
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 916–926,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

ShotgunWSD: An unsupervised algorithm for global word sense
disambiguation inspired by DNA sequencing

Andrei M. Butnaru, Radu Tudor Ionescu and Florentina Hristea

University of Bucharest
Department of Computer Science

14 Academiei, Bucharest, Romania
butnaruandreimadalin@gmail.com

raducu.ionescu@gmail.com
fhristea@fmi.unibuc.ro

Abstract

In this paper, we present a novel unsu-
pervised algorithm for word sense disam-
biguation (WSD) at the document level.
Our algorithm is inspired by a widely-used
approach in the field of genetics for whole
genome sequencing, known as the Shot-
gun sequencing technique. The proposed
WSD algorithm is based on three main
steps. First, a brute-force WSD algorithm
is applied to short context windows (up
to 10 words) selected from the document
in order to generate a short list of likely
sense configurations for each window. In
the second step, these local sense config-
urations are assembled into longer com-
posite configurations based on suffix and
prefix matching. The resulted configura-
tions are ranked by their length, and the
sense of each word is chosen based on a
voting scheme that considers only the top
k configurations in which the word ap-
pears. We compare our algorithm with
other state-of-the-art unsupervised WSD
algorithms and demonstrate better perfor-
mance, sometimes by a very large margin.
We also show that our algorithm can yield
better performance than the Most Com-
mon Sense (MCS) baseline on one data
set. Moreover, our algorithm has a very
small number of parameters, is robust to
parameter tuning, and, unlike other bio-
inspired methods, it gives a determinis-
tic solution (it does not involve random
choices).

1 Introduction

Word Sense Disambiguation (WSD), the task of
identifying which sense of a word is used in a

given context, is a core NLP problem, having
the potential to improve many applications such
as machine translation (Carpuat and Wu, 2007),
text summarization (Plaza et al., 2011), informa-
tion retrieval (Chifu and Ionescu, 2012; Chifu
et al., 2014) or sentiment analysis (Sumanth and
Inkpen, 2015). Most of the existing WSD algo-
rithms (Agirre and Edmonds, 2006; Navigli, 2009)
are commonly classified into supervised, unsuper-
vised, and knowledge-based techniques, but hy-
brid approaches have also been proposed in the
literature (Hristea et al., 2008). The main disad-
vantage of supervised methods (that have led to
the best disambiguation results) is that they re-
quire a large amount of annotated data which is
difficult to obtain. Hence, over the last few years,
many researchers have concentrated on develop-
ping unsupervised learning approaches (Schwab
et al., 2012; Schwab et al., 2013a; Schwab et
al., 2013b; Chen et al., 2014; Bhingardive et al.,
2015). In this paper, we introduce a novel WSD
algorithm, termed ShotgunWSD1, that stems from
the Shotgun genome sequencing technique (An-
derson, 1981; Istrail et al., 2004). Our WSD algo-
rithm is also unsupervised, but it requires knowl-
edge in the form of WordNet (Miller, 1995; Fell-
baum, 1998) synsets and relations as well. Thus,
our algorithm can be regarded as a hybrid ap-
proach.

WSD algorithms can perform WSD at the lo-
cal or at the global level. A local WSD algorithm,
such as the extended Lesk measure (Lesk, 1986;
Banerjee and Pedersen, 2002; Banerjee and Ped-
ersen, 2003), is designed to assign the appropri-
ate sense, from an existing sense inventory, for a
target word in a given context window of a few
words. For instance, for the word “sense” in the
context “You have a good sense of humor.”, the

1Our open source Java implementation of ShotgunWSD
is freely available at http://ai.fmi.unibuc.ro/Home/Software.

916

sense that corresponds to the natural ability rather
than the meaning of a word or the sensation should
be chosen by a WSD algorithm. Rather more gen-
erally, a global WSD approach aims to choose the
appropriate sense for each ambiguous word in a
text document. The straightforward solution is
the exhaustive evaluation of all sense combina-
tions (configurations) (Patwardhan et al., 2003),
but the time complexity is exponential with respect
to the number of words in the text, as also noted
by Schwab et al. (2012), Schwab et al. (2013a).
Indeed, the brute-force (BF) solution quickly be-
comes impractical for windows of more than a
few words. Hence, several approximation meth-
ods have been proposed for the global WSD task
in order to overcome the exponentional growth of
the search space (Schwab et al., 2012; Schwab et
al., 2013a). Our algorithm is designed to perform
global WSD by combining multiple local sense
configurations that are obtained using BF search,
thus avoiding BF search on the whole text. A lo-
cal WSD algorithm is employed to build the lo-
cal sense configurations. We alternatively use two
methods at this step, namely the extended Lesk
measure (Banerjee and Pedersen, 2002; Baner-
jee and Pedersen, 2003) and an approach based
on deriving sense embeddings from word embed-
dings (Bengio et al., 2003; Collobert and Weston,
2008; Mikolov et al., 2013). Both local WSD ap-
proaches are based on WordNet synsets and rela-
tions.

Our global WSD algorithm can be briefly de-
scribed in a few steps. In the first step, context
windows of a fixed length n are selected from the
document, and for each context window the top
scoring sense configurations constructed by BF
search are kept for the second step. The retained
sense configurations are merged based on suffix
and prefix matching. The configurations obtained
so far are ranked by their length (the longer, the
better), and the sense of each word is given by
a majority vote on the top k configurations that
cover the respective word. Compared to other
state-of-the-art bio-inspired methods (Schwab et
al., 2012; Schwab et al., 2013a), our algorithm has
less parameters. Different from the other methods,
these parameters (n and k) can be intuitively tuned
with respect to the WSD task. As we select a sin-
gle context window at every possible location in a
text, our algorithm becomes deterministic, obtain-
ing the same global configuration for a given set

of parameters and input document. Thus, our al-
gorithm is not affected by random chance, unlike
stochastic algorithms such as Ant Colony Opti-
mization (Lafourcade and Guinand, 2010; Schwab
et al., 2012; Schwab et al., 2013a).

We have conducted experiments on SemEval
2007 (Navigli et al., 2007), Senseval-2 (Edmonds
and Cotton, 2001) and Senseval-3 (Mihalcea et al.,
2004) data sets in order to compare ShotgunWSD
with three state-of-the-art approaches (Schwab et
al., 2013a; Chen et al., 2014; Bhingardive et al.,
2015) along with the Most Common Sense (MCS)
baseline2, which is considered as the strongest
baseline in WSD (Agirre and Edmonds, 2006).
The empirical results show that our algorithm
compares favorably to these approaches.

The rest of this paper is organized as follows.
Related work on unsupervised WSD algorithms is
presented in Section 2. The ShotgunWSD algo-
rithm is described in Section 3. The experiments
are given in Section 4. Finally, we draw our con-
clusions in Section 5.

2 Related Work

There is a broad range of methods designed to per-
form WSD (Agirre and Edmonds, 2006; Navigli,
2009; Vidhu Bhala and Abirami, 2014). The most
accurate techniques are supervised (Iacobacci et
al., 2016), but they require annotated training data
which is not always available. In order to over-
come this limitation, some researchers have pro-
posed various unsupervised or knowledgde-based
WSD methods (Banerjee and Pedersen, 2002;
Banerjee and Pedersen, 2003; Schwab et al., 2012;
Nguyen and Ock, 2013; Schwab et al., 2013a;
Schwab et al., 2013b; Chen et al., 2014; Agirre
et al., 2014; Bhingardive et al., 2015). Since
our approach is unsupervised and based on Word-
Net (Miller, 1995; Fellbaum, 1998), our focus is to
present related work in the same direction. Baner-
jee and Pedersen (2002) extend the gloss overlap
algorithm of Lesk (1986) by using WordNet rela-
tions. Patwardhan et al. (2003) proposed a brute-
force algorithm for global WSD by employing
the extended Lesk measure (Banerjee and Peder-
sen, 2002; Banerjee and Pedersen, 2003) to com-
pute the semantic relatedness among senses in a
given text. However, their BF approach is not
suitable for whole text documents, because of the
high computational time. More recently, Schwab

2Also known as the Most Frequent Sense baseline.

917

et al. (2012) have proposed and compared three
stochastic algorithms for global WSD as alterna-
tives to BF search, namely a Genetic Algorithm,
Simulated Annealing, and Ant Colony Optimiza-
tion. Among these, the authors (Schwab et al.,
2012; Schwab et al., 2013a) have found that the
Ant Colony Algorithm yields better results than
the other two.

Recently, word embeddings have been used for
WSD (Chen et al., 2014; Bhingardive et al., 2015;
Iacobacci et al., 2016). Word embeddings are
well known in the NLP community (Bengio et
al., 2003; Collobert and Weston, 2008), but they
have recenlty become more popular due to the
work of Mikolov et al. (2013) which introduced
the word2vec framework that allows to efficiently
build vector representations from words. Chen et
al. (2014) present a unified model for joint word
sense representation and disambiguation. They
use the Skip-gram model to learn word vectors.
On the other hand, Bhingardive et al. (2015) use
pre-trained word vectors to build sense embed-
dings by averaging the word vectors produced for
each sense of a target word. As their goal is to
find an approximation for the MCS baseline, they
try to find the sense embedding that is closest to
the embedding of the target word. Iacobacci et al.
(2016) propose different methods through which
word embeddings can be leveraged in a super-
vised WSD system architecture. Remarkably, they
find that a WSD approach based on word embed-
dings alone can provide significant performance
improvements over a state-of-the-art WSD system
that uses standard WSD features.

3 ShotgunWSD

As also noted by Schwab et al. (2012), brute-
force WSD algorithms based on semantic relat-
edness (Patwardhan et al., 2003) are not practical
for whole text disambiguation due to their expo-
nential time complexity. In this section, we de-
scribe a novel WSD algorithm that aims to avoid
this computational issue. Our algorithm is in-
spired by the Shotgun genome sequencing tech-
nique (Anderson, 1981) which is used in genet-
ics research to obtain long DNA strands. For ex-
ample, Istrail et al. (2004) have used this tech-
nique to assemble the human genome. Before a
long DNA strand can be read, Shotgun sequenc-
ing needs to create multiple copies of the re-
spective strand. Next, DNA is randomly broken

down into many small segments called reads (usu-
ally between 30 and 400 nucleotides long), by
adding a restriction enzyme into the chemical so-
lution containing the DNA. The reads can then
be sequenced using Next-Generation Sequencing
techonlogy (Voelkerding et al., 2009), for example
by using an Illumina (Solexa) machine (Bennett,
2004). In genome assembly, the low quality reads
are usually eliminated (Patel and Jain, 2012) and
the whole genome is reconstructed by assembling
the remaining reads. One strategy is to merge two
or more reads in order to obtain longer DNA seg-
ments, if they have a significant overlap of match-
ing nucleotides. Because of reading errors or mu-
tations, the overlap is usually measured using a
distance measure, e.g. edit distance (Levenshtein,
1966). If a backbone DNA sequence is available,
the reads are aligned to the backbone DNA before
assembly, in order to find their approximate posi-
tion in the DNA that needs to be reconstructed.

We next present how we adapt the Shotgun se-
quencing technique for the task of global WSD.
We will make a few observations along the way
that will lead to a simplified method, namely Shot-
gunWSD, which is formally presented in Algo-
rithm 1. We use the following notations in Algo-
rithm 1. An array (or an ordered set of elements)
is denoted by X = (x1, x2,, xm) and the length
of X is denoted by |X| = m. Arrays are consid-
ered to be indexed starting from position 1, thus
X[i] = xi,∀i ∈ {1, 2, ...m}.

Our goal is to find a configuration of senses
G for the whole document D, that matches the
ground-truth configuration produced by human
annotators. A configuration of senses is simply
obtained by assigning a sense to each word in a
text. In this work, the senses are selected from
WordNet (Miller, 1995; Fellbaum, 1998), accord-
ing to steps 7-8 of Algorithm 1. Naturally, we will
consider that the sense configuration of the whole
document corresponds to the long DNA strand that
needs to be sequenced. In this context, sense con-
figurations of short context windows (less than 10
words) will correspond to the short DNA reads.
A crucial difference here is that we know the lo-
cation of the context windows in the whole doc-
ument from the very beginning, so our task will
be much easier compared to Shotgun sequencing
(we do not need to use a backbone solution for
the alignment of short sense configurations). At
every possible location in the text document (step

918

Algorithm 1: ShotgunWSD Algorithm
1 Input:
2 D = (w1, w2, ..., wm) – a document of m words denoted by wi, i ∈ {1, 2, ..., m};
3 n – the length of the context windows (1 < n < m);
4 k – the number of sense configurations considered for the voting scheme (k > 0);

5 Initialization:
6 c← 20;
7 for i ∈ {1, 2, ..., m} do
8 Swi ← the set of WordNet synsets of wi;

9 S ← ∅;
10 G← (0, 0,, 0), such that |G| = m;

11 Computation:
12 for i ∈ {1, 2, ..., m− n + 1} do
13 Ci ← ∅;
14 while did not generate all sense configurations do
15 C ← a new configuration (swi , swi+1 , ..., swi+n−1), swj ∈ Swj , ∀j ∈ {i, ..., i + n− 1}, such that C /∈ Ci;
16 r ← 0;
17 for p ∈ {1, 2, ..., n− 1} do
18 for q ∈ {p + 1, 2, ..., n} do
19 r ← r + relatedness(C[p], C[q]);

20 Ci ← Ci ∪ {(C, i, n, r)};
21 Ci ← the top c configurations obtained by sorting the configurations in Ci by their relatedness score (descending);
22 S ← S ∪ Ci;

23 for l ∈ {min{4, n− 1}, ..., 1} do
24 for p ∈ {1, 2, ..., |S|} do
25 (Cp, ip, np, rp)← the p-th component of S;
26 for q ∈ {1, 2, ..., |S|} do
27 (Cq, iq, nq, rq)← the q-th component of S;
28 if iq − ip < np and ip 6= iq then
29 t← true;
30 for x ∈ {1, ..., l} do
31 if Cp[np − l + x] 6= Cq[x] then
32 t← false;

33 if t = true then
34 Cp⊕q ← (Cp[1], Cp[2], ..., Cp[np], Cq[l + 1], Cq[l + 2], ..., Cq[nq]);
35 rp⊕q ← rp;
36 for i ∈ {1, 2, ..., np + nq − l} do
37 for j ∈ {l + 1, l + 2, ..., nq} do
38 rp⊕q ← rp⊕q + relatedness(Cp⊕q[i], Cq[j]);

39 S ← S ∪ {(Cp⊕q, ip, np + nq − l, rp⊕q)};

40 for j ∈ {1, 2, ..., m} do
41 Qj ← {(C, i, d, r) | (C, i, d, r) ∈ S, j ∈ {i, i + 1, ..., i + d− 1}};
42 Qj ← the top k configurations obtained by sorting the configurations inQj by their length (descending);
43 pswj ← the predominant sense obtained by using a majority voting scheme onQj ;
44 G[j]← pswj ;

45 Output:
46 G = (psw1 , psw2 , ..., pswm), pswi ∈ Swi , ∀i ∈ {1, 2, ..., m} – the global configuration of senses returned by the

algorithm.

12), we select a window of n words. The win-
dow length n is an external parameter of our al-
gorithm that can be tuned for optimal results. For
each context window we will compute all possi-
ble sense configurations (steps 14-15). A score is
assigned to each sense configuration by using the
semantic relatedness between word senses (steps
16-19), as described by Patwardhan et al. (2003).

We alternatively employ two measures to compute
the semantic relatedness, one is the extended Lesk
measure (Banerjee and Pedersen, 2002; Banerjee
and Pedersen, 2003) and the other is a simple ap-
proach based on deriving sense embeddings from
word embeddings (Mikolov et al., 2013). Both
methods are described in Section 3.1. We will
keep the top scoring sense configurations (step 21)

919

for the assembly phase (steps 23-39). In step 21,
we use an internal parameter c in order to deter-
mine exactly how many sense configurations are
kept per context window. Another important re-
mark is that we assume that the BF algorithm used
to obtain sense configurations for short windows
does not produce output errors, so it is not nec-
essary to use a distance measure in order to find
overlaps for merging configurations. We simply
check if the suffix of a former configuration coin-
cides with the prefix of a latter configuration in
order to join them together (steps 29-33). The
length l of the suffix and the prefix that get over-
lapped needs to be greater then zero, so at least
one sense choice needs to coincide. We gradu-
ally consider shorter and shorter suffix and pre-
fix lengths starting with l = min{4, n − 1} (step
23). Sense configurations are assembled in or-
der to obtain longer configurations (step 34), un-
til none of the resulted configurations can be fur-
ther merged together. When merging, the relat-
edness score of the resulting configuration needs
to be recomputed (steps 36-38), but we can take
advantage of some of the previously computed
scores (step 35). Longer configurations indicate
that there is an agreement (regarding the chosen
senses) that spans across a longer piece of text. In
other words, longer configurations are more likely
to provide correct sense choices, since they inher-
ently embed a higher degree of agreement among
senses. After the configuration assembly phase,
we start assigning the sense to each word in the
document (step 40). Based on the assumption that
longer configurations provide better information,
we build a ranked list of sense configurations for
each word in the document (step 42). Naturally,
for a given word, we only consider the configu-
rations that contain the respective word (step 41).
Finally, the sense of each word is given by a major-
ity vote on the top k configurations from its ranked
list (steps 43-44). The number of sense configura-
tions k is an external parameter of our approach,
and it can be tuned for optimal results.

3.1 Semantic Relatedness

For a sense configuration of n words, we compute
the semantic relatedness between each pair of se-
lected senses. We use two different approaches for
computing the relatedness score and both of them
are based on WordNet semantic relations. In this
context, we essentially need to compute the se-

mantic relatedness of two WordNet synsets. For
each synset we build a disambiguation vocabu-
lary by extracting words from the WordNet lex-
ical knowledge base, as follows. Starting from
the synset itself, we first include all the synonyms
that form the respective synset along with the con-
tent words of the gloss (examples included). We
also include into the disambiguation vocabulary
words indicated by specific WordNet semantic re-
lations that depend on the part-of-speech of the
word. More precisely, we have considered hy-
ponyms and meronyms for nouns. For adjectives,
we have considered similar synsets, antonyms, at-
tributes, pertainyms and related (see also) synsets.
For verbs, we have considered troponyms, hyper-
nyms, entailments and outcomes. Finally, for ad-
verbs, we have considered antonyms, pertainyms
and topics. These choices have been made be-
cause previous studies (Banerjee and Pedersen,
2003; Hristea et al., 2008) have come to the con-
clusion that using these specific relations for each
part-of-speech seems to provide useful informa-
tion in the WSD process. The disambiguation
vocabulary generated by the WordNet feature se-
lection described so far needs to be further pro-
cessed in order to obtain the final vocabulary.
The first processing step is to eliminate the stop-
words. The remaining words are stemmed using
the Porter stemmer algorithm (Porter, 1980). The
resulted stems represent the final set of features
that we use to compute the relatedness score be-
tween two synsets. The two measures that we em-
ploy for computing the relatedness score are de-
scribed next.

3.1.1 Extended Lesk Measure
The original Lesk algorithm (Lesk, 1986) only
considers one word overlaps among the glosses of
a target word and those that surround it in a given
context. Banerjee and Pedersen (2002) note that
this is a significant limitation because dictionary
glosses tend to be fairly short and they fail to pro-
vide sufficient information to make fine grained
distinctions required for WSD. Therefore, Baner-
jee and Pedersen (2003) introduce a measure that
takes as input two WordNet synsets and returns a
numeric value that quantifies their degree of se-
mantic relatedness by taking into consideration the
glosses of related WordNet synsets as well. More-
over, when comparing two glosses, the extended
Lesk measure considers overlaps of multiple con-
secutive words, based on the assumption that the

920

longer the phrase, the more representative it is for
the relatedness of the two synsets. Given two input
glosses, the longest overlap between them is de-
tected and then replaced with a unique marker in
each of the two glosses. The resulted glosses are
then again checked for overlaps, and this process
continues until there are no more overlaps. The
lengths of the detected overlaps are squared and
added together to obtain the score for the given
pair of glosses. Depeding on the WordNet rela-
tions used for each part-of-speech, several pairs
of glosses are compared and summed up together
to obtain the final relatedness score. However, if
the two words do not belong to the same part-of-
speech, we only use their WordNet glosses and
examples. Further details regarding this approach
are provided by Banerjee and Pedersen (2003).

3.1.2 Sense Embeddings
A simple approach based on word embeddings
is employed to measure the semantic relatedness
of two synsets. Word embeddings (Bengio et al.,
2003; Collobert and Weston, 2008; Mikolov et al.,
2013) represent each word as a low-dimensional
real valued vector, such that related words re-
side in close vicinity in the generated space. We
have used the pre-trained word embeddings com-
puted by the word2vec toolkit (Mikolov et al.,
2013) on the Google News data set using the
Skip-gram model. The pre-trained model contains
300-dimensional vectors for 3 million words and
phrases.

The relatedness score between two synsets is
computed as follows. For each word in the disam-
biguation vocabulary that represents a synset, we
compute its word embedding vector. Thus, we ob-
tain a cluster of word embedding vectors for each
given synset. Sense embeddings are then obtained
by computing the centroid of each cluster as the
median of all the word embeddings in the respec-
tive cluster. We can naturally assume that some of
the words in the cluster may actually be outliers.
Thus, we believe that using the (geometric) me-
dian instead of the mean is more appropriate, as
the mean is largely influenced by outliers. Finally,
the semantic relatedness of two synsets is simply
given by the cosine similarity between their cluster
centroids.

It is important to note that an approach based on
the mean of word vectors to construct sense em-
beddings is used by Bhingardive et al. (2015), but
with a slightly different purpose than ours, namely

to determine which synset better fits a target word,
assuming that this synset should correspond to the
most common sense of the respective word. As
such, they completely disregard the context of the
target word. Different from their approach, we are
trying to find how related two synsets of distinct
words that appear in the same context window
are. Furthermore, the empirical results presented
in Section 4 show that our approach yields better
performance than the MCS estimation method of
Bhingardive et al. (2015), thus putting a greater
gap between the two methods.

4 Experiments and Results

4.1 Data Sets
We compare our global WSD algorithm with sev-
eral state-of-the-art unsupervised WSD methods
using the same test data as in the works present-
ing them.

We first compare ShotgunWSD with two state-
of-the-art approaches (Schwab et al., 2013a; Chen
et al., 2014) and the MCS baseline, on the
SemEval 2007 coarse-grained English all-words
task (Navigli et al., 2007). The SemEval 2007
coarse-grained English all-words data set3 is com-
posed of 5 documents that contain 2269 ambigu-
ous words (1108 nouns, 591 verbs, 362 adjec-
tives, 208 adverbs) altogether. We also compare
our approach with the MCS estimation method of
Bhingardive et al. (2015), the MCS baseline and
the extended Lesk algorithm (Torres and Gelbukh,
2009) on the Senseval-2 English all-words (Ed-
monds and Cotton, 2001) and the Senseval-3 En-
glish all-words (Mihalcea et al., 2004) data sets.
The Senseval-2 data set4 is composed of 3 docu-
ments that contain 2473 ambiguous words (1136
nouns, 581 verbs, 457 adjectives, 299 adverbs),
while the Senseval-3 data set4 is composed of 3
documents that contain 2081 ambiguous words
(951 nouns, 751 verbs, 364 adjectives, 15 ad-
verbs).

4.2 Parameter Tuning
As Schwab et al. (2013a), we tune our parame-
ters on the first document of SemEval 2007. We
first set the value of the internal parameter c to 20
without specifically tuning it. Using this value for
c gives us a reasonable amount of configuration
choices for the subsequent steps, without using too

3http://nlp.cs.swarthmore.edu/semeval/tasks/index.php
4http://web.eecs.umich.edu/∼mihalcea/downloads.html

921

3 4 5 6 7 8 9 10
0

500

1000

1500

2000

Length of context window

Ti
m

e
(s

ec
on

ds
)

Figure 1: The running times (in seconds) of Shot-
gunWSD based on sense embeddings, on the first
document of SemEval 2007, using various con-
text window lengths n ∈ {4, 5, 6, 7, 8, 9}. The re-
ported times were measured on a computer with
Intel Core i7 3.4 GHz processor and 16 GB of
RAM using a single Core.

much space and time. For tuning the parameters n
and k, we employ sense embeddings for comput-
ing the semantic relatedness score. We begin by
tuning the length of the context windows n. It is
important to note that the upper bound accuracy
of ShotgunWSD is given by the brute-force algo-
rithm that explores every possible configuration of
senses. Intuitively, we will get closer and closer
to this upper bound as we use longer and longer
context windows. However, the main decision fac-
tor is the time, which grows exponentially with re-
spect to the length of the windows. Figure 1 illus-
trates the time required by our algorithm to disam-
biguate the first document in SemEval 2007, for
increasing window lengths in the range 4-9. The
algorithm runs in about 15 seconds for n = 4 and
in about 1892 seconds for n = 9, so it becomes
nearly 120 times slower from using context win-
dows of length 4 to context windows of length 9.
As the algorithm runs in a reasonable amount of
time for n = 8 (187 seconds), we choose to use
context windows of 8 words throughout the rest of
the experiments.

The parameter k has almost no influence on the
running time of the algorithm, so we tune this pa-
rameter with respect to the F1 score obtained on
the first document of SemEval 2007. We try out
several values of k in the set {1, 3, 5, 10, 15, 20}

1 3 5 10 15 20
79

80

81

82

83

84

Value of parameter k

F1
 s

co
re

Figure 2: The F1 scores of ShotgunWSD based
on sense embeddings on the first document of Se-
mEval 2007, using different values for the param-
eter k ∈ {1, 3, 5, 10, 15, 20}.

and the results are shown in Figure 2. The best F1

score (83.42%) is obtained for k = 15. Hence,
we choose to assign the final sense for each word
using a majority vote based on the top 15 configu-
rations.

To summarize, all the results of ShotgunWSD
on SemEval 2007, Senseval-2 and Senseval-3 are
reported using n = 8 and k = 15. We hereby note
that better results in terms of accuracy can proba-
bly be obtained by trying out other values for these
parameters on each data set. However, tuning the
parameters on a single document from SemEval
2007 ensures that we avoid overfitting to a partic-
ular data set.

4.3 Results on SemEval 2007

We first conduct a comparative study on the Se-
mEval 2007 coarse-grained English all-words task
in order to evaluate our ShotgunWSD algorithm.
As described in Section 3.1, we use two differ-
ent approaches for computing the semantic relat-
edness scores, namely extended Lesk and sense
embeddings. We compare our two variants of
ShotgunWSD with several algorithms presented
in (Schwab et al., 2012; Schwab et al., 2013a),
namely a Genetic Algorithm, Simulated Anneal-
ing, and Ant Colony Optimization. We also in-
clude in the comparison an approach based on
sense embeddings (Chen et al., 2014). All the ap-
proaches comprised in the evaluation are unsuper-
vised. We compare them with the MCS baseline
which is based on human annotations. The F1

922

Method F1 Score
Most Common Sense 78.89%
Genetic Algorithms (Schwab et al., 2013a) 74.53%
Simulated Annealing (Schwab et al., 2013a) 75.18%
Ant Colony (Schwab et al., 2013a) 79.03%
S2C Unsupervised (Chen et al., 2014) 75.80%
ShotgunWSD + Extended Lesk 79.15%
ShotgunWSD + Sense Embeddings 79.68%

Table 1: The F1 scores of various unsupervised
state-of-the-art WSD approaches, compared to the
F1 scores of ShotgunWSD based on the extended
Lesk measue and ShotgunWSD based on sense
embeddings, on the SemEval 2007 coarse-grained
English all-words task. The results reported for
both ShotgunWSD variants are obtained for win-
dows of n = 8 words and a majority vote on the
top k = 15 configurations.

scores on SemEval 2007 are presented in Table 1.
Among the state-of-the-art methods, it seems that
the Ant Colony Optimization algorithm, based on
a weighted voting scheme (Schwab et al., 2013a),
is the only method able to surpass the MCS base-
line. The unsupervised S2C approach gives lower
results than the MCS baseline, but Chen et al.
(2014) report better results in a semi-supervised
setting. Both variants of ShotgunWSD yield bet-
ter results than the MCS baseline (78.89%) and
the Ant Colony Optimization algorithm (79.03%).
Indeed, we obtain an F1 score of 79.15% when
using the extended Lesk measure and an F1 score
of 79.68% when using sense embeddings. We can
also point out that ShotgunWSD gives slightly bet-
ter results when sense embeddings are used in-
stead of the extended Lesk method.

An important remark is that we have tuned the
parameter k on the first document included in the
test set, following the same evaluation procedure
as Schwab et al. (2013a). Although this brings us
to a fair comparison with Schwab et al. (2013a),
it might also raise suspicions of overfitting the pa-
rameter k to the test set. Hence, we have tested
all values of k in {1, 3, 5, 10, 15, 20} for Shotgun-
WSD based on word embeddings, and we have
always obtained results above 79%, with the top
score of 79.77% for k = 10.

4.4 Results on Senseval-2

We compare the two alternative forms of Shot-
gunWSD with the MCS baseline, the MCS esti-
mation method of Bhingardive et al. (2015) and
the extended Lesk measure (Torres and Gelbukh,

Method F1 Score
Most Common Sense 60.10%
MCS Estimation (Bhingardive et al., 2015) 52.34%
Extended Lesk (Torres and Gelbukh, 2009) 54.60%
ShotgunWSD + Extended Lesk 55.78%
ShotgunWSD + Sense Embeddings 57.55%

Table 2: The F1 scores of an unsupervised WSD
approach and the extended Lesk mesure, com-
pared to the F1 scores of ShotgunWSD based
on the extended Lesk measue and ShotgunWSD
based on sense embeddings, on the Senseval-2 En-
glish all-words data set. The results reported for
both ShotgunWSD approaches are obtained for
windows of n = 8 words and a majority vote on
the top k = 15 configurations.

2009) on the Senseval-2 English all-words data
set. As shown in Table 2, the ShotgunWSD based
on sense embeddings obtains an F1 score that is
almost 5% better than the F1 score of Bhingar-
dive et al. (2015), while the ShotgunWSD based
on extended Lesk gives an F1 score that is around
1% better than the F1 score reported by Torres and
Gelbukh (2009). It is important to note that Torres
and Gelbukh (2009) apply the extended Lesk mea-
sure by performing the brute-force search at the
sentence level, hence it is not surprising that we
are able obtain better results. However, our best
ShotgunWSD approach (57.55%) is still under the
MCS baseline (60.10%).

4.5 Results on Senseval-3

Method F1 Score
Most Common Sense 62.30%
MCS Estimation (Bhingardive et al., 2015) 43.28%
Extended Lesk (Torres and Gelbukh, 2009) 49.60%
ShotgunWSD + Extended Lesk 57.89%
ShotgunWSD + Sense Embeddings 59.82%

Table 3: The F1 scores of an unsupervised WSD
approach and the extended Lesk mesure, com-
pared to the F1 scores of ShotgunWSD based
on the extended Lesk measue and ShotgunWSD
based on sense embeddings, on the Senseval-3 En-
glish all-words data set. The results reported for
both ShotgunWSD approaches are obtained for
windows of n = 8 words and a majority vote on
the top k = 15 configurations.

We also compare the two variants of Shotgun-
WSD with the MCS baseline, the MCS estimation
method of Bhingardive et al. (2015) and the ex-
tended Lesk measure (Torres and Gelbukh, 2009)

923

on the Senseval-3 English all-words data set. The
F1 scores are presented in Table 3. The empirical
results show that both ShotgunWSD variants give
considerably better results compared to the MCS
estimation method of Bhingardive et al. (2015).
By using sense embeddings in a completely differ-
ent way than Bhingardive et al. (2015), we are able
to report an F1 score of 59.82%, which is much
closer to the MCS baseline (62.30%). With an
F1 score of 57.89%, the ShotgunWSD based on
the extend Lesk measure brings an improvement
of 8% over the extended Lesk algorithm applied at
the sentence level (Torres and Gelbukh, 2009).

4.6 Discussion

Considering all the experiments, we can conclude
that ShotgunWSD gives better results (around 1%)
when sense embeddings are used instead of the
extended Lesk method. On one of the data sets,
ShotgunWSD yields better performance than the
MCS baseline. It is important to underline that the
strong MCS baseline cannot be used in practice,
since human input is required to indicate which
sense of a word is the most frequent in a given text
(a word’s dominant sense will vary across domains
and text genres). Corpora used for the evaluation
of WSD methods usually contain this kind of an-
notations, but the MCS baseline will not work out-
side the annotated data. Therefore, we consider
important even slightly outperforming the MCS
baseline. Overall, our algorithm compares favor-
ably to other state-of-the-art unsupervised WSD
methods (Schwab et al., 2013a; Chen et al., 2014;
Bhingardive et al., 2015) and to the extended Lesk
measure (Banerjee and Pedersen, 2002; Torres and
Gelbukh, 2009).

Regarding the performance of our algorithm, an
interesting question that arises is how much does
the assembly phase help. We look to investigate
this further in future work, but we can carry out
a small experiment to provide a quick answer to
this question. We consider the ShotgunWSD vari-
ant based on sense embeddings without chang-
ing its parameters, and we remove the assembly
phase completely. Therefore, the algorithm will
no longer produce configurations of length greater
than 8, as the parameter n is set to 8. We have eval-
uated this stub algorithm on SemEval 2007 and we
have obtained a lower F1 score (77.61%). This
indicates that the assembly phase in Algorithm 1
boosts the performance by nearly 2%. More ex-

periments are required to make sure that the per-
formance boost is consistent across data sets.

5 Conclusions and Future Work

In this paper, we have introduced a novel unsu-
pervised global WSD algorithm inspired by the
Shotgun genome sequencing technique (Ander-
son, 1981). Compared to other bio-inspired WSD
methods (Schwab et al., 2012; Schwab et al.,
2013a), our algorithm has only two parameters.
Furthermore, our algorithm is deterministic, ob-
taining the same result for a given set of param-
eters and input document. The empirical results
indicate that our algorithm can obtain better per-
formance than other state-of-the-art unsupervised
WSD methods (Schwab et al., 2013a; Chen et al.,
2014; Bhingardive et al., 2015). Although the fact
that ShotgunWSD is deterministic brings several
advantages, it is also a key difference from our
source of inspiration, Shotgun sequencing, which
is a non-deterministic technique.

In future work, we aim to investigate if training
sense embeddings instead of deriving them from
pre-trained word embeddings could yield better
accuracy. Another promising direction is to com-
pute the semantic relatedness of sense configura-
tions based on the sum of sense tuples instead of
sense pairs. An approach to combine the two se-
mantic relatedness approaches independently used
by ShotgunWSD, namely the extended Lesk mea-
sure and sense embeddings, is also worth explor-
ing in the future.

Acknowledgments

We thank the reviewers for their helpful sugges-
tions. We also thank Alexandru I. Tomescu from
the University of Helsinki for insightful comments
about the Shotgun sequencing technique.

References
Eneko Agirre and Philip Glenny Edmonds. 2006.

Word Sense Disambiguation: Algorithms and Appli-
cations. Springer.

Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.
2014. Random Walks for Knowledge-based Word
Sense Disambiguation. Computational Linguistics,
40(1):57–84, March.

Stephen Anderson. 1981. Shotgun DNA sequencing
using cloned DNase I-generated fragments. Nucleic
Acids Research, 9(13):3015–3027.

924

Satanjeev Banerjee and Ted Pedersen. 2002. An
Adapted Lesk Algorithm for Word Sense Disam-
biguation Using WordNet. Proceedings of CICLing,
pages 136–145.

Satanjeev Banerjee and Ted Pedersen. 2003. Extended
Gloss Overlaps As a Measure of Semantic Related-
ness. Proceedings of IJCAI, pages 805–810.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Re-
search, 3:1137–1155, March.

Simon Bennett. 2004. Solexa Ltd. Pharmacoge-
nomics, 5(4):433–438, June.

Sudha Bhingardive, Dhirendra Singh, Rudramurthy V,
Hanumant Harichandra Redkar, and Pushpak Bhat-
tacharyya. 2015. Unsupervised Most Frequent
Sense Detection using Word Embeddings. Proceed-
ings of NAACL, pages 1238–1243.

Marine Carpuat and Dekai Wu. 2007. Improving sta-
tistical machine translation using word sense disam-
biguation. Proceedings of EMNLP, pages 61–72.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A Unified Model for Word Sense Representation
and Disambiguation. Proceedings of EMNLP, pages
1025–1035, October.

Adrian-Gabriel Chifu and Radu Tudor Ionescu. 2012.
Word sense disambiguation to improve precision for
ambiguous queries. Central European Journal of
Computer Science, 2(4):398–411.

Adrian-Gabriel Chifu, Florentina Hristea, Josiane
Mothe, and Marius Popescu. 2014. Word sense
discrimination in information retrieval: a spectral
clustering-based approach. Information Processing
& Management, 1(2):16–31, July.

Ronan Collobert and Jason Weston. 2008. A Uni-
fied Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning.
Proceedings of ICML, pages 160–167.

Philip Edmonds and Scott Cotton. 2001. SENSEVAL-
2: Overview. Proceedings of SENSEVAL, pages 1–
5.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Florentina Hristea, Marius Popescu, and Monica Du-
mitrescu. 2008. Performing word sense disam-
biguation at the border between unsupervised and
knowledge-based techniques. Artificial Intelligence
Review, 30(1-4):67–86.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word
Sense Disambiguation: An Evaluation Study. Pro-
ceedings of ACL, pages 897–907, August.

Sorin Istrail, Granger G. Sutton, Liliana Florea,
Aaron L. Halpern, Clark M. Mobarry, Ross Lip-
pert, Brian Walenz, Hagit Shatkay, Ian Dew, Ja-
son R. Miller, Michael J. Flanigan, Nathan J. Ed-
wards, Randall Bolanos, Daniel Fasulo, Bjarni V.
Halldorsson, Sridhar Hannenhalli, Russell Turner,
Shibu Yooseph, Fu Lu, Deborah R. Nusskern,
Bixiong Chris Shue, Xiangqun Holly Zheng, Fei
Zhong, Arthur L. Delcher, Daniel H. Huson, Saul A.
Kravitz, Laurent Mouchard, Knut Reinert, Karin A.
Remington, Andrew G. Clark, Michael S. Water-
man, Evan E. Eichler, Mark D. Adams, Michael W.
Hunkapiller, Eugene W. Myers, and J. Craig Ven-
ter. 2004. Whole Genome Shotgun Assembly
and Comparison of Human Genome Assemblies.
Proceedings of the National Academy of Sciences,
101(7):1916–1921.

Mathieu Lafourcade and Frédéric Guinand. 2010. Ar-
tificial Ants for Natural Language Processing. In
N. Monmarch, F. Guinand, and P. Siarry, editors,
Artificial Ants. From Collective Intelligence to Real-
life Optimization and Beyond, chapter 20, pages
455–492. Wiley.

Michael Lesk. 1986. Automatic Sense Disambigua-
tion Using Machine Readable Dictionaries: How to
Tell a Pine Cone from an Ice Cream Cone. Proceed-
ings of SIGDOC, pages 24–26.

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions and reverseals. Cyber-
netics and Control Theory, 10(8):707–710.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgar-
riff. 2004. The Senseval-3 English Lexical Sample
Task. Proceedings of SENSEVAL-3, pages 25–28,
July.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed Rep-
resentations of Words and Phrases and their Compo-
sitionality. Proceedings of NIPS, pages 3111–3119.

George A. Miller. 1995. WordNet: A Lexical
Database for English. Communications of the ACM,
38(11):39–41, November.

Roberto Navigli, Kenneth C. Litkowski, and Orin Har-
graves. 2007. SemEval-2007 Task 07: Coarse-
grained English All-words Task. Proceedings of Se-
mEval, pages 30–35.

Roberto Navigli. 2009. Word sense disambiguation:
A survey. ACM Computing Surveys, 41(2):10:1–
10:69, February.

Kiem-Hieu Nguyen and Cheol-Young Ock. 2013.
Word sense disambiguation as a traveling salesman
problem. Artificial Intelligence Review, 40(4):405–
427.

Ravi K. Patel and Mukesh Jain. 2012. NGS QC
Toolkit: A Toolkit for Quality Control of Next Gen-
eration Sequencing Data. PLoS ONE, 7(2):1–7, 02.

925

Siddharth Patwardhan, Satanjeev Banerjee, and Ted
Pedersen. 2003. Using Measures of Semantic Re-
latedness for Word Sense Disambiguation. Proceed-
ings of CICLing, pages 241–257.

Laura Plaza, Antonio Jose Jimeno-Yepes, Alberto
Diaz, and Alan R. Aronson. 2011. Studying the cor-
relation between different word sense disambigua-
tion methods and summarization effectiveness in
biomedical texts. BMC Bioinformatics, 12:355–
367.

Martin F. Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Didier Schwab, Jérôme Goulian, Andon Tchechmed-
jiev, and Hervé Blanchon. 2012. Ant Colony
Algorithm for the Unsupervised Word Sense Dis-
ambiguation of Texts: Comparison and Evaluation.
Proceedings of COLING, pages 2389–2404, Decem-
ber.

Didier Schwab, Jérôme Goulian, and Andon
Tchechmedjiev. 2013a. Worst-case Complexity
and Empirical Evaluation of Artificial Intelligence
Methods for Unsupervised Word Sense Disam-
biguation. International Journal of Engineering
and Technology, 8(2):124–153, August.

Didier Schwab, Andon Tchechmedjiev, and Jérôme
Goulian. 2013b. GETALP: Propagation of a Lesk
Measure through an Ant Colony Algorithm. Pro-
ceedings of SemEval, 1(2):232–240, June.

Chiraag Sumanth and Diana Inkpen. 2015. How much
does word sense disambiguation help in sentiment
analysis of micropost data? Proceedings of WASSA,
pages 115–121, September.

Sulema Torres and Alexander Gelbukh. 2009.
Comparing Similarity Measures for Original WSD
Lesk Algorithm. Research in Computing Science,
43:155–166.

R. V. Vidhu Bhala and S. Abirami. 2014. Trends in
word sense disambiguation. Artificial Intelligence
Review, 42(2):159–171.

Karl V. Voelkerding, Shale A. Dames, and Jacob D.
Durtschi. 2009. Next Generation Sequencing:
From Basic Research to Diagnostics. Clinical
Chemistry, 55(4):41–47.

926

