@inproceedings{perez-liu-2017-dialog,
title = "Dialog state tracking, a machine reading approach using Memory Network",
author = "Perez, Julien and
Liu, Fei",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/E17-1029/",
pages = "305--314",
abstract = "In an end-to-end dialog system, the aim of dialog state tracking is to accurately estimate a compact representation of the current dialog status from a sequence of noisy observations produced by the speech recognition and the natural language understanding modules. This paper introduces a novel method of dialog state tracking based on the general paradigm of machine reading and proposes to solve it using an End-to-End Memory Network, MemN2N, a memory-enhanced neural network architecture. We evaluate the proposed approach on the second Dialog State Tracking Challenge (DSTC-2) dataset. The corpus has been converted for the occasion in order to frame the hidden state variable inference as a question-answering task based on a sequence of utterances extracted from a dialog. We show that the proposed tracker gives encouraging results. Then, we propose to extend the DSTC-2 dataset with specific reasoning capabilities requirement like counting, list maintenance, yes-no question answering and indefinite knowledge management. Finally, we present encouraging results using our proposed MemN2N based tracking model."
}
Markdown (Informal)
[Dialog state tracking, a machine reading approach using Memory Network](https://preview.aclanthology.org/jlcl-multiple-ingestion/E17-1029/) (Perez & Liu, EACL 2017)
ACL