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Abstract

This paper investigates how to improve
performance on information extraction
tasks by constraining and sequencing
CRF-based approaches. We consider two
different relation extraction tasks, both
from the medical literature: dependence
relations and probability statements. We
explore whether adding constraints can
lead to an improvement over standard CRF
decoding. Results on our relation extrac-
tion tasks are promising, showing signif-
icant increases in performance from both
(i) adding constraints to post-process the
output of a baseline CRF, which cap-
tures “domain knowledge”, and (ii) fur-
ther allowing flexibility in the application
of those constraints by leveraging a binary
classifier as a pre-processing step.

1 Introduction

With the number of articles indexed by MED-
LINE/PubMed exceeding one million articles per
year1, manual consumption of published medical
literature is no longer practical and researchers
are increasingly turning to automated techniques
to quickly identify and process relevant medical
knowledge (e.g., literature-based discovery (Hris-
tovski et al., 2006)). Our overall project’s objec-
tive is to semi-automate the construction of de-
cision support models by generating probabilistic
graphical models of medical conditions and their
associated risks based on the academic literature
(Deleris et al., 2013). An essential task in this
project consists of extracting from medical papers
any relations mentioning (i) dependence or inde-
pendence between variables and (ii) probability

1https://mbr.nlm.nih.gov/Background.
shtml

statements indicating the strength of a relation-
ship. For both types of relations, we have ap-
proached the entity extraction step as a sequence
labeling problem. We then rely on a set of rules
to construct relations from the entities extracted.
This paper focuses specifically on the entity ex-
traction step which we describe in more detail in
the following section. We then proceed in Sec-
tion 3 with details about our suggested constraint
enforcement procedures. Section 4 reports details
about the experiments, with numerical results re-
ported and discussed in Section 5.

2 Dependence Relation and Probability
Statement Extraction

2.1 Dependence Relation Extraction

The first task concerns identifying dependence re-
lations between pairs of potential variables men-
tioned in text. Dependence and independence here
are to be understood as defined by probability the-
ory whereA depends onB iff Pr(A) 6= Pr(A|B).
As independence statements seldom occur in the
literature, we focus predominantly on dependence
in this paper and define independence as the nega-
tion of dependence. Our choice to use the term
“dependence” to describe the task may lead to
some ambiguity in the NLP world yet from a prob-
ability perspective, it is a precise characterization.
Thus we caution the reader that our use of the word
“dependence” is exclusively related to its meaning
in probability theory. We structure dependence re-
lations as being composed of two variables (vari-
ableA and variableB) which are interchangeable,
one influence term I and an optional negation.2

As an example, from the sentence “For endome-
trial cancer, body mass index represents a major
modifiable risk factor; about half of all cases in

2Negation enables us to capture independence though we
ignore that last element for the remainder of the paper.
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Figure 1: Dependence relation example in brat (Stenetorp et al., 2012)

postmenopausal women are attributable to over-
weight or obesity,” we extract two structured re-
lations. The first involves variable A, body mass
index, variable B, endometrial cancer, and an in-
fluence term, risk factor, and the second has a vari-
able A, overweight or obesity, variable B, cases
and influence term, attributable (see Figure 1).

2.2 Probability Statement Extraction

The second task focuses on extracting proba-
bility statements composed of probability terms
(numbers) along with variables A (the condi-
tioned variable) and B (the conditioning vari-
able). Together they form a conditional proba-
bility statement, i.e., Pr(A|B) = x. For in-
stance, from the sentence “Malaysian women have
a one in 20 chance of developing breast cancer in
their lifetime,” we want to extract the probabil-
ity number, one in 20; the variable A, develop-
ing breast cancer in their lifetime; and the vari-
able B, Malaysian women, which could be rep-
resented as Pr(developing breast cancer in their
lifetime|Malaysian women) = 0.05.

2.3 Insights into the Extraction Task

Probability terms, and to a lesser extent influence
terms, are fairly regular and therefore more easily
classified, while risk variables A and B are het-
erogeneous and exhibit a broad semantic variety.
“1977-1990”, “breast cancer”, “homozygous car-
riers”, “> or = 10 years”, and “younger than age
35” are some examples of different variables taken
from our corpus.

Risk variable identification presents multiple
challenges. Consider the example “Carriers of the
AC haplotype, which represents the variant alle-
les of both SNPs, were at an increased risk (OR =
1.41, 95% CI 1.09-1.82).” We have an odds ratio
probability term “OR = 1.41” and two variables.
However, determining the boundaries of the vari-
ables is not straightforward. Should the condition-

ing variable be the whole subject including the rel-
ative clause, only “Carriers of the AC haplotype,”
or even simply “AC haplotype”? We sidestep this
issue in our current work because these variables
will later be clustered and aggregated into vari-
able groups, e.g., a variable group “breast cancer”
could include mentions of “breast cancer”, “ER+”,
“breast carcinoma” and others.

Finally, the distinction between variables A and
B is essential when constructing a probabilistic
statement (while not significant for dependence
extraction) but it can be problematic to distinguish
the two when extracting them from text. Over-
all, the variable identification task has proved quite
challenging. In fact, our interest in exploring con-
straints is motivated by preliminary results which
hinted, as we will explain in more details in the
next section, that, provided a probability number
or an influence term is detected, we should further
encourage the algorithm to search for the other as-
sociated variables.

3 Methodology

We approach the entity extraction (probability
term and variables on one side, influence terms
and variables on the other side) as a sequence la-
beling problem. We want to identify the best se-
quence of labels y for a sequence of tokens x com-
prising a sentence. The labels in our vocabulary
are O (“outside”), A (variable A), B (variable B)
and, depending on the specific task, P (probability
term) or I (influence term). We initially propose
using conditional random fields (CRF) (Lafferty et
al., 2001) for this task as they have been success-
ful for other related NLP sequence labeling tasks
(Sha and Pereira, 2003; Settles, 2004). We start
with a linear-chain CRF:

Pr(y|x) =
1
Zx

exp(
T∑
t=1

∑
k

λkfk(yt−1, yt, xt))
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Algorithm 1 Dependence Extraction Constraints
if influence term > 0 then

ensure at least one A and one B label
else if A > 0 then

ensure at least one B label
else if B > 0 then

ensure at least one A label
end if

where T is the number of observations indexed by
t, k indexes the feature function fk and weight λk,
and Zx normalizes over the entire input sequence,
Zx =

∑
y exp(

∑T
t=1

∑
k θkfk(yt−1, yt, xt)).

The CRF performs satisfactorily leading to
higher precision classification of the labels than
recall. However, it is not able to capture some
information that we know to be true. For in-
stance, for these corpora, if there is a labeled in-
fluence or probability term, 92% and 99% of the
time, respectively, there are co-occurring variables
in the same sentence. Thus for probability state-
ment extraction, if we have a sentence with a de-
tected probability term, which can be reliably clas-
sified (with F1 scores around 74), then we want
to enforce the presence of both variables A and
B. B is theoretically optional, as it is possible to
find marginal probability, i.e., statements with an
empty conditioning set. In practice, given our do-
main, we choose to impose the presence of at least
one B label for each sentence with a P label. By
contrast, for a sentence without a probability term,
we want to discard such output altogether. In the
case of dependence statement extraction, the sit-
uation is similar, if we detect an influence term
or a variable, we want to force the system to find
the other relevant pieces of the relations. The con-
straints we apply to each of our two tasks are sum-
marized in structured language in Algorithm 1 and
Algorithm 2.

While it is straightforward to discard sentences
that do not contain a given label, constraining the
output with statements to enforce the presence of
at least one type of label given the presence of
another label, is less obvious. We address it by
complementing the initial classification with fur-
ther steps to enforce the constraints. We have
previously explored different approaches, vary-
ing in complexity, for finding the most likely se-
quence while applying these constraints (Deleris
and Jochim, 2016). Here we settle on the con-
strained approach inspired by Culotta and McCal-

Algorithm 2 Probability Extraction Constraints
if probability term = 0 then

ensure no labeled entities
else

ensure at least one A and one B label
end if

lum (2004) that uses posterior conditional proba-
bility in the CRF decoding.

3.1 Notation

We denote by y a vector of labels associated with
observations x (tokens). Let T be the number of
observations (x1, ..., xT ) then y also contains T
elements (y1, ..., yT ) which we index by t and yt ∈
{A,B, P, I,O} ∀t = 1 : T .

Let y∗ = argmaxy Pr(y|x) denote the output
of applying Viterbi decoding to our observations
x. To describe the proposed extensions, we then
introduce the following variables : tP = {t ∈ [1 :
T ] : y∗t = P}, the indexes in the initial output
corresponding to the label P . tI = {t ∈ [1 :
T ] : y∗t = I}, the indexes in the initial output
corresponding to the label I . tA = {t ∈ [1 :
T ] : y∗t = A}, indexes corresponding to the la-
bel A. tB = {t ∈ [1 : T ] : y∗t = B}, in-
dexes corresponding to the label B. Finally we
denote by tO the set of unspecified indexes, i.e.,
tO = {t ∈ [1 : T ] : y∗t = O}.

Our baseline method is simply to evaluate the
classifier performance based on y∗. As we men-
tioned above, our specific context for probability
statement extraction leads us to discard all labels
in a sentence that does not contain any P label. We
thus implement this constraint in our baseline as a
simple post-processing filter on the CRF output.
Specifically, for probability statement extraction,
for a sentence such that |tP | = 0, then we define
a modified output yB (B standing here for Base-
line) where yBt = O ∀t = 1 : T , else we keep the
original output so that yBt = y∗t ∀t = 1 : T .

3.2 CRF-Driven Constraints

Our chosen method to enforce constraints takes
into account current knowledge (i.e., initial decod-
ing from CRF) when estimating probabilities of
labels by conditioning posterior probabilities on
the presence of label A and B based on current
observations. Specifically, if only A missing, i.e.,
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|tA| = 0 then we search

t∗A = argmax
t∈tO

ϕt(s) (1)

and we define yCt = A ∀t ∈ t∗A and yCt = yBt ∀t /∈
t∗A.

In this method, ϕ represents the the posterior
conditional probability given the observed loca-
tions of the required labels. In the case of prob-
ability statement extraction, we have: ϕt(s) =
Pr(yt = s|x, ytP = P, ytA = A, ytB = B) for s ∈
{A,B, P,O}. In the case of dependence relation
extraction, we have: ϕt(s) = Pr(yt = s|x, ytI =
I, ytA = A, ytB = B) for s ∈ {A,B, I,O}.

Similar procedures are applied when B is miss-
ing and when both labels are missing where we
search jointly on the best locations for A and B.

One difficulty with this approach is the need
to compute ϕ. For this purpose, we borrow
from Culotta and McCallum (2004) who provide
a method to compute the forward values αt(s) =
Pr(x1, . . . , xt, yt = s) of the forward-backward
algorithm when forced to conform to a subpath of
constraints C = 〈st, st+1, . . .〉. These constraints
specify for a subset of locations which states they
must be in or not be in (negative constraints).

The original recursive approach to compute
αt(s) is

αt+1(s) =
∑
s′
αt(s′) exp

(∑
k

λkfk(s′, s, xt+1)

)
(2)

The updated recursion equation proposed by
Culotta and McCallum (2004) so as to compute
α′t(s) = Pr(x1, . . . , xt, yt = s|C) is simply to
apply Equation 2 when yt+1 = s conforms with
C (including locations that are not constrained in
any way in C) and set α′t+1(s) = 0 otherwise.
Note that in (Culotta and McCallum, 2004), the
indexes of the constraints included in C are as-
sumed to be contiguous although the method also
applies when they are not. In our case, for prob-
ability statement extraction, we will simply set
C = {ytP = P, ytA = A, ytB = B}, again where
at least one of the sets tA or tB is empty.

We similarly extend this method to com-
pute constrained backward values β′t(s) =
Pr(xt+1, . . . , xT |yt = s, C) by proposing the
modified backward recursion

β′t(s) =
∑
s′
β′t+1(s

′) exp

(∑
k

λkfk(s, s′, xt+1)

)
(3)

when yt = s conforms with C and set β′t+1(s) =
0 otherwise. Overall, this means that ϕt(s) =
Pr(yt = s|x, ytP = P, ytA = A, ytB = B) can
be expressed as follows:

ϕt(s) =
Pr(yt = s, x|ytP = P, ytA = A, ytB = B)

Pr(x|ytP = P, ytA = A, ytB = B)
(4)

This is the result of an application of Bayes rule
along with the conditional independence assump-
tions of the CRF. In turn, we have that :

ϕt(s) =
α′t(s)β′t(s)∑
s′ α
′
T (s′)

(5)

The output yC is guaranteed to contain at least
one labelA and one labelB. t∗A in Equation 1 will
contain only one token while variables A and B,
in reality, often span multiple tokens. Therefore,
as an additional post-processing step, we run the
Viterbi algorithm once more using the identified
labels A,B and P as constraints. This may reveal
longer spans with such labels.

3.3 Classifier-driven Constraints
As we report in Section 5, imposing constraints
based on the initial CRF decoding improves recall
more than it degrades precision and thus proves
useful. We further explore whether adding flexi-
bility to the process can help reduce the precision
degradation. Indeed in the case of dependence re-
lations, we observed that several influence terms
are quite common in dependence relations but are
still not found exclusively in these relations. In
our dataset for instance, the most common influ-
ence term words are associated (142 occurrences
in the training set), association (42), risk (36), and
increased (22). Our one-step CRF-based approach
may thus be misled by those common words into
forcing the presence of a dependence relation.

Therefore, we introduce two separate binary
classifiers to predict whether or not the sentence
contains either a dependence relation or a proba-
bility statement. Our intuition is that the classifier
will be a more reliable indicator of the presence of
a relation than the entity extraction of either prob-
ability number or influence term. We make use of
that prediction to determine if and how to apply
the constraints. In fact, we apply a threshold on
the confidence of the classifier in order to decide
whether to enforce the constraints.

To coordinate the classification, the entity de-
tection (baseline CRF) and the constraint enforce-
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Figure 2: Description of Constraint Enforcement Flows

ment steps, we explore two kinds of flows as de-
picted in Figure 2 for dependence relation extrac-
tion. Both flows start with the binary classifier but
evolve differently:

• In the sequential flow, if the confidence of the
classifier is below a threshold p we simply
discard the sentence. If it is above the thresh-
old, then we process the sentence through
the baseline CRF trained only on sentences
containing relations in the ground truth. We
then enforce our constraints, i.e., for the de-
pendence case, discarding the sentence if no
variable or influence term has been found but
forcing the presence of variables if we detect
an influence term or at least one variable.

• In the parallel flow, we implement the base-
line CRF in parallel with the binary classifier.
This implies that the baseline CRF is trained
on the full set of sentences. Afterwards, if the
confidence of the classifier is below p2, we
discard the sentence, if it is above p1 we en-
force our constraints regardless of the Base-
line CRF output. For intermediate cases, we
only enforce constraints if we detect either an
influence term or a variable.

4 Experiments

In this section we first describe the data used in
our experiments and then cover the configuration

of the baseline CRF classifier along with the con-
strained configurations we test.

Data for Dependence Statements. The depen-
dence dataset comes from 210 abstracts selected
from PubMed based on a query about breast can-
cer. These 210 abstracts are split into 2144 sen-
tences, of which 785 have a dependence relation.
The dependence relations include 830 variables la-
beled A and 837 labeled B. The annotation also
includes labels for influence terms, modifiers and
negation (as mentioned in Section 2.1). The lat-
ter two are not considered here as they do not
contribute to the dependence relations, but we do
show results for influence terms as they are useful
in constructing the dependence relations (although
that is not covered in this paper).

Data for Probability Statements. The proba-
bility dataset is similarly constructed with 194 ab-
stracts from PubMed that are related to breast can-
cer. The whole dataset has 2078 sentences, 376 of
which, contain probabilistic statements, for exam-
ple, “81%P of stage III/IV breast cancersB were
positive for SNCG expressionA.” These sentences
contain 652 probability terms, 446 variables A,
and 467 variables B.

We split both datasets into train (70%) and test
(30%) sets. Parameter tuning can be done by split-
ting the training set, however experiments shown
in this paper do not require parameter tuning.
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Baseline CRF We initially evaluate a baseline
CRF model without constraints, implemented with
Mallet (McCallum, 2002). The same feature set
used in the baseline is used throughout our exper-
iments. It is composed of standard features for se-
quence tagging: surface form, lemma, POS tag,
word shape (i.e., is capitalized, has digit, etc.), and
the arc label from a dependency parse. The CRF
also extracts features from the previous position
(t−1) and the following position (t+1) as well as
bigram features combining the previous two posi-
tions (t − 2, t − 1). We do not tune the features
or regularization parameters in our experiments,
but instead focus on the differences from applying
constraints in decoding. The CRF training is the
same for nearly all experiments and the important
changes are in decoding and in how the constraints
are applied, so tuning these parameters should not
affect our results. The one exception to this is the
sequential flow where the CRF classifier is trained
only on sentences with relations. We use the de-
fault value for the Gaussian variance prior (10) and
keep the same features across our experiments.

In addition to the baseline CRF we test three
constraint settings: (i) Default refers to the de-
coding with the CRF driven enforcement of con-
straints described in Section 3.2; (ii) Parallel
refers to the application of the Parallel flow which
feeds the sentences into the CRF to identify en-
tities and a binary classifier to determine if the
sentence has a relation. The output of the bi-
nary classifier determines if and how the decoding
constraints should be applied; and (iii) Sequen-
tial refers to the application of the sequential flow
where the binary classifier first filters out noisy
sentences followed by the use of a CRF trained
on relation sentence data.

For the binary classifier, we make use of IBM’s
Natural Language Classifier service3 which is re-
lies on a Convolutional Neural Network combined
with word embeddings (Feng et al., 2015). To
clarify, the classifiers that we use, while using pre-
trained word embedding (on general domain), are
then only trained with our own training data.

Evaluation criteria. We evaluate our approach
using standard metrics: precision, recall, and
F1. In addition, we consider different criteria for
matching entities, i.e., token matches, exact en-
tity matches, and “sloppy” matches (Olsson et al.,

3https://www.ibm.com/watson/
developercloud/nl-classifier.html

2002). In Section 5 we report only our results for
token matching since the trends are consistent for
different matching criteria. Exact entity match-
ing is unnecessarily strict for our application (e.g.,
in the context of our work “AC haplotype” is just
as good as “Carriers of the AC haplotype”) and
measuring performance by token makes the results
easily interpretable.

5 Results

5.1 Binary Classifier

As mentioned in Section 3.3, we introduce a
binary classifier to decide whether constraints
should be applied or not (instead of relying only
on the entity annotation of variables A, B, and
Influence or Probability terms). We need an ac-
curate classifier to ensure that constraints are only
applied when necessary. Our experiments show
that the classifier achieves good results with ac-
curacy for classifying dependence sentences of
82.2% and for probability statements, 95.3%.

5.2 Entity Extraction for Dependence
Relations

We first look at the entity extraction results for de-
pendence relations in Table 1. There is consistent
improvement in F1 scores for variables A and B
as we refine the application of constraints. The
baseline CRF classifier has modest precision but
much weaker recall and misses a number of vari-
able A and B entities entirely. We are not partic-
ularly concerned about boundary errors with the
CRF and they are relatively infrequent. On the
other hand, the missed entities, i.e., the entity false
negatives, are more detrimental to the results. In
fact, of the 606 sentences in the test set, 253 should
have some dependence relation annotation but 143
of these are missing a variable A, 143 are missing
a variable B, and 84 are missing both. This result
motivates our use of domain constraints.

Adding Default constraints leads to an increase
in F1 as recall improves while precision drops.
When the baseline CRF assigns any A, B, or in-
fluence term, we force it to have both variables
A and B, and essentially by forcing it we re-
cover enough new variables (higher recall) to off-
set making some less confident prediction (lower
precision). The application of these constraints de-
pends on the quality of the Baseline predictions for
A, B, and Influence Term, and we note that that

844



Precision Recall Fβ=1

VarA
Baseline 60.27% 34.26% 43.69
Default 55.34% 45.68% 50.05
Parallel 64.16% 44.95% 52.87
Sequential 56.86% 62.19% 59.41

VarB
Baseline 41.53% 24.54% 30.85
Default 43.19% 40.44% 41.77
Parallel 52.15% 40.11% 45.35
Sequential 46.78% 48.67% 47.71

Influence Term
Baseline 68.45% 42.95% 52.78
Default 67.18% 43.96% 53.14
Parallel 65.10% 55.70% 60.04
Sequential 64.86% 56.38% 60.32

Table 1: Entity extraction results for dependence
relations.

even for influence terms our performance is mod-
erate and inferior to that of the binary classifier.

The Parallel results display improvements to
both precision and recall over the baseline. While
Parallel recall for A and B is slightly below the
numbers reached in Default, the 9% absolute in-
crease in precision for both variables A and B
leads to F1 improvements for both. By apply-
ing the binary classifier prediction before apply-
ing constraints, we remove some noisy sentences
that contain spuriously labeled entities, which are
not in a dependence relation; in the Parallel results
there are 56 such sentences. For example, in the
baseline experiment a lone variable B, subsequent
cancer occurrence, is extracted from the sentence
“It allowed for a correct estimation of the risk, and
for investigating the time trend of the subsequent
cancer occurrence.” The classifier correctly filters
out this sentence and prevents the CRF from clas-
sifying what might be a valid variable B had there
actually been a dependence relation.

Naturally, by filtering out sentences we also risk
discarding some with dependence relations and
thus affecting recall. In one example of this neg-
ative case, the baseline experiment labels only an
influence term without variables A or B. The con-
straints applied for the Default constraint experi-
ment assign the (correct) variable B and (incor-
rect) variableA. However, the classifier in the Par-

allel experiment mistakenly leads us not to label
any entities in this sentence, thereby missing the
relation.

We observe similar patterns for the Sequential
results. The overall best F1 scores for variables A
and B are due to the significant increases in re-
call. The main difference between Parallel and
Sequential is the fact that the CRF is trained on
a filtered set of sentences for Sequential compared
to the full set for Parallel. The Sequential CRF,
using filtered data, has a higher ratio of variables
labeledA andB per word seen in training and this
makes it more confident in predicting labelsA and
B in testing. This helps the Sequential flow re-
cover several new entities which are missed by the
baseline CRF. This also explains the higher recall
but lower precision with respect to Parallel.

Although only variables A and B are necessary
for dependence relations, we also report perfor-
mance on influence terms, which contribute to the
identification of dependence relations. For the in-
fluence terms, we observe that precision decreases
with each experiment as recall increases. The bi-
nary classifier has a strong and positive effect on
influence term extraction as we see an increase in
recall and F1. Recall for Parallel and Sequential
increases by about 11% and 15% (absolute).

Table 1 shows Parallel results with p1 = 0.5
and p2 = 0.5 and Sequential results with p = 0.5
(see Figure 2). We chose those parameter values
as they correspond to the default for a binary clas-
sifier. In Section 5.4 we look more closely at the
effects of p, p1 and p2.

5.3 Entity Extraction for Probability
Statement

The probability results reported in Table 2 display
similar trends as those for dependence relations,
though we note a few differences as well. First the
Baseline results are lower for variables A and B.
This is due mainly to the heterogeneity of these
variables (even with respect to the dependence re-
lations) and to the smaller dataset. To illustrate
how much more heterogeneous the variables are,
the type-token ratio for variable A is 0.188 in the
dependence training set and 0.392 in the probabil-
ity training set, and the difference for variable B
is similar, 0.224 vs. 0.448. The number of sen-
tences in the dependence and probability corpora
are similar but probability statements are less fre-
quent than dependence relations and for the 620
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Precision Recall Fβ=1

VarA
Baseline 33.98% 8.93% 14.14
Default 52.81% 31.12% 39.17
Parallel 53.41% 33.93% 41.50
Sequential 57.41% 46.43% 51.34

VarB
Baseline 38.61% 11.40% 17.61
Default 43.27% 26.32% 32.73
Parallel 39.01% 25.44% 30.80
Sequential 47.73% 42.98% 45.23

Probability Term
Baseline 79.43% 69.24% 73.99
Default 79.65% 70.17% 74.61
Parallel 81.56% 69.71% 75.17
Sequential 80.36% 75.89% 78.06

Table 2: Entity extraction results for probability
statements.

sentences in the test set we only have 127 with
probability annotation. Like with dependence re-
lations, for probability statements we can motivate
our constraints by looking at the large number of
missed (i.e., false negative) entities. The baseline
CRF misses variable A in 94 sentences with prob-
ability statements (i.e., about 74% of probability
statements are missing variable A). There are 78
probability sentences with a missed variable B,
and 57 missing both.

By applying constraints to these missing vari-
ables we observe the largest increase in perfor-
mance occurs from the Baseline to the Default set-
ting, with improvements in precision, recall, and
F1. The Default constraints approach hinges on
the CRF prediction of the probability term, which
performs well. Because this prediction is already
reliable, by contrast with the dependence relation
extraction, there is less potential for improvement
by applying the binary classifier. In fact, for Par-
allel, performance increases for variable A but de-
creases for variable B.

Training the CRF solely on probability state-
ments, as is the case in Sequential, appears to
have a greater impact than with dependence. As
the proportion of sentences with no-relation in the
probability dataset is higher than in the depen-
dence dataset, filtering out the no-relations sen-
tences removes more noise in the case of prob-

Dependence Probability
p VarA VarB VarA VarB
0.00 48.94 36.23 51.10 44.70
0.05 57.01 46.69 52.40 47.22
0.25 59.77 47.05 51.25 46.90
0.50 59.41 47.71 51.34 45.23
0.75 59.41 49.42 51.28 45.55
0.95 58.72 49.52 46.37 39.79
1.00 0.00 0.00 0.00 0.00

Table 3: F1 scores across p threshold values for
Sequential flow.

ability statement extraction. In turn, removing
this noise improves the CRF performance, lead-
ing in particular to the improved performance for
the probability term and consequently to improve-
ments in the variable extraction with constraints.

5.4 Improving Performance through
Threshold Values

Performance was earlier reported for the Parallel
and Sequential flow for p = p1 = p2 = 0.5, which
represents the default threshold for binary classi-
fiers. In this section, we look closer at the effect of
these threshold values on performance.

There are no values for p that consistently lead
to maximum F1 scores (Tables 3–7) and there is
not space to show precision and recall results as
well. However, as would be expected, the preci-
sion goes up as p1 and p2 increase, i.e., as we be-
come more conservative in constraining the CRF
output. On the other hand, recall drops with higher
values of the p threshold as the CRF is not pushed
to find previously missed variables A or B.

We do find lower p2 thresholds perform better
for probability than dependence. This is likely be-
cause the probability constraints based on the CRF
are still quite reliable. The classifier for depen-
dence statements must be more strict in filtering
sentences, using higher p2 thresholds, because the
dependence constraints are less reliable.

The Sequential flow results are similar. The
maximum F1 scores on the probability dataset
come with p = 0.05, like p2 values for Paral-
lel. The p threshold for variables A and B varies,
also similar to p2 for Parallel, with betterA results
coming from a lower threshold and better B re-
sults with a higher threshold. However, more work
needs to be done to see how we can best leverage
classification in the Sequential and Parallel flows.
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p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 46.48 – – – – –
0.05 50.81 52.64 – – – –
0.25 50.87 52.34 53.88 – – –
0.50 51.26 52.77 53.93 52.87 – –
0.75 51.18 52.69 53.85 52.34 52.30 –
0.95 51.17 52.66 53.83 52.32 51.82 51.33
1.00 50.05 51.53 52.70 51.10 50.55 49.67

Table 4: Var. A F1 for Dependence Parallel flow.

p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 36.98 – – – – –
0.05 42.42 44.93 – – – –
0.25 43.38 44.81 45.34 – – –
0.50 43.36 44.80 44.61 45.35 – –
0.75 43.10 44.53 44.33 44.67 45.45 –
0.95 43.18 44.61 44.41 44.50 44.79 44.78
1.00 41.77 43.13 42.86 42.91 43.18 42.66

Table 5: Var. B F1 for Dependence Parallel flow.

6 Related Work

Our work touches on several areas from con-
strained conditional models (Goldwasser et al.,
2012) to biomedical entity extraction. The work
most related to our approach for applying con-
straints with CRF decoding is (Culotta and McCal-
lum, 2004; Roth and Yih, 2005; Kristjansson et al.,
2004). Our solution for constraining CRF decod-
ing borrows from Culotta and McCallum (2004)
(which is also used by Kristjansson et al. (2004)).
They use constraints for calculating the ‘forward’
values in the forward-backward algorithm and use
this for estimating confidence at given states in
the sequence. Our work applies constraints both
forward and backward and uses these global con-
straints to force specific entities to be extracted.
Roth and Yih (2005) also apply constraints to the
CRF but instead of using Viterbi decoding as is
done here they use Integer Linear Programming
(ILP) to add constraints in decoding for semantic
role labeling.

With respect to our overall objective of entity
and relation extraction from the medical literature,
a large proportion of the related work originates
from BioNLP event extraction (Kim et al., 2009;
Nédellec et al., 2013; Chaix et al., 2016; Deléger
et al., 2016). These tasks are similar in that they

p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 18.88 – – – – –
0.05 42.50 42.75 – – – –
0.25 41.01 41.22 41.35 – – –
0.50 41.38 41.60 41.73 41.50 – –
0.75 40.90 41.11 41.24 41.00 41.01 –
0.95 40.74 40.94 41.07 40.83 40.84 34.49
1.00 39.17 39.34 39.47 39.20 39.19 32.35

Table 6: Var. A F1 for Probability Parallel flow.

p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 13.90 – – – – –
0.05 31.39 31.58 – – – –
0.25 31.31 31.51 31.27 – – –
0.50 31.85 32.06 31.82 30.80 – –
0.75 31.96 32.17 31.93 30.91 30.88 –
0.95 31.87 32.09 31.84 30.80 30.77 21.78
1.00 32.73 32.96 32.71 31.64 31.62 22.31

Table 7: Var. B F1 for Probability Parallel flow.

extract biomedical entities, analogous to our vari-
ables A and B, and the relations between entities
(e.g., bio-molecular events).

The most similar entity extraction task to ours is
from Fiszman et al. (2007). They are interested in
extracting mentions of diseases and medical risk
factors4 from medical literature. They take a less
statistical and more semantic approach to convert
the biomedical text into a semantic representation
using the UMLS Semantic Network.

7 Conclusions

In this paper we investigate how we can improve
performance on information extraction tasks by
constraining CRF-based approaches. We investi-
gate two relation extraction tasks from the medi-
cal literature – dependence relations and probabil-
ity statements – and show that by using our con-
strained CRF models we can get significant im-
provements over a CRF baseline. In future work
we plan to build on these improvements and test
constraints jointly applied to entity and relation
extraction to improve our project’s construction of
decision support models.

4Their risks and disorders appear to be subsets of vari-
ables A and B.
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