
adapt BIST-parser code to run with the DyNet
toolkit1 and add our changes. We follow the
setup of Kiperwasser and Goldberg (2016): (1)
A word is represented as the concatenation of
randomly initialized vector and pre-trained vector
(taken from Dyer et al. (2015)); (2) The word
and POS embeddings are tuned during training;
(3) Punctuation symbols are not considered in the
evaluation; (4) The hyper-parameters values are as
in Kiperwasser and Goldberg paper (2016), Table
2; (5) We use the same seed and do not perform
hyper-parameter tuning. We train the parser with
the conjunction features for up to 10 iterations, and
choose the best model according to the LAS accu-
racy on the development set.

General Parsing Results Table 3 compares our
results to the unmodified BIST parser. The ex-
tended parser achieves 0.1 points improvement in
UAS and 0.2 points in LAS comparing to Kiper-
wasser and Goldberg (2016). This is a strong base-
line, which so far held the highest results among
greedy transition based parsers that were trained
on the PTB only, including e.g. the parsers of
Weiss et al (2015), Dyer et al (2015) and Balles-
teros et al (2016). Stronger absolute parsing num-
bers are reported by Andor et al (2016) (using
a beam); and Kuncoro et al (2016) and Dozat

1https://github.com/clab/dynet
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and Manning (2016) (using an arc-factored global
parsers). All those parsers rely on broadly the
same kind of features, and while we did not test
this, it is likely the conjunction features would
benefit them as well.2

Parsing Results for conj Label We evaluate our
model specifically for conj label, and compare to
the results achieved by the parser without the con-
junction features. We measure Rel (correctly iden-
tifying modifiers that participate in a conj rela-
tion, regardless of correctly attaching the parent)
and Rel+Att (correctly identifying both the head
and the modifier in a conj relation). The results
are in Table 4. The improvement in Rel score
is relatively small while there is an improvement
of 1.1 points in Rel+Att F1 score, suggesting that
the parser was already effective at identifying the
modifiers in a conj relation and that our model’s
benefit is mainly on attaching the correct parent
node.

Analysis We would like to examine to what
extent the improvement we achieve over Kiper-
wasser and Goldberg (2016) on conj attachments
corresponds to the coordination features we de-
signed. To do that, we analyze the conj cases in the
dev-set that were correctly predicted by our model
and were not predicted by the original BIST-parser
and vice versa. The following table shows the per-
centage of cases where conjunction features ap-
pear in each of these lists:

Features +Our,−K&G −Our,+K&G

LEM+CAP+SUF 7.5 0
LEM+SUF 3 0
SENTIMENT+SUF 1.5 0
LEM/CAP/SENTIMENT/SUF 29.9 24
Total 41.9 24

The percentage of cases that include conjunction
features is much higher in the list of cases that
were correctly predicted only by our model. More
than that, there are no cases that include more
than one conjunction feature in the list of cases
that were correctly predicted only by BIST-parser
(Kiperwasser and Goldberg, 2016).

2A reviewer of this work suggested that our baseline
model is oblivious to the word’s morphology, and that a neu-
ral parsing architecture that explicitly models the words’ mor-
phology through character-based LSTMs, such as the model
of (Ballesteros et al., 2015), could capture some of the in-
formation in our features automatically, and thus would be a
better baseline. While we were skeptical, we tried this sug-
gestion, and found that it indeed does not change the results
in a meaningful way.

System UAS LAS
Kiperwasser16 93.9 91.9
Kiperwasser16 + conjunction features 94 92.1

Table 3: Parsing scores on the PTB test-set (Stan-
ford Dependencies).

Kiperwasser16
Kiperwasser16 +
conjunction features

Rel R 92.5 92.9
Rel P 91.6 91.5
Rel F1 92 92.2
Rel+Att R 83 84.2
Rel+Att P 82.1 83
Rel+Att F1 82.5 83.6

Table 4: Test-set results for conj label only.

The above table does not include the SYM fea-
ture since unlike the other features there is no ab-
solute way to determine whether the feature takes
place on a specific example. To give a sense of the
contribution of the SYM feature, we show some ex-
amples where our model attaches a conj label be-
tween similar words, while the unmodified BIST
parser attaches conj parent which is clearly less
similar to the modifier (The word in bold is the
attached modifier; the word marked with continu-
ous line is the node’s parent in our prediction; the
word marked with dashed line is the node’s parent
in BIST’s prediction):

• Koop, who rattled liberals and conservatives
alike with his outspoken views on ...
• ... dropped in response to gains in the stock

market and losses in Treasury securities.
• Died: Cornel Wilde, 74 ,actor and director

,in Los Angeles ,of leukemia ...
• ... investment firms advising clients to boost

their stock holdings and reduce the ,,.

In the cases that were correctly predicted by
BIST-parser only, we could not find examples
where the words in the correct attachment are
clearly more similar than the attachment predicted
by our model. We could find a few examples
where both models attached words that are simi-
lar, such as:

• ML & Co.’s net income dropped 37%, while
BS Cos. posted a 7.5% gain in net, and PG
Inc.’s profit fell, but would have risen ...
• The closely watched rate on federal funds, or

overnight loans between banks, slid to...
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6 Conclusions

While most recent work in parsing attempt to im-
prove results using ”general” architectures and
feature sets, targeted feature engineering is still
beneficial. We demonstrate that a linguistically
motivated and data-driven feature-set for a specific
syntactic relation (coordinating conjunction) im-
proves a strong baseline parser.

The features we propose explicitly model the
symmetry between the head words in coordina-
tion constructions. While we demonstrated their
effectiveness in a greedy transition-based parser,
the information our features capture is not cur-
rently captured also by other dependency pars-
ing architectures (including first-order graph based
parsers, higher-order graph-based parsers, beam-
based transition parsers). These features will be
straightforward to integrate into such parsers, and
we expect them to be effective for them as well.
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Abstract

We present a second-stage machine trans-
lation (MT) system based on a neural ma-
chine translation (NMT) approach to au-
tomatic post-editing (APE) that improves
the translation quality provided by a first-
stage MT system. Our APE system
(APESym) is an extended version of an
attention based NMT model with bilingual
symmetry employing bidirectional mod-
els, mt → pe and pe → mt. APE
translations produced by our system show
statistically significant improvements over
the first-stage MT, phrase-based APE and
the best reported score on the WMT 2016
APE dataset by a previous neural APE
system. Re-ranking (APERerank) of the
n-best translations from the phrase-based
APE and APESym systems provides fur-
ther substantial improvements over the
symmetric neural APE model. Human
evaluation confirms that the APERerank

generated PE translations improve on the
previous best neural APE system at WMT
2016.

1 Introduction

The ultimate goal of MT systems is to provide
fully automatic publishable quality translations.
However, existing MT systems often fail to de-
liver this. To achieve sufficient quality, transla-
tions produced by MT systems often need to be
corrected by human translators. This task is re-
ferred to as post-editing (PE). PE is often under-
stood as the process of improving a translation
provided by an MT system with the minimum

amount of manual effort (TAUS Report, 2010).
Nonetheless, translations produced by MT sys-
tems have improved substantially and consistently
over the last two decades and are now widely used
in the translation and localization industry. To en-
hance the quality of automatic translation without
changing the original MT system itself, an addi-
tional plug-in post-processing module, e.g. a sec-
ond stage monolingual MT system (an APE sys-
tem), can be introduced. This may lead to a more
reasonable and feasible solution compared to re-
building the first-stage MT system. APE can be
defined as as an automatic method for improving
raw MT output, before performing actual human
post-editing (Knight and Chander, 1994). APE as-
sumes the availability of source texts (src), cor-
responding MT output (mt) and the human post-
edited (pe) version of mt. However, APE sys-
tems can also be built without the availability of
src, by using only sufficient amounts of target
side “mono-lingual” parallel mt–pe data. Usually
APE tasks focus on systematic errors made by first
stage MT systems, acting as an effective remedy to
some of the inaccuracies in raw MT output. APE
approaches cover a wide methodological range
such as SMT techniques (Simard et al., 2007a;
Simard et al., 2007b; Chatterjee et al., 2015; Pal
et al., 2015; Pal et al., 2016d) real time integra-
tion of post-editing in MT (Denkowski, 2015),
rule-based approaches to APE (Mareček et al.,
2011; Rosa et al., 2012), neural APE (Junczys-
Dowmunt and Grundkiewicz, 2016; Pal et al.,
2016b), multi-engine and multi-alignment APE
(Pal et al., 2016a), etc.

In this paper we present a neural network based
APE system to improve raw first-stage MT output
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quality. Our neural model of APE is based on the
work described in Cohn et al. (2016) which im-
plements structural alignment biases into an atten-
tion based bidirectional recurrent neural network
(RNN) MT model (Bahdanau et al., 2015). Cohn
et al. (2016) extends the attentional soft alignment
model to traditional word alignment models (IBM
models) and agreement over both translation di-
rections (in our case mt → pe and pe → mt)
to ensure better alignment consistency. We fol-
low Cohn et al. (2016) in encouraging our align-
ment models to be symmetric (Och and Ney, 2003)
in both translation directions with embedded prior
alignments. Different from Cohn et al. (2016),
we employed prior alignment computed by a hy-
brid multi-alignment approach. Evaluation results
show consistent improvements over the raw first-
stage MT system output and over the previous best
performing neural APE (Junczys-Dowmunt and
Grundkiewicz, 2016) on the WMT 2016 APE test
set. In addition we show that re-ranking n-best
output from baseline and enhanced PB-SMT APE
systems (Section 3) together with our neural APE
output provides further statistically significant im-
provements over all the other systems.

The main contributions of our research are (i)
an application of bilingual symmetry of the bidi-
rectional RNN for APE, (ii) using a hybrid multi-
alignment based approach for the prior align-
ments, (iii) a smart way of embedding word align-
ment information in neural APE, and (iv) applying
reranking for the APE task.

The remainder of the paper is structured as fol-
lows: Section 2 describes the our symmetric neu-
ral APE model. Section 3 describes the experi-
mental setup and presents the evaluation results.
Section 4 summarizes our work, draws conclu-
sions and presents avenues for for future work.

2 Symmetric Neural Automatic Post
Editing Using Prior Alignment

Below we describe bilingual symmetry of bidirec-
tional RNN with embedded prior word alignment
for APE.

2.1 Hybrid Prior Alignment

The monolingual mt–pe parallel corpus is first
word aligned using a hybrid word alignment
method based on the alignment combination of
three different statistical word alignment meth-
ods: (i) GIZA++ (Och, 2003) word alignment with

grow-diag-final-and (GDFA) heuristic (Koehn,
2010), (ii) Berkeley word alignment (Liang et al.,
2006), and (iii) SymGiza++ (Junczys-Dowmunt
and Szał, 2012) word alignment, as well as two
different edit distance based word aligners based
on Translation Edit Rate (TER) (Snover et al.,
2006) and METEOR (Lavie and Agarwal, 2007).
We follow the alignment strategy described in (Pal
et al., 2013; Pal et al., 2016a). The aligned word
pairs are added as additional training examples to
train our symmetric neural APE model. Each word
in the first stage MT output is assigned a unique
id (swid). Each mt–pe word alignment also gets
a unique identification number (aid) and a vec-
tor representation is generated for each such aid.
Given a swid, the neural APE model is trained to
generate a corresponding aid based on the context
swid appears in. The APE words are generated
from aid by looking up the hybrid prior alignment
look-up table (LUT). Neural MT jointly learns
alignment and translation. Replacing the source
and target words by swid and aid, respectively, im-
plicitly integrates the prior alignment and lessens
the burden of the attention model. Secondly, our
approach bears a resemblance to the sense embed-
ding approach (Li and Jurafsky, 2015) since an
embedding is generated for each (swid, aid) pair.

2.2 Symmetric Neural APE

Our symmetric neural APE model (APESym) is
inspired by the bilingual symmetry (Cohn et al.,
2016) of the bidirectional RNN based MT (Bah-
danau et al., 2015). Bilingual symmetry inferences
of both directional attention models are combined.
The bidirectional RNN is based on an encoder-
decoder architecture, where the first-stage MT
output is encoded into a distributed representa-
tion, followed by a decoding step which gener-
ates the APE translation. The encoder consists
of a forward RNN (h→i = f(h→i−1, ri)), which
reads in each input string x sequentially from x1

to xm at each time step i, and a backward RNN
(h←t = f(h←i+1, ri)), which reads in the opposite
direction, i.e., sequentially from xm to x1, f be-
ing an activation function, defined as an elemen-
twise logistic sigmoid with an LSTM unit. Here,
ri = σ(W rĒxi + U rhi−1), where Ē ∈ Rm×kx

is the word embedding matrix of the MT out-
put, W r ∈ Rm×n and U r ∈ Rn×n are weight
matrices, m is the word embedding dimensional-
ity and n represents the number of hidden units.

350



kx and ky correspond to the vocabulary sizes of
source and target languages, respectively. The hid-
den state of the decoder at time t is computed as
ηt = f(ηt−1, yt−1, ct), where ct is the context vec-
tor computed as ct =

∑Tx
i=1 αtihi. Here, αti is the

weight of each hi and can be computed as in Equa-
tion 1

αti =
exp(eti)∑m

j=1 exp(etj)
(1)

where eti = a(ηt−1, hi) is a word alignment
model. Based on the input (mt) and output (pe)
sequence lengths, Tx and Ty, the alignment model
is computed Tx × Ty times as in Equation 2

a(ηt−1, hi) = vaT tanh(W aηt−1 + Uahi) (2)

where W a ∈ Rm×n, Ua ∈ Rn×2n and va ∈ Rn

are the weight matrices of n hidden units. T de-
notes the transpose of a matrix. Each hidden unit
ηt can be defined in Equation 3

ηt = tanh(W dEyt−1 + Udηt−1rt + Cct) (3)

where, rt = σ(W rEyt−1 + U rηt−1 + Crct) E
is the word embedding matrix for PE. W d,W r ∈
Rn×m, Ud, U r ∈ Rn×n and C,Cr ∈ Rn×2n

are weights. The joint training of the bilingual
symmetry models is established using symmetric
training with trace bonus, which is computed as
−tr(αmt→peαpe→mtT ). This involves optimizing
L as in Equation 4.

L = − log p(pe|mt)− log p(mt|pe) + γB (4)

where B links the two models as B =
sumj

∑
i α

mt→pe
i,j αpe→mt

j,i , where α are alignment
(attention) matrices of Tx × Ty dimensions. The
advantage of symmetrical alignment cells is that
they are normalized using softmax (values in
between 0 and 1), therefore, the trace term is
bounded above by min(Tx, Ty), representing per-
fect one-to-one alignments in both directions.

To train each directional attention model (mt→
pe and pe→ mt), we follow the work described in
Cohn et al. (2016), where absolute positional bias
between the MT and PE translation (as in IBM
Model 2), fertility relative position bias (as in IBM
Models 3, 4, 5) and HMM-based Alignment (Vo-
gel et al., 1996) are incorporated with an attention
based soft alignment model.

3 Experiments and Results

We carried out our experiments on the 12K
English–German WMT 2016 APE task training

data described in Bojar et al. (2016) and for some
experiments we also use the 4.5M artificially de-
veloped APE data described in Junczys-Dowmunt
and Grundkiewicz (2016). The training data con-
sists of English–German triplets containing source
English text (src) from the IT domain, corre-
sponding German translations (mt) from a first-
stage MT system and the corresponding human
post-edited version (pe). Development and test
data contain 1,000 and 2,000 triplets respectively.

We considered two baselines: (i) the raw MT
output provided by the first-stage MT system
serves as Baseline1 (WMTB1) and (ii) Baseline2
(WMTB2) is based on Statistical APE, a second-
stage phrase-based SMT system (Koehn et al.,
2007) built using MOSES1 with default settings
and trained on the 12K mt–pe training data.

In addition to the two baselines, we also com-
pared our attention based neural mt–pe symmet-
ric model (APESym) against the best performing
system (WMTBest) in the WMT 2016 APE task
and the standard log-linearmt–pe PB-SMT model
with hybrid prior alignment as described in Sec-
tion 2.1 (APEB2). APEB2 andAPESym models
are trained on 4.55M (4.5M + 12K + pre-aligned
word pairs) parallel mt–pe data. The pre-aligned
word pairs are obtained from the hybrid prior word
alignments (Section 2.1) of the 12K WMT APE
training data. For building our APEB2 system,
we set a maximum phrase length of 7 for the
translation model, and a 5-gram language model
was trained using KenLM (Heafield, 2011). Word
alignments between themt and pe (4.5M synthetic
mt-pe data + 12K WMT APE data) were estab-
lished using the Berkeley Aligner (Liang et al.,
2006), while word pairs from hybrid prior align-
ment (Section 2.1) between mt–pe (12K data)
were used for the additional training data to build
APEB2. The reordering model was trained with
the hierarchical, monotone, swap, left to right bidi-
rectional (hier-mslr-bidirectional) method (Galley
and Manning, 2008) and conditioned on both the
source and target language. Phrase pairs that oc-
cur only once in the training data are assigned an
unduly high probability mass (1) in the PB-SMT
framework. To compensate this shortcoming, we
performed smoothing of the phrase table using the
Good-Turing smoothing technique (Foster et al.,
2006). System tuning was carried out using Mini-
mum Error Rate Training (MERT) (Och, 2003).

1http://www.statmt.org/moses/
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For setting up our neural network, previous
to training the APESym model, we performed a
number of preprocessing steps on the mt–pe par-
allel training data. First, we prepare a LUT con-
taining mt–pe hybrid prior word alignment above
(Section 2.1) a certain lexical translation proba-
bility threshold (0.3). To ensure efficient use of
the hybrid prior alignment we replaced each mt
word by a unique identification number (swid)
and each pe word by a unique alignment identi-
fication number (aid) (cf. Section 2.1). After-
wards, to effectively reduce the number of un-
known words to zero, we follow a preprocess-
ing mechanism similar to Junczys-Dowmunt and
Grundkiewicz (2016). We built our APESym

model with a single-layer LSTM as encoder and
two-layer LSTM as decoder, using 1024 embed-
ding, 1024 hidden and 512 alignment dimensions.
Our neural APE model is trained end-to-end us-
ing stochastic gradient descent (SGD), allowing
up to 20 epochs. The development set was used for
regularization by early stopping, which terminated
training after 10 epochs. The APESym model
maintains bilingual symmetry, and the inferences
of both directional models are combined. In a bid
to further improve the translation quality, we also
preformed re-ranking (cf. APERerank in Table
1). For re-ranking2, we generated 100-best trans-
lations from each participating system (WMTB2

and APEB2) along with our APESym model. As
with the SMT based APE output, we added log
probability features from our neural models. Ad-
ditionally, we used the following features: n-gram
(n = 3...7) language model probability as well
as perplexity normalized by sentence length, min-
imum Bayes risk scores, and mt–pe length ratio.
We trained the re-ranking model on the develop-
ment set using MERT with 100-distinct best trans-
lations of each participating system which are op-
timized on BLEU.

3.1 Automatic Evaluation

Table 1 provides a comparison of the base-
line WMTB1 , WMTB2 , WMTBest, APEB2,
APESym and the APERerank system. Automatic
evaluation was carried out in terms of BLEU (Pa-
pineni et al., 2002), METEOR and TER. Some
general trends can be observed across all met-
rics. Automatic post-editing, even trained on a
small amount of training data (WMTB2), pro-

2Our approach is inspired by Och et al. (2004).

vides improvements over raw MT output in gen-
eral. Additional training data, even artificially
generated, helps improve system performance
(compare APEB2 with WMTB2). Neural MT
performs better than PB-SMT based approaches
for the post-editing task on large amounts of
training data (compare WMTBest and APEB2

with WMTB2). Our APESym system based on
Cohn et al. (2016) with hybrid embedded prior
word alignment provides the best performance
among all the individual APE systems and sur-
passes the WMTBest system. The APERerank

system performs significantly better than all the
individual systems. The scores marked with * in
Table 1 indicate statistically significant improve-
ments (p < 0.01) as measured by bootstrap resam-
pling (Koehn, 2004) over the corresponding score
in the previous row. We observed that APESym

contributed to the majority (70.65%) of the trans-
lations selected by APERerank.

3.2 Human Evaluation

In order to assess the performance of the APE
system, we conducted experiments with hu-
man evaluators comparing our best APE system
(APERerank) against the WMT 2016 winning
APE system (WMTBest). Human evaluation was
carried out using CATaLog Online3 – an online
CAT tool (Pal et al., 2016c). Our human evalu-
ators were 18 undergraduate students enrolled in a
Translation Studies programme, attending a trans-
lation technologies class, including sessions on
MT and MT evaluation. All students were native
speakers of German with at least a B2 level of En-
glish. During evaluation students were presented
an English source sentence and two German MT
outputs (APERerank and WMTBest), the order-
ing of the MT outputs being alternated for each
presentation. They had to decide between the two
MT outputs by marking the translation they con-
sider of better quality in terms of both adequacy
and fluency. Each student received a set of 30
sentences for evaluation, with 20 sentences drawn
randomly and 10 sentences being common to all
students, allowing us to compare the distribution
of decisions across all sentences and the 10 com-
mon sentences. The outcome of the evaluation is
presented in Table 2. Assessors preferred the MT
output produced by APERerank in 58.5% cases

3http://santanu.appling.uni-saarland.
de/CATaLog/
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System Data BLEU↑ METEOR↑ TER↓
WMTB1 - 62.11 72.2 24.76
WMTB2 12K 63.47* 73.3* 24.64*

APEB2 5.1M 64.40* 73.7* 24.10*

WMTBest 5.1M 67.65* 76.1* 21.52*

APESym 5.1M 67.87* 76.3* 21.07*

APERerank 5.1M 69.90* 77.5* 20.70*

Table 1: Automatic evaluation results

and chose the WMTBest output for rest of the
cases (i.e., 41.5%). On the 10 common sentences
evaluated by all the evaluators, the results show
a similar trend (57.8% in favour of APERerank,
42.2% for WMTBest).

540 sentences 180 sentences
APERerank 58.5% 57.8%
WMTBest 41.5% 42.2%

Table 2: Selection of suggestions by assessors for
all sentences and for only the common sentences.

4 Conclusions and Future Work

In this paper we presented a neural APE model
that extends the attention based NMT model to tra-
ditional word alignment models and utilizes agree-
ment of bidirectional models for alignment sym-
metry. The attentions are encouraged to sym-
metrization in both translation directions. To the
best of our knowledge this is the first work on in-
tegrating hybrid prior alignment into NMT. Evalu-
ation results show significant improvements over
the first-stage raw MT system. Although the
APESym system provided only small (but sig-
nificant) improvements over WMTBest system,
re-ranking of the n-best outputs of the multiple
APE engines yields large improvements. Hu-
man evaluation also revealed the superiority of the
APERerank system over the WMTBest system.

As future work we plan to integrate source
knowledge into the neural APE framework. We
will also study further the use of standard word
alignment information to influence the attention
mechanism in neural APE.
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David Mareček, Rudolf Rosa, Petra Galuščáková, and
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Abstract

Meaningful conclusions about the relative
performance of NLP systems are only pos-
sible if the gold standard employed in a
given evaluation is both valid and reli-
able. In this paper, we explore the va-
lidity of human annotations currently em-
ployed in the evaluation of document-level
quality estimation for machine translation
(MT). We demonstrate the degree to which
MT system rankings are dependent on
weights employed in the construction of
the gold standard, before proposing di-
rect human assessment as a valid alterna-
tive. Experiments show direct assessment
(DA) scores for documents to be highly
reliable, achieving a correlation of above
0.9 in a self-replication experiment, in ad-
dition to a substantial estimated cost re-
duction through quality controlled crowd-
sourcing. The original gold standard based
on post-edits incurs a 10–20 times greater
cost than DA.

1 Introduction

Evaluation of NLP systems commonly takes the
form of comparison of system-generated outputs
with a corresponding human-sourced gold stan-
dard. The suitability of the employed gold stan-
dard representation greatly impacts the reliabil-
ity and validity of conclusions drawn in any such
evaluation. With respect to reliability, measures
such as inter-annotator agreement (IAA) enable
the likelihood of replicability to be taken into ac-
count, were an evaluation to be repeated with a
distinct set of human annotators. One approach to
achieving high IAA is through the development of
a strict set of annotation guidelines, while for ma-
chine translation (MT), human assessment is more

subjective, making high IAA difficult to achieve.
For example, in past large-scale human evalua-
tions of MT, low IAA levels have been highlighted
as a cause of concern (Callison-Burch et al., 2007;
Bojar et al., 2016). Such problems cause chal-
lenges not only for evaluation of MT systems, but
also for MT quality estimation (QE), where the
ideal gold standard comprises human assessment.

Although concern surrounding the reliability of
human annotations is by far the most common
complaint with respect to human evaluation of
MT, the validity of the particular gold standard
representation used in a given evaluation is also
highly important. When it comes to validity, con-
ventionally speaking, the very fact that human an-
notators manually generate the gold standard pro-
vides reassurance of its validity, as results at least
reflect the judgment of one or more members of
the target audience, i.e. human users. In the case of
there being some “interpretation” of the human an-
notations, tuned to the particulars of a given task,
validity becomes a concern. In recent document-
level QE shared tasks, for example, the gold stan-
dard is generated through a linear combination of
two separate human evaluation components, with
weights tuned to optimize mean absolute error
(MAE) and variance with respect to gold label dis-
tributions. In this paper, we explore the validity of
the gold standard, and investigate to what degree
tuning the gold standard impacts the validity of the
resultant system performance estimates. Our con-
tribution shows the method used to generate the
gold standard has a substantial impact on the resul-
tant system ranking, and propose an alternate gold
standard representation for document-level qual-
ity estimation that is both more reliable and more
valid as a gold standard.
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2 Background

Document-level QE (Soricut and Echihabi, 2010)
is a relatively new area, with only two shared tasks
taking place to date (Bojar et al., 2015; Bojar et al.,
2016).

In WMT-15, gold standard labels took the form
of automatic metric scores for documents (specif-
ically Meteor scores (Denkowski and Lavie,
2011)), and system predictions were compared to
gold labels via MAE. A conclusion that emerged
from the initial shared task was that automatic
metric scores were not adequate, based on the fol-
lowing observation: if the average of the training
set scores is used as a prediction value for all data
points in the test set, this results in a system as
good as the baseline system when evaluated with
MAE. The fact that average scores are good pre-
dictors is more likely a consequence of the applied
evaluation measure, MAE, however, as outlined in
Graham (2015). When evaluated with the Pear-
son correlation, such a set of predictions would not
be a reasonable entry to the shared task since the
prediction distribution would effectively be a con-
stant and its correlation with anything is therefore
undefined. Regardless of the predictability of au-
tomatic metric scores when evaluated with MAE,
they unfortunately do not provide a suitable gold
standard, simply because they are known to pro-
vide an insufficient substitute for human assess-
ment, often unfairly penalizing translations that
happen to be superficially dissimilar to reference
translations (Callison-Burch et al., 2006).

Consequently, for WMT-16, the gold standard
was modified to take the form of a linear combi-
nation of two human-targeted translation edit rate
(HTER) (Snover et al., 2006) scores assigned to
a given document. Scores were produced via two
human post-editing steps: firstly, sentences within
a given MT-output document were post-edited in-
dependent of other sentences in that document,
producing post-edition 1 (PE1). Secondly, PE1

sentences were concatenated to form a document-
level translation, and post-edited a second time by
the same annotator, with the aim of isolating errors
only identifiable when more context is available,
to produce post-edition 2 (PE2). Next, two trans-
lation edit rate (TER) scores were computed by:
(1) comparing the document-level MT output with
PE1, TER(PE1,MT ); and TER between PE2

and PE1, TER(PE2, PE1). Finally, these two
scores were combined into a single gold standard

label, G, as follows:

G = W1TER(PE1,MT ) +W2TER(PE2, PE1)

where weights, W1 and W2, are decided by the
outcome of the following tuning process: W1 is
held static at 1; W2 is increased by 1 from a start-
ing value of 1 until either of the following stopping
criteria is reached: (i) the ratio between the stan-
dard deviation and the mean is 0.5 for the official
baseline QE system predictions, or (ii) a baseline
prediction distribution is constructed by assigning
to all prediction labels the expected value of the
training set labels. This second case is designed
to deal with the degenerate behaviour described
above of assigning to each test item the average
over the training data, with the stopping criteria
being such that the difference between the MAE
achieved by such a system and the official baseline
MAE is at least 0.1. The final values used to pro-
duce official results were W1 = 1 and W2 = 13.

The way in which the gold standard is con-
structed deviates to quite a degree from conven-
tional gold standards, therefore, which raises some
important questions. Firstly, it appears that the op-
timization process is carried out with direct ref-
erence to the test set. If so, does such a process
overly blur the lines with respect to what is con-
sidered true unseen test data?

Secondly, neither of the two TER scores cor-
responds to a straightforward human assessment,
putting into doubt the conventional validity at-
tributed to human-generated gold standards. For
example, the component assigned most weight in
the final evaluation is TER(PE2, PE1), and this
unfortunately corresponds more closely to a mea-
sure of the dependence of the meaning of the sen-
tences within a given document on other sentences
in that document, as opposed to the overall quality
of the MT output document.

Finally, and most importantly, assigning
weights to components of the human evaluation
through a somewhat arbitrary optimization pro-
cess deviates from the expected interpretation
of each reported correlation, i.e. the correlation
between system predictions of translation quality
and the actual quality of translated documents.
Including such weights in the construction of a
gold standard potentially invalidates the human
evaluation, and is unfortunately very likely to
exaggerate the apparent performance of some
systems while under-rewarding others.
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Figure 1: System performance as the weight of the
TER(PE2, PE1) human evaluation component is
increased to 13, as in official evaluation, and be-
yond (WMT-16 document-level QE English to
Spanish shared task systems).

To demonstrate to what degree this could be
the case, since post-editions employed in the cre-
ation of the actual gold standard used to pro-
duce results in the shared task are unavailable, we
simulate a possible set of TER(PE1,MT ) and
TER(PE2, PE1) labels for test documents in the
following way: A possible set of TER(PE1,MT )
labels are simulated by relocation of the TER
score distribution (of the MT output document
with reference translations as opposed to post-
edits) to more closely resemble scores of our later
human evaluation, before rescaling that score dis-
tribution according to the mean and standard devi-
ations (provided in the QE task findings paper) of
TER(PE1,MT ). TER(PE2, PE1) scores were
then reverse-engineered from the correspondence
between TER(PE1,MT ) and gold labels.1 Final
gold labels arrived at through our simulation of
TER(PE1,MT ) and TER(PE2, PE1) are iden-
tical to the original evaluation for W1 = 1 and
W2 = 13.

Figure 1 shows correlations achieved by all sys-
tems participating in the shared task when the
weight of our simulated TER(PE2, PE1) com-
ponent is varied from 1 up towards the origi-

1All data employed in this work is available at http:
//github.com/ygraham/eacl2017

nal weight of 13 and beyond. The correlation
achieved by all systems varies dramatically with
W2, demonstrating how correlations achieved by
QE systems are highly dependent on the chosen
weights.

3 Alternate Human Gold Standard

A recent development in human evaluation of MT
is direct assessment (“DA”), a human assessment
shown to yield highly replicable segment-level
scores, by combination of a minimum of 15 re-
peat human assessments per translation into mean
scores (Graham et al., 2015).

Human adequacy assessments are collected via
a 0–100 rating scale that facilitates reliable qual-
ity control of crowd-sourcing. Document-level
DA scores are computed by repeat assessment of
the individual segments within a given document,
computation of the mean score for each segment
(micro-average), and finally, combination of the
mean segment scores into an overall mean docu-
ment score (macro-average).2

DA assessments are carried out by comparison
of a given MT output segment (rendered in black)
with a human-generated reference translation (in
gray), and human annotators rate the degree to
which they agree with the statement: The black
text adequately expresses the meaning of the gray
text in Spanish.3

Reference translations employed in DA are
manually translated by an expert with reference to
the entire source document, thus ensuring individ-
ual reference segments retain any elements needed
to stay faithful to the meaning of the source doc-
ument as a whole. Since in creation of a test set
in general in MT, the professional human transla-
tor will have access to and make use of the entire
source document, reference translations found in
standard MT test sets can directly be employed.

3.1 Self-replication Experiment

Although DA has been shown to produce highly
reliable human scores for translations on the seg-
ment level, achieving a correlation of above 0.9
between scores for segments collected in sepa-
rate data collection runs (Graham et al., 2015),
the reliability of DA on the document level has
yet to be tested. Similar to Graham et al.

2Micro-averaging before macro-averaging avoids weight-
ing segments by the number of times they are assessed.

3Instructions are translated into the target language.
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Mean Assess.
Total Post QC per Document

Run A 14,600 6,640 107
Run B 10,050 7,700 124

Table 1: Numbers of DA human assessments col-
lected per data collection run on Mechanical Turk
before (“Total”) and after quality control filter-
ing (“Post QC”) for WMT-16 Document-level QE
task (English to Spanish; 62 documents in total).

(2015), we therefore assess the reliability of DA
for document-level human evaluation by quality-
controlled crowd-sourcing in two separate data
collection runs (Runs A and B) on Mechanical
Turk, and compare scores for individual docu-
ments collected in each run.

Quality control is carried out by inclusion of
pairs of genuine MT outputs and automatically de-
graded versions of them (bad references) within
100-translation HITs, before a difference of means
significance test is applied to the ratings belonging
to a given worker. The resulting p-value is em-
ployed as an estimate of the reliability of a given
human assessor to accurately distinguish between
the quality of translations (Graham et al., 2013;
Graham et al., 2014). Table 1 shows numbers of
judgments collected in total for each data collec-
tion run on Mechanical Turk, including numbers
of assessments before and after quality control fil-
tering, where only data belonging to workers with
a p-value below 0.05 were retained.

Figure 2 shows the correlation between
document-level DA scores collected in Run A
with scores produced in Run B, where, for Run
B, repeat assessments are down-sampled to show
the increasing correspondence between scores as
ever-increasing numbers of repeat assessments
are collected for a given document. Correlation
between scores collected in the two separate data
collection runs reaches r = 0.901 by a minimum
of 27 repeat assessments of the sentences of a
given document, or by an average 107 sentence
assessments per document.4

Since DA scores achieve a correlation of r >
0.9 in our self-replication experiment, we now
know that DA provides reliable human evaluation

4Variance in numbers of repeat assessments per document
is due to sentences of all documents being sampled without
preference for documents made up of larger numbers of sen-
tences.
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Figure 2: Correlation between scores for docu-
ments collected in initial data collection run and
scores for the same documents as numbers of re-
peat assessments per document are increased.

scores for not only segments but also documents.
The validity of DA is superior to the existing gold
standard employed for document-level QE as it
avoids arbitrary weighting or tuning of component
scores to reach final gold standard labels. It is
therefore highly unlikely to ever unfairly exagger-
ate (or under-reward) the performance of any QE
system in a given evaluation.

With regard to resources required to construct
each gold standard, a single DA data collection run
cost USD$109 on average , while the cost estimate
provided to us by a professional post-editor for
the same test set came between USD$1,422 and
USD$2,728. In other words, the cost of producing
the gold standard is 10–20 times greater for post-
editing than DA.5

3.2 Re-evaluating Doc-level QE WMT-16
In order to demonstrate DA’s potential as a gold
standard, Table 2 shows correlations for WMT-
16 document-level QE shared task systems when
evaluated with DA and the original gold standard.
Results show system rankings that diverge from
the original, as the original gold standard exag-
gerated the performance of three participating sys-

5Post-editing cost estimates are based on 0.06 and 0.12
Euro per source document word converted to USD$. Further
details provided by the post-editor in relation to estimates
can be found at https://github.com/ygraham/
eacl2017
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DA WMT-16

RTM-FS+PLS-TREE 0.38 0.36
GRAPH-DISC 0.32 0.26
BASE-EMB-GP 0.31 0.39
BASELINE 0.26 0.29
RTM-FS-SVR 0.23 0.29

Table 2: Correlation (r) of system predictions with
direct assessment (DA) and original gold standard
(WMT-16 QE English to Spanish)

tems, while under-rewarding two other systems.
Notably, system GRAPH-DISC, which includes
discourse features learned from document-level
features, achieves a higher correlation when eval-
uated with DA compared to the original gold stan-
dard.

Differences in correlations are small, however,
and can’t be interpreted as differences in perfor-
mance without significance testing. Differences in
dependent correlations showed no significant dif-
ference for all pairs of competing systems accord-
ing to Williams test (Williams, 1959; Graham and
Baldwin, 2014).

3.3 Discussion of DA Fluency Omission

In development of the newly proposed variant of
DA for document-level QE, the question arose if
the assessment should also include an assessment
of the fluency of documents (in addition to ade-
quacy), as in Graham et al. (2016b). Besides the
several other design criteria in DA aimed at avoid-
ing possible sources of bias in general, the moti-
vation for including a separate fluency assessment
was originally to counter any bias resulting from
comparison of the MT output with a reference
translation in the adequacy assessment, similar to
the reference bias encountered in automatic met-
rics scores. Although genuine human assessors of
MT are unlikely to be biased by the reference by
anything close to the degree to which automatic
metrics will be, there still exists the possibility that
reference bias could impact the accuracy of DA
scores to some degree. Inclusion of fluency does
of course have a trade-off, however, requiring ad-
ditional resources, resources that could otherwise
be employed to increase the number of translations
in the test set, for example. It is important to in-
vestigate the degree to which reference bias may
or may not be a problem for DA before including

it in document-level QE evaluation therefore.
Graham et al. (2016a) provide an investigation

into reference bias in monolingual evaluation of
MT and despite the risk of reference bias that DA
adequacy could potentially encounter, experiment
results show no evidence of reference bias. Hu-
man assessors of MT appear to genuinely read and
compare the meaning of the reference translation
and the MT output, as requested with DA, apply-
ing their human intelligence to the task in a re-
liable way, and are not overly influenced by the
generic reference.

Although DA fluency could still have its own
applications, for the purpose of evaluating MT
or MT QE, this additional insight into the lack
of reference bias encountered by DA adequacy
means that there is no longer any real motivation
for including DA fluency when resources are con-
strained. Given the choice of inclusion of DA flu-
ency in evaluation of document-level QE or ex-
panding the test set (with respect to adequacy),
there is no question that the latter is now the more
sensible choice.

4 Conclusion

Methodological concerns were raised with re-
spect to optimization of weights employed in con-
struction of document-level QE gold standards in
WMT-16. We demonstrated the degree to which
MT system rankings are dependent on weights
employed in the construction of the gold stan-
dard. Experiments showed with respect to the al-
ternate gold standard we propose, direct assess-
ment (DA), scores for documents are highly re-
liable, achieving a correlation of above 0.9 in a
self-replication experiment. Finally, DA resulted
in a substantial estimated cost reduction, with the
original post-editing gold standard incurring a 10–
20 times greater cost than that of DA.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 confer-
ence on machine translation. In Proceedings of
the First Conference on Machine Translation, pages
131–198, Berlin, Germany, August. Association for
Computational Linguistics.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of BLEU
in machine translation research. In Proc. 11th
Conf. European Chapter of the ACL, pages 249–256,
Trento, Italy, April. Association for Computational
Linguistics.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2007.
(meta-) evaluation of machine translation. In Pro-
ceedings of the Second Workshop on Statistical Ma-
chine Translation, pages 136–158, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.

Michael Denkowski and Alon Lavie. 2011. Me-
teor 1.3: Automatic metric for reliable optimiza-
tion and evaluation of machine translation systems.
In Proceedings of the Sixth Workshop on Statistical
Machine Translation, pages 85–91. Association for
Computational Linguistics.

Yvette Graham and Timothy Baldwin. 2014. Test-
ing for significance of increased correlation with hu-
man judgment. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 172–176, Doha, Qatar,
October. Association for Computational Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In
Proceedings of the 7th Linguistic Annotation Work-
shop & Interoperability with Discourse, pages 33–
41, Sofia, Bulgaria. Association for Computational
Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2014. Is machine translation getting

better over time? In Proceedings of the European
Chapter of the Association of Computational Lin-
guistics, pages 443–451, Gothenburg, Sweden. As-
sociation for Computational Linguistics.

Yvette Graham, Nitika Mathur, and Timothy Bald-
win. 2015. Accurate evaluation of segment-level
machine translation metrics. In Proceedings of the
2015 Conference of the North American Chapter
of the Association for Computational Linguistics
Human Language Technologies, pages 1183–1191,
Denver, Colorado. Association for Computational
Linguistics.

Yvette Graham, Timothy Baldwin, Meghan Dowling,
Maria Eskevich, Teresa Lynn, and Lamia Tounsi.
2016a. Is all that glitters in machine translation
quality estimation really gold standard? In Proceed-
ings of the 26th International Conference on Com-
putational Linguistics, Osaka, Japan.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2016b. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, FirstView:1–28, 1.

Yvette Graham. 2015. Improving evaluation of ma-
chine translation quality estimation. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
pages 1804–1813, Beijing, China. Association for
Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Scwartz, John
Makhoul, and Linnea Micciula. 2006. A study of
translation error rate with targeted human annota-
tion. In Proceedings of the 7th Biennial Confer-
ence of the Association for Machine Translaiton in
the Americas, pages 223–231, Boston, MA.

Radu Soricut and Abdessamad Echihabi. 2010.
Trustrank: Inducing trust in automatic translations
via ranking. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 612–621. Association for Computa-
tional Linguistics.

Evan James Williams. 1959. Regression analysis, vol-
ume 14. Wiley New York.

361



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 362–368,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Neural Machine Translation by Minimising the Bayes-risk with Respect to
Syntactic Translation Lattices
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Abstract

We present a novel scheme to combine
neural machine translation (NMT) with
traditional statistical machine translation
(SMT). Our approach borrows ideas from
linearised lattice minimum Bayes-risk de-
coding for SMT. The NMT score is com-
bined with the Bayes-risk of the trans-
lation according the SMT lattice. This
makes our approach much more flexible
than n-best list or lattice rescoring as the
neural decoder is not restricted to the SMT
search space. We show an efficient and
simple way to integrate risk estimation
into the NMT decoder which is suitable for
word-level as well as subword-unit-level
NMT. We test our method on English-
German and Japanese-English and report
significant gains over lattice rescoring on
several data sets for both single and en-
sembled NMT. The MBR decoder pro-
duces entirely new hypotheses far beyond
simply rescoring the SMT search space or
fixing UNKs in the NMT output.

1 Introduction

Lattice minimum Bayes-risk (LMBR) decoding
has been applied successfully to translation lat-
tices in traditional SMT to improve translation per-
formance of a single system (Kumar and Byrne,
2004; Tromble et al., 2008; Blackwood et al.,
2010). However, minimum Bayes-risk (MBR) de-
coding is also a very powerful framework for com-
bining diverse systems (Sim et al., 2007; de Gis-
pert et al., 2009). Therefore, we study combining
traditional SMT and NMT in a hybrid decoding
scheme based on MBR. We argue that MBR-based
methods in their present form are not well-suited
for NMT because of the following reasons:

• Previous approaches work well with rich lat-
tices and diverse hypotheses. However, NMT
decoding usually relies on beam search with a
limited beam and thus produces very narrow
lattices (Li and Jurafsky, 2016; Vijayakumar
et al., 2016).

• NMT decoding is computationally expen-
sive. Therefore, it is difficult to collect
the statistics needed for risk calculation for
NMT.

• The Bayes-risk in SMT is usually defined
for complete translations. Therefore, the risk
computation needs to be restructured in or-
der to integrate it in an NMT decoder which
builds up hypotheses from left to right.

To address these challenges, we use a special
loss function which is computationally tractable
as it avoids using NMT scores for risk calculation.
We show how to reformulate the original LMBR
decision rule for using it in a word-based NMT
decoder which is not restricted to an n-best list
or a lattice. Our hybrid system outperforms lat-
tice rescoring on multiple data sets for English-
German and Japanese-English. We report similar
gains from applying our method to subword-unit-
based NMT rather than word-based NMT.

2 Combining NMT and SMT by
Minimising the Lattice Bayes-risk

We propose to collect statistics for MBR from a
potentially large translation lattice generated with
SMT, and use the n-gram posteriors as additional
score in NMT decoding. The LMBR decision rule
used by Tromble et al. (2008) has the form
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ŷ = arg max
y∈Yh

(
Θ0|y|+

∑
u∈N

Θ|u|#u(y)P (u|Ye)︸ ︷︷ ︸
:=E(y)

)

(1)

where Yh is the hypothesis space of possible trans-
lations, Ye is the evidence space for computing
the Bayes-risk, and N is the set of all n-grams
in Ye (typically, n = 1 . . . 4). In this work, our
evidence space Ye is a translation lattice gener-
ated with SMT. The function #u(y) counts how
often n-gram u occurs in translation y. P (u|Ye)
denotes the path posterior probability of u in Ye.
Our aim is to integrate these n-gram posteriors
into the NMT decoder since they correlate well
with the presence of n-grams in reference transla-
tions (de Gispert et al., 2013). We call the quantity
to be maximised the evidence E(y) which corre-
sponds to the (negative) Bayes-risk which is nor-
mally minimised in MBR decoding. We empha-
size that this risk can be computed for any trans-
lation hypothesis and not only those produced by
the SMT system.

NMT assigns a probability to a translation y =
yT
1 of source sentence x via a left-to-right factori-

sation based on the chain rule:

PNMT (yT
1 |x) =

T∏
t=1

PNMT (yt|yt−1
1 ,x)︸ ︷︷ ︸

=g(yt−1,st,ct)

(2)

where g(·) is a neural network using the hid-
den state of the decoder network st and the con-
text vector ct which encodes relevant parts of
the source sentence (Bahdanau et al., 2015).1

PNMT (·) can also represent an ensemble of NMT
systems in which case the scores of the individ-
ual systems are multiplied together to form a sin-
gle distribution. Applying the LMBR decision
rule in Eq. 1 directly to NMT would involve com-
puting PNMT (y|x) for all translations in the ev-
idence space. In case of LMBR this is equiva-
lent to rescoring the entire translation lattice ex-
haustively with NMT. However, this is not feasible
even for small lattices because the evaluation of
g(·) is computationally very expensive. Therefore,
we propose to calculate the Bayes-risk over SMT

1We refer to Bahdanau et al. (2015) for a full discussion
of attention-based NMT.

translation lattices using only pure SMT scores,
and bias the NMT decoder towards low-risk hy-
potheses. Our final combined decision rule is

ŷ = arg max
y

(
E(y)+λ logPNMT (y|x)

)
. (3)

If y contains a word not in the NMT vocabulary,
the NMT model provides a score and updates its
decoder state as for an unknown word. We note
that E(y) can be computed even if y is not in the
SMT lattice. Therefore, Eq. 3 can be used to gen-
erate translations outside the SMT search space.
We further note that Eq. 3 can be derived as an
instance of LMBR under a modified loss function.

3 Left-to-right Decoding

Beam search is often used for NMT because the
factorisation in Eq. 2 allows to build up hypothe-
ses from left to right. In contrast, our definition
of the evidence in Eq. 1 contains a sum over the
(unordered) set of all n-grams. However, we can
rewrite our objective function in Eq. 3 in a way
which makes it easy to use with beam search.

E(y) + λ logPNMT (y|x)

=Θ0|y|+
∑
u∈N

Θ|u|#u(y)P (u|Ye)

+ λ
T∑

t=1

logPNMT (yt|yt−1
1 ,x)

=
T∑

t=1

(
Θ0 +

4∑
n=1

ΘnP (yt
t−n|Ye)

+ λ logPNMT (yt|yt−1
1 ,x)

)
(4)

for n-grams up to order 4. This form lends itself
naturally to beam search: at each time step, we
add to the previous partial hypothesis score both
the log-likelihood of the last token according the
NMT model, and the partial MBR gains from the
current n-gram history. Note that this is similar to
applying (the exponentiated scores of) an interpo-
lated language model based on n-gram posteriors
extracted from the SMT lattice. In the remainder
of this paper, we will refer to decoding according
Eq. 4 as MBR-based NMT.

4 Efficient n-gram Posterior Calculation

The risk computation in our approach is based
on posterior probabilities P (u|Ye) for n-grams u
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Setup news-test2014 news-test2015 news-test2016
SMT baseline (de Gispert et al., 2010, HiFST) 18.9 21.2 26.0
Single NMT (word) Pure NMT 17.7 19.6 23.1

100-best rescoring 20.6 22.5 27.5
Lattice rescoring 21.6 23.8 29.6
This work 22.0 24.6 29.5

5-Ensemble NMT (word) Pure NMT 19.4 21.8 25.4
100-best rescoring 21.0 23.3 28.6
Lattice rescoring 22.1 24.2 30.2
This work 22.8 25.4 30.8

Single NMT (BPE) Pure NMT 19.6 21.9 24.6
Lattice rescoring 21.5 24.0 29.6
This work 21.7 24.1 28.6

3-Ensemble NMT (BPE) Pure NMT 21.0 23.4 27.0
Lattice rescoring 21.7 24.2 30.0
This work 22.3 24.9 29.2

Table 1: English-German lower-cased BLEU scores calculated with mteval-v13a.pl.2

which we extract from the SMT translation lattice
Ye. P (u|Ye) is defined as the sum of the path
probabilities PSMT (·) of paths in Ye containing
u (Blackwood et al., 2010, Eq. 2):

P (u|Ye) =
∑

y∈{y∈Ye:#u(y)>0}
PSMT (y|x). (5)

We use the framework of Blackwood et
al. (2010) based on n-gram mapping and path
counting transducers to efficiently pre-compute all
non-zero values of P (u|Ye). Complete enumer-
ation of all n-grams in a lattice is usually feasi-
ble even for very large lattices (Blackwood et al.,
2010). Additionally, for all these n-grams u, we
smooth P (u|Ye) by mixing it with the uniform
distribution to flatten the distribution and increase
the offset to n-grams which are not in the lattice.

5 Subword-unit-based NMT

Character-based or subword-unit-based NMT
(Chitnis and DeNero, 2015; Sennrich et al., 2016;
Chung et al., 2016; Luong and Manning, 2016;
Costa-Jussà and Fonollosa, 2016; Ling et al.,
2015; Wu et al., 2016) does not use isolated words
as modelling units but applies a finer grained to-
kenization scheme. One of the main motivation
for these approaches is to overcome the limited
vocabulary in word-based NMT. We consider our
hybrid system as an alternative way to fix NMT
OOVs. However, our method can also be used
with subword-unit-based NMT. In this work, we
use byte pair encodings (Sennrich et al., 2016,
BPE) to test combining word-based SMT with
subword-unit-based NMT via both lattice rescor-
ing and MBR. First, we construct a finite state

transducer (FST) which maps word sequences to
BPE sequences. Then, we convert the word-based
SMT lattices to BPE-based lattices by composing
them with the mapping transducer and projecting
the output tape using standard OpenFST opera-
tions (Allauzen et al., 2007). The converted lat-
tices are used for extracting n-gram posteriors as
described in the previous sections. Note that even
though the n-grams are on the BPE level, their
posteriors are computed from word-level SMT
translation scores.

6 Experimental Setup

We test our approach on English-German (En-De)
and Japanese-English (Ja-En). For En-De, we use
the WMT news-test2014 (the filtered version) as
a development set, and keep news-test2015 and
news-test2016 as test sets. For Ja-En, we use
the ASPEC corpus (Nakazawa et al., 2016) to be
strictly comparable to the evaluation done in the
Workshop of Asian Translation (WAT).

The NMT systems are as described by Stahlberg
et al. (2016b) using the Blocks and Theano frame-
works (van Merriënboer et al., 2015; Bastien et
al., 2012) with hyper-parameters as in (Bahdanau
et al., 2015) and a vocabulary size of 30k for Ja-En
and 50k for En-De. We use the coverage penalty
proposed by Wu et al. (2016) to improve the length
and coverage of translations. Our final ensembles
combine five (En-De) to six (Ja-En) independently
trained NMT systems.

Our En-De SMT baseline is a hierarchical sys-
tem based on the HiFST package3 which produces
rich output lattices. The system uses rules ex-

2Comparable to http://matrix.statmt.org/
3http://ucam-smt.github.io/
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Setup dev test
SMT baseline (Neubig, 2013, Travatar) 19.5 22.2
Single NMT (word) Pure NMT 20.3 22.5

10k-best rescoring 22.2 24.5
This work 22.4 25.2

6-Ensemble NMT (word) Pure NMT 22.6 25.0
10k-best rescoring 22.4 25.4
This work 23.9 26.5

Single NMT (BPE) Pure NMT 20.8 23.5
10k-best rescoring 21.9 24.6
This work 23.0 25.4

3-Ensemble NMT (BPE) Pure NMT 23.3 25.9
10k-best rescoring 22.6 25.1
This work 24.1 26.7

Table 2: Japanese-English cased BLEU scores calculated with Moses’ multi-bleu.pl.5

tracted as described by de Gispert et al. (2010) and
a 5-gram language model (Heafield et al., 2013).

In Ja-En we use Travatar (Neubig, 2013), an
open-source tree-to-string system. We provide the
system with Japanese trees obtained using the Ck-
ylark parser (Oda et al., 2015) and train it on
high-quality alignments as recommended by Neu-
big and Due (2014). This system, which repro-
duces the results of the best submission in WAT
2014 (Neubig, 2014), is used to create a 10k-best
list of hypotheses, which we convert into deter-
minised and minimised FSAs for our work. Our
Ja-En NMT models are trained on the same 500k
training samples as the Travatar baseline.

The parameter λ is tuned by optimising the
BLEU score on the validation set, and we set
Θi = 1 (i = 0, . . . , 4). Using the BOBYQA algo-
rithm (Powell, 2009) or lattice MERT (Macherey
et al., 2008) to optimise the Θ-parameters in-
dependently did not yield improvements. The
beam search implementation of the SGNMT de-
coder4 (Stahlberg et al., 2016b) is used in all our
experiments. We set the beam size to 20 for En-De
and 12 for Ja-En.

7 Results

Our results are summarised in Tab. 1 and 2.6 Our
approach outperforms both single NMT and SMT
baselines by up to 3.4 BLEU for En-De and 2.8
BLEU for Ja-En. Ensembling yields further gains
across all test sets both for the NMT baselines and
our MBR-based hybrid systems. We see substan-

4http://ucam-smt.github.io/sgnmt/html/
5Comparable to http://lotus.kuee.kyoto-u.

ac.jp/WAT/evaluation/list.php?t=2
6Instructions for reproducing our key results will be avail-

able upon publication at http://ucam-smt.github.
io/sgnmt/html/tutorial.html

tial gains from our MBR-based method over lat-
tice rescoring for both single and ensembled NMT
on all test sets and language pairs except En-De
news-test2016. On Ja-En, we report 26.7 BLEU5,
second to only one system (as of February 2017)
that uses a number of techniques such as mini-
mum risk training and a much larger vocabulary
size which could also be used in our framework.

Our word-level NMT baselines suffer from their
limited vocabulary since we do not apply post-
processing techniques like UNK-replace (Luong
et al., 2015). Therefore, NMT with subword
units (BPE) consistently outperforms them by a
large margin. Lattice rescoring and MBR yield
large gains for both BPE-based and word-based
NMT. However, the performance difference be-
tween BPE- and word-level NMT diminishes with
lattice rescoring and MBR decoding: rescoring
with NMT often performs on the same level for
both words and subword units, and MBR-based
NMT is often even better with a word-level NMT
baseline. This indicates that subword units are of-
ten not necessary when the hybrid system has ac-
cess to a large word-level vocabulary like the SMT
vocabulary.

Note that the BPE lattice rescoring system is
constrained to produce words in the output vo-
cabulary of the syntactic SMT system and is pre-
vented from inventing new target language words
out of combinations of subword units. MBR im-
poses a soft version of such a constraint by biasing
the BPE-based system towards words in the SMT
search space.

The hypotheses produced by our MBR-based
method often differ from the translations in the
baseline systems. For example, 77.8% of the
translations from our best MBR-based system on
Ja-En cannot be found in the SMT 10k-best list,
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Figure 1: Performance over n-best list size on
English-German news-test2015.

and 78.0% do not match the translation from the
pure NMT 6-ensemble.7 This suggests that our
MBR decoder is able to produce entirely new hy-
potheses, and that our method has a profound ef-
fect on the translations which goes beyond rescor-
ing the SMT search space or fixing UNKs in the
NMT output.

Tab. 1 also shows that rescoring is sensitive to
the size of the n-best list or lattice: rescoring the
entire lattice instead of a 100-best list often yields
a gain of 1 full BLEU point. In order to test our
MBR-based method on small lattices, we com-
piled n-best lists of varying sizes to lattices and
extracted n-gram posteriors from the reduced lat-
tices. Fig. 1 shows that the n-best list size has an
impact on both methods. Rescoring a 10-best list
already yields a large improvement of 1.2 BLEU.
However, the hypotheses are still close to the SMT
baseline. The MBR-based approach can make bet-
ter use of small n-best lists as it does not suffer this
restriction. MBR-based combination on a 10-best
list performs on about the same level as rescoring
a 10,000-best list which demonstrates a practical
advantage of MBR over rescoring.

8 Related Work

Combining the advantages of NMT and traditional
SMT has received some attention in current re-
search. A recent line of research attempts to in-
tegrate SMT-style translation tables into the NMT
system (Zhang and Zong, 2016; Arthur et al.,
2016; He et al., 2016). Wang et al. (2016) inter-
polated NMT posteriors with word recommenda-
tions from SMT and jointly trained NMT together
with a gating function which assigns the weight
between SMT and NMT scores dynamically. Neu-

7Up to NMT OOVs.

big et al. (2015) rescored n-best lists from a
syntax-based SMT system with NMT. Stahlberg
et al. (2016b) restricted the NMT search space to
a Hiero lattice and reported improvements over n-
best list rescoring. Stahlberg et al. (2016a) com-
bined Hiero and NMT via a loose coupling scheme
based on composition of finite state transducers
and translation lattices which takes the edit dis-
tance between translations into account. Our ap-
proach is similar to the latter one since it allows to
divert from SMT and generate translations without
derivations in the SMT system. This ability is cru-
cial for NMT ensembles because SMT lattices are
often too narrow for the NMT decoder (Stahlberg
et al., 2016a). However, the method proposed
by Stahlberg et al. (2016a) insists on a monotone
alignment between SMT and NMT translations to
calculate the edit distance. This can be compu-
tationally expensive and not appropriate for MT
where word reorderings are common. The MBR
decoding described here does not have this short-
coming.

9 Conclusion

This paper discussed a novel method for blend-
ing NMT with traditional SMT by biasing NMT
scores towards translations with low Bayes-risk
with respect to the SMT lattice. We reported sig-
nificant improvements of the new method over lat-
tice rescoring on Japanese-English and English-
German and showed that it can make good use
even of very small lattices and n-best lists.

In this work, we calculated the Bayes-risk
over non-neural SMT lattices. In the future, we
are planning to introduce neural models to the
risk estimation while keeping the computational
complexity under control, e.g. by using neural
n-gram language models (Bengio et al., 2003;
Vaswani et al., 2013) or approximations of NMT
scores (Lecorvé and Motlicek, 2012; Liu et al.,
2016) for n-gram posterior calculation.
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Abstract

Translating into morphologically rich lan-
guages is difficult. Although the cover-
age of lemmas may be reasonable, many
morphological variants cannot be learned
from the training data. We present a statis-
tical translation system that is able to pro-
duce these inflected word forms. Different
from most previous work, we do not sepa-
rate morphological prediction from lexical
choice into two consecutive steps. Our ap-
proach is novel in that it is integrated in
decoding and takes advantage of context
information from both the source language
and the target language sides.

1 Introduction

Morphologically rich languages exhibit a large
amount of inflected word surface forms for most
lemmas, which poses difficulties to current statis-
tical machine translation (SMT) technology. SMT
systems, such as phrase-based translation (PBT)
engines (Koehn et al., 2003), are trained on par-
allel corpora and can learn the vocabulary that is
observed in the data. After training, the decoder
can output words which have been seen on the tar-
get side of the corpus, but no unseen words.

Sparsity of morphological variants leads to
many linguistically valid morphological word
forms remaining unseen in practical scenarios.
This is a substantial issue under low-resource con-
ditions, but the problem persists even with larger
amounts of parallel training data. When translat-
ing into the morphologically rich language, the
system fails at producing the unseen morpholog-
ical variants, leading to major translation errors.

Consider the Czech example in Table 1. A small
parallel corpus of 50K English-Czech sentences
contains only a single variant of the morphological

case surface form 50K 500K 5M 50M

1 čéšky • • • •
2 čéšek – • • •
3 čéškám – – • •
4 čéšky ◦ ◦ • •
5 čéšky ◦ ◦ ◦ ◦
6 čéškách – • • •
7 čéškami – – – •

Table 1: Morphological variants of the Czech
lemma “čéška”. For differently sized corpora
(50K/500K/5M/50M), “•” indicates that the vari-
ant is present, and “◦” that the same surface form
realization occurs, but in a different syntactic case.

forms of the Czech lemma “čéška” (plural of En-
glish: “kneecap”), out of seven syntactically valid
cases. The situation improves as we add in more
training data (500K/5M/50M), but we can gener-
ally not expect the SMT system to learn all vari-
ants of each known lemma. In Czech, the number
of possible variants is even larger for other word
categories such as verbs or adjectives. Adjectives,
for instance, have different suffixes depending on
case, number, and gender of the governing noun.

In this paper, we propose an extension to
phrase-based SMT that allows the decoder to pro-
duce any morphological variant of all known lem-
mas. We design techniques for generating and
scoring unseen morphological variants fully inte-
grated into phrase-based search, with the decoder
being able to choose freely amongst all possible
morphological variants. Empirically, we observe
considerable gains in translation quality especially
under medium- to low-resource conditions.

2 Related Work

Translation into morphologically rich languages
is often tackled through “two-step”, i.e., separate
modules for morphological prediction and genera-
tion (Toutanova et al., 2008; Bojar and Kos, 2010;
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Fraser et al., 2012; Burlot et al., 2016). An impor-
tant problem is that lexical choice (of the lemma)
is carried out in a separate step from morphologi-
cal prediction.

Factored machine translation with separate
translation and generation models represents a
different approach, operating with a single-
step search. However, too many options
in decoding cause a blow-up of the search
space; and useful information is dropped when
modeling source_word→target_lemma and tar-
get_lemma→target_word separately.

Word forms not seen in parallel data are some-
times still available in monolingual data. Back-
translation (Bojar and Tamchyna, 2011) takes ad-
vantage of this. The monolingual target language
data is lemmatized, automatically translated to the
source language, and the translations are aligned
with the original, inflected target corpus to pro-
duce supplementary training data. Disadvantages
are both the computational expense and that the
back-translated text may contain errors.

Previous work on synthetic phrases by
Chahuneau et al. (2013) is most similar to our
work. They commit to generation of a single
candidate inflection of a lemma prior to decoding,
chosen only based on a hierarchical rule and
source-side information, a significant limitation.
We instead consider all morphological variants,
and we are able to use dynamically-generated
target-side context in choosing the correct variant,
which is critical for capturing phenomena such
as target-side verb-subject agreement, or the
agreement between a preposition marking case
and the case on the noun it marks.

3 Generating Unseen Morphological
Variants

We investigate an approach based on synthesized
morphological variants. A morphological genera-
tion tool is utilized to synthesize all valid morpho-
logical forms from target-side lemmas. The phrase
table is then augmented with additional entries to
provide complete coverage.

We process single target-word entries from the
baseline phrase table and feed the lemmatized tar-
get word into the morphological generation tool.
If its output contains morphological forms that are
not known as translations of the source side of
the phrase, we add these morphological variants as
new translation options. We consider two settings:

feature type configurations

source indicator l, t
source internal l, l+r, l+p, t, r+p
source context l (-3,3), t (-5,5)

target indicator l, t
target internal l, t
target context l (-2), t (-2)

Table 2: Feature templates for the discrimina-
tive classifier: l (lemma), t (morphosyntactic tag),
r (syntactic role), p (lemma of dependency parent).
Numbers in parentheses indicate context size.

(1.) word, where morphological word forms are
generated from phrase table entries of length 1 on
both source and target side, and (2.) mtu (for “min-
imal translation unit”), where the phrase source
side can have arbitrary length.

Morphological generation for Czech, for in-
stance, can be performed with the MorphoDiTa
toolkit (Straková et al., 2014), which we will use
in our experiments. MorphoDiTa knows a dictio-
nary of most Czech lemmas and can generate all
their morphological variants (Hajič, 2004).

When not restricted, the morphological gen-
erator also produces forms which do not match
in number, tense, degree of comparison, or even
negation. This may be undesirable and we there-
fore define a tag template. The tag template pre-
vents the generation of some forms of the given
Czech lemma. The template only allows freedom
in the following morphological categories: gender,
case, person, possessor’s number, and possessor’s
gender. All other attributes must match the orig-
inal Czech word form. The morphosyntax of the
English source is not used to impose further con-
straints. We will mark this configuration with an
asterisk (?) in our experiments.

4 Scoring Unseen Morphological
Variants

Assigning dependable model scores to synthesized
morphological forms is a primary challenge. Dur-
ing decoding, the artificially added phrase table
entries compete with baseline phrases that had
been directly extracted from the parallel training
data. The correct choice has to be determined in
search based on model scores.

A phrase-based model with linguistically moti-
vated factors (Koehn and Hoang, 2007) enables us
to achieve better generalization capabilities when
translating into a morphologically rich language.

370



system
newstest 2014

BLEU
2015
BLEU

2016
BLEU

baseline 50K 12.4 10.8 11.8
+ morph-vw-50K 12.2 10.6 11.8

+ synthetic (word) 13.4 11.3 12.5
+ morph-vw-50K 13.4 11.4 12.7

+ synthetic (word?) 13.3 11.3 12.5
+ morph-vw-50K 13.3 11.3 12.7

+ synthetic (mtu) 13.5 11.5 12.7
+ morph-vw-50K 13.4 11.4 12.7

+ synthetic (mtu?) 13.4 11.3 12.9
+ morph-vw-50K 13.5 11.5 13.1

Table 3: English→Czech experimental results us-
ing 50K training sentence pairs.

system
newstest 2014

BLEU
2015
BLEU

2016
BLEU

baseline 500K 17.7 14.4 16.1
+ morph-vw-500K 17.6 14.4 16.5

+ synthetic (word) 18.1 14.7 16.4
+ morph-vw-500K 18.4 15.2 17.3

+ synthetic (word?) 18.0 14.8 16.6
+ morph-vw-500K 18.2 14.9 17.0

+ synthetic (mtu) 18.1 14.8 16.6
+ morph-vw-500K 18.5 15.3 17.3

+ synthetic (mtu?) 18.3 15.0 16.9
+ morph-vw-500K 18.6 15.4 17.4

Table 4: English→Czech experimental results us-
ing 500K training sentence pairs.

system
newstest 2014

BLEU
2015
BLEU

2016
BLEU

baseline 5M 20.8 16.8 18.9
+ morph-vw-5M 20.9 16.8 19.0

+ synthetic (word) 20.9 17.0 19.0
+ morph-vw-5M 21.1 17.0 19.0

+ synthetic (word?) 20.7 16.8 19.0
+ morph-vw-5M 20.4 16.4 18.7

+ synthetic (mtu) 20.6 17.2 19.0
+ morph-vw-5M 21.0 16.9 19.0

+ synthetic (mtu?) 20.8 17.1 19.1
+ morph-vw-5M 20.9 16.8 19.0

Table 5: English→Czech experimental results us-
ing 5M training sentence pairs.

system
newstest 2014

BLEU
2015
BLEU

2016
BLEU

baseline 50M 22.3 18.1 20.5
+ morph-vw-50M 22.7 18.2 20.7

+ synthetic (word) 22.3 18.2 20.5
+ morph-vw-50M 22.3 18.1 20.5

+ synthetic (word?) 22.3 18.1 20.4
+ morph-vw-50M 22.5 18.1 20.6

+ synthetic (mtu) 22.3 18.1 20.5
+ morph-vw-50M 22.7 18.3 20.8

+ synthetic (mtu?) 22.3 17.9 20.3
+ morph-vw-50M 22.4 18.1 20.5

Table 6: English→Czech experimental results us-
ing 50M training sentence pairs.

In our baseline systems, we already draw on lem-
mas and morphosyntactic tags as factors on the tar-
get side, in addition to word surface forms.1 The
additional target-side factors allow us to integrate
features that independently model word sense (in
terms of the lemma) and morphological attributes
(in terms of the morphosyntactic tag). All our
translation engines (cf. Section 5) incorporate n-
gram LMs over lemmas and over morphosyntac-
tic tags, and an operation sequence model (OSM)
(Durrani et al., 2013) with lemmas on the target
side. These models counteract sparsity, and where
models over surface forms fail for unseen variants,
they still assign scores which are based on reliable
probability estimates.

When enhancing a system with synthesized
phrase table entries, we add further features. Since
the usual phrase translation and lexical translation
log-probabilities over surface forms cannot be es-
timated for unseen morphological variants, but all

1But note that our factored systems operate without a di-
vision into separate translation and generation models.

new variants are generated from existing lemmas,
we utilize the corresponding log-probabilities over
target lemmas. Those can be extracted from the
parallel training data and added to the synthe-
sized entries. For baseline phrase table entries,
we retain their four baseline phrase translation
and lexical translation features, meaning that fea-
tures over target lemmas score synthesized entries
and features over surface forms score baseline en-
tries. The features have separate weights in the
model combination. Furthermore, a binary indi-
cator distinguishes baseline phrases from synthe-
sized phrases.

The final key to our approach is using a discrim-
inative classifier (morph-vw, Vowpal Wabbit2 for
Morphology) which can take context from both the
source side and the target side into account, as in
(Tamchyna et al., 2016). We design feature tem-
plates for the classifier that generalize to unseen
morphological variants, as listed in Table 2. “Indi-
cator” features are concatenations of words inside

2https://hunch.net/~vw/
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the phrase, “internal” features represent each word
in the phrase separately. Context features on the
source side capture a fixed-sized window around
the phrase. Target-side context is only to the left
of the current phrase. The feature set is designed to
force the classifier to learn two independent com-
ponents: semantic (choosing the right lemma) and
morphosyntactic (choosing the right tag, i.e., mor-
phological variant of a word). When scoring an
unseen morphological variant of a known word,
these two independent components should still be
able to assign meaningful scores to the translation.
Note that the features require lemmatization and
tagging on both sides and a dependency parse of
the source side.

5 Empirical Evaluation

For an empirical evaluation of our technique, we
build baseline phrase-based SMT engines using
Moses (Koehn et al., 2007). We then enrich
these baselines with linguistically motivated mor-
phological variants that are unseen in the paral-
lel training data, and we augment the model with
the discriminative classifier to guide morpholog-
ical selection during decoding. Different flavors
of synthetic morphological variants are compared,
each either combined with the discriminative clas-
sifier or standalone.

We choose English→Czech as a task that is rep-
resentative for machine translation from a mor-
phologically underspecified language into a mor-
phologically rich language.

5.1 Experimental Setup

We train a phrase-based translation system with
three factors on the target side of the translation
model (but no separate generation model). The
target factors are the word surface form, lemma,
and a morphosyntactic tag. We use the Czech posi-
tional tagset (Hajič and Hladká, 1998) which fully
describes the word’s morphological attributes. On
the source side we use only surface forms, except
for the discriminative classifier, which includes the
features as shown in Table 2.

We employ corpora that have been provided for
the English→Czech News translation shared task
at WMT16 (Bojar et al., 2016b), including the
CzEng parallel corpus (Bojar et al., 2016a). Word
alignments are created using fast_align (Dyer
et al., 2013) and symmetrized. We extract phrases
up to a maximum length of 7. The phrase table is

50K

500K

5M

50M

 0  5  10  15  20

baseline
+ synthetic (mtu) + morph-vw

11.8

16.1

18.9

20.5

12.7

17.3

19.0

20.8

BLEU

Figure 1: Visualization of the English→Czech
translation quality on newstest2016, showing the
benefit of our approach under different training re-
source conditions (50K/500K/5M/50M).

pre-pruned by applying a minimum score thresh-
old of 0.0001 on the source-to-target phrase trans-
lation probability, and the decoder loads a maxi-
mum of 100 best translation options per distinct
source side. We use cube pruning in decoding.
Pop limit and stack limit for cube pruning are set
to 1000 for tuning and to 5000 for testing. The
distortion limit is 6. Weights are tuned on news-
test2013 with k-best MIRA (Cherry and Foster,
2012) over 200-best lists for 25 iterations. Transla-
tion quality is measured in BLEU (Papineni et al.,
2002) on three different test sets, newstest2014,
newstest2015, and newstest2016.3

Our training data amounts to around 50 mil-
lion bilingual sentences overall, but we conduct
sets of experiments with systems trained using
different fractions of this data (50K, 500K, 5M,
50M). Whereas English→Czech has good cover-
age in terms of training corpora, we simulate low-
and medium-resource conditions for the purpose
of drawing more general conclusions. Irrespec-
tive of this, we utilize the same large LMs in all
setups, assuming that proper amounts of target
language monolingual data can often be gathered,
even when parallel data is scarce. All other models
(including the morph-vw) are trained using only
the fraction of data as chosen for the respective
set of experiments, and synthesized phrase table
entries with generated morphological variants are
produced individually for each baseline phrase ta-
ble.

3We evaluate case-sensitive with mteval-v13a.pl-c,
comparing post-processed hypotheses against the raw refer-
ence.
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input: now , six in 10 Republicans have a favorable view of Donald Trump .

baseline: ted’ , šest v 10 republikáni mají příznivý výhled Donald Trump .
now, six inlocation 10 Republicansnom have a_favorable outlook Donaldnom Trumpnom .

+ synthetic (mtu) + morph-vw: ted’ , šest do deseti republikánů má příznivý názor na Donalda Trumpa .
now, six into tengen Republicansgen have a_favorable opinion of Donaldacc Trumpacc .

Figure 2: Example outputs of 500K system variants. Each translation has a corresponding gloss in italics.
Errors are marked in bold. Synthetic phrase translations are underlined.

5.2 Experimental Results and Analysis
Translation results are reported in Tables 3 to 6.
Our method is effective at improving BLEU espe-
cially in the low- and medium-resource settings,
but shows only slight gains in the 5M and 50M
scenarios. Overall, mtu leads to better results than
word. When we also add translations to phrases
with multiple input words, we give the system
more leeway in phrasal segmentation and our syn-
thetic phrases can perhaps be applied more easily.

In the 50K and 500K settings, we obtain consid-
erable improvements even without using the dis-
criminative model. This suggests that our scor-
ing scheme based on lemmas is indeed effective
for the synthetic phrase pairs. Additionally, model
features such as the OSM with target-side lemmas
as well as the LMs over lemmas and over mor-
phosyntactic tags seem to cope with the synthetic
word forms reasonably well. However, when we
do use the classifier, we obtain a small but consis-
tent further improvement.

Figure 1 visualizes the BLEU scores achieved
under the four training resource conditions with
the baseline system and with the system extended
via synthesized morphological word forms (in the
mtu variant) plus the discriminative classifier, re-
spectively.

In order to better understand why the improve-
ments fall off as we increase training data size,
we measure target-side out-of-vocabulary (OOV)
rates of the various settings. Our aim is to quan-
tify the potential improvement that our method can
bring. Table 7 shows the statistics: at 50K, the
baseline OOV rate is nearly 17 % and our tech-
nique successfully reduces it to less than 10 %.
The relative reduction of the OOV rate is quite
steady as training data size increases.

Figure 2 illustrates the effect of our technique in
a medium-size setting (500K). The baseline sys-
tem is forced to use the incorrect nominative case
due to the lack of required surface forms. Our
method provides these inflections (“republikánů”,
“Trumpa”) and produces a mostly grammatical

#phrases OOV (target)
setup full filtered types tokens

baseline 50K 1.6 M 0.2 M 45.8 % 16.6 %

+ synthetic (word) 7.8 M 3.9 M 26.7 % 9.9 %
+ synthetic (word?) 2.1 M 0.5 M 35.0 % 12.5 %
+ synthetic (mtu) 19.0 M 5.7 M 26.2 % 9.7 %
+ synthetic (mtu?) 3.0 M 0.7 M 34.5 % 12.3 %

baseline 500K 14.5 M 1.4 M 21.0 % 7.1 %

+ synthetic (word) 44.3 M 16.0 M 11.9 % 4.2 %
+ synthetic (word?) 16.9 M 2.5 M 15.2 % 5.2 %
+ synthetic (mtu) 134.4 M 25.8 M 11.6 % 4.1 %
+ synthetic (mtu?) 24.0 M 3.3 M 14.9 % 5.1 %

baseline 5M 126.6 M 7.4 M 9.1 % 3.1 %

+ synthetic (word) 254.4 M 58.0 M 5.8 % 2.2 %
+ synthetic (word?) 137.1 M 11.4 M 6.7 % 2.4 %
+ synthetic (mtu) 953.3 M 105.9 M 5.7 % 2.1 %
+ synthetic (mtu?) 192.1 M 15.0 M 6.6 % 2.4 %

baseline 50M 996.5 M 23.4 M 4.9 % 1.7 %

+ synthetic (word) 1 415.2 M 122.2 M 3.6 % 1.3 %
+ synthetic (word?) 1 030.7 M 30.4 M 4.0 % 1.4 %
+ synthetic (mtu) 6 256.2 M 287.4 M 3.5 % 1.3 %
+ synthetic (mtu?) 1 414.1 M 42 6 M 3.9 % 1.4 %

Table 7: Phrase table statistics. We report sizes of
the full phrase tables as well as after filtering to-
wards the newstest2016 source. Target-side OOV
rates are calculated by comparing newstest2016
references against the filtered phrase tables.

translation (but is still unable to correctly translate
the preposition “in”).

6 Conclusion

We have studied the important problem of mod-
eling all morphological variants of our SMT sys-
tem’s vocabulary. We showed that we can aug-
ment our system’s vocabulary with the missing
variants and that we can effectively score these
variants using a discriminative lexicon utilizing
both source and target context. We have shown
that this leads to substantial BLEU score improve-
ments, particularly on small to medium resource
translation tasks. Given the limited training data
available for translation to many morphologically
rich languages, our approach is widely applicable.
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Abstract

Analysing translation quality in regards to
specific linguistic phenomena has histor-
ically been difficult and time-consuming.
Neural machine translation has the attrac-
tive property that it can produce scores
for arbitrary translations, and we pro-
pose a novel method to assess how well
NMT systems model specific linguis-
tic phenomena such as agreement over
long distances, the production of novel
words, and the faithful translation of po-
larity. The core idea is that we mea-
sure whether a reference translation is
more probable under a NMT model than
a contrastive translation which introduces
a specific type of error. We present
LingEval971, a large-scale data set of
97 000 contrastive translation pairs based
on the WMT English→German transla-
tion task, with errors automatically created
with simple rules. We report results for a
number of systems, and find that recently
introduced character-level NMT systems
perform better at transliteration than mod-
els with byte-pair encoding (BPE) seg-
mentation, but perform more poorly at
morphosyntactic agreement, and translat-
ing discontiguous units of meaning.

1 Introduction

It has historically been difficult to analyse how
well a machine translation system can learn spe-
cific linguistic phenomena. Automatic metrics
such as BLEU (Papineni et al., 2002) provide
no linguistic insight, and automatic error analysis

1Test set and evaluation script are available at https:
//github.com/rsennrich/lingeval97

(Zeman et al., 2011; Popovic, 2011) is also rela-
tively coarse-grained. A concrete research ques-
tion that has been unanswered so far is whether
character-level decoders for neural machine trans-
lation (Chung et al., 2016; Lee et al., 2016)
can generate coherent and grammatical sentences.
Chung et al. (2016) argue that the answer is yes,
because BLEU on long sentences is similar to a
baseline with longer subword units created via
byte-pair encoding (BPE) (Sennrich et al., 2016a),
but BLEU, being based on precision of short n-
grams, is an unsuitable metric to measure the
global coherence or grammaticality of a sentence.
To allow for a more nuanced analysis of different
machine translation systems, we introduce a novel
method to assess neural machine translation that
can capture specific error categories in an auto-
matic, reproducible fashion.

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015) opens up new opportunities for auto-
matic analysis because it can assign scores to ar-
bitrary sentence pairs, in contrast to phrase-based
systems, which are often unable to reach the refer-
ence translation. We exploit this property for the
automatic evaluation of specific aspects of transla-
tion by pairing a human reference translation with
a contrastive example that is identical except for
a specific error. Models are tested as to whether
they assign a higher probability to the reference
translation than to the contrastive example.

A similar method of assessment has previously
been used for monolingual language models (Sen-
nrich and Haddow, 2015; Linzen et al., 2016), and
we apply it to the task of machine translation. We
present a large-scale test set of English→German
contrastive translation pairs that allows for the au-
tomatic, quantitative analysis of a number of lin-
guistically interesting phenomena that have previ-
ously been found to be challenging for machine
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category English German (correct) German (contrastive)
NP agreement [...] of the American Congress [...] des amerikanischen Kongresses * [...] der amerikanischen Kongresses

subject-verb agr. [...] that the plan will be approved [...], dass der Plan verabschiedet wird * [...], dass der Plan verabschiedet werden
separable verb particle he is resting er ruht sich aus * er ruht sich an

polarity the timing [...] is uncertain das Timing [...] ist unsicher das Timing [..] ist sicher
transliteration Mr. Ensign’s office Senator Ensigns Büro Senator Enisgns Büro

Table 1: Example contrastive translations pair for each error category.

translation, including agreement over long dis-
tances (Koehn and Hoang, 2007; Williams and
Koehn, 2011), discontiguous verb-particle con-
structions (Nießen and Ney, 2000; Loáiciga and
Gulordava, 2016), generalization to unseen words
(specifically, transliteration of names (Durrani et
al., 2014)), and ensuring that polarity is main-
tained (Wetzel and Bond, 2012; Chen and Zhu,
2014; Fancellu and Webber, 2015).

We report results for neural machine transla-
tion systems with different choice of subword unit,
identifying strengths and weaknesses of recently-
proposed models.

2 Contrastive Translation Pairs

We create a test set of contrastive translation pairs
from the EN→DE test sets from the WMT shared
translation task.2 Each contrastive translation pair
consists of a correct reference translation, and a
contrastive example that has been minimally mod-
ified to introduce one translation error. We define
the accuracy of a model as the number of times
it assigns a higher score to the reference transla-
tion than to the contrastive one, relative to the total
number of predictions. We have chosen a number
of phenomena that are known to be challenging for
the automatic translation from English to German.

1. noun phrase agreement: German determin-
ers must agree with their head noun in case,
number, and gender. We randomly change
the gender of a singular definite determiner
to introduce an agreement error.

2. subject-verb agreement: subjects and verbs
must agree with one another in grammatical
number and person. We swap the grammat-
ical number of a verb to introduce an agree-
ment error.

3. separable verb particle: verbs and their sep-
arable prefix often form a discontiguous se-
mantic unit. We replace a separable verb par-
ticle with one that has never been observed
with the verb in the training data.

2http://www.statmt.org/wmt16/

4. polarity: arguably, polarity errors are under-
measured the most by string-based MT met-
rics, since a single word/morpheme can re-
verse the meaning of a translation. We re-
verse polarity by deleting/inserting the nega-
tion particle nicht (’not’), swapping the de-
terminer ein (’a’) and its negative counterpart
kein (’no’), or deleting/inserting the negation
prefix un-.

5. transliteration: subword-level models should
be able to copy or transliterate names, even
unseen ones. For names that were unseen in
the training data, we swap two adjacent char-
acters.

Table 1 shows examples for each error type.
Most are motivated by frequent translation errors;
for EN→DE, source and target script are the same,
so technically, we do not perform transliteration.
Since transliteration of names and copying them is
handled the same way by the encoder-decoder net-
works that we tested, we consider this error type a
useful proxy to test the models’ transliteration ca-
pability.

All errors are introduced automatically, relying
on statistics from the training corpus, a syntactic
analysis with ParZu (Sennrich et al., 2013), and a
finite-state morphology (Schmid et al., 2004; Sen-
nrich and Kunz, 2014) to identify the relevant con-
structions and introduce errors. For contrastive
pairs with agreement errors, we also annotate the
distance between the words. For translation er-
rors where we want to assess generalization to
rare words (all except negation particles), we also
provide the training set frequency of the word in-
volved in the error (in case of multiple words, we
report the lower frequency).

The automatic processing has limitations, and
we opt for a high-precision approach – for in-
stance, we only change the gender of determin-
ers where case and number are unambiguous, so
that we can produce maximally difficult errors.3

3If we mistakenly introduce a case error, this makes it eas-
ier to spot from local context.
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BPE–BPE BPE–char char–char
source vocab 83,227 24,440 304
target vocab 91,000 302 302
source emb. 512 512 128
source conv. - - (Lee et al., 2016)
target emb. 512 512 512
encoder gru gru gru
encoder size 1024 512 512
decoder gru_cond two_layer_gru_decoder
decoder size 1024 1024 1024
minibatch size 128 128 64
optmizer adam adam adam
learning rate 0.0001 0.0001 0.0001
beam size 12 20 20
training time ≈ 1 week ≈ 2 weeks ≈ 2 weeks
(minibatches) 240,000 510,000 540,000

Table 2: NMT hyperparameters. ‘decoder’ refers
to function implemented in Nematus (for BPE-to-
BPE) and dl4mt-c2c (for *-to-char).

We expect that parsing errors will not invalidate
the contrastive examples – correctly identifying
the subject will affect the distance annotation, but
changing the number of the verb should always in-
troduce an error.4 Still, we report ceiling scores
achievable by humans to account for the possibil-
ity that a generated error is not actually an error.
We estimate the human ceiling by trying to se-
lect the correct variant for 20 contrastive transla-
tion pairs per category where our best system fails.
The ceiling is below 100% because of errors in the
reference translation, and cases that were undecid-
able by a human annotator (such as the gender of
the 20-year-old).5

From the 22 191 sentences in the original new-
stest20** sets, we create approximately 97 000
contrastive translation pairs.

3 Evaluation

In the evaluation section, our focus is on establish-
ing baselines on the test set, and investigating the
following research questions:

• how well do different subword-level models
process unseen words, specifically names?

• sequence-length is increased in character-
level models, compared to word-level or
BPE-level models. Does this have a negative
effect on grammaticality?

4Because of syncretism in German, there are cases where
changing the inflection of one word does not cause disfluency,
but merely changes the meaning. While a language model
may deem both variants correct, a translation model should
prefer the translation with the correct meaning.

5We mark all undecidable cases as wrong, and could per-
form better with random guessing.

system 2014 2015 2016
(test set and size→) 3003 2169 2999
BPE-to-BPE 20.1 (21.0) 23.2 (23.0) 26.7 (26.5)
BPE-to-char 19.4 (20.5) 22.7 (22.6) 26.0 (25.9)
char-to-char 19.7 (20.7) 22.9 (22.7) 26.2 (26.1)
(Sennrich et al., 2016a) 25.4 (26.5) 28.1 (28.3) 34.2 (34.2)

Table 3: Case-sensitive BLEU scores (EN-DE)
on WMT newstest. We report scores with deto-
kenized NIST BLEU (mteval-v13a.pl),
and in brackets, tokenized BLEU with
multi-bleu.perl.

3.1 Data and Methods
We train NMT systems with training data from
the WMT 15 shared translation task EN→DE. We
train three systems with different text representa-
tions on the parallel part of the training set:

• BPE-to-BPE (Sennrich et al., 2016a)

• BPE-to-char (Chung et al., 2016)

• char-to-char (Lee et al., 2016)

We use the implementations released by the
respective authors, Nematus6 for BPE-to-BPE,
and dl4mt-c2c7 for BPE-to-char and char-to-char.
dl4mt-c2c also provides preprocessed training
data, which we use for comparability.

Both tools are forks of the dl4mt tutorial8, so the
implementation differences are minimal except for
those pertaining to the text representation. We re-
port hyperparameters in Table 2. They correspond
to those used by Lee et al. (2016) for BPE-to-
char and char-to-char; for BPE-to-BPE, we also
adopt some hyperparameters from Sennrich et al.
(2016b), most importantly, we extract a joint BPE
vocabulary of size 89 500 from the parallel corpus.
We trained the BPE-to-BPE system for one week,
following Sennrich et al. (2016a), and the *-to-
char systems for two weeks, following Lee et al.
(2016), on a single Titan X GPU. For both trans-
lating and scoring, we normalize probabilities by
length (the number of symbols on the target side).

We also report results with the top-ranked sys-
tem at WMT16 (Sennrich et al., 2016a), which is
available online.9 It is also a BPE-to-BPE sys-
tem, but in contrast to the previous systems, it in-
cludes different preprocessing (including truecas-
ing), other hyperparameters, additional monolin-

6
https://github.com/rsennrich/nematus

7
https://github.com/nyu-dl/dl4mt-c2c

8
https://github.com/nyu-dl/dl4mt-tutorial

9
http://data.statmt.org/rsennrich/wmt16_systems/
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agreement polarity (negation)
system noun phrase subject-verb verb particle insertion deletion transliteration
(category and size→) 21813 35105 2450 22760 4043 3490
BPE-to-BPE 95.6 93.4 91.1 97.9 91.5 96.1
BPE-to-char 93.9 91.2 88.0 98.5 88.4 98.6
char-to-char 93.9 91.5 86.7 98.5 89.3 98.3
(Sennrich et al., 2016a) 98.7 96.6 96.1 98.7 92.7 96.4
human 99.4 99.8 99.8 99.9 98.5 99.0

Table 4: Accuracy (in percent) of models on different categories of contrastive errors. Best single model
result in bold (multiple bold results indicate that difference to best system is not statistically significant).

gual training data, an ensemble of models, and
bidirectional decoding.

3.2 Results

Firstly, we report case-sensitive BLEU scores for
all systems we trained for comparison to previous
work.10 Results are shown in Table 3. The results
confirm that our systems are comparable to pre-
viously reported results (Sennrich et al., 2016a;
Chung et al., 2016), and that performance of the
three systems is relatively close in terms of BLEU.
The metric does not provide any insight into the
respective strengths and weaknesses of different
text representations.

Our main result is the assessment via con-
trastive translation pairs, shown in Table 4. We
find that despite obtaining similar BLEU scores,
the models have learned different structures to a
different degree. The models with character de-
coder make fewer transliteration errors than the
BPE-to-BPE model. However, they perform more
poorly on separable verb particles and agreement,
especially as distance increases, as seen in Fig-
ure 1. While accuracy for subject-verb agree-
ment of adjacent words is similar across systems
(95.2%, 94.0%, and 94.5% for BPE-to-BPE, BPE-
to-char, and char-to-char, respectively), the gap
widens for agreement between distant words – for
a distance of over 15 words, the accuracy is 90.7%,
85.2%, and 82.3%, respectively.

Polarity shifts between the source and target
text are a well-known translation problem, and our
analysis shows that the main type of error is the
deletion of negation markers, in line with with
findings of previous studies (Fancellu and Web-
ber, 2015). We consider the relatively high num-

10Two commonly used BLEU evaluation scripts, the NIST
BLEU scorer mteval-v13a.pl on detokenized text, and
multi-bleu.perl on tokenized text, give different re-
sults due to tokenization differences. We here report both for
comparison, but encourage the use of the NIST scorer, which
is used by the WMT and IWSLT shared tasks, and allows for
comparison of systems with different tokenizations.
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Figure 1: Subject-verb agreement accuracy as a
function of distance between subject and verb.

negation insertion negation deletion
system nicht kein un- nicht kein un-
(category and size→) 1297 10219 11244 2919 538 586
BPE-to-BPE 94.8 99.1 97.1 93.0 88.7 86.5
BPE-to-char 92.7 98.9 98.7 91.0 85.1 78.8
char-to-char 92.1 98.9 98.8 91.5 86.4 80.5
(Sennrich et al., 2016a) 97.1 99.7 98.0 93.6 92.0 88.4

Table 5: Accuracy (in percent) of models on dif-
ferent categories of contrastive errors related to
polarity. Best single model result in bold.

ber of errors related to polarity an important prob-
lem in machine translation, and hope that future
work will try to improve upon our results, shown
in more detail in Table 5.

We have commented that changing the gram-
matical number of the verb may change the mean-
ing of the sentence instead of making it disfluent.
A common example is the German pronoun sie,
which is shared between the singular ’she’, and the
plural ’they’. We keep separate statistics for this
type of error (n = 2520), and find that it is chal-
lenging for all models, with an accuracy of 87–
87.2% for single models, and 90% by the WMT16
submission system.

We conclude from our results that there is cur-
rently a trade-off between generalization to unseen
words, for which character-level decoders perform
best, and sentence-level grammaticality, for which
we observe better results with larger subword units
of the BPE segmentation. We hope that our test set
will help in developing and assessing architectures
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system sentence cost
source Since then we have only played in the Swedish league which is not the same level.
reference Seitdem haben wir nur in der Schwedischen Liga gespielt, die nicht das gleiche Niveau hat. 0.149
contrastive Seitdem haben wir nur in der Schwedischen Liga gespielt, die nicht das gleiche Niveau haben. 0.137
1-best Seitdem haben wir nur in der schwedischen Liga gespielt, die nicht die gleiche Stufe sind. 0.090
source FriendsFest: the comedy show that taught us serious lessons about male friendship.
reference FriendsFest: die Comedy-Show, die uns ernsthafte Lektionen über Männerfreundschaften erteilt 0.276
contrastive FriendsFest: die Comedy-Show, die uns ernsthafte Lektionen über Männerfreundschaften erteilen 0.262
1-best FriendsFest: die Komödie zeigt, dass uns ernsthafte Lehren aus männlichen Freundschaften 0.129
source Robert Lewandowski had the best opportunities in the first half.
reference Die besten Gelegenheiten in Hälfte eins hatte Robert Lewandowski. 0.551
contrastive Die besten Gelegenheiten in Hälfte eins hatten Robert Lewandowski. 0.507
1-best Robert Lewandowski hatte in der ersten Hälfte die besten Möglichkeiten. 0.046

Table 6: Examples where char-to-char model prefers contrastive translation (subject-verb agreement
errors). 1-best translation can make error of same type (example 1), different type (translation of taught
is missing in example 2), or no error (example 3).

that aim to overcome this trade-off and perform
best in respect to both morphology and syntax.

We encourage the use of contrastive transla-
tion pairs, and LingEval97, for future analysis, but
here discuss some limitations. The first one is
by design: being focused on specific translation
errors, the evaluation is not suitable as a global
quality metric. Also, the evaluation only com-
pares the probability of two translations, a refer-
ence translation T and a contrastive translation T ′,
and makes no statement about the most probable
translation T ∗. Even if a model correctly estimates
that p(T ) > p(T ′), it is possible that T ∗ will con-
tain an error of the same type as T ′. And even if
a model incorrectly estimates that p(T ) < p(T ′),
it may produce a correct translation T ∗. Despite
these limitations, we argue that contrastive trans-
lation pairs are useful because they can easily be
created to analyse any type of error in a way that
is model-agnostic, automatic and reproducible.

Table 6 shows different examples of the where
the contrastive translation is scored higher than the
reference by the char-to-char model, and the cor-
responding 1-best translation. In the first one, our
method automatically recognizes an error that also
appears in the 1-best translation. In the second ex-
ample, the 1-best translation is missing the verb.
Such cases could confound a human analysis of
agreement errors, and we consider it an advantage
of our method that it is not confounded by other er-
rors in the 1-best translation. In the third example,
our method identifies an error, but the 1-best trans-
lation is correct. We note that the German refer-
ence exhibits object fronting, but the 1-best output
has the more common SVO word order. While one
could consider this instance a false positive, it can
be important for an NMT model to properly score

translations other than the 1-best, for instance for
applications such as prefix-constrained MT (Wue-
bker et al., 2016).

4 Conclusion

We present LingEval97, a test set of 97 000 con-
trastive translation pairs for the assessment of neu-
ral machine translation systems. By introducing
specific translation errors to the contrastive trans-
lations, we gain valuable insight into the abil-
ity of state-of-the-art neural MT systems to han-
dle several challenging linguistic phenomena. A
core finding is that recently proposed character-
level decoders for neural machine translation out-
perform subword models at processing unknown
names, but perform worse at modelling mor-
phosyntactic agreement, where information needs
to be carried over long distances. We encour-
age the use of LingEval97 to assess alternative ar-
chitectures, such as hybrid word-character models
(Luong and Manning, 2016), or dilated convolu-
tional networks (Kalchbrenner et al., 2016). For
the tested systems, the most challenging error type
is the deletion of negation markers, and we hope
that our test set will facilitate development and
evaluation of models that try to improve in that re-
spect. Finally, the evaluation via contrastive trans-
lation pairs is a very flexible approach, and can be
applied to new language pairs and error types.
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Abstract

Knowing which words have been attended
to in previous time steps while generating
a translation is a rich source of information
for predicting what words will be attended
to in the future. We improve upon the at-
tention model of Bahdanau et al. (2014)
by explicitly modeling the relationship be-
tween previous and subsequent attention
levels for each word using one recurrent
network per input word. This architecture
easily captures informative features, such
as fertility and regularities in relative dis-
tortion. In experiments, we show our pa-
rameterization of attention improves trans-
lation quality.

1 Introduction

In contrast to earlier approaches to neural ma-
chine translation (NMT) that used a fixed vec-
tor representation of the input (Sutskever et al.,
2014; Kalchbrenner and Blunsom, 2013), atten-
tion mechanisms provide an evolving view of the
input sentence as the output is generated (Bah-
danau et al., 2014). Although attention is an intu-
itively appealing concept and has been proven in
practice, existing models of attention use content-
based addressing and have made only limited use
of the historical attention masks. However, lessons
from better word alignment priors in latent vari-
able translation model suggests value for model-
ing attention dependent of content.

A challenge in modeling dependencies between
previous and subsequent attention decisions is that
source sentences are of different lengths, so we
need models that can deal with variable numbers
of predictions across variable lengths. While other
work has sought to address this problem (Cohn et
al., 2016; Tu et al., 2016; Feng et al., 2016), these

models either rely on explicitly engineered fea-
tures (Cohn et al., 2016), resort to indirect model-
ing of the previous attention decisions as by look-
ing at the content-based RNN states that gener-
ated them (Tu et al., 2016), or only model cov-
erage rather than coverage together with ordering
patterns (Feng et al., 2016). In contrast, we pro-
pose to model the sequences of attention levels for
each word with an RNN, looking at a fixed win-
dow of previous alignment decisions. This enables
us both to learn long range information about cov-
erage constraints, and to deal with the fact that in-
put sentences can be of varying sizes.

In this paper, we propose to explicitly model
the dependence between attentions among target
words. When generating a target word, we use a
RNN to summarize the attention history of each
source word. The resultant summary vector is con-
catenated with the context vectors to provide a rep-
resentation which is able to capture the attention
history. The attention of the current target word is
determined based on the concatenated representa-
tion. Alternatively, in the viewpoint of the mem-
ory networks framework (Sukhbaatar et al., 2015),
our model can be seen as augmenting the static en-
coding memory with dynamic memory which de-
pends on preceding source word attentions. Our
method improves over plain attentive neural mod-
els, which is demonstrated on two MT data sets.

2 Model

2.1 Neural Machine Translation

NMT directly models the condition probability
p(y|x) of target sequence y = {y1, ..., yT } given
source sequence x = {x1, ..., xS}, where xi, yj

are tokens in source sequence and target sequence
respectively. Sutskever et al. (2014) and Bahdanau
et al. (2014) are slightly different in choosing the
encoder and decoder network. Here we choose the
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RNNSearch model from (Bahdanau et al., 2014)
as our baseline model. We make several modifica-
tions to the RNNSearch model as we find empiri-
cally that these modification lead to better results.

2.1.1 Encoder
We use bidirectional LSTMs to encode the source
sentences. Given a source sentence {x1, ..., xS},
we embed the words into vectors through an em-
bedding matrix WS , the vector of i-th word is
WSxi. We get the annotations of word i by sum-
marizing the information of neighboring words us-
ing bidirectional LSTMs:

−→
h i =

−−−−→
LSTM(

−−→
hi−1,WSxi) (1)

←−
h i =

←−−−−
LSTM(

←−−
hi+1,WSxi) (2)

The forward and backward annotation are concate-
nated to get the annotation of word i as hi =
[
−→
h i,
←−
h i]. All the annotations of the source words

form a context set, C = {h1, ..., hS}, conditioned
on which we generate the target sentence. C can
also be seen as memory vectors which encode all
the information from the source sequences.

2.1.2 Attention based decoder
The decoder generates one target word per time
step, hence, we can decompose the conditional
probability as

log p(y|x) =
∑

j

p(yj |y<j , x). (3)

For each step in the decoding process, the LSTM
updates the hidden states as

sj = LSTM(sj−1,WT yj−1, cj−1). (4)

The attention mechanism is used to select the most
relevant source context vector,

eij =vT
a tanh(Wahi + Uasj), (5)

αij =
exp(eij)∑
i exp(eij)

, (6)

cj =
∑

i

αijhi. (7)

This can also seen as memory addressing and
reading process. Content based addressing is used
to get weights αij . The decoder then reads the
memory as weighted average of the vectors. cj is
combined with sj to predict the j-th target word.

−→
h i
−→
h i

←−
h i
←−
h i

dijdij

…

…

sjsj

static

memory

dynamic

memory

+

…

…

αi,j−1αi,j−1αi−k,j−1αi−k,j−1 αi+k,j−1αi+k,j−1… …

αi,j−2αi,j−2 αi+k,j−2αi+k,j−2αi−k,j−2αi−k,j−2
… …

αi,1αi,1αi−k,1αi−k,1 αi+k,1αi+k,1……

attention

matrix

yj−2yj−2

y1y1

yj−1yj−1

xixi xi+kxi+kxi−kxi−k

Figure 1: Model diagram

In our implementation we concatenate them and
then use one layer MLP to predict the target word:

s̃j = tanh(W1[sj , cj ] + b1) (8)

pj =softmax(W2s̃j) (9)

We feed cj to the next step, this explains the
cj−1 term in Eq. 4.

The above attention mechanism follows that of
Vinyals et al. (2015). Similar approach has been
used in (Luong et al., 2015a). This is slightly dif-
ferent from the attention mechanism used in (Bah-
danau et al., 2014), we find empirically it works
better.

One major limitation is that attention at each
time step is not directly dependent of each other.
However, in machine translation, the next word to
attend to highly depends on previous steps, neigh-
boring words are more likely to be selected in next
time step. This above attention mechanism fails
to capture these important characteristics. In the
following, we attach a dynamic memory vector to
the original static memory hi, to keep track of how
many times this word has been attended to and
whether the neighboring words are selected at pre-
vious time steps, the information, together with hi,
is used to predict the next word to select.

2.2 Dynamic Memory
For each source word i, we attach a dynamic mem-
ory vector di to keep track of history attention
maps. Let α̃ij = [αi−k,j , ...αi+k,j ] be a vector
of length 2k+1 that centers at position i, this vec-
tor keeps track of the attention maps status around
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word i, the dynamic memory dij is updated as fol-
lows:

dij = LSTM(di,j−1, α̃i,j−1),∀i (10)

The model is shown in Fig. 1. We call the vec-
tor dij dynamic memory because at each decoding
step, the memory is updated while hi is static. dij

is assumed to keep track of the history attention
status around word i. We concatenate the dij with
hi in the addressing and the attention weight vec-
tor is calculated as:

eij =vT
a tanh(Wa[hi, dij ] + Uasj), (11)

αij =
exp(eij)∑
i exp(eij)

, (12)

cj =
∑

i

αijhi. (13)

Note that we only use dynamic memory dij in the
addressing process, the actual memory cj that we
read does not include dij . We also tried to get the
dij through a fully connected layer or a convo-
lutional layer. We find empirically LSTM works
best.

3 Experiments & Results

3.1 Data sets

We experiment with two data sets: WMT English-
German and NIST Chinese-English.

• English-German The German-English data
set contains Europarl, Common Crawl and
News Commentary corpus. We remove the
sentence pairs that are not German or En-
glish in a similar way as in (Jean et al.,
2015). There are about 4.4 million sen-
tence pairs after preprocessing. We use new-
stest2013 set as validation and newstest2014,
newstest2015 as test.

• Chinese-English We use FIBS and
LDC2004T08 Hong Kong News data
set for Chinese-English translation. There
are about 1.5 million sentences pairs. We use
MT 02, 03 as validation and MT 05 as test.

For both data sets, we tokenize the text with
tokenizer.perl. Translation quality is evalu-
ated in terms of tokenized BLEU scores (Papineni
et al., 2002) with multi-bleu.perl.

Model test1 test2

RNNSearch 19.0 21.3
RNNSearch + UNK replace 21.6 24.3

RNNSearch + window 1 18.9 21.4
RNNSearch + window 11 19.5 22.0
RNNSearch + window 11 +
UNK replace

22.1 25.0

(Jean et al., 2015)
RNNSearch 16.5 -
RNNSearch + UNK replace 19.0 -

(Luong et al., 2015a)
Four-layer LSTM + attention 19.0 -
Four-layer LSTM + attention +
UNK replace

20.9 -

RNNSearch + character
(Chung et al., 2016) 21.3 23.4
(Costa-jussà and Fonollosa,
2016)

- 20.2

Table 2: English-German results.

3.2 Experiments configuration

We exclude the sentences that are longer than 50
words in training. We set the vocabulary size to
be 50k and 30k for English-German and Chinese-
English. The words that do not appear in the vo-
cabulary are replaced with UNK.

For both RNNSearch model and our model, we
set the word embedding size and LSTM dimension
size to be 1000, the dynamic memory vector dij

size is 500. Following (Sutskever et al., 2014), we
initialize all parameters uniformly within range [-
0.1, 0.1]. We use plain SGD to train the model and
set the batch size to be 128. We rescale the gradi-
ent whenever its norm is greater than 3. We use an
initial learning rate of 0.7. For English-German,
we start to halve the learning rate every epoch af-
ter training for 8 epochs. We train the model for a
total of 12 epochs. For Chinese-English, we start
to halve the learning rate every two epochs after
training for 10 epochs. We train the model for a
total of 18 epochs.

To investigate the effect of window size 2k+ 1,
we report results for k = 0, 5, i.e., windows of size
1, 11.

3.3 Results

The results of English-German and Chinese-
English are shown in Table 2 and 3 respectively.
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src She was spotted three days later by a dog walker trapped in the quarry
ref Drei Tage später wurde sie von einem Spaziergänger im Steinbruch in ihrer misslichen Lage entdeckt

baseline Sie wurde drei Tage später von einem Hund entdeckt .
our model Drei Tage später wurde sie von einem Hund im Steinbruch gefangen entdeckt .

src At the Metropolitan Transportation Commission in the San Francisco Bay Area , officials say Congress could very simply deal with the bankrupt Highway
Trust Fund by raising gas taxes .

ref Bei der Metropolitan Transportation Commission für das Gebiet der San Francisco Bay erklärten Beamte , der Kongress könne das Problem des bankrotten
Highway Trust Fund einfach durch Erhöhung der Kraftstoffsteuer lsen .

baseline Bei der Metropolitan im San Francisco Bay Area sagen offizielle Vertreter des Kongresses ganz einfach den Konkurs Highway durch Steuererhöhungen .
our model Bei der Metropolitan Transportation Commission in San Francisco Bay Area sagen Beamte , dass der Kongress durch Steuererhöhungen ganz einfach

mit dem Konkurs Highway Trust Fund umgehen könnte .

Table 1: English-German translation examples

Model MT 05

RNNSearch 27.3
RNNSearch + window 1 27.9
RNNSearch + window 11 28.8
RNNSearch + window 11 + UNK replace 29.3

Table 3: Chinese-English results.

We compare our results with our own baseline and
with results from related works if the experimental
setting are the same. From Table 2, we can see that
adding dependency improves RNNSearch model
by 0.5 and 0.7 on newstest2014 and newstest2015,
which we denote as test1 and test2 respectively.
Using window size of 1, in which coverage prop-
erty is considered, does not improve much. Fol-
lowing (Jean et al., 2015; Luong et al., 2015b),
we replace the UNK token with the most proba-
ble target words and get BLEU score of 22.1 and
25.0 on the two data sets respectively. We com-
pare our results with related works, including (Lu-
ong et al., 2015a), which uses four layer LSTM
and local attention mechanism, and (Costa-jussà
and Fonollosa, 2016; Chung et al., 2016), which
uses character based encoding, we can see that
our model outperform the best of them by 0.8 and
1.6 BLEU score respectively. Table 1 shows some
English-German translation examples. We can see
the model with dependent attention can pick the
right part to translate better and has better transla-
tion quality.

The improvement is more obvious for Chinese-
English. Even only considering coverage property
improves by 0.6. Using a window size of 11 im-
proves by 1.5. Further using UNK replacement
trick improves the BLEU score by 0.5, this im-
provement is not as significant as English-German
data set, this is because English and German share
lots of words while Chinese and English don’t.

4 Conclusions & Future Work

In this paper, we propose a new attention mecha-
nism that explicitly takes the attention history into
consideration when generating the attention map.
Our work is motivated by the intuition that in at-
tention based NMT, the next word to attend is
highly dependent on the previous steps. We use
a recurrent neural network to summarize the pre-
ceding attentions which could impact the attention
of the current decoding attention. The experiments
on two MT data sets show that our method outper-
forms previous independent attentive models. We
also find that using a larger context attention win-
dow would result in a better performance.

For future directions of our work, from the
static-dynamic memory view, we would like to
explore extending the model to a fully dynamic
memory model where we directly update the rep-
resentations for source words using the attention
history when we generate each target word.
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Abstract

We put forward an approach that ex-
ploits the knowledge encoded in lexical
resources in order to induce representa-
tions for words that were not encountered
frequently during training. Our approach
provides an advantage over the past work
in that it enables vocabulary expansion
not only for morphological variations, but
also for infrequent domain specific terms.
We performed evaluations in different set-
tings, showing that the technique can pro-
vide consistent improvements on multiple
benchmarks across domains.

1 Introduction

Word representations are a core component in
many natural language processing systems ow-
ing to their generalisation power, i.e., they can
empower a system to share its knowledge across
similar words. The prominent distributional ap-
proach to word representation (Turney and Pan-
tel, 2010) is highly reliant on the availability of
large amounts of training data and falls short of
effectively modeling rare words that appear only
a handful of times in the training corpus. Sev-
eral efforts have been made to address this defi-
ciency by expanding the coverage through induc-
ing representations for rare words. Recent work
has mainly focused on morphologically complex
rare words has often tried to alleviate the prob-
lem by spreading the available knowledge across
words that share the same morpheme (Luong et al.,
2013; Botha and Blunsom, 2014; Soricut and Och,
2015). However, these techniques are unable to in-
duce representations for words whose morphemes
are not seen during training, such as infrequent do-
main specific terms. Importantly, the coverage is-
sue is more evident when representations trained

on abundant generic texts are applied to tasks in
specific domains. As a matter of fact, the target
domain can have dedicated lexical resources, such
as ontologies, which are generally ignored by the
distributional representation approach.

We propose a technique that exploits the knowl-
edge encoded in lexical resources in order to ex-
pand the vocabulary of pre-trained word represen-
tations. Our approach can be applied for induc-
ing representation not only for morphological vari-
ations but also for words whose morphemes are
not seen during training, such as infrequent do-
main specific terms, hence giving it domain spe-
cialisation advantage. We show using different ex-
periments that the proposed approach can provide
significant improvements on multiple general and
specific domain word similarity datasets.

2 Embeddings for Rare Words

The objective is to expand the vocabulary of a
given set of pre-trained word embeddings W by
adding rare words.1 To achieve this goal, we lever-
age a lexical resource S that provides a better cov-
erage of rare words or belongs to a specific domain
and hence can be used to specialiseW to that tar-
get domain. Our approach has two phases for in-
ducing an embedding for a word wr which has not
been seen frequently during the training ofW but
is covered by S. Firstly, it analyzes the lexical re-
source in order to extract the set of semantic land-
marks of wr (Section 2.1). Secondly, it induces an
embedding for wr which places the rare word in
the region of the semantic space in the proximity
of its semantic landmarks (Section 2.2).

Prerequisites. Our approach receives as its in-
puts the pre-trained word embeddings W and the
lexical resource S. Specifically, the resource

1Given their prominence, we use embeddings to refer to
word representations in general.
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should be viewable as a graph S = (V,E), where
V is the set of vertices that correspond to words
or concepts and E is the set of edges that denote
semantic relationships between entities in V .

2.1 Extraction of semantic landmarks
The aim of this phase is to find the set of land-
marks for wr which can best indicate the proxim-
ity of semantic space in which we can position wr.
As landmarks for wr, we take its most semanti-
cally similar words which we extract from S by
viewing the resource as a semantic network and
analyzing its structure. To this end, we use the
Personalized PageRank (Haveliwala, 2002, PPR)
algorithm which has been proven to be a reliable
graph analysis technique in various NLP tasks, in-
cluding Word Sense Disambiguation (Agirre et al.,
2014) and word similarity (Ramage et al., 2009;
Pilehvar and Navigli, 2015).

Let k be the corresponding vertex of wr in S.
We estimate the PPR distribution xT for this ver-
tex. This distribution can be seen as a column vec-
tor (n × 1) whose cells denote the semantic as-
sociation of their corresponding vertices to k. To
compute xT, we first construct a row-stochastic
transition matrix Pn×n where n = |V | and cell
Pij denotes the probability of shifting from vertex
i to vertex j within a single step of random walk.
This probability is equal to 0 if there is no seman-
tic relation between these two vertices and, other-
wise, equal to the inverse of the total number of
edges that connect vertex i to other vertices in the
network (under the assumption that all edges are
equally likely to be taken in a random walk). We
can then obtain the PPR distribution xT by solving
the eigenvector problem xTP = xT (Langville
and Meyer, 2004). This computation has tradi-
tionally been performed using the power method:
x(t)T = α x(t−1)TP + (1 − α)vT

k , where vT
k is

a column vector in which all the probability mass
is assigned to the cell corresponding to vertex k
and α is the scaling factor which is usually set to
0.85 (Langville and Meyer, 2004). Once xT was
computed we can sort its elements according to
their probabilities and obtain the list of most se-
mantically similar words to vertex k, i.e., semantic
landmarks for word wr.

2.2 Embedding induction
Let Lr be the sorted list of semantic landmarks for
wr and d(x) be an embedding for word x in the
space of W . We adopt the approach of Pilehvar

and Collier (2016a) and induce an embedding for
wr in the same semantic space using the following
formula:

d̂(wr) = θ d(w0
r) +

1
Lr

|Lr|∑
i=1

e−id(li,r). (1)

where li,r is the ith word in Lr. The formula
computes an embedding for wr which maps the
word to the weighted centroid of its semantic land-
marks. The exponential weighting assigns more
importance to the top words in the list which are
semantically more representative of wr. Note that
d(w0

r) is the initial embedding for wr. We include
this in our formulation in order to extend the ap-
plication of our approach from induction only to
embedding enrichment, where we tend to improve
an unreliable embedding d(w0

r) obtained for a rare
word by leveraging knowledge encoded in the lex-
ical resource, and to domain adaptation, where the
semantics of d(w0

r) are adapted to a target domain
by using domain specific landmarks that are ex-
tracted from a lexical resource in that domain. Pa-
rameter θ adjusts the contribution of initial embed-
ding. Setting the parameter to zero reduces the for-
mulation to that of inducing an embedding for an
unseen word. In the next section, we discuss how
the parameters were set in our experiments.

3 Experiments

As evaluation framework, we used word similar-
ity. To verify the ability of the approach in induc-
ing embeddings in both general and specific do-
mains, we carried out two different experiments.

Embeddings. We used three different pre-
trained word embeddings: (1) GLOVE embed-
dings trained by Pennington et al. (2014) on
Wikipedia and Gigaword 5 (vocab: 400K, dim:
300), (2) W2V-GN, Word2vec (Mikolov et al.,
2013) trained on the Google News dataset (vo-
cab: 3M, dim: 300), and (3) W2V-250K, the same
Word2vec embeddings with a vocabulary of 250K
most frequent words. We opted for these embed-
dings mainly for their popularity but we note that
the proposed approach is equally applicable to any
other vector representation.

Parameters. In experiments, whenever we had
access to frequency statistics in the training data,
we considered words with frequency < 10K as
rare and induced their representations along with
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Vanilla +Induction

OOV r ρ OOV r ρ

GLOVE 11% 34.9 34.4 0% 38.6 39.7
W2V-250K 34% 31.0 25.9 0% 44.2 47.5
W2V-GN 9% 43.8 45.3 0% 48.3 50.5

Table 1: Spearman (ρ×100) and Pearson (r×100) correlation performance of our approach when using
three different embeddings on the RW dataset.

unseen words. We also limit the size of Lu to
the top 25 words for faster computation. Also, we
set θ in formula 1 to one in order to assign equal
weights to the initial embedding d(w0

r), when-
ever available, and to the one induced based on
the knowledge extracted from the lexical resource.
We did not perform any tuning on these parame-
ters. Notably, θ can be set based on the reliability
of d(w0

r), for instance according to the frequency
of w0

r in the training corpus. We leave the tuning
of these and the evaluation of other word vectors
to future work.

3.1 General domain setting

As our general domain evaluation benchmark we
used the Stanford Rare Word (RW) similarity
dataset (Luong et al., 2013) which is a suitable
framework for evaluating the performance of rep-
resentation induction techniques. The dataset
comprises 2034 word pairs, 173 of which have at
least one of their words not covered in our high-
est coverage embeddings, i.e., W2V-GN with a vo-
cabulary size of 3 million words. As our general
domain lexical resource, we opted for WordNet
(Fellbaum, 1998), the community’s de-facto stan-
dard English lexical resource.

Results. Table 1 lists the performance of our ap-
proach on the RW dataset. Results are shown for
the three initial embeddings. For each of these we
report the percentage of uncovered (OOV) words
in the initial set (“Vanilla”) as well as that after the
induction of new embeddings to expand the vocab-
ulary (“+Induction”). We observe that, irrespec-
tive of the utilized embeddings, our approach pro-
vides consistent improvements according to both
evaluation measures. The improvement is high-
est for W2V-250K that has the smallest vocabu-
lary size, highlighting the ability of our approach
in effective vocabulary expansion.

We also benchmark our system against three

other representation induction techniques (cf. Sec-
tion 4) that have reported performance on the RW
dataset. Results are shown in Table 2.2 To have
a fair comparison, in this setting we used a 500d
set of embeddings trained by the Skipgram model
(Mikolov et al., 2013) on the Wikipedia corpus
(Shaoul and Westbury, 2010), similarly to Sori-
cut and Och (2015). The table also shows results
on RG-65 (Rubenstein and Goodenough, 1965),
which is a standard dataset with relatively high fre-
quency words, to provide a baseline for comparing
the relative quality of the initial embeddings prior
to any induction. We can see that our approach
outperforms all the comparison work, particularly
that of Soricut and Och (2015) which uses the
same initial embeddings. This underlines the ef-
fectiveness of our approach in inducing embed-
dings for morphologically complex rare words.

3.2 Specific domain setting
As was mentioned before, our approach provides
domain specialisation advantage in that it can be
used to induce embeddings not only for mor-
phologically complex forms but also for domain
specific terms for which no subword information
might be available in the training corpus. We
evaluated the ability of our approach in special-
ising general domain embeddings to the medical
domain which provides a challenging benchmark
with its extensive terminology. We performed
experiments on UMNSRS (Liu et al., 2012) and
MayoSRS (Pakhomov et al., 2011) which are two
standard word similarity datasets for the domain.

Lexical resource. We used Medical Subject
Headings3(MeSH) as our medical lexical re-
source. MeSH is a medical thesaurus that was
created mainly for the purpose of indexing jour-
nal articles in the domain. As of December 2016,

2For this experiment, we show Spearman ρ results only as
none of the comparison work reported Pearson correlation.

3https://www.nlm.nih.gov/mesh/
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Approach RW RG-65

OOV ρ OOV ρ

Botha and Blunsom (2014) NA 30.0 NA 41.0
Luong et al. (2013)∗ 0% 34.4 0% 65.5
Soricut and Och (2015)∗ 0% 41.8 0% 75.1
Our approach∗ 0% 43.3 0% 75.1

Number of pairs 2034 65

Table 2: Evaluation results on the RW dataset (and on RG-65 as baseline). Systems marked with ∗ are
trained on the same corpus.

Vanilla +Induction

OOV r ρ OOV r ρ

M
ay

o GLOVE 16% 11.1 11.6 11% 36.7 26.1
W2V-250K 41% 1.2 2.9 21% 27.8 20.1
W2V-GN 12% 15.5 14.0 10% 18.4 10.9

U
M

N GLOVE 17% 31.6 24.4 6% 38.2 33.6
W2V-250K 38% 11.8 3.2 13% 27.8 20.1
W2V-GN 17% 25.8 21.5 7% 32.8 32.4

Table 3: Evaluation results on two biomedical word similarity datasets: MayoSRS (101 pairs) and UMN-
SRS (566 pairs).

the thesaurus comprises 25,186 headings that are
arranged in a hierarchical structure, covering 75%
and 38% of unique words in the UMNSRS and
MayoSRS datasets, respectively.

Results. Table 3 shows the results on the two do-
main specific datasets. On both datasets and for all
the three embeddings, our approach provides con-
siderable raise in vocabulary coverage which re-
sults in significant performance improvements ac-
cording to both evaluation measures. This high-
lights the effectiveness of our approach in induc-
ing representations for terms such as rhonchi, os-
teophyte, and cardura for which no subword in-
formation is available in the training data. It is im-
portant to note that none of the comparison work,
which generally focus on morphologically com-
plex words, can induce representations for such
terms. This advantage enables us to train embed-
dings in general domain, for which text are avail-
able abundantly, and specialise them to specific
domains for which large amounts of training data
might not be available. We also note that our sys-
tem did not provide full coverage of the words
in the two datasets, missing several words which

were not included in MeSH, e.g., dysguesia, heme-
temesis and ceftiaxone. This can be substantially
improved by using larger medical ontologies, such
as SNOMED CT4. We leave this to future work.

4 Related Work

Recent research on representation induction for
rare words has mainly focused on the case of in-
frequent morphological variations (Alexandrescu
and Kirchhoff, 2006) and has tried to address the
problem by resorting to information available for
subword units. A morphological analyzer, such
as Morfessor (Creutz and Lagus, 2007), is usu-
ally used in a pre-processing step to break in-
flected words into their morphological structures.
Representations are then induced for morpholog-
ically complex words from their morphemes ei-
ther by combining recursive neural networks (Lu-
ong et al., 2013) or using log-bilinear language
models (Botha and Blunsom, 2014). Lazaridou et
al. (2013) induced embeddings for complex words
by adapting phrase composition models, whereas
Soricut and Och (2015) automatically constructed

4http://www.ihtsdo.org/snomed-ct
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a morphological graph by exploiting regularities
within a word embedding space. In the latter
case, the representations were inferred by analyz-
ing morphological transformations in the graph.
Also related to our work is the retrofitting (Faruqui
et al., 2015) of pre-trained embeddings by exploit-
ing semantic lexical resources. Despite being ef-
fective in improving the representations for seen
words, the retrofitting approaches are generally
unable to induce new embeddings to address the
unseen words problem. Cotterell et al. (2016) de-
signed an extension of the retrofitting procedure
that uses morphological resources to generate vec-
tors for forms not observed in the training data.

A common strand in all these works is that they
assume that the training corpus covers the mor-
pheme or other morphological variations of an un-
seen word. As a result, they fall short of mod-
elling words whose morphemes are not seen dur-
ing training. The proposed model is different in
that it can induce embeddings not only for in-
flected forms and derivations, but also for words
whose morphemes are not seen during the train-
ing. In (Pilehvar and Collier, 2016b), we proposed
a model that exploited Wikipedia articles in order
to adapt a set of pre-trained embeddings to a spe-
cific domain. Here, we extend that model and ap-
ply it to the task of vocabulary expansion for rare
and unseen words.

5 Conclusions and Future Work

An approach was proposed for inducing embed-
dings for rare words on the basis of the knowl-
edge extracted from external lexical resources. We
showed using different experiments that the ap-
proach is effective in addressing the rare word
problem for morphologically complex words in
the general domain as well as for specialising a
pre-trained set of embeddings to the medical do-
main. As future work, we plan to experiment with
larger lexical resources and representations, such
as that of Camacho-Collados et al. (2016), and
perform evaluations on other domains. We also
intend to extend the model to handle less struc-
tured resources, such as the Paraphrase Database
(Ganitkevitch et al., 2013).
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Abstract

This paper presents a large-scale evaluation
study of dependency-based distributional
semantic models. We evaluate dependency-
filtered and dependency-structured DSMs
in a number of standard semantic similarity
tasks, systematically exploring their param-
eter space in order to give them a “fair shot”
against window-based models. Our results
show that properly tuned window-based
DSMs still outperform the dependency-
based models in most tasks. There appears
to be little need for the language-dependent
resources and computational cost associ-
ated with syntactic analysis.1

1 Introduction

Distributional semantic models (DSMs) based on
syntactic dependency relations (Padó and Lapata,
2007; Baroni and Lenci, 2010) represent a more
linguistically informed version of the widely-used
window-based DSMs (Sahlgren, 2006; Bullinaria
and Levy, 2007; Bullinaria and Levy, 2012). Both
types of DSMs operationalize the meaning of a
target word t as a set of co-occurrence patterns
extracted from language corpora. While window-
based DSMs adopt a surface-oriented perspective
(two words co-occur if they appear within a certain
span, e.g. of 4 tokens), dependency-based DSMs
adopt a syntactic perspective on co-occurrence:
“nearness” is defined by the presence of a syntactic
relation between target and features (e.g. direct ob-
ject, subject, adjectival modifier), which may also
correspond to a path along several edges of a depen-
dency graph. If syntactic relations are only used
to determine co-occurrence contexts, we talk of

1The analysis presented in this paper is complemented by
supplementary materials, which are available for download at
http://www.linguistik.fau.de/dsmeval/.

dependency-filtered DSMs; if the type of relation
is explicitly encoded in the context features (e.g.
“subj dog”), we talk of dependency-typed DSMs.

The fortune of syntax-based models in distri-
butional semantics has been mixed. Early work
on dependency-filtered (Padó and Lapata, 2007)
or dependency-typed (Rothenhäusler and Schütze,
2009; Baroni and Lenci, 2010) DSMs indicated
that syntax-based semantic representations are in-
deed superior. These evaluation studies, however,
were restricted to a specific corpus (BNC in Padó
and Lapata (2007)) or task (noun clustering in
Rothenhäusler and Schütze (2009)), or based on a
very specific notion of co-occurrence (Baroni and
Lenci, 2010)2. Meanwhile, extensive evaluation
studies and parameter tuning led to significant im-
provements in the performance of window-based
models (Bullinaria and Levy, 2007; Bullinaria and
Levy, 2012; Lapesa and Evert, 2014) to the point
that dependency-based DSMs currently hold the
state-of-the-art only in very few standard seman-
tic similarity tasks; see Baroni et al. (2014) and
Lapesa and Evert (2014) for an overview of the
state of the art. Among recent comparative evalua-
tion studies, only Kiela and Clark (2014) attempt
a direct comparison between the parameter spaces
of window-based and syntax-based DSMs: once
again, window-based models are found to perform
better (with the exception of models built from the
large Google Books N-gram corpus), but the scope
of this comparison is rather limited.

The aim of this paper is to establish a fair ground
for the comparison between window-based and
dependency-based DSMs. To that end, we take as a
reference point the large parameter set evaluated by

2Among the dependency-based DSMs evaluated by Baroni
and Lenci (2010), the best performing one relies on type-based
co-occurrence: the co-occurrence strength between a target
and a context is quantified as the number of different patterns
in which they occur.
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Lapesa and Evert (2014) and Lapesa et al. (2014)
for window-based models. We carry out a parallel
evaluation for dependency-based DSMs using the
same tasks, datasets, parameters – adding some pa-
rameters specific to syntax-based models (such as
the parser used and the type of allowed dependency
relations) – and model selection methodology, al-
lowing for a direct comparison of the results.

We address the question of whether dependency-
based models can significantly improve DSM per-
formance if the parameters are properly set, and
whether the degree of the improvement justifies the
increased complexity of the extraction process. In
either case, a more thorough understanding of the
parameter space will be beneficial for applications
that prefer dependency-based DSMs on general
grounds, e.g. because of an integration with syntac-
tic structure (Erk et al., 2010). While the evalua-
tion reported here does not encompass predict-type
models, we believe that our findings also apply to
the usefulness of dependency information in neural
word embeddings (Levy and Goldberg, 2014).

2 Evaluation setting

Tasks & Datasets Our evaluation covers all
tasks and datasets used by Lapesa and Evert (2014)
and Lapesa et al. (2014). For space reasons,
we present detailed results for one representa-
tive dataset from each task3: the TOEFL syn-
onym test dataset (Landauer and Dumais, 1997)
for the multiple-choice synonymy task (perfor-
mance: accuracy); the Generalized Event Knowl-
edge (McRae and Matzuki, 2009) dataset (GEK),
a collection of 402 triples (target, consistent prime,
inconsistent prime), for the multiple-choice seman-
tic priming task (performance: accuracy)4; the
WordSim-353 (WS353) dataset, which contains
353 noun pairs with similarity/relatedness ratings
(Finkelstein et al., 2002) for the task of predicting
human similarity ratings (performance: Pearson’s
r); and the Almuhareb-Poesio (AP) dataset, con-
taining 402 nouns grouped into 21 semantic classes
(Almuhareb, 2006) for the noun clustering task

3If more than one dataset was available for a task, we pre-
ferred larger datasets (for which results are more reliable).
Results for all datasets will be made available in the supple-
mentary materials.

4In contrast to the paradigmatic relation targeted by
TOEFL (i.e., synonymy), the GEK dataset focuses on related-
ness of a more syntagmatic nature. See Lapesa et al. (2014)
for more details on this dataset.

(performance: cluster purity5).

DSM parameters We employ a large vocabu-
lary of target words (27,522 lemma types), based
on the vocabulary of Distributional Memory (Ba-
roni and Lenci, 2010) and extended to cover all
items in our datasets. After extracting dependency
paths from the source corpora, the DSMs were com-
piled using the UCS toolkit6 and the wordspace
package for R (Evert, 2014). We evaluate the fol-
lowing parameters:

Source corpus (abbreviated in the plots as cor-
pus): BNC7, WaCkypedia EN, and ukWaC8;

Format of dependency relations (dep.style):
Basic vs. collapsed with propagation of conjuncts
(De Marneffe et al., 2006; De Marneffe and Man-
ning, 2008);

Annotation pipeline (parser): TreeTagger
(Schmid, 1995) and MALT parser (Nivre, 2003)
vs. bidirectional POS tagger and Neural Network
parser of Stanford CoreNLP (Chen and Manning,
2014);

Path length (path.length): we include paths
with a maximum length of 1, 2, 3, 4 or 5 edges;

Type of dependency relations (dep.type):
paths composed only of core dependencies (main
actants of the sentence) vs. paths that also allow
external dependencies (inter-clausal relations and
conjuncts);

Threshold for context selection (orig.dim): we
select the 5k, 10k, 20k, 50k, or 100k most frequent
context dimensions;

Score for feature weighting (score): frequency,
tf.idf, Dice coefficient, simple log-likelihood, Mu-
tual Information (MI), t-score, or z-score;9

Feature transformation (transformation): an
additional square root, sigmoid (tanh), or logarith-
mic transformation applied to feature scores vs. no
transformation;

Number of latent SVD dimensions (red.dim):
we project vectors into 1000 dimensions using ran-
domized SVD (Halko et al., 2009), then select the
first 100, 300, 500, 700, or 900 latent dimensions;

Number of skipped SVD dimensions
(dim.skip): exclude the first 0, 50 or 100 latent

5Based on k-medoids clustering (Kaufman and Rousseeuw,
1990, Ch. 2) with standard parameter settings.

6http://www.collocations.de/software.html
7http://www.natcorp.ox.ac.uk/
8Both ukWaC and WaCkypedia EN are available from

http://wacky.sslmit.unibo.it/doku.php?id=corpora.
9All methods use sparse non-negative variants; e.g. our MI

corresponds to positive pointwise MI (PPMI).

395



dimensions (e.g., those with the highest singular
values); previous work on window-based DSMs
(Bullinaria and Levy, 2012; Lapesa and Evert,
2014; Lapesa et al., 2014) showed that model
performance improves when the initial components
of the reduced matrix (i.e., those with the highest
variance) are discarded.

Distance metric (metric): cosine distance (i.e.
the angle between vectors) vs. Manhattan distance;

Index of distributional relatedness (rel.index):
the semantic relatedness of words a and b in a DSM
is quantified either by their metric distance d(a, b)
or by neighbor rank (rank of b among the neighbors
of a for TOEFL and GEK, mean of log rank(a, b)
and log rank(b, a) for WS353 and AP).

Among the evaluated parameters, parser,
dep.type and dep.style are specific to dependency-
based DSMs. Path.length is the dependency-based
equivalent of window size in a bag-of-words DSM.
The comparison between filtered vs. typed DSMs
can be considered roughly equivalent to the com-
parison between undirected and directed windows
in a bag-of-words DSM. All the other parameters
are shared with window-based DSMs.

Evaluation methodology We tested all pos-
sible combinations of the parameters described
above, resulting in a total of 806400 runs per model
class (filtered vs. typed), which were generated
and evaluated on a large HPC cluster within ap-
proximately 6 weeks. To meaningfully interpret
the evaluation results, we apply a model selection
methodology that is sensitive to parameter interac-
tions and robust to overfitting. Following Lapesa
and Evert (2013), we analyze the influence of in-
dividual parameters and their interactions using
general linear models with performance (accuracy,
correlation, purity) as a dependent variable and the
model parameters as independent variables, includ-
ing all two-way interactions. Analysis of variance –
which is straightforward for our full factorial design
– is used to quantify the impact of each parameter
or interaction. Robust optimal parameter settings
are identified with the help of effect displays (Fox,
2003), which show the partial effect of one or two
parameters by marginalizing over all other param-
eters. Unlike coefficient estimates, they allow an
intuitive interpretation of the effect sizes of cate-
gorical variables irrespective of the dummy coding
scheme used.

3 Results

As model runs without dimensionality reduction
performed consistently worse than the correspond-
ing SVD-reduced runs, we only report results for
the latter in this paper.

Impact of parameters We use a feature ab-
lation approach to assess which parameters have
the strongest impact on model performance. The
ablation value of a parameter is the proportion of
variance accounted for by the parameter together
with all its interactions (corresponding to the reduc-
tion in adjusted R2 of the model fit if the parameter
were left out). Figures 1 and 2 visualize the feature
ablation values of all evaluated parameters in the
dependency-filtered and dependency-typed setting,
respectively. Table 1 shows R2 for the full model
as well as all major interactions (partial R2 > 1%).
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Figure 1: Feature ablation (dependency-filtered)
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Figure 2: Feature ablation (dependency-typed)

Filtered Typed
T G W A T G W A

Full model 88 83 88 83 89 84 90 88
score × transf 8.3 7.8 11.2 8.6 2.4 3.5 5.0 5.7
score × metric 1.3 1.5 1.5 1.8 – – – –
corpus × metric – – – – – – 1.0 4.6
metric × red.dim – 2.5 1.4 – – 2.0 1.3 4.7
metric × dim.skip 4.0 1.0 1.1 3.4 4.9 1.6 2.2 1.2
metric × orig.dim 1.0 2.0 1.2 – 3.3 6.6 2.0 2.3

Table 1: R2 of full model and major interactions
for T[OEFL], G[EK], W[S353] and A[P] datasets
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Figure 3: Corpus (filt)
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Figure 4: Rel. index (filt)
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Figure 5: Path length (filt)
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Figure 6: Context dim. (filt)
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Figure 7: Red. SVD dim. (filt)
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Figure 8: Skip SVD dim. (filt)

Parameters can be divided into three groups.
First, a group of parameters with a strong im-
pact on model performance, which is dominated
by metric in both settings. Metric also has strong
interactions with many other parameters. Further
parameters in this group are score and transfor-
mation, again with a strong interaction across all
datasets and both settings (Lapesa and Evert (2014)
found this interaction to be the strongest also for
window-based DSMs), as well as corpus. Second,
a group of parameters with an intermediate impact
includes the two SVD-related parameters (red.dim
and dim.skip) and, to a lesser extent, the number
of context dimensions (orig.dim) and the related-
ness index (rel.index). Path.length only affects
dependency-filtered models on the GEK dataset
(that directly involves syntagmatic relatedness) and,
but to a lesser extent, on AP (which encodes co-
hyponymy). It is almost irrelevant in a dependency-
typed setting. This is probably due to the fact
that direct dependency relations already capture
the “core” of the semantic space and the informa-
tion contributed by longer paths is neutralized by
the additional noise. Third, a group of irrelevant
parameters, which comprises the details of the de-
pendency scheme (dep.style and dep.type) as well
as the parser used.

Best parameter values In this section, we
identify the best parameter settings by inspect-
ing partial effect plots. We focus on dependency-
filtered models because they consistently achieve
better results and only discuss the dependency-
typed ones when the best parameters are differ-

ent. As for window-based DSMs, the Manhattan
metric always performs much worse than cosine
distance; the different behaviour of the two metrics
also accounts for most of the interactions listed in
table 1. We therefore exclude runs with Manhattan
metric from further analysis and the effect plots
below. The two bigger corpora are always a better
choice (figure 3), with a preference for ukWaC in
the multiple choice tasks. Neighbor rank (figure
4) outperforms distance, but the increased com-
putational cost may only be justified for AP and
WS353; the effect is much stronger for unreduced
models in all tasks. As far as path length (figure
5) is concerned, datasets containing syntagmatic
(GEK) or non-attributional relatedness (WS353)
need longer paths to reach optimal performance.
While the TOEFL task only requires 5k context di-
mensions (figure 6), more dimensions are necessary
for AP and WS353 (20k and 50k) and even more
for GEK (100k). Performance in all tasks improves
with an increasing number of reduced dimensions,
but 300 appear to be sufficient for AP and WS353
(figure 7); skipping the first 50 latent dimensions is
beneficial for all tasks except AP (figure 8). The
strong interaction between score and transforma-
tion, displayed in figure 12 for AP dataset and in
figure 13 for GEK, indicates a preference for sim-
ple log-likelihood with log transformation or MI
without any transformation (similar tendencies to
AP hold for the remaining datasets). Parameters
which are not explanatory can be set to the most
”economic” value: MALT for parser, basic for de-
pendency style, and core for dependency type.

Let us now briefly turn to dependency-typed
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Figure 11: Context dim. (typed)
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Figure 13: GEK: Score × Transformation (filt)

models. Preference for corpus remains on bigger
corpora (figure 9). Figure 10 reveals that longer
paths are detrimental (only exception being GEK’s
minor improvement with paths of length two). Fig-
ure 11 shows that the highest number of context
dimensions (100k) is necessary for all tasks.

Dependency filtered
corpus path o.dim r.dim d.sk b.set b.bow soa

TOEFL ukwac 1 5k 900 100 85 92.5 100
GEK ukwac 3 100k 700 50 92.6 97.0 –
WS wacky 5 50k 300 50 0.67 0.68 0.81
AP wacky 1 20k 300 0 69.6 69.0 79.0

Dependency typed
corpus path o.dim r.dim d.sk b.set b.bow soa

TOEFL wacky 1 100k 900 100 81.2 92.5 100
GEK ukwac 2 100k 900 50 86.8 97.0 –
WS ukwac 1 100k 700 50 0.62 0.68 0.81
AP wacky 1 100k 300 0 71.9 69.0 79.0

Table 2: Best parameter settings for each task, com-
pared with window-based DSM and state-of-the-art

Best settings Table 2 reports the robustly opti-
mal parameter settings for dependency-filtered and
dependency-based models10 and their perfomance

10Common parameters: parser: MALT; dep.style: basic;
dep.type: core; score: simple log-likelihood; transformation:

corpus path o.dim r.dim d.sk T G W A
Filter ukwac 2 50k 700 50 86.2 90.1 0.67 65.4
Typed ukwac 1 100k 900 50 77.5 82.1 0.62 69.4

Table 3: General best settings (filtered and typed)

(b.set). For comparison, we also show the perfor-
mance of the optimized window-based DSM from
Lapesa and Evert (2014) or Lapesa et al. (2014)
(b.bow), and the state of the art for the task (soa).
Table 3 reports the parameter values of general set-
tings for the dependency filtered (Filter) and typed
(Typed) models and their performance on the four
datasets.

4 Conclusion

We presented the results of a large-scale evalua-
tion study of syntax-based DSMs. We show that,
even after extensive parameter tuning, syntax-based
DSMs outperform comparable window-based mod-
els only in one task out of four (noun cluster-
ing). We found many similarities to window-based
DSMs: a significant core of the parameter space
(metric, score, transformation, relatedness index)
is common to both types of models, in terms of
their impact on performance as well as the best
parameter values; path length trades off between
paradigmatic similarity and non-attributional relat-
edness, in the same way window-size does; most
tasks require more SVD dimensions than are com-
monly used, and synonymy is better modeled by
discarding the first SVD dimensions. It is left for
future work to establish to what extent our con-
clusions generalize to different languages11 and to
more linguistically challenging tasks (e.g., predic-
tion of thematic fit ratings).

log; metric: cosine; rel.index: rank.
11For example, DSM evaluation on German reveals a mixed

picture: on the one hand, Bott and Schulte im Walde (2015)
found no advantage for syntax-based models over bag-of-
words ones in a quite linguistic task: the prediction of particle
verb compositionality; on the other, Utt and Padó (2014) did
find advantages in the use of syntactic information in the
German counterparts of TOEFL and WS353.
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Abstract

One key property of word embeddings
currently under study is their capacity to
encode hypernymy. Previous works have
used supervised models to recover hyper-
nymy structures from embeddings. How-
ever, the overall results do not clearly
show how well we can recover such struc-
tures. We conduct the first dataset-centric
analysis that shows how only the Baroni
dataset provides consistent results. We
empirically show that a possible reason for
its good performance is its alignment to di-
mensions specific of hypernymy: general-
ity and similarity.

1 Introduction

Word embeddings have been widely used as fea-
tures in NLP tasks like parsing and textual entail-
ment. One key aspect that has been investigated is
their capacity to encode hypernymy; this semantic
relation denotes a taxonomical order of objects in
the world; for example, a dog is a canine which
is a vertebrate. To test the ability of embeddings
to encode hypernymy, previous work has proposed
supervised models to learn whether a given pair of
embeddings (wi, wj) are in the hypernymy rela-
tion (Roller et al., 2014; Necsulescu et al., 2015;
Fu et al., 2014).

Results from previous work suggest that word
embeddings indeed capture hypernymy informa-
tion. This observation is relatively general and
robust across several choices of datasets, mod-
els and embeddings. For example, Levy et al.
(2015) achieve up to 0.85 F1, while Roller and Erk
(2016) achieve up to 0.90 F1. Both of these results
are achieved on the Baroni dataset (Baroni et al.,
2012). For most other datasets, models achieve
promising scores above 0.60 F1 points; e.g. Roller

and Erk (2016) report 0.66 F1 points for a linear
model on the balanced Turney dataset (Turney and
Mohammad, 2015).

On closer look, however, we find that the cur-
rent F1-based results may be somewhat mislead-
ing. In particular, several papers report F1 scores
in the higher 60% level on balanced datasets—on
such datasets a baseline that predicts each pair to
be in the hypernym relation already achieves 66%
F1. And when calculating accuracy instead of F1
scores we observe accuracies around 50%-60% for
state of the art models, often barely above chance
level (Table 3).

There is one striking exception when it comes
to accuracy results. On the Baroni dataset, accu-
racy is as high as 81%. These observations lead us
to the following questions regarding the datasets
and overall results: Are the scores on the Baroni
dataset high because it is an easy dataset? Or are
they high because it is easier to learn hypernymy
from the Baroni training set due to its design? To
what extent can the Baroni dataset help us to pre-
dict hypernyms from word embeddings?

In this work we conduct the first dataset-centric
analysis across 6 datasets to empirically answer
the questions above. We take inspiration from the
work of (Torralba and Efros, 2011) in the com-
puter vision domain where a set of datasets are
compared and biases are exposed. In the same
spirit, we compare a set of datasets by evaluating
the ability of models trained on such datasets to
generalize to different test distributions.

We show how the Baroni dataset outperforms
the other datasets. In particular, we find that mod-
els trained on Baroni’s data can outperform other
models even on their home turf. For example, a
model trained on Baroni’s data can do better on the
Kotlerman (Kotlerman et al., 2010) test set than
models trained on the Kotlerman training set with
the same size.
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Furthermore, we show that the Baroni dataset
seems to exhibit a pronounced behaviour along
two dimensions known to be relevant for hyper-
nymy: generality and similarity. This behaviour
appears to be important for the success of Baroni’s
dataset: if we filter and resample other training
datasets with respect to this behaviour, we gener-
ally achieve better results.

2 Background

We first give a brief overview of hypernymy detec-
tion, important findings in this domain, and then
relevant work on dataset analysis.

2.1 Supervised Hypernym Detection

The task is posed as a binary classification prob-
lem. An instance pair is composed of two em-
beddings, e.g. (wcat, wanimal, positive). A vector
operation such as concatenation (concat) or dif-
ference (diff ) is then applied to both embeddings.
Vylomova et al. (2016) learned a range of seman-
tic relations, including hypernymy, using the diff
operator and achieved positive results. Roller and
Erk (2016) showed that concat with a logistic re-
gression classifier learns to extract Hearst patterns
(such as, including, etc.) from distributional vec-
tors.

Weeds et al. (2014) and Vylomova et al. (2016)
described the lexical memorization phenomenon:
a classifier learns that a word wi is hyponym of
a word wj based on the frequency of wj appear-
ing in the hypernym slot in positive pairs. In order
to avoid high scores at test time due to this effect,
Weeds et al. (2014) suggest having disjoint vocab-
ularies between training and test sets.

2.2 Dataset Analysis

Torralba and Efros (2011) compared a set of ob-
ject recognition datasets by testing each of them
across different test distributions. In order to fairly
compare these datasets, Torralba and Efros (2011)
first eliminated some visible biases such as sample
size by normalizing the datasets. In this way, other
biases in the datasets were exposed such as the
photographer’s shooting position, or the labellers’
perception, that may not be easily observable and
may harm the classifier performance. Torralba and
Efros (2011) concluded that some datasets are a
better representation of the problem domain.

3 Materials

We describe both the datasets that we compare and
the word embedding model that we use as features.

3.1 Datasets
We pick the datasets used by Levy et al. (2015) and
Weeds et al. (2014) which have disjoint training
and test sets.

Dataset Size Ratio pos/neg

Baroni 791 0.97
Bless 3225 0.12

Kotlerman 739 0.45
Levy 2932 0.08

Turney 539 1.06
Weeds 2033 0.98

Table 1: Summary of datasets.

Baroni Baroni et al. (2012) drew instance pairs
from WordNet that were manually checked to dis-
card noisy ones.

Bless The original dataset (Baroni and Lenci,
2011) contains several semantic relations. Levy
et al. (2015) used the hypernymy pairs as positive
instances and the pairs in all the other semantic
relations as negative instances.

Kotlerman Kotlerman et al. (2010) adapted the
lexical entailment dataset of (Zhitomirsky-Geffet
and Dagan, 2009).

Levy From a set of entailing propositions of the
form (subject, verb, object) in (Levy et al., 2014),
Levy et al. (2015) extracted entailing nouns that
shared two arguments to create instance pairs.

Turney Turney and Mohammad (2015) trans-
formed the SemEval-2012 dataset (Jurgens et al.,
2012) to expand from 79 to 158 semantic relations.

Weeds Weeds et al. (2014) drew instance pairs
from WordNet under the constraint that none of
the words in a pair must be seen in any other pair
in the same role (hyponym or hypernym).

3.2 Word Embeddings
We pick what we believe to be one of the most
representative word embedding models.

GloVe Pennington et al. (2014) designed a vec-
tor space model using a log-bilinear regression
function. They learned unsupervised word embed-
dings from a matrix of word co-ocurrences while
maintaining linear sub-structures in such space.

We do not show results on the also widely-used
model of Word2Vec since we get similar results.
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4 Cross-test Evaluation

We evaluate the robustness of the six datasets for
generalising to different test distributions. In or-
der to fairly compare the datasets, we follow Tor-
ralba and Efros (2011) and remove biases such as
sample size and imbalance by sub-sampling with
replacement and uniformly at random the training
sets. We obtain 20 subsets, i.e. samples, from each
of the training sets. Each sample is normalized and
balanced to 400 instances.1

We learn a model for each sample using the
Scikit-learn (Pedregosa et al., 2011) package and
test it on all the six test sets. We try all combi-
nations of vector operator (diff, concat) and clas-
sifier (logistic regression, SVM). Hyperparameter
tuning and model selection are performed using
self-validation sets. We report AUC and accuracy
scores solely for the Glove embeddings of dimen-
sionality 50 given that the results on other embed-
ding models are quite comparable.

4.1 Ranking Pairs: AUC ROC

The Area Under the ROC Curve measures the
ability of a classifier to rank positive instances
with respect to negative ones independently of any
threshold value. Unfortunately, this metric may
throw an overoptimistic value under highly imbal-
anced data: a disproportional number of negative
instances will push the positive ones higher in the
ranking, while false positives will slightly affect
the overall score (Zou et al., 2016). Therefore
we balance the test sets using an under-sampling
scheme.2

In Table 2 we can see that, remarkably, the Ba-
roni dataset surpasses all datasets on their own
self-test sets, except for the Bless test. Interest-
ingly, all the training sets performed better on the
Baroni test set than on their self-test set (except,
for the Bless dataset). This indicates both the ro-
bust generalization and superior performance of
the Baroni dataset.3

We note that no training sample has overlap
with any self or cross test set, except for the Weeds
dataset. On the one hand, the Weeds training sam-

1We sample 200 positive instances since that is the mini-
mum number of positives found in any of the datasets.

2We also try an oversampling scheme, but the results are
comparable.

3We find that the combination of SVM classifier with RBF
kernel and diff vector operator gives the best performance
on validation set for all the 20 samples drawn from Baroni
training set.

ples slightly overlap with the cross-test sets. On
the other hand, the Weeds test set overlaps in at
least 10% of the pairs with the cross-training sam-
ples. This may influence the cross-test scores (Vy-
lomova et al., 2016).

4.2 Detecting Hypernyms: Accuracy

We optimize a threshold, on self-validation sets,
for each model in Section 4.1. In Table 3 we can
see again the superior performance of the Baroni
dataset. While the mean of all the self-test scores
(main diagonal) is 0.606 points, Baroni achieves a
mean of 0.655 points.

Interestingly, in average all the datasets perform
close to a random behavior, with the exception
of the Baroni and Weeds datasets.4 Furthemore,
this poor behavior is observed on self-test sets for
3 datasets (Kotlerman, Levy, and Turney). This
contrasts to the AUC scores obtained before. One
possible cause may be a sensitivity problem in the
threshold optimization.

5 Dataset Analysis

We provide an empirical rationale behind the good
performance of the Baroni dataset: we believe it
aligns to two dimensions specific of hypernymy –
generality and similarity– i.e. the instances in the
dataset form what we believe to be patterns denot-
ing hypernymy. We explain below these patterns.

We use WordNet (Fellbaum, 1998) to com-
pute both generality and similarity levels. We de-
fine generality levels as the absolute difference,
in number of edges, of two words to the root of
the taxonomy: g = |distance(word1, root) −
distance(word2, root)|. We define similarity lev-
els as the similarity score between two words; we
use the Wu-Palmer function.5

We explain now the patterns mentioned above.
In the generality level g = 0, where co-hyponyms
exist, we expect only negative pairs to populate the
dataset. In the rest of the levels, we would expect
a distribution where the number of instance pairs
is inversely proportional to the generality level be-
cause the branching factor at the bottom levels is
greater by a factor α in comparison to the top lev-
els; this means that we are more likely to sam-
ple pairs of words connected by fewer number of

4However, recall that as noted in Sec. 4.1, Weeds scores
on cross-test results may be influenced by lexical memoriza-
tion issues.

5We re-scale from [0.0,1.0] to [-1.0,1.0] for visualization
purposes.
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Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Mean

Baroni 0.916 0.711 0.616 0.702 0.654 0.686 0.714
Bless 0.762 0.850 0.555 0.632 0.600 0.615 0.669

Kotlerman 0.653 0.612 0.543 0.566 0.581 0.544 0.583
Levy 0.716 0.611 0.592 0.698 0.569 0.533 0.619

Turney 0.686 0.646 0.547 0.595 0.646 0.520 0.606
Weeds 0.817 0.645 0.574 0.687 0.637 0.675 0.672

Table 2: Cross-test performance: Mean AUC scores over 20 samples. Self-test score in bold.

Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Mean

Baroni 0.812 0.638 0.587 0.653 0.608 0.636 0.655
Bless 0.578 0.642 0.505 0.526 0.524 0.508 0.547

Kotlerman 0.563 0.546 0.520 0.524 0.528 0.528 0.534
Levy 0.521 0.510 0.507 0.522 0.509 0.496 0.510

Turney 0.546 0.534 0.518 0.540 0.540 0.479 0.526
Weeds 0.736 0.579 0.553 0.626 0.599 0.600 0.615

Table 3: Cross-test performance: Mean accuracy scores over 20 samples. Self-test score in bold.

edges than by higher number of edges.
On the other hand, for the similarity distribu-

tion, as a function of the number of edges, at
large values we expect a dominance of positive in-
stances because the number of edges between the
words in a true hypernym pair is generally fewer
than between a non-hypernym pair. In addition, as
we argued for the generality distribution, we are
more likely to sample shorter hypernym pairs than
longer pairs.

5.1 Exploring the Baroni dataset

In Fig. 1 we see that at level g = 0 only nega-
tive pairs are found in the Baroni dataset. We also
observe that the distribution matches the expected
distribution along generality levels. In Fig. 2 we
see that from the level s = 0.2, towards the high-
est levels, there is a clear dominance of positive
pairs; though we also find negative pairs in these
levels. These negative pairs may be positive pairs
reversed, e.g. (wanimal, wcat, negative), or pairs
with related words, e.g. (wcat, winvertebrate, neg-
ative). We also see that from the level s = 0.1
towards the lowest levels, the negative pairs dom-
inate.

We compare the Baroni distribution with the
Turney distribution. In Fig. 3 we observe that the
shape of the generality distribution roughly fits our
expected distribution; however, we see that pos-
itive pairs populate level g = 0. This seems to
show that around 10% of the positive pairs in the

Turney dataset are spurious pairs.
In Fig. 4 we observe that the similarity distri-

bution from the Turney dataset does not fit the ex-
pected distribution. Even though at high levels the
dominance is mainly of positive pairs, at low lev-
els we also see a strong presence of positive pairs
along with negative pairs. This may imply that a
high number of positive pairs are noisy or incon-
sistent, which may explain the low performance of
the Turney dataset.

Figure 1: Distribution of instance pairs on the Ba-
roni dataset along generality levels.

5.2 Mimicking the Baroni Distribution

We believe that the patterns found in the Baroni
training set may be part of the cause of its good
performance. To corroborate our hypothesis, we
draw a new training set from the union of all the
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Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Mean

New train set 0.794(0.05) 0.664(0.02) 0.580(0.03) 0.644(0.02) 0.596(0.02) 0.629(0.03) 0.651
Baseline 0.775(0.06) 0.655(0.02) 0.566(0.03) 0.641(0.02) 0.596(0.02) 0.598(0.03) 0.638

Table 4: New dataset vs. Baseline: Mean accuracy scores and standard deviation over 20 samples.

Figure 2: Distribution of instance pairs on the Ba-
roni dataset along similarity levels.

Figure 3: Distribution of instance pairs on the Tur-
ney dataset along generality levels.

training sets such that we mimic the Baroni distri-
butions in Fig. 1 and Fig. 2. More specifically,
we allow a pair to populate our new training set
if it fulfils constraints regarding the number of in-
stances along generality and similarity levels.

One example constraint that needs to be fulfilled
for positive pairs is: IF generality level g > 0
AND positive vs. negative pairs ratio is fulfilled
according to ratio rg AND similarity level s >=
0.1 AND positive vs. negative pairs ratio is ful-
filled according to ratio rs THEN accept pair.

We obtain 20 balanced and normalized samples
populated with 400 instances in each of them. We
compare against a dataset baseline where we allow
any pair, chosen uniformly at random, to populate

Figure 4: Distribution of instance pairs on the Tur-
ney dataset along similarity levels.

the baseline. For building the dataset baseline, we
use the same random seeds as those used for build-
ing the samples that mimic the Baroni distribution.
In Table 4 we see how the new training set robustly
outperforms the baseline. These results support
our hypothesis for why the Baroni dataset is able
to outperform all the datasets.

6 Conclusions

We performed the first dataset-centric analysis for
investigating how well we can predict hypernym
pairs from word embeddings. We showed in cross-
test evaluations how –in contrast to what results
from previous work suggest– the Baroni dataset is
the only one that consistently enables us to predict
hypernym pairs. We empirically showed that the
superior performance of the Baroni dataset may
be in part due to its alignment to two dimensions
relevant to of hypernymy: generality and simi-
larity. We empirically corroborated this hypoth-
esis by building a new training set that mimics the
Baroni distribution and outperforms on average a
dataset baseline.
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Abstract

We develop a novel cross-lingual word
representation model which injects syn-
tactic information through dependency-
based contexts into a shared cross-lingual
word vector space. The model, termed CL-
DEPEMB, is based on the following as-
sumptions: (1) dependency relations are
largely language-independent, at least for
related languages and prominent depen-
dency links such as direct objects, as ev-
idenced by the Universal Dependencies
project; (2) word translation equivalents
take similar grammatical roles in a sen-
tence and are therefore substitutable within
their syntactic contexts. Experiments with
several language pairs on word similarity
and bilingual lexicon induction, two fun-
damental semantic tasks emphasising se-
mantic similarity, suggest the usefulness of
the proposed syntactically informed cross-
lingual word vector spaces. Improvements
are observed in both tasks over standard
cross-lingual “offline mapping” baselines
trained using the same setup and an equal
level of bilingual supervision.

1 Introduction

In recent past, NLP as a field has seen tremendous
utility of distributed word representations (or word
embeddings, termed WEs henceforth) as features in
a variety of downstream tasks (Turian et al., 2010;
Collobert et al., 2011; Baroni et al., 2014; Chen
and Manning, 2014). The quality of these repre-
sentations may be further improved by leveraging
cross-lingual (CL) distributional information, as
evidenced by the recent body of work focused on
learning cross-lingual word embeddings (Klemen-
tiev et al., 2012; Zou et al., 2013; Hermann and

Blunsom, 2014; Gouws et al., 2015; Coulmance et
al., 2015; Duong et al., 2016, inter alia).1 The inclu-
sion of cross-lingual information results in a shared
cross-lingual word vector space (SCLVS), which
leads to improvements on monolingual tasks (typ-
ically word similarity) (Faruqui and Dyer, 2014;
Rastogi et al., 2015; Upadhyay et al., 2016), and
also supports cross-lingual tasks such as bilingual
lexicon induction (Mikolov et al., 2013a; Gouws et
al., 2015; Duong et al., 2016), cross-lingual infor-
mation retrieval (Vulić and Moens, 2015; Mitra et
al., 2016), entity linking (Tsai and Roth, 2016), and
cross-lingual knowledge transfer for resource-lean
languages (Søgaard et al., 2015; Guo et al., 2016).

Another line of work has demonstrated that
syntactically informed dependency-based (DEPS)
word vector spaces in monolingual settings (Lin,
1998; Padó and Lapata, 2007; Utt and Padó, 2014)
are able to capture finer-grained distinctions com-
pared to vector spaces based on standard bag-of-
words (BOW) contexts. Dependency-based vector
spaces steer the induced WEs towards functional
similarity (e.g., tiger:cat) rather than topical simi-
larity/relatedness (e.g., tiger:jungle), They support
a variety of similarity tasks in monolingual settings,
typically outperforming BOW contexts for English
(Bansal et al., 2014; Hill et al., 2015; Melamud et
al., 2016). However, despite the steadily growing
landscape of CL WE models, each requiring a dif-
ferent form of cross-lingual supervision to induce
a SCLVS, syntactic information is still typically
discarded in the SCLVS learning process.

To bridge this gap, in this work we develop a new
cross-lingual WE model, termed CL-DEPEMB,
which injects syntactic information into a SCLVS.
The model is supported by the recent initiatives
on language-agnostic annotations for universal lan-

1For a comprehensive overview of cross-lingual word em-
bedding models, we refer the reader to two recent survey
papers (Upadhyay et al., 2016; Vulić and Korhonen, 2016b).
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guage processing (i.e., universal POS (UPOS) tag-
ging and dependency (UD) parsing) (Nivre et al.,
2015). Relying on cross-linguistically consistent
UD-typed dependency links in two languages plus
a word translation dictionary, the model assumes
that one-to-one word translations are substitutable
within their syntactic contexts in both languages. It
constructs hybrid cross-lingual dependency trees
which could be used to extract monolingual and
cross-lingual dependency-based contexts (further
discussed in Sect. 2 and illustrated by Fig. 1).

In summary, our focused contribution is a new
syntactically informed cross-lingual WE model
which takes advantage of the normalisation pro-
vided by the Universal Dependencies project to
facilitate the syntactic mapping across languages.
We report results on two semantic tasks, monolin-
gual word similarity (WS) and bilingual lexicon
induction (BLI), which evaluate the monolingual
and cross-lingual quality of the induced SCLVS.
We observe consistent improvements over baseline
CL WE models which require the same level of
bilingual supervision (i.e., a word translation dic-
tionary). For this supervision setting, we show a
clear benefit of joint online training compared to
standard offline models which construct two sepa-
rate monolingual BOW-based or DEPS-based WE
spaces, and then map them into a SCLVS using
dictionary entries as done in (Mikolov et al., 2013a;
Dinu et al., 2015; Lazaridou et al., 2015; Vulić and
Korhonen, 2016b, inter alia)

2 Methodology
Representation Model In all experiments, we
opt for a standard and robust choice in vector
space modeling: skip-gram with negative sam-
pling (SGNS) (Mikolov et al., 2013b; Levy et al.,
2015). We use word2vecf, a reimplementation
of word2vec which is capable of learning from
arbitrary (word, context) pairs2, thus clearly em-
phasising the role of context in WE learning.

(Universal) Dependency-Based Contexts A
standard procedure to extract dependency-based
contexts (DEPS) (Padó and Lapata, 2007; Utt
and Padó, 2014) from monolingual data is as
follows. Given a parsed training corpus, for
each target w with modifiers m1, . . . ,mk and
a head h, w is paired with context elements

2https://bitbucket.org/yoavgo/word2vecf
For details concerning the implementation and learning, we
refer the interested reader to (Levy and Goldberg, 2014a)

m1 r1, . . . ,mk rk, h r
−1
h , where r is the type of

the dependency relation between the head and the
modifier (e.g., amod), and r−1 denotes an inverse
relation.3 When extracting DEPS, we adopt the
post-parsing prepositional arc collapsing procedure
(Levy and Goldberg, 2014a) (see Fig. 1a-1b).

Cross-Lingual DEPS: CL-DEPEMB First, a
UD-parsed monolingual training corpus is obtained
in both languages L1 and L2. The use of the inter-
lingual UD scheme enables linking dependency
trees in both languages (see the structural similar-
ity of the two sentences in English (EN) and Italian
(IT), Fig. 1a-1b). For instance, the link between EN

words Australian and scientist as well as IT words
australiano and scienzato is typed amod in both
trees. This link generates the following monolin-
gual EN DEPS: (scientist, Australian amod), (Aus-
tralian, scientist amod−1) (similar for IT).

Now, assume that we possess an EN-IT transla-
tion dictionary D with pairs [w1, w2] which con-
tains entries [Australian, australiano] and [scien-
tist, scienzato]. Given the observed similarity in the
sentence structure, and the fact that words from a
translation pair tend to take similar UPOS tags and
similar grammatical roles in a sentence, we can sub-
stitute w1 with w2 in all DEPS in which w1 partici-
pates (and vice versa, replace w2 with w1). Using
the substitution idea, besides the original monolin-
gual EN and IT DEPS contexts, we now generate
additional hybrid cross-lingual EN-IT DEPS con-
texts: (scientist, australiano amod), (australiano,
scientist amod−1), (scienzato, Australian amod),
(Australian, scienzato amod−1) (again, we can also
generate such hybrid IT-EN DEPS contexts).

CL-DEPEMB then trains jointly on such ex-
tended DEPS contexts containing both monolin-
gual and cross-lingual (word, context) dependency-
based pairs. With CL-DEPEMB, words are con-
sidered similar if they often co-occur with similar
words (and their translations) in the same depen-
dency relations in both languages. For instance,
words discovers and scopre might be considered
similar as they frequently co-occur as predicates for
the nominal subjects (nsubj) scientist and scien-
zato, and stars and stelle are their frequent direct
objects (dobj). An illustrative example of the core
idea behind CL-DEPEMB is provided in Fig. 1.

3Given an example from Fig. 1, the DEPS contexts of dis-
covers are: scientist nsubj, stars dobj, telescope nmod. Com-
pared to BOW, DEPS capture longer-range relations (e.g., tele-
scope) and filter out “accidental contexts” (e.g., Australian).
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Australian scientist discovers stars with telescope

amod nsubj
dobj case

nmod

prep:with(a) T1
Scienziato australiano scopre stelle con telescopio

amod

nsubj

dobj case

nmod

prep:con(b) T2

Australian scienzato discovers stars with telescope

amod nsubj
dobj

nmod

prep:with(c) T3
Scientist australiano scopre stelle con telescopio

amod

nsubj

dobj

nmod

prep:con(d) T4

Australian scientist discovers stelle with telescope

amod nsubj
dobj

nmod

prep:with(e) T5
Scienziato australiano scopre stars con telescopio

amod

nsubj

dobj

nmod

prep:con(f) T6

Figure 1: An example of extracting mono and CL DEPS contexts from UD parses in EN and IT assuming
two dictionary entries [scientist, scienzato], [stars, stelle]. (T1): the example EN sentence taken from
(Levy and Goldberg, 2014a), UD-parsed. (T2): the same sentence in IT, UD-parsed; Note the very similar
structure of the two parses and the use of prepositional arc collapsing (e.g., the typed link prep with). (T3):
the hybrid EN-IT dependency tree where the EN word scientist is replaced by its IT translation scienzato.
(T4): the hybrid IT-EN tree using the same translation pair. (T5) and (T6): the hybrid EN-IT and IT-EN

trees obtained using the lexicon entry (stars, stelle). While monolingual dependency-based representation
models use only monolingual trees T1 and T2 for training, our CL-DEPEMB model additionally trains on
the (parts of) hybrid trees T3-T6, combining monolingual (word, context) training examples with cross-
lingual training examples such as (discovers, stelle dobj) or (australiano, scientist amod−1). Although
the two sentences (T1 and T2) are direct translations of each other for illustration purposes, we stress that
the proposed CL-DEPEMB model does not assume the existence of parallel data nor requires it.

Offline Models vs CL-DEPEMB (Joint) CL-
DEPEMB uses a dictionary D as the bilingual sig-
nal to tie two languages into a SCLVS. A standard
CL WE learning scenario in this setup is as fol-
lows (Mikolov et al., 2013a; Vulić and Korhonen,
2016b): (1) two separate monolingual WE spaces
are induced using SGNS; (2) dictionary entries
from D are used to learn a mapping function mf
from the L1 space to the L2 space; (3) when mf
is applied to all L1 word vectors, the transformed
L1 space together with the L2 space is a SCLVS.
Monolingual WE spaces may be induced using dif-
ferent context types (e.g., BOW or DEPS). Since
the transformation is done after training, these mod-
els are typically termed offline CL WE models.

On the other hand, given a dictionary link
[w1, w2], between an L1 word w1 and an L2 word
w2, our CL-DEPEMB model performs an online
training: it uses the word w1 to predict syntactic
neighbours of the word w2 and vice versa. In fact,
we train a single SGNS model with a joint vocabu-
lary on two monolingual UD-parsed datasets with
additional cross-lingual dependency-based training
examples fused with standard monolingual DEPS
pairs. From another perspective, the CL-DEPEMB

model trains an extended dependency-based SGNS

model now composed of four joint SGNS models
between the following language pairs: L1 → L1,
L1 → L2, L2 → L1, L2 → L2 (see Fig. 1).4

3 Experimental Setup

We report results with two language pairs: English-
German/Italian (EN-DE/IT) due to the availability
of comprehensive test data for these pairs (Leviant
and Reichart, 2015; Vulić and Korhonen, 2016a).

Training Setup and Parameters For all lan-
guages, we use the Polyglot Wikipedia data (Al-
Rfou et al., 2013).5 as monolingual training data.
All corpora were UPOS-tagged and UD-parsed us-
ing the procedure of Vulić and Korhonen (2016a):
UD treebanks v1.4, TurboTagger for tagging (Mar-
tins et al., 2013), Mate Parser v3.61 with suggested
settings (Bohnet, 2010).6 The SGNS preprocessing
scheme is standard (Levy and Goldberg, 2014a):

4A similar idea of extended joint CL training was discussed
previously by (Luong et al., 2015; Coulmance et al., 2015).
In this work, we show that expensive parallel data and word
alignment links are not required to produce a SCLVS. Further,
instead of using BOW contexts, we demonstrate how to use
DEPS contexts for joint training in the CL settings.

5https://sites.google.com/site/rmyeid/projects/polyglot
6LAS scores on the TEST portion of each UD treebank are:

0.852 (EN), 0.884 (IT), 0.802 (DE).
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all tokens were lowercased, and words and contexts
that appeared less than 100 times were filtered out.7

We report results with d = 300-dimensional WEs,
as similar trends are observed with other d-s.

Implementation The code for generating mono-
lingual and cross-lingual dependency-based (word,
context) pairs for the word2vecf SGNS train-
ing using a bilingual dictionary D is available at:
https://github.com/cambridgeltl/
cl-depemb/.

Translation Dictionaries We report results with
a dictionary D labelled BNC+GT: a list of 6,318
most frequent EN lemmas in the BNC corpus (Kil-
garriff, 1997) translated to DE and IT using Google
Translate (GT), and subsequently cleaned by native
speakers. A similar setup was used by (Mikolov et
al., 2013a; Vulić and Korhonen, 2016b). We also
experiment with dict.cc, a freely available large
online dictionary (http://www.dict.cc/),
and find that the relative model rankings stay the
same in both evaluation tasks irrespective to the
chosen D.

Baseline Models CL-DEPEMB is compared
against two relevant offline models which also learn
using a seed dictionaryD: (1) OFF-BOW2 is a linear
mapping model from (Mikolov et al., 2013a; Dinu
et al., 2015; Vulić and Korhonen, 2016b) which
trains two SGNS models with the window size
2, a standard value (Levy and Goldberg, 2014a);
we also experiment with more informed positional
BOW contexts (Schütze, 1993; Levy and Goldberg,
2014b) (OFF-POSIT2); (2) OFF-DEPS trains two
DEPS-based monolingual WE spaces and linearly
maps them into a SCLVS. Note that OFF-DEPS uses
exactly the same information (i.e., UD-parsed cor-
pora plus dictionary D) as CL-DEPEMB.

4 Results and Discussion

Evaluation Tasks Following Luong et al. (2015)
and Duong et al. (2016), we argue that good cross-
lingual word representations should preserve both
monolingual and cross-lingual representation qual-
ity. Therefore, similar to (Duong et al., 2016; Upad-
hyay et al., 2016), we test cross-lingual WEs in two
core semantic tasks: monolingual word similarity
(WS) and bilingual lexicon induction (BLI).

7Exactly the same vocabularies were used with all mod-
els (∼ 185K distinct EN words, 163K DE words, and 83K
IT words). All word2vecf SGNS models were trained us-
ing standard settings: 15 epochs, 15 negative samples, global

IT DE EN (with IT)

Model All — Verbs All — Verbs All — Verbs

MONO-SGNS 0.235 — 0.318 0.305 — 0.259 0.331 — 0.281
OFF-BOW2 0.254 — 0.317 0.306 — 0.263 0.328 — 0.279
OFF-POSIT2 0.227 — 0.323 0.283 — 0.194 0.336 — 0.316
OFF-DEPS 0.199 — 0.308 0.258 — 0.214 0.334 — 0.311

CL-DEPEMB 0.287 — 0.358 0.306 — 0.319 0.356 — 0.308

Table 1: WS results on multilingual SimLex-999.
All scores are Spearman’s ρ correlations. MONO-
SGNS refers to the best scoring monolingual SGNS

model in each language (BOW2, POSIT2 or DEPS).
Verbs refers to the verb subset of each SimLex-999.

IT-EN DE-EN

Model SL-TRANS VULIC1K SL-TRANS UP1328

OFF-BOW2 0.328 [0.457] 0.405 0.218 [0.246] 0.317
OFF-POSIT2 0.219 [0.242] 0.272 0.115 [0.056] 0.185
OFF-DEPS 0.169 [0.065] 0.271 0.108 [0.051] 0.162

CL-DEPEMB 0.541 [0.597] 0.532 0.503 [0.385] 0.436

Table 2: BLI results (Top 1 scores). For SL-TRANS

we also report results on the verb translation sub-
task (numbers in square brackets).

Word Similarity Word similarity experiments
were conducted on the benchmarking multilin-
gual SimLex-999 evaluation set (Leviant and Re-
ichart, 2015) which provides monolingual similar-
ity scores for 999 word pairs in English, German,
and Italian.8 The results for the three languages are
displayed in Tab. 1.

These results suggest that CL-DEPEMB is the
best performing and most robust model in our com-
parison across all three languages, providing the
first insight that the online training with the ex-
tended set of DEPS pairs is indeed beneficial for
modeling true (functional) similarity.

We also carry out tests in English using another
word similarity metric: QVEC,9 which measures
how well the induced word vectors correlate with
a matrix of features from manually crafted lexical
resources and is better aligned with downstream
performance (Tsvetkov et al., 2015). The results are
again in favour of CL-DEPEMB with a QVEC score
of 0.540 (BNC+GT) and 0.543 (dict.cc), com-
pared to those of OFF-BOW2 (0.496), OFF-POSIT2
(0.510), and OFF-DEPS (0.528).

Bilingual Lexicon Induction BLI experiments
were conducted on several standard test sets: IT-

(decreasing) learning rate 0.025, subsampling rate 1e− 4.
8http://technion.ac.il/∼ira.leviant/MultilingualVSMdata.html
9https://github.com/ytsvetko/qvec
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OFF-DEPS 0.259
BEST-BASELINE 0.271

CL-DEPEMB (+IT) 0.285
CL-DEPEMB (+DE) 0.310

Table 3: WS EN results on SimVerb-3500 (Spear-
man’s ρ correlation scores). BEST-BASELINE refers
to the best score across all baseline modeling
variants. We report results of CL-DEPEMB with
dict.cc after multilingual training with Italian
(+IT) and German (+DE).

EN was evaluated on VULIC1K (Vulić and Moens,
2013a), containing 1,000 IT nouns and their EN

translations, and DE-EN was evaluated on UP1328
(Upadhyay et al., 2016), containing 1,328 test pairs
of mixed POS tags. In addition, we evaluate both
language pairs on SimLex-999 word translations
(Leviant and Reichart, 2015), containing ∼ 1K test
pairs (SL-TRANS). We report results using a stan-
dard BLI metric: Top 1 scores. The same trends are
visible with Top 5 and Top 10 scores. All test word
pairs were removed from D for training.

The results are summarised in Tab. 2, indicat-
ing significant improvements with CL-DEPEMB

(McNemar’s test, p < 0.05). The gap between the
online CL-DEPEMB model and the offline base-
lines is now even more prominent,10 and there is a
huge difference in performance between OFF-DEPS

and CL-DEPEMB, two models using exactly the
same information for training.

Experiments on Verbs Following prior work,
e.g., (Bansal et al., 2014; Melamud et al., 2016;
Schwartz et al., 2016), we further show that WE
models which capture functional similarity are es-
pecially important for modelling particular “more
grammatical” word classes such as verbs and ad-
jectives. Therefore, in Tab. 1 and Tab. 2 we also
report results on verb similarity and translation.
The results indicate that injecting syntax into cross-
lingual word vector spaces leads to clear improve-
ments on modelling verbs in both evaluation tasks.

We further verify the intuition by running exper-
iments on another word similarity evaluation set,
which targets verb similarity in specific: SimVerb-
3500 (Gerz et al., 2016) contains similarity scores
for 3,500 verb pairs. The results of the CL-

10We also experimented with other language pairs repre-
sented in VULIC1K (Spanish/Dutch-English) and UP1328
(French/Swedish-English). The results also show similar im-
provements with CL-DEPEMB, not reported for brevity.

DEPEMB on SimVerb-3500 with dict.cc are
provided in Tab. 3, further indicating the usefulness
of syntactic information in multilingual settings for
improved verb representations.

Similar trends are observed with adjectives: e.g.,
CL-DEPEMB with dict.cc obtains a ρ correla-
tion score of 0.585 on the adjective subset of DE

SimLex while the best baseline score is 0.417; for
IT these scores are 0.334 vs. 0.266.

5 Conclusion and Future Work

We have presented a new cross-lingual word em-
bedding model which injects syntactic information
into a cross-lingual word vector space, resulting
in improved modeling of functional similarity, as
evidenced by improvements on word similarity and
bilingual lexicon induction tasks for several lan-
guage pairs. More sophisticated approaches involv-
ing the use of more accurate dependency parsers
applicable across different languages (Ammar et
al., 2016), selection and filtering of reliable dic-
tionary entries (Peirsman and Padó, 2010; Vulić
and Moens, 2013b; Vulić and Korhonen, 2016b),
and more sophisticated approaches to constructing
hybrid cross-lingual dependency trees (Fig. 1) may
lead to further advances in future work. Other cross-
lingual semantic tasks such as lexical entailment
(Mehdad et al., 2011; Vyas and Carpuat, 2016) or
lexical substitution (Mihalcea et al., 2010) may also
benefit from syntactically informed cross-lingual
representations. We also plan to test the portability
of the proposed framework, relying on the abstrac-
tive assumption of language-universal dependency
structures, to more language pairs, including the
ones outside the Indo-European language family.
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Ivan Vulić and Marie-Francine Moens. 2013a. Cross-
lingual semantic similarity of words as the similarity
of their semantic word responses. In NAACL-HLT,
pages 106–116.
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Abstract

This paper proposes to use distributed rep-
resentation of words (word embeddings)
in cross-language textual similarity detec-
tion. The main contributions of this paper
are the following: (a) we introduce new
cross-language similarity detection meth-
ods based on distributed representation of
words; (b) we combine the different meth-
ods proposed to verify their complemen-
tarity and finally obtain an overall F1 score
of 89.15% for English-French similarity
detection at chunk level (88.5% at sen-
tence level) on a very challenging corpus.

1 Introduction

Plagiarism is a very significant problem nowa-
days, specifically in higher education institutions.
In monolingual context, this problem is rather
well treated by several recent researches (Potthast
et al., 2014). Nevertheless, the expansion of
the Internet, which facilitates access to docu-
ments throughout the world and to increasingly
efficient (freely available) machine translation
tools, helps to spread cross-language plagiarism.
Cross-language plagiarism means plagiarism by
translation, i.e. a text has been plagiarized while
being translated (manually or automatically). The
challenge in detecting this kind of plagiarism is
that the suspicious document is no longer in the
same language of its source. We investigate how
distributed representations of words can help to

propose new cross-lingual similarity measures,
helpful for plagiarism detection. We use word
embeddings (Mikolov et al., 2013) that have
shown promising performances for all kinds of
NLP tasks, as shown in Upadhyay et al. (2016),
Ammar et al. (2016) and Ghannay et al. (2016),
for instance.

Contributions. The main contributions of
this paper are the following:

• we augment some state-of-the-art methods
with the use of word embeddings instead of
lexical resources;

• we introduce a syntax weighting in dis-
tributed representations of sentences, and
prove its usefulness for textual similarity
detection;

• we combine our methods to verify their com-
plementarity and finally obtain an overall
F1 score of 89.15% for English-French simi-
larity detection at chunk level (88.5% at sen-
tence level) on a very challenging corpus
(mix of Wikipedia, conference papers, prod-
uct reviews, Europarl and JRC) while the best
method alone hardly reaches F1 score higher
than 50%.

2 Evaluation Conditions

2.1 Dataset

The reference dataset used during our study is the
new dataset recently introduced by Ferrero et al.
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(2016)1. The dataset was specially designed for a
rigorous evaluation of cross-language textual sim-
ilarity detection.

More precisely, the characteristics of the dataset
are the following:

• it is multilingual: it contains French, English
and Spanish texts;
• it proposes cross-language alignment infor-

mation at different granularities: document
level, sentence level and chunk level;
• it is based on both parallel and comparable

corpora (mix of Wikipedia, conference pa-
pers, product reviews, Europarl and JRC);
• it contains both human and machine trans-

lated texts;
• it contains different percentages of named en-

tities;
• part of it has been obfuscated (to make

the cross-language similarity detection more
complicated) while the rest remains without
noise;
• the documents were written and translated by

multiple types of authors (from average to
professionals) and cover various fields.

In this paper, we only use the French and En-
glish sub-corpora.

2.2 Overview of State-of-the-Art Methods
Plagiarism is a statement that someone copied
text deliberately without attribution, while these
methods only detect textual similarities. However,
textual similarity detection can be used to detect
plagiarism.

The aim of cross-language textual similarity
detection is to estimate if two textual units in
different languages express the same or not. We
quickly review below the state-of-the-art methods
used in this paper, for more details, see Ferrero et
al. (2016).

Cross-Language Character N-Gram (CL-CnG)
is based on Mcnamee and Mayfield (2004) model.
We use the Potthast et al. (2011) implementa-
tion which compares two textual units under their
3-grams vectors representation.

Cross-Language Conceptual Thesaurus-based
Similarity (CL-CTS) (Pataki, 2012) aims to mea-
sure the semantic similarity using abstract con-

1https://github.com/FerreroJeremy/
Cross-Language-Dataset

cepts from words in textual units. In our imple-
mentation, these concepts are given by a linked
lexical resource called DBNary (Sérasset, 2015).

Cross-Language Alignment-based Similarity
Analysis (CL-ASA) aims to determinate how a tex-
tual unit is potentially the translation of another
textual unit using bilingual unigram dictionary
which contains translations pairs (and their proba-
bilities) extracted from a parallel corpus (Barrón-
Cedeño et al. (2008), Pinto et al. (2009)).

Cross-Language Explicit Semantic Analysis
(CL-ESA) is based on the explicit semantic anal-
ysis model (Gabrilovich and Markovitch, 2007),
which represents the meaning of a document by a
vector based on concepts derived from Wikipedia.
It was reused by Potthast et al. (2008) in the con-
text of cross-language document retrieval.

Translation + Monolingual Analysis (T+MA)
consists in translating the two units into the same
language, in order to operate a monolingual com-
parison between them (Barrón-Cedeño, 2012). We
use the Muhr et al. (2010) approach using DBNary
(Sérasset, 2015), followed by monolingual match-
ing based on bags of words.

2.3 Evaluation Protocol

We apply the same evaluation protocol as in Fer-
rero et al. (2016)’s paper. We build a distance ma-
trix of size N xM , with M = 1,000 and N = |S|
where S is the evaluated sub-corpus. Each tex-
tual unit of S is compared to itself (to its cor-
responding unit in the target language, since this
is cross-lingual similarity detection) and to M -1
other units randomly selected from S. The same
unit may be selected several times. Then, a match-
ing score for each comparison performed is ob-
tained, leading to the distance matrix. Thresh-
olding on the matrix is applied to find the thresh-
old giving the best F1 score. The F1 score is the
harmonic mean of precision and recall. Precision
is defined as the proportion of relevant matches
(similar cross-language units) retrieved among all
the matches retrieved. Recall is the proportion of
relevant matches retrieved among all the relevant
matches to retrieve. Each method is applied on
each EN-FR sub-corpus for chunk and sentence
granularities. For each configuration (i.e. a par-
ticular method applied on a particular sub-corpus
considering a particular granularity), 10 folds are
carried out by changing the M selected units.
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3 Proposed Methods

The main idea of word embeddings is that their
representation is obtained according to the context
(the words around it). The words are projected on
a continuous space and those with similar context
should be close in this multi-dimensional space.
A similarity between two word vectors can be
measured by cosine similarity. So using word-
embeddings for plagiarism detection is appeal-
ing since they can be used to calculate similar-
ity between sentences in the same or in two dif-
ferent languages (they capture intrinsically syn-
onymy and morphological closeness). We use the
MultiVec (Berard et al., 2016) toolkit for comput-
ing and managing the continuous representations
of the texts. It includes word2vec (Mikolov et al.,
2013), paragraph vector (Le and Mikolov, 2014)
and bilingual distributed representations (Luong
et al., 2015) features. The corpus used to build
the vectors is the News Commentary2 parallel cor-
pus. For training our embeddings, we use CBOW
model with a vector size of 100, a window size
of 5, a negative sampling parameter of 5, and an
alpha of 0.02.

3.1 Improving Textual Similarity Using
Word Embeddings (CL-CTS-WE and
CL-WES)

We introduce two new methods. First, we propose
to replace the lexical resource used in CL-CTS (i.e.
DBNary) by distributed representation of words.
We call this new implementation CL-CTS-WE.
More precisely, CL-CTS-WE uses the top 10 clos-
est words in the embeddings model to build the
BOW of a word. Secondly, we implement a
more straightforward method (CL-WES), which
performs a direct comparison between two sen-
tences in different languages, through the use of
word embeddings. It consists in a cosine similar-
ity on distributed representations of the sentences,
which are the summation of the embeddings vec-
tors of each word of the sentences.

Let U a textual unit, the n words of the unit are
represented by ui as:

U = {u1, u2, u3, ..., un} (1)

If Ux and Uy are two textual units in two dif-
ferent languages, CL-WES builds their (bilingual)

2http://www.statmt.org/wmt14/
translation-task.html

common representation vectors Vx and Vy and ap-
plies a cosine similarity between them.

A distributed representation V of a textual
unit U is calculated as follows:

V =
n∑

i=1

(vector(ui)) (2)

where ui is the ith word of the textual unit and
vector is the function which gives the word em-
bedding vector of a word. This feature is available
in MultiVec3 (Berard et al., 2016).

3.2 Cross-Language Word Embedding-based
Syntax Similarity (CL-WESS)

Our next innovation is the improvement of
CL-WES by introducing a syntax flavour in it.
Let U a textual unit, the n words of the unit are
represented by ui as expressed in the formula (1).
First, we syntactically tag U with a part-of-speech
tagger (TreeTagger (Schmid, 1994)) and we nor-
malize the tags with Universal Tagset of Petrov
et al. (2012). Then, we assign a weight to each
type of tag: this weight will be used to compute
the final vector representation of the unit. Fi-
nally, we optimize the weights with the help of
Condor (Berghen and Bersini, 2005). Condor ap-
plies a Newton’s method with a trust region al-
gorithm to determinate the weights that optimize
the F1 score. We use the first two folds of each
sub-corpus to determinate the optimal weights.

The formula of the syntactic aggregation is:

V =
n∑

i=1

(weight(pos(ui)).vector(ui)) (3)

where ui is the ith word of the textual unit, pos
is the function which gives the universal part-of-
speech tag of a word,weight is the function which
gives the weight of a part-of-speech, vector is the
function which gives the word embedding vector
of a word and . is the scalar product.

If Ux and Uy are two textual units in two differ-
ent languages, we build their representation vec-
tors Vx and Vy following the formula (3) instead
of (2), and apply a cosine similarity between them.
We call this method CL-WESS and we have imple-
mented it in MultiVec (Berard et al., 2016).

It is important to note that, contrarily to what
is done in other tasks such as neural parsing (Chen

3https://github.com/eske/multivec
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and Manning, 2014), we did not use POS informa-
tion as an additional vector input because we con-
sidered it would be more useful to use it to weight
the contribution of each word to the sentence rep-
resentation, according to its morpho-syntactic cat-
egory.

4 Combining multiple methods

4.1 Weighted Fusion

We try to combine our methods to improve cross-
language similarity detection performance. Dur-
ing weighted fusion, we assign one weight to the
similarity score of each method and we calculate a
(weighted) composite score. We optimize the dis-
tribution of the weights with Condor (Berghen and
Bersini, 2005). We use the first two folds of each
sub-corpus to determinate the optimal weights,
while the other eight folds evaluate the fusion. We
also try an average fusion, i.e. a weighted fusion
where all the weights are equal.

4.2 Decision Tree Fusion

(a) Distribution histogram (fingerprint) of CL-C3G

(b) Distribution histogram (fingerprint) of CL-ASA

Figure 1: Distribution histograms of two state-of-
the-art methods for 1000 positives and 1000 nega-
tives (mis)matches.

Regardless of their capacity to predict a
(mis)match, an interesting feature of the methods
is their clustering capacity, i.e. their ability to
correctly separate the positives (similar units) and
the negatives (different units) in order to minimize
the doubts on the classification. Distribution his-
tograms on Figure 1 highlight the fact that each
method has its own fingerprint. Even if two meth-
ods look equivalent in term of final performance,
their distribution can be different. One explana-
tion is that the methods do not process on the same
way. Some methods are lexical-syntax-based, oth-
ers process by aligning concepts (more semantic)
and still others capture context with word vec-
tors. For instance, CL-C3G has a narrow distribu-
tion of negatives and a broad distribution for pos-
itives (Figure 1 (a)), whereas the opposite is true
for CL-ASA (Figure 1 (b)). We try to exploit this
complementarity using decision tree based fusion.
We use the C4.5 algorithm (Quinlan, 1993) im-
plemented in Weka 3.8.0 (Hall et al., 2009). The
first two folds of each sub-corpus are used to de-
terminate the optimal decision tree and the other
eight folds to evaluate the fusion (same protocol
as weighted fusion). While analyzing the trained
decision tree, we see that CL-C3G, CL-WESS and
CL-CTS-WE are the closest to the root. This con-
firms their relevance for similarity detection, as
well as their complementarity.

5 Results and Discussion

Use of word embeddings. We can see in Table 1
that the use of distributed representation of words
instead of lexical resources improves CL-CTS
(CL-CTS-WE obtains overall performance gain of
+3.83% on chunks and +3.19% on sentences). De-
spite this improvement, CL-CTS-WE remains less
efficient than CL-C3G. While the use of bilingual
sentence vector (CL-WES) is simple and elegant,
its performance is lower than three state-of-the-art
methods. However, its syntactically weighted ver-
sion (CL-WESS) looks very promising and boosts
the CL-WES overall performance by +11.78% on
chunks and +14.92% on sentences. Thanks to
this improvement, CL-WESS is significantly better
than CL-C3G (+2.97% on chunks and +7.01% on
sentences) and is the best single method evaluated
so far on our corpus.

Fusion. Results of the decision tree fusion are
reported at both chunk and sentence level in Ta-
ble 1. Weighted and average fusion are only re-
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Chunk level
Methods Wikipedia (%) TALN (%) JRC (%) APR (%) Europarl (%) Overall (%)
CL-C3G 63.04 ± 0.867 40.80 ± 0.542 36.80 ± 0.842 80.69 ± 0.525 53.26 ± 0.639 50.76 ± 0.684
CL-CTS 58.05 ± 0.563 33.66 ± 0.411 30.15 ± 0.799 67.88 ± 0.959 45.31 ± 0.612 42.84 ± 0.682
CL-ASA 23.70 ± 0.617 23.24 ± 0.433 33.06 ± 1.007 26.34 ± 1.329 55.45 ± 0.748 47.32 ± 0.852
CL-ESA 64.86 ± 0.741 23.73 ± 0.675 13.91 ± 0.890 23.01 ± 0.834 13.98 ± 0.583 14.81 ± 0.681
T+MA 58.26 ± 0.832 38.90 ± 0.525 28.81 ± 0.565 73.25 ± 0.660 36.60 ± 1.277 37.12 ± 1.043
CL-CTS-WE 58.00 ± 1.679 38.04 ± 2.072 31.73 ± 0.875 73.13 ± 2.185 49.91 ± 2.194 46.67 ± 1.847
CL-WES 37.53 ± 1.317 21.70 ± 1.042 32.96 ± 2.351 39.14 ± 1.959 46.01 ± 1.640 41.95 ± 1.842
CL-WESS 52.68 ± 1.346 34.49 ± 0.906 45.00 ± 2.158 56.83 ± 2.124 57.06 ± 1.014 53.73 ± 1.387
Average fusion 81.34 ± 1.329 65.78 ± 1.470 61.87 ± 0.749 91.87 ± 0.452 79.77 ± 1.106 75.82 ± 0.972
Weighed fusion 84.61 ± 2.873 69.69 ± 1.660 67.02 ± 0.935 94.38 ± 0.502 83.74 ± 0.490 80.01 ± 0.623
Decision Tree 95.25 ± 1.761 74.10 ± 1.288 72.19 ± 1.437 97.05 ± 1.193 95.16 ± 1.149 89.15 ± 1.230

Sentence level
Methods Wikipedia (%) TALN (%) JRC (%) APR (%) Europarl (%) Overall (%)
CL-C3G 48.24 ± 0.272 48.19 ± 0.520 36.85 ± 0.727 61.30 ± 0.567 52.70 ± 0.928 49.34 ± 0.864
CL-CTS 46.71 ± 0.388 38.93 ± 0.284 28.38 ± 0.464 51.43 ± 0.687 53.35 ± 0.643 47.50 ± 0.601
CL-ASA 27.68 ± 0.336 27.33 ± 0.306 34.78 ± 0.455 25.95 ± 0.604 36.73 ± 1.249 35.81 ± 1.036
CL-ESA 50.89 ± 0.902 14.41 ± 0.233 14.45 ± 0.380 14.18 ± 0.645 14.09 ± 0.583 14.44 ± 0.540
T+MA 50.39 ± 0.898 37.66 ± 0.365 32.31 ± 0.370 61.95 ± 0.706 37.70 ± 0.514 37.42 ± 0.490
CL-CTS-WE 47.26 ± 1.647 43.93 ± 1.881 31.63 ± 0.904 57.85 ± 1.921 56.39 ± 2.032 50.69 ± 1.767
CL-WES 28.48 ± 0.865 24.37 ± 0.720 33.99 ± 0.903 39.10 ± 0.863 44.06 ± 1.399 41.43 ± 1.262
CL-WESS 45.65 ± 2.100 40.45 ± 1.837 48.64 ± 1.328 58.08 ± 2.459 58.84 ± 1.769 56.35 ± 1.695
Decision Tree 80.45 ± 1.658 80.89 ± 0.944 72.70 ± 1.446 78.91 ± 1.005 94.04 ± 1.138 88.50 ± 1.207

Table 1: Average F1 scores and confidence intervals of cross-language similarity detection methods
applied on EN→FR sub-corpora – 8 folds validation.

ported at chunk level. In each case, we com-
bine the 8 previously presented methods (the 5
state-of-the-art and the 3 new methods). Weighted
fusion outperforms the state-of-the-art and the
embedding-based methods in any case. Neverthe-
less, fusion based on a decision tree looks much
more efficient. At chunk level, decision tree fu-
sion leads to an overall F1 score of 89.15% while
the precedent best weighted fusion obtains 80.01%
and the best single method only obtains 53.73%.
The trend is the same at the sentence level where
decision tree fusion largely overpasses any other
method (88.50% against 56.35% for the best sin-
gle method). In our evaluation, the best decision
tree, for an overall higher than 85% of correct
classification on both levels, involves at a mini-
mum CL-C3G, CL-WESS and CL-CTS-WE. These
results confirm that different methods proposed
complement each other, and that embeddings are
useful for cross-language textual similarity detec-
tion.

6 Conclusion and Perspectives

We have augmented several baseline approaches
using word embeddings. The most promising
approach is a cosine similarity on syntactically
weighted distributed representation of sentence
(CL-WESS), which beats in overall the precedent

best state-of-the-art method. Finally, we have
also demonstrated that all methods are comple-
mentary and their fusion significantly helps cross-
language textual similarity detection performance.
At chunk level, decision tree fusion leads to an
overall F1 score of 89.15% while the precedent
best weighted fusion obtains 80.01% and the best
single method only obtains 53.73%. The trend is
the same at the sentence level where decision tree
fusion largely overpasses any other method.

Our future short term goal is to work on the im-
provement of CL-WESS by analyzing the syntactic
weights or even adapt them according to the pla-
giarist’s stylometry. We have also made a submis-
sion at the SemEval-2017 Task 1, i.e. the task on
Semantic Textual Similarity detection.
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Abstract

We explore the ability of word embed-
dings to capture both semantic and mor-
phological similarity, as affected by the
different types of linguistic properties
(surface form, lemma, morphological tag)
used to compose the representation of each
word. We train several models, where
each uses a different subset of these prop-
erties to compose its representations. By
evaluating the models on semantic and
morphological measures, we reveal some
useful insights on the relationship between
semantics and morphology.

1 Introduction

Word embedding models learn a space of continu-
ous word representations, in which similar words
are expected to be close to each other. Tradi-
tionally, the term similar refers to semantic sim-
ilarity (e.g. walking should be close to hiking,
and happiness to joy), hence the model perfor-
mance is usually evaluated using semantic simi-
larity datasets. Recently, several works introduced
morphology-driven models motivated by the poor
performance of traditional models on morpholog-
ically complex words. Such words are often rare,
and there is not enough evidence to model them
correctly. The morphology-driven models allow
pooling evidence from different words which have
the same base form. These models work by learn-
ing per-morpheme representations rather than just
per-word ones, and compose the representing vec-
tor of each word from those of its morphemes – as
derived from a supervised or unsupervised mor-
phological analysis – and (optionally) its surface
form (e.g. walking = f(vwalk, ving, vwalking)).

The works differ in the way they acquire mor-
phological knowledge (from using linguistically

derived morphological analyzers on one end, to
approximating morphology using substrings while
relying on the concatenative nature of morphol-
ogy, on the other) and in the model form (cDSMs
(Lazaridou et al., 2013), RNN (Luong et al.,
2013), LBL (Botha and Blunsom, 2014), CBOW
(Qiu et al., 2014), SkipGram (Soricut and Och,
2015; Bojanowski et al., 2016), GGM (Cotterell
et al., 2016)). But essentially, they all show that
breaking a word into morphological components
(base form, affixes and potentially also the com-
plete surface form), learning a vector for each
component, and representing a word as a composi-
tion of these vectors improves the models semantic
performance, especially on rare words.

In this work we argue that these models capture
two distinct aspects of word similarity, semantic
(e.g. sim(walking, hiking)> sim(walking, eating))
and morphological (e.g. sim(walking, hiking) >
sim(walking, hiked)), and that these two aspects
are at odds with each other (should sim(walking,
hiking) be lower or higher than sim(walking,
walked)?). The base form component of the com-
positional models is mostly responsible for seman-
tic aspects of the similarity, while the affixes are
mostly responsible for morphological similarity.

This analysis brings about several natural ques-
tions: is the combination of semantic and morpho-
logical components used in previous work ideal
for every purpose? For example, if we exclude
the morphological component from the represen-
tations, wouldn’t it improve the semantic perfor-
mance? What is the contribution of using the
surface form? And do the models behave dif-
ferently on common and rare words? We ex-
plore these questions in order to help the users of
morphology-driven models choose the right con-
figuration for their needs: semantic or morpholog-
ical performance, on common or rare words.
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We compare different configurations of
morphology-driven models, while controlling for
the components composing the representation.
We then separately evaluate the semantic and
morphological performance of each model, on
rare and on common words. We focus on inflec-
tional (rather than derivational) morphology. This
is due to the fact that derivations (e.g. affected→
unaffected) often drastically change the meaning
of the word, and therefore the benefit of having
similar representations for words with the same
derivational base is questionable, as discussed by
Lazaridou et al (2013) and Luong et al (2013).
Inflections (e.g. walked → walking), in contrast,
preserve the word lexical meaning, and only
change its grammatical categories values.

Our experiments are performed on Modern He-
brew, a language with rich inflectional morpho-
logical system. We build on a recently intro-
duced evaluation dataset for semantic similarity in
Modern Hebrew (Avraham and Goldberg, 2016),
which we further extend with a collection of rare
words. We also create datasets for morphologi-
cal similarity, for common and rare words. He-
brew’s morphology is not concatenative, so un-
like most previous work we do not break the
words into base and affixes, but instead rely on a
morphological analyzer and represent words using
their lemmas (corresponding to the base form) and
their morphological tags (from which the mor-
phological forms are derived, corresponding to af-
fixes). This allow us to have a finer grained con-
trol over the composition, separating inflectional
from derivational processes. We also compare to
a strong character ngram based model, that mixes
the different components and does not allow finer-
grained distinctions.

We observe a clear trade-off between the mor-
phological and semantic performance – models
that excel on one metric perform badly on the
other. We present the strengths and weaknesses
of the different configurations, to help the users
choose the one that best fits their needs. To the
best of our knowledge, this work is the first to
make a comprehensive comparison between var-
ious configurations of morphology-driven mod-
els,1 as well as the first to evaluate both seman-

1Among the previous work mentioned above, only few
explored configurations other than (base + affixes) or (sur-
face + base + affixes). Lazaridou et al (2013) and Luong et
al (2013) trained models which represent a word by its base
only, and showed that these models performs worse than the

tic and morphological performance of such mod-
els. While our experiments focus on Modern He-
brew due to the availability of a reliable semantic
similarity dataset, we believe our conclusions hold
more generally.

2 Models

Our model form is a generalization of the fast-
Text model (Bojanowski et al., 2016), which in
turn extends the skip-gram model of Mikolov et
al (2013). The skip-gram model takes a sequence
of words w1, ..., wT and a function s assigning
scores to (word, context) pairs, and maximizes

T∑
t=1

 ∑
wc∈Ct

`(s(wt, wc)) +
∑

w′
c∈Nt

`(−s(wt, w
′
c))


where ` is the log-sigmoid loss function, Ct is a
set of context words, and Nt is a set of negative
examples sampled from the vocabulary. s(wt, wc)
is defined as s(wt, wc) = u>wt

vwc (where uwt and
vwc are the embeddings of the focus and the con-
text words).

Bojanowski et al (2016) replace the word rep-
resentation vwt with the set of character ngrams
appearing in it: vwc =

∑
g∈G(wt) vg where G(wt)

is the set of n-grams appearing in wt. The n-grams
are used to approximate the morphemes in the tar-
get word.

We generalize Bojanowski et al (2016) by re-
placing the set of ngrams G(w) with a set P(w)
of explicit linguistic properties. Each word wt

is then composed as the sum of the vectors of
its linguistic properties: vwt =

∑
p∈P(wt) vp.

The linguistic properties we consider are the sur-
face form of the word (W), it’s lemma (L) and
its morphological tag (M)2. The lemma corre-
sponds to the base-form, and the morphologi-
cal tag encodes the grammatical properties of the
word, from which its inflectional affixes are de-
rived (a similar approach was taken by Cotterell
and Schütze (2015)). Moving from a set of n-
grams to a set of explicit linguistic properties, al-
lows finer control of the kinds of information in
compositional ones (base + affixes). However, the poor re-
sults for the base-only models were mainly attributed to un-
desirable capturing of derivational similarity, e.g. (affected,
unaffected). Working with a more linguistically informed
morphological analyzer allows us to tease apart inflectional
from derivational processes, leading to different results.

2The lemma and morphological tag for a word in context
are obtained using a morphological analyzer and disambigua-
tor. Then, each value of lemma/tag/surface from is associated
with a trainable embedding vector.
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the word representation. We train models with dif-
ferent subsets of {W,L,M}.
3 Experiments and Results

Our implementation is based on the fastText3 li-
brary (Bojanowski et al., 2016), which we modify
as described above. We train the models on the
Hebrew Wikipedia (∼4M sentences), using a win-
dow size of 2 to each side of the focus word, and
dimensionality of 200. We use the morphologi-
cal disambiguator of Adler (2007) to assign words
with their morphological tags, and the inflection
dictionary of MILA (Itai and Wintner, 2008) to
find their lemmas. For example, for the words
נסתכל ([we will] look [at]), הסתכלה ([she] looked
[at]) and הסתכל ([he] looked [at]) are assigned
the tags VB.MF.P.1.FUTURE, VB.F.S.3.PAST and
VB.M.S.3.PAST respectively, and share the lemma
.הסתכל We train the models for the subsets {W},
{L}, {W,L}, {W,M} and {W,L,M}, as well
as the original fastText (n-grams) model. Finally,
we evaluate each model on several datasets, us-
ing both semantic and morphological performance
measures.4

Semantic Evaluation Measure The common
datasets for semantic similarity5 have some no-
table shortcomings as noted in (Avraham and
Goldberg, 2016; Faruqui et al., 2016; Batchkarov
et al., 2016; Linzen, 2016). We use the eval-
uation method (and corresponding Hebrew sim-
ilarity dataset) that we have introduced in a
previous work (Avraham and Goldberg, 2016)
(AG). The AG method defines an annotation task
which is more natural for human judges, result-
ing in datasets with improved annotator-agreement
scores. Furthermore, the AG’s evaluation metric
takes annotator agreement into account, by putting
less weight on similarities that have lower annota-
tor agreement.

An AG dataset is a collection of target-groups,
where each group contains a target word (e.g.
singer) and three types of candidate words: pos-
itives which are words “similar” to the target (e.g.
musician), distractors which are words “related
but dissimilar” to the target (e.g. microphone), and
randoms which are not related to the target at all

3https://github.com/facebookresearch/fastText
4Our code is available on https://github.com/

oavraham1/prop2vec, our datasets on https://
github.com/oavraham1/ag-evaluation

5E.g., WordSim353 (Finkelstein et al., 2001), RW (Luong
et al., 2013) and SimLex999 (Hill et al., 2015)

(e.g laptop). The human annotators are asked to
rank the positive words by their similarity to the
target word (distractor and random words are not
annotated by humans and are automatically ranked
below the positive words). This results in a set
of triples of a target word w and two candidate
words c1, c2, coupled with a value indicating the
confidence of ranking sim(w, c1) > sim(w, c2)
by the annotators. A model is then scored based
on its ability to correctly rank each triple, giv-
ing more weight to highly-confident triples. The
scores range between 0 (all wrong answers) to 1
(perfect match with human annotators).

We use this method on two datasets: the AG
dataset from (Avraham and Goldberg, 2016) (Se-
manticSim, containing 1819 triples), and a new
dataset we created in order to evaluate the mod-
els on rare words (similar to RW (Luong et al.,
2013)). The rare-words dataset (SemanticSim-
Rare) follows the structure of SemanticSim, but in-
cludes only target words that occur less than 100
times in the corpus. It contains a total of 163
triples, all of the type positive vs. random (we find
that for rare words, distinguishing similar words
from random ones is a hard enough task for the
models).

Morphological Evaluation Measure Cotterrel
and Schütze (2015) introduced the MorphoDistk
measure, which quantifies the amount of mor-
phological difference between a target word
and a list of its k most similar words.
We modify MorphDistk measure to derive
MorphSimk, a measure that ranges between
0 and 1, where 1 indicates total morpho-
logical compatibility. The MorphDist mea-
sure is defined as: MorphoDistk(w) =∑

w′∈Kw
minmw,mw′ dh(mw,mw′) where Kw is

the set of top-k similarities of w, mw and mw′

are possible morphological tags of w and w′ re-
spectively (there may be more than one possi-
ble morphological interpretation per word), and
dh is the Hamming distance between the morpho-
logical tags. MorphoDist counts the total num-
ber of incompatible morphological components.
MorphSimk calculates the average rate of com-
patible morphological values. More formally,
MorphoSimk(w) = 1 − MorphoDistk(w)

k·|mw| , where
|mw| is the number of grammatical components
specified in w’s morphological tag.

We use k=10 and calculate the average Mor-
phoSim score over 100 randomly chosen words.
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1st 2nd 3rd
W gaze:VB.F.S.3.PAST:הביטה smile:VB.F.S.3.PAST:חייכה cry:VB.F.S.3.PRESENT:מתייפחת
L gaze:VB.F.S.2.IMPERATIVE:הביטי watch:VB.M.S.3.PAST:התבונן stare:VB.MF.P.3.PAST:בהו

WL gaze:VB.MF.P.1.FUTURE:נביט watch:VB.F.S.3.PAST:התבוננה stare:VB.F.S.3.PRESENT:בוהה
WM smile:VB.F.S.3.PAST:חייכה injure:VB.F.S.3.PAST:נחבלה blow:VB.F.S.3.PAST:נשפה
LM gaze:VB.F.S.3.PAST:הביטה watch:VB.F.S.3.PAST:התבוננה move:VB.F.S.3.PAST:זזה

WLM gaze:VB.F.S.3.PAST:הביטה watch:VB.F.S.3.PAST:התבוננה walk:VB.F.S.3.PAST:פסעה

Table 1: Top-3 similarities for the word הסתכלה ([she] looked [at]).
Each entry is of the form [word:lexical meaning:morphological tag]. Green-colored items share the semantic/inflection of the

target word, while red-colored indicate a divergence. In the morphological tags: M/F/MF indicate masculine/feminine/both,
P/S indicate plural/singular, 1/2/3 indicate 1st/2nd/3rd person.

To evaluate the morphological performance on
rare words, we run another benchmark (Mor-
phoSimRare) in which we calculate the average
MorphoSim score over the 35 target words of the
SemanticSimRare dataset.

Qualitative Results To get an impression of the
differences in behavior between the models, we
queried each model for the top similarities of sev-
eral words (calculated by cosine similarity be-
tween words vectors), focusing on rare words. Ta-
ble 1 presents the top-3 similarities for the word
הסתכלה ([she] looked [at]), which occurs 17 times
in the corpus, under the different models. Unsur-
prisingly, the lemma component has a positive ef-
fect on semantics, while the tag component im-
proves the morphological performance. It also
shows a clear trade-off between the two aspects
– as models which perform the best on semantics
are the worst on morphology. This behavior is rep-
resentative of the dozens of words we examined.

Quantitative Results We compare the different
models on the different measures, and also com-
pare to the state-of-the-art n-gram based fastText
model of Bojanowski et al (2016) that does not
require morphological analysis. The results (Ta-
ble 2) highlight the following:

1. There is a trade-off between semantic and mor-
phological performance – improving one aspect
comes at the expense of the other: the lemma com-
ponent improves semantics but hurts morphology,
while the opposite is true for the tag component.
The common practice of using both components
together is a kind of compromise: the LM, WLM
and n-grams models are not the best nor the worst
on any measure.

2. The impacts of the lemma and the tag com-
ponents are much larger when dealing with rare

SS SSR MS MSR
W 0.707 0.675 0.626 0.569
L 0.713 0.816 0.491 0.339

WL 0.719 0.785 0.602 0.501
WM 0.687 0.528 0.907 1
LM 0.707 0.693 0.887 0.996

WLM 0.716 0.748 0.882 1
n-grams 0.712 0.767 0.71 0.866

Table 2: Results on SemanticSim (SS), SemanticSimRare
(SSR), MorphoSim (MS) and MorphoSimRare (MSR). The

best result for each measure is green, the worst is red.

words: comparing to W, WL is only 1.7% better on
SS and 3.8% worse on MS, while it’s 16.3% better
and 11.9% worse on SSR and MSR (respectively).
Similarly, WM is only 2.8% worse than W on SS
and 44.9% better on MS, while it’s 21.8% worse
and 75.7% better on SSR and MSR (respectively).

3. Simply lemmatizing the words is very effec-
tive for capturing semantic similarity. This is es-
pecially true for the rare words, in which the L
model clearly outperform all others. For the com-
mon words, we see a small drop compared to in-
cluding the surface form as well (WL, WLM). This
is attributed to cases in which some of the seman-
tics lies within the word’s morphological template,
for example: in W model, most similar words for
the masculine verb נפל (fell) are associated with
a soldier (which is a masculine noun): נהרג (was
killed), נפגע (was injured), while the similarities of
the feminine form נפלה are associated with a land
or a state (both are feminine nouns): סופחה (was
annexed), נכבשה (was occupied). In L model – נפלה
and נפל share a single, less accurate representation
(somewhat similarly to representations of ambigu-
ous words). This suggests using different compo-
sitions for common and rare words.
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4 Conclusions
Our key message is that users of morphology-
driven models should consider the trade-off be-
tween the different components of their repre-
sentations. Since the goal of most works on
morphology-driven models was to improve se-
mantic similarity, the configurations they used
(which combine both semantic and morphological
components) were probably not the best choices:
we show that using the lemma component (either
alone or together with the surface form) is better.
Indeed, excluding the morphological component
will make the morphological similarity drop, but
it’s not necessarily a problem for every task. One
should include the morphological component in
the embeddings only for tasks in which morpho-
logical similarity is required and cannot be han-
dled by other means. A future work can be to per-
form an extrinsic evaluation of the different mod-
els in various downstream applications. This may
reveal which kinds of tasks benefit from morpho-
logical information, and which can be done better
by a pure semantic model.
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Abstract

This paper explores a simple and efficient
baseline for text classification. Our ex-
periments show that our fast text clas-
sifier fastText is often on par with
deep learning classifiers in terms of ac-
curacy, and many orders of magnitude
faster for training and evaluation. We can
train fastText on more than one bil-
lion words in less than ten minutes using a
standard multicore CPU, and classify half
a million sentences among 312K classes in
less than a minute.

1 Introduction

Text classification is an important task in Natu-
ral Language Processing with many applications,
such as web search, information retrieval, rank-
ing and document classification (Deerwester et
al., 1990; Pang and Lee, 2008). Recently, mod-
els based on neural networks have become in-
creasingly popular (Kim, 2014; Zhang and LeCun,
2015; Conneau et al., 2016). While these models
achieve very good performance in practice, they
tend to be relatively slow both at train and test
time, limiting their use on very large datasets.

Meanwhile, linear classifiers are often consid-
ered as strong baselines for text classification
problems (Joachims, 1998; McCallum and Nigam,
1998; Fan et al., 2008). Despite their simplicity,
they often obtain state-of-the-art performances if
the right features are used (Wang and Manning,
2012). They also have the potential to scale to very
large corpus (Agarwal et al., 2014).

In this work, we explore ways to scale these
baselines to very large corpus with a large output
space, in the context of text classification. Inspired
by the recent work in efficient word representation
learning (Mikolov et al., 2013; Levy et al., 2015),

we show that linear models with a rank constraint
and a fast loss approximation can train on a billion
words within ten minutes, while achieving perfor-
mance on par with the state-of-the-art. We eval-
uate the quality of our approach fastText1 on
two different tasks, namely tag prediction and sen-
timent analysis.

2 Model architecture

A simple and efficient baseline for sentence clas-
sification is to represent sentences as bag of
words (BoW) and train a linear classifier, e.g., a
logistic regression or an SVM (Joachims, 1998;
Fan et al., 2008). However, linear classifiers do
not share parameters among features and classes.
This possibly limits their generalization in the con-
text of large output space where some classes have
very few examples. Common solutions to this
problem are to factorize the linear classifier into
low rank matrices (Schütze, 1992; Mikolov et al.,
2013) or to use multilayer neural networks (Col-
lobert and Weston, 2008; Zhang et al., 2015).

Figure 1 shows a simple linear model with rank
constraint. The first weight matrix A is a look-up
table over the words. The word representations are
then averaged into a text representation, which is
in turn fed to a linear classifier. The text repre-
sentation is an hidden variable which can be po-
tentially be reused. This architecture is similar to
the cbow model of Mikolov et al. (2013), where
the middle word is replaced by a label. We use
the softmax function f to compute the probabil-
ity distribution over the predefined classes. For a
set of N documents, this leads to minimizing the
negative log-likelihood over the classes:

− 1
N

N∑
n=1

yn log(f(BAxn)),

1https://github.com/facebookresearch/
fastText
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x1 x2 . . . xN−1 xN

hidden

output

Figure 1: Model architecture of fastText for a
sentence with N ngram features x1, . . . , xN . The
features are embedded and averaged to form the
hidden variable.

where xn is the normalized bag of features of
the n-th document, yn the label, A and B the
weight matrices. This model is trained asyn-
chronously on multiple CPUs using stochastic gra-
dient descent and a linearly decaying learning rate.

2.1 Hierarchical softmax

When the number of classes is large, comput-
ing the linear classifier is computationally expen-
sive. More precisely, the computational complex-
ity is O(kh) where k is the number of classes
and h the dimension of the text representation. In
order to improve our running time, we use a hi-
erarchical softmax (Goodman, 2001) based on the
Huffman coding tree (Mikolov et al., 2013).

During training, the computational complexity
drops to O(h log2(k)).

The hierarchical softmax is also advantageous
at test time when searching for the most likely
class. Each node is associated with a probability
that is the probability of the path from the root to
that node. If the node is at depth l + 1 with par-
ents n1, . . . , nl, its probability is

P (nl+1) =
l∏

i=1

P (ni).

This means that the probability of a node is always
lower than the one of its parent. Exploring the tree
with a depth first search and tracking the maxi-
mum probability among the leaves allows us to
discard any branch associated with a small prob-
ability. In practice, we observe a reduction of the
complexity to O(h log2(k)) at test time. This ap-
proach is further extended to compute the T -top
targets at the cost of O(log(T )), using a binary
heap.

2.2 N-gram features

Bag of words is invariant to word order but tak-
ing explicitly this order into account is often com-
putationally very expensive. Instead, we use a
bag of n-grams as additional features to capture
some partial information about the local word or-
der. This is very efficient in practice while achiev-
ing comparable results to methods that explicitly
use the order (Wang and Manning, 2012).

We maintain a fast and memory efficient
mapping of the n-grams by using the hashing
trick (Weinberger et al., 2009) with the same hash-
ing function as in Mikolov et al. (2011) and 10M
bins if we only used bigrams, and 100M other-
wise.

3 Experiments

We evaluate fastText on two different tasks.
First, we compare it to existing text classifers on
the problem of sentiment analysis. Then, we eval-
uate its capacity to scale to large output space on a
tag prediction dataset. Note that our model could
be implemented with the Vowpal Wabbit library,2

but we observe in practice, that our tailored imple-
mentation is at least 2-5× faster.

3.1 Sentiment analysis

Datasets and baselines. We employ the same 8
datasets and evaluation protocol of Zhang et al.
(2015). We report the n-grams and TFIDF
baselines from Zhang et al. (2015), as well as
the character level convolutional model (char-
CNN) of Zhang and LeCun (2015), the char-
acter based convolution recurrent network (char-
CRNN) of (Xiao and Cho, 2016) and the very
deep convolutional network (VDCNN) of Con-
neau et al. (2016). We also compare to Tang et
al. (2015) following their evaluation protocol. We
report their main baselines as well as their two
approaches based on recurrent networks (Conv-
GRNN and LSTM-GRNN).

Results. We present the results in Figure 1. We
use 10 hidden units and run fastText for 5
epochs with a learning rate selected on a valida-
tion set from {0.05, 0.1, 0.25, 0.5}. On this task,
adding bigram information improves the perfor-
mance by 1-4%. Overall our accuracy is slightly
better than char-CNN and char-CRNN and, a bit

2Using the options --nn, --ngrams and
--log multi
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Model AG Sogou DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

BoW (Zhang et al., 2015) 88.8 92.9 96.6 92.2 58.0 68.9 54.6 90.4
ngrams (Zhang et al., 2015) 92.0 97.1 98.6 95.6 56.3 68.5 54.3 92.0
ngrams TFIDF (Zhang et al., 2015) 92.4 97.2 98.7 95.4 54.8 68.5 52.4 91.5
char-CNN (Zhang and LeCun, 2015) 87.2 95.1 98.3 94.7 62.0 71.2 59.5 94.5
char-CRNN (Xiao and Cho, 2016) 91.4 95.2 98.6 94.5 61.8 71.7 59.2 94.1
VDCNN (Conneau et al., 2016) 91.3 96.8 98.7 95.7 64.7 73.4 63.0 95.7

fastText, h = 10 91.5 93.9 98.1 93.8 60.4 72.0 55.8 91.2
fastText, h = 10, bigram 92.5 96.8 98.6 95.7 63.9 72.3 60.2 94.6

Table 1: Test accuracy [%] on sentiment datasets. FastText has been run with the same parameters
for all the datasets. It has 10 hidden units and we evaluate it with and without bigrams. For char-CNN,
we show the best reported numbers without data augmentation.

Zhang and LeCun (2015) Conneau et al. (2016) fastText

small char-CNN big char-CNN depth=9 depth=17 depth=29 h = 10, bigram

AG 1h 3h 24m 37m 51m 1s
Sogou - - 25m 41m 56m 7s

DBpedia 2h 5h 27m 44m 1h 2s
Yelp P. - - 28m 43m 1h09 3s
Yelp F. - - 29m 45m 1h12 4s
Yah. A. 8h 1d 1h 1h33 2h 5s
Amz. F. 2d 5d 2h45 4h20 7h 9s
Amz. P. 2d 5d 2h45 4h25 7h 10s

Table 2: Training time for a single epoch on sentiment analysis datasets compared to char-CNN and
VDCNN.

worse than VDCNN. Note that we can increase
the accuracy slightly by using more n-grams, for
example with trigrams, the performance on Sogou
goes up to 97.1%. Finally, Figure 3 shows that
our method is competitive with the methods pre-
sented in Tang et al. (2015). We tune the hyper-
parameters on the validation set and observe that
using n-grams up to 5 leads to the best perfor-
mance. Unlike Tang et al. (2015), fastText
does not use pre-trained word embeddings, which
can be explained the 1% difference in accuracy.

Model Yelp’13 Yelp’14 Yelp’15 IMDB

SVM+TF 59.8 61.8 62.4 40.5
CNN 59.7 61.0 61.5 37.5
Conv-GRNN 63.7 65.5 66.0 42.5
LSTM-GRNN 65.1 67.1 67.6 45.3

fastText 64.2 66.2 66.6 45.2

Table 3: Comparision with Tang et al. (2015). The
hyper-parameters are chosen on the validation set.
We report the test accuracy.

Training time. Both char-CNN and VDCNN
are trained on a NVIDIA Tesla K40 GPU,
while our models are trained on a CPU us-
ing 20 threads. Table 2 shows that methods us-

ing convolutions are several orders of magnitude
slower than fastText. While it is possible
to have a 10× speed up for char-CNN by using
more recent CUDA implementations of convolu-
tions, fastText takes less than a minute to train
on these datasets. The GRNNs method of Tang et
al. (2015) takes around 12 hours per epoch on CPU
with a single thread. Our speed-up compared to
neural network based methods increases with the
size of the dataset, going up to at least a 15,000×
speed-up.

3.2 Tag prediction

Dataset and baselines. To test scalability of
our approach, further evaluation is carried on
the YFCC100M dataset (Thomee et al., 2016)
which consists of almost 100M images with cap-
tions, titles and tags. We focus on predicting the
tags according to the title and caption (we do not
use the images). We remove the words and tags
occurring less than 100 times and split the data
into a train, validation and test set. The train
set contains 91,188,648 examples (1.5B tokens).
The validation has 930,497 examples and the test
set 543,424. The vocabulary size is 297,141 and
there are 312,116 unique tags. We will release a
script that recreates this dataset so that our num-
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Input Prediction Tags

taiyoucon 2011 digitals: individuals digital pho-
tos from the anime convention taiyoucon 2011 in
mesa, arizona. if you know the model and/or the
character, please comment.

#cosplay #24mm #anime #animeconvention
#arizona #canon #con #convention
#cos #cosplay #costume #mesa #play
#taiyou #taiyoucon

2012 twin cities pride 2012 twin cities pride pa-
rade

#minneapolis #2012twincitiesprideparade #min-
neapolis #mn #usa

beagle enjoys the snowfall #snow #2007 #beagle #hillsboro #january
#maddison #maddy #oregon #snow

christmas #christmas #cameraphone #mobile

euclid avenue #newyorkcity #cleveland #euclidavenue

Table 4: Examples from the validation set of YFCC100M dataset obtained with fastText with 200
hidden units and bigrams. We show a few correct and incorrect tag predictions.

Model prec@1
Running time

Train Test

Freq. baseline 2.2 - -
Tagspace, h = 50 30.1 3h8 6h
Tagspace, h = 200 35.6 5h32 15h

fastText, h = 50 31.2 6m40 48s
fastText, h = 50, bigram 36.7 7m47 50s
fastText, h = 200 41.1 10m34 1m29
fastText, h = 200, bigram 46.1 13m38 1m37

Table 5: Prec@1 on the test set for tag predic-
tion on YFCC100M. We also report the training
time and test time. Test time is reported for a sin-
gle thread, while training uses 20 threads for both
models.

bers could be reproduced. We report precision
at 1.

We consider a frequency-based baseline which
predicts the most frequent tag. We also compare
with Tagspace (Weston et al., 2014), which is a
tag prediction model similar to ours, but based
on the Wsabie model of Weston et al. (2011).
While the Tagspace model is described using con-
volutions, we consider the linear version, which
achieves comparable performance but is much
faster.

Results and training time. Table 5 presents
a comparison of fastText and the baselines.
We run fastText for 5 epochs and com-
pare it to Tagspace for two sizes of the hidden
layer, i.e., 50 and 200. Both models achieve a
similar performance with a small hidden layer, but
adding bigrams gives us a significant boost in ac-
curacy. At test time, Tagspace needs to compute
the scores for all the classes which makes it rel-
atively slow, while our fast inference gives a sig-

nificant speed-up when the number of classes is
large (more than 300K here). Overall, we are more
than an order of magnitude faster to obtain model
with a better quality. The speedup of the test phase
is even more significant (a 600× speedup). Table 4
shows some qualitative examples.

4 Discussion and conclusion

In this work, we propose a simple baseline
method for text classification. Unlike unsuper-
visedly trained word vectors from word2vec, our
word features can be averaged together to form
good sentence representations. In several tasks,
fastText obtains performance on par with re-
cently proposed methods inspired by deep learn-
ing, while being much faster. Although deep neu-
ral networks have in theory much higher represen-
tational power than shallow models, it is not clear
if simple text classification problems such as sen-
timent analysis are the right ones to evaluate them.
We will publish our code so that the research com-
munity can easily build on top of our work.
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Abstract

It is often assumed that topic models bene-
fit from the use of a manually curated stop-
word list. Constructing this list is time-
consuming and often subject to user judg-
ments about what kinds of words are im-
portant to the model and the application.
Although stopword removal clearly affects
which word types appear as most prob-
able terms in topics, we argue that this
improvement is superficial, and that topic
inference benefits little from the practice
of removing stopwords beyond very fre-
quent terms. Removing corpus-specific
stopwords after model inference is more
transparent and produces similar results to
removing those words prior to inference.

1 Introduction

In Latent Dirichlet allocation (LDA) (Blei et
al., 2003), a common preprocessing step is the
removal of stopwords, or common, contentless
words in a corpus. The use of stoplists comes with
several costs in both effort and persuasiveness.
Constructing a good stoplist is difficult and time
consuming, and often cannot be transferred to new
corpora. Custom stoplists can also call into ques-
tion the validity of a model: if an analyst is too
aggressive in removing words, the resulting mod-
els may be biased towards what the analyst views
as important in a corpus. Finally, while removing
stopwords appears to produce more interpretable
topics, this effect may be an illusion. As topic in-
terpretability is typically judged by the most fre-
quent terms in the topic, post-hoc stopword re-
moval from a model can substantially increase in-
terpretability without modifying the model.

In this paper, we analyze the consequence of
removing stopwords for topic modeling in terms

of model fit, coherence, and utility. We consider
three configurations: models trained and presented
with stopwords intact, models with stopwords re-
moved before training, and models with stopwords
removed after training. We find that there are
benefits in model quality when stopwords are re-
moved. However, stopword removal does not ap-
pear to consistently improve the model’s ability
to learn topics over the other terms, but rather
to remove dense high-probability terms that can
slow inference and skew the word type probabil-
ity distribution. We conclude that beyond high-
probability terms, the effects of stoplists on train-
ing are limited, and that removing unwanted terms
after training should be sufficient.

2 Stopwords in Topic Models

The assumption behind stopword removal is that,
with stopwords present, we will not be able to
learn as high-quality a language model. In the
corpora we have selected, a preset list of approxi-
mately 500 stopword types accounted for 40-50%
of the corpus. If these words are expected to be
uncorrelated with any topics, we would expect
stopwords to only hinder inference of meaningful
topics. LDA may sometimes partially accommo-
date separating out stopwords without explicitly
removing them. Wallach et al. (2009a) show that a
parsimonious asymmetric Dirichlet prior inferred
for θ, can allow model inference to isolate stop-
words into fewer low-quality topics, leaving the
remaining topics largely unaffected.

In essence, these low-quality topics learn a
background distribution for stopwords, but infre-
quent contentless words may be inadvertently cor-
related with contentful topic terms, while words
such as “the” are so frequent they are still likely to
be prominent in many topics. The former terms,
by virtue of being infrequent, should not disrupt
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topics, but the latter set of extremely frequent
terms may overwhelm the model and reduce how
well the model fits contentful terms.

We identify three plausible hypotheses about
the effect of stopwords in topic model training.

1. Stopwords harm inference. Noise from fre-
quent words prevents the algorithm from rec-
ognizing patterns in content-bearing words.

2. Stopwords have no effect on inference.
Noise from frequent words does not alter in-
ference on non-stopwords.

3. Stopwords improve inference. Frequent
words echo and reinforce patterns in content-
bearing words.

We assess through a variety of experiments how
well each of these hypotheses hold in practice.

3 Evaluation Methods

We aim to study the effects of removing stopwords
on topic quality and keyword generation. To do
this, we evaluate topic models as language mod-
els, document summarization tools, and features
for learning new models over data.

3.1 Existing Methods

A standard measurement of topic model quality is
based upon evaluating the likelihood of a held-out
portion of the modeled corpus being generated by
the inferred topic model (Wallach et al., 2009b).
Though directly computing a document’s proba-
bility in an LDA model is intractable, we can es-
timate it using left-to-right estimation (Wallach et
al., 2009b). However, this metric has two draw-
backs: one, that it provides little information about
individual topics, and two, that it does not cor-
relate well with actual human perception of topic
quality (Chang et al., 2009).

Work demonstrating that topic likelihood and
human evaluations of topic coherence differ
(Chang et al., 2009) has led to several metrics
to evaluate a topic’s coherence. These typically
use co-occurrence statistics for frequent types in
the topic, such as topic coherence (Mimno et al.,
2011) and normalized pointwise mutual informa-
tion (NPMI) (Aletras and Stevenson, 2013; Lau et
al., 2014). We use NPMI in our evaluations.

3.2 New Methods

Topic-document mutual information The hy-
potheses described in Section 2 focus on differ-
ences between the topic distribution of stopwords
in a given document and the topic distribution of
content-bearing words in that document. One way
to assess this effect in a model is to study the
mutual information between documents and top-
ics. Using the topic assignments of tokens inferred
via Gibbs sampling, we can examine the mutual
information between the document-topic distribu-
tion and the topic assignment of the token. We
compare the MI(d, k) before and after stopword
removal to measure the effect of removal on the
posterior. If there is no semantic information in
a set of tokens (such as stopwords) the MI(d, k)
should be close to 0. If the stopwords have a neg-
ative effect on inference (hypothesis 1) removing
these words before inference (pre-removal) should
result in a higher MI(d, k) than removing them
afterwards (post-removal). The opposite should be
true if stopword improve inference (hypothesis 3).

Classification with key terms A metric of the
quality of representative terms for a topic is their
ability to identify documents with a high propor-
tion of that topic. Inspired by the approach of
Dredze et al. (2008), we use classification of doc-
uments by topic to assess the quality of key terms
as representative topic features. We train multino-
mial Naı̈ve Bayes models with the token counts of
top representative terms as features and the most
present topic of each document as labels.

4 Experiments

We evaluate the results of removing stopwords for
topic modeling on two different corpora: a corpus
of United States State of the Union (SOTU) ad-
dresses from 1790 to 2009 split into paragraphs,
and a 1% sample of the New York Times Anno-
tated corpus (Sandhaus, 2008), spanning articles
from 1987 to 2007 and split into 500-word seg-
ments to handle overly-long articles. For experi-
ments relying on held-out data for the NYT cor-
pus, we sampled approximately 5% of the arti-
cles to be used as a testing corpus. We treat the
full article set as a reference corpus for word co-
occurrence. The details of the size of each corpus
are in Table 1. We use a standard stoplist from
MALLET for our experiments (McCallum, 2002).

Our experiments use topic models trained with
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(a) Pre- and post removal (b) Effect on non-stopword tokens

Figure 1: Mutual information on the NYT corpus, MI(d, k), as a function of the number of stopwords
removed (ordered by number of tokens). Removing stopwords before training leads to a slightly higher
MI, but the effect on non-stopword tokens is small.

MALLET (McCallum, 2002). We inferred LDA
topic models of 10, 50, and 200 topics with 1000
iterations of Gibbs sampling using hyperparameter
optimization (Wallach et al., 2009a). Topics were
trained on versions of the corpora with and with-
out stopwords, with an additional model inferred
by recomputing the document-topic distributions
θ and topic-word distributions φ after removing all
stopwords from the inferred topic assignments of
models trained with stopwords. This allows us to
compare models with no stopwords removed (con-
trol), stopwords removed before training (pre), and
stopwords removed after training (post) all with
the same effective corpus. Metrics are averaged
over 10 models per treatment.

We train several types of topic models on New
York Times (NYT) data. Our standard treatment
defines a document as one full article, but we ad-
ditionally train models on a segmented version of
the corpus (NYT-S) where each article is broken
into 100-word segments. In addition, we include
models with unoptimized hyperparameters (NYT-
U), set as

�
k αk = 5 and β = 0.01.

Corpus Documents Tokens
NYT 18820 10.33M

NYT-S 18820 6.50M
SOTU 19254 1.264M

SOTU-S 19254 681K

Table 1: Details of the New York Times (NYT)
and State of the Union (SOTU) corpora used for
topic modeling. We experiment a fixed English
stoplist of 524 words to remove stopwords (-S).
We use the full SOTU corpus for training.

4.1 Mutual Information
In Figure 1, we examine topic-document mutual
information for different sized sets of stopwords
removed before and after training the model. By
removing stopwords before training, we obtain
a slightly higher MI(d, k) than removing stop-
words after training, in support of hypothesis 1 in
Section 2. However, this difference is relatively
small compared to including more stopwords or
changing the number of topics.

If we focus on terms besides stopwords, we can
see that the effect of removing stopwords is rela-
tively small. There is some difference in removing
the most common stopwords, but extending a stop-
list has diminishing returns, supporting hypothesis
2 in Section 2.

4.2 Log Likelihood
In order to better evaluate the effect of stopword
removal on improving model training, we com-
pare the inferred log-likelihood of models trained
on our 1% New York Times sample on our larger
5% testing sample. As seen in Table 2, the choice
of when to remove stopwords has little effect. On

Topics pre post
10 −10.830± 0.006 −10.826± 0.005
50 −10.708± 0.007 −10.702± 0.007
200 −10.532± 0.002 −10.529± 0.002

Table 2: Per-token log likelihood measures on
held-out data for New York Times models with
standard error. Removing stopwords before train-
ing (pre) does not statistically significantly differ
from removing stopwords after training (post).
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pre
1 num art museum work show artists works artist paintings exhibition gallery painting arts american collection
2 num beloved paid family notice wife deaths husband late loving memorial funeral devoted service services
3 life love world story sense young man makes good style full real beautiful dark turns

post
1 num art museum show artists work works exhibition gallery artist paintings arts painting american collection
2 family president board passing love friend paid member notice jewish beloved chairman miss condolences deaths
3 book life story man books young love written world characters character work writing james author

Table 3: Example topics from 50-topic New York Times models with stopwords removed before and after
training. Post-removal topics look similar but lack some more common terms found with pre-removal.

Topics Treatment control pre post

10
NYT 0.0280 0.0874 0.0931
NYT-S 0.0282 0.0850 0.0851
NYT-U 0.0311 0.0863 0.0878
SOTU 0.0248 0.0406 0.0402

50
NYT 0.0595 0.1271 0.1209
NYT-S 0.0531 0.1257 0.1195
NYT-U 0.0554 0.1233 0.1208
SOTU 0.0438 0.0655 0.0612

200
NYT 0.0951 0.1352 0.1317
NYT-S 0.0718 0.1317 0.1239
NYT-U 0.1021 0.1352 0.1338
SOTU 0.0542 0.0681 0.0637

Table 4: The average NPMI scores for New York
Times and State of the Union data. Surprisingly,
with 10 topics, post-removal of stopwords often
produces better coherence.

the New York Times held-out dataset, the effect
of post-removing stopwords after training is statis-
tically indistinguishable from pre-removing them.
This supports hypothesis 2 in Section 2, that stop-
words are not actually significantly affecting the
model inference process for other terms.

4.3 Coherence

We report the average NPMI scores for the New
York Times and State of the Union data in Table
4. While removing stopwords from the top keys
for coherence evaluation improves model coher-
ence over the control, again, the choice of when
the stopwords are removed from the vocabulary
seems to have very little effect. Especially for only
10 topics, coherence of models where stopwords
were removed after training can slightly outper-
form models with pre-removal. This finding sup-
ports hypothesis 2 over hypothesis 1 in Section 2:
though removal of stopwords before training im-
proves automatically-evaluated coherence, when
they are removed has little impact.

4.4 Classification with Key Terms

We use the 15 most probable words from each
50-topic model on New York Times sample data
to train a logistic regression classifier to recog-

control pre post
NYT 47.1± 0.3% 69.4± 0.2% 69.9± 0.2%
NYT-S 47.1± 0.2% 54.0± 0.2% 53.3± 0.1%
NYT-U 62.6± 0.3% 69.8± 0.2% 69.8± 0.2%
SOTU 43.8± 0.3% 48.7± 0.2% 48.8± 0.2%

Table 5: Classification results using top terms of
50-topic models on NYT and SOTU data. Remov-
ing stopwords is often equally effective before and
after training.

nize the most prominent topic for each document.
We use 10-fold cross validation to compute accu-
racy, which we report in Table 5. Unsurprisingly,
removing stopwords at some stage improves the
classification accuracy of key terms. However, we
note that removing terms before training is signif-
icantly better only for one of the four treatments
(NYT-S) and is actually significantly worse than
removing after for the standard NYT setting. This
again supports hypothesis 2 in Section 2: remov-
ing the stopwords before training does not alter the
distinctiveness of topics based on high-probability
terms.

Examples of topics in Table 3 provide some
depth to understanding these results. Topic 1 is
nearly identical across the two treatments, while
topic 3 uses terms clearly from reviews when stop-
words are removed before that seem to be lost
when stopwords are removed afterwards. Anec-
dotally, common content words appear not to be
modeled as well when stopwords are present.

5 Conclusion

Our results demonstrate that, as per our second
hypothesis, removing stopwords after training is
generally just as effective as removing them be-
fore. Rather than leading the model to infer more
coherent topics by removing words that we expect
to have no content, removing stopwords appears to
simply reduce the amount of probability mass and
smoothing of the model caused by frequent non-
topic-specific terms.

Consequently, generating a corpus-specific
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stoplist to remove rarer contentless words provides
relatively little utility to training a model. To ob-
tain the benefit of a stoplist, it suffices to remove
the most frequent, obvious stopwords from a cor-
pus without developing a specific stoplist for the
problem setting. If these methods are not suf-
ficient, we find that post-hoc stopword removal
can significantly improve coherence while avoid-
ing many of the efficiency and epistemological
bias issues of iterative stoplist curation. We be-
lieve this result will be beneficial for researchers
in other fields navigating the pragmatics of using
topic models for their own investigations.
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Abstract

Measuring topic quality is essential for
scoring the learned topics and their sub-
sequent use in Information Retrieval and
Text classification. To measure quality of
Latent Dirichlet Allocation (LDA) based
topics learned from text, we propose a
novel approach based on grouping of topic
words into buckets (TBuckets). A sin-
gle large bucket signifies a single coher-
ent theme, in turn indicating high topic
coherence. TBuckets uses word embed-
dings of topic words and employs singular
value decomposition (SVD) and Integer
Linear Programming based optimization
to create coherent word buckets. TBuck-
ets outperforms the state-of-the-art tech-
niques when evaluated using 3 publicly
available datasets and on another one pro-
posed in this paper.

1 Introduction

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) based topic modelling uses statistical
relations between words like word co-occurrence
while inferring topics and not semantic relations.
Hence, topics inferred by LDA may not correlate
well with human judgements even though they
better optimize perplexity on held-out docu-
ments (Chang et al., 2009). Given the growing
importance of topic models like LDA in text
mining techniques and applications (Hingmire et
al., 2013; Wang et al., 2009; Lin and He, 2009;
Pawar et al., 2016), it is crucial to ensure that the
inferred topics are of as high quality as possible.
As shown in (Aletras et al., 2017), computing
topic coherence is also important for developing
better topic representation methods for use in
Information Retrieval. An attractive feature of

the probabilistic topic models is that the inferred
topics can be interpreted by humans, each topic
being just a bag of probabilistically selected
“prominent” words in that topic’s distribution.
This has opened up a research area which explores
use of human expertise or automated techniques
to measure the quality of topics and improve the
topic modelling techniques by incorporating these
measures. As an example, consider two topics
inferred from a document collection (topics are
represented by their 10 most probable words):
{loan, foreclosure, mortgage, home, property,

lender, housing, bank, homeowner, claim}
{horse, sullivan, business, secretariat,

owner, get, truck, back, old, merchant}
The first topic is easily interpretable by humans

whereas the second topic is incoherent and less un-
derstandable. One could evaluate a single topic or
an entire set of topics (“topic model”) for quality.
Several approaches have been proposed in the lit-
erature for measuring the quality of a single topic
or of an entire topic model (see Section 2).

In this paper, we aim at measuring the quality
of a single topic and propose a novel approach -
TBuckets, which groups a topic’s words into the-
matic groups (which we call buckets). The intu-
ition is that if a single large bucket is obtained
from a topic, the topic carries a single coherent
theme. TBuckets combines Singular Value De-
composition (SVD) and Integer Linear Program-
ming (ILP) to achieve an optimal word bucket
distribution. We evaluate our technique by cor-
relating its estimated coherence scores with hu-
man annotated scores and compare with state-of-
the-art results reported in Röder et al. (2015) and
Nikolenko (2016). The TBuckets approach not
only outperforms the state-of-the-art but also is pa-
rameter free. This makes TBuckets directly ap-
plicable to topics of a topic model without any
searching in a parameter space.
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2 Related Work

Several authors hypothesize that coherence of the
N most probable words of a topic capture its se-
mantic interpretability. Newman et al. (2010) used
the set of N most probable words of a topic and
computed its coherence (CUCI ) based on point-
wise mutual information (PMI) between all possi-
ble word pairs ofN words. In (Aletras and Steven-
son, 2013) the authors propose a variant of CUCI

by using normalized PMI (NPMI) computed based
on distributional similarity between the words of
the topic. Each word of a topic is represented
by a context vector based on a window context in
Wikipedia and coherence is computed as average
of cosine similarities between the topic’s centroid
vector and each word. Mimno et al. (2011) pro-
poses (CUMASS) that uses log conditional proba-
bility (LCP) instead of PMI and uses the same cor-
pus on which topics are inferred to estimate LCP.

Röder et al. (2015) propose a unifying frame-
work that represents a coherence measure as a
composition of parts, that can be freely combined
to form a configuration space of coherence defi-
nitions. These parts can be grouped into four di-
mensions: 1) ways a word set can be divided into
smaller pieces, 2) word pair agreement measures
like PMI or NPMI, 3) ways to estimate word prob-
abilities and 4) methods to aggregate scalar val-
ues. This framework spans over a large number of
configuration space of coherence measures and it
becomes tedious to find an appropriate coherence
measure for a set of topics.

Nikolenko (2016), one of the state-of-the-art,
also uses distributional properties of words and
proposes coherence measures based on word em-
beddings. Topic quality is defined as average dis-
tance between topic words, and four distance func-
tions - cosine, L1, L2 and co-ordinate are pro-
posed. The paper reports strong results on datasets
in Russian. Fang et al. (2016) also uses cosine
similarity between word embeddings to compute
coherence scores for twitter topics. Two other ma-
jor approaches are based on topic word probability
distributions (Alsumait et al., 2009) and coverage
and specificities of WordNet hierarchies for topic
words (Musat et al., 2011).

3 TBuckets: Creating buckets of topic
words

The idea of viewing a topic as a set of coherent
word buckets is based on how we humans observe

a topic and decide its coherence. A human would
observe the topic words one by one and put them
in some form of coherent groups (or buckets, as
we call them). Starting with a fresh bucket for
the first word, every new word is put in an already
created bucket if the word is semantically similar
or semantically associated with the words in the
bucket; otherwise the word is put in a new bucket.
On completion of this exercise, all topic words
would be distributed in various buckets. A dis-
tribution with a single large bucket and few small
buckets would signify better coherence. However,
a distribution with multiple medium sized buckets
would indicate lower coherence.

For a coherent topic like {storm, weather,
wind, temperature, rain, snow, air,
high, cold, northern}, which deals with
weather and associated factors, the above proce-
dure leads to the following bucket distribution:
Bucket-1: {storm, weather, wind,
temperature, rain, snow, air, cold};
Bucket-2: {high};
Bucket-3: {northern}

But for a non-coherent topic like
{karzai, afghan, miner, official,
mine, assange, government, kabul,
afghanistan, wikileaks} the same proce-
dure leads to the following bucket distribution:
Bucket-1: {karzai, afghan, kabul,
afghanistan};
Bucket-2: {miner, mine};
Bucket-3: {official, government};
Bucket-4: {assange, wikileaks}

It is evident from above examples that the final
distribution of topic words into buckets, reflects
the coherence of a topic closely. Based on this
idea, we devise the TBuckets approach which en-
ables us to perform this bucketing automatically
and generate a coherence score for a topic. It only
requires word embeddings of topic words, which
are not difficult to obtain as embeddings of a large
set of words, trained on various corpora, are now
available publicly (Mikolov et al., 2013; Penning-
ton et al., 2014; Levy and Goldberg, 2014)

The idea of clustering arises intuitively when
we think of forming related groups among a set of
items (words here). However, an important limita-
tion of clustering is that the resulting clusters are
sensitive to choice of parameters like linkage con-
figuration, threshold on maximum distance, num-
ber of clusters, etc. Furthermore, cluster cen-
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troids computed using average of word embed-
dings might not represent the underlying themes
among the words. To really find the underlying
themes, it is important to focus on interactions
among the features of topic words. The values
on dimensions of a word’s embeddings can be re-
garded as the word’s abstract features. Consider-
ing a matrix capturing interactions among the fea-
tures of topic words, we hypothesize that the prin-
cipal eigenvector of this matrix should capture the
central theme of the topic. Further, we say that a
topic is coherent if most of its words are aligned
to this central theme. Additionally other eigenvec-
tors would capture other themes, if any.

To capture this notion, we propose use of Sin-
gular Value Decomposition (SVD) and Integer
Linear Programming (ILP) for obtaining optimal
word theme alignments. We begin by constructing
a n × d rectangular matrixA comprising d dimen-
sional word embeddings of n words of a topic. We
then apply SVD on A to obtain a product USV T

where columns of the V matrix are eigenvectors of
the feature-feature interaction matrix ATA. These
d dimensional eigenvectors represent the underly-
ing themes we are interested in. The eigenvec-
tor corresponding to the largest singular value is
the principal eigenvector1, representing the cen-
tral theme. Now to determine an initial assignment
of words with the eigenvectors, we use the first n
eigenvectors in V as bucket identifiers to assign
words to. The assignment is näive - the word goes
to the bucket represented by the word’s most sim-
ilar eigenvector. We use cosine similarity to mea-
sure similarity between the word’s embedding and
an eigenvector. We define the principal bucket as
the one corresponding to the principal eigenvector.

We believe that this näive assignment is strict
and may lead to formation of multiple distinct
but related themes. This may lead to splitting
of the central theme across multiple buckets and
hence words that should align with the central
theme may get aligned to other (related) themes.
Hence, to improve the näive assignment we
propose an ILP based optimization and attain
an optimal word theme alignment. The details
of the optimization formulation are presented
in Table 1. We consider the following example
topic from the NYT dataset to understand the ILP
formulation: {baby, birth, pregnant,

1without loss of generality we assume the principal eigen-
vector to be the first eigenvector

Parameters:
n: No. of eigenvectors/No. of words in a topic
E: Matrix of dimensions n × n, where Eij represents
similarity of the jth word with the ith eigenvector
W : Matrix of dimensions n × n, where Wij represents
similarity of the ith word with the jth word
L: Matrix of dimensions (n − 1) × n, where Lij = 1 if
E(i+1)j > E1j else 0
Variable:
X: Matrix of dimensions n × n, where Xij = 1 only
when jth word is assigned to the bucket associated with
ith eigenvector
Objective:
Maximize

∑n
i=1

∑n
j=1Eij ·Xij−∑n

i=2

∑n
j=1E1j ·Xij

Constraints:
C1: ∀j s.t. 1 ≤ j ≤ n C2: Single constraint∑n

i=1Xij = 1
∑n

j=1X1j ≥ 1

C3: ∀i,j,k s.t. 2 ≤ i ≤ n, 1 ≤ j, k ≤ n, j 6= k
Eij ·Xij >= Wjk · (X1k −X1j −∑n

m=2,m 6=i Xmj)

C4: ∀j s.t. 1 ≤ j ≤ n
X1j · (∑n−1

i=1 Lij) <= 1

C5: Single constraint
2 ·∑n

j=1(X1j · (∑n−1
i=1 Lij)) <=

∑n
j=1X1j

Table 1: Integer Linear Program (ILP) formulation

woman, pregnancy, bat, allergy,
mother, born, american}. The human
assigned coherence score is 2.15 on a scale of 1
to 3, which is considerable but not too high. The
topic’s bucket distribution obtained using SVD is:
Bucket-1: {baby, birth, pregnant,
woman, pregnancy, mother};
Bucket-2: {allergy};
Bucket-3: {american};
Bucket-4: {bat};
Bucket-5: {born}

3.1 Objective

The objective function consists of two terms. The
first term

∑n
i=1

∑n
j=1Eij ·Xij maximizes the sim-

ilarity between any word with the eigenvector to
which it is assigned. Optimizing only this term
is equivalent to obtaining the SVD based assign-
ments, as each word gets assigned to the bucket
corresponding to its closest eigenvector. The sec-
ond term −∑n

i=2

∑n
j=1E1j · Xij minimizes the

penalty for the words which are not assigned to
the principal eigenvector. The penalty is equal
to their similarity with the principal eigenvector.
The penalty term favours word assignments to the
principal eigenvector by pushing to it some words
which are not “too dissimilar” to its theme. The
constraints described in the next subsection, bal-
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ance addition and restriction of word assignments
to the principal eigenvector ensuring a coherent
principal bucket.

3.2 Constraints

The first two constraints ensure sanity of the as-
signments. Constraint C1 ensures that any word
is assigned to one and only one eigenvector and
constraint C2 makes sure that at least one word is
assigned to the principal eigenvector.

ConstraintC3 makes sure that any word j which
is assigned to a non-principal eigenvector i has
more similarity to the eigenvector i than its sim-
ilarity with any word k assigned to the principal
eigenvector. When the jth word itself is assigned
to the principal eigenvector then the LHS is al-
ways zero and the RHS is either zero or negative;
hence satisfying the constraint trivially. When the
jth word is assigned to a non-principal eigenvec-
tor i, then Eij · Xij represents its similarity with
the ith eigenvector. As both the terms X1j and∑n

m=2,m 6=iXmj would be zero, the RHS will re-
duce to Wjk · X1k which is similarity of the jth

word with the kth word when the kth word is as-
signed to the principal eigenvector.

It can be observed that the penalty term and con-
straint C3, both favour assignments to the princi-
pal eigenvector. If the ILP formulation is restricted
to only the three constraints C1, C2 and C3, the
example topic results in the following bucket dis-
tribution:
Bucket-1: {baby, birth, pregnant,
woman, pregnancy, mother, born,
american};
Bucket-2: {allergy};
Bucket-3: {bat}

The constraint C4 ensures that for any word
which is assigned to the principal eigenvector, it
is either the word’s most similar eigenvector or
second most similar eigenvector. This constraint
ensures that words highly dissimilar to the princi-
pal eigenvector do not get forced to the principal
bucket. For any word j, the sum

∑n−1
i=1 Lij repre-

sents the number of eigenvectors which are more
similar to it than the principal eigenvector. Hence,
for each word assigned to the principal eigenvec-
tor, the LHS simply counts the number of other
more similar eigenvectors and the constraint re-
stricts this count to 1. Therefore, constraint C4 en-
sures that there can be only two types of words in
the principal bucket: i) words for which the prin-

cipal eigenvector is the most similar and ii) words
for which the principal eigenvector is the second
most similar.

It is important to further improve the set of
words that get attached to the principal eigenvec-
tor. Maintaining that words of type (i) are al-
ways in majority would imply adding lesser words
which have the principal eigenvector as their sec-
ond most similar eigenvector. Constraint C5 en-
sures that words of type (i) are always in majority.

It can be observed that as against the principal-
eigenvector-favouring nature of the penalty term
and constraint C3, both constraints C4 and C5 in-
hibit addition of dissimilar terms and ensure the-
matic coherence in the principal bucket. The com-
plete ILP formulation for the example topic re-
sults in the following bucket distribution. It is
evident that constraints C4 and C5 evict the term
american, ensuring a coherent principal bucket.
Bucket-1: {baby, birth, pregnant,
woman, pregnancy, mother, born};
Bucket-2: {american};
Bucket-3: {allergy};
Bucket-4: {bat}

The constraints in the ILP formulation can also
be viewed as a set of flexible settings, and depend-
ing on the desired representation of the learned
topics, the constraints can be loosened or tightened
leading to an optimal bucket distribution.

The coherence score of the topic is defined as
the size of the principal bucket after optimization.

4 Experimental Analysis

4.1 Datasets

We evaluate TBuckets on 4 datasets - 20 News-
Groups (20NG), New York Times (NYT), Ge-
nomics and ACL. Each dataset consists of a set
of 100 topics where each topic is represented by
its 10 most probable words. Each topic is associ-
ated with a real number between 1 and 3 indicating
human judgement of its coherence. Detailed de-
scription of 20NG, NYT and Genomics datasets is
provided in Röder et. al (2015).

We inferred the 100 topics for the ACL dataset2

on the ACL Anthology Reference Corpus (Bird,
2008). We obtained the gold coherence scores for
these topics from three annotators by following the
methodology described in Röder et. al (2015).

2topics and coherence scores are available at
https://www.cse.iitb.ac.in/˜sachinpawar/
TopicQuality/dataset.html
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Setting NYT 20NG Genomics ACL Mean

(Röder et
al., 2015)

CV 0.803 0.859 0.773 0.160 0.649
CP 0.757 0.825 0.721 0.215 0.629
CA 0.747 0.739 0.53 0.167 0.546
NPMI 0.806 0.78 0.594 0.228 0.602
UCI 0.783 0.696 0.478 0.190 0.537
UMASS 0.543 0.562 0.442 0.078 0.406

(Nikolenko,
2016)

Cosine 0.75 0.766 0.648 0.248 0.603
L1 0.431 0.492 0.369 0.017 0.327
L2 0.448 0.535 0.38 0.021 0.346
Co-ord 0.447 0.536 0.388 0.131 0.376

Clustering 0.745 0.856 0.709 0.293 0.651
SVD 0.758 0.867 0.698 0.227 0.638
Tbuckets 0.819 0.87 0.729 0.272 0.673

Table 2: Pearson Correlation based performance

For all our experiments, we use the 300 dimen-
sional pre-trained word embeddings provided by
the GloVe framework (Pennington et al., 2014).

4.2 Evaluation

We use the same evaluation scheme used in (Röder
et al., 2015). Each technique generates coherence
scores for all the topics in a dataset. Pearson’s r
correlation co-efficient is computed between the
coherence scores based on human judgement and
the coherence scores automatically generated by
the technique. Higher the correlation with human
scores, better is the performance of the technique
at measuring coherence.

Table 2 shows the Pearson’s r values obtained
from the state-of-the-art (Röder et al. (2015) and
Nikolenko (2016)) and baselines (Clustering and
Only SVD) compared with TBuckets. We con-
sider scores on NYT, 20NG and Genomics as re-
ported in (Röder et al., 2015) and obtain scores
on the ACL dataset using the web demo provided
by the authors at http://palmetto.aksw.
org/palmetto-webapp/

As observed in Table 2, TBuckets outperforms
(Röder et al., 2015) on 3 out of 4 and (Nikolenko,
2016) on all 4 datasets. It also outperforms all the
baselines considering average performance across
all datasets. This is significant considering the fact
that TBuckets is parameter less whereas the state-
of-the-art technique (Röder et al., 2015) requires
considerable tuning of multiple parameters. This
also is a sound validation of the TBuckets idea for
measuring topic coherence.

Effect of word polysemy: The TBuckets
approach relies on word embeddings for capturing
the semantic relations among topic words. An
important limitation of word embeddings is

that a single representation of a word is learned
irrespective of its senses. Hence it is observed
that infrequent or domain-specific senses of pol-
ysemous words are not represented sufficiently.
Coherent topics containing such polysemous
words can still be judged coherent by humans
as they can easily consider the appropriate sense
of these words looking at the context of other
topic words. TBuckets however, is unable to
consider infrequent or domain-specific senses of
such words, resulting into multiple unnecessary
buckets and lower coherence. For a coherent
topic from the ACL dataset: {derivation,
probabilistic, pcfg, collins,
subtree, production, child,
charniak, parser, treebank}, TBuck-
ets produces three non-principal buckets for the
words child, production and collins. A
similar example from 20NG is {game, team,
player, baseball, win, fan, run,
season, hit, play}, where TBuckets
creates a separate bucket for the word fan due to
its infrequent sense of “sports fan”.

5 Conclusion and Future Work

We proposed a novel approach TBuckets to mea-
sure quality of Latent Dirichlet Allocation (LDA)
based topics, based on grouping of topic words
into buckets. TBuckets uses singular value de-
composition (SVD) to discover important themes
in topic words and ILP based optimization to find
optimal word-bucket assignments. We evaluated
TBuckets on LDA topics of 4 datasets, by correlat-
ing the estimated coherence scores with human an-
notated scores and demonstrated the best average
performance across datasets. Moreover, as com-
pared to the state-of-the-art techniques which need
to tune multiple parameters, TBuckets requires no
parameter tuning.

In future, we plan to devise better ways to com-
pute word similarities which would be more suit-
able for specific domains like Genomics. One pos-
sible way is to train word embeddings on a do-
main specific corpus and use the learned embed-
dings. Also we intend to study the impact of us-
ing coherent topics for text classification and other
NLP applications. We would also like to explore a
new topic generation process which incorporates
semantic relations between words, in addition to
their statistical co-occurrence, leading to genera-
tion of semantically coherent topics.
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Abstract

The success of sentence classification of-
ten depends on understanding both the
syntactic and semantic properties of word-
phrases. Recent progress on this task has
been based on exploiting the grammati-
cal structure of sentences but often this
structure is difficult to parse and noisy.
In this paper, we propose a structure-
independent ‘Gated Representation Align-
ment’ (GRA) model that blends a phrase-
focused Convolutional Neural Network
(CNN) approach with sequence-oriented
Recurrent Neural Network (RNN). Our
novel alignment mechanism allows the
RNN to selectively include phrase infor-
mation in a word-by-word sentence repre-
sentation, and to do this without aware-
ness of the syntactic structure. An em-
pirical evaluation of GRA shows higher
prediction accuracy (up to 4.6%) of fine-
grained sentiment ratings, when compared
to other structure-independent baselines.
We also show comparable results to sev-
eral structure-dependent methods. Finally,
we analyzed the effect of our alignment
mechanism and found that this is critical
to the effectiveness of the CNN-RNN hy-
brid.

1 Introduction

Sentence classification is the task of modeling,
representing and assigning sentences to classes,
which are often based on structure or sentiment.
This task is important for many applications re-
quiring a degree of semantic comprehension. Re-
cent advancements in sentence classification em-
ploy distributed embedding models (Mikolov et

∗ Corresponding author

al., 2013), which discover semantic relations be-
tween words and represent words as real-valued
vectors. State-of-the-art classification methods
typically combine distributed embedding models
with the following three strategies: n-gram mod-
els, sequential models and tree models. Of these,
the best results have been obtained using tree mod-
els (Mou et al., 2015; Tai et al., 2015), which use
sentence syntactic trees originating from gram-
mar to help construct sentence embeddings. How-
ever, noisy text (such as found in online reviews)
does not always contain much grammatical struc-
ture, which reduces the effectiveness of tree mod-
els. Hence it is important to study structure-
independent models.

Much recent research into structure-
independent n-gram CNN models (Kalchbrenner
et al., 2014; Yu et al., 2014; Yin and Schütze,
2015; Kim, 2014; Zhang et al., 2016) attempts
to build comprehensive sentence embeddings
by identifying the most influential n-grams of
different semantic aspects. However, while these
methods are effective at exploring the regional
syntax of words, they are unable to account for
order-sensitive situations, where the order of
words is critical to the meaning.

On the other hand, sequential models based
on RNN (Graves, 2013; Sutskever et al., 2014;
Palangi et al., 2016) build sentence embeddings
using a global cell that reads one word at a time.
The cell contains an update function that uses the
most recent word to update sentence embeddings,
while maintaining some memory of previously
seen words. Recent extensions of RNN cells, such
as Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU) (Cho et al., 2014), better
enable the cell to memorize and forget information
that is pertinent to the meaning of the sentence.
However, it is not clear how much phrase-level in-
formation is captured since the RNN cells are op-
timized from a whole-sentence perspective.
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In this paper, we propose a hybrid CNN-
RNN framework to model relationships between
phrases and word sequences in each sentence. In
the framework, we added a soft-aligning layer
that provides an adaptive mechanism for RNN to
‘peek’ into relevant n-grams generated by a CNN
and selectively include them. We call our model
Gated Representation Alignment (GRA) since we
implement soft-alignment using a group of Gated
Recurrent Units. Similar to CNN and RNN ap-
proaches, GRA requires no explicit structural in-
formation about the sentence, making it adaptable
to noisy text.

In our experiments, GRA outperforms an
LSTM baseline by 4.6% when classifying fine-
grained sentiment datasets. The other eight base-
line models we tested improve on this baseline by
up to 3.2%. Furthermore, GRA achieves compa-
rable results to structure-dependent models. Fur-
ther analysis against baselines shows the align-
ment mechanism in GRA is the key to combine
the power of CNN and RNN approaches.

2 Methodology

Figure 1 depicts the GRA model, which consists
of three stages: the first generates phrase vec-
tors using CNN; the second combines the word
and phrase vectors, and incorporates word order to
generate sentence representations through a soft-
aligned RNN; the third stage makes class predic-
tions based on these sentence representations. The
figure shows the processing flow for the i-th word,
which is equivalent to the i-th time step.

2.1 Phrase Vector CNN

In the first stage of the GRA model, phrase vectors
are derived from a set of CNNs that operate on the
input sequence of words. Each phrase vector is a
representation of between two and five words.

Let Xi ∈ Rk represent a k-dimensional embed-
ding for the i-th word in the sentence. An input
sentence of length N can thus be considered as a
vertical concatenation of X1:N . We apply a set of
convolutional filters W `

P and bias terms b`P to the
sentence as per equation (1), in order to learn a
representation for each phrase of length `.

P `i = Relu(W `
P · [Xi, .., Xi−`] + b`P ) (1)

We use PL={2,3,..,`}
i to represent phrase vectors at

time i, which includes all phrases ended with Xi.

Figure 1: GRA Framework and Details at Step i

2.2 Soft-aligned RNN

The second stage generates sentence vector rep-
resentations (or states) using a soft-aligned RNN.
The state updated with the i-th word is represented
as a d-dimensional vector Si.

Our model was inspired by an attention GRU-
RNN model introduced by Bahdanau et al. (2015),
which was originally used for machine translation.
The attention model provides an interface for a
neural network to selectively include outputs from
another model, which is ideal for our purpose of
combining CNN and RNN.

For the i-th time step in GRU-RNN, the GRU
cell forgets a portion of learned sentence informa-
tion Si−1 using the update gate Z, and updates it
through a reset gate R. In GRU cells, both gates
are controlled by Si−1 and Xi. In GRA, another
vector Ci combines the weight from the Attention
Gates in Figure 1 with each phrase vector from
CNN. This provides input to the GRU RNN cells,
as shown in equation set (2).

An intuitive way to understand Ci is to con-
sider that the model tries to determine which of
the phrases generated by word Xi are more rea-
sonable based on current sentence state Si. In the
example sentence shown in Figure 1, for the word
‘guys’, the weighting function determines weights
for each of the phrase vectors representing ‘cou-
ple of crazy guys’, ‘of crazy guys’ and ‘crazy guys’
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based on their similarity to the sentence state.
To compute similarity, both the phrase vectors

P `i and the sentence state S∗i are projected to a new
vector space (after Si−1 is updated with Xi), and
then similarity is evaluated by a dot product, rep-
resented as α`i . We call this step attention scoring
and formalize in equation set (3).

In the Bahdanau et al. (2015) attention frame-
work, the underlying assumption was that one
neural network always received the output of an-
other. Applying softmax to the attention scores
indicated that the receiving neural network must
focus on a certain part of the input. However, this
assumption might not hold in the GRA framework
as phrase information is not always needed at each
timestep of RNN training. For the example sen-
tence “Then one day, completely out of the blue, I
had a letter from her.”, we clearly need to include
phrase vectors for the word “blue” (which is only
meaningful as part of a phrase) but not for other
words such as “I”. Accordingly, a loosely coupled
framework that dynamically incorporates or omits
phrase vectors is necessary.

The major challenge here is that the algorithm
needs a reference to compute weights for the
phrase vectors. For instance, in softmax, each in-
put is simply weighted by its contribution to the
sum. However, in GRA, the sum of similarity
scores is not a good scaling factor since phrase
vectors are sometimes omitted. Instead, we use
a set of GRU cells that receive previous weights,
other phrase’s weights, and attention scores as in-
puts, and use these to compute the final weights for
each phrase vector. The intuition is that GRA is
trying to determine the weight for P ` by concate-
nating attention scores, past weights and weights
assigned to other phrase vectors. Using a RNN
cell helps to store relevant past information and
allows concurrent weights be easily added into the
formula. To compute the weight for P `i , a GRU
cell receives the weight for P `−1

i−1 if the weight for
P `−1
i is not computed yet. We called this process

attention gating, and the final output is the set of
weightsA`i for the phrase vector P `i , as formalized
in equation set (4).

2.3 Classification Layer and Regularization

The penultimate layer of GRA, which outputs the
final sentence vectors, averages sentence states
from all time steps. Finally, classification is done
using softmax to project the final sentence vec-

tor to K conditional probabilities, where K is the
number of classes, and a class prediction is ob-
tained from the argmax operation.

We implemented a bi-directional RNN with
dropout for regularization (Pham et al., 2014).
The RNN cells are shared for both forward and
backward passes to limit the number of variables.
This also helps to decrease over-fitting.
GRU RNN Cell1,2,3:
Zi = sigmoid(WZ · [Xi, Si−1, Ci] + bZ)
Ri = sigmoid(WR · [Xi, Si−1, Ci] + bR)
Hi = tanh(WH · [Xi, Ri � Si−1, Ci] + bH)
Si = (1− Zi)� Si−1 + Zi �Hi (2)

Attention Scoring:
αli = Uα · tanh((Wα · P li )� S∗i ) + bα

S∗i = Ws · [Si−1, Xi]

αLi = [α2
i , ..., α

`
i ] (3)

Attention Gate4,5:
AZ`i = tanh(W `

AZ · [αLi , AL−`latest, A
`
i−1] + bAZ)

AR`i = tanh(W `
AR · [αLi , AL−`latest, A

`
i−1] + bAR)

AH`
i = tanh(

W `
AH · [αLi , AL−`latest, AR

`
i �A`i−1] + bAH)

A`i = (1−AZ`i )�A`i−1 +AZ`i �AH`
i

Ci = [Ai2 � Pi2, ..., Ai` � Pi`] (4)

3 Datasets and Experimental Setup

We tested our model on datasets containing both
‘clean’ (i.e. well-structured) and ‘noisy’ text.

The clean datasets are obtained from Stanford
Sentiment Treebank (SST5), a 5-class movie re-
view corpus (i.e. very negative, negative, neutral,
positive, very positive) from Socher et al (2013).
Labeling is done at both sentence and phrase level.
Well-known sub-phrases (and individual words)
are labelled separately for training, but are not
used in testing. Dataset SST2 is the same as SST5
but reduced to binary classes.

The noisy dataset is a 5-classes review dataset
from Yelp (Tang et al., 2015). We parsed short
reviews (less than 60 words) from the 200 most
frequently reviewed restaurants. Also, we under-
sampled positive and very positive reviews as the
reviews are skewed toward the positive end.

1� represents element-wise multiplication
2[A,B]represents horizontal concatenation of A and B
3W represents weight matrix used for the corresponding

parameter, and b as bias terms
4AL−`

i represents ` is excluded from L
5latest refers to i or i-1, depending if Ai

L-`is computed
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The accuracy results from the clean datasets
were averaged over 5 runs using the train/test splits
given in the datasets. The noisy dataset wasn’t
broken down in this way in advance, so we evalu-
ated it using 10-fold cross validation.

In order to minimize parameter tuning, we used
the Adadelta (Zeiler, 2012) optimizer to obviate
the need to determine a learning rate. Dropout is
set to 50% for each timestep in RNN, and we use
no dropout in the penultimate layer.

During experiments, we set the dimension of
word vectors to 300, and the CNN filter length to
[2,3,4]. Each CNN filter has 150/50 dimensions
in SST5,SST2/Yelp. Bi-directional RNN state
size is set to 450/150 for SST5, SST2/Yelp for
each direction. Each experiment lasts 10 epochs,
with mini-batch size of 200. Similar to most
benchmark models, GRA uses pre-trained word
vectors6 (trained on GoogleNews) to initialize
the words embeddings. Words not present in the
corpus are initialized randomly.

4 Results and Discussion

The classification accuracy of GRA and baseline
methods are shown in Table 1. Results for baseline
methods running against the SST5 / SST2 datasets
are mostly taken directly from the corresponding
papers7 8. For baseline algorithms we reimple-
mented, we used the parameter settings specified
in the original papers. It was only possible to
run some of the baseline algorithms on the Yelp
dataset due to availability of source code and pa-
rameter configurations.

It can be seen from Table 1 that GRA outper-
forms the baselines on the fine-grained datasets
(SST5 / Yelp), and is also comparable with the bi-
nary case (SST2).

Next, we further investigated the effect of soft-
alignment, and compared GRA with structure de-
pendent models for a more extensive analysis.

4.1 Effect of Soft-alignment

We first empirically evaluate the effect of soft-
alignment by comparing GRA with/without soft-
alignment on the SST5 dataset. In the latter case,

6https://code.google.com/p/word2vec
7* denotes that we reimplemented the algorithm, but re-

ported SST5/SST2 results based on the results shown in their
publications.

8Models without citation are implemented following pa-
rameter settings in section 3.

Table 1: Accuracy of GRA and benchmarks. † de-
notes models that are trained on SST5 but sum the
result of the softmax layer to obtain binary predic-
tions; as stated in Mou et al. (2015), it is more
difficult to obtain good results with this approach.

the last formula in formula set (4) becomes Ci =
[P 2
i , ..., P

`
i ], which can be seen as simply chain-

ing together the two models. We added two more
CNN and RNN hybrid models here for compre-
hensive comparison. Both hybrids combined CNN
and RNN at the penultimate layer, but the first
one combined models by taking the average of the
softmax scores; the second combined models by
concatenating the sentence vectors generated by
CNN and RNN. These two hybrid models can be
seen as ensemble approaches since CNN and RNN
are not interacting while generating the sentence
vector. We show the results in Table 2.

Methods SST5
Average of softmax of CNN and RNN 50.2
Concatenate CNN and RNN 50.6
GRA not-aligned 48.8
GRA 51.0

Table 2: Accuracy of GRA and other hybrids.

It can be seen from Table 2 that even very
simple ensemble methods can yield good results
when compared to standalone models. On the
other hand, for GRA without alignment the result
became worse when compared to RNN without
phrase vectors (i.e. Bi-Directional LSTM in Ta-
ble 1). We suppose that the drop of accuracy in
the not-aligned version is a result of phrase vectors
being over-counted with large weights, and thus
reducing the effectiveness of the sequence learn-
ing ability in RNN. However, with soft-alignment,
GRA can incorporate CNN phrase vectors into an
RNN without impacting the sequence learning ef-
fectiveness.

We further qualitatively tested our assumption

446



that GRA preserves more phrase level informa-
tion without compromising the RNN. We eval-
uate this by quantifying the union of correct
cases from GRA (both with and without soft-
alignment) against the CNN/LSTM baselines. If
soft-alignment helps to bridge the two models,
then the predictions from GRA should be closer
to those from CNN/LSTM with soft-alignment en-
abled than the not-aligned case. We show the re-
sults of this evaluation in Figure 2 using the test
set from SST5. Each point shows the size of
the union of correct cases for a variety of sen-
tence lengths, and only for sentences that are pre-
dicted correctly more than 3 times in the 5 runs.
When compared to LSTM and CNN/LSTM mod-
els, GRA with alignment produces a consistently
larger union of correct cases (typically by 5-10%)
than GRA without alignment. These results sup-
port our intuition that soft-alignment make an im-
portant difference.

Figure 2: Coverage of CNN and LSTM correct
cases between GRA and GRA-without-alignment.

We also evaluated how sentimentally-sensitive
the model is with soft-alignment by slightly mod-
ifying some of the sentences. We demonstrate in
Figure 3 how predicted sentiments can be changed
using a sample sentence. In Figure 3, we change
the sentiment of sentence with minimal interrup-
tion, i.e. “good” to “not good” or “bad”. While
all models reacted to the change significantly,
GRA predicts a major sentiment shift and is the
only one that changes the overall output prediction
to negative. We believe the abrupt change in sen-
timent observed by GRA is caused by the model
capturing phrase level changes.
4.2 Structure-dependent Models
In Table 3, we compare GRA with state-of-the-
art structure-dependent models. Although we
were only able to run one baseline against the
noisy Yelp dataset (due to both availability of re-
implementation and the lack of a good sentence-
grammar tree), GRA shows comparable results to

Figure 3: Change of sentiment distribution when
sentiment of sentence is manually reversed. Sen-
timent distribution is obtained by feeding the de-
rived sentence vectors to the softmax layer. The
sample sentence was a positive sentence: “If you
sometimes like to go to the movies to have fun, this
movie is a good place to start”. We replaced “a
good” with “not a good” to reverse the sentiment
of the sentence.

these models, and does no worse than second place
for SST5 and SST2.

Table 3: Accuracy of GRA against structure de-
pendent methods.† has same meaning as Table 1.

5 Conclusion

We propose a novel structure-free method for
combining RNN with CNN to improve sentence
modeling. While CNN captures phrase-level in-
formation by convoluting sub-sentences, RNN
preserves global sentence information. Our soft-
alignment mechanism helps to combine the two.
Empirical results show that our hybrid model out-
performs the baseline structure-free models, and
performs similarly to structure-dependent models.
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Abstract

Recently, there has been a lot of activity
in learning distributed representations of
words in vector spaces. Although there are
models capable of learning high-quality
distributed representations of words, how
to generate vector representations of the
same quality for phrases or documents still
remains a challenge. In this paper, we pro-
pose to model each document as a multi-
variate Gaussian distribution based on the
distributed representations of its words.
We then measure the similarity between
two documents based on the similarity
of their distributions. Experiments on
eight standard text categorization datasets
demonstrate the effectiveness of the pro-
posed approach in comparison with state-
of-the-art methods.

1 Introduction

During the past decade, there has been a signif-
icant increase in the availability of textual infor-
mation mainly due to the exploding popularity of
the World Wide Web. This tremendous amount
of textual information growth has established the
need for the development of effective text-mining
approaches.

Traditionally, documents are represented as
bag-of-words (BOW) vectors. The BOW repre-
sentation is very simple and it has proven effec-
tive in easy and moderate tasks, however, for more
demanding tasks, such as short text modeling, its
performance drops significantly.

In order to overcome the weakness of BOW,
researchers proposed methods that try to learn

a latent low-dimensional representation of docu-
ments. Latent Semantic Analysis (Deerwester et
al., 1990) and Latent Dirichlet Allocation (Blei et
al., 2003) are the main employed methods for this
task. However, these methods do not systemati-
cally yield improved performance compared to the
BOW representation.

Recently, there has been a growing interest in
methods for learning distributed representations of
words (Bengio et al., 2003; Collobert et al., 2011;
Mikolov et al., 2013; Mnih and Kavukcuoglu,
2013; Pennington et al., 2014; Lebret and Col-
lobert, 2014). In the embedding space, semanti-
cally similar words are likely to be close to each
other. Moreover, simple linear operations on word
vectors can produce meaningful results. For exam-
ple, the closest vector to “Vietnam” + “capital” is
found to be “Hanoi” (Mikolov et al., 2013).

Several recent works make use of distributed
representations of phrases to tackle various NLP
problems (Bahdanau et al., 2015; Lebret et al.,
2015). There is therefore a clear need for methods
that generate meaningful phrase or document rep-
resentations based on the representations of their
words. The most straightforward approach gener-
ates phrase or document representations by simply
summing the vector representations of the words
appearing in the phrase or document.

In this paper, we propose to model documents
as multivariate Gaussian distributions. The mean
of each distribution is the average of the vector
representations of its words and its covariance ma-
trix measures the variation of the dimensions from
the mean with respect to each other. Empirical
evaluation proves the superiority of the proposed
representation over the standard BOW represen-
tation and other baseline approaches in a host of
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different datasets.
The rest of this paper is organized as follows.

Section 2 provides an overview of the related
work. Section 3 provides a description of the pro-
posed approach. Section 4 evaluates the proposed
representation. Finally, Section 5 concludes.

2 Related Work

Mitchell and Lapata (2008) proposed a gen-
eral framework for generating representations of
phrases or sentences. They computed vector
representations of short phrases as a mixture of
the original word vectors, using several different
element-wise vector operations. Later, their work
was extended to take into account syntactic struc-
ture and grammars (Erk and Padó, 2008; Baroni
and Zamparelli, 2010; Coecke et al., 2010). Lebret
and Collobert (2015) proposed to learn representa-
tions for documents by averaging their word rep-
resentations. Their model learns word represen-
tations suitable for summation. Le and Mikolov
(2014) presented an algorithm to learn vector rep-
resentations for paragraphs by inserting an addi-
tional memory vector in the input layer. Song and
Roth (2015) presented three mechanisms for gen-
erating dense representations of short documents
by combining Wikipedia-based explicit semantic
analysis representations with distributed word rep-
resentations.

Neural networks with convolutional and pool-
ing layers have also been widely used for gen-
erating representations of phrases or documents.
These networks allow the model to learn which
sequences of words are good indicators of each
topic, and then, combine them to produce vec-
tor representations for documents. These archi-
tectures have been proved effective in many NLP
tasks, such as document classifcation (Johnson
and Zhang, 2015), short-text categorization (Wang
et al., 2015), sentiment classification (Kalchbren-
ner et al., 2014; Kim, 2014) and paraphrase detec-
tion (Yin and Schütze, 2015).

3 Gaussian Document Representation
from Word Embeddings

Let D = {d1, d2, . . . , dm} be a set of m doc-
uments. The documents are pre-processed (to-
kenization, punctuation and special character re-
moval) and the vocabulary of the corpus V is ex-
tracted. To obtain a distributed representation for
each word w ∈ V , we employed the word2vec

model (Mikolov et al., 2013). Specifically, for our
experiments, we used a publicly available model1

M consisting of 300-dimensional vectors trained
on a Google News dataset of about 100 billion
words. Words contained in the vocabulary w ∈ V ,
but not contained in the model w 6∈ M were ini-
tialized to random vectors.

To generate a representation for each document,
we assume that its words were generated by a mul-
tivariate Gaussian distribution. Specifically, we re-
gard the embeddings of all words w present in a
document as i.i.d. samples drawn from a multi-
variate Gaussian distribution:

w ∼ N (µ,Σ) (1)

where w is the distributed representation of a word
w, µ is the mean vector of the distribution and Σ
its covariance matrix.

We set µ and Σ to their Maximum Likeli-
hood estimates, given by the sample mean and the
empirical covariance matrix respectively. More
specifically, the sample mean of a document cor-
responds to the centroid of its words, i. e. we add
the vectors of the words present in the text and nor-
malize the sum by the total number of words. For
an input sequence of words d, its mean vector µ is
given by:

µ =
1
|d|
∑
w∈d

w (2)

where |d| is the cardinality of d, i. e. its number
of words. The empirical covariance matrix is then
defined as:

Σ =
1
|d|
∑
w∈d

(w − µ)(w − µ)T (3)

Hence, each document is represented as a mul-
tivariate Gaussian distribution and the problem
transforms from classifying textual documents to
classifying distributions.

To measure the similarity between pairs of doc-
uments, we compare their Gaussian representa-
tions. There are several well-known definitions
of similarity or distance between distributions.
Some examples include the Kullback-Leibler di-
vergence, the Fisher kernel, the χ2 distance and
the Bhattacharyya kernel. However, most of these
measures are very time consuming. In our setting
where µ and Σ are very high-dimensional (if n

1https://code.google.com/archive/p/word2vec/
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is the dimensionality of the distributed representa-
tions, then µ ∈ Rn and Σ ∈ Rn×n), the complex-
ity of these measures is prohibitive, even for small
document collections.

We proceed by defining a more efficient func-
tion for measuring the similarity between two dis-
tributions. More specifically, the similarity be-
tween two documents d1 and d2 is set equal to
the convex combination of the similarities of their
mean vectors µ1 and µ2 and their covariance ma-
trices Σ1 and Σ2. The similarity between the
mean vectors µ1 and µ2 is calculated using cosine
similarity:

sim(µ1,µ2) =
µ1 · µ2

‖µ1‖‖µ2‖
(4)

where ‖ · ‖ is the Euclidean norm for vectors. The
similarity between the covariance matrices Σ1 and
Σ2 can be computed using the following formula:

sim(Σ1,Σ2) =
∑

Σ1 ◦Σ2

‖Σ1‖F × ‖Σ2‖F (5)

where (· ◦ ·) is the Hadamard or element-wise
product between matrices (we sum over all its ele-
ments) and ‖ · ‖F is the Frobenius norm for matri-
ces. Hence, the similarity between two documents
is equal to:

sim(d1, d2) = α
(
sim(µ1,µ2)

)
+ (1− α)

(
sim(Σ1,Σ2)

) (6)

where α ∈ [0, 1]. It is trivial to show that the above
similarity measure is also a valid kernel function.

4 Experiments

We evaluate the proposed approach as well as the
baselines in the context of text categorization on
eight standard datasets.

4.1 Baselines
We next present the baselines against which we
compared our approach:

1) BOW (binary) Documents are represented
as bag-of-words vectors. If a word is present in
the document its entry in the vector is 1, otherwise
0. To perform text categorization, we employed a
linear SVM classifier.

2) NBSVM It combines a Naive Bayes classi-
fier with an SVM and achieves remarkable results
on several tasks (Wang and Manning, 2012). We
used a combination of both unigrams and bigrams
as features.

Dataset
# training # test

# classes
vocabulary word2vec

examples examples size size
Reuters 5, 485 2, 189 8 23, 585 15, 587
Amazon 8, 000 CV 4 39, 133 30, 526
TREC 5, 452 500 6 9, 513 9, 048

Snippets 10, 060 2, 280 8 29, 276 17, 067
BBCSport 348 389 5 14, 340 13, 390

Polarity 10, 662 CV 2 18, 777 16, 416
Subjectivity 10, 000 CV 2 21, 335 17, 896

Twitter 3, 115 CV 3 6, 266 4, 460

Table 1: Summary of the 8 datasets that were used
in our document classification experiments.

3) Centroid Documents are projected in the
word embedding space as the centroids of their
words. This representation corresponds to the
mean vector µ of the Gaussian representation pre-
sented in Section 3. Similarity between documnets
is computed using cosine similarity (Equation 4).

4) WMD Distances between documents are
computed using the Word Mover’s Distance (Kus-
ner et al., 2015). To compute the distances, we
used pre-trained vectors from word2vec. A k-nn
algorithm is then employed to classify the docu-
ments based on the distances between them. As in
(Kusner et al., 2015), we used values of k ranging
from 1 to 19.

5) CNN A convolutional neural network ar-
chitecture that has recently showed state-of-the-
art results on sentence classification (Kim, 2014).
We used a model with pre-trained vectors from
word2vec where all word vectors are kept static
during training. As regards the hyperparameters,
we used the same settings as in (Kim, 2014): rec-
tified linear units, filter windows of 3, 4, 5 with
100 feature maps each, dropout rate of 0.5, l2 con-
straint of 3, mini-batch size of 50, and 25 epochs.

4.2 Datasets

In our experiments, we used several standard
datasets: (1) Reuters: contains stories collected
from the Reuters news agency. (2) Amazon: prod-
uct reviews acquired from Amazon over four dif-
ferent sub-collections (Blitzer et al., 2007). (3)
TREC: a set of questions classified into 6 differ-
ent types (Li and Roth, 2002). (4) Snippets:
consists of snippets that were collected from the
results of Web search transactions (Phan et al.,
2008). (5) BBCSport: consists of sports news
articles from the BBC Sport website (Greene and
Cunningham, 2006). (6) Polarity: consists
of positive and negative snippets acquired from
Rotten Tomatoes (Pang and Lee, 2005). (7)
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Method
Dataset Reuters Amazon TREC Snippets

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score
BOW (binary) 0.9571 0.8860 0.9126 0.9127 0.9660 0.9692 0.6171 0.5953
Centroid 0.9676 0.9171 0.9311 0.9312 0.9540 0.9586 0.8123 0.8170
WMD 0.9502 0.8204 0.9200 0.9201 0.9240 0.9336 0.7417 0.7388
NBSVM 0.9712 0.9155 0.9486 0.9486 0.9780 0.9805 0.6474 0.6357
CNN 0.9707 0.9297 0.9448 0.9449 0.9800 0.9800 0.8478 0.8466
Gaussian 0.9712 0.9388 0.9498 0.9497 0.9820 0.9841 0.8224 0.8244

Method
Dataset BBCSport Polarity Subjectivity Twitter

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score
BOW (binary) 0.9640 0.9690 0.7615 0.7614 0.9004 0.9004 0.7467 0.6205
Centroid 0.9923 0.9915 0.7783 0.7782 0.9100 0.9100 0.7361 0.5727
WMD 0.9871 0.9866 0.6642 0.6639 0.8604 0.8603 0.7031 0.4436
NBSVM 0.9871 0.9892 0.8698 0.8698 0.9369 0.9368 0.7852 0.6191
CNN 0.9486 0.9461 0.8037 0.8031 0.9315 0.9314 0.7549 0.6137
Gaussian 0.9974 0.9974 0.8021 0.8020 0.9310 0.9310 0.7534 0.6443

Table 2: Performance (accuracy and macro-average F1-score) in text categorization on the 8 datasets.

Subjectivity: contains subjective sentences
gathered from Rotten Tomatoes and objective sen-
tences gathered from the Internet Movie Database
(Pang and Lee, 2004). (8) Twitter: contains
a set of tweets, each labeled with its sentiment
(Sanders, 2011). Table 1 shows statistics of the
8 datasets.

4.3 Text Categorization

To perform text categorization, we employed an
SVM classifier (Boser et al., 1992). Since the pro-
posed similarity function (Equation 6) is a kernel,
we directly built the kernel matrices2. We tuned
parameter α of the proposed approach using cross-
validation on the training set of TREC and used
the same value on all datasets (α = 0.5).

To assess the effectiveness of the different ap-
proaches, we employed two well-known evalu-
ation metrics: accuracy and macro-average F1-
score. Table 2 shows the performance of the con-
sidered approaches on the eight text categorization
datasets. On all datasets except three (Snippets,
Polarity, Subjectivity), the proposed approach out-
performs the other methods. Furthermore, on two
of the remaining three datasets (Snippets, Sub-
jectivity), it achieves performance comparable to
the best-performing methods. WMD is the worst-
performing method on most datasets. This may
be due to the k-nn algorithm that is employed to
classify the documents. NBSVM achieves impres-
sive results on all datasets, considering that it does

2Our code is available at: http://www.db-net.
aueb.gr/nikolentzos/code/gaussian.zip
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Figure 1: Classification accuracy of the proposed
method with respect to parameter α on the TREC
dataset.

not utilize word embeddings. It is also important
to note that the approaches that use word embed-
dings (Centroid, WMD, CNN, Gaussian) achieve
an immense increase in performance on the Snip-
pets dataset. One possible explanation is that these
snippets belong to domains that are highly related
to these of the articles on which the word2vec
model was trained. Overall, our results demon-
strate the effectiveness of the proposed method
and the benefit of using word embeddings for mea-
suring the similarity between pairs of documents.

As regards the proposed method, we also com-
puted the sensitivity of the classification to the
value of parameter α. Specifically, Figure 1 shows
how the classification accuracy changes with re-
spect to parameter α on the TREC dataset. As you
can see, the highest accuracy is achieved for val-
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ues of α close to 0.5. Furthermore, when dropping
the second term of Equation 6 (α = 1), the method
is equivalent to the Centroid baseline and the per-
formance drops significantly.

5 Conclusion

We proposed an approach that models each docu-
ment as a Gaussian distribution based on the em-
beddings of its words. We then defined a function
that measures the similarity between two docu-
ments based on the similarity of their distributions.
Empirical evaluation demonstrated the effective-
ness of the approach across a range of datasets. We
attribute this performance gain of the proposed ap-
proach to the high quality of the embeddings and
its ability to effectively utilize these embeddings.
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Abstract

In many natural language processing
tasks, a document is commonly mod-
eled as a bag of words using the
term frequency-inverse document fre-
quency (TF-IDF) vector. One major short-
coming of the TF-IDF feature vector is
that it ignores word orders that carry syn-
tactic and semantic relationships among
the words in a document. This paper pro-
poses a novel distributed vector represen-
tation of a document called DV-LSTM.
It is derived from the result of adapting
a long short-term memory recurrent neu-
ral network language model by the doc-
ument. DV-LSTM is expected to capture
some high-level sequential information in
a document, which other current document
representations fail to do. It was evalu-
ated in document genre classification in
the Brown Corpus , the BNC Baby Cor-
pus, and the Penn Treebank Dataset. The
results show that DV-LSTM significantly
outperforms TF-IDF vector and paragraph
vector (PV-DM) in most cases, and their
combinations may further improve classi-
fication performance.

1 Introduction

In many classification tasks in the area of natu-
ral language processing (NLP), it is necessary to
transform text documents of variable lengths into
vectors of a fixed length so that they can be clas-
sified or compared as most classifiers only work
on inputs of a fixed length. Perhaps the most
popular document vectors is the term frequency-
inverse document frequency (TF-IDF) feature vec-

tor (Robertson and Jones, 1976). Term-frequency-
based document vectorization makes two assump-
tions (Cachopo, 2007; Le and Mikolov, 2014): (a)
occurrences of each term are mutually indepen-
dent, and (b) a document is treated as a “bag of
words” and different permutations of the same set
of words are considered to be same. These as-
sumptions suffers from a major drawback that it
ignores word orders and other sequential informa-
tion in a document which can be important in some
NLP tasks such as genre classification. For exam-
ple, ‘Wall’ and ‘Street’ in the named entity ‘Wall
Street’ are treated as independent words in a TF-
IDF vector. Using an n-gram TF-IDF vector may
alleviate the problem to some extent, but it is still
hard to capture long-distance or high-level abstract
sequential patterns. Moreover, (n-gram) TF-IDF
vectors cannot capture syntactic or semantic re-
lationship/similarity between words, paragraphs,
and documents. Another notable document vec-
torization is the paragraph vector that learns from
a distributed memory model (PV-DM), which is
a succinct distributed representation of sentences
or paragraphs (Le and Mikolov, 2014; Dai et al.,
2015; Ai et al., 2016). PV-DM has been shown
to perform significantly better than the bag-of-
words model in many NLP tasks. Moreover, skip-
thought vectors (Kiros et al., 2015) that are de-
rived from recurrent encoder-decoder models also
show superior performance against the bag-of-
words model.

In this paper, we propose a novel document
vectorization method which adapts1 a long short-
term memory recurrent neural network (RNN)
language model (LSTM-LM) (Sundermeyer et al.,
2012) with a document, and then vectorize the

1One may also treat our adaptation method as re-training
the initial LSTM-LM with the adapting document.
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adapted model parameters to obtain its document
vector, labeled as DV-LSTM. Since the recurrent
nature of LSTM-LM should capture some high-
level and abstract sequential information from its
training documents, if the LM adaptation is ef-
fective, each adapted LM will contain distinctive
sequential information of the adapting document,
and the adapted parameters may be used to rep-
resent the adapting document distinctively. Our
DV-LSTM is similar to the TF-IDF vector and PV-
DM in that they all can be derived in an unsuper-
vised manner. Compared with the TF-IDF vector,
DV-LSTM is more expressive as it makes use of
continuous word embedding and sequential infor-
mation in a document. Compared with PV-DM,
DV-LSTM does not suffer from the limitation due
to a sliding context window on the inputs.

2 LSTM Language Modeling

RNN language model (LM) — especially the
long short-term memory language model (LSTM-
LM) — is the state-of-the-art language models
(Mikolov et al., 2010; Mikolov et al., 2011; Ben-
gio et al., 2006). LSTM-LM is chosen to de-
velop our document vectorization for three rea-
sons. Firstly, it can capture comparatively more
distant patterns in a document that are not limited
by the size of the input context window. Thus, the
model parameters of an LSTM-LM can encapsu-
late the different grammars and styles in its train-
ing documents. Secondly, the hidden layer(s) of
an LSTM provide a distributed representation of
the input words in a continuous space so that the
semantic and syntactic relationship among words
can be captured. Finally, by controlling the size
of the hidden layer(s) and the model parameters
to adapt, one may effectively adjust the number of
model parameters to adapt according to the size
of the adapting document to ensure that the final
document vector is derived robustly.

Figure 1 shows the LSTM-LM network for
training our document vectors. The input to the
model is the current word wt represented by its
one-hot encoding, which is projected to a dis-
tributed representation by a linear identity com-
pression layer and then by a non-linear sigmoid
layer. The identity compression layer also helps
make the model more compact so as to improve
training speed. Let st be the hidden state for the
input word wt. The model is trained to give two
kinds of outputs to the word class layer (vt) as

Figure 1: The LSTM network chosen to derive our
document vectors. (The recurrency of LSTM cells
is not shown)

well as to the output word layer (wt+1) (Mikolov
et al., 2011). That is, it produces the posterior
probability P (vt|st) of the word class vt given
the current state st, and the posterior probability
P (wt+1|vt, st) of the next word wt+1 given the
current word class and LSTM state.

3 Document Vectorization by LSTM-LM
Adaptation

We propose to derive document vectors (DVs)
from a well-trained parent LSTM language model
by adaptation using the following procedure:

STEP 1: Train a parent LM using all the docu-
ments in a training corpus.

STEP 2: Adapt the parent LM with each document
in the training corpus.

STEP 3: Extract model parameters of interest
from the adapted LM, and vectorize them to
produce DV-LSTM for the adapting document.

3.1 Derivation of DV-LSTM
In our experiments, the LSTM neural network of
Figure 1 has 200 units in the identity compres-
sion layer, 100 units in the sigmoid compression
layer, 100 LSTM units, 500 word classes and V
output units (where V is the vocabulary size). In
the derivation of DV-LSTM, only the biases in the
sigmoid layer bl ∈ R100, LSTM layer bm ∈ R400,
and word-class layer bc ∈ R500 are adapted. The
LSTM bias vector bm is further comprised of four
100-dimensional bias sub-vectors: input-gate bi-
ases bmi , forget-gate biases bmf

, output-gate bi-
ases bmo , and cell biases bmc .
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The 3 different biases are supposed to capture
different and complementary information in a doc-
ument: bl is to capture the abstract and distributed
word embeddings; bm is to capture the long-span
sequential text information in a document; bc is to
capture the word class statistics. The 3 biases are
concatenated to the final 1000-dimensional DV-
LSTM document vector as follows:

DV-LSTM = [n(b′ml), n(b′c)]
′ , (1)

where bml is given by

[n(b′mi
), n(b′mf

), n(b′mo
), n(b′mc

), n(b′l)]
′ . (2)

In Eq.(1) and Eq.(2), n(·) is the normalization op-
erator which normalizes a vector to the unit norm.

According to some previous researches in genre
classification, it is found that models fitted on
some lower-level features (e.g., term-frequency re-
lated feature, which is highly correlated to the
topic and language) may actually hurt genre clas-
sification when they are tested on new documents
of the same genre but of different topic or lan-
guage (Petrenz and Webber, 2011; Petrenz, 2009;
Petrenz, 2012).

In our model, bm is a high-level abstract fea-
ture, which is relatively independent of the topic or
language specific term-frequency distribution. bc

is a lower-level feature that is related to the word
clusters. Comparing with n-gram term-frequency
features whose good performance depend on a
strong topic-genre correlation, bc is a relatively
moderate lower-level feature. We believe that by
combining high-level abstract features and lower-
level features, our model may perform better in
situations where the term-frequency based pattern
is not entirely reliable for classification. Such is
the case in the genre classification tasks of this pa-
per, where term-frequency distribution can be con-
fused by different topic-genre correlation.

4 Experimental Evaluation: Text Genre
Classification

The proposed document vector DV-LSTM was
evaluated on the genre classification of documents
in three corpora:

• Brown Corpus (Brown) (Francis and Kucera,
1979): It consists of 500 documents with a to-
tal of about 1 million words distributed across
15 genres organized hierarchically in three
levels. The sub-genres under the fiction genre

were merged (Wu et al., 2010) so that the to-
tal number of genres was reduced to 10.

• BNC Baby Corpus (BNCB) (Burnard, 2003):
It is a subset of BNC, consisting of 182 doc-
uments written in 4 genres: fiction, newspa-
pers, academic and conversation. Each genre
consists of a total of about 1 million words.

• Penn Treebank Dataset (PTB): It was artifi-
cially extracted from the Penn Treebank Cor-
pus by taking out the documents that have
genre tags provided by (Webber, 2009; Plank,
2009). It has 5 genres: essays, highlights, let-
ters, errata and news. The errata genre was
removed as there are very few documents of
that genre. We also removed short documents
with fewer than 200 words from the dataset.
At the end, the dataset has a total of 239 doc-
uments in 4 genres: 38 highlights, 95 essays,
42 letters, and 64 news.

4.1 Text pre-processing and SVM training

The Natural Language Toolkit (NLTK) (Loper
and Bird, 2002) was used for tokenization, and
the WordNet Lemmatizer (Miller, 1994) was used
for text pre-processing. The letters in the docu-
ments were also converted to lower cases to im-
prove the TF-IDF baseline performance, and the
word classes were determined by Brown cluster-
ing (Brown et al., 1992). During the unsupervised
training of PV-DMs and DV-LSTMs, documents
in a dataset were shuffled to eliminate the possibil-
ity that a classifier may simply use the position of
documents for genre classification. All data were
mean-zeroed before inputting to the classifier.

For each type or combination of document fea-
ture vectors, a linear SVM classifier was built
from the training dataset using LinearSVC from
the scikit-learn toolkit2. To improve the reliabil-
ity of experimental results, documents in each cor-
pus were shuffled ten times, and for each shuffled
dataset, a 10-fold cross-validation was conducted.
Our DV-LSTM was tested against the TF-IDF fea-
ture and the state-of-the-art paragraph vector PV-
DM. Results are reported in terms of classification
accuracies that are averages from classifications
over 10× 10-fold cross validations.

2Empirically, we did not get better results using nonlinear
kernels such as the RBF kernel.
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4.2 Training of document vector DV-LSTM

The RWTH Aachen University Neural Network
Language Modeling Toolkit (RWTHLM) (Sunder-
meyer et al., 2015; Sundermeyer et al., 2014)
was used for training all LSTM-LMs and adapting
them to produce the DV-LSTMs. The length of
historical context is the concatenation of the de-
fault sentence segmentations in the original cor-
pus up to 500 characters. The parent model was
trained with a maximum of 10 epochs, while LM
adaptation took at most 15 epochs. The initial
learning rates were set to 0.02. The sub-vectors in
bm were whitened first (mean-zeroed and scaling
to the unit variance for each axis) before concate-
nation.

Table 1: Values of various hyperparameters being
tuned for the derivation of the best PV-DM.

context window size {5, 10, 15, 20}
min. word frequency {0, 5, 10, 20}

negative word samples {0, 10 , 20}
downsampling threshold {0, 5E-5}

4.3 Training of paragraph vector PV-DM

A PV-DM was trained for each document in a cor-
pus using the Gensim toolkit (Řehůřek and Sojka,
2010). They were trained for 20 epochs with an
initial learning rate of 0.025. PV-DMs with di-
mensions of 100, 500 and 2000 were investigated,
and it was found that PV-DMs of 500 dimensions
provide consistently good performance; they are
denoted as PV500. The optimal hyperparameters
for PV-DM derivation were grid-searched for each
task using 1/10 of its corpus data. The hyperpa-
rameters and their values tried in the grid search
are summarized in Table 1.

Most hyperparameters in Table 1 are also shared
by the training of DV-LSTM. However, due to the
limitation of the current experiment platform and
the cost of grid searches, we do not tune these hy-
perparameters in training DV-LSTM. Hence the
corresponding hyperparameters in DV-LSTM are
all set to 0 unless stated explicitly. Thus DV-
LSTM is expected to have a disadvantage in the
tuning of hyperparameters.

4.4 Summary

Table 2 summarizes the dimension of various fea-
ture vectors used in the experiments, where z1000

5

Table 2: The dimension of various feature vectors.

Feature Dimension
PV500 500
z1000
5 1,000

DV-LSTM 1,000
z5 10,000

and z5 represent the TF-IDF feature vectors using
the top 1,000 and 10,000 5-grams respectively.

4.5 Experimental Results
The genre classification accuracy and the weighted
F-score results using different feature vectors over
the three corpora are summarized in Table 3 and
Table 4.

Table 3: Genre classification accuracy (%).

Features PTB Brown BNCB
4-char-gram* - 64.40 -

5-gram z5 80.91 65.24 96.27
PV500 81.63 65.68 98.35

DV-LSTM-bm 75.93 60.14 98.50
DV-LSTM-bc 82.63 63.88 99.45

DV-LSTM 84.70 65.20 100.00
DV-LSTM-PV500 86.00 67.00 100.00
DV-LSTM-z1000

5 86.38 66.84 100.00

Table 4: Genre classification F-score.

Features PTB Brown BNCB
1-gram* - - 0.913
5-gram* - - 0.956
5-POS* - - 0.947

5-gram z5 0.7996 0.6275 0.9623
PV500 0.8154 0.6455 0.9820

DV-LSTM-bm 0.7559 0.5959 0.9841
DV-LSTM-bc 0.8239 0.6326 0.9941

DV-LSTM 0.8434 0.6443 1.0000
DV-LSTM-PV500 0.8576 0.6613 1.0000
DV-LSTM-z1000

5 0.8607 0.6614 1.0000

Besides individual features, we also investi-
gated the contribution of each bias vector in DV-
LSTM and the possibility of feature combinations.
The bold results represent the best performance for
each task given by a single feature or a set of com-
bined features. Results labeled with * are baseline
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results quoted from (Tang and Cao, 2015; Wu et
al., 2010).

We have the following observations:

• For both the Brown Corpus and BNCB Cor-
pus, results from our own 5-gram TF-IDF are
better than the quoted baselines.

• In general, our DV-LSTM performs better
than PV-DM, and PV-DM performs better
than the 5-gram TF-IDF. All the bold results
are statistically significantly better than the
5-gram TF-IDF results based on the paired
sample t-test (Dietterich, 1998) at the 99%
confidence level.

• Among the single features, the proposed DV-
LSTM performs the best in both PTB and
BNCB tasks, and gives comparable perfor-
mance as PV500 in the Brown Corpus.

One possible reason is that the hyperparame-
ters for training DV-LSTM were not as fine-
tuned as those for PV500, giving DV-LSTM
a disadvantage. Another plausible reason is
that PTB’s genres are almost unrelated to the
topics and it likely requires more abstract se-
quential information for their classification.
On the other hand, the Brown Corpus has a
relatively strong overlapping between topics
and genres. Thus, features such as TF-IDF or
PV-DM that have good estimates of the term
frequencies of topic related words/phrases
could perform better.

• Both PV500 and our DV-LSTM show supe-
rior performance comparing to the traditional
n-gram TF-IDF. This is probably attributed
to the neural network’s capability of learning
abstract patterns. Moreover, the paragraph
vector and our DV-LSTM are dense represen-
tations of documents. They have more util-
ity than the sparse TF-IDF vector, especially
when comparing the semantic and syntactic
similarity of documents.

• Between the two bias components of our DV-
LSTM, it is interesting to see that the LSTM
bias vector bm (and its results are labeled
with DV-LSTM-bm in Tables 3 and 4) is out-
performed by the class bias vector bc (and its
results are labeled with DV-LSTM-bc in Ta-
bles 3 and 4). Nevertheless, it seems that they
are complementary to each other, and their

combination in DV-LSTM further improves
the classification performance.

5 Conclusions and Future Works

This paper proposes a novel distributed represen-
tation of a document, which we call “document
vector” (DV). Currently, we estimate the DV by
adapting the various bias vectors and the word
class bias of an LSTM-LM network trained from
the corpus of a task. We believe that these pa-
rameters capture some word ordering information
in a larger context that may supplement the stan-
dard frequency-based TF-IDF feature or the para-
graph vector PV-DM in solving many NLP tasks.
Here, we only confirm its effectiveness in docu-
ment genre classification. In the future, we would
like to investigate the effectiveness of our DV-
LSTM in other NLP problems such as topic clas-
sification and sentiment detection. Moreover, we
would also like to investigate the utility of this
model (or its variants) in the cross-lingual prob-
lems, as high-level sequential pattern captured by
the (deep) hidden layers is expected to be rela-
tively language independent.
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Černockỳ, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 5528–
5531. IEEE.

George A. Miller. 1994. Wordnet: A lexical database
for english. In HUMAN LANGUAGE TECHNOL-
OGY: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994, page 468.

Philipp Petrenz and Bonnie Webber. 2011. Squibs:
Stable classification of text genres. Computational
Linguistics, 37(2):385–394.

Philipp Petrenz. 2009. Assessing approaches to genre
classification. Master’s thesis, School of Informat-
ics, University of Edinburgh.

Philipp Petrenz. 2012. Cross-lingual genre classifica-
tion. In Proceedings of the Student Research Work-
shop at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,

pages 11–21, Avignon, France, April. Association
for Computational Linguistics.

Barbara Plank. 2009. PTB/PDTB files
belonging to different genres. http:
//www.let.rug.nl/˜bplank/metadata/
genre_files_updated.html.
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Abstract

We introduce a novel, fully unsupervised
method to extract keywords from meeting
speech in real-time. Our approach repre-
sents text as a word co-occurrence network
and leverages the k-core graph decompo-
sition algorithm and properties of submod-
ular functions. We outperform multiple
baselines in a real-time scenario emulated
from the AMI and ICSI meeting corpora.
Evaluation is conducted against both ex-
tractive and abstractive gold standard us-
ing two standard performance metrics and
a newer one based on word embeddings.

1 Introduction

Motivation. People spend a significant amount of
their time attending meetings. To benefit from re-
cent technological advances, many companies are
now using web-based meeting tools that can ac-
commodate remote participants and allow video in
addition to voice calls. While very useful, those
tools typically do not offer extra features beyond
screen sharing or instant messaging. In particular,
they broadcast participant voices without leverag-
ing the rich information conveyed in speech. Yet,
the use of Automatic Speech Recognition (ASR)
systems opens the gate to numerous text min-
ing applications that can assist participants as the
meeting unfolds, or once it is over.
Goals. Here, we focus on extracting keywords in
real-time from speech transcriptions (ASR output)
over the course of a virtual meeting. This task
is very important, as current keywords provide a
snapshot of the ongoing topics and can be used to

∗This research is supported in part by the OpenPaaS::NG
project.

improve productivity in a variety of ways: (1) on
the fly retrieval of relevant internal and external
resources (webpages, emails) based on the topics
detected, (2) constant maintenance of a meeting
summary to enable latecomers to quickly catch-
up, and (3) smart indexing once the meeting is
over.
Challenges. Processing multi-party meeting
speech transcriptions is a difficult NLP task. First,
spontaneous speech differs from traditional docu-
ments. In lieu of well-formed, self-contained sen-
tences, the data consist of fragments of speech
transcripts called utterances, which are often ill-
formed, ungrammatical, and contain informal or
filler words (e.g., “uh-huh”). Moreover, speakers
dilute important information by frequently paus-
ing, interrupting each other, and chit-chatting.
Second, errors made by the ASR system inject
some additional noise into the transcriptions.
Contributions.
1. We build on the k-core graph decomposition
algorithm to assign scores to terms. As will be
explained, our approach is particularly well suited
to speech transcriptions as it is fully unsupervised
and robust to noise.
2. To select the best terms, we propose a new key-
word quality function and prove that it is submod-
ular, which enables its near-optimal optimization
under a budget constraint in a way fast enough to
meet the real-time requirements.
3. We evaluate the performance of our method
against that of numerous baselines on two stan-
dard, well-known datasets (AMI and ICSI), and
reach state-of-the-art performance.
4. Finally, we release our code and data as pub-
licly available1, making our study fully repro-

1
https://goo.gl/rIlDd6
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ducible. Furthermore, our system can be interac-
tively tested online2.

In the remainder of this paper, we introduce our
system, describe our experiments, and report and
interpret our results.

2 Proposed system

As shown in Figure 1, our system can be broken
down into 4 modules. We describe them in what
follows.

ASR

Text stream

2. Graph 
representation

1. Text 
preprocessing 

3. Term scoring
4. Keyword
extraction 

Figure 1: System architecture

2.1 Text preprocessing
T parameter. We receive as input a stream of text
from the ASR tool, which is composed of utter-
ances of duration 2.01s on average (std. dev. of
2.03). Starting from t=0 (beginning of the meet-
ing), our system considers consecutive intervals Ii
of fixed size T=60s. I1 is made up of all utterances
starting within [0, T [, I2 covers [T, 2T [, etc. The
number of words in each interval (before clean-
ing) is 200 on average (std. dev. of 75). T is a
trade-off parameter: as it increases, more textual
data become available for the interval, which usu-
ally yields better keywords. But on the other hand,
additional lag is introduced. Note that we exper-
imented with dynamic interval length based on
speaker dominance periods, but found that while
increasing complexity, it did not offer noticeable
improvements.
Cleaning. At the end of each time period, we tok-
enize, stem, and remove punctuation and standard
stopwords from the associated utterances. We also
filter out ASR-specific terms indicating inaudible
sounds, pauses, and background noise, such as
{vocalsound}.

2.2 Graph building
Then, from the pre-processed text for the inter-
val, we generate an undirected, weighted graph
of words G(V,E) like in Mihalcea and Tarau
(2004). Word co-occurrence networks are flexi-
ble, information-rich structures with many param-
eters (Tixier et al., 2016b). In the present study,

2
http://83.212.204.91/conversations

the nodes V are unique terms (unigrams) in the
text and two nodes are linked by an edge e ∈ E
if the two words they represent co-occur within a
sliding window of fixed size W = 3 overspanning
utterance boundaries (making our system robust to
utterance segmentation errors). Furthermore, edge
weights match co-occurrence counts. This step is
O(|V |W ) in time, which is very fast for the small
graphs considered here (|V | ≈ |E| ≈ 10).

2.3 Term scoring
k-core. The k-core is one of the most fundamental
constructs in network analysis. A maximal con-
nected subgraph of G is said to be a k-core of G if
each of its nodes has degree greater than or equal
to k (Seidman, 1983). The core number of a node
is the highest order of a k-core that contains this
node.
k-core decomposition. We apply the general-
ized k-core algorithm of Batagelj and Zaveršnik
(2011). Essentially, this algorithm deletes at each
step the vertex of lowest degree (in the current sub-
graph) as well as all its incident edges, which de-
creases the degrees of the nodes in the neighbor-
hood. Note that for a weighted graph, the degree
of a vertex is the sum of the weights of its incident
edges. As shown in Figure 2, the output is the
k-core decomposition of G, that is, the set of all
its cores from 1 (G as a whole) to kmax (its main
core). The k-cores form a hierarchy of nested sub-
graphs whose cohesiveness and size respectively
increase and decrease with k.
Application to keyword extraction. As we
move upwards the k-core hierarchy of a graph
of words, we expect to find more and more key-
words. The underlying assumption is that in a
word co-occurrence network, centrality (as mea-
sured by PageRank, for example) is not the best
“keywordness” criterion, and that it is better in-
stead to look for nodes that are not only central but
that also form tightly knitted substructures with
other nodes, that is, nodes that are part of cohe-
sive subgraphs (Tixier et al., 2016a).
CoreRank. Finally, we assign to each node v in
the graph the sum of the core numbers of its neigh-
bors N (v):

cr(v) =
∑

u∈N (v)

core(u) (1)

We will refer to this scoring scheme as CoreRank
in the remainder of this paper. Assigning scores at
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Figure 2: k-core decomposition of a graph and CoreRank
(CR) scoring scheme. While nodes ? and ?? have the same
score (2) in terms of core numbers, node ? has a greater CR

score (7 vs 5), which accurately reflects its more central
position in the graph.

the node level (rather than at the subgraph level)
allows to better discriminate between vertices,
which makes ranking and selection easier. Also,
stabilizing scores across node neighborhoods in-
creases robustness to noise, which is particularly
desirable when dealing with noisy text like speech
transcriptions.

Complexity. Computing the k-cores is very ef-
ficient: thanks to Batagelj and Zaveršnik (2011), it
can be done inO(|V |+|E| log |V |) time. Comput-
ing the CoreRank scores is also very affordable, as
it is O(|E|) in time. For the small graphs consid-
ered here, these steps can therefore be performed
very quickly, which suits well the real-time nature
of our task.

2.4 Keyword extraction
Keyword quality function. Rather than using
heuristics like in Tixier et al. (2016a) to select
nodes fromG (i.e., to extract tokens from the text),
we frame the keyword identification problem as
the maximization of a set function under a bud-
get constraint. In particular, we define a keyword
quality function f that not only measures the cu-
mulative CoreRank score of a given set of terms S,
but also the density of the subgraph they induce:

f(S) =
∑
v∈S

cr(v)− λh(S) (2)

where λ is a trade-off parameter, and the set func-
tion h counts the number of edges that should be
added to the subgraph induced by S to make it
complete:

h(S) =
(|S|

2

)
− |E(S)| (3)

where |S|, resp. |E(S)|, denotes the number of
vertices, resp. edges, in the subgraph induced by

S. h(S) is null when S is complete (i.e., of unit
density), and increases as the density of the graph
decreases. Recall that a complete graph is a graph
where every two nodes are linked by an edge, and
that a subgraph of G(V,E) induced by a set of
nodes S ⊆ V , has S as its vertices and all the
edges from E for which both endpoints belong to
S as its edges.
Interpretation. The first component of f mea-
sures the extent to which a set contains nodes with
high CoreRank numbers, while its second term (h)
provides an extra layer of cohesiveness require-
ments, by biasing the selection towards a set of
nodes that together form a dense subgraph. To
maximize f , we want to jointly maximize, resp.
minimize, its first and second terms.
Optimization task. Finding the best subset of
terms S∗ ⊆ V to serve as keywords can be seen as
a combinatorial optimization task under a budget
constraint:

S∗ = arg max
S⊆V,

∑
v∈S

cv≤B
f(S) (4)

where cv is the unit cost of including term v as a
keyword, and B is the budget, which we define as
the number of keywords that should be returned.
B can be expressed as a percentage of the total
number of words in the interval, but here we con-
sider it to be fixed.
Performance guarantees. As we prove in the ex-
tended version of this paper, our keyword qual-
ity function f is submodular, enabling Equation 4
(NP-complete) to be solved by a simple greedy al-
gorithm with (1−1/e) ≈ 0.63 approximation guar-
antees (Nemhauser et al., 1978). Note that to ben-
efit from these guarantees, f should also be mono-
tone, which does not apply in our case. However,
we invoke the fact that if |S| � |V | (which holds
here), the monotonicity constraint can be relieved
(Lin et al., 2009; Krause, 2008).

3 Experimental Setup

3.1 Datasets
We used two datasets widely used in the field of
meeting speech processing: the AMI corpus3 (Mc-
Cowan et al., 2005) and the ICSI corpus4 (Janin
et al., 2003). These datasets contain respectively
137 and 57 meetings lasting from 10 to 70 minutes

3
http://groups.inf.ed.ac.uk/ami/corpus/

4
http://www1.icsi.berkeley.edu/Speech/mr/
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(2,400 to 19,000 words) and involving between 2
and 6 participants whose conversations were auto-
matically converted to text with a word error rate
approaching 37%. Each meeting comes with gold
standard in the form of human-written abstractive
and extractive summaries. The extractive sum-
maries were put together by selecting the best ut-
terances from the transcripts. In some cases, mul-
tiple summaries are available for the same meet-
ing.

3.2 Baselines
We evaluated the performance of our system
against that of 5 baselines and an Oracle, which
are presented next.
First, to better interpret our results and enable
easy cross-comparison with other studies, we in-
cluded two standard, basic baselines: (1) selecting
words at random from the processed text (with-
out replacement), and (2) selecting the most fre-
quent words from the processed text. Within our
graph-based submodular framework, we also con-
sidered the replacement of CoreRank scores with
(3) weighted degree centrality (sum of the weights
of the incident edges), (4) PageRank scores (Mi-
halcea and Tarau, 2004), and (5) RAKE scores:
deg(v)/freq(v), where deg(v) is the weighted degree
of term v in the graph and freq(v) its frequency
in the text (Rose et al., 2010). Finally, we used
as an Oracle the (6) most frequent words from the
part of the extractive summary corresponding to
the time interval considered. Of course, we used
the same budget for all baselines, the Oracle, and
our system.

3.3 Evaluation methodology
We compared all systems under two settings.
Scenario 1. Using the traditional vector-space
model, we computed the cosine similarity between
the sum of the one-hot vectors of the keywords
returned by a given method for a particular time
interval, and the sum of the one-hot vectors of
the words in the part of the extractive summary
corresponding to the same interval. Results were
averaged across summaries (when multiple ones
were available), and finally across time intervals
to compute the overall performance of the method
(macro-averaging). For the random baseline, re-
sults were first averaged over 10 runs, to reduce
variance. In this scenario, the method whose key-
words most closely match the gold standard re-
ceives the highest score. Note that using TF-

IDF weighting (rather than integer entries) did not
change the rankings.
Scenario 2. For the sake of completeness, we also
wanted to evaluate performance against the ab-
stractive summaries. However, since the sentences
in those summaries do not come from the tran-
scripts but were freely written by annotators, they
are not time-stamped and thus cannot be linked
to any particular interval. Consequently, to al-
low comparison, we concatenated the keywords
extracted by a given method and for a given meet-
ing from all intervals, thus obtaining a concise
keyword-based summary of the full meeting. To
compute the similarity with the abstractive sum-
maries, we then used ROUGE-1 (Lin, 2004) and
the Word Mover’s Distance (WMD) (Kusner et
al., 2015). ROUGE-1 computes similarity based
on unigram overlap, while the WMD takes into
account semantic similarity between terms, and
is therefore more robust to the fact that the ab-
stractive summaries contain words that were never
actually spoken. Very briefly, the WMD is the
minimum cumulative Euclidean distance needed
for all words in the first summary to travel (in
an embedding space) to the second summary. As
our embeddings, we used publicly available5 300-
dimensional vectors learned by Mikolov et al.
(2013) from a 100B-word corpus (Google News).
Note that since the WMD is a distance, the best
performing methods are associated in that case
with the lowest scores (for ROUGE, which is a
measure of similarity, it is the opposite).

4 Results

Tables 1 and 2 display the results for the first
and second scenarios, respectively. In both
cases, and on both the AMI and ICSI corpora,
CoreRank outperforms the baselines, sometimes
by a wide margin. Overall, the Oracle reaches
best performance, which was expected since it has
direct access to the gold standard. Nevertheless,
it highlights the fact that there is still much room
for improvement. However, it is worth noting that
on the AMI dataset, under the second scenario,
CoreRank outperforms even the Oracle.
Impact of the budget. Figures 3 and 4 report
the results under scenario 1, respectively for the
AMI and ICSI datasets, for an increasing number
of extracted keywords. The curves of the Oracle,
Random and RAKE baselines were omitted for

5
https://code.google.com/archive/p/word2vec/
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readability purposes. On both datasets, as the
number of extracted keywords increases, we
observe that the performance of all methods also
increases. However, the rankings remain stable.
Impact of h. Under the first setting and on
the AMI corpus, we finally investigated how
the density term (h) of our submodular func-
tion f was influencing the performance of the
graph-based systems. As shown in Table 3, h
proved beneficial, even though the improvements
were marginal. The only exception was RAKE,
for which best performance was achieved for
λ = 0 (no density term). Note that the trade-off
parameter λ was optimized for each method on
a small development set consisting of 60 time
intervals randomly drawn (without replacement)
from the AMI corpus. We searched the [0, 3] line,
with uniform steps of size 10−3.

5 Related work

To the best of our knowledge, this study is the
first to investigate the extraction of keywords from
meeting speech transcriptions in real-time. How-
ever, previous work did focus on offline meeting
summarization. For instance, Lin et al. (2009)
used a sentence semantic graph and a differ-
ent submodular objective function. Habibi and
Popescu-Belis (2013) used LDA and submodular-
ity to select keywords covering as many topics as
possible. Here, we assume that at most one topic
can be discussed within each of our short time in-
tervals. Closely related to our work is also that of
Meladianos et al. (2015), who detected sub-events
in real-time from the Twitter stream by stacking
graphs of terms built from full tweets (without
sliding window) and studying the evolution of core
numbers over time in the overall graph. In our
case, however, utterances are not self-contained
pieces of information, and we don’t receive them
at a rate that is high enough to enable any kind of
temporal analysis.

6 Conclusion

we presented a novel approach for real-time key-
word extraction from ASR output, based on the
core decomposition of networks and submodular-
ity. Results show the superiority of our method
over several baselines.

6
http://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.ranksums.html

Method
Dataset AMI ICSI

Oracle 0.849 0.758
CoreRank 0.474* 0.259*

PageRank 0.469 0.250
Degree 0.470* 0.245
Frequency 0.460 0.231
RAKE 0.384 0.196
Random 0.365 0.190

Table 1: Results for scenario 1 (real-time, cosine similarity).
* indicates statistical significance6at p < 0.05 against the

Frequency baseline of the same column.

Method
Dataset AMI ICSI

ROUGE WMD ROUGE WMD

Oracle 22.7 1.582 13.6 1.052
CoreRank 23.7 1.653 13.4 1.699
PageRank 21.9 1.657 13.3 1.701
Degree 21.3 1.657 13.0 1.712
Frequency 21.4 1.661 12.1 1.709
RAKE 19.5 1.724 10.8 1.705
Random 16.1 1.761 7.7 1.772

Table 2: Results for scenario 2 (keyword-based summary of
the entire meeting). With ROUGE, greater is better, while

with WMD, lower is better.
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Figure 3: Performance in scenario 1 (cosine similarity) for a
varying number of extracted keywords, on the AMI corpus.
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Figure 4: Performance in scenario 1 (cosine similarity) for a
varying number of extracted keywords, on the ICSI corpus.

method λ = 0 optimal λ

CoreRank .470 .474
PageRank .466 .469
Degree .467 .470

Table 3: Performance under scenario 1 and on the AMI
corpus, with and without the density-based term of f .
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Abstract

Task-oriented dialogue focuses on con-
versational agents that participate in dia-
logues with user goals on domain-specific
topics. In contrast to chatbots, which sim-
ply seek to sustain open-ended meaning-
ful discourse, existing task-oriented agents
usually explicitly model user intent and
belief states. This paper examines bypass-
ing such an explicit representation by de-
pending on a latent neural embedding of
state and learning selective attention to di-
alogue history together with copying to in-
corporate relevant prior context. We com-
plement recent work by showing the effec-
tiveness of simple sequence-to-sequence
neural architectures with a copy mecha-
nism. Our model outperforms more com-
plex memory-augmented models by 7% in
per-response generation and is on par with
the current state-of-the-art on DSTC2, a
real-world task-oriented dialogue dataset.

1 Introduction

Effective task-oriented dialogue systems are be-
coming important as society progresses toward us-
ing voice for interacting with devices and perform-
ing everyday tasks such as scheduling. To that end,
research efforts have focused on using machine
learning methods to train agents using dialogue
corpora. One line of work has tackled the prob-
lem using partially observable Markov decision
processes and reinforcement learning with care-
fully designed action spaces (Young et al., 2013).
However, the large, hand-designed action and state
spaces make this class of models brittle and un-
scalable, and in practice most deployed dialogue
systems remain hand-written, rule-based systems.

Recently, neural network models have achieved

success on a variety of natural language process-
ing tasks (Bahdanau et al., 2015; Sutskever et al.,
2014; Vinyals et al., 2015b), due to their ability
to implicitly learn powerful distributed represen-
tations from data in an end-to-end trainable fash-
ion. This paper extends recent work examining the
utility of distributed state representations for task-
oriented dialogue agents, without providing rules
or manually tuning features.

One prominent line of recent neural dia-
logue work has continued to build systems with
modularly-connected representation, belief state,
and generation components (Wen et al., 2016b).
These models must learn to explicitly represent
user intent through intermediate supervision, and
hence suffer from not being truly end-to-end train-
able. Other work stores dialogue context in a
memory module and repeatedly queries and rea-
sons about this context to select an adequate sys-
tem response (Bordes and Weston, 2016). While
reasoning over memory is appealing, these mod-
els simply choose among a set of utterances rather
than generating text and also must have temporal
dialogue features explicitly encoded.

However, the present literature lacks results for
now standard sequence-to-sequence architectures,
and we aim to fill this gap by building increasingly
complex models of text generation, starting with
a vanilla sequence-to-sequence recurrent architec-
ture. The result is a simple, intuitive, and highly
competitive model, which outperforms the more
complex model of Bordes and Weston (2016) by
6.9%. Our contributions are as follows: 1) We per-
form a systematic, empirical analysis of increas-
ingly complex sequence-to-sequence models for
task-oriented dialogue, and 2) we develop a recur-
rent neural dialogue architecture augmented with
an attention-based copy mechanism that is able to
significantly outperform more complex models on
a variety of metrics on realistic data.
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2 Architecture

We use neural encoder-decoder architectures to
frame dialogue as a sequence-to-sequence learn-
ing problem. Given a dialogue between a user (u)
and a system (s), we represent the dialogue utter-
ances as {(u1, s1), (u2, s2), . . . , (uk, sk)}where k
denotes the number of turns in the dialogue. At
the ith turn of the dialogue, we encode the aggre-
gated dialogue context composed of the tokens of
(u1, s1, . . . , si−1, ui). Letting x1, . . . , xm denote
these tokens, we first embed these tokens using a
trained embedding function φemb that maps each
token to a fixed-dimensional vector. These map-
pings are fed into the encoder to produce context-
sensitive hidden representations h1, . . . , hm.

The vanilla Seq2Seq decoder predicts the to-
kens of the ith system response si by first comput-
ing decoder hidden states via the recurrent unit.
We denote h̃1, . . . , h̃n as the hidden states of the
decoder and y1, . . . , yn as the output tokens. We
extend this decoder with an attention-based model
(Bahdanau et al., 2015; Luong et al., 2015a),
where, at every time step t of the decoding, an at-
tention score at

i is computed for each hidden state
hi of the encoder, using the attention mechanism
of (Vinyals et al., 2015b). Formally this attention
can be described by the following equations:

ut
i = vT tanh(W1hi +W2h̃t) (1)

at
i = Softmax(ut

i) (2)

h̃′t =
m∑

i=1

at
ihi (3)

ot = U [h̃t, h̃
′
t] (4)

yt = Softmax(ot) (5)

where W1, W2, U , and v are trainable parameters
of the model and ot represents the logits over the
tokens of the output vocabulary V . During train-
ing, the next token yt is predicted so as to max-
imize the log-likelihood of the correct output se-
quence given the input sequence.

An effective task-oriented dialogue system must
have powerful language modelling capabilities
and be able to pick up on relevant entities of an un-
derlying knowledge base. One source of relevant
entities is that they will commonly have been men-
tioned in the prior discourse context. Recent litera-
ture has shown that incorporating a copying mech-
anism into neural architectures improves perfor-
mance on various sequence-to-sequence tasks in-
cluding code generation, machine translation, and

text summarization (Gu et al., 2016; Ling et al.,
2016; Gulcehre et al., 2016). We therefore aug-
ment the attention encoder-decoder model with
an attention-based copy mechanism in the style
of (Jia and Liang, 2016). In this scheme, dur-
ing decoding we compute our new logits vector
as ot = U [h̃t, h̃

′
t, a

t
[1:m]] where at

[1:m] is the con-
catenated attention scores of the encoder hidden
states, and we are now predicting over a vocab-
ulary of size |V | + m. The model, thus, either
predicts a token yt from V or copies a token xi

from the encoder input context, via the attention
score at

i. Rather than copy over any token men-
tioned in the encoder dialogue context, our model
is trained to only copy over entities of the knowl-
edge base mentioned in the dialogue context, as
this provides a conceptually intuitive goal for the
model’s predictive learning: as training progresses
it will learn to either predict a token from the stan-
dard vocabulary of the language model thereby en-
suring well-formed natural language utterances, or
to copy over the relevant entities from the input
context, thereby learning to extract important dia-
logue context.

In our best performing model, we augment the
inputs to the encoder by adding entity type fea-
tures. Classes present in the knowledge base of
the dataset, namely the 8 distinct entity types re-
ferred to in Table 1, are encoded as one-hot vec-
tors. Whenever a token of a certain entity type
is seen during encoding, we append the appro-
priate one-hot vector to the token’s word embed-
ding before it is fed into the recurrent cell. These
type features improve generalization to novel enti-
ties by allowing the model to hone in on positions
with particularly relevant bits of dialogue context
during its soft attention and copying. Other cited
work using the DSTC2 dataset (Sukhbaatar et al.,
2015; Liu and Perez, 2016; Seo et al., 2016) im-
plement similar mechanisms whereby they expand
the feature representations of candidate system re-
sponses based on whether there is lexical entity
class matching with provided dialogue context. In
these works, such features are referred to as match
features.

All of our architectures use an LSTM cell as
the recurrent unit (Hochreiter and Schmidhuber,
1997) with a bias of 1 added to the forget gate in
the style of (Zaremba et al., 2015).
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3 Experiments

3.1 Data
For our experiments, we used dialogues extracted
from the Dialogue State Tracking Challenge 2
(DSTC2) (Henderson et al., 2014), a restaurant
reservation system dataset. While the goal of the
original challenge was building a system for infer-
ring dialogue state, for our study, we use the ver-
sion of the data from Bordes and Weston (2016),
which ignores the dialogue state annotations, us-
ing only the raw text of the dialogues. The raw text
includes user and system utterances as well as the
API calls the system would make to the underlying
KB in response to the user’s queries. Our model
then aims to predict both these system utterances
and API calls, each of which is regarded as a turn
of the dialogue. We use the train/validation/test
splits from this modified version of the dataset.
The dataset is appealing for a number of reasons:
1) It is derived from a real-world system so it
presents the kind of linguistic diversity and con-
versational abilities we would hope for in an ef-
fective dialogue agent. 2) It is grounded via an un-
derlying knowledge base of restaurant entities and
their attributes. 3) Previous results have been re-
ported on it so we can directly compare our model
performance. We include statistics of the dataset
in Table 1.

3.2 Training
We trained using a cross-entropy loss and the
Adam optimizer (Kingma and Ba, 2015), apply-
ing dropout (Hinton et al., 2012) as a regularizer
to the input and output of the LSTM. We identified
hyperparameters by random search, evaluating on
a held-out validation subset of the data. Dropout
keep rates ranged from 0.75 to 0.95. We used word
embeddings with size 300, and hidden layer and
cell sizes were set to 353, identified through our
search. We applied gradient clipping with a clip-
value of 10 to avoid gradient explosions during
training. The attention, output parameters, word
embeddings, and LSTM weights were randomly
initialized from a uniform unit-scaled distribution
in the style of (Sussillo and Abbott, 2015).

3.3 Metrics
Evaluation of dialogue systems is known to be dif-
ficult (Liu et al., 2016). We employ several met-
rics for assessing specific aspects of our model,
drawn from previous work:

Avg. # of Utterances Per Dialogue 14
Vocabulary Size 1,229
Training Dialogues 1,618
Validation Dialogues 500
Test Dialogues 1,117
# of Distinct Entities 452
# of Entity (or Slot) Types 8

Table 1: Statistics of DSTC2

• Per-Response Accuracy: Bordes and We-
ston (2016) report a per-turn response accu-
racy, which tests their model’s ability to se-
lect the system response at a certain timestep.
Their system does a multiclass classification
over a predefined candidate set of responses,
which was created by aggregating all system
responses seen in the training, validation, and
test sets. Our model actually generates each
individual token of the response, and we con-
sider a prediction to be correct only if every
token of the model output matches the corre-
sponding token in the gold response. Evalu-
ating using this metric on our model is there-
fore significantly more stringent a test than
for the model of Bordes and Weston (2016).

• Per-Dialogue Accuracy: Bordes and Weston
(2016) also report a per-dialogue accuracy,
which assesses their model’s ability to pro-
duce every system response of the dialogue
correctly. We calculate a similar value of dia-
logue accuracy, though again our model gen-
erates every token of every response.

• BLEU: We use the BLEU metric, commonly
employed in evaluating machine translation
systems (Papineni et al., 2002), which has
also been used in past literature for evaluating
dialogue systems (Ritter et al., 2011; Li et
al., 2016). We calculate average BLEU score
over all responses generated by the system,
and primarily report these scores to gauge our
model’s ability to accurately generate the lan-
guage patterns seen in DSTC2.

• Entity F1: Each system response in the test
data defines a gold set of entities. To compute
an entity F1, we micro-average over the entire
set of system dialogue responses. This met-
ric evaluates the model’s ability to generate
relevant entities from the underlying knowl-
edge base and to capture the semantics of the
user-initiated dialogue flow.
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Our experiments show that sometimes our
model generates a response to a given input that
is perfectly reasonable, but is penalized because
our evaluation metrics involve direct comparison
to the gold system output. For example, given a
user request for an australian restaurant, the gold
system output is you are looking for an australian
restaurant right? whereas our system outputs
what part of town do you have in mind?, which is a
more directed follow-up intended to narrow down
the search space of candidate restaurants the sys-
tem should propose. This issue, which recurs with
evaluation of dialogue or other generative systems,
could be alleviated through more forgiving evalu-
ation procedures based on beam search decoding.

3.4 Results

In Table 2, we present the results of our mod-
els compared to the reported performance of the
best performing model of (Bordes and Weston,
2016), which is a variant of an end-to-end mem-
ory network (Sukhbaatar et al., 2015). Their
model is referred to as MemNN. We also include
the model of (Liu and Perez, 2016), referred to
as GMemNN, and the model of (Seo et al., 2016),
referred to as QRN, which currently is the state-
of-the-art. In the table, Seq2Seq refers to our
vanilla encoder-decoder architecture with (1), (2),
and (3) LSTM layers respectively. +Attn refers to
a 1-layer Seq2Seq with attention-based decoding.
+Copy refers to +Attn with our copy-mechanism
added. +EntType refers to +Copy with entity class
features added to encoder inputs.

We see that a 1-layer vanilla encoder-decoder is
already able to significantly outperform MemNN
in both per-response and per-dialogue accuracies,
despite our more stringent setting. Adding layers
to Seq2Seq leads to a drop in performance, sug-
gesting an overly powerful model for the small
dataset size. Adding an attention-based decod-
ing to the vanilla model increases BLEU although
per-response and per-dialogue accuracies suffer
a bit. Adding our attention-based entity copy
mechanism achieves substantial increases in per-
response accuracies and entity F1. Adding en-
tity class features to +Copy achieves our best-
performing model, in terms of per-response accu-
racy and entity F1. This model achieves a 6.9%
increase in per-response accuracy on DSTC2 over
MemNN, including +1.5% per-dialogue accuracy,
and is on par with the performance of GMemNN,

Data Model Per- Per BLEU Ent.
Resp. Dial. F1

Test MemNN 41.1 0.0 – –
set GMemNN 48.7 1.4 – –

QRN 50.7 – – –
Seq2Seq (1) 46.4 1.5 55.0 69.7
Seq2Seq (2) 43.5 1.3 54.2 67.3
Seq2Seq (3) 44.2 1.7 55.4 65.9

+ Attn. 46.0 1.4 56.6 67.1
+ Copy 47.3 1.3 55.4 71.6
+ EntType 48.0 1.5 56.0 72.9

Dev Seq2Seq (1) 57.0 3.6 72.1 68.7
set Seq2Seq (2) 54.1 3.0 71.3 66.3

Seq2Seq (3) 54.0 3.2 71.5 64.3
+ Attn. 55.2 3.4 71.9 66.1
+ Copy 58.9 3.6 73.1 72.5
+ EntType 59.2 3.4 72.7 72.3

Table 2: Evaluation on DSTC2 test (top) and dev
(bottom) data. Bold values indicate our best per-
formance. A dash indicates unavailable values.

including beating its per-dialogue accuracy. It also
achieves the highest entity F1.

4 Discussion and Conclusion

We have iteratively built out a class of neural mod-
els for task-oriented dialogue that is able to outper-
form other more intricately designed neural archi-
tectures on a number of metrics. The model incor-
porates in a simple way abilities that we believe
are essential to building good task-oriented dia-
logue agents, namely maintaining dialogue state
and being able to extract and use relevant enti-
ties in its responses, without requiring intermedi-
ate supervision of dialogue state or belief tracker
modules. Other dialogue models tested on DSTC2
that are more performant in per-response accu-
racy are equipped with sufficiently more complex
mechanisms than our model. Taking inspiration
from (Sukhbaatar et al., 2015) and (Srivastava
et al., 2015), GMemNN uses an explicit mem-
ory module as well as an adaptive gating mech-
anism to learn to attend to relevant memories. The
QRN model employs a variant of a recurrent unit
that is intended to handle local and global interac-
tions in sequential data. We contrast with these
works by bootstrapping off of more empirically
accepted Seq2Seq architectures through intuitive
extensions, while still producing highly competi-
tive models.

We attribute the large gains in per-response ac-
curacy and entity F1 demonstrated by our +Ent-
Type to its ability to pick out the relevant KB en-
tities from the dialogue context fed into the en-
coder. In Figure 1, we see the attention-based copy
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cheap restaurant in east part of town
api call r cuisine east cheap
<silence>
the missing sock is a nice place in the
east of town and the prices are cheap

address
sure, the missing sock is on the missing sock address
phone number
the phone number of the missing sock is
the missing sock phone
thank you good bye
you are welcome

Table 3: Sample dialogue generated. System re-
sponses are in italics. The dataset uses fake ad-
dresses and phone numbers.

Figure 1: Attention-copy weights for a generated
natural language response (top) and API call (bot-
tom). The decoder output is displayed vertically
and the encoder input is abbreviated for display.

weights of the model, indicating that the model is
able to learn the relevant entities it should focus
on in the input context. The powerful language
modelling abilities of the Seq2Seq backbone al-
low smooth integration of these extracted entities
into both system-generated API calls and natural
language responses as shown in the figure.

The appeal of our model comes from the sim-
plicity and effectiveness of framing system re-
sponse generation as a sequence-to-sequence map-
ping with a soft copy mechanism over relevant
context. Unlike the task-oriented dialogue agents
of Wen et. al (2016b), our architecture does not ex-
plicitly model belief states or KB slot-value track-
ers, and we preserve full end-to-end-trainability.
Further, in contrast to other referenced work on
DSTC2, our model offers more linguistic versatil-
ity due to its generative nature while still remain-
ing highly competitive and outperforming other
models. Of course, this is not to deny the im-

portance of dialogue agents which can more ef-
fectively use a knowledge base to answer user re-
quests, and this remains a good avenue for further
work. Nevertheless, we hope this simple and ef-
fective architecture can be a strong baseline for fu-
ture research efforts on task-oriented dialogue.
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Abstract

We explore the problem of translating
speech to text in low-resource scenarios
where neither automatic speech recognition
(ASR) nor machine translation (MT) are
available, but we have training data in the
form of audio paired with text translations.
We present the first system for this problem
applied to a realistic multi-speaker dataset,
the CALLHOME Spanish-English speech
translation corpus. Our approach uses un-
supervised term discovery (UTD) to cluster
repeated patterns in the audio, creating a
pseudotext, which we pair with translations
to create a parallel text and train a simple
bag-of-words MT model. We identify the
challenges faced by the system, finding that
the difficulty of cross-speaker UTD results
in low recall, but that our system is still able
to correctly translate some content words
in test data.

1 Introduction

Typical speech-to-text translation systems pipeline
automatic speech recognition (ASR) and machine
translation (MT) (Waibel and Fugen, 2008). But
high-quality ASR requires hundreds of hours of
transcribed audio, while high-quality MT requires
millions of words of parallel text—resources avail-
able for only a tiny fraction of the world’s estimated
7,000 languages (Besacier et al., 2014). Neverthe-
less, there are important low-resource settings in
which even limited speech translation would be
of immense value: documentation of endangered
languages, which often have no writing system (Be-
sacier et al., 2006; Martin et al., 2015); and crisis
response, for which text applications have proven
useful (Munro, 2010), but only help literate popu-
lations. In these settings, target translations may be
available. For example, ad hoc translations may be

collected in support of relief operations. Can we
do anything at all with this data?

In this exploratory study, we present a speech-
to-text translation system that learns directly from
source audio and target text pairs, and does not
require intermediate ASR or MT. Our work com-
plements several lines of related recent work. For
example, Duong et al. (2016) and Anastasopoulos
et al. (2016) presented models that align audio to
translated text, but neither used these models to
try to translate new utterances (in fact, the latter
model cannot make such predictions). Berard et
al. (2016) did develop a direct speech to transla-
tion system, but presented results only on a corpus
of synthetic audio with a small number of speak-
ers. Finally, Adams et al. (2016a; 2016b) targeted
the same low-resource speech-to-translation task,
but instead of working with audio, they started
from word or phoneme lattices. In principle these
could be produced in an unsupervised or minimally-
supervised way, but in practice they used super-
vised ASR/phone recognition. Additionally, their
evaluation focused on phone error rate rather than
translation. In contrast to these approaches, our
method can make translation predictions for audio
input not seen during training, and we evaluate it
on real multi-speaker speech data.

Our simple system (§2) builds on unsupervised
speech processing (Versteegh et al., 2015; Lee et
al., 2015; Kamper et al., 2016b), and in particu-
lar on unsupervised term discovery (UTD), which
creates hard clusters of repeated word-like units
in raw speech (Park and Glass, 2008; Jansen and
Van Durme, 2011). The clusters do not account
for all of the audio, but we can use them to sim-
ulate a partial, noisy transcription, or pseudotext,
which we pair with translations to learn a bag-of-
words translation model. We test our system on the
CALLHOME Spanish-English speech translation
corpus (Post et al., 2013), a noisy multi-speaker
corpus of telephone calls in a variety of Spanish di-
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alects (§3). Using the Spanish speech as the source
and English text translations as the target, we iden-
tify several challenges in the use of UTD, includ-
ing low coverage of audio and difficulty in cross-
speaker clustering (§4). Despite these difficulties,
we demonstrate that the system learns to translate
some content words (§5).

2 From unsupervised term discovery to
direct speech-to-text translation

For UTD we use the Zero Resource Toolkit (ZR-
Tools; Jansen and Van Durme, 2011).1 ZRTools
uses dynamic time warping (DTW) to discover
pairs of acoustically similar audio segments, and
then uses graph clustering on overlapping pairs
to form a hard clustering of the discovered seg-
ments. Replacing each discovered segment with
its unique cluster label, or pseudoterm, gives us a
partial, noisy transcription, or pseudotext (Fig. 1).

In creating a translation model from this data,
we face a difficulty that does not arise in the par-
allel texts that are normally used to train trans-
lation models: the pseudotext does not represent
all of the source words, since the discovered seg-
ments do not cover the full audio (Fig. 1). Hence
we must not assume that our MT model can com-
pletely recover the translation of a test sentence.
In these conditions, the language modeling and
ordering assumptions of most MT models are un-
warranted, so we instead use a simple bag-of-words
translation model based only on co-occurrence:
IBM Model 1 (Brown et al., 1993) with a Dirich-
let prior over translation distributions, as learned
by fast align (Dyer et al., 2013).2 In partic-
ular, for each pseudoterm, we learn a translation
distribution over possible target words. To trans-
late a pseudoterm in test data, we simply return its
highest-probability translation (or translations, as
discussed in §5).

This setup implies that in order to translate, we
must apply UTD on both the training and test au-
dio. Using additional (not only training) audio in
UTD increases the likelihood of discovering more
clusters. We therefore generate pseudotext for the
combined audio, train the MT model on the pseu-
dotext of the training audio, and apply it to the
pseudotext of the test data. This is fair since the
UTD has access to only the audio.3

1https://github.com/arenjansen/ZRTools
2We disable diagonal preference to simulate Model 1.
3This is the simplest approach for our proof-of-concept sys-

Spanish: sı́ pues y el carrito
English: yes well and the car
Pseudotext: c1

Spanish: sı́ pues y qué tal vas con
English: yes well and hows it going
Pseudotext: c1, c2

Spanish: este trabajo y se
English: this work
Pseudotext: c2

Spanish: llama del trabajo mi
English: call him from work
Pseudotext: c2

Figure 1: Example utterances from our data, show-
ing UTD matches, corresponding pseudotext, and
English translation. For clarity, we also show Span-
ish transcripts with the approximate alignment of
each pseudoterm underlined, though these tran-
scripts are unavailable to our system. Stopwords
(in gray) are ignored in our evaluations. These ex-
amples illustrate the difficulties of UTD: it does
not match the full audio, and it incorrectly clusters
part of utterance B with a good pair in C and D.

3 Dataset

Although we did not have access to a low-resource
dataset, there is a corpus of noisy multi-speaker
speech that simulates many of the conditions we
expect to find in our motivating applications: the
CALLHOME Spanish–English speech translation
dataset (LDC2014T23; Post el al., 2013).4 We ran
UTD over all 104 telephone calls, which pair 11
hours of audio with Spanish transcripts and their
crowdsourced English translations. The transcripts
contain 168,195 Spanish word tokens (10,674
types), and the translations contain 159,777 En-
glish word tokens (6,723 types). Though our sys-
tem does not require Spanish transcripts, we use
them to evaluate UTD and to simulate a perfect
UTD system, called the oracle.

For MT training, we use the pseudotext and trans-
lations of 50 calls, and we filter out stopwords in the

tem. In a more realistic setup, we could use the training audio
to construct a consensus representation of each pseudoterm
(Petitjean et al., 2011; Anastasopoulos et al., 2016), then use
DTW to identify its occurrences in test data to translate.

4We did not use the Fisher portion of the corpus.
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translations with NLTK (Bird et al., 2009).5 Since
UTD is better at matching patterns from the same
speaker (§4.2), we created two types of 90/10%
train/test split: at the call level and at the utterance
level. For the latter, 90% of the utterances are ran-
domly chosen for the training set (independent of
which call they occur in), and the rest go in the test
set. Hence at the utterance level, but not the call
level, some speakers are included in both training
and test data. Although the utterance-level split is
optimistic, it allows us to investigate how multiple
speakers affect system performance. In either case,
the oracle has about 38k Spanish tokens to train on.

4 Analysis of challenges from UTD

Our system relies on the pseudotext produced by
ZRTools (the only freely available UTD system we
are aware of), which presents several challenges
for MT. We used the default ZRTools parameters,
and it might be possible to tune them to our task,
but we leave this to future work.

4.1 Assigning wrong words to a cluster

Since UTD is unsupervised, the discovered clusters
are noisy. Fig. 1 shows an example of an incorrect
match between the acoustically similar “qué tal
vas con” and “te trabajo y” in utterances B and C,
leading to a common assignment to c2. Such incon-
sistencies in turn affect the translation distribution
conditioned on c2.

Many of these errors are due to cross-speaker
matches, which are known to be more challenging
for UTD (Carlin et al., 2011; Kamper et al., 2015;
Bansal et al., 2017). Most matches in our corpus
are across calls, yet these are also the least accu-
rate (Table 1). Within-utterance matches, which
are always from the same speaker, are the most
reliable, but make up the smallest proportion of
the discovered pairs. Within-call matches fall in
between. Overall, average cluster purity is only
34%, meaning that 66% of discovered patterns do
not match the most frequent type in their cluster.

4.2 Splitting words across different clusters

Although most UTD matches are across speakers,
recall of cross-speaker matches is lower than for
same-speaker matches. As a result, the same word
from different speakers often appears in multiple
clusters, preventing the model from learning good
translations. ZRTools discovers 15,089 clusters in

5http://www.nltk.org/

utterance call corpus
Matches 2% 17% 81%
Accuracy 78% 53% 8%

Table 1: UTD matches within utterances, within
calls and within the corpus. Matches within an
utterance or call are usually from the same speaker.

utterance split call split
Oracle 420 (10%) 719 (17%)
Pseudotext 601 (29%) 892 (44%)

Table 2: Number (percent) of out-of-vocabulary
(OOV) word tokens or pseudoterms in the test data
for different experimental conditions.

our data, though there are only 10,674 word types.
Only 1,614 of the clusters map one-to-one to a
unique word type, while a many-to-one mapping
of the rest covers only 1,819 gold types (leaving
7,241 gold types with no corresponding cluster).

Fragmentation of words across clusters renders
pseudoterms impossible to translate when they ap-
pear only in test and not in training. Table 2 shows
that these pseudotext out-of-vocabulary (OOV)
words are frequent, especially in the call-level split.
This reflects differences in acoustic patterns of dif-
ferent speakers, but also in their vocabulary — even
the oracle OOV rate is higher in the call-level split.

4.3 UTD is sparse, giving low coverage
UTD is most reliable on long and frequently-
repeated patterns, so many spoken words are not
represented in the pseudotext, as in Fig. 1. We
found that the patterns discovered by ZRTools
match only 28% of the audio. This low cover-
age reduces training data size, affects alignment
quality, and adversely affects translation, which is
only possible when pseudoterms are present. For
almost half the utterances, UTD fails to produce
any pseudoterm at all.

5 Speech translation experiments

We evaluate our system by comparing its output
to the English translations on the test data. Since
it translates only a handful of words in each sen-
tence, BLEU, which measures accuracy of word
sequences, is an inappropriate measure of accu-
racy.6 Instead we compute precision and recall over

6BLEU scores for supervised speech translation systems
trained on our data can be found in Kumar et al. (2014).
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source text gold translation oracle translation utd translation
1 cómo anda el plan esco-

lar
how is the school plan
going

things whoa mean plan school school going

2 dile que le mando salu-
dos

tell him that i say hi tell send best says say hi

3 sı́ con dos dientes
menos

yeah with two teeth less two teeth less least denture yeah teeth

4 o dejando o dejando dos
dı́as

or giving or giving two
days

improves apart improves apart
two days

two days

5 ah ya okey veintitrés de
noviembre no

ah yeah okay twenty
third of november no

oh ah okay another three fourth
november

twenty november

Table 3: Source text (left) paired with translations by humans (gold), oracle, and UTD-based system.
Underlined words appear in UTD and the corresponding human translations.

oracle pseudotext
K metric utterance call utterance call
1 Prec. 38.6 35.7 7.9 4.0
1 Rec. 33.8 28.4 1.8 0.6
5 Prec. 24.6 23.1 5.9 2.7
5 Rec. 54.4 46.4 5.2 1.5

Table 4: Precision and recall forK = 1 andK = 5
under different conditions.

the content words in the translation. We allow the
system to guess K words per test pseudoterm, so
for each utterance, we compute the number of cor-
rect predictions as corr@K = |pred@K ∩ gold|,
where pred@K is the multiset of words predicted
usingK predictions per pseudoterm and gold is the
multiset of content words in the reference transla-
tion. For utterances where the reference translation
has no content words, we use stop words. The
utterance-level scores are then used to compute
corpus-level Precision@K and Recall@K.

Table 4 and Fig. 2 show that even the oracle
has mediocre precision and recall, indicating the
difficulties of training an MT system using only
bag-of-content-words on a relatively small corpus.
Splitting the data by utterance works somewhat bet-
ter, since training and test share more vocabulary.

Table 4 and Fig. 2 also show a large gap be-
tween the oracle and our system. This is not sur-
prising given the problems with the UTD output
discussed in Section 4. In fact, it is encouraging
given the small number of discovered terms and the
low cluster purity that our system can still correctly
translate some words (Table 3). These results are a
positive proof of concept, showing that it is possi-
ble to discover and translate keywords from audio
data even with no ASR or MT system. Neverthe-
less, UTD quality is clearly a limitation, especially

1 2 3 4 5 6 7 8 9 10
K

5%

20%

40%

pr
ec

is
io

n
gold:utterance
gold:call

pseudo:utterance
pseudo:call
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pseudo:utterance
pseudo:call

Figure 2: Precision and Recall @K for the call and
utterance level test sets.

for the more realistic by-call data split.

6 Conclusions and future work

Our results show that it is possible to build a speech
translation system using only source-language au-
dio paired with target-language text, which may be
useful in many situations where no other speech
technology is available. Our analysis also points to
several possible improvements. Poor cross-speaker
matches and low audio coverage prevent our sys-
tem from achieving a high recall, suggesting the
of use speech features that are effective in multi-
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speaker settings (Kamper et al., 2015; Kamper
et al., 2016a) and speaker normalization (Zeghi-
dour et al., 2016). Finally, Bansal et al. (2017)
recently showed that UTD can be improved using
the translations themselves as a source of informa-
tion, which suggests joint learning as an attractive
area for future work.

On the other hand, poor precision is most likely
due to the simplicity of our MT model, and de-
signing a model whose assumptions match our data
conditions is an important direction for future work,
which may combine our approach with insight from
recent, quite different audio-to-translation models
(Duong et al., 2016; Anastasopoulos et al., 2016;
Adams et al., 2016a; Adams et al., 2016b; Berard
et al., 2016). Parameter-sharing using word and
acoustic embeddings would allow us to make pre-
dictions for OOV pseudoterms by using the nearest
in-vocabulary pseudoterm instead.
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Abstract

In this paper we present a comparative
evaluation of various negotiation strate-
gies within an online version of the
game “Settlers of Catan”. The compar-
ison is based on human subjects play-
ing games against artificial game-playing
agents (‘bots’) which implement differ-
ent negotiation dialogue strategies, using a
chat dialogue interface to negotiate trades.
Our results suggest that a negotiation strat-
egy that uses persuasion, as well as a strat-
egy that is trained from data using Deep
Reinforcement Learning, both lead to an
improved win rate against humans, com-
pared to previous rule-based and super-
vised learning baseline dialogue negotia-
tors.

1 Introduction

In dialogues where the participants have conflict-
ing preferences over the outcome, Gricean max-
ims of conversation break down (Asher and Las-
carides, 2013). In this paper we focus on a non-
cooperative scenario – a win-lose board game – in
which one of the components of the game involves
participants negotiating trades over restricted re-
sources. They have an incentive to agree trades,
because alternative means for getting resources are
more costly. But since each player wants to win
(and so wants the others to lose), they not only
make offers and respond to them, but also bluff,
persuade, and deceive to get the best deal for them-
selves at perhaps a significant cost to others (Afan-
tenos et al., 2012).

In recent work, computational models for
non-cooperative dialogue have been developed

(Traum, 2008; Asher and Lascarides, 2013; Guhe
and Lascarides, 2014a). Moreover, machine learn-
ing techniques have been used to train negotia-
tion strategies from data, in particular reinforce-
ment learning (RL) (Georgila and Traum, 2011;
Efstathiou and Lemon, 2015; Keizer et al., 2015).
In particular, it has been shown that RL dia-
logue agents can be trained to strategically select
offers in trading dialogues (Keizer et al., 2015;
Cuayahuitl et al., 2015c), but also to bluff and
lie (Efstathiou and Lemon, 2015; Efstathiou and
Lemon, 2014).

This paper presents an evaluation of 5 variants
of a conversational agent engaging in trade nego-
tiation dialogues with humans. The experiment is
carried out using an online version of the game
“Settlers of Catan”, where human subjects play
games against artificial players, using a Natural
Language chat interface to negotiate trades. Our
results suggest that a negotiation strategy using
persuasion (Guhe and Lascarides, 2014b) when
making offers, as well as a strategy for selecting
offers that is trained from data using Deep Re-
inforcement Learning (Cuayahuitl et al., 2015c),
both lead to improved win rates against humans,
compared to previous rule-based approaches and
a model trained from a corpus of humans playing
the game using supervised learning.

2 Task domain

“Settlers of Catan” is a complex multi-player
board game1; the board is a map consisting of
hexes of different types: hills, mountains, mead-
ows, fields and forests. The objective of the game
is for the players to build roads, settlements and
cities on the map, paid for by combinations of re-

1See www.catan.com for the full set of game rules.
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sources of five different types: clay, ore, sheep,
wheat and wood, which are obtained according
to the numbers on the hexes adjacent to which a
player has a settlement or city after the roll of a
pair of dice at each player’s turn. In addition, play-
ers can negotiate trades with each other in order to
obtain the resources they desire. Players can also
buy Development Cards, randomly drawn from a
stack of different kinds of cards. Players earn Vic-
tory Points (VPs) for their settlements (1 VP each)
and cities (2 VPs each), and for having the Longest
Road (at least 5 consecutive roads; 2 VPs) or the
Largest Army (by playing at least 3 Knight devel-
opment cards; 2 VPs). The first player to have 10
VPs wins the game.

2.1 The JSettlers implementation

For testing and evaluating our models for trade ne-
gotiation, we use the JSettlers2 open source im-
plementation of the game (Thomas, 2003). The
environment is a client-server system supporting
humans and agents playing against each other in
any combination. The agents use complex heuris-
tics for the board play—e.g., deciding when, what
and where to build on the board—as well as what
trades to aim for and how to negotiate for them.

2.2 Human negotiation corpus

With the aim of studying strategic conversations,
a corpus of online trading chats between humans
playing “Settlers of Catan” was collected (Afan-
tenos et al., 2012). The JSettlers implementa-
tion of the game was modified to let players use
a chat interface to engage in conversations with
each other, involving the negotiation of trades in
particular. Table 1 shows an annotated chat be-
tween players W, T, and G; in this dialogue, a trade
is agreed between W and G, where W gives G a
clay in exchange for an ore. For training the data-
driven negotiation strategies, 32 annotated games
were used, consisting of 2512 trade negotiation di-
alogue turns.

3 Overview of the artificial players

For all the artificial players (‘bots’), we distin-
guish between their game playing strategy (Game
Strategy) and their trade negotiation strategy (Ne-
got. Strategy), see Table 2. The game playing
strategy involves all non-linguistic moves in the
game: e.g., when and where to build a settlement,

2jsettlers2.sourceforge.net

where to move the robber when a 7 is rolled and
who to steal from, and so on. The negotiation
strategy, which is triggered when the game play-
ing strategy chooses to attempt to trade with other
players (i.e. the trade dialogue phase), involves
deciding which offers to make to opponents, and
whether to accept or reject offers made by them.
This strategy takes as input the resources available
to the player, the game board configuration, and a
‘build plan’ received from the game playing strat-
egy, indicating which piece the bot aims to build
(but does not yet have the resources for).

One of the bots included in the experiment uses
the original game playing strategy from JSettlers
(Thomas, 2003), whereas the other 4 bots use an
improved strategy developed by Guhe and Las-
carides (2014a). We distinguish between the fol-
lowing negotiation strategies:

1. the original strategy from JSettlers uses hand-
crafted rules to filter and rank the list of legal
trades;

2. an enhanced version of the original strategy,
which includes the additional options of us-
ing persuasion arguments to accompany a pro-
posed trade offer (rather than simply offering
it)—for example “If you accept this trade of-
fer, then you get wheat that you need to imme-
diately build a settlement”—and hand-crafted
rules for choosing among this expanded set of
options (Guhe and Lascarides, 2014a);

3. a strategy which uses a legal trade re-ranking
mechanism trained on the human negotiation
corpus described in (Afantenos et al., 2012)
using supervised learning (Random Forest)
(Cuayáhuitl et al., 2015a; Cuayáhuitl et al.,
2015b; Keizer et al., 2015); and

4. an offer selection strategy that is trained using
Deep Reinforcement Learning, in which the
feature representation and offer selection pol-
icy are optimised simultaneously using a fully-
connected multilayer neural network. The state
space of this agent includes 160 non-binary
features that describe the game board and the
available resources. The action space includes
70 actions for offering trading negotiations (in-
cluding up to two giveable resources and only
one receivable resource) and 3 actions (ac-
cept, reject and counteroffer) for replying to of-
fers from opponents. The reward function is
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Speaker Utterance Game act Surface act Addressee Resource

W can i get an ore? Offer Request all Receivable(ore,1)
T nope Refusal Assertion W
G what for.. :D Counteroffer Question W
W a wheat? Offer Question G Givable(wheat,1)
G i have a bounty crop Refusal Assertion W
W how about a wood then? Counteroffer Question G Givable(wood,1)
G clay or sheep are my

primary desires Counteroffer Request W Receivable( (clay,?) OR (sheep,?) )
W alright a clay Accept Assertion G Givable(clay,1)
G ok! Accept Assertion W

Table 1: Example trade negotiation chat.

based on victory points—see (Cuayahuitl et al.,
2015c) for further details.

4 Experiment

The evaluation was performed as an online exper-
iment. Using the JSettlers environment, an exper-
imental setup was created, consisting of a game
client that the participants could download and use
to play online games, and a server for running the
bot players and logging all the games.

We decided to compare the five bot types de-
scribed in Section 3 in a between-subjects design,
as we expected that playing a game against each
of the 5 bot types would take more time than most
participants would be willing to spend (about 4
hours) and furthermore would introduce learning
effects on the human players that would be diffi-
cult to control. Each participant played one game
against three bots of the same type. The bot was
chosen randomly.

In order to participate, the subjects registered
and downloaded the game client. Next, they were
asked to first play a short training game to famil-
iarise themselves with the interface (see Fig. 1),
followed by a full game to be included in the eval-
uation. The training game finishes when the sub-
ject reaches 3 VPs, i.e., when they have built at
least one road and one settlement in addition to
the two roads and two settlements (making 2 VPs)
each player starts with. Although subjects were
allowed to play more games after they completed
their full game, we only used their first full game
in the evaluation to avoid bias in the data through
learning effects.

We advertised the experiment online through
university mailing lists, twitter, and “Settlers of
Catan” forums. We also hung out posters at the
university and in a local board gaming pub. We
particularly asked for experienced Settlers players,

who had played the game at least three times be-
fore, since the game is quite complex, and we ex-
pected that data from novice players would be too
noisy to reveal any differences between the differ-
ent bot types. Each subject received a £10 Amazon
UK voucher after completing both training and
full game, and we included two prize draws of £50
vouchers to further encourage participation.

5 Results

After running the experiments for 16 weeks, we
collected 212 full games in total (including the
training ones), but after only including the first full
game from each subject (73 games/subjects), and
removing games in which the subject did not en-
gage in any trade negotiations, we ended up with
62 games.

The evaluation results are presented in Table 2
and Fig. 2, which show how the human subjects
fared playing against our different bots: the num-
bers of Table 2 refer to the performance of the hu-
mans, but of course measure the performance of
the bots. Indicated in the table are the percent-
age of games won by the humans (WinRate, so
the lower the WinRate the stronger the bot’s per-
formance on the task) and the average number of
victory points the humans gained (AvgVPs). Since
JSettlers is a four-player game, each human plays
against 3 bots, so a win rate of 25% would indicate
that the humans and bots are equally good players.

Although the size of the corpus is too small to
make any strong claims about the relative strength
of the different bots, we are encouraged by the re-
sults so far. The results confirm our expectation,
based on game simulations in which one agent
with the ‘improved’ game strategy beat 3 original
opponents by significantly more than 25% (Guhe
and Lascarides, 2014b), that the improved game
strategy is superior to the original strategy against
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Figure 1: Graphical interface of the adapted online Settlers game-playing client, showing the state of the board itself, and
in each corner information about one of the four players, seen from the perspective of the human player sitting at the top left
(playing with blue; the other 3 players are bots). The human player is prompted to accept the trade displayed in the top middle
part, as agreed in the negotiation chat shown in the panel on the right hand side.

Figure 2: Box plots representing the victory points
(VPs) scored by humans against each bot (as
shown on Table 2). Humans scored lower against
the bots 3 and 4 (i.e. on Table 2 the bots of the 3rd
and 4th row respectively). Red line: median VPs.

human opponents (70.0% vs. 26.7%). Improving
the game strategy is important because negotiation
is only a small part of what one must do to win this
particular game.

The lowest win rates for humans are achieved
when playing against the Deep Reinforcement
Learning (DRL) negotiation strategy (18.2%).
This confirmed its superiority over the supervised
learning bot (RandForest) against which it was

Game
strategy

Negot.
strategy

Games Human
WinRate

AvgVPs

1. Orig Persuasion 10 70.0% 7.8
2. Impr Original 17 29.4% 8.4
3. Impr Persuasion 15 26.7% 7.5
4. Impr DeepRL 11 18.2% 6.5
5. Impr RandForest 9 44.4% 8.7

Overall 62 37.7% 7.8

Table 2: Results of human subjects playing a game against
3 instances of one of 5 different bot types. Human Win-
Rate is the percentage of games won by human players, and
AvgVPs is the (mean) average number of VPs gained by the
human players. If the humans were equally strong as the bots,
they would achieve approximately a 25% win rate.

trained (18.2% vs. 44.4%, using the same game
playing strategy). This confirms previous results
in which the DRL achieved a win rate of 41.58%
against the supervised learning bot (Cuayahuitl et
al., 2015c). Since the win rate is also well be-
low the 25% win rate one expects if the 4 play-
ers are of equal strength, the deep learning bot
beats the human players on average. As described
in Section 3, the DRL bot uses a large set of in-
put features and uses its neural network to auto-
matically learn the patterns that help finding the
optimal negotiation strategy. In contrast, human
players, even experienced ones, have limited cog-
nitive capacity to adequately oversee game states
and make the best trades.

483



Against the bots using a negotiation strat-
egy with persuasion, the human players achieved
lower win rates than against the bot with the orig-
inal, rule-based negotiation strategy (26.7% vs.
29.4%), and much lower win rates than the bot
with the supervised learning strategy (26.7% vs.
44.4%). In terms of average victory points, both
persuasion and deep learning bots outperform the
rule-based and supervised learning baselines.

6 Conclusion

We evaluated different trading-dialogue strate-
gies (original rule-based/persuasion/random for-
est/deep RL) and game-playing strategies (origi-
nal/improved) in online games with experienced
human players of “Settlers of Catan”. The ran-
dom forest and deep RL dialogue strategies were
trained using human-human game-playing data
collected in the STAC project (Afantenos et al.,
2012). The results indicate that the improved
game strategy of (Guhe and Lascarides, 2014a) is
beneficial, and that dialogue strategies using per-
suasion (Guhe and Lascarides, 2014b) and deep
RL (Cuayahuitl et al., 2015c) outperform both the
original rule-based strategy (Thomas, 2003) and a
strategy created using supervised learning meth-
ods (random forest). The deep RL dialogue strat-
egy also outperforms human players, similarly to
recent results for other (non-dialogue) games such
as “Go” and Atari games (Silver et al., 2016; Mnih
et al., 2013). More data is being collected.
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Abstract

This paper introduces a new unsuper-
vised approach for dialogue act induction.
Given the sequence of dialogue utterances,
the task is to assign them the labels repre-
senting their function in the dialogue.

Utterances are represented as real-valued
vectors encoding their meaning. We
model the dialogue as Hidden Markov
model with emission probabilities esti-
mated by Gaussian mixtures. We use
Gibbs sampling for posterior inference.

We present the results on the standard
Switchboard-DAMSL corpus. Our al-
gorithm achieves promising results com-
pared with strong supervised baselines
and outperforms other unsupervised algo-
rithms.

1 Introduction

Modeling the discourse structure is the important
step toward understanding a dialogue. The de-
scription of the discourse structure is still an open
issue. However, some low level characteristics
have already been clearly identified, e.g. to deter-
mine the dialogue acts (DAs) (Jurafsky and Mar-
tin, 2009). DA represents the meaning of an utter-
ance in the context of the full dialogue.

Automatic DA recognition is fundamental for
many applications, starting with dialogue systems
(Allen et al., 2007). The expansion of social media
in the last years has led to many other interesting
applications, e.g. thread discourse structure pre-
diction (Wang et al., 2011), forum search (Seo et
al., 2009), or interpersonal relationship identifica-
tion (Diehl et al., 2007).

Supervised approaches to DA recognition have
been successfully investigated by many authors

(Stolcke et al., 2000; Klüwer et al., 2010; Kalch-
brenner and Blunsom, 2013). However, annotat-
ing training data is both slow and expensive pro-
cess. The expenses are increased if we consider
different languages and different methods of com-
munication (e.g. telephone conversations, e-mails,
chats, forums, Facebook, Twitter, etc.). As the
social media and other communication channels
grow it has become crucial to investigate unsuper-
vised models. There are, however, only very few
related works.

Crook et al. (2009) use Chinese restaurant pro-
cess and Gibbs sampling to cluster the utterances
into flexible number of groups representing DAs in
a travel-planning domain. The model lacks struc-
tural information (dependencies between DAs)
and works only on the surface level (it represents
an utterance as a word frequency histogram).

Sequential behavior of DAs is examined in (Rit-
ter et al., 2010), where block Hidden Markov
model (HMM) is applied to model conversations
on Twitter. Authors incorporate a topic model on
the top of HMM to distinguish DAs from topical
clusters. They do not directly compare the result-
ing DAs to gold data. Instead, they measure the
prediction ability of the model to estimate the or-
der of tweets in conversation. Joty et al. (2011)
extend this work by enriching the emission dis-
tribution in HMM to also include the information
about speaker and its relative position. A simi-
lar approach is investigated by Paul (2012). They
use mixed-membership Markov model which in-
cludes the functionality of topic models and as-
signs a latent class to each individual token in the
utterance. They evaluate on the thread reconstruc-
tion task and on DA induction task, outperforming
the method of Ritter et al. (2010).

In this paper, we introduce a new approach to
unsupervised DA induction. Similarly to previous
works, it is based on HMMs to model the struc-
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Figure 1: DA model based on Gaussian mixtures.

tural dependencies between utterances. The main
novelty is the use of Multivariate Gaussian dis-
tribution for emissions (utterances) in HMM. Our
approach allows to represent the utterances as real-
valued vectors. It opens up opportunities to design
various features encoding properties of each ut-
terance without any modification of the proposed
model. We evaluate our model together with sev-
eral baselines (both with and without supervision)
on the standard Switchboard-DAMSL corpus (Ju-
rafsky et al., 1997) and directly compare them
with the human annotations.

The rest of the paper is organized as follows.
We start with the definition of our model (Sec-
tions 2, 3, and 4). We present experimental results
in Section 5. We conclude in Section 6 and offer
some directions for future work.

2 Proposed Model

Assume we have a set of dialogues D. Each di-
alogue dj ∈ D is a sequence of DA utterances
dj = {dj,i}Nj

i=1, where Nj denote the length of the
sequence dj . Let N denote the length of corpora
N =

∑
dj∈DNj . We model dialogue by HMM

with K discrete states representing DAs (see Fig-
ure 1). The observation on the states is a feature
vector vj,i ∈ RM representing DA utterance dj,i
(feature representation is described in Section 4).
HMMs thus define the following joint distribution
over observations vj,i and states dj,i:

p(D,V ) =
∏
dj∈D

Nj∏
i=1

p(vj,i|dj,i)p(dj,i|dj,i−1).

(1)
Analogously to D, V is a set of vector sequences
vj = {vj,i}Nj

i=1.
We can represent dependency between con-

secutive HMM states with a set of K multi-

nomial distributions θ over K states, such that
P (dj,i|dj,i−1) = θdj,i−1,dj,i

. We assume the prob-
abilities p(vj,i|dj,i) have the form of Multivariate
Gaussian distribution with the mean µdj,i

and co-
variance matrix Σdj,i

. We place conjugate pri-
ors on parameters µdj,i

, Σdj,i
, and θdj,i−1

: mul-
tivariate Gaussian centered at zero for the mean,
an inverse-Wishart distribution for the covariance
matrix, and symmetric Dirichlet prior for multi-
nomials. We do not place any assumption on the
length of the dialogueNj . The full generative pro-
cess can thus be summarized as follows:

1. For each DA 1 ≤ k ≤ K draw:

(a) covariance matrix Σk ∼ W−1(Ψ, ν),
(b) mean vector µk ∼ N (µ, 1

κΣk),
(c) distribution over following DAs θk ∼

Dir(α).

2. For each dialogue dj ∈D and for each posi-
tion 1 ≤ i ≤ Nj draw:

(a) DA dj,i ∼ Discrete(θdj,i−1
),

(b) feature vector vj,i ∼ N (µdj,i
,Σdj,i

).

Note that κ and ν represents the strength of
the prior for the mean and the covariance, respec-
tively. Ψ is the scale matrix of inverse-Wishart
distribution.

3 Posterior Inference

Our goal is to estimate the parameters of the model
in a way that maximizes the joint probability in
Equation 1. We apply Gibbs sampling and grad-
ually resample DA assignments to individual DA
utterances. For doing so, we need to determine the
posterior predictive distribution.

The predictive distribution of Dirichlet-
multinomial has the form of additive smoothing
that is well known in the context of language
modeling. The hyper-parameter of Dirichlet prior
determine how much is the predictive distribution
smoothed. Note that we use symmetrical Dirichlet
prior so α in the following equations is a scalar.
The predictive distribution for transitions in HMM
can be expressed as

P (dj,i|dj,i−1,d\j,i) =
n

(dj,i|dj,i−1)

\j,i + α

n
(•|dj,i−1)

\j,i +Kα
, (2)
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where n(dj,i|dj,i−1)

\j,i is the number of times DA dj,i
followed DA dj,i−1. The notation \j, i means to
exclude the position i in the j-th dialogue. The
symbol • represents any DA so that n(•|dj,i−1)

\j,i =∑
1≤k≤K n

(k|dj,i−1)

\j,i .
The predictive distribution of Normal-inverse-

Wishart distribution has the form of multivariate
student t-distribution tν′(v|µ′,Σ′) with ν ′ degrees
of freedom, mean vector µ′, and covariance ma-
trix Σ′. According to (Murphy, 2012) the parame-
ters for posterior predictive distribution can be es-
timated as

κk = κ+ n(k), νk = ν + n(k),

Ψk = Ψ + Sk +
κn(k)

κk
(V̄ (k) − µ)(V̄ (k) − µ)>,

µk = κµ+n(k)V̄
(k)

κk
, Σk = Ψk

νk−K+1 , (3)

where n(k) is the number of times DA k
occurred in the data, V̄

(k) is the mean
of vectors associated with DA k, and
Sk =

∑
dj,i=k

(vj,i − V̄ (k))(vj,i − V̄ (k))>

is scaled form of the covariance of these vectors.
Note that κ, ν, µ, and Ψ are hyper-parameters
which need to be set in advance.

Now we can construct the final posterior pre-
dictive distribution used for sampling DA assign-
ments:

P (dj,i = k|D\j,i,V \j,i) ∝
P (dj,i|dj,i−1,d\j,i)

× P (dj,i+1|dj,i,d\j,i+1)
× tνk−K+1(vj,i|µk, κk+1

κk
Σk).

(4)

The product of the first two parts in the equation
expresses the score proportional to the probability
of DA at position i in the j-th dialogue given the
surrounding HMM states. The third part expresses
the probability of DA assignment given the current
feature vector vj,i and all other DA assignments.

We also present the simplified version of the
model that is in fact the standard Gaussian mixture
model (GMM). This model does not capture the
dependencies between surrounding DAs in the di-
alogue. Posterior predictive distribution is as fol-
lows:

P (dj,i = k|D\j,i,V \j,i) ∝
n

(k)
\j,i + α

N − 1 +Kα

× tνk−K+1(vj,i|µk,
κk + 1
κk

Σk). (5)

In Section 5 we provide comparison of both
models to see the strengths of using DA context.

4 DA Feature Vector

The real-valued vectors vj,i are expected to repre-
sent the meaning of dj,i. We use semantic com-
position approach. It is based on Frege’s principle
of compositionality (Pelletier, 1994), which states
that the meaning of a complex expression is deter-
mined as a composition of its parts, i.e. words.

We use linear combination of word vectors,
where the weights are represented by the inverse-
document-frequency (IDF) values of words. We
use Global Vectors (GloVe) (Pennington et al.,
2014) for word vector representation. We use
pre-trained word vectors1 on 6B tokens from
Wikipedia 2014 and Gigaword 5. Brychcı́n and
Svoboda (2016) showed that this approach leads
to very good representation of short sentences.

For supervised approaches we also use bag-
of-words (BoW) representation of an utterance,
i.e. separate binary feature representing the occur-
rence of a word in the utterance.

5 Experimental Results and Discussion

We use Switchboard-DAMSL corpus (Jurafsky et
al., 1997) to evaluate the proposed methods. The
corpus contains transcriptions of telephone con-
versations between multiple speakers that do not
know each other and are given a topic for discus-
sion. We adopt the same set of 42 DA labels and
the same train/test data split as suggested in (Stol-
cke et al., 2000)2.

In our experiments we set κ = 0 , µ = 0,
ν = K, Ψ = 1, and α = 50/K. These parame-
ters are recommended by (Griffiths and Steyvers,
2004; Murphy, 2012) and we also confirm them
empirically. We always perform 1000 iterations of
Gibbs sampling. The number of clusters (mixture
size) is K = 42. The dimension of GloVe vectors
ranges between M = 50 and M = 300.

DA induction task is in fact the clustering prob-
lem. We cluster DA utterances and we assign the
same label to utterances within one cluster. Stan-
dard metrics for evaluating quality of clusters are
purity (PU), collocation (CO), and their harmonic

1Available at http://nlp.stanford.edu/
projects/glove/.

21115 dialogues (196,258 utterances) are used for train-
ing while 19 dialogues (4186 utterances) for testing. More
information about the data split can be found at http:
//web.stanford.edu/˜jurafsky/ws97.
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Model AC PU CO F1 HO CM V1
E

xt
re

m
e Random labels 2.6% 31.5% 4.9% 8.5% 6.8% 4.1% 5.1%

Distinct labels 0.0% 100.0% 0.9% 1.8% 100.0% 26.9% 42.4%
Majority label 31.5% 31.5% 100.0% 47.9% 0.0% 100.0% 0.0%

Su
pe

rv
is

ed

ME GloVe (M = 50) 63.2% 63.3% 77.8% 69.8% 41.0% 57.3% 47.8%
ME GloVe (M = 100) 64.1% 64.4% 76.9% 70.1% 43.3% 57.3% 49.3%
ME GloVe (M = 200) 64.8% 65.1% 77.2% 70.6% 43.5% 58.1% 49.7%
ME GloVe (M = 300) 65.6% 65.8% 76.0% 70.6% 45.0% 57.7% 50.5%

ME BoW 70.4% 70.7% 76.3% 73.4% 51.0% 62.9% 56.3%
ME BoW + GloVe (M = 300) 71.5% 72.0% 76.0% 74.0% 53.2% 62.9% 57.7%

ctx ME BoW + GloVe (M = 300) 72.9% 73.0% 76.1% 74.5% 53.9% 64.1% 58.6%

U
ns

up
er

vi
se

d

BHMM (Ritter et al., 2010) / 60.3% 31.2% 41.1% 43.1% 29.1% 34.7%
M4 (Paul, 2012) / 44.4% 45.9% 45.1% 19.4% 16.9% 18.0%

K-means GloVe (M = 50) / 57.1% 25.9% 35.6% 39.9% 27.5% 32.6%
K-means GloVe (M = 100) / 56.7% 29.5% 38.8% 39.9% 28.9% 33.5%
K-means GloVe (M = 200) / 56.9% 32.4% 41.3% 39.7% 31.2% 35.0%
K-means GloVe (M = 300) / 57.4% 31.2% 40.4% 40.2% 30.3% 34.6%

GMM GloVe (M = 50) / 54.4% 51.8% 53.1% 34.0% 37.7% 35.8%
GMM GloVe (M = 100) / 53.8% 58.1% 55.9% 33.7% 40.0% 36.5%
GMM GloVe (M = 200) / 52.1% 76.9% 62.1% 31.3% 43.6% 36.4%
GMM GloVe (M = 300) / 52.7% 79.8% 63.5% 30.1% 45.2% 36.1%

ctx GMM GloVe (M = 50) / 55.1% 60.0% 57.5% 36.4% 42.4% 39.1%
ctx GMM GloVe (M = 100) / 53.8% 81.7% 64.9% 32.3% 51.7% 39.8%
ctx GMM GloVe (M = 200) / 54.7% 81.4% 65.5% 32.1% 51.9% 39.7%
ctx GMM GloVe (M = 300) / 55.2% 81.0% 65.7% 34.4% 51.4% 41.2%

Table 1: Accuracy (AC), purity (PU), collocation (CO), f-measure (F1), homogeneity (HO), complete-
ness (CM), and v-measure (V1) for proposed models expressed in percents.

mean (F1). In the last years, v-measure (V1) have
also become popular. This entropy-based measure
is defined as harmonic mean between homogene-
ity (HO – the precision analogue) and complete-
ness (CM – the recall analogue). Rosenberg and
Hirschberg (2007) presents definition and compar-
ison of all these metrics. Note the same evalua-
tion procedure is often used for different cluster-
ing tasks, e.g., unsupervised part-of-speech induc-
tion (Christodoulopoulos et al., 2010) or unsuper-
vised semantic role labeling (Woodsend and Lap-
ata, 2015).

Table 1 presents the results of our experiments.
We compare both supervised and unsupervised ap-
proaches. Models incorporating the information
about surrounding DAs (context) are denoted by
prefix ctx. We show the results of three unsu-
pervised approaches: K-means clustering, GMM
without context (Eq. 5), and context-dependent
GMM (Eq. 4). We use Maximum Entropy (ME)
classifier (Berger et al., 1996) for the supervised
approach. For the context-dependent version we
perform two-round classification: firstly, without

the context information and secondly, incorporat-
ing the output from the previous round.

In addition, Table 1 provides results for the
three extreme cases: random label, majority la-
bel, and distinct label for each utterance (a sin-
gle utterance per cluster). Note the last mentioned
achieved v-measure of 42.4%. In this case, how-
ever, completeness approaches 0% with the rising
size of the test data (so v-measure does too). So
this number cannot be taken into account.

To the best of our knowledge, the best perform-
ing supervised system on Switchboard-DAMSL
corpus is presented in (Kalchbrenner and Blun-
som, 2013) and achieves accuracy of 73.9%.
Our best supervised baseline is approximately 1%
worse. In all experiments the context informa-
tion proved to be very useful. The best re-
sult among unsupervised models is achieved with
300-dimensional GloVe (F1 score 65.7% and v-
measure 41.2%). We outperform both the block
HMM (BHMM) (Ritter et al., 2010) achieving F1
score 41.1% and v-measure 34.7% and mixed-
membership HMM (M4) (Paul, 2012) achieving
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F1 score 45.1% and v-measure 18.0%3. If we
compare our method with the supervised version
(F1 score 74.5% and v-measure 58.6%) we can
state that HMM with GMMs is very promising di-
rection for the unsupervised DA induction task.

6 Conclusion and Future Work

We introduced HMM based model for unsu-
pervised DA induction. We represent each
utterance as a real-valued vector encoding the
meaning. Our model predicts these vectors
in the context of DA utterances. We com-
pared our model with several strong baselines
and showed its strengths. Our Java imple-
mentation is available for research purposes
at https://github.com/brychcin/
unsup-dial-act-induction.

As the main direction for future work, we plan
to experiment with more languages and more cor-
pora. Also, more thorough study of feature vector
representation should be done.

We plan to investigate the learning process
much more deeply. It was beyond the scope of
this paper to evaluate the time expenses of the al-
gorithm. Moreover, there are several possibilities
how to speed up the process of parameter estima-
tion, e.g. by Cholesky decomposition of the co-
variance matrix as described in (Das et al., 2015).
In our current implementation the number of DAs
is set in advance. It could be very interesting to use
non-parametric version of GMM, i.e. to change
the sampling scheme to estimate the number of
DAs by Chinese restaurant process.
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Abstract

Grounded semantics is typically learnt
from utterance-level meaning representa-
tions (e.g., successful database retrievals,
denoted objects in images, moves in a
game). We explore learning word and ut-
terance meanings by continuous observa-
tion of the actions of an instruction fol-
lower (IF). While an instruction giver (IG)
provided a verbal description of a config-
uration of objects, IF recreated it using a
GUI. Aligning these GUI actions to sub-
utterance chunks allows a simple maxi-
mum entropy model to associate them as
chunk meaning better than just providing
it with the utterance-final configuration.
This shows that semantics useful for in-
cremental (word-by-word) application, as
required in natural dialogue, might also be
better acquired from incremental settings.

1 Introduction

Situated instruction giving and following is a good
setting for language learning, as it allows for the
association of language with externalised mean-
ing. For example, the reaction of drawing a circle
on the top left of a canvas provides a visible signal
of the comprehension of “top left, a circle”. That
such signals are also useful for machine learn-
ing of meaning has been shown by some recent
work (inter alia (Chen and Mooney, 2011; Wang
et al., 2016)). While in that work instructions
were presented as text and the comprehension
signals (goal configurations or successful naviga-
tions) were aligned with full instructions, we ex-
plore signals that are aligned more fine-grainedly,
possibly to sub-utterance chunks of material. This,
we claim, is a setting that is more representative of
situated interaction, where typically no strict turn

taking between instruction giving and execution is
observed.
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Figure 1: Example of collaborative scene drawing
with IG words (rounded rectangles) and IF reac-
tions (blue diamonds) on a time line.

Figure 1 shows two examples from our task.
While the instruction giver (IG) is producing their
utterance (in the actual experiment, this is com-
ing from a recording), the instruction follower (IF)
tries to execute it as soon as possible through ac-
tions in a GUI. The temporal placement of these
actions relative to the words is indicated with
blue diamonds in the figure. We use data of this
type to learn alignments between actions and the
words that trigger them, and show that the tem-
poral alignment leads to a better model than just
recording the utterance-final action sequence.

2 The learning task

We now describe the learning task formally. We
aim to enable a computer to learn word and utter-
ance meanings by observing human reactions in a
scene drawing task. At the beginning, the com-
puter knows nothing about the language. What it
observes are an unfolding utterance from an IG and
actions from an IF which are performed while the
instruction is going on. Aligning each action a (or,
more precisely, action description, as will become
clear soon) to the nearest word w, we can repre-
sent an utterance / action sequence as follows:

wt1 , wt2 , at3 , · · · , wti , ati+1 , · · · , wtn (1)
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(Actions are aligned ‘to the left’, i.e. to the imme-
diately preceding or overlapping word.)

As the IF concurrently follows the instruction
and reacts, we make the simplifying assumption
that each action ati is a reaction to the words
which came before it and disregard the possibility
that IF might act on a predictions of subsequent in-
structions. For instance, in (1), we assume that the
action at3 is the interpretation of the words wt1

and wt2 . When no action follows a given word
(e.g. wtn in (1)), we take this word as not con-
tributing to the task.

We directly take these action symbols a as the
representation of the utterance meaning so-far, or
in other words, as its logical form; hence, the
learning task is to predict an action symbol as soon
as it is appropriate to do so. The input is presented
as a chunk of the ongoing utterance containing at
least the latest word. The utterance meaning U of
a sequence {wt1 , . . . , wtn} as a whole then is sim-
ply the concatenation of these actions:

U = {at1 , ...., ati} (2)

3 Modeling the learning task

3.1 Maximum entropy model
We trained a maximum entropy model to compute
the probability distribution over actions from the
action space A = {ai : 1 ≤ i ≤ N}, given the
current input chunk c:

p(ai|c) =
1

Z(c)
exp

∑
j

λjfj(ai, c) (3)

λj is the parameter to be estimated. fj(ai, c) is
a simple feature function recording co-occurences
of chunk and action:

fj(ai, c) =
{

1 if c = cj
0 otherwise

(4)

In our experiments, we use a chunk size of 2,
i.e., we use word bigrams. Z(c) is the normal-
ising constant. The logical form with the highest
probability is taken to represent the meaning of the
current chunk: a∗(c) = arg maxi p(ai|c)

In the task that we test the approach on, the ac-
tion space contains actions for locating an object
in a scene; for sizing and colouring it; as well as
for determining its shape. (See below.)
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smallbottom left is a
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Figure 2: Example of hypothesis updating. New
best hypotheses per type are shown in blue; re-
tained hypotheses in green; revised hypotheses in
red.

3.2 Composing utterance meaning
Since in our task each utterance places one object,
we assume that each utterance hypothesis U con-
tains a unique logical form for each of following
concepts (referred as type of logical forms later):
colour, shape, size, row and column position.

While the instruction unfolds, we update the ut-
terance meaning hypotheses by adding new logical
forms or updating the probabilities of current hy-
pothesis. With each uttered word, we first check
the type of the predicted logical form. If no log-
ical form of the same type has already been hy-
pothesised, we incorporate the new logical form to
the current hypothesis. Otherwise, if the predicted
logical form has a higher probability than the one
with the same type in the current hypothesis, we
update the hypothesis; if it has a lower probabil-
ity, the hypothesis remains unchanged. Figure 2
shows an example of the hypothesis updating pro-
cess.

4 Data collection

4.1 The experiment
While the general setup described above is one
where IG gives an instruction, which a co-present
IF follows concurrently, we separated these con-
tributions for technical reasons: The instructions
from IG were recorded in one session, and the
actions from IF (in response to being played the
recordings of IG) in another.

To elicit the instructions, we showed IGs a scene
(as shown in the top of Figure 3) on a computer
screen. They were instructed to describe the size,
colour, shape and the spatial configuration of the
objects. They were told that another person will
listen to the descriptions and try to re-create the
described scenes.

100 scenes were generated for the description
task. Each scene includes 2 circles and a square.
The position, size, colour and shape of each ob-
ject were randomly selected when the scenes were
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Figure 3: The GUI and a sample scene.

generated. The scenes were shown in the same
order to all IGs. There was no time restriction
for each description. Each IG was recorded for
20 minutes, yielding on average around 60 scene
descriptions. Overall, 13 native German speakers
participated in the experiment. Audio and video
was recorded with a camera.

In the scene drawing task, we replayed the
recordings to IFs who were not involved in the pre-
ceding experiment. To reduce the time pressure
of concurrently following instructions and react-
ing with GUI operation, the recordings were cut
into 3 separate object descriptions and replayed
with a slower pace (at half the original speed). IFs
decided when to begin the next object description,
but were asked to act as fast as possible. This setup
provides an approximation (albeit a crude one) to
realistic interactive instruction giving, where feed-
back actions control the pace (Clark, 1996).

The drawing task was performed with a GUI

(Figure 3) with separate interface elements corre-
sponding to the aspects of the task (placing, sizing,
colouring, determining shape). Before the exper-
iment, IFs were instructed in using the GUI and
tried several drawing tasks. After getting familiar
with the GUI, the recordings were started. Over-
all, 3 native German speakers took part in this ex-
periment. Each of them listened to the complete
recordings of between 4 and 5 IGs, that is, to be-
tween 240 and 300 descriptions. The GUI actions
were logged and timestamped.

4.2 Data preprocessing
Aligning words and actions First, the instruc-
tion recordings were manually transcribed. A
forced-alignment approach was applied to tempo-

0.0 0.5 1.0 1.5 2.0

End of utterance position

size

colour

shape

Figure 4: Action type distributions over utterance
duration (1 = 100% of utterance played).

rally align the transcriptions with the recordings.
Then, the IF actions were aligned with the record-
ings via logged timestamps.

Figure 4 shows how action types distribute over
utterances. As this shows, object positions tend
to be decided on early during the utterance, with
the other types clustering at the end or even after
completion of the utterance.

Actions and Action Descriptions We defined a
set of action symbols to serve as logical forms rep-
resenting utterance chunk meanings. As described
above, we categorised these action symbols into 5
types (shown in Table 1). The symbols were used
for associating logical forms to words, while the
type of actions was used for updating the hypoth-
esis of utterance meaning (as explained in Sec-
tion 3.2).

We make the distinction between actions and
action symbol (or action description), because we
make use of the fact that the same action may be
described in different ways. E.g., a placing action
can be described relative to the canvas as a whole
(e.g. “bottom left”) or relative to other objects (e.g.
“right of object 1”). We divided the canvas into a
grid with 6 × 6 cells. We represent canvas posi-
tions with the grid coordinate. For example, row1
indicates an object is in the first row of the canvas
grid. We represent the relative positions with the
subtraction of their indexes to corresponding refer-
ential objects. For example, prev1 row1 indicates
that the object is 1 row above the first described
object. Describing the same action in these differ-
ent ways gives us the required targets for associ-
ating with the different possible types of locating
expressions.

Labelling words with logical forms With the
assumption that each action is a reaction to at most
N words that came before it (N = 3 in our setup),
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type logical form
row row1, row2 ... row6

prev1 row1, prev1 row2 ...
prev2 row1, prev2 row2 ...

column col1, col2 ... col6
prev1 col1, prev1 col2 ...
prev2 col1, prev2 col2 ...

size small, medium, big

colour red, green, blue, magenta

cyan, yellow

shape circle, square

Table 1: Reaction types and logical forms.

we label these N previous words with the logical
form of the action. E.g., for the first utterance from
Figure 1 above:

(1)
unten links ist ein kleines blaues Viereck
row4 row4 small small small blue square
col0 col0 blue blue square

square

Notice that a word might be aligned with more
than one action, which means that the learning
process has to deal with potentially noisy infor-
mation. Alternatively, a word might not be aligned
with any action.

5 Evaluation

The data was randomly divided into train (80%)
and test sets (20%). For our multi-class classifica-
tion task, we calculated the F1-score and precision
for each class and took the weighted sum as the fi-
nal score.

Setup F1-score Precision Recall
Proposed Exp1 0.75 0.65 0.89

model Exp2 0.66 0.55 0.83
Baseline model 0.60 0.52 0.71

Table 2: Evaluation results.

Figure 5 illustrates the evaluation process of
each setup.

Proposed model The proposed model was eval-
uated on the utterance and the incremental level.
In Experiment 1, the meaning representation is
assembled incrementally as described above, but
evaluated utterance-final. In Experiment 2, the
model is evaluated incrementally, after each word
of the utterance. Hence, late predictions (where
a part of the utterance meaning is predicted later
than would have been possible) are penalised in
Experiment 2, but not Experiment 1. The model
performs better on the utterance level, which sug-
gests that the hypothesis updating process can suc-

unten links ist

row4 
col0

row4 row4 
 col0

row4 
 col0

ein

row4 
 col0 
   big

kleines

row4 
 col0 
small

Experiment 2

Gold standard
smallbottom left is a

Instruction
Translation

Experiment 1

Baseline model

blaues Viereck

row4 
col0 
small 
blue

- - - - - -

- - - - - - row4, col0, small, blue, square

row4 
 col0 
small 
blue

row4, col0, small, blue, square

blue square
row4, col0, small, blue, squarerow4 

col0
row4 
col0

row4 
col0 
small

row4, col0, small, blue, square

Figure 5: Evaluation Setups. Exp. 1 only evaluates
the utterance-final representation, Exp. 2 evaluates
incrementally. False interpretations are shown in
red.

cessfully revise false interpretations while the de-
scriptions unfold.

Baseline model For comparison, we also trained
a baseline model with temporally unaligned data
(comparable to a situation where only at the end
of an utterance a gold annotation is available). For
(1), this would result in all words getting assigned
the labels row4,col0,small,blue,square. As
Table 2 shows, this model achieves lower results.
This indicates that temporal alignment in the train-
ing data does indeed provide better information for
learning.

Error analysis While the model achieves good
performance in general, it performs less well on
position words. For example, given the chunk
“schräg rechts” (diagonally to the right) which
describes a landmark-relative position, our model
learned as best interpretation a canvas-relative po-
sition. The hope was that offering the model
the two different action description types (canvas-
relative and object-relative) would allow it to make
this distinction, but it seems that here at least
the more frequent use of “rechts” suppresses that
meaning.

6 Related work

There has been some recent work on grounded
semantics with ambiguous supervision. For ex-
ample, Kate and Mooney (2007) and Kim and
Mooney (2010) paired sentences with multiple
representations, among which only one is cor-
rect. Börschinger et al. (2011) introduced an ap-
proach to ground language learning based on un-
supervised PCFG induction. Kim and Mooney
(2012) presents an enhancement of the PCFG ap-
proach that scales to such problems with highly-
ambiguous supervision. Berant et al. (2013)
and Dong and Lapata (2016) map natural lan-
guage to machine interpretable logical forms with
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question-answer pairs. Tellex et al. (2012), Salvi
et al. (2012), Matuszek et al. (2013), and Andreas
and Klein (2015) proposed approaches to learn
grounded semantics from natural language and ac-
tion associations. These approaches paired am-
biguous robot actions with natural language de-
scriptions from humans. While these approaches
achieve good learning performance, the ambigu-
ous logical forms paired with the sentences were
manually annotated. We attempted to align ut-
terances and potential logical forms by continu-
ously observing the instruction following actions.
Our approach not only needs no human annota-
tion or prior pairing of natural language and log-
ical forms for the learning task, but also acquires
less ambiguous language and action pairs. The re-
sults show that the temporal information helps to
achieve competitive learning performance with a
simple maximum entropy model.

Learning from observing successful interpreta-
tion has been studied in much recent work. Be-
sides the work discussed above, Frank and Good-
man (2012), Golland et al. (2010), and Reckman
et al. (2010) focus on inferring word meanings
through game playing. Branavan et al. (2009),
Artzi and Zettlemoyer (2013), Kollar et al. (2014)
and Monroe and Potts (2015) infer natural lan-
guage meanings from successful instruction ex-
ecution of humans/agents. While interpretations
were provided on utterance level in above works,
we attempt to learn word and utterance meanings
by continuously observing interpretations of natu-
ral language in a situated setup which enables ex-
ploitation of temporally-aligned instruction giving
and following.

7 Conclusions

Where most related work starts from utterance-
final representations, we investigated the use of
more temporally-aligned understanding data. We
found that in our setting and for our simple learn-
ing methods, this indeed provides a better signal.
It remains for future work to more clearly delin-
eate the types of settings where such close align-
ment on the sub-utterance level might be observed.
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Abstract

Semantic analyses of the PERFECT often
defeat their own purpose: by restricting
their attention to ‘real’ perfects (like the
English one), they implicitly assume the
PERFECT has predefined meanings and us-
ages. We turn the tables and focus on
form, using data extracted from multilin-
gual parallel corpora to automatically gen-
erate semantic maps (Haspelmath, 1997)
of the sequence ‘HAVE/BE + past partici-
ple’ in five European languages (German,
English, Spanish, French, Dutch). This
technique, which we dub Translation Min-
ing, has been applied before in the lexical
domain (Wälchli and Cysouw, 2012) but
we showcase its application at the level of
the grammar.

1 Introduction

The PERFECT is a diachronically and linguisti-
cally unstable category (Lindstedt, 2000) and is
subject to widespread cross-linguistic variation.
We zoom in on the HAVE PERFECT that Dahl and
Velupillai (2013) trace back to a transitive pos-
sessive construction, and manifests itself mainly
in Western European languages. Despite exten-
sive literature on the PERFECT, the goal of provid-
ing a proper semantics has not been reached (Ritz,
2012).

We propose to use semantic maps (Haspelmath,
1997) for this purpose. Semantic maps are geo-
graphical layouts that graphically represent how
meanings of grammatical functions are related to
each other. While current formal semantic ap-
proaches to the PERFECT (e.g. Portner (2003)) are
driven by sets of predefined usages exemplified by
prototypical instantiations, we aim to generate se-
mantic maps directly from data.

We believe multilingual parallel corpora are an
excellent source for this. Translation equivalents
provide us with form variation across languages
in contexts where the meaning is stable. Paral-
lel corpora have been frequently used in the do-
main of lexical semantics (e.g. Dyvik (1998)). We
showcase a method (adapted from Wälchli and
Cysouw (2012)) to create semantic maps directly
from multilingual parallel corpora, and adapt it to
the level of grammar. We focus on a set of five
European languages (German, English, Spanish,
French, Dutch), although the methodology can
easily be adapted to include more languages.

Linguists commonly distinguish the three core
PERFECT meanings in (1):

(1) a. Mary has visited Paris.
(her past visit is relevant now) [experiental]

b. Mary has moved to Paris.
(she currently lives in Paris) [resultative]

c. Mary has lived in Paris for five years (now).
(she moved there five years ago) [continuative]

The resultative meaning in (1b) is thought to
constitute the core of the PERFECT. However,
(2) (taken from the subtitles of “Body of Proof”)
shows that the same meaning of a past event and a
result with current relevance can be conveyed by a
PAST, PERFECT or PRESENT.

(2) a. In case you hadn’t noticed, we just got a con-
fession. [en-PAST]

b. Falls
If

es
it

ihnen
you

entging,
escaped,

er
he

hat
has

gestanden.
confessed.

[de-PERFECT]
c. Si

If
vous
you

ne
not

l’avez
it have

pas remarqué,
noticed,

on
we

a
have

des aveux.
confessions.

[fr-PRESENT]

Taking (1) as a starting point for cross-linguistic
variation, and ignoring other tense-aspect forms
(as in (2)) would lead to a skewed view on vari-
ation and on the PERFECT itself. As Ritz (2012)
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states, the PERFECT is the ‘shapeshifter’ of tense-
aspect categories, and adapts its meaning to fit into
a given system. Our final goal is to provide a com-
positional semantics of the PERFECT across lan-
guages that takes the variation in (2) and (2) into
account. The competing, form-based methodol-
ogy that we outline in the next section constitutes
the stepping stone that enables us to reach this
goal.

2 Methodology

To construct semantic maps directly from data
extracted from multilingual parallel corpora, we
apply an existing method in the lexical domain
(Wälchli and Cysouw, 2012) at the level of gram-
mar. We dub our method Translation Mining. In
the following paragraphs, we lay out the method
in detail.

2.1 Step 1) Extraction of PERFECTs

In the first phase, we extract fragments containing
verbs phrases that match the ‘HAVE/BE + past par-
ticiple’ pattern from the EuroParl corpus (Tiede-
mann, 2012). To do so, we modify an existing
algorithm by van der Klis et al. (2015), that takes
care of three difficulties in extracting these forms
from corpora: (1) words between the auxiliary
verb and the past participle, (2) lexical restrictions
for BE in French, German and Dutch and (3) a re-
versed order in subordinate clauses in German and
Dutch.

The algorithm searches each of the five lan-

guages under investigation (German, English,
Spanish, French and Dutch) for PERFECTs and
will then return the aligned sentences in the other
languages. This yields five-tuples of fragments
consisting of at least one PERFECT. Note that
this approach is necessary to find the triplet in (2),
because only in German a PERFECT is involved.
This scheme therefore allows for competing forms
within a language to enter the realm of investi-
gation. Also, taking five languages into account
will create a broader perspective on the semantics
of the PERFECT than monolingual research would
do.1

2.2 Step 2) Word-level alignment of verb
phrases

After extracting fragments containing a PERFECT

in step 1, we asked a single human annotator
(a BSc student proficient in all languages un-
der investigation) to mark the corresponding verb
phrases in the aligned fragments. To facilitate
the annotator’s job we created a web application
(dubbed TimeAlign) that allows users to see two
aligned fragments (a “source” and a “translation”)
and to mark the corresponding verb phrase in the
target language.2 The annotator can also signal

1The source code of this algorithm can be found on
GitHub: https://github.com/UUDigitalHumanitieslab/
perfectextractor.

2The source code of this application can be found on
GitHub: https://github.com/UUDigitalHumanitieslab/
timealign. The application has been built in Django, a Python
web framework (https://www.djangoproject.com/).

Figure 1: The annotation interface used in step 2. The annotator can select (by clicking on words) a suitable translation for the
marked words in the source fragment, or use the checkboxes to mark the source as not being a PERFECT or as the translated
fragment as an incorrect translation of the source fragment.

Generic tense DE EN ES FR NL
PERFECT Perfekt present perfect

present perfect continuous
pretérito perfecto compuesto passé composé vtt

PRESENT Präsens present presente présent ott
PAST Präterium simple past pretérito imperfecto

pasado receinte
pretérito perfecto simple

imparfait
passé récent

ovt

PAST PERFECT Plusquamperfekt past perfect pretérito pluscuamperfecto plus-que-parfait vvt
OTHER Futur I/II - participio futur antérieur -

Table 1: Possible tenses in step 3 for each language, categorized in a more generic tense category. We also allow to attribute
‘other’ if none of the tenses fit.
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when the target fragment is not a correct transla-
tion of the source, or when the verb phrase in the
source is in fact not a PERFECT (see Figure 1).

Fragments without a PERFECT in the source
and incorrect translations are removed from the
dataset. The remaining pairs are merged back into
five-tuples. Step 2 thus yields five-tuples of verb
phrases, at least one of which (the source) is a
PERFECT.

2.3 Step 3) Tense attribution

In the third step, we assign tenses to the verb
phrases marked in the translations (see step 2). For
the tense labelling, we opted for the categories dis-
played in Table 1. The tenses are automatically
or manually assigned, depending on the level of
detail of part-of-speech tags per language. The
tense attribution for English, French and Dutch is
straightforward: we used the part-of-speech tag-
ging of the EuroParl corpus to retrieve the label.3

However, for German and Spanish we opt for man-
ual tense attribution, because the part-of-speech-
tagging of the auxiliary verbs in EuroParl was too
coarse-grained.

2.4 Step 4) Dissimilarity matrix

The tense attribution process of step 3 yields five-
tuples of aligned tense attributions (see Table 2 for

3The source code of this algorithm is part of TimeAlign,
see link above.

# DE EN ES FR NL
1 Perfekt present perf. passé comp. pretérito perf. comp. vtt
2 Präterium simple past passé comp. pretérito perf. comp. vtt
3 Perfekt present perf. passé récent pasado receinte vtt

Table 2: Example set of tense attributions.

#1 #2 #3
#1 - 2/5 2/5
#2 2/5 - 4/5
#3 2/5 4/5 -

Table 3: Dissimilarity matrix for the example tense attribu-
tions in Table 2.

an example outcome). We design a simple dis-
tance function: we define five-tuples to be similar
(distance = 0) if all the tense attributions match
up, if not, we add 1 for each mismatch and divide
the sum by 5. We use the distance function on the
five-tuples to create a (dis)similarity matrix. Table
3 shows an application of the distance function and
the resulting matrix.

We decided to remove five-tuples from the re-
sults in which one of the translations was missing
or contained a non-verbal translation. We believe
including these examples in the current pilot study,
with a limit dataset and only five languages in to-
tal, would have a negative effect on our analyses.
We will address this issue in future research.

Figure 2: Visualization of the dissimilarity matrix via multidimensional scaling. The points are labelled using the tenses of
the selected language. Users can also change the dimensions shown. Clicking on a point allows to inspect a single five-tuple
(example shown in Figure 3).
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2.5 Step 5) Visualization via
multidimensional scaling

The resulting matrix from step 4 is then plotted
using multidimensional scaling (MDS)4. On top of
that, we created an interactive visualization (see
Figure 2).

This visualization shows which space the var-
ious tenses (PERFECT and other) occupy on the
map, and thus enables researchers to see how
tenses interact within a language. The visual-
ization also allows for comparison between lan-
guages, because it uses a color labeling that re-
mains constant between languages (e.g. the Ger-
man Perfekt has the same color as the English
present perfect). Furthermore, being able to filter
tenses allows to focus on one specific tense or in-
teraction between specific tenses. The researcher
can also choose to show other dimensions of the
MDS algorithm, which facilitates interpretation.
Hovering over a point on the map directly shows
you the five-tuple the point is based on, and click-
ing on a point will yield a new page in which you
can inspect the underlying data (see Figure 3 for
an example).5

Compared to Wälchli and Cysouw (2012), our
main contributions in this methodology are (1) the
web application to allow for easier annotation and
(2) the interactive visualization of the MDS algo-

4We use the MDS algorithm from the scikit-learn pack-
age (Pedregosa et al., 2011), a Python package for machine
learning, and visualized the results using the nvd3 package
(http://nvd3.org/).

5The source code of this visualization is part of
TimeAlign, see link above.

DE EN ES FR NL
PERFECT 360 347 371 481 438
PRESENT 19 18 47 20 20

PAST 124 146 897 88 36
PAST PERFECT 4 1 3 2 18

other 5 - 2 1 -

Table 4: Descriptive statistics of tense attributions in all five
languages.

rithm, which allows for researchers to more easily
compare PERFECT usage within and across lan-
guages, as well as interpret dimensions.

3 Premilinary results

In this pilot study we analyzed a small part of the
Q4/2000 portion of the EuroParl corpus.6 Run-
ning the Translation Mining methodology on this
corpus yielded 512 complete five-tuples in total.

We first observe the descriptive statistics in
Table 4 that result from mapping the language-
specific tense labelling in step 3 to more generic
tenses (e.g. simple past to PAST, see Table 1). As
is commonly reported in literature (see de Swart
(2007) and references therein), the French passé
composé takes responsibility for a wide range of
PERFECT uses. In German and English one tends
to use PAST for quite a few contexts where French
would use the passé composé. In Spanish, the pre-
sente also competes with the PAST in this respect.

6Specifically, the files 00-12-11.xml, 00-12-14.xml and
00-12-15.xml, totaling 106k tokens for the English transla-
tion.

7This consists of 79 fragments labelled as préterite per-
fecto simple, 6 as pasado reciente and 4 as préterite imper-
fecto.

Figure 3: Detailed view of a five-tuple of fragments. The “source” fragment shows the extracted sentence from step 1 with the
PERFECT marked in green. The “translations” are the aligned fragments with manually annotated verb phrases from step 2 and
semi-automatically annotated tenses from step 3.
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Moving from descriptive statistics to the MDS
visualization, we look at dimensions governing
the competition between languages. The Ger-
man data (depicted in Figure 2) is most obvious
in this respect, where the x-axis shows a transi-
tion from PERFECT to unmarked (aspectual per-
spective), and the y-axis from PRESENT to PAST

(temporal orientation). However, this attribution is
not so easily translated into other languages, even
though in each language we do find clear clusters
of PERFECT use.

In the visualization, we can also look at outliers
to find cases where one language is different from
the other languages. We can confirm e.g. that En-
glish requires a PAST with a locating time adver-
bial, whereas German, Dutch and French tolerate
a PERFECT in this configuration. Spanish patterns
with English (see Schaden (2009)) in this respect.
An example of this phenomenon can be found in
(3) below.

(3) a. [de] Frau Präsidentin, wir haben am 4. Dezem-
ber abgestimmt.

b. [en] Madam President, we voted on 4 Decem-
ber.

c. [es] Señora Presidenta, votamos el pasado 4 de
diciembre.

d. [fr] Madame la Présidente, nous avons voté le
4 décembre.

e. [nl] Mevrouw de Voorzitter, op 4 december
hebben wij hierover gestemd.

Another interesting outlier is the RECENT

PAST, available for French and Spanish. This pe-
riphrastic tense signals recency and is expressed
in German, English and Dutch through the use of
a PERFECT combined with an additional time ad-
verbial: gerade, just, kortgeleden respectively, see
(4) below. A tentative conclusion could be that the
RECENT PAST is a dimension of the PAST or of
the PERFECT, but in both cases this recency re-
quires additional marking.

(4) a. [de] Der Gerichtshof hat nämlich gerade die
Richtlinie aus dem Jahr 1998, die Werbung
und Sponsoring fr Tabakerzeugnisse verbietet,
aufgehoben.

b. [en] The fact is that the Court of Justice has just
repealed the 1998 Directive banning advertis-
ing and sponsorship of tobacco products.

c. [es] El Tribunal de Justicia, efectivamente,
acaba de anular la directiva de 1998 que pro-
hibı́a la publicidad y el patrocinio de los pro-
ductos del tabaco.

8This consists of 7 fragments labelled as passé recent and
1 as imparfait.

d. [fr] La Cour de justice, en effet, vient
d’annuler la directive de 1998 interdisant la
publicité et le parrainage en faveur des produits
du tabac.

e. [nl] Het Hof van Justitie heeft kortgeleden de
richtlijn van 1998 betreffende het verbod op
reclame en sponsoring in de tabakssector gean-
nuleerd.

4 Discussion

The interactive maps allowed us to reproduce
earlier research (e.g. de Swart (2007), Schaden
(2009)), but also to draw new conclusions on
the tense/aspect role of the PERFECT across lan-
guages. Our methodology can be applied to a wide
range of grammatical phenomena. There are some
remaining issues though.

First of all, interpreting the results of the MDS
algorithm is more qualitative than quantitative.
While the visualization helps researchers to form
ideas on the role of the PERFECT, these intu-
itions will need to be supported by statistics.
We are currently looking into applying Analysis
of Similarities (ANOSIM, Clarke (1993)) on the
(dis)similarity matrices to pair this with the MDS
visualization.

A second limitation is that the EuroParl cor-
pus contains only political dialogue, and there-
fore might not cover the whole range of PER-
FECT use. We should also check for register varia-
tion. Our plan is to repeat our methodology on the
OpenSubtitles2016 corpus (Lison and Tiedemann,
2016), as well as to find (or create) a multilingual
parallel corpus of literary texts.

Lastly, we think the distance function we now
use might be too simplistic. It considers all tense
differences to be equal, even though it is quite
clear that e.g. a PRESENT is semantically more
distant from a PAST PERFECT than a PERFECT.
Also, there is no cross-language comparison. We
plan to experiment with the distance function to
finetune our results.
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Abstract

We propose ECO: a new way to generate
embeddings for phrases that is Efficient,
Compositional, and Order-sensitive. Our
method creates decompositional embeddings
for words offline and combines them to create
new embeddings for phrases in real time.
Unlike other approaches, ECO can create
embeddings for phrases not seen during
training. We evaluate ECO on supervised
and unsupervised tasks and demonstrate that
creating phrase embeddings that are sensitive
to word order can help downstream tasks.

1 Introduction

Semantic embeddings of words represent word
meaning via a vector of real values (Deerwester et al.,
1990). The Word2Vec models introduced by Mikolov
et al. (2013a) greatly popularized this semantic
representation method and since then improvements
to the basic Word2Vec model have been proposed
(Levy and Goldberg, 2014; Ling et al., 2015).

Although techniques exist to sufficiently induce
representations of single tokens (Mikolov et al.,
2013a; Pennington et al., 2014), current methods for
creating n-gram embeddings are far from satisfactory.
Recent approaches cannot embed n-grams that do
not appear during training. For example, Hill et
al. (2016) used a heuristic of converting phrases to
tokens before learning the embeddings. Additionally,
Yin and Schütze (2014) queried sources to determine
which phrases to embed.

We propose a new method for creating phrase
embeddings on-the-fly. Offline, we compute
decomposed word embeddings (Figure 1a) that can
be used online to Efficiently generate Compositional
n-gram embeddings that are sensitive to word Order
(Figure 1b). We refer to our method as ECO. ECO is

∗ denotes equal contribution.
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Figure 1: (a): Skip-embeddings for each word by generalizing
Word2Vec. The numbers refer to the position, relative to the
given word, that the individual skip-embedding represents. (b):
ECO’s efficient heuristic for composing n-gram embeddings.

a novel way to incorporate knowledge about phrases
into machine learning tasks. We evaluate our method
on different supervised and unsupervised tasks.

2 Background

Before introducing our approach for creating
decomposed word embeddings to ultimately create
n-gram embeddings online, we introduce our notation
and provide a brief overview of the Word2Vec model.

Notation We define s to be a sequence of words
and sj to be the jth word of sequence s. Let |s| be
the length of the sequence and let S be the set of all
sequences. Additionally, let W denote an indexed
set of words, w denote a generic word and wi denote
the ith word of W . V and Vout denote indexed sets
of vectors of length d corresponding to W , i.e. v
∈ V , vout ∈ Vout, and vw corresponds to the vector
representing word w ∈W . These two sets of vectors
correspond to the input and output representations of
a word as described by Mikolov et al. (2013b). The
notation [., .) denotes a set of integers that contain
successive integers starting from and including the
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left and excluding the right argument.

Word2Vec Model The popular Word2Vec model
consists of four possible models: Continuous
Bag-of-Words (CBOW) with hierarchical softmax
or negative sampling, and Skip-Gram (SG) with
the same choices for optimizing training parameters.
CBOW aims to predict a single word w surrounded
by the given context while SG tries to predict the
context words aroundw (Rong, 2014). The SG model
maximizes the following average log-probability of
the sentence averaged over the entire corpus:

1
|S|
∑
s∈S

1
|s|
∑

j

∑
k∈[j−c,0)∪(0,j+c]

logp(sk|sj), (1)

where c refers to the window size, i.e. half the size of
the context. The probability of token sk given token
sj is computed as the softmax over the inner products
of the embeddings of the two tokens:

p(sk|sj)=
exp (〈vout

sk
,vsj〉)

exp (
∑

w∈W 〈vout
w ,vsj〉)

. (2)

3 Possible approaches to embed n-grams

Before introducing ECO, we present a discussion of
other possible ways to combine unigram embeddings
to generate n-gram embeddings. This discussion
motivates the need for ECO and the issues that our
novel approach solves.

Treat n-grams as words The simplest way to
create embeddings for phrases would be to treat
phrases as single words and run out-of-the-box
software to embed those n-grams just like one would
for single words. Implementing such an approach
would just require changing how one pre-processes
text and then running Word2Vec. Yin and Schütze
(2014) use external sources to determine common
bigrams to embed offline.

This approach can not embed unknown n-grams
regardless of whether each of the n-words in the
sequence appeared in a training corpus. Since this
situation will often occur, especially when increasing
the minimum count for words used to learn an
unknown embedding, this approach is insufficient
and cannot embed n-grams on-the-fly.

Combining individual word embeddings The
next plausible approach to create n-gram embeddings
would be to combine the individual word embeddings
into one new embedding with heuristics such
as averaging, adding, or multiplying the word

embeddings (Mitchell and Lapata, 2010). Averaging
the embeddings, which we use as a baseline for our
experiments, can be viewed as

v[w1:wn]=
vw1+...+vwn

n
(3)

where v[w1:wn] is the embedding for a phrase of size n.
However, regardless of how one combines the

individual word embeddings, the ordering of words
in a phrase is not captured in the new n-gram
embedding. For example, with this method, the
embeddings for the bigrams shark killer and
killer shark would be the same. Therefore, an
ordered approach is needed.

4 The ECO Way

We now present our strategy to eliminate the
shortcomings of the previously discussed approaches
and propose an intuitive method for creating n-gram
embeddings.

Skip-Embeddings The Word2Vec model encodes
a word w using a single embedding vw that must
maximize the log probability of the tokens that occur
around it. This encourages the embedding of a
word to be representative of the context surrounding
it. However a careful look reveals that the context
around a word can be split into multiple categories,
specifically that each word has at least 2c contexts,
one for each position in the window being considered.

Thus, we can parameterize each word w with 2c
embeddings. For all i ∈ [−c:c] such that i 6= 0, vi

w

encodes the context of word w at a specific position,
to the left (−) or right (+), from w. With this strategy,
instead of having one model with the objective
function from (1), we now have 2c independent
models with their own objective function of

1
|S|
∑
s∈S

1
|s|
∑

j

log p(sk|sj) (4)

where sk is the word i positions away from sj in s.
The new probability distribution is now

p(sk|sj)=
exp (〈viout

sk
,vi

sj
〉)

exp (
∑

w∈W 〈viout
w ,vi

sj
〉) . (5)

We refer to each of the newly decompositional 2c
embeddings created per word as skip-embeddings.

Since a skip-embedding only considers a single
token separated by i tokens from w, the dimension-
ality of vi

w should be kept to d
2c to allow for direct
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comparison to Word2Vec that uses d dimensional
embeddings. Consequently, each skip-embedding is
trained with only d

2c parameters.
Another major benefit of this architecture is

that the training can run in parallel, since the 2c
skip embeddings are generated independently. As
evidenced in section 5.2, our approach does not
sacrifice quality in single word embeddings.

Combining Skip-Embeddings After creating
skip-embeddings offline, we are ready to embed
n-grams on-the-fly, regardless of whether a n-gram
appeared in the original training corpus. Although
we could concatenate the 2c embeddings to create
a unigram embedding, instead of creating n-grams
embeddings, we average the position specific
skip-embeddings of words to create two vectors
vL[w1:wn] and vR[w1:wn] that summarize the left and the
right context of the n-gram independently. vL[w1:wn]

and vR[w1:wn] are computed as follows:

vL[w1:wn]=
v−1
w1

+...+vn
wn

n
(6)

vR[w1:wn]=
v−n
w1

+...+v−1
wn

n
(7)

We then concatenate vL[w1:wn] and vR[w1:wn] to create
a single embedding of the entire n-gram. After
concatenation, the dimensionality of a ECO n-gram
embedding is d

c .

5 Experiments

Our proposed method decomposes previous word
embedding work into 2c models as explained in
(4) and uses an order-sensitive heuristic (6) (7) to
combine skip-embeddings to embed n-grams. Our
experiments demonstrate that this novel method
retains more semantic meaning than other approaches.
We evaluate our n-gram embeddings through both
supervised and unsupervised tasks to test how well
our technique embeds phrases and words.

Data We extracted over 111 million sentences1 con-
sisting of over 2 billion words of raw text from En-
glish Wikipedia (Ferraro et al., 2014) and ran our ECO
framework2 to create skip-embeddings for each word
that appeared at least five times in the text. We also ran
out-of-the-box Word2Vec on the English Wikipedia

1We removed sentences with less than 4 tokens.
2The code and datasets developed are available at

https://github.com/azpoliak/eco
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Figure 2: Illustration of phrase similarity evaluation data. Bold
phrases represent the pair of target phrases that were randomly
sampled.

dataset as a baseline for ECO. For both Word2Vec
and ECO embeddings, we chose c from {2,5} and
d from {100,500,700}. Hill et al. (2016) argue that
a dimensionality of 500 is a sufficient comporimise
between qualitiy and memory constraints and addition-
ally claim that Faruqui et al. (2015)’s experiments sug-
gest that a dimensionality of 700 yield the best results.

5.1 Phrase Similarity

We compare similarities between source and target
phrases extracted from the paraphrase database
(PPDB). To create our evaluation set of source and
a pair of corresponding target phrases, we randomly
sampled source phrases from PPDB that had at least
two corresponding target phrases in the database. We
then randomly sampled two target phrases for each
source phrase (bolded in the figure above). For each
tuple consisting of a source phrase and two target
phrases, we manually chose which target phrase best
captured the meaning of the source phrase or whether
both target phrases have the same meaning. This
became our gold data. Our evaluation set consists
of 279 source phrases: 137 source phrases from
PPDB’s extra-extra-large phrasal subset and 142
source phrases from PPDB’s extra-extra-large lexical
subset3. Figure 2 illustrates an example from our
evaluation dataset.

We use our proposed model to embed the source
and target phrases. If the absolute difference between
cosine similarities is less than .01, we count the two
target phrases as having the same meaning. Otherwise,
we choose the target phrase whose embedding had
a higher cosine similarity with the embedding of
the source phrase. We compare our results with the
PPDB1.0 (Ganitkevitch et al., 2013) and PPDB2.0
(Pavlick et al., 2015) similarity scores and the cosine
similarity scores computed by the naive approach

3http://nlpgrid.seas.upenn.edu/PPDB/eng/
ppdb-2.0-xxxl-{lexical,phrasal}.gz
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PPDB p=100 w=2 p=100 w=5 p=500 w=2 p=500 w=5 p=700 w=2 p=700 w=5
MAJ 1.0 2.0 W2V ECO W2V ECO W2V ECO W2V ECO W2V ECO W2V ECO

LEXICAL 43.00 23.24 57.04 54.74 58.39† 54.01 56.20 55.47 60.58† 56.20 55.47 56.93 55.47 56.20 56.20
PHRASAL 36.50 24.09 46.72 46.48 56.34† 47.89† 48.59† 50.70† 52.82† 51.41† 56.34† 47.18† 54.93† 47.89† 52.82†

ALL 39.78 24.37 52.33 50.54 57.35† 50.90 52.33 53.05† 56.63† 53.76† 55.91† 55.20† 55.20† 51.97 54.48†

Table 1: Accuracy on phrase ranking evaluation. p refers to the number of parameters used to create the word embeddings. w refers
to window size. W2V refers to word2vec. The best system’s scores are in boldface. †denotes improvement to the PPDB2.0 baseline.
MAJ refers to the majority choice.

as discussed in section 3. The accuracies reported in
Table 1 demonstrate that ECO captures semantics on
n-grams better than the baseline approach. In all of
the configurations, ECO outperforms Word2Vec for
phrases that are longer than one word.

5.2 Word Embedding Similarity

Although ECO’s primary goal is to create n-gram
embeddings, it is important for our approach to not
sacrifice quality in single word embeddings. Thus,
we compare our word embeddings to seven word
similarity benchmarks provided by Faruqui and Dyer
(2014)’s online system. To evaluate how well ECO
embeds unigrams, we concatenate v−1

w and v1
w for

the 5629 words provided by Faruqui and Dyer (2014)
and upload our ECO word embeddings to Faruqui
and Dyer (2014)’s website4. We also upload the
embeddings we generate by running Word2Vec as our
baseline. The scores reported in Table 2 suggest that as
the number of parameters increase, ECO better retains
information for word embeddings than Word2Vec.

Word2Vec ECO
100 700 100 700

Acronym Size 2 5 2 5 2 5 2 5

WS-353-SIM 203 0.685 0.696 0.711 0.692 0.611 0.507 0.725 0.696
WS-353-REL 252 0.458 0.478 0.431 0.444 0.312 0.226 0.430 0.367
MC-30 30 0.659 0.709 0.630 0.664 0.593 0.582 0.719 0.710
Rare-Word 2034 0.289 0.306 0.331 0.309 0.307 0.241 0.360 0.346
MEN 3000 0.588 0.611 0.591 0.618 0.472 0.339 0.542 0.545
YP-130 130 0.206 0.208 0.175 0.246 0.212 0.072 0.186 0.197
SimLex-999 999 0.305 0.300 0.363 0.358 0.228 0.170 0.353 0.320

Table 2: Word Embedding similarity scores form wordvec-
tors.org. The left half reports the Word2Vec scores and the
right half reports the ECO scores. We bold the scores of the best
configuration in each row.

5.3 Supervised Scoring Model

Unlike the original paraphrase ranking heuristic,
Pavlick et al. (2015) rank paraphrases in a supervised
setting. They solicit annotators to rank phrase
similarities on an 5-point Likert scale and used a
set of 209 features to train a regression. Using their

4http://wordvectors.org/

data and features, we add phrase embeddings to the
feature set. The scores reflect correlation with human
judgements as measured by Spearman’s ρ. When
using only the features from Pavlick et al. (2015), we
report a score of 0.7025. Due to run time constraints,
we only include Word2Vec and ECO embeddings
where d = 100. With a window size of 2, ECO’s
score is 0.729 and Word2Vec’s score is 0.622. When
increasing the window size to 5, ECO scores 0.7156
and Word2Vec’s ρ is 0.569. Our results suggest that
these features can be useful in improving the quality
of existing PPDB resources.

6 Previous work

Due to the popularity of word embeddings and the
boost they have provided in supervised (Le and
Mikolov, 2014) and unsupervised (Lin et al., 2015)
NLP tasks, recent work has focused on how to prop-
erly embed sentences and phrases. Yin and Schütze
(2014)’s method is similar to the method discussed
in Section 3. They use Wiktionary and WordNet
to determine the most common bigrams and create
embeddings for those. Hill et al. (2016) use reverse
dictionaries to determine which phrases define single
words and use neural language models to learn a
mapping between the phrases and word vectors. Both
of these approaches can not generate embeddings for
phrases on the fly and require an external corpus.

Recent work has also focused on capturing word
order in embeddings. While Yuan et al. (2016)
are not concerned with embedding phrases, they
point out issues with concatenating or averaging
standard word embeddings. They train an LSTM
to appropriately incorporate word vectors in the
Word Sense Disambiguation task. Their model is
sensitive to word order when determining the sense
of a specific word. Yuan et al. (2016)’s approach is
more computationally intensive than ECO. Le and
Mikolov (2014)’s Paragraph Vector framework also
focus on capturing word order in their embeddings.
However, our method is more efficient since ECO
does not require training the n-gram embeddings.
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Ling et al. (2015)’s work on structured Word2Vec is
most similar to ours. However, instead of decompos-
ing Word2Vec into 2cmodels with the same number
of parameters, Ling et al. (2015) combine the contexts
into one large model, creating a single model with 2c
parameters. Even though Ling et al. (2015) incorpo-
rate positional information into the Word2Vec models,
their approach cannot be used to create efficient, com-
positional, and order-sensitive n-gram embeddings.

7 Conclusion

We investigated a general view of Word2Vec based
upon creating multiple separate, skip-embeddings
per word, where each skip-embedding is individually
much smaller in size in comparison to the single
Word2Vec word embedding. Our method allows us
to efficiently compose embeddings for n-grams that
were not seen during training of the skip-embeddings
while maintaining order sensitivity. Our experiments
also demonstrated that averaging skip-embeddings
for creating n-gram embeddings that preserve
order-sensitive information is useful for NLP tasks
while using the same number of parameters as
the word2vec method. In comparison to previous
approaches (Le and Mikolov, 2014; Yuan et al., 2016),
our method is computationally efficient. This tradeoff
between efficiency, both in terms of the number of
parameters stored and learnt, computations performed,
and order sensitivity is unique to our proposed model.

In future work, we will investigate other heuris-
tics for combining skip-embeddings into n-gram
embeddings. Additionally, we hope to use similar
techniques as ECO to embed full sentences and
documents in real time. Finally, we plan to explore
tensor factorization methods (Cotterell et al., 2017) to
incorporate morphology, syntactic relations, and other
linguistic structures into ECO n-gram embeddings.
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Abstract

Distributional word representations are
widely used in NLP tasks. These rep-
resentations are based on an assumption
that words with a similar context tend to
have a similar meaning. To improve the
quality of the context-based embeddings,
many researches have explored how to
make full use of existing lexical resources.
In this paper, we argue that while we incor-
porate the prior knowledge with context-
based embeddings, words with different
occurrences should be treated differently.
Therefore, we propose to rely on the mea-
surement of information content to con-
trol the degree of applying prior knowl-
edge into context-based embeddings - dif-
ferent words would have different learning
rates when adjusting their embeddings. In
the result, we demonstrate that our embed-
dings get significant improvements on two
different tasks: Word Similarity and Ana-
logical Reasoning.

1 Introduction

Distributed word representation maps each word
into a real-valued vector. The produced vector
has implied the abstract meaning of the word
for their syntactic (Collobert and Weston, 2008;
Luong et al., 2013; Mnih and Hinton, 2007;
Turian et al., 2010) and semantic (Huang et al.,
2012; Socher et al., 2013b) information. These
vectors have been used as features in a variety of
applications, such as information retrieval (Salton
and McGill, 1984), document classification
(Sebastiani, 2002), question answering (Tellex et
al., 2003), name entity recognition (Turian et al.,
2010), and syntactic parsing (Socher et al., 2013a).

In past few years, several unsupervised meth-
ods for word embeddings (Collobert et al., 2011;
Dhillon et al., 2012; Lebret and Collobert, 2014;
Li and Zhang, 2015; Mikolov et al., 2013a; Pen-
nington et al., 2014) have been proposed and have
had great results in various evaluations. Through
exploiting local context of target words, these
algorithms learn word embeddings by maximizing
the contextual distribution of a large corpus.

Knowledge bases provide rich semantic relat-
edness between words, which are more likely
to capture the desired semantics on certain NLP
tasks. To improve the quality of context-based
embeddings, some researchers attempted to incor-
porate knowledge base, such as WordNet (Miller,
1995) and Paraphrase Database (Ganitkevitch et
al., 2013) into the learning process. Recent work
has shown that aggregating the knowledge base
information into context-based embeddings can
significantly improve the embeddings (Bian et al.,
2014; Chang et al., 2013; Faruqui et al., 2015;
Xu et al., 2014; Yih et al., 2012; Yu and Dredze,
2014).

One implicit but critical reason of the success
on using knowledge bases, based on our insight,
is that knowledge bases can complement the em-
bedding quality of those words which lack enough
statistics of word occurrences, such as enough
occurrences or diversity of their context. These
words may suffer the difficulty obtaining mean-
ingful information from the given corpus. Follow-
ing this idea, we argue that while incorporating
prior knowledge into context-based embeddings,
words with different statistics of word occurrences
should be treated differently. With this idea, we
propose to rely on the measurement of informa-
tion content to control the degree of applying prior
knowledge into context-based embeddings.
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2 Learning Embeddings

In this section, we will first review word2vec,
a popular context-based embedding approach,
and then introduce Relation Constrained Model
(RCM) to incorporate prior knowledge. Finally
we propose our approach to utilize the both two
models, making words with different statistics of
word occurrences be treated differently while in-
corporating prior knowledge.

2.1 Context-based Embedding
Context-based embedding has two main model
families: global matrix factorization methods,
such as latent semantic analysis (LSA) (Bullinaria
and Levy, 2007; Lebret and Collobert, 2014; Pen-
nington et al., 2014; Rohde et al., 2006) and local
context window methods (Bengio, 2013; Collobert
and Weston, 2008; Mikolov et al., 2013a). Both
training models learn the embedding by using the
statistical information of the word context from
a large corpus. In this paper, we adopt continu-
ous bag-of-word (CBOW) in word2vec (Mikolov
et al., 2013a) as our context-based embedding
model. CBOW is an unsupervised learning al-
gorithm using a neural language models, given a
target word wt and its c neighboring words, the
model is aimed at maximizing the log-likelihood
of each word given its context.

The objective function is shown as following:

J =
1
T

T∑
t=1

log p
(
wt|wt+c

t−c

)
(1)

In CBOW, p
(
wt|wt+c

t−c

)
defined as:

exp(e′wt

> ·∑−c≤j≤c,j 6=0 ewt+j )∑
w exp(e′w

> ·∑−c≤j≤c,j 6=0 ewt+j )
(2)

where ew and e′w represent the input and output
embeddings respectively.

CBOW use stochastic gradient descent to learn
embeddings, the update of e

′
w and ewj are:

e′w − α(σ(f(w))− I[w=wt]) ·
t+c∑

j=t−c

ewj (3)

ewj − α
∑
w

(σ(f(w))− I[w=wt]) · e′w (4)

where

σ(x) = exp{x}/(1 + exp{x}) (5)

I[x] is 1 when x is true,f(w) = e
′>
w

∑t+c
j=t−c ewj ,

α is learning rate.

2.2 Relation Constrained Model(RCM)
RCM (Yu and Dredze, 2014) designed a simple
but effective method to incorporate prior knowl-
edge into context-based embeddings. Given a set
of relation pairs (w,wi) in a given knowledge
base, by maximizing the log probability of w and
wi, the model aims to increase the similarity be-
tween w and wi. To simplify the formula, we can
define R as a set of relations between w and wi.
Rw is the subset of R which involve word w.

The objective function is shown as following:

J =
1
N

N∑
i=1

∑
w∈Rwi

log p (w|wi) (6)

where

p(w|wi) = exp(e′w
>
ewi)/

∑
w̄

exp(e′w̄
>
ewi) (7)

The objective function of RCM is similar to the
CBOW but without the context. RCM only revise
output embeddings e′w and e′wi

when it trains with
CBOW jointly.

RCM use stochastic gradient descent to learn
embeddings, the update of e

′
w and e

′
wi

are:

e′w − α(σ(f ′(w))− I[w∈Rwi ]) · e′wi
(8)

e′wi
− α

∑
w

(σ(f ′(w))− I[w∈Rwi ]) · e′w (9)

where

σ(x) = exp{x}/(1 + exp{x}) (10)

I[x] is 1 when x is true, f
′
(w) = e

′
w
>
e
′
wi

, α is
the learning rate.

2.3 Information Content Measurement
No matter which kind of context-based embedding
approach, statistics of word occurrences play a pri-
mary role. Under this statement, the embedding
quality of those words which lack enough statistics
of word occurrences, such as enough occurrences
or diversity of their context, may suffer the diffi-
culty obtaining meaningful information from the
given corpus. We argue that while incorporating
prior knowledge into context-based embeddings,
words with different statistics of word occurrences
should be treated differently. With this idea, we
investigate several score functions SIC to adjust
the learning rate, aiming to make words with less
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statistical information be adjusted more via prior
knowledge, and words with richer statistical infor-
mation be adjusted less.

The update formula of e
′
w and e

′
wi

are:

e′w − (SIC(w,wi) ∗ α)(σ(f ′(w))− I[w∈Rwi
]) · e′wi

(11)

e′wi
−(SIC(wi, w)∗α)

∑
w

(σ(f ′(w))−I[w∈Rwi
])·e′w (12)

In this paper, we propose three kinds of score
functions to control the adjustment: Threshold,
Function(Freq.), and Function(Ent.).

a. Threshold: The first one is a binary indicator
based on a threshold of word frequency. We can
distinguish the word relations into two groups.

SIC(w,wi) =

{
1, if fw < fthres. and fwi ≥ fthres.

0, otherwise

(13)

This strategy will only revise low frequency
word in a word relation pair, when one word of
the relation word pair has low frequency and the
other has high frequency.

b. Function (Freq.): In contrast to the previous
strategy, we make the score function smoother, we
use a relative value between two words frequen-
cies and a hyperbolic tangent function to deter-
mine the score.

SIC(w,wi) = tanh (
fwi

fw
) (14)

This strategy still can revise relatively lower
frequency word in a word relation pair, when
one word of the relation word pair has relatively
lower frequency and the other has relatively high
frequency. This scoring function is based on our
assumption that if a word has relatively higher
occurrence, its embedding quality is better, so it
does not need to be adjusted much.

c. Function (Ent.): In addition to the word’s
frequency, in fact, we believe that the contextual
diversity plays a critical role of affecting the qual-
ity of word embedding. Therefore, we propose
a score function based on the conditional entropy
(information content) from the information theory.

We define the score function as the follows:

SIC(w,wi) = tanh (
H(C|wi)
H(C|w)

) (15)

H(C|w) =
∑

j

p(cj , w) log
p(w)
p(cj , w)

(16)

where C is a set of all context words of w, and
cj is the jth context word of w.

In here, the occurrence probability of w (de-
noted as p(w)) and the occurrence probability of
w with its context cj (denoted as p(cj , w)) are de-
fined as:

p(w) ≡
∑

cj∈Context(w)

p(cj , w) (17)

p(cj , w) ≡ #(cj , w)∑
w

∑
ck∈Context(w) #(ck, w)

(18)

The output value of this entropy function con-
ditions on two main points. First, as we defined in
Equ. 16, if there’s a high frequency word w, the
output value will be high. Second, for a word w
with many different contextual words, the output
value will be higher. This score function is based
on our assumption that if a word has context with
higher diversity, its embedding quality is supposed
to be better and does not need to be adjusted much.

3 Experiments

We conduct two experiments to evaluate our ap-
proach: Word Similarity and Analogical Reason-
ing. These two experiments directly test the qual-
ity of information embedded in the word vec-
tor. We integrate semantic information from
knowledge bases using the four strategies: Base-
line(Joint), Threshold, Function(Freq.), and Func-
tion(Ent.). We compare our proposed methods un-
der the setting of using both prior knowledge and
context to adjust the embeddings.

3.1 Experiment Setup
3.1.1 Training Data
We use New York Times (NYT) 1994-97 sub-
set from Gigaword v5.0 (Parker et al., 2011) as
the training corpus for CBOW, which is the same
setting as (Yu and Dredze, 2014). After pre-
processing of tokenization, the final training cor-
pus contains 555.4 million tokens. We use two
knowledge bases: Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) and WordNet (Miller,
1995). For PPDB, we use the XXL package,
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Resource Method MEN-3k RW WS353 WS353r WS353s Average
CBOW 63.6 33.9 57.7 46.7 68.5 54.1

PPDB

Baseline (Joint) 66.3 36.8 59.6 48.7 70.4 56.4
Threshold 66.0 35.5 60.2 50.2 71.0 56.6

Function (Freq.) 68.7 37.4 61.1 51.8 71.3 58.1
Function (Ent.) 68.6 37.8 60.5 50.3 71.1 57.7

WordNet

Baseline (Joint) 66.4 35.7 59.6 49.9 69.7 56.3
Threshold 66.3 35.5 59.8 49.4 71.2 56.4

Function (Freq.) 66.3 35.4 58.9 49.5 68.9 55.8
Function (Ent.) 66.6 35.2 58.2 48.3 68.1 55.3

Table 1: Spearman rank correlation on word similarity task. All embeddings are 300 dimensions. The
best result for each dataset is highlighted in bold.

which shows the best result in (Yu and Dredze,
2014). It contains 587,439 synonym word pairs.
For WordNet, we extract relation pairs from syn-
onym. It contains 132,046 word pairs.

3.1.2 Parameter Setting

We set all our embedding size to 300, which is a
suitable embedding size mentioned in (Melamud
et al., 2016). The training iteration for RCM is
100. Learning rate for CBOW is 0.025. We exper-
iment on an array of learning rates for the Base-
line(Joint) and the best one is 0.0001. While the
learning rate for Threshold remains 0.0001, we at-
tempt various learning rates for Function(Freq.)
and Function(Ent.) and the best one is 0.001,
which is larger than 0.0001. This setting can be
actually explained by that the output values of the
two functions are between 0 to 1, which is used
to decrease the learning rate. In other words, the
learning rate of the two functions needs to be set
a larger value than the baseline in order to be de-
creased by the two functions.

The Window Size is 5. Negative Sample is
15. We experiment on the threshold values of
10, 50 and 100. In our experiments, 50 gets
the best result. We first learn the embeddings
using CBOW with a random initialization, and
take this pre-trained embeddings to initialize a
joint model, where CBOW and RCM are jointly
trained, and their learning rates are adjusted by us-
ing our proposed functions. Following (Yu and
Dredze, 2014), we use asynchronous stochastic
gradient ascent in training, where the threads to the
CBOW and RCM are set to be a balance of 12:1
and the shared embeddings are updated by each
thread based on training data within the thread.
We let the CBOW threads to control convergence;
training stops when CBOW threads finish process-
ing the data. The joint model without using our
proposed functions is taken as the baseline system,

denoted by Baseline(Joint)

3.2 Word Similarity Task

The aim of word similarity task is to check
whether a given word would have the similarity
score which closely corresponds to human judges.
These datasets contain relatedness scores for pairs
of words; the cosine similarity of the embedding
for two words should have high correlation. We
use five datasets to evaluate: MEN-3k (Bruni et
al., 2014), RW (Luong et al., 2013), WordSim-
353 (Finkelstein et al., 2002), also the parti-
tioned dataset from WordSim-353, separated into
the dataset into two different relations, WS353-
Similarity and WS353-Relatedness (Agirre et al.,
2009; Zesch et al., 2008).

Table 1 shows that comparing to the baseline, all
of our proposed three methods get significant im-
provement. The results support our argument that
incorporating prior knowledge into context-based
embeddings can complement the embedding qual-
ity of those words which lack enough statistics of
word occurrences.

Resource Method Google MSR Avg.
CBOW 43.0 52.0 47.5

PPDB

Baseline (Joint) 46.8 54.9 50.9
Threshold 46.2 54.2 50.2

Function (Freq.) 46.8 55.6 51.2
Function (Ent.) 46.8 55.0 50.9

WordNet

Baseline (Joint) 45.9 53.9 49.9
Threshold 46.3 53.9 50.1

Function (Freq.) 45.8 53.7 49.8
Function (Ent.) 46.6 53.9 50.2

Table 2: Accuracy on analogical reasoning task.
All embeddings are 300 dimensions. The best re-
sult for each dataset is highlighted in bold.

3.3 Analogical Reasoning Task

Analogical reasoning task was popularized by
(Mikolov et al., 2013b). The dataset is composed
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Resource Method MEN-3k RW WS353 WS353r WS353s Average
CBOW 14.4 9.1 27.7 16.8 37.3 21.1

PPDB

Baseline (Joint) 21.4 9.7 33.6 22.5 41.6 25.8
Threshold 22.7 9.7 34.1 22.2 42.5 26.2

Function (Freq.) 22.4 9.8 33.9 22.7 41.3 26.0
Function (Ent.) 22.2 9.7 34.6 23.7 41.9 26.4

WordNet

Baseline (Joint) 21.4 9.7 33.2 22.5 40.5 25.5
Threshold 22.1 10.0 34.4 23.4 41.5 26.3

Function (Freq.) 22.2 10.1 34.6 23.3 42.5 26.5
Function (Ent.) 22.2 9.8 33.2 21.9 41.4 25.7

Table 3: Spearman rank correlation on word similarity task. All embeddings are 300 dimensions. The
corpus is the same as Table 1, but the size is 1/100. The best result for each dataset is highlighted in bold.

of analogous word pairs. It contains pairs of tu-
ples of word relations that follow a common syn-
tactic relation. The goal of this task is to find a
term c for a given term d so that c:d best resem-
bles a sample relationship a:b. We use the vector
offset method (Levy and Goldberg, 2014; Mikolov
et al., 2013b), computing ed = ea − eb + ec and
returning the vector which has the highest cosine
similarity to ed. We use two datasets, Googles
analogy dataset (Mikolov et al., 2013b), which
contains 19,544 questions, about half of the ques-
tions are syntactic analogies and another half of a
more semantic nature, and MSR analogy dataset
(Mikolov et al., 2013b), which contains 8,000 syn-
tactic analogy questions.

Table 2 shows the similar result as Word Simi-
larity and demonstrates our proposed methods are
stable and can be applied to different tasks.

3.4 Corpus Size

We also apply our models on the corpus with a
smaller size. The same corpus is used but its size is
1/100. All parameters are the same except that the
threads to the CBOW and RCM are set to be a bal-
ance of 2:1, and only the learning rates of positive
samples are adjusted by our functions. The results
are shown in Table 3 and Table 4, which shows
our proposed models also improve the CBOW and
outperform the baseline. In our experiments, we
find out that for a smaller corpus, adjusting the
learning rates of both positive samples and nega-
tive samples can not gain as much improvement as
only using positive samples. Our conjecture is that
since the quality of the embeddings trained from a
smaller corpus might not be as high as the ones
trained from a larger corpus, and the number of
negative samples is much more than the positive
sample (15:1 in our setting) each time, negative
sample with the learning rate adjustment are more
likely to mislead the training for a smaller corpus.

Resource Method Google MSR Avg.
CBOW 3.5 7.5 5.5

PPDB

Baseline (Joint) 4.7 8.9 6.8
Threshold 4.7 9.5 7.1

Function (Freq.) 4.8 9.2 7.0
Function (Ent.) 4.7 9.1 6.9

WordNet

Baseline (Joint) 4.5 8.8 6.7
Threshold 4.6 8.9 6.8

Function (Freq.) 4.8 9.3 7.1
Function (Ent.) 4.8 9.2 7.0

Table 4: Accuracy on analogical reasoning task.
All embeddings are 300 dimensions. The corpus
is the same as Table 2, but the size is 1/100. The
best result for each dataset is highlighted in bold.

4 Conclusion

In this paper, we argue that while applying prior
knowledge into context-based embeddings, statis-
tics of word occurrences should be considered,
which based on the assumption that a embedding
with more contextual information is supposed to
have higher quality, and thus should be treated in
a different way while incorporating with knowl-
edge bases. We propose three models and demon-
strate our embeddings got improved on two differ-
ent tasks: Word Similarity and Analogical Rea-
soning. The implementation is based on RCM
package and we have released the code for aca-
demic use. 1 In the future, under this framework,
we plan to further investigate other possible score
functions of learning rate based on information
theory or dynamic consideration of training pro-
cess for the incorporation of context and knowl-
edge base information.
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Abstract

In this paper we present a cross-lingual ex-
tension of a neural tensor network model
for knowledge base completion. We ex-
ploit multilingual synsets from BabelNet
to translate English triples to other lan-
guages and then augment the reference
knowledge base with cross-lingual triples.
We project monolingual embeddings of dif-
ferent languages to a shared multilingual
space and use them for network initializa-
tion (i.e., as initial concept embeddings).
We then train the network with triples from
the cross-lingually augmented knowledge
base. Results on WordNet link prediction
show that leveraging cross-lingual informa-
tion yields significant gains over exploiting
only monolingual triples.

1 Introduction

In the recent years we have witnessed an impres-
sive amount of work on the automatic construction
of wide-coverage Knowledge Bases (KBs), rang-
ing from Web-scale machine reading systems like
NELL (Carlson et al., 2010) all the way through
large-scale ontologies like DBpedia (Bizer et al.,
2009), YAGO (Hoffart et al., 2013), and BabelNet
(Navigli and Ponzetto, 2012b) as a multi-lingual
KB covering a wide range of languages. All KBs,
however, are incomplete. Researchers have tried
to remedy for the issues of KB incompleteness by
constructing knowledge bases of ever increasing
coverage directly from the Web (Wu et al., 2012;
Gupta et al., 2014; Dong et al., 2014) or by involv-
ing community efforts (Bollacker et al., 2008).

Neural models have recently been ubiquitously
applied to various NLP tasks, and knowledge base
completion (KBC) is no exception (Bordes et al.,
2011; Jenatton et al., 2012; Bordes et al., 2013;

Socher et al., 2013; Wang et al., 2014; Yang et
al., 2015). These models represent KB concepts
and relations as vectors, matrices, and most ex-
pressive of them, like that of Socher et al. (2013),
as three-dimensional tensors. However, none of
these models so far tried to exploit cross-lingual
knowledge, i.e., informational and linguistic links
between different languages.

We set to fill this gap and propose a cross-lingual
extension of the neural tensor network model for
knowledge base completion, proposed by Socher
et al. (2013) (NTNKBC, henceforth). We develop
an approach that grounds entities of the multilin-
gual KB in a shared multilingual embedding space
obtained from monolingual word embeddings us-
ing the translation matrix model (Mikolov et al.,
2013a). We then exploit cross-lingual triples from
BabelNet (Navigli and Ponzetto, 2012a), a multi-
lingual knowledge graph as additional information
for training the NTNKBC model. Our results show
that joining forces across languages and semantics
of their corresponding embedding spaces yields
significant performance improvements over using
monolingual signal only. We believe that a shared
multilingual embedding space and cross-lingual
knowledge links provide a form of additional reg-
ularization for the neural tensor network model
and allow for better generalization, consequently
yielding significant link prediction improvements.

2 Related Work

In recent years a large body of work has focused
on knowledge base completion (Yang et al., 2015;
Nickel et al., 2016a). External KBC approaches
use outer knowledge like text corpora (Snow et al.,
; Aprosio et al., 2013) or other KBs (Wang et al.,
2012; Bryl and Bizer, 2014) for acquiring addi-
tional knowledge. The text-based external meth-
ods typically employ a form of a distant supervi-
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sion. They first recognize mentions of pairs of
KB entities in text and observe what textual pat-
terns hold between them. They then associate the
recognized patterns to particular KB relations and
finally search the corpus for other entity pairs men-
tioned using the same patterns (Snow et al., 2004;
Snow et al., ; Mintz et al., 2009; Aprosio et al.,
2013). A slight modification is the approach by
(West et al., 2014) where lexicalized KB relations
are posed as queries to a search engine and results
are parsed to find pairs of entities between which
the initially queried relation holds. Complemen-
tary to this, open information extraction methods
(Etzioni et al., 2011; Faruqui and Kumar, 2015)
extract large amounts of facts from text that can
then be used for extending KBs (Dutta et al., 2014).

Text-centered approaches, however, simply can-
not capture knowledge that is rarely made explicit
in texts. For example, much of the common-sense
knowledge that is obvious to people such as, for
instance, that bananas are yellow or that humans
breath are rarely (or never) made explicit in tex-
tual corpora. A partial solution to this problem
is provided by internal approaches that primarily
rely on existing information in the KB itself (Bor-
des et al., 2011; Jenatton et al., 2012; Socher et
al., 2013; Nickel et al., 2016b, inter alia) to simul-
taneously learn continuous representations of KB
concepts and relations. These models exploit the
KB structure as the ground truth for supervision.
Obtaining meaningful concept and relation embed-
dings allows these models to infer additional KB
facts from existing ones in an algebraic fashion.

KBs and text are truly synergistic sources of
knowledge, as shown by complementary work
from Faruqui et al. (2015), who improve the qual-
ity of semantic vectors based on lexicon-derived
relational information. Internal models for KB
completion, however, make no use of cross-lingual
links between entities, which are readily available
in existing multilingual resources like BabelNet
(Navigli and Ponzetto, 2012b). Here, we extend
the model of Socher et al. (2013) with cross-lingual
links from BabelNet and demonstrate how introduc-
ing additional (cross-lingual) knowledge through
these links improves the reasoning over the KB
in terms of better performance on the link predic-
tion task. Our findings are, in turn, different yet
complementary to those found by building cross-
lingual embeddings using parallel or comparable
data (Upadhyay et al., 2016) or KB-centric multilin-

gual joint approaches to word understanding like,
for instance, that of Navigli and Ponzetto (2012b).
Assuming that each monolingual embedding space
captures a slightly different aspect of a relation be-
tween same concepts, by introducing cross-lingual
links over a shared embedding space we believe
we provide an additional external regularization
mechanism for the NTNKBC model.

3 Cross-Lingual Information for
Knowledge Base Completion

In Figure 1 we highlight the main steps of our
cross-lingual extension of the NTNKBC model.
We first use BabelNet to translate KB triples used to
train the NTNKBC model to other languages. Next
we induce the multilingual embedding space by
translating monolingual embedding spaces using
the linear translation model (Mikolov et al., 2013a).
Finally, we build cross-lingual triples and use them
as training data for the NTNKBC model.

Knowledge base translation. We translate an
input monolingual knowledge base KBs in the
source language s, e.g., the English WordNet (Fell-
baum, 1998), to each target language t ∈ T of inter-
est by associating KBs concepts and entities with
those within a multilingual lexical knowledge re-
source, e.g., BabelNet synsets (our approach, how-
ever, can be used with any multilingual KB provid-
ing adequate lexicographic coverage). Multilingual
synsets allow us to translate the triples in KBs

into any of the languages covered by BabelNet.
That is, we can translate source language triples
(es1, r, e

s
2) into the corresponding target language

triples (et1, r, e
t
2) for each target language.

Multilingual embedding space. We indepen-
dently train monolingual word embeddings for
each of the languages in L = {s} ∪ T . Training
monolingual word embeddings for each language
separately gives us mutually non-associated em-
bedding spaces, which do not necessarily contain
similar embeddings for the same concept across lan-
guages (e.g., for English word “cat” and German
word “Katze”). This is why we need to project em-
bedding spaces of different languages to a shared
multilingual embedding space. To this end, we use
the linear mapping model of Mikolov et al. (2013a),
where we learn a translation matrix M ∈ Rdt×ds

(where ds is the size of word embeddings of the
source and dt of the target language) that projects
source language embeddings into the embedding
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Figure 1: Cross-lingual extension of the NTNKBC model.

space of the target language. Given the training set
of word translation pairs of monolingual embed-
dings {si, ti}ni=1, M is obtained by minimizing the
following objective:

n∑
i=1

||Msi − ti||2,

The obtained matrixM can then be used to map the
embedding of any word from the source language
to the embedding space of the target language. To
obtain a shared multilingual embedding space we
define the embedding space of one of the languages
as the target embedding space and project embed-
ding spaces of all other languages to that space. We
train one matrix Mt,s for each language t ∈ T that
we translate KBs into, and use it to project the em-
beddings of KB t entities into the same embedding
space as that of the source language s.

Neural tensor networks for knowledge base
completion. The NTNKBC model of Socher et
al. (2013) models KB relations as tensors that bi-
linearly link KB entities, adding them to the lin-
ear associations between entities introduced by
earlier models (Bordes et al., 2011). The NTN
model assigns the following score to each KB triple
(e1, r, e2):

s(e1, r, e2) = uT
r f(eT1 W1:k

r e2 + Vr[e1
e2

] + br)

where W1:k
r ∈ Rd×d×k is the relation-specific ten-

sor for relation r and eT1 W1:k
r e2 is the bilinear ten-

sor product of entity embeddings e1 and e2 that
results in a k-dimensional vector in which each ele-
ment is computed using a different slice W i

r of the
tensor W 1:k

r . Matrix Vr ∈ Rk×2d linearly links the
entities, br ∈ Rk is a bias vector, and ur ∈ Rk is
a vector of output layer weights. Relation-specific
tensors allow for the multi-perspective modeling of
KB relations, with each tensor slice capturing one

aspect of the observed relation. For example, for
the relation “part of”, one slice might learn that
animals have limbs (from triples like (arm, part of,
person)), whereas another slice could capture that
machines have mechanical parts (from examples
like (engine, part of, car)).

Parameter values, including relation tensors and
entity embeddings, are computed by minimizing
the cost function J(Ω) that couples each correct
triple F i = (ei1, r

i, ei2) with corrupt triples F i
c =

(ei1, r
i, eic) in which one entity is replaced with a

random KB entity. The correct triples are expected
to be scored higher than corrupt triples, which is
imposed by forming a standard margin-based ob-
jective (i.e., a perfect model will score each correct
triple better by at least 1 than any of its correspond-
ing corrupt triples):

J(Ω)=
N∑

i=1

C∑
c=1

max(0, 1−s(F i)+s(F i
c))+λ‖Ω‖2

where Ω = {W,V,U, b, E} is the set of all param-
eters, N is the size of the training set, C is the
number of corrupt triples for each correct triple,
and λ is the regularization coefficient.

Cross-lingual neural tensor network. We ex-
tend the NTNKBC with multilingual and cross-
lingual KB projections. Our hunch is that triples
lexicalized in different languages can provide com-
plementary evidence for the existence of a semantic
relation between entities (cf. Section 4). Let KB ti

be the translation of the initial knowledge base
KBs from the source language s into the target lan-
guage ti, ti ∈ {t1, . . . , tk}. Our new cross-lingual
knowledge base (CLKB) then contains:

1. All triples from KBs;

2. All monolingual triples from each of the trans-
lated KBs KB ti ;
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3. Cross-lingual triples obtained from monolin-
gual triples by replacing one of the entities
with its corresponding entity in another lan-
guage.

Formally, for each original triple (es1, r, e
s
2),

CLKB contains k additional monolingual triples
(eti1 , r, e

ti
2 ) and 2

(
k+1
2

)
corresponding cross-lingual

triples – (eli1 , r, e
lj
2 ) and (elj1 , r, e

li
2 ) for each pair

of languages (li, lj) ∈ L × L, i 6= j, where
L = {s} ∪ T . For example, from the English
triple (football player, type of, athlete) and its cor-
responding German triple (Fußballspieler, type
of, Sportler), we add the following cross-lingual
triples (Fußballspieler, type of, athlete) and (foot-
ball player, type of, Sportler) to the augmented
cross-lingual knowledge base.

Following the NTNKBC approach, we initialize
the embeddings of multi-word KB entities by av-
eraging the embeddings of their constituent words
(Socher et al., 2013). Finally, we translate the
monolingual embeddings of all CLKB entities (ob-
tained from respective monolingual word embed-
dings) to the shared embedding space and train the
NTNKBC model on the CLKB triples.

4 Evaluation

In line with previous work (Chen et al., 2013;
Socher et al., 2013), we evaluate our approach on
the link prediction task, namely the binary clas-
sification task of predicting the correctness of a
KB triple (e1, r, e2), given entities e1 and e2 and a
semantic relation r.

4.1 Experimental Setting

Dataset. We perform the evaluation on WordNet
(Fellbaum, 1998) (i.e., WN11 dataset), following
the same evaluation setting, i.e., the same train,
development, and test split as in the evaluation
of the original NTNKBC model (Socher et al.,
2013). We translate the WN11 dataset to German
(WN11DE) and Italian (WN11IT) via multilingual
BabelNet synsets. Because not all WN11 synsets
have German and Italian counterparts in BabelNet,1

WN11DE and WN11IT are somewhat smaller than
WN11. The sizes of train, development, and test
portions (in terms of number of correct triples) are
given in Table 1 for each of the three monolingual
WN11 datasets.

1Cf. Navigli and Ponzetto (2012a) reporting a synset cov-
erage of almost 70% for German and Italian (Table 6).

WN #ent train dev test

WN11 38,696 112,581 2,609 10,544
WN11DE 33,353 91,711 2,295 9,213
WN11IT 33,397 91,933 2,295 9,236

Table 1: Sizes of WN11 datasets.

Mapping P@1 P@5

DE→EN 36% 53%
IT→EN 40% 58%

Table 2: Embedding translation performance.

Word embeddings. We used the WaCky corpora
(Baroni et al., 2009) – UkWaC, DeWaC, and ItWaC
– to respectively train English, German, and Italian
embeddings. We built the 100-dimensional embed-
dings using the CBOW algorithm (Mikolov et al.,
2013b). We then mapped the German and Italian
embeddings into the English embedding space by
(1) translating 1100 most frequent English words
(1000 pairs for training and 100 for testing) to Ger-
man and Italian using Google translate and (2) train-
ing the respective German-to-English and Italian-
to-English translation matrices. The quality of the
obtained translations, measured in terms of P@1
and P@5 (i.e., percentage of cases in which the
translation pair was retrieved as the most similar or
among the five most similar words from the other
language), is shown Table 2. The performance
levels we obtain are comparable to translation per-
formances reported in the original work (Mikolov
et al., 2013a).

Model configuration. The augmented CLKB
contains a total of 846K triples (296K monolin-
gual and 550K cross-lingual). Following (Socher
et al., 2013), we set the number of tensor slices to
k = 4 and the corruption rate (i.e., number of cor-
rupt triples per each correct triple) to C = 10. We
also optimize the NTNKBC’s parameters with the
minibatched L-BFGS algorithm, with minibatches
of size N = 20.000 triples. We use the develop-
ment portion of the WN11 dataset to optimize the
model hyperparameters – the prediction thresolds
for each of the 11 types of relations. Finally, we
evaluate different model variants on the test portion
of WN11.

Models in evaluation. Different model variants
that we evaluate mutually differ only in terms of
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Model Acc. Prec. Rec. F1

Mono-EN 85.82 87.07 84.12 85.57
Mono-DE 83.37 86.06 81.26 83.59
Mono-IT 84.80 86.96 83.38 85.13

ML-NTN 84.60 85.95 82.73 84.30
CL-NTN 87.86 87.94 87.76 87.85

Table 3: Performance (%) on link prediction.

the subset of CLKB triples used for training. The
final evaluation of the model is always performed
on the triples from the test portion of the original
(i.e., English) WN11 dataset. We evaluate:

1. Three monolingual models – Mono-EN
(direct reimplementation of the original
NTNKBC model), Mono-DE, and Mono-IT
– trained respectively using only monolingual
English, German, and Italian triples;

2. The multilingual model (ML-NTN), trained us-
ing the union of the three sets of monolingual
triples;

3. The cross-lingual model (CL-NTN) in which
we use all cross-lingual triples in addition to
all monolingual triples.

4.2 Results and Discussion
The link prediction performance for all above-
mentioned models, measured on the test portion
of the original WN11 dataset (containing English
triples) is shown in Table 3.
Mono-EN achieves accuracy of 85.8%, which

is very close to the 86.2% accuracy reported by
Socher et al. (2013). The monolingual English
model Mono-EN significantly (p < 0.01)2 outper-
forms the other two monolingual models. We credit
this performance gap to the significantly larger
training set (38.7K entities and 112.5K triples
vs. 33.4K entities and 92K triples for both Ger-
man and Italian). The Italian monolingual model
(Mono-IT) outperforms the German monolingual
model (Mono-DE) despite comparable training set
sizes, which we credit to the lower quality of the
DE→EN translation matrix in comparison with the
IT→EN translation matrix (see Table 2).

The multilingual model outperforms only one of
the three monolingual models. This is not so sur-
prising (although it might seem so at first glance) if

2All performance differences were tested for significance
using the non-parametric stratified shuffling test (Yeh, 2000).

we consider that ML-NTN merely combines three
disjoint KBs which share semantic information
only through shared embedding space and relation
tensors. Without the direct, cross-lingual links be-
tween entities of different monolingual KBs, these
signals seem to be insufficient to compensate for
a much larger number of parameters (three times
larger number of entities) that the ML-NTN model
has to learn compared to monolingual models.

The cross-lingual model (CL-NTN), on the other
hand, significantly outperforms all monolingual
models. We believe that this is because by adding
cross-lingual triples we introduce additional regu-
larization to the model – although cross-lingual
triples describe the same facts as monolingual
triples (i.e., same relations between same entities)
the facts get represented slightly differently due
to imperfect embedding translation and inherent
language differences. We believe that this effect
is similar to adding noise when training denoising
autoencoders (Vincent et al., 2008), in order to ob-
tain more robust entity representations. We believe
that the addition of German and Italian monolin-
gual triples has the same regularizing effect as the
addition of cross-lingual triples, but their number
is significantly smaller (184K compared to 550K
cross-lingual triples) and alone they do not com-
pensate for increased model complexity (i.e., three
times larger number of entity vectors to be learned).

5 Conclusion

We presented a cross-lingual extension of the
NTNKBC model of Socher et al. (2013) that lever-
ages a multilingual knowledge graph and multilin-
gual embedding space. Our results indicate that
using cross-lingual links between entity lexicaliza-
tions in different languages yields better NTNKBC
model. That is, our experiments imply that the
cross-lingual signal enabled through the multilin-
gual KB and shared multilingual embedding space
provides improved regularization for the neural
KBC model. We intend to investigate whether
such cross-lingual regularization can yield simi-
lar improvements for other neural KBC models
and whether it can be combined with other types of
regularization, such as that based on augmenting
KB paths (Guu et al., 2015). We will also evaluate
the cross-lingually extended KB-embedding mod-
els on other high-level tasks such as error detection
and KB consistency checking.
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Abstract

One of the key problems in computational
metaphor modelling is finding the optimal
level of abstraction of semantic represen-
tations, such that these are able to cap-
ture and generalise metaphorical mecha-
nisms. In this paper we present the first
metaphor identification method that uses
representations constructed from property
norms. Such norms have been previously
shown to provide a cognitively plausible
representation of concepts in terms of se-
mantic properties. Our results demon-
strate that such property-based semantic
representations provide a suitable model
of cross-domain knowledge projection in
metaphors, outperforming standard distri-
butional models on a metaphor identifica-
tion task.

1 Introduction

According to the Conceptual Metaphor Theory
(Lakoff and Johnson, 1980), metaphors are not
merely a linguistic, but also a cognitive phe-
nomenon. They arise when one concept (or con-
ceptual domain) can be understood in terms of the
properties of another. For example, we interpret
the metaphorical expression “He shot down my ar-
gument” by projecting our knowledge about bat-
tles (the source domain) onto our reasoning about
arguments (the target domain).

Multiple studies have established the prevalence
of metaphor in language (Cameron, 2003; Shutova
and Teufel, 2010) and confirmed the key role
that it plays in human reasoning (Thibodeau and
Boroditsky, 2011). These findings make com-
putational processing of metaphor essential for
any NLP application that is focused on seman-
tics, from machine translation (Shutova, 2011) to

recognising textual entailment (Agerri, 2008). Nu-
merous approaches to metaphor processing have
been proposed, modelling generalisations over
source and target domains using hand-constructed
lexical resources (e.g. WordNet) (Tsvetkov et
al., 2014), distributional clustering (Shutova et al.,
2010), LDA topic modelling (Heintz et al., 2013)
and, more recently, multimodal word embeddings
(Shutova et al., 2016). While these works have es-
tablished that it is possible to generalise metaphor-
ical mappings using the above techniques, one im-
portant question remains unanswered – that of the
optimal level of abstraction of semantic represen-
tations needed to capture and generalise metaphor-
ical mechanisms. On the one hand, such represen-
tations need to be sufficiently informative for the
task, and on the other hand generalise well enough
as to obtain a broad coverage of metaphorical lan-
guage.

Much work in cognitive science suggests that
human concept representation relies on salient at-
tributes or properties1 (Tyler et al., 2000; Randall
et al., 2004). Property norm datasets (McRae et
al., 2005; Devereux et al., 2013) are constructed
by asking human participants to identify the most
important attributes of a concept (see Table 1) and
are widely used to test models of conceptual repre-
sentation (McRae et al., 1997; Randall et al., 2004;
Cree et al., 2006; Tyler et al., 2000; Grondin et al.,
2009). Yet, to the best of our knowledge, such
property norms have not been investigated in the
context of metaphor processing.

Recent studies (Fagarasan et al., 2015; Bu-
lat et al., 2016) have shown that wide-coverage
property-norm based semantic representations can
be automatically constructed using cross-modal
maps and that these perform comparably to dense
semantic representations (Mikolov et al., 2013)

1Throughout the paper we will be using the terms proper-
ties and attributes interchangeably.
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SHOES ANT DISHWASHER
has_heels, 15 an_insect, 18 an_appliance, 19
has_laces, 13 is_small, 18 requires_soap, 15
worn_on_feet, 13 is_black 15 is_electrical, 14

Table 1: Examples of properties from McRae et al.
(2005) together with their production frequencies

on standard word similarity tasks. In this pa-
per we hypothesise that such attribute-based rep-
resentations provide a suitable means for gener-
alisation over the source and target domains in
metaphorical language and test this hypothesis.
Our results show that these property-based repre-
sentations can perform better than dense context-
predicting (Mikolov et al., 2013) and context-
counting (Turney and Pantel, 2010) vectors in a
metaphor classification task, thus providing a suit-
able model of cross-domain property projection in
metaphorical language.

2 Related work

Much previous research on metaphor processing
casts the problem as classification of linguistic ex-
pressions as metaphorical or literal. Gedigian et
al. (2006) classified verbs using a maximum en-
tropy classifier and the verbs’ nominal arguments
and their semantic roles as features. Dunn (2013)
used a logistic regression classifier and high-level
properties of concepts extracted from the SUMO
ontology, including domain types (ABSTRACT,
PHYSICAL, SOCIAL, MENTAL) and event status
(PROCESS, STATE, OBJECT). Tsvetkov et al.
(2013) also used logistic regression and coarse se-
mantic features, such as concreteness, animate-
ness, named entity types and WordNet super-
senses. They have shown that the model learned
with such coarse semantic features is portable
across languages. The work of Hovy et al. (2013)
is notable as they focused on compositional fea-
tures. They trained an SVM with dependency-tree
kernels to capture compositional information, us-
ing lexical, part-of-speech tag and WordNet su-
persense representations of parse trees. Mohler
et al. (2013) derived semantic signatures of texts
as sets of highly-related and interlinked WordNet
synsets. The semantic signatures served as fea-
tures to train a set of classifiers (maximum en-
tropy, decision trees, SVM, random forest) that
map new metaphors to the semantic signatures of
the known ones.

Turney et al. (2011) hypothesized that meta-
phor is commonly used to describe abstract con-

cepts in terms of more concrete or physical experi-
ences. They developed a method to automatically
measure concreteness of words and applied it to
identify verbal and adjectival metaphors. Shutova
et al. (2010) pointed out that the metaphorical
uses of words constitute a large portion of the de-
pendency features extracted for abstract concepts
from corpora. As a result, distributional cluster-
ing of abstract nouns with such features identifies
groups of diverse concepts metaphorically associ-
ated with the same source domain. Shutova et al.
(2010) exploit this property of co-occurrence vec-
tors to identify new metaphorical mappings start-
ing from a set of examples. Shutova and Sun
(2013) used hierarchical clustering to derive a net-
work of concepts in which metaphorical associa-
tions are learned in an unsupervised way.

3 Method

3.1 Learning dense linguistic representations

We construct two types of linguistic representa-
tions: context-predicting – based on the skip-gram
model of Mikolov et al. (2013) – and context-
counting.

EMBED We employ 100-dimensional word em-
beddings constructed by Shutova et al. (2016)
from Wikipedia using the standard log-linear skip-
gram model with negative sampling of Mikolov et
al. (2013). The embeddings were trained using a
symmetric window of 5 words either side of the
target word, 10 negative samples per word-context
pair and number of epochs set to 3.

SVD We use Wikipedia to build count-based
distributional vectors, using the top 10K most fre-
quent lemmatised words (excluding stopwords) as
contexts. Context windows are defined as sen-
tence boundaries and counts are re-weighted us-
ing positive pointwise mutual information (PPMI).
We obtain 100-dimensional dense semantic repre-
sentations by applying singular value decomposi-
tion (SVD) (Deerwester et al., 1990) to the sparse
10K-dimensional PPMI weighted vectors.

3.2 Learning attribute-based vectors through
cross-modal mapping

Property norms The property norm dataset col-
lected by McRae et al. (2005) is one of the largest
and most widely used attribute datasets in cogni-
tive science. It contains a total of 541 concrete
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is_loud has_keys requires_air is_long
ACCORDION 6 17 11 0

CLARINET 0 9 0 8
CROCODILE 0 0 0 6

Table 2: A subspace of the property-norm seman-
tic space (PROPERTY)

concepts annotated with properties and produc-
tion frequencies (i.e. the number of participants
that produced that property). Examples of con-
cepts and properties can be found in Table 1. Each
concept was shown to 30 participants and only
features listed by more than 5 annotators were
recorded. The published dataset contains a total of
2526 properties, with a mean of 13.7 features per
concept. The McRae et al. (2005) property-norm
dataset can be used to obtain distributed repre-
sentations of concepts over attributes (henceforth
PROPERTY). We can view it as a bag of 2526 prop-
erties, with the standard co-occurrence counts be-
ing replaced by the production frequencies. Table
2 shows a subspace of such a property-norm se-
mantic space.

Cross-modal maps Even though MCRAE only
contains annotations for 541 concepts, cross-
modal maps can be used to induce property-based
representations for words outside of this dataset.
Fagarasan et al. (2015) propose a method for ob-
taining such representations for any concept from
its distributional behaviour and Bulat et al. (2016)
show that these can be also inferred from images.
Cross-modal maps represent a formalisation of the
reference problem. For example, by inducing a
cross-modal map between linguistic representa-
tions and property-based representations, we can
learn to predict properties for new (unseen) con-
cepts (Figure 1).

Property-based vectors Following Fagarasan
et al. (2015), we obtain property-based vectors by
using partial least squares regression2 (PLSR) to
learn a cross-modal mapping function between the
dense linguistic representations (SVD and EMBED)
and the property-norm semantic space (PROP-
ERTY), using the 541 concepts in MCRAE as train-
ing data. We learn two different maps, hence two
different attribute-based representations: one from
SVD to PROPERTY (ATTR-SVD) and one from EM-
BED to PROPERTY (ATTR-EMBED).

2We set the number of latent variables in the cross-modal
PLSR map to 100.

Metaphorical Literal
black humor black dress
filthy mind filthy garment

young moon young boy
ripe age ripe banana

shallow argument shallow grave
stormy applause stormy sea

Table 3: Annotated adjective–noun pairs from
TSV-TEST

3.3 Metaphor classification

We compare the performance of the aforemen-
tioned semantic representations (SVD, EMBED,
ATTR-SVD and ATTR-EMBED) on a metaphor
classification task, in order to test our hypoth-
esis as to whether attribute-based semantic rep-
resentations provide better concept generalisa-
tions for metaphor modelling than the widely-used
dense linguistic representations. We use an SVM
(Joachims, 1998) to perform the classification3.

4 Experiments

4.1 Experimental data

We evaluate our method using the dataset
of adjective–noun pairs manually annotated for
metaphoricity, created by Tsvetkov et al. (2014).
This corpus was created by extracting the nouns
that co-occur with a list of 1000 frequent
adjectives in the TenTen Web Corpus4 using
SketchEngine and in collections of metaphor on
the Web. The data is divided into a training set
(TSV-TRAIN) and test set (TSV-TEST). TSV-TRAIN

contains 884 literal and 884 metaphorical pairs an-
notated for metaphoricity. TSV-TEST contains 100
literal and 100 metaphorical pairs, annotated by
5 annotators with an inter-annotator agreement of
κ = 0.76. Table 3 shows a portion of the test
set. Metaphorical phrases that depend on wider
context for their interpretation (e.g. drowning stu-
dents) were removed.

This dataset is well-suited to our task since it in-
cludes examples of the same adjective used in both
metaphorical and literal phrases (e.g. “hot topic”
and “hot chocolate”). This is important since we
want our model to be able to discriminate between
different word senses, as opposed to selecting the
most frequent class for any given word.

3Experiments were performed using the sklearn.svm
toolkit.

4https://www.sketchengine.co.uk/xdocumentation/wiki/Cor-
pora/enTenTen

525



DOG

CAT

furry

pet

run

CAT

has_fur

a_pet

an_animal

f	
DOG

Linguistic Attribute

TIGER

Figure 1: Example of cross-modal mapping: learn f using aligned representations (linguistic and at-
tribute) for DOG and CAT, then predict attribute representation for TIGER as f (TIGER_linguistic)

4.2 Experimental setup and results

We obtain four types of semantic vectors (SVD,
EMBED, ATTR-SVD, ATTR-EMBED) for all nouns
and adjectives in Tsvetkov et al. (2014) as de-
scribed in Section 3. It is important to note that
up to now, attribute-based representations as those
described in Section 3.2 have only been used for
nouns. To our knowledge, this is also the first
work that uses cross-modal maps learned on nouns
to predict attribute-based representations for other
parts of speech.

The input to our SVM classifier is the concate-
nation of the L2-normalised adjective and noun
vectors. We use the phrases in TSV-TRAIN and
TSV-TEST to train and test our system, respec-
tively. We evaluated the performance of our clas-
sifier on TSV-TEST in terms of precision, recall
and F-score; the results are presented in Table 4.
Both types of attribute-based vectors outperform
their dense counterparts, which lends support to
our hypothesis that property norms offer a suitable
level of generalisation of the source and target do-
mains. The best performance is achieved when us-
ing the attribute-based representation learned from
the embedding space (ATTR-EMBED), with an im-
provement of 4% in F1 score over EMBED.

5 Qualitative analysis and discussion

The results in Table 4 show that the systems are
able to reliably distinguish between metaphori-
cal and literal expressions both when using dense
and attribute-based semantic representations. This
is an effect of modelling word meanings as dis-
tributed representations over semantic primitives.

Vectors P R F1
EMBED 0.84 0.65 0.73
ATTR-EMBED 0.85 0.71 0.77
SVD 0.86 0.64 0.73
ATTR-SVD 0.74 0.77 0.75

Table 4: System performance on Tsvetkov et al.
test set (TSV-TEST) in terms of precision (P), re-
call (R) and F-score (F1)

Intuitively, one may expect the noun and the ad-
jective in a metaphorical expression to share fewer
properties than in the case of literal language, due
to a semantic distinction between its source and
target domains. And it is likely that all of our
models capture this effect, by implicitly learning
some notion of similarity between the semantic
domains in the literal and metaphorical phrases.
Our hypothesis is that attribute-based methods
outperform the EMBED and SVD baselines because
the attribute-based dimensions are cognitively-
motivated and represent cognitively salient prop-
erties for concept distinctiveness. As such, they
provide a more suitable means of generalisation in
the metaphor identification task, as inferred from
our results.

Another advantage of using attribute-based vec-
tors (ATTR-EMBED, ATTR-SVD) in the metaphor
identification task is that they are interpretable,
i.e. every dimension in the space has a fixed
interpretation (is_round, a_bird etc.) as op-
posed to the abstract dimensions of SVD and
EMBED. We can thus identify the most salient
attributes of a word by looking at the high-
est weighted dimensions in its attribute-based
representation. This, in turn, can yield in-
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sights into how the attributes of metaphorical ex-
pressions differ from those of the literal ones.
For example, in the metaphorical expression
“woolly liberal”, the highest weighted attributes
for woolly (AN_ANIMAL, A_FRUIT, IS_SMALL,
A_MAMMAL, IS_BROWN, IS_LONG) are ranked
low for liberal and vice-versa. When we look
at a literal expression using the same adjective,
“woolly mammoth”, we observe many overlap-
ping features among the top 200 highest-weighted
ones, with 48% of these attributes being shared
(e.g. AN_ANIMAL, IS_SMALL, IS_BROWN,
HAS_4_LEGS, A_MAMMAL, IS_LARGE). The
same trend was observed for the majority of
the AN pairs in TSV-TEST5, demonstrating that
the components of literal expressions share
many more features than the components of the
metaphorical ones.

6 Conclusion

We presented the first method that uses large-scale
attribute-based semantic representations for meta-
phor identification. Our results demonstrate that
these provide a suitable level of generalisation for
capturing metaphorical mechanisms. Our experi-
ments also suggest interesting future research av-
enues in the investigation of the attribute-based
representations of abstract concepts, more gener-
ally. For instance, we have observed that many
of the highly-weighted attributes for abstract con-
cepts are metaphorical in nature (e.g. A_BIRD for
“liberal”). This echoes previous research in cogni-
tive science, which has shown that while concrete
concepts are well represented through their inter-
nal properties and relation to similar concepts, ab-
stract concepts tend to be represented through as-
sociations with many diverse concepts (Crutch and
Warrington, 2005). We believe that our methods
provide a framework for a data-driven investiga-
tion of this issue in the future.
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Abstract

Non-compositional phrases such as red
herring and weakly compositional phrases
such as spelling bee are an integral part of
natural language (Sag et al., 2002). They
are also the phrases that are difficult, or
even impossible, for good compositional
distributional models of semantics. Com-
positionality detection therefore provides
a good testbed for compositional methods.
We compare an integrated compositional
distributional approach, using sparse high
dimensional representations, with the ad-
hoc compositional approach of applying
simple composition operations to state-of-
the-art neural embeddings.

1 Introduction

One current focus within the field of distribu-
tional semantics is enabling systems to make in-
ferences about phrase-level or sentence-level sim-
ilarity. One popular approach (Mitchell and Lap-
ata, 2010) is to build phrase or sentence-level rep-
resentations by composing word-level representa-
tions and then measuring similarity directly. Suc-
cess is usually measured in terms of correlation
with human similarity judgments. However, eval-
uating measures of phrase-level similarity directly
against human judgments of similarity ignores the
problem that it is not always possible to determine
meaning in a compositional manner. If we com-
pose the meaning representations for red and her-
ring, we might expect to get a very different repre-
sentation from the one which could be directly in-
ferred from corpus observations of the phrase red
herring. Thus any judgements of the similarity of
two composed phrases may be confounded by the
degree to which those phrases are compositional.

In this paper, we use a compound noun com-
positionality dataset (Reddy et al., 2011) to inves-
tigate the extent to which the underlying defini-
tion of context has an effect on a model’s ability to
support composition. We compare the Anchored
Packed Tree (APT) model (Weir et al., 2016),
where composition is an integral part of the distri-
butional model, with the commonly employed ap-
proach of applying naı̈ve compositional operations
to state-of-the-art distributional representations.

2 Background

Context definition Example features
Proximity (+-2) recently, graduated, folded
Typed dep. rel. 〈NMOD, graduated〉,

〈NSUBJ, folded〉
Untyped dep. rel. graduated, folded
Typed dep. path 〈NMOD, graduated〉,

〈NSUBJ, folded〉,
〈NSUBJ.DOBJ, clothes〉,
〈NMOD.AMOD, recently〉,
〈NSUBJ.DOBJ.AMOD, dry〉

Untyped dep. path recently, graduated, folded, dry,
clothes

Table 1: Possible contextual features of student

Consider the occurrence of the word student
in the sentence “The recently graduated student
folded the dry clothes.” Different distributional
representations leverage the context, e.g., the fact
that the target word student has occurred in the
context folded, in different ways. Table 1 illus-
trates the contextual features which might be gen-
erated for student given different definitions of
context. The most commonly used definition of
context, in both traditional count-based represen-
tations and in more recent distributed embeddings,
is proximity, i.e., the contextual features of a word
occurrence are all those words which occur within
a certain context window around the occurrence.
However, contextual features may also be defined
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in terms of dependency relations. For example, in
a dependency parse of the sentence we would ex-
pect to see a direct-object relation from folded to
student. Contextual features based on dependency
relations may be typed (i.e., include the name of
the dependency relation) or untyped (Baroni and
Lenci, 2010). Padó and Lapata (2007) proposed
using dependency paths to define untyped contex-
tual features; here any word in the context which
has a dependency path to the target is considered
a contextual feature. Weeds et al. (2014) proposed
using dependency paths to define typed contextual
features which could be used to align representa-
tions before composition. This idea is further re-
fined in the APT framework of Weir et al. (2016).

Naı̈ve composition of distributional representa-
tions, e.g., using pointwise addition and multipli-
cation, has proved very popular and effective. In
an evaluation across 3 different benchmark tasks
(Dinu et al., 2013), the lexical function model (Ba-
roni and Zamparelli, 2010) was shown to be con-
sistently the best-performing, but in the compo-
sition of adjective-noun phrases, simple additive
and multiplicative models were highly competi-
tive. Milajevs et al. (2014) compared neural word
representations with count-based vectors on 4 dif-
ferent tasks using a variety of naı̈ve and tensor-
based compositional models. The neural word
representations consistently outperformed the tra-
ditional count-based vectors. Considering the re-
sults for the neural word representations, point-
wise addition outperformed all of the other com-
positional models considered on 3 of the tasks.

Typed distributional representations cannot be
straightforwardly composed using naı̈ve opera-
tions (Weeds et al., 2014). The APT approach
(Weir et al., 2016) overcomes this problem by
defining contextual features in terms of complete
dependency paths and then ensuring that the rep-
resentations of target words are properly aligned
before composition. For example, to carry out the
composition of student with folded in the exam-
ple sentence, it is necessary to align the repre-
sentations. This can be done by offsetting all of
the features of student by its dependency relation
(NSUBJ) with folded. Intuitively we are viewing
the representation of student from the perspective
of actions (i.e., verbs) which are likely to be car-
ried out by students. This view can be straightfor-
wardly composed with the representation of folded
because the representations are aligned i.e., they

have features of the same type (e.g., DOBJ).

3 Compositionality of compound nouns

Compositionality detection (Reddy et al., 2011)
involves deciding whether a given multiword ex-
pression is compositional or not i.e., whether the
meaning can be understood from the literal mean-
ing of its parts. Reddy et al. (2011) introduced
a dataset consisting of 90 compound nouns along
with human judgments of their literality or com-
positionally at both the constituent and the phrase
level. All judgments are given on a scale of 0 to 5,
where 5 is high. For example, the phrase spelling
bee is deemed to have high literalness in its use of
the first constituent, low literalness in its use of the
second constituent and a medium level of literal-
ness with respect to the whole phrase.

Assuming the distributional hypothesis (Harris,
1954), the observed co-occurrences of composi-
tional target phrases are highly likely to have oc-
curred with one or both of the constituents inde-
pendently. On the other hand, the observed co-
occurrences of non-compositional target phrases
are much less likely to have occurred with ei-
ther of the constituents independently. Thus, a
good compositionality function, without any ac-
cess to the observed co-occurrences of the target
phrases, is highly likely to return vectors which
are similar to observed phrasal vectors for compo-
sitional phrases but much less likely to return sim-
ilar vectors for non-compositional phrases. Ac-
cordingly, as observed elsewhere (Reddy et al.,
2011; Salehi et al., 2015; Yazdani et al., 2015),
compositional methods can be evaluated by cor-
relating the similarity of composed and observed
phrase representations with the human judgments
of compositionality. A similar idea is also ex-
plored by Kiela and Clark (2013) who detect non-
compositional phrases by comparing the neigh-
bourhoods of phrases where individual words have
been substituted for similar words.

Reddy et al. (2011) carried out experiments
with a vector space model built from ukWaC (Fer-
raresi et al., 2008) using untyped co-occurrences
(window size=100). Used 3-fold cross-validation,
they found that using weighted addition outper-
formed multiplication as a compositionality func-
tion. With their optimal settings, they achieved a
Spearman’s rank correlation coefficient of 0.714
with the human judgments, which remains the
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state-of-the-art on this dataset1. For consistency
with the experiments of Reddy et al. (2011), the
corpus used in this experiment is the same fully-
annotated version of the web-derived ukWaC cor-
pus (Ferraresi et al., 2008). This corpus has been
tokenised, POS-tagged and lemmatised with Tree-
Tagger (Schmid, 1994) and dependency-parsed
with the Malt Parser (Nivre, 2004). It contains
about 1.9 billion tokens.

In order to create a corpus which contains com-
pound nouns, we further preprocessed the corpus
by identifying occurrences of the 90 target com-
pound nouns and recombining them into a single
lexical item. We then created a number of elemen-
tary representations for every token in the corpus.

3.1 Untyped contextual features

For each word and compound phrase, neural rep-
resentations were constructed using the word2vec
tool (Mikolov et al., 2013). Whilst it is not pos-
sible or appropriate to carry out an exhaustive
parameter search, we experiment with a num-
ber of commonly used and recommended param-
eter settings. We investigate both the cbow and
skip-gram models with 50, 100 and 300 di-
mensions and experiment with the subsampling
threshold, trying 10−3, 10−4 and 10−5. As recom-
mended in the documentation, we use a window
size of 5 for cbow and of 10 for skip-gram.
Early experiments with different composition op-
erations, showed add to be the only promising op-
tion. Similarity between composed and observed
representations is computed using the cosine mea-
sure.

3.2 Typed contextual features

For each word and compound phrase, elementary
APT representations were constructed using the
method and recommended settings of Weir et al.
(2016). For efficiency, we did not consider paths
of length 3 or more. In relation to the construction
of the elementary APTs, the most obvious parame-
ter is the nature of the weight associated with each
feature. We consider both the use of probabilities2

and positive pointwise mutual information (PPMI)

1Hermann et al. (2012) proposed using generative models
for modeling the compositionality of noun-noun compounds.
Using interpolation to mitigate the sparse data problem, their
model beat the baseline of weighted addition on the Reddy
et al. (2011) evaluation task when trained on the BNC. How-
ever, these results were still significantly lower than those re-
ported by Reddy et al. (2011) using the larger ukWaC corpus.

2referred to as normalised counts by Weir et al. (2016)

values. Levy et al. (2015) showed that the use of
context distribution smoothing (α = 0.75) in the
PMI calculation can lead to performance compara-
ble with state-of-the-art word embeddings on word
similarity tasks. We use this modified definition of
PMI and experiment with α = 0.75 and α = 1.3

Having constructed elementary APTs, the APT

composition process involves aligning and com-
posing these elementary APTs. We investigate us-
ing

⊔
INT, which takes the minimum of each of

the constituent’s feature values and
⊔

UNI, which
performs pointwise addition. Following Reddy et
al. (2011), when using the

⊔
UNI operation, we ex-

periment with weighting the contributions of each
constituent to the composed APT representation
using the parameter, h. For example, if A2 is the
APT associated with the head of the phrase and
Aδ

1 is the properly aligned APT associated with
the modifier where δ is the dependency path from
the head to the modifier (e.g. NMOD or AMOD), the
composition operations can be defined as:⊔

INT

{
Aδ

1,A2

}
(1)

⊔
UNI

{
(1− h)Aδ

1, hA2

}
(2)

We have also considered composition without
alignment of the modifier’s APT, i.e, using A1:⊔

INT

{A1,A2 } (3)

⊔
UNI

{ (1− h)A1, hA2 } (4)

In general, one would expect there to be lit-
tle overlap between APTs which have not been
properly aligned. However, in the case where δ
is the NMOD relation, i.e., the internal relation in
the vast majority of the compound phrases, both
modifier and head are nouns and therefore there
may well be considerable overlap between their
unaligned dependency features. In order to exam-
ine the contribution of both the aligned and un-
aligned APTs in the composition process, we used
a hybrid method where the composed representa-
tion is defined as:⊔

INT

{
(qAδ

1 + (1− q)A1),A2

}
(5)

3α = 1 corresponds to the standard definition of PMI
used elsewhere.
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Embedding method t =
10−3

t =
10−4

t =
10−5

cbow, 50d 0.73 0.65 0.62
cbow, 100d 0.74 0.65 0.64
cbow, 300d 0.70 0.70 0.67
skip-gram, 50d 0.59 0.64 0.62
skip-gram, 100d 0.62 0.64 0.64
skip-gram, 300d 0.63 0.64 0.68

Table 2: Average ρ using neural word embeddings

⊔
UNI

{
(1− h)(qAδ

1 + (1− q)A1), hA2

}
(6)

In the case where representations consist of
APT weights which are probabilities, PPMI is es-
timated after composition. Therefore we refer to
this as compose-first (CF) in contrast to compose-
second (CS) where composition is carried out after
PPMI calculations. In both cases, the cosine mea-
sure is applied to vectors made up PPMI values
in order to calculate the similarity of the observed
and composed representations.

4 Results

We used repeated 3-fold cross-validation to enable
us to estimate4 the model parameters h and q. Re-
sults for all models are then reported in terms of
average Spearman rank correlation scores (ρ) of
phrase compositionality scores with human judge-
ments on the corresponding testing samples. We
used a sufficiently large number of repetitions that
errors are all small (≤ 0.0015) and thus any differ-
ence observed which is greater than 0.005 is sta-
tistically significant at the 95% level. Boldface is
used to indicate the best performing configuration
of parameters for a particular model.

Table 2 summarises results for different pa-
rameter settings for the neural word embeddings.
Looking at the results in Table 2, we see that
the cbow model significantly outperforms the
skip-gram model. Using the cbow model with
100 dimensions and a subsampling threshold of
t = 10−3 gives a performance of 0.74 which
is significantly higher than the previous state-of-
the-art reported in Reddy et al. (2011). Since
both of these models are based on untyped co-
occurrences, this performance gain can be seen as
the result of implicit parameter optimisation.

Table 3 summarises results for different com-
position operations and parameter settings using

4Across all models, optimal values were in the range
[0.3,0.5].

Compositional Model PPMI α = 1 PPMI α = 0.75
CF CS CF CS

Aligned
⊔

INT (Eq. 1) 0.72 0.70 0.75 0.72
Aligned

⊔
UNI (Eq. 2) 0.71 0.72 0.72 0.75

Unaligned
⊔

INT (Eq. 3) 0.74 0.72 0.72 0.73
Unaligned

⊔
UNI (Eq. 4) 0.77 0.75 0.78 0.77

Hybrid
⊔

INT (Eq. 5) 0.74 0.73 0.73 0.73
Hybrid

⊔
UNI (Eq. 6) 0.78 0.78 0.79 0.76

Table 3: Average ρ using APT representations.

APT representations. We see that the results using
standard PPMI (α = 1) significantly outperform
the result reported in Reddy et al. (2011), which
demonstrates the superiority of a typed depen-
dency space over an untyped dependency space.
Smoothing the PPMI calculation with a value of
α = 0.75 generally has a further small positive
effect. On average, the results when probabilities
are composed and PPMI is calculated as part of
the similarity calculation (CF) are slightly higher
than the results when PPMI weights are composed
(CS) . Regarding different composition operations,⊔

UNI generally outperforms
⊔

INT. In general, the
unaligned model outperforms the aligned model.
However, a small but statistically significant per-
formance gain is generally made using the hybrid
model. Therefore aligned APT composition and
unaligned APT composition are predicting differ-
ent contexts for compound nouns which all con-
tribute to a better estimate of the compositionality
of the phrase.

5 Conclusions and further work

We have shown that combining traditional com-
positional methods with state-of-the-art low-
dimensional word representations can improve re-
sults over the state-of-the-art. Further improve-
ments can be achieved using an integrated compo-
sitional distributional approach based on APT rep-
resentations. This approach maintains syntactic
structure within the contextual features of words
which is then central to the compositional pro-
cess. We argue that some knowledge of syntac-
tic structure is crucial in the fine-grained under-
standing of language. Since compositionality de-
tection also provides a way of evaluating compo-
sitional methods without confounding judgements
of phrase similarity with judgements of composi-
tionality, it appears that the APT approach to com-
position is reasonably promising. Further work
is of course needed with other datasets and other

532



types of phrase. For example, it would be interest-
ing to apply these models in German and evaluate
their performance on a German noun-noun com-
pound compositionality dataset (Schulte im Walde
et al., 2013; Schulte im Walde et al., 2016).
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Abstract

Up to date, the majority of computational
models still determines the semantic relat-
edness between words (or larger linguis-
tic units) on the type level. In this pa-
per, we compare and extend multi-sense
embeddings, in order to model and utilise
word senses on the token level. We focus
on the challenging class of complex verbs,
and evaluate the model variants on various
semantic tasks: semantic classification;
predicting compositionality; and detecting
non-literal language usage. While there is
no overall best model, all models signifi-
cantly outperform a word2vec single-sense
skip baseline, thus demonstrating the need
to distinguish between word senses in a
distributional semantic model.

1 Introduction

In recent years, a considerable number of semantic
tasks and datasets have been developed, in order
to evaluate the semantic quality of computational
models. These tasks include general predictions
of semantic similarity (e.g., relying on WordSim-
353 (Finkelstein et al., 2001) or SimLex-999 (Hill
et al., 2015)); more specific predictions of seman-
tic relation types (e.g., relying on BLESS (Baroni
and Lenci, 2011) or the SemRel database (Scheible
and Schulte im Walde, 2014)); predicting the de-
gree of compositionality for complex nouns and
verbs; etc. Computational semantic models pre-
dominantly make use of the distributional hypoth-
esis in some way or the other, assuming that words
with similar distributions have related meanings
(Harris, 1954; Firth, 1957). Distributional models
thus offer a means to represent meaning vectors of
words, and to determine their semantic relatedness
(Turney and Pantel, 2010).

Up to date, most distributional semantic mod-
els (DSMs) that addressed specific semantic tasks
have worked on the type level (e.g., Baroni et al.
(2014), Köper et al. (2015), Levy et al. (2015),
Pennington et al. (2014)). I.e., each word lemma
is represented by a weighted feature vector, where
features typically correspond to words that co-
occur in particular contexts. When using word em-
beddings to overcome the problematic sparsity of
word vectors, the models rely on neural methods
to represent words as low-dimensional vectors.

In contrast, distributional semantic models that
break down word type vectors to word sense
vectors, have predominantly be applied to Word
Sense Disambiguation/Discrimination or (Cross-
lingual) Lexical Substitution (McCarthy and Nav-
igli, 2007; Mihalcea et al., 2010; Jurgens and
Klapaftis, 2013). As to our knowledge, there
is little work on DSMs that distinguishes be-
tween word senses and addresses various seman-
tic relatedness tasks. Among the few exceptions
are Li and Jurafsky (2015) who evaluated multi-
sense embeddings on semantic relation identifica-
tion (for nouns only) and semantic relatedness be-
tween sentences, and Iacobacci et al. (2015) who
applied multi-sense embeddings to word and rela-
tional similarity.

In this paper, we compare and extend ap-
proaches to obtain multi-sense embeddings, in or-
der to model word senses on the token level. We
focus on the challenging class of complex verbs,
and evaluate the model variants on various seman-
tic tasks: semantic verb classification; the predic-
tion of compositionality; and the detection of non-
literal language usage. While there is no over-
all best model, all models significantly outper-
form a word2vec single-sense skip baseline, thus
demonstrating the need to distinguish between
word senses in a distributional semantic model.
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2 Multi-Sense Embeddings
We implemented and applied several variants of
state-of-the-art methods for obtaining multi-sense
embeddings. In this paper, we restrict the selec-
tion to models that perform unsupervised and non-
parametric sense learning, i.e., methods that learn
potentially different numbers of senses per word,
using only a corpus but no sense inventory.

(1) Joint learning of sense representations and
application of sense disambiguation From this
advanced family of multi-sense embedding in-
duction, we applied the non-parametric multiple-
sense skip-grams (NP-MSSG), cf. Neelakantan
et al. (2014), and skip-grams extended by the Chi-
nese Restaurant Process (CHINRESTP), cf. Li
and Jurafsky (2015).

(2) Successive learning of single-sense represen-
tations and sense disambiguation This class of
approaches also relies on skip-grams but learns
senses only in a later stage. Pelevina et al.
(2016) introduced a non-parametric method that
computes a graph relying on cosine-based near-
est neighbors, after learning single-sense represen-
tations. The graph-clustering algorithm Chinese
Whispers (Biemann, 2006) identifies senses in the
graph, to induce multi-sense embeddings by ap-
plying a composition function to word senses. We
refer to this approach as CHINWHISP.

(3) Single-sense representations for multi-sense
corpus annotations In this class of techniques,
multi-sense embeddings are also learned in a two-
stage procedure: In a first stage, a corpus is au-
tomatically sense-annotated by appending a sense
index to every word token (e.g., apple1, apple2,
etc.). In a second stage, standard techniques are
applied to learn single-sense representations for
the annotated senses in the corpus. Since the an-
notations distinguish between senses, the “single-
sense” representations effectively represent multi-
sense embeddings. For example, Iacobacci et al.
(2015) perform the first step by using an off-the-
shelf word sense disambiguation tool, and the sec-
ond step by applying Mikolov’s word2vec tool
(Mikolov et al., 2013b; Mikolov et al., 2013a).

We investigate several variants regarding the au-
tomatic corpus sense annotation.

(i) Rather than applying an off-the-shelf WSD
tool, we apply the topic-based sense learning
method from (Lau et al., 2012), the Hierarchical
Dirichlet process (HDP) (Teh et al., 2004). The

HDP mixture model is a natural non-parametric
generalization of the Latent Dirichlet allocation
(Blei et al., 2003), where the number of topics
can be unbounded and learned directly from the
data. We apply HDP by extracting every sentence
for each verb type from our corpus. We then train
HDP individually for each verb. In the last train-
ing iteration we mark each occurrence of a verb
type in the corpus with the number of the topic
that provided the largest membership value for the
respective sentence and that topic.

(ii) As an alternative to the topic model, we
apply different clustering algorithms, which not
only allows more flexibility in the sense classifi-
cation technique but also regarding the verb fea-
tures: we represent each verb token by a vector:
We look up the individual vector representations
of the verb’s context words, and create the verb
token vector as the average vector of these con-
text words, ignoring the target verb. This simple
kind of phrase/sentence representation has been
shown to work well on a variety of tasks (e.g., Mi-
lajevs et al. (2014), Hill et al. (2016)). In addi-
tion, it allows us to compare different types of con-
text features: (a) all nouns in the sentence (NN),
and (b) all words in a symmetrical window of size
10, weighted by the exponential decay function
(W10EXP), cf. Iacobacci et al. (2016).

For the actual clustering, we compare non-
parametric flat and hierarchical methods. As for
HDP, we cluster verb tokens separately, and then
mark each verb token with a tag corresponding to
a cluster number. The number of clusters contain-
ing a specific verb type corresponds to its number
of senses. For flat clustering, we use X-MEANS
(Pelleg and Moore, 2000), which extends the stan-
dard hard k-means clustering approach into a non-
parametric soft clustering. The algorithm includes
a search over the number of clusters k, scores
each cluster analysis using the Bayesian Informa-
tion Criterion (BIC), and chooses the model with
k clusters based on the best BIC. For hierarchi-
cal clustering, we use balanced iterative reducing
and clustering using hierarchies BIRCH (Zhang
et al., 1996), a clustering method that makes use
of an internal dendrogram tree structure. Incom-
ing data points are inserted into the tree, and then
assigned to the closest sub-trees until they arrive at
a leaf node. The entire tree structure changes dy-
namically over time, while new items are added.
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3 Experiments

Corpus & Target Verbs As corpus resource for
our target verbs as well as for the experimen-
tal setup, we use DECOW14AX, a German web
corpus containing 12 billion tokens (Schäfer and
Bildhauer, 2012; Schäfer, 2015). The corpus
sentences were morphologically annotated and
parsed using SMOR (Faaß et al., 2010), Mar-
MoT (Müller et al., 2013) and the MATE depen-
dency parser (Bohnet, 2010). Based on the mor-
phological annotation, we extracted the lemmas
of all verb types from the corpus with frequencies
>100 (regarding base verbs) and >200 (regarding
complex verbs), and all their sentence contexts.
The total selection of German verb types contains
11 869 lemmas, including 6 998 complex verbs.

Experiment Setup The different models have
multiple parameters. We set the initial vocabulary
to the 200K most frequent word types, without re-
moving any of the target verb types. The maxi-
mum number of senses per verb type was set to
20. We enabled the multi-sense learning only for
our target verbs while all other words obtain only a
single sense per model. Regarding the skip-gram
architecture, we relied on a symmetrical window
of size 10, negative sampling with 15 samples,
vector dimensionality of 400 and one corpus iter-
ation. Regarding x-Means and BIRCH, we used
a maximum of 5 000 randomly chosen contexts to
learn the initial centroids/trees, due to the high-
dimensional representations of the sentences. All
other individual model-specific parameters were
set to the default. Our baseline model is a single-
sense skip-gram model as obtained by word2vec.

Implementations For HDP, we relied on the
python implementation from gensim1. For x-
Means, we used the java implementation Clod-
Hopper2. For BIRCH we used the java implemen-
tation JBIRCH3.

4 Evaluation

We evaluate our models on various semantic tasks:
general predictions of semantic similarity, and
specific tasks regarding complex German verbs,

1https://radimrehurek.com/gensim/
models/hdpmodel.html

2https://github.com/rscarberry-wa/
clodhopper

3https://github.com/perdisci/jbirch

i.e. semantic classification; prediction of composi-
tionality; detection of non-literal language usage.
The goal of the evaluation is to explore whether
the distinction of verb senses in our multi-sense
embedding models leads to an improvement of
model predictions across semantic tasks.

Similarity Traditionally, distributional word
representations are predominantly evaluated on
their ability to predict the degree of similarity for
word pairs in existing benchmarks. The predicted
degrees of similarity are compared against human
similarity ratings. For our German targets, we
use the German versions of WordSim-353 and
SimLex-999 (Leviant and Reichart, 2015). We
predict cosine similarity for multi-sense embed-
dings by computing a sense-weighted average
vector for each word. To assess the predictions,
we compare them against the gold standard
scores using Spearman’s Rank-Order Correlation
Coefficient ρ (Siegel and Castellan, 1988).

The results are presented in Table 1. For this
general semantic task, the multi-sense embeddings
do not provide significant improvements. The best
results are achieved by CHINRESTP for GerSim-
Lex and X-MEANS(W10EXP) for GerWS353, but
these results are close to the baselines.

Model GerWS353 GerSimLex
NP-MSSGR .62 .42
ChinRestP .64 .46
ChinWhisp .64 .36
HDP .63 .45
x-Means(NN) .64 .43
x-Means(w10Exp) .65 .44
BIRCH(NN) .63 .44
BIRCH(w10Exp) .64 .45
Baseline .65 .45

Table 1: Results for the word similarity datasets.

Compositionality Addressing the composition-
ality of complex words is a crucial ingredient
for lexicography and NLP applications, to know
whether the expression should be treated as a
whole, or through its constituents, and what the
expression means. In this evaluation, we predict
the degree of compositionality of German com-
plex verbs, i.e., the degree of relatedness between
a complex verb and its corresponding base verb
(such as abnehmen–nehmen ’take over–take’, and
anfangen–fangen ’begin–catch’). The predictions
are evaluated against an existing dataset of human
ratings on compositionality (Bott et al., 2016),
containing a total of 400 German particle verbs
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across 11 particle types. The results are presented
in Table 2. CHINWHISP performs significantly
better than the baseline, while most other models
are performing equally to or even inferior to the
baseline.

Model Prediction
NP-MSSGR .20
ChinRestP .30
ChinWhisp .32
HDP .19
x-Means(NN) .19
x-Means(w10Exp) .26
BIRCH(NN) .28
BIRCH(w10Exp) .26
Baseline .26

Table 2: Results for predicting compositionality.

Semantic Verb Classification Semantic verb
classifications are of great interest to NLP, specif-
ically regarding the pervasive problem of data
sparseness in the processing of natural language.
Such classifications have been used in applications
such as word sense disambiguation (Dorr and
Jones, 1996; Kohomban and Lee, 2005; McCarthy
et al., 2007), parsing (Carroll et al., 1998; Carroll
and Fang, 2004), machine translation (Prescher et
al., 2000; Koehn and Hoang, 2007; Weller et al.,
2014), and information extraction (Surdeanu et al.,
2003; Venturi et al., 2009).

We target the semantic classification of Ger-
man complex verbs by applying hard clustering
to multi-sense embeddings, rather than using soft
clustering. Focusing on particle verbs across three
particles (ab, an, auf ), we aim to obtain clus-
ter analyses that resemble existing manual sense
classifications based on formal semantic defini-
tions (Kliche, 2011; Lechler and Roßdeutscher,
2009; Springorum, 2011). All datasets represent
fuzzy gold standards. The ab classification con-
tains 205 particle verbs in 9 classes; the an clas-
sification contains 188 particle verbs in 8 classes;
the auf classification contains 234 particle verbs
in 11 classes. All refers to the concatenation of all
tasks.

Using multi-sense embeddings in a hard clus-
tering (rather than single-sense embeddings in a
soft clustering) avoids the usage of a cluster mem-
bership threshold, which most soft clustering al-
gorithms require. In contrast, the clustering al-
gorithm outputs a membership degree for each
element and each cluster, i.e., a fuzzy member-
ship. We rely on k-Means for clustering our multi-
sense embeddings, and compare against a fuzzy

c-Means baseline with single-sense embeddings.
(using every possible threshold within a range of
[0.01, 0.99] to determine the memberships, and re-
porting the one providing the highest score). As
evaluation measure we relied on B-Cubed (Bagga
and Baldwin, 1998) and report f-score between the
soft extension of precision and recall.

Table 3 presents the results. Overall, CHIN-
RESTP works best, and CHINWHISP and the
BIRCH variants work similarly well. NP-
MSSGR is worst. A manual inspection revealed
that NP-MSSGR assigns many verbs to multiple
clusters, resulting in too large and fuzzy clusters.

Model ab an auf all
NP-MSSGR .12 .18 .15 .05
ChinRestP .24 .31 .27 .13
ChinWhisp .26 .30 .28 .11
HDP .24 .28 .25 .10
x-Means(NN) .17 .25 .18 .09
x-Means(w10Exp) .17 .24 .20 .09
BIRCH(NN) .26 .30 .26 .12
BIRCH(w10Exp) .26 .32 .25 .12
Baseline .25 .26 .19 .11

Table 3: Results for semantic classification.

Detecting Non-Literal Meaning We explore
the prediction of literal vs. non-literal language
usage of German complex verbs, relying on an ex-
isting dataset containing 159 particle verbs within
6 436 sentences (Köper and Schulte im Walde,
2016). Each sentence is annotated on literal vs.
non-literal language usage, comprising 4 174 lit-
eral and 2 262 non-literal uses across the 159 par-
ticle verbs. Köper and Schulte im Walde (2016)
relied on the Multinomial Naive Bayes (MNB)
classifier by McCallum and Nigam (1998). We
applied the same experimental setup using ten-
fold cross validation. Further we re-implemented
their system as a baseline, using bag-of-words un-
igram context features, and added sense informa-
tion based on the embeddings. For a given sen-
tence, we compare which sense vector fits best to
the specific context. This is done by computing a
cosine similarity score between a verb sense vec-
tor verbi and the vectors of all context words in
the sentence. We then add a verb-sense specific
token based on the most similar sense embedding
to the unigram list. The underlying assumption is
that a specific sense is used either in literal or in
non-literal usage. When feeding the training data
to the classifier, it should thus automatically assign
a high probability for features that predominantly
occur for the respective classes.
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Figure 1: Cosine similarity between all sense pairs within a specific embedding model: many senes are
highly similar to each other.

A major difference between our setup and the
one by Köper and Schulte im Walde (2016) is the
information about the verb itself. In our experi-
ments, the classifier has knowledge about the verb
in a sentence, while in their setup the verb has
been removed, to avoid learning a verb-specific
majority baseline (since some verbs have only
literal/non-literal sentences). For this reason, our
baseline (i.e., one sense per verb) is already higher
than their reported baseline. The remaining parts
of our experimental setting are however done as by
Köper and Schulte im Walde (2016). To evaluate
the classifiers, we calculate the precision, recall
and f-score values regarding the non-literal class.

Table 4 shows the results. All multi-sense
embedding models clearly outperform the single-
sense baseline model. The overall best models are
the clustering models X-MEANS and BIRCH.

Model P R F1
NP-MSSGR 90.1 80.3 84.9
ChinRestP 89.0 79.7 84.1
ChinWhisp 90.1 81.2 85.4
HDP 90.8 80.1 85.1
x-Means(NN) 93.2 83.7 88.2
x-Means(w10Exp) 91.9 81.4 86.3
BIRCH(NN) 91.4 81.6 86.2
BIRCH(w10Exp) 91.1 82.7 86.7
Baseline (K&SiW) 91.1 66.0 76.5

Table 4: Results for non-literal language.

5 Discussion & Conclusions

Overall, our experiments demonstrated that the
variants of multi-sense embeddings we applied
across semantic tasks are successful in comparison
to single-sense baselines. In all the tasks we pre-
sented, some, most or even all of the multi-sense
embeddings outperformed the single-sense base-
lines, thus demonstrating the need to distinguish

between word senses in a distributional semantic
model.

The best multi-sense embeddings varied across
the semantic tasks. I.e., there was no type of multi-
sense embedding that performed superior to all
other multi-sense embedding types. Even CHIN-
WHISP, which was among the most successful
embeddings across many tasks, exhibited a weak-
ness on one task (i.e., compositionality). We also
looked into the inter-sense similarity within the
embedding models. Figure 1 presents box-plots on
the cosine similarity between all sense pairs within
a specific embedding model. The plot shows that
overall, the identified senses in the models are
quite similar to each other. The strongest inter-
sense similarity can be found for CHINRESTP.

Looking into the embeddings across multi-
sense approaches, we found that –even though the
embeddings were trained on the same data– the av-
erage number of senses differs strongly across the
embedding models: NP-MSSGR, CHINRESTP
and CHINWHISP have an average number of less
than 2 senses per word, while the X-MEANS and
BIRCH models have an average number between
3.2 and 7.6 senses. Most senses are obtained
by HDP (15.4), but many senses received little
weight.

This diversity of success across embedding
types and semantic tasks demonstrates that an
evaluation of semantic models on a general task
such as semantic similarity is not sufficient.
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Abstract

We present a new approach to extrac-
tion of hypernyms based on projection
learning and word embeddings. In con-
trast to classification-based approaches,
projection-based methods require no can-
didate hyponym-hypernym pairs. While it
is natural to use both positive and nega-
tive training examples in supervised rela-
tion extraction, the impact of negative ex-
amples on hypernym prediction was not
studied so far. In this paper, we show that
explicit negative examples used for reg-
ularization of the model significantly im-
prove performance compared to the state-
of-the-art approach of Fu et al. (2014) on
three datasets from different languages.

1 Introduction

Hypernyms are useful in many natural language
processing tasks ranging from construction of tax-
onomies (Snow et al., 2006; Panchenko et al.,
2016a) to query expansion (Gong et al., 2005) and
question answering (Zhou et al., 2013). Automatic
extraction of hypernyms from text has been an ac-
tive area of research since manually constructed
high-quality resources featuring hypernyms, such
as WordNet (Miller, 1995), are not available for
many domain-language pairs.

The drawback of pattern-based approaches to
hypernymy extraction (Hearst, 1992) is their spar-
sity. Approaches that rely on the classification of
pairs of word embeddings (Levy et al., 2015) aim
to tackle this shortcoming, but they require candi-
date hyponym-hypernym pairs. We explore a hy-
pernymy extraction approach that requires no can-
didate pairs. Instead, the method performs predic-
tion of a hypernym embedding on the basis of a
hyponym embedding.

The contribution of this paper is a novel ap-
proach for hypernymy extraction based on projec-
tion learning. Namely, we present an improved
version of the model proposed by Fu et al. (2014),
which makes use of both positive and negative
training instances enforcing the asymmetry of the
projection. The proposed model is generic and
could be straightforwardly used in other relation
extraction tasks where both positive and negative
training samples are available. Finally, we are the
first to successfully apply projection learning for
hypernymy extraction in a morphologically rich
language. An implementation of our approach and
the pre-trained models are available online.1

2 Related Work

Path-based methods for hypernymy extraction
rely on sentences where both hyponym and hy-
pernym co-occur in characteristic contexts, e.g.,
“such cars as Mercedes and Audi”. Hearst (1992)
proposed to use hand-crafted lexical-syntactic pat-
terns to extract hypernyms from such contexts.
Snow et al. (2004) introduced a method for learn-
ing patterns automatically based on a set of seed
hyponym-hypernym pairs. Further examples of
path-based approaches include (Tjong Kim Sang
and Hofmann, 2009) and (Navigli and Velardi,
2010). The inherent limitation of the path-based
methods leading to sparsity issues is that hyponym
and hypernym have to co-occur in the same sen-
tence.

Methods based on distributional vectors,
such as those generated using the word2vec
toolkit (Mikolov et al., 2013b), aim to overcome
this sparsity issue as they require no hyponym-
hypernym co-occurrence in a sentence. Such
methods take representations of individual words
as an input to predict relations between them.

1http://github.com/nlpub/projlearn
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Two branches of methods relying on distributional
representations emerged so far.

Methods based on word pair classification
take an ordered pair of word embeddings (a can-
didate hyponym-hypernym pair) as an input and
output a binary label indicating a presence of the
hypernymy relation between the words. Typically,
a binary classifier is trained on concatenation or
subtraction of the input embeddings, cf. (Roller
et al., 2014). Further examples of such methods
include (Lenci and Benotto, 2012; Weeds et al.,
2014; Levy et al., 2015; Vylomova et al., 2016).

HypeNET (Shwartz et al., 2016) is a hybrid ap-
proach which is also based on a classifier, but in
addition to two word embeddings a third vector
is used. It represents path-based syntactic infor-
mation encoded using an LSTM model (Hochre-
iter and Schmidhuber, 1997). Their results signif-
icantly outperform the ones from previous path-
based work of Snow et al. (2004).

An inherent limitation of classification-based
approaches is that they require a list of candidate
words pairs. While these are given in evaluation
datasets such as BLESS (Baroni and Lenci, 2011),
a corpus-wide classification of relations would
need to classify all possible word pairs, which is
computationally expensive for large vocabularies.
Besides, Levy et al. (2015) discovered a tendency
to lexical memorization of such approaches ham-
pering the generalization.

Methods based on projection learning take
one hyponym word vector as an input and output a
word vector in a topological vicinity of hypernym
word vectors. Scaling this to the vocabulary, there
is only one such operation per word. Mikolov et
al. (2013a) used projection learning for bilingual
word translation. Vulić and Korhonen (2016) pre-
sented a systematic study of four classes of meth-
ods for learning bilingual embeddings including
those based on projection learning.

Fu et al. (2014) were first to apply projection
learning for hypernym extraction. Their approach
is to learn an affine transformation of a hyponym
into a hypernym word vector. The training of their
model is performed with stochastic gradient de-
scent. The k-means clustering algorithm is used to
split the training relations into several groups. One
transformation is learned for each group, which
can account for the possibility that the projection
of the relation depends on a subspace. This state-
of-the-art approach serves as the baseline in our

experiments.
Nayak (2015) performed evaluations of distri-

butional hypernym extractors based on classifi-
cation and projection methods (yet on different
datasets, so these approaches are not directly com-
parable). The best performing projection-based ar-
chitecture proposed in this experiment is a four-
layered feed-forward neural network. No cluster-
ing of relations was used. The author used nega-
tive samples in the model by adding a regulariza-
tion term in the loss function. However, drawing
negative examples uniformly from the vocabulary
turned out to hamper performance. In contrast,
our approach shows significant improvements us-
ing manually created synonyms and hyponyms as
negative samples.

Yamane et al. (2016) introduced several im-
provements of the model of Fu et al. (2014). Their
model jointly learns projections and clusters by
dynamically adding new clusters during training.
They also used automatically generated negative
instances via a regularization term in the loss func-
tion. In contrast to Nayak (2015), negative sam-
ples are selected not randomly, but among near-
est neighbors of the predicted hypernym. Their
approach compares favorably to (Fu et al., 2014),
yet the contribution of the negative samples was
not studied. Key differences of our approach
from (Yamane et al., 2016) are (1) use of ex-
plicit as opposed to automatically generated neg-
ative samples, (2) enforcement of asymmetry of
the projection matrix via re-projection. While our
experiments are based on the model of Fu et al.
(2014), our regularizers can be straightforwardly
integrated into the model of Yamane et al. (2016).

3 Hypernymy Extraction via
Regularized Projection Learning

3.1 Baseline Approach

In our experiments, we use the model of Fu et
al. (2014) as the baseline. In this approach, the
projection matrix Φ∗ is obtained similarly to the
linear regression problem, i.e., for the given row
word vectors x and y representing correspond-
ingly hyponym and hypernym, the square matrix
Φ∗ is fit on the training set of positive pairs P:

Φ∗ = arg min
Φ

1
|P|

∑
(x,y)∈P

‖xΦ− y‖2 ,

where |P| is the number of training examples and
‖xΦ − y‖ is the distance between a pair of row
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vectors xΦ and y. In the original method, the
L2 distance is used. To improve performance, k
projection matrices Φ are learned one for each
cluster of relations in the training set. One exam-
ple is represented by a hyponym-hypernym offset.
Clustering is performed using the k-means algo-
rithm (MacQueen, 1967).

3.2 Linguistic Constraints via Regularization
The nearest neighbors generated using distribu-
tional word vectors tend to contain a mixture of
synonyms, hypernyms, co-hyponyms and other re-
lated words (Wandmacher, 2005; Heylen et al.,
2008; Panchenko, 2011). In order to explicitly
provide examples of undesired relations to the
model, we propose two improved versions of the
baseline model: asymmetric regularization that
uses inverted relations as negative examples, and
neighbor regularization that uses relations of other
types as negative examples. For that, we add a reg-
ularization term to the loss function:

Φ∗ = arg min
Φ

1
|P|

∑
(x,y)∈P

‖xΦ− y‖2 + λR,

where λ is the constant controlling the importance
of the regularization term R.

Asymmetric Regularization. As hypernymy is
an asymmetric relation, our first method enforces
the asymmetry of the projection matrix. Applying
the same transformation to the predicted hyper-
nym vector xΦ should not provide a vector similar
(·) to the initial hyponym vector x. Note that, this
regularizer requires only positive examples P:

R =
1
|P|

∑
(x, )∈P

(xΦΦ · x)2.

Neighbor Regularization. This approach relies
on the negative sampling by explicitly providing
the examples of semantically related words z of
the hyponym x that penalizes the matrix to pro-
duce the vectors similar to them:

R =
1
|N |

∑
(x,z)∈N

(xΦΦ · z)2.

Note that this regularizer requires negative sam-
ples N . In our experiments, we use synonyms
of hyponyms as N , but other types of relations
can be also used such as antonyms, meronyms or
co-hyponyms. Certain words might have no syn-
onyms in the training set. In such cases, we substi-
tute z with x, gracefully reducing to the previous
variation. Otherwise, on each training epoch, we
sample a random synonym of the given word.

Regularizers without Re-Projection. In addi-
tion to the two regularizers described above,
that rely on re-projection of the hyponym vector
(xΦΦ), we also tested two regularizers without
re-projection, denoted as xΦ. The neighbor regu-
larizer in this variation is defined as follows:

R =
1
|N |

∑
(x,z)∈N

(xΦ · z)2.

In our case, this regularizer penalizes relatedness
of the predicted hypernym xΦ to the synonym z.
The asymmetric regularizer without re-projection
is defined in a similar way.

3.3 Training of the Models
To learn parameters of the considered models
we used the Adam method (Kingma and Ba,
2014) with the default meta-parameters as imple-
mented in the TensorFlow framework (Abadi et
al., 2016).2 We ran 700 training epochs passing
a batch of 1024 examples to the optimizer. We ini-
tialized elements of each projection matrix using
the normal distribution N (0, 0.1).

4 Results

4.1 Evaluation Metrics
In order to assess the quality of the model, we
adopted the hit@l measure proposed by Frome
et al. (2013) which was originally used for im-
age tagging. For each subsumption pair (x,y)
composed of the hyponym x and the hypernym
y in the test set P , we compute l nearest neigh-
bors for the projected hypernym xΦ∗. The pair
is considered matched if the gold hypernym y ap-
pears in the computed list of the l nearest neigh-
bors NNl(xΦ∗). To obtain the quality score, we
average the matches in the test set P:

hit@l =
1
|P|

∑
(x,y)∈P

1
(
y ∈ NNl(xΦ∗)

)
,

where 1(·) is the indicator function. To consider
also the rank of the correct answer, we compute
the area under curve measure as the area under the
l − 1 trapezoids:

AUC =
1
2

l−1∑
i=1

(hit@(i) + hit@(i+ 1)).

4.2 Experiment 1: The Russian Language
Dataset. In this experiment, we use word em-
beddings published as a part of the Russian Dis-

2https://www.tensorflow.org
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Figure 1: Performance of our models with re-projection as compared to the baseline approach of (Fu et
al., 2014) according to the hit@10 measure for Russian (left) and English (right) on the validation set.

Model hit@1 hit@5 hit@10 AUC
Baseline 0.209 0.303 0.323 2.665
Asym. Reg. xΦ 0.213 0.300 0.322 2.659
Asym. Reg. xΦΦ 0.212 0.312 0.334 2.743
Neig. Reg. xΦ 0.214 0.304 0.325 2.685
Neig. Reg. xΦΦ 0.211 0.315 0.338 2.768

Table 1: Performance of our approach for Russian
for k = 20 clusters compared to (Fu et al., 2014).

tributional Thesaurus (Panchenko et al., 2016b)
trained on 12.9 billion token collection of Russian
books. The embeddings were trained using the
skip-gram model (Mikolov et al., 2013b) with 500
dimensions and a context window of 10 words.

The dataset used in our experiments has been
composed of two sources. We extracted syn-
onyms and hypernyms from the Wiktionary3 using
the Wikokit toolkit (Krizhanovsky and Smirnov,
2013). To enrich the lexical coverage of the
dataset, we extracted additional hypernyms from
the same corpus using Hearst patterns for Rus-
sian using the PatternSim toolkit (Panchenko et
al., 2012).4 To filter noisy extractions, we used
only relations extracted more than 100 times.

As suggested by Levy et al. (2015), we split the
train and test sets such that each contains a distinct
vocabulary to avoid the lexical overfitting. This re-
sults in 25 067 training, 8 192 validation, and 8 310
test examples. The validation and test sets contain
hypernyms from Wiktionary, while the training set
is composed of hypernyms and synonyms coming
from both sources.

Discussion of Results. Figure 1 (left) shows
performance of the three projection learning se-
tups on the validation set: the baseline approach,
the asymmetric regularization approach, and the

3http://www.wiktionary.org
4https://github.com/cental/patternsim

neighbor regularization approach. Both regular-
ization strategies lead to consistent improvements
over the non-regularized baseline of (Fu et al.,
2014) across various cluster sizes. The method
reaches optimal performance for k = 20 clusters.
Table 1 provides a detailed comparison of the per-
formance metrics for this setting. Our approach
based on the regularization using synonyms as
negative samples outperform the baseline (all dif-
ferences between the baseline and our models are
significant with respect to the t-test). According to
all metrics, but hit@1 for which results are com-
parable to xΦ, the re-projection (xΦΦ) improves
results.

4.3 Experiment 2: The English Language

We performed the evaluation on two datasets.

EVALution Dataset. In this evaluation, word
embeddings were trained on a 6.3 billion to-
ken text collection composed of Wikipedia,
ukWaC (Ferraresi et al., 2008), Gigaword (Graff,
2003), and news corpora from the Leipzig Collec-
tion (Goldhahn et al., 2012). We used the skip-
gram model with the context window size of 8 to-
kens and 300-dimensional vectors.

We use the EVALution dataset (Santus et al.,
2015) for training and testing the model, com-
posed of 1 449 hypernyms and 520 synonyms,
where hypernyms are split into 944 training, 65
validation and 440 test pairs. Similarly to the
first experiment, we extracted extra training hyper-
nyms using the Hearst patterns, but in contrast to
Russian, they did not improve the results signif-
icantly, so we left them out for English. A rea-
son for such difference could be the more com-
plex morphological system of Russian, where each
word has more morphological variants compared
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EVALution EVALution, BLESS, K&H+N, ROOT09
Model k hit@1 hit@5 hit@10 AUC k hit@1 hit@5 hit@10 AUC
Baseline 1 0.109 0.118 0.120 1.052 1 0.104 0.247 0.290 2.115
Asymmetric Reg. xΦ 1 0.116 0.125 0.132 1.140 1 0.132 0.256 0.292 2.204
Asymmetric Reg. xΦΦ 1 0.145 0.166 0.173 1.466 1 0.112 0.266 0.314 2.267
Neighbor Reg. xΦ 1 0.134 0.141 0.150 1.280 1 0.134 0.255 0.306 2.267
Neighbor Reg. xΦΦ 1 0.148 0.168 0.177 1.494 1 0.111 0.264 0.316 2.273
Baseline 30 0.327 0.339 0.350 3.080 25 0.546 0.614 0.634 5.481
Asymmetric Reg. xΦ 30 0.336 0.354 0.366 3.201 25 0.547 0.616 0.632 5.492
Asymmetric Reg. xΦΦ 30 0.341 0.364 0.368 3.255 25 0.553 0.621 0.642 5.543
Neighbor Reg. xΦ 30 0.339 0.357 0.364 3.210 25 0.547 0.617 0.634 5.494
Neighbor Reg. xΦΦ 30 0.345 0.366 0.370 3.276 25 0.553 0.623 0.641 5.547

Table 2: Performance of our approach for English without clustering (k = 1) and with the optimal
number of cluster on the EVALution datasets (k = 30) and on the combined datasets (k = 25).

to English. Therefore, extra training samples are
needed for Russian (embeddings of Russian were
trained on a non-lemmatized corpus).

Combined Dataset. To show the robustness of
our approach across configurations, this dataset
has more training instances, different embeddings,
and both synonyms and co-hyponyms as negative
samples. We used hypernyms, synonyms and co-
hyponyms from the four commonly used datasets:
EVALution, BLESS (Baroni and Lenci, 2011),
ROOT09 (Santus et al., 2016) and K&H+N (Nec-
sulescu et al., 2015).The obtained 14 528 relations
were split into 9 959 training, 1 631 validation and
1 625 test hypernyms; 1 313 synonyms and co-
hyponyms were used as negative samples. We
used the standard 300-dimensional embeddings
trained on the 100 billion tokens Google News
corpus (Mikolov et al., 2013b).

Discussion of Results. Figure 1 (right) shows
that similarly to Russian, both regularization
strategies lead to consistent improvements over
the non-regularized baseline. Table 2 presents
detailed results for both English datasets. Sim-
ilarly to the first experiment, our approach con-
sistently improves results robustly across various
configurations. As we change the number of clus-
ters, types of embeddings, the size of the training
data and type of relations used for negative sam-
pling, results using our method stay superior to
those of the baseline. The regularizers without
re-projection (xΦ) obtain lower results in most
configurations as compared to re-projected ver-
sions (xΦΦ). Overall, the neighbor regulariza-
tion yields slightly better results in comparison to
the asymmetric regularization. We attribute this
to the fact that some synonyms z are close to the
original hyponym x, while others can be distant.
Thus, neighbor regularization is able to safeguard

the model during training from more errors. This
is also a likely reason why the performance of
both regularizers is similar: the asymmetric reg-
ularization makes sure that a re-projected vector
does not belong to a semantic neighborhood of the
hyponym. Yet, this is exactly what neighbor reg-
ularization achieves. Note, however that neighbor
regularization requires explicit negative examples,
while asymmetric regularization does not.

5 Conclusion

In this study, we presented a new model for ex-
traction of hypernymy relations based on the pro-
jection of distributional word vectors. The model
incorporates information about explicit negative
training instances represented by relations of other
types, such as synonyms and co-hyponyms, and
enforces asymmetry of the projection operation.
Our experiments in the context of the hypernymy
prediction task for English and Russian languages
show significant improvements of the proposed
approach over the state-of-the-art model without
negative sampling.
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2005, pages 525–534, Dourdan, France.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to Distinguish
Hypernyms and Co-Hyponyms. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2249–2259, Dublin, Ireland. Dublin City Uni-
versity and Association for Computational Linguis-
tics.

549



Josuke Yamane, Tomoya Takatani, Hitoshi Yamada,
Makoto Miwa, and Yutaka Sasaki. 2016. Distri-
butional Hypernym Generation by Jointly Learning
Clusters and Projections. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
1871–1879, Osaka, Japan, December. The COLING
2016 Organizing Committee.

Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng,
and Jun Zhao. 2013. Improving Question Retrieval
in Community Question Answering Using World
Knowledge. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelli-
gence, IJCAI ’13, pages 2239–2245, Beijing, China.
AAAI Press.

550



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 551–557,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

A Dataset for Multi-Target Stance Detection

Parinaz Sobhani1, Diana Inkpen1 and Xiaodan Zhu2

1EECS, University of Ottawa
2National Research Council Canada

{psobh090,diana.inkpen}@uottawa.ca
{xiaodan.zhu}@nrc-cnrc.gc.ca

Abstract

Current models for stance classification
often treat each target independently, but
in many applications, there exist natural
dependencies among targets, e.g., stance
towards two or more politicians in an elec-
tion or towards several brands of the same
product. In this paper, we focus on the
problem of multi-target stance detection.
We present a new dataset that we built
for this task. Furthermore, We experiment
with several neural models on the dataset
and show that they are more effective in
jointly modeling the overall position to-
wards two related targets compared to in-
dependent predictions and other models of
joint learning, such as cascading classifi-
cation. We make the new dataset publicly
available, in order to facilitate further re-
search in multi-target stance classification.

1 Introduction

The subjectivity, for example, sentiments or
stances, expressed towards different targets is of-
ten considered independently. In a wide range of
contexts, however, they are closely related. For ex-
ample, in an electoral document, the stance toward
one candidate may be relevant or even inferrable
from tweets about other candidates. This could be
true in many other domains, such as product re-
views.

Stance detection is the task of automatically de-
termining from the text whether the author of the
text is in favor of, against, or neutral towards a
proposition or target. The target may be a per-
son, organization, government policy, movement
or product.

In this paper, our first goal is to provide a bench-
mark dataset to jointly learn subjectivities corre-

sponding to related targets. Then, we investigate
the problem of jointly predicting the stance ex-
pressed towards multiple targets (two at a time),
in order to demonstrate the utility of the dataset.

The closest work related to our work is Deng
and Wiebe (2015a), where sentiment toward dif-
ferent entities and events is jointly modeled us-
ing a rule-based probabilistic soft logic approach.
The authors also made their dataset MPQA 3.0
(Deng and Wiebe, 2015b) available, However, this
dataset is relatively small (it contains 70 docu-
ments) and has a potentially infinite number of
targets (the target sets depend on the context),
which makes it hard to train a system. Instead,
we provide a reasonably large dataset for training
and evaluation. Our dataset contains 4,455 tweets
manually annotated for stance towards more than
one target simultaneously. We will refer to this
data as the Multi-Target Stance Dataset. More-
over, we make available a much larger unlabeled
dataset providing more choices for users to further
investigate the multi-target stance detection prob-
lem by learning more knowledge about the rela-
tionship between target entities.

We propose a framework that leverages deep
neural models to jointly learn the subjectivity to-
ward two target entities, given the text of a tweet.
We treat the task as sequence-to-sequence learn-
ing, where the entire text of the tweet is mapped to
a vector at the encoder side using a bidirectional
recurrent neural network (RNN). On the decoder
side, another RNN conditioned on the input vec-
tors generates stance labels toward the related en-
tities. By using an attention-based network, the
model can focus on different parts of the tweet text
to generate each stance label. Because stance la-
bels are generated conditionally dependent on the
previously-generated labels toward other entities,
the model removes the independence assumption
between different targets and specifically focuses
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on the dependencies.

2 Dataset

We collected tweets related to the 2016 US elec-
tion. We selected four presidential candidates:
‘Donald Trump’, ‘Hillary Clinton’, ‘Ted Cruz’,
and ‘Bernie Sanders’ as our targets of interest and
identified a small set of hashtags (which are not
stance-indicative) related to these targets 1. We
used the Twitter API to collect more than eleven
millions of tweets containing any of these hash-
tags. For approximately 25% of the tweets, the
hashtag of interest appeared at the end. Hashtags
at the end of the tweets may not have any contri-
bution to the meaning of the tweets; this means
that the targets of opinions may not be the same as
the targets of interest and, therefore, an inference
is required. This is one of the main differences be-
tween our task and aspect-based sentiment analy-
sis. Here is an example from our dataset. None of
the targets of interest, ‘Hillary Clinton’ or ‘Bernie
Sanders’, are mentioned explicitly, except by the
hashtags at the end of the tweet, but humans can
infer that the tweeter is likely against both of them:

Tweet: Given a choice to kill 100 ISIS or 100
white American men, leftist scum would choose
the latter. #UniteBlue #nomorerefugees #Bernie
#Hillary

2.1 Data Annotation
We selected three target pairs for our Multi-Target
Stance Dataset: Donald Trump and Hillary Clin-
ton, Donald Trump and Ted Cruz, Hillary Clinton
and Bernie Sanders. Further, we filtered the col-
lected tweets by removing short tweets, retweets
and those having a URL. We also discarded tweets
that do not include at least two hashtags, one
for each of the targets of interest. For each of
the three selected target pairs, we randomly sam-
pled 2,000 tweets. These tweets were annotated
through CrowdFlower2. We asked the annotators
two questions, one for the stance towards each of
the presidential candidates in the target pair of in-
terest. For stance annotation, the same annotation
instructions were used as in (Mohammad et al.,
2016c).

We used CrowdFlower’s gold annotations
scheme for quality control, wherein about 10%

1Our hashtags list includes: #DonaldTrump, #Trumpt,
#Trump2016, #TedCruz, #Cruz, #Cruz2016, #TedCruz2016,
#HillaryClinton, #Hillary, #Hillary2016, #BernieSanders,
#Bernie, #Bernie2016

2http://www.crowdflower.com

Target Pair # total # train # dev # test
Clinton-Sanders 1366 957 137 272
Clinton-Trump 1722 1240 177 355
Cruz-Trump 1317 922 132 263
Total 4455 3119 446 890

Table 1: Distribution of instances in the Train, De-
velopment and Test sets for different target pairs in
the Multi-Target Stance Dataset

of the data was annotated internally (by the au-
thors). During crowd annotation, these gold ques-
tions were interspersed with other questions, and
the annotator was not aware which is which. How-
ever, if she got a gold question wrong, she was im-
mediately notified of it. If the accuracy of the an-
notations on the gold questions falls below 70%,
the annotator was refused further annotation. This
served as a mechanism to avoid malicious annota-
tions and as a guide to the annotators.

Each tweet was annotated by at least eight anno-
tators. To aggregate stance annotation information
from multiple annotators for an instance rather
than opting for a simple majority, the instances
with less than 50% agreement on any of the candi-
dates in the target pairs were discarded. We refer
to this dataset as the Multi-Target Stance Dataset
and we make it available online 3. The inter-
annotator agreement on this dataset is 79.74%. We
kept the rest of the tweets that were not used in the
annotation process as unlabeled data, which can be
used to obtain additional information about stance
and relations between relevant entities.

2.2 The Multi-Target Stance Dataset

We partitioned the Multi-Target Stance Dataset
into training, development, and test sets, based on
the timestamps of the tweets. All annotated tweets
were ordered by their timestamps; the first 70% of
the tweets formed the training set, the next 10%
the development set, and the last 20% formed the
test set. Table 1 shows the number of instances in
the training, development, and test sets over differ-
ent target pairs in our Multi-Target Stance Dataset.

Having different US presidential candidates as
the targets of interest does not necessarily im-
ply that the tweeters have opposing positions to-
ward them. There are several cases where au-
thors have favorable stances towards both, or sim-
ilarly, opposing positions towards both of them.
In our dataset, approximately 20% of the tweet-

3The dataset is available at: http://www.site.uottawa.ca/
∼diana/resources/stance data/
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Opinion Clinton
Toward favor against neither

Sa
nd

er
s favor 7.5 33.9 3.7

against 12.6 12.0 3.8
neither 2.3 5.6 18.6

Table 2: Distribution across the 9 stance classes
for the Hillary Clinton-Bernie Sanders target pair

Opinion Clinton
Toward favor against neither

Tr
um

p favor 0.5 52.3 1.2
against 14.0 9.0 3.5
neither 0.3 3.9 15.2

Table 3: Distribution across the 9 stance classes
for the Donald Trump-Hillary Clinton target pair

ers have the same position towards both entities,
50% of tweeters have opposing positions towards
the given targets, and for 17% of the data, the posi-
tions towards none of the targets is inferable. The
example below shows a tweet that have the same
position towards two candidates:

Targets: Donald Trump & Hillary Clinton

Tweet: Looking at the List of PC’s for 2016
is like looking at the McDonalds Menu. You
just know that shit is bad for you. #Trump2016
#Hillary2016

To illustrate more details about the correlation
between subjectivities towards targets of interest,
the stance distribution across the 9 classes for
different target pairs in the Multi-Target Stance
Dataset are depicted in tables 2, 3 and 4. We note
that the numbers vary between target pairs.

3 Multi-Target Stance Classification

In this section, we propose a framework that lever-
ages recurrent neural models to capture the poten-
tially complicated interaction between subjectivi-
ties expressed towards multiple targets. We exper-
imentally show that the attention-based encoder-
decoder framework is more effective in jointly
modeling the overall position towards two related
targets, compared to independent predictions of
positions and other popular frameworks for joint
learning, such as cascading classification.

3.1 Window-Based Classification
One popular approach to detect subjectivity to-
wards different targets, as is used in aspect-based
sentiment classification (Brychcı́n et al., 2014), is
to consider a context window of size n in both di-
rections around the target terms and to extract fea-
tures for that target’s classifier based on its con-
text. This approach is based on the assumption

Opinion Cruz
Toward favor against neither

Tr
um

p favor 18.7 22.5 2.8
against 10.3 17.4 4.8
neither 3.3 2.3 18.0

Table 4: Distribution across the 9 stance classes
for the Ted Cruz-Donald Trump target pair

that the words outside the context window do not
have an influence on the target. We will first in-
clude such a baseline for our task.

3.2 Cascading Classifiers

To capture dependencies between stance labels of
related targets, one possibility is to use the pre-
dicted class toward one target as an extra fea-
ture in other targets’ models. This framework
is based on cascade classification, where several
classifiers of related tasks are combined to im-
prove the overall system performance (Heitz et al.,
2009). we adopted this framework for multi-target
stance classification by starting from an indepen-
dent classifier to predict stance toward the first tar-
get based on the text representation and exploit its
prediction as an extra feature for other classifiers.

The major restriction of this framework is that
the classification algorithm should have a mecha-
nism to add new features based on other learners’
outputs. Most of the machine learning algorithms
for text classification that rely on hand-crafted fea-
tures extracted from text to represent it, provide
such mechanism, but, for the state-of-the-art deep
neural models, where the feature vectors for the
text representation are learned with the classifica-
tion model during training, adding new features to
the model is not trivial.

3.3 Sequence-to-Sequence Model to Capture
Dependencies in Output Space

Encoder-decoder sequence-to-sequence models
(Sutskever et al., 2014; Cho et al., 2014b) were
originally used for machine translation, where a
recurrent neural network is trained to learn the
representation for the source language and gener-
ate the translation in the target language. Later, it
was proven to be effective for many different tasks
such as speech recognition (Hannun et al., 2014)
and question answering (Hermann et al., 2015).
Bahdanau et al. (2014) extended the encoder-
decoder architecture by an attention-based mecha-
nism where the model is capable of automatically
searching for more relevant regions in the input
when handling different output targets.
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We propose to use the attention-based encoder-
decoder for multi-target stance classification.
Specifically, we regard the given tweet as the in-
put, and the model is trained to generate the stance
labels for targets. This model can naturally capture
the dependencies among the target stance labels
when searching the best label sequence, based on
automatically-learned input features. The atten-
tion mechanism has the potential of dynamically
focusing on different words of the input text to
generate stance labels for each target of interest.
As such, the attention-based encoder-decoder is
expected to have the strengths of both the window-
based classification, by dynamically customizing
the feature vector to predict each target stance la-
bel, and the cascading classification, by condition-
ing each label generation on the other labels with-
out inheriting the limitations of these models. The
model automatically learns the features and re-
gions of the input that should be paid attention to.

4 Experiments

We evaluate the effectiveness of our models on the
multi-target stance dataset described earlier, where
two stance labels are predicted for each tweet.
Note that all the models can be easily extended
to predict more than two labels as well. For all
methods, the tweets were tokenized with the CMU
Twitter NLP tool (Gimpel et al., 2011). All the
models we proposed were implemented in Python.

As the evaluation measure for each target, we
use the average of the F1-scores (the harmonic
mean of precision and recall) for the two main
classes, Favor and Against. A similar metric was
used for stance detection—SemEval 2016 Task 4
(Mohammad et al., 2016a). For multiple targets
(in our dataset, target pairs) the average over all
the targets is calculated. To report a single num-
ber for all three target pairs, we take the average
of three values returned for each target pair and
we refer to it as macro-averaged F-score. All the
models are evaluated on the test sets.

As mentioned before, we used encoder-decoder
attention-based deep models for multi-target
stance detection. We followed (Bahdanau et al.,
2014; Luong et al., 2015) to train our models using
the minibatch stochastic gradient descent (SGD)
algorithm with adaptive learning rate (Adadelta
(Zeiler, 2012)). As RNN unit, we used a Gated
Recurrent Unit (Cho et al., 2014a) with 128 cells.
The word vectors at the embedding layer have 100

dimensions. All the parameters are initialized ran-
domly, but the word vectors are pretrained using
related unlabeled tweets (11,873,771 tweets) that
we collected in the same time period. As training
algorithm, we employed the Word2Vec Skip-gram
model (Mikolov et al., 2013).

4.1 Results and Discussion

Table 5 presents the macro-averaged F-scores
of different models on the Multi-Target Stance
dataset. Row i. shows the result obtained by a
random classifier and row ii. shows the result ob-
tained by the majority classifier. When we have
multiple targets to predict overall positions to-
wards them, one possibility is to have a single
learners per target that are independently trained.
Row a. shows the result of having two indepen-
dent linear Support Vector Machine (SVM) clas-
sifiers whose parameters are tuned using the de-
velopment datasets. We used the implementation
provided in the Scikit-learn Machine Learning li-
brary (Pedregosa et al., 2011). Row b. is the re-
sult of applying Window-based SVM on our Muti-
Target Stance Dataset. Because we collected our
data based on hashtags related to the targets, those
hashtags can be considered as target terms and we
place a context window around them. We used the
development set to find the best value for the win-
dow size. The main limitation of this approach on
this dataset is that for the majority of the tweets,
the contexts windows have significant overlaps, as
the two hashtags appeared in the close vicinity
of each other. Row c. presents the results of the
Cascading SVMs; this model shows improvement
over the baseline of independent SVMs.

Another possibility when there is more than
one output to predict is to combine all the out-
puts and train a single model. For our task of
predicting stance toward a target pair, where each
can take one of the three possible labels: “Favor”,
“Against” and “None”, combining the two predic-
tion results in a 9-class learning problem. Row
A. shows the result of this classifier. The main
limitation of combining outputs is that the number
of classes can grow substantially, while there is a
fixed number of labeled instances which results in
a drop in performance. Another issue is that some
of the classes might not have enough representa-
tive instances and this can lead to a highly imbal-
anced classification problem. Row B. shows the
results of applying the attention-based encoder-
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Classifier F-macro
Baselines

i. random 34.26
ii. majority 32.11

One Classifier per Target
a. Independent SVMs 51.37
b. Window-based SVMs 48.32
c. Cascading SVMs 52.05

Single Model
A. 9-Class SVM 50.63
B. Seq2Seq 54.81

Table 5: Macro-averaged F-scores of different
models on the Multi-Target Stance dataset

decoder deep neural model on our dataset. This
model has both the advantages of windows-based
and cascading classification, and it has the best
performance compared to all other models and
baselines. By applying paired t-test on these re-
sults, we concluded that the differences between
sequence-to-sequence model and all other models
are statistically significant.

5 Related Work

Stance Detection Over the last decade, there has
been active research in modeling stance (Thomas
et al., 2006; Somasundaran and Wiebe, 2009;
Anand et al., 2011; Sobhani et al., 2015; Walker
et al., 2012a; Hasan and Ng, 2013; Sobhani et al.,
2016). However, all of these previous works treat
each target independently, ignoring the potential
dependencies that could exist among related tar-
gets. Stance detection was one of the tasks in
the SemEval-2016 shared task competition (Mo-
hammad et al., 2016a). Out of 19 participant
teams, most used standard text classification fea-
tures such as n-grams and word embedding vec-
tors, as well as standard sentiment analysis fea-
tures, while others used deep neural models such
as RNNs and convolutional neural nets.

Most of the existing datasets for stance de-
tection were created from online debate forums
like 4forums.com and createdebates.com (Soma-
sundaran and Wiebe, 2010; Walker et al., 2012b;
Hasan and Ng, 2013). The majority of these de-
bates are two-sided, and the data labels are of-
ten provided by the authors of the posts. Re-
cently, Mohammad et al. (2016b) created a dataset
of tweets labeled for both stance and sentiment.
None of the prior work has created a dataset an-
notated for more than one target simultaneously,
neither has explored the dependencies and rela-
tionships between targets when predicting overall

positions towards them.
Deep Recurrent Neural Models Different

structures of deep RNNs have recently shown to
be very effective in a wide range of sequence
modeling problems, particularly for opinion min-
ing and sentiment analysis (Zhu et al., 2015a;
Socher et al., 2013; Zhu et al., 2015b; Irsoy and
Cardie, 2014; Zhu et al., 2016). These neural
models were extended for tasks with variable in-
put and output sequence length including: end-to-
end neural machine translation (Sutskever et al.,
2014; Cho et al., 2014b), image-to-text conver-
sion (Vinyals et al., 2015b), syntactic constituency
parsing (Vinyals et al., 2015a) and question an-
swering (Hermann et al., 2015). Subsequently, the
attention mechanism allowed the models to learn
alignments between different parts of the source
and the target such as between speech frames and
the text in speech recognition (Chorowski et al.,
2014) or between image frames and the agent’s
actions in dynamic control problems (Mnih et al.,
2014). We are the first to adopt these techniques
for the task of multi-target stance classification.

6 Conclusions and Future Work

We presented the first multi-target stance dataset
of a reasonable size from social media, to help
further exploration of this task. Each tweet is an-
notated for position toward more than one target.
By making this dataset available, more work on
joint learning of subjectivities corresponding to re-
lated targets is encouraged. In addition, we pre-
sented a framework that relieves the independence
assumption by jointly modeling the subjectivity
expressed towards multiple targets. We experi-
mentally showed that the attention-based encoder-
decoder model is more effective in jointly model-
ing the overall position toward two related targets,
compared to independent predictions of positions
and other popular frameworks for joint learning,
such as cascading classification.

Directions of future work include annotating a
similar dataset for other domains, for example,
several brands of the same product, and exploring
transfer learning where a model trained for a target
pair can be transferred to other related target pairs.
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Abstract

The polarity classification task aims at au-
tomatically identifying whether a subjec-
tive text is positive or negative. When
the target domain is different from those
where a model was trained, we refer to
a cross-domain setting. That setting usu-
ally implies the use of a domain adaptation
method. In this work, we study the sin-
gle and cross-domain polarity classifica-
tion tasks from the string kernels perspec-
tive. Contrary to classical domain adap-
tation methods, which employ texts from
both domains to detect pivot features, we
do not use the target domain for train-
ing. Our approach detects the lexical pe-
culiarities that characterise the text polar-
ity and maps them into a domain indepen-
dent space by means of kernel discrimi-
nant analysis. Experimental results show
state-of-the-art performance in single and
cross-domain polarity classification.

1 Introduction

The polarity classification task, also known as (bi-
nary) polarity or sentiment categorisation, aims at
identifying whether a subjective text is positive or
negative depending on the overall sentiment de-
tected. Single domain polarity classification (Pang
et al., 2002) refers to the standard text classifica-
tion setting (Sebastiani, 2002). The cross-domain
level (Blitzer et al., 2007) refers to classify a dif-
ferent domain from that or those where a model
was trained.

These tasks have become especially important
for business purposes. The vastness and accessi-
bility of the Internet produced a new generation
of event and product reviewers. These reviewers
employ channels such as blogs, fora or social me-
dia. In consequence, companies are highly inter-
ested into identifying reviewers’ opinions on, for

instance, new products in order to improve mar-
keting campaigns.

Although polarity classification tasks can be
tackled with text classification methods, it has
been proven to be a more challenging task (Pang et
al., 2002): sentiment may be expressed more sub-
tly (Reyes and Rosso, 2013) than categories gener-
ally recognised with keywords alone. In addition,
the cross-domain variant has the additional diffi-
culty of using a different vocabulary among do-
mains. This problem is usually drawn by means of
domain adaptation techniques (Ben-David et al.,
2007). Most of these techniques exploit pivot fea-
tures that allow to map vocabularies among do-
mains.

String kernels are known for their good perfor-
mance in text classification (Lodhi et al., 2002).
Recent works with this representation demon-
strated its excellent capacity to capture lexical
peculiarities of text (Popescu and Grozea, 2012;
Ionescu et al., 2014). In this work we study
the single and cross-domain polarity classification
tasks from the string kernels perspective. The re-
search questions we aim to answer are:

• What is the performance of string kernels for
single and cross-domain polarity classifica-
tion? We are interested in the performance
of this representation in these specially chal-
lenging classification tasks. Despite the use
of string kernels is not new at single-domain
level (Bespalov et al., 2011), this is, to the
best of our knowledge, the first attempt to use
them at cross-domain level. This leads us to
our next research question.

• Can this representation classify at cross-
domain level without learning from texts of
the target domain? We employ Kernel Dis-
criminant Analysis (Mika et al., 1999) for the
classification, which is based on a non-linear
space transformation. We aim to clarify if
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the lexical peculiarities captured by this ap-
proach characterise the polarity of the texts
independently of the domain.

In order to answer these questions, we compare
our approach with several state-of-the-art meth-
ods with the well-known Multi-Domain Sentiment
Dataset (Blitzer et al., 2007). Experimental re-
sults show state-of-the-art performance in single
and cross-domain polarity classification. In addi-
tion, the stability of the proposed approach is re-
markable among the different evaluated domains.

2 Related Work

In this section we review the state-of-the-art meth-
ods which have been evaluated in the Multi-
Domain Sentiment dataset. Focused on single-
domain polarity classification, the Confidence-
Weighted Learning (CWL) (Dredze et al., 2008) is
based on updating more aggressively the weights
of features with higher confidence. The Struc-
tural Correspondence Learning with Mutual In-
formation (SCL-MI) (Blitzer et al., 2007) was
the first model evaluating the dataset at cross-
domain level. The mutual information was used
to select pivot features which are subsequently
used for measuring co-occurrence with the rest of
the features. Chen et al. (2012) addressed this
task, considering the scalability and the compu-
tational cost of the approach, with marginalized
stacked denoising autoencoders. The use of neu-
ral networks has also been proven to be useful
for cross-domain classification tasks where un-
labeled data from the test domain is employed
to extract domain independent features (Ganin
et al., 2016). Some approaches have proven
to excel both at single and cross-domain levels.
Bollegala et al. (2013) proposed the Sentiment-
Sensitive Thesaurus (SST) model that groups to-
gether words expressing the same sentiment. Re-
cently, the Knowledge-Enhanced Meta classifier
(KE-Meta) (Franco-Salvador et al., 2015) com-
bined surface and word sense disambiguation fea-
tures derived from a semantic network.

3 String Kernels

String Kernels (SK) are functions that measure the
similarity of string pairs at lexical level. Their dual
representation allows to work with a huge num-
ber of character n-grams while keeping the feature
space reduced.

In this work, we follow the implementation and
formulation of Ionescu et al. (2014).1 A simple
measure of the similarity of two strings s,t is the
number of shared substrings of length p. The p-
grams kernel is estimated as follows:

kp(s, t) =
∑
v∈Lp

f(numv(s), numv(t)), (1)

where numv(s) is the number of occurrences of
string v as a substring of s, p is the length of v, and
L is the alphabet used to generate v. The function
f(x, y) variates depending on the type of kernel:

1. f(x, y) = x·y in the p-spectrum kernel;

2. f(x, y) = sgn(x)·sgn(y) in the p-grams pres-
ence bits kernel;2

3. f(x, y) = min(x, y) in the p-grams intersec-
tion bits kernel.

As we can see, the values of f(.) are the highest
with the spectrum kernel and the lowest with the
presence kernel. This gives us an idea about what
these kernels capture. The spectrum kernel offers
high values even when the texts are only partially
related. The intersection kernel employs the n-
gram frequency to provide with a precise lexical
similarity measure. Finally, the presence kernel
captures the lexical core meaning of the texts by
smoothing the n-gram repetitions.

Our kernels combine different n-gram lengths3

(see Section 4.2 for details about our parameter se-
lection) and are normalised as follows:

k̂(s, t) =
k(s, t)√

k(s, s) · k(t, t)
(2)

We perform the classification with Kernel Dis-
criminant Analysis (KDA) (Baudat and Anouar,
2000),4 which returns the eigenvector matrix U .
We compute the feature matrices Y = KU and
Yt = KtU , where K and Kt are the training and
test instance kernels. For each class c, we cre-
ate the prototype Yc as the average of all vectors
of Y that correspond to the instances of class c.

1http://string-kernels.herokuapp.com/
2sgn is the sign function.
3We combine the n-gram lengths by adding the kernel

values obtained for each n.
4We use the following KDA implementation:

http://www.cad.zju.edu.cn/home/dengcai/
Data/DimensionReduction.html
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Finally, we classify each test instance by iden-
tifying the class of the prototype with the low-
est mean squared error between Yt(i) and Yc.
Key to our cross-domain classification, without
learning from texts of the target domain, is the
KDA’s space transformation. It employs the ker-
nel trick (Schölkopf, 2001) and formulates the task
as an eigenvalue problem resolution to learn non-
linear mappings which transform our features to a
new space that captures the most relevant lexical
peculiarities for polarity classification.

4 Evaluation

In this section we evaluate and compare our ap-
proach in the single and the cross-domain polarity
classification tasks.

4.1 Dataset and Tasks Setting

Dataset We employ the Multi-Domain Senti-
ment Dataset (v. 2.0) (Blitzer et al., 2007).5 It
contains Amazon product reviews of four differ-
ent domains: Books (B), DVDs (D), Electronics
(E) and Kitchen appliances (K). Each review con-
tains information including a rating in a range of
0 to 5 stars. Reviews rated with more than 3 stars
were labeled as positive, and those with less than
3 as negative. There are 1,000 positive and 1,000
negative reviews for each domain.

Methodology We evaluate our approach using
the presence (k0/1

p ), intersection (k∩p ), and spec-
trum (kp) kernels. We compare with SST and KE-
Meta at single and cross-domain levels (see Sec-
tion 2). In addition, we compare with CWL at
single-domain and with SCL-MI at cross-domain
level.6 Finally, we include as a baseline the com-
bination of word unigram, bigram, and trigram
features using a support vector machine classifier
with linear kernel (henceforth referred to as word
n-g). We perform our evaluation with a stratified
10-fold cross-validation. We use the accuracy of
classification as the evaluation metric. Statistically
significant results according to a χ2 test are high-
lighted in bold.

4.2 Parameter Selection

We adjusted the kernel n-gram length and the
KDA’s regularisation factor αwith a 80-20% split-

5https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

6The results of the compared approaches are taken from
Franco-Salvador et al. (2015).
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Figure 1: Avg. accuracy among all the fold values
depending on the KDA’s regularisation factor.

Method Books DVDs Electronics Kitchen

KE-Meta 83.5 82.3 82.6 84.2
SST 80.4 82.4 84.4 87.7
CWL 82.6 80.9 85.9 85.7
word n-g 80.5 81.7 80.3 81.9

SK(k0/1
p ) 83.8 84.8 86.2 85.5

SK(k∩p ) 83.8 84.6 86.6 85.4
SK(kp) 82.7 82.8 84.7 85.3

Table 1: Single-domain polarity classification ac-
curacy (in %).

ting over the nine training folds of each cross-
validation iteration. We first set α to its default
value (0.2) and explored different combinations of
n-gram lengths, for 2 ≤ n ≤ 10. The best re-
sults where obtained when we combined all the n-
grams in 5 ≤ n ≤ 8. Using that combination, we
tested for α ∈ [0.01, 1]. The results notably dif-
fered depending on the task setting, training do-
main, and kernel (see Figure 1). We use the pa-
rameters adjusted in this section for the rest of our
evaluation.

4.3 Single-domain Polarity Classification

In Table 1 we show the single-domain results. As
we can see, the state-of-the-art performance dif-
fers depending on the domain. The combination
of word n-grams makes word n-g the baseline in
all the domains. KE-Meta excels with book re-
views, SST with kitchen appliance reviews, and
CWL with book and electronic reviews. Franco-
Salvador et al. (2015) analysed this fact and jus-
tified it with the difference in review length and
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Method Books DVDs Electronics Kitchen

KE-Meta 77.9 80.4 78.9 82.5
SST 76.3 78.3 83.9 85.2
SCL-MI 74.6 76.3 78.9 82.0
word n-g 74.4 79.8 77.1 76.9

SK(k0/1
p ) 82.0 81.9 83.6 85.1

SK(k∩p ) 80.7 80.7 83.0 85.2
SK(kp) 71.2 69.0 73.7 78.0

Table 2: Multi-source cross-domain polarity clas-
sification accuracy (in %).

vocabulary richness among the evaluated domains.
In addition, they highlighted the KE-Meta stability
among domains, i.e., their higher lower-bound in
accuracy. However, the results of our presence and
intersection string kernels are more stable. What
is more, depending on the domain, their results
are statistically superior or equal to the best ob-
tained by the state of the art. The exception is
SST, which obtains the best results in the kitchen
domain, where the shorter average review length
could penalise other methods. We note that there
are not statistically significant differences between
the presence and intersection kernels. However,
the spectrum kernel obtains lower results in all the
cases. In contrast to the other two kernels, the
spectrum one assigns a high score even when only
one of the texts has a high frequency for a partic-
ular n-gram (see Section 3). This produces simi-
lar kernel representations for texts which may be
not so close at lexical level and, consequently, pe-
nalises the model precision.

4.4 Cross-domain Polarity Classification

Following recent works in cross-domain polar-
ity classification (Bollegala et al., 2013; Franco-
Salvador et al., 2015), in Table 2 we compare
with the state of the art using a multi-source cross-
domain setting, i.e., we train with all the domains
but the one we classify. Similarly to the single-
domain results, word n-g is the baseline, KE-Meta
offers higher results in book and DVD reviews,
and SST in electronic and kitchen appliance re-
views. We note that SCL-MI was designed for
single-source cross-domain classification (Blitzer
et al., 2007). Therefore, the use of multiple train-
ing domains may be the reason of its lower, but
still competitive, performance.

Interestingly, despite not using target domain
texts for training, the presence and intersection

kernels obtain statistically superior or equal results
to the best ones obtained by the state of the art.
This proves that the non-linear mappings learned
by KDA capture the lexical peculiarities that char-
acterise polarity in a domain-independent way. We
note again the stability of the results of these ker-
nels and the non-existent statistically significant
difference between them. In contrast, the spectrum
kernel obtains the lowest results of the table. In or-
der to analyse this fact, we perform an additional
experiment where we use a single-source setting
to train our cross-domain classifiers. We can see
the results in Table 3.

The comparison of the multi-source and the
single-source results shows that the presence and
intersection kernels are occasionally able to ex-
ploit different domain characteristics to obtain bet-
ter results, e.g. the presence and intersection ker-
nels with kitchen reviews, and the presence kernel
with DVDs reviews. Even in cases when the com-
bination of domains do not lead to better results,
the results remain close to those of the most com-
patible training domain; specially with the pres-
ence kernel. We note the relevance of the multi-
source setting for the industry: it is easier to use
multiple domains to learn a domain-independent
classifier than to detect each time which is the
most appropriated training domain. Finally, we
observe that the spectrum kernel has competitive
results when the most compatible domain is used
for training. However, the aforementioned score
characteristics of that kernel (see Sections 3 and
4.3) exponentially increase its error in the multi-
source setting.

5 Conclusions

In this paper we studied the single and the cross-
domain polarity classification tasks from the string
kernels perspective. We analysed the performance
of the presence, intersection, and spectrum kernels
when classifying with kernel discriminant anal-
ysis. Experimental results compared to several
state-of-the-art approaches in the Multi-Domain
Sentiment Dataset showed state-of-the-art perfor-
mance for the presence and intersection kernels
in both tasks. In addition, these two kernels pro-
vided with the most stable results among domains.
What is more, we showed that the non-linear space
transformations of kernel discriminant analysis
captured the lexical peculiarities that characterise
polarity in a domain-independent way. This fact
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Method D→B E→B K→B B→D E→D K→D

SK(k0/1
p ) 82.0 72.4 72.7 81.4 74.9 73.6

SK(k∩p ) 82.1 72.4 72.8 81.3 75.1 72.9
SK(kp) 81.1 69.9 71.4 80.0 73.5 71.8

B→E D→E K→E B→K D→K E→K

SK(k0/1
p ) 71.3 74.4 83.9 74.6 75.4 84.9

SK(k∩p ) 71.8 74.5 84.4 74.9 75.1 84.9
SK(kp) 70.7 72.6 83.9 74.2 74.9 84.5

Table 3: SK single-source cross-domain polarity classification accuracy (in %), where each column
header follows the ”training domain → test domain“ format.

allowed our approaches to excel at cross-domain
level without learning from texts of the target do-
main. Finally, the analysis of the single-source
and the multi-source cross-domain results proved
that the presence kernel tolerates better the inclu-
sion of new training domains in the multi-source
cross-domain setting. This fact makes it the rec-
ommended option for cross-domain polarity clas-
sification.

Future work will investigate further how to em-
ploy string kernels for single and cross-domain
classification tasks.
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Abstract

Inferring the emotional content of words
is important for text-based sentiment anal-
ysis, dialogue systems and psycholinguis-
tics, but word ratings are expensive to
collect at scale and across languages or
domains. We develop a method that au-
tomatically extends word-level ratings to
unrated words using signed clustering of
vector space word representations along
with affect ratings. We use our method to
determine a word’s valence and arousal,
which determine its position on the cir-
cumplex model of affect, the most pop-
ular dimensional model of emotion. Our
method achieves superior out-of-sample
word rating prediction on both affec-
tive dimensions across three different lan-
guages when compared to state-of-the-
art word similarity based methods. Our
method can assist building word ratings
for new languages and improve down-
stream tasks such as sentiment analysis
and emotion detection.

1 Introduction

Word-level ratings play an important role in com-
putational linguistics and psychology research.
Many studies have focused on collecting ratings
related to the properties of words, such as fre-
quency, complexity, concreteness, imagery, age of
acquisition, familiarity and affective states (Ku-
perman et al., 2012; Schock et al., 2012; Juhasz
and Yap, 2013; Brysbaert et al., 2014). Applica-
tions span from memory experiments to develop-
ing reading tests and analyzing texts from non-
native speakers (Mohammad and Turney, 2013).
In NLP, these ratings can be used to quantify dif-
ferent properties in large scale naturally occurring

text, for example when analysing lexical choice
between demographic groups (Preoţiuc-Pietro et
al., 2016) or music lyrics (Maulidyani and Manu-
rung, 2015).

Of particular importance to NLP research are
ratings of affect, which can be used for sentiment
analysis and emotion detection (Pang and Lee,
2008; Preoţiuc-Pietro et al., 2016). The main di-
mensional model of affect is the circumplex model
of Russell (1980), which posits that all affective
states are represented as a linear combination of
two independent systems: valence (or sentiment)
and arousal (Posner et al., 2005). For example, the
word ‘fear’ is rated by humans as low in valence
(2.93/9) but relatively high in arousal (6.41/9),
while the word ‘sad’ is low in both valence (2.1/9)
and arousal (3.49/9).

However, collecting word ratings is very time
consuming and expensive for new languages, do-
mains or properties, which hinders their applica-
bility and reliability. In addition, although word
ratings are performed using anchoring to control
for differences between raters, implicit biases may
exist when rating. This can be caused by certain
demographic biases or halo effects e.g., a high va-
lence word is more likely to be rated higher in
arousal. An independent way of measuring words
could also help refine existing ratings, rather than
only extending them to unrated words.

Automatically expanding affective word ratings
has been studied based on the intuition that words
similar in a reduced semantic space will have sim-
ilar ratings (Recchia and Louwerse, 2015; Palo-
giannidi et al., 2015; Vankrunkelsven et al., 2015;
Köper and Im Walde, 2016). For example, Bestgen
and Vincze (2012) compute the rating of an un-
known word as the average of its k-nearest neigh-
bors from the low-dimensional semantic space.
However, the downside is that antonyms are also
semantically similar, which is expected to reduce
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the accuracy of these methods. Orthographic sim-
ilarity has shown to slightly improve results (Rec-
chia and Louwerse, 2015). A different approach
to rating prediction is based on graph methods in-
spired by label propagation (Wang et al., 2016).
In a related task of adjective intensity prediction,
Sharma et al. (2015) also use distributional meth-
ods, but their work is restricted to discrete cate-
gories and relative ranking within each semantic
property. Another related task to affective norm
prediction is building sentiment and polarity lex-
icons (Turney, 2002; Turney and Littman, 2003;
Velikovich et al., 2010; Yih et al., 2012; Tang et
al., 2014; Hamilton et al., 2016). However, po-
larity is assigned to words in order to determine
if a text is subjective and its sentiment, which
is slightly different to word-level affective norms
e.g., ‘sunshine’ is an objective word (neural polar-
ity), but has a positive affective rating.

Our approach builds upon recent work in learn-
ing word representations and enriches these by in-
tegrating a set of existing ratings. Including this
information allows our method to differentiate be-
tween words that are semantically similar, but on
opposite sides of the rating scale. Results show
that our automatic word prediction approach ob-
tains better results than competitive methods and
demonstrates the benefits of introducing existing
ratings on top of the underlying word representa-
tions. The superiority of our approach holds for
both valence and arousal word ratings across three
languages.

2 Data

Our gold standard data is represented by affective
norms of words. The ratings are obtained by ask-
ing human coders to indicate the emotional reac-
tion evoked by specific words on 9-point scales:
valence (1–negative to 9–positive) and arousal
(from 1–calm to 9–excited).

Originally, word ratings were computed using
trained raters in a laboratory setup. The Affec-
tive Norms for English Words (Bradley and Lang,
1999) – ANEW – contained ratings for valence
and arousal, as well as dominance for only 1034
English words. Similar norms were obtained for
Spanish (Redondo et al., 2007). Recently, crowd-
sourcing was used to derive ratings for larger sets
of words using the ANEW ratings for anchor-
ing and validation. Warriner et al. (2013) com-
puted valence, arousal, and dominance scores for

13,915 English lemmas. A similar methodology
was used to obtain affective norms for Dutch –
4,300 words (Moors et al., 2013) – and Spanish –
14,031 words (Stadthagen-Gonzalez et al., 2016).
In our experiments, we use valence and arousal
ratings for these three languages. Although some
affective norms contain a third dimension of dom-
inance (from feeling dominated to feeling domi-
nant), we choose not to include this as it was not
present in all data sets.

3 Method

Our method consists of two separate steps. First,
we leverage large corpora of naturally occurring
text and the distributional hypothesis in order to
represent words in a semantic space with reduced
dimensionality. Words that are similar in this space
will appear in similar contexts, hence are expected
to have similar scores. However, words of opposite
polarity have similar distributional properties and
will also be very similar in this space (Landauer,
2002). Hence, we perform an additional second
step which distorts the word representations, here
implemented using signed spectral clustering.

3.1 Distributional Word Representations

Distributional word representations or word em-
beddings make use of the distributional hypoth-
esis – a word is characterised by the company it
keeps – to represent words as low dimensional
numeric vectors using large text corpora (Harris,
1954; Firth, 1957).

We use the word2vec algorithm (Mikolov et al.,
2013), without loss of generality, to generate word
vectors as it is arguably the most popular model
out of the variety of existing word representations.
The word2vec embeddings for English and Span-
ish have 300 dimensions and are trained on the Gi-
gaword corpora (Parker et al., 2011; Mendonca et
al., 2011). For Dutch, we use the word2vec em-
beddings with 320 dimensions from Tulkens et al.
(2016). All words in the embeddings have mini-
mal tokenization, with no additional stemming or
lowercasing. Our vocabulary consists of the words
that have ratings on either scale.

3.2 Signed Spectral Clustering

To infer the score of an unrated word we use a
clustering approach – rather than nearest neigh-
bors – to automatically uncover the number of
related words based on which the rating is com-
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Figure 1: A continuous two-dimensional repre-
sentation of a cluster (using K-means) of English
words and their normalized valence ratings. Af-
ter incorporating valence ratings using the signed
clustering algorithm, “disappointed” is removed
from the main cluster. The colors represent the re-
sulting cluster memberships.

puted. Distributional word representations capture
semantic word similarity. However, a common pit-
fall is that words with different properties can be
used in similar contexts e.g., ‘happy’ and ‘sad’ are
antonyms but are used similarly. Signed spectral
clustering (SSC) – described in Sedoc et al. (2016)
– is extremely well suited for this type of problem.

SSC is a multiclass optimization method which
builds upon existing theory in spectral cluster-
ing (Shi and Malik, 2000; Yu and Shi, 2003; von
Luxburg, 2007) and incorporates side information
about word ratings in the form of negative edges
which repel words with opposing scores from be-
longing to the same clusters. It minimizes the cu-
mulative edge weights cut within clusters versus
between clusters, while simultaneously minimiz-
ing the negative edge weights within the clusters.

More formally, given a partition of nodes of a
graph into k clusters, (A1, . . . , Ak), signed spec-
tral clustering using normalized cuts minimizes

k∑
j=1

cut(Aj , Aj) + 2links−(Aj , Aj)
vol(Aj)

.

For any subset A of the set of nodes, V , of the
graph, let

vol(A) =
∑

vi∈A

|V |∑
j=1

|wij |,

where wij is the similarity or dissimilarity of
words i and j. For any two subsets A and its com-

plement A, define

links−(A,A) =
∑

vi,vj∈A
wij<0

−wij

cut(A,A) =
∑

vi∈A,vj∈A
wij 6=0

|wij |.

Note, that the main innovation of signed spectral
clustering is minimizing the number of negative
edges within the cluster, links−(Aj , Aj). Without
the addition of negative weights, signed spectral
clustering is simply spectral clustering i.e., nor-
malized cuts (Yu and Shi, 2003).

For this application, rather than incorporating
a thesaurus knowledge base (a.k.a., side informa-
tion) as in Sedoc et al. (2016), we used the contin-
uous lexical scores from our arousal and valence
ratings. To obtain signed information, we zero-
centered the word ratings which are originally be-
tween 1 and 9. We create a similarity matrix where
the weight between words i and j incorporate both
the signed information and the word similarities
computed using the cosine similarity of the distri-
butional word representations. The similarity ma-
trix W (a.k.a., weight matrix) is used to create
word clusters which capture both the distributional
features as well as the lexical features. We perform
a separate clustering for each valence and arousal
and each separate language. More formally, the
similarity matrix

W = W emb + β−T− �W emb + β+T+ �W emb

where W emb is the matrix of cosine similari-
ties between vector embeddings of words, � is
element-wise multiplication. The matrix T =
T+ + T− is the outer product of the normalized
lexical ratings, where the matrices T+, T− con-
tain the outer product of the normalized lexical
ratings split into positive and negative entries, re-
spectively, in matrix block form,

T+ =
(

+ 0
0 +

)
, T− =

(
0 −
− 0

)
.

The values β+ and β− are found using grid search
on the training data.

Figure 1 shows the intuition behind signed clus-
tering by presenting an example cluster obtained
using K-means clustering on the reduced semantic
space (here showing the first two principal com-
ponents). This includes the word ‘disappointed’
together with with words like ‘happy’, ‘excited’
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and ‘elated’. While this is relatively appropriate
for arousal, it is not the case for valence as they
represent opposite ends of the rating spectrum. By
incorporating valence information, ‘disappointed’
is taken apart from the cluster of words with pos-
itive valence and thus its negative valence rating
will not be considered when predicting the rating
of a word belonging to this cluster.

Note that we used signed spectral cluster-
ing (SSC) for our problem since, unlike when
antonym pairs are used as side information, we
need to incorporate continuous information. Other
methods for adding antonym or arbitrary rela-
tionships on distributional word representations,
are unable to extrapolate these to unseen words
or handle unpaired side information (Yih et al.,
2012; Chang et al., 2013; Faruqui et al., 2015;
Mrkšić et al., 2016). Furthermore, our informa-
tion comes in lists rather than sets, contexts, or
patterns, which presents a problem for other ex-
isting methods (Tang et al., 2014; Pham et al.,
2015; Schwartz et al., 2015). An alternative to SSC
– must-link / cannot-link clustering (Rangapuram
and Hein, 2012) – has the downside of requiring a
choice of threshold for defining the must-link and
cannot-link underlying graph edges. An extended
comparison of SSC to related methods is presented
in (Sedoc et al., 2016).

4 Results

We compare the proposed method with other base-
lines and approaches which assign to the unrated
word:
1. the mean of the available ratings (Mean);
2. the average of its k nearest rated neighbors in

the semantic space – the method introduced
in (Bestgen and Vincze, 2012) (K-NN);

3. the mean rating of words in its cluster using
standard k-means clustering in the reduced se-
mantic space (K-Means);

4. linear regression value with the word embed-
ding dimensions as features (Regression);

5. the mean rating of words in its cluster using
vanilla spectral clustering (i.e., W = W emb)
which uses normalized cuts (NCut), in order
to measure the utility and impact of the signed
spectral clustering.

We perform the experiment in a 10-fold cross-
validation setup, where 90% of the ratings are
known and used in training. Results are evalu-
ated in both Root Mean Squared Error (RMSE)

between the human and automatic rating and the
Pearson Correlation Coefficient (ρ) between the
list of human and automatic ratings. We used
k = 10 nearest neighbors for K-NN, which gener-
ally outperforms k = {1, 5, 20} over valence and
arousal in all three test languages. This is con-
sistent with the original results of Bestgen and
Vincze (2012), although Recchia and Louwerse
(2015) found that k = 40 was optimal for pre-
dicting arousal ratings. For all other clustering
methods we used k ∼ 10% of the total ratings
(k = 1000 for English and Spanish, k = 400
for Dutch). In English valence experiments, the
K-means cluster sizes have a median of 13 with
σ = 16.4, for NCut the median is 6 with σ = 62.5
and for SNCut the median is 5 with σ = 78.1. In
SNCut, smaller cluster sizes are associated with
more extreme ratings.

The results are presented in Table 1 and show
that our method (SNCut) consistently performs
best across both ratings – valence and arousal –
and across all three languages. For English and
Spanish, the larger margins of improvement over
the mean baseline and K-NN are obtained on va-
lence. This is particularly intuitive, as opposite va-
lence words are usually antonyms and are more
useful to split apart compared to low/high arousal
words, which might also not be as distributionally
similar to each other. In all cases, the signed clus-
tering step improves rating prediction significantly
over vanilla spectral clustering (NCut), highlight-
ing the utility of signed clustering. Out of the
baseline methods, none consistently outperforms
the others. In addition, we also used English 300
dimensional GloVe word embeddings (Penning-
ton et al., 2014) instead of word2vec, which led
to similar results using SNCut where for valence
RMSE= 0.82, ρ = 0.76 and arousal RMSE= 0.73
and ρ = 0.56. As an upper bound comparison,
Warriner et al. (2013) reported that the human
inter-annotator agreements are 0.85 to 0.97, and
0.56 to 0.76 for valence and arousal respectively
across various languages.

We also directly compare with results from pre-
vious work by matching the training and testing
data sets where enough information was provided.
When using only English ANEW words for out-
of-sample analysis as in Recchia and Louwerse
(2015), our results are slightly higher (ρ=.804 cf.
ρ=.8 for valence, ρ=.632 cf ρ=.62 for arousal).
We did not have enough information to reproduce
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English Spanish Dutch
Valence Arousal Valence Arousal Valence Arousal

Method RMSE ρ RMSE ρ RMSE ρ RMSE ρ RMSE ρ RMSE ρ

Mean 1.274 0 0.896 0 1.331 0 0.930 0 1.050 0 0.842 0
K-NN (k=1) 1.265 0.533 1.048 0.308 1.328 0.011 1.359 0.012 0.977 0.409 0.976 0.407
K-NN (k=10) 0.961 0.659 0.764 0.523 1.035 0.644 0.862 0.465 0.949 0.557 0.727 0.544
K-Means 0.953 0.684 0.773 0.551 1.009 0.657 0.916 0.447 0.780 0.675 0.683 0.592
Regression 0.835 0.757 0.759 0.547 1.002 0.679 0.915 0.203 0.844 0.566 0.746 0.545
NCut 0.948 0.682 0.861 0.520 1.006 0.679 0.864 0.452 0.864 0.585 0.723 0.533
SNCut 0.803 0.768 0.713 0.582 0.944 0.733 0.822 0.499 0.762 0.693 0.592 0.706

Table 1: Accuracy of word rating prediction in a 10-fold cross-validation setup. For both English and
Spanish the number of clusters for K-means, NCut and SNCut is 1000. For Dutch because of the reduced
lexicon, we used 400 clusters.

their results on Spanish or Dutch, albeit their re-
sults (ρ=.52 valence and ρ=.36 arousal for Span-
ish; ρ=.50 valence and ρ=.47 arousal for Dutch)
are far lower than our best results.

On the original 1,034 English ANEW ratings,
Wang et al. (2016) used a 6:2:2 train/dev/test split
and k-fold cross-validation. They achieve ρ=.801
for valence and ρ=.539 for arousal compared to
ρ=.806 for valence and ρ=.615 for arousal when
using our proposed method.

Figure 2 presents the rating prediction error of
our method when varying the number of ratings
used as seeds in signed clustering. As expected,
the error of our predictions decreases with the
amount of ratings available with signs of reaching
a plateau towards the end.

Figure 2: The RMSE of the signed clustering
method (SNCut) as a function of the percentage
of the lexicon ratings used for English valence pre-
diction.

5 Conclusion

This study looked at the feasibility of automati-
cally predicting word-level ratings – here valence
and arousal – by combining distributional ap-
proaches with signed spectral clustering. Our ex-

periments on word ratings of valence and arousal
across three different languages showed that in
an out-of-sample word rating prediction task, our
proposed method consistently achieves the best
prediction results when compared to a number of
competitive methods and existing baselines.

Future work will include experiments on other
word-level ratings, such as age-of-acquisition,
dominance, imageability or abstractness, on other
languages and using other word embeddings. Pos-
sible applications of our work include choosing
the words to rate in an active learning setup on
annotating new languages, automatically cleaning
and checking word ratings and applying automati-
cally derived scores to improve downstream tasks
such as sentiment analysis or emotion detection.
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Abstract

Neural network models have been used
for target-dependent sentiment analysis.
Previous work focus on learning a target
specific representation for a given input
sentence which is used for classification.
However, they do not explicitly model the
contribution of each word in a sentence
with respect to targeted sentiment polar-
ities. We investigate an attention model
to this end. In particular, a vanilla LSTM
model is used to induce an attention value
of the whole sentence. The model is fur-
ther extended to differentiate left and right
contexts given a certain target following
previous work. Results show that by us-
ing attention to model the contribution of
each word with respect to the target, our
model gives significantly improved results
over two standard benchmarks. We report
the best accuracy for this task.

1 Introduction

Targeted sentiment analysis investigates the clas-
sification of opinions polarities towards specific
target entity mentions in given sentences (Jiang et
al., 2011; Dong et al., 2014; Vo and Zhang, 2015;
Tang et al., 2016; Zhang et al., 2016). The input is
a sentence with given target entity mentions, and
the output consists of two-way or three-way sen-
timental classes on each target mention. For ex-
ample, the sentence “She began to love miley ray
cyrus since 2013 :)” is marked with a positive sen-
timent label on the target “miley ray cyrus”.

One important problem of targeted sentiment
classification is how to model the relation be-
tween targets and their context. Earlier methods
defined rich features by exploiting POS tags and
syntactic structures (Jiang et al., 2011; Dong et

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

left contexts right contextstarget
+ - 0

vanilla
attention
contextualized
attention

Figure 1: Structures of modeling target, left and
right contexts and the attention over words.

al., 2014). Compared with discrete manual fea-
tures, embedding features are less sparse, and can
be learnt from large raw texts, capturing distribu-
tional syntactic and semantic information. Dong
et al. (2014) use a target-specific recurrent neural
network to represent a sentence. Vo and Zhang
(2015) use the rich pooling functions to extract the
feature vector for a given target.

One important contribution of Vo and Zhang
(2015) is that they split a sentence into three sec-
tions including the target, its left contexts and its
right contexts, as shown in Figure 1. Zhang et al.
(2016) represent words in the input using a bidi-
rectional gated recurrent neural network, and then
use three-way gated neural network structure to
model the interaction between the target and its
left and right contexts. Tang et al. (2016) learn
target-specific sentence representation by combin-
ing word embeddings with the corresponding tar-
geted embeddings, and then using two recurrent
neural networks to encode the left context and the
right context, respectively.

The above methods use the different neural net-
work structures to model the relation between con-
texts and targets, but they did not explicitly model
the importance of each word in contributing to
the sentiment polarity of the target. For example,
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the sentence “#nowplaying [lady gaga]0 - let love
down” is neural for the target “lady gaga”, where
the contribution of “love” is little, despite that the
word “love” is a positive word.

To address this, we utilize the attention mech-
anism to calculate the contribution of each word
towards targeted sentiment classes, as shown in
Figure 1, where the gray level in the spectrum
means the contribution of words. In particular,
we build a vanilla model using a bidirectional
LSTM to extract word embeddings over the
sentence and then apply attention over the hidden
nodes to estimate the importance of each word.
Furthermore, following Vo and Zhang (2015),
Tang et al. (2016) and Zhang et al. (2016), we
differentiate the left and right contexts given a tar-
get. Our final models give significantly improved
results on two standard benchmarks compared
to previous methods, resulting in best reported
accuracy so far. Our source code is released at
https://github.com/LeonCrashCode/
AttentionTargetSentiment.

2 Related Work

Traditional sentiment classification methods rely
on manual discrete features (Pang et al., 2002;
Go et al., 2009; Mohammad et al., 2013). Re-
cently, distributed word representation (Socher et
al., 2013; Tang et al., 2014; Zhang et al., 2015) and
neural network methods (Irsoy and Cardie, 2013;
dos Santos and Gatti, 2014; Dong et al., 2014;
Zhou et al., 2014; Zhang et al., 2016; Teng et al.,
2016; Ren et al., 2016) have shown promising re-
sults on this task. The success of such work sug-
gests that using word embeddings and deep neural
network structures can automatically exploit the
syntactic and semantic structures. Our work is in
line with these methods.

The seminal work using the attention mecha-
nism is neural machine translation (Bahdanau et
al., 2015), where different weights are assigned
to source words to implicitly learn alignments for
translation. Subsequently, the attention mecha-
nism has been applied into various other natu-
ral language processing tasks including parsing
(Vinyals et al., 2015; Kuncoro et al., 2016; Liu
and Zhang, 2017), document classification (Yang
et al., 2016), question answering (He and Golub,
2016) and text understanding (Kadlec et al., 2016).

For sentiment analysis, the attention mechanism
has been applied to cross-lingual sentiment (Zhou

et al., 2016), aspect-level sentiment (Wang et al.,
2016) and user-oriented sentiment (Chen et al.,
2016). To our knowledge, we are the first to use
the attention mechanism to model sentences with
respect to targeted sentiments.

3 Models

We use a bidirectional LSTM to represent the in-
put word sequence w0, w1, ..., wn as hidden nodes
h0, h1, ..., hn:

[h0; ...;hn] = BILSTM([w0; ...;wn]),

where the target is denoted as ht, which is the
average of word embeddings in the target phrase
[ht0 ; ...;htm ]. We propose three variants of atten-
tion to model the relation between context words
and targets.

3.1 Vanilla Model
We build a vanilla attention model by calculating
a weighted value α over each word in sentences.
The final representation of the sentence s is then
given by1:

s = attention([h0; ...;hn], ht) =
n∑
i

αihi,

where

αi =
exp(βi)∑n
j exp(βj)

and the weight scores β are calculated by using
the target representation and the context word rep-
resentation,

βi = UT tanh(W1 · [hi;ht] + b1).

The sentence representation s is then used to pre-
dict the probability distribution p of sentiment la-
bels on the target by:

p = softmax(W2s+ b2).

We refer to this vanilla model as BILSTM-ATT.

3.2 Contextualized Attention
We make two extensions to the vanilla attention
method. The first is a contextualized attention
model (BILSTM-ATT-C), where the sentence is
divided into two segments with respect to the tar-
get, namely left context and right context (Vo and

1We only apply attention to non-target words.
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Zhang, 2015; Tang et al., 2016; Zhang et al.,
2016). Attention is applied on left and right con-
texts, respectively. In particular, the representation
of the left context is:

sl = attention([h0; ...;ht0−1], ht),

and the representation of the right context is:

sr = attention([htm+1; ...;hn], ht).

Together with the vanilla representation s, the dis-
tribution of sentiment labels is predicted by:

p = softmax(W1s+Wlsl +Wrsr + b1).

3.3 Contextualized Attention with Gates

A second extension is to add gates to control the
flow of context information (BILSTM-ATT-G).
This is motivated by the fact that sentiment sig-
nals can be dominated by the left context, the right
context or the entire sentence (Zhang et al., 2016).
The three gates, z, zl and zr, controlled by the tar-
get and the corresponding context, are used.

z ∝ exp(W1s+ U1ht + b1),
zl ∝ exp(W2sl + U2ht + b2),
zr ∝ exp(W3sr + U3ht + b3),

where z + zl + zr = ~1. The linear interpolation
among s, sl and sr is formulated as

s̃ = z � s+ zl � sl + zr � sr.

Then the probability distribution of sentiment la-
bels is predicted by:

p = softmax(W4s̃+ b4).

Training our models are trained to minimize
a cross-entropy loss object with a l2 regularization
term, defined by

L(θ) = −
∑

i

log pti +
λ

2
||θ||2,

where θ is the set of parameters, pt is the prob-
ability of the ith training example given by the
model and λ is a regularization hyper-parameter,
λ = 10−6. We use momentum stochastic gradi-
ent descent (Sutskever et al., 2013) with a learning
rate of η = 0.01 for optimization.

T-Dataset #target #positive #negative #neutral
training 6248 1561 1560 3127
test 692 173 173 346

Z-Dataset #target #positive #negative #neutral
training 9489 2416 2384 4689
development 1036 255 272 509
test 1170 294 295 581

Table 1: Experimental corpus statistics.

Parameters value
word dimension 200
LSTM hidden dimension 150
attention hidden dimension 100
dropout probability 0.5

Table 2: Hyper-parameter values.

4 Experiments

4.1 Data
We run experiments on two datasets, namely
the benchmark training/test dataset of Tang et
al. (2016) (T-Dataset) and the training/dev/test
dataset of Zhang et al. (2016) (Z-Dataset), which
consist of the MPQA corpus2 and Mitchell et al.
(2013)’s corpus3. Table 1 shows the corpus statis-
tics. Both dataset are three-way classification data.

4.2 Parameters & Metrics
The hyper-parameters are given in Table 24. We
use GloVe vectors (Pennington et al., 2014) with
200 dimensions as pre-trained word embeddings,
which are tuned during training. Two metrics are
used to evaluate model performance: the classi-
fication accuracy and macro F1-measure over the
three sentiment classes.

4.3 Development Experiments
We run three variants of targeted sentiment clas-
sification models on the development section of
Z-Dataset to investigate the effectiveness of atten-
tion mechanism. A simple BILSTM without at-
tention is deployed as our baseline. Table 3 shows
the development results. We find that BILSTM-C
gives a 0.6% accuracy improvement by differenti-
ating the left and right contexts. However, surpris-
ingly, BILSTM-G does not give much improve-
ment despite using gates to control the contexts.

2http://mpqa.cs.pitt.edu/corpora/mpqa corpus/
3http://www.m-mitchell.com/code/index.html
4The hyper-parameters are set following previous works

on twitter sentiment analysis.
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Model Accuracy Macro F1
BILSTM 74.0 71.6
BILSTM-C 74.6 71.4
BILSTM-G 74.3 71.7
BILSTM-ATT 75.1 72.8
BILSTM-ATT-C 75.8 73.3
BILSTM-ATT-G 76.3 74.6

Table 3: Development results (%).

T-testset Z-testset
Model Acc F1 Acc F1
Jiang et al. (2011) 63.4 63.3 / /
Dong et al. (2014) 66.3 65.9 / /
Vo and Zhang (2015) 71.1 69.9 69.6 65.6
Tang et al. (2016) 71.5 69.5 / /
Zhang et al. (2016) 72.0 70.9 71.9 69.6
BILSTM-ATT 72.4 70.5 73.5 70.6
BILSTM-ATT-C 72.5 70.9 74.1 71.3
BILSTM-ATT-G 73.6 72.1 75.0 72.3

Table 4: Final results (%).

This is different from the observation of Zhang et
al. (2016), who find that gate mechanism improves
accuracy without using attention. Finally, com-
pared to baseline models without attention, our
models give an average 1.2% accuracy improve-
ment and a 1.8% macro F1 improvement. Our fi-
nal model (BILSTM-ATT-G) gives a 2.3% accu-
racy significant improvement (p < 0.01 using t-
test) and a 3.0% macro F1 improvement over the
strongest baseline.

4.4 Final Results

We compare our models with previous work. The
final results are shown in Table 4. Our final mod-
els outperform both Zhang et al. (2016) and Tang
et al. (2016) by achieving 73.55% accuracy and
72.07% macro F1 on T-Dataset, and 75.04% ac-
curacy and 72.29% macro F1 on Z-Dataset, re-
spectively. Compared with Zhang et al. (2016),
our final models have significant improvements
(p < 0.05) on the Z-Dataset.

4.5 Analysis

We compare the performances of various models
against OOV rates. In particular, we split the test
sentences into two sets, where one contains sen-
tences that have no OOV and the other consist of
sentences which have at least one OOV. The re-
sults are shown in Figure 2. The BILSTM-ATT-G
performs the best, especially on OOV sentences,
which shows the robustness of the BILSTM-ATT-

non-OOV OOV
65
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80
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y
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)

BILSTM

BILSTM-ATT

BILSTM-ATT-C

BILSTM-ATT-G

Figure 2: Accuracy against OOV rates.

Model Positive Negative Neural
BILSTM 61.0 69.9 79.4
BILSTM-ATT 61.4 71.1 79.7
BILSTM-ATT-C 60.5 73.2 80.2
BILSTM-ATT-G 64.7 70.8 81.4

Table 5: F1 scores (%) of each distinct polarity.

G.

We compare the performances of various mod-
els on each distinct polarity. The results are shown
in Figure 5. Interestingly, compared to BILSTM-
ATT without contextualized attention, BILSTM-
ATT-C loses accuracies on positive (-1.1%). How-
ever, BILSTM-ATT-G gives large improvements
on positive (+4.2%) and neutral (+1.2%) targets
but loses accuracy on negative (-2.4%). Overall,
both BILSTM-ATT-C and BILSTM-ATT-G out-
perform BILSTM-ATT on neural cases, which ac-
count for 50% of all targets.

4.6 Examples

Figure 3 demonstrates the lexical weights given by
BILSTM-ATT-G. The contribution of each word is
visualized by the grey level, where high grey level
means high contribution. The examples of Fig-
ure 3(a), Figure 3(b) and Figure 3(d) are consis-
tent with the institution. The words “most”, “fa-
mous”, “history”, “XD” lead to a positive label,
while the word “damn” leads to a negative label.
In Figure 3(c), although “haha” could be a posi-
tive word, here the sentimental class of the target is
neutral. This can be explained by the fact that the
word “haha” shows the happiness of the speaker
instead of the target “Nicolas Cage”. Figure 3(d)
shows one example long sentence, where the left
context dominates the sentiment. Applying atten-
tion mechanism into left and right context of the
target is meaningful and beneficial.
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Chang & [Eng bunker] the most famous conjoined twins in history

(a) Positive

Tonoght [-user-] will be singing in my dream XD

(b) Positive

haha [nicolas cage] , can’t do an italian accent , but man , he’s not a bad singer .... haha

(c) Neutral

I’m becoming like [martha stewart] all this damn cooking .... well if … be healthy it … yourself

(d) Negative

Figure 3: Attention visualization, where bold
phrases are targets.

5 Conclusion

Prior work on targeted sentiment analysis in-
vestigates sentence representation that are target-
specific but do not explicitly model the contribu-
tion of each word towards targeted sentiment. We
investigated various attentional neural networks
for targeted sentiment classification. Experiments
demonstrated that attention over words is highly
useful for targeted sentiment analysis. Our model
gives the best reported results on two different
benchmarks.
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Abstract

We describe EMOBANK, a corpus of 10k
English sentences balancing multiple gen-
res, which we annotated with dimensional
emotion metadata in the Valence-Arousal-
Dominance (VAD) representation format.
EMOBANK excels with a bi-perspectival
and bi-representational design. On the one
hand, we distinguish between writer’s and
reader’s emotions, on the other hand, a
subset of the corpus complements dimen-
sional VAD annotations with categorical
ones based on Basic Emotions. We find ev-
idence for the supremacy of the reader’s
perspective in terms of IAA and rating in-
tensity, and achieve close-to-human per-
formance when mapping between dimen-
sional and categorical formats.

1 Introduction

In the past years, the analysis of affective lan-
guage has become one of the most productive and
vivid areas in computational linguistics. In the
early days, the prediction of the semantic polar-
ity (positiveness or negativeness) was in the center
of interest, but in the meantime, research activities
shifted towards a more fine-grained modeling of
sentiment. This includes the extension from only
two to multiple polarity classes or even real-valued
scores (Strapparava and Mihalcea, 2007), the ag-
gregation of multiple aspects of an opinion item
into a composite opinion statement for the whole
item (Schouten and Frasincar, 2016), and senti-
ment compositionality (Socher et al., 2013).

Yet, two important features of fine-grained
modeling still lack appropriate resources, namely
shifting towards psychologically more adequate
models of emotion (Strapparava, 2016) and dis-
tinguishing between writer’s vs. reader’s perspec-

tive on emotion ascription (Calvo and Mac Kim,
2013). We close both gaps with EMOBANK,
the first large-scale text corpus which builds on
the Valence-Arousal-Dominance model of emo-
tion, an approach that has only recently gained
increasing popularity within sentiment analysis.
EMOBANK not only excels with a genre-balanced
selection of sentences, but is based on a bi-
perspectival annotation strategy (distinguishing
the emotions of writers and readers), and includes
a bi-representationally annotated subset (which
has previously been annotated with Ekman’s Ba-
sic Emotions) so that mappings between both rep-
resentation formats can be performed. EMOBANK

is freely available for academic purposes.1

2 Related Work

Models of emotion are commonly subdivided into
categorical and dimensional ones, both in psy-
chology and natural language processing (NLP).
Dimensional models consider affective states to
be best described relative to a small number of
independent emotional dimensions (often two or
three): Valence (corresponding to the concept of
polarity), Arousal (degree of calmness or excite-
ment), and Dominance2 (perceived degree of con-
trol over a situation); the VAD model. Formally,
the VAD dimensions span a three-dimensional
real-valued vector space as illustrated in Figure 1.
Alternatively, categorical models, such as the six
Basic Emotions by Ekman (1992) or the Wheel of
Emotion by Plutchik (1980), conceptualize emo-
tions as discrete states.3

In contrast to categorical models which were
used early on in NLP (Ovesdotter Alm et al., 2005;
Strapparava and Mihalcea, 2007), dimensional

1https://github.com/JULIELab/EmoBank
2This dimension is sometimes omitted (the VA model).
3Both dimensional and categorical formats allow for nu-

merical scores regarding their dimensions/categories.
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Figure 1: The affective space spanned by the three
VAD dimensions. As an example, we here include
the positions of Ekman’s six Basic Emotions as
determined by Russell and Mehrabian (1977).

models have only recently received increased at-
tention in tasks such as word and document emo-
tion prediction (see, e.g., Yu et al. (2015), Köper
and Schulte im Walde (2016), Wang et al. (2016),
Buechel and Hahn (2016)).

In spite of this shift in modeling focus, VA(D)-
annotated corpora are surprisingly rare in number
and small in size, and also tend to be restricted
in reliability. ANET, for instance, comprises only
120 sentences designed for psychological research
(Bradley and Lang, 2007), while Preoţiuc-Pietro et
al. (2016) created a corpus of 2,895 English Face-
book posts relying on only two annotators. Yu
et al. (2016) recently presented a corpus of 2,009
Chinese sentences from various online texts.

As far as categorical models for emotion anal-
ysis are concerned, many studies use incompati-
ble subsets of category systems, which limits their
comparability (Buechel and Hahn, 2016; Calvo
and Mac Kim, 2013). This also reflects the sit-
uation in psychology where there is still no con-
sensus on a set of fundamental emotions (Sander
and Scherer, 2009). Here, the VAD model has
a major advantage: Since the dimensions are de-
signed as being independent, results remain com-
parable dimension-wise even in the absence of
others (e.g., Dominance). Furthermore, dimen-
sional models are the predominant format for lexi-
cal affective resources in behavioral psychology as
evident from the huge number of datasets available
for a wide range of languages (see, e.g., Warriner
et al. (2013), Stadthagen-Gonzalez et al. (2016),
Moors et al. (2013) and Schmidtke et al. (2014)).

For the acquisition of VAD values from par-
ticipant’s self-perception, the Self-Assessment
Manikin (SAM; Lang (1980), Bradley and Lang
(1994)) has turned out as the most important and

(to our knowledge) only standardized instrument
(Sander and Scherer, 2009). SAM iconically dis-
plays differences in Valence, Arousal and Domi-
nance by a set of anthropomorphic cartoons on a
multi-point scale (see Figure 2).

While it is common for more basic sentiment
analysis systems in NLP to map the many differ-
ent possible interpretations of a sentence’s affec-
tive meaning into a single assessment (“its senti-
ment”), there is an increasing interest in a more
fine-grained approach where emotion expressed
by writers is modeled separately from emotion
evoked in readers. An utterance like “Italy de-
feats France in the World Cup Final” may be com-
pletely neutral from the writer’s viewpoint (pre-
sumably a professional journalist), but is likely
to evoke rather adverse emotions in Italian and
French readers (Katz et al., 2007).

In this line of work, Tang and Chen (2012) ex-
amine the relation between the sentiment of mi-
croblog posts and the sentiment of their com-
ments (as a proxy for reader emotion). Liu et al.
(2013) model the emotion of a news reader jointly
with the emotion of a comment writer using a co-
training approach. This contribution was followed
up by Li et al. (2016) who propose a two-view la-
bel propagation approach instead. However, to our
knowledge, only Mohammad and Turney (2013)
investigated the effects of these perspectives on
annotation quality, finding differences in inter-
annotator agreement (IAA) relative to the exact
phrasing of the annotation task.

In a similar vein to the writer-reader distinc-
tion, identifying the holder or source of an opin-
ion or sentiment also aims at describing the affec-
tive information entailed in a sentence in more de-
tail (Wiebe et al., 2005; Seki et al., 2009). Thus,
opinion statements that can directly be attributed
to the writer can be distinguished from references
to other’s opinions. A related task, the detec-
tion of stance, focuses on inferring the writer’s
(dis)approval towards a given issue from a piece
of text (Sobhani et al., 2016).

3 Corpus Design and Creation

The following criteria guided the data selection
process of the EMOBANK corpus: First, com-
plementing existing resources which focus on so-
cial media and/or review-style language (Yu et al.,
2016; Quan and Ren, 2009), we decided to address
several genres and domains of general English.
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Corpus Domain Raw Filtered
SE07 news headlines 1,250 1,192

MASC

blogs 1,378 1,336
essays 1,196 1,135
fiction 2,893 2,753
letters 1,479 1,413
newspapers 1,381 1,314
travel guides 971 919

Sum 10,548 10,062

Table 1: Genre distribution of the raw and filtered
EMOBANK corpus.

Second, we conducted a pilot study on two sam-
ples (one consisting of movie reviews, the other
pulled from a genre-balanced corpus) to compare
the IAA resulting from different annotation per-
spectives (e.g., the writer’s and the reader’s per-
spective) in different domains (see Buechel and
Hahn (2017) for details). Since we found differ-
ences in IAA but the results remained inconclu-
sive, we decided to annotate the whole corpus bi-
perspectivally, i.e., each sentence was rated ac-
cording to both the (perceived) writer and reader
emotion (henceforth, WRITER and READER).

Third, since many problems of comparing emo-
tion analysis studies result from the diversity of
emotion representation schemes (see Section 2),
the ability to accurately map between such alterna-
tives would greatly improve comparability across
systems and boost the reusability of resources.
Therefore, at least parts of our corpus should be
annotated bi-representationally as well, comple-
menting dimensional VAD ratings with annota-
tions according to a categorical emotion model.

Following these criteria, we composed our cor-
pus out of several categories of the Manually
Annotated Sub-Corpus of the American National
Corpus (MASC; Ide et al. (2008), Ide et al. (2010))
and the corpus of SemEval-2007 Task 14 Affective
Text (SE07; Strapparava and Mihalcea (2007)).
MASC is already annotated on various linguistic
levels. Hence, our work will allow for research
at the intersection of emotion and other language
phenomena. SE07, on the other hand, bears anno-
tations according to Ekman’s six Basic Emotion
(see Section 2) on a [0, 100] scale, respectively.
This collection of raw data comprises 10,548 sen-
tences (see Table 1).

Given this large volume of data, we opted for
a crowdsourcing approach to annotation. We
chose CROWDFLOWER (CF) over AMAZON ME-
CHANICAL TURK (AMT) for its quality control
mechanisms and accessibility (customers of AMT,
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Manikin (SAM) scales for Valence, Arousal and
Dominance (row-wise). Copyright of the original
SAM by Peter J. Lang 1994.

but not CF, must be US-based). CF’s main qual-
ity control mechanism rests on gold questions,
items for which the acceptable ratings have been
previously determined by the customer. These
questions are inserted into a task to restrict the
workers to those performing trustworthily. We
chose these gold items by automatically extracting
highly emotional sentences from our raw data ac-
cording to JEMAS4, a lexicon-based tool for VAD
prediction (Buechel and Hahn, 2016). The ac-
ceptable ratings were determined based on manual
annotations by three students trained in linguis-
tics. The process was individually performed for
WRITER and READER with different annotators.

For each of the two perspectives, we launched
an independent task on CF. The instructions were
based on those by Bradley and Lang (1999) to
whom most of the VAD resources developed in
psychology refer (see Section 2). We changed the
9-point SAM scales to 5-point scales (see Figure
2) in order to reduce the cognitive load during de-
cision making for crowdworkers. For the writer’s
perspective, we presented a number of linguis-
tic clues supporting the annotators in their rating
decisions, while, for the reader’s perspective, we
asked what emotion would be evoked in an aver-
age reader (rather than asking for the rater’s per-
sonal feelings). Both adjustments were made to
establish more objective criteria for the exclusion
of untrustworthy workers. We provide the instruc-
tions along with our dataset.

For each sentence, five annotators generated
VAD ratings. Thus, a total of 30 ratings were gath-
ered per sentence (five ratings for each of the three
VAD dimensions and two annotation perspectives,
WRITER and READER). Ten sentences were pre-
sented at a time. The task was available for work-

4https://github.com/JULIELab/JEmAS
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ers located in the UK, the US, Ireland, Canada,
Australia or New Zealand. The total annotation
costs amounted to $1,578.

Upon inspection of the individual judgments,
we found that the VAD rating (1, 1, 1) was heav-
ily overrepresented. We interpret this skewed cod-
ing distribution as a bias mainly due fraudulent re-
sponses since, from a psychological view, this rat-
ing is highly improbable (Warriner et al., 2013).
Accordingly, we decided to remove all of these
ratings (about 10% for each of the tasks; the ‘Fil-
tered’ condition in Table 1) because these annota-
tions would have inserted a systematic bias into
our data which we consider more harmful than
erroneously removing a few honest outliers. For
each sentence with two or more remaining judg-
ments, its final emotion annotation is determined
by averaging these valid ratings leading to a total
of 10,062 sentences bearing VAD values for both
perspectives (see Table 1).

This makes EMOBANK to the best of our
knowledge by far the largest corpus for dimen-
sional emotion models and, with the exception of
the dataset by Quan and Ren (2009) (which is
problematic in having only one annotator per sen-
tence), the largest gold standard for any emotion
format (both dimensional and categorical). Even
compared with polarity corpora it is still reason-
ably large (e.g., similar in size to the Stanford Sen-
timent Treebank (Socher et al., 2013)).

4 Analysis and Results

For continuous, real-valued numbers, well-known
metrics for IAA, such as Cohen’s κ or F-score,
are inappropriate as these are designed for nom-
inally scaled variables. Instead, Pearson’s correla-
tion coefficient (r) or Mean Absolute Error (MAE)
are often applied for this setting (Strapparava and
Mihalcea, 2007; Yu et al., 2016). Accordingly, for
each annotator, we compute r and MAE between
their own and the aggregated EMOBANK annota-
tion and average these values for each VAD di-
mension. This results in one IAA value per metric
(r or MAE), perspective and dimension (Table 2).

As average over the VAD dimensions, we
achieve a satisfying IAA of r > .6 for both per-
spectives. The READER results in significantly
higher correlation,5 but also higher error than

5Note that using this set-up, obtaining statistical signifi-
cance is very rare, since the number of cases is based on the
number of raters.

Valence Arousal Dominance Av.
rwriter 0.698 0.578 0.540 0.605
rreader 0.738 0.595 0.570 0.634

MAEwriter 0.300 0.388 0.316 0.335
MAEreader 0.349 0.441 0.367 0.386

Table 2: IAA for the three VAD dimensions.

WRITER (p < .05 for Valence in r and for all di-
mensions in MAE using a two-tailed t-test).

Prior work found that a large portion of lan-
guage may actually be neutral in terms of emo-
tion (Ovesdotter Alm et al., 2005). However, a too
narrow rating distribution (i.e., most of the ratings
being rather neutral relative to the three VAD di-
mensions) may be a disadvantageous property for
training data. Therefore, we regard the emotional-
ity of ratings as another quality criterion for emo-
tion annotation complementary to IAA.

We capture this notion as the absolute difference
of a sentence’s aggregated rating from the neutral
rating (3, in our case), averaged over all VAD di-
mensions. Comparing the average emotionality of
all sentences between WRITER and READER, we
find that the latter perspective also excels with sig-
nificantly higher emotionality than the WRITER

(p < .001; two-tailed t-test).
These beneficial characteristics of the READER

perspective (better correlation-based IAA and
emotionality) contrast with its worse error-based
IAA. Thus, we decided to examine the relationship
between error and emotionality between the two
perspectives more closely: Let V,A,D be three
m×n-matrices where m corresponds to the num-
ber of sentences and n to the number of annotators
so that the three matrices yield all the individual
ratings for Valence, Arousal and Dominance, re-
spectively. Then we define the sentence-wise error
for sentence i (SWEi) as

SWEi :=
1
3

∑
X∈{V,A,D}

1
n

n∑
j=1

|Xi −Xij | (1)

where Xi := 1
n

∑n
j=1Xij . We compute SWE val-

ues for reader and writer perspective individually.
We can now examine the dependency between er-
ror and emotionality by subtracting, for each sen-
tence, SWE and emotionality for both perspectives
from another (resulting in one difference in error
and one difference in emotionality value).

Our data reveal a strong correlation (r = .718)
between these data series, so that the more the rat-
ings for a sentence differ in emotionality (compar-
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Figure 3: Differences in emotionality and differ-
ences in error between WRITER and READER,
each sentence corresponding to one data point; re-
gression line depicted in red.

ing between the perspectives), the more they dif-
fer in error as well. Running linear regression on
these two data rows, we find that the regression
line runs straight through the origin (intercept is
not significantly different from 0; p = .992; see
Figure 3). This means that without difference in
emotionality, WRITER and READER rating for a
sentence do, on average, not differ in error. Hence,
our data strongly suggest that READER is the su-
perior perspective yielding better inter-annotator
correlation and emotionality without overpropor-
tionally increasing inter-annotator error.

5 Mapping between Emotion Formats

Making use of the bi-representational subset of
our corpus (SE07), we now examine the feasibil-
ity of automatically mapping between dimensional
and categorical models. For each Basic Emotion
category, we train one k Nearest Neighbor model
given all VAD values of either WRITER, READER

or both combined as features. Training and hyper-
parameter selection was performed using 10-fold
cross-validation.

Comparing the correlation between our models’
predictions and the actual annotations (in categor-
ical format) with the IAA as reported by Strap-
parava and Mihalcea (2007), we find that this ap-
proach already comes close to human performance
(see Table 3). Once again, READER turns out to be
superior in terms of the achieved mapping perfor-
mance compared to WRITER. However, both per-
spectives combined yield even better results. In
this case, our models’ correlation with the actual
SE07 rating is as good as or even better than the
average human agreement. Note that the SE07 rat-
ings are in turn based on averaged human judg-
ments. Also, the human IAA differs a lot between

Joy Ang Sad Fea Dsg Srp Av.
IAA .60 .50 .68 .64 .45 .36 .54
W .68 .40 .67 .47 .27 .15 .44
R .73 .47 .68 .54 .36 .15 .49
WR .78 .50 .74 .56 .36 .17 .52
DW +.08 –.10 –.01 –.17 –.17 –.21 –.09
DR +.13 –.03 +.00 –.10 –.09 –.22 –.05
DWR +.18 +.00 +.05 –.08 –.09 –.19 –.02

Table 3: IAA by Strapparava and Mihalcea (2007)
compared to mapping performance of KNN mod-
els using writer’s, reader’s or both’s VAD scores
as features (W, R and WR, respectively), both in
Pearson’s r. Bottom section: difference of respec-
tive model performance (W, R and WR) and IAA.

the Basic Emotions and is even r < .5 for Dis-
gust and Surprise. For the four categories with
a reasonable IAA, Joy, Anger, Sadness and Fear,
our best models, on average, actually outperform
human agreement. Thus, our data shows that au-
tomatically mapping between representation for-
mats is feasible at a performance level on par with
or even surpassing human annotation capability.
This finding suggests that, for a dataset with high-
quality annotations for one emotion format, auto-
matic mappings to another format may be just as
good as creating these new annotations by manual
rating.

6 Conclusion

We described the creation of EMOBANK, the
first large-scale corpus employing the dimensional
VAD model of emotion and one of the largest gold
standards for any emotion format. This genre-
balanced corpus is also unique for having two
kinds of double annotations. First, we annotated
for both writer and reader emotion; second, for a
subset of the EMOBANK, ratings for categorical
Basic Emotions as well as VAD dimensions are
now available. The statistical analysis of our cor-
pus revealed that the reader perspective yields both
better IAA values and more emotional ratings. For
the bi-representationally annotated subcorpus, we
showed that an automatic mapping between cat-
egorical and dimensional formats is feasible with
near-human performance using standard machine
leraning techniques.
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Abstract

We introduce a tree-structured attention
neural network for sentences and small
phrases and apply it to the problem of sen-
timent classification. Our model expands
the current recursive models by incor-
porating structural information around a
node of a syntactic tree using both bottom-
up and top-down information propagation.
Also, the model utilizes structural atten-
tion to identify the most salient represen-
tations during the construction of the syn-
tactic tree. To our knowledge, the pro-
posed models achieve state of the art per-
formance on the Stanford Sentiment Tree-
bank dataset.

1 Introduction

Sentiment analysis deals with the assessment
of opinions, speculations, and emotions in text
(Zhang et al., 2012; Pang and Lee, 2008). It is
a relatively recent research area that has attracted
great interest as demonstrated by a series of shared
evaluation tasks, e.g., analysis of tweets (Nakov
et al., 2016). In (Turney and Littman, 2002),
the affective ratings of unknown words were pre-
dicted utilizing the affective ratings of a small set
of words (seeds) and the semantic relatedness be-
tween the unknown and the seed words. An ex-
ample of sentence-level analysis was proposed in
(Malandrakis et al., 2013). Other application areas
include the detection of public opinion and predic-
tion of election results (Singhal et al., 2015), cor-
relation of mood states and stock market indices
(Bollen et al., 2011).

Recently, Recurrent Neural Network (RNN)
with Long-Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) or Gated Recur-
rent Units (GRU) (Chung et al., 2014) have been

applied to various Natural Language Processing
tasks. Tree structured neural networks, which
are found in literature as Recursive Neural Net-
works, hold a linguistic interest due to their close
relation to syntactic structures of sentences being
able to capture distributed information of structure
such as logical terms(Socher et al., 2012). These
syntactic structures are N-ary trees which repre-
sent either the underlying structure of a sentence,
known as constituency trees or the relations be-
tween words known as dependency trees.

This paper focuses on sentence-level sentiment
classification of movie reviews using syntactic
parse trees as input for the proposed networks. In
order to solve the task of sentiment analysis of
sentences, we work upon a variant of Recursive
Neural Networks which recursively create repre-
sentation following the syntactic structure. The
proposed computation model exploits information
from subnodes as well as parent nodes of the node
under examination. This neural network is re-
ferred to as Bidirectional Recursive Network (Ir-
soy and Cardie, 2013). The model is further en-
hanced with memory units and the proposed struc-
tural attention mechanism. It is observed that dif-
ferent nodes of a tree structure hold information
of variable saliency. Not all nodes of a tree are
equally informative, so the proposed model se-
lectively weights the contribution of each node
regarding the sentence level representation using
structural attention model.

We evaluate our approach on the sentence-level
sentiment classification task using one standard
movie review dataset (Socher et al., 2013). Ex-
perimental results show that the proposed model
outperforms the state-of-the art methods.
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2 Tree-Structured GRUs

Recursive GRUs (TreeGRU) upon tree structures
are an extension of the sequential GRUs that allow
information to propagate through network topolo-
gies. Similar to Recursive LSTM network on tree
structures (Tai et al., 2015), for every node of a
tree, the TreeGRU has gating mechanisms that
modulate the flow of information inside the unit
without the need of a separate memory cell. The
activation hj of TreeGRU for node j is the inter-
polation of the previous calculated activation hjk
of its kth child out ofN total children and the can-
didate activation h̃j .

hj = zj ∗
N∑
k=1

hjk + (1− zj) ∗ h̃j (1)

where zj is the update function which decide the
degree of update that will occur on the activation
based on the input vector xj and previously calcu-
lated representation hjk :

zj = σ(Uz ∗ xj +
N∑
k=1

W i
z ∗ hjk) (2)

The candidate activation h̃j for a node j is com-
puted similarly to that of a Recursive Neural Net-
work as in (Socher et al., 2011):

h̃j = f(Uh ∗ xj +
N∑
k=1

W k
h ∗ (hjk ∗ rj)) (3)

where rj is the reset gate which allows the net-
work to forget effectively previous computed rep-
resentations when the value is close to 0 and it is
computed as follows:

rj = σ(Ur ∗ xj +
N∑
k=1

W k
r ∗ hjk) (4)

Every part of a gated recurrent unit
xj , hj , rj , zj , h̃j ∈ Rd where d is the input
vector dimensionality. σ is the sigmoid function
and f is the non-linear tanh function.The set of
matrices W k, U ∈ Rdxd used in 2 - 4 are the
trainable weight parameters which connect the
kth children node representation with the jth
node representation and the input vector xj .

2.1 Bidirectional TreeGRU

A natural extension of Tree-Structure GRU is the
addition of a bidirectional approach. TreeGRUs
calculate an activation for node j with the use of
previously computed activations lying lower in
the tree structure. The bidirectional approach for
a tree structure uses information both from under
and lower nodes of the tree for a particular node
j. In this manner, a newly calculated activation
incorporates content from both the children and
the parent of a particular node.
The bidirectional neural network can be trained in
two seperate phases: i) the Upward phase and ii)
the Downward phase. During the Upward phase,
the network topology is similar to the topology of
a TreeGRU, every activation is calculated based
on the previously calculated activations which are
found lower on the structure in a bottom up fash-
ion. When every activation has been computed,
from leaves to root, then the root activation is used
as input of the Downward phase. The Downward
phase calculates the activations for every child
of a node using content from the parent in a top
down fashion. The process of computing the
internal representations between the two phases is
separated, so in a first pass the network compute
the upward activation and after this is completed,
then the downward representations are computed.
The upward activation h↑j similarly to TreeGRU
for node j is the interpolation of the previ-
ous calculated activation h↑jk of its kth child out

of N total children and the candidate activation h̃↑j .

h↑j = z↑j ∗
N∑
k=1

h↑jk + (1− z↑j ) ∗ h̃↑j (5)

The update gate, rest gate and candidate activa-
tion are computed as follows:

z↑j = σ(Uz ∗ x↑j +
N∑
k=1

W k
z ∗ h↑jk) (6)

r↑j = σ(Ur ∗ x↑j +
N∑
k=1

W k
r ∗ h↑jk) (7)

h̃↑j = f(Uh ∗ x↑j +
N∑
k=1

W k
r ∗ (h↑jk ∗ r↑j )) (8)
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Figure 1: A tree-structured bidirectional neural
network with Gated Recurrent Units. The input
vectors x are given to the model in order to gener-
ate the phrase representations y↑ and y↓.

The downward activation h↑j for node j is the
interpolation of the previous calculated activation
h↑p(j), where the function p calculates the index of

the parent node, and the candidate activation h̃↓j .

h↓j = z↓j ∗ h↓p(j) + (1− z↓j ) ∗ h̃↓j (9)

The update gate, reset gate and candidate activa-
tion for the downward phase are computed as fol-
lows:

z↓j = σ(Udz ∗ h↑j +W d
z ∗ h↓p(j)) (10)

r↓j = σ(Udr ∗ h↑j +W d
r ∗ h↓p(j)) (11)

h̃↓j = f(Udh ∗ h↑j +W d
h ∗ (h↓p(j) ∗ r↓j )) (12)

During downward phase, matrix Ud ∈ Rdxd

connects the upward representation of node j with
the respective jth downward node while W d ∈
Rdxd connect the parent representation p(j).

2.2 Structural Attention
We introduce Structural Attention, a generaliza-
tion of sequential attention model (Luong et al.,
2015) which extracts informative nodes out of a
syntactic tree and aggregates the representation of
those nodes in order to form the sentence vec-
tor. We feed representation hj of node through a
one-layer Multilayer Perceptron with Ww ∈ Rdxd

weight matrix to get the hidden representation uj .

uj = tanh(Ww ∗ hj) (13)

Using the softmax function, the weights aj for
each node are obtained based on the similarity
of the hidden representation uj and a global con-
text vetor uw ∈ Rd. The normalized weights aj

are used to form the final sentence representation
s ∈ Rd which is a weighted summation of every
node representation hj .

aj =
u>j ∗ uw∑N
i=1 u

>
i ∗ uw

(14)

s =
N∑
i=1

aihi (15)

The proposed attention model is applied on struc-
tural content since all node representations contain
syntactic structural information during training be-
cause of the recursive nature of the network topol-
ogy.

3 Experiments

We evaluate the performance of the aforemen-
tioned models on the task of sentiment classifi-
cation of sentences sampled from movie reviews.
We use the Stanford Sentiment Treebank (Socher
et al., 2013) dataset which contains sentiment la-
bels for every syntactically plausible phrase out of
the 8544/1101/2210 train/dev/test sentences. Each
phrase is labeled with respect to a 5-class sen-
timent value, i.e. very negative, negative, neu-
tral, positive, very positive. The dataset can also
be used for a binary classification subtask by ex-
cluding any neutral phrases for the original splits.
The binary classification subtask is evaluated on
6920/872/1821 train/dev/test splits.

3.1 Sentiment Classification
For all of the aforementioned architectures at each
node j we use a softmax classifier to predict the
sentiment label ŷj . For example, the predicted la-
bel ŷj corresponds to the sentiment class of the
spanned phrase produced from node j. The classi-
fier for unidirectional TreeGRU architectures uses
the hidden state hj produced from recursive com-
putations till node j using a set xj of input nodes
to predict the label as follows:

p̂θ(y|xj) = softmax(Ws ∗ hj) (16)

where Ws ∈ Rdxc and c is the number of senti-
ment classes.

The classifier for bidirectional TreeBiGRU ar-
chitectures uses both the hidden state h↑j and h↓j
produced from recursive computations till node j
during Upward and Downward Phase using a set
xj of input nodes to predict the label as follows:

p̂θ(y|xj) = softmax(W ↑s ∗h↑j +W ↓s ∗h↓j ) (17)
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where W ↑s ,W ↓s ∈ Rdxc and c is the number of
sentiment classes. The predicted label ŷj is the
argument with the maximum confidence:

ŷj = argmax
y

(p̂θ(y|xj)) (18)

For the Structural Attention models, we use for the
final sentence representation s to predict the sen-
timent label ŷj where j is the corresponding root
node of a sentence. The cost function used is the
negative log-likelihood of the ground-truth label
yk at each node:

E(θ) =
m∑
k=1

p̂θ(yk|xk) +
λ

2
||θ||2 (19)

where m is the number of labels in a training sam-
ple and λ is the L2 regularization hyperparameter.

Network Variant d |θ|
TreeGRU
-without attention 300 7323005
-with attention 300 7413605
TreeBiGRU
-without attention 300 8135405
-with attention 300 8317810

Table 1: Memory dimensions d and total network
parameters |θ| for every network variant evaluated

3.2 Results
The evaluation results are presented in Table 2
in terms of accuracy, for several state-of-the-art
models proposed in the literature as well as for
the TreeGRU and TreeBiGRU models proposed
in this work. Among the approaches reported in
the literature, the highest accuracy is yielded by
DRNN and DMN for the binary scheme (88.6),
and by DMN for the fine-grained scheme (52.1).
We observe that the best performance is achieved
by TreeBiGRU with attention, for both binary
(89.5) and fine-grained (52.4) evaluation metrics,
exceeding any previously reported results. In ad-
dition, the attentional mechanism employed in the
proposed TreeGRU and TreeBiGRU models im-
prove the performance for both evaluation metrics.

4 Hyperparameters and Training Details

The evaluated models are trained using the Ada-
Grad (Duchi et al., 2010) algorithm using 0.01
learning rate and a minibatch of size 25 sentences.
L2-regularization is performed on the model pa-
rameters with a λ value 10−4. We use dropout

System Binary Fine-grained
RNN 82.4 43.2
MV-RNN 82.9 44.4
RNTN 85.4 45.7
PVec 87.8 48.7
TreeLSTM 88.0 51.0
DRNN 86.6 49.8
DCNN 86.8 48.5
CNN-multichannel 88.1 47.4
DMN 88.6 52.1
TreeGRU
- without attention 88.6 50.5
- with attention 89.0 51.0
TreeBiGRU
- without attention 88.5 51.3
- with attention 89.5 52.4

Table 2: Test Accuracies achieved on the Stanford
Sentiment Treebank dataset. RNN, MV-RNN and
RNTN (Socher et al., 2013). PVec: (Mikolov et
al., 2013). TreeLSTM (Tai et al., 2015). DRNN
(Irsoy and Cardie, 2013). DCNN (Kalchbrenner et
al., 2014).CNN-multichannel (Kim, 2014). DMN
(Kumar et al., 2015)

with probability 0.5 on both the input layer and
the softmax layer.
The word embeddings are initialized using the
public available Glove vectors with a 300 dimen-
sionality. The Glove vectors provide 95.5% cover-
age for the SST dataset. All initialized word vec-
tors are finetuned during the training process along
with every other parameter. Every matrix is ini-
tialized with the identity matrix multiplied by 0.5
except for the matrices of the softmax layer and
the attention layer which are randomly initialized
from the normal Gaussian distribution. Every bias
vectors is initialized with zeros.
The training process lasts for 40 epochs. During
training, we evaluate the network 4 times every
epoch and keep the parameters which give the best
root accuracy on the development dataset.

5 Conclusion

In this short paper, we propose an extension of
Recursive Neural Networks that incorporates a
bidirectional approach with gated memory units
as well as an attention model on structure level.
The proposed models were evaluated on both fine-
grained and binary sentiment classification tasks
on a sentence level. Our results indicate that both
the direction of the computation and the attention
on a structural level can enhance the performance
of neural networks on a sentiment analysis task.
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Abstract

Users often use social media to share their
interest in products. We propose to iden-
tify purchase stages from Twitter data fol-
lowing the AIDA model (Awareness, In-
terest, Desire, Action). In particular, we
define the task of classifying the purchase
stage of each tweet in a user’s tweet se-
quence. We introduce RCRNN, a Ranking
Convolutional Recurrent Neural Network
which computes tweet representations us-
ing convolution over word embeddings
and models a tweet sequence with gated
recurrent units. Also, we consider various
methods to cope with the imbalanced la-
bel distribution in our data and show that a
ranking layer outperforms class weights.

1 Introduction

As the use of social media grows, more users
are sharing interests or experiences with products,
and asking friends for information (Morris et al.,
2010). Thus, social media posts can contain in-
formation useful for marketing and customer re-
lationship management, including user behavior,
opinions, and purchase interest.

In this paper, we present a ranking-based, deep
learning approach to automatically identify stages
in a sales process following the well-known AIDA
(Awareness/Attention, Interest, Desire, and Ac-
tion) model (Lewis, 1903; Dukesmith, 1904; Rus-
sell, 1921). Since we are interested in purchases,
we define “Action” as buying a product. Knowl-
edge of a user’s purchase stage can help to per-
sonalize the type of advertisement a user is shown,
e.g., while a user with interest may be shown infor-
mation about product features by a manufacturer,

∗The work was performed during an internship at FX
Palo Alto Laboratory

Attention (A) i seem to always be debating another
iphone

Interest (I) Should I pre-order a Lumia 650 ?
I want a lowish end phone , but the
650 looks SO much nicer than the 550

Desire (D) So i guess it’s time to get an iPhone
Bought (B) JUST GOT THE NEW IPHONE 3s !!!

#textme #popular
Unhappiness (U) I hate my phone
No PS (N) Who else has an Apple Watch ?

Learned I can draw you little pictures
& notes from my watch

Table 1: Example tweets for the different purchase
stages (PS)

a user with the desire to purchase may be given
coupons for a particular store offering the prod-
uct of interest. In addition to automatically rec-
ognizing the traditional AIDA stages, we also add
a class with negative sentiment, namely unhappi-
ness of a user with a product.

Given a user’s tweet sequence, we define the
purchase stage identification task as automatically
determining for each tweet whether the user ex-
presses interest in, wants to buy, or has recently
bought a product, etc. Table 1 shows one ran-
domly picked example for each of the purchase
stages as well as for an artificial class ‘N’ which
we use for tweets not expressing a purchase stage.

We introduce RCRNN (ranking convolutional
recurrent neural network), a hierarchical neural
network that uses convolution to create a tweet
representation and recurrent hidden layers to rep-
resent a tweet sequence. We compare RCRNN
with other possible neural network (NN) architec-
tures and non-neural models.

A particular challenge of our dataset is class im-
balance: There are much more tweets expressing
none of the purchase stages than tweets express-
ing one of them. We investigate the use of a rank-
ing layer in our NN and compare it against class
weights for handling imbalanced data.
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To sum up, our contributions are as follows:
(1) We define the new task of purchase stage
identification from tweets. Our results show that
tweets do contain signals indicative of purchase
stages. (2) We propose RCRNN, a hierarchical
deep learning model to represent tweets and tweet
sequences. (3) We show that a ranking layer ap-
proach outperforms commonly used class weights
for training neural networks on imbalanced data.

2 Related Work

An increasing amount of research is focused on
social media with various classification goals. For
example, Twitter tweets have been used for the
prediction of movie revenues (Asur and Huber-
man, 2010) and stock prices (Kharratzadeh and
Coates, 2012; Bollen and Mao, 2011). Lassen
et al. (2014) predicted quarterly iPhone sales mo-
tivated by the AIDA model, but did not model
AIDA directly as we do in this paper.

More related to our task is classifying whether
a user has purchase intent. Vieira (2015) and Lo
et al. (2016) used features from e-commerce or
content discovery platforms to predict buying in-
tentions. Manually crafted linguistic and/or statis-
tical features have been used to predict potential
purchase intent from Quora and Yahoo! Answers
(Gupta et al., 2014), and to detect purchase intent
in product reviews (Ramanand et al., 2010). The
task of identifying purchase intent is related to our
task of identifying purchase stages, but does not
indicate a stage in making a purchase decision.
The posts in both Quora and Yahoo! Answers, by
their nature, tend to be posts by people seeking in-
formation, of which some are related to purchase
decisions. And the product reviews in Ramanand
et al. (2010) are more targeted towards the prod-
uct being reviewed. All three tend to be less noisy
than a user’s tweets due in part to a smaller pro-
portion of tangential text, such as “My brother hid
my phone”.

Works which use Twitter tweets as input largely
employ manually-crafted linguistic and statistical
features. Hollerit et al. (2013) trained different
classifiers on the words and part-of-speech tags of
tweets to detect whether a tweet contained “com-
mercial intent”, which includes intent to buy or
sell. Mahmud et al. (2016) also used manually-
crafted features to infer potential purchase or rec-
ommendation intentions from Twitter.

Recently, convolutional and recurrent neural

networks (CNN, RNN) have proven to be effective
for different text processing tasks, e.g., (Kalch-
brenner et al., 2014; Kim, 2014; Bahdanau et al.,
2015; Cho et al., 2014; Hermann et al., 2015).
They learn features automatically. Ding et al.
(2015) applied a CNN to identify consumption in-
tention from a single tweet. Korpusik et al. (2016)
employed a simple average of word embeddings
to model tweets and used a long short-term mem-
ory network for purchase prediction based on a
user’s tweet sequence. Both Ding et al. and Kor-
pusik et al. focused on a binary classification task,
rather than finer-grained multi-class AIDA pur-
chase stages our models identify. And both works
used a relatively balanced dataset, thus avoiding
the difficult but more realistic classification task
on strongly imbalanced data.

3 Task and Data

3.1 Purchase Stage Classification

Following the AIDA model (Lewis, 1903; Duke-
smith, 1904; Russell, 1921), we regard the follow-
ing purchase stages: Awareness (A), Interest (I),
Desire (D) and Action (’bought’ action in our case,
thus we use the abbreviation B). In addition, we
include a class with a negative sentiment: Unhap-
piness (U). We use this class for any expression of
unhappiness with a product, before or after buy-
ing it. Table 1 provides examples for the different
purchase stages. Although it is possible that a user
may express unhappiness and an AIDA stage si-
multaneously, this occurred in only 15 tweets out
of over 100k total. The task we focus on in this
paper is purchase stage classification, i.e. distin-
guishing the different purchase stages for individ-
ual tweets in a given tweet sequence.

3.2 Dataset Creation

Data Collection. For a dataset, we focus on
public Twitter tweets. Twitter data for purchase
prediction was also collected by Korpusik et al.
(2016). They used hand-crafted regular expres-
sions to identify tweets indicating that a user may
have bought or wanted a product. However, their
dataset was biased towards bought/want tweets
and their patterns covered only a subset of possible
bought/want phrases.

To create a more “real-world” set, we scraped
web sites for mobile phones, tablets and watches
available in 2016, collecting 98 model names. The
full product names and relatively distinct model
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names (e.g, ‘iPad’ but not ‘one’ as in HTC One)
formed queries to the Twitter search API. The
tweets were filtered for spam using the URL fea-
tures from (Benevenuto et al., 2010) and spam
words. User timelines for the remaining users
were collected and the users filtered for spammers
using all their tweets.

Annotation. Tweets containing at least one
product mention were labeled with the AIDB+U
purchase stages defined above, and those which
do not express one of these stages were annotated
with an artificial class ‘N’. Two annotators were
given examples of each of the AIDB+UN cate-
gories. They first individually labeled the tweets.
Cohen’s kappa between the annotators was 0.30.
For tweets that both annotators labeled with any
of AIDBU, Cohen’s kappa was 0.77. In a second
pass, the annotators discussed the tweets where
they disagreed and agreed on a final label.

Tweet Sequences. We regard all tweets from
one user as one sequence (temporally ordered).
However, if the temporal distance between two
successive tweets is more than two months, we
split them into two sequences. This maximum dis-
tance has been chosen heuristically after a manual
analysis of tweets and their time stamps.

Statistics. In total, we annotated 106,474
tweets from 3,000 users. After splitting the tweet
sequences (see above), we obtained 10,277 se-
quences. The class distribution is as follows: A:
0.23%, I: 0.65%, D: 1.11%, B: 0.90%, U: 0.50%,
N: 96.61% In our experiments, we only classify
IDB+UN because class ’A’ has very few samples.

4 Model

We propose to use a hierarchical NN (see Figure
1) for purchase stage identification. In our experi-
ments, we compare its components at the different
hierachy levels with alternative choices. Unlike
most previous work on purchase prediction, we do
not use hand-crafted features to avoid expensive
data preprocessing and manual feature design.

First, we represent each word by its embedding,
skipping unknown words. The embeddings have
been trained with word2vec (Mikolov et al., 2013)
on Twitter data (Godin et al., 2015).1

Next, we compute a tweet representation that
models word order. We apply convolutional fil-

1With the public Google News embeddings, we got con-
sistently worse results, probably because of the domain mis-
match and the higher number of out-of-vocabulary words.
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Figure 1: RCRNN: hierarchical neural network for
purchase stage identification

ters which are slid over the sentence. Afterwards,
3-max pooling (Kalchbrenner et al., 2014) extracts
the most relevant scores.

Finally, we feed the representations of tweets by
a user into a sequence model, i.e. a unidirectional
NN with gated recurrent units (GRU) (Cho et al.,
2014).2 Thus, the model can learn patterns across
tweets, such as “a user might first express interest
in a product before buying it but not vice versa”.

4.1 Dealing with Imbalanced Data

The dataset statistics show that the data is highly
imbalanced. Users talking about products are not
necessarily interested in buying them. Instead,
they might write about their experience or mention
that someone else has bought a product. To cope
with the imbalanced labels, we propose to use a
ranking layer. In our experiments, this approach
outperforms traditionally used class weights.

Class Weights. If the ground truth is a non-
artificial class, the error of the model is multiplied
by w > 1. With gradient descent, the param-
eter updates after a false negative prediction are
larger, penalizing the model more. The weight wi
for class i is proportional to the inverse class fre-
quency fi: wi ∝ 1

fi
. The weights are normalized

so that the weight for class ‘N’ is 1.
Ranking Loss. dos Santos et al. (2015) intro-

duced the following ranking loss function:

L = log
(
1 + exp(γ(m+ − sθ(x)y+))

)
+ log

(
1 + exp(γ(m− + sθ(x)c−))

) (1)

2We have also experimented with bidirectional GRUs but
observed that they performed worse. We assume that this
might change with more training data.
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sθ(x)y+ is the score for the correct label y+ and
sθ(x)c− is the score for the best competitive class
c−. m+ and m− are margins. The function aims
to give scores greater than m+ for the correct
class and scores smaller than m− for the incorrect
classes. The factor γ penalizes errors.3 The func-
tion is especially suited for artificial classes (like
our ‘N’ class) for which it might not be possible
to learn a specific pattern: If y+ = N , only the
second summand is evaluated. During test, ‘N’ is
only chosen if the scores for all other classes are
negative. This lets the model focus on the non-
artificial classes and is the reason why we investi-
gate this loss function in the context of data which
is imbalanced between AIDB+U and ‘N’.

5 Experiments and Results

Due to the high class imbalance in our dataset,
we use the macro F1 of the non-artificial classes
as our evaluation measure. We implement the
NNs with Theano (Theano Development Team,
2016) and the non-neural classifiers with scikit-
learn (Pedregosa et al., 2011).

For training the NNs, we use stochastic gra-
dient descent and shuffle the training data at the
beginning of each epoch. We apply AdaDelta
as the learning rate schedule (Zeiler, 2012). The
hyper-parameters (number of hidden units, num-
ber of convolutional filters, and convolutional filter
widths) are optimized on dev. We apply L2 regu-
larization with λ = 0.00001 and early-stopping on
the dev set. To avoid exploding gradients, we clip
the gradients at a threshold of t = 1.

5.1 Data Preprocessing
To preprocess the tweets, we apply the publicly
available scripts from Xu et al. (2016)4 which use
twokenize (Owoputi et al., 2013) for tokenization
and perform some basic cleaning steps, such as
replacing URLs with a special token or normal-
izing elongated words. Then, we split the data by
user into training, development (dev) and test sets
(80,10,10%). To reduce the class imbalance, we
randomly subsample ‘N’ tweets in the training set.
Table 2 provides statistics for the final dataset.

5.2 Experiments
Baseline Models. In addition to a random guess-
ing baseline, we use two non-neural baseline mod-

3We setm+ to 2.5 andm− to 0.5 as in (dos Santos et al.,
2015) but tune γ on dev.

4https://github.com/stevenxxiu/senti/tree/master/senti

train dev test
# tweets 16,715 2,371 2,312
# tweet sequences 3,938 559 546

la
be

ld
is

tr. # class I 496 74 89
# class D 864 173 145
# class B 721 129 112
# class U 393 80 61
# class N 14,241 1,915 1,905

Table 2: Dataset statistics after preprocessing

Model dev F1 test F1
Random Guessing 4.17 4.02
BOW SVM 43.03 43.97
BOW LR 40.25 42.32
RCRNN 51.65 51.39

Table 3: RCRNN vs. baseline models

els: A logistic regression classifier (LR) and a lin-
ear support vector machine (SVM). For both mod-
els, the tweets are represented by 1-gram, 2-gram
and 3-gram bag-of-word (BOW) vectors. Table 3
shows that the RCRNN clearly outperforms non-
neural models.

Impact of RCRNN Components. We first in-
vestigate CNN against two other methods for cal-
culating tweet representations (Table 4): (1) Av-
eraging word embeddings (Average) (Korpusik et
al., 2016; Le and Mikolov, 2014) and (2) a bidi-
rectional GRU with attention (GRU+att). For the
GRU, we use the equations provided in (Cho et
al., 2014). For each intermediate hidden layer xi
of the GRU, we calculate the attention weight αi
with a softmax layer:

αi =
exp(V Txi)∑
j exp(V Txj)

(2)

where V is a parameter of the model that is ini-
tialized randomly and learned during training. We
then use the weighted sum of all hidden layers as
the tweet representation.

GRU+att and CNN clearly outperform Average
which can neither take word order into account nor
focus on relevant words. Also, CNN outperforms
GRU+att.

Next, we show the positive impact of GRU as
a tweet sequence model by replacing it with mod-
els that do not use sequential information. In par-
ticular, we use a simple feed-forward (FF) model

Tweet representation model dev F1 test F1
Average 44.01 45.21
GRU+att 49.52 50.75
CNN (RCRNN) 51.65 51.39

Table 4: Impact of tweet representation model
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Tweet sequence model dev F1 test F1
FF, no hidden layer 49.64 45.15
FF + hidden layer 51.11 48.73
GRU (RCRNN) 51.65 51.39

Table 5: Impact of tweet sequence model

Loss function dev F1 test F1
CE 48.71 48.43
CE+weights 49.88 49.01
Ranking (RCRNN) 51.65 51.39

Table 6: Impact of ranking layer on RCRNN

(with and without a hidden layer) to predict the
output label given only the current tweet repre-
sentation calculated by a CNN. The results pro-
vided in Table 5 show that GRU outperforms the
FF models. Thus, there is cross-tweet information
which can be exploited for purchase stage predic-
tion.

Finally, we investigate ways of dealing with im-
balanced data: We replace the ranking layer of
RCRNN with a cross-entropy (CE) loss with and
without class weights (see Section 4.1). Table 6
shows that class weights improve CE but ranking
performs best.5 Adding class weights to the base-
line SVM improves the model to 46.27 on dev and
50.89 on test. The performance on dev and test
are both still worse than RCRNN. Thus, our ex-
periments do not confirm previous studies which
found that SVMs were superior to NNs on imbal-
anced data (Chawla et al., 2004).

To sum up, we observed that convolution pro-
vided the best tweet representation while a GRU
was helpful to model tweet sequences. Ranking
could best deal with class imbalance.

5.3 Analysis
Figure 2 shows the confusion matrix for RCRNN.
Apart from confusions with ‘N’ which most prob-
ably result from the class imbalance, the model
confuses neighboring labels, such as ‘I’ and ‘D’.
In total, over 90% of the confusions involve ‘N’.
This shows that the model is reasonably good at
distinguishing the purchase stages and that the
main difficulty is class imbalance. In future work,
we will extend the investigation of this topic.

6 Conclusion

We defined a purchase stage identification task
based on the AIDA model. We compared several

5This result is also consistent with Average and GRU+att
as tweet representation models

          hypo
ref

N I D B U

N 1853 16 19 19 27

I 52 31 6 0 0

D 61 8 75 1 0

B 44 2 5 60 1

U 37 0 2 0 22

Figure 2: Confusion matrix on test set

neural and non-neural models of tweets and tweet
sequences and observed the best performance us-
ing RCRNN, our ranking-based hierarchical net-
work which uses convolution to represent tweets
and gated recurrent units to model tweet se-
quences. Our results indicate that tweets in-
deed contain signals indicative of purchase stages
which can be captured by deep learning models.
Ranking was the most effective way to deal with
class imbalance.
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Abstract

In this paper, we present an improved
graph-based translation model which seg-
ments an input graph into node-induced
subgraphs by taking source context into
consideration. Translations are generated
by combining subgraph translations left-
to-right using beam search. Experiments
on Chinese–English and German–English
demonstrate that the context-aware segmen-
tation significantly improves the baseline
graph-based model.

1 Introduction

The well-known phrase-based statistical transla-
tion model (Koehn et al., 2003) extends the basic
translation units from single words to continuous
phrases to capture local phenomena. However, one
of its significant weaknesses is that it cannot learn
generalizations (Quirk et al., 2005; Galley and
Manning, 2010). To allow discontinuous phrases
(any subset of words of an input sentence), depen-
dency treelets (Menezes and Quirk, 2005; Quirk et
al., 2005; Xiong et al., 2007) can be used, which
are connected subgraphs on trees. However, con-
tinuous phrases which are not connected on trees
and thus excluded could in fact be extremely im-
portant to system performance (Koehn et al., 2003;
Hanneman and Lavie, 2009).

To make use of the merits of both phrase-based
models and treelet-based models, Li et al. (2016)
proposed a graph-based translation model as in
Equation (1):

p(tI1 | gI
1) =

I∏
i=1

p(ti|gai
)× d(gai

, gai−1
) (1)

where ti is a continuous target phrase which is
the translation of a node-induced and connected

source subgraph gai
.1 d is a distance-based re-

ordering function which penalizes discontinuous
phrases that have relatively long gaps (Galley and
Manning, 2010). The model translates an input
graph by segmenting it into subgraphs and gener-
ates a complete translation by combining subgraph
translations left-to-right. However, the model treats
different graph segmentations equally.

Therefore, in this paper we propose a context-
aware graph segmentation (Section 2): (i) we add
contextual information to each translation rule dur-
ing training (Section 2.2); (ii) during decoding,
when a rule is applied, the input context should
match with the rule context (Section 2.3). Ex-
periments (Section 3) on Chinese–English (ZH–
EN) and German–English (DE–EN) tasks show
that our method significantly improves the graph-
based model. As observed in our experiments, the
context-aware segmentation brings two benefits to
our system: (i) it helps to select a better subgraph
to translate; and (ii) it selects a better target phrase
for a subgraph.

2 Context-Aware Graph Segmentation
and Translation

Our model extends the graph-based translation
model by considering source context during seg-
menting input graphs, as in Equation (2):

p(tI1 | gI
1) =

I∏
i=1

p(ti | gai
, cai)

× d(gai
, gai−1

)

(2)

where cai denotes the context of the subgraph gai
,

which is represented as a set of connections (i.e.
edges) between gai

and [gai+1
, · · · , gaI

].

1All subgraphs in this paper are connected and node-
induced.
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2010Nian FIFA Shijiebei Zai Nanfei Chenggong Juxing

Figure 1: An example graph for a Chinese sentence.
Dotted lines are bigram relations. Solid lines are
dependency relations. Dashed lines are shared by
bigram and dependency relations.

2.1 Building Graphs

The graph used in this paper combines a sequence
and a dependency tree as in Li et al. (2016). Each
graph contains two kinds of links: dependency
links from dependency trees which model syntac-
tic and semantic relations between words, and bi-
gram links which provide local and sequential in-
formation on pairs of continuous words. Figure 1
shows an example graph. Given such graphs, we
can make use of both continuous and linguistically
informed discontinuous phrases as long as they are
connected on graphs. In this paper, we do not dis-
tinguish the two kinds of relations, because our
preliminary experiments showed no improvement
when considering edge types.

2.2 Training

During training, given a word-aligned graph–
string pair 〈g, t, a〉, we extract translation rules
〈gai

, cai , ti〉, each of which consists of a contin-
uous target phrase ti, a source subgraph gai aligned
to ti, and a source context cai . We first find initial
pairs. 〈s̃ai , ti〉 is an initial pair, iff it is consistent
with the word alignment a (Och and Ney, 2004).
s̃aj is a set of source words which are aligned to ti.
Then, the set of rules satisfies the following:

1. If 〈s̃ai , ti〉 is an initial pair and s̃ai is covered
by a subgraph gai

which is connected, then
〈gai

, ∗, ti〉 is a basic rule. cai = ∗ means that
a basic rule is applied without considering con-
text to make sure that at least one translation is
produced for any inputs during decoding. There-
fore, basic rules are the same as rules in the con-
ventional graph-based model. Rule (3) shows
an example of a basic rule:

2010Nian FIFA Shijiebei 2010 FIFA World Cup

(3)

2. Assume 〈gai
, ∗, ti〉 is a basic rule and

〈s̃ai+1 , ti+1〉 is an initial pair where ti+1 is on
the right of and adjacent to ti. If there are edges
between gai

and s̃ai+1 , then 〈gai
, cai , ti〉 is a

segmenting rule, where cai is the set of edges
between gai

and s̃ai+1 by treating s̃ai+1 as a
single node x. Rule (4) is an example of a seg-
menting rule:

2010Nian FIFA x 2010 FIFA
(4)

where dashed links are contextual connections.
During decoding, when the context matches,
rule (4) translates a subgraph over 2010Nian
FIFA into a target phrase 2010 FIFA. For exam-
ple, it can be applied to graph (5) where Shi-
jiebei Zai Nanfei (in the dashed rectangle) is
treated as x:

2010Nian FIFA Shijiebei Zai Nanfei
(5)

3. If there are no edges between gai
and s̃ai+1 , then

cai is equal to ∅ and 〈gai
, ∅, ti〉 is a translation

rule, called a selecting rule in this paper. Dur-
ing decoding, the untranslated input could be a
set of subgraphs which are disjoint with each
other. A selecting rule is used to select one of
them. For example, rule (6) can be applied to
(7) to translate 2010Nian FIFA to 2010 FIFA.
In this example, the x in rule (6) matches with
Chenggong Juxing (in the dashed rectangle) in
(7).

2010Nian FIFA x 2010 FIFA
(6)

2010Nian FIFA Chenggong Juxing
(7)

By comparing these three types of rules, we ob-
serve that both segmenting rules and selecting rules
are based on basic rules. They extend basic rules
by adding contextual information to their source
subgraphs so that basic rules are split into different
groups according to the context. During decoding,
the context will help to select target phrases as well.

Algorithm 1 illustrates a simple process for rule
extraction. Given a word-aligned graph–string pair,
we first extract all initial pairs (Line 1). Then, we
find basic rules from these pairs (Lines 3–4). Basic
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Algorithm 1: An algorithm for extracting trans-
lation rules from a graph–string pair.
Data: Word-aligned graph–string pair 〈g, t, a〉
Result: A set of translation rules R

1 find a set of initial pairs P ;
2 for each p = 〈sai , ti〉 in P do
3 if sj

i is connected then
// basic rules

4 add 〈gai
), ∗, ti〉 to R ;

// segmenting and selecting

rules

5 for q = 〈sai+1 , ti+1〉 in P do
6 c is the set of edges between gai

and sai+1 ;
7 add 〈gai

, c, ti〉 to R ;
8 end
9 end

10 end

rules are then used to generate segmenting and
selecting rules by extending them with contextual
connections (Lines 5–8).

2.3 Model and Decoding

Following Li et al. (2016), we define our model
in the well-known log-linear framework (Och and
Ney, 2002). In our experiments, we use the follow-
ing standard features: two translation probabilities
p(g, c|t) and p(t|g, c), two lexical translation prob-
abilities plex(g, c|t) and plex(t|g, c), a language
model p(t), a rule penalty, a word penalty, and
a distortion function as defined in Galley and Man-
ning (2010). In addition, we add one more feature
into our system: a basic-rule penalty to distinguish
basic rules from segmenting and selecting rules.

Our decoder is very similar to the one in the
conventional graph-based model, which generates
hypotheses left-to-right using beam search. A hy-
pothesis can be extended on the right by translating
an uncovered source subgraph. The translation pro-
cess ends when all source words have been trans-
lated.

However, when extending a hypothesis, our de-
coder considers the context of the translated sub-
graph, i.e. edges connecting it with the remaining
untranslated source words. Figure 2 shows a deriva-
tion which translates an input graph in Chinese to
an English string. In this example, both rules r1

and r2 are segmenting rules.

2010Nian FIFA Shijiebei Zai Nanfei Chenggong Juxing

r1: 2010Nian FIFA x 2010 FIFA

h1: 2010 FIFA

Shijiebei Zai Nanfei Chenggong Juxing

r2: Shijiebei Juxing x World Cup was held

h2: 2010 FIFA World Cup was held

Zai Nanfei Chenggong

r3: Zai Nanfei Chenggong successfully in
South Africa

h3: 2010 FIFA World Cup was held
successfully in South Africa

∅

Figure 2: Example of translating an input graph.
Each rule ri generates a new hypothesis hi by
appending translations on the right. Edges con-
nected to x denote contextual information. Nodes
in dashed rectangles are treated as x during decod-
ing for matching contexts.

3 Experiments

We conduct experiments on ZH–EN and DE–EN
corpora.

3.1 Data and Settings

The ZH–EN training corpus contains 1.5M+ sen-
tences from LDC. NIST 2002 is taken as a devel-
opment set to tune weights. NIST 2004 (MT04)
and NIST 2005 (MT05) are two test sets to eval-
uate systems. The DE–EN training corpus (2M+
sentence pairs) is from WMT 2014, including Eu-
roparl V7 and News Commentary. News-Test 2011
is taken as a development set while News-Test 2012
(WMT12) and News-Test 2013 (WMT13) are our
test sets.
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System ZH–EN DE–EN
MT04 MT05 WMT12 WMT13

PBMT 33.2 31.8 19.5 21.9
TBMT 33.8∗ 31.7 19.6 22.1∗

GBMT 34.7∗+ 32.4∗+ 19.8∗+ 22.4∗+

GBMTctx 35.4∗+ 33.7∗+ 20.1∗+ 22.8∗+

Table 1: BLEU scores of all systems. Bold figures
mean GBMTctx is significantly better than GBMT
at p ≤ 0.01. ∗ means a system is significantly
better than PBMT at p ≤ 0.01. + means a system
is significantly better than TBMT at p ≤ 0.01.

Following Li et al. (2016), Chinese and German
sentences are parsed into projective dependency
trees which are then converted to graphs by adding
bigram edges. Word alignment is performed by
GIZA++ (Och and Ney, 2003) with the heuris-
tic function grow-diag-final-and. We use SRILM
(Stolcke, 2002) to train a 5-gram language model
on the Xinhua portion of the English Gigaword
corpus 5th edition with modified Kneser-Ney dis-
counting (Chen and Goodman, 1996). Batch MIRA
(Cherry and Foster, 2012) is used to tune feature
weights. We report BLEU (Papineni et al., 2002)
scores averaged on three runs of MIRA (Clark et
al., 2011).

We compare our system GBMTctx with several
other systems. A system PBMT is built using the
phrase-based model in Moses (Koehn et al., 2007).
GBMT is the graph-based translation system de-
scribed in Li et al. (2016). To examine the influence
of bigram links, GBMT is also used to translate de-
pendency trees where treelets (Menezes and Quirk,
2005; Quirk et al., 2005; Xiong et al., 2007) are
the basic translation units. Accordingly, we name
the system TBMT. All systems are implemented
in Moses.

3.2 Results and Discussion

Table 1 shows BLEU scores of all systems. We
found that GBMTctx is better than PBMT across
all test sets. Specifically, the improvements are
+2.0/+0.7 BLEU on average on ZH–EN and DE–
EN, respectively. This improvement is reason-
able as our system allows discontinuous phrases
which can reduce data sparsity and handle long-
distance relations (Galley and Manning, 2010). In
addition, the system TBMT does not show consis-
tent improvements over PBMT while both GBMT
and GBMTctx achieve better BLEU scores than
TBMT on both ZH–EN (+1.8 BLEU, in terms of

Rule Type # Rules
ZH–EN DE–EN

Basic Rule 84.7M+ 115.7M+
Segmenting Rule 128.4M+ 167.3M+
Selecting Rule 30.2M+ 35.7M+
Total 243.5M+ 318.9M+

Table 2: The number of rules in GBMTctx accord-
ing to their type

GBMTctx) and DE–EN (+0.6 BLEU, in terms of
GBMTctx). This suggests that continuous phrases
connected by bigram links are essential to system
performance since they help to improve phrase cov-
erage (Hanneman and Lavie, 2009).

We also found that GBMTctx is significantly bet-
ter than GBMT on both ZH–EN (+1.0 BLEU) and
DE–EN (+0.4 BLEU), which indicates that explic-
itly modeling a segmentation using context is help-
ful. The main reason for the improvement is that
context helps to select proper subgraphs and target
phrases. Figure 3 shows example translations. We
found that in Figure 3a, after translating a paren-
thesis, GBMTctx correctly selects a subgraph Gang
Ao Tai and generates a target phrase hong kong,
macao and taiwan. In Figure 3b, both GBMT and
GBMTctx choose to translate the subgraph WoMen
Ye ZhiLi. However, given the context of the sub-
graph, GBMTctx selects a correct target phrase we
are also committed to for it.

3.3 Influence of Different Types of Rules

Recall that, compared with GBMT, GBMTctx con-
tains three types of rules: basic rules, segmenting
rules, and selecting rules. While basic rules exist in
both systems, segmenting and selecting rules make
GBMTctx context-aware. Table 2 shows the num-
ber of rules in GBMTctx according to their types.
We found that on both language pairs 35%–36%
of rules are basic rules. While the proportion of
segmenting rules is ∼53%, selecting rules only ac-
count for 11%–12%. This is because segmenting
rules contain richer contextual information than
selecting rules.

Table 3 shows BLEU scores of GBMTctx when
different types of rules are used. Note that when
only basic rules are allowed, our system degrades
to the conventional GBMT system. The results in
Table 3 suggest that both segmenting and select-
ing rules consistently improve GBMT on both lan-
guage pairs. However, segmenting rules are more
useful than selecting rules. This is reasonable since
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( hong kong macao taiwan ) hong kong spring festival retail business rise 10%
( Gang Ao Tai ) XiangGang XinChun LingShou ShengYi ShangSheng YiCheng

Ref:

GBMT:

GBMTctx:

(hong kong , macao and taiwan) hong kong’s retail sales up 10% during spring festival

(the spring festival) hong kong retail business in hong kong, macao and taiwan rose by 10%

(hong kong , macao and taiwan) hong kong spring retail business will increase by 10%

(a) subgraph selection

we also dedicate protect and improve living emvironment .
WoMen Ye ZhiLi BaoHu He GaiShan JuZhu HuanJing .

Ref:

GBMT:

GBMTctx:

we are also committed to protect and improve our living environment.

we have worked hard to protect and improve the living environment.

we are also committed to protect and improve the living environment.

(b) target-phrase selection

Figure 3: Example translations of GBMT and GBMTctx

System ZH–EN DE–EN
MT04 MT05 WMT12 WMT13

Basic Rule 34.7 32.4 19.8 22.4
+Seg. Rule 34.9 33.0 20.2 23.0
+Sel. Rule 34.8 32.5 20.0 22.7

All 35.4 33.7 20.1 22.8

Table 3: BLEU scores of GBMTctx when differ-
ent types of rules are used, including Basic Rule,
Segmenting (Seg.) Rule, and Selecting (Sel.) Rule.
Bold figures mean a system is significantly better
than the one only using basic rules at p ≤ 0.01.

the number of segmenting rules is much larger than
the number of selecting rules. We further observed
that, while our system achieves the best perfor-
mance when all rules are used on ZH–EN, the com-
bination of basic rules and segmenting rules on
DE–EN results in the best system. This is prob-
ably because reordering (including long-distance
reordering) is performed less often in DE–EN than
in ZH–EN (Li et al., 2016) which makes selecting
rules less preferable on DE–EN.

4 Conclusion

In this paper, we present a graph-based model
which takes subgraphs as the basic translation units
and considers source context during segmenting
graphs into subgraphs. Experiments on Chinese–

English and German–English show that our model
is significantly better than the conventional graph-
based model which equally treats different graph
segmentations.

In this paper, source context is used as hard con-
straints during decoding. In future, we would like
to try soft constraints. In addition, it would also
be interesting to extend this model using a syn-
chronous graph grammar.
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Abstract

We investigate the reranking of the out-
put of several distributional approaches on
the Bilingual Lexicon Induction task. We
show that reranking an n-best list pro-
duced by any of those approaches leads to
very substantial improvements. We further
demonstrate that combining several n-best
lists by reranking is an effective way of
further boosting performance.

1 Introduction

Identifying translations in bilingual material —
the Bilingual Lexicon Induction (BLI) task — is
a challenge that has long attracted the attention of
many researchers. One of the earliest approach to
BLI (Rapp, 1995) is based on the assumption that
words that are translations of one another show
similar co-occurrence patterns. Many variants
have been investigated. For instance, some au-
thors reported gains by considering syntactically
motivated co-occurrences, either with the use of
a parser (Yu and Tsujii, 2009) or by relying on
simpler POS patterns (Otero, 2007). Extensions
to multiword expressions have also been proposed
(Daille and Morin, 2008). See (Sharoff et al.,
2013) for an extensive overview.

Recently, vast efforts have been dedicated to
identify translations thanks to so-called word em-
beddings. The seminal work of Mikolov et
al. (2013b) shows that learning a mapping be-
tween word embeddings learnt monolingually by
the popular Word2Vec toolkit (Mikolov et al.,
2013a) is an efficient solution. Since then,
many practitioners have studied the BLI task as a
mean to evaluate continuous word-representations
(Coulmance et al., 2015; Vulić and Moens, 2015;
Luong et al., 2015; Gouws et al., 2015; Duong
et al., 2016). Those approaches differ in the

type of data they can process (monolingual data,
word-aligned parallel data, parallel sentence pairs,
comparable documents). Nevertheless, learning
to map individually trained word embeddings re-
mains an extremely efficient solution that per-
forms well on several BLI benchmarks. Read
(Upadhyay et al., 2016; Levy et al., 2017) for two
recent comparisons of several of those techniques.

Reranking the output of several BLI approaches
has been investigated, mostly for translating terms
of the medical domain, where dedicated ap-
proaches can be designed to capture correspon-
dences at the morphemic level (Delpech et al.,
2012; Harastani et al., 2013; Kontonatsios et
al., 2014). A similar idea (generating candidate
translations, then filtering them by rescoring) has
been proposed in (Baldwin and Tanaka, 2004) for
translating noun-noun compounds in English and
Japanese. Also, Irvine and Callison-Burch (2013)
show that monolingual signals (orthographic, tem-
poral, etc.) can be used to train a classifier to dist-
inghish good translations from erroneous ones.

In this paper, we investigate the reranking of n-
best lists of translations produced by two embed-
ding approaches (Mikolov et al., 2013b; Faruqui
and Dyer, 2014) as well as a plain distributional
approach (Rapp, 1995). We tested a large number
of variants of those approaches, for the English-
to-French translation direction. The investigation
of other language pairs and other BLI approaches
is left as future work. To the best of our knowl-
edge, this is the first time reranking embedding-
based BLI approaches is reported.

We present our reranking framework in Sec-
tion 2, our experimental protocol in Section 3, and
report experiments in Section 4. We analyze our
results in Section 5 and summarize our contribu-
tions in Section 6.
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2 Reranking

The RankLib1 library offers the implementation of
8 Learning to Rank Algorithms. We trained each
one in a supervised way to optimize precision at
rank 1. We used a 3-fold cross-validation proce-
dure where in each fold, 700 terms of the test set
were used for training, and the remaining 300 ones
served as a test set. For a source term s and a can-
didate translation t, we compute 3 sets of straight-
forward and easily extensible features:

Frequency features Four features recording the
frequency of s (resp. t) in the source (resp. tar-
get) corpus, the difference between those two fre-
quencies as well as their ratio.

String features Five features recording the
length (counted in chars) of s and t, their differ-
ence, their ratio, and the edit-distance between
the two. Edit-distance has been consistently
reported to be a useful hint for matching terms.

Rank features For each n-best list considered,
we compute 2 features: t’s score in the list, as
well as its rank. Whenever several n-best lists
are reranked, we also add a feature that records
the number of n-best lists t appears in as a candi-
date translation of s.

3 Experimental Protocol

3.1 Data sets

We trained each word’s representation on the En-
glish and French versions of the Wikipedia dumps
from June 2013. The English vocabulary contains
7.3M words forms (1.2G tokens) while the French
vocabulary contains 3.6M forms (330M tokens).

One research avenue we explored in this study
consisted in assessing the impact of words’ fre-
quency on the BLI performance. For this, we gath-
ered two reference lists of words and their trans-
lations. One list, named Wiki≤25, is populated
with English words occurring 25 times or less
in Wikipedia (English edition). There are 6.8M
(92%) such words. Thus, this test set is more rep-
resentative of a real-life setting. The other list,
named Wiki>25 contains words whose frequencies
exceed 25. Both lists contain 1 000 words that
we randomly picked from an in-house bilingual
lexicon. Each one of those words had to have at

1https://sourceforge.net/p/lemur/wiki/
RankLib/

least one of its approved translations belong to the
French Wikipedia vocabulary.

Most recent studies on BLI focus on translat-
ing very frequent words, in keeping with the pro-
tocol described in (Mikolov et al., 2013b), which
basically consists in translating 1 000 terms from
the WMT11 dataset. Those terms’ rank are be-
tween 5000 and 6000 when the terms are sorted in
decreasing order of frequency (the most frequent
5k words are put aside in order to train the pro-
jection). We reproduced this setting for compari-
son purposes (list Euro5−6k). Only 87.3% of the
resulting pairs have both their source term in the
English Wikipedia vocabulary and their approved
translation in the French counterpart. For the sake
of fairness, we report results of the embedding-
based approaches on those terms only.

The main characteristics of our test sets are pre-
sented in Table 1. As an illustration of the dif-
ficulty of each test set, we measure the accuracy
(@1) of a baseline that ranks candidates in increas-
ing order of edit-distance with the source term.
For some reasons, the Wikipedia test sets are eas-
ier than Euro5−6k for such an approach,.

Frequency

min max avg Cov (%) @1

Wiki>25 27 19.4k 2.8k 100.0 19.3
Wiki≤25 1 25 10 100.0 17.6
Euro5−6k 1 2.6M 33.6k 87.3 8.0

Table 1: Characteristics of our test sets. Cov. is
the percentage of source terms for which the ref-
erence translation is part of the French edition of
Wikipedia.

3.2 Metrics

Each approach (see Section 4) has been configured
to produce a ranked list of (at most) 100 candidate
translations (in French). We measure their perfor-
mance with accuracy at rank 1, 5, and 20; where
accuracy at rank i (@i) is computed as the percent-
age of test words for which a reference translation
is identified in the first i candidates proposed.

4 Experiments

4.1 Individual Approaches

We ran variants of an in-house implementation
of (Rapp, 1995) exploring a number of meta-
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INDIVIDUAL 1-RERANKED n-RERANKED

@1 @5 @20 @1 @5 @20 @1 @5 @20

Wiki>25 oracle: 69.3
Rapp 20.0 33.0 43.0 36.32.5 48.81.9 53.81.9 base 34.31.9 47.61.4 58.80.8

Miko 17.0 32.6 41.6 38.11.9 49.01.5 54.31.3 R+M 43.32.9 58.41.4 62.43.1

Faru 13.3 26.0 33.3 34.31.5 44.02.6 47.92.1 R+M+F 45.62.2 59.61.1 64.01.8

Wiki≤25 oracle: 28.6
Rapp 2.6 4.3 7.3 8.61.2 9.40.8 10.21.0 base 10.70.6 15.91.2 21.80.7

Miko 1.6 4.6 10.6 16.62.2 19.01.5 20.11.4 R+M 18.92.01 22.01.3 23.62.2

Faru 1.6 2.6 5.0 7.92.2 8.72.5 8.92.7 R+M+F 21.31.86 24.41.7 25.71.9

Euro5−6k oracle: 84.4
Rapp 16.6 31.8 41.2 34.65.7 48.61.2 51.91.2 base 33.61.2 59.31.4 71.72.5

Miko 42.0 59.0 67.8 47.02.3 68.12.7 73.01.7 R+M 49.53.7 68.71.5 76.11.0

Faru 30.6 47.7 59.8 41.23.9 58.03.5 66.03.5 R+M+F 47.62.3 68.52.0 76.21.2

Table 2: Performance of each approach (left-hand side column) and their reranking (middle column), as
well as the best reranking of 2 and 3 native n-best lists (right-hand side column). The reranked results
are averaged over a 3-fold cross-validation procedure, the superscript indicates the standard deviation.
oracle picks the reference translation among the 3 individual n-best lists.

parameters (window size, association measure,
seed lexicon, etc.). We refer to this approach as
Rapp hereafter. We studied a similar number of
variants of (Mikolov et al., 2013b) — hereafter
named Miko — training monolingual embed-
dings with Word2Vec (Mikolov et al., 2013b),
varying among other things the model’s architec-
ture (skip-gram versus continuous bag-of-words),
the optimization algorithm (negative sampling (5
or 10 samples) versus hierarchical softmax), and
the context window size (6, 10, 20, 30). The
largest embedding dimension for which we man-
aged to train a model is 200 for the cbow architec-
ture, and 250 for the skg architecture. We learnt
the projection matrix with the implementation de-
scribed in (Dinu and Baroni, 2015). We repro-
duced the approach of Faruqui and Dyer (2014)
— henceforth Faru — thanks to the toolkit pro-
vided by the authors. We kept the embeddings
that yielded the best performance for the Miko
approach, and ran several configurations, varying
the bilingual lexicon used, and tuning the ratio
parameter over the values 0.5, 0.8 and 1.0.

The best performance for the variants of each
strategy we tested is reported in the first column
of Table 2. On Wiki>25, the Rapp approach
delivers the best performance at rank 1, slightly
outperforming the edit-distance baseline (@1 of
19.3). The drop in performance of all approaches

on Wiki≤25 is striking: the best one could only
identify the translation of 2.6% of the test terms
at rank 1. This clearly demonstrates the bias of
the approaches tested in favor of frequent words.
On the Euro5−6k test set, the two embedding ap-
proaches are rather good (@1 of Miko reaches
42%) and clearly outperform Rapp. This sug-
gests that embeddings are very apt at capturing
information for very frequent terms (test terms
on Euro5−6k appear roughly 10 times more in
Wikipedia than those in Wiki>25). Our results
are in line with those reported in (Mikolov et al.,
2013b). We were more surprised by the lower per-
formance yielded by Faru. It should be noted
however that this model’s gains, as reported in
(Faruqui and Dyer, 2014), have been measured on
monolingual tasks. The authors also built on top of
embeddings learnt with the skg architecture, while
we found it to be less accurate for our task.

4.2 Reranking Individual Approaches
The middle column in Table 2 reports the rerank-
ing of the n-best list produced by each individ-
ual approach. During calibration experiments, we
found better rescoring performances with the Ran-
dom Forest algorithm. We report results for this
algorithm only.2 We observe that reranking is

2Results were close with LambaMart (2 @1 points lost)
and Mart (1.5 @1 points lost).
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Wiki>25 Sing. Cumulative Wiki≤25 Sing. Cumulative Euro5−6k Sing. Cumulative

feat. @1 @1 @100 feat @1 @1 @100 feat @1 @1 @100

Rank 33.0 33.0 66.0 String 16.6 16.6 26.6 Rank 46.2 46.2 81.3
+String 32.0 42.0 67.0 +Rank 6.6 20.3 26.3 +String 18.9 43.9 80.3
+ Freq 0.3 43.0 67.3 +Freq 0.0 20.3 26.6 +Freq 2.2 48.8 82.5

Table 3: Influence of the features used to train the reranker when combining Rapp, Miko, and Faru.
Performances are averaged over a 3-fold cross-validation procedure. Each fold uses 700 pairs for training
and 300 for testing. Sing. indicates the performance of individual features, while Cumulative indicates
their cumulative performance. Features are listed in decreasing order of gains.

highly beneficial to each approach. For instance,
when reranking the n-best list produced by Miko,
@1 nearly doubles on Wiki>25, and is 10 times
higher on Wiki≤25. It is also noteworthy that on
Wiki>25 all approaches, once reranked perform
equally overall (@1 between 34 and 38) — Miko
enjoying a slight advantage here — far better than
the edit distance baseline.

4.3 Combining by Reranking
We conducted experiments aiming at combining
several n-best lists with reranking. For compari-
son purposes, we implemented a naive combina-
tion approach that ranks a candidate translation
higher if it is proposed in more n-best lists. Tied
candidates are further sorted in increasing order of
edit distance. The results of a few combinations
are reported in the right column of Table 2.

Combining the n-best lists produced by the 3
native approaches leads to the best performance
overall, except on Euro5−6k where not consid-
ering Faru leads to slight improvements in @1
and @5 metrics. This indicates that the reranker
puts good use of multiple models. The gains
over each reranked approach are impressive on
Wiki>25 (increase from 38.1% to 45.6%) and
Wiki≤25 (increase fom 16.6 to 21.3) and minor on
Euro5−6k(from 47.0% to 47.6%). We also observe
that @20 obtained by the reranker is not very far
from the oracle performance.

5 Analysis

In this section, we analyze the characteristics of
the reranker we used to combine the 3 aforemen-
tioned approaches.

5.1 Training Size
Figure 1 shows the impact of the quantity of mate-
rial used for learning the reranker, varying from

Figure 1: Influence of the training size (number of
examples) on the performance of the reranker on
Wiki>25, Wiki≤25 and Euro5−6k.

100 word pairs to 700. In this experiment, we
always use the same 300 test words per test set.
Increasing the training material increases perfor-
mance for all test sets,3 but even a small training
set is enough to improve upon native approaches.
In particular, using 200 training instances already
yields a @1 of 36.6 on Wiki>25, while the best na-
tive tops at 20.

5.2 Feature Selection
Table 3 shows the influence of the features used for
training the reranker. On frequent terms (Wiki>25

and Euro5−6k) the rank-based features are the
most useful ones, followed by the string-based
features. The frequency-based features only help
marginally. On Wiki≤25, the string-based features
are more useful. The performance of the reranker
using only those features ( 16.6@1) is close to that
of the baseline edit distance approach (17.6@1).
Adding the rank-based features increases the per-
formance slightly (20.3@1).

3On Wiki≤25 however, the gains are very small.
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5.3 Ranker Analysis

With a few exceptions, we observe that whenever
at least 2 native approaches propose the reference
translation first, the reranker keeps at the first po-
sition as well. When only one native approach
is accurate at position 1, the results differ from
one test set to another. It is only occasionally
that the reranker will prefer the reference trans-
lation when none of the native approaches does.
On Wiki>25, this happens 130 times out of 300
cases, but on Euro5−6k, it happened only 4 times
over 132 cases, which is disappointing. Still, the
average position of the reference translation in the
reranker’s output is clearly improving for all test
sets, as shown in Table 4. The average number
of positions gained by reranking is rather high,
and outdoes an oracle that picks the n-best list in
which the reference translation is best positioned.
We note that the average rank of the Rapp ap-
proach is lower than that of the embedding ap-
proaches, for both Wikipedia test sets.

Wiki>25 Wiki≤25 Euro5−6k

Rapp 12.7 19.6 16.2
Miko 16.3 30.0 7.5
Faru 20.4 35.5 11.3

list-oracle 12.3 9.1 7.1
reranker 5.6 4.0 4.9

Table 4: Average rank of the reference translation.
Terms for which the reference translation is not
found in the first 100 positions are discarded.

5.4 Error Analysis

We manually inspected the first candidate pro-
duced by our best reranker (the one combining the
3 native approaches) for the first 100 test forms
for which the candidate translation differs from the
reference one. We encountered the following rep-
resentative cases: morphological variants of the
reference translation (e.g. trompeur / trompeuse,
litt. misleading) — MORPHO; directly related
translation, such as synonyms, antonyms, and co-
hyponyms — RELATED; loosely related to the ref-
erence (e.g. gunman / poignardé, litt. stabbed) —
LOOSLY; English words – ENGLISH; translations
that apparently have nothing to do with the source
term (e.g. judged /méritant, litt. worthy) – JUNK;
and translations that correspond to another sense

of a polysemic term (e.g. grizzly / grizzli, while
the reference translation is grisonnant, litt. gray
haired ) – POLYSEMY. The counts of each class
for each test set are reported in Table 5.

We observe that the percentage of JUNK errors
is much higher on Wiki≤25, yet another illustration
of the bias the approaches we tested have in favor
of frequent terms. If we consider synonyms, mor-
phological variants as well as polysemic cases to
be correct, then the percentages of test forms that
are redeemed reach 37% for Wiki>25 and 50% for
Euro5−6k of test forms that were counted wrong
are indeed acceptable translations. On Wiki≤25

however, this percentage is much lower (4%).

Wiki>25 Wiki≤25 Euro5−6k

MORPHO 18 3 26
RELATED 16 4 23

synonyms 15 1 19
antonyms 1 2 2
hyponym 1
cohyponym 1 1

POLYSEMY 4 0 5
LOOSLY 14 15 20
ENGLISH 21 6 7
JUNK 27 72 19

Table 5: Annotation of 100 translations produced
(at rank 1) for each test set by the reranked output
of the 3 native approaches.

6 Discussion

We have studied the reranking of three approaches
to BLI. We reported significant improvements for
all approaches, on all test sets. We also show that
combining several n-best lists by reranking is a
simple yet effective solution leading to even bet-
ter performance. The gains were obtained by a
random forest model learnt on a set of straightfor-
ward features, which leaves ample room for better
feature engineering. While extra data must be used
to train the reranker, we show that as few as 200
training examples often suffice to provide an ap-
preciable boost in performance. As a future work
we want to investigate whether similar gains can
be obtained for other language pairs.
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Abstract

Phrase-based and hierarchical phrase-
based (Hiero) translation models differ
radically in the way reordering is modeled.
Lexicalized reordering models play an im-
portant role in phrase-based MT and such
models have been added to CKY-based de-
coders for Hiero. Watanabe et al. (2006)
propose a promising decoding algorithm
for Hiero (LR-Hiero) that visits input
spans in arbitrary order and produces the
translation in left to right (LR) order which
leads to far fewer language model calls
and leads to a considerable speedup in de-
coding. We introduce a novel shift-reduce
algorithm to LR-Hiero to decode with our
lexicalized reordering model (LRM) and
show that it improves translation quality
for Czech-English, Chinese-English and
German-English.

1 Introduction
Phrase-based machine translation handles reorder-
ing between source and target languages by visit-
ing phrases in the source in arbitrary order while
generating the target from left to right. A dis-
tortion penalty is used to penalize deviation from
the monotone translation (no reordering) (Koehn
et al., 2003; Och and Ney, 2004). Identical dis-
tortion penalties for different types of phrases ig-
nore the fact that certain phrases (with certain
words) were more likely to reorder than others.
State-of-the-art phrase based translation systems
address this issue by applying a lexicalized re-
ordering model (LRM) (Tillmann, 2004; Koehn et
al., 2007; Galley and Manning, 2008; Galley and
Manning, 2010) which uses word aligned data to
score phrase pair reordering. These models distin-
guish three orientations with respect to the previ-
ously translated phrase: monotone (M), swap (S),

∗This work was done while the first author was a Ph.D.
student at SFU.

and discontinuous (D), which are primarily de-
signed to handle local re-orderings of neighbour-
ing phrases.

Hierarchical phrase-based translation (Hiero)
(Chiang, 2007) uses hierarchical phrases for trans-
lations represented as lexicalized synchronous
context-free grammar (SCFG). Non-terminals in
the SCFG rules correspond to gaps in phrases
which are recursively filled by other rules
(phrases). The SCFG rules are extracted from
word and phrase alignments of a bitext. Hiero
uses CKY-style decoding which parses the source
sentence with time complexity O(n3) and syn-
chronously generates the target sentence (transla-
tion).

Watanabe et al. (2006) proposed a left-to-right
(LR) decoding algorithm for Hiero (LR-Hiero)
which follows the Earley (Earley, 1970) algorithm
to parse the source sentence and synchronously
generate the translation in a left-to-right manner.
This algorithm is combined with beam search
and has time complexity O(n2b) where n is the
length of source sentence and b is the size of
beam (Huang and Mi, 2010). LR-Hiero con-
strains the SCFG rules to be prefix-lexicalized
on the target side aka Greibach Normal Form
(GNF). Throughout this paper we abuse the no-
tation for simplicity and use the term GNF gram-
mars for such SCFGs. This leads to a single lan-
guage model (LM) history for each hypothesis and
speeds up decoding significantly, up to four times
faster (Siahbani et al., 2013).

The Hiero translation model handles reorder-
ing very differently from a phrase-based model,
through weighted translation rules (SCFGs) deter-
mined by non-terminal mappings. The rule X →
〈neX1 pas, do notX1〉 indicates the translation of
the phrase between ne and pas will be after the En-
glish phrase do not. However, reordering features
can also be added to the Hiero log-linear transla-
tion model. Siahbani et al. (2013) introduce a new
distortion feature to Hiero and LR-Hiero which
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1)X→⟨他 补充 说 , X1/Headded that X1⟩

2)X→⟨联合 政府 X1/ the coalition government X 1⟩

3 )X→⟨目前 X1稳定 X 2/ is now i n stable X1 X 2⟩

4 )X→⟨状况 /condition⟩

5 )X→⟨ ./ .⟩

⟨ , ⟦[0,10]⟧ ,0⟩
⟨ He added that ,⟦[ 4,10]⟧ ,4.3⟩
⟨ He added that the coalition government ,⟦[6,10 ]⟧,7.7 ⟩
⟨ He added that the coalition government is now i n stable , ⟦[7,8] [9,10 ]⟧,11.2 ⟩
⟨ He added that the coalition government is now i n stable condition,⟦[9,10]⟧ ,13.4 ⟩
⟨ He added that the coalition government is now i n stable condition. ,⟦⟧ ,14.3⟩

rules hypotheses

<s>

<s>

<s>

<s>

<s>

<s>

</s>

⟨ht , hs , hc ⟩

Figure 1: The process of translating a Chinese (Fig. 2) sentence to English using LR-Hiero. Left side shows the rule used in
each step of creating the derivation. The hypotheses column shows 3-tuple partial hypotheses: the translation prefix, ht, the
ordered list of yet-to-be-covered spans, hs, and cost hc.

他 补充 说 , 联合 政府 目前

He added that the coalition government is now in stable condition

状况 稳定
 0      1              2         3    4               5                6                 7                 8                9      10

.

.

1)⟨他 补充 说 , /He added that ⟩
2)⟨联合 政府 / the coalition government ⟩
3 )⟨目前 稳定 / is now i n stable ⟩*__*

4 )⟨状况 /condition⟩

5 )⟨ ./ .⟩

Figure 2: A word-aligned Chinese-English sentence pair on
the top (from devset data used in experiments.) The source-
target phrase pairs created by removing the non-terminals
from the rules used in decoding (Fig. 1) are shown on the
bottom.

significantly improves translation quality in LR-
Hiero and improves Hiero results to a lesser extent.
Nguyen and Vogel (2013) integrate phrase-based
distortion and lexicalized reordering features with
CKY-based Hiero decoder which significantly im-
prove the translation quality. In their approach,
each partial hypothesis during decoding is mapped
into a sequence of phrase-pairs then the distor-
tion and reordering features are computed simi-
lar to phrase-based MT. They use a LRM trained
for phrase-based MT (Galley and Manning, 2010)
which applies some restrictions on the Hiero rules.
(Cao et al., 2014; Huck et al., 2013) propose dif-
ferent approaches to directly train LRM for Hiero
rules. However, these approaches are designed
for CKY-decoding and cannot be directly used
or adapted for LR-Hiero decoding which uses an
Earley-style parsing algorithm. The crucial differ-
ence is the nature of bottom-up versus left to right
decisions for lexicalized reordering and generat-
ing the translation in left-to-right manner. In this
paper, we introduce a novel shift-reduce algorithm
to learn a lexicalized reordering model (LRM) for
LR-Hiero. We show that augmenting LR-Hiero
with an LRM improves translation quality for
Czech-English, significantly improves results for
Chinese-English and German-English, while per-
forming three times fewer language model queries
on average, compared to CKY-Hiero.

2 Lexicalized Reordering for LR-Hiero
The main idea in phrase-based LRM is to divide
possible reorderings into three orientations that
can be easily determined during decoding and also
from word-aligned sentence pairs (parallel cor-
pus). Given a source sentence f, a sequence of
target language phrases e = (ē1, . . . , ēn) is gen-
erated by the decoder. A phrase alignment a=
(a1, . . . an) defines a source phrase f̄ai for each
target phrase ēi. For each phrase-pair 〈f̄ai , ei〉, the
orientations are described in terms of the previ-
ously translated source phrase f̄ai−1 :
Monotone (M): f̄ai immediately follows f̄ai−1 .
Swap (S): f̄ai−1 immediately follows f̄ai .
Discontinuous (D): f̄ai and f̄ai−1 are not adjacent
in the source sentence.
We only define the left-to-right case here; the
right-to-left case (f̄ai+1) is symmetrical. The prob-
ability of an orientation given a phrase pair 〈f̄ , ē〉
can be estimated using relative frequency:

P (o|f̄ , ē) =
cnt(o, f̄ , ē)∑

o′∈{M,S,D} cnt(o′, f̄ , ē)
(1)

where, o ∈ {M,S,D} and cnt is computed on
word-aligned parallel data (count phrase-pairs and
their orientations). Given the sparsity of the ori-
entation types, we use smoothing. As the decoder
develops a new hypothesis by translating a source
phrase, f̄ai , it scores the orientation, oi wrt ai−1.
The log probability of the orientation is added
as a feature function to the log-linear translation
model.

LR-Hiero uses a subset of the Hiero SCFG rules
where the target rules are in Greibach Normal
Form (GNF): 〈γ, ē β〉 where γ is a string of non-
terminal and source words, ē is a target phrase and
β is a possibly empty sequence of non-terminals.
We abuse notation slightly and call this a GNF
SCFG grammar. In LR-Hiero each hypothesis
consists of a translation prefix, ht, an ordered se-
quence of untranslated spans on the source sen-
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tence, hs and a numeric cost, hc. The initial hy-
pothesis consists of an empty translation (〈s〉), a
span of the whole source sentence and cost 0 (Fig-
ure 1). To develop a new hypothesis from a current
hypothesis, the LR-Hiero decoder applies a GNF
rule to the first untranslated span, hs[0], of old hy-
pothesis. The translation prefix of the new hypoth-
esis is generated by appending the target side of
the applied rule, ē, to the translation prefix of the
old hypothesis, ht. Corresponding to the applied
rule, the uncovered spans of the old hypothesis are
also updated and assigned to the new hypothesis
(Figure 1).

Target generation in LR-Hiero is analogous to
phrase-based MT. Given an input sentence f, the
output translation is a sequence of contiguous
target-language phrases e = (ē1, . . . , ēn) incre-
mentally concatenated during decoding. We can
define a phrase alignment a = (a1, . . . an) which
align each target phrase, ēi to a source phrase fai

corresponding to source side of a rule, ri used
at step i. But unlike target, source phrases can
be discontiguous. Figure 1 illustrates the process
of translating a Chinese-English sentence pair by
LR-Hiero. Corresponding to each rule a phrase
pair can be created (shown in Figure 2). The final
translation is the ordered sequence of target side
of these phrase pairs. Although the target genera-
tion is similar to phrase-based MT, the LR-Hiero
decoder parse the source sentence using the SCFG
rules and the order for translating source spans is
determined by the grammar. However the LR-
Hiero decoder uses an Earley-style parsing algo-
rithm and unlike CKY does not utilise translated
smaller spans to generate translations for bigger
spans bottom-up.

2.1 Training

We compute P (o|f̄ , ē), which is the probability of
an orientation given phrase pair of a rule, r.p =
〈f̄ , ē〉, on word-aligned data using relative fre-
quency. We assume that phrase ē spans the word
range s . . . t in the target sentence and the phrase
f̄ spans the range u . . . v in the source sentence.

For a given phrase pair 〈f̄ , ē〉, we set o = M if
there is a phrase pair,〈f̄ ′, ē′〉, where its target side,
ē′, appears just before the target side of the given
phrase, ē, or s = t′ + 1, and its source side, f̄ ′,
also appears just before f̄ , or u = v′+ 1. Orienta-
tion is S if there is a phrase pair, 〈f̄ ′, ē′〉, where ē′
appears just before ē, or s = t′+ 1, and f̄ ′ appears
just after f̄ , or v = u′−1. Otherwise orientation is

rules ri.f̄ Oi S

1) 〈0 1 2 3 4 X1/

under such circumstance X1〉
2) 〈5 X1/, X1〉
3) 〈6 X1 11/when X1〉
4) 〈7 8 X1/the right of life X1〉
5) 〈9 10/was deprived〉
6) 〈12 X1/, X1〉
7) 〈13 14 X1/it can only X1〉
8) 〈15 16X118/take violenceX1〉
9) 〈17/to〉

{−1}
{0, 1, 2, 3, 4}

{5}
{6, 11}
{7, 8}
{9, 10}
{12}
{13, 14}
{15, 16, 18}
{17}

M

M

M

D

M

M

M

M

D

[(-1)-(-1)]

[(-1)-4]

[(-1)-5]

[(-1)-11]

[(-1)-11]

[(-1)-11]

[(-1)-12]

[(-1)-14]

[(-1)-18]

[(-1)-18]

Figure 3: Computing correct orientation for each rule during
decoding in LR-Hiero for the example in Fig. 4. rules: the
rules used in the derivation. ri.f̄ : the position of rule’s lexical
terms in the source sentence;Oi: the identified orientation. S
is the recent translated source span (possibly discontinuous).
At each step Oi is identified by comparing ri.f̄ to S in the
previous step or last translated source phrase ri−1.f̄ .

X

X

X

X

X

在 这 种 情况下 , 当 生命 权 被 剥夺 时 , 只 能 采取暴力的手段undersuchcircumstance,whentherightoflifewasdeprived
,
it

only
can

of

violance
take

….

….

Figure 4: An example showing that the shift-reduce algo-
rithm can capture local reorderings like: the right of life and
was deprived.

D. We consider phrase pairs of any length to com-
pute orientation. Note that although phrase pairs
extracted from the rules that can be discontinu-
ous (on source), just continuous source phrases in
each sentence pair are used to compute orienta-
tion (previously translated phrases). Once orien-
tation counts for rules (phrase-pairs obtained form
rules) are collected from the bitext, the probability
model P (o|f̄ , ē) is estimated using recursive MAP
smoothing as discussed in (Cherry, 2013).

2.2 Decoding

Phrase-based LRM uses local information to de-
termine orientation for a new phrase pair, 〈f̄ai , ēi〉,
during decoding (Koehn et al., 2007; Tillmann,
2004). For left-to-right order, f̄ai is compared to
the previously translated phrase f̄ai−1 . Galley and
Manning (2008) introduce the hierarchical phrase
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reordering model (HRM) which increases the con-
sistency of orientation assignments. In HRM, the
emphasis on the previously translated phrase is
removed and instead a compact representation of
the full translation history, as represent by a shift-
reduce stack, is used. Once a source span is trans-
lated, it is shifted onto the stack; if the two spans
on the top are adjacent, then a reduction merges
the two. During decoding, orientations are always
determined with respect to the top of this stack,
rather than the previously translated phrase.

Although we reduce rules to phrase pairs to
train the reordering model, LR-Hiero decoder
uses SCFG rules for translation and the order
of source phrases (spans) are determined by the
non-terminals in SCFG rules. Therefore we
cannot simply rely on the previously translated
phrase to compute the orientation and reorder-
ing scores. Since LR-Hiero uses lexicalized glue
rules (Watanabe et al., 2006), non-terminals can
be matched to very long spans on the source sen-
tence. It makes LRM in LR-Hiero comparable to
HRM in phrase-based MT. However, we cannot
rely on the full translation history like HRM, since
translation model is a SCFG grammar encoding
reordering information.

We employ a shift-reduce approach to find a
compact representation of the recent translated
source spans which is also represented by a stack,
S, for each hypothesis. However, S always con-
tains just one source span (which might be discon-
tiguous), unlike HRM which maintains all previ-
ously translated solid spans (In Figure 4, the dotted
lines shows the only span in the stack during LR-
Hiero decoding). As the decoder applies a rule, ri,
the corresponding source phrase ri.f̄ is compared
respect to the span in S to determine the orien-
tation. If they are adjacent or S covers the span
ri.f̄ , they are reduced. Otherwise stack is set to
the span of new rule, S = ri.f̄ . The orientation
of ri.f̄ is computed with respect to S but if they
are not adjacent (M or S), we still need to con-
sider the possible local reordering with respect to
the previous rule ri−1.f̄ . In Figure 3, rules #5,#4
are monotone, while both are covered by the cur-
rent span in S. Since the stack always contains
one span, this algorithm runs in O(1). Therefore,
only a limited number of comparisons is used to
update S and compute orientation. Unlike HRM
which needs to maintain a sequence of contiguous
spans in the stack and runs in linear time.

Figure 3 illustrates the application of shift-
reduce approach to compute orientation for initial
decoding steps of a Chinese-English sentence pair
shown in Figure 4. We show source words in the
rules with the corresponding index in the source
sentence. S and ri.f̄ for the initial hypothesis are
set to −1, corresponding to the start of sentence
symbol, making it easy to compute the correct ori-
entation for spans at the beginning of the input
(with index 0).

3 Experiments

We evaluate lexicalized reordering model for LR-
Hiero on three language pairs: German-English
(De-En), Czech-English (Cs-En) and Chinese-
English (Zh-En). Table 1 shows the corpus statis-
tics for all language.

We train a 5-gram LM on the Gigaword corpus
using KenLM (Heafield, 2011). The weights in the
log-linear model are tuned by minimizing BLEU
loss through MERT (Och, 2003) on the dev set for
each language pair and then report BLEU scores
on the test set. Pop limit for Hiero and LR-Hiero
is 500 and beam size for Moses is 1000. Other
extraction and decoder settings such as maximum
phrase length, etc. are identical across different
settings.

We use 3 baselines in our experiments:

• Hiero: we use our in-house implementation
of Hiero, Kriya, in Python (Sankaran et al.,
2012). Kriya can obtain statistically signif-
icantly equal BLEU scores when compared
with Moses (Koehn et al., 2007) for sev-
eral language pairs (Razmara et al., 2012;
Callison-Burch et al., 2012).

• phrase-based: Moses (Koehn et al., 2007)
with and without lexicalized reordering fea-
tures.

• LR-Hiero: LR-Hiero decoding with cube
pruning and queue diversity of 10 (Siahbani
and Sarkar, 2014b).

To make the results comparable we use the stan-
dard SMT features for log-linear model in transla-
tion systems. relative-frequency translation proba-
bilities p(f |e) and p(e|f), lexical translation prob-
abilities pl(f |e) and pl(e|f), a language model
probability, word count, phrase count and distor-
tion. In addition, two distortion features proposed
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Corpus Train/Dev/Test
Cs-En Europarl.v7; CzEng.v0.9; News

commentary(nc) 2008,2009,2011
7.95M/3000/3003

De-En Europarl.v7; WMT2006 1.5M/2000/2000
Zh-En HK + GALE ph1; MTC 1,3,4 2.3M/1928/919

Table 1: Corpus statistics in number of sentences. Tuning and test sets for Chinese-English has 4 references.

Model Cs-En De-En Zh-En
Hiero 6279.3 7152.3 6524.7
LR-Hiero + LRM 2015.1 2908.3 2225.7

Table 2: Translation time in terms of average number of LM
queries.

Model Cs-En De-En Zh-En
Phrase-based 20.32 24.71 25.68

+ LRM 20.74 25.99 26.61
Hiero 20.77 25.72 27.65
LR-Hiero 20.52 24.96 25.73

+ NVLRM 20.49 24.98 25.9
+ LRM 20.86 25.44 26.57

Table 3: Translation accuracy in terms of BLEU for different
baselines and LR-Hiero with lexicalized reordering model.
The rows are grouped such that each group use the same
model.

by (Siahbani et al., 2013) are added to both Hi-
ero and LR-Hiero. The LRM proposed in this pa-
per uses a GNF grammar and LR decoding, there-
fore we apply it only to LR-Hiero. The GNF rules
are obtained from word and phrase aligned bi-
text using the rule extraction algorithm proposed
by (Siahbani and Sarkar, 2014a).

Table 3 compares the performance of different
translation systems in terms of translation quality
(BLEU). In all language pairs the proposed lexi-
calized reordering model improves the translation
quality of LR-Hiero. These observations are com-
parable to the effect of LRM in phrase-based trans-
lation system. In Cs-En, LRM gets the best results
and it significantly improves the the LR-Hiero re-
sults for De-En and Zh-En (p-value<0.05, evalu-
ated by MultEval (Clark et al., 2011)). To com-
pare our approach to Nguyen and Vogel (2013),
we adopt their algorithm to LR-Hiero and use
the same LRM trained for GNF rules (marked as
NVLRM in Table 3). Unsurprisingly this approach
could not improve the translation quality in LR-
Hiero. This approach computes the LRM for all
candidate translation of each span after obtain-

ing the full translations. In bottom-up decoders it
helps to prune the hypotheses effectively while in
LR-Hiero decoder as we apply a rule before know-
ing the translation of smaller spans the computa-
tion of LRM will be postponed and gets less effec-
tive in decoding.

Table 2 shows the performance in terms of de-
coding speed. We use the same wrapper for Hiero
and LR-Hiero to query the language model and re-
port the average on a sample set of 50 sentences
from test sets. We can see LR-Hiero+LRM still
works 3 times faster than Hiero in terms of num-
ber of LM calls which leads to a faster decoder
speed.

4 Conclusion

We have proposed a novel lexicalized reordering
model (LRM) for the left-to-right variant of Hi-
ero called LR-Hiero distinct from previous LRM
models. The previous LRM models proposed for
Hiero are just applicable to bottom-up decoders
like CKY. We proposed a model for the left-to-
right decoding algorithm of LR-Hiero. We showed
that our novel shift-reduce algorithm to decode
with the lexicalized reordering model significantly
improved the translation quality of LR-Hiero on
three different language pairs.
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Abstract

The task of unsupervised lexicon induc-
tion is to find translation pairs across
monolingual corpora. We develop a novel
method that creates seed lexicons by iden-
tifying cognates in the vocabularies of re-
lated languages on the basis of their fre-
quency and lexical similarity. We apply
bidirectional bootstrapping to a method
which learns a linear mapping between
context-based vector spaces. Experimen-
tal results on three language pairs show
consistent improvement over prior work.

1 Introduction

The objective of bilingual lexicon induction is
to find translation pairs between two languages.
Specifically, we aim to pair each word in the
source vocabulary with its translation in the tar-
get vocabulary. In this paper, we assume that
the languages are sufficiently closely related to
allow some translation pairs to be identified on
the basis of orthographic similarity. Our set-
ting is completely unsupervised: we extract the
bilingual lexicons from non-parallel monolingual
corpora representing the same domain. By con-
trast, most of the prior work depend on parallel
data in the form of a small bitext (Genzel, 2005),
a gold seed lexicon (Mikolov et al., 2013b), or
document-aligned comparable corpora (Vulić and
Moens, 2015). Other prior work assumes access
to additional resources or features, such as depen-
dency parsers (Dou and Knight, 2013; Dou et al.,
2014), temporal and web-based features (Irvine
and Callison-Burch, 2013), or BabelNet (Wang
and Sitbon, 2014).

Our approach consists of two stages: we first
create a seed set of translation pairs, and then it-
eratively expand the lexicon with a bootstrapping

procedure. The seed set is constructed by identi-
fying words with similar spelling (cognates). We
filter out non-translation pairs that look similar
but differ in meaning (false friends) by imposing
a relative-frequency constraint. We then use this
noisy seed lexicon to train context vectors via neu-
ral network (Mikolov et al., 2013b), inducing a
cross-lingual transformation that approximates se-
mantic similarity. Although the initial accuracy of
the transformation is low, it is sufficient to iden-
tify a certain number of correct translation pairs.
Adding the high-confidence pairs to the seed lex-
icon allows us to refine the cross-lingual transfor-
mation matrix. We proceed to iteratively expand
our lexicon by alternating the two steps of transla-
tion pair identification, and transformation induc-
tion.

We conduct a series of experiments on En-
glish, French, and Spanish. The results demon-
strate a substantial error reduction with respect
to a word-vector-based method of Mikolov et al.
(2013b), when using the same word vectors on six
source-target pairs. We also improve on the re-
sults reported by Haghighi et al. (2008) with both
automatically-extracted and gold seed lexicons.

2 Methods

In this section, we describe the two components of
our approach: seed lexicon extraction, and lexicon
expansion via bootstrapping.

2.1 Seed Lexicon Extraction
Our seed extraction algorithm is aimed at iden-
tifying cross-lingual word pairs that exhibit high
orthographic similarity, and have comparable fre-
quency, both factors being indicators of transla-
tions (Kondrak, 2013). For each language, repre-
sented by a raw monolingual corpus, we first gen-
erate the list of word types, sorted by frequency.
For each of the m most frequent source word
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1: function EXTRACT SEED(m, p, d)
2: seed← ∅
3: for i from 1 to m do
4: s← source word such that rs = i
5: for each target word t do
6: if NED(s, t) ≤ d
7: and |rs − rt| ≤ p
8: and s 6= t then
9: seed← seed ∪ {(s, t)}

10: return seed

Figure 1: The seed lexicon extraction algorithm.
rw is the frequency rank of word w.

types, starting from the top of the frequency list,
we find all target words that satisfy the following
constraints, as described in Figure 1, with param-
eters established on the development set.

1. Normalized edit distance (NED) between the
source and target words, which is calculated
by dividing the total edit cost by the length of
the longer word, is within d = 0.25.

2. The absolute difference between the respec-
tive frequency ranks of the two words is
within p = 100.

3. The source and target words are not identical.

The set of source-target pairs that satisfy these re-
quirements form the seed lexicon. Note that there
is no one-to-one constraint, so both source and tar-
get words may appear multiple times in the seed.
The pseudo-code of the algorithm is shown in Fig-
ure 1.

2.2 Lexicon Expansion
Since our task is to find translations for each of a
given set of source-language words, which we re-
fer to as the source vocabulary, we must expand
the seed lexicon to cover all such words. We adapt
the approach of Mikolov et al. (2013b) for learn-
ing a linear transformation between the source and
target vector spaces to enable it to function given
only a small, noisy seed.

We use WORD2VEC (Mikolov et al., 2013a) to
map words in our source and target corpora to n-
dimensional vectors. The mapping is derived in a
strictly monolingual context of both the source and
target languages. While Mikolov et al. (2013b)
derive the translation matrix using five thousand
translation pairs obtained via Google Translate,

1: function LEX INDUCTION(k, c, m, p, d)
2: R←EXTRACT SEED(m, p, d)
3: for c iterations do
4: Train source-target TM T on R
5: Train target-source TM T ′ on R
6: for each source word s do
7: f [s]← arg max(score(s, t))
8: R← R ∪ {top k scoring pairs}
9: return translation mapping f

Figure 2: The lexicon induction algorithm. The
score function is defined in Section 2.2.

our fully unsupervised method starts from a small
and noisy seed lexicon extracted automatically
with the algorithm described in Section 2.1.

Given a list of source-target translation pairs
(si, ti), with associated pairs of source and tar-
get vectors (ui,vi), we use stochastic gradient de-
scent to learn a matrix T with objective T · ui =
vi for all i. In order to find a translation for a
source-language word s represented by vector u,
we search for a target-language word t represented
by vector v that minimizes the value of the cosine
similarity function sim:

v = argmin
v′∈ target word vectors

sim(T · u, v′)

We use the cosine similarity sim(T · u, v) to cal-
culate the confidence score for the corresponding
candidate translation pair (s, t).

An important innovation of our algorithm is
considering not only the fitness of t as a transla-
tion of s, but also of s as a translation of t. Distinct
translation matrices are derived in both directions:
source-to-target (T) and target-to-source (T′). We
define the score of a pair (s, t) corresponding to
the pair of vectors (u,v) as the average of the two
cosine similarity values:

score(s, t) =
sim(T · u, v) + sim(T′ · v, u)

2

Unlike Mikolov et al. (2013b), our algorithm
iteratively expands the lexicon, which gradually
increases the accuracy of the translation matri-
ces. The initial translation matrices, derived from
a small, noisy seed, are sufficient to identify a
small number of correct translation pairs, which
are added to the lexicon. The expanded lexicon is
then used to derive new translation matrices, lead-
ing to more accurate translations.
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In each iteration, we sort the candidate transla-
tion pairs by their current confidence scores, and
add the highest-scoring k pairs to the lexicon. We
exclude pairs that contain a word which is already
in the lexicon. The next iteration uses the aug-
mented lexicon to derive new translation matrices.
We refer to this approach as bootstrapping, and
continue the process for a set number of iterations,
which is tuned on development data. The output
of our algorithm is the set of translation pairs pro-
duced in the final iteration, with each source vo-
cabulary word paired (not necessarily injectively)
with one target vocabulary word.

3 Experiments

In this section we compare our method to two
prior methods, our reimplementation of the super-
vised word-vector-based method of Mikolov et al.
(2013b) (using the same vectors as our method),
and the reported results of an EM-based method
of Haghighi et al. (2008).

3.1 Data

Our experiments involve three language pairs:
Spanish–French (ES–FR), English–French (EN–
FR), and English–Spanish (EN–ES), which we
consider in both directions. The corpora are from
Europarl (Koehn, 2005; Tiedemann, 2012). In
order to exclude parallel data, for each language
pair, we take the first half of the source-language
corpus, and the second half of the target-language
corpus. (Less than 1% of sentences appear in both
halves of any corpus.)

For evaluation, we require a gold-standard bilin-
gual lexicon to decide whether a proposed source-
target pair provides a correct translation of the
source word. Following Dou and Knight (2013),
we align the full source and target Europarl cor-
pora with GIZA++ (Och and Ney, 2003). Since
such alignments are asymmetric, we take the in-
tersection of two alignments: source-to-target and
target-to-source. The pairs of words that are
aligned in both directions form our gold standard
lexicon.

We follow the experimental setup of Haghighi
et al. (2008). The source and target vocabularies
consist of the 2000 most frequent words from the
source and target corpora, with the exception of
the words that are in the seed lexicons. For each
of these 2000 source words, the task is to find a
translation among the 2000 target words. We de-

Pairs Accuracy
ES–FR 206 87.9%
EN–FR 191 80.1%
EN–ES 239 83.3%
FR–ES 214 93.0%
FR–EN 210 79.1%
ES–EN 252 88.9%

Table 1: The size and accuracy of extracted seed
lexicons.

fine a single test set for each language pair. Over
99% of words in the source vocabulary have trans-
lations in the target vocabulary.

3.2 Development

We performed development exclusively on the
Spanish–French language pair. Since Spanish and
French are more closely related to each other than
either is to English, this allows us to test how our
approach generalizes to more difficult language
pairs. In addition, we aim for a fair comparison to
prior work, who report results on English–Spanish
and English–French. We use these language pairs
exclusively for testing.

Based on the results of our Spanish–French de-
velopment experiments, we established the fol-
lowing parameter settings. The seed lexicon ex-
traction stage considers the m = 10, 000 most fre-
quent source words, identifying pairs with a fre-
quency rank difference of at most p = 100, and
a normalized edit distance of at most d = 0.25.
We add k = 25 word pairs to the lexicon in each
lexicon expansion iteration. The size of word vec-
tors is set to n = 200 dimensions. The number
of iterations depends on the metric we wish to op-
timize. We perform 40 iterations to optimize ac-
curacy, and 25 iterations to optimize precision, as
discussed in the next section.

During development, we found that excluding
identical word pairs from the seed lexicon im-
proves performance, so we incorporate this restric-
tion in our system. 57 such pairs were removed
from the Spanish-French seed lexicon, with most
of them being numbers and proper nouns.

Table 1 shows that our extraction method pro-
duces seed lexicons of a reasonable size and ac-
curacy, with, on average, 219 translation pairs at
85% accuracy. Less than 5% of words in any given
seed are duplicates.
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3.3 Evaluation

We evaluate the induced lexicon after 40 itera-
tions of bidirectional bootstrapping by comparing
it to the lexicon after the first iteration in a sin-
gle direction, which is equivalent to the method
of Mikolov et al. (2013b). Following Haghighi et
al. (2008), we also report the accuracy of an ED-
ITDIST baseline method, which matches words in
the source and target vocabularies. We use an im-
plementation of the Hungarian algorithm1 (Kuhn,
1955) to solve the minimum bipartite matching
problem, where the edge cost for any source-target
pair is the normalized edit distance between the
two words.

The results in Table 2 show that the method
of Mikolov et al. (2013b) (MIK13-Auto), repre-
sented by the first translation matrix derived on
our automatically extracted the seed lexicon, per-
forms well below the edit distance baseline. By
contrast, our bootstrapping approach (Bootstrap-
Auto) achieves an average accuracy of 85% on the
six datasets.

3.4 Unidirectional Scoring

In order to quantify the importance of our innova-
tion of employing translation matrices in both di-
rections, we also performed lexicon induction ex-
periments in a unidirectional, source-to-target set-
ting. The results show a consistent drop in accu-
racy on all language pairs. Error analysis reveals
that this is caused by an increase in the number of
incorrect translation pairs being added to the lexi-
con during bootstrapping, which negatively affects
the quality of the resulting translation matrices.

The accuracy on English–French is particularly
low (2.3%), which indicates that the unidirectional
approach completely breaks down when the initial
seed set contains fewer than 200 pairs. Too many
incorrect translation pairs are added in the early
stages, a problem the method never recovers from.
In fact, when the size of the EN–ES seed is ar-
tificially reduced to the same size as the EN–FR
seed (191 pairs), unidirectional scoring results in
1.2% accuracy, vs. 82% with bidirectional scoring.
These results demonstrate that our innovation of
bidirectional scoring makes the method more ro-
bust against smaller seed lexicons, allowing good
results to be attained where previously proposed
unidirectional scoring would fail.

1https://metacpan.org/pod/Algorithm::Munkres

ES–FR EN–FR EN–ES
EDITDIST 47.2 36.4 34.7

MIK13-Auto 15.2 8.5 16.1
Bootstrap-Auto 89.4 79.4 82.0

FR–ES FR–EN ES–EN
EDITDIST 46.9 36.8 35.0

MIK13-Auto 19.5 3.4 21.7
Bootstrap-Auto 89.4 83.5 84.5

Table 2: Accuracy of induced translation lexicons
(in per cent correct).

3.5 Comparison to Haghighi et al. (2008)

Unlike most of the previous work on lexicon
induction, our method is fully unsupervised,
with no dependency on additional resources or
tools. One other unsupervised method is that
of Haghighi et al. (2008), who learn transla-
tion probabilities through a complex generative
model known as matching canonical correlation
analysis (MCCA). Although most of their ex-
periments are semi-supervised, they report re-
sults obtained on English–Spanish with a ver-
sion named “MCCA-Auto”, which starts from an
automatically-extracted seed lexicon. Since we
have no access to their implementation, we at-
tempt to re-create their experimental setup and
adopt their evaluation metrics, making two accom-
modations in order to compare to the results re-
ported in the original paper.

The first accommodation is the use of preci-
sion and recall, rather than accuracy, to evaluate
the lexicons. After ranking the returned pairs by
their score, the precision at a given point in the
list is the percentage of the translation pairs that
are correct, while the recall at a point is the per-
centage of the maximum possible number of trans-
lation pairs. Haghighi et al. (2008) chose to re-
port precision values at four levels of recall: 0.1,
0.25, 0.33, and 0.5, as well as the best F1 measure
achieved at any point. Unlike accuracy, point-wise
precision assigns variable importance to the output
translation pairs depending on their relative sys-
tem score. In order to optimize the performance of
our algorithm on the development set with respect
to point-wise precision, we reduce the number of
bootstrapping iterations to 25. The other parame-
ters remain unchanged.

The second accommodation involves the re-
striction of the source and target vocabularies to
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EN–ES p0.10 p0.25 p0.33 p0.50 best F1

EDITDIST 99.0 87.3 60.4 n/a 43.6
MCCA-Auto 91.2 90.5 91.8 77.5 61.7

Bootstrap-Auto 96.1 95.9 93.2 84.9 67.9
MCCA 91.4 94.3 92.3 89.7 63.7

Bootstrap 96.6 95.6 93.6 89.9 73.7

EN–FR p0.10 p0.25 p0.33 p0.50 best F1

EDITDIST 99.0 90.2 72.3 n/a 46.5
Bootstrap-Auto 93.0 92.6 90.5 81.9 68.4

MCCA 94.5 89.1 88.3 78.6 61.9
Bootstrap 95.7 93.6 90.6 85.7 72.8

Table 3: Comparison to the reported results of Haghighi et al. (2008) on EN–ES (upper table) and EN–FR
(lower table). The best results are in bold.

the 2000 most frequent nouns. We consider a word
to be a noun if it is tagged as such by TreeTag-
ger (Schmid, 1994; Schmid, 1999). As in all of
our experiments, we ensure that there is no over-
lap between the seed lexicon and the source and
target test vocabularies.

Table 3 shows the results on English–Spanish
and English–French. The upper rows con-
tain fully-unsupervised results. The lower rows
contain results obtained with the seed sets ex-
tracted directly from the gold standard lexicons
by selecting the most frequent source language
words. We make sure that both types of the
seed sets are of equal size for each language
pair. The precision of the EDITDIST baseline
is the highest at 10% recall, but drops rapidly
at the higher levels of recall. The variants
of our method with both automatically-extracted
(Bootstrap-Auto) and gold seed sets (Bootstrap)
achieve higher precision than the corresponding
variants of MCCA at all recall points, as well as
higher best F1 scores.

4 Conclusion

We have presented a bidirectional bootstrapping
method for bilingual lexicon induction between
related languages, which requires only a mono-
lingual corpus in each language, with no assump-
tions of alignment or parallelism. We have demon-
strated improvements over prior work and a strong
baseline on three language pairs. The method has
the potential to be applied across low-resource lan-
guages.
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Abstract

Many errors in phrase-based SMT can be
attributed to problems on three linguistic
levels: morphological complexity in the
target language, structural differences and
lexical choice. We explore combinations of
linguistically motivated approaches to ad-
dress these problems in English-to-German
SMT and show that they are complemen-
tary to one another, but also that the pop-
ular verbal pre-ordering can cause prob-
lems on the morphological and lexical level.
A discriminative classifier can overcome
these problems, in particular when enrich-
ing standard lexical features with features
geared towards verbal inflection.

1 Introduction and Motivation

Many of the errors occurring in SMT can be at-
tributed to problems on three linguistic levels: mor-
phological richness, structural differences between
source and target language, and lexical choice. Of-
ten, these categories are intertwined: for example,
the syntactic function of an argument can be ex-
pressed on the morphological level by grammatical
case (e.g. in German), or on the syntactic level
through word ordering (such as SVO in English).

This paper addresses problems across the three
linguistic levels by combining established ap-
proaches which were previously studied only inde-
pendently. We explore system variants that com-
bine target-side morphological modeling, structural
adaptation between source and target side and a dis-
criminative lexicon enriched with features relevant
for support verb constructions and verbal inflec-
tion. We show that the components targeting the
different linguistic levels are complementary, but
also that applying only verbal pre-ordering can in-
troduce problems on the morpho-lexical level; our

experiments indicate that a discriminative classifier
can overcome these problems.

In the following, we present some main strate-
gies to address the linguistic levels individually.

Morphology Inflection is one of the main prob-
lems when translating into a morphologically rich
language. It is subject to local restrictions such as
agreement in nominal phrases, but also depends
on sentence-level interactions, such as verb-subject
agreement, or the realization of grammatical case.

Target-side morphology can be modeled through
computation of inflectional features and generation
of inflected forms (Toutanova et al., 2008; Fraser et
al., 2012), by means of synthetic phrases to provide
the full set of word inflections (Chahuneau et al.,
2013), or by introducing agreement restrictions for
consistent inflection (Williams and Koehn, 2011).

Syntax Different syntactic structures in source
and target language are problematic as they are hard
to capture by word alignment, and long-distance
reorderings are typically also disfavoured in phrase-
based SMT. Hierarchical systems can bridge gaps
up to a certain length, possibly enhanced by explicit
modeling, e.g. Braune et al. (2012).

An alternative method, especially for phrase-
based systems, is source-side reordering: in a pre-
processing step, the source-side data is arranged
such that it corresponds to the target-side structure.
This improves the alignment and does not require
long-distance reordering during decoding, see e.g.
Collins et al. (2005) and Gojun and Fraser (2012).

Lexicon Problems on the lexical level are diverse
and include word sense disambiguation, selectional
preferences and the translation of multi-word struc-
tures. Many approaches rely on rich source-side
features to provide more context for decoding, e.g.
Carpuat and Wu (2007), Jeong et al. (2010), Tam-
chyna et al. (2014), Tamchyna et al. (2016).
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        in the current crisis , the us federal reserve and the european central bank cut interest rates

        in der aktuellen krise senken die us-notenbank und die europäische zentralbank die zinssätze 

            in the current crisis , cut the us federal reserve and the european central bank interest rates

        in der aktuellen krise senken die us-notenbank und die europäische zentralbank die zinssätze 

        that the ground was permanently frozen 

        dass der boden ständig gefroren war 

    that the ground permanently frozen was 

    dass der boden ständig gefroren war 

Figure 1: Verbal reordering in the training data: verb-final position (left) and verb-second position (right).

Combining Approaches Individual strategies
aiming at one linguistic level are established and
usually improve translation, but it is not clear (i)
whether individual gains add up when combin-
ing approaches and (ii) how individually targeting
one linguistic level impacts other levels. We ad-
dress these questions for the combined strategies of
source-side reordering (pre-processing), discrimi-
native classifier (at decoding time) and target-side
generation of nominal inflection (post-processing).
For (ii), we focus on source-side reordering and in-
vestigate whether introducing German clause order-
ing in the English data entails new problems: while
in “regular” English verbs and their arguments are
close to each other, they can be separated by large
distances in the German-structured English.

Reordering improves translation quality, but sep-
arating the verb from its arguments has also nega-
tive consequences. First, the agreement in number
between verbs and subjects is impaired because
subjects and verbs are separated (Ramm and Fraser,
2016). Second, there can be a negative effect on the
lexical level, for example when translating multi-
word expressions. Consider the phrase to cut in-
terest rates: if the parts occur close to each other,
there is enough context to translate cut into senken
(‘to decrease’). However, with too large a gap be-
tween cut and interest rates, it becomes difficult to
disambiguate cut, leading to the wrong translation
schneiden (’to cut with a knife’).

2 Morpho-Syntactic Modeling

This section outlines the pre- and post-processing
steps for morpho-syntactic modeling.

Morphology Nominal morphology is handled by
an inflection prediction process which first trans-
lates into an underspecified stemmed representa-
tion and then generates inflected forms in a post-
processing step (Fraser et al., 2012). The stemmed
representation is enriched with translation-relevant
features, such as number on nouns, to ensure that
number as expressed on the source side is preserved

during translation. To re-inflect the stemmed SMT
output, inflectional features are predicted with clas-
sifiers using the values in the stem-markup as input.
The inflected forms are then generated from the
stem+feature pairs using a morphological resource.

Reordering English verbs are moved to the ex-
pected German position, following the rules in Go-
jun and Fraser (2012). The resulting structure is
fundamentally different from “regular” English, as
illustrated in figure 1. The left side shows the move-
ment of an English verb to the verb-final position
in a subordinated clause, inserting a gap between
verb and subject. This might well have a negative
impact on subject-verb agreement: while was is
obviously singular, modal verbs and verbs in past
tense require context to determine number. The
right side depicts verb-second position, where the
finite verb is moved to the second constituent.

Long-distance reorderings as in this example are
not uncommon and their benefit on verbal transla-
tion is intuitively clear. However, reordering comes
at the price of separating the verb and its direct
object. This is particularly problematic when verb
and object form a multi-word expression: (parts
of) the expression cannot be translated literally,
but need to take into account the context. When
the source-side is reordered, the system has bet-
ter word alignments of verbal translations, but less
context to distinguish between translation senses.
Furthermore, non-finite verbs in compound tenses
(have/would ... cut) go to the end of the clause,
separating auxiliaries and full verbs. As German
auxiliaries for past tense depend on the verb, a
separation can impair the selection of the auxiliary.

3 Context Features for Lexical Modeling

Rich source-side context features provide infor-
mation on the lexical level, but also for morpho-
syntactic concerns such as number agreement or
auxiliary choice. We use a discriminative clas-
sifier (VowpalWabbit1), which is integrated into

1https://github.com/JohnLangford/vowpal wabbit/wiki
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word pos lemma associated rel- svc
verb/noun ation

cut vvd cut rate dobj 250
the dt the – – –
us np us reserve nn-mod –
federal np federal reserve nn-mod –
reserve np reserve cut nsubj –
...
interest nn interest rate nn-mod –
rates nns rate cut dobj –

Table 1: Subject/object relations and support verb
status on the reordered sentence from figure 1.

.

the Moses framework, in order to score translation
rules using rich source context information outside
of the applied phrase (Tamchyna et al., 2014). We
employ different feature types for source context:

Standard Features on the source-side com-
prise part-of-speech tags and lemmas within the
phrase and a context window (5 for tags, 3 for
word/lemma). Information across larger gaps is
captured by dependency relations such as verb-
object pairs or verb-subject pairs, cf. columns 4
and 5 in table 1. On the target-side, lemmas and
part-of-speech tags for the current phrase are given.

Support Verb Constructions are formed by a
verb and a predicative noun, e.g. make a contri-
bution. Typically, the verb does not contribute its
full meaning, and thus cannot be translated literally.
Cap et al. (2015) improved German-English phrase-
based SMT by annotating support verb status on
source-side verbs, which essentially divides verbs
into two groups: “non-literal use” in a support verb
construction, and “literal use” otherwise. The set of
support verb constructions consists of highly asso-
ciated noun+verb tuples. Cap et al. (2015) opted for
a hard annotation by adding markup. Instead, we
add a classifier feature and compare two variants:

(i) setting the feature to a binary support verb
status (yes/no) for a fixed set of tuples (using a
log-likelihood threshold of 1000, as in Cap et al.
(2015)). There is no dependency information in this
variant, only the basic features lemma and POS-tag.

(ii) annotating the degree of relatedness between
verb and noun (i.e. log-likelihood score) in addi-
tion to the dependency information, see rightmost
column in table 1. Verb-noun tuples are grouped
into sets based on their degree of association (e.g.
log-likelihood score between 250 and 500). This
allows us to always annotate support verb status,
instead of arbitrarily deciding on a threshold.

Number and Tense Information The complex-
ity of verbal inflection is generally difficult to cap-
ture, in particular when complex interactions be-
tween several verbs are involved. Lóaiciga et al.
(2014) investigate rich source-side features in fac-
tored MT and improved the translation of tense
for English–French MT. Reordering might make
verbal inflection even more difficult, with regard
to subject-verb agreement and the choice of auxil-
iaries. While the number of verbs in present tense
is often obvious (goes vs. go), verbs in past tense
(went) or progressive form (going) require the sub-
ject for disambiguation. Number, as derived from
the subject, is used as an extra feature for verbs.

As the reordering complicates the processing of
a compound past (e.g. has ... gone, did ... buy), we
annotate the status of past vs. non-past, as well as
the associated other verb. This aims at providing
information to decide for the correct tense and to
select the correct auxiliary (sein: ’to be’ vs. haben:
’to have’) for German present/past perfect.

4 Experiments and Results

This section presents the results of combining the
strategies for the three linguistic levels.

Data and Resources All systems are built using
the Moses phrase-based framework. The trans-
lation model is based on 4.592.139 parallel sen-
tences; and 45M sentences (News14+parallel data)
are used to train a 5-gram language model. We use
NewsTest’13 (3000 sentences) and News Test’14
(3003 sentences) for tuning and testing. The lin-
guistic processing for inflection prediction includes
parsing (Schmid, 2004) and morphological anal-
ysis/generation (Schmid et al., 2004). To predict
the features for nominal inflection, CRF sequence
models (Lavergne et al., 2010) are trained on the
target-side of the parallel data. The reordering rules
from Gojun and Fraser (2012) are applied to parsed
English data (Charniak and Johnson, 2005).

We use a version of Moses with the integrated
discriminative classifier VowpalWabbit (Tamchyna
et al., 2014)2. Training examples are extracted from
the parallel data based on phrase-table entries. In
order to keep the amount of training examples man-
ageable, the phrase-table is reduced with sigtest-
filtering with the setting -l a+e -n 30.3 We run 50
training iterations and apply early-stopping on the
development set to identify the optimal model.

2github.com/moses-smt/mosesdecoder/tree/master/vw
3All experiments use sigtest-filtered phrase-tables.
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system basic VW-1 VW-2
pos/lem pos/lem/dep

Surface 19.45 19.81* 19.90*
Surface 19.71* 20.24* 20.27*V-Reordered
MorphSys 19.81* 19.80* 19.93*
MorphSys 20.08* 20.51* 20.50*V-Reordered

Table 2: Morpho-syntactic and lexical strategies.
*: significantly better than Surface-basic (19.45)

system VW-2 VW-1 VW-2
+threshold +degree

MorphSys 19.93 20.07 19.98
MorphSys 20.50 20.40 20.46V-Reordered

Table 3: Annotating support verb status.

Morpho-Syntactic and Lexical Strategies The
column “basic” in table 2 shows the results for
combining strategies at the morpho-syntactic level:
“Surface” refers to a baseline system trained on sur-
face forms; “MorphSys” denotes the inflection pre-
diction system; “V-Reordered” refers to systems
built on reordered source-side data. Combining
the two strategies adds up to a statistically signifi-
cant gain of 0.63 between the basic system (19.45)
and the system with morphological modeling and
source-side reordering (20.08).

The columns show the effect of the discrimina-
tive model. Classifier VW-1 uses word/ lemma/pos
information; VW-2 is extended with dependency re-
lations. The difference between the two classifiers
is small. Compared to the basic surface system,
the “MorphSys” system does not gain much; pre-
sumably because the classifier contributes to the
morphological level for the surface system, such as
triggering consistent inflection, which is already an
integral part in the “MorphSys” system. Systems
built on reordered source-side data tend to bene-
fit more from the additional lexical information,
which confirms our hypothesis that verbal reorder-
ing is problematic at the lexical level. Combining
all strategies leads to the overall best result.

Support Verb Constructions and Verb Features
The two systems with inflection prediction are en-
riched with information about support verb con-
structions, in form of a binary annotation to the
features of VW-1, or by annotating the degree of
association to the features of VW-2, cf. table 3.
Both variants do not improve over the systems with
classifiers VW-1 or VW-2. Since support verb con-
structions are already indirectly contained in the

system VW-2 VW-1 VW-2 VW-2
+num +num +num

+tense
MorphSys 19.93 20.00 20.00 20.02
MorphSys 20.50 20.60 20.57 20.62V-Reordered

Table 4: Annotating number and tense information.

better worse equal
number agreement 20 2 4
auxiliary (past/passive) 11 5 2
tense 4 4 2
missing/extra verb 61 20 14
none of the above 0 0 17

Table 5: Manual evaluation of 155 sentences.

dependency information, the explicit annotation
does not seem to provide extra knowledge.

The reordered and non-reordered “MorphSys”
systems are extended with verbal features, lead-
ing to minor improvements over classifier VW-24,
cf. table 4. To examine the effect of modeling
tense and number, we compared the output of sys-
tem VW-2 (reordered) with the enriched system
(reordered VW-2 +Num+Tense). As test set, we ex-
tracted sentences containing at least one difference
in verb translations, and additionally restricted the
source sentence length to 8-20 words. After remov-
ing sentences with only lexically different verbs,
155 sentences remained. 3 native speakers of Ger-
man manually rated each pair of differently trans-
lated verbs (ignoring all other words) with respect
to the following categories:

• Number agreement: subject and verb agree
in number. The value “equal” can apply if the
subject is translated differently, e.g. research
shows vs. studies show.

• Auxiliary: presence, absence and choice of
auxiliary, e.g. sein (’to be’) vs. haben (’to
have’) as auxiliary for past tense.

• Tense: the translation reproduces the tense in
the source-sentence, as well as the technical
correctness for compound tenses, e.g. has
done vs. has did vs. ∅ done.

• Missing/extra verb: refers to the number of
full verbs in the sentence. In this category, it
is mostly the case that verbs are missing, but
it also happens that superfluous verbs appear
in a translation.

4Even though small, the difference between 20.50 and
20.62 is statistically significant with pair-wise bootstrap re-
sampling with sample size 1,000 and a p-value of 0.05.
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SRC i really feel that he should follow in the footsteps of the other guys .
reordered i really feel that he in the footsteps of the other guys follow should .

VW2 ich bin wirklich der Meinung , dass er in die Fußstapfen der anderen Jungs folgen solltenPL .
i am really of-the opinion , that he in the footsteps of the other guys follow should

+NumTense ich bin wirklich der Meinung , dass er in die Fußstapfen der anderen Jungs folgen sollteSG .
i am really of-the opinion , that he in the footsteps of the other guys follow should .

Table 6: Example for improvement of number agreement due to the number annotation on the verb should.

SRC television footage revealed how numerous ambulances and police cars arrived at a terminal .
reordered television footage revealed how numerous ambulances and police cars at a terminal arrived .

VW2 das Fernsehen zeigte Bilder , wie zahlreiche Rettungswagen und Polizei Autos an einem Terminal .
the television showed images , how numerous ambulances and police cars at a terminal .

+NumTense das Fernsehen zeigte Bilder , wie zahlreiche Rettungswagen und Polizei Autos an einem Terminal angekommen .
the television showed images , how numerous ambulances and police cars at a terminal arrived .

Table 7: Example for the addition of a missing verb.

SRC it would thus be suitable to assist illegal immigration into the usa .
reordered it would thus suitable be illegal immigration into the usa to assist .

VW2 es wäre daher geeignet sein , die illegale Einwanderung in die USA zu unterstützen .
it would-be thus suitable be , the illegal immigration into the usa to assist .

+NumTense es wäre daher ideal , illegale Einwanderung in die USA zu unterstützen .
it would-be thus ideal , illegal immigration into the usa to assist .

Table 8: Example for the removal of a superfluous verb.

• None of the above: refers mostly to transla-
tion of poor quality, so that verb translations
cannot be analyzed properly.

The results in table 5 show that the enriched sys-
tem is better with regard to verb-subject number
agreement, choice of auxiliary and the number of
missing/superfluous verbs.

The annotation of number is very straightfor-
ward, as it is a single piece of information which
is easy to obtain: its effect is illustrated in table 6,
where the enriched system produces the correctly
inflected form sollte, whereas the other system has
no access to the subject’s number at the end of
the sentence and incorrectly outputs a plural form.
The modeling of tense features is more complex,
because several verbs may be involved, and their
effect cannot be explained as easily as in the num-
ber example. We assume that the richer annotation
results in slightly more precise estimations that pro-
mote better translations. For example, the output
produced by the enriched system in table 7 con-
tains a verb that is missing in the other system.
Even though it is not technically well-formed (past
participle without auxiliary), this constitutes an im-
provement. On the other hand, the VW-2 system
in table 8 produces the extra verb sein (’be’), at
the position corresponding to the source-side be.
However, the verb wäre already is a finite verb with
the meaning would be, making the second verb re-

dundant. In the enriched version, be is annotated
with its related verb would, and thus might trigger
a preference for a translation without verb in this
context, as would→wäre is already sufficient.

5 Conclusion

We presented and combined established approaches
to address the linguistic levels Morphology, Syntax
and Lexical Choice in phrase-based SMT. By com-
paring combinations of strategies to address these
problems for English-to-German SMT, we showed
that they are complementary to one another. We
pointed out that verbal reordering can introduce
problems on the morphological and lexical level.
Our results indicate that it is possible to overcome
these problems by using a discriminative lexicon;
enriching standard features with information for
verbal inflection leads to a further improvement.
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Abstract

We implement a fully probabilistic model
to combine the hypotheses of a Spanish
anaphora resolution system with those of a
Spanish-English machine translation sys-
tem. The probabilities over antecedents
are converted into probabilities for the fea-
tures of translated pronouns, and are in-
tegrated with phrase-based MT using an
additional translation model for pronouns.
The system improves the translation of
several Spanish personal and possessive
pronouns into English, by solving trans-
lation divergencies such as ella → she | it
or su → his | her | its | their. On a test set
with 2,286 pronouns, a baseline system
correctly translates 1,055 of them, while
ours improves this by 41. Moreover, with
oracle antecedents, possessives are trans-
lated with an accuracy of 83%.

1 Introduction

The divergencies of pronoun systems across lan-
guages require in many cases the understanding of
the antecedent of a source pronoun to decide its
correct translation. For instance, Spanish 3rd per-
son personal and possessive pronouns generally
have more than one translation into English: él can
be rendered by he or it depending on the human-
ness of the antecedent, while the possessive deter-
miner su can be translated by his, her, its or their
depending on the gender, number and humanness
of the possessor.

In this paper, we provide a fully probabilistic
integration of a Spanish anaphora resolution sys-
tem into a phrase-based machine translation (MT)
one, building upon a coreference-aware decod-
ing model that we proposed earlier (Luong and

Popescu-Belis, 2016). We extend this model by
using actual probabilities of antecedents instead of
the best candidate only, and by applying the model
to Spanish-English pronoun translation, which re-
quires a larger range of antecedent features than
English-French. In addition, the test set is con-
siderably larger than in the previous study, and in-
cludes possessive determiners (also called adjec-
tives or, as we do here, pronouns), which exhibit
larger translation divergencies.

The paper is organized as follows. After a re-
view of related work (Section 2), we present in
Section 3 the coreference-aware translation model,
which is learned from texts with probabilistic
anaphoric links hypothesized by a coreference re-
solution system. This model is combined with a
classic phrase-based MT model, as explained in
Section 4. The results, presented in Section 5,
show an improvement in pronoun translation ac-
curacy of 4% when measured automatically, and
reach 83% correct translations with oracle antece-
dents of possessives.

2 Related Work

Recent years have witnessed an increasing in-
terest in improving machine translation of pro-
nouns. Several studies have attempted to integrate
anaphora resolution with statistical MT (Le Na-
gard and Koehn, 2010; Hardmeier and Federico,
2010; Guillou, 2012), but have often been limited
by the accuracy of anaphora resolutions systems,
even on the best-resourced language, English. For
instance, Le Nagard and Koehn (2010) trained an
English-French translation model on an annotated
corpus in which each occurrence of the English
pronouns it and they was annotated with the gen-
der of its antecedent on the target side, but failed
to improve over the baseline due to anaphora reso-
lution errors. Hardmeier and Federico (2010) in-
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tegrated a word dependency model into the SMT
decoder as an additional feature, to keep track of
pairs of source words acting respectively as ante-
cedent and anaphor in a coreference link, and im-
proved English-German MT over the baseline.

The recent shared tasks on pronoun-focused
translation (Hardmeier et al., 2015; Guillou et al.,
2016) have promoted a pronoun correction task,
which relies on information about the reference
translation of the words surrounding the pronoun
to be corrected, thus allowing automatic evalua-
tion. Several systems developed for this task avoid
direct use of anaphora resolution, but still reach
competitive performance. Callin et al. (2015) de-
signed a classifier based on a feed-forward neural
network, which considered as features the preced-
ing nouns and determiners along with their parts-
of-speech. Stymne (2016) combined the local con-
text surrounding the source and target pronouns
(lemmas and POS tags) together with source-side
dependency heads. The winning systems of the
WMT 2016 pronoun task used neural networks:
Luotolahti et al. (2016) and Dabre et al. (2016)
summarized the backward and forward local con-
texts and passed them to a deep Recurrent Neural
Network to predict pronoun translation.

In this paper, we exploit anaphora resolution
as the main knowledge source, building upon
the model we have proposed earlier (Luong and
Popescu-Belis, 2016), in which coreference fea-
tures are directly used during the decoding process
through an additional translation table. However,
we extend our previous model and use additional
features, including the source word, and the gen-
der, number and humanness of the antecedent can-
didates. In addition, instead of training and testing
an SMT system on the gender-marked datasets (as
did Le Nagard and Koehn (2010)), and use ante-
cedents with absolute confidence, we model the
probabilistic connection between a given pronoun
and a given gender/number on the training set,
and use the probabilistic scores of the antecedent
within a coreference model, along with the trans-
lation and language models, when decoding. We
do not deal, however, with null pronouns, which
raise different challenges, addressed e.g. by Wang
et al. (2016) for Chinese-to-English MT and by
Rios Gonzales and Tuggener (2017) for Spanish-
to-English MT.

3 Learning the Coreference Model

The coreference model is the essential component
of the general framework we proposed earlier (Lu-
ong and Popescu-Belis, 2016). The goal of the
coreference model is to learn the probabilities of
translating a given source pronoun, represented by
the features of its antecedent, into a target pro-
noun. Due to anaphora resolution errors and vari-
ability in translation, the coreference model is not
deterministic, but contains probabilities of trans-
lations, which are later combined with those from
the translation and language models. We build a
fully probabilistic coreference model, unlike our
previous attempt, which relied only on the best
candidate antecedent. Building the model requires
two stages, presented in 3.1 and 3.2 below.

The Spanish 3rd-person pronouns that we con-
sider are: (a) the two singular subject pronouns
él and ella; (b) the two possessive determiners su
and sus; (c) the two singular possessive pronouns
suyo and suya. The possessive determiners agree
in number with the possessed entity (which they
determine) and refer to a possessor with unspeci-
fied gender and number, hence each of them can
be translated by his, her, its or their. The pos-
sessive pronouns refer both to a possessed entity
(with which they agree in gender and number)
and a possessor of unspecified gender and num-
ber. Hence, they can be translated into English as
his own (one), her own, its own or their own – but
not with plural, e.g. not his own ones.

3.1 Antecedent Identification using CorZu

The goal of the first stage is to identify candidate
antecedents of each source pronoun in the train-
ing data with their probabilities. The Spanish data
is processed as follows. More detailed descrip-
tions of the annotations are given by Rios (2016)
and Rios Gonzales and Tuggener (2017) who also
make them public.1

We use FreeLing2 (Padro and Stanilovsky,
2012) for morphological analysis and named
entity recognition and classification, Wapiti3

(Lavergne et al., 2010) for PoS tagging, and the
MaltParser4 (Nivre et al., 2006) for parsing. The
models for tagging, parsing and co-reference re-
solution are all trained on the AnCora-ES Spanish

1https://github.com/a-rios/CorefMT
2http://nlp.cs.upc.edu/freeling/
3https://wapiti.limsi.fr/
4http://www.maltparser.org/
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treebank (Taulé et al., 2008).5

The CorZu coreference resolution system
(Klenner and Tuggener, 2011; Tuggener, 2016)
annotates the dependency trees with referential
entities. CorZu implements a variant of the
entity-mention coreference model, and enforces
morphological consistency in coreference chains.
For selecting antecedents of pronouns, CorZu
uses a mention ranking approach: all antecedent
candidates are considered at once, and each of
them is given a score based on its features (see
Tuggener (2016), Section 5.3.3). The features in-
clude standard ones (distance, grammatical rela-
tions, etc.) along with novel ones (animacy, dis-
course status, morphology, etc.). Their weights are
learned using a Naive Bayes classifier.

Rather than selecting the candidate with the
highest score as the antecedent, we retain a list
of the most likely antecedents with their scores,
namely all candidates with scores greater than 1%
of the highest one, keeping at least two of them (if
available).

For each candidate antecedent, we extract the
following features (obtained from FreeLing): gen-
der (masculine, feminine, or neuter), number (sin-
gular or plural) and human (person vs. other). The
newly used ‘human’ feature is intended to help
with the English divergencies he/it, his/its, she/it
and her/its.

3.2 Assignment of the Coreference Score

To build the coreference model, for each of the
anaphoric links found by CorZu, we append to
each Spanish pronoun (noted P) the feature val-
ues of the respective antecedent (noted G, N, H).
Moreover, we consider the English side of the par-
allel corpus (available with AnCora-ES), and us-
ing word-level alignments generated by GIZA++
(Och and Ney, 2003) we identify the transla-
tion of the Spanish pronoun. This results in
a set of weighted triples of the form (P-G-N-
H, pron EN, probability) – e.g., (ella-feminine-
singular-person, she, 0.686453) – where proba-
bility results from the normalization of the cur-
rent candidate score with respect to the total of
the whole list. We gather all possible triples over
the training data. If the candidates do not fully
cover all possible P-G-N-H combinations, the re-
maining combinations will be generated, but with
zero probability, and appended to the list in the

5http://clic.ub.edu/corpus/en/ancora

coreference model.
Improving significantly on our previous study,

we now compute the co-occurrence probability be-
tween each English pronoun (pEN ) and a specific
P-G-N-H combination by integrating probability
scores from all triples in which they appear, with a
normalization factor, as follows:

P (pEN|PGNH) =
∑

score(PGNH, pEN)∑
score(PGNH)

If coreference resolution and word alignment
were perfect, the resulting list would contain
only trivial pairs, such as (ella-feminine-singular-
person, she, 1.0), but this is far from being the
case. Indeed, even after filtering out triples with
p < 10−5, we are left with 13,584 triples in the
coreference model.

The excerpt from the coreference model in Fig-
ure 1 shows other translation options for ella-
feminine-singular-person: although there are sev-
eral wrong triples as a consequence of alignment
errors, they have small scores compared to that of
the likely correct translation.

ella-fem-sg-person ||| she ||| 0.4126277679763829
ella-fem-sg-person ||| her ||| 0.227395364221136694
ella-fem-sg-person ||| it ||| 0.2572878334919262
ella-fem-sg-person ||| herself ||| 0.043076623150016244
ella-fem-sg-other ||| it ||| 0.360478391856570536
ella-fem-sg-other ||| they ||| 6.720430107526882E-4

Figure 1: Inside the coreference model: examples
of (P-G-N-H, pron EN, probability) triples for the
Spanish pronoun ella.

4 Using the Coreference Model for SMT

The Coreference Model (CM) is used within the
Moses phrase-based SMT system (Koehn et al.,
2007) as a second translation model, which will
be called instead of the main model whenever
the system encounters a Spanish pronoun that is
marked as above with its G-N-H features (hence
in the form P-G-N-H). We use the configuration
declarations in the Moses environment (Koehn et
al., 2007), as we previously described (Luong and
Popescu-Belis, 2016), to integrate the CM into the
decoder as an additional translation model. The
weights of the CM are optimized on a held-out set,
unlike our previous study (Luong and Popescu-
Belis, 2016) in which they were manually set.

Before decoding, we first perform anaphora re-
solution on the source document. Then, the G-N-
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C1 C3 C4 C5 C6
BL 1055 (46%) 850 12 358 11
CM 1096 (48%) 817 4 363 6

Table 1: APT scores of the baseline (BL) and the
coreference aware system (CM). CM outperforms
BL by 41 pronouns.

H features extracted from the best candidate an-
tecedent are appended to the pronoun.6 For in-
stance, on the following example: “Mi hermana
va a la escuela. Su escuela está detrás de la cat-
edral.”, hermana (sister) is the antecedent of the
possessive determiner su, and it is a singular, fem-
inine and human noun. Therefore, su in the second
sentence is changed to: “Su-singular-femimine-
human escuela está detrás de la catedral.” and is
given as an input to the MT system, which will use
the CM to translate the first word.

5 Results and Analysis

5.1 Experimental Settings

The MT training set for Moses is a part of the
News Commentary (NC) 2011 set from WMT,
combined with part of NC 2010, with a total of
250,000 ES-EN sentence pairs (see Section 3.1).
The parameters are tuned using MERT (Och,
2003) on an NC 2011 development subset of 2,713
pairs. Another subset of NC 2011 with 13,000 sen-
tences is used for testing. The language model is
trained on an NC 2011 monolingual set with ca.
1.1M sentences.

The test data contains 6,134 occurrences of the
Spanish pronouns we study here, but CorZu found
an antecedent only for 2,286 occurrences. For all
other pronouns, our method will not translate them
differently from the baseline system, therefore we
do not count them below.

We measure the Accuracy of Pronoun Transla-
tion (APT) by comparing the translated pronouns
with those in the reference translation (Miculi-
cich Werlen and Popescu-Belis, 2016). The metric
first aligns the pronouns in the MT output against
a reference translation, using GIZA++ (Och and
Ney, 2003) to align words and then a simple set
of heuristics to refine the alignment of pronouns,
based on position approximations and knowledge
of expected tokens.7 The APT software then com-

6In future work, we will explore the use of several candi-
date antecedents with their probabilities.

7A more complex set of rules for English-Czech align-

Baseline (BL) its his her their
its 499 97 2 80
his 66 224 1 28
her 6 24 9 9
their 166 70 1 148
Coref. (CM) its his her their
its 463 165 2 80
his 28 273 2 19
her 4 21 13 5
their 87 60 2 220
Oracle (OR) its his her their
its 4 0 0 0
his 0 20 0 0
her 0 0 23 0
their 0 0 0 6

Table 2: Confusion matrices when translating ‘su’
by three systems. The oracle antecedents (‘OR’)
are only available on a smaller dataset (see 5.3).

putes several scores: the number of identical pro-
nouns (noted C1) and of different ones (C3), the
number of untranslated pronouns in the candi-
date (C4), in the reference (C5) or in both (C6).8

The goal is to increase C1 and decrease all other
scores. APT was found to correlate well with hu-
man evaluation, but is stricter than it.

5.2 Results with CorZu Antecedents

The APT scores of the Moses baseline (BL) and
our system (CM) are shown in Table 1. Our sys-
tem outperforms the baseline by 41 pronouns (net
balance of improvements minus degradations), in-
creasing the C1 score from 46% to 48%. Besides,
it leaves fewer pronouns untranslated (C4).

When examining the translation of the deter-
miner su, the comparison of the first two confusion
matrices in Table 2 shows that CM translates su
more poorly than BL. In particular, it misses many
occurrences of su that should have been translated
as its, rendering them generally by his. This is
likely due to the wrong labeling of the humanness
feature on antecedents found by CorZu, in addi-
tion to anaphora resolution errors. In contrast, the
occurrences of su that should have been translated
with human pronouns (his, her) are better trans-
lated by the CM. Notably, despite its ambiguity,

ment, assuming the availability of parse trees, has been pro-
posed by Novák and Nedoluzhko (2015).

8The C2 score for “synonymous” pronouns is not appli-
cable here.
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Example 1
SRC: no podrá sentirse en su-masc-sg-pers
casa en ese paı́s
CM: will not be able to be in his house in the
country
REF: he will scarcely be able to feel at home
there

Example 2
SRC: y si posible de la UE en su-masc-sg-other
conjunto
CM: if possible , and of the EU in its set
REF: if not the EU as a whole

Figure 2: Examples of wrong translations made by
the coreference model (CM), due to a context-free
translation of su.

su was often correctly linked by CorZu to a plural
noun phrase, leading to a large improvement over
the baseline for translations by their (220 vs. 148).

One limitation of the CM system is exemplified
in Figure 2. Both mistakes (in red) are due to the
CM not considering the context surrounding the
pronoun su, i.e. the idiomatic expressions. Indeed,
“su casa” and “su conjunto” mean respectively
“to feel at home” and “as a whole” as idiomatic
expressions, yet they are wrongly translated into
“to be in his house” and “in its set” by the coref-
erence model, which simply uses the features as-
signed to su after the substitution. Although the
translations of su are correct in terms of features,
the expressions should have been translated by the
default translation model. A different strategy to
pass antecedent information to the decoder while
still using the standard translation model should be
found in the future.

5.3 Results Using Oracle Antecedents

To confirm the relevance of our model, and ana-
lyze the impact of coreference resolution errors,
we selected a subset of 168 sentences with 64 oc-
currences of su. A native Spanish speaker anno-
tated the correct antecedents and the correspond-

C1 C3 C4 C5 C6
CM 31 (48%) 16 8 6 3
OR 53 (83%) 5 0 6 0

Table 3: APT scores of CM and oracle systems.
C1 is the number of su identical to the reference.
Using oracle antecedents rather than CorZu ones
significantly increases C1.

ing gender-number-humanness features for each
pronoun. We then translated this data with our CM
system, and compared it with the output of CM us-
ing CorZu antecedents, in Table 3. The accuracy
when using oracle antecedents is 83%, and among
the 11 errors (translations differing from the refer-
ence), 8 are in fact considered as correct by a hu-
man judge. Oracle antecedents thus lead to nearly
perfect translations, as confirmed by the confusion
matrix, shown in the lower part of Table 2.

6 Conclusion and Perspectives

We presented a method that uses the morpho-
logical and semantic features of antecedents to
improve the translation of Spanish personal and
possessive pronouns into English. The method
brings measurable improvements, and an oracle
experiment indicates that better anaphora resolu-
tion should be even more beneficial to pronoun
translation.

Future work should integrate coreference into
the MT decoder as an additional feature function,
so that the surrounding contexts of pronouns are
properly considered. In addition, we will attempt
to improve the quality of the labels predicted by
our resolver, we will use multiple hypotheses on
antecedents when decoding, and finally consider
the translation of null pronouns as well.
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Abstract

In this paper we study the impact of using
images to machine-translate user-generated e-
commerce product listings. We study how
a multi-modal Neural Machine Translation
(NMT) model compares to two text-only ap-
proaches: a conventional state-of-the-art atten-
tional NMT and a Statistical Machine Trans-
lation (SMT) model. User-generated product
listings often do not constitute grammatical
or well-formed sentences. More often than
not, they consist of the juxtaposition of short
phrases or keywords. We train our models
end-to-end as well as use text-only and multi-
modal NMT models for re-ranking n-best lists
generated by an SMT model. We qualita-
tively evaluate our user-generated training data
also analyse how adding synthetic data im-
pacts the results. We evaluate our models
quantitatively using BLEU and TER and find
that (i) additional synthetic data has a general
positive impact on text-only and multi-modal
NMT models, and that (ii) using a multi-modal
NMT model for re-ranking n-best lists im-
proves TER significantly across different n-
best list sizes.

1 Introduction
In e-commerce, there is a strong requirement to make
products accessible regardless of the customer’s native
language and home country, by leveraging the gains
available from machine translation (MT). Among the
challenges in automatic processing are the specialized
language and grammar for listing titles, as well as
a high percentage of user-generated content for non-
business sellers, who often are not native speakers
themselves.

We investigate the nature of user-generated auction
listings’ titles as listed on the eBay main site1. Prod-
uct listings contain extremely high trigram perplexi-
ties even if trained (and applied) on in-domain data,
which is a challenge not only for proper language mod-
els but also for automatic evaluation metrics such as the
n-gram precision-based BLEU (Papineni et al., 2002)

1http://www.ebay.com/

metric. Nevertheless, when presenting humans with
images of the product which come along with the auc-
tion titles, the listings are perceived as somewhere be-
tween “easy” and “neutral” to understand.

Images can bring useful complementary information
to MT (Calixto et al., 2012; Hitschler et al., 2016;
Huang et al., 2016). Therefore, we explore the potential
of multi-modal, multilingual MT of auction listings’ ti-
tles and product images from English into German. To
that end, we compare eBay’s production system, due to
service-level agreements a classic phrase-based statisti-
cal MT (PBSMT) system, with two neural MT (NMT)
systems. One of the NMT models is a text-only atten-
tional NMT and the other is a multi-modal attentional
NMT model trained using the product images as addi-
tional data.

PBSMT still outperforms both text-only and multi-
modal NMT models in the translation of product list-
ings, contrary to recent findings (Bentivogli et al.,
2016). Under the hypothesis that the amount of training
data could be the culprit and since curated multilingual,
multi-modal in-domain data is very expensive to ob-
tain, we back-translate monolingual listings and incor-
porate them as additional synthetic training data. Util-
ising synthetic data leads to big gains in performance
and ultimately brings NMT models closer to bridging
the gap with an optimized PBSMT system. We also
use multi-modal NMT models to rescore the output of
a PBSMT system and show significant improvements
in TER (Snover et al., 2006).

This paper is structured as follows. In §2 we describe
the text-only and multi-modal MT models we evaluate
and in §3 the data sets we used, also introducing and
discussing interesting findings. In §4 we discuss how
we structure our quantitative evaluation, and in §5 we
analyse and discuss our results. In §6 we discuss some
relevant related work and in §7 we draw conclusions
and devise future work.

2 Model

We first briefly introduce the two text-only baselines
used in this work: a PBSMT model (§2.1) and a text-
only attentive NMT model (§2.2). We then discuss the
doubly-attentive multi-modal NMT model that we use
in our experiments (§2.3), which is comparable to the
model introduced by Calixto et al. (2016).
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Figure 1: Decoder RNN with attention over source sentence and image features. This decoder learns to indepen-
dently attend to image patches and source-language words when generating translations.

2.1 Statistical Machine Translation (SMT)
We use a PBSMT model built with the Moses SMT
Toolkit (Koehn et al., 2007). The language model (LM)
is a 5-gram LM with modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995). We use minimum error
rate training (Och, 2003) for tuning the model parame-
ters for BLEU scores.

2.2 Text-only Neural Machine Translation
(NMTt)

We use the attentive NMT model introduced by Bah-
danau et al. (2015) as our text-only NMT baseline.
It is based on the encoder–decoder framework and it
implements an attention mechanism over the source-
sentence words. Being X = (x1, x2, · · · , xN ) and
Y = (y1, y2, · · · , yM ) a one-hot representation of a
sentence in a source language and its translation into
a target language, respectively, the model is trained
to maximise the log-likelihood of the target given the
source.

The encoder is a bidirectional recurrent neural
network (Schuster and Paliwal, 1997) with GRU
units (Cho et al., 2014). The annotation vector for a
given source word xi, i ∈ [1, N ] is the concatenation
of forward and backward vectors hi =

[−→
hi;
←−
hi

]
ob-

tained with forward and backward RNNs, respectively,
and C = (h1,h2, · · · ,hN ) is the set of source annota-
tion vectors.

The decoder is also a recurrent neural network, more
specifically a neural LM (Bengio et al., 2003) condi-
tioned upon its past predictions via its previous hidden
state st−1 and the word emitted in the previous time
step yt−1, as well as the source sentence via an atten-

tion mechanism. The attention mechanism computes a
context vector ct for each time step t of the decoder
where this vector is a weighted sum of the source an-
notation vectors C:

esrc
t,i = (vsrc

a )T tanh(U src
a st−1 +W src

a hi), (1)

αsrc
t,i =

exp (esrc
t,i)∑N

j=1 exp (esrc
t,j)

, (2)

ct =
N∑

i=1

αsrc
t,ihi, (3)

whereαsrc
t,i is the normalised alignment matrix between

each source annotation vector hi and the word to be
emitted at time step t, and vsrc

a , U src
a and W src

a are
model parameters.

2.3 Multi-modal Neural Machine Translation
(NMTm)

We use a multi-modal NMT model similar to the one
introduced by Calixto et al. (2016), illustrated in Fig-
ure 1. It can be seen as an expansion of the attentive
NMT framework described in §2.2 with the addition of
a visual component to incorporate visual features.

We use a publicly available pre-trained Convolu-
tional Neural Network (CNN), namely the 50-layer
Residual network (ResNet-50) of He et al. (2015) to
extract convolutional image features (a1, · · · ,aL) for
all images in our dataset. These features are extracted
from the res4f layer and consist of a 196 x 1024 di-
mensional matrix where each row (i.e., a 1024D vec-
tor) represents features from a specific area and there-
fore only encodes information about that specific area
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of the image. In our NMT experiments, the ResNet-50
network is fixed during training, and there is no fine-
tuning done for the translation task.

The visual attention mechanism computes a context
vector it for each time step t of the decoder similarly
to the textual attention mechanism described in §2.2:

eimg
t,l = (vimg

a )T tanh(U img
a st−1 +W img

a al), (4)

αimg
t,l =

exp (eimg
t,l )∑L

j=1 exp (eimg
t,j )

, (5)

it =
L∑

l=1

αimg
t,l al, (6)

where αimg
t,l is the normalised alignment matrix be-

tween each image annotation vector al and the word
to be emitted at time step t, and vimg

a , U img
a and W img

a

are model parameters.

3 Data sets

The multi-modal NMT model we evaluate uses parallel
sentences and an image as input. Thus, we use the data
set of product listings and images produced by eBay.
They consist of 23, 697 triples of products, henceforth
original, containing each (i) a listing in English, (ii)
its translation into German and (iii) a product image.
Validation and test sets used in our experiments consist
of 480 and 444 triples, respectively.

The curation of parallel product listings with an
accompanying product image is costly and time-
consuming, so the in-domain data is rather small. More
easily accessible are monolingual German listings ac-
companied by the product image where the source text
input can be emulated by back-translating the target
listing. For this set of experiments, we use 83, 832 tu-
ples, henceforth mono. Finally, we also use the publicly
available Multi30k dataset (Elliott et al., 2016), a mul-
tilingual expansion of the original Flickr30k (Young et
al., 2014) with ∼30k pictures from Flickr, one descrip-
tion in English and one human translation of the En-
glish description into German.

Translating user-generated product listings has par-
ticular challenges; they are often ungrammatical and
can be difficult to interpret in isolation even by a native
speaker of the language, as can be seen in the examples
in Table 1. To further demonstrate this issue, in Table 2
we show the number of running words as well as the
perplexity scores obtained with LMs trained on three
sets of different German corpora: the Multi30k, eBay’s
in-domain data and a concatenation of the WMT 20152

Europarl (Koehn, 2005), Common Crawl and News
Commentary corpora (Bojar et al., 2015).3

2We use the German side of the English–German parallel
WMT 2015 corpora.

3These are 5-gram LMs trained with KenLM (Heafield et
al., 2013) using modified Kneser-Ney smoothing (Kneser and
Ney, 1995) on tokenized, lowercased data.

Image Product Listing

(en) just rewired original mission 774
fluid damped low mass tonearm , very
good cond .
(de) vor kurzem neu verkabelter
flüssigkeitsgedämpfter leichter original -
mission 774 - tonarm , sehr guter zustand

(en) mary kay cheek color mineral pick
citrus bloom shy blush bold berry + more
(de) mary kay mineral cheek colour
farbauswahl citrus bloom shy blush bold
bold berry + mehr

Table 1: Examples of product listings and their accom-
panying image.

LM training #words Perplexity (×1000)

corpus (×1000) eBay Multi30k

WMT’15 4310.0 60.1 0.5
Multi30k 29.0 25.2 0.05
eBay 99.0 1.8 4.2

Table 2: Perplexity on eBay and Multi30k’s test sets for
LMs trained on different corpora. WMT’15 is the con-
catenation of the Europarl, Common Crawl and News
Commentary corpora (the German side of the parallel
English–German corpora).

We see that different LM perplexities on eBay’s test
set are high even for an LM trained on eBay in-domain
data. LMs trained on mixed-domain corpora such as
the WMT 2015 corpora or the Multi30k have perplexi-
ties below 500 on the Multi30k test set, which is ex-
pected. However, when applied to eBay’s test data,
perplexities computed can be over 60k. Conversely, an
LM trained on eBay in-domain data, when applied to
the Multi30k test set, also computes very high perplex-
ity scores. These perplexity scores indicate that fluency
might not be a good metric to use in our study, i.e. we
should not expect a fluent machine-translated output of
a model trained on poorly fluent training data.

Clearly, translating user-generated product listings is
very challenging; for that reason, we decided to check
with humans how they perceive that data with and with-
out having the associated images available. We hy-
pothesise that images bring additional understanding to
their corresponding listings.

3.1 Source (target) product title–image
assessment

A human evaluator is presented with the English (Ger-
man) product listing. Half of them are also shown
the product image, whereas the other half is not. For
the first group, we ask two questions: (i) in the con-
text of the product image, how easy it is to understand
the English (German) product listing and (ii) how well
does the English (German) product listing describe the
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Listing Difficulty Adequacy
language N listing only listing+image listing+image

English 20 2.50 ± 0.84 2.40 ± 0.84 2.45 ± 0.49
German 15 2.83 ± 0.75 2.00 ± 0.50 2.39 ± 0.78

Table 3: Difficulty to understand product listings with
and without images and adequacy of product listings
and images. N is the number of raters.

product image. For the second group, we just ask
(i) how easy it is to understand the English (German)
product listing. In all cases humans must select from
a five-level Likert scale where in (i) answers range
from 1–Very easy to 5–Very difficult and in (ii) from
1–Very well to 5–Very poorly.

Table 3 suggests that the intelligibility of both the
English and German product listings are perceived to
be somewhere between “easy” and “neutral” when im-
ages are also available. It is notable that, for German,
there is a statistically significant difference between
the group who had access to the image and the prod-
uct listings (M=2.00, SD=.50) and the group who only
viewed the listings (M=2.83, ST=.30), where F(1,13) =
6.72, p < 0.05. Furthermore, humans find that prod-
uct listings describe the associated image somewhere
between “well” and “neutral” with no statistically sig-
nificant differences between the adequacy of product
listings and images in different languages.

Altogether, we have a strong indication that images
can indeed help an MT model translate product listings,
especially for translations into German.

4 Experimental setup
The PBSMT model we use as a baseline is trained on
120k in-domain parallel sentences (§2.1).

To measure how well multi-modal and text-only
NMT models perform when trained on exactly the
same data with and without images, respectively, we
trained them only on the original and the Multi30k (El-
liott et al., 2016) data sets. We also did not use any ad-
ditional parallel, but out-of-domain data that had been
used to train eBay’s PBSMT production system (see
Section 5). Training our text-only NMTt baseline on
this large corpus would not help shed more light on
how multi-modality helps MT, since it has no images
available and thus cannot be used to train the multi-
modal model NMTm. Rather, we report results of re-
ranking experiments using n-best lists generated by
eBay’s best-performing PBSMT production system.

In order to measure the impact of the training data
size on MT quality, we follow Sennrich et al. (2016)
and back-translate the mono German product listings
using our baseline NMTt model trained on the original
23, 697 German→English corpus (- images). These ad-
ditional synthetic data (including images) are added to
the original’s 23, 697 triples and used in our translation
experiments. We do not include the back-translated
data set when training NMT models for re-ranking n-

Model Training data BLEU TER

PBSMT original + Multi30k 26.1 ↓ 0.0 54.9 ↓ 0.0

+ backtranslated 27.4 ↑ 1.3 55.4 ↑ 0.5

NMTt original + Multi30k 21.1 ↓ 0.0 60.0 ↓ 0.0

+ backtranslated 22.5 ↑ 1.4 58.0 ↓ 2.0

NMTm original + Multi30k 17.8 ↓ 0.0 62.2 ↓ 0.0

+ backtranslated 25.1 ↑ 7.3 55.5 ↓ 6.7

Improvements

NMTm vs. NMTt ↑ 2.3 ↓ 2.5

NMTm vs. SMTt ↓ 2.3 ↑ 0.6

Table 4: Comparative results with PBSMT, NMTt and
multi-modal models NMTm evaluated on eBay’s test
set. Best PBSMT and NMT results in bold.

best lists to be able to evaluate these two scenarios in-
dependently.

We evaluate our models quantitatively using
BLEU4 (Papineni et al., 2002) and TER (Snover et
al., 2006) and report statistical significance computed
using approximate randomisation with the Multeval
toolkit (Clark et al., 2011).

5 Results
In Table 4 we present quantitative results obtained with
the two text-only baselines SMT and NMTt and one
multi-modal model NMTm.

It is clear that the gains from adding more data are
much more apparent to the multi-modal NMTm model
than to the two text-only ones. This can be attributed
to the fact that this model has access to more data,
i.e. image features, and consequently can learn bet-
ter representations derived from them. The PBSMT
model’s improvements are inconsistent; its TER score
even deteriorates by 0.5 with the additional data. The
same does not happen with the NMT models, which
both (text-only and multi-modal) benefit from the ad-
ditional data. Model NMTm’s gains are more than 3×
larger than that of models NMTt and SMT, indicat-
ing that they can properly exploit the additional data.
Nevertheless, even with the added back-translated data,
model NMTm still falls behind the PBSMT model both
in terms of BLEU and TER, although it seems to be
catching up as the data size increases.

In Table 5, we show results for re-ranking 10- and
100-best lists generated by eBay’s PBSMT production
system. This system was trained with additional data
sampled from out-of-domain corpora and also includes
extra features and optimizations. Its BLEU score on the
eBay test set is 29.0. Nevertheless, we still observe im-
provements in rescoring of n-best lists from this system
using our “weaker” NMT models. When n = 10, both
models NMTt and NMTm significantly improve the
baseline in terms of TER, with model NMTm perform-
ing slightly better. With larger lists (n = 100), it seems
that both neural models have more difficulty to re-rank.
Nonetheless, in this scenario model NMTm still sig-
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Model Training data N BLEU oracle TER oracle Translation length

baseline — 29.0 — 53.0 — 13.60 ±2.59

NMTt 100k in-domain 10 29.3 ↑ 0.3 35.4 52.4 † ↓ 0.6 46.4 13.48 ±2.59
NMTm orig. + Multi30k 10 29.4 ↑ 0.4 35.4 52.1 † ↓ 0.9 46.4 13.41 ±2.58

NMTt 100k in-domain 100 28.9 ↓ 0.1 42.2 53.6 † ↑ 0.6 41.0 13.80 ±2.67
NMTm orig. + Multi30k 100 28.9 ↓ 0.1 42.2 52.4 † ↓ 0.6 41.0 13.50 ±2.59

Table 5: Results for re-ranking n-best lists generated for eBay’s test set with text-only and multi-modal NMT
models. †Difference is statistically significant (p ≤ 0.05). Best individual results are underscored, best overall
results in bold. We also show the translation length for re-ranked n-best lists.

nificantly improves the MT quality in terms of TER,
while model NMTt shows differences in BLEU and
TER which are not statistically significant (p ≤ 0.05).
We note that model NMTm’s improvements in TER
are consistent across different n-best list sizes; model
NMTt’s improvements are not.

The best BLEU (= 29.4) and TER (= 52.1) scores
were achieved by model NMTm when applied to re-
rank 10-best lists, although model NMTm still im-
proves in terms of TER when n = 100. This suggests
that model NMTm can efficiently exploit the additional
multi-modal signals.

In order to check whether improvements observed
in TER could be due to a preference of text-only and
multi-modal NMT models for shorter sentences (Ta-
ble 5), we also computed the average length of transla-
tions for n-best lists re-ranked with each of our models,
and note that there is no significant difference between
the length of translations for the baseline and the re-
ranked models.

6 Related work
NMT has been successfully tackled by different groups
using the sequence-to-sequence framework (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014). However, multi-modal MT has
just recently been addressed by the MT community in
a shared task (Specia et al., 2016). In NMT, Bahdanau
et al. (2015) first proposed to use an attention mecha-
nism in the decoder. Their decoder learns to attend to
the relevant source-language words as it generates each
word of the target sentence. Since then, many authors
have proposed different ways to incorporate attention
into MT (Luong et al., 2015; Firat et al., 2016; Tu et
al., 2016).

In the context of image description generation
(IDG), Vinyals et al. (2015) proposed an influential
neural IDG model based on the sequence-to-sequence
framework and trained end-to-end. Elliott et al. (2015)
put forward a model to generate multilingual descrip-
tions of images by learning and transferring features
between two independent, non-attentive neural image
description models. Finally, Xu et al. (2015) proposed
an attention-based model where a model learns to at-
tend to specific areas of an image representation as it

generates its description in natural language with a soft-
attention mechanism.

Although no purely neural multi-modal model to
date has significantly improved on both text-only NMT
and SMT models on the Multi30k data set (Specia et
al., 2016), different research groups have proposed to
include images in re-ranking n-best lists generated by
an SMT system or directly in a NMT framework with
some success (Caglayan et al., 2016; Calixto et al.,
2016; Huang et al., 2016; Libovický et al., 2016; Shah
et al., 2016).

To the best of our knowledge, we are the first to study
multi-modal NMT applied to the translation of product
listings, i.e. for the e-commerce domain.

7 Conclusions and Future work

In this paper, we investigate the potential impact of
multi-modal NMT in the context of e-commerce prod-
uct listings. With only a limited amount of multi-
modal and multilingual training data available, both
text-only and multi-modal NMT models still fail to out-
perform a productive SMT system, contrary to recent
findings (Bentivogli et al., 2016). However, the intro-
duction of back-translated data leads to substantial im-
provements, especially to a multi-modal NMT model.
This seems to be an interesting approach that we will
continue to explore in future work.

We also found that NMT models trained on small
in-domain data sets can still be successfully used to
rescore a standard PBSMT system with significant im-
provements in TER. Since we know from our experi-
ments with LM perplexities that these are very high for
e-commerce data. i.e. fluency is quite low, it seems
fitting that BLEU scores do not improve as much. In
future work, we will also conduct a human evaluation
of the translations generated by the various systems.
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Abstract

Most existing models for multilingual nat-
ural language processing (NLP) treat lan-
guage as a discrete category, and make
predictions for either one language or the
other. In contrast, we propose using
continuous vector representations of lan-
guage. We show that these can be learned
efficiently with a character-based neural
language model, and used to improve in-
ference about language varieties not seen
during training. In experiments with 1303
Bible translations into 990 different lan-
guages, we empirically explore the ca-
pacity of multilingual language models,
and also show that the language vectors
capture genetic relationships between lan-
guages.

1 Introduction

Neural language models (Bengio et al., 2003;
Mikolov et al., 2010; Sundermeyer et al., 2012)
have become an essential component in several ar-
eas of natural language processing (NLP), such as
machine translation, speech recognition and im-
age captioning. They have also become a common
benchmarking application in machine learning re-
search on recurrent neural networks (RNN), be-
cause producing an accurate probabilistic model
of human language is a very challenging task
which requires all levels of linguistic analysis,
from pragmatics to phonology, to be taken into ac-
count.

A typical language model is trained on text in
a single language, and if one needs to model mul-
tiple languages the standard solution is to train a

∗Work done while the author was at the University of
Helsinki

separate model for each language. This presup-
poses large quantities of monolingual data in each
of the languages that needs to be covered and each
model with its parameters is completely indepen-
dent of any of the other models.

We propose instead to use a single model with
real-valued vectors to indicate the language used,
and to train this model with a large number of
languages. We thus get a language model whose
predictive distribution p(xt|x1...t−1, l) is a contin-
uous function of the language vector l, a property
that is trivially extended to other neural NLP mod-
els. In this paper, we explore the “language space”
containing these vectors, and in particular explore
what happens when we move beyond the points
representing the languages of the training corpus.

The motivation of combining languages into
one single model is at least two-fold: First of all,
languages are related and share many features and
properties, a fact that is ignored when using inde-
pendent models. The second motivation is data
sparseness, an issue that heavily influences the
reliability of data-driven models. Resources are
scarce for most languages in the world (and also
for most domains in otherwise well-supported lan-
guages), which makes it hard to train reasonable
parameters. By combining data from many lan-
guages, we hope to mitigate this issue.

In contrast to related work, we focus on mas-
sively multilingual data sets to cover for the first
time a substantial amount of the linguistic diver-
sity in the world in a project related to data-driven
language modeling. We do not presuppose any
prior knowledge about language similarities and
evolution and let the model discover relations on
its own purely by looking at the data. The only
supervision that is giving during training is a lan-
guage identifier as a one-hot encoding. From that
and the actual training examples, the system learns
dense vector representations for each language in-
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cluded in our data set along with the character-
level RNN parameters of the language model it-
self.

2 Related Work

Multilingual language models is not a new idea
(Fugen et al., 2003), the novelty of our work lies
primarily in the use of language vectors and the
empirical evaluation using nearly a thousand lan-
guages.

Concurrent with this work, Johnson et al. (2016)
conducted a study using neural machine transla-
tion (NMT), where a sub-word decoder is told
which language to generate by means of a special
language identifier token in the source sentence.
This is close to our model, although beyond a sim-
ple interpolation experiment (as in our Section 5.3)
they did not further explore the language vectors,
which would have been challenging to do given
the small number of languages used in their study.

Ammar et al. (2016) used one-hot language
identifiers as input to a multilingual word-based
dependency parser, based on multilingual word
embeddings. Given that they report this result-
ing in higher accuracy than using features from a
typological database, it is a reasonable guess that
their system learned language vectors which were
able to encode syntactic properties relevant to the
task. Unfortunately, they also did not look closer
at the language vector space, which would have
been interesting given the relatively large and di-
verse sample of languages represented in the Uni-
versal Dependencies treebanks.

Our evaluation in Section 5.2 calls to mind pre-
vious work on automatic language classification,
by Wichmann et al. (2010) among others. How-
ever, our purpose is not to detect genealogical re-
lationships, even though we use the strong correla-
tion between such classifications and our language
vectors as evidence that the vector space captures
sensible information about languages.

3 Data

We base our experiments on a large collection of
Bible translations crawled from the web, coming
from various sources and periods of times. Any
other multilingual data collection would work as
well, but with the selected corpus we have the ad-
vantage that we cover the same genre and roughly
the same coverage for each language involved. It
is also easy to divide the data into training and test
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Figure 1: Schematic of our model. The three parts
of the language vector are concatenated with the
inputs to the two LSTM:s and the final softmax
layer.

sets by using Bible verse numbers, which allows
us to control for semantic similarity between lan-
guages in a way that would have been difficult in
a corpus that is not multi-parallel. Altogether we
have 1,303 translations in 990 languages that we
can use for our purposes. These were chosen so
that the model alphabet size is below 1000 sym-
bols, which was satisfied by choosing only trans-
lations in Latin, Cyrillic or Greek script.

Certainly, there are disadvantages as well, such
as the limited size (roughly 500 million tokens in
total, with most languages having only one trans-
lation of the New Testament each, with roughly
200 thousand tokens), the narrow domain and the
high overlap of named entities. The latter can lead
to some unexpected effects when using nonsensi-
cal language vectors, as the model will then gen-
erate a sequence of random names.

The corpus deviates in some ways from an
ideal multi-parallel corpus. Most translations are
of the complete New Testament, whereas around
300 also contain the Old Testament (thus several
times longer), and around ten contain only por-
tions of the New Testament. Additionally, several
languages have multiple translations, which are
then concatenated. These translations may vary in
age and style, but historical versions of languages
(with their own ISO 639-3 code) are treated as dis-
tinct languages. During training we enforce a uni-
form distribution between languages when select-
ing training examples.
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4 Methods

Our model is based on a standard stacked
character-based LSTM (Hochreiter and Schmid-
huber, 1997) with two layers, followed by a hid-
den layer and a final output layer with softmax ac-
tivations. The only modification made to accom-
modate the fact that we train the model with text
in nearly a thousand languages, rather than one,
is that language embedding vectors are concate-
nated to the inputs of the LSTMs at each time step
and the hidden layer before the softmax. We used
three separate embeddings for these levels, in an
attempt to capture different types of information
about languages.1 The model structure is summa-
rized in Figure 1.

In our experiments we use 1024-dimensional
LSTMs, 128-dimensional character embeddings,
and 64-dimensional language embeddings. Layer
normalization (Ba et al., 2016) is used, but no
dropout or other regularization since the amount
of data is very large (about 3 billion characters)
and training examples are seen at most twice. For
smaller models early stopping is used. We use
Adam (Kingma and Ba, 2015) for optimization.
Training takes between an hour and a few days on
a K40 GPU, depending on the data size.

5 Results

In this section, we present several experiments
with the model described. For exploring the lan-
guage vector space, we use hierarchical agglomer-
ative clustering for visualization. For measuring
performance, we use cross-entropy on held out-
data. For this, we use a set of the 128 most com-
monly translated Bible verses, to ensure that the
held-out set is as large and overlapping as possible
among languages.

5.1 Model capacity

Our first experiment tries to answer what happens
when more and more languages are added to the
model. There are two settings: adding languages
in a random order, or adding the most closely re-
lated languages first. Cross-entropy plots for these
settings are shown in Figure 2 and Figure 3.

In both cases, the model degrades gracefully (or
even improves) for a number of languages, but
then degrades linearly (i.e. exponential growth of

1The embeddings at the different levels are different, but
we did not see any systematic variation. We also found that
using the same embedding everywhere gives similar results.
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perplexity) with exponentially increasing number
of languages.

For comparison, Figure 4 compares this to the
effect of decreasing the number of parameters in
the LSTM by successively halving the hidden state
size.2 Here the behavior is similar, but unlike the
Swedish model which got somewhat better when
closely related languages were added, the increase
in cross-entropy is monotone. It would be inter-
esting to investigate how the number of model
parameters needs to be scaled up in order to ac-
commodate the additional languages, but unfortu-
nately the computational resources for such an ex-
periment increases with the number of languages
and would not be practical to carry out with our
current equipment.

5.2 Structure of the language space
We now take a look at the language vectors found
during training with the full model of 990 lan-
guages. Figure 5 shows a hierarchical clustering of
the subset of Germanic languages, which closely
matches the established genetic relationships in
this language family. While our experiments in-
dicate that finding more remote relationships (say,
connecting the Germanic languages to the Celtic)
is difficult for the model, it is clear that the lan-
guage vectors preserves similarity properties be-
tween languages.

In additional experiments we found the overall
structure of these clusterings to be relatively sta-
ble across models, but for very similar languages
(such as Danish and the two varieties of Norwe-
gian) the hierarchy might differ, and the some
holds for languages or groups that are significantly
different from the major groups. An example from
Figure 5 is English, which is traditionally clas-
sified as a West Germanic language with strong
influences from North Germanic as well as Ro-
mance languages. In the figure English is (weakly)
grouped with the West Germanic languages, but
in other experiments it is instead weakly grouped
with North Germanic.

5.3 Generating Text
Since our language model is conditioned on a lan-
guage vector, we can gain some intuitive under-
standing of the language space by generating text
from different points in it. These points could be

2Note that two curves are given, one counting all model
parameters and one counting only the LSTM parameters. The
latter dominates the model size for large hidden states.
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Figure 5: Hierarchical clustering of language vec-
tors of Germanic languages.
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Figure 6: Cross-entropy of interpolated language
models for English and German measured on En-
glish held-out text.

either one of the vectors learned during training,
or some arbitrary other point. Table 1 shows text
samples from different points along the line be-
tween Modern English [eng] and Middle English
[enm]. Consistent with the results of Johnson et al.
(2016), it appears that the interesting region lies
rather close to 0.5. Compare also to our Figure 6,
which shows that up until about a third of the way
between English and German, the language model
is nearly perfectly tuned to English.

5.4 Mixing and Interpolating Between
Languages

By means of cross-entropy, we can also visualize
the relation between languages in the multilingual
space. Figure 6 plots the interpolation results for
two relatively dissimilar languages, English and
German. As expected, once the language vector
moves too close to the German one, model perfor-
mance drops drastically.

More interesting results can be obtained if
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Figure 7: Cross-entropy of interpolated language
models for modern and middle English tested on
data from the King James Bible.

we interpolate between two language variants
and compute cross-entropy of a text that repre-
sents an intermediate form. Figure 7 shows the
cross-entropy of the King James Version of the
Bible (published 1611), when interpolating be-
tween Modern English (1500–) and Middle En-
glish (1050–1500). The optimal point turns out
to be close to the midway point between them.

5.5 Language identification
If we have a sample of an unknown language or
language variant, it is possible to estimate its lan-
guage vector by backpropagating through the lan-
guage model with all parameters except the lan-
guage vector fixed.3 We found that a very small set
of sentences is enough to give a considerable im-
provement in cross-entropy on held-out sentences.
In this experiment, we used 32 sentences from the
King James Version of the Bible. Using the re-
sulting language vector, test set cross-entropy im-
proved from 1.39 (using the Modern English lan-
guage vector as initial value) to 1.35. This is com-
parable to the result obtained in Section 5.4, ex-
cept that here we do not restrict the search space
to points on a straight line between two language
vectors.

6 Conclusions

We have shown that language vectors, dense vec-
tor representations of natural languages, can be

3In practice, using error backpropagation is too computa-
tionally expensive for most applications, and we use it here
because it requires only minimal modifications to our model.
A more reasonable method could be to train a separate lan-
guage vector encoder network.

Table 1: Examples generated by interpolating be-
tween Modern English and Middle English.

% Random sample
(temperature parameter τ = 0.5)

30 and thei schulen go in to alle these thingis, and
schalt endure bothe in the weie

40 and there was a certaine other person who was called
in a dreame that he went into a mountaine.

44 and the second sacrifice, and the father, and the
prophet, shall be given to it.

48 and god sayd, i am the light of the world, and the
powers of the enemies of the most high god may
find first for many.

50 but if there be some of the seruants, and to all the
people, and the angels of god, and the prophets

52 then he came to the gate of the city, and the bread
was to be brought

56 therefore, behold, i will lose the sound of my soul,
and i will not fight it into the land of egypt

60 and the man whom the son of man is born of god,
so have i therefore already sent to the good news of
christ.

learned efficiently from raw text and possess sev-
eral interesting properties. First, they capture lan-
guage similarity to the extent that language family
trees can be reconstructed by clustering the vec-
tors. Second, they allow us to interpolate between
languages in a sensible way, and even allow adopt-
ing the model using a very small set of text, simply
by optimizing the language vector.
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Abstract
We address for the first time unsupervised
training for a translation task with hun-
dreds of thousands of vocabulary words.
We scale up the expectation-maximization
(EM) algorithm to learn a large translation
table without any parallel text or seed lex-
icon. First, we solve the memory bottle-
neck and enforce the sparsity with a sim-
ple thresholding scheme for the lexicon.
Second, we initialize the lexicon training
with word classes, which efficiently boosts
the performance. Our methods produced
promising results on two large-scale unsu-
pervised translation tasks.

1 Introduction

Statistical machine translation (SMT) heavily re-
lies on parallel text to train translation models with
supervised learning. Unfortunately, parallel train-
ing data is scarce for most language pairs, where
an alternative learning formalism is highly in need.

In contrast, there is a virtually unlimited amount
of monolingual data available for most languages.
Based on this fact, we define a basic unsupervised
learning problem for SMT as follows; given only
a source text of arbitrary length and a target side
LM, which is built from a huge target monolingual
corpus, we are to learn translation probabilities of
all possible source-target word pairs.

We solve this problem using the EM algorithm,
updating the translation hypothesis of the source
text over the iterations. In a very large vocabulary
setup, the algorithm has two fundamental prob-
lems: 1) A full lexicon table is too large to keep in
memory during the training. 2) A search space for
hypotheses grows exponentially with the vocabu-
lary size, where both memory and time require-
ments for the forward-backward step explode.

For this condition, it is unclear how the lexi-
con can be efficiently represented and whether the
training procedure will work and converge prop-
erly. This paper answers these questions by 1)
filtering out unlikely lexicon entries according to
the training progress and 2) using word classes to
learn a stable starting point for the training. For
the first time, we eventually enabled the EM al-
gorithm to translate 100k-vocabulary text in an
unsupervised way, achieving 54.2% accuracy on
EUROPARL Spanish→English task and 32.2% on
IWSLT 2014 Romanian→English task.

2 Related Work

Early work on unsupervised sequence learning
was mainly for deterministic decipherment, a
combinatorial problem of matching input-output
symbols with 1:1 or homophonic assumption
(Knight et al., 2006; Ravi and Knight, 2011a;
Nuhn et al., 2013). Probabilistic decipherment
relaxes this assumption to allow many-to-many
mapping, while the vocabulary is usually limited
to a few thousand types (Nuhn et al., 2012; Dou
and Knight, 2013; Nuhn and Ney, 2014; Dou et
al., 2015).

There has been several attempts to improve the
scalability of decipherment methods, which are
however not applicable to 100k-vocabulary trans-
lation scenarios. For EM-based decipherment,
Nuhn et al. (2012) and Nuhn and Ney (2014)
accelerate hypothesis expansions but do not ex-
plicitly solve the memory issue for a large lexi-
con table. Count-based Bayesian inference (Dou
and Knight, 2012; Dou and Knight, 2013; Dou
et al., 2015) loses all context information beyond
bigrams for the sake of efficiency; it is therefore
particularly effective in contextless deterministic
ciphers or in inducing an auxiliary lexicon for su-
pervised SMT. Ravi (2013) uses binary hashing to
quicken the Bayesian sampling procedure, which
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yet shows poor performance in large-scale experi-
ments.

Our problem is also related to unsupervised tag-
ging with hidden Markov model (HMM). To the
best of our knowledge, there is no published work
on HMM training for a 100k-size discrete space.
HMM taggers are often integrated with sparse
priors (Goldwater and Griffiths, 2007; Johnson,
2007), which is not readily possible in a large vo-
cabulary setting due to the memory bottleneck.

Learning a good initialization on a smaller
model is inspired by Och and Ney (2003) and
Knight et al. (2006). Word classes have been
widely used in SMT literature as factors in trans-
lation (Koehn and Hoang, 2007; Rishøj and
Søgaard, 2011) or smoothing space of model com-
ponents (Wuebker et al., 2013; Kim et al., 2016).

3 Baseline Framework

Unsupervised learning is yet computationally de-
manding to solve general translation tasks includ-
ing reordering or phrase translation. Instead, we
take a simpler task which assumes 1:1 monotone
alignment between source and target words. This
is a good initial test bed for unsupervised transla-
tion, where we remove the reordering problem and
focus on the lexicon training.

Here is how we set up our unsupervised task:
We rearranged the source words of a parallel
corpus to be monotonically aligned to the target
words and removed multi-aligned or unaligned
words, according to the learned word alignments.
The corpus was then divided into two parts, using
the source text of the first part as an input (fN

1 ) and
the target text of the second part as LM training
data. In the end, we are given only monolingual
part of each side which is not sentence-aligned.
The statistics of the preprocessed corpora for our
experiments are given in Table 1.

Source Target
Task (Input) (LM)

EUTRANS Run. Words 85k 4.2M
es-en Vocab. 677 505

EUROPARL Run. Words 2.7M 42.9M
es-en Vocab. 32k 96k

IWSLT Run. Words 2.8M 13.7M
ro-en Vocab. 99k 114k

Table 1: Corpus statistics.

To evaluate a translation output êN1 , we use
token-level accuracy (Acc.):

Acc. =

N∑
n=1

[ên = rn]

N
(1)

where rN
1 is the reference output which is the tar-

get text of the first division of the corpus. It aggre-
gates all true/false decisions on each word posi-
tion, comparing the hypothesis with the reference.
This can be regarded as the inverse of word er-
ror rate (WER) without insertions and deletions.
It is simple to understand and nicely fits to our
reordering-free task.

In the following, we describe a baseline method
to solve this task. For more details, we refer the
reader to Schamper (2015).

3.1 Model
We adopt a noisy-channel approach to define a
joint probability of fN

1 and eN1 as follows:

p(eN1 , f
N
1 ) =

N∏
n=1

p(en|en−1
n−m+1) p(fn|en) (2)

which is composed of a pre-trained m-gram target
LM and a word-to-word translation model. The
translation model is parametrized by a full table
over the entire source and target vocabularies:

p(f |e) = θf |e (3)

with normalization constraints ∀e
∑

f θf |e = 1.
Having this model, the best hypothesis êN1 is ob-
tained by the Viterbi decoding.

3.2 Training
To learn the lexicon parameters {θ}, we use max-
imum likelihood estimation. Since a reference
translation is not given, we treat eN1 as a latent
variable and use the EM algorithm (Dempster et
al., 1977) to train the lexicon model. The update
equation for each maximization step (M-step) of
the algorithm is:

θ̂f |e =

∑
n: fn=f

pn(e|fN
1 )∑

f ′

∑
n′: fn′=f ′

pn′(e|fN
1 )

(4)

with pn(e|fN
1 ) =

∑
eN
1 :en=e p(e

N
1 |fN

1 ). This
quantity is computed by the forward-backward al-
gorithm in the expectation step (E-step).
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4 Sparse Lexicon

Loading a full table lexicon (Equation 3) is infea-
sible for very large vocabularies. As only a few
f ’s may be eligible translations of a target word e,
we propose a new lexicon model which keeps only
those entries with a probability of at least τ :

F(e) = {f | θ̂f |e ≥ τ} (5)

psp(f |e) =


θ̂f |e∑

f ′∈F(e)

θ̂f ′|e
if f ∈ F(e)

0 otherwise

(6)

We call this model sparse lexicon, because only a
small percentage of full lexicon is active, i.e. has
nonzero probability.

The thresholding by τ allows flexibility in
the number of active entries over different target
words. If e has little translation ambiguity, i.e.
probability mass of θf |e is concentrated at only a
few f ’s, psp(f |e) occupies smaller memory than
other more ambiguous target words. For each M-
step update, it reduces its size on the fly as we
learn sparser E-step posteriors.

However, the sparse lexicon might exclude po-
tentially important entries in early training itera-
tions, when the posterior estimation is still not re-
liable. Once an entry has zero probability, it can
never be recovered by the EM algorithm after-
wards. A naive workaround is to adjust the thresh-
old during the training, but it does not actually help
for the performance in our internal experiments.

To give a chance to zero-probability translations
throughout the training, we smooth the sparse lex-
icon with a backoff model pbo(f):

p(f |e) = λ · psp(f |e) + (1− λ) · pbo(f) (7)

where λ is the interpolation parameter. As a back-
off model, we use uniform distribution, unigram
of source words, or Kneser-Ney lower order model
(Kneser and Ney, 1995; Foster et al., 2006).

In Table 2, we illustrate the effect of the sparse
lexicon with EUTRANS Spanish→English task
(Amengual et al., 1996), comparing to the existing
EM decipherment approach (full lexicon). By set-
ting the threshold small enough (τ = 0.001), the
sparse lexicon surpasses the performance of the
full lexicon, while the number of active entries, for
which memory is actually allocated, is greatly re-
duced. For the backoff, the uniform model shows

Acc. Active
Lexicon τ pbo [%] Entries [%]

Full - - 70.2 100

Sparse

0.01
Uniform

64.0 1.1
0.005 69.0 2.7
0.001 71.8 6.3

0.001
Unigram 71.3 6.2

Kneser-Ney 71.4 6.4

Table 2: Sparse lexicon with different threshold
values and backoff models (λ = 0.99). Initialized
with uniform distributions and trained for 50 iter-
ations with a bigram LM. No pruning is applied.

the best performance, which requires no additional
memory. The time complexity is not increased by
using the new lexicon.

We also study the mutual effect of τ and λ (Fig-
ure 1). For a larger τ (circles), where many entries
are cut out from the lexicon, the best-performing
λ gets smaller (λ = 0.1). In contrast, when we
lower the threshold enough (squares), the perfor-
mance is more robust to the change of λ, while
a higher weight on the trained lexicon (λ = 0.7)
works best. This means that, the higher the thresh-
old is set, the more information we lose and the
backoff model plays a bigger role, and vice versa.
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Figure 1: Relation between sparse lexicon param-
eters (EUROPARL Spanish→English task).

The idea of filtering and smoothing parameters
in the EM training is relevant to Deligne and Bim-
bot (1995) and Marcu and Wong (2002). They
leave out a fixed set of parameters for the whole
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training process, while we update trainable param-
eters for every iteration. Nuhn and Ney (2014)
also perform an analogous smoothing but with-
out filtering, only to moderate the lattice pruning.
Note that our work is distinct from the conven-
tional pruning of translation tables in supervised
SMT which is applied after the entire training.

5 Initialization Using Word Classes

Apart from the memory problem, it is inevitable to
apply pruning in the forward-backward algorithm
for runtime efficiency. The pruning in early itera-
tions, however, may drop chances to find a better
optimum in later stage of training. One might sug-
gest to prune only for later iterations, but for large
vocabularies, a single non-pruned E-step can blow
up the total training time.

We rather stabilize the training by a proper ini-
tialization of the parameters, so that the training is
less worsened by early pruning. We learn an initial
lexicon on automatically clustered word classes
(Martin et al., 1998), following these steps:

1. Estimate word-class mappings on both sides
(Csrc, Ctgt)

2. Replace each word in the corpus with its class

f 7→ Csrc(f)
e 7→ Ctgt(e)

3. Train a class-to-class full lexicon with a tar-
get class LM

4. Convert 3 to an unnormalized word lexicon
by mapping each class back to its member
words

∀(f, e) q(f |e) := p(Csrc(f)| Ctgt(e))

5. Apply the thresholding on 4 and renormalize
(Equation 6)

where all f ’s in an implausible source class are
left out together from the lexicon. The resulting
distribution psp(f |e) is identical for all e’s in the
same target class.

Word classes group words by syntactic or se-
mantic similarity (Brown et al., 1992), which
serve as a reasonable approximation of the orig-
inal word vocabulary. They are especially suitable
for large vocabulary data, because one can arbi-
trarily choose the number of classes to be very
small; learning a class lexicon can thus be much
more efficient than learning a word lexicon.

Initialization Acc. [%]

Uniform 63.7

#Classes Class LM

Word
Classes

25 2-gram 67.4
50 2-gram 69.1
100 2-gram 72.1
50 3-gram 76.0
50 4-gram 76.2

Table 3: Sparse lexicon with word class initial-
ization (τ = 0.001, λ = 0.99, uniform backoff).
Pruning is applied with histogram size 10.

Table 3 shows that translation quality is con-
sistently enhanced by the word class initializa-
tion, which compensates the performance loss
caused by harsh pruning. With a larger number
of classes, we have a more precise pre-estimate
of the sparse lexicon and thus have more perfor-
mance gain. Due to the small vocabulary size,
we are comfortable to use higher order class LM,
which yields even better accuracy, outperforming
the non-pruned results of Table 2. The mem-
ory and time requirements are only marginally af-
fected by the class lexicon training.

Empirically, we find that the word classes do
not really distinguish different conjugations of
verbs or nouns. Even if we increase the number
of classes, they tend to subdivide the vocabulary
more based on semantics, keeping morphological
variations of a word in the same class. From this
fact, we argue that the word class initialization can
be generally useful for language pairs with differ-
ent roots. We also emphasize that word classes are
estimated without any model training or language-
specific annotations. This is a clear advantage for
unknown/historic languages, where the unsuper-
vised translation is indeed in need.

6 Large Vocabulary Experiments

We applied two proposed techniques to EU-
ROPARL Spanish→English corpus (Koehn, 2005)
and IWSLT 2014 Romanian→English TED talk
corpus (Cettolo et al., 2012). In the EUROPARL

data, we left out long sentences with more than
25 words and sentences with singletons. For the
IWSLT data, we extended the LM training part
with news commentary corpus from WMT 2016
shared tasks.

We learned the initial lexicons on 100 classes
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for both sides, using 4-gram class LMs with 50
EM iterations. The sparse lexicons were trained
with trigram LMs for 100 iterations (τ = 10−6,
λ = 0.15). For further speedup, we applied per-
position pruning with histogram size 50 and the
preselection method of Nuhn and Ney (2014) with
lexical beam size 5 and LM beam size 50. All our
experiments were carried out with the UNRAVEL

toolkit (Nuhn et al., 2015).
Table 4 summarizes the results. The supervised

learning scores were obtained by decoding with an
optimal lexicon estimated from the input text and
its reference. Our methods achieve significantly
high accuracy with only less than 0.1% of mem-
ory for the full lexicon. Note that using conven-
tional decipherment methods is impossible to con-
duct these scales of experiments.

Acc. [%]

Task Supervised Unsupervised Lex. Size [%]

es-en 77.5 54.2 0.06
ro-en 72.3 32.2 0.03

Table 4: Large vocabulary translation results.

7 Conclusion and Future Work

This paper has shown the first promising results
on 100k-vocabulary translation with no bilingual
data. To facilitate this, we proposed the sparse
lexicon, which effectively emphasizes the multi-
nomial sparsity and minimizes its memory usage
throughout the training. In addition, we described
how to learn an initial lexicon on word class vo-
cabulary for a robust training. Note that one can
optimize the performance to a given computing
environment by tuning the lexicon threshold, the
number of classes, and the class LM order.

Nonetheless, we still observe a substantial dif-
ference in performance between supervised and
unsupervised learning for large vocabulary trans-
lation. We will exploit more powerful LMs and
more input text to see if this gap can be closed.
This may require a strong approximation with re-
spect to numerous LM states along with an online
algorithm.

As a long term goal, we plan to relax constraints
on word alignments to make our framework usable
for more realistic translation scenarios. The first
step would be modeling local reorderings such as
insertions, deletions, and/or local swaps (Ravi and

Knight, 2011b; Nuhn et al., 2012). Note that
the idea of thresholding in the sparse lexicon is
also applicable to any normalized model compo-
nents. When the reordering model is lexicalized,
the word class initialization may also be helpful
for a stable training.
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Abstract

This paper presents a straightforward
method to integrate co-reference informa-
tion into phrase-based machine translation
to address the problems of i) elided sub-
jects and ii) morphological underspecifi-
cation of pronouns when translating from
pro-drop languages. We evaluate the
method for the language pair Spanish-
English and find that translation quality
improves with the addition of co-reference
information.

1 Introduction

When translating from so called pro-drop lan-
guages, such as Spanish or Italian, to a language
that requires subject pronouns for a grammatical
sentence, the elided subjects are difficult or even
impossible to translate correctly without proper
co-reference resolution. Since standard statisti-
cal MT systems generally do not integrate co-
reference resolution, they cannot make an in-
formed decision concerning the subject pronoun
to be used in the translation. Sometimes, the out-
put will have no pronoun at all, resulting in an
ungrammatical sentence, other times it will con-
tain the wrong pronoun, resulting in a grammatical
translation, but with a wrong meaning.

With English as the target language, the task of
assigning the correct gender to pronouns is some-
what simplified due to the fact that the gender dis-
tinction is only relevant for persons, and people do
not change their gender when translating from one
language to another. We can thus directly annotate
the source text with the morphological informa-
tion retrieved through co-reference resolution.

While we demonstrate the usefulness of the
method for translating Spanish to English, we be-
lieve it to be applicable to other language pairs

where the target language has no gender distinc-
tion with respect to common nouns.

2 Co-Reference Resolution for
Null-Subjects in Spanish

For our experiments, we adapt the co-reference
resolver CorZu (Tuggener, 2016) from German
to Spanish. The incremental entity-mention ar-
chitecture of the system enforces morphological
consistency in the co-reference chains, which en-
sures that all mentions of an entity carry the same
gender. This is a benefit for our approach, since
conflicting gender information in a co-reference
chain on the Spanish side makes it impossible to
insert a consistent morphological annotation for
the translation. Our adaption of CorZu adds finite
verbs to the set of the commonly used markables
in co-reference resolution (i.e. nouns, named enti-
ties, and pronouns) using linguistically motivated
heuristics that determine for each encountered fi-
nite verb whether it has an elided subject. If an
elided subject is detected, the verb is added to the
markables. Once a verb has been resolved to an
antecedent co-reference chain, the gender of its
elided subject is determined by the other mentions
in the chain which feature unambiguous gender
(e.g. singular common nouns or named entities).

We use FreeLing for tokenization and morpho-
logical analysis1, a CRF model2 for tagging and
MaltParser3 for parsing. The tagger, the parser,
and the weights for CorZu are trained on a slightly
adapted version of the AnCora treebank (Taulé et
al., 2008). Modifications include e.g. the tokeniza-
tion of certain multi-word tokens in AnCora, such
as dates (el 14 de octubre → el 14 de octubre).
Another adjustment concerns null subjects: In the

1http://nlp.lsi.upc.edu/freeling/
2https://wapiti.limsi.fr/
3http://www.maltparser.org/
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original CoNLL files, these are marked by place-
holders that depend on the verb. Since we do not
have a pre-processing tool to insert such place-
holders, we remove them before training the parser
and the co-reference system. The PoS tags4 pro-
duced by our pipeline contain the full morphologi-
cal information of the words, and in case of proper
names, a category label that distinguishes between
person, location, organization or other.

elided subj. poss. pronoun MELA

CorZu 65.32 72.28 43.34
Sucre 61.71 73.61 39.26

Table 1: Co-reference performance (F1)

We evaluate our adaptation of CorZu on the Se-
mEval 2010 shared task data set5 which features
co-reference resolution for Spanish and compare
it to the best performing system of the task (Su-
cre). We show the MELA co-reference metric6

and the pairwise F1 scores for elided subjects and
possessive pronouns in Table 1, from which we
conclude that our adaption achieves satisfactory
performance.7

3 Dummy Subjects and Co-Reference
Annotations in MT

The main idea of our method is to apply co-
reference resolution to the source side and insert
a dummy subject that contains the relevant mor-
phological information in cases where we detect
an elided subject. Doing so, we signal to the SMT
system that a pronoun should be inserted on the
target side and what gender it should bear. Sim-
ilarly, we use the morphological information in-
ferred by the co-reference analysis to annotate un-
derspecified possessive pronouns to promote the
correct gender-specified pronoun in the transla-
tion.

Our method proceeds as follows. We first iden-
tify finite verbs that have an elided subject on the
source side and insert a dummy that contains mor-
phological information based on the co-reference
chains: dummy-she or dummy-he if the subject

4EAGLES tagset: https://talp-upc.gitbooks.
io/freeling-user-manual/content/tagsets.
html

5http://stel.ub.edu/semeval2010-coref/
6avg. of MUC, BCUB, and CEAFE co-reference metrics
7We removed singletons form the test set since they artifi-

cially boost results. Hence, the Sucre results are significantly
lower than those reported in SemEval 2010.

is a person and the co-reference chain indicates
feminine or masculine gender, and dummy-hum
if the co-reference chain is clearly a person, but
the gender is unknown. Furthermore, we dis-
tinguish between dummy-it in specific structures
that can never have a human subject (e.g. []
es posible que - “it is possible that”) and refer-
ential null-subjects that are not human (dummy-
nonhum). Plural forms do not require morpho-
logical information in English and we always use
dummy-they for them. Likewise, we insert dum-
mies without the need for co-reference resolution
for first and second person verb forms.

The insertion of subject dummies is not as
straightforward as it might seem: Subjects are
not formally distinguished from direct objects in
Spanish, unless the direct object is a person. This
makes it hard for the parser to label subjects cor-
rectly, resulting in a relatively unreliable labelling
of subjects.8 To avoid inserting too many dum-
mies, we use a set of heuristics, e.g. if a verb has
two child nodes labelled as direct objects, we as-
sume that one of them is actually the subject.

Furthermore, we annotate the possessive pro-
nouns su and sus with the morphological informa-
tion of the possessor identified by the co-reference
system. In Spanish, the plural of the posses-
sive expresses the number of the possessed object,
whereas in English, the possessive pronoun indi-
cates gender and number of the possessor. Both
su and sus can thus be translated as either his, her,
its or their. Finally, we use Moses (Koehn et al.,
2007) to train a phrase-based model on the anno-
tated data.

3.1 Experiments
The corpus for our experiments consists of the
Spanish-English part of the news commentary
texts from 2011 (NC11).9 In order to have as
many dummy subjects and annotated possessive
pronouns as possible in our data, we extracted a
subset of 90,000 sentences of the NC11 corpus ac-
cording to their co-reference annotations. We ran-
domly split this subset for training (83,000), tun-
ing (2,000) and testing (5,000) (the random test set
in Table 4).

8Evaluated on a test set of 1,000 sentences of the AnCora
treebank (Taulé et al., 2008), our parser achieves 86.87 recall
on the label suj, which in turn means that more than 10%
of subjects have the wrong label and/or are attached to the
wrong head.

9available from the OPUS website: http://opus.
lingfil.uu.se/
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es en P (en|es) es en P (en|es)

dummy-he
he 0.317

su-masc-sg
his 0.532

NULL 0.188 its 0.136
it 0.126 their 0.110

dummy-she

NULL 0.277
su-fem-sg

her 0.370
she 0.245 his 0.179
it 0.114 its 0.144
he 0.082 their 0.109

dummy-it
it 0.317

su-nonhum-sg
its 0.489

is 0.168 their 0.185
NULL 0.126 NULL 0.103

Table 2: Lexical Alignment Probabilities

Table 2 illustrates the lexical translation prob-
abilities for third person dummies and annotated
possessive pronouns. The probability scores re-
flect how often the annotated forms have been
aligned to the supposedly correct pronouns in En-
glish. Due to the smaller number of feminine
forms compared to their masculine and neuter
counterparts,10 wrong co-reference links have a
relatively heavy impact on the alignment scores
for dummy-she → she and su-fem-sg → her:
dummy-she was in fact aligned more often to the
NULL token than to she.

In a first experiment, we trained a language
model on the entire corpus (minus test and tun-
ing data) plus the news commentary texts from
2010.11 However, due to the fact that feminine
forms occur much less frequently than masculine
and neuter forms in news text, we found that the
language model in some cases overruled the trans-
lation model, resulting in sentences where su-fem-
sg and dummy-she were translated with neuter or
masculine forms. In order to prevent this, we ex-
tracted a total of 7.2 million sentences with fem-
inine pronouns from the English LDC Gigaword
corpus12 as additional training material for the lan-
guage model. The addition of sentences with fem-
inine forms to the language model reduced the
number of feminine pronouns translated as mas-
culine or neuter.

However, we still observed cases where the
translation did not reflect the morphological anno-
tation in the source. We distinguish between cases

10His and he occur almost 20,000 times in the news com-
mentary 2011 corpus, whereas the corresponding feminine
pronouns amount to roughly 3,000.

11http://www.statmt.org/wmt14/
training-monolingual-news-crawl/

12https://catalog.ldc.upenn.edu/
LDC2007T07.

where a gendered form is translated with a neuter
form (e.g. dummy-she → it) and cases where a
gendered form is translated with the wrong gen-
der (e.g. dummy-she → he). In the former case,
if Moses outputs a neuter translation for a gen-
dered pronoun in the source, in most cases the co-
reference link was wrong. The language model is
quite reliable at correcting non-referential uses of
it, if the pronoun was part of a phrase that usu-
ally contains a neuter form. Therefore, we trust
Moses over the co-reference annotation in these
cases. For the second case on the other hand, if a
feminine form is translated with a masculine pro-
noun and vice versa, we trust the co-reference over
Moses and enforce the translation according to the
co-reference.

In addition to the large random test set, we used
3 texts from the news commentary corpus that
have many feminine pronouns for the evaluation.
The oracle experiment in Table 4 shows the BLEU
scores for these three texts if we insert the correct
co-reference links manually. Consider the exam-
ple in Table 3 with the annotated pronouns.

random text 1 text 2 text 313

Baseline 38.378 35.640 36.142 35.176
Autom. coref. 38.504 36.570 35.188 34.896
Oracle coref. – 37.326 39.260 36.436

Table 4: BLEU scores (average of 5 tuning runs)
with and without co-reference annotations

According to the evaluation in Table 4, insert-
ing co-reference annotations results in a small in-
crease in BLEU scores for the large random test
set and for some of the small test sets. However,

13
text 1: Mao’s China at 60 (47 sentences)
text 2: Merkel in China (35 sentences)
text 3: A Daughter of Dictatorship and Democracy (30 sentences)
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source: No obstante, la madre nunca se quejó, ya que dummy-she consideraba que los sacrificios de
su-fem-sg familia estaban justificados por la liberación y el ascenso de China. Hacia el fin de
su-fem-sg vida, su-fem-sg ánimo cambió.

reference: But the mother never complained. She believed that her family’s sacrifices were justified by
the liberation and rise of China. Towards the end of her life, this mood changed.

baseline: But the mother never complained, [] regarded the sacrifices of his family were warranted by the
release and the rise of China. Toward the end of his life, his mood changed.

co-references: But the mother never complained, she regarded the sacrifices her family were warranted by the
release and the rise of China. Toward the end of her life, her mood changed.

Table 3: Translation Example

in some cases, wrong co-reference links lead to
lower BLEU scores. In text 2 about German chan-
cellor Angela Merkel, the system failed to assign
a gender to some of the co-reference chains that
refer to her, and instead inserted the annotations
dummy-hum and su-hum. These have mostly been
translated with masculine forms. Text 3 is about
South Korean president Park Geun-Hye, however,
it also contains a paragraph about her father, Park
Chunk-Hee. Both are referred to as ’Park’ in the
text, and the co-reference system fails to recognize
two different persons in the local context. Some of
the references to the daughter have thus been an-
notated with masculine forms. The oracle scores
show the upper limit for improvement, had all co-
reference annotations been inserted correctly: be-
tween 1.3-3.1 BLEU points compared to the base-
line system.

3.2 APT: Accuracy of Pronoun Translation

APT (Werlen and Popescu-Belis, 2016) is a met-
ric to assess the quality of the translation of pro-
nouns. Instead of scoring the entire translation,
APT calculates the accuracy of the pronoun trans-
lations through word alignment of the source, the
hypothesis, and the reference translation. It needs
a list of pronouns, or in our case dummies, in the
source language, and will then check whether the
pronouns in the reference and the hypothesis are
equal or different. In the configuration we use,
only equal pronouns are considered as correct, i.e.
the case where either the hypothesis, the refer-
ence, or both do not contain a pronoun is scored
as wrong.

Since APT calculates the score on a list of given
pronouns, we can assess the performance of the

14Both baseline and co-reference enhanced version of
text 2 have five correct pronouns (three possessive and two
dummies each), but the correct pronouns are not identical.
Even though the APT score is the same for both versions, the
translations differ.

random text 1 text 2 text 3

total number of dummies: 4196 23 13 15
total number of su/sus: 1735 23 17 27

All pronouns:
Baseline 0.35 0.28 0.17 0.24
Autom. coref. 0.48 0.45 0.17 0.29
Oracle coref. - 0.67 0.67 0.67

Dummy subjects:
Baseline 0.28 0.26 0.15 0.13
Autom. coref. 0.43 0.43 0.15 0.27
Oracle coref. - 0.61 0.38 0.5

Poss. pronouns:
Baseline 0.51 0.30 0.18 0.3
Autom. coref. 0.58 0.43 0.18 0.3
Oracle coref. - 0.74 0.88 0.78

Table 5: APT scores14

translation on the subject dummies and the posses-
sive pronouns separately. Table 5 shows the APT
scores for the baseline and the annotated phrase-
based system.15 The oracle scores are never 100%
for two reasons: Some pronouns have no corre-
spondence in the reference translation (consider
the example in Table 3: su ánimo cambió → this
mood changed). Additionally, in some cases the
annotated pronouns were omitted in the translation
produced by Moses but present in the reference.
Since the oracle test sets only contain a small num-
ber of pronouns, these cases have a heavy impact
on the APT scores.

15Since the null-subjects in the baseline are empty, we in-
serted the dummies from the annotated source into the base-
line, but without morphological information (just dummy) in
order to calculate the APT score. This is not completely
clean, since we might miss some dummies while inserting
unnecessary ones if the parser did not recognize the subject.
We can only measure the APT score on the dummies we de-
tected for the experiments, but not the score on the real null-
subjects.
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4 Related Work

Integrating co-reference resolution in machine
translation systems has received attention from re-
search groups working on a wide range of lan-
guage pairs, cf. Hardmeier et al. (2015) and Guil-
lou et al. (2016).

Le Nagard and Koehn (2010) do not treat null
subjects, since they work on the language pair
English-French, but instead aim to improve the
translation of it and they. Their approach is simi-
lar to ours: They use a co-reference algorithm on
the English source side in order to find the corre-
sponding antecedents for the pronouns it and they,
and then insert gender annotations into the English
text. An important difference in their experiment
is that they cannot use the gender of the English
antecedent, but instead need the grammatical gen-
der of the French translation of said antecedent.
For the training data, the link to the French trans-
lation can be retrieved through the word alignment
files produced when training the baseline system,
whereas for testing, the authors rely on the im-
plicit word mapping performed during the transla-
tion process. However, the gain in correctly trans-
lated pronouns of the system trained with the gen-
der annotations for it and they is very small, due
to bad performance of the co-reference algorithm:
only 56% of the pronouns were labelled correctly.

Hardmeier and Federico (2010) use a co-
reference system on the input to their SMT sys-
tem and subsequently use this information as fol-
lows: If a sentence contains a mention that has
been recognized as an antecedent for a pronoun in
a later sentence, the translation of this mention is
extracted to be fed into the decoding process when
the sentence containing the pronoun is being trans-
lated. Instead of feeding the decoder the translated
antecedent, the authors use a morphological tagger
on the MT output to retrieve number and gender of
the antecedent and use this information for the de-
coding of the sentence with the pronoun.

Wang et al. (2016) present an approach to re-
store dropped pronouns in Chinese-English trans-
lations in two steps: Firstly, they train a Recur-
rent Neural Network (RNN) to predict the position
of elided pronouns in Chinese through the word
alignment information in Chinese-English paral-
lel corpora. In a second step, a Multi-Layer Per-
ceptron (MLP) decides which of the Chinese pro-
nouns should be inserted based on lexical and syn-
tactic features from the current and surrounding

sentences. The authors report an increase of up to
1.58 BLEU points over the standard phrase-based
baseline.

A different approach is presented by Luong and
Popescu-Belis (2016) for English-French machine
translation. They use an external co-reference sys-
tem for English to resolve the pronouns it and they
on the source side, which allows them to learn
the correlations of target side pronouns and the
morphological information from their supposed
antecedent. Phrases that contain it and they are
translated by a special co-reference aware model:
During decoding, the co-reference system pro-
vides the antecedents in the source text. The an-
tecedent on the target side is retrieved through
word alignment and a morphological analyzer for
French provides its gender and number. Further-
more, the additional model reflects the uncertainty
of the co-reference system by assigning the links
a confidence score. A manual evaluation shows
an improvement in the translation of it and they
compared to the baseline. See also Luong et al.
(2017) for more recent experiments with Spanish-
English.

5 Conclusions

The insertion of gendered dummies for null sub-
jects and the annotation of the ambiguous pro-
nouns su and sus on the Spanish source side results
in better translations. Even though the effect in
BLEU score is relatively small, the correct usage
of pronouns increases the understandability of the
translation considerably. The more fine-grained
evaluation with APT reveals a clear improvement
in the translation of the annotated pronouns (Table
5). As shown by the small oracle experiments with
manually inserted annotations, the potential for
improvement through co-reference resolution is
significant. However, pre-processing errors from
tagging, parsing, and the actual co-reference res-
olution reduce the effect somewhat, especially for
the less frequent feminine forms.
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Abstract

We propose a variant of Convolutional
Neural Network (CNN) models, the Atten-
tion CNN (ACNN); for large-scale catego-
rization of millions of Japanese items into
thirty-five product categories. Compared
to a state-of-the-art Gradient Boosted Tree
(GBT) classifier, the proposed model re-
duces training time from three weeks to
three days while maintaining more than
96% accuracy. Additionally, our proposed
model characterizes products by imputing
attentive focus on word tokens in a lan-
guage agnostic way. The attention words
have been observed to be semantically
highly correlated with the predicted cate-
gories and give us a choice of automatic
feature extraction for downstream process-
ing.

1 Introduction

E-commerce sites provide product catalogs with
millions of items that are continuously updated by
thousands of merchants. To list new products in an
e-commerce marketplace and expose them to on-
line users, merchants must supply several pieces
of meta-data. Rakuten Ichiba1 is an example of
such a large-scale e-commerce platform in Japan,
hosting more than 239 million products from over
44, 000 merchants. To improve search relevance
and catalog navigation, products must be catego-
rized into a taxonomy tree with thousands of nodes
several levels deep (e.g., 6 levels with more than
43, 000 nodes for Rakuten Ichiba).

For such a large taxonomy, manual item catego-
rization is often inaccurate and inconsistent across
merchants. Automatic categorization into a full
taxonomy tree is feasible, although a layered ap-
proach is more practical for scalability and accu-

1Ichiba http://www.rakuten.co.jp

racy reasons. For instance, Shen et al. (2012b)
uses a two level strategy to combat imbalance. Das
et al. (2017) also exploits a similar 2-step cascade
categorization.

This work focuses on large-scale categorization
of Japanese products for the top-level categories of
the Rakuten Ichiba catalog taxonomy. Examples
of top-level product categories include Clothing,
Electronics, Shoes, and Books & Media, as well as
less represented categories such as Travel, Com-
munication, and Cars & Motorbikes. We com-
pare Convolutional Neural Network (CNN), At-
tention CNN (ACNN), and state-of-the-art Gra-
dient Boosted Tree (GBT) classification models
trained on more than 18 million catalog items.
ACNN model performance is comparable to that
of the GBT model with a 7-fold reduction in train-
ing time without the need for feature engineer-
ing. Additionally, ACNN’s attention mechanism
selects salient words that are semantically relevant
to identifying categories and potentially useful for
automatic language-agnostic feature extraction.

2 Related Work
Research on large-scale product categorization has
recently come into focus (Shen et al., 2011; Shen
et al., 2012b; Shen et al., 2012a; Yu et al.,
2013; Chen and Warren, 2013; Sun et al., 2014;
Kozareva, 2015). Most contemporary work in this
area points out the noise issues that arise in large
product datasets and address the problem with a
combination of a wide variety of features and stan-
dard classifiers. However, the existing methods
for noisy product classification have only been ap-
plied to English. Their efficacy for moraic and
agglutinative languages such as Japanese remains
unknown.

Application of deep learning techniques is gain-
ing grounds for text categorization applications
(Kim, 2014; Ma et al., 2015; Yang et al., 2016),
however, their application to product data has only
been recently reported. Pyo et al. (2016) uses Re-
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current Neural Networks (RNNs) without word
embeddings. Furthermore, unlike our proposed
model, RNNs cannot impute tokens in title text
with attention weights that can be helpful in down-
stream applications.

Dependency-based deep learning (Ma et al.,
2015) has proven useful for sentence classifica-
tion, but product titles, whether in English or
Japanese, are not beholden to the same grammat-
ical rigor. We do not use deeper linguistic tech-
niques such as parsing or Part-of-Speech tagging
due to the language-agnostic nature of our catego-
rization techniques. Attention-based deep learning
models have been used in the image domain (Xu
et al., 2015) and in the generic text classification
domain (Yang et al., 2016). However, to the best
of our knowledge, this is the first work on simul-
taneous categorization and attention based salient
token selection on Japanese product data.

3 Dataset Characteristics

The data we use is a selection of product list-
ings from Rakuten Ichiba, a large Japanese E-
commerce service for thousands of merchants.
Each merchant submits their own product data,
leading to item names with inconsistent formats
and disagreements on genres for the same sets of
items. Our training set consists of 18, 199, 420
listings and the test set of 2, 274, 928 listings, for
a 90/10% split. The training data is uniformly
sampled before the split. Due to the popularity
of certain product types, the balance is unevenly
distributed between 35 top-level categories: There
are 1, 869, 471 in the largest category, but only 925
in the smallest.

Statistics Training set Test set

Mean character count/title 62.510 62.506
Standard deviation 31.496 31.492

Mean word count/title 23.187 23.188
Standard deviation 11.945 11.942

Mean character count/word 05.800 05.799

Table 1: Word and character level statistics for our
Rakuten Ichiba dataset.

Table 1 shows character and word level statis-
tics per product title in the training and test set.
It is evident from the mean word and character
counts that, on average, Japanese product titles in
our dataset are quite verbose. We thus expect that
convolutional neural network based models that
rely on full context of the input text, to work better
for the categorization task.

4 Modeling Approaches
4.1 Attention Neural Networks
Our ACNN model is related to the work described
in Yang et al. (2016), which has been more suitable
for well-formed document classification tasks with
a limited number of categories.
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Figure 1: Attentional CNN model architecture

The gating mechanisms shown in the left mod-
ule of Fig. 1 are akin to the hierarchical model in
(Yang et al., 2016). However, their model ends at
that module, at which point it is connected to the
softmax output layer. In our model, the left mod-
ule acts as a context encoder and the right module
acts as an attention mechanism that is dependent
on the encoded context and input.

Generally speaking, the local convolutional op-
erations are unaware of the existence of preced-
ing or succeeding convolutions over the text se-
quence. The context module enables propagation
of stronger shared parameters through a context
embedding, leading to the higher weighting of at-
tention over specific parts of the inputs. The prop-
agation strength in the network builds up based
on the pattern of context present in the input se-
quences across several training examples and the
training loss incurred for the encoding.

The filters of the convolutional layer (LeCun
and Bengio, 1995; Kim, 2014) are convolved with
with a window of consecutive observations (char-
acters or words), and produce an encoding of the
window. In Fig. 1, ei is the encoding of ith

window, where, each window is defined over a
word or character in the input sequence. For
our ACNN model, the input sequence is treated
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as a sequence of words and then as a separate
sequence of characters with the two distinct se-
quences being concatenated as a single input se-
quence, {v0, v1, ...vL}. The value of L is three
in Fig. 1. Each variable, ui, encodes the non-
linearity of the linear manifold on ei over a set
of shared parameters, WU, and biases, bU, as
ui = tanh

(
WT

Uei + bU

)
. The variables ei actu-

ally correspond to parts of the data and ui help ag-
gregate the values of ei projected along the learned
directions in the parameter space for (WU,bU).
Each value of ui is computed independent of uj 6=i.
The shared parameter WU is a D × F matrix,
where D is a hyper parameter chosen for the at-
tention mechanism and F is the number of convo-
lution filters, both chosen during cross-validation.
The variables ei and bU are F dimensional vec-
tors.

The inputs to the context encoding vector, rep-
resented by the variable c, are local softmax func-
tions of the form:

αi =
exp(uT

i wu)∑
j exp(uT

j wu)
(1)

The encoded context vector c is then simply
c =

∑
i αiei. Obtaining the input encoding for

the attention module is similar to context encoding
except that u′i depends on a separate set of shared
parameters, WU′ as well as Wc, for the context
and corresponding bias term b. In this case, we
have:

u′i = tanh
(
WT

U′ei + WT
c c + b

)
(2)

The softmax functions α′i are similarly defined
as in Equ. 1, but w.r.t. u′i and wu′ . The α′is can
be thought as the maximum of the relevance of the
variables u′i, according to the context c. The out-
put, z, from the attention module is the weighted
arithmetic mean,

∑
i α
′
iei, where the weight rep-

resent the relevance for each input variable vi,
through ei, according to the context c.

We use windows over both word and character
observation embeddings of the input text (either
tokens or single Japanese characters). We concate-
nate the word and character encoding vectors and
input it to a fully connected layer. A cross-entropy
loss is imposed at the output layer.

4.2 Gradient Boosted Trees
GBTs (Friedman, 2000) optimize a loss func-
tional: L = Ey[L(y, F (x)|X)] where F (x) can
be a mathematically difficult to characterize func-
tion, e.g., a decision tree f(x). The optimal

value of the function is expressed as F ?(x) =∑M
m=0 fm(x,a,w), where f0(x,a,w) is the ini-

tial guess and {fm(x,a,w)}Mm=1 are additive
boosts on x defined by the optimization method.
The parameter am of fm(x,a,w) denotes split
points of predictor variables and wm denotes the
boosting weights on the leaf nodes of the decision
trees corresponding to the partitioned training set
Xj for region j.

Each boosting round m updates the weights
wm,j on the leaves and creates a new tree. The
optimal selection of decision tree parameters is
based on optimizing the fm(x,a,w) using a lo-
gistic loss.

5 Experimental Setup and Results

5.1 Data Preprocessing

Tokenization of Japanese product titles is done us-
ing MeCab2. The tokenizer is trained using fea-
tures that are augmented with in-house product
keyword dictionaries. Romaji words written us-
ing Latin characters are separated from Kanji and
Kana words. All brackets are normalized to square
brackets and punctuations from non-numeric to-
kens are removed. We remove anything outside
of standard Japanese UTF-8 character ranges. Fi-
nally, canonical normalization changes the code
points of the resulting Japanese text into an NFKC
normalized3 form.

For GBT, we use several features – at the to-
kenized word level, we use counts of word uni-
grams and word bi-grams. For character features,
the product title is first normalized as discussed
above. Character 2, 3, and 4-grams are then ex-
tracted with their counts, where extractions in-
clude single spaces appearing at the end of word
boundaries. Feature engineering for GBT uses
cross-validation to identify the best set of feature
combinations and is thus time consuming.

The embedding representation of words and
characters for the CNN-based classifiers is per-
formed over the normalized input on which fea-
ture extraction for GBT is done. To reduce GPU
memory consumption, the CNN-based models are
trained on titles from which words and characters
that appear in less than 20 titles in the training set
are removed. Such rare token removal is not per-
formed on the training data for the GBT models
since they are trained on CPU servers.

2
https://sourceforge.net/projects/mecab/

3
http://unicode.org/reports/tr15/
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5.2 Classifier Comparison
In this section, we compare categorization perfor-
mance of a baseline CNN model w.r.t. our pro-
posed model and a state-of-the-art GBT classifier.
We use 10-fold cross-validation over 90% of the
training data to perform parameter tuning.

ACNN model parameter setup - The words
and characters are in an embedding vector space
of dimension 300. These embeddings are trained
on the product title training corpus. We use four
different window sizes 1, 3, 4, 5 for words and an-
other of size 4 for characters. The dimension of
the filter encoders ei and e′i is 250, which is the
same as the number of filters. The hidden layer
size is the number of window sizes times the num-
ber of filters i.e., 1, 250 and we also use a dropout
with 0.5 probability on the hidden layer. The CNN
models are run for a maximum of three days on a
server with 8 Nvidia TitanX GPUs and the best
model corresponding to the iteration for the low-
est validation error is used for test set evaluation.

GBT model parameter setup - For each cate-
gory, the boosted stumps for the GBT (Chen and
Guestrin, 2016) models are allowed to grow up
to a maximum depth of 500. The initial learn-
ing rate is assigned a value of 0.05 and the num-
ber of boosting rounds is set to 50. For leaf node
weights, we use L2 regularization with a regu-
larization constant of 0.5. The GBT models are
trained on a 64-core CPU server.

Models Micro-F1 Training Time

GBT 96.23 3 weeks
CNN 95.90 3 days
ACNN-word 96.00 3 days
ACNN-word-character 96.27 3 days

Table 2: Micro-F1 measures for evaluated mod-
els. The Micro-precision scores (not shown here)
are very similar to the micro-F1 scores with occa-
sional differences in the third and fourth decimal
places.

Table 2 shows that our proposed ACNN model
– the CNN model augmented with word and char-
acter based attention mechanisms, improves over
the baseline CNN model by an absolute 0.37%,
which translates to more than 8, 000 test titles be-
ing correctly classified additionally. Although, the
improvement of the proposed model is not signifi-
cant when using a stringent p-value of 0.0001 (i.e.,
a typical value used in industrial setting), we em-
phasize that in practice any increase in accuracy

helps (e.g., an additional million items when con-
sidering the whole Ichiba catalog).

Both GBT and our proposed ACNN model per-
form well for top level categorization of Japanese
product titles. However, do the models make sim-
ilar mistakes on the test set?

To this end, we computed the ratio of the sum of
the number of listings in the test set per category
for which both GBT and ACNN mis-classify but
agree on the wrong predicted category, to the to-
tal number of mis-classifications from ACNN. The
upper bound of this ratio is 1.0, which means that
ACNN would make the same mistakes as GBT
would. However, from our experiments, the ratio
turned out to be 0.37, which means that GBT and
ACNN make different mistakes more than 60% of
the time. The relatively low value of the ratio indi-
cates that we can gain major benefits for the final
top level categorization by using an ensemble of
GBT and ACNN models. The ACNN model does
worse than GBT on 17 categories with a mean er-
ror difference, µ, of 0.78 and standard deviation,
σ, of 1.15 and it does better than GBT on the rest
of the 18 categories with µ = 0.39 and σ = 0.41.

Statistics from test set 8000 titles 18 categories

Mean word count/title 20.930 20.120
Mean character count/word 09.245 05.815
Mean rare word count/title 00.158 00.354

Table 3: Word and character level statistics for:
1) The 8000 titles in the test set, for which ACNN
predicts correctly over CNN (Middle column);
and 2) The 18 categories in the test set for which
ACNN performs better than GBT (Rightmost col-
umn).

Table 3 sheds some insights on why the ACNN
model may be doing better over the CNN model,
for the 8000 titles in the test set. We compare
the average number of characters in the words of
the 8000 titles in the test set for which our ACNN
model provides correct predictions over the CNN
model, to that for the overall test set from Table 1.
The count for the former case turns out to be 9.245
that is substantially higher than that for the latter
case, which is 5.799. It is thus highly likely that
the ACNN model is performing better than CNN
by leveraging the longer word and character con-
texts for these 8000 titles.

On the other hand, removal of the rare tokens
(words appearing in less than 20 titles) seem to
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Reference	category Predicted	category Tokens	
1 JKc*Ob JKc*Ob >T V Ob 9AX >T ml
Japanese	Sake	&	Shochu Japanese	Sake	&	Shochu Anno potato shochu Mujinzo Anno ml

2 =�*�+!�*0d K*e[*�%�� M<Q P1 TOEIC ��� @S M C 5
�� TOEIC ��� �"+� W\ =U HL

Learning,	Service	&	Insurance Book,	magazine	&	comics Shiho	Hayashi editor TOEIC test preperation Hayashi method first TOEIC test speed english study guide

3 IY*4D*���� ����*#!+*�+& :R? 1000 ; ,G aF ZE $+( ]8 �'�)� ]8 B/ _

Travel	&	tickets Toys,	hobbies	&	games Kan	Otake 1000 th strike-out achievement commemoration ball Yomiuri Giants Yomiuri Giants club

4 ^* �� CD*DVD*N7 2-��	��.6 `3 ��� gz ���& suzuki gz custom ukawa
Car	&	moter	bikes CD,	DVD	&	musical	instruments Price	drop used import Suzuki gz Custom Suzuki gz Custom ukawa

Anno	potato	shochu	Mujinzo	Anno	ml	[Anno	is	a	region	that	grows	potato]

Editor	Shiho	Hayashi	TOEIC	test	Hayashi	method	preperation	for	first	TOEIC	test	speed	english	study	guide

Kan	Otake	1000th	strike	out	commemoration	ball	Yomiuri	Giants	Yomiuri	Giants	club

Price	drop	Used	import	Suzuki	GZ	custom	Suzuki	GZ	custom	ukawa

Manual	translation	of	the	Japanese	product	title	into	English:

Manual	translation	of	the	Japanese	product	title	into	English:

Manual	translation	of	the	Japanese	product	title	into	English:

Manual	translation	of	the	Japanese	product	title	into	English:

Figure 2: Examples of attention tokens for correct and incorrect classifications with English translations
for tokens, product titles, and categories. Gradient colors are coded by attention model weights. Darker
shades of blue have higher attention.

have negligible effect on the context of the titles
from the subset of 8000 titles. However, the effect
is a little more pronounced for the context of the ti-
tles from the subset of the 18 categories for which
ACNN does better than GBT, but, with a mean er-
ror difference of only half of that for the other 17
categories on which it does worse.

5.3 Paying Attention Pays Off!
One of the most important aspects of the ACNN
model is the ability to highlight words and char-
acters in sequential text tokens automatically
through the attention mechanism. Examples of
such selected word tokens from test titles can be
observed in Fig. 2.

In order to visualize the importance of the words
related to the categorization label contribution, we
use the attention vectors (e.g., α′ scores) gener-
ated by the model. The word attention scores ac-
curately localize words that are closely related to
the classification labels. For instance, in Figure
2, line 1, the first word highlighted in the product
description (higher score) is potato, which is one
of the main ingredients in the Japanese alcoholic
beverage, Shōchū (焼酎), that is referred to in the
product title.

For the second example, there is ambiguity be-
tween the reference and the predicted category
since the product title can be applied to both. In
this case, the attention model is highlighting words
like editor, English, and guide that may apply to
both Learning services and Books.

The third example in Fig. 2 is an annotation
mistake that was correctly captured by the model.
Here the attention model is extracting the salient
words Giants, strike-out, and Kan Otake, which
are related to the predicted category.

Finally, in the fourth example, the attention

mechanism assigns high scores to the words price
drop, import, and Suzuki where Suzuki is a popular
car manufacturer and music curriculum in Japan.
“Suzuki” is thus inherently ambiguous and our
model fails to put attention on context clues like
the token “gz”, which is a motorbike model.

6 Concluding Remarks
We propose a variant of the popular CNN model,
the Attention CNN (ACNN) model, for the task of
large-scale categorization of millions of Japanese
product titles into thirty-five top level categories.
The proposed model can leverage GPUs to reduce
training time from three weeks for a state-of-the-
art GBT classifier to three days while maintaining
more than 96% accuracy.

Our language agnostic attention model can
highlight salient tokens, which are semantically
highly correlated to predicted categories. This
helps in dimensionality reduction without the
need for feature engineering.

As future work, we will experiment with ensem-
ble methods to exploit differences in prediction er-
rors from the different models, thereby improving
overall classification performance.
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Abstract

We present a model to perform author-
ship attribution of tweets using Convolu-
tional Neural Networks (CNNs) over char-
acter n-grams. We also present a strategy
that improves model interpretability by es-
timating the importance of input text frag-
ments in the predicted classification. The
experimental evaluation shows that text
CNNs perform competitively and are able
to outperform previous methods.

1 Introduction

The problem of authorship attribution (AA) has
always been harder for short texts compared to
long texts. Previous work has shown that it is
difficult for any AA system to maintain the same
performance with shorter texts (Koppel and Win-
ter, 2014). However in today’s world where
most human interaction is online and short, AA
of short texts has become ever more relevant,
especially in areas like phishing emails, spam,
and crowd sourced collaborative projects like
Wikipedia. With the advent of social media, one
can even argue that building systems that work
with short texts equally, if not more important than
long texts like books. This need is also reflected in
the increasing interest in AA of small texts such
as tweets and reviews in AA research community
(Qian et al., 2015; Schwartz et al., 2013; Layton et
al., 2010).

At the time of this writing, we could neither
find any prior work that successfully applied char-
acter n-grams with CNNs, nor any CNN meth-

ods that dealt with AA of short text. However,
we were able to find research in AA using tra-
ditional as well as related approaches. Character
and word n-grams have been used as the core of
many authorship attribution systems (Stamatatos,
2009; Schwartz et al., 2013; Layton et al., 2010).
Character and word n-grams help determine the
author of a document by capturing the syntax and
style of an author. Considering deep learning
approaches, we found one other work that uses
CNNs for authorship attribution (Rhodes, 2015).
However, they use word representations for larger
texts rather than character representation for short
texts. Additionally, work by Bagnall (2015) uses
a multi-headed Recurrent Neural Network (RNN)
character language model that gives a set of next
character probabilities for each author at every
step of the model. This was the best-performing
system for the PAN 2015 author identification
task with a macro-averaged area under the curve
(AUC) of 0.628 (Stamatatos et al., 2015). Despite
the promising results that CNNs and RNNs show,
the results are not interpretable and few of these
works attempt to analyze what the networks are
actually learning. We try to get an insight into our
model by using the saliency analysis by Li et al.
(2016). We have also devised our own method of
finding out the input n-grams that are overall most
important to the model.

As a solution to the problem of AA of short
texts, we propose a neural network architecture
that is able to learn the representation of the text
starting from the character sequence. Our archi-
tecture is a CNN that uses a sequence of character
n-grams as input. This contrasts with the tradi-
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Figure 1: N-gram CNN. N-gram embeddings are fed to con-
volutional and max pooling layers, and the final classification
is done via a softmax layer applied to the final text represen-
tation (_: whitespace in the input).

tional approach to CNN that uses either a sequence
of words or a sequence of characters (Kalchbren-
ner et al., 2014; Kim, 2014; Collobert et al., 2011;
Zhang et al., 2015). This CNN captures local in-
teractions at the character level, which are then ag-
gregated to learn high-level patterns for modeling
the style of an author. The main contributions of
this paper are:

• We are the first to present a CNN model based
on character n-grams for AA of short texts.
We also show a comparison with traditional
machine learning approaches.

• We validate the robustness of our model
against traditional AA architectures by eval-
uating it in different settings.

• We propose a new method to improve inter-
pretability of our CNN model.

2 N-gram Convolutional Neural
Networks

Our proposed architecture receives a sequence of
character n-grams as input. These n-grams are
then processed by three modules: a character em-
bedding module, a convolutional module, and a
fully connected softmax module, as illustrated in
Figure 1. Our character embedding module is mo-
tivated by the success of other distributed vector
representations like word embeddings (Mikolov et
al., 2013) This module learns a continuous, non-
sparse d-dimensional vector representation of the
character n-grams. The maximum length l of the
training sequences determines the size of the input
and input shorter than l are padded. This module

yields a matrix C ∈ Rd×l, where the columns are
the embedding of the n-gram cj of position j.

The next component is a convolutional module.
First a convolution filter, H ∈ Rd×w, is applied
to a portion of C, where w is the width of the fil-
ter. The resulting matrix, O, is used as input to
a sigmoid function g, along with a bias term b to
produce feature representations f for the text.

O = H · C[i : i+ w − 1]

f = g(H · C[i : i+ w − 1] + b), f ∈ Rl−w+1

As can be seen from Figure 1, we use a convolu-
tional layer with different widths w, allowing us to
capture patterns that involve everything from mor-
phemes to words. We then pool the resulting fea-
ture maps f by max-over-time pooling (Collobert
et al., 2011), to obtain yk, the maximum value of
each feature map fk:

yk = max
i
fk[i], k = 1 . . .m

where m is the number of feature maps. This al-
lows us to represent the text by its most important
features, independent of their position. After pool-
ing and concatenating the feature representations
yk, we obtain a compact representation of the text.

Finally, this representation is passed through
a fully connected module containing a softmax
layer. Representation learning models based on
neural networks attempt to find features that are
useful to solve a learning problem automatically.
In the case of AA, stylistic features may be found
at morphological, lexical and syntactic levels. We
hypothesize that our model is able to automatically
capture patterns at all these levels by starting at
short sequences of characters and then using con-
volution to generate representations for longer se-
quences.

2.1 Implementation details

Layer # of layers Hyperparameters

Embedding 1 l 140
d 300

Convolutional 3
m [500, 500, 500]
w [3, 4, 5]
Pooling max

Fully connected 1 # of units Depends on the # of authors

Table 1: Neural network architecture hyperparameters

Table 1 contains the combination of hyperpa-
rameters for the three modules that generate the
best validation score. Additionally, we have added
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a dropout layer with 25% dropout after the first
embedding layer for regularization. We then shuf-
fle and group the samples into mini-batches of size
32 for faster training. We employ Adaptive Mo-
ment Estimation (Kingma and Ba, 2015) with a
learning rate of 1e − 4 to train our network. We
train for a maximum of 100 epochs and choose the
model with the lowest validation error.

3 Experimental Evaluation

CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W
0.761 0.757 0.712 0.703 0.645 0.548

Table 2: Accuracy for 50 authors with 1000 tweets each.

We evaluated our approach on the dataset from
Schwartz et al. (2013) containing ∼9,000 Twit-
ter users with up to 1,000 tweets each, using the
same train/test splits, and normalized URLs, user-
names, and numbers. We trained separate CNN
models with character n-grams (n = 1, 2, 3) on
a small validation set. Here we evaluate our two
best-performing models, one on unigrams (CNN-
1) and another on bigrams (CNN-2), against three
other systems described below:
SCH: The Schwartz et al. (2013) work uses char-
acter 4-grams and word 2-5 grams. They also in-
troduced k-signatures and flexible patterns to rep-
resent the unique signature of an author. Their best
system uses a combination of all these features.
LSTM-2: Long Short Term Memory networks
(LSTM) have been successfully used for text clas-
sification (Tai et al., 2015; Tang et al., 2015). We
evaluate an LSTM trained on bigrams, since the
LSTM produced better results on a small valida-
tion set.
CHAR: Character and word n-grams have been
the core of many AA systems (Stamatatos, 2009;
Schwartz et al., 2013; Layton et al., 2010). We
tested various n-gram combinations on the small
validation set and our final system uses character
2,3,4-grams with logistic regression.
CNN-W: Many works on CNN use word se-
quences as input (Kalchbrenner et al., 2014;
Rhodes, 2015). We also trained a CNN model with
Google Word embeddings (Mikolov et al., 2013)
fed to a static embedding layer.

All systems use cross-validation over the train-
ing set for hyperparameter tuning. We first ex-
perimented with a relatively small set of 50 au-
thors and their 1000 tweets each. The results are

in Table 2. The results show that our CNN bi-
gram model (CNN-2) performs very well on this
dataset and outperforms the SCH system by nearly
5%. CNN-1 also exceeds the SCH method but is
marginally worse than CNN-2, showing that there
is merit in exploring the training of a CNN model
on n-grams rather than only on single characters.

3.1 Varying number of authors and tweets

# of authors CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W
100 0.506 0.508 0.425 0.412 0.338 0.241
200 0.481 0.473 0.411 0.409 0.335 0.208
500 0.422 0.417 0.355 0.342 0.298 0.161

1000 0.365 0.359 0.303 0.291 0.248 0.127

Table 3: Accuracy comparison for increasing # of authors
with 200 tweets per author.

We also wanted to explore how our method
fares against the other methods when the problem
becomes more difficult, i.e. when the number of
authors increases or when the number of tweets
per author decreases, as done in Schwartz et al.
(2013). The results for increasing number of au-
thors are shown in Table 3. Both our CNN models
perform fairly well above the other methods for all
our experiments. Although the accuracy decreases
with the increasing number of authors, even with
1000 authors our model obtains an accuracy well
above 36%, and there is a 6% improvement over
the state-of-the-art (SCH).

# of tweets CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W
500 0.724 0.717 0.672 0.655 0.597 0.509
200 0.665 0.665 0.614 0.585 0.528 0.460
100 0.613 0.617 0.565 0.517 0.438 0.417
50 0.542 0.562 0.507 0.466 0.364 0.366

Table 4: Accuracy comparison for decreasing # of tweets per
author for 50 authors.

We can draw similar conclusions from the re-
sults where we decrease the number of tweets per
author as shown in Table 4. Following the work in
SCH, these results are an average of the accuracy
values obtained from 10 disjoint datasets. The per-
formance of our system is fairly stable even when
the number of tweets per author is low. The im-
provement margin actually increases slightly as
we move towards a lower number of tweets.

A statistical t-test on the results over the 10 dis-
joint datasets shows that the difference between
CNN-2 and CHAR, LSTM-2, and CNN-W are
statistically significant at p < 0.001. We could
not perform a test with SCH results as the in-
dividual disjoint dataset results are not reported.
In both these tables, we can see that the CNN-2
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CNN-2 CNN-1 CHAR LSTM-2 CNN-W
0.683 0.678 0.609 0.525 0.420

Table 5: Accuracy values for 35 authors with 1000 tweets
each after bot-like authors removal (15 authors were bots).

model outperforms the CNN-1 model for exper-
iments with more data points (higher no. of au-
thors and/or tweets), which can be attributed to
CNN-2 having a higher number of parameters to
train. CNN-W performs worse than the other sys-
tems. Char-based inputs specialize on stylistic pat-
terns whereas word-based ones focus on content-
related patterns, which are less important for AA.
This finding is consistent with previous research in
AA (Stamatatos, 2009; Koppel and Winter, 2014;
Koppel and Schler, 2004).

3.2 Bot-like Authors

During analysis, we noticed that nearly 30% of au-
thors behave like automated bots. Their tweets
show repeated patterns, e.g., a title of some
news/advertisements with a URL at the end. Since
our goal is to perform AA on humans, we re-
moved these authors manually to create a refined
dataset. There are no comparable experiments in
(Schwartz et al., 2013), thus we compare only
against CHAR, LSTM-2, and CNN-W as shown
in Table 5. The accuracies for all of the methods
decrease on this dataset as the bot-like authors are
easy to identify. The CNN methods still outper-
form other methods. Since SCH’s performance
was similar to CHAR on the whole dataset and
CNN-2 exceeds CHAR by a larger margin in this
dataset, we can estimate that here too, CNN-2 is
likely to outperform SCH.

4 What does the CNN capture?

Despite the competitive performance of neural
representation techniques in several NLP tasks,
there is a lack of understanding about exactly
what these models are learning, or how the
parameters relate to the input data. Few empirical
studies have attempted to understand the role of
RNN components (Jozefowicz et al., 2015; Greff
et al., 2016). In order to analyze what makes
neural representation learning suitable for AA, we
look at the most salient sections of a single input
tweet. We also perform an analysis of what types
of character n-grams are more important to the
model overall.

Figure 2: Salient sections of a bot-like author’s tweets
([U]:URL, [N]:username, [R]:number).

Figure 3: Salient sections of a human author’s tweets
([U]:URL, [N]:username, [R]:number).

Salient sections of a tweet
Li et al. (2016) define a saliency score S(e) as:

w(e) =
∂(Sc)
∂(e)

S(e) = |w(e)|

where the embedding e represents the input and
the class score Sc represents the output of our
CNN model. The score indicates how sensitive a
model is to the changes in the embedding input,
i.e. in our case, how much a specific n-gram in the
text input contributes to the final decision. In order
to visualize saliency per character, we adapted this
method by taking the maximum saliency value per
character.

We selected two authors, one bot-like and
one human, to analyze what kind of patterns are
learned for specific authors. Figure 2 presents two
tweets from a bot author. The darker the shade is,
the more salient that section of the tweet is in the
attribution decision. This automated bot seems to
follow the pattern Title: URL and sure enough,
it is detected by the CNN-2 model as indicated
by dark shading towards the end of both tweets.
Similarly, Figure 3 shows two tweets from a
human author. We can notice right away that this
author has the tendency to use uhm and we can
see this section highlighted in the figure. The
author also tends to use consecutive dots, this too
is highlighted, albeit a little less than uhm. Figure
4 shows the saliency values for a tweet from
the CNN-2 (top) and the CNN-1 (mid) models.

Figure 4: Salient sections comparison of CNN-2 (top) and
CNN-1 (mid). The bottom figure is shaded using the feature
weights from logistic regression for CHAR.
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Dataset Highest activations overall Top activations per filter CHAR top features
Bot & non-bot _[U], Di, :l, n‘, (:, Xn, KM, o), :_, =h, _[R], :-, qh, wu, !, bi, ul, al, ug, me, in, mp, AN, um, an, en, "w, sa, e_ :_[U], :, _-, _u, _r, .._-, _X, XD, _XD, li, go,_., _#
Non-bot only _[U], qh, KM, Di, (:, Uh, ;D, :p, _[N], __, :l, !_, =D, :_ _t, _m, er, ou, e_, in, ed, co, _a, is, nd, _r, ve, te, st ...,;-), lol, :d, maoo, &&, :)), :-(, :-p, loll, ????, ^_^

Table 6: Input char bigrams with highest CNN activations ([U]:URL, [N]:username, [R]:number, _:whitespace).

For the CNN-1 model, although uhm and ... are
highlighted, the saliency values are more dis-
tributed throughout the tweet, highlighting even
are and hurt. While we can see that the CNN-2
model puts its focus exactly on the uhm, which
is a very distinctive style of this author. Figure
4 also has a similar figure for the CHAR model
at the bottom, which we created by using the
feature weights from the logistic regression clas-
sifier. Although there is more focus on the uhm
part, again, the distribution is more spread out for
this model as well, compared to the CNN-2 model.

N-grams with highest contributions Some n-
grams activate several filters, but generate low ac-
tivation values, meanwhile, other n-grams gener-
ate higher activation values but only for a few fil-
ters. Both types hold important clues in under-
standing our model. We use the intermediate rep-
resentation of the CNN filters, consisting of a ma-
trix O ∈ Rn×m where n is the number of n-grams
and m is the number of filters. We first deter-
mine the n-grams that generate the highest acti-
vation values aggregated over all filters. The sec-
ond column in Table 6 shows the top 15 bigrams
from this analysis for CNN-2 models trained on
the whole dataset and on the refined dataset. The
third column presents the top positive weighted
features from the CHAR model. We can observe
that many of the highest bigrams are uncommon
versions of emoticons, such as (:, :p and ;D that
are likely correlated with specific authors. For the
bot authors, [U] has the highest activation since
most automated tweets have URLs at the end as
their characteristic.

We then also collect the n-grams that have the
highest number of filters where their activation is
in the top 3. The third column in Table 6 shows the
top bigrams from this analysis. Here we mostly
see bigrams that are affixes. We can attribute this
fact to the importance of morphological features
for characterizing human tweets.

5 Conclusions and Future work

We presented a strategy for using CNNs with char-
acter n-grams for AA of short texts, and provided
a comprehensive comparison against standard ap-

proaches. We found that CNNs give better perfor-
mance for AA of tweets, and using character n-
grams instead of just character sequences can also
improve performance. We were also able to gain
some insights on what our architecture is actually
learning. We could see that the network is focus-
ing more on some sections of the text. This cre-
ates a premise for applying attention models and
we are currently working in this direction.
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Abstract

Aspect extraction is a task to abstract the
common properties of objects from cor-
pora discussing them, such as reviews of
products. Recent work on aspect extrac-
tion is leveraging the hierarchical rela-
tionship between products and their cate-
gories. However, such effort focuses on
the aspects of child categories but ignores
those from parent categories. Hence, we
propose an LDA-based generative topic
model inducing the two-layer categorical
information (CAT-LDA), to balance the
aspects of both a parent category and its
child categories. Our hypothesis is that
child categories inherit aspects from par-
ent categories, controlled by the hierarchy
between them. Experimental results on 5
categories of Amazon.com products show
that both common aspects of parent cat-
egory and the individual aspects of sub-
categories can be extracted to align well
with the common sense. We further eval-
uate the manually extracted aspects of 16
products, resulting in an average hit rate of
79.10%.

1 Introduction

E-commerce provides a whole new way for shop-
ping that product reviews posted by some con-
sumers can help others make their purchase de-
cisions. One important task about online prod-
uct review is to extract the properties of products,
known as aspects. Aspect extraction has many ap-
plications, such as opinion mining (Liu, 2012; Liu
et al., 2015), summerization (Bagheri et al., 2013;

Hu and Liu, 2004), helpfulness prediction (Yang
et al., 2016; Yang et al., 2015) and recommenda-
tion (Reschke et al., 2013; Jakob, 2011).

Statistical topic modeling, such as LDA (Blei
et al., 2003) and its variants, has been shown to
be successful for aspect extraction (Titov and Mc-
Donald, 2008; Zhao et al., 2010; Jo and Oh, 2011;
Mukherjee and Liu, 2012; Moghaddam and Ester,
2013). Topic modeling clusters words based on
their co-occurrences in sentences and documents
to generate topics, each of which is a probabilis-
tic distribution over words. Because words that
co-occur are often about the same topic, which
could talk about one aspect of a product, one
or more aspects can be then associated with one
or more topics. Earlier work of topic modeling
is fully unsupervised while recently knowledge
bases (KB) begin to be incorporated into semi-
supervised schemes (Wang et al., 2014; Zhai et al.,
2010; Chen et al., 2014).

However, existing approaches have limitations.
First, the aspects usually become terms strongly
associated with specific group of products (e.g.,
“multitouch” of touchscreen laptops), instead of
the true ratable features of products (e.g., “bat-
tery life” for all laptops and even all portable elec-
tronic devices) (Titov and McDonald, 2008). Sec-
ond, existing approaches require sufficient amount
of corpora while many products do not have
enough reviews, known as the cold-start prob-
lem (Moghaddam and Ester, 2013). For exam-
ple, around 1/3 of the product categories used
in our experiment from Amazon.com Review
Dataset (McAuley and Leskovec, 2013) have less
than 100 reviews. Third, current approaches do
not provide a good balance between child category
aspects and parent category aspects.
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Therefore, we develop a new aspect extraction
approach, called categorical LDA (CAT-LDA),
by leveraging the hierarchy relationship between
products. We hypothesize that reviews of each
subcategory (e.g., gaming laptops) all contribute
to the topics of its corresponding general category
(e.g., laptops), but with different weights. As a
result, aspects of a specific sub-category of prod-
ucts will be the combination of its unique aspects
and the aspects from its parent (and thus shared
with its siblings). This modeling also provides an
approach to cold-starting problem by allowing as-
pects to be inherited from the parent category or
transferred from sibling (sub-)categories.

Unlike most of the existing work modeling
at the product item level, our model is based
on the product category level. It can be easily
extended to product item level by creating one
node for each item and attaching them to the leaf
nodes on the category hierarchy. Factorized LDA
(FLDA) (Moghaddam and Ester, 2013) is based
on the category level, but it only considers specific
categories where all items in one category share a
set of aspects. Our approach extends by model-
ing aspects in both the general and specific cate-
gories. Our model also relaxes the assumption in
multi-grain LDA (MG-LDA) (Titov and McDon-
ald, 2008) that only local topics contribute to prod-
uct aspects, aligning better with common sense.
Aspects at different layers are all related with each
other through the product tree. For example, all
portable electronic devices have a common aspect:
battery life.

Empirical study is based on reviews from
5 general categories of Amazon.com Review
Dataset (McAuley and Leskovec, 2013). The
model we propose can generate human ratable
product aspects from both general categories and
sub-categories. We evaluate the extracted aspects
for 16 product items of 9 categories against the
annotations from (Hu and Liu, 2004; Ding et al.,
2008; Liu et al., 2015). Promising experimental
result shows 79% hit rate on manually annotated
aspects.

2 Problem Formulation

In the context of the product aspect extraction, an
aspect is an attribute or feature of a product item
mentioned in reviews. Previous work of aspect
extraction focuses on either an aspect term men-
tioned in review text or an aspect category which

groups many aspect terms together (Zhai et al.,
2010). Here we focus on the latter. However, we
will show that our model is also able to detect as-
pect terms from an unseen text in Section 4.

In this paper, we propose a generative topic
model with two layers of hierarchy: the general
categories and the sub-categories. For example,
“pocket watches” is a subcategory under the gen-
eral category “watches”. Product hierarchy infor-
mation (also called product tree, Figure 2 as an
example for “watches”) can be extracted from on-
line shopping websites, e.g., Amazon.com. For
the sake of simplicity, we flatten the product tree
into the two layers. General categories are at the
top of product hierarchy and any category under it
in the product hierarchy is its sub-category. It is
still an open question to design a unified model to
extract aspects by considering all the hierarchical
layers.

Our goal is to identify the aspects of both gen-
eral categories and sub-categories. We hypothe-
size that reviews under the same general category
share some common aspects because of the simi-
larity among them. But because of the difference
among them, each subcategory has its unique as-
pects.

3 Methodology

According to our hypothesis, when composing
a review, a consumer considers aspects of both
the general category and the subcategory that the
product belongs to. Such generative process can
be represented in the graphical model as in Fig-
ure 1. We refer to “aspect” as “topic” in the con-
text of topic modeling.

θc ᵠt π

α'

Nd D

C T

x

cd

z w y
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pd
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α β β'

μ

Figure 1: A graphical model representation of re-
view generation.

Denote P as the set of general categories and
C the set of sub-categories. Each general cate-
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gory p ∈ P has a topic distribution θp while each
sub-category c ∈ C has a topic distribution θc.
When generating a sentence, a topic distribution is
picked first using a switch x following Bernoulli
distribution µ. Like in standard topic modeling,
each topic t is a distribution over words, denoted
as ϕt. Further, there is a set of background words
whose distribution is denoted as ϕb. To choose
between background words and topic words, we
assume another switch y following Bernoulli dis-
tribution π.

Watches

watch 0.10903513
great 0.024772061
nice 0.024056973
good 0.019435579
love 0.019083371
wrist 0.018197514
watches   0.017333005
big 0.016340418
size 0.016308399
light 0.016137632
heavy 0.01562533
beautiful  0.010779803
...

Wrist Watches Pocket Watches

Appearance 0.08217694

Quality 0.06754359

Usability 0.020517474

...

Usability 0.095726

Quality 0.06118267

Appearance 0.055913348

...To
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Usability 0.07573976

Price 0.03387563

Service 0.02924678

...

Figure 2: An example illustrating how reviews are
generated.

When a sentence is generated, given its subcate-
gory c and its general category p, we first sample a
value for switching x based on µ. Let θ = θc (e.g.,
“wrist watches” or “pocket watches” in Figure 2)
if x = 0 (i.e., picking the topic of a sub-category),
otherwise θ = θp (e.g., “watches” in Figure 2)
(i.e., picking the topic of a general category). A
topic z is chosen based on the topic distribution θ.
For each word position in the sentence, first sam-
ple a value for switching y based on π and then
pick the word based on the word distribution ϕt

of the topic z if y = 0, or from background word
distribution ϕb otherwise. Figure 2 illustrates the
generative process using watches as an example,
showing top 3 aspects and their probabilities.

All distributions θc, θp, ϕt, ϕb are generated
from Dirichlet priors with hyperparameters α, α′,
β, and β′, respectively. The generation process is:

1. For each general category p ∈ P , choose θp ∼ Dir(α′)

2. For each subcategory c ∈ C, choose θc ∼ Dir(α)

3. For each aspect t ∈ T , choose ϕt ∼ Dir(β)

4. For background words, choose ϕb ∼ Dir(β′)

5. For each sentence (a document) d ∈ D,

(a) Get its specific sub-category c and general cate-
gory p from meta data

(b) Choose a switch xd ∼ Bernoulli(µ)

(c) Choose an aspect zd ∼ Multi(θc) if xd = 0,
otherwise zd ∼ Multi(θp)

(d) For each word n ∈ {1, 2, . . . , Nd},
i. Choose a balance yd,n ∼ Bernoulli(π)

ii. If yd,n = 1, choose a topic word wd,n ∼
Multi(ϕzd); else choose a background word
wd,n ∼ Multi(ϕb).

where Nd means the number of words in docu-
ment d, “Dir” refers to “Dirichlet”, and “Multi”
refers to “Multinomial”. Each multinomial distri-
bution is governed by some symmetric Dirichlet
distribution. We use Gibbs sampling to perform
model inference and present the sampling formu-
las as follows.

Let τ be the set of hyperparameters
{α, α′, β, β′, µ, π}, c, p be the sub-category
and general category of document d’s n-th aspect.
We collapse out all the θc, θp, ϕt, and ϕb, and
jointly sample switch xd and aspect label zd as
follows:
p(zd = t, xd = 0 | Z¬d, Y,W, τ)

∝nx=0 + µ− 1

n· + 2µ− 1
· n

t
x=0,c + α− 1

n·x=0,c + Tα− 1
·
∏V

w=1
∏nw

d
p=1(n

t,y=1
w + β − p)∏n·

d
q=1(n

t,y=1
· + V β − q)

,

p(zd = t, xd = 1 | Z¬d, Y,W, τ)

∝nx=1 + µ− 1

n· + 2µ− 1
· n

t
x=1,p + α′ − 1

n·x=1,p + Tα′ − 1
·
∏V

w=1
∏nw

d
p=1(n

t,y=1
w + β − p)∏n·

d
q=1(n

t,y=1
· + V β − q)

.

where nt
x=0,c is the number of times topic t and

sub-category c co-occur, and nt
x=1,p is the number

of times topic t and general category p co-occur.
Similarly, we sample yd,n as follows:
p(yd,n = y | Yd,¬n, Z,W, τ)

∝ ny + π − 1

n· + 2π − 1
· [ nt,y=1

w + β − 1

nt,y=1
· + V β − 1

]y=1 · [ ny=0
w + β′ − 1

ny=0
· + V β′ − 1

]y=0
.

4 Experiment

Reviews from 5 categories (details in Table 1)
of Amazon.com Review Dataset (McAuley and
Leskovec, 2013) are used as the corpora. A total
of 200 topics are built.

Table 1: The 5 categories used to model topics

General category # of sub-categories # of reviews
baby products 226 184,887

watches 10 68,356
software 171 95,084

cellphones 33 78,930
electronics 674 1,241,778

4.1 Qualitative Results

We select top topics at different levels and man-
ually examine if they can be aligned with some
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Table 2: Top topics and topic words for each General Category. Labels are manually assigned.

Category Label Top Words

baby
Value money, worth, waste, time, buy, product, price, save, spend, good...

Shipping great, product, arrived, fast, quality, shipping, easy, advertised, received, delivery...
Return amazon, return, shipping, back, days, received, item, order, ordered, refund...

watches
Wrist watch, band, wrist, face, watches, easy, strap, size, read, wear ...
Return amazon, return, shipping, back, days, received, item, order, ordered, refund...
Quality quality, made, good, plastic, cheap, solid, sturdy, feels, product, construction...

software
Product software, version, program, product, cd, computer, buy, easy, upgrade, install...
Support support, tech, customer, call, phone, service, called, problem, hours, email...
Install easy, manual, instructions, set, user, simple, install, setup, read, software ...

cellphones
Headset headset, headsets, bluetooth, hear, sound, quality, volume, ear, noise, phone...
Review reviews, review, product, read, bad, problems, good, problem, write, negative...

Case case, phone, clip, screen, belt, cover, fit, fits, plastic, leather...

electronics
Value money, worth, waste, time, buy, product, price, save, spend, good...
Return amazon, return, shipping, back, days, received, item, order, ordered, refund...

Shipping great, product, arrived, fast, quality, shipping, easy, advertised, received, delivery...

certain aspects. Because the top ranked topics are
equivalent to the topics mentioned the most in re-
views, we can treat these topics as the most im-
portant aspects. For better representation, we also
manually assign an “aspect” label to each topic.

Top words for the top topics discovered in each
general category are presented in Table 2 in the
form of one topic per line, along with the top
ranked words in this topic. For space sake, only
three topics are presented. They align well with
the product aspects in our common sense.

For example, Value is the most cared aspect of
baby product buyers, followed by Service and Re-
turn. The electronics products have the same high-
est ranked aspects, but in a different order. Unlike
other categories, the top aspects for Software are
Product, Support and Install, which are unique as-
pects of software in our common sense.

Table 3 shows the top five topics and top words
among all categories. Not surprisingly, Value, Re-
turn and Shipping are still the most important as-
pects for customers who shop online. Review, ba-
sically “the reviews from other customers”, is also
mentioned frequently, indicating that customers
are indeed influenced by the reviews of others. In
the end, people like to talk about their Experience
and compare to that with other retailers, local or
online.

Table 3: Top topics and topic words across all cat-
egories. Labels are manually assigned.

Label Top Words
Value money, worth, waste, time, buy...
Return amazon, return, shipping, back, days...

Shipping great, product, arrived, quality, fast...
Review reviews, review, product, read, bad...

Experience price, amazon, shipping, store, deal...

Table 4: Top topics and topic words for Laptops.
Labels are manually assigned.

Label Top Words
Spec ram, memory, computer, card, video...

Design mouse, keyboard, keys, buttons, wireless...
System version, windows, mac, xp, os...

Warranty warranty, back, service, unit, repair...
Screen screen, picture, monitor, color, bright...

Lastly, we are interested in top topics for spe-
cific categories. Due to space limit, we pick Lap-
top Computers to study (Table 4). Quite unlike
topics for general category, the top topics for Lap-
tops are very product related: Spec, Design, Sys-
tem, Warranty and Screen.

4.2 Quantitative Results

We then quantitatively study whether our model
can really extract aspects. The ground truth is
the sentence-level manual aspect annotations in a
combined dataset from (Hu and Liu, 2004; Ding
et al., 2008; Liu et al., 2015), which contains
10,993 reviews of 17 products in total. The as-
pects are annotated at sentence level. Among
them, we select 16 products that can be linked to
the 5 general categories used to train our model
above. The 16 products belong to 9 categories (Ta-
ble 5). Note that not all sentences are annotated,
we only predict the sentences with human annota-
tions. For comparison, MG-LDA (Titov and Mc-
Donald, 2008) is used as the baseline.

We first attach each product to its closest cat-
egory in the category hierarchy. For each sen-
tence with manual aspect annotations, the model
described above is used to find its most like topic.
Then we select 3 words from the sentence with
the highest probability under the detected topic as
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highlighted words, hoping that highlighted words
can cover the aspect terms annotated manually.
However, the manual annotations can also involve
words not in the sentence. So we also include the
top 3 topic words of the detected topic because
they are the best words to describe the topic.

Table 5: Hit rates of aspect by topic work

Category # of
products

# of sen-
tences

CAT-
LDA

MG-
LDA

Digital camera 4 697 85.7% 65.7%
DVD player 1 344 79.1% 72.1%
MP3 player 3 1,356 74.7% 60.3%
Audio speaker 1 301 89.7% 70.9%
PC monitor 1 239 91.2% 72.3%
Network router 2 437 79.0% 69.1%
Cell phone 2 629 80.8% 72.8%
Diaper champ 1 212 66.0% 60.8%
Anti-virus software 1 210 68.6% 60.0%
Average – – 79.1% 67.1%

We say a “hit” if the highlighted words and top
3 topic words of a sentence cover all manually an-
notated aspect words, and a “miss” otherwise. For
example, given a camera review Also as someone
who at least knows a little bit about the technical
work of taking a photo i really miss having manual
controls. Words manual controls are annotated
as aspect terms. The highlighted words extracted
by CAT-LDA are photo, manual and controls, and
the topic words are control, controls, remote. It
is a “hit” because the aspect terms are covered by
highlighted words and topic words. The hit rates
of different products are given in Table 5. To be
fair, sentences used for the quantitative test are not
used to train the topic models.

Because MG-LDA is not originally designed for
extracting aspects for general categories, we train
one MG-LDA model for each category in Table 5
to avoid introducing a disadvantage for MG-LDA
1. Similar to above, we first find the closest cat-
egory for each product in the category hierarchy
and then train a model on all reviews of this cate-
gory.

The result of CAT-LDA is very promising, with
an average hit rate of 79.10% among all 9 cate-
gories of products. Physical products of computer
or electronics type have very high hit rates, with
the highest 91.21% for PC monitors. The low hit
rates of diaper champ and software are due to the
lack of components, especially descriptive ones,

1We have tried training one MG-LDA model for each of
the 5 general categories but the results for MG-LDA are not
as good.

and their limited functionality. CAT-LDA leads
MG-LDA in all of 9 categories of products with
an average hit rate improvement of 12%.

The results can be further improved if we con-
sider synonyms words of aspect terms or adding
more features like Part-of-Speech tags and depen-
dence rules (Hu and Liu, 2004; Yu et al., 2011).
Because it is not the main focus of this paper, we
leave it as future work.

5 Conclusion

In this paper we propose a generative model for as-
pect extraction leveraging product category hierar-
chy. Our hypothesis is that any product’s aspects
are a mixture of aspects from its parent category
and aspects unique to itself. Topic models built in
this way can successfully balances the aspects of a
product itself and its parent category. Experimen-
tal results show 79% hit rate on manually anno-
tated aspect terms of 16 products covering 9 cate-
gories.

References

Ayoub Bagheri, Mohamad Saraee, and Franciska
de Jong. 2013. Care more about customers:
Unsupervised domain-independent aspect detec-
tion for sentiment analysis of customer reviews.
Knowledge-Based Systems, 52:201–213, November.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 347–358, Bal-
timore, Maryland, June. Association for Computa-
tional Linguistics.

Xiaowen Ding, Bing Liu, and Philip S. Yu. 2008. A
holistic lexicon-based approach to opinion mining.
Proceedings of the international conference on Web
search and web data mining - WSDM ’08, page 231.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. Proceedings of the 2004
ACM SIGKDD international conference on Knowl-
edge discovery and data mining KDD 04, 04:168.

Niklas Jakob. 2011. Extracting Opinion Targets from
User-Generated Discourse with an Application to
Recommendation Systems. Ph.D. thesis, Technische
Universität.

679



Yohan Jo and Alice H. Oh. 2011. Aspect and sen-
timent unification model for online review analy-
sis. In Proceedings of the Fourth ACM Interna-
tional Conference on Web Search and Data Mining,
WSDM ’11, pages 815–824, New York, NY, USA.
ACM.

Qian Liu, Zhiqiang Gao, Bing Liu, and Yuanlin Zhang.
2015. Automated rule selection for aspect extrac-
tion in opinion mining. In Proceedings of the 24th
International Conference on Artificial Intelligence,
IJCAI’15, pages 1291–1297. AAAI Press.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

J. McAuley and J. Leskovec. 2013. Hidden factors and
hidden topics: understanding rating dimensions with
review text. Proceedings of the 7th ACM conference
on Recommender systems - RecSys ’13, pages 165–
172.

Samaneh Moghaddam and Martin Ester. 2013. The
flda model for aspect-based opinion mining: Ad-
dressing the cold start problem. In Proceedings of
the 22Nd International Conference on World Wide
Web, WWW ’13, pages 909–918, New York, NY,
USA. ACM.

Arjun Mukherjee and Bing Liu. 2012. Aspect extrac-
tion through semi-supervised modeling. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 339–348, Jeju Island, Korea, July. As-
sociation for Computational Linguistics.

Kevin Reschke, Adam Vogel, and Dan Jurafsky. 2013.
Generating recommendation dialogs by extracting
information from user reviews. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 499–504, Sofia, Bulgaria, August. Associa-
tion for Computational Linguistics.

Ivan Titov and Ryan McDonald. 2008. Modeling on-
line reviews with multi-grain topic models. In Pro-
ceedings of the 17th International Conference on
World Wide Web, WWW ’08, pages 111–120, New
York, NY, USA. ACM.

Tao Wang, Yi Cai, Ho-fung Leung, Raymond Y.K.
Lau, Qing Li, and Huaqing Min. 2014. Prod-
uct aspect extraction supervised with online domain
knowledge. Knowledge-Based Systems, 71:86–100,
November.

Yinfei Yang, Yaowei Yan, Minghui Qiu, and Forrest
Bao. 2015. Semantic analysis and helpfulness pre-
diction of text for online product reviews. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 38–44,
Beijing, China, July. Association for Computational
Linguistics.

Yinfei Yang, Cen Chen, and Forrest Sheng Bao. 2016.
Aspect-based helpfulness prediction for online prod-
uct reviews. In 2016 IEEE 28th International Con-
ference on Tools with Artificial Intelligence (ICTAI),
pages 836–843, Nov.

Jianxing Yu, Zheng-Jun Zha, Meng Wang, and Tat-
Seng Chua. 2011. Aspect ranking: Identifying im-
portant product aspects from online consumer re-
views. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1496–
1505, Portland, Oregon, USA, June. Association for
Computational Linguistics.

Zhongwu Zhai, Bing Liu, Hua Xu, and Peifa Jia. 2010.
Grouping product features using semi-supervised
learning with soft-constraints. In Proceedings of
the 23rd International Conference on Computa-
tional Linguistics, COLING ’10, pages 1272–1280,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Wayne Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaom-
ing Li. 2010. Jointly modeling aspects and opin-
ions with a maxent-lda hybrid. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’10, pages 56–
65, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

680



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 681–687,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

On the Relevance of Syntactic and Discourse Features for Author
Profiling and Identification

Juan Soler-Company
UPF

Carrer de Roc Boronat 138
Barcelona, 08018, Spain
juan.soler@upf.edu

Leo Wanner
UPF and ICREA

Carrer de Roc Boronat 138
Barcelona, 08018, Spain
leo.wanner@upf.edu

Abstract

The majority of approaches to author
profiling and author identification focus
mainly on lexical features, i.e., on the con-
tent of a text. We argue that syntactic
dependency and discourse features play
a significantly more prominent role than
they were given in the past. We show that
they achieve state-of-the-art performance
in author and gender identification on a lit-
erary corpus while keeping the feature set
small: the used feature set is composed of
only 188 features and still outperforms the
winner of the PAN 2014 shared task on au-
thor verification in the literary genre.

1 Introduction

Author profiling and author identification are two
tasks in the context of the automatic derivation of
author-related information from textual material.
In the case of author profiling, demographic author
information such as gender or age is to be derived;
in the case of author identification, the goal is to
predict the author of a text, selected from a pool of
potential candidates. The basic assumption under-
lying author profiling is that, as a result of being
exposed to similar influences, authors who share
demographic traits also share linguistic patterns in
their writings. The assumption underlying author
identification is that the writing style of an author
is unique enough to be characterized accurately
and to be distinguishable from the style of other
authors. State-of-the-art approaches commonly
use large amounts of lexical features to address
both tasks. We show that with a small number
of features, most of them syntactic or discourse-
based, we outperform the best models in the PAN
2014 author verification shared task (Stamatatos et
al., 2014) on a literary genre dataset and achieve

state-of-the-art performance in author and gender
identification on a different literary corpus.

In the next section, we briefly review the related
work. In Section 3, we describe the experimental
setup and the features that are used in the exper-
iments. Section 4 presents the experiments and
their discussion. Finally, in Section 5, we draw
some conclusions and sketch the future line of our
research in this area.

2 Related Work

Author identification in the context of the liter-
ary genre attracted attention beyond the NLP re-
search circles, e.g., due to the work by Alju-
mily (2015), who addressed the allegations that
Shakespeare did not write some of his best
plays using clustering techniques with function
word frequency, word n-grams and character
n-grams. Another example of this type of
work is (Gamon, 2004), where the author clas-
sifies the writings of the Brontë sisters using as
features the sentence length, number of nom-
inal/adjectival/adverbial phrases, function word
frequencies, part-of-speech (PoS) trigrams, con-
stituency patterns, semantic information and n-
gram frequencies. In the field of author pro-
filing, several works addressed specifically gen-
der identification. Schler et al. (2006), Koppel
et al. (2002) extract function words, PoS and
the 1000 words that have more information gain.
Sarawgi et al. (2011) use long-distance syntactic
patterns based on probabilistic context-free gram-
mars, token-level language models and character-
level language models.

In what follows, we focus on the identifica-
tion of the author profiling trait ‘gender’ and on
author identification as such. For both, feature
engineering is crucial and for both the tendency
is to use word/character n-grams and/or function
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and stop word frequencies (Mosteller and Wal-
lace, 1963; Aljumily, 2015; Gamon, 2004; Arg-
amon et al., 2009), PoS tags (Koppel et al., 2002;
Mukherjee and Liu, 2010), or patterns captured by
context-free-grammar-derived linguistic patterns;
see e.g. (Raghavan et al., 2010; Sarawgi et al.,
2011; Gamon, 2004). When syntactic features are
mentioned, often function words and punctuation
marks are meant; see e.g. (Amuchi et al., 2012;
Abbasi and Chen, 2005; Cheng et al., 2009). How-
ever, it is well-known from linguistics and philol-
ogy that deeper syntactic features, such as sen-
tence structure, the frequency of specific phrasal,
and syntactic dependency patterns, and discourse
structure are relevant characteristics of the writing
style of an author (Crystal and Davy, 1969; Di-
Marco and Hirst, 1993; Burstein et al., 2003).

3 Experimental Setup

State-of-the-art techniques for author profiling /
identification usually draw upon large quantities of
features; e.g., Burger et al. (2011) use more than
15 million features and Argamon et al. (2009) and
Mukherjee and Liu (2010) more than 1,000. This
limits their application in practice. Our goal is to
demonstrate that the use of syntactic dependency
and discourse features allows us to minimize the
total number of features to less than 200 and still
achieve competitive performance with a standard
classification technique. For this purpose, we use
Support Vector Machines (SVMs) with a linear
kernel in four different experiments. Let us intro-
duce now these features and the data on which the
trained models have been tested.

3.1 Feature Set

We extracted 188 surface-oriented, syntactic de-
pendency, and discourse structure features for our
experiments. The surface-oriented features are
few since syntactic and discourse structure fea-
tures are assumed to reflect better than surface-
oriented features the unconscious stylistic choices
of the authors.

For feature extraction, Python and its natural
language toolkit, a dependency parser (Bohnet,
2010), and a discourse parser (Surdeanu et al.,
2015) are used.

The feature set is composed of six subgroups of
features:

Character-based features are composed of
the ratios between upper case characters, peri-

ods, commas, parentheses, exclamations, colons,
number digits, semicolons, hyphens and quotation
marks and the total number of characters in a text.

Word-based features are composed of the
mean number of characters per word, vocabulary
richness, acronyms, stopwords, first person pro-
nouns, usage of words composed by two or three
characters, standard deviation of word length and
the difference between the longest and shortest
words.

Sentence-based features are composed of the
mean number of words per sentence, standard de-
viation of words per sentence and the difference
between the maximum and minimum number of
words per sentence in a text.

Dictionary-based features consist of the ratios
of discourse markers, interjections, abbreviations,
curse words, and polar words (positive and nega-
tive words in the polarity dictionaries described in
(Hu and Liu, 2004)) with respect to the total num-
ber of words in a text.

Syntactic features Three types of syntactic fea-
tures are distinguished:

1. Part-of-Speech features are given by the rel-
ative frequency of each PoS tag1 in a text, the rel-
ative frequency of comparative/superlative adjec-
tives and adverbs and the relative frequency of the
present and past tenses. In addition to the fine-
grained Penn Treebank tags, we introduce general
grammatical categories (such as ‘verb’, ‘noun’,
etc.) and calculate their frequencies.

2. Dependency features reflect the occurrence
of syntactic dependency relations in the depen-
dency trees of the text. The dependency tagset
used by the parser is described in (Surdeanu et al.,
2008). We extract the frequency of each individual
dependency relation per sentence, the percentage
of modifier relations used per tree, the frequency
of adverbial dependencies (they give information
on manner, direction, purpose, etc.), the ratio of
modal verbs with respect to the total number of
verbs, and the percentage of verbs that appear in
complex tenses referred to as “verb chains” (VCs).

3. Tree features measure the tree width, the tree
depth and the ramification factor. Tree depth is de-
fined as the maximum number of nodes between
the root and a leaf node; the width is the maxi-
mum number of siblings at any of the levels of the
tree; and the ramification factor is the mean num-

1We use the Penn Treebank tagset http:
//www.ling.upenn.edu/courses/Fall_2003/
ling001/penn_treebank_pos.html
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ber of children per level. In other words, the tree
features characterize the complexity of the depen-
dency structure of the sentences.

These measures are also applied to subordinate
and coordinate clauses.

Discourse features characterize the discourse
structure of a text. To obtain the discourse struc-
ture, we use Surdeanu et al. (2015)’s discourse
parser, which receives as input a raw text, divides
it into Elementary Discourse Units (EDUs) and
links them via discourse relations that follow the
Rhetorical Structure Theory (Mann and Thomp-
son, 1988).

We compute the frequency of each discourse
relation per EDU (dividing the number of occur-
rences of each discourse relation by the number of
EDUs per text) and additionally take into account
the shape of the discourse trees by extracting their
depth, width and ramification factor.

3.2 Datasets

We use two datasets. The first dataset is a corpus
of chapters (henceforth, referred to as “Literary-
Dataset”) extracted from novels downloaded from
the “Project Gutenberg” website2. Novels from
18 different authors were selected. Three novels
per author were downloaded and divided by chap-
ter, labeled by the gender and name of the author,
as well as by the book they correspond to. All
of the authors are British and lived in roughly the
same time period. Half of the authors are male and
half female3. The dataset is composed of 1793 in-
stances.

The second dataset is publicly available4 and
was used in 2014’s PAN author verification task
(Stamatatos et al., 2014). It contains groups of
literary texts that are written by the same author
and a text whose author is unknown (henceforth,
“PANLiterary”).

3.3 Experiments

As already mentioned above, we carried out four
experiments; the first three of them on the Lit-

2https://www.gutenberg.org/
3The 18 selected authors are: Virginia Woolf, Arthur

Conan Doyle, Anne Brontë, Charlotte Brontë, Lewis Car-
roll, Agatha Christie, William Makepeace Thackeray, Oscar
Wilde, Maria Edgeworth, Elisabeth Gaskell, Bram Stoker,
James Joyce, Jane Austen, Charles Dickens, H.G Wells,
Robert Louis Stevenson, Mary Anne Evans (known as
George Eliot) and Margaret Oliphant.

4http://pan.webis.de/clef14/pan14-web/
author-identification.html

Used Features Accuracy Gen Accuracy Auth
Complete Set 90.18% 88.34%

Char (C) 67.65% 37.76%
Word (W) 61.79% 38.54%
Sent (S) 60.35% 17.12%
Dict (Dt) 60.62% 17.90%

Discourse (Dc) 69.99% 42.61%
Syntactic (Sy) 88.94% 82.82%

C+W+S+Dt+Dc 80.76% 69.72%
C+W+S+Dt+Sy 89.96% 87.17%

Sy+Dc 89.35% 83.88%
C+W+S+Dt 73.89% 42.55%

MajClassBaseline 53.54% 9.93%
2GramBaseline 79.25% 75.24%
3GramBaseline 75.53% 62.63%
4GramBaseline 72.39% 39.65%
5GramBaseline 65.81% 26.94%

Table 1: Results of the Gender and Author Identi-
fication Experiments

eraryDataset, and the last one on the PANLiter-
ary dataset. The LiteraryDataset experiments tar-
geted gender identification, author identification,
and identification to which of the 54 books a given
chapter belongs, respectively. The PANLiterary
experiment dealt with author verification, anal-
ogously to the corresponding PAN 2014 shared
task.

4 Experiment Results and Discussion

4.1 Gender Identification

The gender identification experiment is casted as
a supervised binary classification problem. Table
1 shows in the column ‘Accuracy Gen’ the perfor-
mance of the SVM with each feature group sep-
arately as well as with the full set and with some
feature combinations. The performance of the ma-
jority class classifier (MajClassBaseline) and of
four different baselines, where the 300 most fre-
quent token n-grams (2–5 grams were considered)
are used as classification features, are also shown
for comparison.

The n-gram baselines outperform the SVM
trained on any individual feature group, except
the syntactic features, which means that syntac-
tic features are crucial for the characterization of
the writing style of both genders. Using only this
group of features, the model obtains an accuracy
of 88.94%, which is very close to its performance
with the complete feature set. When discourse fea-
tures are added, the accuracy further increases.
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4.2 Author Identification

The second experiment classifies the texts from
the LiteraryDataset by their authors. It is a 18-
class classification problem, which is consider-
ably more challenging. Table 1 (column ‘Accu-
racy Auth’) shows the performance of our model
with 10-fold cross-validation when using the full
set of features and different feature combinations.

The results of the 10-fold author identification
experiment show that syntactic dependency fea-
tures are also the most effective for the charac-
terization of the writing style of the authors. The
model with the full set of features obtains 88.34%
accuracy, which outperforms the n-gram base-
lines. The high accuracy of syntactic dependency
features compared to other sets of features proves
again that dependency syntax is a very powerful
profiling tool that has not been used to its full po-
tential in the field.

Analyzing the confusion matrix of the experi-
ment, some interesting conclusions can be drawn;
due to the lack of space, let us focus on only a
few of them. For instance, the novels by Elisa-
beth Gaskell are confused with the novels by Mary
Anne Evans, Jane Austen and Margaret Oliphant.
This is likely because not only do all of these au-
thors share the gender, but Austen is also consid-
ered to be one of the main influencers of Gaskell.
Even though, Agatha Christie is predicted cor-
rectly most of the times, when she is confused with
another author, it is with Arthur Conan Doyle.
This may not be surprising since Arthur Conan
Doyle and, more specifically, the books about
Sherlock Holmes, greatly influenced her writing,
resulting in many detective novels with Detective
Poirot as protagonist (Christie’s personification of
Sherlock Holmes). Other mispredictions (such
as the confusion of Bram Stoker with Elisabeth
Gaskell) require a deeper analysis and possibly
also highlight the need for more training material.

4.3 Source Book Identification

To further prove the profiling potential of syntac-
tic and discourse features, we carried out an addi-
tional experiment. The goal was to identify from
which of the 54 books a given chapter is, making
use of syntactic and discourse features only. Us-
ing the same method and 10-fold cross-validation,
83.01% of accuracy was achieved. The interesting
part of this experiment is the error analysis. “Silas
Marner”, written by Mary Anne Evans (known as

George Elliot), is one of the books that created the
highest confusion; it is often confused with “Mill
on the Floss” written by the same author. “Kid-
napped” by Robert Louis Stevenson, which is very
different from the other considered books by the
same author, is confused with “Treasure Island”
also by Stevenson, and “Great Expectations” by
Charles Dickens. “Pride and Prejudice” by Jane
Austen is confused with “Sense and Sensibility”
also by her. The majority of confusions are be-
tween books by the same author, which proves
our point further: syntactic and discourse struc-
tures constitute very powerful, underused profil-
ing features (recall that for this experiment, we
used only syntactic and discourse features; none
of the features was content- or surface-oriented).
When the full set of features was used, the accu-
racy improved to 91.41%. In that case, the main
sources of confusion were between “Agnes Grey”
and “The Tenant of Wildfell Hall”, both by Anne
Brontë and between “Silas Marner” and “Mill on
the Floss”, both by G. Elliot.

4.4 PAN Author Verification

The literary dataset in the PAN 2014 shared task
on author verification contains pairs of text in-
stances where one text is written by a specific
author and the goal is to determine whether the
other instance is also written by the same author.
Note that the task of author verification is different
from the task of author identification. To apply our
model in this context, we compute the feature val-
ues for each pair of known-anonymous instances
and substract the feature values of the known in-
stance from the features of the anonymous one; the
feature values are normalized. As a result, a fea-
ture difference vector for each pair is computed.
The vector is labeled so as to indicate whether both
instances were written by the same author or not.

The task performance measure is computed by
multiplying the area under the ROC curve (AUC)
and the “c@1” score, which is a metric that takes
into account unpredicted instances. In our case,
the classifier outputs a prediction for each test in-
stance, such that the c@1 score is equivalent to ac-
curacy. In Table 2, the performance of our model,
compared to the winner and second ranked of the
English literary text section of the shared task (cf.
(Modaresi and Gross, 2014) and (Zamani et al.,
2014) for details), is shown.

Our model outperforms the task baseline as well

684



Approach Final Score AUC c@1
Our Model 0.671 0.866 0.775

Modaressi & Gross 0.508 0.711 0.715
Zamani et al. 0.476 0.733 0.650

META-CLASSIFIER 0.472 0.732 0.645
BASELINE 0.202 0.453 0.445

Table 2: Performance of our model compared to
other participants on the “PANLiterary” dataset

as the best performing approach of the shared
task, the META-CLASSIFIER (MC), by a large
margin. The task baseline is the best-performing
language-independent approach of the PAN-2013
shared task. MC is an ensemble of all systems that
participated in the task in that it uses for its deci-
sion the averaged probability scores of all of them.

4.5 Feature Analysis

Table 3 displays the 20 features with the high-
est information gain, ordered top-down (upper be-
ing the highest) for each of the presented experi-
ments.5 Syntactic features prove again to be rele-
vant in all the experiments. The table shows that
there are features that work well for the majority of
the experiments. This includes, e.g., the usage of
verb chains (VC), syntactic objects (OBJ), com-
mas, predicative complements of control verbs
(OPRD), or adjective modifiers (AMOD). It is in-
teresting to note that the Elaboration discourse re-
lation is distinctive in the first two experiments,
while the usage of Contrast relation becomes rele-
vant to gender and book identification. These fea-
tures are not helpful in the PANLiterary experi-
ment, where discourse patterns were not found in
the small dataset. The discourse tree width and
the subordinate clause width are distinctive in the
author identification experiment, while they are

5The features starting with a capital are discourse rela-
tions; ‘sentence range’ is defined as the difference between
the minimum and maximum value of words per sentence.
‘STD’: standard deviation, ‘firstP’: first person plural pro-
nouns, ‘AMOD’: Adjective/adverbial modifier f(requency),
‘VC’: Verb Chain f, ‘PRD’: Predicative complement f,
‘ADV’: General Adverbial f, ‘P’: Punctuation f, ‘MD’: Modal
Verb f, ‘TO’: Particle to f, ‘OPRD’: Predicative Complement
of raising/control verb f, ‘PRT’: Particle dependent on the
verb f, ‘OBJ’: Object f, ‘PRP’: Adverbial of Purpose or Rea-
son f, ‘CC’: Coordinating Conjunction f, ‘RBR’: Compara-
tive Adverb f, ‘PRP$’: Possessive Pronoun f, ‘WRB’: Wh-
Adverb f, ‘HMOD’: Dependent on the Head of a Hyphenated
Word f., ‘NNP’: Singular proper noun f, ‘DT’: Determiner f,
‘VBZ’: 3rd person singular present verb f, ‘CONJ’: Second
conjunct (dependent on conjunction) f, ‘PUT’: Complement
of the verb put f, ‘LOC-OPRD’: non-atomic dependency that
combines a Locative adverbial and a predicative complement
of a control verb f.

Author Gender Book PANLiterary
pronouns AMOD semicolons quotations

VC discourse markers colons charsperword
AMOD pronouns VB firstS
commas firstP PRP commas

PRD VC MD hyphens
discourse width ADV OBJ NNP

P MD acronyms subordinate depth
TO Elaboration VC DT

Elaboration TO IM CC
present verbs OPRD sentence STD determiners

subordinate width PRT parentheses PRP
quotations Contrast commas discourse markers

OBJ PRP periods VC
CC Manner-means stopwords VBZ

sentence STD RBR OPRD CONJ
nouns positive words AMOD firstP
OPRD OBJ Contrast PUT
PRP$ WRB exclamations LOC-OPRD

HMOD present verbs PRP$ coordinate width
periods sentence range quotations adverbs

Table 3: 20 features with the highest information
gain in all the experiments

not in the other experiments. This is likely be-
cause they can serve as indicators of the structural
complexity of a text and thus of the idiosyncrasy
of a writing style of an individual – as punctua-
tion marks such as periods and commas, which
are typical stylistic features. Discourse markers,
words with positive sentiment, first person plural
pronouns, Wh-Adverbs and modal verbs are dis-
tinctive features in the gender identification exper-
iment. The fact that the usage of positive words
is only relevant in the gender identification ex-
periment could be caused by the differences in
the expressiveness/emotiveness of the writings of
men and women. Punctuation marks become very
distinctive in the book identification experiment,
where the usage of colons, semicolons, parenthe-
ses, commas, periods, exclamations and quotation
marks are among the most relevant features of the
experiment. Syntactic shape features are distinc-
tive in the author identification and PANLiterary
experiments while not as impactful in the rest of
the experiments.

5 Conclusions and Future Work

We have shown that syntactic dependency and dis-
course features, which have been largely neglected
in state-of-the-art proposals so far, play a signifi-
cant role in the task of gender and author identi-
fication and author verification. With more than
88% of accuracy in both gender and author identi-
fication within the literary genre, our models that
uses them beats competitive baselines. In the fu-
ture, we plan to experiment with further features
and other traits of author profiling.
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Abstract

Political text scaling aims to linearly or-
der parties and politicians across politi-
cal dimensions (e.g., left-to-right ideology)
based on textual content (e.g., politician
speeches or party manifestos). Existing
models scale texts based on relative word
usage and cannot be used for cross-lingual
analyses. Additionally, there is little quanti-
tative evidence that the output of these mod-
els correlates with common political dimen-
sions like left-to-right orientation. We pro-
pose a text scaling approach that leverages
semantic representations of text and is suit-
able for cross-lingual political text scaling.
We also propose a simple and straightfor-
ward setting for quantitative evaluation of
political text scaling. Experimental results
show that the semantically-informed scal-
ing models better predict the party posi-
tions than the existing word-based models
in two different political dimensions. Fur-
thermore, the proposed models exhibit no
drop in performance in the cross-lingual
compared to monolingual setting.

1 Introduction

The goal of political scaling is to order political
entities, i.e., political parties and politicians accord-
ing to their positions in some political dimension
(e.g., left vs. right ideological orientation). Textual
content produced by political entities, such as par-
ties’ election manifestos or transcripts of speeches,
is commonly used as the data underpinning the
analyses (Grimmer and Stewart, 2013).

Advances in text mining have enabled various
topical and ideological analyses of political texts.
Computational methods for political text analysis
cover dictionary-based models (Kellstedt, 2000;

Young and Soroka, 2012), supervised classification
models (Purpura and Hillard, 2006; Stewart and
Zhukov, 2009; Verberne et al., 2014; Karan et al.,
2016), and unsupervised scaling models (Slapin
and Proksch, 2008; Proksch and Slapin, 2010). All
of these models use the discrete, word-based rep-
resentations of text. Recently, however, continu-
ous semantic text representations (Mikolov et al.,
2013b; Le and Mikolov, 2014; Kiros et al., 2015;
Mrkšić et al., 2016) outperformed word-based text
representations on a battery of mainstream natural
language processing tasks (Kim, 2014; Bordes et
al., 2014; Tang et al., 2016).

Although the idea of automated estimation of
ideological beliefs is old (Abelson and Carroll,
1965), models estimating these beliefs from texts
have only appeared in the last fifteen years (Laver
and Garry, 2000; Laver et al., 2003; Slapin and
Proksch, 2008; Proksch and Slapin, 2010). In the
pioneering work on political text scaling, Laver and
Garry (2000) used predefined dictionaries of words
labeled with position scores. They then scored doc-
uments by aggregating the scores of dictionary
words they contain. Extending this work, they pro-
posed the model (Laver et al., 2003) that relies on
manually labeled reference texts instead of dictio-
naries of position words. They then computed the
lexical overlap between the unlabeled texts and the
reference position texts.

Seeking to avoid the manual annotation effort,
Slapin and Proksch (2008) proposed Wordfish, an
unsupervised scaling model which has become the
de facto standard method for political text scaling.
Wordfish models document positions and contri-
butions of individual words to those positions as
latent variables of the Poisson naı̈ve Bayes gen-
erative model, i.e., they assume that words are
drawn independently from a Poisson distribution.
They estimate the positions by maximizing the log-
likelihood objective in which word variables inter-
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act with document variables.
In this work we aim to remedy for two major

shortcomings pertaining to existing research on
political text scaling:
(1) Existing methods rely on bag-of-words repre-
sentations of text and are based on relative fre-
quencies of words in documents being scaled. As
such, they fail to exploit semantic similarities be-
tween words (e.g., “bad hombre” and “terrible
dude” might indicate the same ideological posi-
tion) and, more importantly, cannot be applied to
cross-lingual scaling (i.e., scaling of texts written
in different languages);

(2) Most existing studies provide only qualitative
evaluation of the scaling quality and the extent
to which automatically produced position scores
correspond to actual positions of political actors.1

Lack of transparent quantitative evaluation blurs
insights into models’ abilities to predict actual po-
sitions for a political dimension of interest.

The contributions of this paper are twofold.
First, we propose an unsupervised scaling model
which is, by exploiting semantic representations of
text, equally suitable for monolingual and cross-
lingual analyses of political texts. We exploit the
recently ubiquitous word embeddings (Mikolov et
al., 2013b; Pennington et al., 2014) to derive se-
mantic representations of texts and the translation
matrix model (Mikolov et al., 2013a) to construct a
joint multilingual semantic vector space. We then
build a fully-connected similarity graph by measur-
ing semantic similarities between all pairs of texts.
Finally we run a graph-based label propagation al-
gorithm (Zhu and Goldberg, 2009) to derive final
positions of political texts. Secondly, we propose a
simple and straightforward quantitative evaluation
that directly compares automatically produced posi-
tions with the ground truth positions (i.e., positions
labeled by experts) for political dimensions of inter-
est. Furthermore, we construct a dataset (with both
monolingual and cross-lingual version), which we
offer as a benchmark for quantitative evaluation of
models for political text scaling.

2 Cross-Lingual Text Scaling

Our scaling approach consists of three components:
(1) construction of a joint multilingual embedding

1Proksch and Slapin (2010) perform a convolutedly indi-
rect quantitative evaluation of Wordfish, which we do not find
to be significantly more informative than qualitative evalua-
tions.

space, (2) unsupervised measures of semantic simi-
larity, and (3) a graph-based label propagation algo-
rithm, which we use to derives final position scores
from pairwise text similarities.

2.1 Multilingual Embedding Space

We start from monolingual word embeddings of all
involved languages, obtained by running embed-
ding models (Mikolov et al., 2013b; Pennington et
al., 2014) on large corpora. Independently trained
monolingual embedding spaces are in no way mu-
tually associated, i.e., same concepts (e.g., English
word “bad” and German “schlecht”) might have
very different vectors.

In order to allow for semantic comparison of
texts in different languages, we must construct a
joint multilingual semantic vector space. To this
end, we select the embedding space of one lan-
guage and map embedding spaces of all other lan-
guages to the selected space using the linear transla-
tion matrix model of Mikolov et al. (2013a). Given
a set of word translations pairs P , we learn a trans-
lation matrix M that projects embedding vectors
from one embedding space to another. Let S and
T be the matrices with monolingual embeddings
of source and target words from P , respectively.
Unlike the original work (Mikolov et al., 2013a),
in which the matrix M is learned by numerically
minimizing the differences between projections of
source embeddings and target embeddings, we opt
for a analytical solution for the matrix M. Given
that we want to find the matrix that translates S
to T, i.e., S ·M = T and that the source matrix
S is not a square matrix (i.e., it does not have an
inverse), we compute the translation matrix M by
multiplying the pseudoinverse (inverse approxima-
tion for non-square matrices) of the source matrix
S with the target matrix T:

M = S+·T

where S+ is the Moore-Penrose pseudoinverse of
the source matrix S, i.e., S+ = (STS)−1ST . The
translation matrices we obtained this way in our
experiments turned to be of the same quality as
those obtained via numeric optimization. However,
the direct analytical computation using the pseu-
doinverse of the source matrix has the benefit of
being significantly computationally faster than the
numeric optimization.
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2.2 Measures of Semantic Similarity
We propose two rather simple unsupervised mea-
sures of semantic similarity between texts that
leverage the embeddings from the shared multi-
lingual embedding space. Both similarity measures
are fully language-agnostic, i.e., they simply use
the joint embedding space to look up semantic vec-
tors of words found in input texts.

Alignment similarity. The computation of the
alignment score is based on the bijective alignment
of words between two input texts. We greedily pair
words between the two documents that have the
most similar embedding vectors (according to the
cosine distance) – once each word (more precisely,
each token) has been aligned, it is not considered
for further alignments. A similar alignment method
has been proposed for evaluating machine transla-
tion systems (Lavie and Denkowski, 2009). Let t1
and t2 be the input texts and letA = {(wi

1, w
i
2)}Ni=1

be the obtained word alignment between them. The
alignment similarity is then computed as follows:

s(t1, t2) =
1
N

∑
(wi

1,wi
2)∈A

cos(e(wi
1), e(w

i
2))

where N = |A| is the number of aligned pairs,
equal to the number of tokens in the shorter of the
texts, and e(w) is the embedding of the word w in
the shared multilingual embedding space.

Aggregation similarity. Instead of aligning
words of input texts according to their semantic
similarity, aggregation score compares the aggre-
gate semantic vectors of entire input texts. Let T
be the bag of words of an input text t. We compute
the aggregate embedding of the input text t as the
sum of L2-normalized embeddings of words in T :

e(t) =
1
|T |

∑
w∈T

e(w)
‖e(w)‖

The aggregation similarity is then computed as the
cosine of the angle between aggregate vectors of
the two input texts:

s(t1, t2) = cos(e(t1), e(t2))

2.3 Graph-Based Scaling Algorithm
With the shared embedding space and similarity
metrics in place, we can compute semantic sim-
ilarity scores for every pair of political texts we
want to scale. The conversion of such pairwise text

similarities into an one-dimensional scale of posi-
tion scores is the final step of our scaling approach.
Assuming that the two semantically most dissimi-
lar texts, which we name pivot texts, represent the
opposite position extremes for the political dimen-
sion of interest, we initially assign them extreme
position scores of −1 and 1. Pairwise similarities
between texts induce an undirected similarity graph
and allow us to use graph-based score propagation
to compute the positions for the remaining, non-
pivot texts. Finally, after obtaining the positions of
the non-pivot texts, we recompute the positions for
the two pivot texts.

Position propagation. We use the harmonic
function label propagation (HFLP)2 (Zhu and Gold-
berg, 2009) – a commonly used graph-based algo-
rithm for semi-supervised learning – to propagate
position scores from the two pivot texts to other,
non-pivot texts.3 Before running the HFLP algo-
rithm, we rescale all pairwise text similarities (i.e.,
all graph weights) to the [0, 1] interval (i.e., 0 is
the similarity between two least similar texts and
1 is the similarity between two most similar texts).
Let G = (V,E) be the similarity graph and W its
weighted adjacency matrix. Let D be the diagonal
matrix with weighted degrees of graph’s vertices as
diagonal elements, i.e., Dii =

∑
j∈|V |wij , where

wij is the weight of the edge between vertices i
and j. The unnormalized Laplacian of the graph
G is then given as L = D −W. Assuming that
the labeled vertices (in our case, the two vertices
representing pivot texts) are ordered before the un-
labeled ones, the Laplacian L can be partitioned as
follows:

L =
(

Lll Llu

Lul Luu

)
The harmonic function values of the unlabeled ver-
tices, denoting the position scores of the non-pivot
texts, are then given by:

fu = −L−1
uuLulyl

where yl is the vector of scores of labeled vertices,
in our case, yl = [−1, 1]T .

Rescaling pivot texts. We acknowledge that our
two pivot texts (i.e., the pair of mutually least simi-
lar texts according to our semantic similarity mea-
sure) might not be the two texts expressing truly

2Also known as the absorbing random walk.
3Preliminarily, we also experimented with the PageRank

algorithm (Page et al., 1999), but HFLP performed better.
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the most dissimilar political positions because: (1)
our metrics of semantic similarity are imperfect,
i.e., the scores they produce are not the gold stan-
dard semantic similarities, but even if they were
(2) we do not know to what extent the semantic
similarity we measure correlates with the particular
political dimension being analyzed (e.g., with the
ideological left-to-right agreement). This is why, as
the final step, we rescale the positions of the two
pivot texts which we kept fixed for HFLP.

Let t be a pivot text and NP be the set of non-
pivot texts for which we obtained the positions with
HFLP. The final pivot text position is computed as
the weighted sum of non-pivot positions:

p(t) =
∑

ti∈NP

p(ti) · s(t, ti)

where s(t, ti) is the semantic similarity between
texts t and ti and p(ti) is the position of a non-pivot
text ti, obtained with HFLP. We finally rescale all
position scores to range [−1, 1], keeping the same
proportions between pairs of party positions.

3 Evaluation

We first describe the dataset used for evaluation
and then describe in detail the straightforward set-
ting for quantitative evaluation of scaling methods.
Finally, we interpret the obtained results.

3.1 Dataset
We collected a corpus of speeches from the fifth
mandate of the European Parliament (EP) from
the Parliament’s official website. The choice of
EP speeches for evaluation was a pragmatic one –
each speech is available in all official EU languages,
which allowed for a parallel monolingual and cross-
lingual evaluation on the same set of speeches. We
selected all speeches given by representatives from
five largest European countries: Germany, France,
United Kingdom, Italy, and Spain. We created ag-
gregated texts for political parties by concatenating
speeches of all party members. Finally, we kept the
only the parties with aggregate texts longer than
15.000 tokens, which left us with a set of 25 polit-
ical parties. We compiled the final dataset in the
monolingual (English) and multilingual (speeches
in speakers’ respective native languages) versions.4

As in the previous work (Proksch and Slapin,
2010), we are considering party positions in two

4We make the dataset and the scaling code available at
https://bitbucket.org/gg42554/cl-scaling

Source Target P@1 (%) P@5 (%)

German English 32.7 48.7
Spanish English 46.6 58.3
Italian English 34.4 52.5
French English 36.4 56.2

Table 1: Evaluation of translation matrices.

dimensions: (1) left-to-right ideology and (2) Euro-
pean integration. We obtained the gold party posi-
tions for both of these dimensions from the 2002
Chapel Hill expert survey.5

3.2 Experimental Setting
Joint embedding space. We first obtain the
monolingual word embeddings for all five lan-
guages in evaluation. We used the pretrained 200-
dimensional GloVe word embeddings (Penning-
ton et al., 2014) for English6 and trained the
300-dimensional Word2Vec CBOW embeddings
(Mikolov et al., 2013b) for the other four languages
on respective Wikipedia instances. We induced the
multilingual embedding space by translating em-
beddings of other four languages to the English
embedding space. We obtained word translation
pairs by translating 4200 most frequent English
words to all other languages with Google translate.
We used 4000 of the translation pairs to learn the
translation matrices and remaining 200 for evalua-
tion of translation quality. Translation quality we
obtain, shown in Table 1 in terms of precisions at
ranks one and five (P@1 and P@5), is comparable
to that reported in (Mikolov et al., 2013a).

Models and evaluation metrics. We evaluate
two different variants of our method, one em-
ploying the alignment similarity (ALIGN-HFLP)
and the other computing the aggregation similar-
ity (AGG-HFLP) for pairs of texts. We evaluate
both models in both monolingual and cross-lingual
scaling setting. For comparison, in the monolin-
gual setting we also evaluate Wordfish (Slapin and
Proksch, 2008). As a sanity check, we also evaluate
a baseline that randomly assigns positions to texts.

Evaluation metrics. We use intuitive evaluation
metrics for comparing model-produced positions
with the gold positions: the pairwise accuracy (PA),
i.e., the percentage of pairs with parties in the same

5http://chesdata.eu/
6http://nlp.stanford.edu/data/glove.6B.

zip
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Monolingual Cross-lingual

PA rP rS PA rP rS

Random 49.7 -.03 .00 49.7 -.03 .00
Wordfish 55.0 .21 .20 – – –

AL-HFLP 61.3 .35 .31 57.3 .20 .25
AGG-HFLP 67.0 .53 .46 63.3 .34 .39

Table 2: Scaling performance for the left-to-right
ideological positioning.

Monolingual Cross-lingual

PA rP rS PA rP rS

Random 49.1 .00 .00 49.1 .00 .00
Wordfish 59.7 .18 .33 – – –

AL-HFLP 62.3 .25 .39 64.3 .54 .40
AGG-HFLP 60.3 .24 .30 59.3 .48 .31

Table 3: Scaling performance for the positioning
regarding European integration.

order as in the gold standard; and Spearman (rS)
and Pearson correlation (rP ) between the two sets
of positions. While PA and Spearman correlation
estimate the correctness of the ranking, Pearson
correlation also captures the extent to which auto-
mated scaling reflects the gold distances between
party positions.

3.3 Results and Discussion

In Tables 2 and 3 we show the models’ scaling
performance for two political dimensions – left-to-
right ideology and European integration, respec-
tively. Our semantically-aware models outperform
the commonly used Wordfish model. For both di-
mensions, our best performing model significantly
outperforms Wordfish (p < 0.05).7 Positions pro-
duced by Wordfish seem to be better aligned with
positions on European integration than with ide-
ological left-to-right positions, which is in line
with observations from (Proksch and Slapin, 2010).
The same holds for our alignment model (ALIGN-
HFLP). In contrast, the scaling based on the ag-
gregation similarity measure (AGG-HFLP) seems
to better correspond to the left-to-right ideological
positioning. We hypothesize that this is because the
comparison between semantically more imprecise
aggregated text embeddings assigns more weight
to the most salient dimension of speeches, which
we speculate is the ideological position. In contrast,
by comparing semantically more precise word em-

7According to the non-parametric stratified shuffling test
(Yeh, 2000)

beddings, the alignment model treats all political
dimensions of speeches more uniformly.

In the cross-lingual setting (i.e., when estimat-
ing positions from texts in different languages) we
observe no (significant) drop in performance of
our best performing model for either of the polit-
ical dimensions with respect to the monolingual
(English) setting. This crucial finding implies that
our semantically-motivated approach for political
text scaling is indeed as applicable to multilingual
political corpora as it is to monolingual.

The performance levels that our models reach
indicate that the semantic similarity scores we com-
pute capture also similarities originating from di-
mensions other than the political dimension of
analysis. For example, part of the similarity be-
tween parties from the same country comes from
the mentions of the same country-specific issues
(not mentioned by the parties from other countries),
regardless of the ideological dis(agreement) be-
tween these parties. Because of these effects, we
believe that text scaling models must be coupled
with models that would previously extract only the
portions of texts relevant for the dimension of anal-
ysis (e.g., a model for discerning ideological from
non-ideological portions of text).

4 Conclusion

In this work, we presented what is, to the best of
our knowledge, the first approach for cross-lingual
scaling of political texts. We induce a multilingual
embedding space and compute semantic similari-
ties for all pairs of texts using unsupervised mea-
sures for semantic textual similarity. We then use a
graph-based score propagation algorithm to trans-
form pairwise similarities into position scores.

Experimental results from the straightforward
quantitative evaluation we propose show that our
semantically-informed scaling predicts party posi-
tions for two relevant political dimensions better
than the commonly used Wordfish model. More-
over, the cross-lingual scaling performance of our
models matches their monolingual performance,
proving them to be suitable to scale political texts
from multilingual collections.

We will next focus on cross-lingual classification
models to pre-filter only relevant portions of text.
Coupling such models with the presented scaling
method will allow for measuring similarities only
along the relevant political dimension (e.g., ideol-
ogy) and lead to more accurate position estimates.

692



References
Robert P. Abelson and J Douglas Carroll. 1965. Com-

puter simulation of individual belief systems. The
American Behavioral Scientist (pre-1986), 8(9):1–
24.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014. Open question answering with weakly super-
vised embedding models. In Joint European Confer-
ence on Machine Learning and Knowledge Discov-
ery in Databases, pages 165–180. Springer.

Justin Grimmer and Brandon M. Stewart. 2013. Text
as data: The promise and pitfalls of automatic con-
tent analysis methods for political texts. Political
Analysis, 21(3):267–297.
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Abstract

Existing models based on artificial neu-
ral networks (ANNs) for sentence classi-
fication often do not incorporate the con-
text in which sentences appear, and clas-
sify sentences individually. However, tra-
ditional sentence classification approaches
have been shown to greatly benefit from
jointly classifying subsequent sentences,
such as with conditional random fields. In
this work, we present an ANN architecture
that combines the effectiveness of typical
ANN models to classify sentences in isola-
tion, with the strength of structured predic-
tion. Our model outperforms the state-of-
the-art results on two different datasets for
sequential sentence classification in medi-
cal abstracts.

1 Introduction

Over 50 million scholarly articles have been pub-
lished (Jinha, 2010), and the number of arti-
cles published every year keeps increasing (Druss
and Marcus, 2005; Larsen and Von Ins, 2010).
Approximately half of them are biomedical pa-
pers. While this repository of human knowledge
abounds with useful information that may unlock
new, promising research directions or provide con-
clusive evidence about phenomena, it has become
increasingly difficult to take advantage of all avail-
able information due to its sheer amount. There-
fore, a technology that can assist a user to quickly
locate the information of interest is highly desired,
as it may reduce the time required to locate rele-
vant information.

When researchers search for previous literature,
for example, they often skim through abstracts in
order to quickly check whether the papers match

∗ These authors contributed equally to this work.

the criteria of interest. This process is easier when
abstracts are structured, i.e., the text in an abstract
is divided into semantic headings such as objec-
tive, method, result, and conclusion. However,
a significant portion of published paper abstracts
is unstructured, which makes it more difficult to
quickly access the information of interest. There-
fore, classifying each sentence of an abstract to an
appropriate heading can significantly reduce time
to locate the desired information.

We call this the sequential sentence classifica-
tion task, in order to distinguish it from general
text classification or sentence classification that
does not have any context. Besides aiding humans,
this task may also be useful for automatic text
summarization, information extraction, and infor-
mation retrieval.

In this paper, we present a system based on
ANNs for the sequential sentence classification
task. Our model makes use of both token and
character embeddings for classifying sentences,
and has a sequence optimization layer that is
learned jointly with other components of the
model. We evaluate our model on the NICTA-
PIBOSO dataset as well as a new dataset we com-
piled based on the PubMed database.

2 Related Work

Existing systems for sequential sentence classi-
fication are mostly based on naive Bayes (Ruch
et al., 2007; Huang et al., 2013), support vec-
tor machine (McKnight and Srinivasan, 2003; Ya-
mamoto and Takagi, 2005; Hirohata et al., 2008;
Yamamoto and Takagi, 2005), Hidden Markov
models (Lin et al., 2006), and conditional ran-
dom fields (CRFs) (Kim et al., 2011; Hassan-
zadeh et al., 2014; Hirohata et al., 2008). They
often require numerous hand-engineered features
based on lexical (bag-of-words, n-grams, dic-
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tionaries, cue words), semantic (synonyms, hy-
ponyms), structural (part-of-speech tags, head-
ings), and sequential (sentenced position, sur-
rounding features) information.

On the other hand, recent approaches to nat-
ural language processing (NLP) based on artifi-
cial neural networks (ANNs) do not require man-
ual features, as they are trained to automatically
learn features based on word as well as character
embeddings. Moreover, ANN-based models have
achieved state-of-the-art results on various NLP
tasks, including the most relevant task of text clas-
sification (Socher et al., 2013; Kim, 2014; Kalch-
brenner et al., 2014; Zhang et al., 2015; Conneau
et al., 2016; Xiao and Cho, 2016; dos Santos and
Gatti, 2014). For text classification, many ANN
models use word embeddings (Socher et al., 2013;
Kim, 2014; Kalchbrenner et al., 2014; Gehrmann
et al., 2017), and most recent works are based on
character embeddings (Zhang et al., 2015; Con-
neau et al., 2016; Xiao and Cho, 2016). Ap-
proaches combining word and character embed-
dings have also been explored (dos Santos and
Gatti, 2014; Dernoncourt et al., 2016).

However, most existing works using ANNs for
short-text classification do not use any context.
This is in contrast with sequential sentence classi-
fication, where each sentence in a text is classified
taking into account its context, i.e. the surround-
ing sentences and possibly the whole text. One
exception is a recent work on dialog act classifi-
cation (Lee and Dernoncourt, 2016), where each
utterance in a dialog is classified into its dialog
act, but only the preceding utterances were used,
as the system was designed with real-time appli-
cations in mind.

3 Model

In the following, we denote scalars in italic low-
ercase (e.g., k, bf ), vectors in bold lowercase
(e.g., s, xi), and matrices in italic uppercase
(e.g., Wf ) symbols. We use the colon notations
xi:j and vi:j to denote the sequences of scalars
(xi, xi+1, . . . , xj), and vectors (vi,vi+1, . . . ,vj),
respectively.

3.1 ANN model

Our ANN model (Figure 1) consists of three com-
ponents: a hybrid token embedding layer, a sen-
tence label prediction layer, and a label sequence
optimization layer.

c1 c2 cl

t
concatenate

e1 e2 ei

Feed forward

a1 a2 an-1

…

y2

aj

…

y1 yj yn-1

an

yn

Token 
embeddings

bi-LSTMconcatanate

…

…

bi-LSTM concatanate

…

…

cl-1

s

c

…

…

em

Character embeddings

z1 z2 zlzl-1 x
Figure 1: ANN model for sequential sentence classifica-
tion. x: token, t: token embeddings (300), zi: ith charac-
ter of x, ci: character embeddings (25), c: character-based
token embeddings (50), ei: hybrid token embeddings (350),
s: sentence vector (200), aj : sentence label vector (number
of classes), yj : sentence label. The numbers in parenthe-
sis indicate the dimension of the vectors. Token embeddings
are initialized with GloVe (Pennington et al., 2014) embed-
dings pretrained on Wikipedia and Gigaword 5 (Parker et al.,
2011). Replacing LSTMs with convolutional neural networks
did not improve the results: we therefore use LSTMs.

3.1.1 Hybrid token embedding layer

The hybrid token embedding layer takes a token
as an input and outputs its vector representation
utilizing both the token embeddings and as well as
the character embeddings.

Token embeddings are a direct mapping VT (·)
from token to vector, which can be pre-trained on
large unlabeled datasets using programs such as
word2vec (Mikolov et al., 2013b; Mikolov et al.,
2013a; Mikolov et al., 2013c) or GloVe (Penning-
ton et al., 2014). Character embeddings are also
defined in an analogous manner, as a direct map-
ping VC(·) from character to vector.

Let z1:` be the sequence of characters that com-
prise a token x. Each character zi is first mapped
to its embedding ci = VC(zi), and the resulting
sequence c1:` is input to a bidirectional LSTM,
which outputs the character-based token embed-
ding c.
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The output e of the hybrid token embedding
layer for the token x is the concatenation of the
character-based token embedding c and the token
embedding t = VT (x).

3.1.2 Sentence label prediction layer
Let x1:m be the sequence of tokens in a given sen-
tence, and e1:m be the corresponding embedding
output from the hybrid token embedding layer.
The sentence label prediction layer takes as in-
put the sequence of vectors e1:m, and outputs a,
where the kth element of a, denoted a[k], reflects
the probability that the given sentence has label k.

To achieve this, the sequence e1:m is first input
to a bidirectional LSTM, which outputs the vector
representation s of the given sentence. The vec-
tor s is subsequently input to a feedforward neural
network with one hidden layer, which outputs the
corresponding probability vector a.

3.1.3 Label sequence optimization layer
The label sequence optimization layer takes the se-
quence of probability vectors a1:n from the label
prediction layer as input, and outputs a sequence
of labels y1:n, where yi is the label assigned to the
token xi.

In order to model dependencies between subse-
quent labels, we incorporate a matrix T that con-
tains the transition probabilities between two sub-
sequent labels; we define T [i, j] as the probability
that a token with label i is followed by a token with
the label j. The score of a label sequence y1:n is
defined as the sum of the probabilities of individ-
ual labels and the transition probabilities:

s(y1:n) =
n∑

i=1

ai[yi] +
n∑

i=2

T [yi−1, yi].

These scores can be turned into probabilities of the
label sequences by taking a softmax function over
all possible label sequences:

p(ŷ1:n) =
es(ŷ1:n)∑

y1:n∈Y n

es(y1:n)

with Y being the set of all possible labels. During
the training phase, the objective is to maximize the
log probability of the gold label sequence. In the
testing phase, given an input sequence of tokens,
the corresponding sequence of predicted labels is
chosen as the one that maximizes the score.

Computing the denominator
∑

y∈Y n es(y1:n)

can be done in O(n|C|2) time using dynamic

programming (where |C| denotes the number of
classes), as demonstrated below. Let A(n,yn) be
the log of the sum of the scores of all the sequence
of length n the last label of which is yn. Then:

A(n,yn)
def.
= log

 ∑
y1:(n−1)∈Y n−1

es(y1:n)


= log

 ∑
y1:(n−1)∈Y n−1

es(y1:(n−1))+T (yn−1,yn)+an(yn)


= log

 ∑
yn−1∈Y

 ∑
y1:(n−2)∈Y n−2

es(y1:(n−1))

 eT (yn−1,yn)+an(yn)


= log

 ∑
yn−1∈Y

e
A(n−1,yn−1)eT (yn−1,yn)+an(yn)


Since A(n,yn) can be computed in Θ(|C|)

time given
{
A(n−1,yn−1)|yn−1 ∈ Y

}
, comput-

ing
{
A(n,yn)|yn ∈ Y

}
takes Θ(|C|2) time given{

A(n−1,yn−1)|yn−1 ∈ Y
}

. Consequently, com-
puting

{
A(n,yn)|yn ∈ Y

}
takes O(n|C|2) time.

4 Experiments

4.1 Datasets
We evaluate our model on the sentence classifica-
tion task using the following two medical abstract
datasets, where each sentence of the abstract is an-
notated with one label. Table 1 presents statistics
on each dataset.

NICTA-PIBOSO This dataset was introduced
in (Kim et al., 2011) and was the basis of the
ALTA 2012 Shared Task (Amini et al., 2012).

PubMed 20k RCT This corpus was introduced
in (Dernoncourt et al., 2017)1. It is based on
the PubMed database of biomedical literature and
uses 5 sentence labels: objectives, background,
methods, results and conclusions

Dataset |C| |V | Train Validation Test
PubMed 5 68k 15k (195k) 2.5k (33k) 2.5k (33k)
NICTA 6 17k 722 (8k) 77 (0.9k) 200 (2k)

Table 1: Dataset overview. |C| denotes the number of
classes, |V | the vocabulary size. For the train, validation and
test sets, we indicate the number of abstracts followed by the
number of sentences in parentheses.

4.2 Training
The model is trained using stochastic gradient de-
scent, updating all parameters, i.e., token embed-

1The dataset can be found online at https://
github.com/Franck-Dernoncourt/pubmed-rct
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Model PubMed 20k NICTA
LR 83.1 71.6
Forward ANN 86.1 75.1
CRF 89.5 81.2
Best published – 82.0
Our model 90.0 82.7

Table 2: F1-scores on the test set with several baselines,
the best published method (Lui, 2012) from the literature,
and our model. Since PubMed 20k RCT was introduced in
this work, there is no previously published method for this
dataset. The presented results for the ANN-based models are
the F1-scores on the test set of the run with the highest F1-
score on the validation set.

dings, character embeddings, parameters of bidi-
rectional LSTMs, and transition probabilities, at
each gradient step. For regularization, dropout is
applied to the character-enhanced token embed-
dings before the label prediction layer. We se-
lected the hyperparameters manually, though we
could have used some hyperparameter optimiza-
tion techniques (Bergstra et al., 2011; Dernoncourt
and Lee, 2016).

5 Results and Discussion

Table 2 compares our model against several base-
lines as well as the best performing model (Lui,
2012) in the ALTA 2012 Shared Task, in which
8 competing research teams participated to build
the most accurate classifier for the NICTA-
PIBOSO corpus.

The first baseline (LR) is a classifier based on
logistic regression using n-gram features extracted
from the current sentence: it does not use any in-
formation from the surrounding sentences. The
second baseline (Forward ANN) uses the model
presented in (Lee and Dernoncourt, 2016): it com-
putes sentence embeddings for each sentence, then
classifies the current sentence given a few preced-
ing sentence embeddings as well as the current
sentence embedding. The third baseline (CRF) is
a CRF that uses n-grams as features: each out-
put variable of the CRF corresponds to a label for
a sentence, and the sequence the CRF considers
is the entire abstract. The CRF baseline there-
fore uses both preceding and succeeding sentences
when classifying the current sentence. Lastly, the
model presented in (Lui, 2012) developed a new
approach called feature stacking, which is a met-
alearner that combines multiple feature sets, and
is the best performing system on NICTA-PIBOSO
published in the literature.

Model PubMed 20k NICTA
Full model 89.9 82.7
- character emb 89.7 82.7
- pre-train 88.7 78.0
- token emb 88.9 77.0
- seq opt 85.0 72.8

Table 3: Ablation analysis. F1-scores are reported. “- char-
acter emb” is our model using only token embeddings, with-
out character-based token embeddings. “- pre-train” is our
model where token embeddings are initialized with random
values instead of pre-trained embeddings. “- token emb”
is our model using only character-based token embeddings,
without token embeddings. “- seq opt” is our model without
the label sequence optimization layer.
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Figure 2: Transition matrix learned on PubMed 20k RCT.
The rows represent the label of the previous sentence, the
columns represent the label of the current sentence.

The LR system performs honorably on PubMed
20k RCT (F1-score: 83.1), but quite poorly on
NICTA-PIBOSO (F1-score: 71.6): this suggests
that using the surrounding sentences may be more
important in NICTA-PIBOSO than in PubMed
20k RCT.

The Forward ANN system performs better than
the LR system, and worse than the CRF: this is
expected, as the Forward ANN system only uses
the information from the preceding sentences but
do not use any information from the succeeding
sentences, unlike the CRF.

Our model performs better than the CRF sys-
tem and the (Lui, 2012) system. We hypothesize
that the following four factors give an edge to our
model:
No human-engineered features: Unlike most
other systems, our model does not rely on any
human-engineered features.
No n-grams: While other systems heavily relies
on n-grams, our model maps each token to a token
embedding, and feeds it as an input to an RNN.
This helps combat data scarcity, as for example
“chronic tendonitis” and “chronic tendinitis” are
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Sentence Predicted Actual
This study investigated whether oxytocin can affect attentional bias in social anxiety. Background Methods
The biological mechanisms by which oxytocin may be exerting these effects are discussed . Conclusions Results
Leuprolide pharmacokinetics were characterized for 11.25 and 30 mg 3-month depot injections. Conclusions Results
While, 6%HES 130/0.4 (free flex 6%HES 130/0.4, Fresenius Kabi) infusion was different [...] Results Methods
Arterial and central venous blood gas analyses were performed every 20 minutes [...] Results Methods
Cytokine responses accompanying [...] immunotherapy [...] have not previously been reported. Background Objectives

Table 4: Examples of prediction errors of our model on PubMed 20k RCT. The “predicted” column indicates the label predicted
by our model for a given sentence. Our model takes into account all the sentences present in the abstract in which the classified
sentence appears. The “actual” column indicates the gold label of the sentence.

PubMed 20k RCT
Precision Recall F1-score Support

Background 71.8 88.2 79.1 3621
Conclusion 93.5 92.9 93.2 4571
Methods 93.7 96.2 94.9 9897
Objectives 78.2 48.1 59.6 2333
Results 94.8 93.1 93.9 9713
Total 90.1 89.9 90.0 30135

Table 5: Results for each class obtained by our model on
PubMed 20k RCT.

two different bigrams, but share the same mean-
ing, and their token embeddings should therefore
be very similar.
Structured prediction: The labels for all sen-
tences in an abstract are predicted jointly, which
improves the coherency between the predicted la-
bels in a given abstract. The ablation analysis pre-
sented in Table 3 shows that the sequence opti-
mization layer is the most important component
of the ANN model.
Joint learning: Our model learned the features
and token embeddings jointly with the sequence
optimization.

The sequence information is mostly contained
in the transition matrix. Figure 2 presents an ex-
ample of transition matrix after the model has been
trained on PubMed 20k RCT. We can see that it ef-
fectively reflects transitions between different la-
bels. For example, it learned that the first sen-
tence of an abstract is most likely to be either dis-
cussing objective (0.23) or background (0.26). By
the same token, a sentence pertaining to the meth-
ods is typically followed by a sentence pertaining
to the methods (0.25) or the results (0.17).

Tables 5 and 6 detail the result of our model
for each label in PubMed 20k RCT. The main
difficulty the classifier has is distinguishing back-
ground sentences from objective sentences. In par-
ticular, a third of the objective sentences are incor-

Backg. Concl. Methods Obj. Res.
Background 3193 28 116 277 7
Conclusions 55 4248 7 0 261
Methods 78 36 9523 35 225
Objectives 1112 1 95 1122 3
Results 11 232 426 1 9043

Table 6: Confusion matrix on PubMed 20k RCT obtained
with our model. Rows correspond to actual labels, and
columns correspond to predicted the labels. For example, 116
background sentences were predicted as method.

rectly classified as background, which causes the
recall for objectives and the precision for back-
ground to be low. The classifier has also some
difficulty in distinguishing method sentences from
result sentences.

Table 4 presents a few examples of prediction
errors. Our error analysis suggests that a fair num-
ber of sentence labels are debatable. For exam-
ple, the sentence “We conducted a randomized
study comparing strategies X and Y.” belongs to
the background according to the gold target, but
most humans would classify it as an objective.

6 Conclusions

In this article we have presented an ANN architec-
ture to classify sentences that appear in sequence.
We demonstrate that jointly predicting the classes
of all sentences in a given text improves the qual-
ity of the predictions. Our model outperforms the
state-of-the-art results on two datasets for sentence
classification in medical abstracts.
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Abstract

Topics generated by topic models are typi-
cally presented as a list of topic terms. Au-
tomatic topic labelling is the task of gener-
ating a succinct label that summarises the
theme or subject of a topic, with the in-
tention of reducing the cognitive load of
end-users when interpreting these topics.
Traditionally, topic label systems focus on
a single label modality, e.g. textual labels.
In this work we propose a multimodal ap-
proach to topic labelling using a simple
feedforward neural network. Given a topic
and a candidate image or textual label, our
method automatically generates a rating
for the label, relative to the topic. Ex-
periments show that this multimodal ap-
proach outperforms single-modality topic
labelling systems.

1 Introduction

LDA-style topic models (Blei et al., 2003) are
a popular approach to document clustering, with
the “topics” (in the form of multinominal distri-
butions over words) and topic allocations per doc-
ument (in the form of a multinomial distribution
over the topics) providing a powerful document
collection visualisation, gisting and navigational
aid (Griffiths et al., 2007; Newman et al., 2010a;
Chaney and Blei, 2012; Sievert and Shirley, 2014;
Poursabzi-Sangdeh et al., 2016).

Given its internal structure, an obvious way
of presenting a topic t is as a ranked list of the
highest-probability terms wi based on Pr(wi|t),
often simply based on a fixed “cardinality” (i.e.
number of topic words) such as 10. However, this
has a number of disadvantages: (a) there is a cog-
nitive load in forming an impression of what con-
cept the topic represents from its topic words (Ale-

tras et al., 2014; Aletras et al., 2017); (b) there is
a potential bias in presenting the topic based on
a fixed cardinality (Lau and Baldwin, 2016); and
(c) it can be hard to interpret mixed or incoherent
topics (Newman et al., 2010b). Automatic topic
labelling methods have been proposed to assist
with topic interpretation, e.g. based on text (Lau
et al., 2011; Bhatia et al., 2016) or images (Aletras
and Stevenson, 2013; Aletras and Mittal, 2017),
with recent work showing that the optimal modal-
ity (i.e. text or image) for topic labelling varies
across topics (Aletras and Mittal, 2017).

The focus of this paper is the automatic rating
of a textual or image label for a given topic. Our
contributions are as follows:

1. we develop and release a novel topic labelling
dataset with manually-scored image and text
labels for a diverse set of topics; one particu-
lar point of divergence from other text–image
datasets is that text and image labels are rated
on a common scale, and the optimal modality
(text vs. image) for a given topic input must
be selected as part of the output; and

2. we propose two deep learning approaches
to automatically rate multimodal topic label
candidates, which we show to outperform
single-modality topic labelling benchmarks.

The code and dataset associated with this pa-
per are available at: https://github.com/
sorodoc/multimodal_topic_label.

2 Related work

Topic labelling methods usually involve two main
steps: (1) the generation of candidate labels (e.g.
text or images) for a given topic; and (2) the rank-
ing of candidate labels by relevance to the topic.
Textual labels have been sourced from in a number
of different ways, including noun chunks from a
reference corpus (Mei et al., 2007), Wikipedia ar-
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ticle titles (Lau et al., 2011; Aletras and Stevenson,
2014; Bhatia et al., 2016), or short text summaries
(Cano Basave et al., 2014; Wan and Wang, 2016).
Images are often selected from Wikipedia or the
web based on querying with topic words (Aletras
and Stevenson, 2013; Aletras and Mittal, 2017).
Recent work on topic labelling has shown that text
or image embeddings can improve candidate label
generation and ranking (Bhatia et al., 2016; Ale-
tras and Mittal, 2017).

Bhatia et al. (2016) use word2vec (Mikolov et
al., 2013) and doc2vec (Le and Mikolov, 2014)
to represent topics and candidate textual labels in
the same latent semantic space. The most rele-
vant textual labels for a topic are selected from
Wikipedia article titles using the cosine similarity
between the topic and article title embeddings. Fi-
nally, top labels are re-ranked in a supervised fash-
ion using various features such as the PageRank
score of the article in Wikipedia (Brin and Page,
1998), trigram letter ranking (Kou et al., 2015),
topic word overlap, and word length of the label.

Aletras and Mittal (2017) use pre-computed
dependency-based word embeddings (Levy and
Goldberg, 2014) to represent the topics and the
caption of the images, as well as image embed-
dings using the output layer of VGG-net (Si-
monyan and Zisserman, 2014) pretrained on Im-
ageNet (Deng et al., 2009). A concatenation of
these three vectors is the input to a simple deep
neural network with four hidden layers and a sig-
moid output layer to predict the relevance score.

Textual or visual modalities for labelling topics
have been studied extensively, although indepen-
dently from one another. Our work differs from
the single-modality methods described above in
that it uses a joint model to predict the continuous-
valued rating for both textual and image labels.
This is, to the best of our knowledge, the first at-
tempt at joint multimodal topic labelling.

3 Dataset

Several annotated datasets have been developed in
previous work for topic labelling, although they
have been based on a particular label modality (i.e.
text or images). For example, Aletras and Steven-
son (2013) used topics generated from New York
Times articles and collected image labels with hu-
man ratings, while Bhatia et al. (2016) extended
the work of Lau et al. (2011) and annotated textual
labels for topics generated from four distinct do-

Topic Terms oil, energy, gas, water, power,
fuel, global, price, plant, natural

Image Label

Mean Rating 2.83

Textual Label Energy Development
Mean Rating 2.14

Table 1: Example of a topic and its textual and
image labels.

mains. The topics of these different datasets do not
overlap, and as such have little utility for our mul-
timodal method. To this end, we develop a new
dataset which contains human-assigned ratings for
two topic label modalities (textual and image) for
the same set of topics.

We build on the dataset of Bhatia et al. (2016),
which has ratings for textual labels. This dataset
contains 228 topics generated from 4 different do-
mains: BLOGS, BOOKS, NEWS and PUBMED.1

Each topic has 19 textual labels which were rated
by human judges on a scale of 0–3, where 0 rep-
resents a poor label and 3 indicates a perfect la-
bel. We chose this dataset due to the diversity of
sources represented in the topics.

We use the 228 topics and generate image labels
for each topic following the method of Aletras and
Stevenson (2013).2 We follow the annotation ap-
proach of Bhatia et al. (2016), collecting ratings
based on an ordinal scale of 0–3. We use Amazon
Mechanical Turk to crowdsource the ratings, and
have each image labelled by 8 workers. To aggre-
gate the ratings for a label, we compute its mean
rating.

For quality control, we embedded a bad label
into the HIT for each topic by sampling a la-
bel candidate for a topic from a different domain,
under the assumption that an out-of-domain la-
bel is highly unlikely to be appropriate. Work-
ers who rate these control labels greater than 1 are

1To clarify, the original topics were generated by Lau et
al. (2011); Bhatia et al. (2016) collected human ratings for
textual labels on these topics using their methodology.

2We use the Bing Search API as our search engine.
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Figure 1: Multimodal model for topic labelling
(joint-NN)

recorded, and those who fail more than 50% of
control labels are filtered out of the dataset.

In total, 353 turkers participated in the image
labelling task, at an average error percentage of
16% (based on the control images). A total of 42
turkers were filtered out, on the basis of having an
error rate of more than 50%.

An example of a topic and its image and tex-
tual labels, and their associated mean ratings, is
presented in Table 1. The mean rating for the tex-
tual labels is 1.57 with a variance of 0.29, while
the mean rating for the image labels is 1.84 with a
variance of 0.51. That is, the image labels are, on
average, better quality, but there is equally more
variability among the image labels.

To summarise, our final dataset consists of 4560
images and 4332 textual labels for 228 topics (20
images and 19 textual labels for each topic). To
the best of our knowledge, it is the first dataset
which has ratings for two topic label modalities.
In addition to benefiting topic labelling research,
it has potential applications in other language and
vision tasks such as image captioning.

4 Models

Our baseline model (baseline) combines the two
methodologies of Aletras and Mittal (2017) and
Bhatia et al. (2016). That is, we generate and rank
textual and image labels based on Bhatia et al.
(2016) and Aletras and Mittal (2017) respectively,
and then generate a combined ranking based on
the predicted ratings.3 The baseline model views

3Bhatia et al. (2016) originally used SVR to rank textual
labels. We re-ran their model using the same features and
SVR to predict label ratings, allowing us to combine both

Evaluation baseline
disjoint joint Upper

-NN -NN Bound
Multimodal 2.07 2.02 2.08 2.74
Visual-Only 1.95 1.98 1.99 2.67
Textual-Only 2.01 1.87 2.01 2.48

Table 2: Top-1 average rating performance. Bold-
face indicates the best performance for each type
of evaluation.

the two modalities (image and textual labelling) as
two distinct tasks and does not leverage potential
complementarity between them.

We propose a simple feed-forward neural that
jointly re-ranks the two topic label modalities
(joint-NN). In joint-NN, we first generate the
candidate image labels and textual labels using the
methodologies of Aletras and Mittal (2017) and
Bhatia et al. (2016), respectively. However, unlike
baseline where the labels are ranked separately,
joint-NN feeds both label modalities into a sin-
gle network to predict their ratings. The network
architecture is depicted in Figure 1.

Each input modality is fed into two dense layers
that are unconnected. The hidden representation
at the 4th layer of the networks is then passed to
a joint/shared hidden layer before the final output
layer. All connections between layers are dense
connections and the final output layer has a sig-
moid activation, while all other hidden layers have
ReLU activations. The first four layers are kept
separate to allow the network to transform the em-
beddings from the two different modalities to a
common hidden representation. The shared layers
leverage potential complementarity between the
two label modalities to predict the final label rat-
ing.

We generate the textual labels following the
label generation methodology of Bhatia et al.
(2016), as part of which, the labels and topic
terms each have representations based on doc2vec

and word2vec embeddings, respectively. We con-
catenate all four embeddings and use them as
the input for the network.4 Bhatia et al. (2016)
found that letter trigram features and PageRank
features were strong features when re-ranking the
labels. We borrow this idea, and incorporate these
two features into the network by mapping the 2-

textual and image labels and rank them using their predicted
ratings.

4Each type of embedding has 300 dimensions; the con-
catenated input thus has 4× 300 = 1200 dimensions.
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Topic Terms food, eat, cook, chicken, recipe, drive, computer, card, laptop, memory,
cup, cheese, add, taste, tomato battery, usb, intel, processor, hard

Image Label

Predicted Rating 2.53 1.87

Textual Label Cooking Desktop Computer
Predicted Rating 1.98 2.20

Table 3: Example of two topics and their generated textual and image labels and predicted ratings.

dimensional input (representing the letter trigram
and PageRank features) into a 128-dimension vec-
tor and concatenating it with the 256-dimension
hidden representation at the third layer (thus yield-
ing a 384-dimension vector).5

For the visual labels, the topic terms use the
same doc2vec and word2vec embeddings. For the
image labels, we use the representation of the last
layer of the VGG Neural Network (Simonyan and
Zisserman, 2014). As before, the vectors for the
topic terms and image labels are concatenated and
fed as input to the network.6

As a control to test whether the sharing
of weights helps with the prediction of label
ratings, we experiment with another network
(disjoint-NN) that has the same architecture as
joint-NN, except that the final few layers are not
shared and the two networks are trained indepen-
dently.

5 Experiments and results

Following standard practice in topic labelling eval-
uation (Lau et al., 2011; Aletras and Stevenson,
2013; Bhatia et al., 2016), we use “top-1 average
rating” as the evaluation metric. It computes the
mean rating of the top-ranked label generated by
the system, and provides an assessment of the ab-
solute utility of the labels. For example, if the top-
ranked label predicted by the system has an aver-
age rating of 3.0, that means the system are gener-
ating perfect topic labels.7

5We explored incorporating the additional features at dif-
ferent layers, but saw little difference in task performance.

6VGG vectors have 1000 dimensions and the doc2vec

and word2vec embeddings each have 300 dimensions; the
concatenated input is thus a 1600-dimension vector.

7Note that, unlike previous work, we don’t evaluate based
on nDCG as the candidate set and ratings for each of the indi-

We present the results of all systems (baseline,
joint-NN and disjoint-NN) in Table 2. Each
model is trained using 10-fold cross-validation for
10 epochs. Presented results are an average over
20 runs. We display three types of evaluation: (1)
“multimodal”, where we pool both label modal-
ities together and evaluate jointly; (2) “visual-
only”, where we evaluate only the visual labels;
and (3) “textual-only”, where we evaluate only the
textual labels. In addition to the 3 systems, for
each topic we determine the rating of the best label
and compute its mean over all topics, as the upper
bound for the task (labelled “upper bound”).

Encouragingly, joint-NN — which exploits in-
formation from both input modalities — achieves
the best performance. The improvement compared
to disjoint-NN is substantial, and much of the
improvement is in the textual labels. However,
when compared to baseline, most of the gain is
in the visual labels. These observations seem a lit-
tle unintuitive; to better understand them we first
look at baseline and disjoint-NN.

In terms of methodology, the difference be-
tween baseline and disjoint-NN is their re-
rankers. Both the image label re-rankers of
baseline and disjoint-NN are driven by neural
networks, but the re-ranker of disjoint-NN has
an additional layer (5 vs. 4).8 The improvement of
results for the visual labels could thus be attributed
to the additional hidden layer.

On the other hand, the performance differ-
ence for the textual labels between baseline

vidual label modalities and the combined labels differ, mean-
ing that the nDCG numbers are not directly comparable.

8The re-ranker of disjoint-NN also does not use caption
embedding, as it proves to be redundant. All other features
are the same.
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and disjoint-NN is attributed to the classifiers
(baseline = SVR; disjoint-NN = neural net-
work), since they both share the same features.
These results suggest that SVR is the superior
classifier in this case.

However, when we share the latent representa-
tions for the last few layers (joint-NN), we see
that results improve substantially. In particularly,
textual label performance is on par with baseline,
suggesting the addition of image label data helps
learn the latent representations of textual labels.
As a whole, this suggests there is strong comple-
mentarity between the two different modalities of
labels and highlights the strength of a multimodal
network.

Lastly, it is worth mentioning that the multi-
modal evaluation yields the highest rating across
all systems. This suggests that, consistent with
the findings of Aletras and Mittal (2017), different
topics may have different optimal label represen-
tations (image or textual), and that the best perfor-
mance is achieved when we allow the model to dy-
namically select between modalities. We present a
sample of generated textual and image label for a
topic in Table 3.

Looking at the upper bound, we see there is
considerable room for further improvement. The
models we have experimented with are based on
simple feed-forward architectures, and the input
representation is pre-computed, and thus not up-
dated in the network. An immediate direction for
future work would be designing end-to-end archi-
tectures that take the input as raw features (e.g. us-
ing the image pixels for the image labels).

6 Conclusions

In this paper, we have proposed a multimodal ap-
proach to automatic topic labelling, based on a
deep neural network. Compared to benchmark
systems, our joint model achieves the best perfor-
mance, demonstrating the strength of modelling
different label modalities jointly.

Another contribution of the paper is the devel-
opment of a multimodal dataset which we have re-
leased publicly. The dataset, which contains an-
notations for image and textual labels, could have
applications for other multimodal NLP tasks.
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Abstract

We present a robust approach for detect-
ing intrinsic sentence importance in news,
by training on two corpora of document-
summary pairs. When used for single-
document summarization, our approach,
combined with the “beginning of docu-
ment” heuristic, outperforms a state-of-
the-art summarizer and the beginning-of-
article baseline in both automatic and
manual evaluations. These results repre-
sent an important advance because in the
absence of cross-document repetition, sin-
gle document summarizers for news have
not been able to consistently outperform
the strong beginning-of-article baseline.

1 Introduction

To summarize a text, one has to decide what con-
tent is important and what can be omitted. With
a handful of exceptions (Svore et al., 2007; Berg-
Kirkpatrick et al., 2011; Kulesza and Taskar, 2011;
Cao et al., 2015; Cheng and Lapata, 2016), mod-
ern summarization methods are unsupervised, re-
lying on on-the-fly analysis of the input text to
generate the summary, without using indicators of
intrinsic importance learned from previously seen
document-summary pairs. This state of the art is
highly unintuitive, as it stands to reason that some
aspects of importance are learnable. Recent work
has demonstrated that indeed supervised systems
can perform well without sophisticated features
when sufficient training data is available (Cheng
and Lapata, 2016).

In this paper we demonstrate that in the con-
text of news it is possible to learn an accurate
predictor to decide if a sentence contains content
that is summary-worthy. We show that the predic-
tors built in our approach are remarkably consis-
tent, providing almost identical predictions on a

held out test set, regardless of the source of train-
ing data. Finally we demonstrate that in single-
document summarization task our predictor, com-
bined with preference for content that appears at
the beginning of the news article, results in a sum-
marizer significantly better than a state-of-the-art
global optimization summarizer. The results hold
for both manual and automatic evaluations.

In applications, the detector of unimportance
that we have developed can potentially improve
snippet generation for news stories, detecting if the
sentences at the beginning of the article are likely
to form a good summary or not. This line of in-
vestigation was motivated by our previous work
showing that in many news sub-domains the be-
ginning of the article is often an uninformative
teaser which is not suitable as an indicative sum-
mary of the article (Yang and Nenkova, 2014).

2 Corpora

One of the most cited difficulties in using super-
vised methods for summarization has been the
lack of suitable corpora of document-summary
pairs where each sentence is clearly labeled as
either important or not (Zhou and Hovy, 2003).
We take advantage of two currently available re-
sources: archival data from the Document Un-
derstanding Conferences (DUC) (Over et al.,
2007) and the New York Times (NYT) cor-
pus (https://catalog.ldc.upenn.edu/
LDC2008T19). The DUC data contains
document-summary pairs in which the summaries
were produced for research purposes during the
preparation of a shared task for summarization.
The NYT dataset contains thousands such pairs
and the summaries were written by information
scientists working for the newspaper.

DUC2002 is the latest dataset from the DUC se-
ries in which annotators produced extractive sum-
maries, consisting of sentences taken directly from
the input. DUC2002 contains 64 document sets.
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The annotators created two extractive summaries
for two summary lengths (200 and 400 words), for
a total of four extracts per document set. In this
work, a sentence from the original article that ap-
pears in at least one of the human extracts is la-
beled as important (summary-worthy). All other
sentences in the document are treated as unla-
beled. Unlabeled sentences could be truly not
summary-worthy but also may be included into a
summary by a different annotator (Nenkova et al.,
2007). We address this possibility in Section 3,
treating the data as partially labeled.

For the NYT corpus, we work with 19,086
document-summary pairs published between 1987
and 2006 from the Business section.

Table 3 in Section 5 shows a summary from
the NYT corpus. These are abstractive, contain-
ing a mix of informative sentences from the orig-
inal article along with abstractive re-telling of the
main points of the article, as well as some meta-
information such as the type of article and a list
of the photos accompanying the article. It also
shows the example of lead (opening) paragraph
along with the summary created by the system we
propose, InfoFilter, with the unimportant sentence
removed.

In order to label sentences in the input, we
employee Jacana (Yao et al., 2013) for word
alignment in mono-lingual setting for all pairs of
article-summary sentences. A sentence from the
input is labeled as important (summary-worthy) if
the alignment score between the sentence and a
summary sentence is above a threshold, which we
empirically set as 14 based on preliminary experi-
ments. All other sentences in the input are treated
as unlabeled. Again, an unlabeled sentence could
be positive or negative.

3 Method

As mentioned earlier, existing datasets contain
clear labels only for positive sentences. Due to
the variability of human choices in composing a
summary, unlabeled sentences cannot be simply
treated as negative. For our supervised approach to
sentence importance detection, a semi-supervised
approach is first employed to establish labels.

3.1 Learning from Positive and Unlabeled
Samples

Learning from positive (e.g., important in this pa-
per) and unlabeled samples can be achieved by the

methods proposed in (Lee and Liu, 2003; Elkan
and Noto, 2008). Following (Elkan and Noto,
2008), we use a two-stage approach to train a de-
tector of sentence importance from positive and
unlabeled examples.

Let y be the importance prediction for a sample,
where y = 1 is expected for any positive sam-
ple and y = 0 for any negative sample. Let o
be the ground-truth labels obtained by the method
described in Section 2, where o = 1 means that
the sentence is labeled as positive (important) and
o = 0 means unlabeled.

In the first stage, we build an estimator e, equal
to the probability that a sample is predicted as pos-
itive given that it is indeed positive, p(o = 1|y =
1). We first train a logistic regression (LR) classier
with positive and unlabeled samples, treating the
unlabeled samples as negative. Then e can be
estimated as Σx∈P (LR(x)/|P |), where P is the
set of all labeled positive samples, and LR(x) is
the probability of a sample x being positive, as
predicted by the LR classifier. We then calculate
p(y = 1|o = 0) using the estimator e, the prob-
ability for an unlabeled sample to be positive as:
w = LR(x)

e /1−LR(x)
1−e . A large w means an un-

labeled sample is likely to be positive, whereas a
small w means the sample is likely to be negative.

In the second stage, a new dataset is constructed
from the original dataset. We first make two copies
of every unlabeled sample, assigning the label 1
with weight w to one copy and the label 0 with
weight 1−w to the other. Positive samples remain
the same and the weight for each positive sample
is 1. We call this dataset the relabeled data.

We train a SVM classifier with linear kernel on
the relabeled data. This is our final detector of im-
portant/unimportant sentences.

3.2 Features

The classifiers for both stages use dictionary-
derived features which indicate the types / proper-
ties of a word, along with several general features.

MRC The MRC Psycholinguistic Database
(Wilson, 1988) is a collection of word lists with as-
sociated word attributes according to judgements
by multiple people. The degree to which a word
is associated with an attribute is given as a score
within a range. We divide the score range into
230 intervals. The number of intervals was de-
cided empirically on a small development set and
was inspired by prior work of feature engineering

708



for real valued scores (Beigman Klebanov et al.,
2013). Each interval corresponds to a feature; the
value of the feature is the fraction of words in a
sentence whose score belongs to this interval. Six
attributes are selected: imagery, concreteness, fa-
miliarity, age-of-acquisition, and two meaningful-
ness attributes. In total, there are 1,380 MRC fea-
tures.

LIWC LIWC is a dictionary that groups words
in different categories, such as positive or nega-
tive emotions, self-reference etc. and other lan-
guage dimensions relevant in the analysis of psy-
chological states. Sentences are represented by a
histogram of categories, indicating the percentage
of words in the sentence associated with each cat-
egory. We employ LIWC2007 English dictionary
which contains 4,553 words with 64 categories.

INQUIRER The General Inquirer (Stone et
al., 1962) is another dictionary of 7,444 words,
grouped in 182 general semantic categories. For
instance, the word absurd is mapped to tags NEG
and VICE. Again, a sentence is represented with
the histogram of categories occurring in the sen-
tence.

General We also include features that capture
general attributes of sentences including: total
number of tokens, number of punctuation marks, if
it contains exclamation marks, if it contains ques-
tion marks, if it contains colons, if it contains dou-
ble quotations.

4 Experiments on Importance Detection

We train a classifier separately for the DUC2002
and the NYT 1986-2006 corpora. The DUC model
is trained using the articles and summaries from
DUC2002 dataset, where 1,833 sentences in total
appear in the summaries. We also randomly sam-
ple 2,200 non-summary sentences as unlabeled
samples to balance the training set. According to
the criteria described in NYT corpus section, there
are 22,459 (14.1%) positive sentences selected
from total of 158,892 sentences. Sentences with
Jacana alignment scores less than or equal to 10
form the unlabeled set, including 20,653 (12.9%)
unlabeled sentences in total. Liblinear (Fan et al.,
2008) is used for training the two-stage classifiers.

4.1 Test Set
The test set consists of 1,000 sentences randomly
selected from NYT dataset for the year 2007. Half

of the sentences are from the Business section,
where the training data was drawn. The rest are
from the U.S. International Relations section (Pol-
itics for short), to test the stability of prediction
across topic domains. Three students from the
University of Akron annotated if the test sentences
contain important summary-worthy information.

For each test (source) sentence from the original
article, we first apply Jacana to align it with every
sentence in the corresponding summary. The sum-
mary sentence with the highest matching score is
picked as the target sentence for the source sen-
tence. Each pair of source and target sentences is
presented to students and they are asked to mark if
the sentences share information. Sentences from
the original article that contribute content to the
most similar summary sentence are marked as pos-
itive; those that do not are marked as negative. The
pairwise annotator agreements are all above 80%
and the pairwise Kappa ranges from 0.73 to 0.79.

The majority vote becomes the label of the
source (article) sentence. Table 1 presents the dis-
tribution of final labels. The classes are almost
balanced, with slightly more negative pairs over-
all.

Table 1: The distribution of the annotated labels

Section Positive Negative
Business 232 (46.4%) 268 (53.6%)
Politics 219 (43.8%) 281 (56.2%)
Total 451 (45.1%) 549 (54.9%)

4.2 Evaluation Results

In the process above, we have obtained a set of
article sentences that contribute to the summary
(positive class) or not (negative class)1.

Table 2 shows the evaluation results on the
human-annotated test set. The baseline is as-
suming that all sentences are summary-worthy.
Although the unimportant class is the majority
(see Table 1), predicting all test samples as not
summary-worthy is less useful in real applications
because we cannot output an empty text as a sum-
mary.

Each row in Table 2 corresponds to a model
trained with one training set. We use dictionary
features to build the models, i.e., NYT Model and
DUC Model. We also evaluate the effectiveness of

1We assume that an article sentence not contributing to
the summary does not contribute any content to the summary
sentence that is closest to the article sentence.
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the general features by excluding it from the dic-
tionary features, i.e. NYT w/o general and DUC
w/o general. Precision, recall and F-1 score are
presented for all models. Models trained on the
NYT corpus and DUC corpus are both signifi-
cantly better than the baseline, with p < 0.0001
for McNemara’s test. The NYT model is better
than DUC model overall according to F-1. The
results also show a noticeable performance drop
when general features are removed.

We also trained classifiers with bag of words
(BOW) features for NYT and DUC respectively,
i.e. BOW-NYT and BOW-DUC. The classifiers
trained on BOW features still outperform the base-
line but are not as good as the dictionary and gen-
eral sentence properties models.

Table 2: Evaluation results on human annotations

Precision Recall F-1
NYT Model 0.582 0.846 0.689
DUC Model 0.541 0.903 0.676

NYT w/o General 0.547 0.847 0.664
DUC w/o General 0.508 0.906 0.651

BOW-NYT 0.520 0.852 0.645
BOW-DUC 0.501 0.828 0.623

Baseline 0.464 1.000 0.621

4.3 NYT Model vs. DUC Model

Further, we study the agreement between the two
models in terms of prediction outcome. First,
we compare the prediction outcome from the two
models using NYT2007 test set. The Spearman’s
correlation coefficients between the outputs from
the two models is around 0.90, showing that our
model is very robust and independent of the train-
ing set.

Then we repeat the study on a much larger
dataset, using articles from the DUC 2004 multi-
document summarization task. There are no sin-
gle document summaries in that year but this is
not a problem, because we use the data simply to
study the agreement between the two models, i.e.,
whether they predict the same summary-worthy
status for sentences, not to measure the accuracy
of prediction. There are 12,444 sentences in this
dataset. The agreement between the two models is
very high (87%) for both test sets. Consistent with
the observation above, the DUC model is predict-
ing intrinsic importance more aggressively. Only
for a handful of sentences the NYT model pre-
dicts positive (important) while the DUC model
predicts negative (not important).

We compute Spearman’s correlation coeffi-
cients between the posterior probability for sen-
tences from the two models. The correlation is
around 0.90, indicating a great similarity in the
predictions of the two models.

5 Summarization

We propose two importance-based approaches to
improving single-document summarization.

In the first approach, InfoRank, the summary
is constructed solely from the predictions of the
sentence importance classifier. Given a document,
we first apply the sentence importance detector on
each sentence to get the probability of this sen-
tence being intrinsically important. Then we rank
the sentences by the probability score to form a
summary within the required length.

The second approach, InfoFilter, uses the sen-
tence importance detector as a pre-processing step.
We first apply the sentence importance detector
on each sentence, in the order they appear in the
article. We keep only sentences predicted to be
summary-worthy as the summary till the length
restriction. This combines the preference for sen-
tences that appear at the beginning of the article
but filters out sentences that appear early but are
not informative.

5.1 Results on Automatic Evaluation

The model trained on the NYT corpus is used in
the experiments here. Business and politics arti-
cles (100 each) with human-generated summaries
from NYT2007 are used for evaluation. Sum-
maries generated by summarizers are restricted
to 100 words. Summarizer performance is mea-
sured by ROUGE-1 (R-1) and ROUGE-2 (R-2)
scores (Lin, 2004).

Several summarization systems are used for
comparison here, including LeadWords, which
picks the first 100 words as the summary; Ran-
domRank, which ranks the sentences randomly
and then picks the most highly ranked sentences to
form a 100-word summary; and Icsisumm (Gillick
et al., 2009), a state-of-the-art multi-document
summarizer (Hong et al., 2014).

Table 4 shows the ROUGE scores for all sum-
marizers. InfoRank significantly outperforms Ic-
sisumm on R-1 score and is on par with it on
R-2 score. Both InfoRank and Icsisumm outper-
form RandomRank by a large margin. These re-
sults show that the sentence importance detector
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Table 3: Example of unimportant content in the opening paragraph of an article. The detected unimpor-
tant sentences are italicized. The third panel shows a new summary, with unimportant content skipped.

Human Summary: Pres Bush and his aides insist United States is committed to diplomatic path in efforts to stop Iran’s
suspected nuclear weapons program and support for terrorism, but effort is haunted by similar charges made against Iraq
four years ago. Democrats see seizure of Iranians in Iraq and attempts to starve Iran of money to revitalize its oil industry
as hallmarks of administration spoiling for fight. some analysts see attempt to divert attention from troubles in Iraq .
administration insiders fear Bush’s credibility has been deeply damaged. Bush’s advisors debate how forcefully to push
confrontation with Iran.
Lead paragraph: This time, they insist, it is different. As President Bush and his aides calibrate how directly to confront
Iran, they are discovering that both their words and their strategy are haunted by the echoes of four years ago, when their
warnings of terrorist activity and nuclear ambitions were clearly a prelude to war. ”We’re not looking for a fight with Iran,”
R. Nicholas Burns, the under secretary of state for policy and the chief negotiator on Iranian issues, said in an interview,
just a few hours after Mr. Bush had repeated his warnings to Iran to halt ”killing our soldiers” ...
New summary; unimportant sentences removed: As President Bush and his aides calibrate how directly to confront
Iran, they are discovering that both their words and their strategy are haunted by the echoes of four years ago, when their
warnings of terrorist activity and nuclear ambitions were clearly a prelude to war. Mr. Burns, citing the president’s words,
insisted that Washington was committed to ”a diplomatic path”, even as it executed a far more aggressive strategy, seizing
Iranians in Iraq and attempting to starve Iran of the money it needs to revitalize a precious asset, its oil industry. Mr. Burns
argues that those are defensive steps ...

is capable of identifying the summary-worthy sen-
tences.

LeadWords is still a very strong baseline single-
document summarizer. InfoFilter achieves the best
result and greatly outperforms the LeadWords in
both R-1 and R-2 scores. The p value of Wilcoxon
signed-rank test is less than 0.001, indicating that
the improvement is significant. Table 3 shows
the example of lead paragraph along with the In-
foFilter summary with the unimportant sentence
removed.

Table 4: Performance comparison on single-
document summarization (%)

System R-1 R-2 System R-1 R-2
InfoRank 37.6 15.9 InfoFilter 50.7 30.2
Icsisumm 33.3 16.0 LeadWords 48.0 27.5

RandomRank 31.9 8.7

The InfoFilter summarizer is similar to the
LeadWords summarizer, but it removes any sen-
tence predicted to be unimportant and replaces it
with the next sentence in the original article that
is predicted to be summary-worthy. Among the
200 articles, 116 have at least one uninformative
sentence removed. The most frequent number is
two removed sentences. There are 17 articles for
which more than three sentences are removed.

5.2 Results on Human Evaluation

We also carry out human evaluation, to better com-
pare the relative performance of the LeadWords
and InfoFilter summarizers. Judgements are made
for each of the 116 articles in which at least one
sentence had been filtered out by InfoFilter. For

each article, we first let annotators read the sum-
mary from the NYT2007 dataset and then the two
summaries generated by LeadWords and InfoFil-
ter respectively. Then we ask annotators if one of
the summary covers more of the information pre-
sented in the NYT2007 summary. The annotators
are given the option to indicate that the two sum-
maries are equally informative with respect to the
content of the NYT summary. We randomize the
order of sentences in both LeadWords and InfoFil-
ter summaries when presenting to annotators.

The tasks are published on Amazon Mechanical
Turk (AMT) and each summary pair is assigned
to 8 annotators. The majority vote is used as the
final label. According to human judgement, In-
foFilter generates better summaries for 55 of the
116 inputs; for 39 inputs, the LeadWords summary
is judged better. The result is consistent with the
ROUGE scores, showing that InfoFilter is the bet-
ter summarizer.

6 Conclusion

In this paper, we presented a detector for sentence
importance and demonstrated that it is robust re-
gardless of the training data. The importance de-
tector greatly outperforms the baseline. Moreover,
we tested the predictors on several datasets for
summarization. In single-document summariza-
tion, the ability to identify unimportant content al-
lows us to significantly outperform the strong lead
baseline.
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Abstract

We focus on named entity recognition
(NER) for Chinese social media. With
massive unlabeled text and quite lim-
ited labelled corpus, we propose a semi-
supervised learning model based on B-
LSTM neural network. To take advan-
tage of traditional methods in NER such
as CRF, we combine transition probabil-
ity with deep learning in our model. To
bridge the gap between label accuracy and
F-score of NER, we construct a model
which can be directly trained on F-score.
When considering the instability of F-
score driven method and meaningful in-
formation provided by label accuracy, we
propose an integrated method to train on
both F-score and label accuracy. Our in-
tegrated model yields substantial improve-
ment over previous state-of-the-art result.

1 Introduction

With the development of Internet, social media
plays an important role in information exchange.
The natural language processing tasks on social
media are more challenging which draw attention
of many researchers (Li and Liu, 2015; Habib and
van Keulen, 2015; Radford et al., 2015; Cherry
and Guo, 2015). As the foundation of many down-
stream applications (Weissenborn et al., 2015;
Delgado et al., 2014; Hajishirzi et al., 2013) such
as information extraction, named entity recogni-
tion (NER) deserves more research in prevailing
and challenging social media text. NER is a task
to identify names in texts and to assign names with
particular types (Sun et al., 2009; Sun, 2014; Sun
et al., 2014; He and Sun, 2017). It is the informal-
ity of social media that discourages accuracy of
NER systems. While efforts in English have nar-

rowed the gap between social media and formal
domains (Cherry and Guo, 2015), the task in Chi-
nese remains challenging. It is caused by Chinese
logographic characters which lack many clues to
indicate whether a word is a name, such as capi-
talization. The scant labelled Chinese social me-
dia corpus makes the task more challenging (Nee-
lakantan and Collins, 2015; Skeppstedt, 2014; Liu
et al., 2015).

To address the problem, one approach is to use
the lexical embeddings learnt from massive unla-
beled text. To take better advantage of unlabeled
text, Peng and Dredze (2015) evaluates three types
of embeddings for Chinese text, and shows the
effectiveness of positional character embeddings
with experiments. Considering the value of word
segmentation in Chinese NER, another approach
is to construct an integrated model to jointly train
learned representations for both predicting word
segmentations and NER (Peng and Dredze, 2016).

However, the two above approaches are imple-
mented within CRF model. We construct a semi-
supervised model based on B-LSTM neural net-
work to learn from the limited labelled corpus by
using lexical information provided by massive un-
labeled text. To shrink the gap between label ac-
curacy and F-Score, we propose a method to di-
rectly train on F-Score rather than label accuracy
in our model. In addition, we propose an inte-
grated method to train on both F-Score and label
accuracy. Specifically, we make contributions as
follows:

• We propose a method to directly train on F-
Score rather than label accuracy. In addition,
we propose an integrated method to train on
both F-Score and label accuracy.

• We combine transition probability into our B-
LSTM based max margin neural network to
form structured output in neural network.
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• We evaluate two methods to use lexical em-
beddings from unlabeled text in neural net-
work.

2 Model

We construct a semi-supervised model which is
based on B-LSTM neural network and combine
transition probability to form structured output.
We propose a method to train directly on F-Score
in our model. In addition, we propose an inte-
grated method to train on both F-Score and label
accuracy.

2.1 Transition Probability
B-LSTM neural network can learn from past in-
put features and LSTM layer makes it more effi-
cient (Hammerton, 2003; Hochreiter and Schmid-
huber, 1997; Chen et al., 2015; Graves et al.,
2006). However, B-LSTM cannot learn sentence
level label information. Huang et al. (2015) com-
bine CRF to use sentence level label informa-
tion. We combine transition probability into our
model to gain sentence level label information. To
combine transition probability into B-LSTM neu-
ral network, we construct a Max Margin Neural
Network (MMNN) (Pei et al., 2014) based on B-
LSTM. The prediction of label in position t is
given as:

yt = softmax(Why ∗ ht + by) (1)

where Why are the transformation parameters, ht

the hidden vector and by the bias parameter. For a
input sentence c[1:n] with a label sequence l[1:n], a
sentence-level score is then given as:

s(c[1:n], l[1:n], θ) =
n∑

t=1

(Alt−1lt + fΛ(lt|c[1:n]))

wherefΛ(lt|c[1:n]) indicates the probability of la-
bel lt at position t by the network with parameters
Λ, A indicates the matrix of transition probability.
In our model, fΛ(lt|c[1:n]) is computed as:

fΛ(lt|c[1:n]) = −log(yt[lt]) (2)

We define a structured margin loss ∆(l, l) as Pei
et al. (2014):

∆(l, l) =
n∑

j=1

κ1{lj 6= lj} (3)

where n is the length of setence x, κ is a discount
parameter, l a given correct label sequence and l

a predicted label sequence. For a given training
instance (xi, yi), our predicted label sequence is
the label sequence with highest score:

l∗i = arg max
li∈Y (xi)

s(xi, li, θ)

The label sequence with the highest score can be
obtained by carrying out viterbi algorithm. The
regularized objective function is as follows:

J(θ) =
1
m

m∑
i=1

qi(θ) +
λ

2
||θ||2 (4)

qi(θ) = max
li∈Y (xi)

(s(xi, li, θ)+∆(li, li))−s(xi, li, θ)

By minimizing the object, we can increase the
score of correct label sequence l and decrease the
score of incorrect label sequence l.

2.2 F-Score Driven Training Method

Max Margin training method use structured mar-
gin loss ∆(l, l) to describe the difference between
the corrected label sequence l and predicted la-
bel sequence l. In fact, the structured margin loss
∆(l, l) reflect the loss in label accuracy. Consider-
ing the gap between label accuracy and F-Score in
NER, we introduce a new training method to train
directly on F-Score. To introduce F-Score driven
training method, we need to take a look at the sub-
gradient of equation (4):

∂J

∂θ
=

1
m

m∑
i=1

(
∂s(x, lmax, θ)

∂θ
− ∂s(x, l, θ)

∂θ
) + λθ

In the subgradient, we can know that structured
margin loss ∆(l, l) contributes nothing to the
subgradient of the regularized objective function
J(θ). The margin loss ∆(l, l) serves as a trig-
ger function to conduct the training process of B-
LSTM based MMNN. We can introduce a new
trigger function to guide the training process of
neural network.
F-Score Trigger Function The main criterion of
NER task is F-score. However, high label accu-
racy does not mean high F-score. For instance,
if every named entity’s last character is labeledas
O, the label accuracy can be quite high, but the
precision, recall and F-score are 0. We use the F-
Score between corrected label sequence and pre-
dicted label sequence as trigger function, which
can conduct the training process to optimize the
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F-Score of training examples. Our new structured
margin loss can be described as:

∆̃(l, l) = κ ∗ FScore (5)

where FScore is the F-Score between corrected
label sequence and predicted label sequence.
F-Score and Label Accuracy Trigger Function
The F-Score can be quite unstable in some situa-
tion. For instance, if there is no named entity in
a sentence, F-Score will be always 0 regardless of
the predicted label sequence. To take advantage
of meaningful information provided by label ac-
curacy, we introduce an integrated trigger function
as follows:

∆̂(l, l) = ∆̃(l, l) + β ∗∆(l, l) (6)

where β is a factor to adjust the weight of label
accuracy and F-Score.

Because F-Score depends on the whole label se-
quence, we use beam search to find k label se-
quences with top sentece-level score s(x, l, θ) and
then use trigger function to rerank the k label se-
quences and select the best.

2.3 Word Segmentation Representation

Word segmentation takes an important part
in Chinese text processing. Both Peng and
Dredze (2015) and Peng and Dredze (2016) show
the value of word segmentation to Chinese NER
in social media. We present two methods to use
word segmentation information in neural network
model.
Character and Position Embeddings To incor-
porate word segmentation information, we at-
tach every character with its positional tag. This
method is to distinguish the same character at dif-
ferent position in the word. We need to word seg-
ment the text and learn positional character em-
beddings from the segmented text.

Character Embeddings and Word Segmenta-
tion Features We can treat word segmentation as
discrete features in neural network model. The
discrete features can be easily incorporated into
neural network model (Collobert et al., 2011). We
use word embeddings from a LSTM pretrained on
MSRA 2006 corpus to initialize the word segmen-
tation features.

3 Experiments and Analysis

3.1 Datasets

Named Nominal
Train set 957 898

Development set 153 226
Test set 209 196

Unlabeled Text 112,971,734 Weibo messages

Table 1: Details of Weibo NER corpus.

We use a modified labelled corpus1 as Peng
and Dredze (2016) for NER in Chinese social
media. Details of the data are listed in Table
1. We also use the same unlabelled text as Peng
and Dredze (2016) from Sina Weibo service in
China and the text is word segmented by a Chi-
nese word segmentation system Jieba2 as Peng and
Dredze (2016) so that our results are more compa-
rable to theirs.

3.2 Parameter Estimation

We pre-trained embeddings using word2vec
(Mikolov et al., 2013) with the skip-gram train-
ing model, without negative sampling and other
default parameter settings. Like Mao et al. (2008),
we use bigram features as follow:

CnCn+1(n = −2,−1, 0, 1) and C−1C1

1We fix some labeling errors of the data.
2https://github.com/fxsjy/jieba.
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Methods Named Entity Nominal Mention
Precision Recall F1 Precision Recall F1

Character+Segmentation 48.52 39.23 43.39 58.75 47.96 52.91
Character+Position 65.87 39.71 49.55 68.12 47.96 56.29

Table 2: Two methods to incorporate word segmentation information.

Models Named Entity Nominal Mention
Precision Recall F1 Precision Recall F1 Overall OOV

(Peng and Dredze, 2015) 57.98 35.57 44.09 63.84 29.45 40.38 42.70 -
(Peng and Dredze, 2016) 63.33 39.18 48.41 58.59 37.42 45.67 47.38 -

B-LSTM 65.87 39.71 49.55 68.12 47.96 56.29 52.81 13.97
B-LSTM + MMNN 65.29 37.80 47.88 73.53 51.02 60.24 53.86 17.90

F-Score Driven I (proposal) 66.67 39.23 49.40 69.50 50.00 58.16 53.64 17.03
F-Score Driven II (proposal) 66.93 40.67 50.60 66.46 53.57 59.32 54.82 20.96

Table 3: NER results for named and nominal mentions on test data.

We use window approach (Collobert et al., 2011)
to extract higher level Features from word feature
vectors. We treat bigram features as discrete fea-
tures (Collobert et al., 2011) for our neural net-
work. Our models are trained using stochastic gra-
dient descent with an L2 regularizer.
As for parameters in our models, window size
for word embedding is 5, word embedding di-
mension, feature embedding dimension and hid-
den vector dimension are all 100, discount κ in
margin loss is 0.2, and the hyper parameter for the
L2 is 0.000001. As for learning rate, initial learn-
ing rate is 0.1 with a decay rate 0.95. For inte-
grated model, β is 0.2. We train 20 epochs and
choose the best prediction for test.

3.3 Results and Analysis

We evaluate two methods to incorporate word seg-
mentation information. The results of two meth-
ods are shown as Table 2. We can see that posi-
tional character embeddings perform better in neu-
ral network. This is probably because positional
character embeddings method can learn word seg-
mentation information from unlabeled text while
word segmentation can only use training corpus.

We adopt positional character embeddings in
our next four models. Our first model is a B-
LSTM neural network (baseline). To take advan-
tage of traditional model (Chieu and Ng, 2002;
Mccallum et al., 2001) such as CRF, we com-
bine transition probability in our B-LSTM based
MMNN. We design a F-Score driven training
method in our third model F-Score Driven Model
I . We propose an integrated training method in
our fourth model F-Score Driven Model II .The re-

sults of models are depicted as Figure 1(a). From
the figure, we can know our models perfrom better
with little loss in time.

Table 3 shows results for NER on test sets. In
the Table 3, we also show micro F1-score (Over-
all) and out-of-vocabulary entities (OOV) recall.
Peng and Dredze (2016) is the state-of-the-art
NER system in Chinese Social media. By compar-
ing the results of B-LSTM model and B-LSTM +
MTNN model, we can know transition probability
is significant for NER. Compared with B-LSTM +
MMNN model, F-Score Driven Model I improves
the result of named entity with a loss in nominal
mention. The integrated training model (F-Score
Driven Model II) benefits from both label accu-
racy and F-Score, which achieves a new state-of-
the-art NER system in Chinese social media. Our
integrated model has better performance on named
entity and nominal mention.

To better understand the impact of the factor β,
we show the results of our integrated model with
different values of β in Figure 1(c). From Figure
1(c), we can know that β is an important factor for
us to balance F-score and accuracy. Our integrated
model may help alleviate the influence of noise in
NER in Chinese social media.

4 Conclusions and Future Work

The results of our experiments also suggest direc-
tions for future work. We can observe all models
in Table 3 achieve a much lower recall than pre-
cision (Pink et al., 2014). So we need to design
some methods to solve the problem.
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Abstract

We propose a framework for discrimina-
tive IR atop linguistic features, trained to
improve the recall of answer candidate pas-
sage retrieval, the initial step in text-based
question answering. We formalize this
as an instance of linear feature-based IR,
demonstrating a 34% - 43% improvement
in recall for candidate triage for QA.

1 Introduction

Question answering (QA) with textual corpora is
typically modeled as first finding a candidate set of
passages (sentences) that may contain an answer
to a question, followed by an optional candidate
reranking stage, and then finally an information
extraction (IE) step to select the answer string. QA
systems normally employ an information retrieval
(IR) system to produce the initial set of candidates,
usually treated as a black box, bag-of-words pro-
cess that selects candidate passages best overlap-
ping with the content in the question.

Recent efforts in corpus-based QA have been
focused heavily on reranking, or answer sentence
selection: filtering the candidate set as a supervised
classification task to single out those that answer
the given question. Extensive research has explored
employing syntactic/semantic features (Yih et al.,
2013; Wang and Manning, 2010; Heilman and
Smith, 2010; Yao et al., 2013a) and recently using
neural networks (Yu et al., 2014; Severyn and Mos-
chitti, 2015; Wang and Nyberg, 2015; Yin et al.,
2016). The shared aspect of all these approaches
is that the quality of reranking a candidate set is
upper-bounded by the initial set of candidates: un-
less one plans on reranking the entire corpus for
each question as it arrives, one is still reliant on an
initial IR stage in order to obtain a computation-
ally feasible QA system. Huang et al. (2013) used

neural networks and cosine distance to rank the
candidates for IR, but without providing a method
to search for the relevant documents in sublinear
time.

We propose a framework for performing this
triage step for QA sentence selection and other re-
lated tasks in sublinear time. Our method shows
a log-linear model can be trained to optimize an
objective function for downstream reranking, and
the resulting trained weights can be reused to re-
trieve a candidate set. The content that our method
retrieves is what the downstream components are
known to prefer: it is trainable using the same data
as employed in training candidate reranking. Our
approach follows Yao et al. (2013b) who proposed
the automatic coupling of QA sentence selection
and IR by augmenting a bag-of-words query with
desired named entity (NE) types based on a given
question. While Yao et al. showed improved per-
formance in IR as compared with an off-the-shelf
IR system, the model was proof-of-concept, em-
ploying a simple linear interpolation between bag-
of-words and NE features with a single scalar value
tuned on a development set, kept static across all
types of questions at test time. We generalize Yao
et al.’s intuition by casting the problem as an in-
stance of classification-based retrieval (Robertson
and Spärck Jones, 1976), formalized as a discrim-
inative retrieval model (Cooper et al., 1992; Gey,
1994; Nallapati, 2004) allowing for the use of NLP
features. Our framework can then be viewed as
an instance of linear feature-based IR, following
Metzler and Croft (2007).

To implement this approach, we propose a gen-
eral feature-driven abstraction for coupling re-
trieval and answer sentence selection.1 Our exper-
iments demonstrate state-of-the-art results on QA
sentence selection on the dataset of Lin and Katz

1https://github.com/ctongfei/probe.
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Figure 1: Steps in mapping natural language questions into weighted features used in retrieval.

(2006), and we show significant improvements over
a bag-of-words of baseline on a novel Wikipedia-
derived dataset we introduce here, based on WIK-
IQA (Yang et al., 2015).

2 Approach

Formally, given a candidate setD = {p1, · · · , pN},
a query q and a scoring function F (q, p), an IR
system retrieves the top-k items under the objective

arg max
p∈D

F (q, p). (1)

If the function F is simple enough (e.g. tf-idf ), it
could be easily solved by traditional IR techniques.
However, tackling this problem with a complex F
via straightforward application of supervised classi-
fication (e.g., recent neural network based models)
requires a traversal over all possible candidates, i.e.
the corpus, which is computationally infeasible for
any reasonable collection.

Let fQ(q) refer to feature extraction on the query
q, with corresponding candidate-side feature extrac-
tion fP (p) on the candidate, and finally fQP (q, p)
extracts features from a (query, candidate) pair is
defined in terms of fQ and fP via composition (de-
fined later):

fQP (q, p) = C(fQ(q), fP (p)). (2)

From a set of query/candidate pairs we can train a
modelM such that given the feature vector of a pair
(q, p), its returning value M(fQP (q, p)) represents
the predicted probability of whether the passage p
answers the question q. This model is chosen to be
a log-linear model with the feature weight vector
θ, leading to the optimization problem

arg max
p∈D

θ · fQP (q, p). (3)

This is in accordance with the pointwise reranker
approach, and is an instance of the linear feature-
based model of Metzler and Croft (2007). Under
specific compositional operations in fQP the fol-
lowing transformation can be made:

θ · fQP (q, p) = tθ(fQ(q)) · fP (p). (4)

This is elaborated in § 4. We project the orig-
inal feature vector of the query fQ(q) to a trans-
formed version tθ(fQ(q)): this transformed vector
is dependent on the model parameters θ, where
the association learned between the query and the
candidate is incorporated into the transformed vec-
tor. This is a weighted, trainable generalization of
query expansion in traditional IR systems.

Under this transformation we observe that the
joint feature function fQP (q, p) is decomposed into
two parts with no interdependency – the original
problem in Eq. (4) is reduced to a standard maxi-
mum inner product search (MIPS) problem as seen
on the RHS of Eq. (4). Under sparse assumptions
(where the query vector and the candidate feature
vector are both sparse), this MIPS problem can be
efficiently (sublinearly) solved using classical IR
techniques (multiway merging of postings lists).

3 Features

A feature vector can be seen as an associative array
that maps features in the form “KEY=value” to real-
valued weights. One item in a feature vector f is
denoted as “(KEY = value,weight)”, and a feature
vector can be seen as a set of such tuples. We write
f(KEY=value) = weight to indicate that the features
serve as keys to the associative array, and θX is the
weight of the feature X in the trained model θ.

3.1 Question features
fwh: Question word, typically the wh-word of a
sentence. If it is a question like “How many”, the
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word after the question word is also included in the
feature, i.e., feature “(QWORD=how many, 1)” will
be added to the feature vector.
flat: Lexical answer type (LAT), if the query has a
question word:“what” or “which”, we identify the
LAT of this question (Ferrucci et al., 2010), which
is defined as the head word of the first NP after the
question word. E.g., “What is the city of brotherly
love?” would result in “(LAT=city, 1)”. 2

fNE: All the named entities (NE) discovered in this
question. E.g., “(NE-PERSON=Margaret Thatcher,
1)” would be generated if Thatcher is mentioned.
fTfIdf: The L2-normalized tf-idf weighted bag-of-
words feature of this question. An example feature
would be “(WORD = author, 0.454)”.

3.2 Passage features

All passage features are constrained to be binary.
fBoW: Bag-of-words: any distinct word x in the
passage will generate a feature “(WORD=x, 1)”.
fNEType: Named entity type. If the passage
contains a name of a person, a feature “(NE-
TYPE=PERSON, 1)” will be generated.
fNE: Same as the NE feature for questions.

4 Feature vector operations

Composition Here we elaborate the composition
C of the question feature vector and passage feature
vector, defining two operators on feature vectors:
Cartesian product (⊗) and join (./).

For any feature vector of a question fQ(q) =
{(ki = vi, wi)}, (wi ≤ 1)3 and any feature vector
of a passage fP (p) = {(kj = vj , 1)}, the Cartesian
product and join of them is defined as

fQ(q)⊗ fP (p) = {((ki, kj) = (vi, vj), wi)}
fQ(q) ./ fP (p) = {((ki = kj) = 1, wi)}.

Notation (ki = kj) = 1 denotes a feature for a
question/passage pair, that when present, witnesses
the fact that that the value for feature ki on the
question side is the same as the feature kj on the
passage side.

The composition that generates the feature vec-
tor for the question/passage pair is therefore defined

2If the question word is not “what” or “which”, generate
an empty feature (LAT=∅, 1).

3If wi > 1, the vector can always be normalized so that
the weight of every feature is less than 1.

as

C( fQ(q) , fP (p) )
= (fwh(q)⊗ flat(q)) ⊗ fNEType(p)
+ (fwh(q)⊗ flat(q)) ⊗ fBoW(p)
+ fNE(q) ./ fNE(p)
+ fTfIdf(q) ./ fBoW(p) .

(5)

(fwh(q) ⊗ flat(q)) ⊗ fNEType(p) captures the as-
sociation of question words and lexical answer
types with the expected type of named entities.
(fwh(q) ⊗ flat(q)) ⊗ fBoW(p) captures the relation
between some question types with certain words
in the answer. fNE(q) ./ fNE(p) captures named
entity overlap between questions and answering
sentences.

fTfIdf(q) ./ fBoW(p) measures general tf-idf -
weighted context word overlap. Using only this
feature without the others effectively reduces the
system to a traditional tf-idf -based retrieval system.

Projection Given a question, it is desired to
know what kind of features that its potential an-
swer might have. Once this is known, an index
searcher will do the work to retrieve the desired
passage.

For the Cartesian product of features, we define

t⊗θ (f) = {(k′ = v′, wθ(k,k′)=(v,v′))|(k = v, w) ∈ f},
for all k′, v′ such that θ(k,k′)=(v,v′) 6= 0, i.e. feature
(k, k′) = (v, v′) appears in the trained model.

For join, we have

t./
θ (f) = {(k′ = v, wθ(k=k′)=1)|(k = v, w) ∈ f},

for all k′ such that θ(k=k′)=1 6= 0, i.e. feature
(k = k′) = 1 appears in the trained model.

It can be shown from the definitions above that

t⊗θ (f) · g = θ · (f ⊗ g);
t./
θ (f) · g = θ · (f ./ g).

Then the transformed feature vector t(q) of an
expected answer passage given a feature vector of
a question fQ(q) is:

t(q) = t⊗θ (fwh(q)⊗ flat(q)) + t./
θ (fNE(q) + fTfIdf(q)).

Calculating the vector t(q) is computationally
efficient because it only involves sparse vectors.

We have formally proved Eq. (4) by the feature
vectors we proposed, showing that given a question,
we can reverse-engineer the features we expect to
be present in a candidate using the transformation
function tθ, which we will then use as a query
vector for retrieval.
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Retrieval We use Apache LUCENE4 to build the
index of the corpus, which, in the scenario of
this work, is the feature vectors of all candidates
fP (p), p ∈ D. This is an instance of weighted
bag-of-features instead of common bag-of-words.

For a given question q, we first compute its fea-
ture vector f(q) and then compute its transformed
feature vector tθ(q) given model parameters θ,
forming a weighted query. We modified the similar-
ity function of LUCENE when executing multiway
postings list merging so that fast efficient maximum
inner product search can be achieved. This clas-
sical IR technique ensures sublinear performance
because only vectors with at least one overlapping
feature, instead of the whole corpus, is traversed. 5

5 Experiments

TREC Data We use the training and test data from
Yao et al. (2013b). Passages are retrieved from the
AQUAINT Corpus (Graff, 2002), which is NER-
tagged by the Illinois Named Entity Tagger (Rati-
nov and Roth, 2009) with an 18-label entity type set.
Questions are parsed using the Stanford CORENLP
(Manning et al., 2014) package. Each question is
paired with 10 answer candidates from AQUAINT,
annotated for whether it answers the question via
crowdsourcing. The test data derives from Lin and
Katz (2006), which contains 99 TREC questions
that can be answered in AQUAINT. We follow Nal-
lapati (2004) and undersample the negative class,
taking 50 sentences uniformly at random from the
AQUAINT corpus, per query, filtered to ensure no
such sentence matches a query’s answer pattern as
negative samples to the training set.
Wikipedia Data We introduce a novel evaluation
for QA retrieval, based on WIKIQA (Yang et al.,
2015), which pairs questions asked to Bing with
their most associated Wikipedia article, along with
sentence-level annotations on the introductory sec-
tion of those articles as to whether they answer the
question. 6

4http://lucene.apache.org.
5The closest work on indexing we are aware of is by Bilotti

et al. (2007), who transformed linguistic structures to struc-
tured constraints, which is different from our approach of
directly indexing linguistic features.

6Note that as compared to the TREC dataset, there are
some questions in WIKIQA which are not answerable based
on the provided context alone. E.g. “who is the guy in the
wheelchair who is smart” has the answer “Professor Stephen
Hawking , known for being a theoretical physicist , has ap-
peared in many works of popular culture .” This sets the upper
bound on performance with WIKIQA below 100% when us-
ing contemporary question answering techniques, as assumed

We automatically aligned WIKIQA annotations,
which was based on an unreported version of
Wikipedia, with the Feb. 2016 snapshot, us-
ing for our corpus the introductory section of
all Wikipedia articles, processed with Stanford
CORENLP. Alignment was performed via string
edit distance, leading to a 55% alignment to the
original annotations. Table 1 dev/test reflects the
subset resulting from this alignment; all of the orig-
inal WIKIQA train was used in training, along with
50 negative examples randomly sampled per ques-
tion.

# of questions # of
train dev test sentences

TREC/AQUAINT 2150 53 99 23,398,942
WIKIQA/Wikipedia 2118 77 157 20,368,761

Table 1: Summary of the datasets.

Setup The model is trained using LIBLINEAR (Fan
et al., 2008), with heavy L1-regularization (feature
selection) to the maximum likelihood objective.
The model is tuned on the dev set, with the objec-
tive of maximizing recall.
Baseline systems Recent work in neural network
based reranking is not directly applicable here as
those are linear with respect to the number of candi-
date sentences, which is computationally infeasible
given a large corpus.
Off-the-shelf LUCENE: Directly indexing the sen-
tences in LUCENE and do sentence retrieval. This
is equivalent to maximum tf-idf retrieval.
Yao et al. (2013b): A retrieval system which aug-
ments the bag-of-words query with desired named
entity types based on a given question.
Evaluation metrics (1) R@1k: The recall in top-
1000 retrieved list. Contrary to normal IR systems
which optimize precision (as seen in metrics such
as P@10), our system is a triaging system whose
goal is to retrieve good candidates for downstream
reranking: high recall within a large set of initial
candidates is our foremost aim. (2) b-pref (Buck-
ley and Voorhees, 2004): is designed for situations
where relevance judgments are known to be far
from complete,7 computing a preference relation
of whether judged relevant documents are retrieved
ahead of judged irrelevant document; (3) MAP:

here.
7This is usually the case in passage retrieval, where com-

plete annotation of all sentences in a large corpus as to whether
they answer each question is not feasible beyond a small set
(such as the work of Lin and Katz (2006)).
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Figure 2: The R@k and S@k curve for different
models in the TREC/AQUAINT setting.

mean average precision; and (4) MRR: mean recip-
rocal rank. We are most concerned with (1,2), and
(3,4) are reported in keeping with prior work.
Results Our approach (DiscIR) significantly out-
performs Yao et al. in R@1k and b-pref, demon-
strating the effectiveness of trained weighted
queries compared to binary augmented features.
The performance gain with respect to off-the-shelf
LUCENE with reranking shows that our weighted
augmented queries by decomposition is superior to
vanilla tf-idf retrieval, as can be shown in Table 2.

R@1k b-pref MAP MRR
TREC / AQUAINT

LUCENE (dev) 52.44% 41.95% 9.63% 13.94%
LUCENE (test) 35.47% 38.22% 9.78% 15.06%
Yao+ (test)8 25.88% 45.41% 13.75% 29.87%
DiscIR (dev) 71.34% 70.69% 20.07% 30.34%
DiscIR (test) 78.20% 75.15% 17.84% 25.30%

WIKIQA / Wikipedia
LUCENE (dev) 25.00% 25.97% 1.83% 1.83%
LUCENE (test) 24.73% 25.69% 0.58% 0.72%
DiscIR (dev) 60.00% 61.69% 9.56% 9.65%
DiscIR (test) 58.79% 60.88% 10.26% 11.42%

Table 2: Performance of the QA retrieval systems.

We also plot the performance of these systems at
different ks on a log-scale (shown in Fig. 2 and Fig.
3). We use two metrics here: recall at k (R@k) and
success at k (S@k). Success at k is the percentage
of queries in which there was at least one relevant
answer sentence among the first k retrieved result
by a specific system, which is the true upper bound
for downstream tasks.

Again, DiscIR demonstrated significantly higher
8Results on dev data is not reported in Yao et al. (2013b).
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Figure 3: The R@k and S@k curve for different
models in the WIKIQA/Wikipedia setting.

recalls than baselines at different ks and across
different datasets. Success rate at different ks are
also uniformly higher than LUCENE, and at most
ks higher than the model of Yao et al.’s.

6 Conclusion and Future Work

Yao et al. (2013b) proposed coupling IR with fea-
tures from downstream question answer sentence
selection. We generalized this intuition by recog-
nizing it as an instance of discriminative retrieval,
and proposed a new framework for generating
weighted, feature-rich queries based on a query.
This approach allows for the straightforward use
of a downstream feature-driven model in the candi-
date selection process, and we demonstrated how
this leads to a significant gain in recall, b-pref and
MAP, hence providing a larger number of correct
candidates that can be provided to a downstream
(neural) reranking model, a clear next step for fu-
ture work.
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Abstract
An important asset of using Deep Neu-
ral Networks (DNNs) for text applica-
tions is their ability to automatically engi-
neer features. Unfortunately, DNNs usu-
ally require a lot of training data, espe-
cially for high-level semantic tasks such as
community Question Answering (cQA).
In this paper, we tackle the problem of
data scarcity by learning the target DNN
together with two auxiliary tasks in a mul-
titask learning setting. We exploit the
strong semantic connection between se-
lection of comments relevant to (i) new
questions and (ii) forum questions. This
enables a global representation for com-
ments, new and previous questions. The
experiments of our model on a SemEval
challenge dataset for cQA show a 20% rel-
ative improvement over standard DNNs.

1 Introduction

Deep Neural Networks (DNNs) have successfully
been applied for text applications, e.g., (Goldberg,
2015). Their capacity of automatically engineer-
ing features is one of the most important reasons
for explaining their success in achieving state-of-
the-art performance. Unfortunately, they usually
require a lot of training data, especially when mod-
eling high-level semantic tasks such as QA (Yu
et al., 2014), for which, more traditional methods
achieve comparable if not higher accuracy (Ty-
moshenko et al., 2016a).

Finding a general solution to data scarcity for
any task is an open issue, however, for some
classes of applications, we can alleviate it by
making use of multitask learning (MTL). Recent
work has shown that it is possible to jointly train
a general system for solving different tasks si-

multaneously. For example, Collobert and We-
ston (2008) used MTL to train a neural network
for carrying out many sequence labeling tasks
(e.g., pos-tagging, named entity recognition, etc.),
whereas Liu et al. (2015) trained a DNN with
MTL to perform multi-domain query classification
and reranking of web search results with respect to
user queries.

The above work has shown that MTL can be ef-
fectively used to improve NNs by leveraging dif-
ferent kinds of data. However, the obtained im-
provement over the base DNN was limited to 1-2
points, raising the question if this is the kind of
enhancement we should expect from MTL. An-
alyzing the different tasks involved in the model
by Liu et al. (2015), it appears evident that query
classification provides little and very coarse infor-
mation to the document ranking task. Indeed, al-
though, the vectors of queries and documents lie in
the same space, the query classifier only chooses
between four different categories, restaurant, ho-
tel, flight and nightlife, whereas the documents can
potentially span infinite subtopics.

In this paper, we conjecture that when the tasks
involved in MTL are more semantically connected
a larger improvement can be obtained. More
specifically, MTL can be more effective when we
can encode the instances from different tasks us-
ing the same representation layer expressing sim-
ilar semantics. To demonstrate our hypothesis,
we worked on Community Question Answering
(cQA), which is an interesting and relatively new
problem and still focused on a query and retrieval
setting.

2 Preliminaries and paper results

cQA websites enable users to freely ask questions
in web forums and get some good answers in the
form of comments from other users. In particu-
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Figure 1: The three tasks of cQA at SemEval: the
arrows show the relations between the new and the
related questions and the related comments.

lar, given a fresh user question, qnew, and a set of
forum questions, Q, answered by a comment set,
C, the main task consists in determining whether
a comment c ∈ C is a suitable answer to qnew

or not. Interestingly, the task can be divided into
three sub-tasks as shown in Fig. 2: given qnew,
the main Task C is about directly retrieving a rel-
evant comment from the entire forum data. This
can also be achieved by solving Task B to find a
similar question, qrel, and then executing Task A
to select comments, crel, relevant to qrel.

Given the above setting, we define an MTL
model that solves Task C, learning at the same
time the auxiliary tasks A and B. Considering that
(i) qnew and qrel have the same nature and (ii) com-
ments tend to be short and their text is compara-
ble to the one of questions,1 we could model an
effective shared semantic representation. Indeed,
our experiments with the data from SemEval 2016
Task 3 (Nakov et al., 2016) show that our MTL ap-
proach improves the single DNN for solving Task
C by roughly 8 points in MAP (almost 20% of
relative improvement). Finally, given the strong
connection between the objective functions of the
DNNs, we could train our network with the three
different tasks at the same time, performing a sin-
gle forward-backward operation over the network.

3 Our MTL model for cQA
MTL aims at learning several related tasks at the
same time to improve some (or possibly all) tasks
using joint information (Caruana, 1997). MTL is
particularly well-suited for modeling Task C as it
is a composition of tasks A and B, thus, it can ben-
efit from having both questions qnew and qrel in
input to better model the interaction between the
new question and the comment. More precisely, it
can use the triplets, 〈qnew, qrel, crel〉, in the learn-
ing process, where the interaction between the

1In cQA domains, these are typically longer than standard
questions, i.e., up to few paragraphs containing subquestions
and an introduction.

Figure 2: Our MTL architecture for cQA. Given
the input sentences qnew, qrel and crel (at the bot-
tom), the NN passes them to the sentence en-
coders. Their output is concatenated into a new
vector, hj , and fed to a hidden layer, hs, whose
output is passed to three independent multi-layer
perceptrons. The latter produce the scores for the
individual tasks.

triplet members is exploited during the joint train-
ing of the three models for the tasks A, B and C.
In fact, a better model for question-comment sim-
ilarity or question-question similarity can lead to a
better model for new question-comment similarity
(Task C).

Additionally, each thread in the SemEval
dataset is annotated with the labels for all the three
tasks and therefore it is possible to apply joint
learning directly (using a global loss), rather than
training the network by optimizing the loss of the
three single tasks independently. Note that, in pre-
vious work (Collobert and Weston, 2008; Liu et
al., 2015), each input example was annotated for
only one task and thus training the model required
to alternate examples from the different tasks.

3.1 Joint Learning Architecture
Our joint learning architecture is depicted in Fig-
ure 2, it takes three pieces of text as input, i.e,
a new question, qnew, the related question, qrel,
and its comment, crel, and produces three fixed
size representations, xqnew , xqrel

and xcrel
, respec-

tively. This process is performed using the sen-
tence encoders, xd = f(d, θd), where d is the
input text and θd is the set of parameters of the
sentence encoder. In previous work, different sen-
tence encoders have been proposed, e.g., Con-
volutional Neural Networks (CNNs) with max-
pooling (Kim, 2014; Severyn and Moschitti, 2015)

727



Task A Task B Task C
Train 37.51% 39.41% 9.9%

Train + ED 37.47% 64.38% 21.25%
Dev 33.52% 42.8% 6.9%
Test 40.64% 33.28% 9.3%

Table 1: Percentage of positive examples in the
training datasets for each task.

and Long-short term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997).

We concatenate the three representations, hj =
[xqnew , xqrel

, xcrel
], and fed them to a hidden layer

to create a shared input representation for the three
tasks, hs = σ(Whj + b). Next, we connect
the output of hs to three independent Multi-Layer
Perceptrons (MLP), which produce the scores for
the three tasks. At training time, we compute the
global loss as the sum of the individual losses for
the three tasks for each example, where each loss
is computed as binary cross-entropy.

3.2 Shared Sentence Models
The SemEval dataset contains ten times less new
questions than related questions by construction.
However, all questions have the same nature (i.e.,
generated by forum users), thus, we can share the
parameters of their sentence models as depicted in
Figure 2. Formally, let xd = f(d, θ) be a sentence
model for a text, d, with parameters, θ, i.e., the
embedding weights and the convolutional filters:
in a standard setting, each sentence model uses a
different set of parameters θqnew , θqrel

and θcrel
.

In contrast, our proposed sentence model encodes
both the questions, qnew and qrel, using the same
set of parameters θq.

4 Experiments

4.1 Setup
Dataset: the data for the above-mentioned tasks
is distributed in three datasets for: Task A, which
contains 6, 938 related questions and 40, 288 com-
ments. Each comment in the dataset was anno-
tated with a label indicating its relevancy to the
question of its thread. Task B, which contains 317
new questions. For each new question, 10 related
questions were retrieved, summing to 3, 169 re-
lated questions. Also in this case, the related ques-
tions were annotated with a relevancy label, which
tells if they are relevant to the new question or not.
Task C contains 317 new questions, together with
3, 169 related questions (same as in Task B) and
31, 690 comments. Each comment was labeled

Model MAP MRR
LSTM 43.91 49.28
CNN 44.43 49.01
CNN Train 44.43 49.01
CNN Train + ED3 44.77 52.07

Table 2: Impact of CNN vs. LSTM sentence mod-
els on the baseline network for Task C.

with its relevancy with respect to the new ques-
tion. Each of the three datasets is in turn divided
in training, dev. and test sets.

Table 1 reports the label distributions with re-
spect to the different datasets. The data for Task C
presents a higher number of negative than positive
examples. Thus, we automatically extended the
set of positive examples in our joint MTL training
set using the data from Task A. More specifically,
we take the pair (qrel, crel) from the training set
of Task A and create the triples, (qrel, qrel, crel),
where the label for question-question similarity is
obviously positive and the labels for Task C are
inherited from those of Task A. We ensured that
the questions in the extended data (ED) generated
from the training set do not overlap with questions
from the dev. and test sets. The resulting train-
ing data contains 34, 100 triples: its relevance la-
bel distribution is shown in the row, Train + ED,
of Table 1. 2

Pre-processing: we tokenized and put both ques-
tions and comments in lowercase. Moreover, we
concatenated question subject and body to create a
unique question text. For computational reasons,
we limited the document size to 100 words. This
did not cause any degradation in accuracy.
Neural Networks: we mapped words to embed-
dings of size 50, pre-initializing them with stan-
dard skipgram embeddings of dimensionality 50.
The latter embeddings were trained on the English
Wikipedia dump using word2vec toolkit (Mikolov
et al., 2013). We encoded the input sentence with
a fixed-sized vector, whose dimensions are 100,
using a convolutional operation of size 5 and a k-
max pooling operation with k = 1. Table 2 shows
the results of our preliminary experiments with the
sentence models of CNN and LSTM, respectively,
on the dev. set of Task C. In our further experi-
ments, we opted for CNN since it produced a bet-

2We make out MTL data available at
http://ikernels-portal.disi.unitn.it/
repository/

3Extended Dataset for Task C computed using the ques-
tions from Task A.
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Model DEV TEST
MAP MRR MAP MRR

Random - - 15.01 15.19
IR Baseline - - 40.36 45.83
SUper-team - - 55.41 61.48
KeLP - - 52.95 59.23
SemanticZ - - 51.68 55.96
MTE-NN - - 49.38 51.56
ICL00 - - 49.19 53.89
SLS - - 49.09 55.98
ITNLP-AiKF - - 48.49 55.21
ConvKN - - 47.15 51.43
ECNU - - 46.47 51.41
UH-PRHLT - - 43.20 47.79
〈qnew, crel〉 44.77 52.07 41.95 47.21
〈qnew, qrel, crel〉 45.59 51.04 46.99 55.64
〈qnew, qrel, crel〉 +↔ 47.82 53.03 46.45 51.72
MTL (BC) 47.80 52.31 48.58 55.77
MTL (AC) 46.34 51.54 48.49 54.01
MTL (ABC) 49.63 55.47 49.87 55.73
MTL + one feature - - 52.67 55.68

Table 3: Results on the validation and test sets for
the proposed models.

ter MAP and is computationally more efficient.
For each MLP, we used a non-linear hidden

layer (with hyperbolic tangent activation, Tanh),
whose size is equal to the size of the previ-
ous layer, i.e., 100. We included information
such as word overlaps (Tymoshenko et al., 2016a)
and rank position as embeddings with an addi-
tional lookup table with vectors of size dfeat =
5. The rank feature is provided in the SemEval
dataset and describes the position of the ques-
tions/comments in the search engine output.
Training: we trained our networks using SGD
with shuffled mini-batches using the rmsprop up-
date rule (Tieleman and Hinton, 2012). We set the
training to iterate until the validation loss stops
improving, with patience p = 10, i.e., the num-
ber of epochs to wait before early stopping, if no
progress on the validation set is obtained. We
added dropout (Srivastava et al., 2014) between
all the layers of the network to improve general-
ization and avoid co-adaptation of features. We
tested different dropout rates (0.2, 0.4) for the in-
put and (0.3, 0.5, 0.7) the hidden layers obtaining
better results with highest values, i.e., 0.4 and 0.7.

4.2 Results
Table 3 shows the results of our individual and
MTL models, in comparison with the Random and
IR baselines of the challenge (first two rows), and
the SemEval 2016 systems (rows 3–12). Rows 13-
15 illustrate the results of our models when trained
only on Task C. 〈qnew, crel〉 corresponds to the ba-

sic model, i.e., the single network, whereas the
〈qnew, qrel, crel〉 model only exploits the joint in-
put, i.e., the availability of qrel. Rows 16-18 report
the MTL models combining Task C with the other
two tasks. The difference with the previous group
(rows 13-15) is in the training phase, which is also
operated on the instances from tasks A and B.

We note that: (i) the single network for Task C
cannot compete with the challenge systems, as it
would be ranked at the last position, according to
the official MAP score (test set result); (ii) the joint
representation, 〈qnew, qrel, crel〉, highly improves
the MAP of the basic network from 41.95 to 46.99
on the test set. This confirms the importance of
having highly related tasks using input encoding
closely related semantics. (iii) The shared sen-
tence model for qnew and qrel (indicated with↔)
improves MAP on the dev. set only. (iv) The MTL
(ABC) provides the best MAP, improving BC and
AC by 1.29 and 1.38, respectively. Most impor-
tantly, it also improves, 〈qnew, qrel, crel〉 by 2.88
points, i.e., the best model using the joint repre-
sentation and no training on the auxiliary tasks.

Additionally, our full MTL model would have
ranked 4th on Task C of the SemEval 2016 com-
petition. This is an important result since all the
challenge systems make use of many manually
engineered features whereas our model does not
(except for the necessary initial rank). If we add
the most powerful feature used by the top systems
to our model, i.e., the weighted sum between the
score of the Task A classifier and the Google rank
(Mihaylova et al., 2016; Filice et al., 2016), our
system would achieve an MAP of 52.67, i.e., very
close to the second system.

Finally, we do not report the results of the aux-
iliary tasks for lack of space and also because our
idea of using MTL is to improve the target Task C.
Indeed, by their definition, tasks A and B are sim-
pler than C, and are designed for solving it. Thus,
attempting to improve the simpler A and B tasks
by solving the more complex Task C, although
interesting, looks less realistic. Indeed, we did
not observe any important improvement of tasks
A and B in our MTL setting. More insights and
results are available in our longer version of this
paper (Bonadiman et al., 2017).

5 Related Work

The work related to cQA spans two major areas:
question and answer passage retrieval. Hereafter,
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we report some important research about them and
then conclude with specific work on MTL.

Question–Question Similarity. Early work on
question similarity used statistical machine trans-
lation techniques, e.g., (Jeon et al., 2005; Zhou
et al., 2011), to measure similarity between ques-
tions. Language models for question-question
similarity were explored by Cao et al. (2009), who
incorporated information from the category struc-
ture of Yahoo! Answers when computing simi-
larity between two questions. Instead, Duan et
al. (2008) proposed an approach that identifies
the topic and focus from questions and compute
their similarity. Ji et al. (2012) and Zhang et
al. (2014) learned a probability distribution over
the topics that generate the question/answers pairs
with LDA and used it to measure similarity be-
tween questions. Recently, Da San Martino et al.
(2016) showed that combining tree kernels (TKs)
with text similarity features can improve the re-
sults over strong baselines such as Google.

Question–Answer Similarity. Yao et al. (2013)
used a conditional random field trained on a set of
powerful features, such as tree-edit distance be-
tween question and answer trees. Heilman and
Smith (2010) used a linear classifier exploiting
syntactic features to solve different tasks such as
recognizing textual entailment, paraphrases and
answer selection. Wang et al. (2007) proposed
Quasi-synchronous grammars to select short an-
swers for TREC questions. Wang and Man-
ning (2010) used a probabilistic Tree-Edit model
with structured latent variables for solving tex-
tual entailment and question answering. Severyn
and Moschitti (2012) proposed SVM with TKs
to learn structural patterns between questions and
answers encoded in the form of shallow syntac-
tic parse trees, whereas in (Tymoshenko et al.,
2016b; Barrón-Cedeño et al., 2016) the authors
used TKs and CNNs to rank comments in web fo-
rums, achieving the state of the art on the SemEval
cQA challenge. Wang and Nyberg (2015) trained
a long short-term memory model for selecting an-
swers to TREC questions.

Finally, a recent work close to ours is (Guzmán
et al., 2016), which builds a neural network for
solving Task A of SemEval. However, this does
not approach the problem as MTL.

Related work on MTL. A good overview on
MTL, i.e., learning to solve multiple tasks by
using a shared representation with mutual bene-

fit, is given in (Caruana, 1997). Collobert and
Weston (2008) trained a convolutional NN with
MTL which, given an input sentence, could per-
form many sequence labeling tasks. They showed
that jointly training their system on different tasks,
such as speech tagging, named entity recognition,
etc., significantly improves the performance on the
main task, i.e., semantic role labeling, without re-
quiring hand-engineered features.

Liu et al. (2015) is the closest work to ours.
They used multi-task deep neural networks to map
queries and documents into a semantic vector rep-
resentation. The latter is later used into two tasks:
query classification and question-answer rerank-
ing. Their results showed a competitive gain over
strong baselines. In contrast, we have presented
a model that can also exploit a joint question and
comment representation as well as the dependen-
cies among the different SemEval Tasks.

6 Conclusions

We proposed an MTL architecture for cQA, where
we could exploit auxiliary tasks, which are highly
semantically connected with our main task. This
enabled the use of the same semantic representa-
tion for encoding the text objects associated with
all the three tasks, i.e., new question, related ques-
tion and comments. Our shared semantic rep-
resentation provides an important advantage over
previous MTL applications, whose subtasks share
a less consistent semantic representation.

Our experiments on the SemEval 2016 dataset
show that our MTL approach relatively improves
the individual DNNs by almost 20%. This is due
to the shared representation as well as training on
the instances of the two auxiliary tasks.

In the future, we would like to experiment with
hierarchical MTL for stressing even more the role
of the auxiliary tasks with respect to the main task.
Additionally, we would like to apply constraints
on the global loss for enforcing specific relations
between the tasks.
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Abstract

Many important email-related tasks, such
as email classification or search, highly
rely on building quality document rep-
resentations (e.g., bag-of-words or key
phrases) to assist matching and under-
standing. Despite prior success on rep-
resenting textual messages, creating qual-
ity user representations from emails was
overlooked. In this paper, we propose
to represent users using embeddings that
are trained to reflect the email communi-
cation network. Our experiments on En-
ron dataset suggest that the resulting em-
beddings capture the semantic distance be-
tween users. To assess the quality of em-
beddings in a real-world application, we
carry out auto-foldering task where the
lexical representation of an email is en-
riched with user embedding features. Our
results show that folder prediction accu-
racy is improved when embedding fea-
tures are present across multiple settings.

1 Introduction

Email has been an important asynchronous com-
munication channel that people use on a daily ba-
sis. A large body of research has laid focus on cre-
ating intelligent systems by analyzing the content
of email messages, with a purpose to assist users in
automating their tasks (Lewis and Knowles, 1997;
Drucker et al., 1999; Kushmerick and Lau, 2005;
Tam et al., 2012). Email classification, as an ex-
ample, relies on machine learned models to cate-
gorize messages into folders by using text features
such as bag-of-words or keywords (Bekkerman et
al., 2004; Dredze et al., 2008). Similarly, tasks
such as email search (Minkov et al., 2008), email

∗Both authors contributed equally to this work.

summarization (Carenini et al., 2008), and spam
filtering (Gee, 2003) all depend on properly rep-
resenting the content of the message body, which
then can be consumed in the target tasks. While
many of these studies have brought success in rep-
resenting textual messages, creating quality repre-
sentations of users was not fully investigated.

Considering users as nodes in a graph spanned
by email correspondences, a good representation
of users can be helpful for many tasks since in-
formation is communicated from/to these vertices.
In the email domain, the mainstream approaches
to representing users are based on bag-of-words
or keywords features (Bekkerman et al., 2004;
Dredze et al., 2008). Many previous efforts model
users and their interactions in social networks or
recommendation systems (Grover and Leskovec,
2016; Liang et al., 2016; Zhao et al., 2010).
Emails, although can be viewed as a special kind
of social platform, tend to generate interactions
within a smaller group of participants, requiring
a dense representation to help bridge the gap be-
tween even the farthest users. In this paper, we
propose to learn user embeddings to form such
representations, with an aim that these embed-
dings can bring benefits to email-related tasks.

To learn user embeddings, we consider a graph
structure formed by vertices of senders and recip-
ients, which are connected by edges of the mes-
sages they exchange. Based on this graph, our ap-
proach learns user embeddings jointly with word
embeddings in a concatenated space, which treats
users as features affecting the semantics of the
email content. The resulting user embeddings are
expected to correspond to users’ sending and re-
ceiving activities.

We conduct embedding learning using a pub-
licly available email corpus − the Enron dataset.
Our analytical results suggest that the more of-
ten users communicate, the more similar their em-
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beddings are. To study the effectiveness of user
embeddings in a real application, we apply user
embeddings to a surrogate task − email auto-
foldering, where lexical and embeddings features
are employed for folder prediction. We follow
a conventional setting (Bekkerman et al., 2004;
Dredze et al., 2008; Tam et al., 2012) where a
selected set of users are tested. Our baseline ap-
proaches take into account two most effective se-
tups from prior work where the combination of
email content and metadata is featurized. Our
experimental results show that incorporating user
embeddings consistently improves prediction ac-
curacy compared to those with only lexical fea-
tures.

2 Approach

Our approach to learning user embeddings is
based on the continuous bag-of-words (CBOW)
structure, similar to the method proposed by Le
and Mikolov (2014), which treats paragraph as an
external feature that affects, and being trained in,
the process of word embedding learning. We take
the essence of the aforementioned work, and on
the top of that add user embeddings from both
sender and recipients to learn word embeddings.
Following this design, the semantics captured by
word embedding learning are expected to be af-
fected by users who are involved in the email com-
munication.

Figure 1 shows the framework of our approach.
The projection layer is a concatenation of user and
word embeddings following the order of sender,
words and recipients. Since most email scenar-
ios usually involve more than one recipient, our
framework averages the embeddings from all re-
cipients in the projection layer. The sender and
the averaged recipient can be thought of as two
global features acting as a shared condition of the
environment when surveying the entire content of
an email. Intuitively, the word embeddings cap-
ture the senders and the recipients when they are
learned from email content.

More formally, every output word wo is ob-
tained by a softmax to maximize

p(wo|wi, ..., wi+n, s, r1, ..., rm) =
eywt∑

w∈V e
yw

(1)

where s is a sender and r1, ..., rm represent
m recipients. yw refers to unnormalized log-

Figure 1: Our framework of learning user embed-
dings. Sender and recipients are mapped into cor-
responding embeddings and concatenated with the
sum of word embeddings in the project layer. wi

and wo refer to input and output words in email
content.

probability for a word w in vocabulary V by

y = Xh(wi, ..., wi+n; W, s, r1, ..., rm;U) + b (2)

where X , b are the softmax parameters. W and
U are matrix of word and user embeddings where
wi, ..., wi+n and s, r1, ..., rm are extracted from. h
is constructed by concatenating word and user em-
beddings in the order shown in Figure 1, defined
as

h = vs ⊕
i+n∑
j=i

vj ⊕ 1
m

m∑
r=1

vr (3)

where vs, vj and vr are embeddings of the sender,
content words and recipients, respectively. Partic-
ularly, embeddings from input words are summed
dimension-wise to the project layer, just like in the
CBOW structure. Averaging over the embeddings
of recipients in h is because we treat all recipients
equally important and thus so are their contribu-
tions to the projection layer. For efficiency, we
follow the hierarchical softmax optimization used
in word2vec (Mikolov et al., 2013).

In general, this framework can be considered a
step-by-step learner that traverses a user network
derived from email headers (senders and recipi-
ents), where in each step the learner learns a par-
tial network from one user node to others via edges
of email communications. We note that, like con-
ventional word embedding learning, our approach
can be considered as an offline learner since the
learned embeddings cannot represent users absent
in training data. To address this, one can always
introduce a special token to present unknown users
in the training stage, which is a commonly adopted
technique in word embedding learning.
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Set1 Set2
User #Folder #Msg #Folder #Msg
beck-s 102 1795 78 1749
farmer-d 28 3677 25 3672
kaminski-v 37 2691 32 2684
lokay-m 12 2494 11 2493
sanders-r 31 1184 29 1181
williams-w3 20 2771 17 2766

Table 1: Email statistics for a selected set of users
in Enron. Set1 removes non-topical folders while
Set2 additionally disregards small folders.

In a recent work proposed by (Yu et al., 2016),
they obtained user embeddings through learning
word embeddings from social texts. Their idea
is similar to ours in terms of using a joint learn-
ing framework, but differs in two aspects. Their
model relied on document vectors when trained di-
rectly or indirectly with word embeddings, while
our framework does not require separate document
embeddings in training. Furthermore, their user
embeddings were averaged with word embeddings
for next word prediction, which thus can be seen
as a special type of word embeddings. In our
approach user embeddings are concatenated with
word embeddings in the projection layer, so that it
can provide more explicit information when learn-
ing word embeddings.

Our work is also related to studies of learning
vertex representation in social network (Perozzi et
al., 2014; Tang et al., 2015; Cao et al., 2015). To
represent user nodes, this line of work focused on
analyzing network structure which is often formed
by semantic edges (e.g., edges that indicate friend-
ship or authorship). On the contrary, emails con-
nect users in our work, meaning that the edges
are composed of lexical content which provides
more fine-grained signals than simple relational
edges. This critical difference motivates us to de-
sign our framework, since the way prior methods
connect users may result in a large number of iso-
lated islands in email corpus, due to its lower de-
gree of connectivity. Instead, our method repre-
sents users via learning the similar content they
send/receive, which thus helps creating soft con-
nections between users as long as “they speak the
same language”.

3 Experiments

We evaluate our approach using a publicly avail-
able email corpus, the Enron dataset (Klimt and

Figure 2: The similarity between users’ embed-
dings positively correlates with the frequency that
the two users communicates. X-axis: bucketed
intervals of cosine similarity between users’ em-
beddings. Y-axis: logarithm of average number of
times emails being exchanged.

Yang, 2004)1. The entire collection is considered
for training user and word embeddings. We pre-
process the documents using our in-house normal-
izers, which replace all URLs, Date, Time, Ad-
dress, Phone Numbers with unified symbols, so as
to reduce the sparsity of the data. The dimension
of embeddings is set to 100.

Previous work on the auto-foldering task mainly
focused on modeling message content and meta-
data to group together emails by their semantics.
Bekkerman et al. (2004) extracted bag-of-words
as document representation, whereas Dredze et al.
(2008) adopted LDA to generate summary key-
words for auto-foldering and recipient prediction.
In recent work by Tam et al. (2012), multiple
features were generated from different fields such
as subject, body and participants. Grbovic et al.
(2014) tackled email classification from a differ-
ent angle. In their setup, the target folders were
aggregated and inferred by running LDA on the
entire corpus, which is different from the work that
concentrates on predicting user defined folders.

To evaluate applying user embeddings to
auto-foldering, we follow conventional settings
(Bekkerman et al., 2004; Dredze et al., 2008; Tam
et al., 2012) where personal emails from a set of
users are adopted for prediction. Similar to pre-
vious work, we remove non-topical folders such
as Inbox, Sent-Items, Deleted Items, etc., from the
data, and further folders with a small number of
messages, i.e., ≤ 3, are disregarded. The statistics

1http://www.cs.cmu.edu/˜enron/
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Learner Approach beck-s farmer-d kaminski-v lokay-m sanders-r williams-w3 Avg
SB 0.68 0.79 0.79 0.83 0.77 0.93 0.80

LR SB+Emb 0.73 0.81 0.80 0.87 0.80 0.95 0.83
SBFT 0.73 0.82 0.81 0.87 0.82 0.95 0.83
SBFT+Emb 0.74 0.82 0.81 0.87 0.82 0.96 0.84
SB 0.52 0.77 0.73 0.80 0.68 0.91 0.74

AP SB+Emb 0.57 0.79 0.75 0.83 0.70 0.92 0.76
SBFT 0.60 0.80 0.76 0.84 0.74 0.93 0.78
SBFT+Emb 0.61 0.80 0.76 0.85 0.75 0.94 0.79
SB 0.53 0.76 0.72 0.79 0.65 0.92 0.73

SVM SB+Emb 0.57 0.78 0.73 0.83 0.68 0.93 0.75
SBFT 0.59 0.78 0.76 0.84 0.72 0.94 0.77
SBFT+Emb 0.61 0.80 0.77 0.85 0.76 0.94 0.79

Table 2: Accuracy results of classification methods on Set1 for selected Enron users. Highest accuracy
for each user is marked bold for a given learner.

of these two subsets are shown in Table 1. We note
that this Enron data set of version May 7, 2015 in-
corporates additional changes. Hence, compared
to reports of prior work (Bekkerman et al., 2004;
Tam et al., 2012), statistics in Table 1 show certain
differences2 and the absolute evaluation numbers
are not directly comparable with theirs.

Our experiments are conducted using several
popular classifiers: logistic regression (LR), av-
eraged perception (AP), and support vector ma-
chine (SVM) to predict the most likely target fold-
ers. According to Dredze et al. (2008), the high-
est accuracy is achieved when the entire message
is used in offline prediction. Tam et al. (2012) re-
ported that the best performing results take into ac-
count the content of subject, body and participants.
We reference the two findings as our baseline ap-
proaches: the first method featurizes each mes-
sage with the n-grams of subject (S) and body (B),
n ∈ {1, 2, 3}, whereas the second method further
adds n-grams of the from (F) and to (T) fields in
metadata. Our proposed approach, SB+Emb and
SBFT+Emb, represents each email using a com-
bination of lexical n-grams from SB(FT) and user
embeddings (Emb) trained with the entire corpus.

3.1 User Embeddings Analysis

To understand if the learned user embeddings re-
flect actual email correspondence, we study the re-
lation between the similarity of users’ embeddings
and the frequency they communicate. Specifically,
for each target user ui, we first identify all oth-
ers {uj |j 6=i} that he/she has had communications
with, and then bucket the cosine similarity be-
tween their embeddings into intervals. For each

2E.g., we omit data for the user kitchen-l, for the reason
that it contains only 2 folders after preprocessing.

interval, we take the average of the numbers of
times each uj communicates with ui and convert
it into logarithm space. Figure 2 shows that in
general similarity between user embeddings pos-
itively correlates with the frequency those users
send/receive emails to/from others. This implies
the learned embeddings can capture users’ interac-
tions through words, therefore forming a fair user
representation candidate.

We conduct the same analysis on user-word re-
lation additionally. The results resembles previous
observation that a word is more similar to a user
(i.e., higher cosine score) if the word appears more
often in the user’s emails. Yet when a word be-
comes very frequent, it functions like a stopword
thereby making this property no longer hold.

3.2 Auto-Foldering

Table 2 shows the overall accuracy results on data
Set1. Across all learners and users, we observe a
consistent pattern that SB+Emb improves the per-
formance of SB with a varying percentage from
1% to 10%. This suggests that adding user embed-
dings provides extra signals regarding how users
may organize information.

Comparing SB and SBFT, it is clear that taking
into account participants is highly helpful for pre-
diction, as indicated by Tam et al. (2012). The per-
formance of SB+Emb is either comparable with or
worse than SBFT. We think this may be because
using n-grams of email addresses conveys more
precise information regarding who were involved
in an email communication, whereas embeddings
operate on a denser semantic space without giv-
ing exact representation. Although SB+Emb may
show some performance inferiority compared to
SBFT, it provides much higher flexibility than ex-
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Learner Approach beck-s farmer-d kaminski-v lokay-m sanders-r williams-w3 Avg
SB 0.69 0.79 0.79 0.83 0.77 0.93 0.80

LR SB+Emb 0.74 0.81 0.79 0.87 0.80 0.95 0.83
SBFT 0.75 0.82 0.81 0.87 0.83 0.95 0.84
SBFT+Emb 0.76 0.82 0.81 0.88 0.83 0.96 0.84
SB 0.52 0.77 0.72 0.80 0.67 0.92 0.73

AP SB+Emb 0.59 0.79 0.74 0.83 0.70 0.93 0.76
SBFT 0.59 0.80 0.76 0.85 0.73 0.94 0.78
SBFT+Emb 0.62 0.81 0.76 0.86 0.76 0.94 0.79
SB 0.52 0.77 0.73 0.79 0.66 0.92 0.73

SVM SB+Emb 0.58 0.78 0.75 0.83 0.69 0.93 0.76
SBFT 0.61 0.79 0.74 0.83 0.73 0.93 0.77
SBFT+Emb 0.62 0.80 0.75 0.84 0.73 0.94 0.78

Table 3: Accuracy results of classification methods on Set2 for selected Enron users. Highest accuracy
for each user is marked bold for a given learner.

act matching and can better address properties for
unseen or infrequent users. Therefore it could be
the case that SB+Emb performs better categoriza-
tion for larger audience in practice. When incorpo-
rating user embeddings on the top of all available
lexical features (i.e., SBFT+Emb), prediction ac-
curacy can be further increased compared to pure
SBFT.

At an individual level, beck-s and sanders-r
gain relatively the most when including user em-
beddings. Although these two users, especially
beck-s, have more folders than others and thus
present more challenges for classifiers, user em-
beddings has potential to effectively introduce
user-token interactions for organizing informa-
tion. On the contrary, the improvements based on
embedding features are less apparent for williams-
w3, whose folder categorization was the most un-
balanced among all (i.e., a majority of emails be-
long to the same folder, making the prediction
fairly easy with just few signals). Comparing dif-
ferent learners, we see that LR works the best in
general, with AP and SVM performing somewhat
comparable.

We conduct the same experiments on data Set2,
which removes both non-topical and small folders.
Table 3 shows that the overall trend is similar to
what is observed in Table 2.

4 Conclusions and Future Work

In this paper, we proposed an approach to learning
user embeddings from emails based on the sender-
recipient network. Our analysis suggested that the
learned embeddings reflect the interactions in the
original corpus, where frequent emails exchangers
tend to be more similar to each other. Evaluating
from an application point of view, we showed that

applying user embeddings to the auto-foldering
task resulted in improved accuracy.

Yet another advantage of our approach is it
learns meta-data in an unsupervised manner. As
email data is highly private and sensitive, eyes-off
techniques like ours not only bypass the need of
human annotations but also leverage the informa-
tion collected from the entire data. More impor-
tantly, using representations avoids leaking sensi-
tive information delivered by lexical terms.

One direct follow-up of this work is learning
user embeddings from social networks, or taking
social network features into account. Learning
task-specific embeddings is another direction to
investigate as we move forward, e.g., modeling
user-folder-words interactions for auto-foldering
task with embeddings. Other tasks such as using
embeddings for knowledge mining from emails,
or online embedding training and updating with
accumulating email data, will be interesting to ex-
plore. Finally, it will be important for us to test on
larger, more realistic email datasets in the future.
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Abstract

In this paper, we present a method for
temporal relation extraction from clinical
narratives in French and in English. We
experiment on two comparable corpora,
the MERLOT corpus for French and the
THYME corpus for English, and show that
a common approach can be used for both
languages.

1 Introduction

Temporal information extraction from electronic
health records has become a subject of interest,
driven by the need for medical staff to access
medical information from a temporal perspec-
tive (Hirsch et al., 2015). Diagnostic and treat-
ment could be indeed enhanced by reviewing pa-
tient history synthetically in the order in which
medical events occurred. However, most of this
temporal information remains locked within un-
structured texts and requires the development of
NLP methods in order to be accessed.

In this paper, we focus on the extraction of tem-
poral relations between medical events (EVENT),
temporal expressions (TIMEX3) and document
creation time (DCT). More specifically, we
address intra-sentence narrative container rela-
tion identification between medical events and/or
temporal expressions (CR task, for Container
Relation) and DCT relation identification between
medical events and documents (DR task, for
Document creation time Relation).

In the DR task, the objective is to temporally
locate EVENT entities according to the Document
Creation Time of the document in which they oc-
cur. Possible tags are Before, Before-Overlap,
Overlap and After.

In the CR task, the objective is to identify tem-
poral inclusion relations between pairs of enti-
ties (EVENT and/or TIMEX3) formalized as narra-
tive container relations following Pustejovsky and
Stubbs (2011).

In this context, we build on Tourille et al. (2016)
and show how this type of model can be ap-
plied for extracting temporal relations from clin-
ical texts similarly in two languages. We exper-
imented more specifically on two corpora: the
THYME corpus (Styler IV et al., 2014), a corpus
of de-identified clinical notes in English from the
Mayo Clinic and the MERLOT corpus (Campillos
et al., to appear), a comparable corpus in French
from a group of French hospitals.

2 Related Work

Temporal information extraction from clinical
texts has been the topic of several shared tasks
over the past few years.

The i2b2 Challenge for Clinical Records (Sun et
al., 2013) offered to work on events, temporal ex-
pressions and temporal relation extraction. Partic-
ipants were challenged to detect clinically relevant
events and time expressions and link them with a
temporal relation.

SemEval has been offering the Clinical TempE-
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val task related to the topic for the past two years
(Bethard et al., 2015; Bethard et al., 2016). Its
first track focused on extracting clinical events and
temporal expressions, while its second track in-
cluded DR and CR tasks. Different approaches
were implemented by the teams, among which
SVM classifiers (Lee et al., 2016; Tourille et
al., 2016; Cohan et al., 2016; AAl Abdulsalam
et al., 2016) and CRF approaches (Caselli and
Morante, 2016; AAl Abdulsalam et al., 2016)
for the DR task, and CRF, Convolutional neu-
ral networks (Chikka, 2016) and SVM classi-
fiers (Tourille et al., 2016; Lee et al., 2016;
AAl Abdulsalam et al., 2016) for the CR task.

3 Corpus Presentation

The MERLOT corpus is composed of clinical doc-
uments written in French from a Gastroenterol-
ogy, Hepatology and Nutrition department. These
documents have been de-identified (Grouin and
Névéol, 2014) and annotated with entities, tempo-
ral expressions and relations (Deléger et al., 2014).
The THYME corpus is a collection of clinical texts
written in English from a cancer department that
have been released during the Clinical TempEval
campaigns. This corpus contains documents an-
notated with medical events and temporal expres-
sions as well as container relations.

The definition of a medical event is slightly dif-
ferent in each corpus. According to the annota-
tion guidelines of the THYME corpus, a medi-
cal event is anything that could be of interest on
the patient’s clinical timeline. It could be for in-
stance a medical procedure, a disease or a di-
agnosis. There are five attributes given to each
event: Contextual Modality (Actual, Hypotheti-
cal, Hedged or Generic), Degree (Most, Little or
N/A), Polarity (Pos or Neg), Type (Aspectual, Ev-
idential or N/A) and DocTimeRel (Before, Before-
Overlap, Overlap and After). Concerning the tem-
poral expressions, a Class attribute is given to each
of them: Date, Time, Duration, Quantifier, Pre-
PostExp or Set.

For the French corpus, medical events are de-
scribed according to UMLS R© (Unified Medical
Language System) Semantic Groups and Seman-
tic Types. Several categories are considered as
events: disorder, sign or symptom, medical proce-
dure, chemical and drugs, concept or idea and bio-
logical process or function. Events carry only one
DocTime attribute (Before, Before-Overlap, Over-

lap or After). Similarly to the THYME corpus,
temporal expressions within the French corpus are
given a class among: Date, Time, Duration or Fre-
quency.

Narrative containers (Pustejovsky and Stubbs,
2011) can be apprehended as temporal buckets
in which several events may be included. These
containers are anchored by temporal expressions,
medical events or other concepts. Styler IV et
al. (2014) argue that the use of narrative contain-
ers instead of classical temporal relations (Allen,
1983) yields better annotation while keeping most
of the useful temporal information intact. The
concept of narrative container is illustrated in Fig-
ure 1 and described further in Pustejovsky and
Stubbs (2011).

The
-

last time
TIMEX

the
-

dose
EVENT

was
-

increased
EVENT

was
-

in
-

February 2010
TIMEX

.
-

CONTAINSCONTAINS

CONTAINS

Figure 1: Examples of intra-sentence narrative
container relations.

The French corpus does not explicitly cover
container relations. However, we consider that
During relations are equivalent to Contains rela-
tions. In addition, we also considered that Re-
veals and Conducted relations imply Contains re-
lations. Furthermore, the corpus does not cover
inter-sentence relations (relations that can spread
over multiple sentences). We focus in this paper
on intra-sentence container relations (relations that
are embedded within the same sentence) and we
will refer to them as CONTAINS relations in the
rest of this paper.

Descriptive statistics of the two corpora are pro-
vided in Table 1.

4 Model Description

In our model, we consider both DR and CR tasks
as supervised classification problems. Concern-
ing the DR task, each medical event is classified
into one category among Before, Before-Overlap,
Overlap and After. The number of document cre-
ation time relations per class for both corpora is
presented at table 3. For the CR task, we are deal-
ing with a binary classification problem for each
pair of EVENT and/or TIMEX3. However, consid-
ering all pairs of entities within a sentence would
give us an unbalanced data set with a very large
amount of negative examples. Thus, to reduce the
number of candidate pairs, we transformed the 2-
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THYME MERLOT

Tokens 501,156 179,200

EVENTa DR 78,901 18,127CR 64,650

TIMEX3a DR 7,863 3,940CR 7,708

CONTAINS 17,444 4,295
a Not all documents are annotated with con-
tainer relations. We present separate count
of EVENT and TIMEX3 for each task CR
and DR.

Table 1: MERLOT (fr) and THYME
(en) corpora – Descriptive Statistics.

Feature DR Container CR
Entity type 3 3 3
Entity form 3 3 3
Entity attributes 3 3 3
Entity position (within the document) 3 3 3
Container model output 3
Document Typea 3 3 3
Contextual entity forms 3 3 3
Contextual entity types 3 3 3
Contextual entity attributes 3 3 3
Container model output for contextual entities 3
PoS tag of the sentence verbs 3 3
Contextual token forms (unigrams) 3 3
Contextual token PoS tags (unigrams) 3 3

Contextual token forms (bigrams)b 3 3

Contextual token PoS tags (bigrams)b 3 3

a Information available only for the MERLOT corpus.
b Only when using plain lexical forms.

Table 2: Features used by our classifiers.

category problem (contains or no-relation) into a
3-category problem (contains, is-contained, or no-
relation). In other words, instead of considering
all permutations of entities within a sentence, we
consider all combinations of entities from left to
right, changing when necessary the contains re-
lations into is-contained relations. Moreover, this
transformation solves the problem of possible con-
tradictory predictions. If we were to consider all
pairs of entities within a sentence, we could have
the situation where the prediction of our classi-
fier implies that two entities contain each other
(A contains B and B contains A). By consider-
ing all combinations instead of all permutations,
the problem will never occur during the predic-
tion phase. However, our system does not handle
temporal closure, and conflicts could still appear
at sentence level (X contains Y , X is contained
by Z, Y contains Z).

THYME (en) MERLOT (fr)

Before 29,170 1,936
Bef./Over. 4,240 2,643
Overlap 37,091 12,211
After 8,400 1,337

Table 3: MERLOT (fr) and THYME (en) corpora -
Document Creation Time relation repartition.

Furthermore, some entities are more likely to be
the anchor of narrative containers. For instance,
temporal expressions are, by nature, potential an-
chors and may contain other temporal expressions
and/or medical events. This is also the case for
some medical events. For instance, a surgical op-
eration may contain other events such as bleeding

or suturing whereas it will not be the same with
the two latter in most cases. Following this obser-
vation, we have built a model to classify entities
as being potential container anchors or not (CON-
TAINER classifier). This classifier obtains a high
performance. We use its output as feature for our
CONTAINS relation classifier.

4.1 Preprocessing and Feature Extraction

The THYME corpus has been preprocessed us-
ing cTAKES (Savova et al., 2010), an open-source
natural language processing system for extrac-
tion of information from electronic health records.
We extracted several features from the output
of cTAKES: sentences boundaries, tokens, part-
of-speech (PoS) tags, token types and semantic
types of the entities that have been recognized by
cTAKES and that have a span overlap with at least
one EVENT entity of the THYME corpus.

Concerning the MERLOT corpus, no specific
pipeline exists for French medical texts; we thus
used Stanford CoreNLP system (Manning et al.,
2014) to segment and tokenize the text. We also
extracted PoS tags. As the corpus already provides
a type for each EVENT, there is no need for detect-
ing other medical information.

For both DR and CR tasks, we used a combina-
tion of structural, lexical and contextual features
yielded from the corpora and the preprocessing
steps. These features are presented in Table 2.

4.2 Lexical Feature Representation

We implemented two strategies to represent the
lexical features in both DR and CR tasks. In the
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DCT CONTAINER CONTAINS CONTAINS without
CONTAINER

Corpus Plain W2V Plain W2V Plain W2V Plain W2V

MERLOT (fr) 0.830
(0.008)

0.785
(0.006)

0.837
(0.004)

0.776
(0.014)

0.827
(0.007)

0.799
(0.012)

0.724
(0.011)

0.670
(0.016)

THYME (en) 0.868
(0.002)

0.797
(0.006)

0.760
(0.007)

0.678
(0.031)

0.751
(0.003)

0.702
(0.013)

0.589
(0.006)

0.468
(0.018)

(a) Cross-validation results over the training corpus for all tasks. We report F1-measure for CONTAINER and CONTAINS
tasks and accuracy for DCT task. We also report standard deviation for all models.

MERLOT (fr) THYME (en)

P R F1 P R F1

baseline 0.67 0.67 0.67 0.47 0.47 0.47

bef./over. 0.68 0.69 0.69 0.73 0.60 0.66
before 0.81 0.60 0.69 0.88 0.88 0.88
after 0.79 0.69 0.73 0.84 0.84 0.84
overlap 0.88 0.92 0.90 0.88 0.90 0.89

micro-average 0.83 0.84 0.83 0.87 0.87 0.87

(b) DR task results over the test corpus. We report preci-
sion (P), recall (R) and F1-Measure (F1) for all relation types.

MERLOT (fr) THYME (en)

P R F1 P R F1

baseline 0.43 0.15 0.22 0.55 0.06 0.11

no-relation 0.99 1.00 0.99 0.96 0.98 0.97
contains 0.75 0.57 0.65 0.61 0.47 0.53

micro-average 0.98 0.98 0.98 0.93 0.94 0.93

(c) CR task results over the test corpus. We report preci-
sion (P), recall (R) and F1-Measure (F1) for all relation types.

Table 4: Experimentation results.

first one, we used the plain forms of the differ-
ent lexical attributes we mentioned in the previ-
ous section. In the second strategy, we substituted
the lexical forms with word embeddings. For En-
glish, these embeddings have been computed on
the Mimic 3 corpus (Saeed et al., 2011). Concern-
ing the French language, we used the whole col-
lection of raw clinical documents from which the
MERLOT corpus has been built. In both cases,
we computed1 the word embeddings using the
word2vec (Mikolov et al., 2013) implementation
of gensim (Řehůřek and Sojka, 2010). We used the
max of the vectors for multi-word units. Lexical
contexts are thus represented by 200-dimensional
vectors. When several contexts are considered,
e.g. right and left, several vectors are used.

5 Experimentation

We divided randomly the two corpora into
train and test set following the ratio 80/20.
We performed hyper-parameter optimization us-
ing a Tree-structured Parzen Estimator ap-
proach (Bergstra et al., 2011), as implemented in
the library hyperopt (Bergstra et al., 2013), to se-
lect the hyper-parameter C of a Linear Support
Vector Machine, the lookup window around en-
tities and the percentile of features to keep. For

1Parameters used during computation: algorithm =
CBOW; min-count = 5; vector size = 200; window = 10.

the latter we used the ANOVA F-value as selec-
tion criterion. We used the SVM implementa-
tion provided within Scikit-learn (Pedregosa et al.,
2011). In each case, we performed a 5-fold cross-
validation. For the container classifier and con-
tains relation classifier, we used the F1-Measure
as performance evaluation measure. Concerning
the DCT classifier, we used the accuracy.

6 Results and Discussion

Cross-validation results are presented in Table 4a.
DR and CR tasks results are presented respectively
in Table 4b and Table 4c. For both tasks, we
present a baseline performance. For the DR task,
the baseline predicts the majority class (overlap)
for all EVENT entities. For the CR task, the base-
line predicts that all EVENT entities are contained
by the closest TIMEX3 entity within the sentence
in which they occur.

Concerning the DR task, there is a gap of 0.04
in performance between the French (0.83) and
English (0.87) corpora. We notice that results
per category are not homogeneous in both cases.
Concerning the MERLOT corpus, the score ob-
tained for the category Overlap is better (0.90)
than the score obtained for Before-Overlap (0.69),
Before (0.69) and After (0.73). Concerning the
THYME corpus, the performance for the category
Before-Overlap (0.66) is clearly detached from the
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others which are grouped around 0.85 (0.88 for
Before, 0.84 for After and 0.89 for Overlap). This
may be due to the distribution of categories among
the corpora. Typically, the performance is lower
for the categories where we have a lower num-
ber of training examples (Before-Overlap for the
THYME corpus and categories other than Over-
lap for the MERLOT corpus).

Concerning the CR task, results are separated
by a 10 percent gap (0.65 for the MERLOT cor-
pus and 0.53 for the THYME corpus). Results ob-
tained for the THYME corpus are coherent with
those obtained by Tourille et al. (2016) on the
Clinical TempEval 2016 evaluation corpus2. We
increased the recall value in comparison to their
results (from 0.436 to 0.47) but this measure is still
the main point to improve.

More globally, the best results of the Clinical
TempEval shared task were 0.843 (accuracy) for
the DR task and 0.573 (F1-Measure) for the CR
task, which are comparable to our results (0.87 for
the DR task and 0.53 for the CR task).

Table 4a also indicates that replacing lexical
forms by word embeddings seems to have a nega-
tive impact on performance in every case.

As for the difference of performance according
to the language, several parameters can affect the
results. First, the sizes of the corpora are not com-
parable. The THYME corpus is bigger and has
more annotations than the MERLOT corpus. Sec-
ond, the quality of annotations is more formalized
and refined for the MERLOT corpus. This differ-
ence can influence the performance, especially for
the CR task. Third, the lack of specialized clinical
resources for French can negatively influence the
performance of all classifiers.

Concerning the quality of annotations, it has
to be pointed out that inter-annotator agreement
(IAA) for temporal relation is low to moderate:
in MERLOT, IAA measured on a subset of the
corpu s is 0.55 for During relations, 0.32 for Con-
ducted relations and 0.64 for Reveals relations. In
Thyme, IAA for Contains relation is 0.56. The
inter-annotator agreement is comparable in both
languages, and suggests that temporal relation ex-
traction is a difficult task even for humans to per-
form.

2Similarly to our evaluation corpus for English, the Clini-
cal TempEval 2016 evaluation corpus was extracted from the
THYME corpus but the two corpora are different.

7 Conclusion and Perspectives

In this article, we have presented a work focus-
ing on the extraction of temporal relations between
medical events, temporal expressions and docu-
ment creation time from clinical notes. This work,
based on a feature engineering approach, obtained
competitive results with the current state-of-the-
art and led to two main conclusions. First, the use
of word embeddings in place of lexical features
tends to degrade performance. Second, our feature
engineering approach can be applied with compa-
rable results to two different languages, English
and French in our case.

To follow-up with the first conclusion, we
would like to test a more integrated approach for
using embeddings, either by turning all features
into embeddings as in Yang and Eisenstein (2015)
or by adopting a neural network architecture as
in Chikka (2016).

Acknowledgements
The authors thank the Biomedical Informatics De-
partment at the Rouen University Hospital for pro-
viding access to the LERUDI corpus for this work.
This work was supported in part by the French Na-
tional Agency for Research under grant CABeR-
neT ANR-13-JS02-0009-01 and by Labex Digi-
cosme, operated by the Foundation for Scientific
Cooperation (FSC) Paris-Saclay, under grant CÔT.

References
Abdulrahman AAl Abdulsalam, Sumithra Velupil-

lai, and Stephane Meystre. 2016. UtahBMI at
SemEval-2016 Task 12: Extracting Temporal In-
formation from Clinical Text. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 1256–1262, San
Diego, California, June. Association for Computa-
tional Linguistics.

James F. Allen. 1983. Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832–843.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio,
and Balázs Kégl. 2011. Algorithms for Hyper-
Parameter Optimization. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, and K. Q. Wein-
berger, editors, Advances in Neural Information
Processing Systems 24, pages 2546–2554. Curran
Associates, Inc.

James Bergstra, Daniel Yamins, and David Cox. 2013.
Making a Science of Model Search: Hyperparame-
ter Optimization in Hundreds of Dimensions for Vi-

743



sion Architectures. In Proceedings of The 30th In-
ternational Conference on Machine Learning, pages
115–123.

Steven Bethard, Leon Derczynski, Guergana Savova,
James Pustejovsky, and Marc Verhagen. 2015.
SemEval-2015 Task 6: Clinical TempEval. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 806–814,
Denver, Colorado, June. Association for Computa-
tional Linguistics.

Steven Bethard, Guergana Savova, Wei-Te Chen, Leon
Derczynski, James Pustejovsky, and Marc Verha-
gen. 2016. SemEval-2016 Task 12: Clinical Tem-
pEval. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1052–1062, San Diego, California, June. As-
sociation for Computational Linguistics.

Leonardo Campillos, Louise Deléger, Cyril Grouin,
Thierry Hamon, Anne-Laure Ligozat, and Aurélie
Névéol. to appear. A French clinical corpus with
comprehensive semantic annotations: Development
of the Medical Entity and Relation LIMSI annOtated
Text corpus (MERLOT). Language Resources and
Evaluation.

Tommaso Caselli and Roser Morante. 2016. VUA-
CLTL at SemEval 2016 Task 12: A CRF Pipeline
to Clinical TempEval. In Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016), pages 1241–1247, San Diego, Cal-
ifornia, June. Association for Computational Lin-
guistics.

Veera Raghavendra Chikka. 2016. CDE-IIITH at
SemEval-2016 Task 12: Extraction of Temporal In-
formation from Clinical documents using Machine
Learning techniques. In Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016), pages 1237–1240, San Diego, Cal-
ifornia, June. Association for Computational Lin-
guistics.

Arman Cohan, Kevin Meurer, and Nazli Goharian.
2016. GUIR at SemEval-2016 task 12: Temporal
Information Processing for Clinical Narratives. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1248–
1255, San Diego, California, June. Association for
Computational Linguistics.

Louise Deléger, Cyril Grouin, Anne-Laure Ligozat,
Pierre Zweigenbaum, and Aurélie Névéol. 2014.
Annotation of specialized corpora using a compre-
hensive entity and relation scheme. In Proceedings
of Language and Resource Evaluation Conference,
LREC 2014, pages 1267–1274.

Cyril Grouin and Aurélie Névéol. 2014. De-
Identification of Clinical Notes in French: towards
a Protocol for Reference Corpus Developpement.
Journal of Biomedical Informatics, 50:151–61, Aug.

Jamie S. Hirsch, Jessica S. Tanenbaum, Sharon Lip-
sky Gorman, Connie Liu, Eric Schmitz, Dritan
Hashorva, Artem Ervits, David Vawdrey, Marc
Sturm, and Noémie Elhadad. 2015. HARVEST,
a longitudinal patient record summarizer. Journal
of the American Medical Informatics Association,
22(2):263–274.

Hee-Jin Lee, Hua Xu, Jingqi Wang, Yaoyun Zhang,
Sungrim Moon, Jun Xu, and Yonghui Wu. 2016.
UTHealth at SemEval-2016 Task 12: an End-to-End
System for Temporal Information Extraction from
Clinical Notes. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1292–1297, San Diego, California,
June. Association for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

James Pustejovsky and Amber Stubbs. 2011. Increas-
ing Informativeness in Temporal Annotation. In
Proceedings of the 5th Linguistic Annotation Work-
shop, pages 152–160, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.
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Abstract

We experiment with neural architectures
for temporal relation extraction and estab-
lish a new state-of-the-art for several sce-
narios. We find that neural models with
only tokens as input outperform state-of-
the-art hand-engineered feature-based mod-
els, that convolutional neural networks out-
perform LSTM models, and that encoding
relation arguments with XML tags outper-
forms a traditional position-based encod-
ing.

1 Introduction

Investigating drug adverse effects, disease progres-
sion, and clinical outcomes is inconceivable with-
out forming some representation of the temporal
structure of electronic health records. Temporal
relation extraction has emerged as the most viable
route to building timelines that tie each medical
event to the time of its occurrence. This connection
between times and events can be captured as a con-
tains relation which is the most frequent temporal
relation type in clinical data (Styler IV et al., 2014).
Consider the sentence: Patient was diagnosed with
a rectal cancer in May of 2010. It can be said that
the temporal expression May of 2010 in this sen-
tence contains the cancer event. The same relation
can exist between two events: During the surgery
the patient experienced severe tachycardia. Here,
the surgery event contains the tachycardia event.

The vast majority of systems in temporal infor-
mation extraction challenges, such as the i2b2 (Sun
et al., 2013) and Clinical TempEval tasks (Bethard
et al., 2015; Bethard et al., 2016), used classifiers
with a large number of manually engineered fea-
tures. This is not ideal, as most NLP components
used for feature extraction experience a significant
accuracy drop when applied to out-of-domain data

(Wu et al., 2014; McClosky et al., 2010; Daumé III,
2009; Blitzer et al., 2006), propagating the error to
the downstream components and ultimately lead-
ing to significant performance degradation. In this
work, we propose a novel temporal relation ex-
traction framework that requires minimal linguistic
pre-processing and can operate on raw tokens.

We experiment with two neural architectures
for temporal relation extraction: a convolutional
neural network (CNN) (LeCun et al., 1998) and a
long short-term memory neural network (LSTM)
(Hochreiter and Schmidhuber, 1997). Little work
exists on using these methods for relation extrac-
tion; to the best of our knowledge no work exists on
using LSTM models for relation extraction or CNN
models for temporal information extraction. Zeng
et al. (2014) and Nguyen and Grishman (2015)
employ CNNs for non-temporal relation extraction
and show that CNNs can be effective for relation
classification and perform as well as token-based
baselines for relation extraction. Our experiments,
on the other hand, show that neural relation extrac-
tion models can compete with a complex feature-
based state-of-the-art relation extraction system.

Another important difference that sets our work
apart is our representation of the argument posi-
tions: previous work used token position features
(embedded in a 50-dimensional space) to encode
the relative distance of the words in the sentence
to the relation arguments (Nguyen and Grishman,
2015; Zeng et al., 2014). We propose a much sim-
pler method for encoding relation argument posi-
tions and show that it works better in our experi-
ments. We introduce special tokens (e.g. <e1> and
</e1>) to mark the positions of the arguments in
a sentence, effectively annotating the relation argu-
ments with XML tags. The sentences augmented
with this markup become the input to a neural net-
work. This approach makes it possible to use the
same representations for CNN and LSTM models.
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Our contributions are the following: we intro-
duce a simple method for encoding relation argu-
ment positions and show that CNNs and LSTMs
can be successfully used for temporal relation ex-
traction, establishing a new state-of-the-art result.
Our best performing model has no input other than
word tokens, in contrast to previous state-of-the-
art systems that require elaborate linguistic pre-
processing and many hand-engineered features. Fi-
nally, we show that a neural model can be remark-
ably effective at extracting temporal relations when
provided with only part-of-speech tags of words,
rather than words themselves. This approach is
promising for the scenarios where reliance on word
tokens is undesirable (e.g. domain adaptation).

2 Methods

2.1 Input representation

All proposed models operate on a n× d matrix rep-
resenting the context of a temporal relation. This
matrix is formed by concatenating n word embed-
dings of d dimensions. Word embeddings can ei-
ther be initialized randomly or use the output of a
tool like word2vec (Mikolov et al., 2013) or GloVe
(Pennington et al., 2014). Similar representations
have been used for various sentence modeling tasks
(Kim, 2014; Kalchbrenner et al., 2014).

We adapt this input representation for relation ex-
traction by augmenting the input token sequences
with markup of the relation arguments. For exam-
ple, the markup Patient was <e> diagnosed </e>
with a rectal cancer in <t> may of 2010 </t>
indicates that the model is to predict a relation be-
tween the event diagnosis and the time May of
2010. Event-event relations are handled similarly,
e.g.: During the <e1> surgery </e1> the patient
experienced severe <e1> tachycardia </e2> .

The directionality of the temporal relation is
modeled as a three-way classification task: con-
tains vs. contains−1 vs. none. For event-time
relations, contains indicates that the time contains
the event, and contains−1 indicates the reverse. For
event-event relations, contains indicates that the
first event in the text contains the second event, and
contains−1 indicates the reverse. For both event-
event and event-time relations, none indicates that
no relation exists between the arguments.

In addition to training on token sequences, we
experiment with training on sequences of part-of-
speech (POS) tags. Under this scenario, the input
to the network is again an n× d matrix, but it now

embeds the POS tags in the d dimensional space.

2.2 Models

We experiment with two neural architectures for
temporal relation extraction: (1) a convolutional
neural network (CNN), and (2) a long short-term
memory neural network (LSTM). Both models start
by feeding the input word sequences into an embed-
ding layer, which we configure to learn the embed-
dings from scratch. In the CNN-based model, the
embedding layer is followed by a convolution layer
that applies convolving filters of various sizes to
extract n-gram-like features, which are then pooled
by a max-pooling layer. In the LSTM-based model,
the embedding layer is fed into a standard LSTM re-
current layer. The output of either the max-pooling
layer (for the CNN) or the last unit in the recurrent
layer (for the LSTM) is fed into a fully connected
dense layer, which is followed by the final softmax
layer outputting the probability distribution over
the three possible classes for the input.

We build a separate model for event-time and
event-event relations, and for each model we try
several input variants: token sequences, POS se-
quences, and token/POS sequence combination.
The latter model involves building two separate
neural network branches: the first receives tokens
as features, while the second receives POS tags; the
two branches are merged and fed into the softmax
layer, acting in effect as an ensemble classifier.

3 Evaluation

3.1 Datasets

We evaluated the proposed methods on a publicly
available clinical corpus (Styler IV et al., 2014)
that was the basis for the Clinical TempEval shared
tasks (Bethard et al., 2015; Bethard et al., 2016).
The gold standard annotations include time expres-
sions, events (both medical and general), and tem-
poral relations. We used the standard split estab-
lished by Clinical TempEval 2016, using the devel-
opment set for evaluating models and tuning model
parameters, and evaluating our best event-event
and event-time models on the test set. Following
Clinical TempEval, we focus only on the contains
relation, which was the most common relation and
had the highest inter-annotator agreement.

3.2 Experiments

We compare the performance of our neural mod-
els to the THYME system (Lin et al., 2016a),
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Model Argument representation Event-time relations Event-event relations
P R F1 P R F1

THYME full system n/a 0.583 0.810 0.678 0.569 0.574 0.572
THYME tokens only n/a 0.564 0.786 0.657 0.562 0.539 0.550
CNN tokens position embeddings 0.647 0.627 0.637 0.580 0.324 0.416
CNN tokens XML tags 0.660 0.775 0.713 0.566 0.522 0.543
CNN pos tags XML tags 0.707 0.708 0.707 0.630 0.204 0.309
LSTM tokens XML tags 0.691 0.626 0.657 0.610 0.418 0.496
LSTM pos tags XML tags 0.754 0.657 0.702 0.603 0.212 0.313
CNN token + pos tags XML tags 0.727 0.681 0.703 0.653 0.435 0.522
LSTM token + pos tags XML tags 0.698 0.660 0.679 0.572 0.458 0.508

Table 1: Event-time and event-event contains relation on dev set.

Model Event-time relations Event-event relations
P R F1 P R F1

THYME system 0.244 0.819 0.376 0.206 0.681 0.317
CNN tokens 0.268 0.768 0.398 0.309 0.538 0.393

Table 2: Event-time and event-event contains relations with medical arguments on dev set

which is based on hand-engineered linguistic fea-
tures and support vector machine classifiers, and
achieved the highest performance on the Clini-
cal TempEval 2015 test set (Lin et al., 2016b).
This system is available as part of cTAKES (http:
//ctakes.apache.org) and performs both event-
event and event-time relation classification. We
discard all non-contains relation instances from the
data, re-train this system, and re-evaluate it on the
official Clinical TempEval 2016 dev and test sets.

We train two versions of the the THYME sys-
tem: (1) a version based on the full set of features
including token features, dependency path features,
ontology (UMLS) based features, gold event and
time properties, and others; (2) token only features.
Our neural models include CNN and LSTM archi-
tectures trained on sequences of tokens, sequences
of POS tags, and a combination of the two. For
comparison, we also include a token-based CNN
model that uses position embeddings (Nguyen and
Grishman, 2015; Zeng et al., 2014) rather than
XML markup used in the rest of our neural models.

SemEval data includes gold annotations of both
medical (e.g. colonoscopy, tachycardia) and gen-
eral (e.g. discussed, reported) events. Relations
between medical events are the most important for
clinical applications, but also present a special chal-
lenge as the accuracy of their extraction is currently
low. To evaluate our models on the relations be-
tween clinical events, we filtered out all general
events (and relations associated with them) using a

UMLS dictionary. UMLS (Bodenreider, 2004) is
a comprehensive ontology of clinical terminology
(somewhat analogous to WordNet (Miller, 1995))
that includes most clinical terms and thus can be
used as a lookup resource for clinical vocabulary.
Similar evaluation was used in (Lin et al., 2016b).

We implemented all neural models in Keras 1.0.4
(Chollet, 2015) with the Theano (Theano Develop-
ment Team, 2016) backend. The code will be made
publicly available. All models were trained with
batch size of 50, dense layer dropout rate of 0.25,
and RMSprop optimizer. The words were repre-
sented using 300-dimensional embeddings initial-
ized randomly. The training was performed using
GeForce GTX Titan X GPU provided by NVIDIA
Corporation.

The CNN models used 200 filters each for filter
sizes 2, 3, 4, and 5, and a learning rate of 0.0001.
The LSTM models had 128 hidden units and a
learning rate of 0.001. The number of hidden fully
connected units was 300.

These settings are identical or similar to those
used in neural sentence modeling work (Nguyen
and Grishman, 2015; Zhang and Wallace, 2015;
Kim, 2014) and were validated on the SemEval
development set. We tuned the number of train-
ing epochs by starting from 3 and increasing until
validation accuracy began to decrease. Once the pa-
rameter tuning was finalized, we evaluated our best
event-event and event-time models on the held-out
test set.
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Model Event-time relations Event-event relations
P R F1 P R F1

THYME system (all events) 0.577 0.845 0.685 0.595 0.572 0.584
CNN tokens (all events) 0.683 0.717 0.700 0.688 0.412 0.515
THYME system (medical events only) 0.230 0.851 0.362 0.215 0.703 0.330
CNN tokens (medical events only) 0.272 0.714 0.394 0.300 0.519 0.380

Table 3: Event-time and event-event contains relations on test set

3.3 Results

Table 1 shows the evaluation of different model
types and feature sets on the dev set. For both event-
time and event-event relations, the best-performing
neural model was the CNN with only tokens as fea-
tures. For event-time relations, all our neural mod-
els except the token-based LSTM outperformed
the state-of-the-art THYME system, and all mod-
els performed as well or better than the THYME
tokens-only baseline. For event-event relations,
none of the neural models performed as well as the
state-of-the-art THYME system, and only the CNN
token-based model came close to the performance
of the THYME tokens-only baseline. The CNN
with position embeddings (CNN tokens / position
embeddings row) performed worse then when argu-
ments were marked with XML tags (CNN tokens /
XML tags row). CNNs with position embeddings
have considerably more parameters and are harder
to train; this likely explains the performance drop
comparing to the models where the arguments are
marked with XML tags.

Table 2 shows the performance of the THYME
system and our best neural model (CNN tokens
with XML tags) on the modified data that only
contains relations between medical events. The
neural models outperform the feature-based system
in both cases.

Finally, Table 3 shows the performance of the
state-of-the-art THYME system and the best neural
systems on the test set. For event-time relation ex-
traction, our neural models establish a new state-of-
the art, and when focusing on only medical events
our neural models outperform the state-of-the-art
on both event-time and event-event relations.

4 Discussion

Of all the neural architectures we experimented
with, the token-based CNN demonstrated the best
performance across all experimental conditions.
And in all scenarios but one (event-event relations,
all events), this model with only token input outper-

formed the feature-based THYME system which
includes not only tokens and part of speech tags,
but syntactic tree features and gold event and time
properties. Intriguingly, for event-time relations,
the part-of-speech-based CNN also outperformed
the feature-based THYME system (and was very
close to the performance of the token-based CNN),
suggesting that part-of-speech alone is enough to
make accurate predictions in this task, when cou-
pled with the modeling power of a neural network.

We also found that CNN models outperformed
LSTM models for our relation extraction tasks, de-
spite the intuition that LSTMs, by modeling the
entire word sequence, should be a better model of
natural language data. In practice, the local pre-
dictors of class membership obtained by the CNN
seem to provide stronger cues to the classifier than
the vectorized representation of the entire sequence
formed by the LSTM.

Despite the structural similarities between event-
time relation classification and event-event relation
classification, the neural models fell short of tra-
ditional feature-based models for event-event rela-
tions, reaching only up to the level of a traditional
feature-based model that has access only to the to-
kens (the same input as the neural models). This
suggests that the neural models for event-event re-
lations are not able to generalize over the token
input as well as they were for event-time relations.
This may be due in part to the difficulty of the
task: even for feature-based models, event-event
classification performance is about 10 points lower
than event-time classification performance. But it
may also be due to class imbalance issues, as there
are many more none relations in the event-event
task: the positive to negative ratio is 1:15 for event-
event, but only 1:3 for event-time. The THYME
system for event-event relations is tuned with class-
specific weights that help it deal with class imbal-
ance, and without these class-specific weights, its
performance drops more than 10 points in F1. Our
neural models do not yet include any equivalent
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for addressing class imbalance, so this may be a
source of the problem. The fact that the event-
event CNN system beats the feature-based system
when tested on only medical events supports this
view: after non-medical events are removed from
the sentence, the imbalance problem is alleviated
(a medical event is more likely to be involved in a
relation), which likely allows the CNN model to
generalize better. Addressing this class imbalance
problem is an interesting avenue for future work.
Additionally, we plan to investigate the applica-
bility of the proposed neural models for general
(non-temporal) relation extraction.
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Abstract

We address fine-grained entity classifica-
tion and propose a novel attention-based
recurrent neural network (RNN) encoder-
decoder that generates paths in the type
hierarchy and can be trained end-to-end.
We show that our model performs better
on fine-grained entity classification than
prior work that relies on flat or local clas-
sifiers that do not directly model hierarchi-
cal structure.

1 Introduction

Many tasks in natural language processing involve
hierarchical classification, e.g., fine-grained mor-
phological and part-of-speech tags form a hierar-
chy (Mueller et al., 2013) as do many large topic
sets (Lewis et al., 2004). The task definition can
either specify that a single path is correct, corre-
sponding to a single-label classification problem
at the lowest level of the hierarchy, e.g., in fine-
grained morphological tagging; or that multiple
paths can be correct, corresponding to a multilabel
classification problem at the lowest level of the hi-
erarchy, e.g., in topic classification.

In this paper, we address fine-grained entity
mention classification, another problem with a
hierarchical class structure. In this task, each
mention can have several fine-grained types, e.g.,
Obama is both a politician and an author in a con-
text in which his election is related to his prior suc-
cess as a best-selling author; thus, the problem is
multilabel at the lowest level of the hierarchy.

Two standard approaches to hierarchical classi-
fication are flat and local classification. In flat clas-
sification (e.g., FIGER (Ling and Weld, 2012), At-
tentive Encoder (Shimaoka et al., 2016; Shimaoka
et al., 2017)), the task is formalized as a flat mul-
ticlass multilabel problem. In local classification
(Gillick et al., 2014; Yosef et al., 2012; Yogatama

et al., 2015), a separate local classifier is learned
for each node of the hierarchy. In both approaches,
some form of postprocessing is necessary to make
the decisions consistent, e.g., an entity can only be
a celebrity if they are also a person.

In this paper, we propose an attentive RNN
encoder-decoder for hierarchical classification.
The encoder-decoder performs classification by
generating paths in the hierarchy from top node
to leaf nodes. Thus, we model the structure of the
hierarchy more directly than prior work. On each
step of the path, part of the input to the encoder-
decoder is an attention-weighted sum of the states
of a bidirectional Gated Recurrent Unit (GRU)
(Cho et al., 2014) run over the context of the men-
tion to be classified. Unlike prior work on hierar-
chical entity classification, our architecture can be
trained end-to-end. We show that our model per-
forms better than prior work on the FIGER dataset
(Ling and Weld, 2012).

This paper is structured as follows. In Section 2,
we provide a detailed description of our model
PthDCode. In Section 3, we describe and analyze
our experiments. In Section 4, we discuss related
work. Section 5 concludes.

2 Model

Figure 1 displays our model PthDCode.
We use lowercase italics for variables, upper-

case italics for sequences, lowercase bold for vec-
tors and uppercase bold for matrices. Sentence
S = 〈x1, . . . , x|S |〉 is a sequence of words, rep-
resented as embeddings xi, each of dimension d.
The classes of an entity are represented as y, a vec-
tor of l binary indicators, each indicating whether
the corresponding class is correct. Hidden states
of forward and backward encoders and of the de-
coder have dimensionality p.

PthDCode extracts mention 〈xb, . . . , xr〉, right
context Rc = 〈xr+1, . . . , xr+w〉 and left context
Lc = 〈xb−1, . . . , xb−w〉 where w is a parameter.
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Figure 1: PthDCode, the attentive encoder-decoder for hierarchical entity classification

The representation m of the mention is computed
as the average of its r− b+1 vectors. The context
is represented by C, a matrix of size 2w×2p; each
column of C consists of two hidden state vectors h
(each of dimension 2p), corresponding to forward
and backward GRUs run on Lc and Rc.

The initial state s0 of PthDCode’s decoder RNN
is computed using the mention representation m
compressed to p dimensions by an extra hidden
layer (not shown in the figure). Initial output y0

is a dummy symbol SOL (Start Of Label), and ini-
tial attention weights c0 are set to zero. At each
path generation step i , attention weights αij are
computed following Bahdanau et al. (2014):

αij =
exp(eij)∑2w

j=1 exp(eij)
(1)

eij = att(si−1,C.j) (2)

where att is a feedforward network with softmax
output layer and C.j is the jth column of C. The
final context representation for the decoder is then
computed as ci =

∑2w
j=1 αijC.j . In Figure 1,

dashed objects are used for indicating involvement
in calculating attention weights.

The attention-weighted sum ci and the current
state si−1 are used to predict the distribution yi

over entity classes (non-dashed *-nodes in Fig-
ure 1):

yi = g (si−1, ci) (3)

where g is a feedforward network with element-
wise sigmoid. Finally, PthDCode uses prediction

yi, weighted average ci and previous state si−1 to
compute the next state:

si = f(si−1,yi, ci) (4)

The loss function at each step or level is binary
cross-entropy:

1
l

l∑
k=1

−tik log(yik)− (1− tik) log(1− yik) (5)

where yi and ti are prediction and truth and l the
number of classes. The objective is to minimize
the total loss, i.e., the sum of the losses at each
level. During inference, we compute the Cartesian
product of predicted types at each level and filter
out those paths that do not occur in train.

3 Experiments and results

Dataset. We use the Wiki dataset (Ling and Weld,
2012) published by Ren et al. (2016).1 It consists
of 2.69 million mentions obtained from 1.5 million
sentences sampled from Wikipedia articles. These
mentions are tagged with 113 types with a max-
imum of two levels of hierarchy. Ling and Weld
(2012) also created a test set of 434 sentences that
contain 562 gold entity mentions. Similar to prior
work (Ling and Weld, 2012; Ren et al., 2016; Yo-
gatama et al., 2015; Shimaoka et al., 2017), we
randomly sample a training set of 2 million and a
disjoint dev set of size 500.

1https://drive.google.com/file/d/
0B2ke42d0kYFfVC1fazdKYnVhYWs
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Evaluation. Like prior work, we use three F1

metrics, strict, loose macro and loose micro, that
differ in the definition of precision P and recall
R. Let n be the number of mentions, Ti the true
set of tags of mention i and Yi the predicted set.
Then, we define P = R = 1/n

∑n
i=1 δ(Yi = Ti)

for strict; P = 1/n
∑n

i=1(|Yi ∩ Ti|)/(|Yi|) and
R = 1/n

∑n
i=1(|Yi ∩ Ti|)/(|Ti|) for loose macro;

and P = (
∑n

i=1 |Yi ∩ Ti|)/(
∑n

i=1 |Yi|) and R =
(
∑n

i=1 |Yi ∩ Ti|)/(
∑n

i=1 |Ti|)) for loose micro.
Parameter Settings. We use pre-trained word

embeddings of size 300 provided by (Pennington
et al., 2014). OOV vectors are randomly initial-
ized. Similar to (Shimaoka et al., 2017), all hid-
den states h of the encoder-decoder were set to 100
dimension and mention lengths m to 5. Window
size is w = 15. We bracket left and right contexts
with special start and end symbols. For short left /
right contexts, we bracket with additional different
start / end symbols that are masked out for calcula-
tion of loss and attention weights. Another special
symbol EOL (End Of Label) is appended to short
paths, so that all hierarchical paths have the same
length. We use ADAM (Kingma and Ba, 2014)
with learning rate .001 and batch size 500. Fol-
lowing (Srivastava et al., 2014), we regularize our
learning by dropout of states used in computing
prediction as in Eq. 3 with probability of .5. Simi-
larly, we also drop out feedback connections used
in computing next states as in Eq. 4 with probabil-
ity of .2. We also add Gaussian noise with a proba-
bility of .1 to feedforward weights. The weights of
feedforward units are initialized with an isotropic
Gaussian distribution having mean 0 and standard
deviation .02 while weights of recurrent units are
initialized with random orthogonal matrix.

Results. As shown in Figure 2, we evaluate our
model on dev and test sets after every 2k iterations

and report the performances of the models that are
stable in all form of metrics on dev set. The rea-
son for evaluating on range of models is nature of
collection of dev and test data. We use cv = σ/µ,
the coefficient of variation (Brown, 1998), to se-
lect and combine models in application. After an
initial training stage, we compute cv for each of
the three metrics for windows of 10,000 iterations,
startpoints have the form 4000 + 6000s. For a
given window starting at iteration 2000t, we com-
pute cv of the three metrics based on the six itera-
tions 2000(t + i), 0 ≤ i ≤ 5. We select the range
with the lowest average cv; this was the interval
[40000, 50000]; cf. Figure 2. Since train and test
data are collected from different sources, the sen-
sitive strict measure varies with a larger standard
deviation compared to other metrics.

Table 1 shows performance of PthDCode on
test, based on the interval [40000, 50000]; av-
erage and standard deviation are computed for
2000(20 + i), 0 ≤ i ≤ 5, as described above.
PthDCode achieves clearly better results than
other baseline methods – FIGER (Ling and Weld,
2012), (Yogatama et al., 2015) and (Shimaoka et
al., 2017) – when trained on raw (i.e., not de-
noised) datasets of a similar size. Attentive en-
coder (Shimaoka et al., 2017) is a neural base-
line for PthDCode, to which comparison in Ta-
ble 1 suggests decoding of path hierarchy rather
than flat classification significantly improves the
performance. Ren et al. (2016) implementation of
FIGER (Ling and Weld, 2012) trained on the de-
noised corpus performs better on strict and loose
micro metrics, but as the training data are differ-
ent, results are not directly comparable. An im-
portant observation in Table 1 is that most of the
improved systems (Ren et al., 2016; Yogatama et
al., 2015) consider entity classification in a hierar-
chical setup either through denoising or classifica-
tion. One can also observe that our model achieves
relatively high increase in terms of loose macro.
The reason for this is mostly because of the macro
F1 direct dependence on average precision and av-
erage recall, which in our case is relatively high
because of large improvement in the recall.

Table 2 shows that for level-wise comparisons
on loose micro F1, PthDCode improves recall
compared to Yogatama et al. (2015)’s precision
oriented system. We attribute this increase in re-
call and F1 to the fact that PthDCode at each step
collects feedback from the preceding level and is
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strict macro F1 micro F1

FIGER, L&W .532 .699 .693
Yogatama et al. – – .723
Shimaoka et al. .545 .748 .716
PthDCode .586±.016 .793±.005 .742±.005
HYENA, Ren et al. .543 .695 .681
FIGER, Ren et al. .589 .763 .749

Table 1: Entity classification evaluation on origi-
nal data (top four rows). For comparison, we also
provide results by Ren et al. (2016) on denoised
data (bottom two rows).

Level 1 Level 2
P R F1 P R F1

Yogatama et al. .828 .704 .761 .682 .471 .557
PthDCode .788 .830 .808 .534 .641 .583

Table 2: Per-level evaluation

trained end-to-end.
Table 3 shows, for some examples, which five

words received the highest attention on level 1
(L1) and on level 2 (L2). The words are or-
dered from highest to lowest attention. We see
that PthDCode attends to “from” for the location
“Glasgow”, but not for the organization “Univer-
sity of Glasgow”. We also see that some words
appear only on one of the two levels, e.g., for the
mention “Glasgow”, the context word “Glasgow”
only appears on level 2. This indicates the bene-
fit of level-wise attention. The last row shows an
example of two types, /PEOP, /PEOP/Ethnc, that
are correct, but are not part of the gold standard,
so we count them as errors.

4 Related work

Named entity recognition (NER) is the joint prob-
lem of entity mention segmentation and entity
mention classification (Finkel et al., 2005; Mc-
Callum and Li, 2003). Most work on NER uses
a small set of coarse-grained labels like person
and location, e.g., MUC-7 (Chinchor and Robin-
son, 1998). Most work on the fine-grained FIGER
(Ling and Weld, 2012) and HYENA (Yosef et al.,
2012) taxonomies has cast NER as a two-step pro-
cess (Elsner et al., 2009; Ritter et al., 2011; Collins
and Singer, 1999) of entity mention segmentation
followed by entity mention classification. The rea-
son for two-step is the high complexity of joint
models for fine-grained entity recognition. A joint
model like CRF (Lafferty et al., 2001) has a state
space corresponding to segmentation type times
semantic types. Introducing a larger class set into

joint models already increases the complexity of
learning drastically, furthermore the multilabel na-
ture of fine-grained entity mention classification
explodes the state space of the exponential model
further (Ling and Weld, 2012).

Utilizing fine-grained entity information en-
hances the performance for tasks like named en-
tity disambiguation (Yosef et al., 2012), relation
extraction (Ling and Weld, 2012) and question
answering (Lin et al., 2012; Lee et al., 2006).
A major challenge with fine grained entity men-
tion classification is the scarcity of human anno-
tated datasets. Currently, most of the datasets
are collected through distant supervision, utilizing
Wikipedia texts with anchor links to obtain entity
mentions and using knowledge bases like Freebase
and YAGO to obtain candidate types for the men-
tion. This introduces noise and complexities like
unrelated labels, redundant labels and large sizes
of candidate label sets. To address these chal-
lenges, Ling and Weld (2012) mapped Freebase
types to their own tag set with 113 types, Yosef et
al. (2012) derived a 505-subtype fine-grained tax-
onomy using YAGO knowledge base, Gillick et al.
(2014) devised heuristics to filter candidate types
and, most recently, Ren et al. (2016) proposed a
heterogeneous partial-label embedding framework
to denoise candidate types by jointly embedding
entity mentions, context features and entity type
hierarchy.

We address fine-grained entity mention classi-
fication in this paper. A related problem is fine-
grained entity typing: the problem of predicting
the complete set of types of the entity that a men-
tion refers to (Yaghoobzadeh and Schütze, 2017).
For the sentences “Obama was elected president”
and “Obama graduated from Harvard in 1991”,
fine-grained entity mention classification should
predict “politician” for the first and “lawyer” for
the second. In contrast, given a corpus contain-
ing these two sentences, fine-grained entity typing
should predict the types {“politician”, “lawyer”}
for “Obama”.

A common approach for solving hierarchical
problems has been flat classification, i.e., not mak-
ing direct use of the hierarchy. But exploiting
the hierarchical organization of the classes reduces
complexity, makes better use of training data in
learning and enhances performance. Gillick et
al. (2014) showed that addressing the entity clas-
sification problem with a hierarchical approach
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have no immediate plans
to produce XQD or WiFi
SD cards .

to cards Ac-
cording San-
Disk .

According
. SanDisk
cards and

University
of Glasgow

/ORG,
/ORG/ED-
INST

The study is from the
College of Medical , Vet-
erinary & Life Sciences ,

, Glasgow , UK . The . Sci-
ences Glas-
gow ,

The . Veteri-
nary Sciences
study

Glasgow /LOC,
/LOC/city

from the College of Med-
ical , Veterinary & Life
Sciences , University of
Glasgow ,

, UK . from . Uni-
versity the
UK

from . Glas-
gow College
Veterinary

South
Asian

/LOC,
/PEOP,
/PEOP/Ethnc

“ The student groups and cul-
tures are very different
than the East Asian stu-
dent groups and cultures

cultures “ stu-
dent cultures
The

cultures “ stu-
dent The cul-
tures

Table 3: Top 5 Attention per level (L1/L2). ORG = organization, Comp = company ED-INST =
educational institution, LOC = Location, PEOP = People, Ethnc = ethnicity

through local classifiers for each label in the hier-
archy and enforcing their outputs to follow a sin-
gle path in it improved performance. Similarly,
Yosef et al. (2012) used a set of support vector ma-
chine classifiers corresponding to each node in the
hierarchy and then postprocessed them during in-
ference through a metaclassifier. Yogatama et al.
(2015), using a kernel enhanced WSABIE embed-
ding method (Weston et al., 2011), learned an em-
bedding for each type in the hierarchy and during
inference filtered out predicted types that exceeded
a threshold limit and did not fit into a path. Ren et
al. (2016) showed that mapping a set of correla-
tions, more specifically correlations of the types
in the hierarchy, into an embedding space gener-
ates embeddings for mentions and types. These
embeddings were then used for filtering the noisy
candidate types and for denoising the train corpus.
Ren et al. (2016) also showed that using the de-
noised corpus with baseline methods of (Ling and
Weld, 2012; Yosef et al., 2012) enhanced the per-
formance of those baseline methods significantly.

Recurrent neural networks (RNN) have been
a successful model for sequence modeling tasks.
Introduction of RNN based encoder-decoder ar-
chitectures (Cho et al., 2014; Sutskever et al.,
2014) addressed the end to end sequence to se-
quence learning problem that does not highly
depend on lengths of sequences. Bahdanau
et al. (2014) included attention mechanism to
an encoder-decoder architecture and subsequently
several other methods used them to improve per-
formance on a range of tasks, e.g., machine trans-
lation (Bahdanau et al., 2014), image captioning
(Xu et al., 2015), question answering (Kumar et
al., 2016), morphological reinflection (Kann and

Schütze, 2016). Recently, Shimaoka et al. (2016)
and Shimaoka et al. (2017) included attention
weighted contextual information into their logistic
classification based entity classification model and
showed improvement over traditional and non-
attention based LSTM models.

In this paper, we describe the first decoder for
hierarchical classification. It is trained end-to-end
to predict paths from root to leaf nodes and also
leverages attention-weighted sums of hidden state
vectors of context when predicting classes at each
level of the hierarchy.

5 Conclusion

We introduced an entity mention classification
model that learns to predict types from an en-
tity type hierarchy using an encoder-decoder with
a level-wise contextual attention mechanism. A
clear improvement in performance is observed at
each level as well as in overall type hierarchy
prediction compared to models trained in a com-
parable setting and performance close to models
trained on datasets that have been denoised. We
attribute this good performance to the fact that our
method is the first neural network model for hier-
archical classification that can be trained end-to-
end while taking into account the tree structure of
the entity classes through direct modeling of paths
in the hierarchy.
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Abstract

Many of the world’s languages contain an
abundance of inflected forms for each lex-
eme. A major task in processing such lan-
guages is predicting these inflected forms.
We develop a novel statistical model for
the problem, drawing on graphical model-
ing techniques and recent advances in deep
learning. We derive a Metropolis-Hastings
algorithm to jointly decode the model. Our
Bayesian network draws inspiration from
principal parts morphological analysis. We
demonstrate improvements on 5 languages.

1 Introduction

Inflectional morphology modifies the form
of words to convey grammatical distinctions
(e.g. tense, case, and number), and is an extremely
common and productive phenomenon throughout
the world’s languages (Dryer and Haspelmath,
2013). For instance, the Spanish verb poner may
transform into one of over fifty unique inflectional
forms depending on context, e.g. the 1st person
present form is pongo, but the 2nd person present
form is pones. These variants cause data sparsity,
which is problematic for machine learning since
many word forms will not occur in training
corpora. Thus, a necessity for improving NLP
on morphologically rich languages is the ability
to analyze all inflected forms for any lexical
entry. One way to do this is through paradigm
completion, which generates all the inflected forms
associated with a given lemma.

Until recently, paradigm completion has been
narrowly construed as the task of generating a
full paradigm (e.g. noun declension, verb conjuga-
tion) based on a single privileged form—the lemma
(i.e. the citation form, such as poner). While recent
work (Durrett and DeNero, 2013; Hulden, 2014;

Nicolai et al., 2015; Ahlberg et al., 2015; Faruqui
et al., 2016) has made tremendous progress on this
narrower task, paradigm completion is not only
broader in scope, but is better solved without priv-
ileging the lemma over other forms. By forcing
string-to-string transformations from one inflected
form to another to go through the lemma, the trans-
formation problem is often made more complex
than by allowing transformations to happen directly
or through a different intermediary form. This inter-
pretation is inspired by ideas from linguistics and
language pedagogy, namely principal parts mor-
phology, which argues that forms in a paradigm are
best derived using a set of citation forms rather than
a single form (Finkel and Stump, 2007a; Finkel and
Stump, 2007b).

Directed graphical models provide a natural for-
malism for principal parts morphology since a
graph topology can represent relations between
inflected forms and principal parts. Specifically,
we apply string-valued graphical models (Dreyer
and Eisner, 2009; Cotterell et al., 2015) to the prob-
lem. We develop a novel, neural parameterization
of string-valued graphical models where the con-
ditional probabilities in the Bayesian network are
given by a sequence-to-sequence model (Sutskever
et al., 2014). However, under such a parameteriza-
tion, exact inference and decoding are intractable.
Thus, we derive a sampling-based decoding algo-
rithm. We experiment on 5 languages: Arabic,
German, Latin, Russian, and Spanish, showing that
our model outperforms a baseline approach that
privileges the lemma form.

2 A Generative Model of Principal Parts

We first formally define the task of paradigm com-
pletion and relate it to research in principal parts
morphology. Let Σ be a discrete alphabet of char-
acters in a language. Formally, for a given lemma
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` ∈ Σ∗, we define the complete paradigm of
that lemma π(`) = 〈m1, . . . ,mN 〉, where each
mi ∈ Σ∗ is an inflected form.1 For example, the
paradigm for the English lemma to run is defined
as π (RUN) = 〈run, runs, ran, running〉. While the
size of a typical English verbal paradigm is compar-
atively small (|π| = N = 4), in many languages
the size of the paradigms can be very large (Kib-
rik, 1998). The task of paradigm completion is
to predict all elements of the tuple π given one
or more forms (mi). Paradigm completion solely
from the lemma (m`), however, largely ignores the
linguistic structure of the paradigm. Given certain
inflected word forms, termed principal parts, the
construction of a set of other word forms in the
same paradigm is fully deterministic. Latin verbs
are famous for having four such principal parts
(Finkel and Stump, 2009).

Inspired by the concept of principal parts, we
present a solution to the paradigm completion task
in which target inflected forms are predicted from
other forms in the paradigm, rather than only from
the lemma. We implement this solution in the form
of a generative probabilistic model of the paradigm.
We define a joint probability distribution over the
entire paradigm:

p(π) =
∏
i

p(mi | mpaT (i)) (1)

where paT (·) is a function that returns the parent
of the node i with respect to the tree T , which
encodes the source form from which each target
form is predicted. In terms of graphical modeling,
this p(π) is a Bayesian network over string-valued
variables (Cotterell et al., 2015). Trees provide a
natural formalism for encoding the intuition behind
principal parts theory, and provide a fixed paradigm
structure prior to inference. We construct a graph
with nodes for each cell in the paradigm, as in
Figure 1. The parent of each node is another form
in the paradigm that best predicts that node.

2.1 Paradigm Trees

Baseline Network. Predicting inflected forms
only from the lemma involves a particular graphi-
cal model in which all the forms are leaves attached
to the lemma. This network is treated as a baseline,
and is depicted in Figure 1a.

1We constrain the task such that the number of forms in
a paradigm (|π| = N ) is fixed, and each possible form of a
paradigm is assumed to have consistent semantics.

ponerpongo

pongas

ponga

pongan

pondrı́as

pondrı́aispondrı́an

pondrı́as

(a) Lemma paradigm tree.

poner

pongo

pondrı́a

pongas

ponga

pongan

pondrı́ais

pondrı́an

(b) Principal parts paradigm tree.

Figure 1: Two potential graphical models for the paradigm
completion task. The topology in (a) encodes the the network
where all forms are predicted from the lemma. The topology
in (b) is a principle-parts-inspired topology introduced here.

Heuristic Network. We heuristically induce a
paradigm tree with the following procedure. For
each ordered pair of forms in a paradigm π, we
compute the number of distinct edit scripts that
convert one form into the other. The edit script
procedure is similar to that described in Chrupała et
al. (2008). For each ordered pair (i, j) of inflected
forms in π, we count the number of distinct edit
paths mapping from mi to mj , which serves as
a weight on the edge wi→j . Empirically, wi→j
is a good proxy for how deterministic a mapping
is. We use Edmonds’ algorithm (Edmonds, 1967)
to find the minimal directed spanning tree. The
intuition behind this procedure is that the number
of deterministic arcs should be maximized.

Gold Network. Finally, for Latin verbs we con-
sider a graph that matches the classic pedagogical
derivation of Latin verbs from four principal parts.

3 Inflection Generation with RNNs

RNNs have recently achieved state-of-the-art re-
sults for many sequence-to-sequence mapping
problems and paradigm completion is no excep-
tion. Given the success of LSTM-based (Hochre-
iter and Schmidhuber, 1997) and GRU-based (Cho
et al., 2014) morphological inflectors (Faruqui et
al., 2016; Cotterell et al., 2016), we choose a neural
parameterization for our Bayesian network, i.e. the
conditional probability p(mi | mpaT (i)) is com-
puted using a RNN. Our graphical modeling ap-
proach as well as the inference algorithms subse-
quently discussed in §4.2 are agnostic to the minu-
tiae of any one parameterization, i.e. the encoding
p(mi | mpaT (i)) is a black box.
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Algorithm 1 Decoding by Simulated Annealing
1: procedure SIMULATED-ANNEALING(T , d, ε)
2: τ ← 10.0 ; m← [ε, . . . , ε]
3: repeat
4: i ∼ uniform({1, 2, . . . , |m|}) . sample latent node in T
5: m′i ∼ qi . sample string from proposal distribution

6: a← min

[
1,

(
p(m′i|mpaT (i))

p(mi|mpaT (i))

)1/τ
qi(mi)
qi(m

′
i)

]
7: if uniform(0, 1) ≤ a then
8: mi ← m′i . update string to new value if accepted

9: τ ← τ · d . decay temperature where d ∈ (0, 1)

10: until τ ≤ ε . repeat until convergence; see Spall (2003, Ch. 8)
11: return m

3.1 LSTMs with Hard Monotonic Attention

We define the conditional distributions in our
Bayesian network p(mi | mpaT (i)) as LSTMs with
hard monotonic attention (Aharoni et al., 2016;
Aharoni and Goldberg, 2016), which we briefly
overview. These networks map one inflection to
another, e.g. mapping the English gerund running
to the past tense ran, using an encoder-decoder
architecture (Sutskever et al., 2014) run over an
augmented alignment alphabet, consisting of copy,
substitution, deletion and insertion, as in Dreyer et
al. (2008). For strings x, y ∈ Σ∗, the alignment is
extracted from the minimal weight edit path using
the BioPython toolkit (Cock et al., 2009). Crucially,
as the model is locally normalized we may sam-
ple strings from the conditional p(mi | mpaT (i))
efficiently using forward sampling. This network
stands in contrast to attention models (Bahdanau et
al., 2015) in which the alignments are soft and not
necessarily monotonic. We refer the reader to Aha-
roni et al. (2016) for exact implementation details
as we use their code out-of-the-box.2

4 Neural Graphical Models over Strings

Our Bayesian network defined in Equation (1) is
a graphical model defined over multiple string-
valued random variables, a framework formalized
in Dreyer and Eisner (2009). In contrast to previ-
ous work, e.g. Cotterell and Eisner (2015; Peng et
al. (2015), which considered conditional distribu-
tions encodable by finite-state machines, we offer
the first neural parameterization for such graphi-
cal models. With the increased expressivity comes
computational challenges—inference becomes in-
tractable. Thus, we fashion an efficient sampling
algorithm.

2
https://github.com/roeeaharoni/

morphological-reinflection

4.1 Parameter Estimation

Following previous work (Faruqui et al., 2016),
we train our model in the fully observed setting
with complete paradigms as training data. As our
model is directed, this makes parameter estimation
relatively straightforward. We may estimate the
parameters of each LSTM independently without
performing joint inference during training. We fol-
low the training procedure of Aharoni et al. (2016),
using a maximum of 300 epochs of SGD.

4.2 Approximate Joint Decoding

In a Bayesian network, the maximum-a-posteriori
(MAP) inference problem refers to finding the most
probable configuration of the variables given some
evidence. In our case, this requires finding the best
set of inflections to complete the paradigm given
an observed set of inflected forms. Returning to
the English verbal paradigm, given the past tense
form ran and the 3rd person present singular runs,
the goal of MAP inference is to return the most
probable assignment to the past tense and gerund
form (the correct assignment is ran and running).
In many Bayesian networks, e.g. models with finite
support, exact MAP inference can be performed
efficiently with the sum-product belief propagation
algorithm (Pearl, 1988) when the model has a tree
structure. Despite the tree structure, the LSTM
makes exact inference intractable. Thus, we resort
to an approximate scheme.

4.3 Simulated Annealing

The Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970) is a popular Markov-
Chain Monte Carlo (MCMC) (Robert and Casella,
2013) algorithm for approximate sampling from
intractable distributions. As with all MCMC al-
gorithms, the goal is to construct a Markov chain
whose stationary distribution is the target distribu-
tion. Thus, after having mixed, taking a random
walk on the Markov chain is equivalent to sampling
from the intractable distribution. Here, we are in-
terested in sampling from p(π), where part of π
may be observed.

Simulated annealing (Kirkpatrick et al., 1983;
Andrieu et al., 2003) is a slight modification of the
Metropolis-Hastings algorithm suitable for MAP
inference. We add the temperature hyperparameter
τ , which we decrease on a schedule. We achieve
the MAP estimate as τ → 0. The algorithm works
as follows: Given a paradigm with tree T , we sam-
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Language Baseline Heuristic Tree Gold Tree
Arabic 70.3% 92.7% N/A
German 93.3% 98.8% N/A
Latin 92.8% 98.3% 98.9%
Russian 84.2% 84.4% N/A
Spanish 99.2% 99.2% N/A

Table 1: Accuracy on the paradigm completion task comparing
Bayesian network topologies over 5 languages.

ple a latent node i in the tree uniformly at random.
We then sample a new string m′i from the proposal
distribution qi (see §4.4), which we accept (replac-
ing mi) with probability

a=min

1,

(
p(m′i | mpaT (i))
p(mi | mpaT (i))

)1/τ
qi(mi)
qi(m′i)

 . (2)

We iterate until convergence and accept the final
configuration of values as our approximate MAP
estimate. We give pseudocode in Algorithm 1 for
clarity.

4.4 Proposal Distribution

We define a tractable proposal distribution for our
neural graphical model over strings using a pro-
cedure similar to the stochastic inverse method of
Stuhlmüller et al. (2013) for probabilistic program-
ming. In addition to estimating the parameters of
an LSTM defining the distribution p(mi | mpaT (i)),
we also estimate parameters of an LSTM to define
the inverse distribution p(mpaT (i) | mi). As we ob-
serve only complete paradigms at training time, we
train networks as in §4.1. First, we define the neigh-
borhood of a node i as all those nodes adjacent to
i (connected by an ingoing or outgoing edge). We
define the proposal distribution as a mixture model
of all conditional distributions in the neighborhood
N (i), i.e.

qi(mi) = |N (i)|−1
∑

j∈N (i)

p(mi | mj). (3)

Crucially, some of the distributions are stochastic
inverses. Sampling from qi is tractable: We sample
a mixture component uniformly and then sample a
string.

5 Related Work

Our effort is closest to Faruqui et al. (2016),
who proposed the first neural paradigm completer.
Many neural solutions were also proposed in the

Language (POS) Train Dev Test
Arabic (N) 632 79 79
German (N) 1723 200 200
Latin (V) 2660 333 333
Russian (N) 8266 1032 1033
Spanish (V) 2973 372 372

Table 2: Lemmata per dataset.

SIGMORPHON shared task on morphological re-
inflection (Cotterell et al., 2016). Notably, the
winning system used an encoder-decoder archi-
tecture (Kann and Schütze, 2016). Neural net-
works have been used in other areas of compu-
tational morphology, e.g. morpheme segmentation
(Wang et al., 2016; Kann et al., 2016; Cotterell and
Schütze, 2017), morphological tagging (Heigold
et al., 2016), and language modeling (Botha and
Blunsom, 2014).

6 Experiments and Results

Our proposed model generalizes previous efforts
in paradigm completion since all previously pro-
posed models take the form of Figure 1a, i.e. a
graphical model where all leaves connect to the
lemma. Unfortunately, in that configuration, ob-
serving additional forms cannot help at test time
since information must flow through the lemma,
which is always observed. We conjecture that prin-
cipal parts-based topologies will outperform the
baseline topology for that reason. We propose a
controlled experiment in which we consider iden-
tical training and testing conditions and vary only
the topology.

Data. Data for training, development, and testing
is randomly sampled from the UniMorph dataset
(Sylak-Glassman et al., 2015).3 We run experi-
ments on Arabic, German, and Russian nominal
paradigms and Latin and Spanish verbal paradigms.
The sizes of the resulting data splits are given in
Table 2. For the development and test splits we
always include the lemma (as is standard) while
sampling additional observed forms. On average
one third of all forms are observed.

Evaluation. Evaluation of the held-out sets pro-
ceeds as follows: Given the observed forms in the
paradigm, we jointly decode the remaining forms
as discussed in §4.2; joint decoding is performed
without Algorithm 1 for the baseline—instead, we

3http://www.unimorph.org
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decode as in Aharoni et al. (2016). We measure
accuracy (macro-averaged) on the held-out forms.

Results. In general, we find that our princi-
pal parts-inspired networks outperform lemma-
centered baseline networks. In Arabic, German,
and Latin, we find the largest gains (for Latin, our
heuristic topology closely matches that of the gold
tree, validating the heuristics we use). We attribute
the gains to the ability to use knowledge from
attested forms that are otherwise difficult to pre-
dict, e.g. forms based on the Arabic broken plural,
the German plural, and any of the Latin present
perfect forms. In the case of paradigms with por-
tions which are difficult to predict without knowl-
edge of a representative form, knowing multiple
principle parts will be a boon given a proper tree
improvement—we attribute this to the fact that al-
most all of the test examples were regular -ar verbs
and, thus, fully predictable. Finally, in the case
of Russian we see only minor improvements—this
stems from need to maintain a different optimal
topology for each declension. Because our model
assumes a fixed paradigmatic structure in the form
of a tree, using multiple topologies is not possible.

7 Conclusion

We have presented a directed graphical model over
strings with a RNN parameterization for principle-
parts-inspired morphological paradigm completion.
This paradigm gives us the best of two worlds. We
can exploit state-of-the-art neural morphological
inflectors while injecting linguistic insight into the
structure of the graphical model itself. Due to the
expressivity of our parameterization, exact decod-
ing becomes intractable. To solve this, we derive an
efficient MCMC approach to approximately decode
the model. We validate our model experimentally
and show gains over a baseline which represents
the topology used in nearly all previous research.
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