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Abstract

In recent years, knowledge graphs such
as Freebase that capture facts about enti-
ties and relationships between them have
been used actively for answering factoid
questions. In this paper, we explore the
problem of automatically generating ques-
tion answer pairs from a given knowl-
edge graph. The generated question an-
swer (QA) pairs can be used in several
downstream applications. For example,
they could be used for training better QA
systems. To generate such QA pairs, we
first extract a set of keywords from enti-
ties and relationships expressed in a triple
stored in the knowledge graph. From each
such set, we use a subset of keywords to
generate a natural language question that
has a unique answer. We treat this sub-
set of keywords as a sequence and pro-
pose a sequence to sequence model using
RNN to generate a natural language ques-
tion from it. Our RNN based model gen-
erates QA pairs with an accuracy of 33.61
percent and performs 110.47 percent (rel-
ative) better than a state-of-the-art tem-
plate based method for generating natu-
ral language question from keywords. We
also do an extrinsic evaluation by using
the generated QA pairs to train a QA sys-
tem and observe that the F1-score of the
QA system improves by 5.5 percent (rela-
tive) when using automatically generated
QA pairs in addition to manually gener-
ated QA pairs available for training.

∗This work was done while the author was a part of IBM
Research India

†This work was done while the author was a part of IBM
Research India

1 Introduction

Knowledge graphs store information about mil-
lions of things (or entities) and relationships be-
tween them. Freebase1 is one such knowledge
graph that describes and organizes more than 3
billion facts in a consistent ontology. Knowl-
edge graphs usually capture relationships be-
tween different things that can be viewed as
triples (for example, CEO(Sundar Pichai,
Google)). Such triples are often referred to as
facts and can be used for answering factoid ques-
tions. For example, the above triple can be used to
answer the question “Who is the CEO of Google
?”. It is not surprising that knowledge graphs are
increasingly used for building Question Answer-
ing systems (Ferrucci, 2012; Yahya et al., 2013;
He et al., 2014; Zou et al., 2014).

In this paper, we focus on exploiting knowledge
graphs for a related but different purpose. We
propose that such triples or facts can be used for
automatically generating Question Answer (QA)
pairs. The generated QA pairs can then be used in
certain downstream applications. For example, if
some domain-specific knowledge graphs are avail-
able (such as History, Geography) then such QA
pairs generated from them can be used for devel-
oping quiz systems for educational purposes.

We now formally define the problem and then
illustrate it with the help of an example. Consider
a triple consisting of a subject, predicate and
object. Typically, the predicate has a domain
(subject type) and a range (object type) associated
with it. The predicate may have zero or more
parents in the knowledge graph. For the sake
of simplicity let us assume that the predicate
has a single parent. We define a set consisting
of the subject, predicate, object, domain, range
and predicate parent. We propose an approach

1https://www.freebase.com/
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Predicate CEO
Subject Sundar Pichai
Object Google
Parent Predicate designation
Domain person
Range organization

CEO, designation,
Keywords Sundar Pichai, person,

Google, organization

Table 1: An example set of keywords constructed
from the triple CEO(Sundar Pichai, Google)

to generate natural language factoid questions
using a subset of this set such that the answer to
the question also lies in the set. Given the set of
keywords, as shown in Table 1, we could generate
the following QA pairs (keywords are italicized):

Q: What is the designation of Sundar Pichai at
Google?
A: CEO
Q: Which organization is Sundar Pichai the CEO
of?
A: Google

The above problem is similar to the problem
of generating questions from Web queries (in-
stead of entities and relations) which was first sug-
gested by Lin (Lin, 2008). However, unlike ex-
isting works on query-to-questions which mainly
rely on template based approaches, we formulate
this as a sequence to sequence generation prob-
lem wherein the ordered set of keywords is an in-
put sequence and the natural language question is
the output sequence. We use a Recurrent Neural
Network (RNN) (Werbos, 1990; Rumelhart et al.,
1988) based model with Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
units to generate questions from the given set of
keywords.

The input to our question generation model is a
set of keywords extracted from triples in a knowl-
edge graph. For this, it is important to first select a
subset of triples from which interesting and mean-
ingful questions can be constructed. For example,
no interesting questions can be constructed from
the triple wikipage page ID(Google, 57570) and
hence we should eliminate such triples. Further,
even for an interesting triple, it may be possible to
use only certain subsets of keywords to construct

a meaningful question. For example, for the set
of keywords shown in Table 1, it is not possible
to use the subset {person, designation} to form an
interesting question. Hence, we need to automati-
cally identify the right set of keywords that should
be used to form the question such that the answer
also lies in the set. In addition to the question gen-
eration model, we also propose a method for ex-
tracting a meaningful subset of keywords from the
triples represented in the knowledge graph.

While our goal in this paper is to generate a
set of question answer pairs for a given entity in
a knowledge graph, we train the RNN model for
generating natural language questions from a se-
quence of keywords using an open domain Com-
munity Question Answering (CQA) data. This en-
sures that the same trained RNN can be used with
different knowledge graphs.

The main contributions of our work can be sum-
marized as follows:

• We propose a method for extracting triples
and keywords from a knowledge graph for
constructing question keywords and answer
pairs.

• We formulate the problem of generating nat-
ural language questions from keywords as a
sequence to sequence learning problem that
performs 110.47 % (relative) better than ex-
isting template based approaches.

• We train our model using 1M questions from
WikiAnswers thereby ensuring that it is not
tied to any specific knowledge graph.

• Finally, we show that appending the automat-
ically generated QA pairs to existing training
data for training a state of the art QA system
(Jonathan Berant, 2014) improves the perfor-
mance of the QA system by 5.5 percent (rel-
ative).

The remainder of this paper is organized as fol-
lows. In next section, we describe related work,
followed by a description of our overall approach
for extracting keywords from triples and generat-
ing natural language question answer pairs from
them. We then describe the experiments per-
formed to evaluate our system and then end with
concluding remarks.
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2 Related Work

There is only very recent work around generation
of question answer pairs from knowledge graph
(Seyler et al., 2015). On the other hand, there
are several works around question generation that
have been proposed in past with different motiva-
tions. We first present a brief overview of the ques-
tion generation techniques proposed in the litera-
ture along with their limitations and then discuss
the work around generation of questions answer
pairs from knowledge graph.

A number of papers have looked at the problem
of generating vocabulary questions using Word-
Net (Miller et al., 1990) and distributional sim-
ilarity techniques (Brown et al., 2005; Heilman
and Eskenazi, 2007). There are numerous works
in automatic question generation from text. Many
proposed methods are syntax based methods that
use the parse structure of sentences, identify key
phrases and apply some known transformation
rules to create questions (Ali et al., 2010; Kalady
et al., 2010; Varga, 2010). Mannem et al. (2010)
further use semantic role labeling for transforma-
tion rules. There are also template based meth-
ods proposed where a question template is a pre-
defined text with placeholder variables to be re-
placed with content from source text. Cai et al.
(2006) propose an XML markup language that is
used to manually create question templates. This
is sensitive to the performance of syntactic and se-
mantic parsing. Heilman and Smith (2010) use
a rule based approach to transform a declarative
sentence into several candidate questions and then
rank them using a logistic regression model. These
approaches involve creating templates manually
and thus require huge manual work and have low
recall.

A problem that has been studied recently and
is similar to our problem of generating questions
using knowledge graph is that of generating ques-
tions from Web queries. The motivation here is
to automatically generate questions from queries
for community-based question answering services
such as Yahoo! Answers and WikiAnswers. The
idea was first suggested by (Lin, 2008) and further
developed by (Zhao et al., 2011) and (Zheng et
al., 2011). Both of these approaches are template
based approaches where the templates are learnt
using a huge question corpus along with query
logs. Dror et al. (2013) further proposed a learn-
ing to rank based method to obtain grammatically

correct and diverse questions from a given query
where the candidate questions are generated us-
ing the approach proposed by (Zhao et al., 2011).
These approaches use millions of query question
pairs to learn question templates and thus have bet-
ter generalization performance compared to earlier
methods where templates were learnt manually.

Recently, Seyler et al. (2015) proposed a
method to generate natural language questions
from knowledge graphs given a topic of interest.
They also provide a method to estimate difficulty
of generated questions. The generation of ques-
tion is done by manually created template patterns
and therefore is limited in application. In con-
trast we propose an RNN based method to learn
generation of natural language questions from a
set of keywords. The model can be trained using
a dataset containing open domain keywords and
question pairs.

3 Approach

In this section we propose an approach to generate
Question Answer (QA) pairs for a given entity E.
Let KG be the knowledge graph which contains
information about various entities in the form of
triples. A triple consists of a subject, a predicate
and an object. Subjects and objects are nodes in
the KG, which could represent a person, a place,
an abstract concept or any physical entity. Pred-
icates are edges in the KG. They define type of
relationship between the subject and the object.

The framework to generate QA pairs consists
two major modules. The first module, Ques-
tion Keywords and Answer Extractor, is lan-
guage independent and extracts required knowl-
edge about the entity E from the KG. The second
module is a language dependent RNN based Nat-
ural Language Question Generator. When fed
with the information extracted from the first part it
generates natural language QA pairs.

3.1 Question Keywords and Answer
Extractor

Question keywords are keywords necessary to
generate a question in natural language, or it could
also be viewed as a concise representation of a nat-
ural language question. For example, to generate
a QA pair for the entity London. We can gener-
ate a natural language question like What is the
capital city of United Kingdom? with the key-
words {Capital, City, United Kingdom}. Also
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Figure 1: Triples with the entity London in a
knowledge graph

since London is the answer to the above ques-
tion, ({Capital, City, United Kingdom}, London)
together will form a Question Keyword and An-
swer (QKA) pair. One important note is that Cap-
ital, City, United Kingdom and London are the
English labels of the node that represent these en-
tities in the KG.

Column A Column B Column C
Subject United Kingdom Stephen Wolfram London
Domain Country Person Location
Predicate Capital Birth Place Contains
Object London London Buckingham Palace
Range City Location Location

Table 2: Examples of 5-tuples (subject, domain,
predicate, object, range) for the entity London

In order to retrieve information about the given
entity E, we need to first identify the node n that
represents the entity E in the KG. One way
to identify node n is to leverage the label (e.g,
rdfs:label) property.

The next step is to retrieve all the neighbours
of n. Let mi be a neighbour of n in KG, con-
nected by a predicate pi. Here i is the index over
all predicates whose subject or object is n. Figure
1 shows the entity London with three neighbours
United Kingdom, Stephen Wolfram and Bucking-
ham Palace. Each of these neighbours are related
to London by a predicate. For example, Stephen
Wolfram is related to London as it is his Birth
Place.

Given a predicate pi, let sub(pi) be the subject
of pi and obj(pi) be the object of pi. A predicate
is usually defined with a domain (subject type) and
a range (object type) to provide better semantics.
The domain and range defines the entity types that
can be used as the subject and object of the predi-
cate respectively. Let domain(pi) and range(pi)
be the domain and range of pi respectively. Let

{sub(pi), domain(pi), pi, obj(pi), range(pi)} be
the 5-tuple associated with every pi. Some exam-
ples of 5-tuples are shown column wise in Table
2.

We now describe how QKA pairs are extracted
from 5-tuple. Let Qk be the question keywords set
and Ak be the answer to the question to be gen-
erated using Qk. (Qk, Ak) together will form a
QKA pair. In this work, we consider only a single
5-tuple to generate a QKA pair. For example, we
can generate QKA pair like ({Capital, City, United
Kingdom}, London) using Column A of Table 2.
But we will not generate QKA pair like ({Capital,
City, United Kingdom, Birth Place, Stephen Wol-
fram}, London) using both Column A & B of Table
2.

We use the following rules to generate QKA
pairs from 5-tuples.

1. Unique Forward Relation : If pi is unique
for sub(pi) in KG, then Qk will include
sub(pi), pi and range(pi). Ak will be
obj(pi). If pi is not unique for sub(pi), then
there could be multiple possible answers to
the generated question including obj(pi), and
therefore we do not generate such a QKA
pair. When this is applied to Column A of
Table 2, we generate ({Capital, City, United
Kingdom}, London) as a QKA pair. There
is no QKA pair generated for Column C us-
ing this rule as London contains many loca-
tions like Buckingham Palace, City of West-
minster, etc.

2. Unique Reverse Relation : If pi is unique
for obj(pi) in KG, then Qk will include
obj(pi), pi and domain(pi). Ak is sub(pi).
Similar to unique forward relation, this rule
can be applied to Column A of Table 2 and
cannot be applied to Column B & C.

3.2 RNN based Natural Language Question
Generator

In the previous sub-section, we proposed an ap-
proach for creating question keywords and an-
swer pairs. Now we propose a model for gen-
erating natural language questions from a given
set of question keywords. We treat the keywords,
QK = {qk1, · · · , qkm}, as an input sequence and
the question, Q = {q1, · · · , ql}, as the output se-
quence. This design choice of treating a set of key-
words as a sequence and not as a bag of words
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allows us to generate different semantically valid
questions from the same set K based on the order
of the words in the set. For example, given the
question keywords, QK = {King, Sweden} we
can generate two semantically valid questions by
changing the order of King and Sweden: (i) Who
is the King of Sweden? and (ii) Does Sweden have
a King?

We propose a Natural Language Question Gen-
eration (NLQG) model that first encodes the in-
put sequence using some distributed representa-
tion and then decodes the output sequence from
this encoded representation. Specifically, we use
a RNN based encoder and decoder recently pro-
posed for language processing tasks by number of
groups (Cho et al., 2014; Sutskever et al., 2014).
We now formally define the encoder and decoder
models.

Let m be the number of keywords in the in-
put sequence. We represent each keyword using
a fixed size vector xi ∈ <n. The function of the
encoder is to map this sequence of xi’s to a fixed
size encoding. We use a RNN to compute hm us-
ing the following recursive equation:

hi = Φ(hi−1, xi), (1)

where, hi ∈ <n is the hidden representation at po-
sition i. hm is the final encoded hidden state vector
for this sequence. We use LSTM units (Hochreiter
and Schmidhuber, 1997) as Φ for our implemen-
tation based on its recent success in language pro-
cessing tasks (Bahdanau et al., 2015).

The function of the decoder is to compute
the probability of the output sequence Q =
{q1, · · · , ql} given the encoded vector hm. Note
that l is the length of the output sequence and may
be different from m. This joint conditional proba-
bility of Q is decomposed into l conditional prob-
abilities:

p(q1, · · · , ql|hm) =
l∏

j=1

p(qj |{q1, · · · , qj−1}, hm).

(2)
Now we model p(qj |q<j , hm) at each position j
by using a RNN decoder as follows:

p(qj |q<j , hm) = Θ(qj−1, gj , hm), (3)

where Θ is a non-linear function, that outputs the
probability of qj , and gj is the hidden state of the
decoder RNN.

To train this RNN model, we use a keyword se-
quence and question pairs generated from an open

domain Community Question Answering website.
We provide more details on how the data is created
and used for training in the experiments section.

At runtime, every permutation of the question
keywords QK extracted is fed as input to the
trained RNN. We pick the question Q with the
highest probability of generation across all permu-
tations, as the question generated from the ques-
tion keywords QK.

4 Experiments

In this section we perform experiments to demon-
strate how the proposed approach outperforms the
existing template based approach for generating
questions from the keywords. We also evaluate the
quality of the QA pairs generated from knowledge
graph.

4.1 Datasets

For training the K2Q-RNN model we require a
set of keywords and question pairs. We use a
large collection of open-domain questions avail-
able from WikiAnswers dataset2. This dataset has
around 20M questions. We randomly selected
1M questions from this corpus for training and
5k questions for testing (the maximum length of
a question was restricted to 50 words). We ex-
tract keywords from the selected questions by re-
taining only Nouns, Verbs and Adjectives in the
question. The parts of speech tags were identified
using Stanford Tagger (Toutanova et al., 2003).
We form an ordered sequence of keywords by
retaining these extracted words in the same or-
der in which they appear in the original question.
This sequence of keywords along with the original
question forms one input-output sequence pair for
training.

4.2 Methods

We evaluate and compare the following methods:
K2Q-RNN: This is our approach proposed in

the paper. For the encoder we use a bi-directional
RNN containing one hidden layer of 1000 units.
Each word in the input vocabulary is represented
using a word vector which is randomly initialized
and learnt during the training process. The de-
coder also contains one hidden layer comprising
of 1000 units. At the output layer of the decoder
a softmax function gives the distribution over the
entire target vocabulary. We use the top 30,000

2
Available at http://knowitall.cs.washington.edu/oqa/data/wikianswers/
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most frequent words in the 1M training questions
as the target vocabulary. If any sequence contains
a word not belonging to this list then that word
is mapped to a special token ([UNK]) that is also
considered a part of the output vocabulary. We
use a mini batch stochastic gradient descent al-
gorithm together with Adadelta (Zeiler, 2012) to
train our model. We used a mini-batch size of 50
and trained the model for 10 epochs. We used the
beam search with the beam size to 12 to generate
the question that approximately maximizes condi-
tional probability defined in Equation 2.

K2Q-PBSMT: As mentioned earlier, we treat
the problem of generating questions from key-
words as a sequence to sequence translation prob-
lem. A Phrase Based Machine Translation Sys-
tem (PBSMT) can also be employed for this task
by considering that the keyword sequences be-
long to a source language and the question se-
quences belong to a target language. We compare
our approach with a standard phrase-based MT
system, MOSES (Koehn et al., 2007) trained us-
ing the same 1M sequence pairs constructed from
the WikiAnswers dataset. We used a 5-gram lan-
guage model trained on the 1M target question se-
quences and tuned the parameters of the decoder
using 1000 held-out sequence (these were held out
from the 1M training pairs).

K2Q-Template: For template based approach
we use the method proposed by (Zhao et al., 2011)
along with the Word2Vec (Mikolov et al., 2015)
ranking as proposed by (Raghu et al., 2015). The
Word2Vec ranking provides better generalization
than the ranking proposed by (Zhao et al., 2011).
We learn the templates using the same 1M training
pairs extracted from WikiAnswers.

4.3 Evaluation metrics

We evaluate the performance of K2Q RNN with
other baselines to compare the K2Q approaches,
we use BLEU score (Papineni et al., 2002) be-
tween the generated question and the reference
question. BLEU score is typically used in evaluat-
ing the performance of MT systems and captures
the average n-gram overlap between the generated
sequence and the reference sequence. We consider
n-grams upto length 4. BLEU score does not cap-
ture the true performance of the system. For ex-
ample, if the trained model simply reproduces all
keywords in the generated question then also the
unigram overlap will be high resulting in a higher

Method BLEU Score Human Judgment accuracy (%)
K2Q-Template 25.58 28.57
K2Q-PBSMT 50.90 44.29

K2Q-RNN 50.14 60.13

Table 3: Automatic Evaluation (column 2): The
BLEU scores of generated questions for the test
set. Human Evaluation (Column 3): Percentage
of perfect questions generated by K2Q-Template,
K2Q-PBSMT, and K2Q-RNN

BLEU score. Further, we had only one reference
question (ground truth) per test instance which is
not sufficient to capture the different ways of ex-
pressing the question. In this case, BLEU score
will be unnecessarily harsh on the model even if it
generates a valid paraphrase of the reference ques-
tion. To account for this we also perform a man-
ual evaluation. We show the generated output to
four human annotator and ask him/her to assign
following ratings to the generated question, Rat-
ing 4 : Perfect without error, Rating 3 : Good with
one error, missing/addition of article or preposi-
tion, but still meaningful, Rating 2 : Many errors,
Rating 1 : Failure.

4.4 Results

4.4.1 RNN based Natural Language Question
Generator

We first evaluate the performance of K2Q ap-
proaches using 5000 test instances from the
WikiAnswers dataset. We extract the keyword se-
quence from these test questions using the same
method described above. We compute the BLEU
score by comparing the generated question with
the original question. The results are presented
in Table 3. Both K2Q-RNN and K2Q-PBSMT
clearly outperform the template based method
which shows that there is merit in formulating this
problem as a sequence to sequence learning prob-
lem. To be sure that the results are not mislead-
ing due to some of the drawbacks of BLEU score
as described earlier, we also do a manual evalu-
ation. For this, we randomly selected 700 ques-
tions from the test set. We showed the questions
generated by the three methods to different human
annotators and asked them to assign a score of
1 to 4 to each question (based on the guidelines
described earlier). The evaluators had no knowl-
edge about the method used to generate each ques-
tion shown to them. We only consider questions
with rating 4 (perfect without any errors) for each
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Ground truth K2Q-PBSMT K2Q-RNN
pitching in baseball ? pitching in baseball ? what is pitching in baseball ?

difference between mergeracqs and amalgamation ? what is the difference between mergeracqs amalgamation ? what is the difference between mergeracqs and amalgamation ?
did great britain control iraq ? great britain control in iraq ? how did the great britain control the iraq ?

what is the critical analysis of the poem a river ? critical analysis of the poem a river ? what is the most critical analysis of the poem a river ?
global warming affect population growth ? global warming affect the population growth ? can global warming affect the population growth ?

Table 4: Example questions from Ground truth, K2Q-PBSMT and K2Q-RNN

Entity Keyword Query Generated Question Answer

Alan Turing

birth place alan turing
inventor lu decomposition
tv episodes alan turing
author mathematical logic

where is the birth place of alan turing ? ( )
who was the inventor of lu decomposition ? ( )
tv episodes of alan turing ? ( )
what is the author of the mathematical logic ? (x)

maida vale ( )
alan turing ( )
dangerous knowledge ( )
alan turing ( )

France

ioc code france
capital france
location lake annecy
albin haller country

what is the ioc code for france ? ( )
what is the capital of france ? ( )
what is the location of lake annecy ? ( )
is albin haller a country ? (x)

fr ( )
paris ( )
france ( )
france (x)

Wimbledon
wimbledon first date occurrence
current frequency wimbledon
official website wimbledon

what was the wimbledon first date of occurrence ? ( )
what is the current frequency of wimbledon ? ( )
what is the official website for wimbledon ? ( )

1877-07-09 ( )
yearly ( )
http://www.wimbledon.com/ ( )

Table 5: Example question-answer pairs extracted for different entities by using Freebase and K2Q-RNN.
Question-Answer pairs are considered correct if and only if both are marked with by human judges.
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Figure 2: Ratings given by human judges for gen-
erated questions for K2Q-Template, K2Q-PBSMT
and K2Q-RNN ( Best viewed in color).

method and calculate the accuracy, shown in Ta-
ble 3. Figure 2 shows the distribution of ratings
assigned by the annotators. Once gain K2Q-RNN
and K2Q-PBSMT outperform the template based
approach. Further, the human evaluation shows
K2Q-RNN performs better than K2Q-PBSMT. Ta-
ble 4 shows example questions that may have a
high BLEU score for K2Q-PBSMT, however the
K2Q-RNN has a better human judgement.

Next, we also compare the performance of these
methods for input keyword sequences of different
lengths. For this, we consider all test instances
having k keywords and mark the generated ques-
tion as correct if it was given a rating of 4 by the
human annotator. The results of this experiment
are plotted in Figure 3 where the x-axis represents
number of keywords and y-axis represents the per-
centage of test instances for which correct (rat-
ing 4) questions were generated. Once again we
see that K2Q-RNN clearly outperforms the other
methods at all input sequence sizes.
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Figure 3: The plot shows the performance of 3
methods K2Q-Template, K2Q-PBSMT, and K2Q-
RNN as a functions of number of keywords.

4.4.2 Generating Question-Answers pairs
from Freebase

In this section we describe the performance of
K2Q-RNN for generating QA pairs from a Knowl-
edge Graph. For our evaluation purpose, we use
Freebase as the Knowledge Graph. We randomly
picked 27 Freebase entities of various types (per-
son, location, organization, etc) and extracted all
5-tuples containing them. To create a diverse QA
pairs we retained only two instances (5-tuples) for
each predicate or relation type. Some predicates
(like summary, quotations) have long text as their
objects, some predicates (like Daylife Topic ID,
Hero image ID) are difficult for annotator to val-
idate. So, we filtered the list further by remov-
ing above mentioned predicates and generated a
total of 485 QKA pairs. We manually evaluated
these generated QA pairs and marked them as cor-
rect only if generated question along with the an-
swer together convey the information represented
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Train Sources Train Test F1-score(%)
WQ 3778 2032 39.9

WQ+GQA 11334 2032 42.1
WQ+GT 11334 2032 43.6

Table 6: PARASEMPRE Evaluation:
WQ=WebQuestions, GQA=Generated QA pairs
from SimpleQuestions test dataset, GT=Ground
truth data from SimpleQuestions test dataset.

in the 5-tuple. A few QA pairs were marked cor-
rect by the annotators, even though the question
was not grammatically correct but convey the right
intent. Some examples of such questions are melt-
ing point of propyl alcohol?, stanford university
student radio station?. Overall, 33.61% of the QA
pairs generated by our method were annotated cor-
rect. Table 5 shows some correct and incorrect QA
pairs generated by our method.

4.4.3 Extrinsic Evaluation

As an extrinsic evaluation of the quality of our
QA generation model, we use QA pairs gener-
ated by our model to improve the performance of
a state of the art QA system called PARASEM-
PRE (Jonathan Berant, 2014). PARASEMPRE is
a semantic parser, which maps natural language
questions to intermediate logical forms which in
turn are used to answer the question. The standard
training set used for training PARASEMPRE is a
part of the WebQuestions and contains 3778 QA
pairs. We appended this train with 7556 automat-
ically generated QA pairs (resulting in tripling of
the training set). Table 6 then compares the same
system trained on the following different training
sets: (i) Only Web Questions (WQ) dataset (ii)
WQ + Generated Question Answers (GQA) and
(iii) WQ + Ground Truth (GT) QA pairs. The GT
QA pairs were obtained from the SimpleQuestions
(Bordes et al., 2015) test data and have a one-to-
one correspondence to the GQA data (hence the
results are comparable). We see a relative im-
provement of 5.5% in the F1-score of the system
by adding GQA. Further, the performance gains
are comparable to those obtained by using GT QA
pairs.

4.4.4 Error analysis

We inspected all the QA pairs generated by our
method to identify some common mistakes. We
found that most errors corresponded to (i) con-

fusion between is/are and do/does (ii) incorrect
use of determiners (missing articles, confusion be-
tween a/the and addition of extra articles). An-
other problem occurs when the extracted keyword
sequence contains a stop word. This happens
when dealing with triples such as ({also known
as, Andre Agassi}, Agassi). Since, during train-
ing we retain only content words (nouns, adjec-
tives, verbs) in the input sequence, the model fails
to deal with such stop words at test time and sim-
ply produces unknown token (UNK) in the output.
Another set of errors corresponds to mismatch be-
tween the subject type and question type. For ex-
ample, we observed that in a few cases, the model
incorrectly generates a what question instead of a
who question when the answer type is a person.

5 Conclusions

In this paper we propose a method for generat-
ing QA pairs for an given entity using a knowl-
edge graph. We also propose an RNN based ap-
proach for generating natural language questions
from an input keyword sequence. The proposed
method performs significantly better than previ-
ously proposed template based method. We also
do an extrinsic evaluation to show that the gener-
ated QA pairs help in improving the performance
of a downstream QA system. In future, we plan
to extend this work to support predicates with stop
words and support predicates in various tenses.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Chin-Yew Lin. 2008. Automatic question generation
from queries. In Workshop on the Question Genera-
tion Shared Task, pages 156–164.

Prashanth Mannem, Rashmi Prasad, and Aravind Joshi.
2010. Question generation from paragraphs at
upenn: Qgstec system description. In Proceedings
of QG2010: The Third Workshop on Question Gen-
eration, pages 84–91.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2015. Efficient estimation of word represen-
tations in vector space. In ICLR.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller.
1990. Introduction to wordnet: An on-line lexical
database*. International journal of lexicography,
3(4):235–244.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Dinesh Raghu, Sathish Indurthi, Jitendra Ajmera, and
Sachindra Joshi. 2015. A statistical approach for
non-sentential utterance resolution for interactive qa
system. In 16th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue, page 335.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1988. Neurocomputing: Foundations of
research. pages 696–699.

Dominic Seyler, Mohamed Yahya, and Klaus
Berberich. 2015. Generating quiz questions from
knowledge graphs. In Proceedings of the 24th
International Conference on World Wide Web
Companion, pages 113–114. International World
Wide Web Conferences Steering Committee.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, pages 3104–
3112.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In HLT-NAACL.

Andrea Varga. 2010. Le an ha 2010 wlv: A ques-
tion generation system for the qgstec 2010 task b.
In Proceedings of QG2010: The Third Workshop on
Question Generation, pages 80–83.

P.J. Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, Oct.

384



Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
and Gerhard Weikum. 2013. Robust question an-
swering over the web of linked data. In Proceedings
of the 22nd ACM international conference on Con-
ference on information & knowledge management,
pages 1107–1116. ACM.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. arxiv:, 1212.5701.

Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liu, and
Yi Guan. 2011. Automatically generating questions
from queries for community-based question answer-
ing. In IJCNLP, pages 929–937.

Zhicheng Zheng, Xiance Si, Edward Y Chang, and Xi-
aoyan Zhu. 2011. K2q: Generating natural lan-
guage questions from keywords with user refine-
ments. In IJCNLP, pages 947–955.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffer Xu Yu,
Wenqiang He, and Dongyan Zhao. 2014. Natural
language question answering over rdf: a graph data
driven approach. In Proceedings of the 2014 ACM
SIGMOD international conference on Management
of data, pages 313–324. ACM.

385


