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Abstract

To extract structured representations of
newsworthy events from Twitter, unsuper-
vised models typically assume that tweets
involving the same named entities and ex-
pressed using similar words are likely to
belong to the same event. Hence, they
group tweets into clusters based on the co-
occurrence patterns of named entities and
topical keywords. However, there are two
main limitations. First, they require the
number of events to be known beforehand,
which is not realistic in practical applica-
tions. Second, they don’t recognise that
the same named entity might be referred
to by multiple mentions and tweets us-
ing different mentions would be wrongly
assigned to different events. To over-
come these limitations, we propose a non-
parametric Bayesian mixture model with
word embeddings for event extraction, in
which the number of events can be in-
ferred automatically and the issue of lex-
ical variations for the same named entity
can be dealt with properly. Our model has
been evaluated on three datasets with sizes
ranging between 2,499 and over 60 million
tweets. Experimental results show that our
model outperforms the baseline approach
on all datasets by 5-8% in F-measure.

1 Introduction

Event extraction from texts is to automatically ex-
tract key information of events such as what hap-
pened to whom, when and where. Previous re-
search mainly focused on news articles, the best
and abundant source of newsworthy events. With
the increasing popularity of social media plat-
forms, events are also reported and discussed in

Table 1: An example of several tweets describ-
ing the same event about “Space shuttle Atlantis
landed at Kennedy Space Center in Florida on
2011/07/08’’.

Boom! #shuttle #Atlantis is back!
The shuttle is down, welcome back Atlantis,
goodbye shuttle program.
Atlantis lands safely in Florida, marking
the end of NASA’s 30-yr space shuttle pro-
gramme.
Space shuttle Atlantis lands at Kennedy space
center, ending NASA’s 30-year shuttle pro-
gram.

social media apart from news articles. It was re-
ported in (Petrovic et al., 2013) that even 1% of
public Twitter stream covers 95% of all events
on newswire. Extracting events from social me-
dia makes it possible to quickly understand what
is being discussed. It can be further integrated
into downstream applications such as tracking the
public’s viewpoints towards a certain event. How-
ever, due to the difficulty in acquiring annotated
data for training and the short and informal text
commonly appeared in social media, traditional
approaches (Grishman et al., 2005; Tanev et al.,
2008; Piskorski et al., 2008) to event extraction
from new articles are no longer applicable in social
media data. Nevertheless, one important charac-
teristic of social media data is that for most news-
worthy events, there might be a high volume of re-
dundant messages referring to the same event. An
example of several tweets describing one event is
given in Table 1.

Approaches to event extraction from social me-
dia have largely explored the redundancy charac-
teristic (Xia et al., 2015; Popescu et al., 2011; Ab-
delhaq et al., 2013). Most of the pervious meth-
ods aim to discover new or previously unidenti-
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fied events without extracting structured represen-
tations of events. Ritter et al. (2012) presented
a system called TwiCal to extract and categorize
events from Twitter. The strength of association
between each named entity y and date d is mea-
sured based on the number of co-occurring tweets
in order to form a binary tuple 〈y, d〉 to repre-
sent an event. However, TwiCal relies on a super-
vised sequence labeler trained on tweets annotated
with event mentions for the identification of event-
related phrases.

Assuming that each tweet message m ∈
{1..M} is assigned to one event instance e, while
e is modeled as a joint distribution over the named
entities y, the date/time d when the event oc-
curred, the location l where the event occurred and
the event-related keywords k, Zhou et al. (2014;
2015) proposed an unsupervised Bayesian model
called latent event model (LEM) for event extrac-
tion from Twitter. However, LEM requires the
number of events to be known beforehand, which
is not realistic in practical applications. To address
this limitation, in this paper, a non-parametric
mixture model for event extraction is proposed, in
which the number of events is inferred automat-
ically from data. Moreover, the lexical variation
of the same named entity, for example, “Charles”
and “The Prince of Wales”, if identified properly,
could be exploited to help in detecting the same
event described in tweets with different mentions.
To this end, we further extend the non-parametric
mixture model to incorporate word embeddings
generated using neural language modelling.

The main contributions of the paper are summa-
rized below:

• We propose a non-parametric approach
called the Dirichlet Process Event Mixture
Model (DPEMM) to extract structured events
information. It avoids the problem of pre-
setting the number of events, a common issue
in latent Dirichlet allocation (LDA) based ap-
proaches.

• We extend DPEMM by incorporating word
embeddings to deal with the issue of using
multiple mentions to refer to the same named
entity.

• The proposed approaches have been evalu-
ated on three datasets and a significant im-
provement on F-measure compared to the
baseline approach is observed.

2 Related Work

Research on event extraction of tweets can be di-
vided into domain-specific and open domain ap-
proaches. Domain-specific approaches typically
focus on one particular type of events. For ex-
ample, Panem et al. (2014) proposed an algo-
rithm to extract attribute-value pairs and map such
pairs to manually generated schemas for natural
disaster events. Evaluation was carried out on
58,000 tweets for 20 events and the system can
fill such event schemas with an F-measure of 60%.
TSum4act (Nguyen et al., 2015) was designed for
disaster responses based on tweets and has been
evaluated on a dataset containing 230,535 tweets.
Anantharam et al. (Anantharam et al., 2014) fo-
cused on extracting city events by solving a se-
quence labeling problem. Evaluation was carried
out on a real-world dataset consisting of event re-
ports and tweets collected over four months from
San Francisco Bay Area.

Open domain event extraction approaches are
not limited to a specific event type or topic. Ben-
son et al. (2011) proposed a structured graphi-
cal model which simultaneously analyzed individ-
ual messages, clustered, and induced a canonical
value for each event. Popescu et al. (2011) fo-
cused on detecting events involving known enti-
ties from Twitter. Experimental results showed
that events centered on specific entities can be ex-
tracted with 70% precision and 64% recall. Liu
et al. (2012) worked on social events extrac-
tion for social network construction using a fac-
tor graph by harvesting the redundancy in tweets.
Experiments were conducted on manually anno-
tated data set and results showed that it achieved
a gain of 21% in F-measure. In (Abdelhaq et
al., 2013), a system called EvenTweet was con-
structed to extract localized events from a stream
of tweets in real-time. The extracted events are
described by start time, location and a number of
related keywords. Armengo et al. (2015) pro-
posed a model named Tweet-SCAN based on hi-
erarchical Dirichlet process to detect events from
geo-located tweets. To extract more information,
a system called SEEFT (Wang et al., 2015) used
links in tweets and combined tweets and linked
articles to identify events. Xia et al. (2015) pro-
posed a framework combining text, image and
geo-location information to detect events with low
spatial and temporal deviation.

Our proposed method belongs to the open do-
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main category. Different from the previous meth-
ods, our model can automatically identify the
number of events in the corpus and deal with lex-
ical variations of named entities using word em-
beddings generating from neural language mod-
elling.

3 Methodology

Our proposed model for event extraction is
based on a typical non-parametric mixture model,
Dirichlet Process Mixture Model (DPMM) (Green
and Richardson, 2001; Ishwaran and Zarepour,
2002) in which the number of active clusters is au-
tomatically learned from the data. We first give a
brief introduction to DPMM. In DPMM, observa-
tion xi is assumed to be derived from the following
model:

π|α ∼ Dirichlet(α/K, ..., α/K)
ci|π ∼ Multinomial(π)

φk|G0 ∼ G0

xi|ci, {φk}Kk=1 ∼ F (φci)

where K denoting the number of components in
the mixture model and can go to infinity, π is the
mixture weights of each component, φk is the pa-
rameter of the kth component, ci denotes the index
of components, F (φci) denotes the distribution of
xi with parameter φci . In this model, π can be
generated by stick-breaking model (Pitman, 2002)
and Chinese restaurant process (Aldous, 1985).

Suppose that all the observations are generated
by DPMM and the variable of observation xi is θi,
which has the following conditional distribution:

θi|θ1, ..., θi−1 ∼
K∑
k=1

nk
i− 1 + α

δφk +
α

i− 1 + α
G0

where φ1, ..., φk are the distinct values of θ, nk
is the number of observations that belong to com-
ponent k, δφk is a probability measure concen-
trated on φk, which returns 1 when θi = φk, G0 is
the base probability measure and generates new φ
with probability α

i−1+α .

3.1 Dirichlet Process Event Mixture Model
(DPEMM)

We propose a Dirichlet Process Event Mixture
Model (DPEMM) in which each event is repre-
sented as a 4-tuple 〈y, l, k, d〉, where y stands for
non-location named entity, l for location, k for

event-related keyword and d for date. It is worth
noting that y, l, k is not atomic and could be a set
by itself. One event can have multiple named en-
tities, locations or keywords. Also, some elements
of the 4-tuple might be absent if no associated in-
formation can be found in tweets. Assuming that
the data contains an infinite number of events and
each event is modeled as a joint distribution over y,
l, k and d, the model can be viewed as a Bayesian
mixture model.

The generative process of the proposed model
is given below.

• Draw event distribution π ∼
Dirichlet( αK , ...,

α
K ).

• For each event e, draw multinomial distribu-
tion θe ∼ Dirichlet(β), ψe ∼ Dirichlet(η),
ωe ∼ Dirichlet(λ), φe ∼ Dirichlet(γ).

• For each tweet t:

– Draw an event from event distribution
e ∼ Multinomial(π).

– For each non-location named entity oc-
curred in t, choose a named entity y ∼
Multinomial(θe).

– For each location occurred in t, choose
a location l ∼ Multinomial(ψe).

– For each keyword occurred in t, choose
a keyword k ∼ Multinomial(ωe).

– For each date occurred in t, choose a
date d ∼ Multinomial(φe).

Here, K is the number of events and can go
to infinity. To estimate the parameters of the
model, we employ Markov chain sampling meth-
ods (Neal, 2000). AsK goes to infinity, we cannot
represent the infinite number of θe, ψe, ωe and φe
explicitly. Therefore, we perform Gibbs sampling
for only those parameters that are currently associ-
ated with some observations. Gibbs sampling for
the event label ei of tweet i is based on the follow-
ing conditional probabilities:
If ei is assigned with a previously seen event e,

P (ei = e|e−i, si, t−i) = b
n−ie

n− 1 + α∏
y∈yi

∫
Fy(θe)dHy(θe)

∏
l∈li

∫
Fl(ψe)dHl(ψe)

∏
k∈ki

∫
Fk(ωe)dHk(ωe)

∏
d∈di

∫
Fd(φe)dHd(φe)
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If ei is assigned with a new event,

P (ei = enew|e−i, si di, t−i) = b
α

n− 1 + α∏
y∈yi

∫
Fy(θ)dG0(θ)

∏
l∈li

∫
Fl(ψ)dG0(ψ)

∏
k∈ki

∫
Fk(ω)dG0(ω)

∏
d∈di

∫
Fd(φ)dG0(φ)

, where b is the normalizing constant that makes
the probabilities sum to 1, e−i is the event assign-
ment of all the other tweets excluding the data
from ith tweet, si is the four-tuple 〈yi, li, ki, di〉,
n is the total number of tweets, n−ie is the num-
ber of tweets assigned with event label e excluding
the current assignment, Fy(θe) is the multinomial
distribution over non-location named entities with
prior θe, Fl(ψe) over locations with ψe, Fk(ωe)
over keywords with ωe, and Fd(φe) over dates
with φe. Hy(θe) is the posterior distribution of pa-
rameters based on the priorG0(θe) ∼ Dirichlet(β)
and all observations yj for which j 6= i and ej = e,
and similarly for Hl(ψe), Hk(ωe) and Hd(φe).

We then derive the following formulae:
If ei is assigned with a previously seen event e,

P (ei = e|e−i, si, t−i) = b
n−ie

n− 1 + α∏
y∈yi

n−ie,y + β

ΣY
t=1(n−ie,y,t + β)

∏
l∈li

n−ie,l + η

ΣL
t=1(n−ie,l,t + η)∏

k∈ki

n−ie,k + λ

ΣK
t=1(n−ie,k,t + λ)

∏
d∈di

n−ie,d + γ

ΣD
t=1(n−ie,d,t + γ)

If ei is assigned with a new event e′,

P (ei = e′|e−i, si, t−i)
= b

α

n− 1 + α

∏
y∈yi

1
Y

∏
l∈li

1
L

∏
k∈ki

1
K

∏
d∈di

1
D

, where the superscript −i denotes a count exclud-
ing data from ith tweet, n−ie,y, n−ie,l , n

−i
e,k, and n−ie,d

denotes the occurrence count of non-location y, lo-
cation l, keyword k and date d in event e, respec-
tively. t−i denotes all other tweets. β, η, λ, γ are
the hyperparameters and are set to the same value
1 in the experiments in the paper.

3.2 DPEMM With Word Embeddings
In the proposed model described above, each dis-
tinct word is treated separately without consider-

ing their semantic relations. However, the knowl-
edge of semantic relations of words might be use-
ful for event extraction. For example, “Putin”
and “The President of Russia” are two
different mentions referring to the same person.
Knowing such knowledge would help to clus-
ter the following two tweets together, “President
of Russia attended the opening ceremony of the
119th session of the International Olympic Com-
mittee.” and “Putin took part in the presentation
of Sochi, at the 119th of the IOC.”, and hence
identify a single event. Moreover, there might ex-
ist partitive relations between two location names.
For example, Croydon is a part of London. The
information will help to identify the same event
described as happened in Croydon and London
and subsequently improve the accuracy of event
extraction.

To incorporate such information about seman-
tic relations between words, we propose another
model by employing word embeddings to describe
the semantic relations among y or l, which is
called DPEMM-WE. Word embedding for each
word is often represented in a vector form. In
the embedded hyperspace, words that are more se-
mantically or syntactically similar to each other
are located closer. We use neural language mod-
eling (Collobert et al., 2011) to learn word repre-
sentations by discriminating the legitimate phrase
from incorrect phrases. Given a sequence of words
p = (w1, w2, ..., wd) with window size d, the goal
of the model is to discriminate the sequence of
words p (the correct phrase) from a random se-
quence of words pr. Thus, the objective function
of the model is to minimize the ranking loss with
respect to parameters θ:∑

p∈p

∑
r∈R

max(0, 1− fθ(p) + fθ(pr)) (1)

, where p is the set of all possible text sequences
with d words coming from the corpus U , R is
the dictionary of words, pr denotes the window
of words obtained by replacing the central word
of p by the word r and fθ(p) is the score of p.
The dataset for learning the language model can be
constructed by considering all the word sequences
in the corpus. Positive examples are the word se-
quences from the corpus, while negative examples
are the same word sequence with the central word
replaced by a random one.

Different from DPEMM, in DPEMM-WE, non-
location named entities y and locations l are as-
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sumed to follow Gaussian distribution to incor-
porate word embeddings and their prior distri-
butions are assumed to follow Normal-Inverse-
Wishart (NIW) distribution, which is conjugated
with Gaussian distribution. The probability den-
sity function is

NIW (µ,Σ|µ0, λ,Ψ, ν)

= N (µ|µ0,
1
λ

Σ)W −1(Σ|Ψ, ν)

N (µ|µ0,
1
λ

Σ) =
e−

1
2

(µ−µ0)T (Σ/λ)−1(µ−µ0)√|2πΣ/λ|

W −1(Σ|Ψ, ν) =
|Σ| ν2

2
νp
2

Γp( ν
2

)
|Σ|− ν+p+1

2 e−
1
2
tr(ΨΣ−1)

where Σ and Ψ are p × p positive definite matri-
ces and Γp(·) is the multivariate gamma function.
The graphical model of DPEMM-WE is shown in
Figure 1.

e

y lk d

y y

y0 Sy0 y0y0

l l

l0 Sl0 l0l0

K

Figure 1: Plate notation of the graphical model
DPEMM-WE.

The generative process of DPEMM-WE is
given below.

• Draw event distribution π ∼
Dirichlet( αK , ...,

α
K ).

• For each event, draw Graussian distribu-
tion θe ∼ NIW(β), ψe ∼ NIW(η); draw
Multinomial distribution ωe ∼ Dirichlet(λ),
φe ∼ Dirichlet(γ).

• For each tweet t:

– Draw an event from event distribution
e ∼ Multinomial(π).

– For each named entity occurred in
t, choose a named entity y ∼
Gaussian(θe).

– For each location occurred in t, choose
a location l ∼ Gaussian(ψe).

– For each keyword occurred in t, choose
a keyword k ∼ Multinomial(ωe).

– For each date occurred in t, choose a
date d ∼ Multinomial(φe).

, where β = (κy0, µy0, νy0, Sy0), θe = (µy,Σy),
η = (κl0, µl0, νl0, Sl0), ψe = (µl,Σl).

Similar to DPEMM, parameters of the model
can be estimated by Gibbs sampling. The sam-
pling equation is given as below:
If ei is assigned with a previously seen event e,

P (ei = e|e−i, si, t−i) = b
n−ie

n− 1 + α∏
y∈yi

∫
p(y|θ)p(θ|νe,y0, κe,y0, µe,y0, Se,y0, t−i)dθ

∏
l∈li

∫
p(l|ψ)p(ψ|νe,l0, κe,l0, µe,l0, Se,l0, t−i)dψ

∏
k∈ki

∫
p(k|ω)p(ω|λ, t−i)dω

∏
d∈di

∫
p(d|φ)p(φ|γ, t−i)dφ

If ei is assigned with a new event e′,

P (ei = e′|e−i, si, t−i) = b
α

n− 1 + α∏
y∈yi

∫
p(y|θ)p(θ|νe′,y0, κe′,y0, µe′,y0, Se′,y0)dθ

∏
l∈li

∫
p(l|ψ)p(ψ|νe′,l0, κe′,l0, µe′,l0, Se′,l0)dψ

∏
k∈ki

∫
p(k|ω)p(ω|λ)dω

∏
d∈di

∫
p(d|φ)p(φ|γ)dφ

, where θ and ψ denote parameter (µ,Σ).
As

∫
N (x|θ)NIW (θ|ν, κ, µ, S)dθ =

T (ν −D + 1, µ,
S(κ+ 1)

κ(ν −D + 1)
)

the parameters of entities’ T distribution are
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given as:

κe,y = κy0 +Ne

νe,y = νy0 +Ne

µe,y =
κy0µy0 +Neve,y

κe,y
Se,y = Se0 + Ce,y

+
κe0Ne

κe, y
(ve,y − µe0)(ve,y − µe0)T

ve,y =

∑
y∈e vy
Ne

Ce,y =
∑
y∈e

(vy − ve,y)(vy − ve,y)T

, where vy means the word embedding of entity y.
The parameters of locations’ T distribution can
be calculated similarly.

3.3 Post-Processing

DPEMM or DPEMM-WE essentially outputs
tweet clusters where each cluster represents one
event. To further extract structured representa-
tion of an event, such as named entities, loca-
tions, dates and keywords, from each cluster, we
simultaneously look into the probabilities of each
event element returned by our models and their
co-occurrence frequencies. We assumed that non-
location named entities were the most important
since an event is usually operated by somebody
or something. If an event happened in some-
place like “A bomb attack was happened in Lon-
don”, the location is the most important. There-
fore, we first select the top 3 non-location named
entities ranked by the probability θe. For each
non-location named entity y, its occurrence fre-
quency needs to exceed Ty. If no such entities
exist, the top 3 locations ranked by the proba-
bility ψe are chosen; otherwise, the location l is
chosen based on its co-occurrences with the se-
lected non-location named entities. After that,
keywords k are chosen among the top 10 ωe. Only
those keywords with correlation coefficients with
the chosen named entities and locations exceeding
Tc are selected. Then date d is chosen in a sim-
ilar way. Here, we define the correlation coeffi-
cient between a and b as Corr(a, b) = log #(a,b)

#(b) ,
where #(a, b) denotes the co-occurrence count of
a and b in the same tweet within a tweet cluster
and #(b) denotes the occurrence count of b in all
tweets within a tweet cluster. In our experiments,
we set the thresholds Ty = 0.2, Tc = 0.4.

If the entity or location is in the form of word
embeddings, its occurrence frequency is calcu-
lated as the occurrence frequencies of all the
neighboring words which have cosine similarity
values greater than 0.85. The rationale behind our
post-processing step is that although tweets have
been filtered in the pre-processing step, tweet clus-
ters generated by the proposed models still con-
tain noisy event elements. As such, we select
event elements from tweet clusters not only based
on their probability distributions given by the pro-
posed models but also taking into account their co-
occurrences in each tweet cluster.

4 Experiments

We evaluate the proposed models on three
datasets. Dataset I is the First Story Detection
(FSD) dataset (Petrovic et al., 2013) containing
2,499 tweets manually annotated with 27 events.
These tweets were published between 7th July and
12th September 2011, covering a range of cate-
gories such as accidents and science discoveries.
Considering that events mentioned in a very few
tweets are less likely to be significant, we remove
events mentioned in less than 15 tweets and are
left with 2,453 tweets annotated with 20 events.
Dataset II and III were collected from tweets pub-
lished in the month of December in 2010 using
the Twitter streaming API. Dataset II consists of
6,297 tweets manually annotated with 73 events.
All the annotated events in Dataset II are men-
tioned in at least 15 tweets. Dataset III contains 60
millions unlabelled tweets. We chose LEM (Zhou
et al., 2014), the state-of-art approach based on
Bayesian modelling for event extraction, as the
baseline to compare with the proposed model. For
all datasets, pre-processing is done as described in
baseline (Zhou et al., 2014). A named entity tag-
ger1 specifically built for Twitter is used for ex-
tracting named entities including locations from
tweets. A Twitter Part-of-Speech tagger (Gimpel
et al., 2011) is used for POS tagging and only
words tagged with nouns, verbs or adjectives are
kept as candidate keywords. Word embeddings
are trained on Dataset III (60 million tweets) us-
ing Word2Vec2. In this model, a word is used as
an input to a log-linear classifier with continuous
projection layer and the objective is to predict its
neighboring words.

1http://github.com/aritter/twitter-nlp
2http://code.google.com/p/word2vec/
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We train DPEMM, DPEMM-WE and LEM on
an IBM 3850 X5 Linux server equipped with 1.86
Ghz processor and 8 GB DDR3 RAM. The num-
ber of Gibbs sampling iterations is set to 1,000 for
LEM for all the datasets. For DPEMM, it con-
verges in 16 iterations on Dataset I and 20 itera-
tions on Dataset II and III. While for DPEMM-
WE, it converges in 20 iterations on both Dataset
II and III.

4.1 Experimental Results

To evaluate the performance of the proposed ap-
proaches, we calculate precision, recall, and F-
measure on Dataset I and II and only precision on
Dataset III since it is hard to know exactly how
many events are mentioned in such a large dataset.
The precision is defined based on the following
criteria: 1) Do the entity y, location l and the date
d refer to the same event? 2) Are the keywords k in
accord with the event that other extracted elements
y, l, d refer to and are they informative enough to
tell us what happened? If the extracted events does
not have any keyword, such events are considered
as incorrect.

The performance comparison of event extrac-
tion results is presented in Table 2. It can be ob-
served that the proposed DPEMM achieves better
performance on all the three datasets compared to
the baseline approach, with the improvement in F-
measure being 6.1% and 7.7% on Dataset I and
II, respectively. After incorporating word embed-
dings into DPEMM, the proposed DPEMM-WE
further improves upon DPEMM slightly by 1.45%
in F-measure on Dataset II, but more significantly
by 4.16% in precision on Dataset III. It verifies our
hypothesis that the knowledge about the semantic
relations of entities and locations could potentially
improve the performance of event extraction. We
also compared the proposed models with K-means
on Dataset I to justify whether these proposed gen-
erative models are better than traditional clustering
methods based on co-occurrence. The feature set
was constructed by organizing the words in four
categories such as y, l, k, d and concatenating the
four one-hot feature sets together.

It is worth noting that we did not apply
DPEMM-WE on Dataset I because this dataset is
very small, consisting of less than 2500 tweets. It
is thus unreliable to learn word embeddings from
such a small dataset. It is also hard to pre-train
word embedding from extra dataset like Wikipedia

Table 2: Comparison of the performance of event
extraction on the three datasets.

Dataset I
Method Precision(%) Recall(%) F-measure(%)
K-means 91.23 55.40 68.93
LEM 79.17 85.00 81.98
DPEMM 86.21 90.00 88.06

Dataset II
Method Precision(%) Recall(%) F-measure(%)
LEM 62.35 68.49 65.28
DPEMM 70.80 75.34 73.00
DPEMM-WE 71.15 78.08 74.45

Dataset III
Method Precision(%) Number of correctly Events
LEM 68.25 215
DPEMM 68.60 342
DPEMM-WE 72.76 353

corpus for Dataset I because some words in so-
cial media are informal and some words were
only mentioned in some specific time slots such
as “Dream Act”. Also, word embeddings learned
from Dataset III are not beneficial for event ex-
traction in Dataset I since tweets collected in these
two datasets were in different periods and a large
number of words in Dataset I cannot be found in
Dataset III. For example, more than 20% named
entities in Dataset I can not be found in the word
vocabulary constructed based on Dataset III.

Examples of events extracted by DPEMM and
DPEMM-WE are shown in Table 3. It can be ob-
served that the extracted results from DPEMM-
WE contain more detailed and accurate infor-
mation describing the events. For example, for
the first event, DPEMM-WE is able to extraction
the location information while DPEMM failed to
do so. For the third event, DPEMM-WE gives
more accurate location information compared to
DPEMM. It might attribute to the advantage of in-
corporating word embeddings which are able to
map semantically similar words into nearby loca-
tions in the embedding hyperspace. As such, al-
though two tweets might contain different men-
tions of named entities and locations, they might
still be clustered together if these named entities
or locations have similar word embeddings.

We observed that the precision achieved by
DPEMM on Dataset I is signifcantly better than
LEM on Dataset I and II while similar on Dataset
III. We found that DPEMM tended to generate
many but smaller clusters compared to LEM. As
dataset III is huge, DPEMM might generate some
small clusters which do not contain enough infor-
mation to describe a correct event.
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Table 3: Examples of extracted events based on DPEMM and DPEMM-WE.
Event Method Entities Locations Keywords Date

1
DPEMM Biden - inevit marriage gay say 2010-12-24

DPEMM-WE Biden, Obama WhiteHouse marrige gay inevit say 2010-12-24

2
DPEMM Charles London car protest attack contain 2010-12-09

DPEMM-WE Charles, Camilla London, UK protest car demonstrators attack 2010-12-09

3
DPEMM - London snow close airport ice 2010-12-18

DPEMM-WE - Europ, London, Gatwick snow delay runaway airport 2010-12-18

4
DPEMM DreamAct, Reid - pass bill vote will 2010-12-09

DPEMM-WE DreamAct, Harry, Reid Senate vote pass debate bill 2010-12-09

5
DPEMM WorldCup Russia announce will host chose 2010-12-03

DPEMM-WE WorldCup, FIFA Russia, Qatar news host win will 2010-12-03

0 <0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9   
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Purity of Event Cluster

P
e

rc
e

n
ta

g
e

 o
f 

E
v

e
n

t 
C

lu
st

e
rs

≤ 1
 

 

LEM

DPEMM

Figure 2: Purities of the clusters on Dataset I.

4.2 Quality of Clusters

As the proposed approaches essentially group
tweets into different clusters with each cluster cor-
responding to an event, we conduct experiments
to explore the quality of clusters by a measure of
purity, which is defined as Pe = ne

n , where ne de-
notes the number of tweets describing the event
e extracted from a cluster and n denotes the total
number of tweets in the cluster. Since it is diffi-
cult to calculate the purity on Dataset III, we only
report the results on Dataset I and Dataset II as
shown in Figure 2 and 3 respectively.

Each point (x, y) in the figures denotes the per-
centage y of the clusters whose purity is less than
x. Obviously, if the curve is steeper, it means that
the percentage of the clusters with low purity is
smaller and the quality of the clusters is better. It
can be observed that DPEMM achieves the best
quality of cluster on both Dataset I and Dataset
II, whose precision is lower than DPEMM-WE.
Specifically, on Dataset I, more than 80% of clus-
ters generated by DPEMM has the purity value
greater than 0.9, compared to only 70% in LEM.
It might be attributed to the property of DPEMM
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Figure 3: Purities of the clusters on Dataset II.

that the cluster is generated dynamically without
a preset number of clusters. On Dataset II, both
DPEMM and DPEMM-WE achieve better cluster-
ing results compared to LEM. However, the pu-
rity of clusters generated by DPEMM is slightly
higher than that generated by DPEMM-WE. This
is somewhat contrary to our prior belief. By fur-
ther analyzing the results, we found that as more
tweets are clustered together using DPEMM-WE,
more noisy information such as some named enti-
ties with similar word embeddings which are not
related to the events is introduced. We present an
example of the tweet clusters describing the same
event generated by DPEMM and DPEMM-WE in
Figure 4. For each method, we use a histogram
to indicate the number of tweets which share the
same event elements. Regions highlighted in dark
or light red colors indicate that the correspond-
ing tweets are event-related. Regions highlighted
in blue denote the corresponding tweets are not
event-related. It can be observed that the purity
of the cluster generated by DPEMM is 91% which
is better than DPEMM-WE’s 63%. However, the
size of the cluster returned by DPEMM is smaller
and it failed to extract the location information.
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Figure 4: Example tweet clustering results gener-
ated by DPEMM and DPEMM-WE.

On the contrary, DPEMM-WE generated a larger
cluster and for some tweets, it successfully ex-
tracted the location “Senate”. However, more spu-
rious tweets are included because “Harry Reid”
is close to both “DreamAct” and “Obama”, and
“White House” is close to “Senate” in the word
embedding space. Therefore, although DPEMM-
WE gives better extraction results overall com-
pared to DPEMM as shown in Table 2, it returns
lower purity results because of some noisy infor-
mation introduced through word embeddings.

5 Conclusions and Future Work

In this paper, we have proposed a model based
on the Dirichlet Process mixture model to ex-
tract structured event information from social me-
dia data. Different from previous approaches for
event extraction which require setting the number
of events beforehand, it can infer the number of
events automatically from data. It is specifically
appealing for processing large-scale social media
data. Moreover, considering different mentions of
names could refer to the same person (and simi-
larly for other named entities such as location), we
have proposed to incorporate word embeddings
into DPEMM so as to more effectively capture se-
mantically similar words. Experiments have been
conducted on three datasets and the proposed ap-
proaches achieve better performance on all the
datasets in comparison with the baseline approach.
In the future, we plan to investigate more effec-
tive way in reducing the noise introduced by word
embeddings and incorporate emotion information
into the proposed models to simultaneously ex-

tract public opinions of the extracted event.
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