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Preface: General Chair

Welcome to the EACL 2017, the 15th Conference of the European Chapter of the Association for
Computational Linguistics! This is the largest ever EACL in terms of the number of papers being
presented. We have a strong scientific program, including 14 workshops, six tutorials, a demos
session, and a student research workshop. EACL received a record number of sumbissions this year,
approximately 1,000 long and short papers combined, which reflects how broad and active our field is.
We are also fortunate to have three excellent invited speakers: David Blei (University of Columbia),
Devi Parikh (Virginia Tech), and Hinrch Schütze (LMU Munich). I hope that you will enjoy both the
conference and Valencia.

I am deeply indebted to the Program Committee Chairs, Alexander Koller and Phil Blunsom, for their
hard work. They put together a team of 27 area chairs who in turned assembled many reviewers and
handled a large number of papers. The Workshop Chairs, Laura Rimmell and Richard Johansson,
coordinated with the workshop chairs for ACL 2017 and EMNLP 2017 and succeeded in putting together
an exciting and broad programme including 14 workshops. The student research workshop was organised
by the student members of the EACL board — John Camilleri, Mariona Coll Ardanuy Uxoa Iñourrieta,
and Florian Kunneman. With the help of Barbara Plank (Faculty advisor), they issued the call, organised
a team of reviewers, assigned papers, coordinated and mediated among reviewers, and finally constructed
a schedule consisting of 12 papers.

The Tutorial Chairs, Lucia Specia and Alexandre Klementiev, put together a very strong programme
of six tutorials, which I hope many of us will attend. The publication chairs, Maria Liakata and Chris
Biemann, have been short of amazing. They undertook the complex task of producing the conference
proceedings and managed to make it seem easy, while being extremely thorough and paying attention
to every detail. Chris Biemann deserves a double thank you for being Sponsorship Chair. Our demo
chairs, Anselmo Peñas and André Martins, did a fantastic job selecting 30 demos for our demo session
which I encourage you all to attend. I would also like to thank David Weir our publicity chair and
the ACL business manager Priscilla Rassmussen, who knows more about our conferences than anyone
else. Sincere thanks are due to the various sponsors for their generous contribution. I am grateful to all
members of the EACL board for their advice and guidance, in particular to Lluís Márques and Walter
Daelemans.

Last, but not least, this conference could not have taken place without the local organising committee
who have worked tremendously hard to make EACL 2017 a success. The Local Chair, Paolo and Andrea
Aldea from Groupo Pacifico, have brought together a fantastic local team and have dealt with many of
the day-to-day tasks arising in organizing such a large conference expertly and efficiently.

I am always amazed by the dedication of our colleagues and their willingness to share knowledge and
invest precious time in order to make our conferences a success. On that note, I would like to thank
the authors who submitted their work to EACL and everyone else involved: area chairs, workshop
organizers, tutorial presenters, reviewers, demo presenters, and participants of the conference.

Welcome to EACL 2017!

Mirella Lapata
General Chair
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Preface: Programme Chairs

Welcome to the 15th Conference of the European Chapter of the Association for Computational
Linguistics! In these proceedings you will find all the papers accepted for presentation at the conference
in Valencia from the 3rd to the 7th of April 2017. The main conference program consists of both oral
and poster presentations and also includes additional presentations of papers from the Transaction of the
Association for Computational Linguistics (TACL), posters from the Student Research Workshop, and
two demonstration sessions.

We received considerably more paper submissions than previous meetings of the EACL: 441 Long Papers
and 502 Short Papers (excluding papers withdrawn or rejected for incorrect formatting). The Short Paper
deadline was set after that for Long Papers and it is notable that we received more submissions of Short
than Long papers. After the commendable reviewing efforts of our Program Committee we accepted
119 Long Papers, 78 as oral presentations and 41 posters, and 120 Short Papers, 47 orals and 73 posters.
Overall the acceptance rates where 27% and 24% for the Long and Short Paper tracks respectively. The
EACL 2017 programme also contained the oral presentations of four papers published in TACL.

It would not have been possible to produce such a high quality programme without the amazing effort
and dedication of our Program Committee. We would like to than all of those who served on the
committee, which consisted of 27 Area Chairs and 612 Reviewers, drawn from a diverse range of fields
and from both Europe and further afield. Each paper received at least three reviews. We selected the final
programme based on the recommendations of the Area Chairs and reviewers, while aiming to ensure
the representation of a wide variety of research areas. The Area Chairs were each asked to nominate
candidate papers for the Outstanding Papers sessions, of which the Programme Chairs and General Chair
selected three Long Papers and one Short Paper. These were allocated extra time in the programme for
their oral presentations.

Following the precedent set at ACL 2016, we decided to allocate Long Paper and Short Paper oral
presentations 20 minute and 15 minute slots respectively, including time for questions and changing
speakers. While this shorter scheduling requires presenters to be more concise in their presentation, it
allowed us to accommodate a larger program of talks in the space available at the venue.

In addition to the main conference programme, a Student Research Workshop was held which selected 12
papers for presentation as posters, and two demonstration sessions were held during the evening poster
sessions. We are particularly grateful to our three distinguished invited speakers, Devi Parikh (Georgia
Tech), David Blei (Columbia University), and Hinrich Schütze (LMU Munich). They represent the
amazing diversity of contemporary research being conducted across Computational Linguistics, Artificial
Intelligence, and Machine Learning.

In total the programme contains 126 talks and 126 posters, making this the largest EACL conference by
a considerable margin. Firstly this would not be possible without the authors who chose to submit there
research papers for publication at EACL, and we thank them for choosing our conference. Obviously
coordinating such a programme requires contributions from many people beyond the Programme Chairs.
We would like to thank our Area Chairs who ensured the smooth running of the two reviewing cycles.
We are also thankful for the support we received from the rest of the organising committee, including the
Publication Chairs, Local Organisers, Workshop Chairs, Tutorial Chairs, Demo Chairs, the Handbook
Chair, and the Student Research Workshop Chair, all listed in full later in the proceedings. We are also
grateful for the technical support received form the START team. We would like to thank the Programme
Chairs for ACL 2016, Katrin Erk and Noah Smith, who generously provided many insights and tips from
their own experience to help us avoid pitfalls and ensure the smooth running of the reviewing process.
Finally, we are thankful to have been blessed with an exceptionally calm and organised General Chair in
Mirella Lapata, who ensured the smooth running of the organising process and the ultimate success of

iv



this conference.

We hope you enjoy EACL 2017 in Valencia!

Phil Blunsom and Alexander Koller
EACL 2017 Programme Chairs
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Invited Talk: David Blei

Title: Probabilistic Topic Models and User Behavior

Topic modeling algorithms analyze a document collection to estimate its latent thematic structure. How-
ever, many collections contain an additional type of data: how people use the documents. For example,
readers click on articles in a newspaper website, scientists place articles in their personal libraries, and
lawmakers vote on a collection of bills. Behavior data is essential both for making predictions about
users (such as for a recommendation system) and for understanding how a collection and its users are
organized.

I will review the basics of topic modeling and describe our recent research on collaborative topic models,
models that simultaneously analyze a collection of texts and its corresponding user behavior. We studied
collaborative topic models on 80,000 scientists’ libraries from Mendeley and 100,000 users’ click data
from the arXiv. Collaborative topic models enable interpretable recommendation systems, capturing
scientists’ preferences and pointing them to articles of interest. Further, these models can organize the
articles according to the discovered patterns of readership. For example, we can identify articles that are
important within a field and articles that transcend disciplinary boundaries.

Biography:
David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of
the Columbia Data Science Institute. His research is in statistical machine learning, involving proba-
bilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms
for massive data. He works on a variety of applications, including text, images, music, social networks,
user behavior, and scientific data. David has received several awards for his research, including a Sloan
Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career
Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Founda-
tion Award (2013). He is a fellow of the ACM.
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Invited Talk: Devi Parikh

Title: Words, Pictures, and Common Sense

Wouldn’t it be nice if machines could understand content in images and communicate this understanding
as effectively as humans? Such technology would be immensely powerful, be it for aiding a visually-
impaired user navigate a world built by the sighted, assisting an analyst in extracting relevant information
from a surveillance feed, educating a child playing a game on a touch screen, providing information to a
spectator at an art gallery, or interacting with a robot. As computer vision and natural language processing
techniques are maturing, we are closer to achieving this dream than we have ever been.

Visual Question Answering (VQA) is one step in this direction. Given an image and a natural language
question about the image (e.g., “What kind of store is this?”, “How many people are waiting in the
queue?”, “Is it safe to cross the street?”), the machine’s task is to automatically produce an accurate
natural language answer (“bakery”, “5”, “Yes”). In this talk, I will present our dataset, some neural
models, and open research questions in free-form and open-ended Visual Question Answering (VQA).
I will also show a teaser about the next step moving forward: Visual Dialog. Instead of answering
individual questions about an image in isolation, can we build machines that can hold a sequential natural
language conversation with humans about visual content?

While machines are getting better at superficially connecting words to pictures, interacting with them
quickly reveals that they lack a certain common sense about the world we live in. Common sense is a
key ingredient in building intelligent machines that make "human-like" decisions when performing tasks
– be it automatically answering natural language questions, or understanding images and videos. How
can machines learn this common sense? While some of this knowledge is explicitly stated in human-
generated text (books, articles, blogs, etc.), much of this knowledge is unwritten. While unwritten, it is
not unseen! The visual world around us is full of structure bound by commonsense laws. But machines
today cannot learn common sense directly by observing our visual world because they cannot accurately
perform detailed visual recognition in images and videos. We argue that one solution is to give up on
photorealism. We propose to leverage abstract scenes – cartoon scenes made from clip art by crowd
sourced humans – to teach our machines common sense. I will demonstrate how knowledge learnt from
this abstract world can be used to solve commonsense textual tasks.

Biography:
Devi Parikh is an Assistant Professor in the School of Interactive Computing at Georgia Tech, and a
Visiting Researcher at Facebook AI Research (FAIR). From 2013 to 2016, she was an Assistant Pro-
fessor in the Bradley Department of Electrical and Computer Engineering at Virginia Tech. From 2009
to 2012, she was a Research Assistant Professor at Toyota Technological Institute at Chicago (TTIC),
an academic computer science institute affiliated with University of Chicago. She has held visiting po-
sitions at Cornell University, University of Texas at Austin, Microsoft Research, MIT, and Carnegie
Mellon University. She received her M.S. and Ph.D. degrees from the Electrical and Computer Engi-
neering department at Carnegie Mellon University in 2007 and 2009 respectively. She received her B.S.
in Electrical and Computer Engineering from Rowan University in 2005. Her research interests include
computer vision and AI in general and visual recognition problems in particular. Her recent work in-
volves exploring problems at the intersection of vision and language, and leveraging human-machine
collaboration for building smarter machines. She has also worked on other topics such as ensemble of
classifiers, data fusion, inference in probabilistic models, 3D reassembly, barcode segmentation, compu-
tational photography, interactive computer vision, contextual reasoning, hierarchical representations of
images, and human-debugging. She is a recipient of an NSF CAREER award, a Sloan Research Fellow-
ship, an Office of Naval Research (ONR) Young Investigator Program (YIP) award, an Army Research
Office (ARO) Young Investigator Program (YIP) award, an Allen Distinguished Investigator Award in
Artificial Intelligence from the Paul G. Allen Family Foundation, four Google Faculty Research Awards,

xii



an Amazon Academic Research Award, an Outstanding New Assistant Professor award from the Col-
lege of Engineering at Virginia Tech, a Rowan University Medal of Excellence for Alumni Achievement,
Rowan University’s 40 under 40 recognition, and a Marr Best Paper Prize awarded at the International
Conference on Computer Vision (ICCV).
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Invited Talk: Hinrich Schütze

Title: Don’t cram two completely different meanings into a single !&??@#ˆ$% vector! Or should
you?

It is tempting to interpret a high-dimensional embedding space cartographically, i.e., as a map each point
of which represents a distinct identifiable meaning – just as cities and mountains on a real map represent
distinct identifiable geographic locations. On this interpretation, ambiguous words pose a problem: how
can two completely different meanings be in the same location? Instead of learning a single embedding
for an ambiguous word, should we rather learn a different embedding for each of its senses (as has
often been proposed)? In this talk, I will take a fresh look at this question, drawing on simulations with
pseudowords, sentiment analysis experiments, psycholinguistics and – if time permits – lexicography.

Biography:
Hinrich Schütze is professor of computational linguistics and director of the Center for Information and
Language Processing at LMU Munich. He received his PhD from Stanford University’s Department
of Linguistics in 1995 and worked on natural language processing and information retrieval technology
at Xerox PARC, at several Silicon Valley startups and at Google 1995-2004 and 2008/9. He coau-
thored Foundations of Statistical Natural Language Processing (with Chris Manning) and Introduction
to Information Retrieval (with Chris Manning and Prabhakar Raghavan). His research is motivated by
a fundamental question that computational linguists face today: Is domain knowledge about language
dispensable (as many in deep learning seem to believe) or can linguistics and statistical NLP learn and
benefit from each other?
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Abstract

Machine reading using differentiable rea-
soning models has recently shown re-
markable progress. In this context,
End-to-End trainable Memory Networks
(MemN2N) have demonstrated promising
performance on simple natural language
based reasoning tasks such as factual rea-
soning and basic deduction. However,
other tasks, namely multi-fact question-
answering, positional reasoning or dialog
related tasks, remain challenging particu-
larly due to the necessity of more com-
plex interactions between the memory and
controller modules composing this family
of models. In this paper, we introduce
a novel end-to-end memory access regu-
lation mechanism inspired by the current
progress on the connection short-cutting
principle in the field of computer vision.
Concretely, we develop a Gated End-to-
End trainable Memory Network architec-
ture (GMemN2N). From the machine learn-
ing perspective, this new capability is
learned in an end-to-end fashion without
the use of any additional supervision sig-
nal which is, as far as our knowledge
goes, the first of its kind. Our experi-
ments show significant improvements on
the most challenging tasks in the 20 bAbI
dataset, without the use of any domain
knowledge. Then, we show improvements
on the Dialog bAbI tasks including
the real human-bot conversion-based Di-
alog State Tracking Challenge (DSTC-2)
dataset. On these two datasets, our model
sets the new state of the art.
∗Work carried out as an intern at XRCE
†Equal contribution

1 Introduction

Deeper Neural Network models are more diffi-
cult to train and recurrency tends to complex-
ify this optimization problem (Srivastava et al.,
2015b). While Deep Neural Network architec-
tures have shown superior performance in numer-
ous areas, such as image, speech recognition and
more recently text, the complexity of optimiz-
ing such large and non-convex parameter sets re-
mains a challenge. Indeed, the so-called vanish-
ing/exploding gradient problem has been mainly
addressed using: 1. algorithmic responses, e.g.,
normalized initialization strategies (LeCun et al.,
1998; Glorot and Bengio, 2010); 2. architec-
tural ones, e.g., intermediate normalization layers
which facilitate the convergence of networks com-
posed of tens of hidden layers (He et al., 2015;
Saxe et al., 2014). Another problem of memory-
enhanced neural models is the necessity of regulat-
ing memory access at the controller level. Mem-
ory access operations can be supervised (Kumar
et al., 2016) and the number of times they are per-
formed tends to be fixed apriori (Sukhbaatar et al.,
2015), a design choice which tends to be based
on the presumed degree of difficulty of the task in
question. Inspired by the recent success of object
recognition in the field of computer vision (Srivas-
tava et al., 2015a; Srivastava et al., 2015b), we in-
vestigate the use of a gating mechanism in the con-
text of End-to-End Memory Networks (MemN2N)
(Sukhbaatar et al., 2015) in order to regulate the
access to the memory blocks in a differentiable
fashion. The formulation is realized by gated con-
nections between the memory access layers and
the controller stack of a MemN2N. As a result, the
model is able to dynamically determine how and
when to skip its memory-based reasoning process.

Roadmap: Section 2 reviews state-of-the-
art Memory Network models, connection short-
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cutting in neural networks and memory dynamics.
In Section 3, we propose a differentiable gating
mechanism in MemN2N. Section 4 and 5 present
a set of experiments on the 20 bAbI reasoning
tasks and the Dialog bAbI dataset. We report
new state-of-the-art results on several of the most
challenging tasks of the set, namely positional
reasoning, 3-argument relation and the DSTC-2
task while maintaining equally competitive perfor-
mance on the rest.

2 Related Work

This section starts with an introduction of the pri-
mary components of MemN2N. Then, we review
two key elements relevant to this work, namely
shortcut connections in neural networks and mem-
ory dynamics in such models.

2.1 End-to-End Memory Networks

The MemN2N architecture, introduced by
Sukhbaatar et al. (2015), consists of two main
components: supporting memories and final an-
swer prediction. Supporting memories are in turn
comprised of a set of input and output memory
representations with memory cells. The input
and output memory cells, denoted by mi and ci,
are obtained by transforming the input context
x1, . . . , xn (or stories) using two embedding
matrices A and C (both of size d × |V | where
d is the embedding size and |V | the vocabulary
size) such that mi = AΦ(xi) and ci = CΦ(xi)
where Φ(·) is a function that maps the input into
a bag of dimension |V |. Similarly, the question
q is encoded using another embedding matrix
B ∈ Rd×|V |, resulting in a question embedding
u = BΦ(q). The input memories {mi}, together
with the embedding of the question u, are utilized
to determine the relevance of each of the stories in
the context, yielding a vector of attention weights

pi = softmax(u>mi) (1)

where softmax(ai) =
eai∑
j e

aj
. Subsequently, the

response o from the output memory is constructed
by the weighted sum:

o =
∑

i

pici (2)

For more difficult tasks demanding multiple
supporting memories, the model can be extended

to include more than one set of input/output mem-
ories by stacking a number of memory layers. In
this setting, each memory layer is named a hop and
the (k + 1)th hop takes as input the output of the
kth hop:

uk+1 = ok + uk (3)

Lastly, the final step, the prediction of the an-
swer to the question q, is performed by

â = softmax(W (oK + uK)) (4)

where â is the predicted answer distribution, W ∈
R|V |×d is a parameter matrix for the model to learn
and K the total number of hops.

2.2 Shortcut Connections
Shortcut connections have been studied from both
the theoretical and practical point of view in the
general context of neural network architectures
(Bishop, 1995; Ripley, 2007). More recently
Residual Networks (He et al., 2016) and Highway
Networks (Srivastava et al., 2015a; Srivastava et
al., 2015b) have been almost simultaneously pro-
posed. While the former utilizes a residual cal-
culus, the latter formulates a differentiable gate-
way mechanism as proposed in Long-Short Terms
Memory Networks (Hochreiter and Schmidhuber,
1997) in order to cope with long-term dependency
issues in the dataset in an end-to-end trainable
manner. These two mechanisms were proposed as
a structural solution to the so-called vanishing gra-
dient problem by allowing the model to shortcut its
layered transformation structure when necessary.

2.3 Memory Dynamics
The necessity of dynamically regulating the in-
teraction between the so-called controller and the
memory blocks of a Memory Network model has
been studied in (Kumar et al., 2016; Xiong et al.,
2016). In these works, the number of exchanges
between the controller stack and the memory mod-
ule of the network is either monitored in a hard
supervised manner in the former or fixed apriori
in the latter.

In this paper, we propose an end-to-end super-
vised model, with an automatically learned gat-
ing mechanism, to perform dynamic regulation of
memory interaction. The next section presents the
formulation of this new Gated End-to-End Mem-
ory Networks (GMemN2N). This contribution can
be placed in parallel to the recent transition from
Memory Networks with hard attention mechanism
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(Weston et al., 2015) to MemN2N with attention
values obtained by a softmax function and end-to-
end supervised (Sukhbaatar et al., 2015).

3 Gated End-to-End Memory Network

In this section, the elements behind residual learn-
ing and highway neural models are given. Then,
we introduce the proposed model of memory ac-
cess gating in a MemN2N.

3.1 Highway and Residual Networks
Highway Networks, first introduced by Srivastava
et al. (2015a), include a transform gate T and a
carry gate C, allowing the network to learn how
much information it should transform or carry to
form the input to the next layer. Suppose the orig-
inal network is a plain feed-forward neural net-
work:

y = H(x) (5)

where H(x) is a non-linear transformation of its
input x. The generic form of Highway Networks
is formulated as:

y = H(x)� T(x) + x � C(x) (6)

where the transform and carry gates, T(x) and
C(x), are defined as non-linear transformation
functions of the input x and � the Hadamard
product. As suggested in (Srivastava et al., 2015a;
Srivastava et al., 2015b), we choose to focus, in
the following of this paper, on a simplified version
of Highway Networks where the carry gate is re-
placed by 1− T(x):

y = H(x)� T(x) + x � (1 − T(x)) (7)

where T(x) = σ(W Tx + bT ) and σ is the sig-
moid function. In fact, Residual Networks can
be viewed as a special case of Highway Networks
where both the transform and carry gates are sub-
stituted by the identity mapping function:

y = H(x) + x (8)

thereby forming a hard-wired shortcut connection
x.

3.2 Gated End-to-End Memory Networks
Arguably, Equation (3) can be considered as a
form of residuality with ok working as the residual
function and uk the shortcut connection. How-
ever, as discussed in (Srivastava et al., 2015b),

in contrast to the hard-wired skip connection in
Residual Networks, one of the advantages of
Highway Networks is the adaptive gating mech-
anism, capable of learning to dynamically control
the information flow based on the current input.
Therefore, we adopt the idea of the adaptive gating
mechanism of Highway Networks and integrate it
into MemN2N. The resulting model, named Gated
End-to-End Memory Networks (GMemN2N) and il-
lustrated in Figure 1, is capable of dynamically
conditioning the memory reading operation on the
controller state uk at each hop. Concretely, we re-
formulate Equation (3) into:

Tk(uk) = σ(W k
Tu

k + bkT ) (9)

uk+1 = ok � Tk(uk) + uk � (1 − Tk(uk))
(10)

where W k
T and bk are the hop-specific parameter

matrix and bias term for the kth hop and Tk(x) the
transform gate for the kth hop. Similar to the two
weight tying schemes of the embedding matrices
introduced in (Sukhbaatar et al., 2015), we also
explore two types of constraints on W k

T and bkT :
1. Global: all the weight matrices W k

T and bias
terms bkT are shared across different hops,
i.e., W 1

T = W 2
T = . . . = WK

T and b1T =
b2T = . . . = bKT .

2. Hop-specific: each hop has its specific
weight matrix W k

T and bias term bkT for k ∈
[1,K] and they are optimized independently.

4 QA bAbI Experiments

In this section, we first describe the natural lan-
guage reasoning dataset we use in our experi-
ments. Then, the experimental setup is detailed.
Lastly, we present the results and analyses.

4.1 Dataset and Data Preprocessing
The 20 bAbI tasks (Weston et al., 2016) have been
employed for the experiments (using v1.2 of the
dataset). In this synthetically generated dataset, a
given QA task consists of a set of statements, fol-
lowed by a question whose answer is typically a
single word (in a few tasks, answers are a set of
words). The answer is available to the model at
training time but must be predicted at test time.
The dataset consists of 20 different tasks with vari-
ous emphases on different forms of reasoning. For
each question, only a certain subset of the state-
ments contains information needed for the answer,
and the rest are essentially irrelevant distractors.
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Figure 1: Illustration of the proposed GMemN2N model with 3 hops. Dashed lines indicate elements
different from MemN2N (Sukhbaatar et al., 2015).

As in (Sukhbaatar et al., 2015), our model is fully
end-to-end trained without any additional supervi-
sion other than the answers themselves. Formally,
for one of the 20 QA tasks, we are given example
problems, each having a set of I sentences {xi}
(where I ≤ 320), a question sentence q and an-
swer a. Let the jth word of sentence i be xij , rep-
resented by a one-hot vector of length |V |. The
same representation is used for the question q and
answer a. Two versions of the data are used, one
that has 1,000 training problems per task and the
other with 10,000 per task.

4.2 Training Details

As suggested in (Sukhbaatar et al., 2015), 10% of
the bAbI training set was held-out to form a val-
idation set for hyperparameter tuning. Moreover,
we use the so-called position encoding, adjacent
weight tying, and temporal encoding with 10%
random noise. Stochastic gradient descent is used
for training and the learning rate η is initially as-
signed a value of 0.005 with exponential decay ap-
plied every 25 epochs by η/2 until 100 epochs are
reached. Linear start is used in all our experiments
as proposed by Sukhbaatar et al. (2015). With lin-
ear start, the softmax in each memory layer is re-
moved and re-inserted after 20 epochs. Batch size
is set to 32 and gradients with an `2 norm larger
than 40 are divided by a scalar to have norm 40.
All weights are initialized randomly from a Gaus-

sian distribution with zero mean and σ = 0.1 ex-
cept for the transform gate bias bkT which we em-
pirically set the mean to 0.5. Only the most re-
cent 50 sentences are fed into the model as the
memory and the number of memory hops is 3. In
all our experiments, we use the embedding size
d = 20. Note that we re-use the same hyper-
parameter configuration as in (Sukhbaatar et al.,
2015) and no grid search is performed.

As a large variance in the performance of the
model can be observed on some tasks, we follow
(Sukhbaatar et al., 2015) and repeat each train-
ing 100 times with different random initializations
and select the best system based on the validation
performance. On the 10k dataset, we repeat each
training 30 times due to time constraints. Con-
cerning the model implementation, while there are
minor differences between the results of our im-
plementation of MemN2N and those reported in
(Sukhbaatar et al., 2015), the overall performance
is equally competitive and, in some cases, better.
It should be noted that v1.1 of the dataset was
used whereas in this work, we employ the latest
v1.2. It is therefore deemed necessary that we
present the performance results of our implemen-
tation of MemN2N on the v1.2 dataset. To facilitate
fair comparison, we select our implementation of
MemN2N as the baseline as we believe that it is
indicative of the true performance of MemN2N on
v1.2 of the dataset.
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Task
1k 10k

MemN2N
Our GMemN2N

MemN2N
Our GMemN2N

MemN2N +global +hop MemN2N +global +hop

1: 1 supporting fact 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2: 2 supporting facts 91.7 89.9 88.7 91.9 99.7 99.7 100.0 100.0
3: 3 supporting facts 59.7 58.5 53.2 61.2 90.7 89.1 94.7 95.5
4: 2 argument relations 97.2 99.0 99.3 99.6 100.0 100.0 100.0 100.0
5: 3 argument relations 86.9 86.6 98.1 99.0 99.4 99.4 99.9 99.8
6: yes/no questions 92.4 92.1 92.0 91.6 100.0 100.0 96.7 100.0
7: counting 82.7 83.3 83.8 82.2 96.3 96.8 96.7 98.2
8: lists/sets 90.0 89.0 87.8 87.5 99.2 98.1 99.9 99.7
9: simple negation 86.8 90.3 88.2 89.3 99.2 99.1 100.0 100.0
10: indefinite knowledge 84.9 84.6 80.1 83.5 97.6 98.0 99.9 99.8
11: basic coreference 99.1 99.7 99.8 100.0 100.0 100.0 100.0 100.0
12: conjunction 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
13: compound coreference 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
14: time reasoning 98.3 99.6 98.5 98.8 100.0 100.0 100.0 100.0
15: basic deduction 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
16: basic induction 98.7 99.9 99.8 99.9 99.6 100.0 100.0 100.0
17: positional reasoning 49.0 48.1 60.2 58.3 59.3 62.1 68.8 72.2
18: size reasoning 88.9 89.7 91.8 90.8 93.3 93.4 92.0 91.5
19: path finding 17.2 11.3 10.3 11.5 33.5 47.2 54.8 69.0
20: agent’s motivation 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 86.1 86.1 86.6 87.3 93.4 94.1 95.2 96.3

Table 1: Accuracy (%) on the 20 QA tasks for models using 1k and 10k training examples.
MemN2N:(Sukhbaatar et al., 2015). Our MemN2N: our implementation of MemN2N. GMemN2N +global:
GMemN2N with global weight tying. GMemN2N +hop: GMemN2N with hop-specific weight tying. Bold
highlights best performance. Note that in (Sukhbaatar et al., 2015), v1.1 of the dataset was used.

4.3 Results

Performance results on the 20 bAbI QA dataset
are presented in Table 1. For comparison pur-
poses, we still present MemN2N (Sukhbaatar et al.,
2015) in Table 1 but accompany it with the accu-
racy obtained by our implementation of the same
model with the same experimental setup on v1.2 of
the dataset in the column “Our MemN2N” for both
the 1k and 10k versions of the dataset. In contrast,
we also list the results achieved by GMemN2Nwith
global and hop-specific weight constraints in the
GMemN2N columns.

GMemN2N achieves substantial improvements
on task 5 and 17. The performance of
GMemN2N is greatly improved, a substantial gain
of more than 10 in absolute accuracy.

Global vs. hop-specific weight tying. Com-
pared with the global weight tying scheme on the
weight matrices of the gating mechanism, apply-
ing weight constraints in a hop-specific fashion

generates a further boost in performance consis-
tently on both the 1k and 10k datasets.

State-of-the-art performance on both the
1k and 10k dataset. The best performing
GMemN2N model achieves state-of-the-art perfor-
mance, an average accuracy of 87.3 on the 1k
dataset and 96.3 on the 10k variant. This is a
solid improvement compared to MemN2N and a
step closer to the strongly supervised models de-
scribed in (Weston et al., 2015). Notice that the
highest average accuracy of the original MemN2N
model on the 10k dataset is 95.8. However, it was
attained by a model with layer-wise weight tying,
not adjacent weight tying as adopted in this work,
and, more importantly, a much larger embedding
size d = 100 (therefore not shown in Table 1). In
comparison, it is worth noting that the proposed
GMemN2N model, a much smaller model with em-
beddings of size 20, is capable of achieving better
accuracy.
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5 Dialog bAbI Experiments

In addition to the text understanding and reason-
ing tasks presented in Section 4, we further ex-
amine the effectiveness of the proposed GMemN2N
model on a collection of goal-oriented dialog tasks
(Bordes and Weston, 2016). First, we briefly de-
scribe the dataset. Next, we outline the training
details. Finally, experimental results are presented
with analyses.

5.1 Dataset and Data Preprocessing

In this work, we adopt the goal-oriented dialog
dataset developed by Bordes and Weston (2016)
organized as a set of tasks. The tasks in this
dataset can be divided into 6 categories with each
group focusing on a specific objective: 1. issu-
ing API calls, 2. updating API calls, 3. displaying
options, 4. providing extra-information, 5. con-
ducting full dialogs (the aggregation of the first 4
tasks), 6. Dialog State Tracking Challenge 2 cor-
pus (DSTC-2). The first 5 tasks are synthetically
generated based on a knowledge base consisting of
facts which define all the restaurants and their as-
sociated properties (7 types, such as location and
price range). The generated texts are in the form
of conversation between a user and a bot, each of
which is designed with a clear yet different objec-
tive (all involved in a restaurant reservation sce-
nario). This dataset essentially tests the capac-
ity of end-to-end dialog systems to conduct dialog
with various goals. Each dialog starts with a user
request with subsequent alternating user-bot utter-
ances and it is the duty of a model to understand
the intention of the user and respond accordingly.
In order to test the capability of a system to cope
with entities not appearing in the training set, a
different set of test sets, named out-of-vocabulary
(OOV) test sets, are constructed separately. In
addition, a supplementary dataset, task 6, is pro-
vided with real human-bot conversations, also in
the restaurant domain, which is derived from the
second Dialog State Tracking Challenge (Hender-
son et al., 2014). It is important to notice that the
answers in this dataset may no longer be a single
word but can be comprised of multiple ones.

5.2 Training Details

At a certain given time t, a memory-based
model takes the sequence of utterances
cu1 , c

r
1, c

u
2 , c

r
2, . . . , c

u
t−1, c

r
t−1 (alternating be-

tween the user cui and the system response cri ) as

the stories and cut as the question. The goal of the
model is to predict the response crt .

As answers may be composed of multiple
words, following (Bordes and Weston, 2016), we
replace the final prediction step in Equation (4)
with:

â = softmax(u>W
′
Φ(y1), . . . ,u

>W
′
Φ(y|C|))

where W
′ ∈ Rd×|V | is the weight parameter ma-

trix for the model to learn, u = oK+uK (K is the
total number of hops), yi is the ith response in the
candidate set C such that yi ∈ C, |C| the size of
the candidate set, and Φ(·) a function which maps
the input text into a bag of dimension |V |.

As in (Bordes and Weston, 2016), we extend
Φ by several key additional features. First, two
features marking the identity of the speaker of a
particular utterance (user or model) are added to
each of the memory slots. Second, we expand
the feature representation function Φ of candidate
responses with 7 additional features, each, focus-
ing on one of the 7 properties associated with any
restaurants, indicating whether there are any exact
matches between words occurring in the candidate
and those in the question or memory. These 7 fea-
tures are referred to as the match features.

Apart from the modifications described above,
we carry out the experiments using the same ex-
perimental setup described in Section 4.2. We also
constrain ourselves to the hop-specific weight ty-
ing scheme in all our experiments since GMemN2N
benefits more from it than global weight tying as
shown in Section 4.3. As in (Sukhbaatar et al.,
2015), since the memory-based models are sen-
sitive to parameter initialization, we repeat each
training 10 times and choose the best system based
on the performance on the validation set.

5.3 Results
Performance results on the Dialog bAbI
dataset are shown in Table 2, measured using
both per-response accuracy and per-dialog accu-
racy (given in parentheses). While per-response
accuracy calculates the percentage of correct re-
sponses, per-dialog accuracy, where a dialog is
considered to be correct if and only if every re-
sponse within it is correct, counts the percentage
of correct dialogs. Task 1-5 are presented in the
upper half of the table while the same tasks in the
OOV setting are in the lower half with the dialog
state tracking task as task 6 at the bottom. We
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Task MemN2N GMemN2N
MemN2N GMemN2N
+match +match

T1: Issuing API calls 99.9 (99.6) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
T2: Updating API calls 100.0 (100.0) 100.0 (100.0) 98.3 (83.9) 100.0 (100.0)
T3: Displaying options 74.9 (2.0) 74.9 (0.0) 74.9 (0.0) 74.9 (0.0)
T4: Providing information 59.5 (3.0) 57.2 (0.0) 100.0 (100.0) 100.0 (100.0)
T5: Full dialogs 96.1 (49.4) 96.3 (52.5) 93.4 (19.7) 98.0 (72.5)
Average 86.1 (50.8) 85.7 (50.5) 93.3 (60.7) 94.6 (74.5)
T1 (OOV): Issuing API calls 72.3 (0.0) 82.4 (0.0) 96.5 (82.7) 100.0 (100.0)
T2 (OOV): Updating API calls 78.9 (0.0) 78.9 (0.0) 94.5 (48.4) 94.2 (47.1)
T3 (OOV): Displaying options 74.4 (0.0) 75.3 (0.0) 75.2 (0.0) 75.1 (0.0)
T4 (OOV): Providing information 57.6 (0.0) 57.0 (0.0) 100.0 (100.0) 100.0 (100.0)
T5 (OOV): Full dialogs 65.5 (0.0) 66.7 (0.0) 77.7 (0.0) 79.4 (0.0)
Average 69.7 (0.0) 72.1 (0.0) 88.8 (46.2) 89.7 (49.4)
T6: Dialog state tracking 2 41.1 (0.0) 47.4 (1.4) 41.0 (0.0) 48.7 (1.4)

Table 2: Per-response accuracy and per-dialog accuracy (in parentheses) on the Dialog bAbI tasks.
MemN2N: (Bordes and Weston, 2016). +match indicates the use of the match features in Section 5.2.

choose (Bordes and Weston, 2016) as the baseline
which achieves the current state of the art on these
tasks.

GMemN2N with the match features sets a new
state of the art on most of the tasks. Other than
on task T2 (OOV) and T3 (OOV), GMemN2N with
the match features scores the best per-response
and per-dialog accuracy. Even on T2 (OOV) and
T3 (OOV), the model generates rather competitive
results and remains within 0.3% of the best perfor-
mance. Overall, the best average per-response ac-
curacy in both the OOV and non-OOV categories
is attained by GMemN2N.

GMemN2N with the match features significantly
improves per-dialog accuracy on T5. A break-
through in per-dialog accuracy on T5 from less
than 20% to over 70%.

GMemN2N succeeds in improving the perfor-
mance on the more practical task T6. With or
without the match features, GMemN2N achieves
a substantial boost in per-response accuracy on
T6. Given that T6 is derived from a dataset based
on real human-bot conversations, not syntheti-
cally generated, the performance gain, although
far from perfect, highlights the effectiveness of
GMemN2N in practical scenarios and constitutes an
encouraging starting point towards end-to-end di-
alog system learning.

The effectiveness of GMemN2N is more pro-
nounced on the more challenging tasks. The

performance gains on T5, T5 (OOV) and T6, com-
pared with the rest of the tasks, are more pro-
nounced. Regarding the performance of MemN2N,
these tasks are relatively more challenging than
the rest, suggesting that the adaptive gating mech-
anism in GMemN2N is capable of managing com-
plex information flow while doing little damage on
easier tasks.

6 Visualization and Analysis

In addition to the quantitative results, we fur-
ther look into the memory regulation mechanism
learned by the GMemN2Nmodel. Figure 2 presents
the three most frequently observed patterns of the
Tk(uk) vectors for each of the 3 hops in a model
trained on T6 of the Dialog bAbI dataset with
an embedding dimension of 20. Each row corre-
sponds to the gate values at a specific hop whereas
each column represents a given embedding dimen-
sion. The pattern on the top indicates that the
model tends to only access memory in the first and
third hop. In contrast, the middle and bottom pat-
terns only focus on the memory in either the first
or last hop respectively. Figure 3 is a t-SNE pro-
jection (Maaten and Hinton, 2008) of the flattened
[T1(u1); T2(u2); T3(u3)] vectors obtained on the
test set of the same dialog task with points cor-
responding to the correct and incorrect responses
in red and blue respectively. Despite the relative
uniform distribution of the wrong answer points,
the correct ones tend to form clusters that suggest
the frequently observed behavior of a successful
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Story Support
MemN2N GMemN2N

Hop 1 Hop 2 Hop 3 Hop 1 Hop 2 Hop 3
Fred took the football there. 0.05 0.10 0.07 0.06 0.00 0.00
Fred journeyed to the hallway. 0.45 0.09 0.01 0.00 0.00 0.00
Fred passed the football to Mary. yes 0.10 0.64 0.93 0.29 1.00 1.00
Mary dropped the football. 0.40 0.17 0.00 0.64 0.00 0.00
Avg. transform gate cell values,

∑
i Tk(uk)i/d N/A N/A N/A 0.22 0.23 0.45

Question: Who gave the football? Answer: Fred, MemN2N: Mary, GMemN2N: Fred

Table 3: MemN2N vs. GMemN2N- bAbI dataset - Task 5 - 3 argument relations

0 5 10 15

1

2

3

h
o
p
s

0 5 10 15

1

2

3

h
o
p
s

0 5 10 15
memory position

1

2

3

h
o
p
s

0

0.5

1

W
e
ig

h
t

Figure 2: 3 most frequently observed gate value
Tk(uk) patterns on T6 of the Dialog bAbI
dataset

inference. Lastly, Table 3 shows the comparison
of the attention shifting process between MemN2N
and GMemN2N on a story on bAbI task 5 (3 ar-
gument relations). Not only does GMemN2N man-
age to focus more accurately on the supporting fact
than MemN2N, it has also learned to rely less in this
case on hop 1 and 2 by assigning smaller transform
gate values. In contrast, MemN2N carries false and
misguiding information (caused by the distracting
attention mechanism) accumulated from the previ-
ous hops, which eventually led to the wrong pre-
diction of the answer.

7 Related Reading Tasks

Apart from the datasets adopted in our exper-
iments, the CNN/Daily Mail (Hermann et al.,
2015) has been used for the task of machine read-
ing formalized as a problem of text extraction from
a source conditioned on a given question. How-
ever, as pointed out in (Chen et al., 2016), this
dataset not only is noisy but also requires little
reasoning and inference, which is evidenced by
a manual analysis of a randomly selected subset
of the questions, showing that only 2% of the ex-
amples call for multi-sentence inference. Richard-

6 4 2 0 2 4 6 8 10 12
12

10

8

6

4

2

0

2

4

6

Incorrect Answers

Correct Answers

Figure 3: t-SNE scatter plot of the flattened gate
values

son et al. (2013) constructed an open-domain read-
ing comprehension task, named MCTest. Al-
though this corpus demands various degrees of
reasoning capabilities from multiple sentences, its
rather limited size (660 paragraphs, each asso-
ciated with 4 questions) renders training statisti-
cal models infeasible (Chen et al., 2016). Chil-
dren’s Book Test (CBT) (Hill et al., 2015) was
designed to measure the ability of models to ex-
ploit a wide range of linguistic context. Despite
the claim in (Sukhbaatar et al., 2015) that increas-
ing the number of hops is crucial for the perfor-
mance improvements on some tasks, which can
be seen as enabling MemN2N to accommodate
more supporting facts, making such performance
boost particularly more pronounced on those tasks
requiring complex reasoning, Hill et al. (2015)
admittedly reported little improvement in perfor-
mance by stacking more hops and chose a single-
hop MemN2N. This suggests that the necessity of
multi-sentence based reasoning in this dataset is
not mandatory. In the future, we plan to investi-
gate into larger dialog datasets such as (Lowe et
al., 2015).
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8 Conclusion and Future Work

In this paper, we have proposed and developed
what is, as far as our knowledge goes, the first
attempt at incorporating an iterative memory ac-
cess control to an end-to-end trainable memory-
enhanced neural network architecture. We showed
the added value of our proposition on a set of,
natural language based, state-of-the-art reasoning
tasks. Then, we offered a first interpretation of
the resulting capability by analyzing the attention
shifting mechanism and connection short-cutting
behavior of the proposed model. In future work,
we will investigate the use of such mechanism in
the field of language modeling and more gener-
ally on the paradigm of sequential prediction and
predictive learning. Furthermore, we plan to look
into the impact of this method on the recently in-
troduced Key-Value Memory Networks (Miller et
al., 2016) on larger and semi-structured corpus.
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Abstract

Recurrent neural networks (RNNs) pro-
cess input text sequentially and model the
conditional transition between word to-
kens. In contrast, the advantages of recur-
sive networks include that they explicitly
model the compositionality and the recur-
sive structure of natural language. How-
ever, the current recursive architecture is
limited by its dependence on syntactic
tree. In this paper, we introduce a robust
syntactic parsing-independent tree struc-
tured model, Neural Tree Indexers (NTI)
that provides a middle ground between the
sequential RNNs and the syntactic tree-
based recursive models. NTI constructs a
full n-ary tree by processing the input text
with its node function in a bottom-up fash-
ion. Attention mechanism can then be ap-
plied to both structure and node function.
We implemented and evaluated a binary-
tree model of NTI, showing the model
achieved the state-of-the-art performance
on three different NLP tasks: natural lan-
guage inference, answer sentence selec-
tion, and sentence classification, outper-
forming state-of-the-art recurrent and re-
cursive neural networks 1.

1 Introduction

Recurrent neural networks (RNNs) have been suc-
cessful for modeling sequence data (Elman, 1990).
RNNs equipped with gated hidden units and in-
ternal short-term memories, such as long short-
term memories (LSTM) (Hochreiter and Schmid-
huber, 1997) have achieved a notable success in

1Code for the experiments and NTI is available at
https://bitbucket.org/tsendeemts/nti

several NLP tasks including named entity recog-
nition (Lample et al., 2016), constituency parsing
(Vinyals et al., 2015), textual entailment recogni-
tion (Rocktäschel et al., 2016), question answer-
ing (Hermann et al., 2015), and machine trans-
lation (Bahdanau et al., 2015). However, most
LSTM models explored so far are sequential. It
encodes text sequentially from left to right or vice
versa and do not naturally support compositional-
ity of language. Sequential LSTM models seem to
learn syntactic structure from the natural language
however their generalization on unseen text is rel-
atively poor comparing with models that exploit
syntactic tree structure (Bowman et al., 2015b).

Unlike sequential models, recursive neural net-
works compose word phrases over syntactic tree
structure and have shown improved performance
in sentiment analysis (Socher et al., 2013). How-
ever its dependence on a syntactic tree architecture
limits practical NLP applications. In this study,
we introduce Neural Tree Indexers (NTI), a class
of tree structured models for NLP tasks. NTI
takes a sequence of tokens and produces its rep-
resentation by constructing a full n-ary tree in a
bottom-up fashion. Each node in NTI is associated
with one of the node transformation functions:
leaf node mapping and non-leaf node composition
functions. Unlike previous recursive models, the
tree structure for NTI is relaxed, i.e., NTI does not
require the input sequences to be parsed syntac-
tically; and therefore it is flexible and can be di-
rectly applied to a wide range of NLP tasks beyond
sentence modeling.

Furthermore, we propose different variants of
node composition function and attention over tree
for our NTI models. When a sequential leaf node
transformer such as LSTM is chosen, the NTI net-
work forms a sequence-tree hybrid model taking
advantage of both conditional and compositional
powers of sequential and recursive models. Figure
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   -           -        The        cat       sat       on         the      mat

Q: where was the cat? A: on the mat

Two      black    dogs      are    playing around   the      grass   -            -        Two      dogs    swim      in         the      lake

Premise Hypothesis

(a) (b)

Figure 1: A binary tree form of Neural Tree Indexers (NTI) in the context of question answering and
natural language inference. We insert empty tokens (denoted by −) to the input text to form a full binary
tree. (a) NTI produces answer representation at the root node. This representation along with the question
is used to find the answer. (b) NTI learns representations for the premise and hypothesis sentences and
then attentively combines them for classification. Dotted lines indicate attention over premise-indexed
tree.

1 shows a binary-tree model of NTI. Although the
model does not follow the syntactic tree structure,
we empirically show that it achieved the state-of-
the-art performance on three different NLP appli-
cations: natural language inference, answer sen-
tence selection, and sentence classification.

2 Related Work

2.1 Recurrent Neural Networks and
Attention Mechanism

RNNs model input text sequentially by taking a
single token at each time step and producing a cor-
responding hidden state. The hidden state is then
passed along through the next time step to pro-
vide historical sequence information. Although a
great success in a variety of tasks, RNNs have lim-
itations (Bengio et al., 1994; Hochreiter, 1998).
Among them, it is not efficient at memorizing long
or distant sequence (Sutskever et al., 2014). This
is frequently called as information flow bottle-
neck. Approaches have therefore been developed
to overcome the limitations. For example, to mit-
igate the information flow bottleneck, Bahdanau
et al. (2015) extended RNNs with a soft attention
mechanism in the context of neural machine trans-
lation, leading to improved the results in translat-
ing longer sentences.

RNNs are linear chain-structured; this limits its
potential for natural language which can be repre-
sented by complex structures including syntactic
structure. In this study, we propose models to mit-
igate this limitation.

2.2 Recursive Neural Networks
Unlike RNNs, recursive neural networks explic-
itly model the compositionality and the recur-
sive structure of natural language over tree. The

tree structure can be predefined by a syntactic
parser (Socher et al., 2013). Each non-leaf tree
node is associated with a node composition func-
tion which combines its children nodes and pro-
duces its own representation. The model is then
trained by back-propagating error through struc-
tures (Goller and Kuchler, 1996).

The node composition function can be varied.
A single layer network with tanh non-linearity
was adopted in recursive auto-associate memo-
ries (Pollack, 1990) and recursive autoencoders
(Socher et al., 2011). Socher et al. (2012) extended
this network with an additional matrix represen-
tation for each node to augment the expressive
power of the model. Tensor networks have also
been used as composition function for sentence-
level sentiment analysis task (Socher et al., 2013).
Recently, Zhu et al. (2015) introduced S-LSTM
which extends LSTM units to compose tree nodes
in a recursive fashion.

In this paper, we introduce a novel attentive
node composition function that is based on S-
LSTM. Our NTI model does not rely on either a
parser output or a fine-grained supervision of non-
leaf nodes, both required in previous work. In
NTI, the supervision from the target labels is pro-
vided at the root node. As such, our NTI model
is robust and applicable to a wide range of NLP
tasks. We introduce attention over tree in NTI
to overcome the vanishing/explode gradients chal-
lenges as shown in RNNs.

3 Methods

Our training set consists of N examples
{Xi, Y i}Ni=1, where the input Xi is a sequence of
word tokens wi1, w

i
2, . . . , w

i
Ti

and the output Y i

can be either a single target or a sequence. Each
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input word token wt is represented by its word
embedding xt ∈ Rk.

NTI is a full n-ary tree (and the sub-trees
can be overlapped). It has two types of
transformation function: non-leaf node func-
tion fnode(h1, . . . , hc) and leaf node function
f leaf (xt). f leaf (xt) computes a (possibly non-
linear) transformation of the input word embed-
ding xt. fnode(h1, . . . , hc) is a function of its child
nodes representation h1, . . . , hc, where c is the to-
tal number of child nodes of this non-leaf node.

NTI can be implemented with different tree
structures. In this study we implemented and eval-
uated a binary tree form of NTI: a non-leaf node
can take in only two direct child nodes (i.e., c =
2). Therefore, the function fnode(hl, hr) com-
poses its left child node hl and right child node
hr. Figure 1 illustrates our NTI model that is
applied to question answering (a) and natural lan-
guage inference tasks (b). Note that the node and
leaf node functions are neural networks and are the
only training parameters in NTI.

We explored two different approaches to com-
pose node representations: an extended LSTM and
attentive node composition functions, to be de-
scribed below.

3.1 Non-Leaf Node Composition Functions
We define two different methods for non-leaf node
function fnode(hl, hr).

LSTM-based Non-leaf Node Function (S-
LSTM): We initiate fnode(hl, hr) with LSTM.
For non-leaf node, we adopt S-LSTM Zhu et al.
(2015), an extension of LSTM to tree structures, to
learn a node representation by its children nodes.
Let hlt, h

r
t , c

l
t and crt be vector representations

and cell states for the left and right children. An
S-LSTM computes a parent node representation
hpt+1 and a node cell state cpt+1 as

it+1 = σ(W s
1h

l
t +W s

2h
r
t +W s

3 c
l
t +W s

4 c
r
t ) (1)

f lt+1 = σ(W s
5h

l
t +W s

6h
r
t +W s

7 c
l
t +W s

8 c
r
t ) (2)

f rt+1 = σ(W s
9h

l
t+W

s
10h

r
t +W

s
11c

l
t+W

s
12c

r
t ) (3)

cpt+1 = f lt+1 � clt + f rt+1 � crt
+ it+1 � tanh(W s

13h
l
t +W s

14h
r
t ) (4)

ot+1 = σ(W s
15h

l
t +W s

16h
r
t +W s

18c
p
t+1) (5)

hpt+1 = ot+1 � tanh(cpt+1) (6)

where W s
1 , . . . ,W

s
18 ∈ Rk×k and biases (for

brevity we eliminated the bias terms) are the train-
ing parameters. σ and � denote the element-
wise sigmoid function and the element-wise vec-
tor multiplication. Extension of S-LSTM non-
leaf node function to compose more children is
straightforward. However, the number of parame-
ters increases quadratically in S-LSTM as we add
more child nodes.

Attentive Non-leaf Node Function (ANF):
Some NLP applications (e.g., QA and machine
translation) would benefit from a dynamic query
dependent composition function. We introduce
ANF as a new non-leaf node function. Unlike S-
LSTM, ANF composes the child nodes attentively
in respect to another relevant input vector q ∈ Rk.
The input vector q can be a learnable representa-
tion from a sequence representation. Given a ma-
trix SANF ∈ Rk×2 resulted by concatenating the
child node representations hlt, h

r
t and the third in-

put vector q, ANF is defined as

m = fscore(SANF , q) (7)

α = softmax(m) (8)

z = SANFα> (9)

hpt+1 = ReLU(WANF
1 z) (10)

where WANF
1 ∈ Rk×k is a learnable matrix, m ∈

R2 the attention score and α ∈ R2 the attention
weight vector for each child. fscore is an attention
scoring function, which can be implemented as a
multi-layer perceptron (MLP)

m = w>ReLU(W score
1 SANF

+W score
2 q ⊗ e) (11)

or a matrix-vector product m = q>SANF . The
matrices W score

1 and W score
2 ∈ Rk×k and the vec-

tor w ∈ Rk are training parameters. e ∈ R2 is a
vector of ones and ⊗ the outer product. We use
ReLU function for non-linear transformation.

3.2 Attention Over Tree
Comparing with sequential LSTM models, NTI
has less recurrence, which is defined by the tree
depth, log(n) for binary tree where n is the length
of the input sequence. However, NTI still needs
to compress all the input information into a sin-
gle representation vector of the root. This im-
poses practical difficulties when processing long
sequences. We address this issue with attention
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Model d |θ|M Train Test
Classifier with handcrafted features (Bowman et al., 2015a) - - 99.7 78.2
LSTMs encoders (Bowman et al., 2015a) 300 3.0M 83.9 80.6
Dependency Tree CNN encoders (Mou et al., 2016) 300 3.5M 83.3 82.1
NTI-SLSTM (Ours) 300 3.3M 83.9 82.4
SPINN-PI encoders (Bowman et al., 2016) 300 3.7M 89.2 83.2
NTI-SLSTM-LSTM (Ours) 300 4.0M 82.5 83.4
LSTMs attention (Rocktäschel et al., 2016) 100 242K 85.4 82.3
LSTMs word-by-word attention (Rocktäschel et al., 2016) 100 250K 85.3 83.5
NTI-SLSTM node-by-node global attention (Ours) 300 3.5M 85.0 84.2
NTI-SLSTM node-by-node tree attention (Ours) 300 3.5M 86.0 84.3
NTI-SLSTM-LSTM node-by-node tree attention (Ours) 300 4.2M 88.1 85.7
NTI-SLSTM-LSTM node-by-node global attention (Ours) 300 4.2M 87.6 85.9
mLSTM word-by-word attention (Wang and Jiang, 2016) 300 1.9M 92.0 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 450 3.4M 88.5 86.3
Tree matching NTI-SLSTM-LSTM tree attention (Ours) 300 3.2M 87.3 86.4
Decomposable Attention Model (Parikh et al., 2016) 200 580K 90.5 86.8
Tree matching NTI-SLSTM-LSTM global attention (Ours) 300 3.2M 87.6 87.1
Full tree matching NTI-SLSTM-LSTM global attention (Ours) 300 3.2M 88.5 87.3

Table 1: Training and test accuracy on natural language inference task. d is the word embedding size and
|θ|M the number of model parameters.

mechanism over tree. In addition, the attention
mechanism can be used for matching trees (de-
scribed in Section 4 as Tree matching NTI) that
carry different sequence information. We first de-
fine a global attention and then introduce a tree
attention which considers the parent-child depen-
dency for calculation of the attention weights.

Global Attention: An attention neural network
for the global attention takes all node representa-
tions as input and produces an attentively blended
vector for the whole tree. This neural net is sim-
ilar to ANF. Particularly, given a matrix SGA ∈
Rk×2n−1 resulted by concatenating the node rep-
resentations h1, . . . , h2n−1 and the relevant input
representation q, the global attention is defined as

m = fscore(SGA, q) (12)

α = softmax(m) (13)

z = SGAα> (14)

htree = ReLU(WGA
1 z +WGA

2 q) (15)

where WGA
1 and WGA

2 ∈ Rk×k are training pa-
rameters and α ∈ R2n−1 the attention weight vec-
tor for each node. This attention mechanism is ro-
bust as it globally normalizes the attention score
m with softmax to obtain the weights α. How-
ever, it does not consider the tree structure when
producing the final representation htree.

Tree Attention: We modify the global atten-
tion network to the tree attention mechanism. The
resulting tree attention network performs almost
the same computation as ANF for each node. It

compares the parent and children nodes to pro-
duce a new representation assuming that all node
representations are constructed. Given a matrix
STA ∈ Rk×3 resulted by concatenating the parent
node representation hpt , the left child hlt and the
right child hrt and the relevant input representation
q, every non-leaf node hpt simply updates its own
representation by using the following equation in
a bottom-up manner.

m = fscore(STA, q) (16)

α = softmax(m) (17)

z = STAα> (18)

hpt = ReLU(W TA
1 z) (19)

and this equation is similarity to the global at-
tention. However, now each non-leaf node atten-
tively collects its own and children representations
and passes towards the root which finally con-
structs the attentively blended tree representation.
Note that unlike the global attention, the tree atten-
tion locally normalizes the attention scores with
softmax.

4 Experiments

We describe in this section experiments on three
different NLP tasks, natural language inference,
question answering and sentence classification to
demonstrate the flexibility and the effectiveness of
NTI in the different settings.
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We trained NTI using Adam (Kingma and Ba,
2014) with hyperparameters selected on develop-
ment set. The pre-trained 300-D Glove 840B vec-
tors (Pennington et al., 2014) were obtained for
the word embeddings2. The word embeddings are
fixed during training. The embeddings for out-of-
vocabulary words were set to zero vector. We pad
the input sequence to form a full binary tree. A
padding vector was inserted when padding. We
analyzed the effects of the padding size and found
out that it has no influence on the performance (see
Appendix 5.3). The size of hidden units of the NTI
modules were set to 300. The models were regu-
larized by using dropouts and an l2 weight decay.3

4.1 Natural Language Inference

We conducted experiments on the Stanford
Natural Language Inference (SNLI) dataset
(Bowman et al., 2015a), which consists of
549,367/9,842/9,824 premise-hypothesis pairs for
train/dev/test sets and target label indicating their
relation. Unless otherwise noted, we follow the
setting in the previous work (Mou et al., 2016;
Bowman et al., 2016) and use an MLP for classi-
fication which takes in NTI outputs and computes
the concatenation [hp2n−1;h

h
2n−1], absolute dif-

ference hp2n−1 − hh2n−1 and elementwise product
hp2n−1 ·hh2n−1 of the two sentence representations.
The MLP has also an input layer with 1024 units
with ReLU activation and a softmax output
layer. We explored nine different task-oriented
NTI models with varying complexity, to be
described below. For each model, we set the batch
size to 32. The initial learning, the regularization
strength and the number of epoch to be trained are
varied for each model.

NTI-SLSTM: this model does not rely on f leaf

transformer but uses the S-LSTM units for the
non-leaf node function. We set the initial learning
rate to 1e-3 and l2 regularizer strength to 3e-5, and
train the model for 90 epochs. The neural net was
regularized by 10% input dropouts and the 20%
output dropouts.

NTI-SLSTM-LSTM: we use LSTM for the
leaf node function f leaf . Concretely, the LSTM
output vectors are given to NTI-SLSTM and the
memory cells of the lowest level S-LSTM were
initialized with the LSTM memory states. The
hyper-parameters are the same as the previous

2http://nlp.stanford.edu/projects/glove/
3More detail on hyper-parameters can be found in code.

model.
NTI-SLSTM node-by-node global attention:

This model learns inter-sentence relation with the
global attention over premise-indexed tree, which
is similar to word-by-word attention model of
Rocktäschel et al. (2016) in that it attends over the
premise tree nodes at every time step of hypothesis
encoding. We tie the weight parameters of the two
NTI-SLSTMs for premise and hypothesis and no
f leaf transformer used. We set the initial learning
rate to 3e-4 and l2 regularizer strength to 1e-5, and
train the model for 40 epochs. The neural net was
regularized by 15% input dropouts and the 15%
output dropouts.

NTI-SLSTM node-by-node tree attention:
this is a variation of the previous model with the
tree attention. The hyper-parameters are the same
as the previous model.

NTI-SLSTM-LSTM node-by-node global at-
tention: in this model we include LSTM as the
leaf node function f leaf . Here we initialize the
memory cell of S-LSTM with LSTM memory
and hidden/memory state of hypothesis LSTM
with premise LSTM (the later follows the work
of (Rocktäschel et al., 2016)). We set the initial
learning rate to 3e-4 and l2 regularizer strength to
1e-5, and train the model for 10 epochs. The neu-
ral net was regularized by 10% input dropouts and
the 15% output dropouts.

NTI-SLSTM-LSTM node-by-node tree at-
tention: this is a variation of the previous model
with the tree attention. The hyper-parameters are
the same as the previous model.

Tree matching NTI-SLSTM-LSTM global
attention: this model first constructs the premise
and hypothesis trees simultaneously with the NTI-
SLSTM-LSTM model and then computes their
matching vector by using the global attention and
an additional LSTM. The attention vectors are
produced at each hypothesis tree node and then
are given to the LSTM model sequentially. The
LSTM model compress the attention vectors and
outputs a single matching vector, which is passed
to an MLP for classification. The MLP for this
tree matching setting has an input layer with 1024
units with ReLU activation and a softmax out-
put layer.

Unlike Wang and Jiang (2016)’s matching
LSTM model which is specific to matching se-
quences, we use the standard LSTM units and
match trees. We set the initial learning rate to 3e-
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4 and l2 regularizer strength to 3e-5, and train the
model for 20 epochs. The neural net was regular-
ized by 20% input dropouts and the 20% output
dropouts.

Tree matching NTI-SLSTM-LSTM tree at-
tention: we replace the global attention with the
tree attention. The hyper-parameters are the same
as the previous model.

Full tree matching NTI-SLSTM-LSTM
global attention: this model produces two sets
of the attention vectors, one by attending over the
premise tree regarding each hypothesis tree node
and another by attending over the hypothesis tree
regarding each premise tree node. Each set of
the attention vectors is given to a LSTM model
to achieve full tree matching. The last hidden
states of the two LSTM models (i.e. one for
each attention vector set) are concatenated for
classification. The training weights are shared
among the LSTM models The hyper-parameters
are the same as the previous model.4

Table 1 shows the results of our models. For
comparison, we include the results from the pub-
lished state-of-the-art systems. While most of
the sentence encoder models rely solely on word
embeddings, the dependency tree CNN and the
SPINN-PI models make use of sentence parser
output; which present strong baseline systems.
The last set of methods designs inter-sentence re-
lation with soft attention (Bahdanau et al., 2015).
Our best score on this task is 87.3% accuracy
obtained with the full tree matching NTI model.
The previous best performing model on the task
performs phrase matching by using the attention
mechanism.

Our results show that NTI-SLSTM improved
the performance of the sequential LSTM encoder
by approximately 2%. Not surprisingly, using
LSTM as leaf node function helps in learning
better representations. Our NTI-SLSTM-LSTM
is a hybrid model which encodes a sequence
sequentially through its leaf node function and
then hierarchically composes the output repre-
sentations. The node-by-node attention models
improve the performance, indicating that model-
ing inter-sentence interaction is an important el-
ement in NLI. Aggregating matching vector be-
tween trees or sequences with a separate LSTM
model is effective. The global attention seems to

4Computational constraint prevented us from experiment-
ing the tree attention variant of this model

Model MAP MRR
Classifier with features (2013) 0.5993 0.6068
Paragraph Vector (2014) 0.5110 0.5160
Bigram-CNN (2014) 0.6190 0.6281
3-layer LSTM (2016) 0.6552 0.6747
3-layer LSTM attention (2016) 0.6639 0.6828
NASM (2016) 0.6705 0.6914
NTI (Ours) 0.6742 0.6884

Table 2: Test set performance on answer sentence
selection.

Model Bin FG
RNTN (Socher et al., 2013) 85.4 45.7
CNN-MC (Kim, 2014) 88.1 47.4
DRNN (Irsoy and Cardie, 2015) 86.6 49.8
2-layer LSTM (Tai et al., 2015) 86.3 46.0
Bi-LSTM (Tai et al., 2015) 87.5 49.1
NTI-SLSTM (Ours) 87.8 50.5
CT-LSTM (Tai et al., 2015) 88.0 51.0
DMN (Kumar et al., 2016) 88.6 52.1
NTI-SLSTM-LSTM (Ours) 89.3 53.1

Table 3: Test accuracy for sentence classification.
Bin: binary, FG: fine-grained 5 classes.

be robust on this task. The tree attention were not
helpful as it normalizes the attention scores locally
in parent-child relationship.

4.2 Answer Sentence Selection

For this task, a model is trained to identify the
correct sentences that answer a factual question,
from a set of candidate sentences. We experiment
on WikiQA dataset constructed from Wikipedia
(Yang et al., 2015). The dataset contains
20,360/2,733/6,165 QA pairs for train/dev/test
sets.

We used the same setup in the language infer-
ence task except that we replace the softmax
layer with a sigmoid layer and model the follow-
ing conditional probability distribution.

pθ(y = 1|hqn, han) = sigmoid(oQA) (20)

where hqn and han are the question and the answer
encoded vectors and oQA denotes the output of
the hidden layer of the MLP. For this task, we
use NTI-SLSTM-LSTM to encode answer candi-
date sentences and NTI-ANF-LSTM to encode the
question sentences. Note that NTI-ANF-LSTM is
relied on ANF as the non-leaf node function. q
vector for NTI-ANF-LSTM is the answer repre-
sentation produced by the answer encoding NTI-
SLSTM-LSTM model. We set the batch size to 4
and the initial learning rate to 1e-3, and train the
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Figure 2: Node-by-node attention visualizations. The phrases shown on the top are nodes from
hypothesis-indexed tree and the premise tokens are listed along the x-axis. The adjacent cells are com-
posed in the top cell representing a binary tree and resulting a longer attention span.

a person park for fun Santa Claus sad, depressed, and hatred
single person an outdoor concert at the park a snowmobile in a blizzard an Obama supporter is upset
a woman kids playing at a park outside a Skier ski - jumping but doesn’t have any money
a young person a mom takes a break in a park A skier preparing a trick crying because he didn’t get cake
a guy people play frisbee outdoors a child is playing on christmas trying his hardest to not fall off
a single human takes his lunch break in the park two men play with a snowman is upset and crying on the ground

Table 4: Nearest-neighbor phrases based on cosine similarity between learned representations.

model for 10 epochs. We used 20% input dropouts
and no l2 weight decay. Following previous work,
we adopt MAP and MRR as the evaluation metrics
for this task.5

Table 2 presents the results of our model and
the previous models for the task.6 The classifier
with handcrafted features is a SVM model trained
with a set of features. The Bigram-CNN model
is a simple convolutional neural net. The Deep
LSTM and LSTM attention models outperform
the previous best result by a large margin, nearly
5-6%. NASM improves the result further and sets
a strong baseline by combining variational auto-
encoder (Kingma and Welling, 2014) with the soft
attention. In NASM, they adopt a deep three-layer
LSTM and introduced a latent stochastic attention
mechanism over the answer sentence. Our NTI
model exceeds NASM by approximately 0.4% on
MAP for this task.

5We used trec eval script to calculate the evaluation met-
rics

6Inclusion of simple word count feature improves the per-
formance by around 0.15-0.3 across the board

4.3 Sentence Classification

Lastly, we evaluated NTI on the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). This
dataset comes with standard train/dev/test sets and
two subtasks: binary sentence classification or
fine-grained classification of five classes. We
trained our model on the text spans corresponding
to labeled phrases in the training set and evaluated
the model on the full sentences.

We use NTI-SLSTM and NTI-SLSTM-LSTM
models to learn sentence representations for the
task. The sentence representations were passed
to a two-layer MLP for classification. We set the
batch size to 64, the initial learning rate to 1e-3
and l2 regularizer strength to 3e-5, and train each
model for 10 epochs. The NTI-SLSTM model
was regularized by 10%/20% of input/output and
20%/30% of input/output dropouts and the NTI-
SLSTM-LSTM model 20% of input and 20%/30%
of input/output dropouts for binary and fine-
grained settings.

NTI-SLSTM-LSTM (as shown in Table 5)
set the state-of-the-art results on both subtasks.
Our NTI-SLSTM model performed slightly worse
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A dog mouth holds a retrieved ball. A cat nurses puppies. A dog sells a woman a hat.
A brown and white dog holds a tennis
ball in his mouth.

A golden retriever nurses some other
dogs puppies.

The dog is a labrador retriever.

The dog has a ball. A golden retriever nurses puppies. A girl is petting her dog.
The dogs are chasing a ball. A mother dog checking up on her baby

puppy.
The dog is a shitzu.

A small dog runs to catch a ball. A girl is petting her dog. A husband and wife making pizza.
The puppy is chasing a ball. The hat wearing girl is petting a cat. The dog is a chihuahua.

Table 5: Nearest-neighbor sentences based on cosine similarity between learned representations.

than its constituency tree-based counter part, CT-
LSTM model. The CT-LSTM model composes
phrases according to the output of a sentence
parser and uses a node composition function sim-
ilar to S-LSTM. After we transformed the input
with the LSTM leaf node function, we achieved
the best performance on this task.

5 Qualitative Analysis

5.1 Attention and Compositionality

To help analyzing the results, we output atten-
tion weights by our NTI-SLSTM node-by-node
global attention model. Figure 2 shows the atten-
tion heatmaps for two sentences in the SNLI test
set. It shows that our model semantically aligns
single or multiword expressions (”little child” and
”toddler”; ”rock wall” and ”stone”). In addition,
our model is able to re-orient its attention over dif-
ferent parts of the hypothesis when the expression
is more complex. For example, for (c) ”rock wall
in autumn”, NTI mostly focuses on the nodes in
depth 1, 2 and 3 representing contexts related to ”a
stone”, ”leaves.” and ”a stone wall surrounded”.
Surprisingly, attention degree for the single word
expression like ”stone”, ”wall” and ”leaves” is
lower to compare with multiword phrases. Se-
quence models lack this property as they have no
explicit composition module to produce such mu-

Figure 3: Fine-grained sentiment classification ac-
curacy vs. padding size on test set of SST data.

tiword phrases.
Finally, the most interesting pattern is that the

model attends over higher level (low depth) tree
nodes with rich semantics when considering a (c)
longer phrase or (d) full sentence. As shown in (d),
the NTI model aligns the root node representing
the whole hypothesis sentence to the higher level
tree nodes covering larger sub-trees in the premise.
It certainly ignores the lower level single word ex-
pressions and only starts to attend when the words
are collectively to form rich semantics.

5.2 Learned Representations of Phrases and
Sentences

Using cosine similarity between their represen-
tations produced by the NTI-SLSTM model, we
show that NTI is able to capture paraphrases on
SNLI test data. As shown in Table 4, NTI seems
to distinguish plural from singular forms (similar
phrases to ”a person”). In addition, NTI captures
non-surface knowledge. For example, the phrases
similar to ”park for fun” tend to align to the se-
mantic content of fun and park, including ”people
play frisbee outdoors”. The NTI model was able
to relate ”Santa Claus” to christmas and snow. In-
terestingly, the learned representations were also
able to connect implicit semantics. For example,
NTI found that ”sad, depressed, and hatred” is
close to the phrases like ”an Obama supporter is
upset”. Overall the NTI model is robust to the
length of the phrases being matched. Given a short
phrase, NTI can retrieve longer yet semantically
coherent sequences from the SNLI test set.

In Table 5, we show nearest-neighbor sentences
from SNLI test set. Note that the sentences listed
in the first two columns sound semantically coher-
ent but not the ones in the last column. The query
sentence ”A dog sells a women a hat” does not ac-
tually represent a common-sense knowledge and
this sentence now seem to confuse the NTI model.
As a result, the retrieved sentence are arbitrary and
not coherent.
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5.3 Effects of Padding Size

We introduced a special padding character in or-
der to construct full binary tree. Does this padding
character influence the performance of the NTI
models? In Figure 3, we show relationship be-
tween the padding size and the accuracy on Stan-
ford sentiment analysis data. Each sentence was
padded to form a full binary tree. The x-axis
represents the number of padding characters in-
troduced. When the padding size is less (up to
10), the NTI-SLSTM-LSTM model performs bet-
ter. However, this model tends to perform poorly
or equally when the padding size is large. Over-
all we do not observe any significant performance
drop for both models as the padding size increases.
This suggests that NTI learns to ignore the spe-
cial padding character while processing padded
sentences. The same scenario was also observed
while analyzing attention weights. The attention
over the padded nodes was nearly zero.

6 Discussion and Conclusion

We introduced Neural Tree Indexers, a class of
tree structured recursive neural network. The NTI
models achieved state-of-the-art performance on
different NLP tasks. Most of the NTI models form
deep neural networks and we think this is one rea-
son that NTI works well even if it lacks direct
linguistic motivations followed by other syntactic-
tree-structured recursive models (Socher et al.,
2013).

CNN and NTI are topologically related (Kalch-
brenner and Blunsom, 2013). Both NTI and CNNs
are hierarchical. However, current implementa-
tion of NTI only operates on non-overlapping sub-
trees while CNNs can slide over the input to pro-
duce higher-level representations. NTI is flex-
ible in selecting the node function and the at-
tention mechanism. Like CNN, the computation
in the same tree-depth can be parallelized effec-
tively; and therefore NTI is scalable and suitable
for large-scale sequence processing. Note that
NTI can be seen as a generalization of LSTM. If
we construct left-branching trees in a bottom-up
fashion, the model acts just like sequential LSTM.
Different branching factors for the underlying tree
structure have yet to be explored. NTI can be ex-
tended so it learns to select and compose dynamic
number of nodes for efficiency, essentially discov-
ering intrinsic hierarchical structure in the input.
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Abstract

Neural networks with attention have
proven effective for many natural lan-
guage processing tasks. In this paper, we
develop attention mechanisms for uncer-
tainty detection. In particular, we gen-
eralize standardly used attention mecha-
nisms by introducing external attention
and sequence-preserving attention. These
novel architectures differ from standard
approaches in that they use external re-
sources to compute attention weights and
preserve sequence information. We com-
pare them to other configurations along
different dimensions of attention. Our
novel architectures set the new state of
the art on a Wikipedia benchmark dataset
and perform similar to the state-of-the-art
model on a biomedical benchmark which
uses a large set of linguistic features.

1 Introduction

For many natural language processing (NLP)
tasks, it is essential to distinguish uncertain (non-
factual) from certain (factual) information. Such
tasks include information extraction, question an-
swering, medical information retrieval, opinion
detection, sentiment analysis (Karttunen and Za-
enen, 2005; Vincze, 2014a; Dı́az et al., 2016)
and knowledge base population (KBP). In KBP,
we need to distinguish, e.g., “X may be Basque”
and “X was rumored to be Basque” (uncertain)
from “X is Basque” (certain) to decide whether
to add the fact “Basque(X)” to a knowledge base.
In this paper, we use the term uncertain infor-
mation to refer to speculation, opinion, vague-
ness and ambiguity. We focus our experiments
on the uncertainty detection (UD) dataset from
the CoNLL2010 hedge cue detection task (Farkas

et al., 2010). It consists of two medium-sized
corpora from different domains (Wikipedia and
biomedical) that allow us to run a large number
of comparative experiments with different neural
networks and exhaustively investigate different di-
mensions of attention.

Convolutional and recurrent neural networks
(CNNs and RNNs) perform well on many NLP
tasks (Collobert et al., 2011; Kalchbrenner et al.,
2014; Zeng et al., 2014; Zhang and Wang, 2015).
CNNs are most often used with pooling. More re-
cently, attention mechanisms have been success-
fully integrated into CNNs and RNNs (Bahdanau
et al., 2015; Rush et al., 2015; Hermann et al.,
2015; Rocktäschel et al., 2016; Yang et al., 2016;
He and Golub, 2016; Yin et al., 2016). Both pool-
ing and attention can be thought of as selection
mechanisms that help the network focus on the
most relevant parts of a layer, either an input or
a hidden layer. This is especially beneficial for
long input sequences, e.g., long sentences or en-
tire documents. We apply CNNs and RNNs to un-
certainty detection and compare them to a number
of baselines. We show that attention-based CNNs
and RNNs are effective for uncertainty detection.
On a Wikipedia benchmark, we improve the state
of the art by more than 3.5 F1 points.

Despite the success of attention in prior work,
the design space of related network architectures
has not been fully explored. In this paper, we de-
velop novel ways to calculate attention weights
and integrate them into neural networks. Our
models are motivated by the characteristics of
the uncertainty task, yet they are also a first at-
tempt to systematize the design space of atten-
tion. In this paper, we begin with investigat-
ing three dimensions of this space: weighted
vs. unweighted selection, sequence-agnostic vs.
sequence-preserving selection, and internal vs. ex-
ternal attention.

22



(1) (2) (3) (4)

 w
1
   w

2
   …                                 w

c-1
 w

c

input sentence

project into
embedding space

a

tanh

W

 w
1
   w

2
   …                                 w

c-1
 w

c

input sentence

project into
embedding space

RNN / CNN

a

W

RNN hidden 
 layers /
CNN kernels

 w
1
   w

2
   …               w

c-1
 w

c

input sentence

project into
embedding space

a

cue embeddings

U
1

U
2

V

 w
1
   w

2
   …               w

c-1
 w

c

input sentence

project into
embedding space

a

cue embeddings

U
1

U
2

V

RNN / CNN

Figure 1: Internal attention on (1) input and (2) hidden representation. External attention on (3) input
and (4) hidden representation. For the whole network structure, see Figure 3.

Weighted vs. Unweighted Selection. Pooling
is unweighted selection: it outputs the selected
values as is. In contrast, attention can be thought
of as weighted selection: some input elements are
highly weighted, others receive weights close to
zero and are thereby effectively not selected. The
advantage of weighted selection is that the model
learns to decide based on the input how many val-
ues it should select. Pooling either selects all val-
ues (average pooling) or k values (k-max pooling).
If there are more than k uncertainty cues in a sen-
tence, pooling is not able to focus on all of them.

Sequence-agnostic vs. Sequence-preserving
Selection. K-max pooling (Kalchbrenner et al.,
2014) is sequence-preserving: it takes a long se-
quence as input and outputs a subsequence whose
members are in the same order as in the original
sequence. In contrast, attention is generally imple-
mented as a weighted average of the input vectors.
That means that all ordering information is lost
and cannot be recovered by the next layer. As an
alternative, we present and evaluate new sequence-
preserving ways of attention. For uncertainty de-
tection, this might help distinguishing phrases like
“it is not uncertain that X is Basque” and “it is un-
certain that X is not Basque”.

Internal vs. External Attention. Prior work
calculates attention weights based on the input or
hidden layers of the neural network. We call this
internal attention. For uncertainty detection, it can
be beneficial to give the model a lexicon of seed
cue words or phrases. Thus, we provide the net-
work with additional information to bear on iden-
tifying and summarizing features. This can sim-
plify the training process by guiding the model to
recognizing uncertainty cues. We call this external
attention and show that it improves performance

for uncertainty detection.
Previous work on attention and pooling has only

considered a small number of the possible configu-
rations along those dimensions of attention. How-
ever, the internal/external and un/weighted distinc-
tions can potentially impact performance because
external resources add information that can be crit-
ical for good performance and because weighting
increases the flexibility and expressivity of neural
network models. Also, word order is often critical
for meaning and is therefore an important feature
in NLP. Although our models are motivated by the
characteristics of uncertainty detection, they could
be useful for other NLP tasks as well.

Our main contributions are as follows. (i) We
extend the design space of selection mechanisms
for neural networks and conduct an extensive
set of experiments testing various configurations
along several dimensions of that space, including
novel sequence-preserving and external attention
mechanisms. (ii) To our knowledge, we are the
first to apply convolutional and recurrent neural
networks to uncertainty detection. We demon-
strate the effectiveness of the proposed attention
architectures for this task and set the new state of
the art on a Wikipedia benchmark dataset. (iii) We
publicly release our code for future research.1

2 Models

Convolutional Neural Networks. CNNs have
been successful for many NLP tasks since convo-
lution and pooling can detect key features inde-
pendent of their position in the sentence. More-
over, they can take advantage of word embeddings
and their characteristics. Both properties are also

1http://cistern.cis.lmu.de
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essential for uncertainty detection since we need
to detect cue phrases that can occur anywhere in
the sentence; and since some notion of similarity
improves performance if a cue phrase in the test
data did not occur in the training data, but is simi-
lar to one that did. The CNN we use in this paper
has one convolutional layer, 3-max pooling (see
Kalchbrenner et al. (2014)), a fully connected hid-
den layer and a logistic output unit.

Recurrent Neural Networks. Different types
of RNNs have been applied widely to NLP tasks,
including language modeling (Bengio et al., 2000;
Mikolov et al., 2010), machine translation (Cho et
al., 2014; Bahdanau et al., 2015), relation classi-
fication (Zhang and Wang, 2015) and entailment
(Rocktäschel et al., 2016). In this paper, we apply
a bi-directional gated RNN (GRU) with gradient
clipping and a logistic output unit. Chung et al.
(2014) showed that GRUs and LSTMs have sim-
ilar performance, but GRUs are more efficient in
training. The hidden layer h of the GRU is param-
eterized by two matrices W and U and four addi-
tional matrices Wr, Ur and Wz , Uz for the reset
gate r and the update gate z (Cho et al., 2014):

r = σ(Wrx+ Urh
t−1) (1)

z = σ(Wzx+ Uzh
t−1) (2)

ht = z � ht−1 + (1− z)� h̃t (3)

h̃t = σ(Wx+ U(r � ht−1)) (4)

t is the index for the current time step, � is
element-wise multiplication and σ is the sigmoid.

3 Attention

3.1 Architecture of the Attention Layer

We first define an attention layer a for input x:

αi =
exp(f(xi))∑
j exp(f(xj))

(5)

ai = αi · xi (6)

where f is a scoring function, the αi are the atten-
tion weights and each input xi is reweighted by its
corresponding attention weight αi.

The most basic definition of f is as a linear scor-
ing function on the input x:

f(xi) =W Txi (7)

W are parameters that are learned in training.
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Figure 2: Schemes of focus and source: left: in-
ternal attention, right: external attention

3.2 Focus and Source of Attention
In this paper, we distinguish between focus and
source of attention.

The focus of attention is the layer of the net-
work that is reweighted by attention weights, cor-
responding to x in Eq. 6. We consider two op-
tions for the application in uncertainty detection
as shown in Figure 1: (i) the focus is on the in-
put, i.e., the matrix of word vectors ((1) and (3))
and (ii) the focus is on the convolutional layer of
the CNN or the hidden layers of the RNN ((2) and
(4)). For focus on the input, we apply tanh to the
word vectors (see part (1) of figure) to improve re-
sults.

The source of attention is the information
source that is used to compute the attention
weights, corresponding to the input of f in Eq. 5.

Eq. 7 formalizes the case in which focus and
source are identical (both are based only on x). We
call this internal attention (see left part of Fig-
ure 2). An attention layer is called internal if both
focus and source are based only on information
internally available to the network (through input
or hidden layers).2

If we conceptualize attention in terms of source
and focus, then a question that arises is whether
we can make it more powerful by increasing the
scope of the source beyond the input.

In this paper, we propose a way of expanding
the source of attention by making an external re-
source C available to the scoring function f :

f(xi) = f ′(xi, C) (8)

We call this external attention (see right part of
Figure 2). An attention layer is called external if
its source includes an external resource.

The specific external-attention scoring function
we use for uncertainty detection is parametrized
by U1, U2 and V and defined as follows:

f(xi) =
∑

j

V T · tanh(U1 · xi + U2 · cj) (9)

2Gates, e.g., the weighting of ht−1 in Eq. 4, can also be
viewed as internal attention mechanisms.
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where cj is a vector representing a cue phrase j of
the training set. We compute cj as the average of
the embeddings of the constituent words of j.

This attention layer scores an input word xi by
comparing it with each cue vector cj and summing
the results. The comparison is done using a fully
connected hidden layer. Its weights U1, U2 and V
are learned during training. When using this scor-
ing function in Eq. 5, each αi is an assessment of
how important xi is for uncertainty detection, tak-
ing into account our knowledge about cue phrases.
Since we use embeddings to represent words and
cues, uncertainty-indicating phrases that did not
occur in training, but are similar to training cue
phrases can also be recognized.

We use this novel attention mechanism for un-
certainty detection, but it is also applicable to other
tasks and domains as long as there is a set of vec-
tors available that is analogous to our cj vectors,
i.e., vectors that model relevance of embeddings
to the task at hand (for an outlook, see Section 6).

3.3 Sequence-agnostic vs.
Sequence-preserving Selection

So far, we have explained the basic architecture
of an attention layer: computing attention weights
and reweighting the input. We now turn to the
integration of the attention layer into the overall
network architecture, i.e., how it is connected to
downstream components.

The most frequently used downstream connec-
tion of the attention layer is to take the average:

a =
∑

i

ai (10)

We call this the average, not the sum, because the
αi are normalized to sum to 1 and the standard
term for this is “weighted average”.

A variant is the k-max average:

a =
∑

R(αj)≤k
aj

where R(αj) is the rank of αj in the list of activa-
tion weights αi in descending order. This type of
averaging is more similar to k-max pooling and
may be more robust because elements with low
weights (which may just be noise) will be ignored.

Averaging destroys order information that
may be needed for NLP sequence classification
tasks. Therefore, we also investigate a sequence-
preserving method, k-max sequence:

a = [aj |R(αj) ≤ k] (11)
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Figure 3: Network overview: combination of at-
tention and CNN/RNN output. For details on at-
tention, see Figure 1.

where [aj |P (aj)] denotes the subsequence of se-
quenceA = [a1, . . . , aJ ] from which members not
satisfying predicate P have been removed. Note
that sequence a is in the original order of the in-
put, i.e., not sorted by value.

K-max sequence selects a subsequence of in-
put vectors. Our last integration method is k-max
pooling. It ranks each dimension of the vectors in-
dividually, thus the resulting values can stem from
different input positions. This is the same as stan-
dard k-max pooling in CNNs except that each vec-
tor element in aj has been weighted (by its atten-
tion weight αj), whereas in standard k-max pool-
ing it is considered as is. Below, we also refer to k-
max sequence as “per-pos” and to k-max pooling
as “per-dim” to clearly distinguish it from k-max
pooling done by the CNN.

Combination with CNN and RNN Output.
Another question is whether we combine the atten-
tion result with the result of the convolutional or
recurrent layer of the network. Since k-max pool-
ing (CNN) and recurrent hidden layers with gates
(RNN) have strengths complementary to attention,
we experiment with concatenating the attention in-
formation to the neural sentence representations.
The final hidden layer then has this form:

h = tanh(W1a+W2r + b)

with r being either the CNN pooling result or the
last hidden state of the RNN (see Figure 3).

4 Experimental Setup and Results

4.1 Task and Setup
We evaluate on the two corpora of the
CoNLL2010 hedge cue detection task (Farkas
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Model wiki bio
(1) Baseline SVM 62.01? 78.64?
(2) Baseline RNN 59.82? 84.69
(3) Baseline CNN 64.94 84.23

Table 1: F1 results for UD. Baseline models with-
out attention. ? indicates significantly worse than
best model (in bold).4

Model wiki bio
(2) Baseline RNN 59.82? 84.69
(4) RNN attention-only 62.02? 85.32
(5) RNN combined 58.96? 84.88
(3) Baseline CNN 64.94? 84.23
(6) CNN attention-only 53.44? 82.85
(7) CNN combined 66.49 84.69

Table 2: F1 results for UD. Attention-only
vs. combined architectures. Sequence-agnostic
weighted average for attention. ? indicates signif-
icantly worse than best model (bold).

et al., 2010): Wikipedia (11,111 sentences in
train, 9634 in test) and Biomedical (14,541 train,
5003 test). It is a binary sentence classification
task. For each sentence, the model has to decide
whether it contains uncertain information.

For hyperparameter tuning, we split the training
set into core-train (80%) and dev (20%) sets; see
appendix for hyperparameter values. We use 400
dimensional word2vec (Mikolov et al., 2013) em-
beddings, pretrained on Wikipedia, with a special
embedding for unknown words.

For evaluation, we apply the official shared task
measure: F1 of the uncertain class.

4.2 Baselines without Attention
Our baselines are a support vector machine (SVM)
and two standard neural networks without atten-
tion, an RNN and a CNN. The SVM is a reimple-
mentation of the top ranked system on Wikipedia
in the CoNLL-2010 shared task (Georgescul,
2010), with parameters set to Georgescul (2010)’s
values; it uses bag-of-word (BOW) vectors that
only include hedge cues. Our reimplementation
is slightly better than the published result: 62.01
vs. 60.20 on wiki, 78.64 vs. 78.50 on bio.

The results of the baselines are given in Table 1.
The CNN (line 3) outperforms the SVM (line 1) on
both datasets, presumably because it considers all
words in the sentence – instead of only predefined
hedge cues – and makes effective use of this ad-
ditional information. The RNN (line 2) performs
better than the SVM and CNN on biomedical data,

4randomization test with p<.05.

but worse on Wikipedia. In Section 5.2, we inves-
tigate possible reasons for that.

4.3 Experiments with Attention Mechanisms

For the first experiments of this subsection, we use
the sequence-agnostic weighted average for atten-
tion (see Eq. 10), the standard in prior work.

Attention-only vs. Combined Architecture.
For the case of internal attention, we first remove
the final pre-output layer of the standard RNN
and the standard CNN to evaluate attention-only
architectures. This architecture works well for
RNNs but not for CNNs. The CNNs achieve bet-
ter results when the pooling output (unweighted
selection) is combined with the attention output
(weighted selection). See Table 2 for F1 scores.

The baseline RNN has the difficult task of re-
membering the entire sentence over long distances
– the attention mechanism makes this task much
easier. In contrast, the baseline CNN already has
an effective mechanism for focusing on the key
parts of the sentence: k-max pooling. Replacing
k-max pooling with attention decreases the perfor-
mance in this setup.

Since our main goal is to explore the benefits of
adding attention to existing architectures (as op-
posed to developing attention-only architectures),
we keep the standard pre-output layer of RNNs
and CNNs in the remaining experiments and com-
bine it with the attention layer as in Figure 3.

Focus and Source of Attention. We distin-
guish different focuses and sources of attention.
For focus, we investigate two possibilities: the in-
put to the network, i.e., word embeddings (F=W);
or the hidden representations of the RNN or CNN
(F=H). For source, we compare internal (S=I) and
external attention (S=E). This gives rise to four
configurations: (i) internal attention with focus
on the first layer of the standard RNN/CNN (S=I,
F=H), see lines (5) and (7) in Table 2, (ii) internal
attention with focus on the input (S=I, F=W), (iii)
external attention on the first layer of RNN/CNN
(S=E, F=H) and (iv) external attention on the input
(S=E, F=W). The results are provided in Table 3.

For both RNN (8) and CNN (13), the best result
is obtained by focusing attention directly on the
word embeddings.5 These results suggest that it is
best to optimize the attention mechanism directly
on the input, so that information can be extracted

5The small difference between the RNN results on bio on
lines (5) and (8) is not significant.
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Model S F wiki bio
(2) Baseline RNN - - 59.82? 84.69
(5) RNN combined I H 58.96? 84.88
(8) RNN combined I W 62.18? 84.81
(9) RNN combined E H 61.19? 84.62
(10) RNN combined E W 61.87? 84.41
(3) Baseline CNN - - 64.94? 84.23?
(7) CNN combined I H 66.49 84.69
(11) CNN combined I W 65.13? 84.99
(12) CNN combined E H 64.14? 84.73
(13) CNN combined E W 67.08 85.57

Table 3: F1 results for UD. Focus (F) and source
(S) of attention: Internal (I) vs external (E) at-
tention; attention on word embeddings (W) vs.
on hidden layers (H). Sequence-agnostic weighted
average for attention. ? indicates significantly
worse than best model (bold).

that is complementary to the information extracted
by a standard RNN/CNN.

For focus on input (F=W), external attention
(13) is significantly better than internal attention
(11) for CNNs. Thus, by designing an architec-
tural element – external attention – that makes it
easier to identify hedge cue properties of words,
the learning problem is apparently made easier.

For the RNN and F=W, external attention (10)
is not better than internal attention (8): results are
roughly tied for bio and wiki. Perhaps the combi-
nation of the external resource and the more indi-
rect representation of the entire sentence produced
by the RNN is difficult. In contrast, hedge cue pat-
terns identified by convolutional filters of the CNN
can be evaluated well based on external attention;
e.g., if there is strong external-attention evidence
for uncertainty, then the effect of a hedge cue pat-
tern (hypothesized by a convolutional filter) on the
final decision can be boosted.

In summary, the CNN with external attention
achieves the best results overall. It is significantly
better than the standard CNN that uses only pool-
ing, both on Wikipedia and biomedical texts. This
demonstrates that the CNN can make effective use
of external information – a lexicon of uncertainty
cues in our case.

Sequence-agnostic vs. Sequence-preserving.
Commonly used attention mechanisms simply av-
erage the vectors in the focus of attention. This
means that sequential information is not pre-
served. We use the term sequence-agnostic for
this. In contrast, we propose to investigate
sequence-preserving attention as presented in Sec-
tion 3.3. We expect this to be important for many

average k-max sequence
all k-max per-dim per-pos

Wiki 67.08 67.52 66.73 66.50
Bio 85.57 84.36 84.05 84.03

Table 4: F1 results for UD. Model: CNN, S=E,
F=W (13). Sequence-agnostic vs. sequence-
preserving attention.

NLP tasks. Sequence-preserving attention is simi-
lar to k-max pooling which also selects an ordered
subset of inputs. While traditional k-max pooling
is unweighted, our sequence-preserving ways of
attention still make use of the attention weights.

Table 4 compares k-max pooling, attention and
two “hybrid” designs, as described in Section 3.3.
We run these experiments only on the CNN with
external attention focused on word embeddings
(Table 3, line 13), the best performing configura-
tion in the previous experiments.

First, we investigate what happens if we “dis-
cretize” attention and only consider the values
with the top k attention weights. This increases
performance on wiki (from 67.08 to 67.52) and
decreases it on bio (from 85.57 to 84.36). We
would not expect large differences since attention
values tend to be peaked, so for common val-
ues of k (k ≥ 3 in most prior work on k-max
pooling) we are effectively comparing two sim-
ilar weighted averages, one in which most sum-
mands get a weight of 0 (k-max average) and one
in which most summands get weights close to 0
(average over all, i.e., standard attention).

Next, we compare sequence-agnostic with
sequence-preserving attention. As described in
Section 3.3, two variants are considered. In k-max
pooling, we select the k largest weighted values
per dimension (per-dim in Table 4). In contrast,
k-max sequence (per-pos) selects all values of the
k positions with the highest attention weights.

In Table 4, the sequence-preserving architec-
tures are slightly worse than standard attention
(i.e., sequence-agnostic averaging), but not signif-
icantly: performance is different by about half a
point. This shows that k-max sequence and atten-
tion can similarly be used to select a subset of the
information available, a parallel that has not been
highlighted and investigated in detail before.

Although in this case, sequence-agnostic at-
tention is better than sequence-preserving atten-
tion, we would not expect this to be true for all
tasks. Our motivation for introducing sequence-
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Model wiki bio
SVM (Georgescul, 2010) 62.01 78.64
HMM (Li et al., 2014) 63.97 80.15
CRF + ling (Tang et al., 2010) 55.05 86.79
Our CNN with external attention 67.52 85.57

Table 5: Comparison of our best model with the
state of the art

preserving attention was that the semantic mean-
ing of a sentence can vary depending on where an
uncertainty cue occurs. However, the core of un-
certainty detection is keyword and keyphrase de-
tection; so, the overall sentence structure might
be less important for this task. For tasks with a
stronger natural language understanding compo-
nent, such as summarization or relation extrac-
tion, on the other hand, we expect sequences of
weighted vectors to outperform averaged vectors.
In Section 6, we show that sequence-preserving
attention indeed improves results on a sentiment
analysis dataset.

4.4 Comparison to State of the Art

Table 5 compares our models with the state of
the art on the uncertainty detection benchmark
datasets. On Wikipedia, our CNN outperforms
the state of the art by more than three points. On
bio, the best model uses a large number of man-
ually designed features and an exhaustive corpus
preprocessing (Tang et al., 2010). Our models
achieve comparable results without preprocessing
or feature engineering.

5 Analysis

5.1 Analysis of Attention

In an analysis of examples for which pooling alone
(i.e., the standard CNN) fails, but attention cor-
rectly detects an uncertainty, two patterns emerge.

In the first pattern, we find that there are many
cues that have more words than the filter size
(which was 3 in our experiments), e.g., “it is
widely expected”, “it has also been suggested”.
The convolutional layer of the CNN is not able to
detect phrases longer than the filter size while for
attention there is no such restriction.

The second pattern consists of cues spread over
the whole sentence, e.g., “Observations of the
photosphere of 47 Ursae Majoris suggested that
the periodicity could not be explained by stel-
lar activity, making the planet interpretation more
likely” where we have set the uncertainty cues
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Figure 4: Attention weight heat map

A
lte

rn
at
iv
el
y ,

th
e

is
la
nd

w
as

so
m
et
im

es
kn

ow
n as

B
ra

zi
l ,

an
d so

m
ig
ht

re
pr

es
en

t
th
e

sa
m
e

is
la
nd as th
e

B
ra

zi
l

of
f

th
e

w
es

t
co

as
t of

Ire
la
nd
.

external
internal
pooling

Figure 5: Pooling vs. internal vs. ext. attention

that are distributed throughout the sentence in ital-
ics. Figure 4 shows the distribution of external
attention weights computed by the CNN for this
sentence. The CNN pays the most attention to
the three words/phrases “suggested”, “not” and
“more likely” that correspond almost perfectly to
the true uncertainty cues. K-max pooling of stan-
dard CNNs, on the other hand, can only select the
k maximum values per dimension, i.e., it can pick
at most k uncertainty cues per dimension.

Pooling vs. Internal vs. External Attention.
Finally, we compare the information that pool-
ing, internal and external attention extract. For
pooling, we calculate the relative frequency that
a value from an n-gram centered around a specific
word is picked. For internal and external attention,
we directly plot the attention weights αi. Figure 5
shows the results of the three mechanisms for an
exemplary sentence. For a sample of randomly
selected sentences, we observed similar patterns:
Pooling forwards information from different parts
all over the sentence. It has minor peaks at rele-
vant n-grams (e.g. “was sometimes known as” or
“so might represent”) but also at non-relevant parts
(e.g. “Alternatively” or “the same island”). There
is no clear focus on uncertainty cues. Internal at-
tention is more focused on the relevant words. Ex-
ternal attention finally has the clearest focus. (See
appendix for more examples.)

5.2 Analysis of CNN vs RNN
While the results of the CNN and the RNN are
comparable on bio, the CNN clearly outperforms
the RNN on wiki. The datasets vary in several
aspects, such as average sentence lengths (wiki:
21, bio: 27)6, size of vocabularies (wiki: 45.1k,

6number of tokens per sentence after tokenization with
Stanford tokenizer (Manning et al., 2014).
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Figure 6: F1 results for different sentence lengths

bio: 25.3k), average number of out-of-vocabulary
(OOV) words per sentence w.r.t. our word embed-
dings (wiki: 4.5, bio: 6.5), etc. All of those fea-
tures can influence model performance, especially
because of the different way of sentence process-
ing: While the RNN merges all information into a
single vector, the CNN extracts the most important
phrases and ignores all the rest. In the following,
we analyze the behavior of the two models w.r.t.
sentence length and number of OOVs.

Figure 6 shows the F1 scores on Wikipedia of
the CNN and the RNN with external attention for
different sentence lengths. The lengths have been
accumulated, i.e., index 0 on the x-axis includes
the scores for all sentences of length l ∈ [0, 10).
Most sentences have lengths l < 50. In this range,
the CNN performs better than the RNN but the dif-
ference is small. For longer sentences, however,
the CNN clearly outperforms the RNN. This could
be one reason for the better overall performance.

A similar plot for F1 scores depending on the
number of OOVs per sentence does not give addi-
tional insights into the model behaviors: The CNN
performs better than the RNN independent of the
number of OOVs (Figure in appendix).

Another important difference between CNN
and RNN is the distribution of precision and re-
call. While on bio, precision and recall are almost
equal for both models, the values vary on wiki:

P R
CNN 52.5 85.1
CNN + external attention 58.6 78.3
RNN 75.2 49.6
RNN + external attention 76.3 52.0

Those values suggest that the RNN predicts uncer-
tainty more reluctantly than the CNN.

6 Outlook: Different Task

To investigate whether our attention methods are
also applicable to other tasks, we evaluate them

Model S F test set
Baseline CNN - - 84.84
CNN attention-only I H 83.56
CNN combined I H 85.22
CNN combined I W 86.11
CNN combined E H 86.06
CNN combined E W 86.89

Table 6: Accuracy on SST-2, different focus and
source of attention.

average k-max sequence
all k-max per-dim per-pos
86.89 86.39 87.00 87.22

Table 7: Accuracy on SST-2, sequence-agnostic
vs. sequence-preserving attention.

on the 2-class Stanford Sentiment Treebank (SST-
2) dataset7 (Socher et al., 2013). For a baseline
model, we train a CNN similar to our uncertainty
CNN but with convolutional filters of different
widths, as proposed in (Kim, 2014), and extend
it with our attention layer. As cues for external at-
tention, we use the most frequent positive phrases
from the train set. Our model is much simpler
than the state-of-the-art models for SST-2 but still
achieves reasonable results.8

The results in Table 6 show the same trends
as the CNN results in Table 3, suggesting that
our methods are applicable to other tasks as
well. Table 7 shows that the benefit of sequence-
preserving attention is indeed task dependent. For
sentiment analysis on SST-2, sequence-preserving
methods outperform the sequence-agnostic ones.

7 Related Work

Uncertainty Detection. Uncertainty has been ex-
tensively studied in linguistics and NLP (Kiparsky
and Kiparsky, 1970; Karttunen, 1973; Karttunen
and Zaenen, 2005), including modality (Saurı́ and
Pustejovsky, 2012; De Marneffe et al., 2012;
Szarvas et al., 2012) and negation (Velldal et al.,
2012; Baker et al., 2012). Szarvas et al. (2012),
Vincze (2014b) and Zhou et al. (2015) con-
ducted cross domain experiments. Domains stud-
ied include news (Saurı́ and Pustejovsky, 2009),
biomedicine (Vincze et al., 2008), Wikipedia
(Ganter and Strube, 2009) and social media (Wei
et al., 2013). Corpora such as FactBank (Saurı́ and
Pustejovsky, 2009) are annotated in detail with re-
spect to perspective, level of factuality and polar-

7http://nlp.stanford.edu/sentiment
8The state-of-the-art accuracy is about 89.5 (Zhou et al.,

2016; Yin and Schütze, 2015).
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ity. De Marneffe et al. (2012) conducted uncer-
tainty detection experiments on a version of Fact-
Bank extended by crowd sourcing. In this work,
we use CoNLL 2010 shared task data (Farkas et
al., 2010) since CoNLL provides larger train/test
sets and the CoNLL annotation consists of only
two labels (certain/uncertain) instead of various
perspectives and degrees of uncertainty. When us-
ing uncertainty detection for information extrac-
tion tasks like KB population (Section 1), it is a
reasonable first step to consider only two labels.

CNNs. Several studies showed that CNNs can
handle diverse sentence classification tasks, in-
cluding sentiment analysis (Kalchbrenner et al.,
2014; Kim, 2014), relation classification (Zeng et
al., 2014; dos Santos et al., 2015) and paraphrase
detection (Yin et al., 2016). To our knowledge, we
are the first to apply them to uncertainty detection.

RNNs. RNNs have mainly been used for se-
quence labeling or language modeling tasks with
one output after each input token (Bengio et al.,
2000; Mikolov et al., 2010). Recently, it has been
shown that they are also capable of encoding and
restoring relevant information from a whole input
sequence. This makes them applicable to machine
translation (Cho et al., 2014; Bahdanau et al.,
2015) and sentence classification tasks (Zhang and
Wang, 2015; Hermann et al., 2015; Rocktäschel et
al., 2016). In this study, we apply them to UD for
the first time and compare their results with CNNs.

Attention has been mainly used for recurrent
neural networks (Bahdanau et al., 2015; Rush et
al., 2015; Hermann et al., 2015; Rocktäschel et
al., 2016; Peng et al., 2015; Yang et al., 2016). We
integrate attention into CNNs and show that this
is beneficial for uncertainty detection. Few stud-
ies in vision integrated attention into CNNs (Stol-
lenga et al., 2014; Xiao et al., 2015; Chen et al.,
2015) but this has not been used often in NLP so
far. Exceptions are Meng et al. (2015), Wang et al.
(2016) and Yin et al. (2016). Meng et al. (2015)
used several layers of local and global attention
in a complex machine translation model with a
large number of parameters. Our reimplementa-
tion of their network performed poorly for uncer-
tainty detection (51.51/66.57 on wiki/bio); we sus-
pect that the reason is that Meng et al. (2015)’s
training set was an order of magnitude larger than
ours. Our approach makes effective use of a much
smaller training set. Yin et al. (2016) compared
attention based input representations and attention

based pooling. Instead, our goal is to keep the con-
volutional and pooling layers unchanged and com-
bine their strengths with attention. Allamanis et al.
(2016) applied a convolutional layer to compute
attention weights. In this work, we concentrate on
the commonly used feed forward layers for that.
Comparing them to other options, such as convo-
lution, is an interesting direction for future work.

Attention in the literature computes a weighted
average with internal attention weights. In con-
trast, we investigate different strategies to incor-
porate attention information into a neural network.
Also, we propose external attention. The un-
derlying intuition is similar to attention for ma-
chine translation, which learns alignments be-
tween source and target sentences, or attention
in question answering, which computes attention
weights based on a question and a fact. However,
these sources for attention are still internal infor-
mation of the network (the input or previous out-
put predictions). Instead, we learn weights based
on an external source – a lexicon of cue phrases.

8 Conclusion

In this paper, we presented novel attention archi-
tectures for uncertainty detection: external atten-
tion and sequence-preserving attention. We con-
ducted an extensive set of experiments with var-
ious configurations along different dimensions of
attention, including different focuses and sources
of attention and sequence-agnostic vs. sequence-
preserving attention. For our experiments, we
used two benchmark datasets for uncertainty de-
tection and applied recurrent and convolutional
neural networks to this task for the first time. Our
CNNs with external attention improved state of the
art by more than 3.5 F1 points on a Wikipedia
benchmark. Finally, we showed in an outlook
that our architectures are applicable to sentiment
classification as well. Investigations of other se-
quence classification tasks are future work. We
made our code publicly available for future re-
search (http://cistern.cis.lmu.de).

Acknowledgments

Heike Adel is a recipient of the Google European
Doctoral Fellowship in Natural Language Process-
ing and this research is supported by this fellow-
ship.

This work was also supported by DFG
(SCHU2246/8-2).

30



References
Miltiadis Allamanis, Hao Peng, and Charles Sutton.

2016. A convolutional attention network for ex-
treme summarization of source code. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning (ICML-16), ICML ’16, pages 2091–
2100, New York City, NY, USA, June. ACM.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations (ICLR),
San Diego, California, USA, May.

Kathryn Baker, Michael Bloodgood, Bonnie J Dorr,
Chris Callison-Burch, Nathaniel W Filardo, Chris-
tine Piatko, Lori Levin, and Scott Miller. 2012. Use
of modality and negation in semantically-informed
syntactic MT. Computational Linguistics, 38:411–
438.
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A Supplementary Material

A.1 Parameter Tuning
All parameters and learning rate schedule deci-
sions are based on results on the development set
(20% of the official training set). After tuning
the hyperparameters (see Tables 8 and 9), the net-
works are re-trained on the whole training set.

We trained the CNNs with stochastic gradient
descent and a fixed learning rate of 0.03. For the
RNNs, we used Adagrad (Duchi et al., 2011) with
an initial learning rate of 0.1. For all models, we
used mini-batches of size 10 and applied L2 regu-
larization with a weight of 1e-5. To determine the
number of training epochs, we looked for epochs
with peak performances on the development set.

Model # conv filter # hidden # att
filters width units hidden

units

C
N

N
w

ik
i (3) 200 3 200 -

(6) 100 3 500 -
(7) 200 3 200 -
(11) 200 3 200 -
(12) 200 3 200 200
(13) 100 3 200 200

C
N

N
bi

o (3) 200 3 500 -
(6) 100 3 200 -
(7) 100 3 500 -
(11) 200 3 200 -
(12) 200 3 500 100
(13) 200 3 50 100

Table 8: Result of parameter tuning for CNN (“att
hidden units” is the number of units in the hidden
layer of the attention component); Model numbers
refer to numbers in the main paper

Model # rnn # hidden # att
hidden units hidden
units units

R
N

N
w

ik
i (2) 10 100 -

(4) 10 100 -
(5) 10 200 -
(8) 10 100 -
(9) 30 200 200
(10) 10 200 100

R
N

N
bi

o (2) 10 500 -
(4) 10 500 -
(5) 10 50 -
(8) 10 50 -
(9) 30 100 200
(10) 10 50 200

Table 9: Result of parameter tuning for RNN

A.2 Additional Examples: Attention Weights
Figure 7 and Figure 8 compare pooling, inter-
nal attention and external attention for randomly
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Figure 7: Pooling vs. internal attention vs. external
attention
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Figure 8: Pooling vs. internal attention vs. external
attention

picked examples from the test set. Again, pool-
ing extracts values from all over the sentence
while internal and external attention learn to fo-
cus on words which can indicate uncertainty (e.g.
“thought” or “probably”).

A.3 Additional Figure for Analysis: Results
Depending on Number of OOVs

Figure 9 plots the F1 scores of the CNN and RNN
with external attention w.r.t. the number of out-
of-vocabulary (OOV) words in the sentences. The
number of OOVs have been accumulated, i.e., in-
dex 0 on the x-axis includes the score for all sen-
tences with a number of OOVs in [0,10), etc.
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Figure 9: F1 results for different numbers of
OOVs in sentence
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Abstract

The freedom of the Deep Web offers a
safe place where people can express them-
selves anonymously but they also can
conduct illegal activities. In this pa-
per, we present and make publicly avail-
able1 a new dataset for Darknet active do-
mains, which we call it ”Darknet Usage
Text Addresses” (DUTA). We built DUTA
by sampling the Tor network during two
months and manually labeled each ad-
dress into 26 classes. Using DUTA,
we conducted a comparison between two
well-known text representation techniques
crossed by three different supervised clas-
sifiers to categorize the Tor hidden ser-
vices. We also fixed the pipeline ele-
ments and identified the aspects that have
a critical influence on the classification re-
sults. We found that the combination of
TF-IDF words representation with Logis-
tic Regression classifier achieves 96.6%
of 10 folds cross-validation accuracy and
a macro F1 score of 93.7% when clas-
sifying a subset of illegal activities from
DUTA. The good performance of the clas-
sifier might support potential tools to help
the authorities in the detection of these ac-
tivities.

1 Introduction

If we think about the web as an ocean of data, the
Surface Web is no more than the slight waves that
float on the top. While in the depth, there is a lot
of sunken information that is not reached by the
traditional search engines. The web can be divided
into Surface Web and Deep Web. The Surface Web
is the portion of the web that can be crawled and

1The dataset is available upon request to the first author
(email).

indexed by the standard search engines, such as
Google or Bing. However, despite their existence,
there is still an enormous part of the web remained
without indexing due to its vast size and the lack
of hyperlinks, i.e. not referenced by the other web
pages. This part, that can not be found using a
search engine, is known as Deep Web (Noor et
al., 2011; Boswell, 2016). Additionally, the con-
tent might be locked and requires human interac-
tion to access e.g. to solve a CAPTCHA or to en-
ter a log-in credential to access. This type of web
pages is referred to as ”database-driven” websites.
Moreover, the traditional search engines do not ex-
amine the underneath layers of the web, and con-
sequently, do not reach the Deep Web. The Dark-
net, which is also known as Dark Web, is a subset
of the Deep Web. It is not only not indexed and
isolated, but also requires a specific software or
a dedicated proxy server to access it. The Dark-
net works over a virtual sub-network of the World
Wide Web (WWW) that provides an additional
layer of anonymity for the network users. The
most popular ones are ”The Onion Router”2 also
known as Tor network, ”Invisible Internet Project”
I2P3, and Freenet4. The community of Tor refers
to Darknet websites as ”Hidden Services” (HS)
which can be accessed via a special browser called
Tor Browser5.

A study by Bergman et al. (2001) has stated as-
tonishing statistics about the Deep Web. For ex-
ample, only on Deep Web there are more than 550
billion individual documents comparing to only 1
billion on Surface Web. Furthermore, in the study
of Rudesill et al. (2015) they emphasized on the
immensity of the Deep Web which was estimated
to be 400 to 500 times wider than the Surface Web.

The concepts of Darknet and Deep Net have ex-

2www.torproject.org
3www.geti2p.net
4www.freenetproject.org
5www.torproject.org/projects/ torbrowser.html.en
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isted since the establishment of World Wide Web
(WWW), but what make it very popular in the re-
cent years is when the FBI had arrested Dread Pi-
rate Roberts, the owner of Silk Road black mar-
ket, in October 2013. The FBI has estimated the
sales on Silk Road to be 1.2 Billion dollars by
July 2013. The trading network covered among
150,000 anonymous customers and approximately
4,000 vendors (Rudesill et al., 2015). The cryp-
tocurrency (Nakamoto, 2008) is a hot topic in the
field of Darknet since it anonymizes the financial
transactions and hides the trading parties identi-
ties (Ron and Shamir, 2014).

The Darknet is often associated with illegal
activities. In a study carried out by Intelliagg
group (2015) over 1K samples of hidden services,
they claimed that 68% of Darknet contents would
be illegal. Moore et at. (2016) showed, after an-
alyzing 5K onion domains, that the most com-
mon usages for Tor HS are criminal and illegal
activities, such as drugs, weapons and all kind of
pornography.

It is worth to mention about dramatic increase in
the proliferation of Darknet domains which dou-
bled their size from 30K to 60K between Au-
gust 2015 and 2016 (Figure 1). However, the
publicly reachable domains are no more than 6K
to 7K due to the ambiguity nature of the Dark-
net (Ciancaglini et al., 2016).

Figure 1: The number of unique *.onion addresses
in Tor network between August 2015 to August
2016

Motivated by the critical buried contents on the
Darknet and its high abuse, we focused our re-
search in designing and building a system that
classifies the illegitimate practices on Darknet. In
this paper, we present the first publicly available
dataset called ”Darknet Usage Text Addresses”
(DUTA) that is extracted from the Tor HS Darknet.

DUTA contains 26 categories that cover all the le-
gal and the illegal activities monitored on Darknet
during our sampling period. Our objective is to
create a precise categorization of the Darknet via
classifying the textual content of the HS. In order
to achieve our target, we designed and compared
different combinations of some of the most well-
known text classification techniques by identify-
ing the key stages that have a high influence on the
method performance. We set a baseline method-
ology by fixing the elements of text classification
pipeline which allows the scientific community to
compare their future research with this baseline
under the defined pipeline. The fixed methodology
we propose might represent a significant contribu-
tion into a tool for the authorities who monitor the
Darknet abuse.

The rest of the paper is organized as follows:
Section 2 presents the related work. Next, Sec-
tion 3 explains the proposed dataset DUTA and its
characteristics. After that, Section 4 describes the
set of the designed classification pipelines. Then,
in Section 5 we discuss the experiments performed
and the results. In Section 6 we describe the
technical implementation details and how we em-
ployed the successful classifier in an application.
Finally, in Section 7 we present our conclusions
with a pointing to our future work.

2 Related Work

In the recent years, many researchers have inves-
tigated the classification of the Surface Web (Du-
mais and Chen, 2000; Sun et al., 2002; Kan, 2004;
Kan and Thi, 2005; Kaur, 2014), and the Deep
Web (Su et al., 2006; Xu et al., 2007; Barbosa
et al., 2007; Lin et al., 2008; Zhao et al., 2008;
Xian et al., 2009; Khelghati, 2016). However, the
Darknet classification literature is still in its early
stages and specifically the classification of the il-
legal activities (Graczyk and Kinningham, 2015;
Moore and Rid, 2016).

Kaur (2014) introduced an interesting survey
covering several algorithms to classify web con-
tent, paying attention to its importance in the field
of data mining. Furthermore, the survey included
the pre-processing techniques that might help in
features selection, like eliminating the HTML
tags, punctuation marks and stemming. Kan et
al. explored the use of Uniform Resource Loca-
tors (URL) in web classification by extracting the
features through parsing and segmenting it (Kan,
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2004; Kan and Thi, 2005). These techniques can
not be applied to Tor HS since the onion addresses
are constructed with 16 random characters. How-
ever, tools like Scallion6 and Shallot7 allow Tor
users to create customized .onion addresses based
on the brute-force technique e.g. Shallot needs 2.5
years to build only 9 customized characters out
of 16. Sun et at. (2002) employed Support Vec-
tor Machine (SVM) to classify the web content by
taking the advantage of the context features e.g.
HTML tags and hyperlinks in addition to the tex-
tual features to build the feature set.

Regarding the Deep Web classification, Noor et
al. (2011) discussed the common techniques that
are used for the content extraction from the Deep
Web data sources called ”Query Probing”, which
is commonly used for supervised learning algo-
rithms, and ”Visible Form Features” (Xian et al.,
2009). Su et al. (2006) have proposed a combi-
nation between SVM with query probing to clas-
sify the structured Deep Web hierarchically. Bar-
bosa et al. (2007) proposed an unsupervised ma-
chine learning clustering pipeline, in which Term
Frequency Inverse Document Frequency (TF-IDF)
was used for the text representation, and the co-
sine similarity for distance measurement for the k-
means.

With respect to the Darknet, Moore et. al.
in (2016) have presented a new study based on Tor
hidden services to analyze and classify the Dark-
net. Initially, they collected 5K samples of Tor
onion pages and classified them into 12 classes
using SVM classifier. Graczyk et al. (2015) pro-
posed a pipeline to classify the products of a fa-
mous black market on Darknet, called Agora, into
12 classes with 79% of accuracy. Their pipeline
architecture uses the TF-IDF for text features ex-
traction, the PCA for features selection, and SVM
for features classification.

Several attempts in literature have been pro-
posed to detect illegal activities whether on the
World Wide Web (WWW) network (Biryukov et
al., 2014; Graczyk and Kinningham, 2015; Moore
and Rid, 2016), peer-to-peer networks (P2P) (Lat-
apy et al., 2013; Peersman et al., 2014) and in chat-
ting messaging systems (Morris and Hirst, 2012).
Latapy el at. (2013) investigated P2P systems, e.g.
eDonkey, to quantify the paedophile activity by
building a tool to detect child-pornography queries

6www.github.com/lachesis/scallion
7www.github.com/katmagic/Shallot

by performing a series of lexical text process-
ing. They found that 0.25% of entered queries
are related to pedophilia context, which means that
0.2% of eDonkey network users are entering such
queries. However, this method is based on a pre-
defined list of keywords which can not detect new
or previously unknown words.

3 The Dataset

3.1 Dataset Building Procedure
To best of our knowledge, there is no labeled
dataset that encompasses the activities on the
Darknet web pages. Therefore, we have created
the first publicly available Darknet dataset and we
called it Darknet Usage Text Addresses (DUTA)
dataset. Currently, DUTA contains only Tor hid-
den services (HS). We built a customized crawler
that utilizes Tor socket to fetch onion web pages
through port 80 only i.e. the HTTP protocol. The
crawler has 70 worker threads in parallel to down-
load the HTML code behind the HS. Each thread
dives into the second level in depth for each HS in
order to gather as much text as possible rather than
just the index page as in others work (Biryukov et
al., 2014). It searches for the HS links on sev-
eral famous Darknet resources like onion.city 8

and ahmia.fi 9. We reached more than 250K HS
addresses, but only 7K were alive, and the oth-
ers were down or not responding. After that, we
concatenated the HTML pages of every HS into
a single HTML file resulting a single HTML file
for each single HS domain. We collected 7,931
hidden services by running the crawler for two
months between May and July 2016. For the time
being, we labeled 6,831 samples.

3.2 Dataset Characteristics
Darknet researchers have analyzed the HS con-
tents and categorized them into a different num-
ber of categories. Biryukov et al. (2014) sampled
1,813 HS and detected 18 categories. Intelliagg
group in (2015) analyzed 1K HS samples and clas-
sified them into 12 categories. Moore et al. (2016)
studied 5,615 HS examples and categorized them
into 12 classes. Based on our objective to build
a multipurpose dataset and for the sake of com-
pleteness, we classified DUTA manually into 26
classes. To the best of our knowledge, this clas-
sification is the most extent and complete up to

8www.onion.city
9www.ahmia.fi
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date. The collected samples were divided among
the four authors and each one labeled their des-
ignated part; if an author hesitated, it was openly
discussed with the rest of the authors. Finally, to
check the consistency of the manual labeling, the
first author reviewed the final labeling by analyz-
ing random samples of the categorization made by
the others.

In addition to labeling the main classes, we
dived into labeling the sub-classes of the HS. For
example, the class Counterfeit Personal Identifica-
tion has three sub-classes: Identity Card, Driving
License, and Passport. Table 1 enumerates DUTA
classes.

Main Class Sub-Class Count Main Class Count

Violence
Hate 4 Art/ Music 8

Hitman 11
Casino/

Gambling 26

Weapons 47 Services 285

Counterfeit
Personal

Identification

Driving-
Licence

4 Cryptocurrency 586

ID 7 Down 608
Passport 37 Empty 1649

Hosting
and

Software

File-Sharing 111 Forum 104
Folders 63 Hacking 90
Search-
Engine

38 Wiki 29

Server 95 Leaked-Data 12
Software 121 Locked 435
Directory 142 Personal 405

Drugs Illegal 230 Politics 8
Legal 9 Religion 6

Marketplace Black 63 Library/Books 27
White 67 Fraud 4

Pornography
Child-

pornography
914(10)

Counterfeit
Money 55

General-
pornography

83
Counterfeit

Credit Cards 240

Social-
Network

Blog 71
Human-

Trafficking 2

Chat 47
Email 56
News 32 The total count 6831

Table 1: DUTA dataset classes

Counterfeit is a wide class so we split it into
three main classes 1) Counterfeit Personal Identi-
fication which is related to government documents
forging. 2) Counterfeit Money includes curren-
cies forging and 3) Counterfeit Credit Cards cov-
ers cloning credit cards, hacked PayPal accounts
and fake markets cards like Amazon and eBay.
The class Services contains the legal services that
are provided by individuals or organizations. The
class Down contains the errors that were returned
by the down web pages while crawling them e.g.
an SQL error in a website database or a javascript
error.

We assign class Empty to a web page when:

10This class includes 57 unique sample plus 857 samples
that are extracted from a single forum (See Section 3.2)

1) The text is very short i.e. less than 5 words,
2) It has only images with no text, 3) It con-
tains unreadable text like special characters, num-
bers, or unreadable words, 4) The empty Cryp-
tolockers pages (ransomware) (Ciancaglini et al.,
2016). The class Locked contains the HS that re-
quire solving a CAPTCHA or a log-in credential.
We noticed that some people love to present their
works, projects, or even their personal information
through an HS page so we labeled them into class
Personal. The pages that fell under more than one
category were labeled based on its main content.
For example, we assign Forum label to the multi-
topic forums unless the whole forum is related to
a single topic. e.g. a hacking forum was assigned
to Hacking class instead of Forum. The class Mar-
ketplace was divided into Black when it contained
a group of illegal services like Drugs, Weapons,
and Counterfeit services and White when the mar-
ketplace offered legal shops like mobile phones or
clothes.

As we have labeled DUTA manually, we re-
alized that some forums on HS contain numer-
ous web pages and all of them are related to a
single class i.e. we found a forum about child-
pornography that has more than 800 pages of tex-
tual content, so we split it up into single samples
representing one single forum page, and we added
them to the dataset.

4 Methodology

Each classification pipeline is comprised of three
main stages. First, text pre-processing, then, fea-
tures extraction, and finally, classification. We
used two famous text representation techniques
across three different supervised classifiers result-
ing six different classification pipelines, and we
examined every pipeline to figure out the best
combination with the best parameters that can
achieve high performance.

4.1 Text Pre-processing

Initially, we eliminated all the HTML tags, and
when we detected an image tag, we preserved
the image name and removed the extension. Fur-
thermore, we filtered the training set for the non-
English samples using Langdetect11 python li-
brary and stemmed the text using Porter library
from NLTK package12. Additionally, we re-

11https://pypi.python.org/pypi/langdetect
12https://tartarus.org/martin/PorterStemmer/
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moved special characters and stop words thanks
to SMART stop list13 (Salton, 1971). At this
stage, we modified the stop words list by adding
100 words more in order to make it compatible
with the work domain. Moreover, we mapped all
emails, URLs, and currencies into a single com-
mon token for each.

4.2 Features Extraction

After pre-processing the text, we used two famous
text representation techniques. A) Bag-of-Words
(BOW) is a well-known model for text representa-
tion that extracts the features from the text corpus
by counting the words frequency. Consequently,
every document is represented as a sparse feature
vector where every feature corresponds to a sin-
gle word in the training corpus. B) Term Fre-
quency Inverse Document Frequency model (TD-
IDF) (Aizawa, 2003) is a statistical model that as-
sign weights for the vocabularies where it empha-
sizes the words that occur frequently in a given
document, while at the same time de-emphasizes
words that occur frequently in many documents.
However, even though the BOW and TF-IDF do
not take into considerations the words order, they
are simple, computationally efficient and compat-
ible with medium dataset sizes.

4.3 Classifier Selection

For each features representation method, we ex-
amined three different supervised machine learn-
ing algorithms which are Support Vector Machine
(SVM) (Suykens and Vandewalle, 1999), Logis-
tic Regression (LR) (Hosmer Jr and Lemeshow,
2004), and Naive Bayes (NB) (McCallum et al.,
1998).

5 Empirical Evaluation

5.1 Experimental Setting

Due to the purpose of this paper to classify the
Darknet illegal activities, we selected a subset of
our DUTA dataset by creating eight categories try-
ing to cover the most representative illegal activ-
ities on the Darknet. Another condition that we
imposed was that each class in the selected sub-
set should be monotopic (i.e. related to a single
category) and contain a sufficient amount of sam-
ples (i.e. 40 samples minimum). The rest of the
classes are assigned to a 9th category which we

13http://jmlr.csail.mit.edu/papers/ volume5/lewis04a/a11-
smart-stop-list/

called Others. Since we are working on classify-
ing the illegal activities, we did not consider the
class Black-Market in the training set because its
contents are related to more than one class at a
single time, and we wanted the classifier to learn
from pure patterns. Moreover, when a sample con-
tains relevant images but an irrelevant text or with-
out any textual information, we excluded it from
the dataset. Therefore, we had 5,635 samples dis-
tributed over nine classes i.e. the eight classes
plus the Others one ( Table 2). After the text
pre-processing, we got 5,002 sample split it into
a training set that contains 3,501 samples and a
testing set of 1,501 samples.

Experiment Main Class Count
Pornography 963

Cryptocurrency 578
Counterfeit Credit Cards 209

Drugs 169
Violence 60
Hacking 57

Counterfeit Money 46
Counterfeit Personal Identification

(Driving-License, ID, Passport)
40

Others 3513

Table 2: Illegal activities dataset classes (A por-
tion of DUTA dataset)

The dataset is highly unbalanced since the
largest class has 3,513 samples while the small-
est one has only 40 samples. We solved the skew
in the dataset thanks to the class-weight parameter
in Scikit-Learn library14 which assigns a weight
for each class proportional to the number of sam-
ples it has (Hauck, 2014). In addition to adjusting
the weights of classes, we split up forums by the
discussion page (See Section 3.2).

For the models tuning, we applied a grid search
over different combinations of parameters with a
cross-validation of 10 folds. The successful com-
bination, which corresponds to the selected clas-
sification pipeline, is the one that can achieve the
highest value of an averaged F1 score metric and
an accuracy of 10 folds cross-validation.

We used Python3 with Scikit-Learn machine
learning library for the pipelines implementation.
We modified the parameters that have a critical in-
fluence on the performance of the models. For the
BOW dictionary, we set it to 30,000 words with a
minimum word frequency of 3, and we left the rest
of the parameters to default. Regarding the TF-
IDF, we set the maximum feature vectors length to

14http://scikit-learn.org/
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10,000 and the minimum to 3. With respect to the
classifiers parameters, we kept the default setting
for the NB. In contrast, for the LR, we modified
only the value of the regularization parameter ”C”
by setting it to 10 with the balanced class-weight
flag activated. For the SVM classifier, we set the
decision function parameter to one-vs-rest ”ovr”,
kernel to ”RBF”, ”C” parameter to 10e5, balanced
classes weights, and the rest were left to default.

5.2 Results and Discussion

Since we are working on an unbalanced multiclass
problem, every class has a precision, a recall, and
an F1 score. To combine these three values into
a single value, we calculated the macro, micro
and weighted average for each class as Table 3
shows. We can see that the pipeline of TF-IDF
with LR achieves the highest value with a macro
F1 score of 93.7% and the highest cross-validation
accuracy of 96.6%. The state-of-the-art paper has
achieved 94% accuracy on a different dataset that
contains 1K samples (Intelliagg, 2015). Addition-
ally, we plot the macro average precision-recall
curve for four classifiers (Figure 2). The plot indi-
cates that the pipeline of TF-IDF with LR achieves
the highest precision-recall.

Figure 2: Macro averaging Precision-Recall curve
over 4 pipelines, where the area value corresponds
to the macro-average Precision-recall curve

Figure 3 shows F1 score comparison between
the six classification pipelines over the nine
classes. We can see that the classes Counterfeit

Metrics/
Methods

Average
(macro)

Average
(micro)

Average
(weighted)

CV
Accuracy

BOW
LR

P 0,952 0,965 0,965
0,958

+/- 0,010
R 0,889 0,965 0,965
F1 0,916 0,965 0,964

TFIDF
LR

P 0,982 0,974 0,975 0,966
+/- 0,010R 0,902 0,974 0,974

F1 0,937 0,974 0,974

BOW
SVM

P 0,877 0,941 0,942
0,932

+/- 0,013
R 0,875 0,941 0,941
F1 0,874 0,941 0,941

TFIDF
SVM

P 0,983 0,971 0,972
0.960

+/- 0,011
R 0,882 0,971 0,971
F1 0,924 0,971 0,970

BOW
NB

P 0,865 0,941 0,943
0,924

+/- 0,009
R 0,790 0,941 0,941
F1 0,812 0,941 0,940

TFIDF
NB

P 0,530 0,885 0,855
0,863

+/- 0,012
R 0,425 0,885 0,885
F1 0,460 0,885 0,860

Table 3: A comparison between the classification
pipelines with respect to 10 folds cross-validation
accuracy (CV), precision (P), recall (R) and F1
score metrics for micro, macro and weighted av-
eraging.

Credit Cards and Hacking have a low F1 score
over all the pipelines, which is due to several rea-
sons: firstly, the words interference between the
classes. For example, the websites which offer
counterfeiting credit cards services are most prob-
ably ”Hack” the credit card system or ”Attack” the
PayPal accounts, the use sentences like ”We hack
credit card” or ”Hacked Paypal account for sale”.
Moreover, those classes intersect with Counter-
feit Personal Identification class due to their sim-
ilarity from the perspective of forgery. Secondly,
the number of samples that were used for training
plays an important role during the learning phase,
e.g. class Violence has 60 samples only.

Nevertheless, the learning curve for the TF-IDF
LR pipeline in Figure 4 proves that the algorithm
is learning correctly where the validation accuracy
curve is raising up and classification accuracy is
improving by increasing the number of the sam-
ples while the training accuracy curve is starting
to decrease slightly. This high accuracy archived
will help to build a solid model that will be able to
detect illegal activity on Darknet.

6 Application and Implementation

The work presented in the previous sections has
been included into an application that can be ac-
cessed and tested through a web browser. The
implementation of the methods was developed in
Python3 using Nltk library to stem the document
text, Langdetect library to detect the language of
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Figure 3: F1 score comparison for each class for 6
classification pipelines. When a bar is not shown,
it means that its value is zero.

Figure 4: Learning Curve for TF-IDF with LR
classifier

the documents and the Scikit-learn library to build
the classifiers. The web application is made up of
3 views: one for algorithm selection, the second
one for the selection of data to analyze and the
third one for showing the results of the analysis
(Figure 5).

The Docker image is not publicly available, nei-
ther the applications, but under email request, we
will grant a temporal access to the web interface.

7 Conclusions and Future Work

In this paper, we have categorized illegal activities
of Tor HS by using two text representation meth-
ods, TF-IDF and BOW, combined with three clas-
sifiers, SVM, LR, and NB. To support the clas-
sification pipelines, we built the dataset DUTA,

(a) (b)

(c)

Figure 5: The application has three interfaces. (a)
Pipeline selection. (b)The HS content preview. (c)
The classification result.

containing 7K samples labeled manually into 26
categories. We picked out nine classes, including
the Others class, that are related only to illegal ac-
tivities e.g. drugs trading and child pornography
and we used it for training our model. Further-
more, we distinguished the critical aspects that af-
fect the classification pipeline results in term of
text representation i.e. the dictionary size and the
minimum word frequency influence the text rep-
resentation techniques performance, and the regu-
larization parameter on the LR and the SVM clas-
sifiers. We found that the combination of the TF-
IDF text representation with the Logistic Regres-
sion classifier can achieve 96.6% accuracy over
10 folds of cross-validation and 93.7% macro F1
score. We noticed that our classifier suffers from
overfitting due to the difficulty of reaching more
samples of onion hidden services for some classes
like counterfeiting personal identification or ille-
gal drugs. However, our results are encouraging,
and yet there is still a wide margin for future im-
provements. We are looking forward to enlarg-
ing the dataset by digging deeper into the Dark-
net by adding more HS sources, even from I2P
and Freenet, and exploring ports other than the
HTTP port. Moreover, we plan to get the benefit
of the HTML tags and the hyperlinks by weight-
ing some tags or parsing the hyperlinks text. Also,
during the manual labeling of the dataset, we re-
alized that a wide portion of the hidden services
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advertise their illegal products graphically, i.e. the
service owner uses the images instead of the text.
Therefore, our aim is to build an image classifier
to work in parallel with the text classification. The
high accuracy we have obtained in this work might
represent an opportunity to insert our research into
a tool that supports the authorities in monitoring
the Darknet.
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Abstract

Multitask learning has been applied suc-
cessfully to a range of tasks, mostly mor-
phosyntactic. However, little is known
on when MTL works and whether there
are data characteristics that help to deter-
mine its success. In this paper we evalu-
ate a range of semantic sequence labeling
tasks in a MTL setup. We examine differ-
ent auxiliary tasks, amongst which a novel
setup, and correlate their impact to data-
dependent conditions. Our results show
that MTL is not always effective, signif-
icant improvements are obtained only for
1 out of 5 tasks. When successful, auxil-
iary tasks with compact and more uniform
label distributions are preferable.

1 Introduction

The recent success of recurrent neural networks
(RNNs) for sequence prediction has raised a
great deal of interest, which has lead researchers
to propose competing architectures for several
language-processing tasks. These architectures of-
ten rely on multitask learning (Caruana, 1997).

Multitask learning (MTL) has been applied with
success to a variety of sequence-prediction tasks
including chunking and tagging (Collobert et al.,
2011; Søgaard and Goldberg, 2016; Bjerva et al.,
2016; Plank, 2016), name error detection (Cheng
et al., 2015) and machine translation (Luong et
al., 2016). However, little is known about MTL
for tasks which are more semantic in nature, i.e.,
tasks that aim at labeling some aspect of the mean-
ing of words (Cruse, 1986), instead their mor-
phosyntactic behavior. In fact, results on seman-
tic tasks are either mixed (Collobert et al., 2011)
or, due to the file drawer bias (Rosenthal, 1979),
simply not reported. There is no prior study—to

the best of our knowledge—that compares data-
dependent conditions with performance measures
to shed some light on when MTL works for se-
mantic sequence prediction. Besides any varia-
tion in annotation and conceptualization, the la-
bel distributions of such semantic tasks tends to
be very different to the characteristic distributions
expected in more frequently studied morphosyn-
tactic tasks such as POS-tagging.

The main contribution of this work is an eval-
uation of MTL on semantic sequence predic-
tion on data-dependent conditions. We derive
characteristics of datasets that make them favor-
able for MTL, by comparing performance with
information-theoretical metrics of the label fre-
quency distribution.

We use an off-the-shelf state-of-the-art archi-
tecture based on bidirectional Long-Short Term
Memory (LSTM) models (Section 3) and evaluate
its behavior on a motivated set of main and auxil-
iary tasks. We gauge the performance of the MTL
setup (Section 4) in the following ways: i) we
experiment with different combinations of main
and auxiliary tasks, using semantic tasks as main
task and morphosyntactic tasks as auxiliary tasks;
ii) we apply FREQBIN, a frequency-based auxil-
iary task (see Section 2.5) to a series of language-
processing tasks and evaluate its contribution, and
iii) for POS we experiment with different data
sources to control for label inventory size and cor-
pus source for the auxiliary task.

From our empirical study we observe the MTL
architecture’s sensitivity to label distribution prop-
erties, and its preference for compact, mid-entropy
distributions. Additionally, we provide a novel
parametric refinement of the FREQBIN auxiliary
task that is more robust. In broader terms, we ex-
pect to motivate more thorough analysis of the per-
formance of neural networks in MTL setups.
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2 Analyzing multi-task learning

Multitask learning systems are often designed
with the intention of improving a main task by
incorporating joint learning of one or more re-
lated auxiliary tasks. For example, training a MTL
model for the main task of chunking and treating
part-of-speech tagging (POS) as auxiliary task.

The working principle of multitask learning
is to improve generalization performance by
leveraging training signal contained in related
tasks (Caruana, 1997). This is typically done by
training a single neural network for multiple tasks
jointly, using a representation that is shared across
tasks. The most common form of MTL is the
inclusion of one output layer per additional task,
keeping all hidden layers common to all tasks.
Task-specific output layers are customarily placed
at the outermost layer level of the network.

In the next section, we depict all main and aux-
iliary tasks considered in this paper.

2.1 Main tasks

We use the following main tasks, aimed to repre-
sent a variety of semantic sequence labeling tasks.
FRAMES: We use the FrameNet 1.5 (Baker et al.,
1998) annotated corpus for a joint frame detection
and frame identification tasks where a word can
receive a predicate label like Arson or Personal
success. We use the data splits from (Das et al.,
2014; Hermann et al., 2014). While frame identi-
fication is normally treated as single classification,
we keep the sequence-prediction paradigm so all
main tasks rely on the same architecture.
SUPERSENSES: We use the supersense version of
SemCor (Miller et al., 1993) from (Ciaramita and
Altun, 2006), with coarse-grained semantic labels
like noun.person or verb.change.
NER: The CONLL2003 shared-task data for
named entity recognition for labels Person, Loc,
etc. (Tjong Kim Sang and De Meulder, 2003).
SEMTRAITS: We have used the EurWordNet list
of ontological types for senses (Vossen et al.,
1998) to convert the SUPERSENSES into coarser
semantic traits like Animate or UnboundedEvent.1

MPQA: The Multi-Perspective Question Answer-
ing (MPQA) corpus (Deng and Wiebe, 2015),
which contains sentiment information among oth-
ers. We use the annotation corresponding to the

1Available at: https://github.com/bplank/
multitasksemantics

coarse level of annotation, with labels like attitude
and direct-speech-event.

2.2 Auxiliary tasks
We have chosen auxiliary tasks that represent
the usual features based on frequency and mor-
phosyntax used for prediction of semantic labels.
We collectively refer to them as lower-level tasks.
CHUNK: The CONLL2003 shared-task data for
noun- and verb-phrase chunking (Tjong Kim Sang
and De Meulder, 2003).
DEPREL: The dependency labels for the English
Universal Dependencies v1.3 (Nivre et al., 2016).
FREQBIN: The log frequency of each word,
treated as a discrete label, cf. Section 2.5.
POS: The part-of-speech tags for the Universal
Dependencies v1.3 English treebank.

2.3 Data properties
Table 1 lists the datasets used in this paper, both
to train main tasks and auxiliary tasks. For each
dataset we list the following metrics: number
of sentences, number of tokens, token-type ratio
(TTR), the size of the label inventory counting B-
labels and I-labels as different (|Y |), and the pro-
portion of out-of-span labels, which we refer to as
O labels.

The table also provides some of the
information-theoretical measures we describe
in Section 2.4. Note that DEPRELS and POS
are the only datasets without any O labels, while
FRAMES and SEMTRAITS are the two tasks with
O labels but no B/I-span notation, as tokens are
annotated individually.

2.4 Information-theoretic measures
In order to quantify the properties of the different
label distributions, we calculate three information-
theoretical quantities based on two metrics, kurto-
sis and entropy.

Entropy is the best-known information-
theoretical metric. It indicates the amount of
uncertainty in a distribution. We calculate two
variants of entropy, one taking all labels in
consideration H(Yfull), and another one H(Y−O)
where we discard the O label and only measure
the entropy for the named labels, such as frame
names in FRAMES. The entropy of the label
distribution H(Yfull) is always lower than the
entropy for the distribution disregarding the O
label H(Y−O). This difference is a consequence
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sentences tokens TTR |Y | prop of O k(Y) H(Yfull) H(Y−O)

FRAMES 5.9k 119k .12 707 .80 701.41 1.60 5.51
MPQA 1.7k 44k .15 9 .65 2.79 1.12 1.33
NER 22.1k 303k .10 9 .83 4.10 0.77 1.93
SEMTRAITS 20k 435k .07 11 .66 5.68 1.29 1.89
SUPERSENSES 20k 435k .07 83 .66 76.73 1.84 3.53

CHUNK 22.1k 303k .10 22 .14 3.68 1.73 1.54
DEPRELS 16.6k 255k .09 47 - 1.80 3.11 3.11
FREQBIN Same as respective main task 4–7 - Depends on variant
POS 16.6k 255k .09 17 - -0.20 2.49 2.49

Table 1: Datasets for main tasks (above) and auxiliary tasks (below) with their number of sentences,
tokens, type-token ratio, size of label inventory, proportion of O labels, kurtosis of the label distribution,
entropy of the label distribution, and entropy of the label distribution without the O label.

of the O-label being often the majority class in
span-annotated datasets. The only exception is
CHUNK, where O-tokens make up 14% of the
total, and the full-distribution entropy is higher.

Kurtosis indicates the skewness of a distribu-
tion and provides a complementary perspective to
the one given by entropy. The kurtosis of the
label distribution describes its tailedness, or lack
thereof. The kurtosis for a normal distribution is
3, and higher kurtosis values indicate very tailed
distributions, while lower kurtosis values indicate
distributions with fewer outliers.

For instance, we can see that larger inventory
sizes yield more heavy-tailed distributions, e.g.
FRAMES presents a lot of outliers and has the
highest kurtosis. The very low value for POS in-
dicates a distribution that, although Zipfian, has
very few outliers as a result of the small label set.
In contrast, DEPRELS, coming from the same cor-
pus, has about three times as many labels, yielding
a distribution that has fewer mid-values while still
being less than 3. Nevertheless, the entropy val-
ues of POS and DEPRELS are similar, so kurtosis
provides a complementary perspective on the data.

2.5 FREQBIN variants

Recently, a simple auxiliary task has been pro-
posed with success for POS tagging: predicting
the log frequency of a token (Plank et al., 2016).
The intuition behind this model is that the aux-
iliary loss, predicting word frequency, helps dif-
ferentiate rare and common words, thus providing
better predictions for frequency-sensitive labels.
They refer to this auxiliary task as FREQBIN, how-
ever, focus on POS only. Plank et al. (2016) used
the discretized log frequency of the current word
to build the FREQBIN auxiliary task to aid POS

tagging, with good results. This auxiliary task aids
the prediction of the main task (POS) in about half
the languages, and improves the prediction of out
of vocabulary words. Therefore, it is compelling
to assess the possible contribution of FREQBIN for
other tasks, as it can be easily calculated from the
same training data as the main task, and requires
no external resources or annotation.

We experiment with three different variants of
FREQBIN, namely:

1. SKEWED10: The original formulation of a =
int(log10(freqtrain(w)), where a is the fre-
quency label of the word w. Words not in the
training data are treated as hapaxes.

2. SKEWED5: A variant using 5 as logarithm
base, namely a = int(log5(freqtrain(w)),
aimed at providing more label resolution, e.g.
for the NER data, SKEWED10 yields 4 differ-
ent labels, and SKEWED5 yields 6.

3. UNIFORM: Instead of binning log frequen-
cies, we take the index of the k-quantilized
cumulative frequency for a word w. We use
this parametric version of FREQBIN with the
median number of labels produced by the
previous variants to examine the importance
of the label distribution being skewed. For
k=5, this variant maximizes the entropy of a
FREQBIN five-label distribution. Note that
this method still places all hapaxes and out-
of-vocabulary words of the test data in the
same frequency bin.

Even though we could have used a reference
corpus to have the same FREQBIN for all the data,
we prefer to use the main-task corpus for FRE-
QBIN. Using an external corpus would otherwise
lead to a semisupervised learning scenario which
is out of the scope of our work. Moreover, in us-
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ing only the input corpus to calculate frequency
we replicate the setup of Plank et al. (2016) more
closely.

3 Model

Recurrent neural networks (RNNs) (Elman, 1990;
Graves and Schmidhuber, 2005) allow the compu-
tation of fixed-size vector representations for word
sequences of arbitrary length. An RNN is a func-
tion that reads in n vectors x1, ..., xn and produces
a vector hn, that depends on the entire sequence
x1, ..., xn. The vector hn is then fed as an in-
put to some classifier, or higher-level RNNs in
stacked/hierarchical models. The entire network
is trained jointly such that the hidden representa-
tion captures the important information from the
sequence for the prediction task.

A bi-directional recurrent neural net-
work (Graves and Schmidhuber, 2005) is an
extension of an RNN that reads the input se-
quence twice, from left to right and right to left,
and the encodings are concatenated. An LSTM
(Long Short-Term Memory) is an extension of
an RNN with more stable gradients (Hochreiter
and Schmidhuber, 1997). Bi-LSTM have recently
successfully been used for a variety of tasks (Col-
lobert et al., 2011; Huang et al., 2015; Dyer et
al., 2015; Ballesteros et al., 2015; Kiperwasser
and Goldberg, 2016; Liu et al., 2015; Plank et al.,
2016). For further details, cf. Goldberg (2015)
and Cho (2015).

We use an off-the-shelf bidirectional LSTM
model (Plank et al., 2016).2 The model is illus-
trated in Figure 1. It is a context bi-LSTM tak-
ing as input word embeddings ~w. Character em-
beddings ~c are incorporated via a hierarchical bi-
LSTM using a sequence bi-LSTM at the lower
level (Ballesteros et al., 2015; Plank et al., 2016).
The character representation is concatenated with
the (learned) word embeddings ~w to form the in-
put to the context bi-LSTM at the upper layers.
For hyperparameter settings, see Section 3.1.

The stacked bi-LSTMs represent the shared lay-
ers between tasks. We here use three stacked
(h=3) bi-LSTMs for the upper layer, and a sin-
gle layer bi-LSTM at the lower level for the char-
acter representations. Following Collobert et al.
(2011), at the outermost (h = 3) layer separate
output layers for the single tasks are added using a

2Available at: https://github.com/bplank/
bilstm-aux

Figure 1: Multi-task bi-LSTM. The input to the
model are word ~w and character embeddings ~c
(from the lower bi-LSTM). The model is a stacked
3-layer bi-LSTM with separate output layers for
the main task (solid line) and auxiliary tasks
(dashed line; only one auxiliary task shown in the
illustration).

softmax. We additionally experiment with predict-
ing lower-level tasks at inner layers, i.e., predict-
ing POS at h = 1, while the main task at h = 3,
the outermost layer, following Søgaard and Gold-
berg (2016). During training, we randomly sample
a task and instance, and backpropagate the loss of
the current instance through the shared deep net-
work. In this way, we learn a joint model for main
and auxiliary task(s).

3.1 Hyperparameters
All the experiments in this article use the same bi-
LSTM architecture described in Section 3. We
train the bi-LSTM model with default parame-
ters, i.e., SGD with cross-entropy loss, no mini-
batches, 30 epochs, default learning rate (0.1), 64
dimensions for word embeddings, 100 for charac-
ter embeddings, 100 hidden states, random initial-
ization for the embeddings, Gaussian noise with
σ=0.2. We use a fixed random seed set upfront
to facilitate replicability. The only hyperparame-
ter we further examine is the number of epochs,
which is set to 30 unless otherwise specified.

We follow the approach of Collobert et al.
(2011) in that we do not use any task-specific
features beyond word and character information,
nor do we use pre-trained word embeddings for
initialisation or more advanced optimization tech-
niques.3 While any of these changes would likely
improve the performance of the systems, the goal
of our experiments is to delimit the behavior of the
bi-LSTM architecture and the interaction between
main and auxiliary task(s).

3For example, AdamTrainer or
MomentumSGDTrainer in pycnn.
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3.2 Experimental Overview

A system in our experiments is defined by a main
task and up to two auxiliary tasks, plus a choice of
output layers (at which layer to predict the auxil-
iary task, i.e., h ∈{1,2,3}). For each main task, we
ran the following systems:

1. Baseline, without any auxiliary task.
2. One additional system for each auxiliary task,

say DEPREL.
3. A combination of each of the three versions

of FREQBIN, namely SKEWED5,SKEWED10

and UNIFORM, and each of the other auxil-
iary tasks, such as DEPREL+UNIFORM.

The total combination of systems for all five main
tasks is 1440.

4 Results

This section describes the results of both exper-
imental scenarios, namely the benchmarking of
FREQBIN as an auxiliary task, and the combina-
tions of semantic main task with low-level auxil-
iary tasks, including an analysis of the data prop-
erties. The different tasks in our experiments typi-
cally use different evaluation metrics, however we
evaluate all tasks on micro-averaged F1 without
the O class, which we consider the most informa-
tive overall. We do not use the O-label’s F1 score
because it takes recall into consideration, and it is
deceptively high for the majority class. We test for
significance with a 10K-iteration bootstrap sample
test, and p < .05.

4.1 Main semantic tasks

This section presents the results for the prediction
of the main semantic tasks described in Section 2.
Given the size of the space of possible task combi-
nations for MTL, we only report the baseline and
the results of the best system. Table 2 presents
the results for all main semantic tasks, comparing
the results of the best system with the baseline.
The last column indicates the amount of systems
that beat the baseline for a given certain main task.
Having fixed the variant of FREQBIN to UNIFORM

(see Section 4.2), and the number of epochs to 30
(see below) on development data, the total amount
of systems for any main task is 22.

Out of the two main tasks over the baseline only
SEMTRAITS is significantly better over BL. SEM-
TRAITS has a small label set, so the system is able
to learn shared parameters for the label combina-
tions of main and aux without suffering from too

BL ∆Best Description aux layer # over

FRAMES 38.93 -8.13 +FREQBIN outer 0
MPQA 28.26 0.96 +POS+FREQBIN inner 2
NER 90.60 -0.58 +FREQBIN inner 0
SEMTRAITS 70.42 1.24 +FREQBIN outer 13
SUPERSENSES 62.36 -0.13 +POS+FREQBIN inner 0

Table 2: Baseline (BL) and best system per-
formance difference (∆) for all main tasks—
improvements in bold, significant improvements
underlined—plus number of systems over baseline
for each main task.

much sparsity. Compare with the dramatic loss of
the already low-performing FRAMES, which has
the highest kurtosis caused by the very long tail of
low-frequency labels.

We have expected CHUNK to aid SUPER-
SENSES, but in spite of our expectations, other
low-level tasks do not aid in general the prediction
of high-level task. What is otherwise an informa-
tive feature for a semantic task in single-task learn-
ing does not necessarily lend itself as an equally
useful auxiliary task for MTL.

For a complementary evaluation, we have also
measured the precision of the O label. However,
precision score is also high, above 90, for all tasks
except the apparently very difficult MPQA (70.41
for the baseline). All reported systems degrade
around 0.50 points with regards to the baseline, ex-
cept SUPERSENSES which improves slightly form
96.27 to 96.44. The high precision obtained for
the also very difficult FRAMES tasks suggests that
this architecture, while not suitable for frame dis-
ambiguation, can be used for frame-target identifi-
cation. Disregarding FREQBIN, the only low-level
tasks that seems to aid prediction is POS.

An interesting observation from the BIO task
analysis is that while the standard bi-LSTM model
used here does not have a Viterbi-style decoding
like more complex systems (Ma and Hovy, 2016;
Lample et al., 2016), we have found very few in-
valid BIO sequences. For NER, there are only ten
I-labels after an O-label, out of the 27K predicted
by the bi-LSTM. For SUPERSENSES there are 59,
out of 1,5K predicted I-labels.

The amount of invalid predicted sequences is
lower than expected, indicating that an additional
decoding layer plays a smaller role in prediction
quality than label distribution and corpus size, e.g.
NER is a large dataset with few labels, and the
system has little difficulty in learning label prece-
dences. For larger label sets or smaller data sizes,
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invalid sequence errors are bound to appear be-
cause of sparseness.

Effect of output layer choice We observe no
systematic tendency for an output layer to be a bet-
ter choice, and the results of choosing the inner-
or outer-layer (h=1 vs h=3) input differ only min-
imally. However, both systems that include POS
have a preference for the inner layer having higher
performance, which is consistent with the results
for POS in (Søgaard and Goldberg, 2016).

Effect of the number of training epochs Be-
sides all the data properties, the only hyperpa-
rameter that we examine further is the number
of network training epochs.4 All the results re-
ported in this article have been obtained in a
30-epoch regime. However, we have also com-
pared system performance with different numbers
of epochs. Out of the values we have experi-
mented (5,15,30,50) with, we recommend 30 iter-
ations for this architecture. At 5 and 15 epochs, the
performance does not reach the levels for 30 and
is consistently worse for baselines and auxiliary-
task systems. Moreover, the performance for 50 is
systematically worse than for 30, which indicates
overfitting at this point.

Effect of training data size We have run all sys-
tems increasing the size of the main task training
data in blocks of 25%, keeping the size of the aux-
iliary task constant. We do not observe improve-
ments over baseline along the learning curve for
any of the main tasks except MPQA and SEM-
TRAITS. At smaller main task data sizes, the
auxiliary task learning swamps the training of the
main task. This results is consistent with the find-
ings by Luong et al. (2016). We leave the research
on the effects auxiliary data size—and its size ratio
with regards to the main task—for further work.

4.2 Auxiliary task contribution

As follows from the results so far, the bi-LSTM
will not benefit from auxiliary loss if there are
many labels and entropy is too high. Auxiliary
task level distribution also plays a role, as we
will discuss in Section 4.3, FREQBIN-UNIFORM

consistently outperforms the skewed measure with
base 5 and 10.

4Number of epochs is among the most influential param-
eters of the system. Adding more layers did not further im-
prove results.

BL ∆UD/UPOS ∆UD/PTB ∆WSJ/PTB

FRAMES 38.93 -14.64 -16.02 -28.18
NER 90.60 -1.36 -2.05 -2.56
MPQA 28.26 -5.62 -13.53 -14.81
SEMTRAITS 70.42 0.67 -0.3 -0.14
SUPERSENSES 62.36 -2.86 -2.83 -6.32

CHUNK 94.76 0.2 0.18 0.18
DEPRELS 88.70 -0.19 -0.18 -1.06
POS 94.36 – 0.18 -0.53

Table 3: Comparison different POS variants (data
source/tag granularity): Baseline (BL) and the dif-
ference in performance on the +POS system when
using the UD Corpus with UPOS (UD/UPOS) or
with PTB tabs (UD/PTB), as well as the Wall
Street Journal with PTB tags (WSJ/PTB).

Therefore we have also measured the effect of
using different sources of POS auxiliary data to
give account for the possible differences in label
inventory and corpus for all tasks, high and low-
level, cf. Table 3. The English UD treebank is dis-
tributed with Universal POS (UPOS), which we
use throughout this article, and also with Penn
Treebank (PTB) tags (Marcus et al., 1993). We
have used the PTB version of the English UD cor-
pus (UD/PTB) as well as the training section of
the Wall Street Journal (WSJ) treebank as of POS

(WSJ/PTB) auxiliary task. The former offers the
opportunity to change the POS inventory to the
three times larger PTB inventory while using the
same corpus.

However, the characteristics of the UD/UPOS
we have used as POS throughout the article makes
it a more suitable auxiliary source, in fact it sys-
tematically outperforms the other two. We ar-
gue that UD/UPOS has enough linguistic signal
to be a useful auxiliary task, while still depend-
ing on a smaller label inventory. Interestingly, if
we use POS for CHUNK (cf. Table 3), note that
even though the language in WSJ is closer to the
language in the training corpora for CHUNK and
NER, it is not the best auxiliary POS source for
either task.

We observe an improvement when using
UD/PTB for POS, while using WSJ/PTB worsens
the results for this task. We argue that this archi-
tecture benefits from the scenario where the same
corpus is used to train with two different label sets
for POS, whereas using a larger label set and a
different corpus does not aid prediction.
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4.3 Analyzing FREQBIN

In this section we evaluate the interaction between
all tasks and the FREQBIN auxiliary task. For
this purpose, we treat all tasks (high- or low-level)
as main task, and compare the performance of a
single-task baseline run, with a task +FREQBIN

setup. We have compared the three versions of
FREQBIN (Section 2.5) but we only report UNI-
FORM, which consistently outperforms the other
two variants, according to our expectations.

Table 4 lists all datasets with the size of their
label inventory for reference (|Y |), as well as the
absolute difference in performance between the
FREQBIN-UNIFORM system and the baseline (∆).
Systems that beat the baseline are marked in bold.

Following Plank et al. (2016), the FREQBIN

system beats the baseline for the POS task. More-
over, it also aids the prediction for SEMTRAITS

and MPQA. The better performance of these two
systems indicates that this architecture is not nec-
essarily only advisable for lower-level tasks, as
long as the datasets have the right data properties.

|Y | BL ∆U R2

FRAMES 707 38.93 -8.13 .00
MPQA 9 28.26 0.44 .09
NER 9 90.60 -1.31 .26
SEMTRAITS 11 70.42 1.12 .44
SUPERSENSES 83 62.36 -0.69 .47

CHUNK 22 94.76 -0.14 .49
POS 17 94.35 0.21 .68
DEPRELS 47 88.70 -0.16 .64

Table 4: Label inventory size (|Y |), FREQBIN-
baseline absolute difference in performance (∆)–
improvements are in bold, significant improve-
ments are underlined—and coefficient of determi-
nation for label-to-frequency regression (R2).

The improvement of low-level classes is clear
in the case of POS. We observe an improvement
from 75 to 80 for the X label, mostly made up of
low-frequency items. The similarly scattered label
INTJ goes from 84 to 87. While no POS label
drops in performance on +FREQBIN with regards
to the baseline, all the other improvements are of
1 point of less.

4.4 Label–frequency co-informativeness
To supplement the benchmarking of FREQBIN, we
estimate how much frequency information is con-
tained in all the linguistic sequence annotations

used in this article. We do so by evaluating the
coefficient of determination (R2) of a linear re-
gression model to predict the log frequency of a
word given its surrounding label trigram, which
we use as a proxy for sequence prediction. For
instance, for ‘the happy child’, it would attempt to
predict the log-frequency of happy given the ‘DET
ADJ NOUN’ POS trigram. Note that this model is
delexicalized, and only uses task labels because its
goal is to determine how much word-frequency in-
formation is contained in e.g. the POS sequence.
A high R2 indicates there is a high proportion of
the variance of log frequency explained by the la-
bel trigram. We use linear regression implemented
in sklearn with L2 regularization and report the
average R2 of 10-fold cross-validation.

POS is the label set with the highest explana-
tory power over frequency, which is expectable:
determiners, punctuations and prepositions are
high-frequency word types, whereas hapaxes are
more often closed-class words. DEPRELS se-
quences contain also plenty of frequency informa-
tion. Three sequence tasks have similar scores un-
der .50, namely CHUNK, SUPERSENSE and SEM-
TRAITS. They all have in common that their O
class is highly indicative of function words, an ar-
gument supported by their similar values of full-
distribution entropy. The one with the lowest score
out of these three, namely SEMTRAITS is the one
with the least grammatical information, as it does
not contain part of speech-related labels. The (R2)
is very low for the remaining tasks, and indeed,
for FRAMENET it is a very small negative number
which rounds up to zero.

While the co-informativeness of FREQBIN with
regards to its main task is a tempting explanation,
it does not fully explain when it works as an aux-
iliary task. Indeed, the FREQBIN contribution at
handling out-of-vocabulary words seems to only
affect POS and SEMTRAITS, while it does not im-
prove DEPRELS, which normally depends on syn-
tactic trees for accurate prediction.

5 Net capacity and contribution of
character representation

In this section we alter the network to study the
effect of network width and character representa-
tions. Multitask learning allows easy sharing of
parameters for different tasks. Part of the expla-
nation for the success of multitask learning are
related to net capacity (Caruana, 1997). Enlarg-
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ing a network’s hidden layers reduces generaliza-
tion performance, as the network potentially learns
dedicated parts of the hidden layer for different
tasks. This means that the desirable trait of param-
eter sharing of MTL is lost. To test this property,
we train a MTL network for all setups where we
increase the size of the hidden layer by a factor k,
where k is the number of auxiliary tasks.

Our results confirm that increasing the size of
the hidden layers reduces generalization perfor-
mance. This is the case for all setups. None of the
results is better than the best systems in Table 2,
and the effective number of systems that outper-
form the baseline are fewer (FRAMES 0, MPQA:
2, NER: 0, SEMTRAITS: 9, SUPERSENSES: 0).

Throughout the article we used the default net-
work structure which includes a lower-level bi-
LSTM at the character level. However, we hypoth-
esize that the character features are not equally im-
portant for all tasks. In fact, if we disable the char-
acter features, making the system only depend on
word information (cf. Table 5), we observe that
two of the tasks (albeit the ones with the overall
lowest performance) increase their performance in
about 2.5 points, namely MPQA and FRAMES. For
the other two tasks we observe drops up to a max-
imum of 8-points for NER. Character embeddings
are informative for NER, because they approxi-
mate the well-known capitalization features in tra-
ditional models. Character features are not infor-
mative for tasks that are more dependent on word
identity (like FRAMES), but are indeed useful for
tasks where parts of the word can be informative,
such as POS or NER.

BL (w + c) ∆only w

FRAMES 38.93 +2.39
NER 90.60 -8.05
MPQA 28.26 +2.91
SEMTRAITS 70.42 -3.62
SUPERSENSES 62.36 -4.44

CHUNK 94.76 -0.96
DEPRELS 88.70 -1.87
POS 94.36 -3.18

Table 5: Comparison default hierarchical systems
using a lower-level bi-LSTM for characters (BL
w + c) versus system using only words (w).

6 Related Work

Multitask learning has been recently explored by
a number of studies, including name error recog-

nition (Cheng et al., 2015), tagging and chunk-
ing (Collobert et al., 2011; Plank et al., 2016), en-
tity and relation extraction (Gupta et al., 2016),
machine translation (Luong et al., 2016) and
machine translation quality estimation including
modeling annotator bias (Cohn and Specia, 2013;
Shah and Specia, 2016). Most earlier work had in
common that it assumed jointly labeled data (same
corpus annotated with multiple labels). In con-
trast, in this paper we evaluate multitask training
from distinct sources to address data paucity, like
done recently (Kshirsagar et al., 2015; Braud et
al., 2016; Plank, 2016).

Sutton et al. (2007) demonstrate improvements
for POS tagging by training a joint CRF model
for both POS tagging and noun-phrase chunking.
However, it is not clear under what conditions
multi-task learning works. In fact, Collobert et
al. (2011) train a joint feedforward neural network
for POS, chunks and NER, and observe only im-
provements in chunking (similar to our findings,
cf. Section 4.2), however, did not investigate data
properties of these tasks.

To the best of our knowledge, this is the first
extensive evaluation of the effect of data proper-
ties and main-auxiliary task interplay in MTL for
semantic sequence tasks. The most related work
is Luong et al. (2016), who focus on the effect of
auxiliary data size (constituency parsing) on the
main task (machine translation), finding that large
amounts of auxiliary data swamp the learning of
the main task. Earlier work related to MTL is
the study by Ando and Zhang (2005) who learn
many auxiliary task from unlabeled data to aid
morphosyntactic tasks.

7 Conclusions and Future Work

We have examined the data-conditioned behav-
ior of our MTL setup from three perspectives.
First, we have tested three variants of FREQBIN

showing that our novel parametric UNIFORM vari-
ant outperforms the previously used SKEWED10,
which has a number of labels determined by the
corpus size. Second, we examined main-auxiliary
task combinations for five semantic tasks and up
to two lower-level tasks. We observe that the
best auxiliary task is either FREQBIN or FRE-
QBIN+POS, which have low kurtosis and fairly
high entropy.

We also explored three sources of POS data as
auxiliary task, differing in corpus composition or
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label inventory. We observe that the UPOS variant
is the most effective auxiliary task for the evalu-
ated architecture. Indeed, UPOS has fewer labels,
and also a more compact distribution with lower
kurtosis than its PTB counterpart.

While we propose a better variant of FREQBIN

(UNIFORM) we conclude that it is not a useful aux-
iliary task in the general case. Rather, it helps pre-
dict low-frequency labels in scenarios where the
main task is already very co-informative of word
frequency. While log frequency lends itself nat-
urally to a continuous representation so that we
could use regression to predict it instead of clas-
sification, doing so would require a change of the
architecture and, most importantly, the joint loss.
Moreover, discretized frequency distributions al-
low us to interpret them in terms of entropy. Thus,
we leave it to future work.

When comparing system performance to data
properties, we determine the architecture’s prefer-
ence for compact, mid-entropy distributions what
are not very skewed, i.e., have low kurtosis. This
preference explains why the system fares consis-
tently well for a lot of POS experiments but falls
short when used for task with many labels or with
a very large O majority class. Regarding output
layer choice, we have not found a systematic pref-
erence for inner or outer-layer predictions for an
auxiliary task, as the results are often very close.

We argue strongly that the difficulty of semantic
sequence predictions can be addressed as a matter
of data properties and not as the antagonic truism
that morphosyntax is easy and semantics is hard.
The underlying problems of semantic task predic-
tion have often to do with the skewedness of the
data, associated often to the preponderance of the
O-class, and a possible detachment from mainly
lexical prediction, such as the spans of MPQA.

This paper is only one step towards better un-
derstanding of MTL. It is necessarily incomplete,
we hope to span more work in this direction. For
instance, the system evaluated in this study has no
Viterbi-style decoding for sequences. We hypoth-
esize that such extension of the model would im-
prove prediction of labels with strong interdepen-
dency, such as BIO-span labels, in particular for
small datasets or large label inventories, albeit we
found the current system predicting fewer invalid
sequences than expected. In future, we would like
to extend this work in several directions: compar-
ing different MTL architectures, additional tasks,

loss weighting, and comparing the change of per-
formance between a label set used as an auxiliary
task or as a—predicted—feature.
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Abstract

Word embeddings have been shown to be
highly effective in a variety of lexical se-
mantic tasks. They tend to capture mean-
ingful relational similarities between in-
dividual words, at the expense of lack-
ing the capabilty of making the underly-
ing semantic relation explicit. In this pa-
per, we investigate the attribute relation
that often holds between the constituents
of adjective-noun phrases. We use CBOW
word embeddings to represent word mean-
ing and learn a compositionality function
that combines the individual constituents
into a phrase representation, thus captur-
ing the compositional attribute meaning.
The resulting embedding model, while be-
ing fully interpretable, outperforms count-
based distributional vector space models
that are tailored to attribute meaning in the
two tasks of attribute selection and phrase
similarity prediction. Moreover, as the
model captures a generalized layer of at-
tribute meaning, it bears the potential to be
used for predictions over various attribute
inventories without re-training.

1 Introduction

Attributes such as SIZE, WEIGHT or COLOR are
part of the building blocks of representing knowl-
edge about real-world entities or events (Barsalou,
1992). In natural language, formal attributes find
their counterpart in attribute nouns which can be
used in order to generalize over individual proper-
ties, e.g., big or small in case of SIZE, blue or red
in case of COLOR (Hartung, 2015).

In order to ascribe such properties to entities or
events, adjective-noun phrases are a very frequent
linguistic pattern. In these constructions, attribute

meaning is conveyed only implicitly, i.e., with-
out being overtly realized at the phrasal surface.
Hence, attribute selection has been defined as the
task of predicting the hidden attribute meaning ex-
pressed by a property-denoting adjective in com-
position with a noun (Hartung and Frank, 2011b),
as in the following examples:

(1) a. hot summer→ TEMPERATURE

b. hot debate→ EMOTIONALITY

c. hot soup→ TASTE/TEMPERATURE

Previous work on this task has largely been car-
ried out in distributional semantic models (cf. Har-
tung (2015) for an overview). In the face of the re-
cent rise of distributed neural representations as a
means of capturing lexical meaning in NLP tasks
(Collobert et al., 2011; Mikolov et al., 2013a; Pen-
nington et al., 2014), our goal in this paper is to
model attribute meaning based on word embed-
dings. In particular, we use CBOW embeddings
of adjectives and nouns (Mikolov et al., 2013a) as
underlying word representations and train a com-
positionality function in order to compute a phrase
representation that is predictive of the implicitly
conveyed attribute meaning.

In fact, word embeddings (also referred to as
predict models) have been shown to be highly ef-
fective in a variety of lexical semantic tasks (Ba-
roni et al., 2014b), compared to “traditional” dis-
tributional semantic models (or count models) in
the tradition of Harris (1954). However, this find-
ing has been refuted to a certain extent by Levy et
al. (2015), stating that much of the perceived supe-
riority of word embeddings is due to hyperparam-
eter optimizations rather than principled advan-
tages. Moreover, the authors found that in many
cases, tailoring count models to a particular task
at hand is both feasible and beneficial in order to
outperform the more generic embeddings.
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This sheds light on a definitive plus of count
models, viz. their transparency and interpretabil-
ity in the sense that their semantic similarity rat-
ings can (under certain conditions) be traced back
to particular semantic relations, whereas word em-
beddings typically yield rather vague and diver-
sified similarities (Erk, 2016). Due to this lack
in interpretability, word embeddings are not eas-
ily interoperable with symbolic lexical resources
or ontologies. Thus, we argue that modelling
attribute meaning poses an interesting challenge
to word embeddings for two reasons: First, be-
ing rooted in ontological knowledge, attribute
meaning clearly draws on interpretability of the
underlying model; second, attribute meaning in
adjective-noun phrases is conveyed in composi-
tional processes (cf. Ex. (1)) which are under-
researched in the context of word embeddings so
far (Manning, 2015).

Our main contributions in this paper are: (i)
We demonstrate that word embeddings can be suc-
cessfully harnessed for attribute selection – a task
that requires both compositional and interpretable
representations of phrase meaning. (ii) This is
achieved via a learned compositionality function f
on adjective and noun embeddings that carves out
attribute meaning in their compositional phrase
meaning. (iii) We show that f captures gener-
alized attribute meaning (cf. Bride et al. (2015))
that abstracts from individual attributes. Thus, af-
ter fitting the compositionality function, our model
bears the potential of being applied to various ap-
plication scenarios (e.g., aspect-based sentiment
analysis) involving diverse attribute inventories.
(iv) We show that the same model also scales to the
task of predicting semantic similarity of adjective-
noun phrases, which indicates both the robustness
of the model and the importance of attribute mean-
ing as a major source of phrase similarity.

2 Related Work

Attribute Learning from Adjectives and Nouns.
Adjective-centric approaches to attribute learn-
ing from text date back to Almuhareb (2006)
and Cimiano (2006). Bakhshandeh and Allen
(2015) present a sequence tagging model in order
to extract attribute nouns from adjective glosses
in WordNet. Most recently, Petersen and Hell-
wig (2016) use a clustering approach based on
adjective-noun co-occurrences in order to induce
clusters of German adjectives that constitute the

value space of an attribute. However, their ap-
proach falls short of making the respective at-
tribute explicit.

These approaches have in common that they do
not consider the compositional semantics of an ad-
jective in its phrasal context with a noun in order
to derive attribute meaning. This is in contrast to
Hartung and Frank (2010; 2011b) who frame at-
tribute selection in a distributional count model
which (i) encodes adjectives and nouns as distri-
butional word vectors over attributes as shared di-
mensions of meaning and (ii) uses vector mixture
operations in order to compose these word vec-
tors into phrase reresentations that are predictive
of compositional attribute meaning.

Tandon et al. (2014) propose a semi-supervised
method for populating a knowledge base with
triples of nouns, attributes and adjectives that
are acquired from adjective-noun phrases. Being
based on label propagation over monosemous ad-
jectives as seeds, their approach depends on a lex-
ical resource providing initial mappings between
adjectives and attributes.

The present approach and the work by Hartung
and Frank may be considered as pairs of opposites
in two respects: First, our model is based on pre-
trained CBOW word embeddings for representing
adjective and noun meaning. Thus, we do not en-
code any attribute-specific lexical information ex-
plicitly at the level of word representation. Sec-
ond, we apply function learning in order to em-
pirically induce a compositionality function that is
trained to promote aspects of attribute meaning in
adjective-noun phrase embeddings.

Compositionality. Modelling compositional
processes at the intersection of word and phrase
meaning in distributional semantic models has
attracted considerable attention in the last years
(Erk, 2012). Mitchell and Lapata (2010) have
promoted a variety of vector mixture models
for the task, which have been criticized for their
syntactic agnosticism (Baroni and Zamparelli,
2010; Guevara, 2010).

Focussing on adjective-noun compositionality,
the latter authors propose instead to model ad-
jective meaning as matrices encoding linear map-
pings between noun vectors. These attempts to in-
tegrate formal semantic principles in the tradition
of Frege (1892) into a distributional framework
have been generalized to a “program for compo-
sitional distributional semantics” (Baroni et al.,
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2014a) that is centered around functional appli-
cation as the general process to model composi-
tionality in semantic spaces, thus emphasizing the
insight that different linguistic phenomena require
to be modeled in corresponding algebraic struc-
tures and composition operators matching these
structures (cf. Widdows (2008), Grefenstette and
Sadrzadeh (2011), Grefenstette et al. (2014)).

Bride et al. (2015) observe that such composi-
tion operators, by being trained on empirical cor-
pus data, can either be tailored to specific lexical
types (i.e., individual composition functions for
each adjective in the corpus), or designed to cap-
ture general compositional processes in syntactic
configurations (i.e., a single lexical function for
all adjective-noun phrases). In line with these au-
thors, we aim at learning a lexical function which
captures attribute meaning in the compositional
semantics of adjective-noun phrases, while gener-
alizing over individual attributes.

Contrary to distributional count models, there is
relatively few work on applying word embeddings
to linguistic problems or NLP tasks related to
compositionality. Notable exceptions are Socher
et al. (2013) for sentiment analysis, as well as
Salehi et al. (2015) and Cordeiro et al. (2016) who
focus on predicting the degree of compositional-
ity in nominal compounds rather than carving out
a particular semantic relation that is expressed in
their compositional semantics.

3 Learning Attribute Meaning in Word
Embeddings

3.1 Attribute Meaning in Natural Language
Natural language refers to ontological attributes
in terms of attribute nouns such as color, size or
shape (Guarino, 1992; Löbner, 2013). Therefore,
despite remaining mostly implicit in adjective-
noun phrases (cf. Ex. (1) above), we hypothesize
that attribute meaning can be learned from contex-
tual patterns of attribute nouns in natural language
text. This leads us to the assumption that adjec-
tives, nouns and attributes (via attribute nouns)
can be embedded in the same semantic space.

3.2 Compositional Models of Attribute
Meaning

In this work, we aim at a compositional approach
to attribute meaning in adjective-noun phrases. As
a consequence of the above assumption, our model
represents adjectives, nouns and attributes as vec-

tors ~a, ~n and ~attr , respectively, in one and the
same embedding space S ⊆ Rd.

By designing a composition function f(~a, ~n)
that produces phrase representations ~p ∈ S , we
can use nearest neighbour search in S in order
to predict the attribute âttr that is most likely
expressed in the compositional semantics of an
adjective-noun phrase p:

âttr := arg max
attr∈A

cos(~p, ~attr) (2)

where ~p = f(~a, ~n), cos denotes cosine vector
similarity and A the set of all attributes consid-
ered. The compositional functions that we use
in this work can be divided into baseline models,
largely derived from Mitchell and Lapata (2010),
and trainable models.

3.2.1 Baseline Models
Adjective or Noun. The simplest model is to
skip any composition and just use the representa-
tion of the adjective or the noun as a surrogate:
~p = ~a or ~p = ~n, respectively.

Pointwise Vector Addition. The first step in the
direction of compositionality is pointwise vector
addition: ~p = ~a + ~n. According to Mitchell and
Lapata (2010), the commutativity of addition is a
disadvantage because the model ignores word or-
der and thus syntactic information is lost.

Weighted Vector Addition. For the latter rea-
son, Mitchell and Lapata (2010) also propose a
weighted variant of pointwise vector addition. In
order to account for possibly different contribu-
tions of the constituents to phrasal composition,
scalar weights α and β are applied to the word
vectors before pointwise addition: ~p = α~a+ β~n.

Pointwise Vector Multiplication. This compo-
sition function multiplies the individual dimen-
sions of the adjective and noun vector: pi = ai ·bi.
Mitchell and Lapata (2010) point out that vector
multiplication can be seen as equivalent to logical
intersection. In previous work on attribute selec-
tion in a count-based distributional framework, the
best results were obtained using pointwise multi-
plication (Hartung, 2015).

Dilation. The dilation model of Mitchell and La-
pata (2010) dilates one vector in the direction of
the other. This is inspired by the dilation effect of
matrix multiplication, but is specifically designed
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to be basis-independent:

~p = (~n · ~n)~a+ (λ− 1)(~n · ~a)~a (3)

Here, ~n is stretched by a factor λ to emphasize
the contribution of ~a. λ is a parameter that has to
be chosen manually. Analogously, dilation of the
adjective is possible as well.

3.2.2 Trainable Models
In this section, we present a method for supervised
training of compositionality functions. We pro-
pose additive and multiplicative models that use
weighting matrices or tensors to balance the con-
tributions of adjectives and nouns. The compo-
sition is trained to specifically capture attribute
meaning in the resulting phrase representation.
The weights are trained as part of a shallow neural
network (see Section 3.2.3).

Full Weighted Additive Model. Following
Guevara (2010), the full additive model capitalizes
on vector addition with weighting matrices for ad-
jective and noun:

~p = A · ~a+N · ~n (4)

As initializations of the weighting matrices, we
use an identity matrix1, which is equivalent to
non-parametric vector addition. As weighting
schemes, we use one of (i) weighting only the ad-
jective or noun, respectively, or (ii) weighting both
adjective and noun distinctly.

Note that, in line with Guevara (2010), this
model makes use of weight matrices in order to
balance the contribution of adjectives and nouns
to phrasal attribute meaning, whereas Mitchell and
Lapata (2010) use scalar weights in their pointwise
additive model (cf. Section 3.2.1). Our intuition is
that full additive models should be better suited to
model compositonal processes that involve inter-
actions between dimensions of meaning.

Trained Tensor Product. As a weighted mul-
tiplicative model, we use multiplication of adjec-
tive and noun representations with a learned third-
order tensor T , following Bride et al. (2015):

~p = ~aT · T [1:d] · ~n (5)

with ~a ∈ Rd, ~n ∈ Rd, T [1:d] ∈ Rd×d×d

1We also experimented with different initializations such
as random values, all-ones, or an identity matrix with addi-
tional small random values on non-diagonal elements, but
found the identity matrix to work best.

In order to compose a phrase representation ~p
from ~a and ~n, T is applied to the adjective vector
in a tensor dot product. The tensor dot product
multiplies components of vector and tensor and
sums along the third axis of the tensor:

Xi,j =

d∑

k=1

ak · Ti,j,k (6)

with d being the dimensionality of the word em-
beddings. Equation (6) results in a matrix X that
is multiplied with the noun vector in a second step
using common matrix multiplication: ~p = X · ~n.

Note that the latter step corresponds to func-
tional application of the adjective to the noun as
rooted in compositional distributional semantics
(Baroni et al., 2014a). The result is a phrase vec-
tor with the same dimensionality as adjective and
noun. For initialization, we use an identity matrix
for each second-order tensor along the third axis2.

3.2.3 Training Method
The weights of the models in Section 3.2.2 are
trained as part of a shallow neural network with
no hidden layer. For each adjective-noun phrase
and the corresponding ground truth attribute in the
training dataset, the respective 300-dimensional
vectors3 ~a, ~n and ~attr are obtained by performing
a look-up in the pre-trained word embeddings.

With ~a and ~n as its inputs, the neural network
computes a phrase representation ~p ∈ R300 at the
output layer. The error of the computed phrase
representation to the expected attribute represen-
tation ~attr is computed using the mean squared
error between the two vectors and is used as the
training signal for the network parameters. Note
that we do not train the embedding vectors along
with the connection weights. While this could
potentially benefit the results, we aim to explore
whether generally trained word embeddings can
be used to retrieve attribute meaning.

For our network architectures and computa-
tions, we use the deep learning library keras
(Chollet, 2016). Training takes 10 iterations over
the training data; weights are optimized using the
stochastic optimization method Adam (Kingma
and Ba, 2015). For the use of pre-trained word

2We found a random initialization of all entries to perform
substantially worse.

3This is the number of dimensions in the pre-trained word
embeddings from Mikolov et al. (2013b).
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vectors (Mikolov et al., 2013b)4 in a Python envi-
ronment, we rely on the Gensim library (Řehůřek
and Sojka, 2010).

4 Attribute Selection Experiments

In this experiment, we evaluate the compositional
models defined in Section 3.2 on the attribute se-
lection task.

4.1 Data
We use the HeiPLAS data set (Hartung, 2015)
which contains adjective-attribute-noun triples
that were heuristically extracted from WordNet
(Miller and Fellbaum, 1998) and manually filtered
by linguistic curators. The data is separated into
development and test set (comprising 869 and 729
triples, respectively, which correspond to a to-
tal of 254 target attributes). The target attributes
are subdivided into various semantically homoge-
neous subsets, as shown in Table 1. Due to cov-
erage issues in the pre-trained word2vec embed-
dings (Mikolov et al., 2013a), some adjectives and
nouns from HeiPLAS cannot be projected into the
embedding space5.

4.2 Experiment 1: Large-scale Attribute
Selection

Experimental Procedure. Composition models
as described in Section 3.2.2 are trained on all
triples in HeiPLAS-Dev (following the proce-
dure described in Section 3.2.3) and evaluated on
HeiPLAS-Test. The word vector representations
corresponding to the adjective and the noun in a
test triple are composed into a phrase vector by
applying the trained composition function. Using
nearest neighbour search in S as described in Sec-
tion 3.2, all test attributes are ranked wrt. their sim-
ilarity to the composed phrase vector. For eval-
uation, we use precision-at-rank to measure the
number of times the correct attribute is ranked as
most similar to the phrase vector or among the first
five ranks (P@1 and P@5, respectively).

Baseline Semantic Spaces. We directly com-
pare our approach against the results of two count-
based distributional models, C-LDA and L-LDA
(Hartung, 2015), on the same evaluation data. C-
LDA and L-LDA induce distributional adjective

4Available from https://drive.google.com/
file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
edit?usp=sharing

5This affects 54 triples in HeiPLAS-Dev and 44 triples in
HeiPLAS-Test, which were removed from the evaluation.

and noun vectors over attributes as dimensions of
meaning, which are composed into phrase repre-
sentations using pointwise vector multiplication.
Using these models for comparison enables us
to assess both the impact of different types of
word representations (dense CBOW word embed-
dings vs. specifically tailored attribute-based dis-
tributional word vectors) and different approaches
to compositionality (pre-defined vector mixture
operations on attribute-specific word representa-
tions vs. trained composition functions for pro-
moting generalized attribute meaning in word em-
beddings).

Results. Results of Experiment 1 are shown in
Table 2. The upper part of the table contains
the results based on word embeddings (comprising
non-parametric, parametric, dilation and trainable
composition models); the count-based C-LDA and
L-LDA baselines are displayed below.

Focussing on the non-parametric models first,
we find that relying on the adjective embedding as
a surrogate of a composed representation already
outperforms both count models by a wide margin.
This indicates a clear advantage of CBOW embed-
dings over count-based representations for captur-
ing attribute meaning at the word level. However,
this holds only for adjectives; noun embeddings in
isolation perform much worse.

This is confirmed by the dilation results: Di-
lating the noun representation into the direction
of the adjective performs considerably better than
vice versa, while there is no improvement beyond
the non-compositional adjective baseline. These
findings are in line with Hartung (2015) and Har-
tung and Frank (2011a) who also observed that ad-
jective representations capture more of the com-
positional attribute semantics in adjective-noun
phrases than noun representations do.

Considering the trained composition models,
we find that weighting either the adjective or the
noun in a full additive model substantially outper-
forms the respective non-compositional baseline.
The overall best results are obtained by assigning
trained weights to both the adjective and the noun
embedding (P@1=0.56). This model also out-
performs weighted vector addition6 using scalar
weights by great margins.

6The weighted vector addition scores shown in Table 2 are
based on optimized parameters as reported by Mitchell and
Lapata (2010): α=0.88 and β=0.12. By shifting the param-
eters further into the direction of the adjective (i.e., α=0.90;
β=0.10), P@1 slightly increases to 0.34.
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Subset Num. Num. Example PhrasesAttributes Train. Triples

Core 10 72 silvery hair (COLOR), huge wave (SIZE), longstanding conflict (DURATION)
Selected 23 153 sufficient food (QUANTITY), grave decision (IMPORTANCE), broad river (WIDTH)
Measurable 65 261 heavy load (WEIGHT), short hair (LENGTH), slow walker (SPEED)
Property 73 300 young people (AGE), high mountain (HEIGHT), straight line (SHAPE)
All 254 869 dry paint (WETNESS), scentless wisp (SMELL), vehement defense (STRENGTH)

Table 1: Overview of subsets of attributes contained in HeiPLAS data, together with example phrases

Compositional Model P@1 P@5

pr
ed

ic
tm

od
el

s

Adjective 0.33 0.50
Noun 0.03 0.10
Vector Addition (⊕) 0.24 0.45
Weighted Vector Addition 0.33 0.51
Vector Multiplication (�) 0.00 0.02
Adj. Dilation (λ = 2) 0.06 0.18
Noun Dilation (λ = 2) 0.33 0.51

Full Add. Weighted Noun 0.33 0.54
Full Add. Weighted Adjective 0.46 0.71
Full Add. Weighted Adj. and Noun 0.56 0.75
Trained Tensor Product (⊗) 0.44 0.57

co
un

t C-LDA (Hartung, 2015) 0.09 n/a
L-LDA (Hartung, 2015) 0.16 n/a

Table 2: Results of Experiment 1; evaluation on
all phrases from HeiPLAS-Test

In comparison to the best full additive model,
the tensor product underperforms by more than
10 points in P@1 and also falls short of weight-
ing only the adjective. This is in line with a gen-
eral preference of word embeddings for additive
models (Mikolov et al., 2013a), which is also con-
firmed by the non-parametric composition func-
tions. On the other hand, we conjecture that the
relatively small size of the training set used here
is not sufficient for optimally tuning the 3003 pa-
rameters in the learned tensor.

4.3 Experiment 2: Generalization Power
In this experiment, we are interested in assessing
the generalization power of the best-performing
composition function as trained in Experiment 1.
More precisely, we investigate the hypothesis that
a full additive model captures a generalized com-
positional process in the semantics of attribute-
denoting adjective-noun phrases rather than the
lexical meaning of individual attributes (cf. Bride
et al. (2015)).

We evaluate this hypothesis wrt. (i) the fit of the
composition function to different subsets of testing
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Figure 1: Attribute selection performance of the
full additive model after training on all attributes,
specific subsets, and in zero-shot learning

attributes, and (ii) its predictive capacity in a zero-
shot learning scenario.

Subsets of Testing Attributes. First, we com-
pare the fit of the composition function that has
been trained on all attributes (cf. Experiment 1)
on the different subsets of attributes in HeiPLAS-
Test, as displayed in Table 1.

The results of this experiment are shown in Fig-
ure 1. As can be seen from the solid bars in the
plot, the attribute selection performance on indi-
vidual subsets is considerably stronger than on
the entire inventory, ranging from P@1=0.82 on
the Core subset to P@1=0.64 on the Property and
Measurable subsets (compared to P@1=0.56 on
all attributes; cf. Table 2). The cross-hatched bars
in the figure indicate the relative differences that
result from re-training a composition function on
the specific subset of interest. The improvements
are consistently small (max. +0.08 on the Selected
and Measurable subsets); in case of the Property
subset, there is no difference at all.

Zero-Shot Learning. As defined by Palatucci et
al. (2009), zero-shot learning is the task of learn-
ing a classifier for predicting novel class labels un-
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seen during training. In order to assess the selec-
tion performance of our model in a zero-shot set-
ting, we create four zero-shot training sets by re-
moving from HeiPLAS-Train all attributes that are
contained in each of the subsets described in Ta-
ble 1, respectively. The corresponding subset from
HeiPLAS-Test is used for evaluation afterwards.

The zero-shot results are shown by the diago-
nally hatched bars in Fig. 1. We find that Core
attributes, without being seen during training, can
be predicted at a performance of P@1=0.68. On
larger subsets, zero-shot performance decreases
(down to P@1=0.32 on Property attributes). Yet,
we consider these results very decent overall,
given that they are largely comparable or even su-
perior (except for the Selected subset) to the best
scores of the distributional L-LDA model (Har-
tung, 2015) as shown by the plain bars in Fig. 1.

Even though benefits from attribute-specific
training cannot be denied, we find that the trained
compositionality function is largely capable of
generalizing over individual target attributes.

4.4 Discussion
Our experiments on attribute selection show that
CBOW word embeddings can be effectively har-
nessed for carving out attribute meaning from
adjective-noun phrases. Observed improvements
over the previous state-of-the-art are due to the
type of word representation as such (dense neu-
ral embeddings vs. distributional count models) as
well as a learned compositionality function based
on a full additive model capitalizing on weight
matrices for balancing the contributions of adjec-
tives and nouns. Moreover, we were able to show
that the compositionality function captures a gen-
eralized compositional process in the semantics
of attribute-denoting adjective-noun phrases rather
than the lexical meaning of individual attributes.
Therefore, the proposed approach (i) poses an
interesting alternative to previous distributional
models which explicitly encode attribute meaning
in word vectors and rely on vector mixture opera-
tions in order to compose them into attribute-based
phrase representations, and (ii) bears the potential
of being used as a generalized attribute extraction
model on various domains of applications that de-
mand for different attribute inventories.

5 Similarity Prediction Experiments

In this experiment, we assess the scalability of the
previously trained composition models to different
tasks by applying them to the prediction of seman-
tic similarity in pairs of adjective-noun phrases.

5.1 Data
Our experiments are based on the adjective-noun
section of the evaluation data set released by
Mitchell and Lapata (2010). It consists of 108
pairs of adjective-noun phrases that were rated for
similarity on a 7-point scale7 by 54 human judges.
In total, the data set comprises 1944 data points.

5.2 Experiment 3: Predicting
Adjective-Noun Phrase Similarity

Experimental Procedure. For a given pair of
adjective-noun phrases, we compute two phrase
representations using word embeddings as word
representations and compositionality functions
trained on the HeiPLAS-Core subset, which
achieved the best attribute selection results in Ex-
periments 1 and 2. In the next step, we compute
the cosine similarity between these two phrase
representations. We correlate the results with hu-
man similarity ratings using Spearman’s ρ and
compare the resulting correlation scores to the re-
ported results of Mitchell and Lapata (2010).

Baseline Models. We compare our models
against the following approaches from the litera-
ture which were evaluated on the same data set:
C-LDA (Hartung and Frank, 2011a), M&L-BoW
and M&L-Topic (both by Mitchell and Lapata
(2010)). All baseline models are count-based dis-
tributional models which differ in their underly-
ing representation of word meaning: M&L-BoW
relies on bag-of-words context windows, M&L-
Topic and C-LDA use topics and attribute nouns
as dimensions of meaning, respectively.

Results. As shown in Table 3, the best cor-
relation scores between human similarity judg-
ments and model predictions are achieved by our
model that is built upon word embeddings and a
trained full additive composition function based
on weighting adjective and noun vectors (ρ=0.50).
This model outperforms all distributional base-
line models using vector mixtures as composition
functions.

7A score of 1 expresses low similarity between phrases, 7
indicates high similarity.
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Underlying Word � ⊕ Weighted Full
Representation Addition Additive

word2vec 0.36 0.48 0.42 0.50

M&L-BoW 0.46 0.36 0.44 n/a
M&L-Topic 0.25 0.37 0.38 n/a

C-LDA 0.28 0.19 n/a n/a

Table 3: Results of Experiment 3 (Spearman’s ρ
between human judgments and model predictions)

With respect to weighted addition, all results re-
ported in Table 3 are based on the weighting pa-
rameters (α=0.88; β=0.12) that have been found
as optimal by Mitchell and Lapata (2010). Based
on a grid search, we find α=0.60 and β=0.40 to
be the best weighting parameters on our data. In
this setting, the performance of the weighted vec-
tor addition model on word2vec embeddings can
be increased to ρ=0.47, which is still slightly be-
low unweighted vector addition on embeddings
(ρ=0.48). Apparently, scalar weights in pointwise
vector addition are quite sensitive to the under-
lying word representation. In the particular case
of using word embeddings for similarity predic-
tion, the contribution of the noun to the compo-
sitional semantics of the phrase seems to be rela-
tively stronger than in the attribute selection task
(cf. Experiment 1).

In total, these results indicate that composition-
ality functions optimized on the task of attribute
selection can be effectively transferred to similar-
ity prediction. This suggests that attribute mean-
ing might be a prominent source of similarity in
adjective-noun phrases, which will be subject to a
closer investigation in the next experiment.

5.3 Experiment 4: Interpreting the Source of
Similarity

Research in distributional semantics tends to fo-
cus on the degree of similarity between words or
phrases, while the source of similarity is largely
neglected (cf. Hartung (2015)). In this experiment,
we hypothesize that attribute meaning provides a
plausible explanation for the observed degree of
similarity in phrase pairs from the M&L data set.

Experimental Procedure. For a given phrase
pair, we compute the top-5 most similar attributes
for each phrase in terms of their nearest neigh-
bours in S (cf. Section 3.2). Then, both phrases
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Figure 2: ASTA-5 scores over different levels of
human similarity ratings (cf. Experiment 4)

are compared wrt. the proportion of shared at-
tributes within these top-5 predictions. Averag-
ing this score over all phrase pairs which were as-
signed a particular similarity rating by the human
judges yields an Average Shared Top-5 Attributes
(ASTA-5) score for this similarity level.

Results. Figure 2 plots ASTA-5 scores at differ-
ent levels of human similarity ratings. We observe
a general trend across all compositionality func-
tions investigated: The higher the rating cutoff,
the higher the number of shared attributes. Thus,
with increasing similarity between two phrases
(according to human ratings), the proportion of
shared attributes in their compositional semantics
tends to increase as well. Moreover, for highly
similar pairs (rating cutoff>5), the full additive
vector addition model yields the highest ASTA-5
scores.

Beyond this quantitative analysis, two of the au-
thors manually investigated the shared attributes in
38 high-similarity phrase pairs (rating cutoff>4)
as predicted by the weighted vector addition
model wrt. their potential as plausible sources of
similarity. We find that in 28 phrase pairs (73.6%),
the predicted attribute is considered a plausible
source of similarity, in eight others (26.4%), the
predicted attribute does not explain the high sim-
ilarity. The agreement between the annotators in
terms of Fleiss’ Kappa amounts to κ = 0.62.

5.4 Discussion
Our results show that a full additive compositional
model trained to target attribute meaning improves
performance on similarity prediction. This sup-
ports the interpretation that attributes are (at least)
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a partial source of similarity between adjective-
noun phrases. In fact, this has been corroborated
by a preliminary manual investigation of shared
attributes between high-similarity phrases. How-
ever, there is also evidence for several cases in
which attribute meaning falls short of explaining
high phrase similarity. This holds for phrases in-
volving abstract concepts, for instance (cf. Har-
tung (2015), Borghi and Binkofski (2014)).

Nevertheless, we consider it a strength of our
model that it is capable of providing plausible ex-
planations in cases where attribute meaning is the
most prominent source of similarity.

6 Conclusions

We have presented a model of attribute mean-
ing in adjective-noun phrases that capitalizes on
CBOW word embeddings. In our experiments,
the model proves remarkably versatile as it ad-
vances the state-of-the-art in the two tasks of at-
tribute selection and phrase similarity prediction.
In the latter task, the property of being fully inter-
pretable wrt. attributes as the potential source of
similarities became apparent as an additional as-
set rendering the model potentially interoperable
with knowledge representation formalisms and re-
sources.

Improvements over previous distributional
models can be traced back to two major sources:
First, CBOW word embeddings work surprisingly
well at the word level for capturing attribute
meaning in adjectives (not for nouns, though).
Future work should investigate whether fur-
ther improvements can be obtained from more
adjective-specific word embeddings that are
trained on symmetric coordination patterns
(Schwartz et al., 2016). Second, a learned
compositionality function is effective at pro-
moting attribute meaning in composed phrase
representations. Best performances across both
tasks are achieved by a full additive model with
distinct weight matrices for the adjective and noun
constituent. A trained tensor product that comes
closer to the linguistic notion of functional ap-
plication also performs well beyond the previous
state-of-the-art, while falling short of the additive
model. Apparently, more training data is needed
to exhaust the full potential of the tensor product.
Alternatively, tensor decomposition techniques
along the lines of Shah et al. (2015) may be a
possible way of coping with the large parameter

space of the tensor approach.
Moreover, the learned compositionality func-

tion turns out to generalize well over individual
attributes, which we consider a very promising re-
sult wrt. the suitability of the model in various
NLP tasks such as aspect-based sentiment analy-
sis. In future work, we are going to extend the
present model to consider broader linguistic con-
texts and more varied syntactic configurations.
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Abstract

The fundamental role of hypernymy in
NLP has motivated the development of
many methods for the automatic identi-
fication of this relation, most of which
rely on word distribution. We investigate
an extensive number of such unsupervised
measures, using several distributional se-
mantic models that differ by context type
and feature weighting. We analyze the per-
formance of the different methods based
on their linguistic motivation. Comparison
to the state-of-the-art supervised methods
shows that while supervised methods gen-
erally outperform the unsupervised ones,
the former are sensitive to the distribution
of training instances, hurting their relia-
bility. Being based on general linguistic
hypotheses and independent from training
data, unsupervised measures are more ro-
bust, and therefore are still useful artillery
for hypernymy detection.

1 Introduction

In the last two decades, the NLP community has
invested a consistent effort in developing auto-
mated methods to recognize hypernymy. Such ef-
fort is motivated by the role this semantic relation
plays in a large number of tasks, such as taxonomy
creation (Snow et al., 2006; Navigli et al., 2011)
and recognizing textual entailment (Dagan et al.,
2013). The task has appeared to be, however,
a challenging one, and the numerous approaches
proposed to tackle it have often shown limitations.

Early corpus-based methods have exploited pat-
terns that may indicate hypernymy (e.g. “animals
such as dogs”) (Hearst, 1992; Snow et al., 2005),
but the recall limitation of this approach, requir-
ing both words to co-occur in a sentence, mo-
tivated the development of methods that rely on

adaptations of the distributional hypothesis (Har-
ris, 1954).

The first distributional approaches were unsu-
pervised, assigning a score for each (x, y) word-
pair, which is expected to be higher for hyper-
nym pairs than for negative instances. Evalua-
tion is performed using ranking metrics inherited
from information retrieval, such as Average Pre-
cision (AP) and Mean Average Precision (MAP).
Each measure exploits a certain linguistic hypoth-
esis such as the distributional inclusion hypothesis
(Weeds and Weir, 2003; Kotlerman et al., 2010)
and the distributional informativeness hypothesis
(Santus et al., 2014; Rimell, 2014).

In the last couple of years, the focus of the re-
search community shifted to supervised distribu-
tional methods, in which each (x, y) word-pair is
represented by a combination of x and y’s word
vectors (e.g. concatenation or difference), and a
classifier is trained on these resulting vectors to
predict hypernymy (Baroni et al., 2012; Roller et
al., 2014; Weeds et al., 2014). While the origi-
nal methods were based on count-based vectors,
in recent years they have been used with word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014), and have gained popularity thanks to their
ease of use and their high performance on sev-
eral common datasets. However, there have been
doubts on whether they can actually learn to rec-
ognize hypernymy (Levy et al., 2015b).

Additional recent hypernymy detection meth-
ods include a multimodal perspective (Kiela et al.,
2015), a supervised method using unsupervised
measure scores as features (Santus et al., 2016a),
and a neural method integrating path-based and
distributional information (Shwartz et al., 2016).

In this paper we perform an extensive evalua-
tion of various unsupervised distributional mea-
sures for hypernymy detection, using several dis-
tributional semantic models that differ by context
type and feature weighting. Some measure vari-
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ants and context-types are tested for the first time.1

We demonstrate that since each of these mea-
sures captures a different aspect of the hypernymy
relation, there is no single measure that consis-
tently performs well in discriminating hypernymy
from different semantic relations. We analyze the
performance of the measures in different settings
and suggest a principled way to select the suitable
measure, context type and feature weighting ac-
cording to the task setting, yielding consistent per-
formance across datasets.

We also compare the unsupervised measures to
the state-of-the-art supervised methods. We show
that supervised methods outperform the unsuper-
vised ones, while also being more efficient, com-
puted on top of low-dimensional vectors. At the
same time, however, our analysis reassesses pre-
vious findings suggesting that supervised meth-
ods do not actually learn the relation between the
words, but only characteristics of a single word in
the pair (Levy et al., 2015b). Moreover, since the
features in embedding-based classifiers are latent,
it is difficult to tell what the classifier has learned.
We demonstrate that unsupervised methods, on the
other hand, do account for the relation between
words in a pair, and are easily interpretable, being
based on general linguistic hypotheses.

2 Distributional Semantic Spaces

We created multiple distributional semantic spaces
that differ in their context type and feature weight-
ing. As an underlying corpus we used a concate-
nation of the following two corpora: ukWaC (Fer-
raresi, 2007), a 2-billion word corpus constructed
by crawling the .uk domain, and WaCkypedia EN

(Baroni et al., 2009), a 2009 dump of the English
Wikipedia. Both corpora include POS, lemma
and dependency parse annotations. Our vocabu-
lary (of target and context words) includes only
nouns, verbs and adjectives that occurred at least
100 times in the corpus.

Context Type We use several context types:

• Window-based contexts: the contexts of a tar-
get word wi are the words surrounding it in a k-
sized window: wi−k, ..., wi−1, wi+1, ..., wi+k.
If the context-type is directional, words occur-
ring before and after wi are marked differently,
i.e.: wi−k/l, ..., wi−1/l, wi+1/r, ..., wi+k/r.

1Our code and data are available at:
https://github.com/vered1986/UnsupervisedHypernymy

cute cats drink milk
ADJ NOUN VERB NOUN

AMOD NSUBJ DOBJ

Figure 1: An example dependency tree of the sentence cute
cats drink milk, with the target word cats. The dependency-
based contexts are drink-v:nsubj and cute-a:amod−1. The
joint-dependency context is drink-v#milk-n. Differently from
Chersoni et al. (2016), we exclude the dependency tags to
mitigate the sparsity of contexts.

Out-of-vocabulary words are filtered out before
applying the window. We experimented with
window sizes 2 and 5, directional and indirec-
tional (win2, win2d, win5, win5d).

• Dependency-based contexts: rather than adja-
cent words in a window, we consider neighbors
in a dependency parse tree (Padó and Lapata,
2007; Baroni and Lenci, 2010). The contexts
of a target word wi are its parent and daughter
nodes in the dependency tree (dep). We also
experimented with a joint dependency context
inspired by Chersoni et al. (2016), in which the
contexts of a target word are the parent-sister
pairs in the dependency tree (joint). See Fig-
ure 1 for an illustration.

Feature Weighting Each distributional seman-
tic space is spanned by a matrix M in which each
row corresponds to a target word while each col-
umn corresponds to a context. The value of each
cell Mi,j represents the association between the
target word wi and the context cj . We experi-
mented with two feature weightings:

• Frequency - raw frequency (no weighting):
Mi,j is the number of co-occurrences of wi and
cj in the corpus.

• Positive PMI (PPMI) - pointwise mutual in-
formation (PMI) (Church and Hanks, 1990)
is defined as the log ratio between the joint
probability of w and c and the product of
their marginal probabilities: PMI(w, c) =

log P̂ (w,c)

P̂ (w)P̂ (c)
, where P̂ (w), P̂ (c), and P̂ (w, c)

are estimated by the relative frequencies of
a word w, a context c and a word-context
pair (w, c), respectively. To handle unseen
pairs (w, c), yielding PMI(w, c) = log(0) =
−∞, PPMI (Bullinaria and Levy, 2007) assigns
zero to negative PMI scores: PPMI(w, c) =
max(PMI(w, c), 0).

In addition, one of the measures we used (San-
tus et al., 2014) required a third feature weighting:
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• Positive LMI (PLMI) - positive local mu-
tual information (PLMI) (Evert, 2005; Ev-
ert, 2008). PPMI was found to have a bias
towards rare events. PLMI simply balances
PPMI by multiplying it by the co-occurrence
frequency of w and c: PLMI(w, c) =
freq(w, c) · PPMI(w, c).

3 Unsupervised Hypernymy Detection
Measures

We experiment with a large number of unsuper-
vised measures proposed in the literature for dis-
tributional hypernymy detection, with some new
variants. In the following section, ~vx and ~vy de-
note x and y’s word vectors (rows in the matrix
M ). We consider the scores as measuring to what
extent y is a hypernym of x (x→ y).

3.1 Similarity Measures
Following the distributional hypothesis (Harris,
1954), similar words share many contexts, thus
have a high similarity score. Although the hyper-
nymy relation is asymmetric, similarity is one of
its properties (Santus et al., 2014).

• Cosine Similarity (Salton and McGill, 1986) A
symmetric similarity measure:

cos(x, y) =
~vx · ~vy
‖~vx‖ · ‖~vy‖

• Lin Similarity (Lin, 1998) A symmetric simi-
larity measure that quantifies the ratio of shared
contexts to the contexts of each word:

Lin(x, y) =
Σc∈~vx∩~vy [~vx[c] + ~vy[c]]

Σc∈~vx~vx[c] + Σc∈~vy~vy[c]

• APSyn (Santus et al., 2016b) A symmetric
measure that computes the extent of intersec-
tion among the N most related contexts of two
words, weighted according to the rank of the
shared contexts (with N as a hyper-parameter):

APSyn(x, y) = Σc∈N(~vx)∩N(~vy)
1

rankx(c)+ranky(c)
2

3.2 Inclusion Measures
According to the distributional inclusion hypothe-
sis, the prominent contexts of a hyponym (x) are
expected to be included in those of its hypernym
(y).

• Weeds Precision (Weeds and Weir, 2003) A
directional precision-based similarity measure.
This measure quantifies the weighted inclusion
of x’s contexts by y’s contexts:

WeedsPrec(x→ y) =
Σc∈~vx∩~vy~vx[c]

Σc∈~vx~vx[c]

• cosWeeds (Lenci and Benotto, 2012) Geomet-
ric mean of cosine similarity and Weeds preci-
sion:
cosWeeds(x→ y) =

√
cos(x, y) ·WeedsPrec(x→ y)

• ClarkeDE (Clarke, 2009) Computes degree of
inclusion, by quantifying weighted coverage of
the hyponym’s contexts by those of the hyper-
nym:

CDE(x→ y) =
Σc∈~vx∩~vymin(~vx[c], ~vy[c])

Σc∈~vx~vx[c]

• balAPinc (Kotlerman et al., 2010) Balanced av-
erage precision inclusion.

APinc(x→ y) =

∑Ny

r=1 [P (r) · rel(cr)]

Ny

is an adaptation of the average precision mea-
sure from information retrieval for the inclusion
hypothesis. Ny is the number of non-zero con-
texts of y and P (r) is the precision at rank r,
defined as the ratio of shared contexts with y
among the top r contexts of x. rel(c) is the
relevance of a context c, set to 0 if c is not
a context of y, and to 1 − ranky(c)

Ny+1 otherwise,
where ranky(c) is the rank of the context c in
y’s sorted vector. Finally,

balAPinc(x→ y) =
√

Lin(x, y) ·APinc(x→ y)

is the geometric mean of APinc and Lin similar-
ity.

• invCL (Lenci and Benotto, 2012) Measures
both distributional inclusion of x in y and dis-
tributional non-inclusion of y in x:

invCL(x→ y) =
√

CDE(x→ y) · (1− CDE(y → x))

3.3 Informativeness Measures
According to the distributional informativeness
hypothesis, hypernyms tend to be less informative
than hyponyms, as they are likely to occur in more
general contexts than their hyponyms.

• SLQS (Santus et al., 2014)

SLQS(x→ y) = 1− Ex

Ey

The informativeness of a word x is evaluated as
the median entropy of its top N contexts: Ex =
medianNi=1(H(ci)), where H(c) is the entropy
of context c.
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• SLQS Sub A new variant of SLQS based on
the assumption that if y is judged to be a hyper-
nym of x to a certain extent, then x should be
judged to be a hyponym of y to the same extent
(which is not the case for regular SLQS). This
is achieved by subtraction:

SLQSsub(x→ y) = Ey − Ex

It is weakly symmetric in the sense that
SLQSsub(x→ y) = −SLQSsub(y → x).

SLQS and SLQS Sub have 3 hyper-parameters:
i) the number of contexts N ; ii) whether to
use median or average entropy among the top
N contexts; and iii) the feature weighting used
to sort the contexts by relevance (i.e., PPMI or
PLMI).

• SLQS Row Differently from SLQS, SLQS Row
computes the entropy of the target rather than
the average/median entropy of the contexts, as
an alternative way to compute the generality of
a word.2 In addition, parallel to SLQS we tested
SLQS Row with subtraction, SLQS Row Sub.

• RCTC (Rimell, 2014) Ratio of change in topic
coherence:

RCTC(x→ y) =
TC(tx)/TC(tx\y)

TC(ty)/TC(ty\x)

where tx are the topN contexts of x, considered
as x’s topic, and tx\y are the top N contexts of
x which are not contexts of y. TC(A) is the
topic coherence of a set of words A, defined as
the median pairwise PMI scores between words
in A. N is a hyper-parameter. The measure
is based on the assumptions that excluding y’s
contexts from x’s increases the coherence of the
topic, while excluding x’s contexts from y’s de-
creases the coherence of the topic. We include
this measure under the informativeness inclu-
sion, as it is based on a similar hypothesis.

3.4 Reversed Inclusion Measures

These measures are motivated by the fact that,
even though—being more general—hypernyms
are expected to occur in a larger set of contexts,
sentences like “the vertebrate barks” or “the mam-
mal arrested the thieves” are not common, since
hyponyms are more specialized and are hence
more appropriate in such contexts. On the other

2In our preliminary experiments, we noticed that the
entropies of the targets and those of the contexts are not
highly correlated, yielding a Spearman’s correlation of up
to 0.448 for window based spaces, and up to 0.097 for the
dependency-based ones (p < 0.01).

dataset relations #instances size

BLESS

hypernym 1,337

26,554

meronym 2,943
coordination 3,565

event 3,824
attribute 2,731

random-n 6,702
random-v 3,265
random-j 2,187

EVALution

hypernym 3,637

13,4653
meronym 1,819
attribute 2,965
synonym 1,888
antonym 3,156

Lenci/Benotto
hypernym 1,933

5,010synonym 1,311
antonym 1,766

Weeds hypernym 1,469 2,928coordination 1,459
Table 1: The semantic relations, number of instances in each
relation, and size of each dataset.

hand, hyponyms are likely to occur in broad con-
texts (e.g. eat, live), where hypernyms are also ap-
propriate. In this sense, we can define the reversed
inclusion hypothesis: “hypernym’s contexts are
likely to be included in the hyponym’s contexts”.
The following variants are tested for the first time.

• Reversed Weeds
RevWeeds(x→ y) = Weeds(y → x)

• Reversed ClarkeDE
RevCDE(x→ y) = CDE(y → x)

4 Datasets

We use four common semantic relation datasets:
BLESS (Baroni and Lenci, 2011), EVALution
(Santus et al., 2015), Lenci/Benotto (Benotto,
2015), and Weeds (Weeds et al., 2014). The
datasets were constructed either using knowledge
resources (e.g. WordNet, Wikipedia), crowd-
sourcing or both. The semantic relations and the
size of each dataset are detailed in Table 1.

In our distributional semantic spaces, a target
word is represented by the word and its POS tag.
While BLESS and Lenci/Benotto contain this in-
formation, we needed to add POS tags to the other
datasets. For each pair (x, y), we considered 3
pairs (x-p, y-p) for p ∈ {noun, adjective, verb},
and added the respective pair to the dataset only if
the words were present in the corpus.4

3We removed the entailment relation, which had too few
instances, and conflated relations to coarse-grained relations
(e.g. HasProperty and HasA into attribute).

4Lenci/Benotto includes pairs to which more than one re-
lation is assigned, e.g. when x or y are polysemous, and re-
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dataset hyper vs. relation measure context
type

feature
weighting hyper-parameters AP@100 AP@All

EVALution

all other relations invCL joint freq - 0.661 0.353
meronym APSyn joint freq N=500 0.883 0.675
attribute APSyn joint freq N=500 0.88 0.651

antonym SLQS row
joint freq

-
0.74 0.54

joint ppmi 0.74 0.55
joint plmi 0.74 0.537

synonym SLQS row
joint freq

-
0.83 0.647

joint ppmi 0.83 0.657
joint plmi 0.83 0.645

BLESS

all other relations invCL win5 freq - 0.54 0.051

meronym SLQSsub win5d freq N=100, median, plmi 1.0 0.76
SLQS win5d freq N=100, median, plmi 1.0 0.758

coord SLQSsub joint freq N=50, average, plmi 0.995 0.537

attribute SLQSsub dep plmi N=70, average, plmi 1.0 0.74
cosine joint freq - 1.0 0.622

event APSyn dep freq N=1000 1.0 0.779

Lenci/
Benotto

all other relations APSyn joint freq N=1000 0.617 0.382
antonym APSyn dep freq N=1000 0.861 0.624
synonym SLQS rowsub joint ppmi - 0.948 0.725

Weeds all other relations clarkeDE win5d freq - 0.911 0.441
coord clarkeDE win5d freq - 0.911 0.441

Table 2: Best performing unsupervised measures on each dataset in terms of Average Precision (AP) at k = 100, for hypernym
vs. all other relations and vs. each single relation. AP for k = all is also reported for completeness. We excluded the
experiments of hypernym vs. random-(n, v, j) for brevity; most of the similarity and some of the inclusion measures achieve
AP@100 = 1.0 in these experiments.

We split each dataset randomly to 90% test and
10% validation. The validation sets are used to
tune the hyper-parameters of several measures:
SLQS (Sub), APSyn and RCTC.

5 Experiments

5.1 Comparing Unsupervised Measures

In order to evaluate the unsupervised measures
described in Section 3, we compute the measure
scores for each (x, y) pair in each dataset. We first
measure the method’s ability to discriminate hy-
pernymy from all other relations in the dataset, i.e.
by considering hypernyms as positive instances,
and other word pairs as negative instances. In ad-
dition, we measure the method’s ability to discrim-
inate hypernymy from every other relation in the
dataset by considering one relation at a time. For
a relation R we consider only (x, y) pairs that are
annotated as either hypernyms (positive instances)
or R (negative instances). We rank the pairs ac-
cording to the measure score and compute average
precision (AP) at k = 100 and k = all.5

lated differently in each sense. We consider y as a hypernym
of x if hypernymy holds in some of the words’ senses. There-
fore, when a pair is assigned both hypernymy and another
relation, we only keep it as hypernymy.

5We tried several cut-offs and chose the one that seemed
to be more informative in distinguishing between the unsu-
pervised measures.

Table 2 reports the best performing measure(s),
with respect to AP@100, for each relation in each
dataset. The first observation is that there is no
single combination of measure, context type and
feature weighting that performs best in discrimi-
nating hypernymy from all other relations. In or-
der to better understand the results, we focus on
the second type of evaluation, in which we dis-
criminate hypernyms from each other relation.

The results show preference to the syntactic
context-types (dep and joint), which might be ex-
plained by the fact that these contexts are richer
(as they contain both proximity and syntactic in-
formation) and therefore more discriminative. In
feature weighting there is no consistency, but in-
terestingly, raw frequency appears to be success-
ful in hypernymy detection, contrary to previously
reported results for word similarity tasks, where
PPMI was shown to outperform it (Bullinaria and
Levy, 2007; Levy et al., 2015a).

The new SLQS variants are on top of the list
in many settings. In particular they perform well
in discriminating hypernyms from symmetric re-
lations (antonymy, synonymy, coordination).

The measures based on the reversed inclu-
sion hypothesis performed inconsistently, achiev-
ing perfect score in the discrimination of hyper-
nyms from unrelated words, and performing well
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relation measure context type feature weighting

meronym
cosWeeds dep ppmi

Weeds dep / joint ppmi
ClarkeDE dep / joint ppmi / freq

attribute

APSyn joint freq
cosine joint freq

Lin dep ppmi
cosine dep ppmi

antonym SLQS - -

synonym
SLQS row joint (freq/ppmi/plmi)

SLQS row/SLQS row sub dep ppmi
invCL win2/5/5d freq

coordination -
Table 3: Intersection of datasets’ top-performing measures when discriminating between hypernymy and each other relation.

in few other cases, always in combination with
syntactic contexts.

Finally, the results show that there is no single
combination of measure and parameters that per-
forms consistently well for all datasets and classi-
fication tasks. In the following section we analyze
the best combination of measure, context type and
feature weighting to distinguish hypernymy from
any other relation.

5.2 Best Measure Per Classification Task
We considered all relations that occurred in two
datasets. For such relation, for each dataset, we
ranked the measures by their AP@100 score, se-
lecting those with score ≥ 0.8.6 Table 3 displays
the intersection of the datasets’ best measures.

Hypernym vs. Meronym The inclusion hy-
pothesis seems to be most effective in discriminat-
ing between hypernyms and meronyms under syn-
tactic contexts. We conjecture that the window-
based contexts are less effective since they capture
topical context words, that might be shared also
among holonyms and their meronyms (e.g. car
will occur with many of the neighbors of wheel).
However, since meronyms and holonyms often
have different functions, their functional contexts,
which are expressed in the syntactic context-types,
are less shared. This is where they mostly differ
from hyponym-hypernym pairs, which are of the
same function (e.g. cat is a type of animal).

Table 2 shows that SLQS performs well in this
task on BLESS. This is contrary to previous find-
ings that suggested that SLQS is weak in dis-
criminating between hypernyms and meronyms,
as in many cases the holonym is more general
than the meronym (Shwartz et al., 2016).7 The

6We considered at least 10 measures, allowing scores
slightly lower than 0.8 when others were unavailable.

7In the hypernymy dataset of Shwartz et al. (2016),

surprising result could be explained by the nature
of meronymy in this dataset: most holonyms in
BLESS are rather specific words.

BLESS was built starting from 200 basic level
concepts (e.g. goldfish) used as the x words, to
which y words in different relations were asso-
ciated (e.g. eye, for meronymy; animal, for hy-
pernymy). x words represent hyponyms in the
hyponym-hypernym pairs, and should therefore
not be too general. Indeed, SLQS assigns high
scores to hyponym-hypernym pairs. At the same
time, in the meronymy relation in BLESS, x is
the holonym and y is the meronym. For consis-
tency with EVALution, we switched those pairs in
BLESS, placing the meronym in the x slot and the
holonym in the y slot. As a consequence, after the
switching, holonyms in BLESS are usually rather
specific words (e.g., there are no holonyms like
animal and vehicle, as these words were originally
in the y slot). In most cases, they are not more gen-
eral than their meronyms ((eye, goldfish)), yielding
low SLQS scores which are easy to separate from
hypernyms. We note that this is a weakness of the
BLESS dataset, rather than a strength of the mea-
sure. For instance, on EVALution, SLQS performs
worse (ranked only as high as 13th), as this dataset
has no such restriction on the basic level concepts,
and may contain pairs like (eye, animal).

Hypernym vs. Attribute Symmetric similar-
ity measures computed on syntactic contexts suc-
ceed to discriminate between hypernyms and at-
tributes. Since attributes are syntactically different
from hypernyms (in attributes, y is an adjective),
it is unsurprising that they occur in different syn-
tactic contexts, yielding low similarity scores.

nearly 50% of the SLQS false positive pairs were meronym-
holonym pairs, in many of which the holonym is more general
than the meronym by definition, e.g. (mauritius, africa).

70



dataset hyper vs.
relation

best supervised best unsupervised

method vectors penalty AP
@100 measure context

type
feature

weighting
AP

@100

EVALution

meronym concat dep-based L2 0.998 APSyn joint freq 0.886
attribute concat Glove-100 L2 1.000 invCL dep ppmi 0.877
antonym concat dep-based L2 1.000 invCL joint ppmi 0.773
synonym concat dep-based L1 0.996 SLQSsub win2 plmi 0.813

BLESS

meronym concat Glove-50 L1 1.000 SLQSsub win5 freq 0.939
coord concat Glove-300 L1 1.000 SLQS rowsub joint plmi 0.938

attribute concat Glove-100 L1 1.000 SLQSsub dep freq 0.938
event concat Glove-100 L1 1.000 SLQSsub dep freq 0.847

random-n concat word2vec L1 0.995 cosWeeds win2d ppmi 0.818
random-j concat Glove-200 L1 1.000 SLQSsub dep freq 0.917
random-v concat word2vec L1 1.000 SLQSsub dep freq 0.895

Lenci/
Benotto

antonym concat dep-based L2 0.917 invCL joint ppmi 0.807
synonym concat Glove-300 L1 0.946 invCL win5d freq 0.914

Weeds coord concat dep-based L2 0.873 invCL win2d freq 0.824SLQS rowsub joint ppmi
Table 4: Best performance on the validation set (10%) of each dataset for the supervised and unsupervised measures, in terms
of Average Precision (AP) at k = 100, for hypernym vs. each single relation.

Hypernym vs. Antonym In all our experi-
ments, antonyms were the hardest to distinguish
from hypernyms, yielding the lowest performance.
We found that SLQS performed reasonably well in
this setting. However, the measure variations, con-
text types and feature weightings were not consis-
tent across datasets. SLQS relies on the assump-
tion that y is a more general word than x, which is
not true for antonyms, making it the most suitable
measure for this setting.

Hypernym vs. Synonym SLQS performs well
also in discriminating between hypernyms and
synonyms, in which y is also not more general
than x. We observed that in the joint con-
text type, the difference in SLQS scores between
synonyms and hypernyms was the largest. This
may stem from the restrictiveness of this context
type. For instance, among the most salient con-
texts we would expect to find informative contexts
like drinks milk for cat and less informative ones
like drinks water for animal, whereas the non-
restrictive single dependency context drinks would
probably be present for both.

Another measure that works well is invCL: in-
terestingly, other inclusion-based measures assign
high scores to (x, y) when y includes many of x’s
contexts, which might be true also for synonyms
(e.g. elevator and lift share many contexts). in-
vCL, on the other hand, reduces with the ratio of
y’s contexts included in x, yielding lower scores
for synonyms.

Hypernym vs. Coordination We found no con-
sistency among BLESS and Weeds. On Weeds,

inclusion-based measures (ClarkeDE, invCL and
Weeds) showed the best results. The best per-
forming measures on BLESS, however, were vari-
ants of SLQS, that showed to perform well in
cases where the negative relation is symmetric
(antonym, synonym and coordination). The dif-
ference could be explained by the nature of the
datasets: the BLESS test set contains 1,185 hy-
pernymy pairs, with only 129 distinct ys, many of
which are general words like animal and object.
The Weeds test set, on the other hand, was inten-
tionally constructed to contain an overall unique
y in each pair, and therefore contains much more
specific ys (e.g. (quirk, strangeness)). For this rea-
son, generality-based measures perform well on
BLESS, and struggle with Weeds, which is han-
dled better using inclusion-based measures.

5.3 Comparison to State-of-the-art
Supervised Methods

For comparison with the state-of-the-art, we eval-
uated several supervised hypernymy detection
methods, based on the word embeddings of x and
y: concatenation ~vx⊕~vy (Baroni et al., 2012), dif-
ference ~vy − ~vx (Weeds et al., 2014), and ASYM
(Roller et al., 2014). We downloaded several pre-
trained embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014; Levy and Goldberg, 2014),
and trained a logistic regression classifier to pre-
dict hypernymy. We used the 90% portion (orig-
inally the test set) as the train set, and the other
10% (originally the validation set) as a test set,
reporting the best results among different vectors,
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method AP@100 original AP@100 switched ∆
supervised concat, word2vec, L1 0.995 0.575 -0.42

unsupervised cosWeeds, win2d, ppmi 0.818 0.882 +0.064

Table 5: Average Precision (AP) at k = 100 of the best supervised and unsupervised methods for hypernym vs. random-n, on
the original BLESS validation set and the validation set with the artificially added switched hypernym pairs.

method and regularization factor.8

Table 4 displays the performance of the best
classifier on each dataset, in a hypernym vs. a sin-
gle relation setting. We also re-evaluated the unsu-
pervised measures, this time reporting the results
on the validation set (10%) for comparison.

The overall performance of the embedding-
based classifiers is almost perfect, and in partic-
ular the best performance is achieved using the
concatenation method (Baroni et al., 2012) with
either GloVe (Pennington et al., 2014) or the
dependency-based embeddings (Levy and Gold-
berg, 2014). As expected, the unsupervised mea-
sures perform worse than the embedding-based
classifiers, though generally not bad on their own.

These results may suggest that unsupervised
methods should be preferred only when no train-
ing data is available, leaving all the other cases to
supervised methods. This is, however, not com-
pletely true. As others previously noticed, super-
vised methods do not actually learn the relation
between x and y, but rather separate properties
of either x or y. Levy et al. (2015b) named this
the “lexical memorization” effect, i.e. memoriz-
ing that certain ys tend to appear in many positive
pairs (prototypical hypernyms).

On that account, the Weeds dataset has been
designed to avoid such memorization, with every
word occurring once in each slot of the relation.
While the performance of the supervised methods
on this dataset is substantially lower than their per-
formance on other datasets, it is yet well above the
random baseline which we might expect from a
method that can only memorize words it has seen
during training.9 This is an indication that super-
vised methods can abstract away from the words.

Indeed, when we repeated the experiment with a
lexical split of each dataset, i.e., such that the train
and test set consist of distinct vocabularies, we
found that the supervised methods’ performance
did not decrease dramatically, in contrast to the

8In our preliminary experiments we also trained other
classifiers used in the distributional hypernymy detection lit-
erature (SVM and SVM+RBF kernel), that performed simi-
larly. We report the results for logistic regression, since we
use the prediction probabilities to measure average precision.

9The dataset is balanced between its two classes.

findings of Levy et al. (2015b). The large perfor-
mance gaps reported by Levy et al. (2015b) might
be attributed to the size of their training sets. Their
lexical split discarded around half of the pairs in
the dataset and split the rest of the pairs equally
to train and test, resulting in a relatively small
train set. We performed the split such that only
around 30% of the pairs in each dataset were dis-
carded, and split the train and test sets with a ratio
of roughly 90/10%, obtaining large enough train
sets.

Our experiment suggests that rather than mem-
orizing the verbatim prototypical hypernyms, the
supervised models might learn that certain regions
in the vector space pertain to prototypical hyper-
nyms. For example, device (from the BLESS train
set) and appliance (from the BLESS test set) are
two similar words, which are both prototypical
hypernyms. Another interesting observation was
recently made by Roller and Erk (2016): they
showed that when dependency-based embeddings
are used, supervised distributional methods trace
x and y’s separate occurrences in different slots of
Hearst patterns (Hearst, 1992).

Whether supervised methods only memorize or
also learn, it is more consensual that they lack the
ability to capture the relation between x and y, and
that they rather indicate how likely y (x) is to be
a hypernym (hyponym) (Levy et al., 2015b; San-
tus et al., 2016a; Shwartz et al., 2016; Roller and
Erk, 2016). While this information is valuable, it
cannot be solely relied upon for classification.

To better understand the extent of this limita-
tion, we conducted an experiment in a similar
manner to the switched hypernym pairs in Santus
et al. (2016a). We used BLESS, which is the only
dataset with random pairs. For each hypernym
pair (x1, y1), we sampled a word y2 that partici-
pates in another hypernym pair (x2, y2), such that
(x1, y2) is not in the dataset, and added (x1, y2)
as a random pair. We added 139 new pairs to the
validation set, such as (rifle, animal) and (salmon,
weapon). We then used the best supervised and
unsupervised methods for hypernym vs. random-
n on BLESS to re-classify the revised validation
set. Table 5 displays the experiment results.
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The switched hypernym experiment paints a
much less optimistic picture of the embeddings’
actual performance, with a drop of 42 points in
average precision. 121 out of the 139 switched
hypernym pairs were falsely classified as hyper-
nyms. Examining the y words of these pairs re-
veals general words that appear in many hypernym
pairs (e.g. animal, object, vehicle). The unsuper-
vised measure was not similarly affected by the
switched pairs, and the performance even slightly
increased. This result is not surprising, since most
unsupervised measures aim to capture aspects of
the relation between x and y, while not relying on
information about one of the words in the pair.10

6 Discussion

The results in Section 5 suggest that a supervised
method using the unsupervised measures as fea-
tures could possibly be the best of both worlds. We
would expect it to be more robust than embedding-
based methods on the one hand, while being more
informative than any single unsupervised measure
on the other hand.

Such a method was developed by Santus et al.
(2016a), however using mostly features that de-
scribe a single word, e.g. frequency and entropy. It
was shown to be competitive with the state-of-the-
art supervised methods. With that said, it was also
shown to be sensitive to the distribution of training
examples in a specific dataset, like the embedding-
based methods.

We conducted a similar experiment, with a
much larger number of unsupervised features,
namely the various measure scores, and encoun-
tered the same issue. While the performance was
good, it dropped dramatically when the model was
tested on a different test set.

We conjecture that the problem stems from the
currently available datasets, which are all some-
what artificial and biased. Supervised methods
which are strongly based on the relation between
the words, e.g. those that rely on path-based in-
formation (Shwartz et al., 2016), manage to over-
come the bias. Distributional methods, on the
other hand, are based on a weaker notion of the
relation between words, hence are more prone to
overfit the distribution of training instances in a
specific dataset. In the future, we hope that new

10Turney and Mohammad (2015) have also shown that un-
supervised methods are more robust than supervised ones in
a transfer-learning experiment, when the “training data” was
used to tune their parameters.

datasets will be available for the task, which would
be drawn from corpora and will reflect more real-
istic distributions of words and semantic relations.

7 Conclusion

We performed an extensive evaluation of unsuper-
vised methods for discriminating hypernyms from
other semantic relations. We found that there is
no single combination of measure and parameters
which is always preferred; however, we suggested
a principled linguistic-based analysis of the most
suitable measure for each task that yields consis-
tent performance across different datasets.

We investigated several new variants of existing
methods, and found that some variants of SLQS
turned out to be superior on certain tasks. In addi-
tion, we have tested for the first time the joint

context type (Chersoni et al., 2016), which was
found to be very discriminative, and might hope-
fully benefit other semantic tasks.

For comparison, we evaluated the state-of-
the-art supervised methods on the datasets, and
they have shown to outperform the unsupervised
ones, while also being efficient and easier to use.
However, a deeper analysis of their performance
demonstrated that, as previously suggested, these
methods do not capture the relation between x and
y, but rather indicate the “prior probability” of ei-
ther word to be a hyponym or a hypernym. As a
consequence, supervised methods are sensitive to
the distribution of examples in a particular dataset,
making them less reliable for real-world applica-
tions. Being motivated by linguistic hypotheses,
and independent from training data, unsupervised
measures were shown to be more robust. In this
sense, unsupervised methods can still play a rele-
vant role, especially if combined with supervised
methods, in the decision whether the relation holds
or not.
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Abstract

Distinguishing between antonyms and
synonyms is a key task to achieve high
performance in NLP systems. While
they are notoriously difficult to distinguish
by distributional co-occurrence models,
pattern-based methods have proven effec-
tive to differentiate between the relations.
In this paper, we present a novel neu-
ral network model AntSynNET that ex-
ploits lexico-syntactic patterns from syn-
tactic parse trees. In addition to the lexi-
cal and syntactic information, we success-
fully integrate the distance between the re-
lated words along the syntactic path as a
new pattern feature. The results from clas-
sification experiments show that AntSyn-
NET improves the performance over prior
pattern-based methods.

1 Introduction

Antonymy and synonymy represent lexical se-
mantic relations that are central to the organization
of the mental lexicon (Miller and Fellbaum, 1991).
While antonymy is defined as the oppositeness be-
tween words, synonymy refers to words that are
similar in meaning (Deese, 1965; Lyons, 1977).
From a computational point of view, distinguish-
ing between antonymy and synonymy is impor-
tant for NLP applications such as Machine Trans-
lation and Textual Entailment, which go beyond a
general notion of semantic relatedness and require
to identify specific semantic relations. However,
due to interchangeable substitution, antonyms and
synonyms often occur in similar contexts, which
makes it challenging to automatically distinguish
between them.

Two families of approaches to differentiate be-
tween antonyms and synonyms are predominent

in NLP. Both make use of distributional vector
representations, relying on the distributional hy-
pothesis (Harris, 1954; Firth, 1957), that words
with similar distributions have related meanings:
co-occurrence models and pattern-based models.
These distributional semantic models (DSMs) of-
fer a means to represent meaning vectors of words
or word pairs, and to determine their semantic re-
latedness (Turney and Pantel, 2010).

In co-occurrence models, each word is repre-
sented by a weighted feature vector, where fea-
tures typically correspond to words that co-occur
in particular contexts. When using word embed-
dings, these models rely on neural methods to rep-
resent words as low-dimensional vectors. To cre-
ate the word embeddings, the models either make
use of neural-based techniques, such as the skip-
gram model (Mikolov et al., 2013), or use matrix
factorization (Pennington et al., 2014) that builds
word embeddings by factorizing word-context co-
occurrence matrices. In comparison to standard
co-occurrence vector representations, word em-
beddings address the problematic sparsity of word
vectors and have achieved impressive results in
many NLP tasks such as word similarity (e.g.,
Pennington et al. (2014)), relation classification
(e.g., Vu et al. (2016)), and antonym-synonym dis-
tinction (e.g., Nguyen et al. (2016)).

In pattern-based models, vector representations
make use of lexico-syntactic surface patterns to
distinguish between the relations of word pairs.
For example, Justeson and Katz (1991) suggested
that adjectival opposites co-occur with each other
in specific linear sequences, such as between
X and Y. Hearst (1992) determined surface pat-
terns, e.g., X such as Y, to identify nomi-
nal hypernyms. Lin et al. (2003) proposed two
textual patterns indicating semantic incompatibil-
ity, from X to Y and either X or Y, to
distinguish opposites from semantically similar
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words. Roth and Schulte im Walde (2014) pro-
posed a method that combined patterns with dis-
course markers for classifying paradigmatic rela-
tions including antonymy, synonymy, and hyper-
nymy. Recently, Schwartz et al. (2015) used two
prominent patterns from Lin et al. (2003) to learn
word embeddings that distinguished antonyms
from similar words in determining degrees of sim-
ilarity and word analogy.

In this paper, we present a novel pattern-
based neural method AntSynNET to distinguish
antonyms from synonyms. We hypothesize that
antonymous word pairs co-occur with each other
in lexico-syntactic patterns within a sentence more
often than would be expected by synonymous
pairs. This hypothesis is inspired by corpus-based
studies on antonymy and synonymy. Among oth-
ers, Charles and Miller (1989) suggested that ad-
jectival opposites co-occur in patterns; Fellbaum
(1995) stated that nominal and verbal opposites
co-occur in the same sentence significantly more
often than chance; Lin et al. (2003) argued that if
two words appear in clear antonym patterns, they
are unlikely to represent synonymous pair.

We start out by inducing patterns between X and
Y from a large-scale web corpus, where X and Y
represent two words of an antonym or synonym
word pair, and the pattern is derived from the sim-
ple paths between X and Y in a syntactic parse
tree. Each node in the simple path combines lexi-
cal and syntactic information; in addition, we sug-
gest a novel feature for the patterns, i.e., the dis-
tance between the two words along the syntactic
path. All pattern features are fed into a recur-
rent neural network with long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997), which encode the patterns as vector repre-
sentations. Afterwards, the vector representations
of the patterns are used in a classifier to distin-
guish between antonyms and synonyms. The re-
sults from experiments show that AntSynNET im-
proves the performance over prior pattern-based
methods. Furthermore, the implementation of our
models is made publicly available1.

The remainder of this paper is organized as fol-
lows: In Section 2, we present previous work dis-
tinguishing antonyms and synonyms. Section 3
describes our proposed AntSynNET model. We
present the induction of the patterns (Section 3.1),
describe the recurrent neural network with long

1
https://github.com/nguyenkh/AntSynNET

short-term memory units which is used to en-
code patterns within a vector representation (Sec-
tion 3.2), and describe two models to classify
antonyms and synonyms: the pure pattern-based
model (Section 3.3.1) and the combined model
(Section 3.3.2). After introducing two baselines in
Section 4, we describe our dataset, experimental
settings, results of our methods, the effects of the
newly proposed distance feature, and the effects of
the various types of word embeddings. Section 6
concludes the paper.

2 Related Work

Pattern-based methods: Regarding the task of
antonym-synonym distinction, there exist a vari-
ety of approaches which rely on patterns. Lin
et al. (2003) used bilingual dependency triples
and patterns to extract distributionally similar
words. They relied on clear antonym patterns such
as from X to Y and either X or Y in a
post-processing step to distinguish antonyms from
synonyms. The main idea is that if two words X
and Y appear in one of these patterns, they are
unlikely to represent synonymous pair. Schulte
im Walde and Köper (2013) proposed a method
to distinguish between the paradigmatic relations
antonymy, synonymy and hypernymy in German,
based on automatically acquired word patterns.
Roth and Schulte im Walde (2014) combined gen-
eral lexico-syntactic patterns with discourse mark-
ers as indicators for the same relations, both for
German and for English. They assumed that if
two phrases frequently co-occur with a specific
discourse marker, then the discourse relation ex-
pressed by the corresponding marker should also
indicate the relation between the words in the af-
fected phrases. By using the raw corpus and a
fixed list of discourse markers, the model can eas-
ily be extended to other languages. More re-
cently, Schwartz et al. (2015) presented a symmet-
ric pattern-based model for word vector represen-
tation in which antonyms are assigned to dissim-
ilar vector representations. Differently to the pre-
vious pattern-based methods which used the stan-
dard distribution of patterns, Schwartz et al. used
patterns to learn word embeddings.

Vector representation methods: Yih et al.
(2012) introduced a new vector representation
where antonyms lie on opposite sides of a sphere.
They derived this representation with the incor-
poration of a thesaurus and latent semantic anal-
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ysis, by assigning signs to the entries in the co-
occurrence matrix on which latent semantic anal-
ysis operates, such that synonyms would tend to
have positive cosine similarities, and antonyms
would tend to have negative cosine similarities.
Scheible et al. (2013) showed that the distribu-
tional difference between antonyms and synonyms
can be identified via a simple word space model by
using appropriate features. Instead of taking into
account all words in a window of a certain size
for feature extraction, the authors experimented
with only words of a certain part-of-speech, and
restricted distributions. Santus et al. (2014) pro-
posed a different method to distinguish antonyms
from synonyms by identifying the most salient
dimensions of meaning in vector representations
and reporting a new average-precision-based dis-
tributional measure and an entropy-based mea-
sure. Ono et al. (2015) trained supervised word
embeddings for the task of identifying antonymy.
They proposed two models to learn word embed-
dings: the first model relied on thesaurus informa-
tion; the second model made use of distributional
information and thesaurus information. More re-
cently, Nguyen et al. (2016) proposed two meth-
ods to distinguish antonyms from synonyms: in
the first method, the authors improved the qual-
ity of weighted feature vectors by strengthening
those features that are most salient in the vec-
tors, and by putting less emphasis on those that
are of minor importance when distinguishing de-
grees of similarity between words. In the second
method, the lexical contrast information was inte-
grated into the skip-gram model (Mikolov et al.,
2013) to learn word embeddings. This model suc-
cessfully predicted degrees of similarity and iden-
tified antonyms and synonyms.

3 AntSynNET: LSTM-based
Antonym-Synonym Distinction

In this section, we describe the AntSynNET
model, using a pattern-based LSTM for distin-
guishing antonyms from synonyms. We first
present the induction of patterns from a parsed cor-
pus (Section 3.1). Section 3.2 then describes how
we utilize the recurrent neural network with long
short-term memory units to encode the patterns
as vector representation. Finally, we present the
AntSynNET model and two approaches to classify
antonyms and synonyms (Section 3.3).

3.1 Induction of Patterns

Corpus-based studies on antonymy have sug-
gested that opposites co-occur with each other
within a sentence significantly more often than
would be expected by chance. Our method thus
makes use of patterns as the main indicators of
word pair co-occurrence, to enforce a distinction
between antonyms and synonyms. Figure 1 shows
a syntactic parse tree of the sentence “My old
village has been provided with the new services”.
Following the characterizations of a tree in graph
theory, any two nodes (vertices) of a tree are
connected by a simple path (or one unique path).
The simple path is the shortest path between any
two nodes in a tree and does not contain repeated
nodes. In the example, the lexico-syntactic tree
pattern of the antonymous pair old–new is deter-
mined by finding the simple path (in red) from
the lemma old to the lemma new. It focuses
on the most relevant information and ignores
irrelevant information which does not appear in
the simple path (i.e., has, been). The example
pattern between X = old and Y = new in Fig-
ure 1 is represented as follows: X/JJ/amod/2 --

village/NN/nsubj/1 -- provide/VBN/ROOT/0

-- with/IN/prep/1 -- service/NNS/pobj/2

-- Y/JJ/amod/3.

Node Representation: The path patterns make
use of four features to represent each node in the
syntax tree: lemma, part-of-speech (POS) tag, de-
pendency label and distance label. The lemma fea-
ture captures the lexical information of words in
the sentence, while the POS and dependency fea-
tures capture the morpho-syntactic information of
the sentence. The distance label measures the path
distance between the target word nodes in the syn-
tactic tree. Each step between a parent and a child
node represents a distance of 1; and the ancestor
nodes of the remaining nodes in the path are rep-
resented by a distance of 0. For example, the node
provided is an ancestor node of the simple path
from old to new. The distances from the node
provided to the nodes village and old are
1 and 2, respectively.

The vector representation of each node concate-
nates the four-feature vectors as follows:

~vnode = [~vlemma ⊕ ~vpos ⊕ ~vdep ⊕ ~vdist]

where ~vlemma, ~vpos, ~vdep, ~vdist represent the em-
beddings of the lemma, POS tag, dependency label
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Figure 1: Illustration of the syntactic tree for the sentence “My old village has been provided with the
new services”. Red lines indicate the path from the word old to the word new.

and distance label, respectively; and the⊕ denotes
the concatenation operation.

Pattern Representation: For a pattern p
which is constructed by the sequence of nodes
n1, n2, ..., nk, the pattern representation of p is
a sequence of vectors: p = [~n1, ~n2, ..., ~nk]. The
pattern vector ~vp is then encoded by applying a
recurrent neural network.

3.2 Recurrent Neural Network with Long
Short-Term Memory Units

A recurrent neural network (RNN) is suitable for
modeling sequential data by a vector representa-
tion. In our methods, we use a long short-term
memory (LSTM) network, a variant of a recur-
rent neural network to encode patterns, for the
following reasons. Given a sequence of words
p = [n1, n2, ..., nk] as input data, an RNN pro-
cesses each word nt at a time, and returns a vec-
tor of state hk for the complete input sequence.
For each time step t, the RNN updates an inter-
nal memory state ht which depends on the current
input nt and the previous state ht−1. Yet, if the se-
quential input is a long-term dependency, an RNN
faces the problem of gradient vanishing or explod-
ing, leading to difficulties in training the model.

LSTM units address these problems. The un-
derlying idea of an LSTM is to use an adaptive gat-
ing mechanism to decide on the degree that LSTM
units keep the previous state and memorize the ex-
tracted features of the current input. More specif-

ically, an LSTM comprises four components: an
input gate it, a forget gate ft, an output gate ot,
and a memory cell ct. The state of an LSTM at
each time step t is formalized as follows:

it = σ(Wi · xt + Ui · ht−1 + bi)
ft = σ(Wf · xt + Uf · ht−1 + bf )
ot = σ(Wo · xt + Uo · ht−1 + bo)
gt = tanh(Wc · xt + Uc · ht−1 + bc)
ct = it ⊗ gt + ft ⊗ ct−1

W refers to a matrix of weights that projects in-
formation between two layers; b is a layer-specific
vector of bias terms; σ denotes the sigmoid func-
tion. The output of an LSTM at a time step t is
computed as follows:

ht = ot ⊗ tanh(ct)

where ⊗ denotes element-wise multiplication. In
our methods, we rely on the last state hk to repre-
sent the vector ~vp of a pattern p = [~n1, ~n2, ..., ~nk].

3.3 The Proposed AntSynNET Model
In this section, we present two models to distin-
guish antonyms from synonyms. The first model
makes use of patterns to classify antonyms and
synonyms, by using an LSTM to encode pat-
terns as vector representations and then feeding
those vectors to a logistic regression layer (Sec-
tion 3.3.1). The second model creates combined
vector representations of word pairs, which con-
catenate the vectors of the words and the patterns
(Section 3.3.2).
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Figure 2: Illustration of the AntSynNET model. Each word pair is represented by several patterns, and
each pattern represents a path in the graph of the syntactic tree. Patterns consist of several nodes where
each node is represented by a vector with four features: lemma, POS, dependency label, and distance
label. The mean pooling of the pattern vectors is the vector representation of each word pair, which is
then fed to the logistic regression layer to classify antonyms and synonyms.

3.3.1 Pattern-based AntSynNET
In this model, we make use of a recurrent neural
network with LSTM units to encode patterns con-
taining a sequence of nodes. Figure 2 illustrates
the AntSynNET model. Given a word pair (x, y),
we induce patterns for (x, y) from a corpus, where
each pattern represents a path from x to y (cf. Sec-
tion 3.1). We then feed each pattern p of the word
pair (x, y) into an LSTM to obtain ~vp, the vector
representation of the pattern p (cf. Section 3.2).
For each word pair (x, y), the vector representa-
tion of (x, y) is computed as follows:

~vxy =

∑
p∈P (x,y) ~vp · cp∑

p∈P (x,y) cp
(1)

~vxy refers to the vector of the word pair (x, y);
P (x, y) is the set of patterns corresponding to the
pair (x, y); cp is the frequency of the pattern p.
The vector ~vxy is then fed into a logistic regres-
sion layer whose target is the class label associ-
ated with the pair (x, y). Finally, the pair (x, y) is
predicted as positive (i.e., antonymous) word pair
if the probability of the prediction for ~vxy is larger
than 0.5.

3.3.2 Combined AntSynNET
Inspired by the supervised distributional concate-
nation method in Baroni et al. (2012) and the in-
tegrated path-based and distributional method for
hypernymy detection in Shwartz et al. (2016), we

take into account the patterns and distribution of
target pairs to create their combined vector rep-
resentations. Given a word pair (x, y), the com-
bined vector representation of the pair (x, y) is de-
termined by using both the co-occurrence distribu-
tion of the words and the syntactic path patterns:

~vcomb(x,y) = [~vx ⊕ ~vxy ⊕ ~vy] (2)

~vcomb(x,y) refers to the combined vector of the
word pair (x, y); ~vx and ~vy are the vectors of word
x and word y, respectively; ~vxy is the vector of the
pattern that corresponds to the pair (x, y), cf. Sec-
tion 3.3.1. Similar to the pattern-based model, the
combined vector ~vcomb(x,y) is fed into the logis-
tic regression layer to classify antonyms and syn-
onyms.

4 Baseline Models

To compare AntSynNET with baseline models for
pattern-based classification of antonyms and syn-
onyms, we introduce two pattern-based baseline
methods: the distributional method (Section 4.1),
and the distributed method (Section 4.2).

4.1 Distributional Baseline

As a first baseline, we apply the approach by Roth
and Schulte im Walde (2014), henceforth R&SiW.
They used a vector space model to represent pairs
of words by a combination of standard lexico-
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syntactic patterns and discourse markers. In ad-
dition to the patterns, the discourse markers added
information to express discourse relations, which
in turn may indicate the specific semantic relation
between the two words in a word pair. For ex-
ample, contrast relations might indicate antonymy,
whereas elaborations may indicate synonymy or
hyponymy.

Michael Roth, the first author of R&SiW, kindly
computed the relation classification results of the
pattern–discourse model for our test sets. The
weights between marker-based and pattern-based
models were tuned on the validation sets; other hy-
perparameters were set exactly as described by the
R&SiW method.

4.2 Distributed Baseline

The SP method proposed by Schwartz et al. (2015)
uses symmetric patterns for generating word em-
beddings. In this work, the authors applied an un-
supervised algorithm for the automatic extraction
of symmetric patterns from plain text. The sym-
metric patterns were defined as a sequence of 3-5
tokens consisting of exactly two wildcards and 1-
3 words. The patterns were filtered based on their
frequencies, such that the resulting pattern set con-
tained 11 patterns. For generating word embed-
dings, a matrix of co-occurrence counts between
patterns and words in the vocabulary was com-
puted, using positive point-wise mutual informa-
tion. The sparsity problem of vector representa-
tions was addressed by smoothing. For antonym
representation, the authors relied on two patterns
suggested by Lin et al. (2003) to construct word
embeddings containing an antonym parameter that
can be turned on in order to represent antonyms as
dissimilar, and that can be turned off to represent
antonyms as similar.

To apply the SP method to our data, we make
use of the pre-trained SP embeddings2 with 500
dimensions3. We calculate the cosine similarity
of word pairs and then use a Support Vector Ma-
chine with Radial Basis Function kernel to classify
antonyms and synonyms.

2
http://homes.cs.washington.edu/˜roysch/papers/

sp_embeddings/sp_embeddings.html
3The 500-dimensional embeddings outperformed the

300-dimensional embeddings for our data.

5 Experiments

5.1 Dataset

For training the models, neural networks require a
large amount of training data. We use the existing
large-scale antonym and synonym pairs previously
used by Nguyen et al. (2016). Originally, the data
pairs were collected from WordNet (Miller, 1995)
and Wordnik4.

In order to induce patterns for the word pairs in
the dataset, we identify the sentences in the cor-
pus that contain the word pair. Thereafter, we ex-
tract all patterns for the word pair. We filter out all
patterns which occur less than five times; and we
only take into account word pairs that contain at
least five patterns for training, validating and test-
ing. For the proportion of positive and negative
pairs, we keep a ratio of 1:1 positive (antonym) to
negative (synonym) pairs in the dataset. In order
to create the sets of training, testing and valida-
tion data, we perform random splitting with 70%
train, 25% test, and 5% validation sets. The final
dataset contains the number of word pairs accord-
ing to word classes described in Table 1. More-
over, Table 2 shows the average number of pat-
terns for each word pair in our dataset.

Word Class Train Test Validation Total
Adjective 5562 1986 398 7946
Verb 2534 908 182 3624
Noun 2836 1020 206 4062

Table 1: Our dataset.

Word Class Train Test Validation
Adjective 135 131 141
Verb 364 332 396
Noun 110 132 105

Table 2: Average number of patterns per word pair
across word classes.

5.2 Experimental Settings

We use the English Wikipedia dump5 from June
2016 as the corpus resource for our methods
and baselines. For parsing the corpus, we
rely on spaCy6. For the lemma embeddings,
we rely on the word embeddings of the dLCE

4
http://www.wordnik.com

5
https://dumps.wikimedia.org/enwiki/latest/

enwiki-latest-pages-articles.xml.bz2
6
https://spacy.io
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Model Adjective Verb Noun
P R F1 P R F1 P R F1

SP baseline 0.730 0.706 0.718 0.560 0.609 0.584 0.625 0.393 0.482
R&SiW baseline 0.717 0.717 0.717 0.789 0.787 0.788 0.833 0.831 0.832
Pattern-based AntSynNET 0.764 0.788 0.776∗ 0.741 0.833 0.784 0.804 0.851 0.827
Combined AntSynNET 0.763 0.807 0.784∗ 0.743 0.815 0.777 0.816 0.898 0.855∗∗

Table 3: Performance of the AntSynNET models in comparison to the baseline models.

Feature Model Adjective Verb Noun
P R F1 P R F1 P R F1

Direction
Pattern-based 0.752 0.755 0.753 0.734 0.819 0.774 0.800 0.825 0.813
Combined 0.754 0.784 0.769 0.739 0.793 0.765 0.829 0.810 0.819

Distance
Pattern-based 0.764 0.788 0.776 0.741 0.833 0.784 0.804 0.851 0.827
Combined 0.763 0.807 0.784∗∗ 0.743 0.815 0.777 0.816 0.898 0.855∗∗

Table 4: Comparing the novel distance feature with Schwarz et al.’s direction feature, across word classes.

model7 (Nguyen et al., 2016) which is the state-
of-the-art vector representation for distinguishing
antonyms from synonyms. We re-implemented
this cutting-edge model on Wikipedia with 100 di-
mensions, and then make use of the dLCE word
embeddings for initialization the lemma embed-
dings. The embeddings of POS tags, dependency
labels, distance labels, and out-of-vocabulary lem-
mas are initialized randomly. The number of
dimensions is set to 10 for the embeddings of
POS tags, dependency labels and distance labels.
We use the validation sets to tune the number of
dimensions for these labels. For optimization,
we rely on the cross-entropy loss function and
Stochastic Gradient Descent with the Adadelta up-
date rule (Zeiler, 2012). For training, we use the
Theano framework (Theano Development Team,
2016). Regularization is applied by a dropout of
0.5 on each of component’s embeddings (dropout
rate is tuned on the validation set). We train the
models with 40 epochs and update all embeddings
during training.

5.3 Overall Results

Table 3 shows the significant8 performance of our
models in comparison to the baselines. Concern-
ing adjectives, the two proposed models signif-
icantly outperform the two baselines: The per-
formance of the baselines is around .72 for F1,
and the corresponding results for the combined
AntSynNET model achieve an improvement of
>.06. Regarding nouns, the improvement of the
new methods is just .02 F1 in comparison to the

7
https://github.com/nguyenkh/AntSynDistinction

8t-test, *p < 0.05, **p < 0.1

R&SiW baseline, but we achieve a much better
performance in comparison to the SP baseline, an
increase of .37 F1. Regarding verbs, we do not
outperform the more advanced R&SiW baseline
in terms of the F1 score, but we obtain higher re-
call scores. In comparison to the SP baseline, our
models still show a clear F1 improvement.

Overall, our proposed models achieve compar-
atively high recall scores compared to the two
baselines. This strengthens our hypothesis that
there is a higher possibility for the co-occurrence
of antonymous pairs in patterns over synonymous
pairs within a sentence. Because, when the pro-
posed models obtain high recall scores, the mod-
els are able to retrieve most relevant information
(antonymous pairs) corresponding to the patterns.
Regarding the low precision in the two proposed
models, we sampled randomly 5 pairs in each pop-
ulation: true positive, true negative, false positive,
false negative. We then compared the overlap of
patterns for the true predictions (true positive pairs
and true negative pairs) and the false predictions
(false positive pairs and false negative pairs). We
found out that there is no overlap between patterns
of true predictions; and the number overlap be-
tween patterns of false predictions is 2, 2, and 4
patterns for noun, adjective, and verb classes, re-
spectively. This shows that the low precision of
our models stems from the patterns which repre-
sent both antonymous and synonymous pairs.

5.4 Effect of the Distance Feature

In our models, the novel distance feature is suc-
cessfully integrated along the syntactic path to
represent lexico-syntactic patterns. The intu-
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Model Word Embeddings Adjective Verb Noun
P R F1 P R F1 P R F1

Pattern-based Model
GloVe 0.763 0.770 0.767 0.705 0.852 0.772 0.789 0.849 0.818
dLCE 0.764 0.788 0.776 0.741 0.833 0.784 0.804 0.851 0.827

Combined Model
Glove 0.750 0.798 0.773 0.717 0.826 0.768 0.807 0.827 0.817
dLCE 0.763 0.807 0.784 0.743 0.815 0.777 0.816 0.898 0.855

Table 5: Comparing pre-trained GloVe and dLCE word embeddings.

ition behind the distance feature exploits prop-
erties of trees in graph theory, which show that
there exist differences in the degree of relation-
ship between the parent node and the child nodes
(distance = 1) and in the degree of relation-
ship between the ancestor node and the descendant
nodes (distance > 1). Hence, we use the distance
feature to effectively capture these relationships.

In order to evaluate the effect of our novel dis-
tance feature, we compare the distance feature to
the direction feature proposed by Shwartz et al.
(2016). In their approach, the authors combined
lemma, POS, dependency, and direction features
for the task of hypernym detection. The direc-
tion feature represented the direction of the depen-
dency label between two nodes in a path from X to
Y.

For evaluation, we make use of the same infor-
mation regarding dataset and patterns as in Sec-
tion 5.3, and then replace the distance feature by
the direction feature. The results are shown in Ta-
ble 4. The distance feature enhances the perfor-
mance of our proposed models more effectively
than the direction feature does, across all word
classes.

5.5 Effect of Word Embeddings

Our methods rely on the word embeddings of the
dLCE model, state-of-the-art word embeddings
for antonym-synonym distinction. Yet, the word
embeddings of the dLCE model, i.e., supervised
word embeddings, represent information collected
from lexical resources. In order to evaluate the ef-
fect of these word embeddings on the performance
of our models, we replace them by the pre-trained
GloVe word embeddings9 with 100 dimensions,
and compare the effects of the GloVe word em-
beddings and the dLCE word embeddings on the
performance of the two proposed models.

Table 5 illustrates the performance of our two
models on all word classes. The table shows that
the dLCE word embeddings are better than the

9
http://www-nlp.stanford.edu/projects/glove/

pre-trained GloVe word embeddings, by around
.01 F1 for the pattern-based AntSynNET model
and the combined AntSynNET model regarding
adjective and verb pairs. Regarding noun pairs,
the improvements of the dLCE word embeddings
over pre-trained GloVe word embeddings achieve
around .01 and .04 F1 for the pattern-based model
and the combined model, respectively.

6 Conclusion

In this paper, we presented a novel pattern-
based neural method AntSynNET to distinguish
antonyms from synonyms. We hypothesized that
antonymous word pairs co-occur with each other
in lexico-syntactic patterns within a sentence more
often than synonymous word pairs.

The patterns were derived from the simple paths
between semantically related words in a syntac-
tic parse tree. In addition to lexical and syntactic
information, we suggested a novel path distance
feature. The AntSynNET model consists of two
approaches to classify antonyms and synonyms.
In the first approach, we used a recurrent neural
network with long short-term memory units to en-
code the patterns as vector representations; in the
second approach, we made use of the distribution
and encoded patterns of the target pairs to gener-
ate combined vector representations. The result-
ing vectors of patterns in both approaches were fed
into the logistic regression layer for classification.

Our proposed models significantly outper-
formed two baselines relying on previous work,
mainly in terms of recall. Moreover, we demon-
strated that the distance feature outperformed a
previously suggested direction feature, and that
our embeddings outperformed the state-of-the-art
GloVe embeddings. Last but not least, our two
proposed models only rely on corpus data, such
that the models are easily applicable to other lan-
guages and relations.
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Abstract

The current trend in NLP is the use of
highly opaque models, e.g. neural net-
works and word embeddings. While
these models yield state-of-the-art results
on a range of tasks, their drawback is
poor interpretability. On the example
of word sense induction and disambigua-
tion (WSID), we show that it is possi-
ble to develop an interpretable model that
matches the state-of-the-art models in ac-
curacy. Namely, we present an unsuper-
vised, knowledge-free WSID approach,
which is interpretable at three levels: word
sense inventory, sense feature representa-
tions, and disambiguation procedure. Ex-
periments show that our model performs
on par with state-of-the-art word sense
embeddings and other unsupervised sys-
tems while offering the possibility to jus-
tify its decisions in human-readable form.

1 Introduction

A word sense disambiguation (WSD) system takes
as input a target word t and its context C. The sys-
tem returns an identifier of a word sense si from
the word sense inventory {s1, ..., sn} of t, where
the senses are typically defined manually in ad-
vance. Despite significant progress in methodol-
ogy during the two last decades (Ide and Véronis,
1998; Agirre and Edmonds, 2007; Moro and Nav-
igli, 2015), WSD is still not widespread in appli-
cations (Navigli, 2009), which indicates the need
for further progress. The difficulty of the prob-
lem largely stems from the lack of domain-specific
training data. A fixed sense inventory, such as the
one of WordNet (Miller, 1995), may contain irrel-
evant senses for the given application and at the
same time lack relevant domain-specific senses.

Word sense induction from domain-specific cor-
pora is a supposed to solve this problem. How-
ever, most approaches to word sense induction and
disambiguation, e.g. (Schütze, 1998; Li and Juraf-
sky, 2015; Bartunov et al., 2016), rely on cluster-
ing methods and dense vector representations that
make a WSD model uninterpretable as compared
to knowledge-based WSD methods.

Interpretability of a statistical model is impor-
tant as it lets us understand the reasons behind its
predictions (Vellido et al., 2011; Freitas, 2014; Li
et al., 2016). Interpretability of WSD models (1)
lets a user understand why in the given context one
observed a given sense (e.g., for educational appli-
cations); (2) performs a comprehensive analysis of
correct and erroneous predictions, giving rise to
improved disambiguation models.

The contribution of this paper is an interpretable
unsupervised knowledge-free WSD method. The
novelty of our method is in (1) a technique to dis-
ambiguation that relies on induced inventories as
a pivot for learning sense feature representations,
(2) a technique for making induced sense repre-
sentations interpretable by labeling them with hy-
pernyms and images.

Our method tackles the interpretability issue of
the prior methods; it is interpretable at the lev-
els of (1) sense inventory, (2) sense feature rep-
resentation, and (3) disambiguation procedure. In
contrast to word sense induction by context clus-
tering (Schütze (1998), inter alia), our method
constructs an explicit word sense inventory. The
method yields performance comparable to the
state-of-the-art unsupervised systems, including
two methods based on word sense embeddings.
An open source implementation of the method fea-
turing a live demo of several pre-trained models is
available online.1

1http://www.jobimtext.org/wsd
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2 Related Work

Multiple designs of WSD systems were pro-
posed (Agirre and Edmonds, 2007; Navigli,
2009). They vary according to the level of su-
pervision and the amount of external knowledge
used. Most current systems either make use of
lexical resources and/or rely on an explicitly an-
notated sense corpus.

Supervised approaches use a sense-labeled
corpus to train a model, usually building one sub-
model per target word (Ng, 1997; Lee and Ng,
2002; Klein et al., 2002; Wee, 2010). The IMS
system by Zhong and Ng (2010) provides an im-
plementation of the supervised approach to WSD
that yields state-of-the-art results. While super-
vised approaches demonstrate top performance in
competitions, they require large amounts of sense-
labeled examples per target word.

Knowledge-based approaches rely on a lexi-
cal resource that provides a sense inventory and
features for disambiguation and vary from the
classical Lesk (1986) algorithm that uses word
definitions to the Babelfy (Moro et al., 2014) sys-
tem that uses harnesses a multilingual lexical-
semantic network. Classical examples of such ap-
proaches include (Banerjee and Pedersen, 2002;
Pedersen et al., 2005; Miller et al., 2012). More
recently, several methods were proposed to learn
sense embeddings on the basis of the sense in-
ventory of a lexical resource (Chen et al., 2014;
Rothe and Schütze, 2015; Camacho-Collados et
al., 2015; Iacobacci et al., 2015; Nieto Piña and
Johansson, 2016).

Unsupervised knowledge-free approaches
use neither handcrafted lexical resources nor hand-
annotated sense-labeled corpora. Instead, they in-
duce word sense inventories automatically from
corpora. Unsupervised WSD methods fall into
two main categories: context clustering and word
ego-network clustering.

Context clustering approaches, e.g. (Pedersen
and Bruce, 1997; Schütze, 1998), represent an in-
stance usually by a vector that characterizes its
context, where the definition of context can vary
greatly. These vectors of each instance are then
clustered. Multi-prototype extensions of the skip-
gram model (Mikolov et al., 2013) that use no pre-
defined sense inventory learn one embedding word
vector per one word sense and are commonly fit-
ted with a disambiguation mechanism (Huang et
al., 2012; Tian et al., 2014; Neelakantan et al.,

2014; Bartunov et al., 2016; Li and Jurafsky, 2015;
Pelevina et al., 2016). Comparisons of the Ada-
Gram (Bartunov et al., 2016) to (Neelakantan et
al., 2014) on three SemEval word sense induction
and disambiguation datasets show the advantage
of the former. For this reason, we use AdaGram as
a representative of the state-of-the-art word sense
embeddings in our experiments. In addition, we
compare to SenseGram, an alternative sense em-
bedding based approach by Pelevina et al. (2016).
What makes the comparison to the later method
interesting is that this approach is similar to ours,
but instead of sparse representations the authors
rely on word embeddings, making their approach
less interpretable.

Word ego-network clustering methods (Lin,
1998; Pantel and Lin, 2002; Widdows and Dorow,
2002; Biemann, 2006; Hope and Keller, 2013)
cluster graphs of words semantically related to the
ambiguous word. An ego network consists of a
single node (ego) together with the nodes they are
connected to (alters) and all the edges among those
alters (Everett and Borgatti, 2005). In our case,
such a network is a local neighborhood of one
word. Nodes of the ego-network can be (1) words
semantically similar to the target word, as in our
approach, or (2) context words relevant to the tar-
get, as in the UoS system (Hope and Keller, 2013).
Graph edges represent semantic relations between
words derived using corpus-based methods (e.g.
distributional semantics) or gathered from dictio-
naries. The sense induction process using word
graphs is explored by (Widdows and Dorow, 2002;
Biemann, 2006; Hope and Keller, 2013). Disam-
biguation of instances is performed by assigning
the sense with the highest overlap between the in-
stance’s context words and the words of the sense
cluster. Véronis (2004) compiles a corpus with
contexts of polysemous nouns using a search en-
gine. A word graph is built by drawing edges be-
tween co-occurring words in the gathered corpus,
where edges below a certain similarity threshold
were discarded. His HyperLex algorithm detects
hubs of this graph, which are interpreted as word
senses. Disambiguation is this experiment is per-
formed by computing the distance between con-
text words and hubs in this graph.

Di Marco and Navigli (2013) presents a com-
prehensive study of several graph-based WSI
methods including Chinese Whispers, HyperLex,
curvature clustering (Dorow et al., 2005). Besides,
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authors propose two novel algorithms: Balanced
Maximum Spanning Tree Clustering and Squares
(B-MST), Triangles and Diamonds (SquaT++).
To construct graphs, authors use first-order and
second-order relations extracted from a back-
ground corpus as well as keywords from snippets.
This research goes beyond intrinsic evaluations of
induced senses and measures impact of the WSI in
the context of an information retrieval via cluster-
ing and diversifying Web search results. Depend-
ing on the dataset, HyperLex, B-MST or Chinese-
Whispers provided the best results.

Our system combines several of above ideas
and adds features ensuring interpretability. Most
notably, we use a word sense inventory based
on clustering word similarities (Pantel and Lin,
2002); for disambiguation we rely on syntactic
context features, co-occurrences (Hope and Keller,
2013) and language models (Yuret, 2012).

Interpretable approaches. The need in meth-
ods that interpret results of opaque statistical mod-
els is widely recognised (Vellido et al., 2011; Vel-
lido et al., 2012; Freitas, 2014; Li et al., 2016;
Park et al., 2016). An interpretable WSD sys-
tem is expected to provide (1) a human-readable
sense inventory, (2) human-readable reasons why
in a given context c a given sense si was de-
tected. Lexical resources, such as WordNet, solve
the first problem by providing manually-crafted
definitions of senses, examples of usage, hyper-
nyms, and synonyms. The BabelNet (Navigli and
Ponzetto, 2010) integrates all these sense repre-
sentations, adding to them links to external re-
sources, such as Wikipedia, topical category la-
bels, and images representing the sense. The un-
supervised models listed above do not feature any
of these representations making them much less
interpretable as compared to the knowledge-based
models. Ruppert et al. (2015) proposed a system
for visualising sense inventories derived in an un-
supervised way using graph-based distributional
semantics. Panchenko (2016) proposed a method
for making sense inventory of word sense embed-
dings interpretable by mapping it to BabelNet.

Our approach was inspired by the knowledge-
based system Babelfy (Moro et al., 2014). While
the inventory of Babelfy is interpretable as it relies
on BabelNet, the system provides no underlying
reasons behind sense predictions. Our objective
was to reach interpretability level of knowledge-
based models within an unsupervised framework.

3 Method: Unsupervised Interpretable
Word Sense Disambiguation

Our unsupervised word sense disambiguation
method consist of the five steps illustrated in Fig-
ure 1: extraction of context features (Section 3.1);
computing word and feature similarities (Section
3.2); word sense induction (Section 3.3); labeling
of clusters with hypernyms and images (Section
3.4), disambiguation of words in context based on
the induced inventory (Section 3.5), and finally in-
terpretation of the model (Section 3.6). Feature
similarity and co-occurrence computation steps
(drawn with a dashed lines) are optional, since
they did not consistently improve performance.

3.1 Extraction of Context Features

The goal of this step is to extract word-feature
counts from the input corpus. In particular, we ex-
tract three types of features:

Dependency Features. These feature represents
a word by a syntactic dependency such as
“nn(•,writing)” or “prep at(sit,•)”, extracted from the
Stanford Dependencies (De Marneffe et al., 2006)
obtained with the the PCFG model of the Stan-
ford parser (Klein and Manning, 2003). Weights
are computed using the Local Mutual Information
(LMI) (Evert, 2005). One word is represented
with 1000 most significant features.

Co-occurrence Features. This type of features
represents a word by another word. We extract
the list of words that significantly co-occur in a
sentence with the target word in the input cor-
pus based on the log-likelihood as word-feature
weight (Dunning, 1993).

Language Model Feature. This type of features
are based on a trigram model with Kneser-Ney
smoothing (Kneser and Ney, 1995). In particu-
lar, a word is represented by (1) right and left
context words, e.g. “office • and”, (2) two pre-
ceding words “new office •”, and (3) two succeed-
ing words, e.g. “• and chairs”. We use the con-
ditional probabilities of the resulting trigrams as
word-feature weights.

3.2 Computing Word and Feature
Similarities

The goal of this step is to build a graph of word
similarities, such as (table, chair, 0.78). We used
the JoBimText framework (Biemann and Riedl,
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Figure 1: Outline of our unsupervised interpretable method for word sense induction and disambiguation.

2013) as it yields comparable performance on se-
mantic similarity to state-of-the-art dense repre-
sentations (Mikolov et al., 2013) compared on the
WordNet as gold standard (Riedl, 2016), but is in-
terpretable as word are represented by sparse in-
terpretable features. Namely we use dependency-
based features as, according to prior evaluations,
this kind of features provides state-of-the-art se-
mantic relatedness scores (Padó and Lapata, 2007;
Van de Cruys, 2010; Panchenko and Morozova,
2012; Levy and Goldberg, 2014).

First, features of each word are ranked using the
LMI metric (Evert, 2005). Second, the word rep-
resentations are pruned keeping 1000 most salient
features per word and 1000 most salient words per
feature. The pruning reduces computational com-
plexity and noise. Finally, word similarities are
computed as a number of common features for two
words. This is again followed by a pruning step in
which only the 200 most similar terms are kept
to every word. The resulting word similarities are
browsable online.2

Note that while words can be characterized with
distributions over features, features can vice versa
be characterized by a distribution over words. We
use this duality to compute feature similarities us-
ing the same mechanism and explore their use in
disambiguation below.

3.3 Word Sense Induction
We induce a sense inventory by clustering of ego-
network of similar words. In our case, an inven-
tory represents senses by a word cluster, such as
“chair, bed, bench, stool, sofa, desk, cabinet” for
the “furniture” sense of the word “table”.

The sense induction processes one word t of the
distributional thesaurus T per iteration. First, we
retrieve nodes of the ego-network G of t being the
N most similar words of t according to T (see

2Select the “JoBimViz” demo and then the “Stanford (En-
glish)” model: http://www.jobimtext.org.

Figure 2 (1)). Note that the target word t itself
is not part of the ego-network. Second, we con-
nect each node in G to its n most similar words
according to T . Finally, the ego-network is clus-
tered with Chinese Whispers (Biemann, 2006), a
non-parametric algorithm that discovers the num-
ber of senses automatically. The n parameter reg-
ulates the granularity of the inventory: we experi-
ment with n ∈ {200, 100, 50} and N = 200.

The choice of Chinese Whispers among other
algorithms, such as HyperLex (Véronis, 2004) or
MCL (Van Dongen, 2008), was motivated by the
absence of meta-parameters and its comparable
performance on the WSI task to the state-of-the-
art (Di Marco and Navigli, 2013).

3.4 Labeling Induced Senses with
Hypernyms and Images

Each sense cluster is automatically labeled to
improve its interpretability. First, we ex-
tract hypernyms from the input corpus using
Hearst (1992) patterns. Second, we rank hy-
pernyms relevant to the cluster by a product
of two scores: the hypernym relevance score,
calculated as

∑
w∈cluster sim(t, w)freq(w, h),

and the hypernym coverage score, calculated
as
∑

w∈cluster min(freq(w, h), 1). Here the
sim(t, w) is the relatedness of the cluster word
w to the target word t, and the freq(w, h) is the
frequency of the hypernymy relation (w, h) as ex-
tracted via patterns. Thus, a high-ranked hyper-
nym h has high relevance, but also is confirmed
by several cluster words. This stage results in a
ranked list of labels that specify the word sense,
for which we here show the first one, e.g. “table
(furniture)” or “table (data)”.

Faralli and Navigli (2012) showed that web
search engines can be used to bootstrap sense-
related information. To further improve inter-
pretability of induced senses, we assign an image
to each word in the cluster (see Figure 2) by query-
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ing the Bing image search API3 using the query
composed of the target word and its hypernym,
e.g. “jaguar car”. The first hit of this query is
selected to represent the induced word sense.

Algorithm 1: Unsupervised WSD of the word
t based on the induced word sense inventory I .

input : Word t, context features C, sense inventory I ,
word-feature table F , use largest cluster
back-off LCB, use feature expansion FE.

output: Sense of the target word t in inventory I and
confidence score.

1 S ← getSenses (I, t)
2 if FE then
3 C ← featureExpansion(C)
4 end
5 foreach (sense, cluster) ∈ S do
6 α[sense]← {}
7 foreach w ∈ cluster do
8 foreach c ∈ C do
9 α[sense]← α[sense] ∪ F (w, c)

10 end
11 end
12 end
13 if maxsense∈S mean(α[sense]) = 0 then
14 if LCB then
15 return argmax( ,cluster)∈S |cluster|
16 else
17 return −1 // reject to classify
18 end
19 else
20 return argmax(sense, )∈Smean(α[sense])
21 end

3.5 Word Sense Disambiguation with
Induced Word Sense Inventory

To disambiguate a target word t in context, we ex-
tract context features C and pass them to Algo-
rithm 1. We use the induced sense inventory I and
select the sense that has the largest weighted fea-
ture overlap with context features or fall back to
the largest cluster back-off when context features
C do not match the learned sense representations.

The algorithm starts by retrieving induced sense
clusters of the target word (line 1). Next,
the method starts to accumulate context feature
weights of each sense in α[sense]. Each word
w in a sense cluster brings all its word-feature
counts F (w, c): see lines 5-12. Finally, a sense
that maximizes mean weight across all context
features is chosen (lines 13-21). Optionally, we
can resort to the largest cluster back-off (LCB)
strategy in case if no context features match sense
representations.

3https://azure.microsoft.com/en-us/
services/cognitive-services/search

Note that the induced inventory I is used as
a pivot to aggregate word-feature counts F (w, c)
of the words in the cluster in order to build fea-
ture representations of each induced sense. We
assume that the sets of similar words per sense
are compatible with each other’s context. Thus,
we can aggregate ambiguous feature representa-
tions of words in a sense cluster. In a way, oc-
currences of cluster members form the training set
for the sense, i.e. contexts of {chair, bed, bench,
stool, sofa, desk, cabinet}, add to the represen-
tation of “table (furniture)” in the model. Here,
ambiguous cluster members like “chair” (which
could also mean “chairman”) add some noise, but
its influence is dwarfed by the aggregation over all
cluster members. Besides, it is unlikely that the
target (“table”) and the cluster member (“chair”)
share the same homonymy, thus noisy context fea-
tures hardly play a role when disambiguating the
target in context. For instance, for scoring us-
ing language model features, we retrieve the con-
text of the target word and substitute the target
word one by one of the cluster words. To close
the gap between the aggregated dependency per
sense α[sense] and dependencies observed in the
target’s context C, we use the similarity of fea-
tures: we expand every feature c ∈ C with 200 of
most similar features and use them as additional
features (lines 2-4).

We run disambiguation independently for each
of the feature types listed above, e.g. dependencies
or co-occurrences. Next, independent predictions
are combined using the majority-voting rule.

3.6 Interpretability of the Method

Results of disambiguation can be interpreted by
humans as illustrated by Figure 2. In particular,
our approach is interpretable at three levels:

1. Word sense inventory. To make induced
word sense inventories interpretable we display
senses of each word as an ego-network of its se-
mantically related words. For instance, the net-
work of the word “table” in our example is con-
structed from two tightly related groups of words
that correspond to “furniture” and “data” senses.
These labels of the clusters are obtained automati-
cally (see Section 3.4).

While alternative methods, such as AdaGram,
can generate sense clusters, our approach makes
the senses better interpretable due to hypernyms
and image labels that summarize senses.

90



Figure 2: Interpretation of the senses of the word “table” at three levels by our method: (1) word sense
inventory; (2) sense feature representation; (3) results of disambiguation in context. The sense labels
(“furniture” and “data”) are obtained automatically based on cluster labeling with hypernyms. The im-
ages associated with the senses are retrieved using a search engine:“table data” and “table furniture”.

2. Sense feature representation. Each sense
in our model is characterized by a list of sparse
features ordered by relevance to the sense. Fig-
ure 2 (2) shows most salient dependency features
to senses of the word “table”. These feature repre-
sentations are obtained by aggregating features of
sense cluster words.

In systems based on dense vector representa-
tions, there is no straightforward way to get the
most salient features of a sense, which makes the
analysis of learned representations problematic.

3. Disambiguation method. To provide the rea-
sons for sense assignment in context, our method
highlights the most discriminative context features
that caused the prediction. The discriminative
power of a feature is defined as the ratio between
its weights for different senses.

In Figure 2 (3) words “information”, “cookies”,
“deployed” and “website” are highlighted as they
are most discriminative and intuitively indicate on
the “data” sense of the word “table” as opposed
to the “furniture” sense. The same is observed for
other types of features. For instance, the syntactic
dependency to the word “information” is specific
to the “data” sense.

Alternative unsupervised WSD methods that
rely on word sense embeddings make it difficult
to explain sense assignment in context due to the
use of dense features whose dimensions are not in-
terpretable.

4 Experiments

We use two lexical sample collections suitable for
evaluation of unsupervised WSD systems. The
first one is the Turk Bootstrap Word Sense In-
ventory (TWSI) dataset introduced by Biemann
(2012). It is used for testing different configu-
rations of our approach. The second collection,
the SemEval 2013 word sense induction dataset by
Jurgens and Klapaftis (2013), is used to compare
our approach to existing systems. In both datasets,
to measure WSD performance, induced senses are
mapped to gold standard senses. In experiments
with the TWSI dataset, the models were trained on
the Wikipedia corpus4 while in experiments with
the SemEval datasets models are trained on the
ukWaC corpus (Baroni et al., 2009) for a fair com-
parison with other participants.

4.1 TWSI Dataset
4.1.1 Dataset and Evaluation Metrics
This test collection is based on a crowdsourced re-
source that comprises 1,012 frequent nouns with
2,333 senses and average polysemy of 2.31 senses
per word. For these nouns, 145,140 annotated sen-
tences are provided. Besides, a sense inventory
is explicitly provided, where each sense is rep-
resented with a list of words that can substitute
target noun in a given sentence. The sense dis-
tribution across sentences in the dataset is highly

4We use a Wikipedia dump from September 2015:
http://doi.org/10.5281/zenodo.229904
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skewed as 79% of contexts are assigned to the
most frequent senses. Thus, in addition to the full
TWSI dataset, we also use a balanced subset fea-
turing five contexts per sense and 6,166 sentences
to assess the quality of the disambiguation mech-
anism for smaller senses. This dataset contains no
monosemous words to completely remove the bias
of the most frequent sense. Note that de-biasing
the evaluation set does not de-bias the word sense
inventory, thus the task becomes harder for the bal-
anced subset.

For the TWSI evaluation, we create an explicit
mapping between the system-provided sense in-
ventory and the TWSI word senses: senses are
represented as the bag of words, which are com-
pared using cosine similarity. Every induced sense
gets assigned at most one TWSI sense. Once the
mapping is completed, we calculate Precision, Re-
call, and F-measure. We use the following base-
lines to facilitate interpretation of the results: (1)
MFS of the TWSI inventory always assigns the
most frequent sense in the TWSI dataset; (2) LCB
of the induced inventory always assigns the largest
sense cluster; (3) Upper bound of the induced vo-
cabulary always selects the correct sense for the
context, but only if the mapping exists for this
sense; (4) Random sense of the TWSI and the in-
duced inventories.

4.1.2 Discussion of Results
The results of the TWSI evaluation are presented
in Table 1. In accordance with prior art in word
sense disambiguation, the most frequent sense
(MFS) proved to be a strong baseline, reaching
an F-score of 0.787, while the random sense over
the TWSI inventory drops to 0.536. The upper
bound on our induced inventory (F-score of 0.900)
shows that the sense mapping technique used prior
to evaluation does not drastically distort the evalu-
ation scores. The LCB baseline of the induced in-
ventory achieves an F-score of 0.691, demonstrat-
ing the efficiency of the LCB technique.

Let us first consider models based on single
features. Dependency features yield the highest
precision of 0.728, but have a moderate recall of
0.343 since they rarely match due to their spar-
sity. The LCB strategy for these rejected con-
texts helps to improve recall at cost of precision.
Co-occurrence features yield significantly lower
precision than the dependency-based features, but
their recall is higher. Finally, the language model
features yield very balanced results in terms of

both precision and recall. Yet, the precision of the
model based on this feature type is significantly
lower than that of dependencies.

Not all combinations improve results, e.g. com-
bination of three types of features yields infe-
rior results as compared to the language model
alone. However, a combination of the language
model with dependency features does provide an
improvement over the single models as both these
models bring strong signal of complementary na-
ture about the semantics of the context. The de-
pendency features represent syntactic information,
while the LM features represent lexical informa-
tion. This improvement is even more pronounced
in the case of the balanced TWSI dataset. This
combined model yields the best F-scores overall.

Table 2 presents the effect of the feature expan-
sion based on the graph of similar features. For
a low-recall model such the one based on syntac-
tic dependencies, feature expansion makes a lot of
sense: it almost doubles recall, while losing some
precision. The gain in F-score using this technique
is almost 20 points on the full TWSI dataset. How-
ever, the need for such expansion vanishes when
two principally different types of features (precise
syntactic dependencies and high-coverage trigram
language model) are combined. Both precision
and F-score of this combined model outperforms
that of the dependency-based model with feature
expansion by a large margin.

Figure 3 illustrates how granularity of the in-
duced sense inventory influences WSD perfor-
mance. For this experiment, we constructed three
inventories, setting the number of most similar
words in the ego-network n to 200, 100 and 50.
These settings produced inventories with respec-
tively 1.96, 2.98 and 5.21 average senses per target
word. We observe that a higher sense granularity
leads to lower F-scores. This can be explained be-
cause of (1) the fact that granularity of the TWSI
is similar to granularity of the most coarse-grained
inventory; (2) the higher the number of senses,
the higher the chance to make a wrong sense as-
signment; (3) due to the reduced size of individual
clusters, we get less signal per sense cluster and
noise becomes more pronounced.

To summarize, the best precision is reached by
a model based on un-expanded dependencies and
the best F-score can be obtained by a combination
of models based on un-expanded dependency fea-
tures and language model features.
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Full TWSI Sense-Balanced TWSI
Model #Senses Prec. Recall F-score Prec. Recall F-score

MFS of the TWSI inventory 2.31 0.787 0.787 0.787 0.373 0.373 0.373
Random Sense of the TWSI inventory 2.31 0.536 0.534 0.535 0.160 0.160 0.160

Upper bound of the induced inventory 1.96 1.000 0.819 0.900 1.000 0.598 0.748
Largest Cluster Back-Off (LCB) of the induced inventory 1.96 0.691 0.690 0.691 0.371 0.371 0.371
Random sense of the induced inventory 1.96 0.559 0.558 0.558 0.325 0.324 0.324

Dependencies 1.96 0.728 0.343 0.466 0.432 0.190 0.263
Dependencies + LCB 1.96 0.689 0.680 0.684 0.388 0.385 0.387
Co-occurrences (Cooc) 1.96 0.570 0.563 0.566 0.336 0.333 0.335
Language Model (LM) 1.96 0.685 0.677 0.681 0.416 0.412 0.414
Dependencies + LM + Cooc 1.96 0.644 0.636 0.640 0.388 0.386 0.387
Dependencies + LM 1.96 0.689 0.681 0.685 0.426 0.422 0.424

Table 1: WSD performance of different configurations of our method on the full and the sense-balanced
TWSI datasets based on the coarse inventory with 1.96 senses/word (N = 200, n = 200).

Model Precision Recall F-score Precision Recall F-score

Dependencies 0.728 0.343 0.466 0.432 0.190 0.263
Dependencies Exp. 0.687 0.633 0.659 0.414 0.379 0.396

Dependencies + LM 0.689 0.681 0.685 0.426 0.422 0.424
Dependencies Exp. + LM 0.684 0.676 0.680 0.412 0.408 0.410

Table 2: Effect of the feature expansion: performance on the full (on the left) and the sense-balanced (on
the right) TWSI datasets. The models were trained on the Wikipedia corpus using the coarse inventory
(1.96 senses per word). The best results overall are underlined.

4.2 SemEval 2013 Task 13 Dataset

4.2.1 Dataset and Evaluation Metrics
The task of word sense induction for graded and
non-graded senses provides 20 nouns, 20 verbs
and 10 adjectives in WordNet-sense-tagged con-
texts. It contains 20-100 contexts per word, and
4,664 contexts in total with 6,73 sense per word
in average. Participants were asked to cluster in-
stances into groups corresponding to distinct word
senses. Instances with multiple senses were la-
beled with a score between 0 and 1.

Performance is measured with three measures
that require a mapping of inventories (Jaccard In-
dex, Tau, WNDCG) and two cluster comparison
measures (Fuzzy NMI, Fuzzy B-Cubed).

4.2.2 Discussion of Results
Table 3 presents results of evaluation of the
best configuration of our approach trained on the
ukWaC corpus. We compare our approach to
four SemEval participants and two state-of-the-art
systems based on word sense embeddings: Ada-
Gram (Bartunov et al., 2016) based on Bayesian
stick-breaking process5 and SenseGram (Pelevina
et al., 2016) based on clustering of ego-network

5https://github.com/sbos/AdaGram.jl

generated using word embeddings6. The AI-KU
system (Baskaya et al., 2013) directly clusters test
contexts using the k-means algorithm based on
lexical substitution features. The Unimelb sys-
tem (Lau et al., 2013) uses one hierarchical topic
model to induce and disambiguate senses of one
word. The UoS system (Hope and Keller, 2013)
induces senses by building an ego-network of a
word using dependency relations, which is sub-
sequently clustered using the MaxMax clustering
algorithm. The La Sapienza system (Jurgens and
Klapaftis, 2013), relies on WordNet for the sense
inventory and disambiguation.

In contrast to the TWSI evaluation, the most
fine-grained model yields the best scores, yet the
inventory of the task is also more fine-grained than
the one of the TWSI (7.08 vs. 2.31 avg. senses per
word). Our method outperforms the knowledge-
based system of La Sapienza according to two of
three metrics metrics and the SenseGram system
based on sense embeddings according to four of
five metrics. Note that SenseGram outperforms
all other systems according to the Fuzzy B-Cubed
metric, which is maximized in the “All instances,
One sense” settings. Thus this result may be due to

6https://github.com/tudarmstadt-lt/
sensegram
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Figure 3: Impact of word sense inventory granularity on WSD performance: the TWSI dataset.

Model Jacc. Ind. Tau WNDCG Fuzzy NMI Fuzzy B-Cubed

All Instances, One sense 0.192 0.609 0.288 0.000 0.623
1 sense per instance 0.000 0.953 0.000 0.072 0.000
Most Frequent Sense 0.552 0.560 0.412 – –

AI-KU 0.197 0.620 0.387 0.065 0.390
AI-KU (remove5-add1000) 0.245 0.642 0.332 0.039 0.451
Unimelb (50k) 0.213 0.620 0.371 0.060 0.483
UoS (top-3) 0.232 0.625 0.374 0.045 0.448
La Sapienza (2) 0.149 0.510 0.383 – –
AdaGram, α = 0.05, 100 dim. vectors 0.274 0.644 0.318 0.058 0.470
SenseGram, 100 dim., CBOW, weight, sim., p = 2 0.197 0.615 0.291 0.011 0.615

Dependencies + LM (1.96 senses/word) 0.239 0.634 0.300 0.041 0.513
Dependencies + LM (2.98 senses/word) 0.242 0.634 0.300 0.041 0.504
Dependencies + LM (5.21 senses/word) 0.253 0.638 0.300 0.041 0.479

Table 3: WSD performance of the best configuration of our method identified on the TWSI dataset as
compared to participants of the SemEval 2013 Task 13 and two systems based on word sense embeddings
(AdaGram and SenseGram). All models were trained on the ukWaC corpus.

difference in granularities: the average polysemy
of the SenseGram model is 1.56, while the poly-
semy of our models range from 1.96 to 5.21.

Besides, our system performs comparably to the
top unsupervised systems participated in the com-
petition: It is on par with the top SemEval sub-
missions (AI-KU and UoS) and the another system
based on embeddings (AdaGram), in terms of four
out of five metrics (Jaccard Index, Tau, Fuzzy B-
Cubed, Fuzzy NMI).

Therefore, we conclude that our system yields
comparable results to the state-of-the-art unsuper-
vised systems. Note, however, that none of the
rivaling systems has a comparable level of inter-
pretability to our approach. This is where our
method is unique in the class of unsupervised
methods: feature representations and disambigua-
tion procedure of the neural-based AdaGram and
SenseGram systems cannot be straightforwardly
interpreted. Besides, inventories of the existing
systems are represented as ranked lists of words
lacking features that improve readability, such as
hypernyms and images.

5 Conclusion

In this paper, we have presented a novel method
for word sense induction and disambiguation that
relies on a meta-combination of dependency fea-
tures with a language model. The majority of
existing unsupervised approaches focus on opti-
mizing the accuracy of the method, sacrificing its
interpretability due to the use of opaque models,
such as neural networks. In contrast, our approach
places a focus on interpretability with the help
of sparse readable features. While being inter-
pretable at three levels (sense inventory, sense rep-
resentations and disambiguation), our method is
competitive to the state-of-the-art, including two
recent approaches based on sense embeddings, in
a word sense induction task. Therefore, it is pos-
sible to match the performance of accurate, but
opaque methods when interpretability matters.
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Abstract

Word Sense Disambiguation is a long-
standing task in Natural Language Pro-
cessing, lying at the core of human lan-
guage understanding. However, the evalu-
ation of automatic systems has been prob-
lematic, mainly due to the lack of a re-
liable evaluation framework. In this pa-
per we develop a unified evaluation frame-
work and analyze the performance of
various Word Sense Disambiguation sys-
tems in a fair setup. The results show
that supervised systems clearly outper-
form knowledge-based models. Among
the supervised systems, a linear classi-
fier trained on conventional local features
still proves to be a hard baseline to beat.
Nonetheless, recent approaches exploit-
ing neural networks on unlabeled corpora
achieve promising results, surpassing this
hard baseline in most test sets.

1 Introduction

Word Sense Disambiguation (WSD) has been a
long-standing task in Natural Language Process-
ing (NLP). It lies at the core of language under-
standing and has already been studied from many
different angles (Navigli, 2009; Navigli, 2012).
However, the field seems to be slowing down
due to the lack of groundbreaking improvements
and the difficulty of integrating current WSD sys-
tems into downstream NLP applications (de La-
calle and Agirre, 2015). In general the field does
not have a clear path, partially owing to the fact
that identifying real improvements over existing
approaches becomes a hard task with current eval-
uation benchmarks. This is mainly due to the
lack of a unified framework, which prevents di-
rect and fair comparison among systems. Even

though many evaluation datasets have been con-
structed for the task (Edmonds and Cotton, 2001;
Snyder and Palmer, 2004; Navigli et al., 2007;
Pradhan et al., 2007; Agirre et al., 2010a; Nav-
igli et al., 2013; Moro and Navigli, 2015, in-
ter alia), they tend to differ in format, construc-
tion guidelines and underlying sense inventory. In
the case of the datasets annotated using WordNet
(Miller, 1995), the de facto sense inventory for
WSD, we encounter the additional barrier of hav-
ing text annotated with different versions. These
divergences are in the main solved individually by
using or constructing automatic mappings. The
quality check of such mapping, however, tends to
be impractical and this leads to mapping errors
which give rise to additional system inconsisten-
cies in the experimental setting. This issue is di-
rectly extensible to the training corpora used by
supervised systems. In fact, results obtained by
supervised or semi-supervised systems reported in
the literature are not completely reliable, because
the systems may not necessarily have been trained
on the same corpus, or the corpus was prepro-
cessed differently, or annotated with a sense inven-
tory different from the test data. Thus, together,
the foregoing issues prevent us from drawing reli-
able conclusions on different models, as in some
cases ostensible improvements may have been ob-
tained as a consequence of the nature of the train-
ing corpus, the preprocessing pipeline or the ver-
sion of the underlying sense inventory, rather than
of the model itself. Moreover, because of these
divergences, current systems tend to report results
on a few datasets only, making it hard to perform
a direct quantitative confrontation.

This paper offers two main contributions. First,
we provide a complete evaluation framework for
all-words Word Sense Disambiguation overcom-
ing all the aforementioned limitations by (1) stan-
dardizing the WSD datasets and training corpora
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into a unified format, (2) semi-automatically con-
verting annotations from any dataset to WordNet
3.0, and (3) preprocessing the datasets by consis-
tently using the same pipeline. Second, we use
this evaluation framework to perform a fair quanti-
tative and qualitative empirical comparison of the
main techniques proposed in the WSD literature,
including the latest advances based on neural net-
works.

2 State of the Art

The task of Word Sense Disambiguation consists
of associating words in context with the most suit-
able entry in a pre-defined sense inventory. De-
pending on their nature, WSD systems are divided
into two main groups: supervised and knowledge-
based. In what follows we summarize the current
state of these two types of approach.

2.1 Supervised WSD

Supervised models train different features ex-
tracted from manually sense-annotated corpora.
These features have been mostly based on the in-
formation provided by the surroundings words of
the target word (Keok and Ng, 2002; Navigli,
2009) and its collocations. Recently, more com-
plex features based on word embeddings trained
on unlabeled corpora have also been explored
(Taghipour and Ng, 2015b; Rothe and Schütze,
2015; Iacobacci et al., 2016). These features are
generally taken as input to train a linear classifier
(Zhong and Ng, 2010; Shen et al., 2013). In ad-
dition to these conventional approaches, the latest
developments in neural language models have mo-
tivated some researchers to include them in their
WSD architectures (Kågebäck and Salomonsson,
2016; Melamud et al., 2016; Yuan et al., 2016).

Supervised models have traditionally been able
to outperform knowledge-based systems (Navigli,
2009). However, obtaining sense-annotated cor-
pora is highly expensive, and in many cases such
corpora are not available for specific domains.
This is the reason why some of these supervised
methods have started to rely on unlabeled corpora
as well. These approaches, which are often clas-
sified as semi-supervised, are targeted at overcom-
ing the knowledge acquisition bottleneck of con-
ventional supervised models (Pilehvar and Nav-
igli, 2014). In fact, there is a line of research
specifically aimed at automatically obtaining large
amounts of high-quality sense-annotated corpora

(Taghipour and Ng, 2015a; Raganato et al., 2016;
Camacho-Collados et al., 2016a).

In this work we compare supervised systems
and study the role of their underlying sense-
annotated training corpus. Since semi-supervised
models have been shown to outperform fully
supervised systems in some settings (Taghipour
and Ng, 2015b; Başkaya and Jurgens, 2016;
Iacobacci et al., 2016; Yuan et al., 2016),
we evaluate and compare models using both
manually-curated and automatically-constructed
sense-annotated corpora for training.

2.2 Knowledge-based WSD

In contrast to supervised systems, knowledge-
based WSD techniques do not require any sense-
annotated corpus. Instead, these approaches rely
on the structure or content of manually-curated
knowledge resources for disambiguation. One of
the first approaches of this kind was Lesk (1986),
which in its original version consisted of calcu-
lating the overlap between the context of the tar-
get word and its definitions as given by the sense
inventory. Based on the same principle, vari-
ous works have adapted the original algorithm by
also taking into account definitions from related
words (Banerjee and Pedersen, 2003), or by cal-
culating the distributional similarity between def-
initions and the context of the target word (Basile
et al., 2014; Chen et al., 2014). Distributional sim-
ilarity has also been exploited in different settings
in various works (Miller et al., 2012; Camacho-
Collados et al., 2015; Camacho-Collados et al.,
2016b). In addition to these approaches based on
distributional similarity, an important branch of
knowledge-based systems found their techniques
on the structural properties of semantic graphs
from lexical resources (Agirre and Soroa, 2009;
Guo and Diab, 2010; Ponzetto and Navigli, 2010;
Agirre et al., 2014; Moro et al., 2014; Weissenborn
et al., 2015; Tripodi and Pelillo, 2016). Gener-
ally, these graph-based WSD systems first create
a graph representation of the input text and then
exploit different graph-based algorithms over the
given representation (e.g., PageRank) to perform
WSD.

3 Standardization of WSD datasets

In this section we explain our pipeline for trans-
forming any given evaluation dataset or sense-
annotated corpus into a preprocessed unified for-
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Figure 1: Pipeline for standardizing any given WSD dataset.

mat. In our pipeline we do not make any dis-
tinction between evaluation datasets and sense-
annotated training corpora, as the pipeline can be
applied equally to both types. For simplicity we
will refer to both evaluation datasets and training
corpora as WSD datasets.

Figure 1 summarizes our pipeline to standardize
a WSD dataset. The process consists of four steps:

1. Most WSD datasets in the literature use a
similar XML format, but they have some di-
vergences on how to encode the information.
For instance, the SemEval-15 dataset (Moro
and Navigli, 2015) was developed for both
WSD and Entity Linking and its format was
especially designed for this latter task. There-
fore, we decided to convert all datasets to a
unified format. As unified format we use the
XML scheme used for the SemEval-13 all-
words WSD task (Navigli et al., 2013), where
preprocessing information of a given corpus
is also encoded.

2. Once the dataset is converted to a unified for-
mat, we map the sense annotations from its
original WordNet version to 3.0, which is the
latest version of WordNet used in evaluation
datasets. This mapping is carried out semi-
automatically. First, we use automatically-
constructed WordNet mappings1 (Daude et
al., 2003). These mappings provide confi-
dence values which we use to initially map
senses whose mapping confidence is 100%.
Then, the annotations of the remaining senses
are manually checked, and re-annotated or re-
moved whenever necessary2. Additionally,
in this step we decided to remove all annota-
tions of auxiliary verbs, following the anno-
tation guidelines of the latest WSD datasets.

3. The third step consists of preprocessing
the given dataset. We used the Stanford

1http://nlp.lsi.upc.edu/tools/
download-map.php

2This manual correction involved less than 10% of all in-
stances for the datasets for which this step was performed.

CoreNLP toolkit (Manning et al., 2014) for
Part-of-Speech (PoS) tagging3 and lemmati-
zation. This step is performed in order to
ensure that all systems use the same prepro-
cessed data.

4. Finally, we developed a script to check that
the final dataset conforms to the aforemen-
tioned guidelines. In this final verification we
also ensured that the sense annotations match
the lemma and the PoS tag provided by Stan-
ford CoreNLP by automatically fixing all di-
vergences.

4 Data

In this section we summarize the WSD datasets
used in the evaluation framework. To all these
datasets we apply the standardization pipeline de-
scribed in Section 3. First, we enumerate all the
datasets used for the evaluation (Section 4.1). Sec-
ond, we describe the sense-annotated corpora used
for training (Section 4.2). Finally, we show some
relevant statistics extracted from these resources
(Section 4.3).

4.1 WSD evaluation datasets

For our evaluation framework we considered five
standard all-words fine-grained WSD datasets
from the Senseval and SemEval competitions:

• Senseval-2 (Edmonds and Cotton, 2001).
This dataset was originally annotated with
WordNet 1.7. After standardization, it con-
sists of 2282 sense annotations, including
nouns, verbs, adverbs and adjectives.

• Senseval-3 task 1 (Snyder and Palmer,
2004). The WordNet version of this dataset
was 1.7.1. It consists of three documents
from three different domains (editorial, news
story and fiction), totaling 1850 sense anno-
tations.

3In order to have a standard format which may be used by
languages other than English, we provide coarse-grained PoS
tags as given by the universal PoS tagset (Petrov et al., 2011).
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#Docs #Sents #Tokens #Annotations #Sense types #Word types Ambiguity
Senseval-2 3 242 5,766 2,282 1,335 1,093 5.4
Senseval-3 3 352 5,541 1,850 1,167 977 6.8
SemEval-07 3 135 3,201 455 375 330 8.5
SemEval-13 13 306 8,391 1,644 827 751 4.9
SemEval-15 4 138 2,604 1,022 659 512 5.5
SemCor 352 37,176 802,443 226,036 33,362 22,436 6.8
OMSTI - 813,798 30,441,386 911,134 3,730 1,149 8.9

Table 1: Statistics of the WSD datasets used in the evaluation framework (after standardization).

• SemEval-07 task 17 (Pradhan et al., 2007).
This is the smallest among the five datasets,
containing 455 sense annotations for nouns
and verbs only. It was originally annotated
using WordNet 2.1 sense inventory.

• SemEval-13 task 12 (Navigli et al., 2013).
This dataset includes thirteen documents
from various domains. In this case the origi-
nal sense inventory was WordNet 3.0, which
is the same as the one that we use for all
datasets. The number of sense annotations is
1644, although only nouns are considered.

• SemEval-15 task 13 (Moro and Navigli,
2015). This is the most recent WSD dataset
available to date, annotated with WordNet
3.0. It consists of 1022 sense annotations
in four documents coming from three het-
erogeneous domains: biomedical, mathemat-
ics/computing and social issues.

4.2 Sense-annotated training corpora

We now describe the two WordNet sense-
annotated corpora used for training the supervised
systems in our evaluation framework:

• SemCor (Miller et al., 1994). SemCor4 is
a manually sense-annotated corpus divided
into 352 documents for a total of 226,040
sense annotations. It was originally tagged
with senses from the WordNet 1.4 sense
inventory. SemCor is, to our knowledge,
the largest corpus manually annotated with
WordNet senses, and is the main corpus used
in the literature to train supervised WSD sys-
tems (Agirre et al., 2010b; Zhong and Ng,
2010).

4We downloaded the SemCor 3.0 version at web.eecs.
umich.edu/˜mihalcea/downloads.html

• OMSTI (Taghipour and Ng, 2015a). OM-
STI (One Million Sense-Tagged Instances) is
a large corpus annotated with senses from
the WordNet 3.0 inventory. It was auto-
matically constructed by using an alignment-
based WSD approach (Chan and Ng, 2005)
on a large English-Chinese parallel corpus
(Eisele and Chen, 2010, MultiUN corpus).
OMSTI5 has already shown its potential as
a training corpus by improving the perfor-
mance of supervised systems which add it
to existing training data (Taghipour and Ng,
2015a; Iacobacci et al., 2016).

4.3 Statistics

Table 1 shows some statistics6 of the WSD
datasets and training corpora which we use in the
evaluation framework. The number of sense an-
notations varies across datasets, ranging from 455
annotations in the SemEval-07 dataset, to 2,282
annotations in the Senseval-2 dataset. As regards
sense-annotated corpora, OMSTI is made up of
almost 1M sense annotations, a considerable in-
crease over the number of sense annotations of
SemCor. However, SemCor is much more bal-
anced in terms of unique senses covered (3,730
covered by OMSTI in contrast to over 33K cov-
ered by SemCor). Additionally, while OMSTI
was constructed automatically, SemCor was man-
ually built and, hence, its quality is expected to be
higher.

Finally, we calculated the ambiguity level of
each dataset, computed as the total number of can-

5In this paper we refer to the portion of sense-annotated
data from the MultiUN corpus as OMSTI. Note that OMSTI
was released along with SemCor.

6Statistics included in Table 1: number of documents
(#Docs), sentences (#Sents), tokens (#Tokens), sense anno-
tations (#Annotations), sense types covered (#Sense types),
annotated lemma types covered (#Word types), and ambigu-
ity level (Ambiguity). There was no document information in
the OMSTI data released by Taghipour and Ng (2015a).
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didate senses (i.e., senses sharing the surface form
of the target word) divided by the number of sense
annotations. The highest ambiguity is found on
OMSTI, which, despite being constructed auto-
matically, contains a high coverage of ambigu-
ous words. As far as the evaluation competition
datasets are concerned, the ambiguity may give a
hint as to how difficult a given dataset may be. In
this case, SemEval-07 displays the highest ambi-
guity level among all evaluation datasets.

5 Evaluation

The evaluation framework consists of the WSD
evaluation datasets described in Section 4.1. In
this section we use this framework to perform an
empirical comparison among a set of heteroge-
neous WSD systems. The systems used in the
evaluation are described in detail in Section 5.1,
the results are shown in Section 5.2 and a detailed
analysis is presented in Section 5.3.

5.1 Comparison systems

We include three supervised (Section 5.1.1) and
three knowledge-based (Section 5.1.2) all-words
WSD systems in our empirical comparison.

5.1.1 Supervised
To ensure a fair comparison, all supervised sys-
tems use the same corpus for training: SemCor
and Semcor+OMSTI7 (see Section 4.2). In the
following we describe the three supervised WSD
systems used in the evaluation:

• IMS (Zhong and Ng, 2010) uses a Support
Vector Machine (SVM) classifier over a set
of conventional WSD features. IMS8 is built
on a flexible framework which allows an easy
integration of different features. The default
implementation includes surrounding words,
PoS tags of surroundings words, and local
collocations as features.

• IMS+embeddings (Taghipour and Ng,
2015b; Rothe and Schütze, 2015; Iacobacci
et al., 2016). These approaches have shown
the potential of using word embeddings on
the WSD task. Iacobacci et al. (2016) carried

7As already noted by Taghipour and Ng (2015a), super-
vised systems trained on only OMSTI obtain lower results
than when trained along with SemCor, mainly due to OM-
STI’s lack of coverage in target word types.

8We used the original implementation available at http:
//www.comp.nus.edu.sg/˜nlp/software.html

out a comparison of different strategies for
integrating word embeddings as a feature in
WSD. In this paper we consider the two best
configurations in Iacobacci et al. (2016)9:
using all IMS default features including and
excluding surrounding words (IMS+emb
and IMS-s+emb, respectively). In both
cases word embeddings are integrated using
exponential decay (i.e., word weights drop
exponentially as the distance towards the
target word increases). Likewise, we use
Iacobacci et al.’s suggested learning strategy
and hyperparameters to train the word em-
beddings: Skip-gram model of Word2Vec10

(Mikolov et al., 2013) with 400 dimensions,
ten negative samples and a window size of
ten words. As unlabeled corpus to train the
word embeddings we use the English ukWaC
corpus11 (Baroni et al., 2009), which is made
up of two billion words from paragraphs
extracted from the web.

• Context2Vec (Melamud et al., 2016). Neural
language models have recently shown their
potential for the WSD task (Kågebäck and
Salomonsson, 2016; Yuan et al., 2016). In
this experiment we replicated the approach
of Melamud et al. (2016, Context2Vec), for
which the code12 is publicly available. This
approach is divided in three steps. First, a
bidirectional LSTM recurrent neural network
is trained on an unlabeled corpus (we con-
sidered the same ukWaC corpus used by the
previous comparison system). Then, a con-
text vector is learned for each sense annota-
tion in the training corpus. Finally, the sense
annotation whose context vector is closer to
the target word’s context vector is selected as
the intended sense.

Finally, as baseline we included the Most Fre-
quent Sense (MFS) heuristic, which for each tar-
get word selects the sense occurring the highest
number of times in the training corpus.

9We used the implementation available at https://
github.com/iiacobac/ims_wsd_emb

10code.google.com/archive/p/word2vec/
11http://wacky.sslmit.unibo.it/doku.

php?id=corpora
12https://github.com/orenmel/

context2vec
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5.1.2 Knowledge-based
In this section we describe the three knowledge-
based WSD models used in our empirical compar-
ison:

• Lesk (Lesk, 1986) is a simple knowledge-
based WSD algorithm that bases its calcu-
lations on the overlap between the defini-
tions of a given sense and the context of the
target word. For our experiments we repli-
cated the extended version of the original al-
gorithm in which definitions of related senses
are also considered and the conventional
term frequency-inverse document frequency
(Jones, 1972, tf-idf ) is used for word weight-
ing (Banerjee and Pedersen, 2003, Leskext).
Additionally, we included the enhanced ver-
sion of Lesk in which word embeddings13 are
leveraged to compute the similarity between
definitions and the target context (Basile et
al., 2014, Leskext+emb)14.

• UKB (Agirre and Soroa, 2009; Agirre et al.,
2014) is a graph-based WSD system which
makes use of random walks over a seman-
tic network (WordNet graph in this case).
UKB15 applies the Personalized Page Rank
algorithm (Haveliwala, 2002) initialized us-
ing the context of the target word. Unlike
most WSD systems, UKB does not back-off
to the WordNet first sense heuristic and it
is self-contained (i.e., it does not make use
of any external resources/corpora). We used
both default configurations from UKB: us-
ing the full WordNet graph (UKB) and the
full graph including disambiguated glosses as
connections as well (UKB gloss).

• Babelfy (Moro et al., 2014) is a graph-based
disambiguation approach which exploits ran-
dom walks to determine connections between
synsets. Specifically, Babelfy16 uses ran-
dom walks with restart (Tong et al., 2006)
over BabelNet (Navigli and Ponzetto, 2012),
a large semantic network integrating Word-
Net among other resources such as Wikipedia

13We used the same word embeddings described in Section
5.1.1 for IMS+emb.

14We used the implementation from https://github.
com/pippokill/lesk-wsd-dsm. In this implementa-
tion additional definitions from BabelNet are considered.

15We used the last implementation available at
http://ixa2.si.ehu.es/ukb/

16We used the Java API from http://babelfy.org

or Wiktionary. Its algorithm is based on a
densest subgraph heuristic for selecting high-
coherence semantic interpretations of the in-
put text. The best configuration of Babelfy
takes into account not only the target sen-
tence in which the target word occurs, but
also the whole document.

As knowledge-based baseline we included the
WordNet first sense. This baseline simply selects
the candidate which is considered as first sense
in WordNet 3.0. Even though the sense order
was decided on the basis of semantically-tagged
text, we considered it as knowledge-based in this
experiment as this information is already avail-
able in WordNet. In fact, knowledge-based sys-
tems like Babelfy include this information in their
pipeline. Despite its simplicity, this baseline has
been shown to be hard to beat by automatic WSD
systems (Navigli, 2009; Agirre et al., 2014).

5.2 Results

Table 2 shows the F-Measure performance of all
comparison systems on the five all-words WSD
datasets. Since not all test word instances are
covered by the corresponding training corpora,
supervised systems have a maximum F-Score
(ceiling in the Table) they can achieve. Never-
theless, supervised systems consistently outper-
form knowledge-based systems across datasets,
confirming the results of Pilehvar and Navigli
(2014). A simple linear classifier over conven-
tional WSD features (i.e., IMS) proves to be ro-
bust across datasets, consistently outperforming
the MFS baseline. The recent integration of word
embeddings as an additional feature is beneficial,
especially as a replacement of the feature based
on the surface form of surrounding words (i.e.,
IMS-s+emb). Moreover, recent advances on neu-
ral language models (in the case of Context2Vec a
bi-directional LSTM) appear to be highly promis-
ing for the WSD task according to the results, as
Context2Vec outperforms IMS in most datasets.

On the other hand, it is also interesting to note
the performance inconsistencies of systems across
datasets, as in all cases there is a large performance
gap between the best and the worst performing
dataset. As explained in Section 4.3, the ambi-
guity level may give a hint as to how difficult the
corresponding dataset may be. In fact, WSD sys-
tems obtain relatively low results in SemEval-07,
which is the most ambiguous dataset (see Table 1).
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Tr. Corpus System Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15

Supervised

SemCor

IMS 70.9 69.3 61.3 65.3 69.5
IMS+emb 71.0 69.3 60.9 67.3 71.3

IMS-s+emb 72.2 70.4 62.6 65.9 71.5
Context2Vec 71.8 69.1 61.3 65.6 71.9

MFS 65.6 66.0 54.5 63.8 67.1
Ceiling 91.0 94.5 93.8 88.6 90.4

SemCor +
OMSTI

IMS 72.8 69.2 60.0 65.0 69.3
IMS+emb 70.8 68.9 58.5 66.3 69.7

IMS-s+emb 73.3 69.6 61.1 66.7 70.4
Context2Vec 72.3 68.2 61.5 67.2 71.7

MFS 66.5 60.4 52.3 62.6 64.2
Ceiling 91.5 94.9 94.7 89.6 91.1

Knowledge -

Leskext 50.6 44.5 32.0 53.6 51.0
Leskext+emb 63.0 63.7 56.7 66.2 64.6

UKB 56.0 51.7 39.0 53.6 55.2
UKB gloss 60.6 54.1 42.0 59.0 61.2

Babelfy 67.0 63.5 51.6 66.4 70.3
WN 1st sense 66.8 66.2 55.2 63.0 67.8

Table 2: F-Measure percentage of different models in five all-words WSD datasets.

Nouns Verbs Adj. Adv. All
#Instances 4,300 1,652 955 346 7,253
Ambiguity 4.8 10.4 3.8 3.1 5.8

Table 3: Number of instances and ambiguity level
of the concatenation of all five WSD datasets.

However, this is the dataset in which supervised
systems achieve a larger margin with respect to
the MFS baseline, which suggests that, in general,
the MFS heuristic does not perform accurately on
highly ambiguous words.

5.3 Analysis

To complement the results from the previous sec-
tion, we additionally carried out a detailed analysis
about the global performance of each system and
divided by PoS tag. To this end, we concatenated
all five datasets into a single dataset. This resulted
in a large evaluation dataset of 7,253 instances to
disambiguate (see Table 3). Table 4 shows the F-
Measure performance of all comparison systems
on the concatenation of all five WSD evaluation
datasets, divided by PoS tag. IMS-s+emb trained
on SemCor+OMSTI achieves the best overall re-
sults, slightly above Context2Vec trained on the
same corpus. In what follows we describe some of
the main findings extracted from our analysis.

Training corpus. In general, the results of
supervised systems trained on SemCor only
(manually-annotated) are lower than training

simultaneously on both SemCor and OMSTI
(automatically-annotated). This is a promising
finding, which confirms the results of previous
works (Raganato et al., 2016; Iacobacci et al.,
2016; Yuan et al., 2016) and encourages further
research on developing reliable automatic or semi-
automatic methods to obtain large amounts of
sense-annotated corpora in order to overcome the
knowledge-acquisition bottleneck. For instance,
Context2Vec improves 0.4 points overall when
adding the automatically sense-annotated OMSTI
as part of the training corpus, suggesting that more
data, even if not perfectly clean, may be beneficial
for neural language models.

Knowledge-based vs. Supervised. One of the
main conclusions that can be taken from the evalu-
ation is that supervised systems clearly outperform
knowledge-based models. This may be due to the
fact that in many cases the main disambiguation
clue is given by the immediate local context. This
is particularly problematic for knowledge-based
systems, as they take equally into account all the
words within a sentence (or document in the case
of Babelfy). For instance, in the following sen-
tence, both UKB and Babelfy fail to predict the
correct sense of state:

In sum, at both the federal and state government
levels at least part of the seemingly irrational
behavior voters display in the voting booth may
have an exceedingly rational explanation.
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Tr. Corpus System Nouns Verbs Adjectives Adverbs All

Supervised

SemCor

IMS 70.4 56.1 75.6 82.9 68.4
IMS+emb 71.8 55.4 76.1 82.7 69.1

IMS-s+emb 71.9 56.9 75.9 84.7 69.6
Context2Vec 71.0 57.6 75.2 82.7 69.0

MFS 67.6 49.6 73.1 80.5 64.8
Ceiling 89.6 95.1 91.5 96.4 91.5

SemCor +
OMSTI

IMS 70.5 56.9 76.8 82.9 68.8
IMS+emb 71.0 53.3 77.1 82.7 68.3

IMS-s+emb 72.0 56.5 76.6 84.7 69.7
Context2Vec 71.7 55.8 77.2 82.7 69.4

MFS 65.8 45.9 72.7 80.5 62.9
Ceiling 90.4 95.8 91.8 96.4 92.1

Knowledge -

Leskext 54.1 27.9 54.6 60.3 48.7
Leskext+emb 69.8 51.2 51.7 80.6 63.7

UKB 56.7 39.3 63.9 44.0 53.2
UKB gloss 62.1 38.3 66.8 66.2 57.5

Babelfy 68.6 49.9 73.2 79.8 65.5
WN 1st sense 67.6 50.3 74.3 80.9 65.2

Table 4: F-Measure percentage of different models on the concatenation of all five WSD datasets.

In this sentence, state is annotated with its ad-
ministrative districts of a nation sense in the gold
standard. The main disambiguation clue seems
to be given by its previous and immediate subse-
quent words (federal and government), which tend
to co-occur with this particular sense. However,
knowledge-based WSD systems like UKB or Ba-
belfy give the same weight to all words in con-
text, underrating the importance of this local dis-
ambiguation clue in the example. For instance,
UKB disambiguates state with the sense defined
as the way something is with respect to its main at-
tributes, probably biased by words which are not
immediately next to the target word within the sen-
tence, e.g., irrational, behaviour, rational or ex-
planation.

Low overall performance on verbs. As can be
seen from Table 4, the F-Measure performance of
all systems on verbs is in all cases below 58%.
This can be explained by the high granularity of
verbs in WordNet. For instance, the verb keep con-
sists of 22 different meanings in WordNet 3.0, six
of them denoting “possession and transfer of pos-
session”17. In fact, the average ambiguity level of
all verbs in this evaluation framework is 10.4 (see

17https://wordnet.princeton.edu/man/
lexnames.5WN.html

Table 3), considerably greater than the ambiguity
on other PoS tags, e.g., 4.8 in nouns. Nonetheless,
supervised systems manage to comfortably out-
perform the MFS baseline, which does not seem
to be reliable for verbs given their high ambiguity.

Influence of preprocessing. As mentioned in
Section 3, our evaluation framework provides
a preprocessing of the corpora with Stanford
CoreNLP. This ensures a fair comparison among
all systems but may introduce some annotation in-
accuracies, such as erroneous PoS tags. However,
for English these errors are minimal18. For in-
stance, the global error rate of the Stanford PoS
tagger in all disambiguation instances is 3.9%,
which were fixed as explained in Section 3.

Bias towards the Most Frequent Sense. After
carrying out an analysis on the influence of MFS in
WSD systems19, we found that all supervised sys-
tems suffer a strong bias towards the MFS, with all
IMS-based systems disambiguating over 75% of
instances with their MFS. Context2Vec is slightly
less affected by this bias, with 71.5% (SemCor)
and 74.7% (SemCor+OMSTI) of answers corre-

18Even if preprocessing plays a minimal role for English,
it may be of higher importance for other languages, e.g., mor-
phologically richer languages (Eger et al., 2016).

19See Postma et al. (2016) for an interesting discussion on
the bias of current WSD systems towards the MFS.
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sponding to the MFS. Interestingly, this MFS bias
is also present in graph knowledge-based systems.
In fact, Calvo and Gelbukh (2015) had already
shown how the MFS correlates strongly with the
number of connections in WordNet.

Knowledge-based systems. For knowledge-
based systems the WN first sense baseline proves
still to be extremely hard to beat. The only
knowledge-based system that overall manages
to beat this baseline is Babelfy, which, in fact,
uses information about the first sense in its
pipeline. Babelfy’s default pipeline includes a
confidence threshold in order to decide whether
to disambiguate or back-off to the first sense. In
total, Babelfy backs-off to WN first sense in 63%
of all instances. Nonetheless, it is interesting
to note the high performance of Babelfy and
Leskext+emb on noun instances (outperforming
the first sense baseline by 1.0 and 2.2 points,
respectively) in contrast to their relatively lower
performance on verbs, adjectives20 and adverbs.
We believe that this is due to the nature of the
lexical resource used by these two systems, i.e.,
BabelNet. BabelNet includes Wikipedia as one of
its main sources of information. However, while
Wikipedia provides a large amount of semantic
connections and definitions for nouns, this it not
the case for verbs, adjectives and adverbs, as they
are not included in Wikipedia and their source of
information mostly comes from WordNet only.

6 Conclusion and Future Work

In this paper we presented a unified evaluation
framework for all-words WSD. This framework is
based on evaluation datasets taken from Senseval
and SemEval competitions, as well as manually
and automatically sense-annotated corpora. In this
evaluation framework all datasets share a com-
mon format, sense inventory (i.e., WordNet 3.0)
and preprocessing pipeline, which eases the task
of researchers to evaluate their models and, more
importantly, ensures a fair comparison among all
systems. The whole evaluation framework21, in-
cluding guidelines for researchers to include their
own sense-annotated datasets and a script to vali-
date their conformity to the guidelines, is available
at http://lcl.uniroma1.it/wsdeval .

20The poor performance of Leskext+emb on adjective in-
stances is particularly noticeable.

21We have additionally set up a CodaLab competition
based on this evaluation framework.

We used this framework to perform an empirical
comparison among a set of heterogeneous WSD
systems, including both knowledge-based and su-
pervised ones. Supervised systems based on neu-
ral networks achieve the most promising results.
Given our analysis, we foresee two potential re-
search avenues focused on semi-supervised learn-
ing: (1) exploiting large amounts of unlabeled
corpora for learning word embeddings or train-
ing neural language models, and (2) automatically
constructing high-quality sense-annotated corpora
to be used by supervised WSD systems. As far as
knowledge-based systems are concerned, enrich-
ing knowledge resources with semantic connec-
tions for non-nominal mentions may be an impor-
tant step towards improving their performance.

For future work we plan to further extend
our unified framework to languages other than
English, including SemEval multilingual WSD
datasets, as well as to other sense inventories
such as Open Multilingual WordNet, BabelNet
and Wikipedia, which are available in different
languages.
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Abstract

As one of the most important test of China,
Gaokao is designed to be difficult enough
to distinguish the excellent high school
students. In this work, we detailed the
Gaokao History Multiple Choice Ques-
tions(GKHMC) and proposed two differ-
ent approaches to address them using var-
ious resources. One approach is based on
entity search technique (IR approach), the
other is based on text entailment approach
where we specifically employ deep neu-
ral networks(NN approach). The result of
experiment on our collected real Gaokao
questions showed that they are good at
different categories of questions, i.e. IR
approach performs much better at entity
questions(EQs) while NN approach shows
its advantage on sentence questions(SQs).
Our new method achieves state-of-the-art
performance and show that it’s indispens-
able to apply hybrid method when partici-
pating in the real-world tests.

1 Introduction

Gaokao, namely the National College Entrance
Examination, is the most important examination
for Chinese senior high school students. Ev-
ery college in China, no matter it is Top10 or
Top100, would only accept the exam-takers whose
Gaokao score is higher than its threshold score.
As there are almost 10 million students take the
examination every year, Gaokao needs to be dif-
ficult enough to distinguish the excellent students.
Therefore, it includes various types of questions
such as multiple-choice questions, short-answer

† Both of the two authors contributed equally to this paper.

After the World War II, U.S. and Soviet Union are fighting against each other in politics, 

economics and military. To promote the development of economics in Socialist Countries, 

Soviet Union establish The Council for Mutual Economic Assistance. This is against 

A. Truman Doctrine B. Marshall Plan 

C. NATO  D. Federal Republic of Germany 

Entity Question 

 

From Qin and Han Dynasties to Ming Dynasty, businessmen are always at the bottom of 

hierarchy. One reason for this is that the ruling class thought the businessmen 

A. are not engaged in production B. do not respect Confucianism 

C. do not respect the clan D. do not pay tax 

Sentence Question 

 

Figure 1: Examples of questions and their types.
The upper one is an entity question. The lower
one is a sentence question.

questions and essays and it covers several dif-
ferent subjects, like Chinese, Math, History and
etc. In this work, we focus on Gaokao History
Multiple Choice questions which is denoted as
GKHMC. Both of the factoid question answering
task and reading comprehension task are similar to
GKHMC. But, the GKHMC questions have their
own characteristics.

A multiple-choice question in GKHMC such
as the examples shown in Figure 1 is composed
of a question stem and four candidates. Our
goal is to figure out the only one correct candi-
date. But, there are certain obstacles to achieve it.
First, several background sentencess and a lead-in
sentence conjointly constitutes the question stem,
which makes these questions more complicated
than former one-sentence-long factoid questions
that can be handled by the existing approaches,
like (Kolomiyet and Moens, 2011; Kwiatkowski
et al., 2013; Berant and Liang, 2014; Yih et al.,
2015). Secondly, the background sentences gener-
ally contain various clues to figure out the histori-
cal events or personages which may be the perdue
key to answer the question. These clues may in-
clude Tang poem and Song iambic verse, domain-
specific expressions, even some mixture of mod-
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Question Type Candidate Type Count
EQ Entities 160
SQ Sentence 584

ALL Whatever 744

Table 1: The GKHMC dataset.

ern Chinese and excerpt from ancient books and
etc. The dependence of background knowledge
makes the models that are designed for read-
ing comprehension such as (Peñas et al., 2013;
Richardson et al., 2013) fail. Thirdly, the diver-
sity of candidates’ granularity, i.e. candidates can
either be entities or sentences, makes it harder
to match the candidate and stem. So, the an-
swer selection is disparate from the former ap-
proaches whose candidates are usually just enti-
ties. Lastly, as the candidates are already given,
the answer generation step in former neural net-
work approaches based question answering sys-
tem is no longer necessary.

As mentioned above and shown in Figure
1, in accordance with candidates’ granularity,
the GKHMC questions can be divided into two
types: entity questions(EQs) and sentence ques-
tions(SQs). Entity questions are those whose can-
didates are all entities, no matter they are peo-
ple, dynasties, warfares or something else. And,
sentence questions are those whose candidates are
all sentences. We observe that such two types of
questions have their own specific characteristics.
Most of background sentences in EQs are descrip-
tion of the right candidate, so it may be partic-
ularly suitable to apply information retrieval like
approach to handle them. Meanwhile, as the back-
ground sentences and lead-in sentences in SQs are
more like the entailing text, these questions aren’t
appropriate to be addressed by lexically searching
and matching. Therefore, it seems that it’s more
resonable to resolve SQs by using textual reason-
ing techniques.

In this paper, we wonder about which kind of
approach is more effective for GKHMC. Further-
more, whether we should select specific method to
work out different types of questions. In terms of
various characteristics of GKHMC questions, we
introduce two independent approaches to address
them. One is based on entity search technique (IR
approach) and the other is based on a text entail-
ment approach where we specifically employ deep
neural networks (NN approach). In IR approach,
we use the key entities and relationships extracted

from questions to form a query, then inquire this
query in all the text resources to get the most rele-
vant candidate. In NN approach, we take the ques-
tion text and every candidate to form four state-
ments respectively, then judge how possible every
statement is right so that we can figure out which
is most likely to be the correct answer.

To test the two approaches’ performance, we
collected and classified the multiple-choice ques-
tions in Gaokao test papers from 2011 to 2015 all
over the country, and they are released. From the
result, we find that the performance of two ap-
proaches are significantly discrepant at each kind
of questions. That is, IR approach shows notice-
able advantages on EQs, while NN approach per-
forms much better on SQs. This will be further
discussed in Section 4.4.

In this paper, our contributions are as follows:

• We gave a detailed description of the Gaokao
History Multiple Choice Questions task and
showed its importance and difficulty.

• We released a dataset1 for this task. The
dataset is manually collected and classified.
All questions in the dataset are real Gaokao
quesitons from 2011 to 2015.

• We introduced two different approaches for
this task. Each approach achieved a promis-
ing results. We also compared this two ap-
proaches and found that they are complemen-
tary, i.e. they are good at different types of
questions.

• We introduced permanent provisional mem-
ory network(PPMN) to model the joint back-
ground knowledge and sentences in question
stem, and it beats existing memory networks
on SQs.

2 Dataset

As described in the Introduction, we collected the
historical multiple-choice questions from Gaokao
all over the country in rencent five years. However,
quite a lot contain graphs or tables which require
the techniques beyond natural language process-
ing(NLP). So, we filter out this part of questions
and manually classified the left into two parts:
EQs and SQs. The number of different kinds of
questions are listed in Table 1. The examples of

1 https://github.com/IACASNLPIR/GKHMC/tree/master/data
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different types of questions translated into English
are shown in Figure 1.

It is worth mentioning that there is a special type
of questions on test papers named sequential ques-
tions. The candidates of this kind of questions are
just some ordered numbers. Every number stands
for a certain content which is given in question
stem. We simply replace every sequential number
in candidates with their corresponding contents.
Then, we can classify these questions as EQs or
SQs according to the type of contents.

We also collected a wide diversity of re-
sources including Baidu Encyclopedia, textbooks
and practice questions as our external knowledge
when inquiring the generated query. Baidu En-
cyclopedia which is also known as Baidu Baike,
is something like Wikipedia, but the content of
it is written in Chinese. We denote this resource
as BAIKE. The textbooks resource contains three
compulsory history textbooks published by Peo-
ple’s Education Press. We denote them as BOOK.
And we gathered about 50,000 practice questions
and their answers, and this is denoted as TIKU.

3 Approaches2

3.1 IR Approach

The GKHMC questions require figuring out the
most relevant candidate to the question stem from
the four given candidates. Our IR approach is in-
spired by this observation. The diagram of IR ap-
proach is illustrated in Figure 2.

The pipeline of IR approach is: (1) use the clas-
sifier to automatically classify the question and
select the weights according to the classification
result; (2) calculate the relevance scores for ev-
ery candidate(we introduce three different meth-
ods with seven score functions to calculate the rel-
evance scores) and combine them together with
specific weights; (3) choose the candidate with
highest score as right answer. Despite the simplic-
ity of it, IR approach achieves a promising result
in experiment.

3.1.1 Naive Bayes Classifier
We build a naive bayes classifier to classify ques-
tions. Using length of candidates, entity number
of candidates and verb number of candidates as
features, every question is classified as EQ or SQ.
When building the classifier, we do 10-folder cross

2 The codes of this project can be obtained at
https://github.com/IACASNLPIR/GKHMC

Figure 2: Pipeline of IR approach.

validation on the GKHMC dataset and the results
are 90.00% precision and 84.38% recall in EQs
and 95.79% precision and 97.43% recalls in SQs.

3.1.2 Score Functions
To calculate the relevance between question stem
and candidates, we introduce three different meth-
ods with seven score functions, which are summa-
rized in Table 2.
Lexical Matching Score: Since the correct can-
didate usually directly related to question stem,
it’s reasonable to assume that the facts in question
stem may appear in documents related to them,
together with the correct candidate. Here we in-
troduce our lexical matching score functions, tak-
ing BAIKE as our external resource. The four
queries are formed by each candidate and ques-
tion stem separately. Then we retrieval every
query and sum up the scores of the top three re-
turned documents as the lexical matching score.
We use scoretopi to denote the score of the top i-
th returned documents. scoretopi is calculated by
Lucene’s TFIDFSimilarity function3. The lexical
matching score Scorelexical(candidatek) is cal-
culated as

Scorelexical(candidatek) =
3∑

i=1

(scoretopi).

(1)
We build indices for BAIKE with different

grains. The index built for every BAIKE docu-
ment is denoted as BAIKE Document Index(BDI).
The index built for every paragraph in BAIKE is
denoted as BAIKE Paragraph Index(BPI). And,
the index built for every sentence in BAIKE is
called BAIKE Sentence Index(BSI).

3 https://lucene.apache.org/core/
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We denote the lexical matcing score function
using BDI, BPI and BSI as ScoreBDI , ScoreBPI

and ScoreBSI respectively.
Entity Co-Occurrence Score: We also con-
sider the relevance of entities in co-occurrence
aspect. If two entities often appearing together,
we assume that they are revelent. We use nor-
malized google distance(Cilibrasi and Vitanyi,
2007) to calculate the entity co-occurrence score
Scoreco(candidatek).

NGD(ei, ej) =
Max(ei, ej)− log f(ei, ej)

logN −Min(ei, ej)

(2)

Max(ei, ej) = max{log f(ei), log f(ej)}
(3)

Min(ei, ej) = min{log f(ei), log f(ej)}
(4)

Scoreco(candidatek) = − log(NGD(ei, ej))
(5)

where

ei ∈ Estem, ej ∈ Ecandidatek .

In which, ei is entity; f(ei) is the number of
parts which contain entity ei; f(ei, ej) is the num-
ber of parts which contain both entity ei and ej ;
Estem andEcandidatek denotes the entities in ques-
tion stem and candidate.

The entity co-occurrence could be in document,
paragraph or sentence, and they are donated as
ScoreBDC , ScoreBPC and ScoreBSC respec-
tively.
Page Link Score: Inspired from PageRank al-
gorithm(Page et al., 1999), we assume that enti-
ties have links to each other are relevant. Here
we introduce the page link score function. We
use Link(ei, ej) to denote the number of links
between entities ei and ej . The link score
Scorelink(candidatek) could be calculated as:

Scorelink(candidatek) = max(Link(ei, ej))
(6)

where

ei ∈ Estem, ej ∈ Ecandidatek .

We only count the number of links between
BAIKE documents, and it is denoted as ScoreBDL

Function Description
ScoreBDI Scorelexical using BDI
ScoreBPI Scorelexical using BPI
ScoreBSI Scorelexical using BSI
ScoreBDC document level Scoreco
ScoreBPC paragraph level Scoreco
ScoreBSC sentence level Scoreco
ScoreBDL document link score function

Table 2: Summarization of score functions.

3.1.3 Training Weights
Since we have seven score functions, we need
combine them together with different weights.

For a given question, we calculate the score of
every candidate as follows:

scorecandidatek =

7∑

i=i

(wi ∗fi(candidatek)) (7)

where k ∈ {1, 2, 3, 4}, fi is one of the seven score
functions and wi is the corresponding weight.
Then we normalize the scores of all candidates:

scorek =
scorecandidatek∑4

i=1(scorecandidatei)
(8)

We suppose that the true answer of a question is
the n-th candidate, where n ∈ {1, 2, 3, 4}. The
loss of it is

lossquesiton = −log(1− scoren) (9)

Now we can calculate the total loss of the dataset
with M questions:

loss =
M∑

i

(lossquestioni) (10)

All operations are derivable so that we can use
gradient descent algorithm to train the weights.

3.2 NN Approach
As deep neural networks are widely used in natu-
ral language processing tasks and has gained great
success, it’s naturally to come up with building
deep neural networks to handle GKHMC task. So,
we built several deep neural networks in different
structures. And, we used both TIKU and BOOK
to train these models, in order to teach models not
only how to answer the questions but also the his-
torical knowledge.

To handle the joint inference between back-
ground knowledge and question stems in GKHMC
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Permanent Memory Module

公元97年，东汉的班超曾派⼈出使欧洲强国“⼤秦”。东汉和“⼤秦”都创造了辉煌的文化。

In 97 A.D., Ban Chao of the Eastern Han Dynasty had sent an envoy to European powerful

country "DaQin". Both of the Eastern Han and "DaQin" created splendid culture.

A．活字印刷术、万有引⼒定律

typography,

the law of gravity

B．《九章算术》、罗⻢法

Nine Chapters on the Mathematical Art,

Roman law

C．蔡伦改进的造纸术、⽇⼼说

papermaking technology,

heliocentric theory

D．《春秋繁露》、《理想国》

Chun Qiu Fan Lu,

Utopia

lead-in sentence answer candidates

Figure 3: Diagram of PPMN. The questions hasn’t been translated into English.

questions, we introduce permanent-provisional
memory network(PPMN). As illuminated in Fig-
ure 3, our PPMN is composed by the following
components:

1. Permanent Memory Module that plays the
same role as a knowledge base and stores the
original text from history textbooks or other
relevant resource.

2. Provisional Memory Module that generates
some contents based on the current word in
background sentences, permanent knowledge
and the lead-in sentence.

3. Input Module that reads the words sequen-
tially in background sentences and maps
them into high-dimensional vector space.

4. Similarity Judger that scores the similarity
between the output of provisional memory
and the vector representations of answer can-
didates.

5. Sentence Encoder that encodes lead-in sen-
tence, sentences in permanent memory and
answer candidates.

Permanent Memory Module: We denote the
sentences encoded by sentence encoder in this
module as {k1, k2, ..., kK}, where K is the scale
of permanent memory. The permanent memory is
a constant matrix composed by the concatenation
of representation vectors of these sentences,
namely [k1; k2; k3; ...; kK ]. Considering the time
complexity of training PPMN, we only take the
syllabus of all history courses including 198
sentences, i.e. K = 198, as the permanent
memory. If necessary, all of the history text books
can be taken into the permanent memory.

Provisional Memory Module: It first inquires
the current word of background sentences in the
permanent memory, then use an attention vector
generated by current word and lead-in sentence as
well as the following words to decide how to ad-
just itself. The update equations are as follow:

ht =GRU(wt, ht−1) (11)

p =softmax(pW pht) (12)

Mt =
K∑

i=1

piki (13)

x =[ht,Mt, l, ht ◦ l,Mt ◦ l, ht ◦Mt,

|ht − l|, |Mt − l|, |ht −Mt|]
(14)

g =σ(W gtanh(W tx+ bt) + bg) (15)

mt =g ◦Mt + (1− g) ◦mt−1 (16)

In the above equations, wt denotes the t-th word
in the background sentences, GRU is defined in
equation (19-22), ht−1 and ht are the hidden rep-
resentation of wt−1 and wt respectively, l stands
for the lead-in sentence encoded by the sentence
encoder, ◦ is element-wise multiplication and mt

is the computational result of current step. The
final output of this module is the last provisional
memory vector mn where n is the length of
background sentences.

Input Module: This module takes the same
weight matrices in sentence encoder and calcu-
lates the hidden states of every word sequentially.
All the words in background sentences are first
mapped into the hidden states in this module and
then can be taken as input by other modules.
The calculation of hidden states are the same as
equation(19-22).
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Similarity Judger: This module takes the con-
catenation of the output from provisional memory
and representation of answer candidate as input
and use a classifier based on logistic regression to
score it. The judging procedure is defined as fol-
low:

p̂ = σ(W l[mK ; a] + bl) (17)

score = softmax(p̂)

[
0
1

]
(18)

where W l is a matrix that can map the concate-
nation vector [mK ; a] into a vector p̂ of length 2
and a stands for the answer candidate encoded by
sentence encoder.

Sentence Encoder: We experimented several re-
current neural networks with different structures
as the sentence encoder. Both of Long-Short Term
Momery (LSTM)(Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU)(Cho et
al., 2014) perform much better than the standard
tanh RNN. However, considering that the com-
putation of LSTM is more complicated and time-
consuming, we choose GRU as the sentence en-
coder. The calculation of GRU denoted as ht =
GRU(wt, ht−1) is as follow:

z = σ(W zwt + U zwt + bz) (19)

r = σ(W rwt + U zwt + br) (20)

s = tanh(W swt + U s(r ◦ ht−1) + bs)(21)

ht = (1− z) ◦ s+ z ◦ ht−1 (22)

In the above equations, wt is extracted from
a word embedding matrix We initialized by
word2vec(Mikolov et al., 2013) through an id
number that indicates which word it is.

Loss Function: Intuitively, as we want to encour-
age the score as same to the true score (0 or 1) as
possible, a negative log-likelihood loss function is
introduced:

L = −log(p̂y) (23)

where y would be [0 1]> if a is the right answer
or [1 0]> otherwise.

Optimization Algorithm: We use the AdaDelta
introduced by (Zeiler, 2012) to minimize the loss
L, and use back propagation through time to opti-
mize the calculation results of intermediate results.

Accuracy
EQ-WEQ 49.38%
SQ-WSQ 28.60%

Table 3: Accuracy of SQs and EQs with their cor-
responding best weights.

4 Experiment

4.1 Experiments of IR Approach

To find the best weights for EQ and SQ, We
use TIKU as the training dataset. Using gradi-
ent descent to optimize parameters, we get the best
weights for EQs and SQs separately, that is, WEQ

is the weight best for EQs and WSQ is the weight
best for SQs. We test the weights on EQs and SQs
of GKHMC with their corresponding weights, and
result is shown in Table 3. As we can see, with
these weights, we achieve promising result.

We use GKHMC as the dataset to test the per-
formance of IR approach with naive bayes classi-
fier. The precision of EQs and SQs are 48.75%,
28.42% respectively. It’s clear that the accuracy of
both EQs and SQs decreased with automatic clas-
sification. But still, IR approach achieves much
better results on EQs than SQs.

4.2 Results of NN Approach

We take some other neural network models
with memory capability as our baseline models
including the standard tanh recurrent neu-
ral network(RNN), long-short term memory
network(LSTM)(Hochreiter and Schmidhu-
ber, 1997), gated recurrent unite(GRU)(Cho
et al., 2014), end-to-end memory net-
work(MemNN)(Sukhbaatar et al., 2015) and
dynamic memory network(DMN)(Kumar et al.,
2016). As for our PPMN, we summarize the
syllabus of all history textbooks for senior school
students to cover as much knowledge points as
possible and we get 198 sentences which are
taken into the permanent memory module. For
all the above models, we used rmsprop(Hinton
et al., 2012) with 0.001 as the learning rate to
train them, the size of hidden units as well as
the size of memory were both set to 400 and the
size of batches were set to 1000. Also, we used
dropout(Srivastava et al., 2014) to prevent the
models from overfitting and the probability of it
was set to 0.5. We test all these models and the
results are shown in Table 4.

From the result, we observe that our PPMN
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Model EQs SQs All
RNN 36.25% 29.74% 31.18%

LSTM 40.63% 40.41% 40.46%
GRU 40.63% 40.24% 40.32%

MemNN 43.75% 36.13% 37.77%
DMN 44.38% 45.38% 45.16%
PPMN 45.63% 45.72% 45.70%

Random 25.00% 25.00% 25.00%

Table 4: Results of all neural network models.

gains best performance on all kinds of GKHMC
questions and all memory-capable neural network
models beat RNN. It’s interesting that MemNN
performs much worse than other memory-capable
models on SQs whereas it shows promising capa-
bility on EQs.

4.3 Combine IR Approach and NN Approach
It can be easily observed from the above experi-
ments that IR approach and NN approach are some
kind of complementary, namely they performs bet-
ter to each other on different categories of ques-
tions. So, we combine the two approaches to-
gether via a weights matrix W c ∈ R2×2 as fol-
lows:

scoreEQ =W c
1·

[
scoreIR
scoreNN

]
(24)

scoreSQ =W c
2·

[
scoreIR
scoreNN

]
(25)

where the W c
i· means the i-th row of W c and

scoreIR, scoreNN are the scores calculated by
IR and NN approaches respectively. Here, the
categories of questions are given by the naive
bayes classifier. The performance of combined
model and its comparison to the two individual ap-
proaches are illustrated in Figure 4.

4.4 Discussion
From the global aspect, it can be easily ob-
served that IR approach are more proficient on
EQs(49.38% vs 40.63%), whereas NN approach
expand superior to it on SQs(28.60% vs 40.24%).
And the hybrid method composed by two ap-
proaches get the best performance(42.60%).

As for the IR approach itself, the performance
on EQs is much better than on SQs. This may be-
cause that IR approach is based on the relevance
between candidates and question stem. In EQs,
the information given by the question stem is usu-
ally the description of the key entity which only

disappeared in the right candidate. So it’s easy for
the correct candidate to achieve a higher relevance
score than others. And, that’s why IR approach
achieves promising result on EQs. Whereas, in
SQs, the key entity doesn’t appear in any candi-
date. And, it needs to be inferred out from ques-
tion stem. No matter in aspect of lexical match-
ing, entity co-occurrence or page link, the rele-
vance between question stem and correct candi-
date may be as low as other candidates. There-
for, it’s not surprised that IR approach is not suffi-
cient to figure out the right choice on SQs. After
adding the classifier in IR approach, we notice the
decrease of accuracy on both EQs and SQs. This is
because of the misclassification on the questions,
which demonstrates that the weights WEQ,WSQ

are particularly efficient on EQs, SQs.
The experiment of NN approach declared that

our PPMN does show its advantages on GKHMC
questions. During the training, the performance
of RNN model is labile, i.e. the precision are
still variational when loss is convergent. In con-
trast, other model’s performance is more stable.
Hence, we consider that the memory mechanism
helps model to ”remember” the knowledge that
appeared in the training data. Compared with the
“inside”4 memory of LSTM and GRU, the spe-
cially designed memory component in MemNN,
DMN and PPMN are more powerful to find out
the relationships between the question stem and
answer candidates in GKHMC questions. How-
ever, the limited performance of MemNN on SQs
indicates that the sequences of words in GKHMC
questions are especially important for questions
containing no distinct entities. Last but not least,
the best performance of PPMN may due highly on
the novel permanent memory module which can
helps finding the implicit relationships with the
stored background knowledge.

The state-of-the-art performance of hybrid
method indicates that combination of IR approach
and NN approach is the best strategy to address
the GKHMC questions. As illustrated in Figure
4, the combined method shows its enormous ad-
vantage on EQs. This may because both character
and word embedding are more sufficient to cover
the lexical meaning. And, some of EQs may be
more suitable to be handled as SQs. Compared to
the NN approach separately, the hybrid way does

4 We consider that the memory of LSTM and
GRU are kind of stored inside the weight
matrices.
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Figure 4: Result of different methods.

a little poorly on SQs, which may caused by the
loss of classification.

5 Related Work

Answering real world questions in various sub-
jects already gained attention from the beginning
of this century. The ambitious Project Halo (Fried-
land et al., 2004) was proposed to create a ”digital”
Aristotle that can encompass most of the worlds’s
scientific knowledge and be capable of address-
ing complex problems with novel answers. In
this project, (Angele et al., 2003) employed hand-
crafted rule to answer chemistry questions, (Gun-
ning et al., 2010) took the physics and biology into
account. Another important trial is solving the
mathematical questions. (Mukherjee and Garain,
2008) attempted to answer them via transform-
ing the natural language description into formal
queries with hand-crafted rules, whereas recent
works (Hosseini et al., 2014) started to employ-
ing learning techniques. However, none of these
methods are suitable for history questions which
requires large background knowledge, the same to
the Aristo Challenge(Clark, 2015) focused on El-
ementary Grade Tests which is for 6-11 year olds.

The Todai Robot Project(Fujita et al.,
2014)aims to build a system that can pass
the University of Tokyo’s entrance examination.
As parts of this project, (Kanayama et al., 2012)
mainly focus on addressing the yes-no questions
via determining the correctness of the original
proposition, and (Miyao et al., 2012) mainly
focus on recognizing textual entailment between
a description in Wikipedia and each option of
question. But, these two methods are separated
for different kinds of questions and none of them
introduced neural network approach.

It’s inevitable to compare the GKHMC with the
factoid questions. (Berant and Liang, 2014) takes

the question as a kind of semantic parsing which
can not handle the specific expressions with lots
of background knowledge. Although (Yih et al.,
2015) employed knowledge base, but still failed
on multiple sentences questions which is beyond
the scope of semantic parsing. However, the diver-
sity of candidates in GKHMC makes these mod-
els fail to match the question with the right candi-
date. Another nonnegligible task is machine com-
prehension, also called reading comprehension.
Although in several different datasets introduced
by (Smith et al., 2008; Richardson et al., 2013;
Weston et al., 2015), questions are open-domain
and candidates may be entities or sentences, un-
derstanding these questions don’t require as much
background knowledge as in GKHMC and these
models cannot handle the joint inference between
the background knowledge and words in ques-
tions.

We are not the first to take up the Gaokao chal-
lenge, but former information retrieval approach
doesn’t fit to part of the questions in GKHMC
and resources in their system are limited. In con-
trast, we introduced two different approaches to
this task, compared their performance on different
types of questions, combined them and gained a
state-of-the-art result.

6 Conclusion and Future Work

In this work, we detailed the multiple choice ques-
tions in subject History of Gaokao, present two
different approaches to address them and com-
pared these approaches’ performance on all cat-
egories of questions. We find that the IR approach
are more sufficient on EQs cause the words in
these questions are usually the description of right
answer, whereas the NN approach performs much
better on SQs, and this may because neural net-
work models can find out the semantic relationship
between questions and candidates. When combin-
ing them together, we get the state-of-the-art per-
formance on GKHMC, better than any individual
approach. This points out that combining different
approaches may be a better method to deal with
the real-world questions.

In future work, we will explore whether key-
value memory network proposed by (Miller et
al., 2016) can help improve the performance of
PPMN, what content in textbook or encyclopedia
should be taken into the permanent memory, how
to mathematically organize the permanent mem-
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ory to make it can be reasoned on as well as
whether transforming the knowledge described in
natural language into formal representation is ben-
eficial. As a long-term goal, it’s necessary to intro-
duce discourse analysis, semantic parsing to help
the model truly understand the material sentences,
questions and candidates.
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Abstract

We show that a neural approach to the task
of non-factoid answer reranking can ben-
efit from the inclusion of tried-and-tested
handcrafted features. We present a novel
neural network architecture based on a
combination of recurrent neural networks
that are used to encode questions and an-
swers, and a multilayer perceptron. We
show how this approach can be combined
with additional features, in particular, the
discourse features presented by Jansen et
al. (2014). Our neural approach achieves
state-of-the-art performance on a public
dataset from Yahoo! Answers and its per-
formance is further improved by incorpo-
rating the discourse features. Additionally,
we present a new dataset of Ask Ubuntu
questions where the hybrid approach also
achieves good results.

1 Introduction

The task of Question Answering (QA) is arguably
one of the oldest tasks in Natural Language Pro-
cessing (NLP), attracting high levels of interest
from both industry and academia. The QA track at
the Text Retrieval Evaluation Conference (TREC)
was introduced in 1999 and since then has encour-
aged many research studies by providing a plat-
form for evaluation and making labeled datasets
available. However, most research has focused
on factoid questions, e.g. the TREC questions
What is the name of the managing director of
Apricot Computer? and What was the monetary
value of the Nobel Prize in 1989? The TREC QA
track organizers took care to “select questions with
straightforward, obvious answers” (Voorhees and
Tice, 1999) to facilitate manual assessment. In
contrast, research on answering non-factoid (NF)

questions, such as manner, reason, difference and
opinion questions, has been rather piecemeal. This
was largely due to the absence of available labeled
data for the task. This is changing, however, with
the growing popularity of Community Question
Answering (CQA) websites, such as Quora,1 Ya-
hoo! Answers2 and the Stack Exchange3 family of
forums.

One of the main components of a non-factoid
question answering system is the answer reranking
module. Given a question, it aims to rearrange the
answers in order to boost the community-selected
best answer to the top position. Most previous
attempts to perform non-factoid answer rerank-
ing on CQA data are supervised, feature-based,
learning-to-rank approaches (Jansen et al., 2014;
Fried et al., 2015; Sharp et al., 2015). These meth-
ods represent the candidate answers as meaningful
handcrafted features based on syntactic, seman-
tic and discourse parses (Surdeanu et al., 2011;
Jansen et al., 2014), web correlation (Surdeanu
et al., 2011), and translation probabilities (Fried
et al., 2015; Surdeanu et al., 2011). The result-
ing feature vectors are then passed to a supervised
ranking algorithm, such as SVMrank (Joachims,
2006), which ranks the candidates.

There has been a recent shift in Natural Lan-
guage Processing towards neural approaches in-
volving minimal feature engineering. Several re-
cent studies present purely neural approaches to
answer reranking, with most of them focusing on
the task of passage-level answer selection (dos
Santos et al., 2016; Tan et al., 2015), rather than
answer reranking in CQA websites (Bogdanova
and Foster, 2016). These neural approaches aim
to obviate the need for any feature engineering and
instead focus on developing a neural architecture

1http://quora.com
2http://answers.yahoo.com
3http://stackexchange.com
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that learns the representations and the ranking.
However, while it is possible to view a purely neu-
ral approach as an alternative to machine learning
involving domain knowledge in the form of hand-
crafted features, there is no reason why the two
approaches cannot be applied in tandem. In this
paper we show that handcrafted features which en-
code information about discourse structure can be
used to improve the performance of a neural ap-
proach to CQA answer reranking.

First, we present a novel neural approach to an-
swer reranking that achieves competitive results
on a public dataset of Yahoo! Answers (YA) that
was previously introduced by Jansen et al. (2014)
and later used in several other studies (Fried et al.,
2015; Sharp et al., 2015; Bogdanova and Foster,
2016). Our approach is based on a combination of
recurrent neural networks (RNN) and a multilayer
perceptron (MLP) that receives the encodings pro-
duced by the RNNs and interaction transforma-
tion features that are based on the outputs of the
RNNs and which aim to represent the semantic in-
teraction between the encoded sequences. We also
show how this approach can be combined with dis-
course features previously shown to be beneficial
for the task of answer reranking.

The previous best result on the YA dataset –
37.17 P@1 and 56.82 MRR – is reported by
Bogdanova and Foster (2016). Our approach
achieves similar performance – 37.13 P@1 and
57.56 MRR. In contrast to the (Bogdanova and
Foster, 2016) approach, which is also purely neu-
ral but requires a large in-domain corpus for pre-
training, our model requires only a relatively small
training set and no pretraining. The hybrid ap-
proach that includes the discourse features outper-
forms the neural approach on the same dataset and
achieves 38.74 P@1 and 58.37 MRR. We also re-
port experiments on a new dataset of Ask Ubuntu4

questions and answers. The model shows good
performance on this dataset too, with the hybrid
approach being about 2% more accurate in terms
of P@1 than the neural approach on its own. Our
error analysis provides insights into the main chal-
lenges posed by answer reranking in CQAs. These
are the subjective nature of both the questions and
the user choice of the best answer.

The main contributions of this paper are as fol-
lows: 1) we propose a novel neural approach for
non-factoid answer reranking that achieves state-

4http://askubuntu.com

of-the-art performance on a public dataset of Ya-
hoo! Answers; 2) we combine this approach with
an approach based on discourse features that was
introduced by Jansen et al. (2014), with the hy-
brid approach outperforming the neural approach
and the previous state-of-the-art; 3) we introduce a
new dataset of Ask Ubuntu questions and answers.

This paper is organized as follows: an overview
of previous work on non-factoid question answer-
ing is provided in Section 2, our neural archi-
tecture is introduced in Section 3, the discourse
features that are incorporated into our neural ap-
proach are described in Section 4, the results of
our experiments with these new models are pre-
sented and analysed in Section 5, and suggestions
for further research are provided in Section 6.

2 Related Work

Previous work on supervised non-factoid answer
reranking on CQA datasets focused mainly on
feature-rich approaches. Surdeanu et al. (2011)
show that CQAs such as Yahoo! Answers are a
good source of knowledge for non-factoid QA.
They employ four types of features in their an-
swer reranking model: (1) similarity features: the
similarity between a question and an answer based
on the length-normalized BM25 formula (Robert-
son et al., 1994); (2) translation features: prob-
ability of the question being a translation of the
answer computed using IBM’s Model 1 (Brown et
al., 1993); (3) features measuring frequency and
density of the question terms in the answer, such
as the number of non-stop question words in the
answer, the number of non-stop nouns, verbs and
adjectives in the answer that do not appear in the
question and tree kernel values for question and
answer syntactic structures; (4) web correlation
features based on Corrected Conditional Probabil-
ity (Magnini et al., 2002) between the question and
the answer. They explore these features both sep-
arately and in combination and find that the com-
bination of all four feature types is most beneficial
for answer reranking models.

Jansen et al. (2014) describe answer reranking
experiments on YA using a diverse range of lexi-
cal, syntactic and discourse features. In particular,
they show how discourse information can comple-
ment distributed lexical semantic information ob-
tained with a skip-gram model (Mikolov et al.,
2013). In this paper we use their features (dis-
cussed in detail in Section 4) in combination with
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a neural approach. Fried et al. (2015) improve on
the lexical semantic models of Jansen et al. (2014)
by exploiting indirect associations between words
using higher-order models.

Methods based purely on neural models have
gained popularity in various areas of NLP in re-
cent years. The main advantage of these mod-
els is that they are often able to achieve state-of-
the-art results while obviating the need for man-
ual feature engineering. These approaches have
been successful in the area of question answer-
ing. Several studies proposed models based on
convolution neural networks (Severyn and Mos-
chitti, 2015; Tymoshenko et al., 2016; Feng et
al., 2015) for answer sentence selection for factoid
question answering and models based on combi-
nations of convolutional and recurrent neural net-
works for the task of passage-level non-factoid an-
swer reranking (Tan et al., 2015; dos Santos et
al., 2016). Recurrent neural networks and mem-
ory networks were successfully applied to the task
of reading comprehension (Xiong et al., 2016;
Sukhbaatar et al., 2015; Weston et al., 2015). A
simple purely neural approach to non-factoid an-
swer reranking in CQAs was proposed by Bog-
danova and Foster (2016). The question-answer
pairs are represented with Paragraph Vector (Le
and Mikolov, 2014) distributed representations,
and a multilayer perceptron is used to estimate
the probability of the answer being good for the
given question. The approach achieves state-of-
the-art results. However, it requires unsupervised
pretraining of the Paragraph Vector model on a rel-
atively big in-domain dataset.

Recently, the Wide and Deep learning model for
recommendation systems was proposed (Cheng et
al., 2016). This model trains a wide linear model
based on sparse features alongside a deep neural
model, thus combining the benefits of memoriza-
tion provided by the former part and the general-
ization provided by the latter.

In this paper, we propose a hybrid approach to
answer reranking. Similarly to the wide and deep
model, it combines traditional feature-based and
deep neural approaches. However, in this paper
we enhance the neural model with discourse chunk
features that were previously found useful for this
task. The features are combined with a neural
model that consists of two bidirectional RNNs that
encode the question and the answer and a multi-
layer perceptron that receives the neural encodings

and the discourse features and makes the final pre-
diction.

3 Learning to rank answers with RNNs
and MLP

We illustrate our approach to answer reranking in
Figure 1. Following previous research on neural
answer reranking (Severyn and Moschitti, 2015;
Bogdanova and Foster, 2016), we employ the
pointwise approach to ranking, i.e. we cast the
ranking task as a classification task. Given a ques-
tion q and an answer a, we first use two separate
bidirectional RNNs5 to encode the question and
the answer. Let (wq

1, w
q
2, ..., w

q
k) be the sequence

of question words and (wa
1 , w

a
2 , ..., w

a
p) be the se-

quence of answer words.6 The first RNN encodes
the sequence of question words into the sequence
of context vectors (hq1, h

q
2, ..., h

q
k), i.e.

f qRNN (wq
i , θq) = hqi (1)

where θq denote the trainable parameters of the
network. More specifically, the bidirectional RNN
consists of two RNNs: the forward RNN that reads
the question starting from the first word until the
last word and encodes it as a sequence of forward
context vectors (

−→
hq1,
−→
hq2, ...,

−→
hqk), and the reverse

RNN that encodes the question starting from the
last word until the first word: (

←−
hqk,
←−−
hqk−1, ...,

←−
hq1).

The resulting context vectors are concatenations
of the forward and reverse context vectors at each
step, i.e. hqi = [

−→
hqi ,
←−
hqi ]. As the encoded vector

representation of the question, we use the concate-
nation of the context vectors, i.e.

encq = [hq1, ..., h
q
k] (2)

The second bidirectional RNN encodes the answer
in the same way:

faRNN (wa
i , θa) = hai (3)

enca = [ha1, ..., h
a
p] (4)

where θa denote the trainable parameters of the
network. We also want to optionally explicitly en-
code the interaction between the question’s con-
text vectors and the answer’s context vectors. To

5We use an RNN with Gated Recurrent Units
(GRU) (Bahdanau et al., 2015). Using an LSTM instead
provides similar results.

6The questions and answers have to be padded to k and p
words respectively.
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Figure 1: Our model takes a question-answer pair as an input and encodes them using separate RNNs
denoted as f qRNN and faRNN . Then a similarity matrix S over the encodings is computed and optionally
concatenated with external features xext, the result is passed to a multilayer perceptron fMLP that outputs
the final prediction.

do this we apply the interaction transformation to
the context vectors. More specifically, let Hq de-
note the matrix composed of the outputs of the
question encoder RNN:

Hq =




hq1,1 hq1,2 · · · hq1,k
hq2,1 hq2,2 · · · hq2,k

...
...

. . .
...

hqd,1 hqd,2 · · · hqd,k




andHa denote the matrix composed of the outputs
of the answer RNN:

Ha =




ha1,1 ha1,2 · · · ha1,p
ha2,1 ha2,2 · · · ha2,p

...
...

. . .
...

had,1 had,2 · · · had,p




d is a dimensionality parameter to be experimen-
tally tuned. We calculate the similarity matrix S
between Hq and Ha, so that each element sij of
the S matrix is a dot product between the corre-
sponding encodings:

sij = hqi · haj

The similarity matrix S is unrolled and passed to
the multilayer perceptron along with the question
and answer encodings. They are optionally con-
catenated with external features xext:

y = fMLP ([S, encq, enca, xext], θs) (5)

where θs denote the trainable parameters of the
network. The network is trained by minimizing
cross-entropy:

L(y, θ) = −ȳ log(y)− (1− ȳ) log(1− y)

where θ are all network’s parameters, i.e. θq, θa, θs
and ȳ is the true label:

ȳ =

{
1 if a is the best answer of the question q
0 otherwise

4 Discourse Features

Based on the intuition that modelling question-
answer structure both within and across sentences
could be useful, Jansen et al. (2014) propose an an-
swer reranking model based on discourse features
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Figure 2: Feature generation for the discourse marker model of Jansen et al. (2014): first, the answer
is searched for the discourse markers (in bold). For each discourse marker, there are several features
that represent if there is an overlap (QSEG) with the question before and after the discourse marker. The
features are extracted for sentence range from 0 (the same range) to 2 (two sentences before and after). .

combined with lexical semantics. We experimen-
tally evaluate these discourse features – added to
our model described in Section 3 (the additional
features xext) and on their own. We reuse their dis-
course marker model (DMM) combined with their
lexical semantics model (LS). The DMM model
is based on the findings of Marcu (1998), who
showed that certain cue phrases indicate bound-
aries between elementary textual units with suffi-
cient accuracy. These cue phrases are further re-
ferred to as discourse markers. For English, these
markers include by, as, because, but, and, for and
of – the full list can be found in Appendix B in
(Marcu, 1998).

We illustrate the feature extraction process of
Jansen et al. (2014) in Figure 2. First, the an-
swer is searched for discourse markers. Each
marker divides the text into two arguments: pre-
ceding and following the marker. Both argu-
ments are searched for words overlapping with
the question. Each feature denotes the discourse
marker and whether there is an overlap with the
question (QSEG) or not (OTHER) in the two ar-
guments defined by the marker. The sentence
range (SR) denotes the length (in sentences) of
the marker’s arguments. For example, QSEG by
OTHER SR0 means that in the sentence contain-
ing the by marker there is an overlap with the ques-
tion before the marker and there is no overlap with
the question after the marker. This results in 1384
different features. To assign values to each fea-
ture, the similarity between the question and each
of the two arguments is computed, and the aver-
age similarity is assigned as the value of the fea-
ture. Jansen et al. (2014) use cosine similarity over
tf.idf and over the vector space built with a skip-
gram model (Mikolov et al., 2013). Further details

can be found in (Jansen et al., 2014).

5 Experiments

5.1 Data

In our experiments, we use two datasets from
different CQAs. For comparability, we use the
dataset created by Jansen et al. (2014) which con-
tains 10K how questions from Yahoo! Answers.
50% of it is used for training, 25% for develop-
ment and 25% for testing. Each question in this
dataset contains at least four user-generated an-
swers. Some examples can be found in Table 1.
Further details about this dataset can be found
in (Jansen et al., 2014).

To evaluate our approach on a more technical
domain, we create a dataset of Ask Ubuntu (AU)
questions containing 13K questions, of which 10K
are used for training, 0.5K for development and
2.5K for testing. The Ask Ubuntu community is a
part of the Stack Exchange family of forums. Fo-
rums of this family share the same interface and
guidelines. They allow users to post questions and
answers and to vote them up and down, resulting
in every question and every answer having a score
representing the votes it received. The author of
the question may select the best answer to their
question. We create the AU dataset in the same
way as the YA dataset was created: for each ques-
tion, we only rank answers provided in response
to this question, and the answer labelled as the
best by the question’s author is considered to be
the correct answer. We make sure that the dataset
contains only questions that have at least three
user-provided answers and have the best answer
selected, and that this answer has a non-negative
score. Example questions from this dataset can be
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Question: how do you cut onions without crying?

Gold: Use a sharp knife because if the onions are cut cleanly instead of slightly torn (because of a dull knife) they will release
less of the chemical that makes you cry. Lighting a candle also helps with this, ( ... ) I hope this helps.
Other Answers:
- Watch a comedy.
- Put onion in the chop blender
- close ur eyes...
- Sprinkle the surrounding area with lemon juice.
- Choose one of the followings after cutting the head and tail of the onion, split in half and peel off the skin. 1. Keep on
chopping with your knife 2. Cut in quarters and put in choppers.

Table 1: Example question from the Yahoo! Answers dataset.

Question: Can’t shutdown through terminal. When ever i use the following sudo shutdown now; sudo reboot;
sudo shutdown -h my laptop goes on halt ( ... ) is there something wrong with my installation?
Gold: Try the following code sudo shutdown -P now ( ...) -P Requests that the system be powered off after it has
been brought down. -c Cancels a running shutdown. -k Only send out the warning messages and disable logins, do not
actually bring the system down.
Other Answers:
- Try sudo shutdown -h now command to shutdown quickly.
- Try init 0 init process shutdown all of the spawned processes/daemons as written in the init files

Table 2: Example question from the Ask Ubuntu dataset.

found in Table 2.
There are significant differences between the

two datasets. While the Yahoo! Answers dataset
has very short questions (10.8 on average) and rel-
atively long answers (50.5 words), Ask Ubuntu
questions can be very long, as they describe non-
trivial problems rather than just ask questions.
The average length of the Ask Ubuntu questions
is 112.14 words, with the average answer being
about 95 words long.

5.2 Experimental Setup

Following Jansen et al. (2014) and Fried et al.
(2015), we implement two baselines: the base-
line that selects an answer randomly and the can-
didate retrieval (CR) baseline. The CR baseline
uses the same scoring as in Jansen et al. (2014):
the questions and the candidate answers are rep-
resented using tf-idf over lemmas; the candidate
answers are ranked according to their cosine simi-
larity to the respective question. Additionally, we
evaluate the discourse features described in Sec-
tion 4 alone: we use them as the representation of
the question-answer pairs that are then used as the
input to a multilayer perceptron with five hidden
layers. On the YA dataset, we also compare our
results to the ones reported by Jansen et al. (2014)
and by Bogdanova and Foster (2016).

The model described in Section 3 is regular-
ized with L2-regularization and dropout. The de-
velopment sets are used solely for early stopping

and hyperparameter selection. We tune the hyper-
parameters (learning rate, L2 regularization rate,
dropout probabilities, dimensionality of the em-
beddings, the network architecture (the number of
hidden layers and units, the use of GRU versus
LSTM)) on the development sets. All neural net-
works use the rectified linear activation function
(ReLU). The word embeddings are initialized ran-
domly, no pretrained embeddings are used. We
use the software provided by Jansen et al. (2014)7

to extract the discourse features described in Sec-
tion 4 and referred to as xext in Section 3. These
discourse features require that word embeddings
be trained in order to calculate the similarity. Fol-
lowing Jansen et al. (2014), we train them using
the skip-gram model (Mikolov et al., 2013) We use
the L6 Yahoo dataset8 to train the skip-gram model
for the YA dataset and the Ask Ubuntu September
2015 data dump for the AU dataset. The neural
model described in Section 3 does not require pre-
training of word embeddings, the embeddings are
used only to extract external discourse features.
To evaluate all the models, we use standard im-
plementations of P@1 and mean reciprocal rank
(MRR).

5.3 Results

We experimentally evaluate the following models:

7http://nlp.sista.arizona.edu/
releases/acl2014/

8http://webscope.sandbox.yahoo.com/
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• MLP-discourse: The discourse features are
extracted as described in Section 4, an MLP
is used to produce the ranking;

• GRU-MLP: The system described in Sec-
tion 3 without the interaction matrix S and
any other external features (xext in Section 3
and in Figure 1);

• GRU-MLP-Sim: The system described in
Section 3 with the interaction matrix S and
no external features;

• GRU-MLP-Sim-Discourse: The system de-
scribed in Section 3 with the interaction ma-
trix S and the discourse features as the exter-
nal features xext;

Table 3 reports the answer reranking P@1 and
MRR of the described models along with the re-
sults of the baseline systems. The models were
frozen on their best development epoch, the test
set had been used neither for model selection nor
for parameter tuning.9

Table 3 shows that the discourse features on
their own with an MLP (MLP-Discourse) outper-
form the random and the CR baselines for both
datasets. They also perform better than the ap-
proach of Jansen et al. (2014) who used SVMrank
with a linear kernel. This might be due to the abil-
ity of the MLP to model non-linear dependencies.
Nonetheless, the MLP-Discourse approach per-
forms worse than the approach of Bogdanova and
Foster (2016), which is based on distributed repre-
sentations of documents, which probably capture
more information relevant to the task.

The system described in Section 3 with no in-
teraction transformation (only the encodings are
passed to the MLP) and without any external fea-
tures (xext in Section 3 and in Figure 1), referred
to as GRU-MLP, outperforms the CR and the Ran-
dom baselines and the systems based on the dis-
course features. However, it performs slightly
worse than the approach of (Bogdanova and Fos-
ter, 2016). One possible reason is that the latter
uses a large corpus for unsupervised pretraining.

9We report the results obtained with a bidirectional RNN
with GRU cell, MLP with 5 hidden layers (with 5120, 2048,
1024, 512, 128 units), batch size 100, learning rate 0.01,
weight decay 0.0005, dropout keep probability 0.6, and the
word embedding dimensionalities and RNN outputs set to
100. The questions and answers are padded: the lengths are
set to 15 words for the question and 100 words for the answer
in the YA dataset and 200 and 150 words for the AU dataset.

Yahoo! Answers
Model P@1 MRR
Random Baseline 15.74 37.40
CR Baseline 22.63 47.17
Jansen et al. (2014) 30.49 51.89
Bogdanova and Foster (2016) 37.17 56.82
MLP-Discourse 32.72* 53.54*

GRU-MLP 36.12* 56.63*

GRU-MLP-Sim 37.13* 57.56*

GRU-MLP-Sim-Discourse 38.74* 58.37*

Ask Ubuntu
Model P@1 MRR
Random Baseline 26.60 53.64
CR Baseline 35.36 60.17
MLP-Discourse 37.80* 61.75*

GRU-MLP 38.56* 62.53*

GRU-MLP-Sim 39.28* 62.64*

GRU-MLP-Sim-Discourse 41.40* 64.42*

Table 3: The systems results versus the base-
lines. * The improvements over the CR and Ran-
dom baselines are statistically significant with p <
0.05. All significance tests are performed with
one-tailed bootstrap resampling with 10,000 iter-
ations.

The GRU-MLP systems does not use any external
data, and learns only from the small training set.

The system enriched with the interaction ma-
trix, GRU-MLP-Sim, clearly outperforms all the
baselines on both datasets, including the MLP-
Discourse system. On the YA dataset, the re-
sults are better than Jansen et al. (2014) and very
similar to Bogdanova and Foster (2016). On the
AU dataset the improvement over the CR and the
MLP-discourse systems is less remarkable, yet
statistically significant. This indicates the bene-
fit of explicitly providing the interaction features
to the MLP.

The same approach with the additional dis-
course features described in Section 4, referred to
as GRU-MLP-Sim-Discourse in Table 3, achieves
the highest P@1 and MRR on the YA dataset and
the AU dataset. Surprisingly, the discourse fea-
tures are very helpful on the AU dataset which is
highly technical, with significant parts of the in-
formation represented as commands and code.

Even though the results achieved on both
datasets are similar in absolute values, the datasets
are very different and the errors might be of a dif-
ferent nature. We provide some insights into the
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Figure 3: Average P@1 of the GRU-MLP-Sim-
Discourse versus the Random baseline on the test
questions from most common YA categories.

challenges raised by the two datasets in the next
section.

5.4 Error Analysis

By conducting an error analysis on the YA dataset
we were able to pinpoint the main causes of error
as follows:

1. Despite containing only how questions, the
dataset contains a large amount of questions
asking for an opinion or advice , e.g. How
should I do my eyes?, How do I look? or
How do you tell your friend you’re in love
with him? rather than information, e.g. How
do you make homemade lasagna? and how
do you convert avi to mpg? About half of
the questions where the best system was still
performing incorrectly were of the opinion-
seeking nature. This is a problem for auto-
matic answer reranking, since the nature of
the question makes it very hard to predict the
quality of the answers.

2. The choice of the best answer purely relies
on the user. Inspection of the data reveals
that these user-provided gold labels are not
always reliable. In many cases the users tend
to select as the best those answers that are
most sympathetic (see (Q1) in Table 4) or
funny (see (Q2) and (Q3) in Table 4), rather
than the ones providing more useful informa-
tion.

In order to gain more insights into the reasons
behind errors on the YA data, we calculated av-

erage P@1 per category.10 Figure 3 shows aver-
age P@1 of the GRU-MLP-Sim-Discourse system
versus the Random baseline for the most common
categories. From this figure it is clear that the most
challenging category for answer reranking is Fam-
ily & Relationships. This category is also the most
frequent in the dataset, with 494 out of 2500 ques-
tions belonging to it. Our system achieves about
4% lower P@1 on the questions from Family &
Relationships category than on the whole test set,
while the random baseline performs as well as
on the whole test set (the average number of an-
swers per question in this category does not dif-
fer much from the dataset average). The low P@1
on this category is related to the reasons pointed
out above: most questions in this category are of
an opinion-seeking nature: How do I know if my
boyfriend really loves me?, How do I fix my rela-
tionship?, How do I find someone that loves me?,
making it hard to assess the quality of the answers.

The Ask Ubuntu dataset is rather different. In
contrast to the YA dataset, which contains many
subjective questions, most Ask Ubuntu questons
relate to a complex technology and usually require
deep domain knowledge to be answered. More-
over, many questions and answers contain code,
screenshots and links to external resources. Reli-
ably reranking such answers based on textual in-
formation alone might be an unattainable goal.
The technical complexity of the questions can give
rise to ambiguity. For instance, in (Q2) in Table 5
it is not clear if the question refers to the metapack-
age ubuntu-desktop or to ubuntu default packages
in general. Another potential source of difficulty
comes from the fact that the technologies being
discussed on Ask Ubuntu change rapidly: some
answers selected as best might be outdated (see
(Q1) in Table 5).

6 Conclusions and Future Work

In this paper we presented a neural approach to
open-domain non-factoid answer reranking. Pre-
vious studies in this area have either been feature-
based or purely neural approaches that require no
manual feature engineering. We show that these
two approaches can be successfully combined. We
propose a novel neural architecture whereby the
question-answer pairs are first encoded using two

10We first mapped the low-level categories provided in the
dataset to the 26 high-level YA categories. We only consider
categories that contained at least 100 questions.
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(Q1) How does someone impress a person during a conversation that u are as good as an oxford/harvard grad.?

(Gold) i think you’re chasing down the wrong path. but hell, what do i know?
(Prediction) There are two parts. Understanding your area well, and being creative. The understanding allows you the
material for your own opinions to have heft and for you to analyse the opinions of others. After that, it’s just good
vocabulary which comes from reading a great deal and speaking with others. Like many other endeavors practice is what
makes your performance improve.
(Q2) How to get my mom to stop smoking?

(Gold) Throw a glass of water on her every time she sparks one up
(Prediction) Never nag her. Instead politely insist on your right to stay free of all the risks associated with another
person’s
smoking. For example, do not allow her to smoke inside the car, the house or anywhere near you ( ... )
(Q3) How do i hip hop dance??!?!?

(Gold) Basically, you shake what your mother gave you.
(Prediction) Listen to previous freestyle flows and battles by great artists ( ... ) Understand the techniques those
artists use to flow and battle ( ... )

Table 4: Example incorrect predictions of the system on the Yahoo! Answers dataset.

(Q1) How do I add the kernel PPA? I can get Ubuntu mainline kernels from this kernel PPA - is there a way to add it to
my repository list the same as regular Launchpad PPAs?

(Gold) Warning : This answer is outdated. As of writing this warning (6.10.2013) the kernel-ppa used here is no longer
updated. Please disregard this answer. sudo apt-add-repository ppa:kernel-ppa/ppa sudo apt-get
update sudo apt-get install PACKAGENAME

(Prediction) Since the kernel ppa is not really maintained anymore, here’s a semi-automatic script:
https://github.com/medigeek/kmp-downloader

(Q2) Which language is ubuntu-desktop mostly coded in? I heard it is Python

(Gold) Poked around in Launchpad: ubuntu-desktop to and browsed the source for a few mins. It appears to be a mix of
Python and shell scripts.
(Prediction) I think the question referred to the language used to write the applications running on the default installation.
It’s hard to say which language is used the most, but i would guess C or C++. This is just a guess and since all languages
are pretty equal in terms of outcome, it doesn’t really matter.

Table 5: Example incorrect predictions of the system on the Ask Ubuntu dataset.

recurrent neural networks, then the interaction ma-
trix is calculated, concatenated with external fea-
tures, and passed as an input to a multilayer per-
ceptron. As external features, we evaluate the dis-
course features that were found useful for this task
by Jansen et al. (2014). The combined approach
achieves new state-of-the-art results on two CQA
datasets.

However, despite these encouraging results, the
P@1 is still below 40%. As the error analysis
shows, this is due to the nature of the dataset: the
user choice of the best answer is not always reli-
able and the questions are often seeking opinions
rather than information. The ceiling for this task
could be very low. Manual annotation of CQA
data might help in determining the upper bound.

Future work should aim to create more reliable
gold standards for this task. As we show in this pa-
per, the CQAs contain various types of question:
some of which are seeking information and some
not. Existing corpora of opinion questions, such as

the OpQA corpus (Stoyanov et al., 2005), could be
used in future research to distinguish those from
the information-seeking questions. Another possi-
ble direction for future work is in combining the
neural approach with other external features, such
as features based on web correlation between the
question and the answer, and similarities between
their syntactic structures.
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Abstract

Our goal is to combine the rich multi-
step inference of symbolic logical rea-
soning with the generalization capabili-
ties of neural networks. We are par-
ticularly interested in complex reasoning
about entities and relations in text and
large-scale knowledge bases (KBs). Nee-
lakantan et al. (2015) use RNNs to obtain
dense representations of multi-hop paths
in KBs; however for multiple reasons,
the approach lacks accuracy and practi-
cality. This paper proposes three signifi-
cant modeling advances: (1) we learn to
jointly reason about relations, entities, and
entity-types; (2) we use neural attention
modeling to incorporate multiple paths;
(3) we learn to share strength in a sin-
gle RNN that represents logical compo-
sition across all relations. On a large-
scale Freebase+ClueWeb prediction task,
we achieve 25% error reduction, and a
53% error reduction on sparse relations.
On chains of reasoning in WordNet we re-
duce error in mean quantile by 84% versus
the previous state of the art.1.

1 Introduction

There is a rising interest in extending neural net-
works to perform more complex reasoning, for-
merly addressed only by symbolic and logical rea-
soning systems. So far this work has mostly fo-
cused on small or synthetic data (Grefenstette,
2013; Bowman et al., 2014; Rocktäschel and
Riedel, 2016). Our interest is primarily in reason-
ing about large knowledge bases (KBs) with di-
verse semantics, populated from text. One method

1The code and data are available at
https://rajarshd.github.io/ChainsofReasoning/

i. place.birthpa, bq Ð ‘was born in’pa, xq^
‘commonly known as’px, bq
ii. location.containspa, bq Ð nationality´1pa, xq
^ place.birthpx, bq
iii. book.characterspa, bq Ð‘aka’pa, xq^
(theater.character.plays)´1px, bq
iv. cause.deathpa, bq Ð‘contracted’pa, bq

Table 1: Several highly probable clauses learnt
by our model. The textual relations are shown in
quotes and italicized. Our model has the ability to
combine textual and schema relations. r´1 is the
inverse relation r, i.e. rpa, bq ô r´1pb, aq.

for populating a KB from text (and for repre-
senting diverse semantics in the KB) is Universal
Schema (Riedel et al., 2013; Verga et al., 2016),
which learns vector embeddings of relation types
- the union of all input relation types, both from
the schemas of multiple structured KBs, as well as
expressions of relations in natural language text.

An important reason to populate a KB is to
support not only look-up-style question answer-
ing, but reasoning on its entities and relations in
order to make inferences not directly stored in
the KB. KBs are often highly incomplete (Min
et al., 2013), and reasoning can fill in these
missing facts. The “matrix completion” mecha-
nism that underlies the common implementation
of Universal Schema can thus be seen as a sim-
ple type of reasoning, as can other work in ten-
sor factorization (Nickel et al., 2011; Bordes et
al., 2013; Socher et al., 2013). However these
methods can be understood as operating on sin-
gle pieces of evidence: for example, inferring that
Microsoft–located-in–Seattle implies Microsoft–
HQ-in–Seattle.

A highly desirable, richer style of reasoning
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January 15, 2000
Tech pioneer Bill Gates 
stepped down today as chief 
executive officer of 
Microsoft, the Seattle-
headquartered software 
giant.He will continue to 
serve as the chairman... 

Feb 6, 1999
William H. Gates,chairman 
of Microsoft Corp. and his 
wife Melinda gave $3.3B to 
their two foundation, the 
president of one of the 
foundation said yesterday..

Seattle

Melinda Bill Microsoft

headquartered

chairmanspouse

lives in??

(a)

Melinda Gates Foundation
Chair HQIn

Seattle

Spouse Bill

Jane Doe

friend

Chair TerraPower
HQIn

Bellevue

near

born

Lives in??

abc 
abc 

(b)

Figure 1: The nodes in the knowledge graphs represent entities and the labeled edges represent relations.
(a) A path between ‘Melinda’ and ‘Seattle’ combining relations from two different documents. (b) There
are multiple paths between entities in a knowledge graph. The top two paths are predictive of the fact
that Melinda may ‘live in’ Seattle, but the bottom (fictitious) path isn’t.

makes inferences from Horn clauses that form
multi-hop paths containing three or more enti-
ties in the KB’s entity-relation graph. For ex-
ample, we may have no evidence directly link-
ing Melinda Gates and Seattle. However, we may
infer with some likelihood that Melinda–lives-in–
Seattle, by observing that the KB contains the
path Melinda–spouse–Bill–chairman–Microsoft–
HQ-in–Seattle (Fig. 1a).

Symbolic rules of this form are learned by the
Path Ranking Algorithm (PRA) (Lao et al., 2011).
Dramatic improvement in generalization can be
obtained by reasoning about paths, not in terms
of relation-symbols, but Universal Schema style
relation-vector-embeddings. This is done by Nee-
lakantan et al. (2015), where RNNs compose the
per-edge relation embeddings along an arbitrary-
length path, and output a vector embedding repre-
senting the inferred relation between the two enti-
ties at the end-points of the path. This approach
thus represents a key example of complex rea-
soning over Horn clause chains using neural net-
works. However, for multiple reasons detailed be-
low it is inaccurate and impractical.

This paper presents multiple modeling advances
that significantly increase the accuracy and prac-
ticality of RNN-based reasoning on Horn clause
chains in large-scale KBs. (1) Previous work, in-
cluding (Lao et al., 2011; Neelakantan et al., 2015;
Guu et al., 2015) reason about chains of relations,
but not the entities that form the nodes of the path.
In our work, we jointly learn and reason about
relation-types, entities, and entity-types. (2) The
same previous work takes only a single path as ev-
idence in inferring new predictions. However, as
shown in Figure 1b, multiple paths can provide ev-

idence for a prediction. In our work, we use neu-
ral attention mechanisms to reason about multiple
paths. We use a pooling function which does soft
attention during gradient step and find it to work
better. (3) The most problematic impracticality of
the above previous work2 for application to KBs
with broad semantics is their requirement to train
a separate model for each relation-type to be pre-
dicted. In contrast, we train a single, high-capacity
RNN that can predict all relation types. In addi-
tion to efficiency advantages, our approach signif-
icantly increases accuracy because the multi-task
nature of the training shares strength in the com-
mon RNN parameters.

We evaluate our new approach on a large
scale dataset of Freebase entities, relations and
ClueWeb text. In comparison with the previous
best on this data, we achieve an error reduction of
25% in mean average precision (MAP). In an ex-
periment specially designed to explore the benefits
of sharing strength with a single RNN, we show a
54% error reduction in relations that are available
only sparsely at training time. We also evaluate on
a second data set, chains of reasoning in WordNet.
In comparison with previous state-of-the-art (Guu
et al., 2015) our model achieves a 84% reduction
in error in mean quantile.

2 Background

In this section, we introduce the compositional
model (Path-RNN) of Neelakantan et al. (2015).
The Path-RNN model takes as input a path
between two entities and infers new relations
between them. Reasoning is performed non-

2with exception of (Guu et al., 2015)
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Figure 2: At each step, the RNN consumes both entity and relation vectors of the path. The entity
representation can be obtained from its types. The path vector yπ is the last hidden state. The parameters
of the RNN and relation embeddings are shared across all query relations. The dot product between
the final representation of the path and the query relation gives a confidence score, with higher scores
indicating that the query relation exists between the entity pair.

atomically about conjunctions of relations in an
arbitrary length path by composing them with a
recurrent neural network (RNN). The representa-
tion of the path is given by the last hidden state of
the RNN obtained after processing all the relations
in the path.

Let pes, etq be an entity pair and S denote
the set of paths between them. The set S is
obtained by doing random walks in the knowl-
edge graph starting from es till et. Let π “
tes, r1, e1, r2, . . . , rk, etu P S denote a path be-
tween pes, etq. The length of a path is the num-
ber of relations in it, hence, plenpπq “ kq. Let
yrt P Rd denote the vector representation of rt.
The Path-RNN model combines all the relations
in π sequentially using a RNN with an intermedi-
ate representation ht P Rh at step t given by

ht “ fpWr
hhht´1 `Wr

ihy
r
rtq. (1)

Wr
hh P Rhˆh and Wr

ih P Rdˆh are the param-
eters of the RNN. Here r denotes the query rela-
tion. Path-RNN has a specialized model for pre-
dicting each query relation r, with separate param-
eters pyr

rt ,W
r
hh,W

r
ihq for each r. f is the sig-

moid function. The vector representation of path
π pyπq is the last hidden state hk. The similarity of
yπ with the query relation vector yr is computed
as the dot product between them:

scorepπ, rq “ yπ ¨ yr (2)

Pairs of entities may have several paths connect-
ing them in the knowledge graph (Figure 1b). Let
ts1, s2, . . . , sNu be the similarity scores (Equation

2) for N paths connecting an entity pair pes, etq.
Path-RNN computes the probability that the entity
pair pes, etq participates in the query relation prq
by,

Ppr|es, etq “ σpmaxps1, s2, . . . , sN qq (3)

where σ is the sigmoid function.
Path-RNN and other models such as the Path

Ranking Algorithm (PRA) and its extensions (Lao
et al., 2011; Lao et al., 2012; Gardner et al., 2013;
Gardner et al., 2014) makes it impractical to be
used in downstream applications, since it requires
training and maintaining a model for each relation
type. Moreover, parameters are not shared across
multiple target relation types leading to large num-
ber of parameters to be learned from the training
data.

In (3), the Path-RNN model selects the maxi-
mum scoring path between an entity pair to make a
prediction, possibly ignoring evidence from other
important paths. Not only is this a waste of com-
putation (since we have to compute a forward pass
for all the paths anyway), but also the relations in
all other paths do not get any gradients updates
during training as the max operation returns zero
gradient for all other paths except the maximum
scoring one. This is especially ineffective during
the initial stages of the training since the maxi-
mum probable path will be random.

The Path-RNN model and other multi-hop
relation extraction approaches (such as Guu
et al. (2015)) ignore the entities in the path.
Consider the following paths JFK–locatedIn–
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NYC–locatedIn–NY and Yankee Stadium–
locatedIn–NYC–locatedIn–NY. To predict the
airport serves relation, the Path-RNN model
assigns the same scores to both the paths even
though the first path should be ranked higher. This
is because the model does not have information
about the entities and just uses the relations in the
path for prediction.

3 Modeling Approach

3.1 Shared Parameter Architecture
Previous section discussed the problems associ-
ated with per-relation modeling approaches. In re-
sponse, we share the relation type representation
and the composition matrices of the RNN across
all target relations enabling lesser number of pa-
rameters for the same training data. We refer to
this model as Single-Model. Note that this is just
multi-task learning (Caruana, 1997) among pre-
diction of target relation types with an underlying
shared parameter architecture. The RNN hidden
state in (1) is now given by:

ht “ fpWhhht´1 `Wihyrtq. (4)

Readers should take note that the parameters here
are independent of each target relation r.

Model Training
We train the model using existing observed facts
(triples) in the KB as positive examples and un-
observed facts as negative examples. Let R “
tγ1, γ2, . . . , γnu denote the set of all query rela-
tion types that we train for. Let ∆`

R,∆
´
R denote

the set of positive and negative triples for all the
relation types in R. The parameters of the model
are trained to minimize the negative log-likelihood
of the data.

LpΘ,∆`
R,∆

´
Rq “ ´

1

M

ÿ

es,et,rP∆`
R

logPpr|es, etq

`
ÿ

ês,êt,r̂P∆´
R

logp 1´ Ppr̂|ês, êtqq

(5)

Here M is the total number of training examples
and Θ denotes the set of all parameters of the
model (lookup table of embeddings (shared) and
parameters of the RNN (shared)). It should be
noted that the Path-RNN model has a separate loss
function for each relation r P R which depends
only on the relevant subset of the data.

3.2 Score Pooling
In this section, we introduce new methods of score
pooling that takes into account multiple paths be-
tween an entity pair. Let ts1, s2, . . . , sNu be the
similarity scores (Equation 2) for N paths con-
necting an entity pair pes, etq. The probability
for entity pair pes, etq to participate in relation r
(Equation 3) is now given by,

1. Top-(k): A straightforward extension of the
‘max’ approach in which we average the top
k scoring paths. Let K denote the indices of
top-k scoring paths.

Ppr|es, etq “ σp1
k

ÿ

j

sjq,@j P K

2. Average: Here, the final score is the average
of scores of all the paths.

Ppr|es, etq “ σp 1

N

Nÿ

i“1

siq

3. LogSumExp: In this approach the pooling
layer is a smooth approximation to the ‘max’
function - LogSumExp (LSE). Given a vector
of scores, the LSE is calculated as

LSEps1, s2, . . . , sN q “ logp
ÿ

i

exppsiqq

and hence the probability of the triple is,

Ppr|e1, e2q “ σpLSEps1, s2, . . . , sN qq

The average and the LSE pooling functions apply
non-zero weights to all the paths during inference.
However only a few paths between an entity pair
are predictive of a query relation. LSE has another
desirable property since BLSE

Bsi “ exppsiqř
i exppsiq . This

means that during the back-propagation step, ev-
ery path will receive a share of the gradient pro-
portional to its score and hence this is a kind of
attention during the gradient step. In contrast, for
averaging, every path will receive equal p 1

N q share
of the gradient. Top-(k) (similar to max) receives
sparse gradients.

3.3 Incorporating Entities
A straightforward way of incorporating entities is
to include entity representations (along with re-
lations) as input to the RNN. Learning separate
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representations of entity, however has some disad-
vantages. The distribution of entity occurrence is
heavy tailed and hence it is hard to learn good rep-
resentations of rarely occurring entities. To allevi-
ate this problem, we use the entity types present in
the KB as described below.

Most KBs have annotated types for entities and
each entity can have multiple types. For exam-
ple, Melinda Gates has types such as CEO, Duke
University Alumni, Philanthropist, American Cit-
izen etc. We obtain the entity representation by a
simple addition of the entity type representations.
The entity type representations are learned during
training. We limit the number of entity types for
an entity to 7 most frequently occurring types in
the KB. Let yet P Rm denote the representation
of entity et, then 4 now becomes

ht “ fpWhhht´1 `Wihyrt `Wehyetq (6)

Weh P Rmˆh is the new parameter matrix
for projecting the entity representation. Figure
2 shows our model with an example path be-
tween entities (Microsoft, USA) with country-
OfHQ (country of head-quarters) as the query re-
lation.

4 Related Work

Two early works on extracting clauses and rea-
soning over paths are SHERLOCK (Schoenmack-
ers et al., 2010) and the Path Ranking Algorithm
(PRA) (Lao et al., 2011). SHERLOCK extracts
purely symbolic clauses by exhaustively explor-
ing relational paths of increasing length. PRA re-
places exhaustive search by random walks. Ob-
served paths are used as features for a per-target-
relation binary classifier. Lao et al. (2012) extend
PRA by augmenting KB-schema relations with
observed text patterns. However, these methods do
not generalize well to millions of distinct paths ob-
tained from random exploration of the KB, since
each unique path is treated as a singleton, where
no commonalities between paths are modeled. In
response, pre-trained vector representations have
been used in PRA to tackle the feature explo-
sion (Gardner et al., 2013; Gardner et al., 2014)
but still rely on a classifier using atomic path fea-
tures. Yang et al. (2015) also extract horn rules,
but they restrict it to a length of 3 and the liter-
als are restricted to schema types in the knowledge
base. Zeng et al. (2016) show improvements in re-
lation extraction by incorporating sentences which

Stats #
# Freebase relation types 27,791
# textual relation types 23,599
# query relation types 46
# entity pairs 3.22M
# unique entity types 2218
Avg. path length 4.7
Max path length 7
Total # paths 191M

Table 2: Statistics of the dataset.

contain one entity.
Guu et al. (2015) introduce new compositional

techniques by modeling additive and multiplica-
tive interactions between relation matrices in the
path. However they model only a single path be-
tween an entity pair in-contrast to our ability to
consider multiple paths. Toutanova et al. (2016)
improves upon them by additionally modeling the
intermediate entities in the path and modeling
multiple paths. However, in their approach they
have to store scores for intermediate path length
for all entity pairs, making it prohibitive to be used
in our setting where we have more than 3M en-
tity pairs. They also model entities as just a scalar
weight whereas we learn both entity and type rep-
resentations. Lastly it has been shown by Nee-
lakantan et al. (2015) that non-linear composition
function out-performs linear functions (as used by
them) for relation extraction tasks.

The performance of relation extraction meth-
ods have been improved by incorporating entity
types for their candidate entities, both in sentence
level (Roth and Yih, 2007; Singh et al., 2013) and
KB relation extraction (Chang et al., 2014), and
in learning entailment rules (Berant et al., 2011).
Serban et al. (2016) use RNNs to generate factoid
question from Freebase.

5 Results

Data and Experimental Setup
We apply our models to the dataset released
by Neelakantan et al. (2015), which is a sub-
set of Freebase enriched with information from
ClueWeb. The dataset is comprised of a set of
triples (e1, r, e2) and also the set of paths con-
necting the entity pair (e1,e2) in the knowledge
graph. The triples extracted from ClueWeb con-
sists of sentences that contain entities linked to
Freebase (Orr et al., 2013). The raw text between
the two entities in the sentence forms the relation
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type. To limit the number of textual relations, we
retain the two following words after the first en-
tity and two words before the second entity. We
also collect the entity type information from Free-
base. Table 2 summarizes some important statis-
tics. For the PathQA experiment, we use the same
train/dev/test split of WordNet dataset released by
Guu et al. (2015) and hence our results are directly
comparable to them. The WordNet dataset has just
22 relation types and 38194 entities which is order
of magnitudes less than the dataset we use for re-
lation extraction tasks.

The dimension of the relation type representations
and the RNN hidden states are d, h “ 250 and the
entity and type embeddings have m “ 50 dimen-
sions. The Path-RNN model has sigmoid units
as their activation function. However, we found
rectifier units (ReLU) to work much better (Le et
al., 2015), even when compared to LSTMs (73.2
vs 72.4 in MAP). For the path-query experiment,
the dimension of entity, relation embeddings and
hidden units are set to 100 (as used by Guu et al.
(2015)). As our evaluation metric, we use the aver-
age precision (AP) to score the ranked list of entity
pairs. The MAP score is the mean AP across all
query relations. AP is a strict metric since it pe-
nalizes when an incorrect entity is ranked higher
above correct entities. Also MAP approximates
the area under the Precision Recall curve (Man-
ning et al., 2008). We use Adam (Kingma and
Ba, 2014) for optimization for all our experiments
with the default hyperparameter settings (learning
rate = 1e´3, β1 “ 0.9, β2 “ 0.999, ε “ 1e´8).
Statistical significance for scores reported in Table
3 were done with a paired-t test.

5.1 Effect of Pooling Techniques

Section 1 of Table 3 shows the effect of the various
pooling techniques presented in section 3.2. It is
encouraging to see that LogSumExp gives the best
results. This demonstrates the importance of con-
sidering information from all the paths. However,
Avg. pooling performs the worst, which shows
that it is also important to weigh the paths scores
according to their values. Figure 3 plots the train-
ing loss w.r.t gradient update step. Due to non-zero
gradient updates for all the paths, the LogSumExp
pooling strategy leads to faster training vs. max
pooling, which has sparse gradients. This is es-
pecially relevant during the early stages of train-
ing, where the argmax path is essentially a random
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Figure 3: Comparison of the training loss w.r.t
gradient update steps of various pooling meth-
ods. The loss of LogSumExp decreases the fastest
among all pooling methods and hence leads to
faster training.

guess. The scores of max and LSE pooling are sig-
nificant with (p ă 0.02).

5.2 Comparison with multi-hop models

We next compare the performance of the Single-
Model with two other multi-hop models - Path-
RNN and PRA(Lao et al., 2011). Both of these ap-
proaches train an individual model for each query
relation. We also experiment with another exten-
sion of PRA that adds bigram features (PRA +
Bigram). Additionally, we run an experiment re-
placing the max-pooling of Path-RNN with Log-
SumExp. The results are shown in the second
section of Table 3. It is not surprising to see
that the Single-Model, which leverages parame-
ter sharing improves performance. It is also en-
couraging to see that LogSumExp makes the Path-
RNN baseline stronger. The scores of Path-RNN
(with LSE) and Single-Model are significant with
(p ă 0.005).

5.3 Effect of Incorporating Entities

Next, we provide quantitative results supporting
our claim that modeling the entities along a KB
path can improve reasoning performance. The last
section of Table 3 lists the performance gain ob-
tained by injecting information about entities. We
achieve the best performance when we represent
entities as a function of their annotated types in
Freebase (Single-Model + Types) pp ă 0.005q.
In comparison, learning separate representations
of entities (Single-Model + Entities) gives slightly
worse performance. This is primarily because we
encounter many new entities during test time, for
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Model Performance (%MAP) Pooling
Single-Model 68.77 Max
Single-Model 55.80 Avg.
Single-Model 68.20 Top(k)
Single-Model 70.11 LogSumExp

PRA 64.43 n/a
PRA + Bigram 64.93 n/a

Path-RNN 65.23 Max
Path-RNN 68.43 LogSumExp

Single-Model 70.11 LogSumExp
PRA + Types 64.18 n/a
Single-Model 70.11 LogSumExp

Single-Model + Entity 71.74 LogSumExp
Single-Model + Types 73.26 LogSumExp

Single-Model + Entity + Types 72.22 LogSumExp

Table 3: The first section shows the effectiveness of LogSumExp as the score aggregation function. The
next section compares performance with existing multi-hop approaches and the last section shows the
performance achieved using joint reasoning with entities and types.

which our model does not have a learned repre-
sentation. However the relatively limited number
of entity types helps us overcome the problem of
representing unseen entities. We also extend PRA
to include entity type information (PRA + Types),
but this did not yield significant improvements.

5.4 Performance in Limited Data Regime

In constructing our dataset, we selected query re-
lations with reasonable amounts of data. However,
for many important applications we have very lim-
ited data. To simulate this common scenario, we
create a new dataset by randomly selecting 23 out
of 46 relations and removing all but 1% of the pos-
itive and negative triples previously used for train-
ing.

Effectively, the difference between Path-RNN
and Single-Model is that Single-Model does mul-
titask learning, since it shares parameters for dif-
ferent target relation types. Therefore, we expect
it to outperform Path-RNN on this small dataset,
since this multitask learning provides additional
regularization. We also experiment with an exten-
sion of Single-Model where we introduce an addi-
tional task for multitask learning, where we seek to
predict annotated types for entities. Here, parame-
ters for the entity type embeddings are shared with
the Single-Model. Supervision for this task is pro-
vided by the entity type annotation in the KB. We
train with a Bayesian Personalized Ranking loss of
Rendle et al. (2009). The results are listed in Table
4. With Single-Model there is a clear jump in per-
formance as we expect. The additional multitask
training with types gives a very incremental gain.

Model Performance (%MAP)
Path-RNN 22.06

Single-Model 63.33
Single-Model + MTL 64.81

Table 4: Model performance when trained with a
small fraction of the data.

5.5 Answering Path Queries

Guu et al. (2015) introduce a task of answering
questions formulated as path traversals in a KB.
Unlike binary fact prediction, to answer a path
query, the model needs to find the set of correct
target entities ‘t’ that can be reached by starting
from an initial entity ‘s’ and then traversing the
path ‘p’. They model additive and multiplicative
interactions of relations in the path. It should be
noted that the compositional Trans-E and Bilinear-
diag have comparable number of parameters to our
model since they also represent relations as vec-
tors, however the Bilinear model learns a dense
square matrix for each relation and hence has a lot
more number of parameters. Hence, we compare
with Trans-E and Bilinear-diag models. Bilinear-
diag has also been shown to outperform Bilinear
models (Yang et al., 2015).

Instead of combining relations using simple ad-
ditions and multiplications, we propose to com-
bine the intermediate hidden representations hi
obtained from a RNN (via (4)) after consum-
ing relation ri at each step. Let h denote the
sum of all intermediate representations hi. The
score of a triple ps, p, tq by our model is given by
xJs diagphqxt where diagphq represents a diagonal
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Horn Clause (Body) Without Entities With Entities Universal
location.containspx, aq ^ location.containspa, yq 0.9149 0.949 Y
(person.nationality)´1px, aq ^ place.birthpa, yq 0.7702 0.9256 N

Table 5: Body of two clauses both of which are predictive of location.containspx, yq. First fact is univer-
sally true but the truth value of the second clause depends on the value of the entities in the clause. The
model without entity parameters cannot discriminate this and outputs a lower overall confidence score.

Model MQ
Comp. Bilinear Diag 90.4

Comp. Trans-E 93.3
Our Model 98.94

Table 6: Performance on path queries in WordNet.

matrix with vector h as its diagonal elements.
We compare to the results reported by Guu et

al. (2015) on the WordNet dataset. It should be
noted that the dataset is fairly small with just 22
relation types and an average path length of 3.07.
More importantly, there are only few unseen paths
during test time and only one path between an en-
tity pair, suggesting that this dataset is not an ideal
test bed for compositional neural models. The re-
sults are shown in table 6. Mean Quantile(MQ) is
the fraction of incorrect entities which have been
scored lower than the correct entity. Our model
achieves a 84% reduction in error when compared
to their best model.

6 Qualitative Analysis

Entities as Existential Quantifiers: Ta-
ble 5 shows the body of two horn clauses.
Both the clauses are predictive of the fact
location.containspx, bq. The first clause is uni-
versally true irrespective of the entities present
in the chain (transitive property). However the
value of the second clause is only true conditional
on the instantiations of the entities. The score of
the Path-RNN model is independent of the entity
values, whereas our model outputs a different
score based on the entities in the chain. We
average the scores across entities, which are
connected through this path and for which the
relation holds in column 3 (With Entities).

For the first clause, which is independent of en-
tities, both models predict a high score. However
for the second clause, the model without entity in-
formation predicts a lower score because this path
is seen in both positive and negative training ex-
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Figure 4: Length distribution of top-scoring paths

amples and the model cannot condition on the en-
tities to learn to discriminate. However our model
predicts the true relations with high confidence.
This is a first step towards the capturing existen-
tial quantification for logical inference in vector
space.
Length of Clauses: Figure 4 shows the length dis-
tribution of top scoring paths in the test set. The
distribution peaks at lengths“ t3, 4, 5u, suggest-
ing that previous approaches (Yang et al., 2015)
which restrict the length to 3 might limit perfor-
mance and generalizability.
Limitation: A major limitation of our model is
inability to handle long textual patterns because of
sparsity. Compositional approaches for modeling
text (Toutanova et al., 2015; Verga et al., 2016) are
a right step in this direction and we leave this as
future work.

7 Conclusion

This paper introduces a single high capacity RNN
model which allows chains of reasoning across
multiple relation types. It leverages information
from the intermediate entities present in the path
between an entity pair and mitigates the problem
of unseen entities by representing them as a func-
tion of their annotated types. We also demonstrate
that pooling evidence across multiple paths im-
proves both training speed and accuracy. Finally,
we also address the problem of reasoning about
infrequently occurring relations and show signifi-
cant performance gains via multitasking.
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Abstract

Recognizing mentions of Adverse Drug
Reactions (ADR) in social media is chal-
lenging: ADR mentions are context-
dependent and include long, varied and
unconventional descriptions as compared
to more formal medical symptom ter-
minology. We use the CADEC cor-
pus to train a recurrent neural network
(RNN) transducer, integrated with knowl-
edge graph embeddings of DBpedia, and
show the resulting model to be highly
accurate (93.4 F1). Furthermore, even
when lacking high quality expert annota-
tions, we show that by employing an active
learning technique and using purpose built
annotation tools, we can train the RNN to
perform well (83.9 F1).

1 Introduction

Identifying medical concepts in social media nar-
ratives is the task of recognizing certain phrases in
the context of a user’s post. Each phrase is also
assigned a label from a set of predefined medi-
cal types. For instance, given the sentence “As-
pirin cured my terrible headache, but made me
sleepy”, the following medical concepts can be
identified: “Aspirin” is identified as Drug, “ter-
rible headache” as a Symptom and “made me
sleepy” should be spotted as a Adverse Drug Re-
action.

Having an automatic identification process can
help domain experts examine large quantities of
unstructured data, and quickly identify emerging
trends. For example, associating previously un-
known side effects with a given drug, or identify-
ing an unforeseen impact to a change in the man-
ufacturing process.

∗Work performed while at IBM Research Almaden.

There are several challenges in addressing this
task. First, context is crucial to type assign-
ment. Compare the previous example with “As-
pirin cured my sleepiness but gave me a terrible
headache”, while the medical concepts are simi-
lar, their context determines their particularly as-
sociated type label.

The social media domain poses additional chal-
lenges. User narratives on social platforms tend
to be non-grammatical, use colloquialisms, slang,
and generally informal language. For example,
a user may express sleepiness as “hard time get-
ting some Z’s”. This hinders the use of pre-trained
statistical parsers or simple string matching tech-
niques.

In this work we focus on the identification of
Adverse Drug Reactions (ADR). These are un-
wanted side effects which the user clearly iden-
tifies as caused by the intake of a drug. ADRs
are particularly challenging to spot, as they can be
articulated in a variety of ways and can often be
confounded with the symptoms addressed by the
drug.

Previous work in this field has mainly used care-
fully built lexicons and hand-coded rule based sys-
tems (Iqbal et al., 2015). While each individual
system achieves good results in the particular do-
main, porting these rules to another domain is non-
trivial. For example, identifying psychiatric drug
adverse reactions will probably consist of a much
different lexicon than that of cardiac medication.

In this work we address ADR mention recog-
nition by with recurrent neural network (RNN)
transducers (Graves, 2012). We propose a frame-
work which makes novel use of general, non-
task-specific medical knowledge from DBpedia
(Lehmann et al., 2015).

Our contributions are two fold: first, we use
the high-quality annotation of the CSIRO Ad-
verse Drug Event Corpus (CADEC) (Karimi et al.,
2015) to train accurate models, achieving perfor-
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mance of 93.4 F1 on the CADEC test section. An-
alyzing the performance of our models, we show
that the theoretically unbounded memory of the
RNN is good at capturing the context of the nar-
ratives, and that external DBpedia knowledge pro-
vides additional improvements.

Second, in most medical domains there is no
large preexisting collection of expert annotation
(i.e., gold standard test and training data) and
obtaining one is an expensive prospect. We
therefore address the following research question:
“How quickly can our system converge on ‘good
enough’ annotations?”.

For that end, we use only the test portion of
CADEC to test a model trained on non-expert an-
notation. To expedite this process, we use a pur-
pose built annotation tool in conjunction with an
active learning technique to sample the most in-
formative examples to annotate. This approach
achieves reasonable results in a very short time
(83.9 F1 in only one hour of human annotation).
We suggest that this framework is a promising
avenue for researches exploring low-resource do-
mains, alleviating the need to first commit to an
expensive annotation endeavor.

2 Background

In this section we describe the CADEC corpus,
which we use to train and test our model, and DB-
pedia, along with the recent paradigm of knowl-
edge graph embeddings integrated into our RNN.

2.1 CSIRO Adverse Drug Event Corpus

The recently created CSIRO Adverse Drug Event
Corpus (CADEC) (Karimi et al., 2015) contains
medical concepts annotation in posts from Ask
a Patient1, an online forum collecting medi-
cal patient narratives.

For example, a forum entry regarding a certain
drug starts with “I experienced one night of ago-
nising upper stomach pain, diarrhoea and sleep-
lessness”.

CADEC used brat (Stenetorp et al., 2012) to
annotate five types of medical concepts: (1) Drug,
names of medicine or drug, e.g., “Diclofenac”
or “Aspirin”; (2) Adverse Drug Reaction, an un-
wanted reaction which according to the text is
clearly associated with taking the drug, e.g, “acute
stomach pain”; (3) Disease, the reason for tak-
ing the drug, e.g., “insomnia” or “aggression”;

1http://www.askapatient.com

(4) Symptom, manifestations of the disease, e.g.,
“trouble sleeping” or “constantly angry”; and fi-
nally (5) Finding, a clinical finding that does not
pertain to any of the above categories.

Each annotation consists of a word span (possi-
bly non-contiguous) and a mapping of the marked
span to medical ontologies (SNOMED (Cote et
al., 1977), AMT2, and MedDRA (Brown et al.,
1999)).

Each post is annotated by either a medical stu-
dent or a computer scientist, screened by the au-
thors of the papers, and finally reviewed by a clin-
ical terminologist. The annotations spanned 1,244
posts relating to 12 drugs divided into two groups
(medications with Diclofenac as an active ingredi-
ent, and Lipitor). Corpus statistics are presented
in Table 1.

In the course of this work we will use the
CADEC Adverse Drug Reaction annotations to
train and test our models.

2.2 DBpedia and Knowledge Graph
Embeddings

DBpedia is a large-scale cross-domain multilin-
gual knowledge base extracted from Wikipedia
(Lehmann et al., 2015). DBpedia uses a schema
with over 320 entity types and 1,600 property
types to describe nearly 4 million entities. Be-
sides the common Person, Location and Organi-
zation entity types, it also includes descriptions of
drugs, diseases, symptoms and disorders, among
others.

Using a knowledge graph such as DBpedia re-
quires an intimate knowledge of its entity and
relation types, as well as its subtle representa-
tion decisions. This creates challenges with using
knowledge graphs in a machine learning (ML) set-
ting, where the signals are coming from different
sources and are often normalized and assimilated
to make the final prediction.

2https://goo.gl/xRCGPN

Train Test All

# Posts 935 309 1244
# Sentences 5723 1874 7597
# Words 95979 31855 127834
# Unique Words 5788 3373 9161

Table 1: Statistics for the CADEC corpus (See
section 2).
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In order to allow ML algorithms to make use
of the information encapsulated in such graphs, a
recent line of work (Bordes et al., 2011; Bordes
et al., 2013; Wang et al., 2014; Ji et al., 2016)
has compellingly suggested to embed entities as
d dimensional dense real vectors, and relations as
two projection matrices: Rlhs and Rrhs. Simi-
larly to word embedding techniques (Collobert et
al., 2011; Mikolov et al., 2013), a deep learning
model is trained to differentiate between observed
(positive) and non-observed (negative) triples, by
minimizing the following score for positive triples
(Ei, R, Ej):

||RlhsEi −RrhsEj || (1)

During training, the model learns the entity and
relation embeddings, desirably encoding some of
the semantics and co-occurrence information of
the original knowledge graph.

3 Recognizing Mentions of Adverse Drug
Reaction

In this section we formally define the task of in-
context recognition of Adverse Drug Reactions
(ADR) mentions and describe our proposed prob-
lem modeling.

3.1 Task Formulation
We follow CADEC’s definition for ADR, as de-
scribed in Section 2.

Formally, we define the ADR mention recogni-
tion task as a sentence level chunking task, where
each word can either be: (1) Beginning of an ADR
span (B); (2) Inside an ADR span (I); or (3) Out-
side of the span of an ADR (O);

For example (tags in subscript):

“IO stoppedO takingO AmbienO afterO threeO

weeksO – itO gaveO meO aO terribleB headacheI”

This formulation, termed BIO tagging
(Ramshaw and Marcus, 1995; Sang and Veenstra,
1999), is equivalent to noun phrase (NP) chunking
annotation convention with a single type of NP.

While Ratinov and Roth (2009) have shown
that a more elaborate tagging scheme (BILOU)3

improved performance in their experiments in
Named Entity Recognition, those experiments are
out of the scope for this work.

3BILOU uses tags for: Beginning, Inside, Last and Unit
length chunks.

This task depends heavily upon context, as the
same word span can appear as an ADR in one
text, and as a Symptom in another. For exam-
ple, the first entry in Table 2 mentions several
ADRs (“made me gain 30 lbs”, “made my BP
go up so high”, “gave me more anxiety”) asso-
ciating each with a different drug (“Klonopin”,
“Lexapro”, etc.), while the second entry in the ta-
ble uses some of the same surface forms to refer to
an addressed Symptoms (e.g., “It helped both my
anxiety and IBS”).

Furthermore, our model will need to cope with
texts from social media which tend to be collo-
quial, non-grammatical, variably spelled and over-
all employ highly informal phrasing. The rest of
the entries in Table 2 present several snippets from
the Ask a Patient corpus, illustrating some
of these challenges.

3.2 Recurrent Neural Networks Transducer
Formulated this way, and given that the sentences
in Ask a Patient are of arbitrary length, it
seems applicable to model the task using Recur-
rent Neural Networks (RNNs). This approach was
proven to be effective in many recent NLP papers.
For a recent and extensive survey of RNNs in NLP
see (Goldberg, 2015).

Specifically, we use a bi-directional LSTM
transducer (Graves, 2012) which outputs a prob-
ability distribution over the three possible labels
(B, I, and O) per word, taking into account arbi-
trary length contexts from both past as well as fu-
ture words.

Pretrained word embeddings It is common in
recent neural networks frameworks to initialize the
model’s word embeddings with pretrained param-
eters, from a much larger (often unsupervised) cor-
pus. We experiment with initializing our word
embeddings from both out of domain (and out of
the box) word embeddings from Google (Mikolov
et al., 2013), as well as with purpose trained
embeddings utilizing predicate-argument structure
from Open-IE (Etzioni et al., 2008) (following
(Stanovsky et al., 2015)) from the Blekko medical
corpus (a 2GB corpus of web pages categorized as
“medical domain” by the Blekko search engine4).

4 Augmenting RNNs with DBpedia

Despite the original motivation for knowledge
graph embedding, few efforts were made to use

4https://en.wikipedia.org/wiki/Blekko
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Text Snippet Challenges
“I’ve tried Klonopin which gave me nightmarish side effects, Lexapro which made me gain 30 lbs and that gave
me more anxiety and borderline depression, Effexor which made my BP go up so high I was hospitalized for 4 days
(high bp runs in the family), and Buspar which did n’t even touch my anxiety.”

Long post describing Adverse Drug Reactions caused by various previous
drugs.

“It helped both my anxiety and IBS immensely.” Describes cure from symptoms (not ADRs).
“After the second pill the same progression of symptoms only now the abdominal gas, cramps and pain would be
with me all day.”

Coordination leads to non-contiguous ADR spans (“abdominal cramps”,
“abdominal pain”).

“I had the usual problems as most people. Driving, buying things online, cooking, eating, sexual activity.” The qualifier “while asleep” is implied by “as most people” but never explic-
itly stated.

“Short term more loss” Ungrammatical.
“started having tension headaches. did not relate to Ambien.” The first sentence implies ADRs, while the second negates them.

Table 2: Examples from the Ask a Patient forum.

Figure 1: The bi-LSTM transducer, integrated with DBpedia knowledge graph embedding (left). We
experiment with several corpora for training external word embeddings (bottom) and override them for
DBpedia concepts (e.g., “Aspirin”, “dizzy”). See Sections 3 and 4 for details.

such embeddings as components in larger NLP
frameworks. Instead, previous research has fo-
cused on embedding techniques, as outlined in
section 2. In this section we describe a novel
framework which utilizes DBpedia concepts em-
beddings, in addition to the common use of pre-
trained word embeddings. We specifically use
DBpedia due to its good coverage of our do-
main of interest. Furthermore, since it relies on
Wikipedia, it might also be applicable for non-
medical domains. The presented approach, how-
ever, is not limited to any particular knowledge
base and in future work we plan to extend it be-
yond DBpedia.

The motivation for using external knowledge
bases in our case stems from the relatively small
size of the CADEC corpus (see Table 1), in com-
parison with other neural models training corpora.
For example, The Penn Treebank (Marcus et al.,
1993) which is often used for training dependency
parsing algorithms, consists of roughly 7M tokens,
versus only about 95K tokens in CADEC.

4.1 Overriding Word Embeddings with
DBpedia Concepts

We augment our model with a pretrained knowl-
edge graph embedding of the “Drug” and “Dis-
ease” categories from DBpedia, training as dis-
cussed in Section 2.2. When a word in a CADEC
entry is a lexical match with one of the DB-
pedia entities we override its features with the
DBpedia embeddings. Intuitively, this frame-
work introduces complex semantic relations be-
tween prominent and task relevant words in the
Ask a Patient posts. For example, DBpe-
dia draws “Aspirin” and “Ibuprofen” closer in the
embedding space as both appear under the “Non-
steroidal anti-inflammatory drug” category (a re-
lation which is modeled in DBpedia). While this
changes the embedding of a small subset of the
words, these are meaningful and frequently occur-
ring in our setting (see details in Section 6).

Figure 1 shows the complete architecture of our
model, including the RNN transducer LSTM and
the pretrained word embeddings augmented with
DBpedia entity embeddings. The loss from the
network propagates back to the word embeddings,
allowing them to assimilate task-specific informa-
tion during training.
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5 Human in the Loop

From our experience, real world applications of-
ten do not have a pre-existing rich gold standard
corpus from which they can efficiently train high
quality models. This lack creates a serious imped-
iment to entering and exploring the opportunities
for text analytics in such domains, due to the high
cost of producing the requisite semantic assets.

The medical domain is one where this is espe-
cially true. Even within a particular specialty, e.g.,
oncology, very different information may need to
be extracted depending on the type of cancer being
explored. In domains where the patient’s verbatim
comments are critical (e.g., psychiatric, physical
rehabilitation) there can be even more variability
and ambiguity. For instance, a comment of feeling
“pins and needles” could be a result of peripheral
neurological issues, or a panic attack, and may be
expressed with multiple misspellings, punctuation
and grammar variations.

To that end, we test our suggested model in a
human-in-the-loop approach to gauge how quickly
an analytic developer might obtain “good enough”
training and test data to develop first generation
code and begin to explore the results.

To simulate this for an experiment, we ignore
the CADEC training annotations and instead in-
terleave adjudication of small batches (100 sen-
tences) with iterations of model training (see Fig-
ure 2). To allow for these fast iterations we need
to provide solutions in several areas. For quicker
annotation, we developed RASCAL (Rapid Adju-
dication of Semantic Classes to Accelerate Learn-
ing), a purpose built annotation tool which expe-
dites the annotation and adjudication process. Fur-
thermore we employ an active learning technique
to focus the human adjudicator’s time on examples
that the model finds most confusing.

This process, as elaborated below, has two out-
comes: (1) Expedited machine-assited production
of an annotated gold standard; and (2) Rapid train-
ing of high precision models due to the active
learning technique.

5.1 Bootstrap

While the learning process can be initiated by
simply beginning to annotate the corpus, we find
a more rapid start up is achieved by employ-
ing an extensive lexicon of Adverse Drug Re-
action phrases. Fortunately, lexicon expansion
techniques (Coden et al., 2012) provide a way to

Concept
Expansion

Bootstrap lexicon

Train &
Predict

RNN transducer

Silver

Active
Learning

Adjudicate

RASCAL

Gold

Figure 2: Train-Predict-Adjudicate loop

rapidly bootstrap this portion of the problem. Typ-
ically the user provides a few (∼ 3) examples of
the type desired, and the system comes back with
dozens of suggestions of potential new phrases.
The user approves or rejects these and the system
repeats with this additional knowledge. The pro-
cess typically generates a couple of hundred can-
didate terms in a few minutes.

5.2 Active Learning
The bootstrap lexicon can then be used to obtain
a preliminary noisy CADEC training set for the
RNN, by marking each occurrence of a lexicon
term as an ADR. After we train our model, we
want to choose informative samples to adjudicate
and refine our training set (and subsequently, our
model) in the next iteration.

A process in which a model chooses its next
training examples is often referred to as active
learning, and is a well researched area of machine
learning (see (Settles, 2010) for an extensive sur-
vey). For our purposes, we use the uncertainty
sampling criterion (Lewis and Gale, 1994). In-
tuitively, this ranks the samples according to the
model’s belief it will mislabel them.

Formally, we sort all samples (x, y) according
to the following measure:

1− Pr
θ

(ŷ|x) (2)

Where:

ŷ = argmax
y∈{B,I,O}

Pr
θ

(y|x) (3)

We choose the top 100 samples according to this
metric, and adjudicate them, as described below.
In order to assess the impact of this step we also
perform the same process with random sampling
of 100 sentences at each iteration.
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5.3 Adjudication

At this stage, a human adjudicator examines the
sentences chosen in the previous phase. They then
either accept or reject each automatically recog-
nized ADR span in these sentences. Addition-
ally the annotator can mark new spans that were
missed.

While the brat annotator (Stenetorp et al.,
2012) is a popular tool for creating and modifying
annotations, it is a bit cumbersome and error prone
for tasks such as the one outlined in CADEC.

Notably, the CADEC creators mention that the
brat annotations required an additional clean-
ing phase. For example brat annotates character
spans instead of aligning marked spans to the word
level (e.g, an annotator might wrongfully mark
“pai” instead of “pain”). While some of brat’s
more complex features are a good fit for other an-
notation tasks, they reduce agility and do not add
much value in ours. We therefore implemented
a simple rapid adjudication system (code-named
RASCAL) that is tuned to the particular task of
adjudicating and adding annotations in the context
of ADR mention recognition.

RASCAL introduces simplifications such as
single click removal of incorrect annotations, au-
tomatic alignment of the spans to include whole
tokens, and single key “approve and move to next
document” support. This results in very fast an-
notation times. As the system improves its under-
standing of the entity to tag, much of the annota-
tor’s time is spent simply approving annotations,
with about one in four requiring their addition of a
missed span.

Over the 1,100 annotations we found an aver-
age time of about 3 seconds per sentence. In a
controlled experiment comparing the annotation
of 100 sentences in brat versus RASCAL, this
represented at least a four fold improvement over
comparable brat times without pre-annotation.
Since we find brat is slower at removing er-
rors and entering split annotations we anticipate
the discrepancy may be even higher with pre-
annotation.

This improvement does have a cost, however;
RASCAL only allows a single annotation type at
a time, so the annotation of two predefined types
(e.g., Drug and ADR) requires two passes. Sec-
ond, RASCAL does not support non-contiguous
span annotations. This is of especial trouble when
there are coordinated spans (e.g., “my neck and

back are both spasming” should be “neck spas-
ming” and “back spasming”).

While these were uncommon in our corpus (see
detailed analysis in Section 6), it does suggest that
perhaps performing some of the annotations with
brat after doing the initial ones with RASCAL
might help improve precision if desired.

5.4 Repeat
Given these adjudicated annotations, we can refine
our bootstrap lexicon (with the newly acquired
ADR mentions) and automatically re-annotate the
entire training corpus according to it, generating a
new iteration of the training data which closes the
loop back to training and predicting (Section 5.2).

Knowing when to stop is always a challenge
with learning systems. For the sake of these exper-
iments we chose to stop after an hour of an anno-
tator time (the initial lexicon expansion bootstrap
and annotating/adjudicating 1,100 sentences).

However the human annotator using RASCAL
gets a fairly good sense of what kind of annota-
tions are being spotted and what is being missed.
By looking at the net change in the pre-annotation
to post-annotation spans for an iteration it is possi-
ble to get a sense of when the learning is leveling
off.

In future work, it may also be possible to look
at the total uncertainty the RNN finds in the train-
ing corpus before and after a training session as
a measure of how much more productive learning
there may be left.

6 Evaluation

In this section we evaluate our recurrent neural
transducer in two scenarios: (1) Using the high
quality annotations of the CADEC corpus and (2)
Simulating a task with low resources in an ac-
tive learning scenario and using RASCAL for non-
expert annotations, as described in Section 5. Re-
sults are shown in Table 3.

Label imbalance The CADEC corpus is imbal-
anced between the different labels, assigning the
label “O” (Outside) to 87.34% of the words. This
is due to the fact that most of the text in the Ask
a Patient forum describes background situa-
tion and is not directly related to an ADR (see, for
example, the first entry in Table 2). This poses
a problem for training accuracy oriented models,
as such imbalanced class distribution discourages
the learning process to move from a model which
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assigns a constantly higher probability to the Out-
side label, regardless of the input sentence (He and
Garcia, 2009). Subsequently, this leads to triv-
ial solutions which achieve 0% ADR recall (as no
ADRs are retrieved) and 100% ADR precision (as
there are also no false positives).

To address this problem we use the SMOTE
(Synthetic Minority Over-Sampling) technique
(Chawla et al., 2002) which skews the sample dis-
tribution by oversampling the minority classes (B
and I) during training to get a synthetically bal-
anced training set.

6.1 Experimental setup

We implemented the bi-LSTM transducer model
using the Keras framework (Chollet, 2015) with a
TensorFlow backend (Abadi et al., 2015). Open IE
word embeddings (300 dimensions) were trained
on Blekko medical corpus (1 billion tokens) using
Open IE 45 and Word2Vec (Mikolov et al., 2013),
as described in (Stanovsky et al., 2015). For DB-
pedia embeddings (300 dimensions), we used the
code published in (Nickel et al., 2015). We used
the code published in (Lemaı̂tre et al., 2016) for
SMOTE class resampling. Finally, we used the
libact library (Yang et al., 2015) for the active
learning sampling. All models were trained for
100 epochs.

6.2 Results

Several observations can be made based on the re-
sults of our experiments (Table 3):

RASCAL achieves good results at a fraction of
the annotation effort - RASCAL results are ob-
tained after just 11 cycles of annotation by single
annotator (roughly an hour of work), and are then
tested against the independently annotated test set
of CADEC. The performance of RASCAL is a
promising indication that adequately performing
models can be obtained very quickly using our
framework, when moving to a new annotation task
where training data is scarce.

External knowledge improves performance in
both scenarios - As can be seen from the abla-
tion test in Table 3, in both supervised and anno-
tator development settings, our pretrained embed-
dings improve performance by at least 13 points

5https://github.com/allenai/
openie-standalone

in F1, with a significant edge to Blekko embed-
dings. This is in part due to its better cover-
age of the CADEC lexicon, only 408 (7.05% of
the CADEC lexicon) unique words were Out Of
Vocabulary (OOV) using Blekko, compared with
724 (12.51%) OOV words using Google’s em-
bedding. DBpedia provides embeddings for 232
words (4%) and further adds 2-4 points in both re-
call and precision.

Uncertainty sampling boosts the learning rate
- Figure 3 shows the progression of the best
performance obtained at each training iteration.
The uncertainty sampling (see Section 5.2) boosts
the learning curve, achieving models performing
around 80 F1 after just 25 minutes of RASCAL
annotation (note the red vertical dotted line).

The relatively small change when increasing the
number of annotated instances from 400 to 800
(i.e., before and after the vertical dotted line) is
probably due to the long tail nature of the prob-
lem: active learning chooses the most prominent
examples first, then there is a sharp decline in the
novelty of the chosen examples. Further experi-
mentation with active learning techniques may im-
prove performance, yet this falls out of the scope
of this paper, and is left as a topic for future re-
search. Overall, it can be seen from Figure 3 that
our active learning technique is indeed already su-
perior to random sampling (notice the brown dot-
ted line indicating performance with random sam-
pling).

Context matters - We tested an oracle ADR
baseline which had access to the lexicon of all of
the ADRs in CADEC. This oracle ignored con-
text and marked every occurrence of a phrase from
the lexicon as an ADR. As can be seen in Table
3 (ADR Oracle), this baseline obviously achieves
100% recall, yet, more interestingly, it achieves
only 55.2% in precision. Thus in 44.8% of the
cases the surrounding context negated the ADR
phrase (for example, see the last entry in Table 2).

6.3 Error analysis
In analyzing the RASCAL model, we find that it
relatively lacks in recall. This is due to our limited
annotation effort having predictably limited cov-
erage. Examining our annotations, we find 449
unique ADRs annotated in RASCAL out of the to-
tal 3685 unique ADR phrases in the full CADEC
annotation. The RNN model is in fact able to
generalize these mentions and find approximately
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Figure 3: Model performance per annotation cycle
(see Section 6). Solid lines represent precision,
recall and F1 for active learning, and the dashed
line represents F1 for random sampling (precision
and recall follow the same trend and are omitted
for clarity).

P R F1

String matching 78.6 37.0 50.3
RASCAL 64.0 53.8 58.0
RASCAL+ Google 88.4 68.2 76.8
RASCAL+ Blekko 91.3 70.0 79.4
RASCAL+ DBpedia+ Blekko 96.2 75.2 83.9

ADR Oracle 55.2 100 71.1
CADEC 69.6 74.6 71.9
CADEC + Google 85.3 86.2 85.7
CADEC + Blekko 90.5 90.1 90.3
CADEC + DBpedia+ Blekko 92.2 94.5 93.4

Table 3: Performance of the different baselines
by training from RASCAL annotations (top) vs.
CADEC training data (bottom). See Section 6 for
more details.

75% of the mentions, yet it is likely that having a
larger RASCAL training set would help improve
the coverage of our model. Furthermore, the de-
sign choices made in RASCAL trade annotation
speed with accuracy. As mentioned in Section
5.3 RASCAL is currently unable to annotate non-
contiguous spans, which account for 1005 (15.9%)
of the ADRs annotated in CADEC.

Finally, both of our models predict BIO word la-
bels at the sentence level which in some cases does
not provide enough context to arrive at the correct
label. See, for example, the bottom example in Ta-
ble 2, in which a very probable ADR phrase in the
first sentence (“tension headaches”) is negated in
the second sentence (“did not relate to Ambien”).

7 Related Work

To the best of our knowledge, there has been no
previous work attempting to recognize in-context
adverse drug reaction mentions on the CADEC
corpus. There are, however, several papers which
addressed the same task on a different corpus, and
others who have used the CADEC corpus for or-
thogonal tasks. In this section we survey two such
recent papers.

Limsopatham and Collier (2016) have used
CADEC for the normalization of medical con-
cepts. They take as input an out-of-context ADR
(e.g., “I couldn’t sleep all night” or “head ex-
plodes”) and predict its normalized form (e.g., “in-
somnia” or “headache”, respectively), based on a
predefined vocabulary. They use an RNN model
and report accuracy of 79.98. This task can be
seen a subsequent task to ours. The ADR spans we
output can serve as an input for ADR normaliza-
tion, giving medical experts a consolidated sum-
mary of the reported adverse events.

Iqbal et al. (2015) share our motivation to iden-
tify ADR mentions in the context of electronic
health records (medical correspondence, discharge
letters, etc.), which are more formal, as opposed
to our focus on social media domain. They take a
rule based approach, and come up with an expert
built lexicon, which achieves 85 F1 on their test
set.

While their approach is carefully built to the
specific data set, we show the portability of our
model by testing both in a supervised scenario as
well as in annotation development scenario.

8 Conclusions and Future Work

We presented a novel model which consists of
an LSTM transducer RNN augmented with exter-
nal knowledge from medically oriented Web crawl
and a knowledge graph embedding of medical en-
tities in DBpedia. We showed that the model
achieves good results (93.4 F1) when trained and
tested on the CADEC corpus.

Furthermore, ignoring the CADEC training
data, we showed that through active learning and
a task-dedicated annotation tool we can get a rea-
sonably performing model (83.95 F1 on CADEC’s
test set) with just an hour of annotation effort. This
suggests a promising methodology for researchers
wanting to explore new domain annotations, with-
out first committing to a heavyweight and expen-
sive annotation effort.
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Future work may make further use of the
CADEC annotations (e.g., for multi-task learning
or concept normalization), and extend RASCAL
to get better recall and allow for non-contiguous
and multiple label annotations.
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Abstract

Language contains information about the
author’s demographic attributes as well
as their mental state, and has been suc-
cessfully leveraged in NLP to predict ei-
ther one alone. However, demographic
attributes and mental states also interact
with each other, and we are the first to
demonstrate how to use them jointly to im-
prove the prediction of mental health con-
ditions across the board. We model the
different conditions as tasks in a multi-
task learning (MTL) framework, and es-
tablish for the first time the potential of
deep learning in the prediction of men-
tal health from online user-generated text.
The framework we propose significantly
improves over all baselines and single-task
models for predicting mental health con-
ditions, with particularly significant gains
for conditions with limited data. In addi-
tion, our best MTL model can predict the
presence of conditions (neuroatypicality)
more generally, further reducing the error
of the strong feed-forward baseline.

1 Introduction
Mental health conditions, like depression or anx-
iety, are still one of the leading causes of death
worldwide. Suicide, often the direct outcome of
mental health conditions, is the 11th most frequent
cause of death in the US (Anderson, 2001). De-
tecting mental health risk factors early is key to
preventing many of these deaths. Unfortunately,
traditional diagnosis methods require access to
and willingness to talk with a psychologist, and
rely mainly on impressions formed during short

1Now at Google Research.

sessions. Consequently, conditions leading to pre-
ventable suicides can often not be accurately diag-
nosed.

Automated monitoring and risk assessment of
patients’ language have the potential to overcome
the logistic and time constraints associated with
traditional assessment methods. Written text car-
ries implicit information about the author, a re-
lationship that has been exploited in natural lan-
guage processing (NLP) to predict author char-
acteristics, such as age (Goswami et al., 2009;
Rosenthal and McKeown, 2011; Nguyen et al.,
2011; Nguyen et al., 2014), gender (Sarawgi
et al., 2011; Ciot et al., 2013; Liu and Ruths,
2013; Alowibdi et al., 2013; Volkova et al., 2015;
Hovy, 2015), personality and stance (Schwartz
et al., 2013b; Schwartz et al., 2013a; Volkova
et al., 2014; Plank and Hovy, 2015; Park et al.,
2015; Preoţiuc-Pietro et al., 2015), or occupation
(Preotiuc-Pietro et al., 2015a; Preoţiuc-Pietro et
al., 2015b). The same signal has also been ef-
fectively used to predict mental health conditions,
such as depression (Coppersmith et al., 2015b;
Schwartz et al., 2014), suicidal ideation (Copper-
smith et al., 2016; Huang et al., 2015), schizophre-
nia (Mitchell et al., 2015) or post-traumatic stress
disorder (PTSD) (Pedersen, 2015), often more ac-
curately than by traditional diagnoses.

However, these studies typically model each
condition in isolation and ignore other author
attributes that can improve prediction, thereby
artificially limiting performance. Existing re-
search, however, indicates that 1) incorporating
demographic attributes can help text classification
(Volkova et al., 2013; Hovy, 2015), and 2) learning
several auxiliary tasks which share common struc-
tures (e.g., part-of-speech tagging, parsing, and
NER) can improve performance, as the learning
implicitly exploits interactions between the tasks
(Caruana, 1993; Sutton et al., 2007; Rush et al.,
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2010; Collobert et al., 2011; Søgaard and Gold-
berg, 2016).

In this paper, we propose such a multitask learn-
ing (MTL) approach to mental health prediction.
The main tasks of our model are predictions of
neurotypicality (i.e., the absence of any mental
health conditions), anxiety, depression, suicide at-
tempt, eating disorder, panic attacks, schizophre-
nia, bipolar disorder, and post-traumatic stress
disorder (PTSD). All of the above, plus gender
prediction, also serve as auxiliary tasks.

The auxiliary tasks reflect the observation that
several conditions frequently occur together (co-
morbidity), and that they correlate with demo-
graphic factors. The MTL framework allows us
to share information across predictions. We use
a neural architecture that enables the inclusion of
several loss functions with a common shared un-
derlying representation. This experimental setup
is flexible enough to extend this model to further
factors than the ones shown here, provided suit-
able data.

We also explore the effect of auxiliary-task se-
lection on model performance for a given predic-
tion task. Similar to Caruana (1996), we find that
choosing auxiliary tasks which are prerequisites or
related to the main task is critical for learning a
strong model.

Our contributions

1. We are the first to apply MTL to predict men-
tal health conditions from user content on
Twitter – a notoriously difficult task (Cop-
persmith et al., 2015a; Coppersmith et al.,
2015b).

2. We explore the influence of auxiliary-task se-
lection on prediction performance, including
the effect of gender

3. We show how to model tasks with a large
number of positive examples to improve the
prediction accuracy of tasks with a small
number of positive examples.

4. We increase the True Positive Rate at 10%
false alarms by up to 9.7% absolute (for anx-
iety), a result with direct impact for clinical
applications.

2 Model Architecture
We opt for a neural architecture to exploit the syn-
ergies between mental conditions. Our choice is
based on practical more than ideological reasons:
previous work (Collobert et al., 2011; Caruana,

1996; Caruana, 1993) has indicated that this is a
promising model architecture, which allows us to
share parameters across tasks, can be trained on
large amounts of data, and accounts for varying
degrees of annotation across tasks.1

Even within the neural model framework,
however, there are many variations to consider.
In the following, we outline some attributes and
decisions.

Previous approaches have shown consider-
able improvements over single task models by
using MTL (Caruana, 1993). The arguments
are convincing: predicting multiple related
tasks should allow us to exploit any correlations
between the predictions.

However, we note that the benefit of using a
MTL model is only one possible explanation, and
that another, more salient factor might have been
overlooked: the difference in the general model
class, i.e., neural architectures vs. discriminative
or generative models, or, more generally, the ex-
pressivity of the model. Some comparisons might
therefore have inadvertently compared apples to
oranges.

We compare the multitask demographics and
risk prediction with models with equal expressiv-
ity. We evaluate the performance of a standard
logistic regression model (a standard approach to
text-classification problems), a multilayer percep-
tron single-task learning (STL) model, and a neu-
ral MTL model, the latter two with equal numbers
of parameters. This ensures a fair comparison by
isolating the unique properties of MTL from the
dimensionality-reduction aspects of deep architec-
tures in general.

The neural models we evaluate come in two
forms. The first, depicted in plate notation in Fig-
ure 1, is the STL model. These are feedforward
networks with two hidden layers, trained indepen-
dently to predict each task. On the right of Fig-
ure 1 is the MTL model, where the first hidden
layer from the bottom is shared between all tasks.
An additional per-task hidden layer is used to give
the model flexibility to map from the task-agnostic
representation to a task-specific one. Each hidden
layer uses a rectified linear unit as non-linearity.
The output layer uses a logistic non-linearity, since
all tasks are binary predictions.

1We also experimented with a graphical model architec-
ture, but found that it did not scale as well and provided less
traction.
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Figure 1: STL model in plate notation (left): weights trained independently for each task t (e.g., anxiety,
depression) of the T tasks. MTL model (right): shared weights trained jointly for all tasks, with task-
specific hidden layers.
Curves in ovals represent the type of activation used at each layer (rectified linear unit or sigmoid).
Hidden layers are shaded.

The MTL model can easily be extended to a
stack of shared hidden layers, allowing for a more
complicated mapping from input to shared space.2

As noted in (Collobert et al., 2011), MTL bene-
fits from mini-batch training, which both allows
optimization to jump out of poor local optima,
and take more stochastic gradient steps in a fixed
amount of time (Bottou, 2012). In that paper, the
authors use a randomized selection over the tasks
to train. In our paper, we create mini-batches by
sampling from the users in our data. Each of these
users has some subset of the mental conditions we
are trying to predict, and may or may not be an-
notated with gender. At each mini-batch gradient
step we update weights for all tasks. This not only
allows for randomization and faster convergence,
it also provides a speed-up over the individual se-
lection process in (Collobert et al., 2011).

One of the advantages of our setup is that we do
not need complete information for every instance:
instead, learning can proceed with asynchronous
updates dependent on what the data in each batch

2We tried training a 4-shared-layer MTL model to predict
targets on a separate dataset, but did not see any gains over
the standard 1-shared-layer MTL model in our application.

has been annotated for, while sharing representa-
tions throughout. This effectively learns a joint
model with a common representation for several
different tasks, and allows the use of several “dis-
joint” data sets, some with limited annotated in-
stances.

Optimization and Model Selection Even in a
relatively simple neural model, there are a num-
ber of parameters that can (and have to) be tuned
to achieve good performance. We perform a line
search for every model we use, sweeping over
L2 regularization and hidden layer width. We
select the best model based on the development
loss. Figure 5 shows the performance on the corre-
sponding test sets (plot smoothed by rolling mean
of 10 for visibility).

In our experiments, we sweep over the L2
regularization constant applied to all weights
in {10−4, 10−3, 10−2, 0.1, 0.5, 1.0, 5.0, 10.0}, and
hidden layer width (same for all layers in the net-
work) in {16, 32, 64, 128, 256, 512, 1024, 2048}.
We fix the mini-batch size to 256, and 0.05
dropout on the input layer. We found that choosing
a small mini-batch size and the model with low-
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Task # of users
Neurotypicality 4820

Anxiety 2407
Depression 1400

Suicide attempt 1208
Eating disorder 749
Schizophrenia 349
Panic disorder 263

Bipolar disorder 234
PTSD 191

Female |Male 788 | 248
total 9611

Table 1: Number of users with each self-stated
condition and human-annotated gender in the
joined dataset.

est development loss was sufficient to account for
overfitting.

We train each model for 5,000 iterations, jointly
updating all weights in our models. After this ini-
tial joint training, we select each task separately,
and only update the task-specific layers of weights
independently for another 1,000 iterations (select-
ing the set of weights achieving lowest develop-
ment loss for each task individually). Weights are
updated using mini-batch Adagrad (Duchi et al.,
2011) – we found this to converge more quickly
than other optimization schemes we experimented
with. We evaluate the tuning loss every 10 epochs,
and evaluate the model with the lowest tuning loss.

3 Data

We train our models on a union of multiple Twitter
user datasets: 1) users identified as having anxiety,
bipolar disorder, depression, panic disorder, eating
disorder, PTSD, or schizophrenia (Coppersmith et
al., 2015a), 2) those who had attempted suicide
(Coppersmith et al., 2015c), and 3) those iden-
tified as having either depression or PTSD from
the 2015 Computational Linguistics and Clinical
Psychology Workshop shared task (Coppersmith
et al., 2015b), along with neurotypical gender-
matched controls (Twitter users not identified as
having a mental condition). Users were identified
as having one of these conditions if they stated ex-
plicitly they were diagnosed with this condition
on Twitter (verified by a human annotator). For
a subset of 1,101 users, we also have manually-
annotated gender. The final dataset contains 9,611
users in total, with an average of 3521 tweets per

user. The number of users with each condition is
included in Table 1. Users in this joined dataset
may be tagged with multiple conditions, thus the
counts in this table do not sum to the total number
of users.

We use the entire Twitter history of each user
as input to the model, and split it into character
1-to-5-grams, which have been shown to capture
more information than words for many Twitter
text classification tasks (Mcnamee and Mayfield,
2004; Coppersmith et al., 2015a). We compute
the relative frequency of the 5,000 most frequent
n-gram features for n ∈ {1, 2, 3, 4, 5} in our data,
and then feed this as input to all models. This input
representation is common to all models, allowing
for fair comparison.

4 Experiments
Our task is to predict any number of mental con-
ditions for each of the users in these data, possibly
using gender prediction as an auxiliary task to im-
prove our prediction performance.

We evaluate three classes of models: a baseline
logistic regression over character n-gram features
(LR), feed-forward multilayer perceptrons trained
to predict each task separately (STL), and a multi-
task network predicting a set of conditions simul-
taneously (MTL). We also perform ablation exper-
iments, to see which subsets of auxiliary tasks help
us learn an MTL model that predicts a particular
mental condition best. For all experiments, data
were divided into five equal-sized folds, three for
training, one for tuning, and one for testing (we
report the performance on this).

All our models are implemented in Keras3 with
Theano backend and GPU support. We train the
models for a total of up to 15,000 epochs, using
mini-batches of 256 instances. Training time on
all five training folds ranged from one to eight
hours on a machine with Tesla K40M.

Evaluation Setup We compare the accuracy of
each model at predicting each task separately.

In clinical settings, we are interested in mini-
mizing the number of false positives, i.e., incor-
rect diagnoses, which can cause undue stress to
the patient. We are thus interested in bounding this
quantity. To evaluate the performance, we plot the
false positive rate (FPR) against the true positive
rate (TPR). This gives us a receiver operating char-
acteristics (ROC) curve, allowing us to inspect the

3http://keras.io/
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performance of each model on a specific task at
any level of FPR.

While the ROC gives us a sense of how well
a model performs at a fixed true positive rate, it
makes it difficult to compare the individual tasks
at a low false positive rate, which is also im-
portant for clinical application. We therefore re-
port two more measures: the area under the ROC
curve (AUC) and TPR performance at FPR=0.1
(TPR@FPR=0.1). We do not compare our mod-
els to a majority baseline model, since this model
would achieve an expected AUC of 0.5 for all
tasks, and F-score and TPR@FPR=0.1 of 0 for
all mental conditions – users exhibiting a condi-
tion are the minority, meaning a majority baseline
classifier would achieve zero recall.

5 Results

Figure 2: F1-score for predicting each condition.

Figure 2 shows the F1-score of each model at
predicting each task separately, Figure 3 shows the
AUC-score, and Figure 4. Precision-recall curves
for each of model/task are in Figure 6.

STL corresponds to a multilayer perceptron
with two hidden layers (with a similar number of
parameters as the proposed MTL model). The
MTL nogender and MTL models predict all tasks
simultaneously, but are only evaluated on the main
respective task.

MTL often outperforms the LR baseline in
terms of AUC and TPR@F=0.1, but the difference
is less clear when comparing F1-scores.

In terms of AUC and TPR@F=0.1, STL models
do not perform nearly as well as MTLor LR. This
is likely because the neural networks learned by

STL cannot be guided by the inductive bias pro-
vided by MTL training. Note, however, that STL
and MTL are oftentimes comparable in terms of
F1-score.

Figure 3: AUC for predicting different tasks

Figure 4: TPR at 0.10 FPR for predicting different
tasks

MTL Leveraging Comorbid Conditions Im-
proves Prediction Accuracy We find that the
prediction of the conditions with the least amount
of data – bipolar disorder and PTSD – are sig-
nificantly improved by forcing the model to also
predict comorbid conditions which have substan-
tially more data: depression and anxiety. We are
able to increase the AUC for predicting PTSD
to 0.786 by MTL, from 0.770 by LR, whereas
STL fails to perform as well with an AUC of
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Figure 5: ROC curves for predicting each condition. The precision (diagnosed, correctly labeled) is on
the y-axis, while the proportion of false alarms (control users mislabeled as diagnosed) is on the x-axis.
Chance performance is indicated by the dotted diagonal line.

0.667. Similarly for predicting bipolar disorder
(MTL:0.723, LR:0.752, STL:0.552) and panic at-
tack (MTL:0.724, LR:0.713, STL:0.631).

These differences in AUC are significant at p =
0.05 according to bootstrap sampling tests with
5000 samples. The wide difference between MTL
and STL can be explained in part by the increased
feature set size – MTL training may, in this case,
provide a form of regularization that STL cannot
exploit. Further, modeling the common mental
health conditions with the most data (depression,
anxiety) helps in pulling out more rare conditions
that also manifest in these common health condi-
tions.

This is clear evidence that an MTL model pro-
vides strong gains for predicting elusive condi-
tions by using large data for common conditions,
and only a small amount of data for the related,
small-data conditions.

Utility of Authorship Attributes Figures 3 and
4 both suggest that adding gender as an auxil-
iary task leads to more predictive models, even

though the difference is not statistically significant
for most tasks. This is in line with the sugges-
tions in Volkova et al. (2013), Hovy (2015). Inter-
estingly, though, the MTL model is worse at pre-
dicting gender itself. While this could be a direct
result of data sparsity (recall that we have only a
small subset annotated for gender), which could be
remedied by annotating additional users for gen-
der, this appears unlikely given the other findings
of our experiments, where MTL helped in specifi-
cally these sparse scenarios.

However, it has been pointed out by Caruana
(1996) that not all tasks benefit from a MTL set-
ting in the same way, and that some tasks serve
purely auxiliary functions. Here, gender predic-
tion does not benefit from including mental con-
ditions, but helps vice versa. In other words, pre-
dicting gender is qualitatively different from pre-
dicting mental health conditions: it seems likely
that the signals for anxiety ares much more sim-
ilar to the ones for depression than for, say, be-
ing male, and can therefore add to detecting de-
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Figure 6: Precision-recall curves for predicting each condition.

pression. However, the distinction between cer-
tain conditions does not add information for the
distinction of gender. The effect may also be due
to the fact that these data were constructed with
inferred gender (used to match controls), so there
might be a degree of noise in the data.

Choosing Auxiliary Tasks Although MTL
tends to dominate STL in our experiments, it is not
clear whether auxiliary tasks just introduce a bene-
ficial bias in MTL models in general, or if there ex-
ists a specific subset of auxiliary tasks for predict-
ing each condition. We perform ablation experi-
ments by training MTL models on only a subset
of the tasks, and evaluate them at predicting a sin-
gle target. We focus on four conditions we want to
predict well: anxiety, depression, suicide attempts,
and bipolar disorder. For each task, we vary the
auxiliary tasks we train the MTL model with, and
evaluate how well it predicts the main task. Since
considering all possible subsets of tasks as auxil-
iary tasks is combinatorily unfeasible, we choose
the following task subsets as auxiliary:

• all: all mental conditions along with gender

• all conds: only all mental conditions (gender
omitted)
• neuro: only neurotypicality
• neuro+mood: neurotypicality, depression,

and bipolar disorder (mood disorders)
• neuro+anx: neurotypicality, anxiety, and

panic attack (anxiety conditions)
• neuro+targets: neurotypicality, anxiety, de-

pression, suicide attempt, and bipolar disor-
der
• none: no auxiliary tasks, equivalent to STL

model

Table 2 shows AUC for the four prediction tasks
with different subsets of auxiliary tasks. Statisti-
cally significant improvements over the respective
LR baselines are denoted by superscript. Restrict-
ing the auxiliary tasks to a small subset tends to
hurt performance for most tasks. This suggests
that the biases induced by predicting any mental
condition are all mutually beneficial – e.g., models
that predict depression, are also useful at predict-
ing anxiety.

It is thus best not to think of MTL as one single
“black box” model that can predict all mental con-
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Auxiliary
Tasks

Main Task
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pt

all 0.813∗† 0.752∗† 0.769† 0.835∗†

all conds 0.786 0.743† 0.772† 0.833∗†

neuro 0.763 0.740† 0.759 0.797
neuro+mood 0.756 0.742† 0.761 0.804

neuro+anx 0.770 0.744† 0.746 0.792
neuro+targets 0.750 0.747† 0.764 0.817

none (STL) 0.777 0.552 0.749 0.810
LR 0.791 0.723† 0.763 0.817

Table 2: Test AUC when predicting Main Task af-
ter training to predict a subset of auxiliary tasks.
Significant improvement over LR baseline at p =
0.05 is denoted by ∗, and over no auxiliary tasks
(STL) by †.

ditions at the same time, but a framework to ex-
ploit auxiliary tasks as regularization to effectively
combat data paucity and less-than-trustworthy la-
bels.

6 Discussion

Our results indicate that the proposed MTL set-
ting results in significant gains for the prediction
of mental health conditions with limited data, ben-
efiting from predicting related mental conditions
and demographic attributes simultaneously.

We experimented with all the optimizers that
Keras provides, and found that Adagrad seems
to converge fastest to a good optimum, although
all the adaptive learning rate optimizers (such as
Adam, etc.) tend to converge quickly. This indi-
cates that the gradient is significantly steeper along
certain parameters than others. Default stochastic
gradient descent (SGD) was not able to converge
as quickly, since it is not able to adaptively scale
the learning rate for each parameter in the model –
taking too small steps in directions where the gra-
dient is shallow, and too large steps where the gra-
dient is steep. We further note an interesting be-
havior: all of the adaptive learning rate optimizers
yield a strange “step-wise” training loss learning
curve, which hits a plateau, but then drops after
about 900 iterations, only to hit another plateau,
and so on. Obviously, we would prefer to have a
smooth training loss curve. We can indeed achieve
this using SGD, but it takes much longer to con-
verge than, for example, Adagrad. This suggests
that a well-tuned SGD would be the best optimizer

Learning Loss L2 Loss Hidden Loss
Rate Width
10−4 5.1 10−3 2.8 32 3.0

5 ∗ 10−4 2.9 5 ∗ 10−3 2.8 64 3.0
10−3 2.9 10−2 2.9 128 2.9

5 ∗ 10−3 2.4 5 ∗ 10−2 3.1 256 2.9
10−2 2.3 0.1 3.4 512 3.0

5 ∗ 10−2 2.2 0.5 4.6 1024 3.0
0.1 20.2 1.0 4.9

Table 3: Average dev loss over epochs 990-1000
of joint training on all tasks as a function of dif-
ferent learning parameters. Optimized using Ada-
grad with hidden layer width 256.

for this problem, a step that would require some
more experimentation and is left for future work.

We also found that feature counts have a pro-
nounced effect on the loss curves: relative feature
frequencies yield models that are much easier to
train than raw feature counts.

As indicated by the effect of raw vs. relative
counts, feature representations are another area of
optimization, such as different ranges of character
n-grams (e.g., n > 5) and word unigrams. We de-
cided on character 1-to-5-grams, since we believe
that these features generalize better to a new do-
main (e.g., Facebook) than word unigrams. How-
ever, there is no fundamental reason not to choose
longer character n-grams, other than time con-
straints in regenerating the data, and sufficiently
accounting for overfitting with proper regulariza-
tion.

Initialization is often listed as a decisive fac-
tor in neural models, and Goldberg (2015) rec-
ommends repeated restarts with differing initial-
izations to find the optimal model. In an earlier
experiment, we tried initializing a MTL model (al-
beit without task-specific hidden layers) with pre-
trained word2vec embeddings of unigrams trained
on the Google News n-gram corpus. However, we
did not notice an improvement in F-score. This
could be due to the other factors, though, such as
feature sparsity.

Table 3 displays sweeps over learning param-
eters with hidden layer width 256, training the
MTL model to predict multiple mental conditions
jointly for the Qntfy self-stated data (character tri-
grams as input features). The sweet spots in this
table are probably good starting points for training
models.
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7 Related Work

MTL was introduced by Caruana (1993), based on
the observation that humans rarely learn things in
isolation, and that it is the similarity between re-
lated tasks that helps us get better.

Some of the first works on MTL have been mo-
tivated by medical risk prediction (Caruana et al.,
1996), and it is now being rediscovered for this
purpose (Lipton et al., 2016). The latter use a
long short-term memory (LSTM) structure to pro-
vide several medical diagnoses from health care
features (yet no textual or demographic informa-
tion), and find small, but probably not significant
improvements over a structure similar to the STL
we use here.

However, in both cases, the target was medical
conditions as detected in patient records, not men-
tal health conditions in online data. The main fo-
cus in this work has been on the correlation be-
tween individual conditions and linguistic mark-
ers, to establish the possibility of detecting risk in
written data. While some of the approaches have
looked at more than one condition, none of them
have done so in an MTL framework, foregoing the
possibility of modeling comorbidity and correla-
tion with demographic factors.

The framework proposed by Collobert et al.
(2011) allows for predicting any number of NLP
tasks from a convolutional neural network (CNN)
representation of the input text. The model we
present is much simpler, just a feed-forward net-
work with n-gram input layer. Our contribution
is to show that constraining n-gram embeddings
to be predictive of various mental health condition
also helps. We chose to experiment with a feed-
forward network against independent logistic re-
gression models since this was the simplest way to
test our hypothesis. Comparing more complicated
models is possible, but distracts from the question
whether or not MTL training with extra-linguistic
targets helps us.

8 Conclusion and Future Work

In this paper, we develop neural MTL models for
10 prediction tasks (eight mental health condi-
tions, neurotypicality, and gender). We compare
their performance with STL models trained to pre-
dict each task independently.

Our results show that the most complex MTL
model performs significantly better than inde-
pendent LR models, reaching 0.846 TPR where

FPR=0.1 and reducing the error rate in identifying
anxiety by up to 11.9%. We also investigate the in-
fluence of the depth of the model, by comparing to
progressively deeper STL feed-forward networks
with the same number of parameters. We find: (1)
Most of the modeling power stems from the ex-
pressiveness conveyed by deep architectures. (2)
Choosing the correct set of auxiliary tasks for a
given mental condition can yield a significantly
more predictive model. (3) The MTL model dra-
matically improves for conditions with the small-
est amount of data. (4) Gender prediction does not
follow the two previous points, but improves per-
formance when added as an auxiliary task.

Accuracy of the MTL approach is not yet ready
to be used in isolation in the clinical setting. How-
ever, our experiments suggest this is a promising
direction moving forward. There are strong gains
to be made in using multitask learning to aid clini-
cians in their evaluations, and with further partner-
ships between the clinical and machine learning
community, we foresee improved suicide preven-
tion efforts.

In the future, we plan to explore the possibil-
ity of hierarchical models, encoding the fact that
certain tasks inform others more than vice versa.
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Abstract

Recent work on evaluating representation
learning architectures in NLP has estab-
lished a need for evaluation protocols based
on subconscious cognitive measures rather
than manually tailored intrinsic similarity
and relatedness tasks. In this work, we pro-
pose a novel evaluation framework that en-
ables large-scale evaluation of such archi-
tectures in the free word association (WA)
task, which is firmly grounded in cognitive
theories of human semantic representation.
This evaluation is facilitated by the exis-
tence of large manually constructed reposi-
tories of word association data. In this pa-
per, we (1) present a detailed analysis of the
new quantitative WA evaluation protocol,
(2) suggest new evaluation metrics for the
WA task inspired by its direct analogy with
information retrieval problems, (3) evaluate
various state-of-the-art representation mod-
els on this task, and (4) discuss the relation-
ship between WA and prior evaluations of
semantic representation with well-known
similarity and relatedness evaluation sets.
We have made the WA evaluation toolkit
publicly available.

1 Introduction

The quality of word representations in semantic
models is often measured using intrinsic evalua-
tions that capture particular types of relationships
(typically semantic similarity and relatedness) be-
tween word pairs (Finkelstein et al., 2002; Hill et
al., 2015; Schnabel et al., 2015; Tsvetkov et al.,
2015, inter alia).

Whereas the notions of semantic similarity and
relatedness constitute key concepts in such evalua-
tions, they are in fact vaguely defined (Batchkarov

et al., 2016; Ettinger and Linzen, 2016). The con-
struction of ground truth evaluation sets that reflect
these relations, such as SimLex-999 (Hill et al.,
2015), SimVerb-3500 (Gerz et al., 2016), MEN
(Bruni et al., 2014) or Rare Words (Luong et al.,
2013), relies on manually constructed guidelines
that trigger subjective human interpretation of the
task at hand. This in turn introduces inter-annotator
variability (Batchkarov et al., 2016) and does not
account for the fact that human similarity judge-
ments are asymmetric by nature (Tversky, 1977).

What is more, given that humans perform lin-
guistic comparisons between concepts on a sub-
conscious level (Kutas and Federmeier, 2011),
it is at least debatable whether current similar-
ity/relatedness evaluation sets fully capture the im-
plicit relational structure underlying human lan-
guage representation and understanding.

As evidenced by recent workshops on evalua-
tion of semantic representations1, the community
appears to recognise that current evaluation meth-
ods are inadequate. To fill in this gap, recent work
has proposed using subconscious cognitive mea-
sures of semantic connection instead, as a proxy
for measuring the ability of statistical models to
tackle various problems in human language un-
derstanding (Ettinger and Linzen, 2016; Søgaard,
2016; Mandera et al., 2017).

Motivated by these insights, this work proposes
an evaluation framework based on the word associ-
ation (WA) task, firmly rooted in and described
by the psychology literature, e.g., Nelson et al.
(2000) and Griffiths et al. (2007)2. Word associ-
ations, provided as simple (cue, response) concept
pairs, are naturally asymmetric: they tend to be
given as a repository of ranked lists of concepts col-

1E.g. RepEval, https://sites.google.com/site/repevalacl16/
2The WA task is a free-association task, in which partici-

pants are asked to produce the first word that came into their
head in response to a cue or query word.

163



lected as responses (i.e., assocations) given a target
cue/query concept. The ranking of the response list
is based on the WA strength between the cue and
each generated response. WAs are directly tied to
language use and the memory systems that sup-
port online linguistic processing (Till et al., 1988;
Nelson et al., 1998).

We build our WA evaluation framework around a
large repository of the University of South Florida
(USF) association norms (Nelson et al., 2000; Nel-
son et al., 2004). After post-processing, the repos-
itory contains ~5K queries, and ~70,000 (cue, re-
sponse) pairs, making it one of the largest seman-
tic evaluation databases available (by contrast, the
largest word pair scoring data sets in NLP, SimVerb
and MEN, contain 3,500 and 3,000 word pairs re-
spectively). This new resource enables comprehen-
sive quantitative studies of WA and may be used
to guide the future development of representation
learning architectures.

While parts of the USF data set have been used
for evaluation in NLP before (Michelbacher et al.,
2007; Silberer and Lapata, 2012; Kiela et al., 2014;
Hill and Korhonen, 2014, inter alia), we conduct
the first full study regarding the evaluation on the
quantitative WA task. We compare a wide variety of
different semantic representation models, discuss
various evaluation metrics and analyse the links be-
tween word association and semantic similarity and
relatedness. In summary, the main contributions of
this paper are as follows:3

(C1) We present an end-to-end evaluation frame-
work for the WA task, and provide new evaluation
metrics and detailed guidelines for evaluating se-
mantic models on the WA task.
(C2) We conduct a systematic study and compari-
son of current state-of-the-art representation learn-
ing architectures on the WA task.
(C3) We present a systematic quantitative analy-
sis of the connections between the models’ per-
formance on the subconscious WA task and their
performance on benchmarking similarity and relat-
edness evaluation sets.

2 Motivation: Association and USF

Implicit Cognitive Measures: Means of Seman-
tic Evaluation? Several studies have shown
clear correspondence between implicit cognitive

3All evaluation scripts and detailed evaluation guidelines
are freely available at:
https://github.com/cambridgeltl/wa-eval/

measures (most notably semantic priming) and se-
mantic relations encountered in vector space mod-
els (VSMs) (McDonald and Brew, 2004; Jones et
al., 2006; Padó and Lapata, 2007; Herdağdelen
et al., 2009), suggesting that some of the implicit
relation structure in the human brain is already re-
flected in current statistical models of meaning.

These findings encouraged Ettinger and Linzen
(2016) to propose a preliminary evaluation frame-
work based on semantic priming experiments
(Meyer and Schvaneveldt, 1971).4 They demon-
strate the feasibility of such an evaluation using a
subconscious language processing task. They use
the online database of the Semantic Priming Project
(SPP), which compiles priming data for over 6,000
word pairs.

Here, we go one step further and demonstrate
that another subconscious language processing
task, with much more available data, can also be
used to evaluate representations. We construct an
evaluation framework based on the USF free word
association (WA) norms quantifying the strength
of association between cue and response concepts
for more than 70,000 concept pairs.

Word Association WA has been a long-standing
research topic in cognitive psychology, as evi-
denced by the following statement (Deese, 1966):

Are there any more fascinating data in psychology
than tables of association? (Deese, 1966)

Word association still remains one of the funda-
mental questions in cognitive psychology, as em-
phasised by e.g. Griffiths et al. (2007):

Association has been part of the theoretical ar-
mory of cognitive psychologists since Thomas
Hobbes used the notion to account for the struc-
ture of our “trayne of thoughts” in 1651.

These insights illustrate how WA can provide a
useful benchmark for evaluating models of human
semantic representation. WA norms are commonly
used in constructing memory experiments (Dennis
and Humphreys, 2001; Steyvers and Malmberg,
2003), and statistics derived from them have been
shown to be important in predicting cued recall

4Semantic priming measures a response time with a human
subject performing a simple language task (e.g., classifying
strings into words vs. non-words). It was shown that human
subjects are able to solve the task more quickly if the word
to which they are responding is preceded by a semantically
related word. The magnitude of the speed-up can be taken as
the strength of relation between the two concepts.
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CUE RESP #G #P FSG BSG

lunch dinner 156 42 0.269 0.096
lunch food 156 32 0.205 0.011
lunch eat 156 13 0.083 0.0
lunch meal 156 10 0.064 0.063
lunch box 156 9 0.058 0.0
lunch sandwich 156 9 0.058 0.037
lunch noon 156 6 0.038 0.200

noon lunch 150 30 0.200 0.038
noon twelve 150 22 0.147 0.034
noon sunshine 150 20 0.133 0.0

food eat 180 73 0.406 0.409
food drink 180 9 0.050 0.0

Table 1: Example (cue, response) pairs of free word
association from the USF data set. #G stands for
the number of participants serving in the group
norming the word, while #P denotes the number
participants producing a particular response.

and recognition (Nelson et al., 1998), and false
memories (Roediger et al., 2001).5

WA Evaluation Set: USF The USF norms data
set (hereafter USF) is the largest database of free
word association collected for English (Nelson et
al., 2004). It was generated by presenting human
subjects with one of 5, 000 cue concepts and ask-
ing them to write the first word coming to their
mind that is associated with that concept. Each cue
concept was normed by at least 100 participants,
resulting in a set of associates (or responses) for
each cue, for a total of ∼72,000 (cue, response)
pairs. A sample of the USF data is presented in
Tab. 1. The data are accessible online.6

For each such pair, the proportion of participants
that produced the responsewr when presented with
cue word wc can be used as a proxy for the strength
of association between the two words (FSG in
Tab. 1). BSG denotes the backward association
strength, when the roles of a cue and a response are
reversed, shows that the WA relation is inherently
asymmetrical.

5From another viewpoint, the WA evaluation aims to an-
swer a different question than a typical intrinsic evaluation
on data sets such as SimLex-999, MEN, WordSim-353, or
SimVerb-3500. The goal of the latter is to assess the quality of
learned text representations as a proxy towards downstream
NLP tasks. The goal of the former is to assess the capability
of representation learning and NLP architectures to help in ad-
vancing our understanding and modeling of human cognitive
processes (occurring on a sub-conscious level), while at the
same time it could still be used as a proxy evaluation in NLP.

6http://w3.usf.edu/FreeAssociation/

3 Evaluation Protocol

Terminology Wc = {wc
1, . . . , w

c
i , . . . , w

c
|WC |}

denotes a set of |Wc| cue or normed words (more
generally, concepts) in the evaluation set. For each
cue word wc

i , the data set contains a ranked list
of concepts or responses Ri sorted according to
the strength of forward association, from cue to
response (i.e., the FSG field in Tab. 1). The list
Ri contains entries of the format wr,j : fsgi,j ,
where wr,j is the jth most associated concept in
the ranked list, and fsgi,j is the accompanying
strength of forward association between cue wc

i

and response wr,j . LetRg
i refer to the ground truth

ranked list for wc
i , which contains only responses

where fsgi,j > 0 in the USF data, and Rs
i to the

ranked list retrieved by an automatic system.
The vocabulary or search space from which re-

sponses for all cues are drawn is labeled V r. Note
that V r may also contain words fromWc and that
V r may contain words that do not occur in any of
the ground truth listsRg

i .

Why Evaluate on Word Association? A stan-
dard evaluation protocol with word pair scoring
evaluation sets such as SimLex-999 or MEN is to
compute Spearman’s ρ correlations between the
ranking obtained by an automatic system and the
ground truth ranking. This protocol, however, is
not directly applicable to the USF test data. First,
the evaluated relation of WA is asymmetric, and the
pairs (X,Y ) and (Y,X) may differ dramatically
in their WA scores (see the difference in FSG and
BSG values from Tab. 1). Second, instead of one
global list of pairs, the data comprises a series of
ranked lists conditioned on the cue/normed word
wc (see Tab. 1 again). Finally, unlike with SimLex-
999 or MEN scores where it is difficult to inter-
pret “what a similarity/relatedness of 7.69 exactly
means” (Batchkarov et al., 2016; Avraham and
Goldberg, 2016), the USF FSG scores have a direct
meaningful interpretation (i.e., FSG = #P/#G).
To fully capture all aspects of the ground truth USF
data set, an evaluation protocol should ideally be
based not only on response rankings, but also on
the actual scores, i.e., the association strength.

In this paper, we propose and investigate two
different families of evaluation metrics on the USF
data: Sect. 3.1 discusses rank correlation evaluation
metrics inspired by recent work on the evaluation
of vector space models in distributional semantics
(Bruni et al., 2014; Hill et al., 2015; Vulić et al.,
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2016, inter alia). Sect. 3.2 draws inspiration from
research on evaluation in information retrieval (IR).
We show that the problem of evaluating USF asso-
ciation lists may be naturally framed as an ad-hoc
IR task (Manning et al., 2008). This enables the
application of standard IR evaluation methodology.

3.1 Rank Correlation Evaluation

Averaged Standard Spearman’s Correlation
The first protocol, labeled ρ-std, first computes
the standard Spearman’s ρ correlation betweenRg

i

andRs
i . The system listRs

i is pruned so that it con-
tains only those items that also occur in Rg

i . The
two lists are then correlated to obtain the score ρi
for cue wc

i .
Following that, the correlation scores are aver-

aged. First, we apply the Fisher z-transformation
(Fisher, 1915) and then average over the trans-
formed scores:

zi =
1

2
ln
(1 + ρi
1− ρi

)
= arctanh(ρi) (1)

zavg =

|Wc|∑

i=1

zi (2)

The final output score is obtained by applying the
inverse z-transformation on zavg:

ρavg = tanh(zavg) (3)

Averaged Weighted Spearman’s Correlation
The previous protocol treats all ranks equally, de-
spite the fact that the system should be rewarded
more for getting the strongest responses correct
(and penalised when failing to do so). Therefore,
we also experiment with weighted rank correlation
measures, which weigh the distance between two
ranks, and assign more importance to higher ranks
(i.e., in our setting, to stronger associates).

Several weighted correlation metrics have been
proposed (Blest, 2000; Pinto da Costa and
Soares, 2005; Dancelli et al., 2013; Pinto da
Costa, 2015). We show results with the weighted
Spearman’s correlation (further labelled ρ-w)
from Pinto da Costa (2015).7 Let us de-
note Q1 = [Q1,1, Q1,2, . . . , Q1,n] and Q1 =
[Q2,1, Q2,2, . . . , Q2,n] two vectors of ranks ob-
tained on a sample of size n. The weighted rank
correlation ρ between the vectors is computed as:

7We also experimented with other weighted variants, but
detected similar trends in reported model rankings.

1−
6

n∑

i=1

(Q1,i −Q2,i)((n−Q1,i + 1) + (n−Q2,i + 1))

n4 + n3 − n2 − n
(4)

We refer the interested reader to the relevant lit-
erature (Pinto da Costa, 2015) for further details,
theoretical implications and property proofs related
to Eq. (4). ρi scores for all cue wordsWc are then
obtained using Eq. (4), and the averaged score ρavg
is computed as before, see Eq. (1)-Eq. (3).

While the two metrics are intuitive and capture
the ability of models to correctly rank (a subset of)
associates/responses, note that they have deficien-
cies. They only evaluate the rankings of words oc-
curring inRg

i , which effectively reduces the search
space V r to the small subset {w1, . . . , w|Rg

i |} ⊂
V r. This effectively means that the final score
simply ignores incorrect responses that are ranked
highly by a system but that do not occur inRg

i . It
also does not take into account the actual strength
of association.

3.2 IR-Inspired Evaluation
Intuition Another set of evaluation metrics is in-
spired by the resemblance of the USF data structure
to the typical output of ad-hoc IR systems (Man-
ning et al., 2008; Pound et al., 2010). That is, each
cue word wc can be thought of as an input query
issued against some target concept collection V r,
where the goal of our association retrieval system
is to rank items from the target collection according
to their relevance (i.e., their association strength)
to the issued query. The output of the system is the
ranked list Rs

i of length |V r|, with ground truth
relevance assessments provided inRg

i .

MRR and MAP The first two metrics assume
non-weighted or binary relevance: the retrieved re-
sponse is either relevant to the issued cue (labeled
1) or it is non-relevant (0). We assume that all re-
sponses found in the ground truth lists Rg

i where
fsgi,j > t are relevant responses, where t is a
threshold.8 We label this reduced set of relevant
responsesRRg

i .
The most lenient evaluation metric is Mean Re-

ciprocal Rank (MRR) (Voorhees, 1999; Craswell,
8In our experiments, we impose a simple heuristic and

take responses as relevant if they were generated by at least 3
different human subjects in the USF experiments. This heuris-
tic reduces the noise in human answers and provides a more
coherent set of responses.
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2009). The reciprocal rank of a query response is
the multiplicative inverse of the rank of the first rel-
evant answer, and the final score is then averaged
over all |Wc| queries/cues. More formally:

MRR(Wc) =
1

|Wc|

|Wc|∑

i=1

1

ranki
(5)

where ranki is the rank position of the first relevant
response (i.e., the first response found in the set
RRg

i ) for the cue word wc
i .

Since MRR cannot assess multiple correct an-
swers and their ranking in the retrieved list, an al-
ternative metric is Mean Average Precision (MAP):

MAP (Wc) =
1

|Wc|

|Wc|∑

i=1

AP (wc
i ) (6)

AP (wc
i ) =

∑N
k=1 Pk · irelk
|RRg

i |
(7)

Here, AP (wc
i ) denotes Average Precision for

query/cue wc
i , N ≤ |V r| denotes the number of

responses retrieved by the system. Pk is the preci-
sion at cut-off k in the list, and irelk is an indica-
tor function which ’turns on’ only if the response
at rank k is the relevant response (i.e., present in
RRg

i ). The average is computed over all relevant
responses, and the non-retrieved relevant responses
from V r get a precision score of 0. N << |V r| is
typically used (e.g., standard values are N = 100
or N = 1000) to reduce the execution time of the
evaluation procedure, since it is expected that a
good retrieval system should obtain a majority of
relevant responses in the first N responses.

Compared to measures from Sect. 3.1, MRR and
MAP are better estimators of the model’s ability
to capture word association, as they operate over
the entire search space V r for each cue word. This
effectively means that systems get rewarded if they
are able to consistently rank relevant responses
higher than non-relevant responses. However, these
metrics still rely on binary non-weighted relevance
judgements, and are therefore unable to reward
models that rank highly relevant responses (i.e.,
strongly associated responses, see Tab. 1) higher
than weakly relevant responses.

NDCG@k In other words, the most expressive
evaluation metric should be able to distinguish
that cue-response pairs such as (lunch, dinner) and
(lunch, food) should be ranked higher than weakly
associated pairs such as (lunch, box) or (lunch,

sandwich). In addition, the metric should still re-
ward models that rank relevant responses higher
than non-relevant ones.

An IR metric which takes all these aspects into
account is Discounted Cumulative Gain (DCG)
(Järvelin and Kekäläinen, 2002). DCG operates
with weighted relevance values: in the USF sce-
nario, these are forward association strengths, i.e.,
scores fsgi,j . The main idea behind using DCG is
that highly relevant responses appearing lower in
a ranked list should be penalised. The penalty is
implemented by reducing the weighted relevance
value logarithmically proportional to the position
of the particular response. We opt for a more re-
cent variant of DCG which puts more emphasis on
retrieving relevant responses (Burges et al., 2005).
DCG@k, the DCG score accumulated at a particu-
lar rank position k is computed as follows:

DCG@k =
k∑

i=1

2wreli − 1

log2(i+ 1)
(8)

wreli is the graded relevance of the response at
rank i given by the ground truth data, i.e., fsgi,j if
the cue-response pair occurs inRg

i , or 0 otherwise.
To make results comparable across different

queries, a normalised variant of DCG is typically
used. First, all relevant responses are sorted by their
graded relevance value, producing the maximum
possible DCG at each position k. The score of
the ideal ranking at rank k is called Ideal DCG
(IDCG@k). NDCG@k for a single query is then:

NDCG@k =
DCG@k

IDCG@k
(9)

Finally, the mean NDCG@k is produced for the
entire collectionWc by averaging over all single
NDCG@k values. In all experiments we rely on a
standard choice for k: NDCG@100, while similar
trends are observed with NDCG@10.

4 Experimental Setup and Models

LDA-Based Approach First, we evaluate an ap-
proach based on latent topic modeling, rooted in the
psychology literature (Steyvers et al., 2004; Grif-
fiths et al., 2007; Steyvers and Griffiths, 2007).9

The following quantitative model of word associa-
tion has been proposed (Griffiths et al., 2007):

9Griffiths et al. (2007) also experimented with LSA (Lan-
dauer and Dumais, 1997) and found that their LDA-based
approach consistently outperformed LSA-based approaches.
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P (wr|wc) =

M∑

i=1

P (wr|toi)P (toi|wc) (10)

where wc is a cue word, wr ∈ V r any concept
from the search space, and toi is the ith latent topic
from the set of M topics induced from the corpus
data (using LDA). We label this model LDA-assoc.
The probability scores P (wr|toi) select words that
are highly descriptive for each particular topic.
P (toi|wc) scores are computed as in prior work, by
assuming topic independence and applying Bayes’
rule on the LDA output per-topic word distributions
P (·|toi) (Steyvers and Griffiths, 2007; Vulić and
Moens, 2013).10 We train LDA with 1,000 topics
using suggested parameters (Griffiths et al., 2007).

Count-Based Models We evaluate the best per-
forming reduced count-based model from (Baroni
et al., 2014). We label this model count-ppmi-
500d.11 For a more detailed description of the
model’s training data and setup we refer the reader
to the original work and supplementary material.

Vector Space Models We also compare the
performance of prominent representation mod-
els on the WA USF task. We include: (1) un-
supervised models that learn from distributional
information in text, including Glove (Penning-
ton et al., 2014) with d = 50 and d = 300
dimensions (glove-6B-50d and glove-6B-300d),
the skip-gram negative-sampling (SGNS) 300-
dimensional vectors (Mikolov et al., 2013) with var-
ious contexts (bow = bag-of-words; deps = depen-
dency contexts) as in (Levy and Goldberg, 2014)
and (Schwartz et al., 2015) (sgns-pw-bow-w2,
sgns-pw-bow-w5, sgns-pw-deps, sgns-8b-bow-
w2), and the symmetric-pattern based vectors by
Schwartz et al. (2015) (sympat-500d); (2) Models
that rely on linguistic hand-crafted resources or cu-
rated knowledge bases. Here, we use vectors fine-
tuned to a paraphrase database (paragram-25d,

10The generative model closely resembles the actual pro-
cess in the human brain (Griffiths et al., 2007) - when we
generate responses, we first tend to associate that word with
a related semantic/cognitive concept, i.e., a latent topic (the
factor P (toi|wc)), and then, after establishing the concept,
we output a list of words that we consider the most promi-
nent/descriptive for that concept (words with high scores in
the factor P (wr|toi)).

11We have also experimented with simple count-based
asymmetric association measures proposed by Michelbacher
et al. (2007), estimated using the same corpus as the count-
ppmi-500d model. We do not report the results with these
measures, as they show a very poor performance when com-
pared to all other models in our comparison.

paragram-300d, (Wieting et al., 2015)) further re-
fined using linguistic constraints (paragram+cf-
300d, (Mrkšić et al., 2016)); (3) Multilingual em-
bedding models from Luong et al. (2015) (biskip-
256d) and Faruqui and Dyer (2014) (bicca-512d).
More detailed descriptions of all VSM models are
available in the listed papers and supplementary
material attached to this work.

USF Data Processing and Parameters Only
USF pairs where both words are single word ex-
pressions were retained, and the rest was discarded.
This yields 4,992 single word queries in total. The
total number of finally retained USF pairs is ≈
70,000. Note that this evaluation set is by an or-
der of magnitude larger than current benchmarking
word pair scoring datasets such as MEN (3000
word pairs in total), SimVerb (3500), SimLex (999)
and Rare Words (2034), and thus allows for a truly
comprehensive evaluation of quantitative WA mod-
els. Only responses generated by at least 3 human
subjects in each list of responses are taken as rele-
vant in all experiments (see Foot. 7 in Sect. 3.2), all
other (cue, response) pairs and pairs not present
in the USF data are considered non-relevant.12

5 Results and Discussion

Exp. I: Making the Evaluation Tractable
Computational complexity is not an issue for stan-
dard semantic benchmarks such as SimLex-999
or MEN: these data sets require only Ngt sim-
ilarity computations in total, where Ngt is the
number of word pairs in each benchmark (999 or
3000). However, complexity plays a major role
in the USF evaluation: the system has to com-
pute |Wc| · |V r| similarity scores, where |Wc| ≈
5, 000, and |V r| is large for large vocabularies
(typically covering > 100K words). In addition,
each list of |V r| has to be sorted according to the
WA strength: this means that the complexity is
O(|Wc| · (|V r|+ |V r| log |V r|)).

Since this is prohibitively expensive, our so-
lution is to restrict the search space V r only to
words (both cues and responses) occurring in USF:
|V r| = 10, 070.13 Besides the gains in evaluation
efficiency, when using the USF vocabulary all mod-
els operate over exactly the same search space:

12For efficiency reasons with IR metrics, we evaluate results
only over the top N = 1000 retrieved responses for each cue.

13Prior work shows that the USF data represents a good
range of distinct semantic phenomena (Hill et al., 2015), which
suggests that the USF vocabulary represents a balanced sample
of the English vocabulary.
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V r = 100K V r = USF

Model MRR MAP NDCG MRR MAP NDCG

glove-6B-50d [4988] 0.233 (4) 0.072 (3) 0.190 (3) 0.318 (5) 0.105 (5) 0.249 (5)
glove-6B-300d [4988] 0.303 (1) 0.112 (1) 0.280 (1) 0.473 (1) 0.183 (1) 0.380 (1)
sgns-pw-bow-w2 [4970] 0.177 (6) 0.047 (7) 0.129 (6) 0.315 (6) 0.098 (6) 0.226 (6)
sgns-pw-bow-w5 [4970] 0.235 (3) 0.066 (5) 0.176 (5) 0.372 (3) 0.122 (4) 0.278 (4)
sgns-pw-deps [4953] 0.164 (8) 0.041 (8) 0.107 (8) 0.281 (8) 0.081 (8) 0.187 (8)
sgns-8b-bow-w2 [4982] 0.239 (2) 0.078 (2) 0.218 (2) 0.452 (2) 0.169 (2) 0.358 (2)
paragram-25d [4902] 0.174 (7) 0.048 (6) 0.121 (7) 0.309 (7) 0.092 (7) 0.198 (7)
paragram+cf-300d [4971] 0.221 (5) 0.067 (4) 0.179 (4) 0.371 (4) 0.130 (3) 0.284 (3)

Table 2: The effects of reducing the search space V r to speed up the evaluation process. The numbers in
parentheses are relative rankings of each model (1-8) according to the particular evaluation metric. The
numbers in square brackets report the coverage of each model (the total number of USF queries is 4992).

Model ρ-std ρ-w MRR MAP NDCG

LDA-assoc 0.230 0.221 0.153 0.048 0.128

count-ppmi-500d 0.255 0.249 0.294 0.094 0.226

glove-6B-50d 0.280 0.277 0.318 0.105 0.249
glove-6B-300d 0.337 0.339 0.473 0.183 0.380
sgns-pw-bow-w2 0.263 0.259 0.315 0.098 0.226
sgns-pw-bow-w5 0.283 0.280 0.372 0.122 0.278
sgns-pw-deps 0.240 0.234 0.281 0.081 0.187
sgns-8b-bow-w2 0.322 0.324 0.452 0.169 0.358
sympat-500d 0.194 0.189 0.221 0.069 0.180

paragram-25d 0.222 0.217 0.309 0.092 0.198
paragram-300d 0.302 0.298 0.388 0.138 0.300
paragram+cf-300d 0.265 0.268 0.372 0.067 0.179

biskip-256d 0.255 0.253 0.283 0.091 0.212
bicca-512d 0.311 0.310 0.371 0.132 0.303

Table 3: Results on the USF WA task using differ-
ent evaluation metrics proposed in Sect. 3. V r =
USF for all models. The best results per column
are in bold, second best in italic.

therefore, their results are directly comparable as
the data coverage bias should be largely mitigated.

To fully support this choice, we perform a simple
experiment using a subset of models from Sect. 4.
In the first evaluation, V r contains the most fre-
quent 100K words for all models, where frequency
was computed on their respective training data. In
the second evaluation, V r contains only the USF
vocabulary words. The results with IR-style metrics
are shown in Tab. 2, and similar trends are observed
with Spearman’s ρ correlations.

The results support several conclusions. (i) Cov-
erage over cue words is very high for all models
(the model with the lowest coverage from Tab. 2 has
a coverage of 98.2%). This, along with the same
search space (the USF vocabulary) indicates a fair
comparison of different models. (ii) Different IR
metrics produce consistent model rankings, with a
slight variation in the middle of the rankings. Inter-
estingly, the best scoring model is Glove, a model
which uses document-level co-occurrence, which
steers it towards learning topical similarity. On the

other hand, the worst performing model relies on
dependency-based contexts which better capture
functional similarity (Levy and Goldberg, 2014)
and outperform other context choices in word sim-
ilarity tasks on SimLex and SimVerb (Melamud
et al., 2016; Gerz et al., 2016). (iii) Most impor-
tantly, the reduction of V r again yields consistent
rankings with all metrics, which are also fairly con-
sistent with the rankings obtained in the ten times
larger 100K search space. Therefore, in all further
experiments we use the USF vocabulary as our
search space.

Exp. II: Results on USF WA Next, we evaluate
all models from Sect. 3 on the WA task. The results
with different metrics are summarised in Tab. 3.
The results suggest that all proposed evaluation
metrics indeed reflect the ability of different models
to capture WA. We observe strong correlations of
the models’ rankings with all five metrics (Tab. 4).
ρ-w is a slightly more conservative metric than ρ-
std on average, but it does not affect model rankings
at all (see also Tab. 4).

Further, the LDA-based WA model (Griffiths et
al., 2007) is largely outperformed by VSM-based
approaches. As expected, similar VSMs with more
dimensions are more expressive and score higher
(e.g., note the scores with glove and paragram mod-
els). Additionally, models trained on larger corpora
are also able to improve the overall results (e.g.,
note the scores with sgns trained on the Polyglot
Wikipedia (PW, 2B tokens) vs. the 8B word2vec
corpus). The paragram models specialised for simi-
larity tasks are unable to match unsupervised VSMs
that train on running text (e.g., paragram+cf-300d
obtains a SimLex score of 0.74 compared to 0.46
with sgns-8b-bow-w2).

Two models using bilingual training (biskip-
256d and bicca-512d) seem unable to match the
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Figure 1: Influence of the window size on the ability of vector space models to capture Similarity (evaluated
on SimLex-999), Relatedness (MEN), and Association (USF) (a) Spearman’s ρ-std correlations on all
three data sets; (b) Behaviour of other evaluation metrics used in the USF evaluation. All tested models
are SGNS, d = 300, and the only varied hyper-parameter is the window size.

Association (WA) Similarity Relatedness

MAP MRR NDCG ρ-std ρ-w SimLex SimVerb MEN RareWords

MAP 1.0 0.966 0.986 0.958 0.958 0.088 0.169 0.729 0.645
MRR 0.972 1.0 0.933 0.921 0.921 0.076 0.129 0.626 0.701
NDCG 0.986 0.944 1.0 0.975 0.975 -0.012 0.080 0.722 0.544
ρ-std 0.951 0.923 0.972 1.0 1.0 -0.184 -0.088 0.639 0.425
ρ-w 0.951 0.923 0.972 1.0 1.0 -0.184 -0.088 0.639 0.425

SimLex 0.063 0.098 -0.042 -0.203 -0.203 1.0 0.975 0.370 0.666
SimVerb 0.140 0.098 0.049 -0.111 -0.111 0.972 1.0 0.482 0.667

MEN 0.741 0.657 0.741 0.671 0.671 0.342 0.448 1.0 0.591
RareWords 0.643 0.699 0.538 0.433 0.433 0.622 0.608 0.580 1.0

Table 4: Spearman’s ρ correlations between different evaluation protocols for vector space models divided
into (a) Association, (b) Similarity, and (c) Relatedness. The correlation scores are based on the rankings
of all the evaluated models (see Sect. 4.1) in each experiment. The lower-left part of the table (below the
main diagonal, in lighter gray) reports standard Spearman’s ρ-std correlations between different model
rankings, while ρ-w is reported in the upper-right part (in darker gray). We report model rankings based
on the 5 different metrics introduced for the WA USF evaluation. Model rankings for Similarity and
Relatedness experiments are according to the ρ-std correlation on the respective ground truth data sets.

best performing monolingual models: however, we
plan to further analyse the influence of bilingual
information in the WA task in future work.

Finally, a comparison of sgns-pw-* models
(where the only varied parameter is the context
used in training) reveals that (i) larger windows im-
prove WA scores (we test this phenomenon further
in Exp. III), (ii) sgns-pw-deps, which captures func-
tional similarity through dependency-based con-
texts, yields lower WA scores, while it improves
on SimLex-999 compared to the other two mod-
els. This insight leads us to further investigate this
phenomenon in Exp. IV.

Exp. III: Window Size In the next experiment,
we analysed the effect of the window size on

models’ ability to capture similarity, relatedness,
and association. We train the sgns-pw-bow model
(d = 300) with varying window sizes in the inter-
val [1, 30]. The results on similarity (SimLex-999),
relatedness (MEN), and WA benchmarks (USF)
are presented in Fig. 1(a)-1(b). It is clear that us-
ing larger windows deteriorates the performance
on SimLex-999 as the focus of the model is shifted
from functional to topical similarity. This shift has
been detected in prior work on vector space models
(Kiela and Clark, 2014). However, we also observe
a similar trend with MEN scores, although an op-
posite effect was expected, which questions the
ability of MEN to accurately evaluate relatedness.
The opposite effect is, however, visible with the
WA evaluation, where it is evident that larger win-
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dows (leading to topical similarity) lead to better
WA estimates. This also provides the first hint that
WA and semantic similarity capture two completely
distinct semantic phenomena.

Exp. IV: WA vs. Similarity vs. Relatedness We
delve deeper into this conjecture by computing cor-
relations between model rankings on the WA task
and two prominent similarity and relatedness data
sets. The results from Tab. 4 indicate the following.
First, semantic relatedness and similarity are cor-
related although they clearly refer to two distinct
semantic phenomena as emphasised in prior work
(Hill et al., 2015). The correlations between differ-
ent metrics proposed for the WA task are very high
(e.g., the lowest correlation score among any of
the two is ρ = 0.921). Second, WA and similarity
capture very distinct relations (this is evident from
low, even negative ρ correlation scores). Third, WA
and relatedness are strongly correlated,14 but the
correlation is not as high as expected, given that the
two are often considered equivalent, e.g., (Kiela et
al., 2015). Future work should investigate whether
the difference originates from inadequate evalua-
tion data and protocols (see Fig. 1(a)-1(b) again),
or whether the difference is fundamental.

6 Conclusion and Future Work

We have proposed and released a new end-to-end
evaluation framework for the task of free word as-
sociation (WA). We have also provided new evalu-
ation metrics inspired by research in IR, and guide-
lines for evaluating semantic representation models
on the quantitative WA task.

Besides serving as a gold standard in NLP, the
comprehensive WA evaluation resource and accom-
panying evaluation protocol should enable the de-
velopment of data-driven automatic systems that
can capture the notion of word association, and
further analysis on how humans perceive (types
of) semantic relatedness and similarity (Spence
and Owens, 1990; Maki and Buchanan, 2008;
De Deyne et al., 2013). These systems, as discussed
in this paper, may additionally facilitate research in
cognitive psychology pertaining to human semantic
representation and memory.

14Although it comes as slightly counter-intuitive, research
in statistics has shown that transitivity between correlation
coefficients does not hold in general (Langford et al., 2001;
Castro Sotos et al., 2009). Therefore, the observed behaviour is
possible: Relatedness indeed correlates both with Association
and with Similarity, while at the same time we do not observe
any correlation between Association and Similarity.

In future work, we plan to test the portability
of the evaluation protocol and apply it to other
repositories of word association data in English
(De Deyne et al., 2016), as well as in other lan-
guages, using existing WA tables in, e.g., German
(Schulte im Walde et al., 2008), Dutch (De Deyne
and Storms, 2008; Brysbaert et al., 2014), Italian
(Guida and Lenci, 2007), Japanese (Joyce, 2005),
or Cantonese (Kwong, 2013).15

In another line of future work, we will experi-
ment with other “cognitively plausible” evaluation
data such as N400 (Kutas and Federmeier, 2011;
Ettinger et al., 2016), and will analyse the similar-
ities and differences between WA and other such
“cognitive” evaluation protocols, as the one relying
on semantic priming (SPP) (Hutchison et al., 2013;
Ettinger and Linzen, 2016).

All evaluation scripts and detailed guidelines
related to this work are freely available at:
github.com/cambridgeltl/wa-eval/
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Supplementary Material

Vector Space Models

We evaluate a suite of pre-trained vector space mod-
els readily accessible online. We note that these
models typically use different training data and
other additional resources, and have a varying cov-
erage of the English lexicon, but the evaluation
score still reveals their ability to effectively capture
word association. As mentioned in the paper, we
have aimed at making the comparison fair by eval-
uating all models using the USF vocabulary as the
search space for each model in our comparison.
(0) We evaluate a traditional count-based repre-
sentation model which uses positive PMI weight-
ing and SVD dimensionality reduction. This is
the best performing reduced count-based model
from (Baroni et al., 2014). The model was trained
on concatenated ukWaC, the English Wikipedia
and the British National Corpus with the window
size 2, and dimensionality after SVD is set to
d = 500. Vectors were obtained online.16 We label
this model count-ppmi-500d.

(1) Two sets of Glove vectors (Pennington et al.,
2014) were used (d = 50 and d = 30) trained
on the 6B corpus of concatenated Wikipedia and
GigaWord:17 glove-6B-50d and glove-6B-300d.

(2) Pre-trained vectors obtained using skip-gram
with negative sampling (SGNS) (Mikolov et al.,
2013). We use SGNS vectors from (Levy and
Goldberg, 2014): sgns-pw-bow-w2 and sgns-pw-
bow-w5 denote vectors trained with bag-of-words
(BOW) contexts on the Polyglot Wikipedia (PW)
(Al-Rfou et al., 2013) with window sizes 2 and 5,
respectively; sgns-pw-deps denotes vectors trained
with dependency-based contexts. All vectors are
300-dimensional.18 For more details including the
preprocessing procedure and the specification of
the used dependency parser, we refer the reader
to the original work. We evaluate another SGNS-
BOW model trained on a large 8B corpus with the
window size 2 and d = 500 to measure the poten-
tial gains stemming from the use of larger training

16http://clic.cimec.unitn.it/composes/semantic-
vectors.html

17http://nlp.stanford.edu/projects/glove/
18https://levyomer.wordpress.com/publications/

corpora.19 This model was used as a baseline in
(Schwartz et al., 2015): sgns-8b-bow-w2.

(3) A template-based approach to vector space
modeling introduced by Schwartz et al. (2015).
Vectors are trained based on co-occurrence of
words in symmetric patterns (Davidov and Rap-
poport, 2006). We use pre-trained dense vectors
(d = 500) trained on the 8B corpus available on-
line:20 sympat-500d.

(4) Models that use additional linguistic reposi-
tories to build semantically specialised improved
word vectors. Wieting et al. (2015) use the Para-
phrase Database (PPDB) (Ganitkevitch et al., 2013)
to learn word vectors which emphasise para-
phrasability. They do this by fine-tuning, also
known as retro-fitting (Faruqui et al., 2015), SGNS
vectors using an objective function designed to in-
corporate the PPDB semantic similarity constraints.
We test two variants of the Paragram model (d =
25 and d = 300) available online:21 paragram-
25d and paragram-300d.

Another variant of the fine-tuning procedure
called counter-fitting (CF) was recently proposed by
Mrkšić et al. (2016). The model further improves
the Paragram vectors by injecting antonymy con-
straints from PPDB v2.0 (Pavlick et al., 2015) into
the final vector space. d = 300. We label this model
paragram+cf-300d.22

(5) Two multilingual pre-trained embedding mod-
els, aiming to test whether multilingual supervi-
sion can help in capturing word association the
same way it helps semantic similarity tasks. We use
pre-trained vectors of (Luong et al., 2015) (biskip-
256d) which rely on word-aligned parallel data,23

and CCA-based vectors of Faruqui and Dyer (2014)
(bicca-512d) which require readily available trans-
lation lexicons.24 As bilingual representations are
not the main focus of this work, for further training
details, we refer the reader to the literature.

19code.google.com/p/word2vec/source/browse/trunk/demo-
train-big-model-v1.sh

20http://homes.cs.washington.edu/∼roysch/papers/
sp embeddings/sp embeddings.html

21http://ttic.uchicago.edu/∼wieting/
22https://github.com/nmrksic/counter-fitting
23http://stanford.edu/∼lmthang/bivec/
24http://www.manaalfaruqui.com/
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Abstract

Research on computational argumentation
faces the problem of how to automatically
assess the quality of an argument or argu-
mentation. While different quality dimen-
sions have been approached in natural lan-
guage processing, a common understand-
ing of argumentation quality is still missing.
This paper presents the first holistic work
on computational argumentation quality in
natural language. We comprehensively sur-
vey the diverse existing theories and ap-
proaches to assess logical, rhetorical, and
dialectical quality dimensions, and we de-
rive a systematic taxonomy from these. In
addition, we provide a corpus with 320 ar-
guments, annotated for all 15 dimensions in
the taxonomy. Our results establish a com-
mon ground for research on computational
argumentation quality assessment.

1 Introduction

What is a good argument? What premises should it
be based on? When is argumentation persuasive?
When is it reasonable? We subsume such ques-
tions under the term argumentation quality; they
have driven logicians, rhetoricians, linguists, and
argumentation theorists since the Ancient Greeks
(Aristotle, 2007). Now that the area of computa-
tional argumentation is seeing an influx of research
activity, the automatic assessment of argumentation
quality is coming into the focus, due to its impor-
tance for envisioned applications such as writing
support (Stab and Gurevych, 2014) and argument
search (Wachsmuth et al., 2017), among others.

Existing research covers the mining of argument
units (Al-Khatib et al., 2016), specific types of evi-
dence (Rinott et al., 2015), and argumentative rela-
tions (Peldszus and Stede, 2015). Other works clas-

sify argumentation schemes (Feng et al., 2014) and
frames (Naderi and Hirst, 2015), analyze overall
argumentation structures (Wachsmuth et al., 2015),
or generate claims (Bilu and Slonim, 2016). Also,
theories of argumentation quality exist, and some
quality dimensions have been assessed computa-
tionally (see Section 2 for details). Until now, how-
ever, the assertion of O’Keefe and Jackson (1995)
that there is neither a general idea of what consti-
tutes argumentation quality in natural language nor
a clear definition of its dimensions still holds.

The reasons for this deficit originate in the vary-
ing goals of argumentation: persuading audiences,
resolving disputes, achieving agreement, complet-
ing inquiries, and recommending actions (Tindale,
2007). As a result, diverse quality dimensions play
a role, which relate to the logic of arguments, to the
style and rhetorical effect of argumentation, or to
its contribution to a discussion. Consider the fol-
lowing argument against the death penalty:1

Everyone has an inalienable human right to life,
even those who commit murder; sentencing a per-
son to death and executing them violates that right.

Although implicit, the conclusion about the death
penalty seems sound in terms of (informal) logic,
and the argument is clear from a linguistic view-
point. Some people might not accept the first stated
premise, though, especially if emotionally affected
by some legal case at hand. Or, they might not
be persuaded that the stated argument is the most
relevant in the debate on death penalty.

This example reveals three central challenges:
(1) Argumentation quality is assessed on different
levels of granularity; (2) many quality dimensions
are subjective, depending on preconceived opin-
ions; and (3) overall argumentation quality seems
hard to measure, as the impact and interaction of
the different dimensions remain unclear.

1Taken from www.bbc.co.uk/ethics/capitalpunishment.
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This paper does not propose a specific approach
to assess quality; rather it defines a common ground
by providing a so-far-missing holistic view on argu-
mentation quality assessment in natural language.
In particular, we first briefly but comprehensively
survey all major theories and computational approa-
ches for argumentation quality. Following Blair
(2012), we distinguish three main quality aspects,
each associated with several quality dimensions:

• Logical quality in terms of the cogency or
strength of an argument.

• Rhetorical quality in terms of the persuasive
effect of an argument or argumentation.

• Dialectical quality in terms of the reasonable-
ness of argumentation for resolving issues.

We organize the survey along these aspects, dis-
cussing quality at four levels of granularity: (1) ar-
gument unit, i.e., a segment of text that takes the
role of a premise or conclusion; (2) argument, i.e., a
composition of premises and a conclusion, some of
which may be implicit; (3) (monological) argumen-
tation, i.e., a composition of arguments on a given
issue; and (4) (dialogical) debate, i.e., a series of
interacting argumentation on the same issue.

To unify and to consolidate existing research, we
then derive a generally applicable taxonomy of
argumentation quality from the survey. The taxon-
omy systematically decomposes quality assessment
based on the interactions of 15 widely accepted
quality dimensions (including the overall quality).
Moreover, we provide a new annotated corpus with
320 arguments for which three experts assessed all
15 dimensions, resulting in over 14,000 annotations.
Our analysis indicates how the dimensions interact
and which of them are subjective, making the cor-
pus an adequate benchmark for future research.

In summary, the contributions of this paper are:

1. A comprehensive survey of research on argu-
mentation quality assessment (Section 2).

2. A taxonomy of all major quality dimensions of
natural language argumentation, which clari-
fies their roles and dependencies (Section 3).

3. An annotated corpus for computational argu-
mentation quality assessment (Section 4).2

2 Survey of Argumentation Quality

This section briefly surveys all major existing the-
ories and the assessment of natural language argu-

2The corpus is freely available at: http://www.arguana.com

mentation quality. While we order the discussions
along the three main quality aspects, we point out
overlaps and interrelations where relevant.

2.1 Theories of Argumentation Quality

We focus on the major fields dealing with argumen-
tation quality in natural language: argumentation
theory and rhetoric. Table 1 gives an overview of
the quality dimensions that we detail below.

Logic Formal argumentation studies the soundness
of arguments, requiring the truth of an argument’s
premises and the deductive validity of inferring
its conclusion. In case of inductive strength, the
conclusion becomes probable given the premises.
While sound arguments exist in natural language,
most are defeasible in nature (Walton, 2006). The
desired property of such arguments is cogency.

A cogent (or logically good) argument has in-
dividually acceptable premises that are relevant to
the argument’s conclusion and, together, sufficient
to draw the conclusion (Johnson and Blair, 2006).
Here, (local) acceptability means that a premise is
rationally worthy of being believed by the target au-
dience of the argument. It replaces truth, which is
often unclear (Hamblin, 1970). A premise’s (local)
relevance refers to the level of support it provides
for the conclusion, and (local) sufficiency captures
whether the premises give enough reason to accept
the conclusion. In the end, sufficiency thus presup-
poses relevance (Blair, 2012). While acceptability
is more dialectical, overall the three dimensions of
cogency are, with slight variations, acknowledged
to cover the logical quality of arguments.

Damer (2009) adds that a good argument also
depends on the rebuttal it gives to anticipated coun-
terarguments (a dialectical property) as well as on
its structural well-formedness, i.e., whether it is in-
trinsically consistent, avoids begging the question,
and uses a valid inference rule. These dimensions
adopt ideas from the argument model of Toulmin
(1958), including rebuttals and warrants, and from
the argumentation schemes of Walton et al. (2008),
whose critical questions are meant to evaluate infer-
ence rules. While not focusing on quality, critical
questions particularly help identify fallacies.

Introduced by Aristotle as invalid arguments, fal-
lacies have been brought back to attention by Ham-
blin (1970). In general, a fallacy has some sort of
error in reasoning (Tindale, 2007). Fallacies range
from resorting to inapplicable evidence types or
irrelevant premises to rhetoric-related errors, such
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Aspect Quality Dimension Granularity Sources
Logic Cogency Argument Johnson and Blair (2006), Damer (2009), Govier (2010)

Local relevance Argument (unit) Johnson and Blair (2006), Damer (2009), Govier (2010)
Local sufficiency Argument Johnson and Blair (2006), Damer (2009), Govier (2010)
Well-Formedness Argument Walton et al. (2008), Damer (2009)

Dialectic Global sufficiency Argument Toulmin (1958), Damer (2009)
Dialectic Local acceptability Argument (unit) Johnson and Blair (2006), Damer (2009), Govier (2010)

Fallaciousness Argument (unit) Hamblin (1970), Tindale (2007), Walton et al. (2008)
Local relevance Argument (unit) Hamblin (1970), Tindale (2007)
Local sufficiency Argument Hamblin (1970), Tindale (2007)
Validity Argument Hamblin (1970), Tindale (2007)
Well-Formedness Argument Hamblin (1970), Tindale (2007)
Strength Argument Perelman et al. (1969), Tindale (2007), Freeman (2011)

Rhetoric Effectiveness Argument(ation) Perelman et al. (1969), O’Keefe and Jackson (1995)
Arrangement Argumentation Aristotle (2007), Damer (2009)
Appropriateness of style Argumentation Aristotle (2007)
Clarity of style Argumentation Aristotle (2007), Tindale (2007), Govier (2010)
Credibility Argumentation Aristotle (2007)
Emotional appeal Argumentation Aristotle (2007), Govier (2010)

Logic Soundness Argument Aristotle (2007)

Dialectic Convincingness Argumentation Perelman et al. (1969)
Global acceptability Argument(ation) Perelman et al. (1969)
Reasonableness Argumentation, debate van Eemeren and Grootendorst (2004)
Global acceptability Argument(ation) van Eemeren and Grootendorst (2004)
Global relevance Argument(ation) van Eemeren and Grootendorst (2004), Walton (2006)
Global sufficiency Argumentation, debate Cohen (2001)

Table 1: Theoretical treatment of quality dimensions in the referenced sources for the given granularities
of natural language argumentation, grouped by the aspect the bold-faced high-level dimensions refer to.

as unjustified appeals to emotion. They represent
an alternative assessment of logical quality. Fol-
lowing Damer (2009), a fallacy can always be seen
as a violation of one or more dimensions of good
arguments. Fallaciousness negatively affects an
argument’s strength (Tindale, 2007).

Argument strength is often referred to, but its
meaning remains unclear: “Is a strong argument an
effective argument which gains the adherence of
the audience, or is it a valid argument, which ought
to gain it?” (Perelman et al., 1969). Tindale (2007)
sees validity as a possible but not mandatory part
of reasoning strength. Freeman (2011) speaks of
the strength of support, matching the idea of induc-
tive strength. Blair (2012) roughly equates strength
with cogency, and Hoeken (2001) observes correla-
tions between evidence strength and rhetorical per-
suasiveness. Such dependencies are expected, as
the use of true and valid arguments represents one
means of persuasion: logos (Aristotle, 2007).

Rhetoric Aristotle’s work on rhetoric is one of the
most systematic to this day. He defines rhetoric
as the ability to know how to persuade (Aristotle,
2007). Besides logos, the three means of persua-
sion he sees include ethos, referring to the arguer’s
credibility, and pathos, the successful emotional ap-
peal to the target audience. Govier (2010) outlines
how emotions interfere with logic in arguments.

Pathos is not necessarily reprehensible; it just aims
for an emotional state adequate for persuasion.

In overall terms, rhetorical quality is reflected
by the persuasive effectiveness, i.e., the success in
persuading a target audience of a conclusion (Blair,
2012). It has been suggested that what arguments
are considered as effective is subjective (O’Keefe
and Jackson, 1995). Unlike persuasiveness, which
relates to the actual arguments, effectiveness covers
all aspects of an argumentation, including the use
of language (van Eemeren, 2015). In particular, the
three means of persuasion are meant to be realized
by what is said and how (Aristotle, 2007). Several
linguistic quality dimensions are connected to argu-
mentation (examples follow in Section 2.2). While
many of them are distinguished by Aristotle, he
groups them as the clarity and the appropriateness
of style as well as the proper arrangement.

Clarity means the use of correct, unambiguous
language that avoids unnecessary complexity and
deviation from the discussed issue (Aristotle, 2007).
Besides ambiguity, vagueness is a major problem
impairing clarity (Govier, 2010) and can be a cause
of fallacies (Tindale, 2007). So, clarity is a prere-
quisite of logos. Also, it affects credibility, since it
indicates the arguer’s skills. An appropriate style
in terms of the choice of words supports credibil-
ity and emotions. It is tailored to the issue and
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audience (Aristotle, 2007). Arrangement, finally,
addresses the structure of argumentation regarding
the presentation of the issue, pros, cons, and conclu-
sions. Damer (2009) outlines that a proper arrange-
ment is governed by the dimensions of a good argu-
ment. To be effective, well-arranged argumentation
matches the expectations of the target audience and
is, thus, related to dialectic (Blair, 2012).

Dialectic The dialectical view of argumentation tar-
gets the resolution of differences of opinions on the
merit (van Eemeren and Grootendorst, 2004). Qual-
ity is assessed for well-arranged discussions that
seek agreement. In contrast to the subjective nature
of effectiveness, people are good in such an assess-
ment (Mercier and Sperber, 2011). In their pragma-
dialectical theory, van Eemeren and Grootendorst
(2004) develop rules for obtaining reasonableness
in critical discussions. Reasonableness emerges
from two complementary dimensions, intersubjec-
tive (global) acceptability and problem-solving va-
lidity, but effectiveness still remains the underly-
ing goal (van Eemeren, 2015). For argumentation,
global acceptability is given when the stated argu-
ments and the way they are stated are acceptable to
the whole target audience. Problem-solving valid-
ity matches the (global) relevance of argumentation
that contributes to resolution, helping arrive at an
ultimate conclusion (Walton, 2006).

Global relevance implicitly excludes fallacious
moves, so reasonable arguments are cogent (van
Eemeren, 2015). Van Eemeren sees reasonableness
as a precondition for convincingness, the rational
version of persuasiveness. Following Perelman et
al. (1969), persuasive argumentation aims at a parti-
cular audience, whereas convincing argumentation
aims at the universal audience, i.e., all reasonable
beings. This fits the notion that dialectic examines
general rather than specific issues (Aristotle, 2007).

Convincingness needs (global) sufficiency, i.e.,
all objections to an argumentation are countered.
The dilemma here is that the number of objections
could be infinite, but without global sufficiency the
required support seems arbitrary (Blair, 2012). A
solution is the relaxed view of Damer (2009) that
only those counter-arguments that can be antici-
pated are to be rebutted. For debates, Cohen (2001)
speaks of dialectical satisfactoriness, i.e., whether
all questions and objections have been sufficiently
answered. In case a reasonable debate ends up in
either form of global sufficiency, this implies that
the discussed difference of opinion is resolved.

Other Although closely related, critical thinking
(Freeley and Steinberg, 2009) and persuasion re-
search (Zhao et al., 2011) are covered only implic-
itly here; their views on quality largely match with
argumentation theory. We have not discussed de-
liberation, as it is not concerned with the quality
of argumentation primarily but rather with commu-
nicative dimensions of group decision-making, e.g.,
participation and respect (Steenbergen et al., 2003).
Also, we have restricted our view to the logic found
in natural language. For formal and probabilistic
logic, dimensions such as degree of justification
(Pollock, 2001), argument strength (Pfeifer, 2013),
and premise relevance (Ransom et al., 2015) have
been analyzed. As we see below, such logic influ-
enced some practical assessment approaches.

2.2 Approaches to Quality Assessment

As for the theories, we survey the automatic quality
assessment for natural language argumentation. All
discussed approaches are listed in Table 2.

Logic Braunstain et al. (2016) deal with logical ar-
gument quality in community question answering:
Combining relevance-oriented retrieval models and
argument-oriented features, they rank sentence-
level argument units according to the level of sup-
port they provide for an answer. Unlike classical
essay scoring, Rahimi et al. (2014) score an essay’s
evidence, a quality dimension of argumentation: it
captures how sufficiently the given details support
the essay’s thesis. On the dataset of Correnti et al.
(2013) with 1569 student essays and scores from 1
to 4, they find that the concentration and specificity
of words related to the essay prompt (i.e., the state-
ment defining the discussed issue) impacts scoring
accuracy. Similarly, Stab and Gurevych (2017) in-
troduce an essay corpus with 1029 argument-level
annotations of sufficiency, following the definition
of Johnson and Blair (2006). Their experiments
suggest that convolutional neural networks outper-
form feature-based sufficiency classification.

Rhetoric Persing et al. (2010) tackle the proper
arrangement of an essay, namely, its organization
in terms of the logical development of an argu-
ment. The authors rely on manual 7-point score
annotations for 1003 essays from the ICLE cor-
pus (Granger et al., 2009). In their experiments,
sequences of paragraph discourse functions (e.g.,
introduction or rebuttal) turn out to be most effec-
tive. Organization is also analyzed by Rahimi et al.
(2015) on the same dataset used for the evidence
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Aspect Quality Dimension Granularity Text Genres Sources
Logic Evidence Argumentation Student essays Rahimi et al. (2014)

Level of support Argument unit Wikipedia articles Braunstain et al. (2016)
Sufficiency Argument Student essays Stab and Gurevych (2017)

Rhetoric Argument strength Argumentation Student essays Persing and Ng (2015)
Evaluability Argumentation Law comments Park et al. (2015)
Global coherence Argumentation Student essays Feng et al. (2014)
Organization Argumentation Student essays Persing et al. (2010), Rahimi et al. (2015)
Persuasiveness Argument Forum discussions Tan et al. (2016), Wei et al. (2016)
Prompt adherence Argumentation Student essays Persing and Ng (2014)
Thesis clarity Argumentation Student essays Persing and Ng (2013)
Winning side Debate Oxford-style debates Zhang et al. (2016)

Dialectic Acceptability Argument Debate portal arguments Cabrio and Villata (2012)
Convincingness Argument Debate portal arguments Habernal and Gurevych (2016)
Prominence Argument Forum discussions Boltužić and Šnajder (2015)
Relevance Argument Diverse genres Wachsmuth et al. (2017)

Table 2: Practical assessment of quality dimensions in the referenced sources for the given granularities
and text genres of natural language argumentation, grouped by the aspect the quality dimensions refer to.

approach above. Their results indicate a correlation
between organization and local coherence. Feng
et al. (2014) parse discourse structure to assess
global coherence, i.e., the continuity of meaning in
a text. Lacking ground-truth coherence labels, they
evaluate their approach on sentence ordering and
organization scoring instead. Coherence affects the
clarity of style, as do the thesis clarity and prompt
adherence of essays. Persing and Ng (2013) find
the former to suffer from misspellings, while Pers-
ing and Ng (2014) use prompt-related keywords
and topic models to capture the latter (both for 830
ICLE essays like those mentioned above). For com-
ments in lawmaking, Park et al. (2015) develop an
argumentation model that prescribes what informa-
tion users should give to achieve evaluability (e.g.,
testimony evidence or references to resources).

Not only linguistic quality, but also effectiveness
is assessed in recent work: Persing and Ng (2015)
score the argument strength of essays, which they
define rhetorically in terms of how many readers
would be persuaded. Although potentially sub-
jective, their manual 7-point score annotations of
1000 ICLE essays differ by at most 1 in 67% of
the studied cases. Their best features are heuristic
argument unit labels and part-of-speech n-grams.
Recently, Wachsmuth et al. (2016) demonstrated
that the output of argument mining helps in such
argumentation-related essay scoring, obtaining bet-
ter results for argument strength and organization.
Tan et al. (2016) analyze which arguments achieve
persuasiveness in “change my view” forum discus-
sions, showing that multiple interactions with the
view-holder are beneficial as well as an appropriate
style and a high number of participants. On similar

data, Wei et al. (2016) find that also an author’s rep-
utation impacts persuasiveness. Zhang et al. (2016)
discover for Oxford-style debates that attacking the
opponents’ arguments tends to be more effective
than relying on one’s own arguments. These results
indicate the relation of rhetoric and dialectic.

Dialectic Dialectical quality has been addressed by
Cabrio and Villata (2012). The authors use textual
entailment to find ground-truth debate portal argu-
ments that attack others. Based on the formal ar-
gumentation framework of Dung (1995), they then
assess global argument acceptability. Habernal and
Gurevych (2016) compare arguments in terms of
convincingness. However, the subjective nature of
their crowdsourced labels actually reflects rhetor-
ical effectiveness. Boltužić and Šnajder (2015)
present first steps towards argument prominence.
Prominence may be a product of popularity, though,
making its quality nature questionable, as popular-
ity is often not correlated with merit (Govier, 2010).
In contrast, Wachsmuth et al. (2017) adapt the fa-
mous PageRank algorithm to objectively derive the
relevance of an argument at web scale from what
other arguments refer to the argument’s premises.
On a large ground-truth argument graph, their ap-
proach beats several baselines for the benchmark
argument rankings that they provide.

Other Again, we have left out deliberative quality
(Gold et al., 2015). Also, we omit approaches that
classify argumentation schemes (Feng and Hirst,
2011), evidence types (Rinott et al., 2015), ethos-
related statements (Duthie et al., 2016), and myside
bias (Stab and Gurevych, 2016); their output may
help assess quality assessment, but they do not actu-
ally assess it. The same holds for argument mining,
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Figure 1: The proposed taxonomy of argumentation quality as well as the mapping of existing assessment
approaches to the covered quality dimensions. Arrows show main dependencies between the dimensions.

even if said to aim for argument quality (Swanson
et al., 2015). Much work exists for general text
quality, most notably in the context of readability
(Pitler and Nenkova, 2008) and classical essay scor-
ing. Some scoring approaches derive features from
discourse (Burstein et al., 1998), arguments (Ong et
al., 2014; Beigman Klebanov et al., 2016; Ghosh
et al., 2016), or schemes (Song et al., 2014)—all
this may be indicative of quality. However, our
focus is approaches that target argumentation qual-
ity at heart. Similarly, review helpfulness (Liu et
al., 2008) and deception (Ott et al., 2011) are not
treated, as arguments only partly play a role there.
Also, only few Wikipedia quality flaws relate to ar-
guments, e.g., verifiability (Anderka et al., 2012).

3 A Taxonomy of Argumentation Quality

Given all surveyed quality dimensions, we now pro-
pose a unifying taxonomy of argumentation quality.
The taxonomy decomposes quality assessment sys-
tematically, thus organizing and clarifying the roles
of practical approaches. It does not require a partic-
ular argumentation model, but it rests on the notion
of the granularity levels from Section 1.

3.1 Overview of the Theory-based Taxonomy

Our objective is not to come up with a new theory,
but to provide a unified view of existing theories
that is suitable for quality assessment. We aim for
a common understanding of the dimensions that af-

fect quality, what interdependencies they have, and
how they interact. Figure 1 illustrates the taxonomy
that we propose for this purpose. The rationale be-
hind its structure and its layout is as follows.

While Section 2 has outlined overlaps and rela-
tions between the three aspects of argumentation,
we have identified one dominant high-level quality
dimension of argumentation quality in theory for
each aspect: logical cogency, rhetorical effective-
ness, and dialectical reasonableness. The latter two
benefit from cogency, and reasonableness depends
on effectiveness, as discussed. Often, only one of
them will be in the focus of attention in practice, or
even only a sub-dimension. In particular, each high-
level dimension has a set of sub-dimensions agreed
upon. The sub-dimensions are shown on the outer
ring in Figure 1, roughly positioned according to
the aspects they refer to, e.g., local acceptability
lies next to the other dialectical dimensions. We
ordered the sub-dimensions by their interrelations
(left implicit for conciseness), e.g., appropriateness
supports credibility and emotional appeal.

Slightly deviating from theory, we match Aris-
totle’s logos dimension with cogency, which better
fits real-world argumentation. Similarly, we omit
those dimensions from Table 1 in the taxonomy
that have unclear definitions, such as strength, or
that are covered by others, such as well-formedness,
which merely refines the acceptability part of co-
gency (Govier, 2010). Convincingness is left out,
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as it is close to effectiveness and as both the feasi-
bility and the need of persuading the universal audi-
ence has been questioned (van Eemeren, 2015). In-
stead, we add global sufficiency as part of reason-
ableness. While global sufficiency may be infeasi-
ble, too (Blair, 2012), it forces agreement in critical
discussions and, thereby, reasonableness.

3.2 Definitions of the Quality Dimensions
Cogency is seen as an argument property, whereas
effectiveness and reasonableness are assessed on
the argumentation level usually. For generality, we
give informal literature-based definitions of these
dimensions and all sub-dimensions here for an au-
thor who argues about an issue to a target audience:
Cogency An argument is cogent if it has accept-
able premises that are relevant to its conclusion and
that are sufficient to draw the conclusion.

• Local acceptability: A premise of an argu-
ment is acceptable if it is rationally worthy of
being believed to be true.

• Local relevance: A premise of an argument is
relevant if it contributes to the acceptance or
rejection of the argument’s conclusion.

• Local sufficiency: An argument’s premises are
sufficient if, together, they give enough sup-
port to make it rational to draw its conclusion.

Effectiveness Argumentation is effective if it per-
suades the target audience of (or corroborates agree-
ment with) the author’s stance on the issue.

• Credibility: Argumentation creates credibility
if it conveys arguments and similar in a way
that makes the author worthy of credence.

• Emotional Appeal: Argumentation makes a
successful emotional appeal if it creates emo-
tions in a way that makes the target audience
more open to the author’s arguments.

• Clarity: Argumentation has a clear style if
it uses correct and widely unambiguous lan-
guage as well as if it avoids unnecessary com-
plexity and deviation from the issue.

• Appropriateness: Argumentation has an ap-
propriate style if the used language supports
the creation of credibility and emotions as
well as if it is proportional to the issue.

• Arrangement: Argumentation is arranged
properly if it presents the issue, the arguments,
and its conclusion in the right order.

Reasonableness Argumentation is reasonable if it
contributes to the issue’s resolution in a sufficient
way that is acceptable to the target audience.

• Global acceptability: Argumentation is ac-
ceptable if the target audience accepts both
the consideration of the stated arguments for
the issue and the way they are stated.

• Global relevance: Argumentation is relevant
if it contributes to the issue’s resolution, i.e.,
if it states arguments or other information that
help to arrive at an ultimate conclusion.

• Global sufficiency: Argumentation is suffi-
cient if it adequately rebuts those counter-
arguments to it that can be anticipated.

3.3 Organization of Assessment Approaches
The taxonomy is meant to define a common ground
for assessing argumentation quality, including the
organization of practical approaches. The left and
right side of Figure 1 show where the approaches
surveyed in Section 2.2 are positioned in the taxon-
omy. Some dimensions have been tackled multiple
times (e.g., clarity), others not at all (e.g., credibil-
ity). The taxonomy indicates what sub-dimensions
will affect the same high-level dimension.

4 The Dagstuhl-15512 ArgQuality Corpus

Finally, we present our new annotated Dagstuhl-
15512 ArgQuality Corpus for studying argumenta-
tion quality based on the developed taxonomy, and
we report on a first corpus analysis.3

4.1 Data and Annotation Process
Our corpus is based on the UKPConvArgRank data-
set (Habernal and Gurevych, 2016), which contains
rankings of 25 to 35 textual debate portal arguments
for two stances on 16 issues, such as evolution vs.
creation and ban plastic water bottles. All ranks
were derived from crowdsourced convincingness
labels. For every issue/stance pair, we took the five
top-ranked texts and chose five further via stratified
sampling. Thereby, we covered both high-quality
arguments and different levels of lower quality.
Two example texts follow below in Figure 2.

Before annotating the 320 chosen texts, we car-
ried out a full annotation study with seven authors
of this paper on 20 argumentative comments from

3The corpus and annotation guidelines are available at
http://www.arguana.com. The corpus is named after the Dag-
stuhl Seminar 15512 “Debating Technologies” that initialized
the research in this paper: http://www.dagstuhl.de/15512
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(a) Maj. Scores (b) Agreement (c) Pearson Correlation Coefficients
Quality Dimension 1 2 3 α full maj. Co LA LR LS Ef Cr Em Cl Ap Ar Re GA GR GS
Co Cogency 150 131 23 .44 40.1% 91.8% .64 .61 .84 .81 .46 .27 .41 .32 .55 .78 .64 .71 .70
LA Local acceptability 84 169 51 .46 27.0% 90.8% .64 .51 .53 .60 .54 .30 .40 .54 .46 .68 .75 .46 .45
LR Local relevance 25 155 124 .47 32.6% 92.4% .61 .51 .56 .56 .39 .27 .46 .35 .50 .62 .58 .68 .45
LS Local sufficiency 172 119 13 .44 37.2% 92.8% .84 .53 .56 .73 .39 .25 .37 .23 .51 .67 .51 .68 .74
Ef Effectiveness 184 111 9 .45 42.1% 94.4% .81 .60 .56 .73 .48 .31 .35 .34 .54 .75 .58 .66 .71
Cr Credibility 99 199 6 .37 37.8% 95.7% .46 .54 .39 .39 .48 .37 .32 .49 .37 .52 .52 .36 .40
Em Emotional appeal 48 235 21 .26 42.8% 94.4% .27 .30 .27 .25 .31 .37 .14 .30 .20 .30 .26 .26 .22
Cl Clarity 42 191 71 .35 29.3% 89.8% .41 .40 .46 .37 .35 .32 .14 .45 .56 .44 .45 .38 .27
Ap Appropriateness 43 196 65 .36 17.4% 87.5% .32 .54 .35 .23 .34 .49 .30 .45 .48 .47 .59 .20 .20
Ar Arrangement 91 189 24 .39 26.6% 93.4% .55 .46 .50 .51 .54 .37 .20 .56 .48 .55 .51 .49 .48
Re Reasonableness 126 159 19 .50 41.4% 95.7% .78 .68 .62 .67 .75 .52 .30 .44 .47 .55 .78 .65 .61
GA Global acceptability 88 161 55 .44 31.6% 95.4% .64 .75 .58 .51 .58 .52 .26 .45 .59 .51 .78 .46 .43
GR Global relevance 69 167 68 .42 21.7% 90.1% .71 .46 .68 .68 .66 .36 .26 .38 .20 .49 .65 .46 .61
GS Global sufficiency 231 72 1 .27 44.7% 98.0% .70 .45 .45 .74 .71 .40 .22 .27 .20 .48 .61 .43 .61
Ov Overall quality 152 128 24 .51 44.1% 94.4% .84 .66 .61 .74 .81 .52 .30 .45 .42 .59 .86 .71 .70 .68

Table 3: Results for the 304 corpus texts classified as argumentative by all annotators: (a) Distribution of
majority scores for each dimension (2 used in case of full disagreement). (b) Krippendorff’s α of the most
agreeing annotator pair and full/majority agreement of all annotators. (c) Correlation for each dimension
pair, averaged over the correlations of all annotators. The highest value in each column is marked bold.

the unshared task dataset of the 3rd Workshop on
Argument Mining.4 The annotators assessed all 15
quality dimensions in the taxonomy for each com-
ment (including its overall quality). Due to sim-
ple initial guidelines based on the definitions from
Section 3 and the subjectiveness of the task, the
agreement of all seven annotators was low for all di-
mensions, namely, at most .22 in terms of Krippen-
dorff’s α. The three most agreeing annotators for
each dimension achieved much higher α-values be-
tween .23 (clarity) and .60 (credibility), though.5

The study results were discussed by all annota-
tors, leading to a considerably refined version of
the guidelines. We then selected three annotators
for the corpus annotation based on their availability.
They work at two universities and one company in
three countries (two females, one male; two PhDs,
one PhD student). For each text in the corpus, all
annotators first classified whether it was actually
argumentative. If so, they assessed all dimensions
using ordinal scores from 1 (low) to 3 (high).6 Ad-
ditionally, “cannot judge” could be chosen.

4.2 Corpus Distribution and Agreement

Table 3(a) lists the majority scores of each dimen-
sion for the 304 corpus texts (95%) that are classi-
fied as argumentative by all annotators, all covering

4Unshared task data found at: http://github.com/UKPLab
5We use Krippendorff’s α as is suitable for small samples,

multiple ratings, and ordinal scales (Krippendorff, 2007).
6We chose a 3-point scale to foster clear decisions on the

quality; in the annotation study, we used a 4-point scale but
observed that the annotators only rarely chose score 1 and 4.

the whole score range. Five dimensions have the
median at score 1, the others at 2. Some seem easier
to master, such as local relevance, which received
the highest majority score 124 times. Others rarely
got score 3, above all global sufficiency. The latter
is explained by the fact that only few texts include
any rebuttal of counter-arguments.

Only one of the over 14,000 assessments made
by the three annotators was “cannot judge” (for glo-
bal relevance), suggesting that our guidelines were
comprehensive. Regarding agreement, we see in
Table 3(b) that the α-values of all logical and di-
alectical quality dimensions except for global suffi-
ciency lie above 0.4 for the most agreeing annotator
pair. As expected, the rhetorical dimensions seem
to be more subjective. The lowest α is observed
for emotional appeal (0.26). The annotators most
agreed on the overall quality (α = 0.51), possibly
meaning that the taxonomy adequately guides the
assessment. In accordance with the moderate α-
values, full agreement ranges between 17.4% and
44.7% only. On the contrary, we observe high ma-
jority agreement between 87.5% and 98% for all di-
mensions, even where scores are rather evenly dis-
tributed, such as for global acceptability (95.4%).
In case of full disagreement, it makes sense to use
score 2. We hence argue that the corpus is suitable
for evaluating argumentation quality assessment.

Figure 2 shows all scores of each annotator for
two example arguments from the corpus, referring
to the question whether to ban plastic water bottles.
Both have majority score 3 for overall quality (Ov),
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Pro   Water bottles, good or bad? Many people believe plastic 
water bottles to be good. But the truth is water bottles are 
polluting land and unnecessary. Plastic water bottles should only 
be used in emergency purposes only. The water in those plastic 
are only filtered tap water. In an emergency situation like Katrina 
no one had access to tap water. In a situation like this water 
bottles are good because it provides the people in need. Other 
than that water bottles should not be legal because it pollutes the 
land and big companies get 1000% of the profit.

Annotator A
Annotator B
Annotator C

Majority score

3    3    3    2       3    3    3    3    3    3       3    3    3    2       3
2    2    3    2       1    2    2    2    2    1       2    2    2    1       2
2    3    3    2       2    2    2    3    3    3       3    3    3    2       3
2    3    3    2       2    2    2    3    3    3       3    3    3    2       3

Co  LA  LR LS    Ef  Cr  Em Cl  Ap  Ar    Re GA GR GS    Ov
3    3    3    3       3    3    2    3    3    3       3    3    3    3       3
2    3    3    2       2    3    2    3    3    2       3    3    2    2       3
3    3    3    3       3    2    1    3    3    3       3    3    3    3       3
3    3    3    3       3    3    2    3    3    3       3    3    3    3       3

Co  LA  LR LS    Ef  Cr  Em Cl  Ap  Ar    Re GA GR GS    Ov

Arguments

Scores

Con   Americans spend billions on bottled water every year. 
Banning their sale would greatly hurt an already struggling 
economy. In addition to the actual sale of water bottles, the 
plastics that they are made out of, and the advertising on both the 
bottles and packaging are also big business. In addition to this, 
compostable waters bottle are also coming onto the market, these 
can be used instead of plastics to eliminate that detriment. 
Moreover, bottled water not only has a cleaner safety record than 
municipal water, but it easier to trace when a potential health risk 
does occur. (http://www.friendsjournal.org/bottled-water) 
(http://www.cdc.gov/healthywater/drinking/bottled/)

Figure 2: The scores of each annotator and the majority score for all considered quality dimensions of one
pro and one con argument from our corpus. The arguments refer to the issue ban plastic water bottles.

but the pro argument shows more controversy with
full disagreement in case of effectiveness (Ef). Es-
pecially, annotator B seems to be critical, giving
one point less for several dimensions. In contrast,
the con argument yields majority agreement for all
15 dimensions and full agreement for seven of them.
It meets main quality criteria surveyed in Section 2,
such as a rebuttal or references to resources. In
fact, it constitutes the only corpus text with major-
ity score 3 for global sufficiency (GS).

4.3 Correlations between Quality Dimensions
Table 3(c) compares the correlations of all dimen-
sion pairs. Cogency (.84), effectiveness (.81), and
reasonableness (.86) correlate strongly with overall
quality, and also much with each other.

Cogency and local sufficiency (.84) go hand in
hand, whereas local acceptability and local rele-
vance show the highest correlation with their global
counterparts (.75 and .68 respectively). Quite in-
tuitively, credibility and appropriateness correlate
most with the acceptability dimensions. The coef-
ficients of emotional appeal seem lower than ex-
pected, in particular for effectiveness (.31), indi-
cating the limitation of a correlation analysis: As
reflected by the 235 texts with majority score 2 for
emotional appeal, many arguments make no use of
emotions, thus obliterating effects of those which
do. On the other hand, clarity was scored 2 in most
cases, too, so the very low value there (.14) is more
meaningful. Clarity rather correlates with arrange-
ment (.56), which in turn shows coefficients above
.50 for all high-level dimensions.

Altogether, the correlations largely match the
surveyed theory. While an analysis of cause and
effect should follow in future work, they provide
first evidence for the adequacy of our taxonomy.

5 Conclusion

Argumentation quality is of high importance for
argument mining, debating technologies, and simi-
lar. In computational linguistics, it has been treated
only rudimentarily so far. This paper defines a com-
mon ground for the automatic assessment of argu-
mentation quality in natural language. Based on
a survey of existing theories and approaches, we
have developed a taxonomy that unifies all major di-
mensions of logical, and dialectical argumentation
quality. In addition, we freely provide an annotated
corpus for studying these dimensions.

The taxonomy is meant to capture all aspects
of argumentation quality, irrespective of how they
can be operationalized. The varying inter-annotator
agreement we obtained suggests that some quality
dimensions are particularly subjective, raising the
need to model the target audience of an argumen-
tation. Still, the observed correlations between the
dimensions support the general adequacy of our tax-
onomy. Moreover, most dimensions have already
been approached on a certain abstraction level in
previous work, as outlined. While some refinement
may be suitable to meet all requirements of the com-
munity, we thus propose the taxonomy as the com-
mon ground for future research on computational
argumentation quality assessment and the corpus
as a first benchmark dataset for this purpose.
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Abstract

This paper proposes a generic method for
the comparative evaluation of system out-
puts. The approach is able to quantify the
pairwise differences between two outputs
and to unravel in detail what the differ-
ences consist of. We apply our approach to
three tasks in Computational Linguistics,
i.e. POS tagging, dependency parsing, and
coreference resolution. We find that sys-
tem outputs are more distinct than the (of-
ten) small differences in evaluation scores
seem to suggest.

1 Introduction

While there exist well-defined procedures to eval-
uate system outputs against manually annotated
gold data for many tasks in Computational Lin-
guistics, generally little effort and exploration
goes into identifying and analysing the differences
between the outputs themselves. System outputs
are usually compared in the following manner:
The standard evaluation protocol for many tasks
consists of comparing a system output (the re-
sponse) to a manual annotation of the same data
(the key). The difference between the response and
key is quantified by a similarity metric such as ac-
curacy, and different system outputs are compared
to each other by ranking their scores with respect
to the similarity metric.

However, comparing the scores of the similarity
metric does not paint the full picture of the differ-
ences between the outputs, as we will demonstrate.
There are hardly any principled or generic evalua-
tion approaches that aim at comparing two or more
system responses directly to investigate, highlight,
and quantify their differences in detail. Closing
this gap is desirable, because progress in many
NLP tasks is often made in small steps, and it is

often left unclear what the specific contribution of
a novel approach is if the comparison to related
work is solely based on a (sometimes marginally)
small improvement in F1 score or accuracy. Fur-
thermore, an overall improvement regarding accu-
racy achieved by a new approach might come at
the cost of failing in some areas where a baseline
system was correct. Vice versa, a new approach
might not improve overall accuracy, but solve par-
ticular problems that no other system has been
able to address.

We propose an evaluation approach which aims
at shedding light on the particular differences be-
tween system responses and which is intended as
a complement to evaluation metrics such as F1-
score and accuracy. By doing so, we strive to pro-
vide researchers with a tool that is able to give in-
sight into the particular strengths and weaknesses
of their system in comparison to others.1 Our
method is also useful in iterative system develop-
ment, as it tracks changes in the outputs of differ-
ent system versions or feature sets. Furthermore,
our approach is able to compare multiple system
outputs at once, which enables it to identify hard
(or easy) problem areas by assessing how many of
the systems solve a problem correctly and give ac-
cording upper bounds for system ensembles. The
performance difference between the simulated en-
semble and the individual systems serves as an
additional indicator of the difference between the
system outputs.

We exemplify the application of our ap-
proach by aiming to answer the question of how
(dis)similar are the outputs of several state-of-the-
art systems for different tasks in NLP. We first mo-
tivate why using evaluation metrics such as accu-
racy is not suited for comparing outputs (next sec-
tion). We then propose a method to do so which

1Code available at: https://github.com/
dtuggener/ComparEval

188



introduces an inventory to systematically classify
and quantify output differences (section 2). Next,
we demonstrate how combining a set of outputs
can be used to identify their divergence and to
identify hard (and easy) problem areas by look-
ing at upper bounds in performance achieved by
an oracle output combination (section 3).

1.1 Motivation

First let us motivate why comparing accuracy or
F1 scores is not a suited method for establishing
the (dis)similarity of system outputs. Consider a
simple synthetic problem set with four test cases
{A,B,C,D} (e.g. a sequence of POS tags). A
system response S1 solves correctly the cases A
andB, while a system response S2 returns the cor-
rect answers for the cases C and D. In terms of
accuracy, both responses achieve identical scores,
i.e. 50%. However, their output is maximally dis-
similar. Extending the set of cases, assume five
problems, {A,B,C,D,E}, and three responses
S1, S2, and S3 as shown in table 1. Although the
three responses achieve the same accuracy (left ta-
ble), their pairwise overlap in terms of identical
correct responses (right table) varies considerably,
i.e. S1 is much more similar to S2 (two shared an-
swers) than to S3 (one shared answer).

Key A B C D E Acc.
S1 A B C 60%
S2 B C D 60%
S3 C D E 60%

Overlap
S1, S2 67%
S2, S3 67%
S1, S3 33%

Table 1: Accuracy vs. Overlap on correct answers

In fact, the establishment of the similarity of the
responses S1, S2, and S3 is more complicated, be-
cause we have left out the overlap of the incor-
rect answers in the responses. Consider the full
responses in table 2.

Key A B C D E Acc.
S1 A B C X Y 60%
S2 Z B C D U 60%
S3 Z W C D E 60%

Overlap
S1, S2 40%
S2, S3 60%
S1, S3 20%

Table 2: Accuracy vs. Overlap on all answers

The overlap metric (right table) now compares
how many of the cells in two rows have identical
answers, regardless of whether the answer is cor-
rect. The overlap-based similarities between the
systems have become more diverse, i.e. S1 and S3

are more dissimilar than in the previous table, and
the similarities of the pairs (S1, S2) and (S2, S3)
are now distinct, because S2 and S3 share the error
Z (beside the correct answers C and D), while S1
and S2 do not share an error.

Hence, evaluating systems based on perfor-
mance metrics such as accuracy and F1 scores pro-
vides no insight into the differences between the
systems and is not able to accurately quantify the
similarities between them. That is, a small differ-
ence in accuracy does not necessarily imply a high
similarity of the outputs, and, vice versa, a larger
difference in accuracy does not necessarily signify
vastly dissimilar outputs.

Moreover, evaluation based on scores in per-
formance metrics such as F1 does not detail in
what regard a system performs better than another.
Two systems might implement very distinct ap-
proaches, but achieve very similar scores in evalu-
ation. Based on e.g. F1, we cannot assert whether
a response S2 performs better than a response S1
because a) it solves the same problems as S1 and
then some additional ones, or b) if S2 and S1 solve
a quite diverse set of problems and S2 happens to
solve a few more in its area of expertise. Addition-
ally, a system that performs better than a baseline
is bound to make errors where the baseline was
correct. The overall accuracies cannot tell us how
often this is the case.

In summary, the comparison of systems based
on overall performance scores only lets us glimpse
the proverbial tip of the iceberg. Therefore, our
approach to comparative evaluation features three
main points of interest:

1. How are the differences between system re-
sponses quantifiable?

2. What is the nature of the difference between
two responses?

3. How can we assess the divergence of a set of
responses, how complementary are they?

We try to answer these questions regarding
three main tasks, namely POS tagging, depen-
dency parsing, and coreference resolution. We se-
lect these tasks because they are fairly widespread
procedures in Computational Linguistics and their
evaluation increases in complexity. While we limit
ourselves to these, we believe our approach to
be generic enough to be applied to other labeling
problems, such as named entity recognition and
semantic role labeling.
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2 Quantifying differences in system
responses

As argued above, system responses differ both re-
garding the correct answers they give and the er-
rors they make. The underlying idea of our ap-
proach is to assess how many of the labeled lin-
guistic units (i.e. tokens) in the key have different
labels in the responses, regardless of whether the
labels are correct.2 In a second step, we use a class
inventory to analyse and quantify these differences
in more detail.

Formally, given a set of tokens T and two
accompanying system responses S1 and S2, we
quantify how many of the tokens ti ∈ T have a
different label in S1 and S2:

diff (S1, S2 | T ) =

|∀ti ∈ T : label(ti, S1) 6= label(ti, S2)|
|T | (1)

Note that switching the inequality condition ( 6=)
to equality (=) actually yields the accuracy metric.
That is, taking S1 as the key and the S2 as the re-
sponse and calculating accuracy produces the in-
verted results of our metric, i.e. 1 − diff (S1, S2 |
T ), since accuracy is the ratio of tokens that
have identical labels. The question is then, why
not simply use S1 as the key and S2 as the re-
sponse and calculate accuracy? While this an-
swers whether two systems solve a similar or di-
verse set of problems, it does not enable us to
identify the sources of the differences that drive
the better performance of one response over the
other. That is, if a token has a different label in
S1 and S2, we cannot tell which and if any of the
responses is correct. Hence, we need to look at
the gold labels of the tokens T in a key K. This
enables us to categorise differences in the outputs
into three distinct and informative classes3:

• Correction: S1 labels a token incorrectly, S2
corrects this error
• New error: S1 is correct, S2 introduces an

error
• Changed error: Both S1 and S2 are incor-

rect but have different labels

The general algorithm to quantify differences in
two responses S1 and S2 given a set of tokens ti...n

2In other words, the complement of the overlap metric in
tables 1 and 2.

3To motivate the nomenclature, we assume that S1 is e.g.
a baseline upon which S2 tries to improve. However, the
outputs can stem from any two systems.

in a key K is outlined in algorithm 1. This pro-
cedure lets us track and count how often S2 has
a different label than S1, classify the difference,
and calculate the percentage of each class of dif-
ference. The approach can be applied straight-
forwardly to comparing outputs of POS taggers
and dependency parsers.

Algorithm 1 Track differences in two responses
Input: Key K 3 tokens ti...n, Responses S1, S2
Output: Difference D, Changes C

1: for ti ∈ K do
2: G = label(ti,K)
3: L1 = label(ti, S1)
4: L2 = label(ti, S2)
5: TokCnt+ +
6: if L1 6= L2 then
7: if L2 = G then
8: C[correction][L1, L2] + +
9: else if L1 = G then

10: C[new error][L1, L2] + +
11: else
12: C[changed error][L1, L2] + +

13: DiffLabel + +

14: D = DiffLabel
TokCnt

15: return D,C

2.1 POS tagging

We compare three POS taggers than can be used
off-the-shelf to tag German: the Stanford POS
Tagger (Toutanova et al., 2003), the TreeTagger
(Schmid, 1995), and the Clevertagger (Sennrich
et al., 2013, state-of-the-art). Following Sennrich
et al. (2013), we use 3000 sentences from the
TübaD/Z (Telljohann et al., 2004), a corpus of ar-
ticles from a German newspaper, as a test set.4

Table 3 shows the labeling accuracy of the POS
taggers and the percentage of correctly tagged sen-
tences. The accuracy improvement of Clevertag-
ger over TreeTagger is +1.27 points, and the per-
centage of correctly tagged sentences increases
substantially (+9.9 points). In comparison to the
Stanford tagger5, Clevertagger raises performance

4We change the POS tag for pronominal adverbs from
PROP to PROAV in the test set, since all taggers feature only
the latter tag.

5The most frequent error by the Stanford tagger is label-
ing some punctuation tokens (e.g. ’-’) as ’$[’ instead of ’$(’.
Considering it a minor error, we replace all ’$[’ labels in the
Stanford response with ’$(’, increasing accuracy from 86.60
to 90.41%.
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Accuracy Correct sents.
Stanford 90.41 30.07
TreeTagger 94.89 46.87
Clevertagger 96.16 56.77

diff ∆ Acc.
Stanford↔ TreeTagger 11.06 4.48
Stanford↔ Clevertagger 9.41 5.75
TreeTagger↔ Clevertagger 4.96 1.27

Table 3: Accuracy and differences between POS
taggers

by roughly 6 points in accuracy, but almost dou-
bles the numbers of correctly tagged sentences.

In the lower table, we see that although the ac-
curacy difference puts the Stanford tagger closer
to the TreeTagger (4.48) than to the Clevertagger
(5.75), the Stanford tagger’s response is more dif-
ferent from the one of TreeTagger (11.06) than
from the response of Clevertagger (9.41). Com-
paring the two best performing taggers, we see
that despite their accuracy difference of only 1.27
points, they label 4.96% of the tokens differently.

To get a more detailed understanding of the dif-
ferences, we apply algorithm 1 to the two out-
puts, whose results are shown in table 46, list-
ing the five most frequent changes per difference
class.7 Of the 4.96% different labels in Clevertag-
ger compared to TreeTagger, 58.71% are correc-
tions, 33.13% are new errors, and 8.15% changed
errors.8 That is, one third of the changes that
Clevertagger introduces are errors. This is a note-
worthy observation which applies to all our sys-
tem comparisons: Every improved response intro-
duces a considerable amount of errors with respect
to the baseline, i.e. it invalidates correct decisions
of the baseline. While this observation is to some
degree expected, our method is able to quantify
and analyse such changes in detail.

Regarding the differences, we see that both the
most frequent correction (NN→NE) and new error
(NE→NN) evolve around the confusion of named
entities and common nouns, which is especially

6For tag description see http://www.ims.
uni-stuttgart.de/forschung/ressourcen/
lexika/TagSets/stts-table.html

7Note that the change comparison can also be sorted by
the biggest accuracy difference, cf. appendix table A.1.

8We here use the TreeTagger as S1 and the Clevertagger
as S2. Inverting the roles does not change the percentage
values, but simply switches corrections to new errors and vice
versa.

Difference: 4.96% (2674/53928)
Corrections: 58.71% (1570/2674)
NN→NE 27.96
PIAT→PIDAT 10.83
NN→ADJA 5.03
VVFIN→VVINF 4.52
NE→NN 3.25
New errors: 33.13% (886/2674)
NE→NN 19.53
VVFIN→VVINF 9.48
NN→NE 9.26
ADV→ADJD 6.09
KOUS→PWAV 4.06
Changed errors: 8.15% (218/2674)
NE→NN→FM 13.30
FM→NN→NE 7.34
NE→NN→ADJD 6.88
KOUS→KOKOM→PWAV 4.13
XY→NN→NE 2.29

Table 4: Token-based label changes comparing
TreeTagger→ Clevertagger (and Key→ TreeTag-
ger→ Clevertagger for changed errors)

difficult for German, since capitalization cannot
be exploited to distinguish the two. Further-
more, Clevertagger frequently invalidates Tree-
Tagger’s correct labeling of finite verbs, tagging
them as nonfinite (VVFIN → VVINF), although
this change occurs under the most frequent correc-
tions as well. While these are commonly known
error sources for POS tagging German, our ap-
proach shows that they are in fact the main source
of the differences between the output of the two
top performing taggers.

2.2 Dependency parsing

The next task we investigate is dependency pars-
ing. We choose English as the test language due
to the lack of the availability of multiple parsers
in other languages. We evaluate Google’s recently
released Parsey McParseface (Andor et al., 2016,
state-of-the-art) and two versions of the Stanford
parser, i.e. the PCFG (Klein and Manning, 2003)
and the Neural Network version (Chen and Man-
ning, 2014). We follow the standard evalua-
tion protocol and use section 23 of the PennTree-
bank (Marcus et al., 1993) as a test set and ex-
clude punctuation tokens. We evaluate on Stan-
ford Dependency labels (de Marneffe and Man-
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ning, 2008), since Parsey support only them.9 We
apply the parsers and their models ”as is”, i.e. we
do not change any configuration settings.

UAS LS LAS Sent
Stan. PCFG 87.96 92.26 85.36 24.17
Stan. NN 88.68 92.45 86.43 26.95
Parsey 92.70 92.86 88.94 28.89

diff ∆ LAS
Stan. PCFG↔ Stan. NN 14.01 1.07
Stan. PCFG↔ Parsey 15.49 3.58
Stan. NN↔ Parsey 13.62 2.51

Table 5: Parser performance and difference

In table 5, we report the unlabeled attachment
score (UAS), the labeling score (LS), and the la-
beled attachment score (LAS) for the parsers. Fur-
thermore, we evaluate how many of the sentences
are fully parsed correctly given each criterion.

We see that Parsey outperforms the Stanford
parsers mainly due to the performance in attach-
ment (UAS). The performance differences in as-
signing grammatical labels (LS) are comparably
marginal. Parsey also features almost identical
performance in both attaching and labeling to-
kens. However, there is a gap compared to la-
beled attachment score, which indicates that al-
though Parsey attaches more tokens correctly than
the other parsers, it does not necessarily assign the
correct grammatical label to these tokens. Look-
ing at the difference chart, we see that despite the
rather small differences in LAS (1-4 points), the
parsers attach and label around 15% of the tokens
differently. The Stanford parsers only differ in
1.07 points in LAS, but this difference is based on
14.01% (diff ) of the tokens in the test set. Parsey
outperforms the Stanford NN parser by 2.51 LAS
based on 13.62% of the tokens. To gain a bet-
ter understanding of the differences contained in
these 13.62% of the tokens, we apply algorithm 1,
whose output is shown in table 6.

The table shows that half (50.22%) of the
13.62% changed token annotations from Stanford
NN to Parsey are corrections. All of these changes
are attachment corrections, i.e. the label of the to-
kens are not changed, which correlates with the
small difference we saw in labeling score. The

9We convert the PennTreebank to Stanford depen-
dencies using the Penn Treebank converter included in
the Stanford parser (http://nlp.stanford.edu/
software/stanford-dependencies.shtml).

Difference: 13.62% (6776/49748)
Corrections: 50.22% (3403/6776)
nn→ nn 10.93
prep→ prep 9.49
cc→ cc 5.32
conj→ conj 4.17
advmod→ advmod 2.59
New errors: 31.79% (2154/6776)
vmod→ partmod 9.38
amod→ nn 8.08
prep→ prep 7.38
vmod→ infmod 5.43
npadvmod→ dep 4.32
Changed errors: 17.99% (1219/6776)
prep→ prep→ prep 5.00
vmod→ vmod→ partmod 2.95
advmod→ advmod→ advmod 1.97
cc→ cc→ cc 1.89
conj→ conj→ conj 1.23

Table 6: Token-based analysis of parser differ-
ences (Stanford NN→ Parsey, LAS)

two most prominent corrections are the attachment
of noun compound modifiers (nn) and preposi-
tions (prep). Almost one third (31.79%) of the
changes are new errors. Compared to the cor-
rections, Parsey here changes the labels of the to-
kens. Contrarily, changed errors (17.99%) consti-
tute roughly one fifth of the changes and mainly
consist of changes in attachment.

2.3 Coreference resolution

The final task we investigate is coreference resolu-
tion. We choose three freely available systems for
English, again due to the lack of available systems
for other languages: the Stanford statistical coref-
erence resolver (Clark and Manning, 2015, state-
of-the-art), HOTCoref (Björkelund and Kuhn,
2014), and the Berkeley coreference system (Dur-
rett and Klein, 2013). We use the CoNLL 2012
shared task test set (Pradhan et al., 2012).

The coreference task differs from the previous
two, since not all tokens in a document partake in
coreference relations (but all tokens are in syntac-
tic relations and feature a POS tag). Furthermore,
the linguistic units of coreference relations are not
only single word tokens, but syntactic units called
mentions (i.e. mostly noun phrases). Therefore,
we have to adapt our similarity metric in equa-
tion 1. To quantify the difference of two corefer-
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ence system outputs S1 and S2, given a key K, we
count how many of the mentions m are classified
differently using a mention classification function
c:

diff (S1, S2 | K) =

|∀m ∈ S1 ∩ S2 ∩K : c(m,S1) 6= c(m,S2)|
|∀m ∈ S1 ∩ S2 ∩K|

(2)

The mention classification function c requires a
class inventory which is not featured by the com-
mon evaluation metrics for coreference resolu-
tion.10 Therefore, we adapt the mention classifica-
tion paradigm introduced in the ARCS framework
for coreference resolution evaluation (Tuggener,
2014) which assigns one of the following four
classes to a mentionm given a keyK and a system
response S:

• True Positive (TP): m is correctly resolved to
an antecedent.
• False Positive (FP): m has no antecedent in
K but one in S.
• False Negative (FN): m has no antecedent in
S but one in K.
• Wrong Linkage (WL): m has an antecedent

in K but is assigned an incorrect antecedent
in S.

However, one issue with ARCS is to determine
a criterion for the TP class, i.e. under what cir-
cumstances is m regarded as resolved correctly.
Tuggener (2014) proposed to determine correct
antecedents based on the requirements of prospec-
tive downstream applications.11 We implement
one loose criterion and regard m as correctly re-
solved if any of its antecedents in S is also an an-
tecedent of m in K. Conversely, if none of the
antecedents of m overlap in S and K, we label m
as WL. This yields the ARCSany metric. Alterna-
tively, we require that the closest preceding nom-
inal antecedent of m in S is also an antecedent of
m in K, which yields the ARCSnom metric. This
metric is more conservative in assigning the TP
class, but implements a more realistic criterion for

10The common metrics analyse either the links between
mentions or calculate a percentage of overlapping mentions
in coreference chains in the key and a response. They are
not able to determine whether a given mention m is resolved
correctly or assign a class to it.

11Machine translation requires pronouns to be linked to
nominal antecedents, Sentiment analysis needs Named En-
tity antecedents (if available) etc.

correct antecedents from the perspective of down-
stream applications.

The official CoNLL score MELA (average of
MUC, CEAFE, and BCUB) and the recently pro-
posed LEA metric (Moosavi and Strube, 2016),
which addresses several issues of of the other met-
rics, as well as the ARCS scores, are given in table
7. Using the ARCS class inventory and equation
2, we quantify how many of the mentions are clas-
sified differently in the system responses.

MELA LEA ARCSany ARCSnom

Berkeley 62.06 54.80 71.25 59.13
HOTCoref 64.32 57.13 73.27 61.95
Stanford 66.62 60.92 76.30 62.04

ARCSany diff ∆ F1
Stanford↔ Berkeley 27.13 5.05
Stanford↔ HOTCoref 26.30 3.03
Berkeley↔ HOTCoref 27.22 2.02

ARCSnom diff ∆ F1
Stanford↔ Berkeley 35.39 2.91
Stanford↔ HOTCoref 37.45 0.09
Berkeley↔ HOTCoref 34.89 2.82

Table 7: Coreference resolution evaluation (F1)
and differences (%)

The F1 scores are lowest for the LEA metric,
because it gives more weight to errors regarding
longer coreference chains. The ARCSany metric
assigns the highest scores due to the loose criterion
that any antecedent is correct as long as it is in the
key chain of a given mention. Furthermore, all the
metrics agree on the ranking of the systems.

The mention-based differences between the sys-
tems are considerably larger than the relatively
small differences in F1 scores suggest. The
Stanford systems outperforms HOTCoref by 2.3
MELA, 3.79 LEA F1, and 3.03 ARCSany F1,
but the systems process one fourth (26.30%) of
the mentions differently in the ARCSany setting.
For the ARCSnom criterion, the differences are
even larger. The Stanford system outperforms the
Berkeley system by 2.91 ARCSnom F1, but the
systems process 35.39% of the mentions differ-
ently. Furthermore, we observe that the differ-
ences in F1 (∆ F1) do not correlate with the differ-
ences of the outputs (diff ) for both ARCS metrics.
Given ARCSnom, we see that the smallest differ-
ence in F1 (Stanford ↔ HOTCoref: 0.09) actu-
ally occurs between the two responses that the diff
metric deems most dissimilar (37.45).

Finally, we apply algorithm 1, using the
ARCSnom criterion and our mention classification
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scheme to the two best performing systems, i.e.
HOTCoref and Stanford. Results are given in ta-
ble 8.

Difference: 37.45% (5760 / 15382)
Corrections: 44.62% (2570/5760)
wl→ tp 20.09
fn→ tp 12.34
fp→ tn 12.19
New errors: 41.65% (2399/5760)
tp→ wl 17.08
tp→ fn 12.33
tn→ fp 12.24
Changed errors: 13.73% (791/5760)
fn→ wl 3.87
wl→ fn 9.86

Table 8: Comparison of two coreference responses
(HOTCoref→ Stanford)

We see that less than 50% of the changes that
the Stanford system introduces are corrections
(44.62%). But this percentage is still higher than
the newly introduced errors (41.65%); hence the
improvement in overall F1. Furthermore, the most
frequent change is wrong linkages to true positives
(wl → tp). The most frequent new error also in-
volves true mentions, i.e. attaching correctly re-
solved mentions to incorrect antecedents (tp →
wl). Recovering false negatives and rendering
true positives to false negatives occurs equally fre-
quent, roughly. Hence, the performance difference
stems mainly from attaching anaphoric mention to
(nominal) antecedents, rather than from deciding
which mentions to resolve, which are two sub-
problems in coreference resolution.

3 System combination

Lastly, we combine the system outputs per task
and calculate the upper bounds for perfect sys-
tem combinations by deeming a token labeled cor-
rectly if at least one of the systems provides the
correct label. The upper bounds are intended to
be another measure of the (dis)similarity of the
outputs: the higher the upper bound, the higher
the divergence of the outputs. Furthermore, look-
ing at per-label performance of all systems, we
can identify labels with low scores but high up-
per bounds, which is an interesting starting point
for future work.

3.1 POS tagging

We start with the POS tagging task and present the
upper bound of the system combination if table 9.
We also indicate the accuracy gains for the top ten
most frequent POS tags relative to the best per-
forming tagger (Clevertagger).

Stan. Tree. Clever. Upper bound
Overall 90.41 94.38 96.16 98.52 +2.36
NN 96.01 98.47 98.06 99.55 +1.49
ART 99.62 99.32 99.43 99.85 +0.42
APPR 86.10 98.03 99.20 99.56 +0.36
NE 87.35 77.46 85.31 95.17 +9.86
ADJA 92.73 94.50 98.40 99.44 +1.04
ADV 89.25 91.71 90.93 95.48 +4.55
VVFIN 79.73 95.15 91.52 97.48 +5.96
VVAFIN 91.97 98.93 97.74 99.56 +1.82
KON 97.13 95.37 96.55 98.37 +1.82
ADJD 72.37 89.29 88.80 93.53 +4.73

Table 9: POS tagging upper bounds and accuracy
(highest scores in green; lowest in red; middle in
yellow)

The Stanford tagger, despite performing the
lowest with respect to overall accuracy, achieves
the highest accuracy on named entities (NE), while
the TreeTagger struggles in this category partic-
ularly. The TreeTagger surpasses the other tag-
gers on finite verbs (VVFIN) by a wide margin
and auxiliary finite verbs (VAFIN). Clevertagger
performs best overall, but interestingly, it only
achieves the highest accuracy on three of the ten
most frequent POS tags. Looking at the overall
upper bound, we see that it more than halves the
error rate of the best performing system and is near
99% accuracy. The POS tags that profit most from
the combination are named entities. Interestingly,
all the taggers have low accuracy with respect to
this tag, but the upper bound of the combination
drastically raises it. Hence, it seems that the tag-
gers diverge mostly here, which correlates with
our analysis of the difference between the two best
performing systems in table 4.

3.2 Dependency parsing

Next, we analyse the upper bounds of the com-
bination of the dependency parsers, given in ta-
ble 10. in contrast to the POS tagging task, we
find that the best performing system, Parsey (P-
MP) achieves highest LAS for almost all consid-
ered labels. Still, its overall LAS is drastically in-
creased by the upper bound (+5.99) of the perfect
system combination. Two of the labels that ben-
efit the most of the combination are amod (adjec-
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tival modifier), which is often confused with nn
(noun compound modifier) as we saw in table 6,
and advmod (adverb modifier). All parsers have
below 90 LAS for these labels, but the combina-
tion raises performance to 95.26 and 91.40, re-
spectively. Furthermore, prepositions (prep) gains
considerably in LAS in the combination. We ob-
served in table 6 that almost ten percent of the
difference between Parsey and the Stanford NN
parser stem from correcting attachments of prepo-
sitions. However, also more than seven percent
of the difference stems from invalidating correctly
attached prepositions in the Stanford NN output.
The large performance jump in the combination
of the systems is further evidence that the parsers
are highly complementary with respect to preposi-
tions.

S-PCFG S-NN P-MP Upper bound
All 85.36 86.43 88.94 94.93 +5.99
prep 78.76 84.26 88.21 94.18 +5.97
pobj 94.26 95.30 96.35 98.62 +2.27
det 96.81 96.65 98.66 99.38 +0.72
nn 74.64 76.81 86.36 88.91 +2.55
nsubj 92.08 89.78 94.41 97.85 +3.44
amod 87.59 88.45 86.95 95.26 +8.31
root 93.79 89.61 95.74 98.63 +2.89
dobj 90.19 90.88 92.91 97.47 +4.56
aux 97.53 97.11 97.63 99.30 +1.67
advmod 74.48 78.56 82.97 91.40 +8.43

Table 10: Parsing accuracy (LAS) and upper
bounds.

3.3 Coreference resolution
For the coreference task, it is not trivial to calcu-
late the F1 upper bound of the response combina-
tion, as the systems do no feature the same men-
tions in their outputs12, and disentangling the false
positives is a cumbersome undertaking. There-
fore, we limit our investigation to the gold men-
tions in the key and count for how many of them
at least one of the responses produces a correct
nominal antecedent, which yields the upper bound
for ARCSnom recall. To gain a deeper insight
into the benefits of the combination and the perfor-
mance of the systems, we divide the mentions into
nouns (named entities and common nouns), per-
sonal pronouns (PRP), and possessive pronouns
(PRP$). Results are given in table 11.13

The system with overall best recall features the
highest recall with respect to all mention types.

12The systems have to decide which NPs they consider for
coreference resolution (the anaphoricity detection problem).
I.e. the mentions are not known beforehand, and the systems

Berk. Stan. HOT. Upper bound
Overall 55.72 58.13 59.34 73.39 +14.05
Nouns 59.67 59.76 60.99 73.48 +12.49
PRP 50.66 56.30 57.56 73.80 +16.24
PRP$ 62.36 64.62 65.98 80.57 +14.59

Table 11: Mention-based coreference perfor-
mance (ARCSnom recall) and upper bounds

However, there is a considerable difference in re-
call to the mention types for all systems: Posses-
sive pronouns are more easily attached to correct
nominal antecedents than nouns and personal pro-
nouns. Furthermore, we see that upper bounds
raise recall uniformly for all mention types by a
considerable margin. This suggest that the outputs
are indeed different in several regards, which cor-
relates to the comparisons in tables 7 and 13.

4 Related work

One way to establish the difference of two system
outputs is to apply statistical significance tests.
However, there is generally little agreement on
which test to use, and it is often not trivial to ver-
ify if all criteria are met for the application of a
specific test to a given data set (Yeh, 2000). Fur-
thermore, the significance tests provide no insight
into the nature of the differences between two out-
puts.

Several survey papers analysed performance of
state-of-the-art tools for POS tagging (Volk and
Schneider, 1998; Giesbrecht and Evert, 2009;
Horsmann et al., 2015) or dependency parsing
(McDonald and Nivre, 2007). While these surveys
provide performance results along different axes
(accuracy, time, domain, frequent errors), they do
not analyse the particular differences between the
system responses on the token level and hence
do not provide a (dis)similarity rating of the re-
sponses. Regarding dependency parsing, our work
is most closely related to McDonald and Nivre
(2007) and Seddah et al. (2013). Both papers anal-
yse the performance of parsers with respect to sev-
eral subproblems. McDonald and Nivre (2007)
also performed output combination experiments to
stress that the two parsers that they investigated are
complementary to a significant degree.

Comparative system evaluation in shared tasks
is usually performed by pitting scores in evalua-

will hallucinate different incorrect ones.
13Note that the HOTCoref system has better recall than the

Stanford system, but the Stanford system features better pre-
cision, which leads to a higher F1 score in table 7.
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tion metrics against each other, e.g. the CoNLL
shared tasks on coreference (Pradhan et al., 2011;
Pradhan et al., 2012) or on dependency pars-
ing (Buchholz and Marsi, 2006; Nilsson et al.,
2007). While the post task evaluation of the
CoNLL shared task 2007 included an experi-
ment of system combination which showed perfor-
mance improvements, it is generally left unclear
how similar are the system outputs with (some-
times marginally) small differences with respect
to the evaluation metrics.

Another branch of evaluation related to our
work is error analysis. Gärtner et al. (2014) pre-
sented a tool to explore coreference errors visually,
but does not aggregate and classify them. Kum-
merfeld and Klein (2013) devised a set of error
classes for coreference and analysed quantitatively
which systems make which errors. Martschat and
Strube (2014) presented an analysis and grouping
of recall errors for coreference and evaluated a set
of system responses. However, these analyses fo-
cus on the errors of one system at a time and then
compare the overall error statistics, i.e. there is
no direct linking or combination of the responses.
Hence, we believe our approach to be complemen-
tary to the work outlined above.

5 Conclusion

We have presented a generic dissimilarity metric
for system outputs and applied it to several sys-
tems for POS tagging, dependency parsing, and
coreference resolution. We found that systems
with marginal differences in accuracy scores or F1
actually have considerably distinct outputs. We
combined system outputs and calculated upper
bounds in performance as an additional measure
of the degree of difference between the outputs.

We discussed and applied a method for
analysing the specific differences between two
system outputs using a class inventory to label and
quantify the differences. Our analysis revealed the
(often considerable) quantity of new errors that
improvements introduce compared to baselines.
We believe that this kind of analysis is also useful
during system and method design, as it allows one
to track all changes in the output when adjusting a
system or a feature set.

While we have explored our approach on three
core tasks in Computational Linguistics, we be-
lieve it to be applicable to other areas in the field.
Our hope is that our method of comparative evalu-

ation will motivate other researchers to gain an in-
depth understanding of the output of their systems
and what distinguishes them from others, beyond
differences in accuracy or F1 scores.
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A Appendix

A.1 POS tagging

∆ Acc. TT CT POS #tok
-100.00 100.00 0.00 VAIMP 1
+97.34 0.00 97.34 PROAV 301
+96.65 0.00 96.65 PIDAT 179
+50.00 14.74 64.74 FM 156
+46.67 46.67 93.33 PWAT 15
+39.39 54.55 93.94 PTKA 33
+33.33 33.33 66.67 VVIMP 6
+28.57 71.43 100.00 APZR 7
+26.87 71.64 98.51 PWAV 67
-24.00 96.00 72.00 VMINF 25
+13.33 78.33 91.67 KOUI 60

Table 12: Largest accuracy differences between
TreeTagger (TT) and Clevertagger(CT); number
of token with POS tag in the test set (#tok)

A.2 Coreference resolution

Since the ARCS framework is relatively unknown
and not widely used, we revisit the connection
of our diff metric to accuracy and F1 outlined
in section 2 in order to use one of the corefer-
ence metrics to establish the differences between
the outputs. We saw that our metric is inversely
equivalent to accuracy when taking one system re-
sponse as the key and the other as the response.
That is, we can calculate the diff ratio by 1 −
|ti∈T :label(ti,S1)==label(ti,S2)|

|T | , which is equivalent
to taking S1 as the key and S2 as the response
(or vice versa). For the coreference task, we can
thus use one response as the key and the other as
the response. The resulting F1 score can then be
used as an agreement value, which, however, does
not provide any detailed analysis of the nature of
the differences compared to the ARCS approach.
Table 13 shows the F1 scores when using one re-
sponse as the key and the second as response. Note
that switching the key and the response role pro-
vides the same F1 scores for two responses; the
only effect is that the recall and precision values
are switched.

The table shows that using this approach, we
obtain F1 scores that give quite high dissimilari-
ties when turned into the diff metric, i.e. diff =
100 − F1. The average of the diff metric given
MELA F1 is 28.90 (100−71.10); given LEA F1 it
is 35.22 (100−64.78). Compared to the ARCSany

Key Response LEA F1 MELA F1
Berkeley HOTCoref 63.58 70.32
Berkeley Stanford 66.03 71.91
Stanford HOTCoref 64.73 71.08

Table 13: Coreference system comparison pairing
responses

average diff (25.56) and the ARCSnom average
diff , 34.09, the values are in a similar range.
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Abstract

The task of generating natural language
descriptions from images has received a
lot of attention in recent years. Conse-
quently, it is becoming increasingly im-
portant to evaluate such image captioning
approaches in an automatic manner. In
this paper, we provide an in-depth evalua-
tion of the existing image captioning met-
rics through a series of carefully designed
experiments. Moreover, we explore the
utilization of the recently proposed Word
Mover’s Distance (WMD) document met-
ric for the purpose of image captioning.
Our findings outline the differences and/or
similarities between metrics and their rela-
tive robustness by means of extensive cor-
relation, accuracy and distraction based
evaluations. Our results also demonstrate
that WMD provides strong advantages over
other metrics.

1 Introduction

There has been a growing interest in research on
integrating vision and language in natural lan-
guage processing and computer vision communi-
ties. As one of the key problems in this emerg-
ing area, image captioning aims at generating
natural descriptions of a given image (Bernardi
et al., 2016). This is a challenging problem
since it requires the ability to not only under-
stand the visual content, but also to generate a
linguistic description of that content. In this
regard, it can be framed as a machine trans-
lation task where the source language denotes
the visual domain and the target language is
a specific language such as English. The re-
cently proposed deep image captioning studies
follow this interpretation and model the process

via an encoder-decoder architecture (Vinyals et
al., 2015; Xu et al., 2015; Karpathy and Fei-
Fei, 2015; Jia et al., 2015). These approaches
have attained considerable success in the recent
benchmarks such as FLICKR8K (Hodosh et al.,
2013), FLICKR30K (Young et al., 2014) and MS

COCO (Lin et al., 2014) as compared to the ear-
lier techniques which explicitly detect objects and
generate descriptions by using surface realization
techniques (Kulkarni et al., 2013; Li et al., 2011;
Elliott and Keller, 2013).

With the size of the benchmark datasets be-
coming larger and larger, evaluating image cap-
tioning models has become increasingly impor-
tant. Human-based evaluations become obsolete
as they are costly to acquire and, more impor-
tantly, not repeatable. Automatic evaluation met-
rics are employed as an alternative to human eval-
uation in both developing new models and com-
paring them against the state-of-the-art. These
metrics compute a score that indicates the simi-
larity/dissimilarity between an automatically gen-
erated caption and a number of human-written ref-
erence (gold standard) descriptions.

Some of these automatic metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005), and
TER (Snover et al., 2006) have originated from
the readily available metrics for machine transla-
tion and/or text summarization. On the contrary,
the more recent metrics such as CIDEr (Vedantam
et al., 2015) and SPICE (Anderson et al., 2016) are
specifically developed for image caption evalua-
tion task.

Evaluation with automatic metrics has some
challenges as well. As previously analyzed in (El-
liott and Keller, 2014), the existing automatic eval-
uation measures have proven to be inadequate in
successfully mimicking the human judgements for
evaluating the image descriptions. The latest eval-
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Table 1: A summary of the evaluation metrics considered in this study.
Metric Proposed to evaluate Underlying idea

BLEU (Papineni et al., 2002) Machine translation n-gram precision
ROUGE (Lin, 2004) Document summarization n-gram recall
METEOR (Banerjee and Lavie, 2005) Machine translation n-gram with synonym matching
CIDEr (Vedantam et al., 2015) Image description generation tf-idf weighted n-gram similarity
SPICE (Anderson et al., 2016) Image description generation Scene-graph synonym matching
WMD (Kusner et al., 2015) Document similarity Earth Mover Distance on word2vec

uation results of 2015 MS COCO Challenge on im-
age captioning has also revealed some interesting
findings in line with this observation (Vinyals et
al., 2016). In the challenge, the recent deep mod-
els outperform the human upper bound according
to automatic measures, yet they could not beat the
humans when the subjective human judgements
are considered. These demonstrate that we need
to better understand the drawbacks of existing au-
tomatic evaluation metrics. This motivates us to
present an in-depth analysis of the current metrics
employed in image description evaluation.

We first review BLEU, ROUGE, METEOR, CIDEr
and SPICE metrics, and discuss their main draw-
backs. In this context, we additionally describe
WMD metric which has been recently proposed
as a distance measure between text documents
in (Kusner et al., 2015). We then investigate the
performance of these automatic metrics through
different experiments. We analyze how well these
metrics mimic human assessments by estimat-
ing their correlations with the collected human
judgements. Different from the previous related
work (Elliott and Keller, 2014; Vedantam et al.,
2015; Anderson et al., 2016), we perform a more
accurate analysis by additionally reporting the re-
sults of Williams significance test. This further al-
lows us to figure out the differences and/or simi-
larities between a pair of metrics, whether any two
metrics complement each other or provide similar
results. We then test the ability of these metrics to
distinguish certain pairs of captions from one an-
other in reference to a ground truth caption. Next,
we carry out an analysis on robustness of these
metrics by analyzing how well they cope with the
distractions in the descriptions (Hodosh and Hock-
enmaier, 2016).

2 Evaluation Metrics

A summary of the metrics investigated in our
study is given in Table 1. All these metrics ex-

cept SPICE and WMD define the similarity over
words or n-grams of reference and candidate de-
scriptions by considering different formulas. On
the other hand, SPICE (Anderson et al., 2016) con-
siders a scene-graph representation of an image
by encoding objects, their attributes and relations
between them, and WMD leverages word embed-
dings to match groundtruth descriptions with gen-
erated captions.

2.1 BLEU

BLEU (Papineni et al., 2002) is one of the first met-
rics that have been in use for measuring similarity
between two sentences. It has been initially pro-
posed for machine translation, and defined as the
geometric mean of n-gram precision scores multi-
plied by a brevity penalty for short sentences. In
our experiments, we use the smoothed version of
BLEU as described in (Lin and Och, 2004).

2.2 ROUGE

ROUGE (Lin, 2004) is initially proposed for eval-
uation of summarization systems, and this evalu-
ation is done via comparing overlapping n-grams,
word sequences and word pairs. In this study, we
use ROUGE-L version, which basically measures
the longest common subsequences between a pair
of sentences. Since ROUGE metric relies highly
on recall, it favors long sentences, as also noted
by (Vedantam et al., 2015).

2.3 METEOR

METEOR (Banerjee and Lavie, 2005) is another
machine translation metric. It is defined as the
harmonic mean of precision and recall of uni-
gram matches between sentences. Additionally, it
makes use of synonyms and paraphrase matching.
METEOR addresses several deficiencies of BLEU

such as recall evaluation and the lack of explicit
word matching. n-gram based measures work rea-
sonably well when there is a significant overlap
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between reference and candidate sentences; how-
ever they fail to spot semantic similarity when
the common words are scarce. METEOR handles
this issue to some extent using WordNet-based
synonym matching, however just looking at syn-
onyms may be too restrictive to capture overall se-
mantic similarity.

2.4 CIDEr

CIDEr (Vedantam et al., 2015) is a recent met-
ric proposed for evaluating the quality of image
descriptions. It measures the consensus between
candidate image description ci and the reference
sentences, which is a set Si = {si1, . . . , sim} pro-
vided by human annotators. For calculating this
metric, an initial stemming is applied and each
sentence is represented with a set of 1-4 grams.
Then, the co-occurrences of n-grams in the refer-
ence sentences and candidate sentence are calcu-
lated. In CIDEr, similar to tf-idf, the n-grams that
are common in all image descriptions are down-
weighted. Finally, the cosine similarity between
n-grams (referred as CIDErn) of the candidate and
the references is computed.

CIDEr is designed as a specialized metric for
image captioning evaluation, however, it works in
a purely linguistic manner, and only extends ex-
isting metrics with tf-idf weighting over n-grams.
This sometimes causes unimportant details of a
sentence to be weighted more, resulting in a rel-
atively ineffective caption evaluation.

2.5 SPICE

Another recently proposed metric for evaluating
image caption similarity is SPICE (Anderson et al.,
2016). It is based on the agreement of the scene-
graph tuples (Johnson et al., 2015; Schuster et al.,
2015) of the candidate sentence and all reference
sentences. Scene-graph is essentially a semantic
representation that parses the given sentence to se-
mantic tokens such as object classes C, relation
types R and attribute types A. Formally, a candi-
date caption c is parsed into a scene-graph as

G(c) = 〈O(c), E(c),K(c)〉

where G(c) denotes the scene graph of caption c,
O(c) ⊆ C is the set of object mentions, E(c) ⊆
O(c)×R×O(c) is the set of hyper-edges rep-
resenting relations between objects, and K(c) ⊆
O(c) × A is the set of attributes associated with
objects. Once the parsing is done, a set of tuples is

swimming

in

have

through

with

mouth
dog

grey
river

stick

Candidate caption: grey dog swimming through 
a river with a stick in his mouth

Figure 1: An example image with its Scene Graph
where the parser fails to parse the candidate sen-
tence accurately, which could result in wrong cal-
culation of SPICE metric. See text for details.

formed by using the elements of G and their pos-
sible combinations. SPICE score is then defined as
the F1-score based on the agreement between the
candidate and reference caption tuples. For tuple
matching, SPICE uses WordNet synonym match-
ing (Pedersen et al., 2004) as in METEOR (Baner-
jee and Lavie, 2005). One problem is that the per-
formance becomes quite dependent on the quality
of the parsing. Figure 1 illustrates an example case
of failure. Here, swimming is parsed as an object,
with all its relations, and dog is parsed as an at-
tribute.

2.6 WMD

Two captions may not share the same words or any
synonyms; yet they can be semantically similar.
On the contrary, two captions may include similar
objects, attributes or relations yet they may not be
semantically similar. Metrics that are currently in
use fail to correctly identify and assess the quality
of such cases. To address this issue, we propose to
use a recently introduced document distance mea-
sure called Word Mover’s Distance (WMD) (Kus-
ner et al., 2015) for evaluating image captioning
approaches. WMD casts the distance between doc-
uments as an instance of Earth Mover’s Distance
(EMD) (Rubner et al., 2000), where travel costs
are calculated based on word2vec (Mikolov et al.,
2013) embeddings of the words.

For WMD, text documents (in our case image
captions) are first represented by their normalized
bag-of-words (nBOW) vectors, accounting for all
words except stopwords. More formally, each
text document is represented as vectors d ∈ Rn,
where, di = ci

Σn
j=1cj

if a word i appears ci times in
the document. WMD incorporates semantic simi-
larity between individual word pairs into the doc-
ument similarity metric, by using the distances in
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Table 2: Drawbacks of automatic evaluation metrics for image captioning. See text for details.
Description BLEU METEOR ROUGE CIDEr SPICE WMD

original a man wearing a red life jacket is sitting in a canoe
on a lake

1 1 1 10 1 1

candidate a man wearing a life jacket is in a small boat on a
lake

0.45 0.28 0.67 2.19 0.40 0.19

synonyms a guy wearing a life vest is in a small boat on a
lake

0.20 0.17 0.57 0.65 0.00 0.10

redundancy a man wearing a life jacket is in a small boat on a
lake at sunset

0.45 0.28 0.66 2.01 0.36 0.18

word order in a small boat on a lake a man is wearing a life
jacket

0.26 0.26 0.38 1.32 0.40 0.19

Candidate 1

A  man wearing a  lifevest is  sitting in  a  canoe .

A  guy with a  red jacket is  standing on  a  boat .

A  small white ferry rides through water .

2.49  =  0.48             + 0.50           + 0.60               + 0.43                + 0.48 

3.07  =   0.61    + 0.57                    + 0.71            + 0.70  + 0.48 

Reference

Candidate 2

Figure 2: An illustration of the distance calcula-
tion of WMD metric comparing two candidate cap-
tions with a reference caption.

word2vec embedding space. Specifically, the dis-
tance between word i and word j in two docu-
ments is set as the Euclidean distance between
each of the corresponding word2vec embeddings
xi and xj , i.e., c(i, j) = ‖xi − xj‖2.

The distances between words serve as build-
ing blocks to define distances between documents,
hence captions. The flow between word vectors is
defined with the sparse flow matrix T ∈ Rn×n,
with Tij representing the travel amount of word i
to word j. The distance between two documents
is then defined with Σi,jTijc(i, j), i.e. the mini-
mum cumulative cost required to move all words
between documents. This minimum cumulative
cost is found by solving the corresponding linear
optimization problem, which is cast as a special
case of EMD metric (Rubner et al., 2000). An ex-
ample matching result is shown in Figure 2. By
using word2vec embeddings, semantic similarities
between words are more accurately identified. In
our experiments, we convert the distance scores to
similarities by using a negative exponential.

2.7 Drawbacks of the metrics

In order to illustrate the drawbacks of these au-
tomatic evaluation metrics, we provide an exam-

ple case in Table 2. In this table, an original cap-
tion is given, together with the upper bound val-
ues for each metric, i.e. when this original caption
is compared to itself. The second line includes a
candidate caption that is semantically very simi-
lar to the original one and the corresponding sim-
ilarity scores according to evaluation metrics. We
then modify the candidate sentence slightly and
observe how the metric scores are affected from
these small modifications. First, we observe that
all the scores decrease when some words are re-
placed with their synonyms. The change is espe-
cially significant for SPICE and CIDEr. In this ex-
ample, failure of SPICE is likely due to incorrect
parsing or the failure of synonym matching. On
the other hand, failure of CIDEr is likely due to
unbalanced tf-idf weighting. Second, we observe
that the metrics are not affected much from the in-
troduction of additional (redundant) words in the
sentences. However, when the order of the words
are changed, we see that BLEU, ROUGE and CIDEr
scores decrease notably, due to their dependence
on n-gram matching. Note that, WMD and SPICE

are not influenced from the change in word order.

3 Evaluation and Discussion

3.1 Quality

A common way of assessing the performance of a
new automatic image captioning metric is to an-
alyze how well it correlates with human judge-
ments of description quality. However, in the lit-
erature, there is no consensus on which correla-
tion coefficient is best suited for measuring the
soundness of a metric in this way. Elliott and
Keller (2014) reports Spearman’s rank correlation,
which measures a monotonic relation, whereas
Anderson et al. (2016) suggests to use Pearson’s
correlation, which assumes that the relation is lin-
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ear, and Kendall’s correlation, which is another
rank correlation measure.

The above correlation analysis is a well-
established practice for automatic metric evalua-
tion, but it is not complete in the sense that it is not
meaningful to draw conclusions from it about the
differences or similarities between a pair of met-
rics. That is, comparing the corresponding corre-
lations relative to each other does not say much
since they are both computed on the same dataset,
and thus not independent. To address this issue,
Graham and Baldwin (2014) have suggested to use
Williams significance test (Williams, 1959), which
also takes into account the degree to which the two
metrics correlate with each other, and can reveal
whether one metric significantly outperforms the
other. The test has shown to be valuable for eval-
uation of document and segment-level machine
translation (Graham and Baldwin, 2014; Graham
et al., 2015; Graham and Liu, 2016) and summa-
rization metrics (Graham, 2015). In this study,
we extend the previous correlation-based evalua-
tions of image captioning metrics by providing a
more conclusive analysis based on Williams sig-
nificance test.

Williams test (Williams, 1959) calculates the
statistical significance of differences in dependent
correlations, and formulated as testing whether the
population correlation between X1 and X3 equals
the population correlation between X2 and X3:

t(n− 3) =
(r13 − r23)

√
(n− 1)(1 + r12)√

2K(n−1
n−3) + (r23+r13)2

4 (1− r12)3

(1)
where rij is the correlation between Xi and Xj ,
and n is the size of the population, with

K = 1− r2
12 − r2

13 − r2
23 + 2r12r13r23. (2)

To analyze statistical significance in the au-
tomatic metrics listed in Section 2, we use the
publicly available FLICKR-8K (Elliott and Keller,
2014) and COMPOSITE (Aditya et al., 2015)
datasets, which we describe below. We note that
in our experiments, we first lowercase and tok-
enize the candidate and reference captions using
ptbtokenizer.py script from MS COCO eval-
uation tools1. We use the implementations of the
metrics from the same evaluation kit with the ex-

1https://github.com/peteanderson80/
coco-caption

ception of WMD. For the WMD metric, we employ
the code provided by Kusner et al. (2015)2.

FLICKR-8K3 dataset contains quality judge-
ments for 5822 candidate sentences for the images
in its test set (Hodosh et al., 2013). These judge-
ments are collected from 3 human experts and they
are on a scale of [1, 4], with a score of 1 denoting
a description totally unrelated to the image con-
tent, and 4 meaning a perfect description for the
image. Candidate captions are all obtained from
a retrieval based model, hence they are grammati-
cally correct.

COMPOSITE4 dataset contains human judge-
ments for 11,985 candidate captions for the sub-
sets of FLICKR-8K (Hodosh et al., 2013), FLICKR-
30K (Young et al., 2014) and MS COCO (Lin et
al., 2014) datasets. The AMT workers were asked
to judge the candidate caption for an image us-
ing two aspects: (i) correctness, and (ii) thorough-
ness of the candidate caption, both on a scale of
[1, 5] where 1 means not relevant/less detailed and
5 denotes the candidate caption perfectly describ-
ing the image. Candidate captions were sampled
from the human reference captions and the cap-
tioning models in (Aditya et al., 2015; Karpathy
and Fei-Fei, 2015).

Table 3 shows Pearson’s, Spearman’s and
Kendall’s correlation of the metrics with the hu-
man judgements in FLICKR-8K and COMPOSITE

datasets. For FLICKR-8K, we follow the method-
ology in (Elliott and Keller, 2014) and compute
correlations with the human expert scores. On the
other hand. for COMPOSITE, we report the mean
of the correlations with correctness and thorough-
ness scores. In terms of these correlations, while
SPICE produces the highest quality comparisons in
FLICKR-8K, WMD and METEOR give better results
in COMPOSITE in general. However, if one fur-
ther inspects the score distributions of the metrics
(on FLICKR-8K dataset) shown in Figure 3, while
SPICE can identify irrelevant captions remarkably
well, it can not effectively distinguish bad captions
from relatively better ones.

In Figure 4(a), we show Spearman’s correlation
between each pair of metrics, where the metrics
are ordered from highest to lowest correlation with

2https://github.com/mkusner/wmd
3https://github.com/elliottd/

compareImageDescriptionMeasures
4https://imagesdg.wordpress.com/

image-to-scene-description-graph
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Table 3: Correlation between automatic image captioning metrics and human judgement scores.
FLICKR-8K COMPOSITE

Pearson Spearman Kendall Pearson Spearman Kendall

WMD 0.68 0.60 0.48 0.43 0.43 0.32
SPICE 0.69 0.64 0.56 0.40 0.42 0.34
CIDEr 0.60 0.56 0.45 0.32 0.42 0.32
METEOR 0.69 0.58 0.47 0.37 0.44 0.33
BLEU 0.59 0.44 0.35 0.34 0.38 0.28
ROUGE 0.57 0.44 0.35 0.40 0.39 0.29
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Figure 3: Score distributions of the metrics on FLICKR-8K dataset. Four different rating scales are used:
1 for no relation, 2 for minor mistakes, 3 for some true aspects and 4 for perfect match. For CIDEr
and SPICE metrics, square-root transform is performed on the y-axis to better illustrate how the score
distributions overlap with each other.

human judgements5. Overall, the pairwise corre-
lations are generally high for both datasets. We
additionally observe that the metrics which de-
pend on similar structures are grouped together
using these correlations. For example, the n-
gram based metrics BLEU and ROUGE provide
scores that are highly correlated with each other
for FLICKR-8K. The correlations within COMPOS-
ITE dataset are even very high for all the metrics
that consider n-grams, namely BLEU, CIDEr, ME-
TEOR and ROUGE. On the other hand, the corre-
lations of these metrics against SPICE and WMD

are not that high. Moreover , the pairwise correla-
tions between SPICE and WMD are relatively low
as well. All these findings suggest that these three
groups of metrics, the n-gram based metrics, the
scene-graph based SPICE and the word embedding

5Here, we only report Spearman’s correlation since, com-
pared to Pearson’s, it provides a more consistent ranking of
the metrics across the two datasets, and is similar to Kendall’s
correlation.

based WMD, can be complementary to each other.
Finally, in Figure 4(b), we provide the results

of Williams significance test, which compares two
different metrics with respect to their correlations
against human judgements. Our results show that
all the metric pairs have a significant difference in
correlation with human judgement at p < 0.05.
This reveals that the pair of metrics which has
close correlation scores with human judgements
(e.g. SPICE and WMD in FLICKR-8K dataset) are
found to be statistically different than each other.
These findings collectively support our previous
conclusion that all metrics considered here can
complement each other in evaluating the quality
of the generated captions.

3.2 Accuracy
In this section, following the methodology intro-
duced in (Vedantam et al., 2015), we analyze
the ability of each metric to discriminate certain
pair of captions from one another in reference to
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Figure 4: Significance test results for pairs of automatic metrics on FLICKR-8K and COMPOSITE datasets.
(a) Spearman correlation between pairs of metrics; and (b) p-value of Williams significance tests, green
cells indicate a significant win for metric in row i over metric in column j.

a groundtruth caption. We employ the human
consensus scores while evaluating the accuracies.
In particular, for evaluation, a triplet of descrip-
tions, one reference and two candidate descrip-
tions, is shown to human subjects and they are
asked to determine the candidate description that
is more similar to the reference. A metric is ac-
curate if it provides a higher score to the descrip-
tion chosen by the human subject as being more
similar to the reference caption. For this analy-
sis, we carry out our experiments on PASCAL-50S

and ABSTRACT-50S datasets6. We consider dif-
ferent kinds of pairs such as (human-human cor-
rect) HC, (human-human incorrect) HI, (human-
machine) HM, and (machine-machine) MM. As
the candidate sentences are generated by both hu-
mans and machines, each test scenario has a dif-
ferent level of difficulty.

ABSTRACT-50S (Vedantam et al., 2015) dataset
is a subset of the Abstract Scenes Dataset (Zit-
nick and Parikh, 2013), which includes 500 im-
ages containing clipart objects in everyday scenes.
Each image is annotated with 50 different descrip-
tions. For evaluation, 48 of these 50 descriptions
are used as reference descriptions and the remain-

6http://vrama91.github.io/cider

ing 2 descriptions are employed as candidate de-
scriptions. For 400 pairs of these descriptions, hu-
man consensus scores are available, with the first
200 are for HC and the remaining 200 are for HI.

PASCAL-50S (Vedantam et al., 2015) dataset
is an extended version of the Pascal Sen-
tences (Farhadi et al., 2010) dataset that con-
tains 1000 images from PASCAL Object Detec-
tion challenge (Everingham et al., 2010) of 20
different object classes like person, car, horse,
etc. This version includes 50 captions per image
and human judgements for 4000 candidate pairs
for the aforementioned binary-forced choice task,
which are all collected through Amazon Mechan-
ical Turk (AMT). For this dataset, all four differ-
ent categories are available, having 1000 pairs for
each category.

In Table 4, we present caption-level classifica-
tion accuracy scores of automatic evaluation met-
rics at matching human consensus scores. On
ABSTRACT-50S dataset, the CIDEr metric outper-
forms all other metrics in both HC and HI cases.
On the other hand, on PASCAL-50S dataset, the
WMD metric gives the best scores in three out of
four cases. Especially, it is the most accurate met-
ric at matching human judgements on the chal-
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Table 4: Description-level classification accuracies of automatic evaluation metrics.

ABSTRACT-50S PASCAL-50S

HC HI Avg. HC HI HM MM Avg.

WMD 0.65 0.93 0.79 0.71 0.99 0.93 0.74 0.84
SPICE 0.62 0.89 0.76 0.66 0.98 0.85 0.72 0.81
CIDEr 0.76 0.95 0.86 0.69 0.99 0.94 0.66 0.82
METEOR 0.60 0.90 0.75 0.69 0.99 0.90 0.65 0.81
BLEU 0.69 0.89 0.79 0.67 0.97 0.94 0.60 0.80
ROUGE 0.65 0.89 0.77 0.68 0.97 0.92 0.60 0.79

a man wearing a life jacket is in a small boat on a lake with a ferry in view

a man wearing a life jacket is in a small boat on takeoff with a ferry in view

a woman in a blue shirt and headscarf is in a small boat on a lake with
a ferry in view

a man is selecting a chair from a stack under a shady awning

a black and brown dog is playing on the ice at the edge of a lake

Gold Caption
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Figure 5: Distracted versions of an image descriptions for a sample image.

Table 5: Distraction analysis.
Case # Instances BLEU METEOR ROUGE CIDEr SPICE WMD

Replace-Scene 2514 0.62 0.69 0.63 0.83 0.54 0.76
Replace-Person 5817 0.73 0.77 0.78 0.78 0.67 0.80
Share-Scene 2621 0.79 0.85 0.79 0.81 0.70 0.87
Share-Person 4596 0.78 0.85 0.78 0.83 0.67 0.88

Overall 15548 0.73 0.79 0.75 0.81 0.65 0.83

lenging MM and HC cases, which require distin-
guishing fine-grained differences between descrip-
tions. On average, the performances of all the
other metrics are very similar to each other.

3.3 Robustness

In this section, we evaluate the robustness of the
automatic image captioning metrics. For this
purpose, we employ the binary (two-alternative)
forced choice task introduced in (Hodosh and
Hockenmaier, 2016) to compare the existing im-
age captioning models. For a given image, this
task involves distinguishing a correct description
from its slightly distracted incorrect versions. In
our case, a robust image captioning metric should
always choose the correct caption over the dis-
tracted ones.

In our experiments, we use the data7 provided

7http://nlp.cs.illinois.edu/
HockenmaierGroup/Papers/VL2016/
HodoshHockenmaier16_BinaryTasks_Data.tar

by the authors for a subset of FLICKR-30K (Ho-
dosh et al., 2013). Specifically, we consider
four different types of distractions for the im-
age descriptions, namely 1) Replace-Scene, 2)
Replace-Person, 3) Share-Scene, and 4) Share-
Person, which results 15548 correct and distracted
caption pairs in total. For Replace-Scene and
Replace-Person tasks, the distracted descriptions
were artificially constructed by replacing the main
actor (first person) and the scene in the orig-
inal caption by random person and scene ele-
ments, respectively. For Share-Scene and Share-
Person tasks, the distracted captions were se-
lected from the sentences from the training part of
FLICKR-30K (Young et al., 2014) dataset whose
actor or scene chunks share the similar main ac-
tor or scene elements with the correct description.
Figure 5 presents an example image together with
the original description and its distracted versions.

We compare each correct caption available for
an image with the remaining correct and distracted
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captions for that image by considering tested eval-
uation metrics, and then estimate an average accu-
racy score. In Table 5, we present the classifica-
tion accuracies of the evaluation metrics for each
distraction type. As can be seen, the WMD met-
ric gives the best results for three out of four cate-
gories, and provides the second best result for the
Replace-Scene case. Overall, METEOR and CIDEr
metrics seem to be also robust to these distrac-
tions. The very recently proposed SPICE metric
performs the worst for this task. This is somewhat
expected as it is even affected by the use of syn-
onyms of the words as we have previously shown
in Table 2.

3.4 Discussion

As the experiments on quality, accuracy and ro-
bustness tests demonstrate in Sections 3.1-3.3, ex-
isting automatic image captioning metrics all have
some strengths and weaknesses due to their de-
sign choices. For example, while SPICE, METEOR

and WMD give the best performances in terms
of our correlation analysis against human judge-
ments, CIDEr and WMD provide the best classifi-
cation scores for our accuracy experiments. More-
over, CIDEr, METEOR and WMD are found to be
less affected by the distractors. Overall, our anal-
ysis suggests that the recently proposed WMD doc-
ument metric is also quite effective for image cap-
tioning since it has high correlations with the hu-
man scores, is much less sensitive to synonym
swapping and additionally performs well at the ac-
curacy and distraction tasks.

Our analysis also shows that the existing met-
rics both theoretically and empirically differ from
each other with significant differences. Compared
to the recent results of significance testing of ma-
chine translation and summarization metrics (Gra-
ham and Baldwin, 2014; Graham et al., 2015;
Graham and Liu, 2016; Graham, 2015), our re-
sults suggest that there remains much room for
improvement in developing more effective im-
age captioning evaluation metrics. We leave this
for future work, but a very naive idea would be
combining different metrics into a unified met-
ric and we simply test this idea using score
combination, after normalizing the score of each
metric to the range [0, 1]. Among all possible
combinations, we find that the combination of
WMD+SPICE+METEOR performs the best with a
Spearman’s correlation of 0.66 for FLICKR-8K and

0.45 for COMPOSITE dataset, yielding an improve-
ment from SPICE (0.64 and 0.42). In addition,
we should add that this unified metric significantly
outperforms the individual metrics according to
Williams test (p < 0.01).

4 Conclusion

In this paper, we provide a careful evaluation of
the automatic image captioning metrics, and pro-
pose to use WMD, which utilizes word2vec em-
beddings of the words to compute a semantic
similarity of sentences. We highlight the draw-
backs of the existing metrics, and we empirically
show that they are significantly different than each
other. We hope that this work motivates further
research into developing better evaluation metrics,
probably learning based ones, as previously stud-
ied in machine translation literature (Kotani and
Yoshimi, 2010; Guzmán et al., 2015). We also
observe that incorporating visual information (via
Scene-graph used by SPICE) and semantic infor-
mation (via WMD) is useful for the caption evalu-
ation task, which motivates the use of multimodal
embeddings (Kottur et al., 2015).
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Abstract

Machine translation (MT) quality is eval-
uated through comparisons between MT
outputs and the human translations (HT).
Traditionally, this evaluation relies on
form related features (e.g. lexicon and syn-
tax) and ignores the transfer of meaning
reflected in HT outputs. Instead, we eval-
uate the quality of MT outputs through
meaning related features (e.g. polarity,
subjectivity) with two experiments. In
the first experiment, the meaning related
features are compared to human rankings
individually. In the second experiment,
combinations of meaning related features
and other quality metrics are utilized to
predict the same human rankings. The re-
sults of our experiments confirm the ben-
efit of these features in predicting hu-
man evaluation of translation quality in ad-
dition to traditional metrics which focus
mainly on form.

1 Introduction

Machine translation (MT) systems translate large
chunks of data automatically across languages.
Although these systems may achieve high level
accuracies using form related features (e.g. lexi-
cal and syntactic), they often fail to carry over the
meaning embracing the form. Example (1) high-
lights the meaning difference between a Human
Translation (HT) and an MT output for the same
source sentence:

Example (1)
HT: “Your feet’s too big.”1

MT: “Your feet is too great.”2

Although the form is often preserved, MT out-
puts may sound “strange” or “different” in com-
parison to HT ones due to the loss of meaning.
Therefore, human translators generally enrich the
text with the appropriate tone, style and sentiments
during translation. Current quality evaluation met-
rics like BLEU (Papineni et al., 2002) and ME-
TEOR (Lavie and Agarwal, 2007) are based on
form related features and do not directly consider
the transfer of meaning (e.g. sentiment and style)
in MT. Some of these metrics check for synonyms
and paraphrases but this approach is still limited to
the coverage of the corresponding pair tables. In
other words, these metrics do not explicitly evalu-
ate the transfer of meaning in MT. Our main goals
are:

• to find out whether the transfer of meaning
related features (e.g. sentiment and style) in
MT influences the human judgment of trans-
lation quality.

• to compare meaning and form related fea-
tures for quality evaluation of MT.

• to measure whether meaning and form re-
lated features can be combined to improve
the performance of existing MT quality eval-
uation metrics.

1WMT’15 Finnish to English test set, reference transla-
tion, segment id:440

2WMT’15 Finnish to English test set, translated by sys-
tem: UoS.4059, segment id:440
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By using publicly available parallel corpora
(Tenth Workshop on Statistical Machine Transla-
tion (WMT15)), we achieve our goals with two
experiments described in Section 5. Our results
indicate that combining meaning related features
with form related ones approximates to the hu-
man judged rankings better than the BLEU metric.
These combined features also improve the perfor-
mance of other MT quality evaluation metrics by
0.5-2 percentage points.

2 Related Work

So far, MT studies have focused mostly on fea-
tures related to form (e.g., lexical and syntactic
features) for the automatic evaluation of MT qual-
ity (e.g., BLEU (Papineni et al., 2002) and ME-
TEOR (Lavie and Agarwal, 2007)). BLEU met-
ric is based on n-gram matching of the HT and
MT texts and used widely in the MT commu-
nity to evaluate the MT quality. METEOR em-
ploys both word matching scores and the linguis-
tic information (e.g., synonyms and stemming) in
contrast to BLEU. Following studies have evalu-
ated MT quality with various features: POS tags
(Dahlmeier et al., 2011), morphemes (Tantuğ et
al., 2008), sentence structure (Li et al., 2012),
named entities (Buck, 2012), semantic textual
similarity (Castillo and Estrella, 2012), paraphras-
ing (Snover et al., 2006), semantic roles (Lo and
Wu, 2011) and language models (Stanojevic and
Simaan, 2014). Recently, Yu et al. (2015) pro-
posed another metric (i.e. DPMFComb) which is
a combination of a syntax-based metric and some
other evaluation metrics in Asiya3. At WMT15,
DPMFComb obtained the best results at the met-
rics task for system-level evaluation of translation
into English tasks.

Although previous methods require human ref-
erence translation, recent methods (e.g. quality
estimation metrics), aim to eliminate the neces-
sity of human translation. These methods apply
Machine Learning (ML) techniques using lexical
(e.g. average source/target token length), syn-
tactic (e.g. ratio of percentage of POS tags in
the source/target sentences), and statistical fea-
tures (e.g. source/target sentence LM probability,
word alignment probabilities, etc.) (Stymne et al.,
2014; Langlois, 2015; Shah et al., 2015). Inter-
ested reader may also benefit from the survey on
MT evaluation metrics by Han and Wong (2016).

3http://asiya-faust.cs.upc.edu/

Src. Lng. Domain # of Sent’s # of Jdg’s

Czech News Texts 2496 20224
Finnish News Texts 1744 10757
French News Forum 2136 12189
German News Texts 1989 12880
Russian News Texts 2407 14924

Total 10772 70974

Table 1: WMT15 Test Data Statistics grouped by
source languages. The domain of source text, the
number of sentences and the number of human
judgments are presented for each source language.

Chen and Zhu (2014) explore sentiment con-
sistency between MT and HT texts to improve
the MT quality by incorporating sentiment related
features (e.g. subjectivity, polarity, intensity and
negation). By using these features in their MT sys-
tem, they improved the BLEU score by 1.1 point
on NIST Chinese-to-English translation dataset4.
Mohammad et al. (2015) also investigate the sen-
timent consistency between MT and HT texts with
a different motivation. They improve sentiment
analysis performance for Arabic by translating
available resources (e.g., sentiment lexicon, senti-
ment annotated data) from English to Arabic. Al-
though sentiment analysis of English translations
of Arabic texts obtain competitive results to cur-
rent state-of-the-art Arabic sentiment analysis sys-
tems, they did not evaluate the MT output quality.

There are also studies using MT systems to en-
rich labeled data for sentiment analysis by translat-
ing between languages and leveraging sentiment
scores (Wan, 2009; Demirtaş and Pechenizkiy,
2013; Hiroshi et al., 2004). However, none of
these studies employ meaning related features to
evaluate the MT quality.

3 Data Description

3.1 2015 Workshop on Statistical Machine
Translation

We utilized WMT155 parallel corpora (Bojar et
al., 2015) which include several tasks (e.g., stan-
dard news translation task, a metrics task, a tun-
ing task, a task for run-time estimation of machine
translation quality, and an automatic post-editing
task). 24 institutions participated in the translation
task with a total of 68 machine translation systems.
The WMT15 data includes:

4http://www.nist.gov/speech/tests/mt
5http://www.statmt.org/wmt15/
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Human Translation (HT) Output Machine Translation (MT) Output

1. Adam, you see badly what you are looking at. Adam, you see what you look at.
2. Of course I don’t hate you. Of course I hate you.
3. This is business news This is supposed to be of business news
4. The views of Chinese towards white people is similar! The Chinese think like white people!

Table 2: Examples of MT Errors in WMT15 Dataset

• Source sentences

• Reference human translations (HT)

• Machine translations (MT)

• Human judgments (e.g. from 1 (best) to 5
(worst)) for each MT text.

The data is available for five language pairs:
Czech (ces)-English, French (fre)-English, Ger-
man (deu)-English, Finnish (fin)-English, and
Russian (rus)-English. Domains of the test data
are the same for all languages except for French.
The test data for the French-English language pair
was fetched from a news discussion forum instead
of news texts. Table 1 shows the statistics for the
test data. The target language is English for all
source languages. The domain of source text, the
number of sentences and the number of human
judgments are presented. All data was based on
the news text corpora except for French-English
pair.

In order to evaluate the quality of each MT
system, Bojar et al. (2015) conducted a human
evaluation using Appraise6 (Federmann, 2012)
which is an open source toolkit (similar to Ama-
zon Mechanical Turk7). Each segment consists
of a source sentence in the original language (e.g.
Czech), its corresponding human translation (En-
glish), and 5 anonymous MT system translations
(English).

To make the task more consistent and to in-
crease the number of data points, the organizers
treated almost identical system translations as one.
Even though exactly 5 translations are presented to
each judge in a segment, there may be more than 5
MT systems that are ranked. Judges rate the seg-
ments from 1 (best) to 5 (worst) by the quality of
translated sentences (allowing ties).

6https://github.com/cfedermann/
Appraise

7https://www.mturk.com/mturk/

In total, there were 29,007 segments, each of
which would have produced at least 10 individ-
ual system comparisons (e.g., A>B, B>C, A=C,
C>B, etc.). To map these individual comparisons
to system scores, the organizers used TrueSkill 8

(Herbrich et al., 2006), a Bayesian skill ranking al-
gorithm (similar to Elo used in Chess (Elo, 1978))
and fed these individual bilateral comparisons to
TrueSkill. A score is produced for each partici-
pated system. In this study, we utilized the HT
texts, MT system translations and human judg-
ments in our experiments.

3.2 Features

Table 2 provides examples of MT errors in com-
parison to HT. All example translations (MT vs.
HT texts) are selected from the WMT15 dataset
based on the lowest (5) rankings by human judges.
Although translations overlap at the word level,
they convey quite different meanings. In exam-
ple (1), the word ’badly’ has disappeared in MT
output and led to a loss of information. In exam-
ple (2), a negated sentence is translated as an affir-
mative sentence by the MT system. Example (3)
illustrates how the MT system generates a more
speculative sentence than HT sentence. The pair
in example (4) differs in terms of formality be-
tween MT vs HT output. MT evaluation metrics
may attribute high scores for these pairs since they
mainly focus on lexical and syntactic matching.
However, as our examples demonstrate, meaning
could easily be lost if we rely only on form related
MT system evaluation metrics.

To investigate the consistency between MT and
HT texts for sentiment and stylistic features, we
make use of sentiment polarity, subjectivity, con-
notation, negation, speculation, readability and
formality to measure how these features influence
the quality of translation with respect to human
rankings.

8http://research.microsoft.com/en-us/
projects/trueskill/
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Sentiment Polarity indicates whether the desig-
nated sentence has an affirmative or negative sen-
timent. To measure the impact of this feature, we
use Vader, a rule based sentiment analysis tool
(Hutto and Gilbert, 2014). It utilizes grammati-
cal and syntactical rules. In the experiments per-
formed by Hutto and Gilbert (2014), Vader out-
performs several competing sentiment analysis ap-
proaches.

Additionally, we trained a machine learning
(ML) based sentiment analyzer using a deep learn-
ing approach described by Yildiz et al. (2016).
Their architecture is a Convolutional Neural Net-
work (CNN) which takes pre-trained word vec-
tors9 as input and applies interleaved convolution
and pooling operations. The top layer in the net-
work is Softmax layer which computes the proba-
bility of assigning a class (positive, negative).

We adopted this architecture and trained a net-
work using Stanford Twitter Sentiment Corpus10.
The training set contains 1.6 million tweets auto-
matically labeled as positive or negative from var-
ious domains while the test set is labeled manu-
ally. This ML based sentiment analyzer achieves
90.1% accuracy and outperforms the SVM classi-
fier reported by Go et al. (2009).

Subjectivity indicates whether a text expresses
an opinion. In order to compute the subjectiv-
ity scores, we trained our architecture using the
sentiment polarity and subjectivity dataset11 (Pang
and Lee, 2004) which includes 5000 subjective
and 5000 objective sentences. We applied 10-fold
cross validation to the data and obtained 91.50%
average accuracy.

Connotation indicates cultural or emotional as-
sociation carried by words that appear in sentences
(Feng et al., 2013). In contrast to the sentiment po-
larity, connotation polarity indicates subtle shades
of sentiment beyond denotative or surface mean-
ing of text. The words which do not express senti-
ment can carry a positive or negative connotation.

For instance, “life” and “home” are consid-
ered neutral with regard to the sentiment analy-
sis. However, they convey a positive connotation

9https://code.google.com/archive/p/
word2vec/

10http://help.sentiment140.com/
for-students

11http://www.cs.cornell.edu/people/
pabo/movie-review-data/rotten_imdb.tar.
gz

(Carpuat, 2015). We use the connotation polarity
of each word in a sentence to compute connotation
score using a normalized version of the formula-
tion proposed by Carpuat (2015). The connota-
tion polarities of the words are obtained by look-
ing up a lexicon which is constructed by Feng et
al. (2013). We used the following formula to com-
pute the connotation score:

CS =
#positive−#negative

#total
(1)

where CS is the connotation score, #positive indi-
cates the number of the words with positive con-
notation and #negative indicates the number of the
words with negative connotation.

This formula assigns a continuous value be-
tween 1 and −1 to the sentence as a connotation
score. The values close to 1 indicate that a given
sentence carries a positive connotation while the
values close to−1 indicate a negative connotation.

Negation turns an affirmative statement into a
negative one. We also detect the effects of nega-
tion feature in our experiments. Konstantinova et
al. (2012) present a freely available dataset which
contains 400 reviews (50 each from 8 domains
such as movies and consumer products) annotated
by linguists for negation and speculation. We train
our deep learning model with these datasets and
obtain 96.65% accuracy for negation.

Speculation is used to express levels of cer-
tainty. We obtain 95.55% accuracy using the same
dataset and method for negation.

Readability measures the ease of reading and
comprehending a text (Dale and Chall, 1948). For
readability measurement we use Flesch reading-
ease test in which higher scores indicate that the
text is easier to read. The Flesch readability score
(Kincaid et al., 1975) is calculated using the sen-
tence length and the number of syllables per word
as presented in the formula below.

Flesch = 206.835− 1.015
A

B
− 84.6

C

A
(2)

where A is the number of words, B is the number
of sentences and C is the number of syllables in a
given text.

In addition to the rule based readability mea-
surement, we use an ML based readability met-
ric “simplicity” as described by Vajjala and Meur-
ers (2016). They extract various syntactic, psy-
cholinguistic and lexical features from text and
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Figure 1: Means of absolute differences between the feature scores of MT and HT outputs. x-axis denotes
the language and human rank pairs. Error bars indicate 95% confidence intervals.
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Figure 2: Means of absolute differences between the features scores of MT outputs and the corresponding
HT outputs for all features. x-axis denotes the human rankings. Error bars indicate 95% confidence
intervals.

train a pair-wise classifier using them. The train-
ing data is a sentence-aligned corpus constructed
from news articles and Wikipedia pages and their
simplified versions. The method correctly classi-
fies the simplified and complex sentences in terms
of their reading level with an accuracy of over
80%.

Formality Heylighen and Dewaele (1999) state
formality as the most important dimension of vari-

ation between styles. They define the formality
score as a function of POS tag frequencies. The
formality score is given in Equation 3 where NF
is the frequency of nouns, AdjF is the adjective
frequency, PF is the preposition frequency, ArtF
is the article frequency, PrpF is the proper noun
frequency, VF is the verb frequency, AdvF is the
adverb frequency and IF is the interjection fre-
quency.
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(3)
F =

NF +AdjF + PF +ArtF

2

− PrpF + V F +AdvF + IF

2
+ 50

Additionally, we use an ML based formality
score obtained by training the mentioned archi-
tecture on the dataset introduced by Pavlick and
Tetreault (2016). We have observed 80.71% accu-
racy through 10-fold cross validation.

All metrics were normalized between (0, 1) ex-
cept the Readability and Formality. Since these
two metrics are formula-based, we avoided inter-
fering with their original scales.

4 Method

In the WMT15 task, the language pairs are divided
into two groups depending on whether English is
the source or the target language. We only utilize
the pairs where English is the target language due
to the richness in resources. For each feature, MT
texts are ranked using the following approach:

1. Compute the score for HT text (e.g., 0.65).

2. Compute the scores for MT texts (e.g. A=.79,
B=.25, C=.20, D=.95, E=.30).

3. Compute the absolute difference between
MT scores and the HT score (e.g., Â =
.14, B̂ = .40, Ĉ = .45, D̂ = .30, Ê =
.35).

4. Rank the systems according to these differ-
ences where a smaller value corresponds to
a better ranking (e.g. 1=A, 2=D, 3=E, 4=B,
5=C).

Figure 1 shows absolute differences for four
features with respect to language and human
rankings of MT system output. For instance,
Subjectivity-RB feature captures the differences
between ranks when the source language is
French but cannot achieve the same performance
for Finnish and Russian translations. More-
over, Readability-RuleBased (RB) and Formality-
MachineLearning (ML) seem to perform well for
all languages whereas Polarity-ML falls short for
French.

Figure 2 illustrates the trend for all features in
which absolute score difference between MT sys-
tem outputs and HT text is low for high rankings
(e.g., 1) and high for the low (e.g., 5) ones. There-
fore, high ranked translations preserve the mean-
ing better than the low ranked ones. Note that both
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Figure 3: Steps to map human rankings and
feature rankings (for example, Polarity-ML) to
system-wide scores. A to L denotes individual
rankings and SegIDi denotes the ith segment in
the WMT15 test set.

figures are descriptive and do not correspond to an
objective evaluation directly.

5 Experiments

5.1 Experiment #1: Impact of Individual
Features on Translation Quality

This experiment investigates the correlation be-
tween each feature and MT translation quality
evaluated by rankings of human judges. Using
the rankings described in Section 4, we followed
the “System-Based Evaluation Methodology” by
Stanojević et al. (2015). After obtaining the rank-
ings for each feature as described in the previous
section, we used TrueSkill to map segment rank-
ings to system-wide scores (see Figure 3). Next,
we compared TrueSkill scores obtained per feature
and human judgments with Pearson’s r correlation
using the scripts provided by the WMT15 Metrics
Task12. As stated in (Stanojević et al., 2015) the
script performs bootstrap resampling of 1000 sam-
ples while calculating the correlation scores and
the 95% confidence intervals.

12http://www.statmt.org/wmt15/
metrics-task/wmt15-metrics-results.tgz
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All Ces Deu Fin Fre Rus

Connotation-RB 74.2 ± 2.2 87.6 ± 0.8 86.1 ± 2.0 41.7 ± 3.5 87.8 ± 1.8 67.9 ± 2.6
Formality-ML 74.9 ± 2.1 62.7 ± 1.1 85.3 ± 1.9 85.9 ± 2.0 80.3 ± 2.2 60.3 ± 3.1
Formality-RB 80.7 ± 1.7 67.9 ± 1.1 92.5 ± 1.5 68.0 ± 2.8 97.4 ± 0.9 78.0 ± 2.4
Negation-ML 48.8 ± 2.7 42.2 ± 1.4 61.2 ± 3.0 33.4 ± 3.5 78.5 ± 2.1 28.8 ± 3.6
Polarity-ML 67.1 ± 2.3 54.0 ± 1.2 78.2 ± 2.2 65.6 ± 2.7 76.1 ± 2.4 61.7 ± 2.8
Polarity-RB 78.6 ± 2.1 79.2 ± 1.0 88.6 ± 1.7 75.6 ± 2.5 81.4 ± 2.4 67.9 ± 2.7
Readability-RB 76.7 ± 2.0 66.4 ± 1.2 79.8 ± 2.2 79.7 ± 2.1 85.3 ± 2.0 72.4 ± 2.6
Simplicity-ML 41.5 ± 2.8 17.6 ± 1.4 54.9 ± 3.0 18.4 ± 3.7 77.5 ± 2.5 39.1 ± 3.5
Speculation-ML 62.2 ± 2.4 41.4 ± 1.3 68.3 ± 2.7 63.6 ± 2.9 86.2 ± 2.1 51.7 ± 3.2
Subjectivity-ML 61.1 ± 2.6 56.3 ± 1.3 66.4 ± 2.9 42.5 ± 3.2 75.9 ± 2.6 64.3 ± 2.9

BLEU 91.6 ± 1.4 95.8 ± 0.6 86.5 ± 2.0 92.9 ± 1.4 97.5 ± 0.9 85.1 ± 2.2
DPMFComb 96.2 ± 0.9 96.0 ± 0.5 97.0 ± 0.9 95.1 ± 1.2 98.0 ± 0.8 95.0 ± 1.1
Meteor 94.9 ± 1.0 94.8 ± 0.5 95.5 ± 1.0 96.3 ± 1.0 95.1 ± 1.2 92.7 ± 1.4
Random-Baseline 0.0 ± 2.9 -28.4 ± 1.5 47.6 ± 3.2 -65.9 ± 2.8 -3.6 ± 3.6 50.4 ± 3.4

Table 3: Pearson’s r correlation between Trueskill scores of a metric and human judgments with the
corresponding 95% confidence intervals are shown. Each row represent either a meaning related feature
(top) or a selected metric from WMT15 (bottom). ML stands for machine learning and RB stands for
rule based method.

We have used three metrics from WMT15 Met-
rics Task for comparison, BLEU and METEOR
and DPMFComb. DPMFComb was selected since
it was the best system in overall score in system-
based evaluation of WMT15 Metrics Shared Task
and the best performing evaluation metric for three
out of five languages.

Results Table 3 shows all the Pearson’s corre-
lations. Overall, Formality-RB obtains the high-
est correlation score (80.7%) among all features.
However, DPMFComb (96.2%), BLEU and ME-
TEOR are better than the rest. The excep-
tions are German for BLEU and French for ME-
TEOR. For German, Formality-RB (92.5%) out-
performs BLEU (86.5%). For French, Formality-
RB (97.4%) beats the METEOR score (95.1%). In
addition, Rule-Based (RB) systems perform bet-
ter than Machine Learning (ML) ones. For ex-
ample, Formality-RB and Polarity-RB outperform
Formality-ML and Polarity-ML respectively.

Meaning related features outperform Random
baseline as expected. The random baseline is com-
puted by assigning random ranks (1-5) to each
translation in each segment. We assigned uni-
formly random ranks to all sentences without con-
sidering the language. Although its performance
may vary per language, its overall performance is
0.0 (± 2.9).

5.2 Experiment #2: Impact of Combined
Features on Translation Quality

As discussed in Section 4, our approach is fun-
damentally different than MT evaluation metrics
such as BLEU. Results of our first experiment in-
dicated strong correlations between quality scores
of the features and human rankings. Therefore,
we also investigate whether we can predict hu-
man rankings of MT translated text by combining
these features since they capture different aspects
of translation.

In contrast with Experiment 1, this experi-
ment focuses on training systems that combine
several features to predict human rankings. As
input, BLEU, METEOR and DPMFComb met-
rics are utilized in combination with the feature
scores. We experimented with several classifiers
from RankLib13 to train the ensemble systems
and opted to utilize a Random Forest (Liaw and
Wiener, 2002) based approach which produced the
best 5-fold cross validation score.

First, we obtained scores and rankings for each
translation using the Random Forest classifiers for
the following combinations:

1. All meaning related features

2. All meaning related features + BLEU
13https://sourceforge.net/p/lemur/wiki/

RankLib/
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All Ces Deu Fin Fre Rus

ALL+DPMFComb 96.8 ± 0.8 95.9 ± 0.4 97.5 ± 0.8 97.9 ± 0.8 98.6 ± 0.6 94.3 ± 1.3
DPMFComb 96.2 ± 0.9 96.0 ± 0.5 97.0 ± 0.9 95.1 ± 1.2 98.0 ± 0.8 95.0 ± 1.1
ALL+Meteor 95.8 ± 0.9 95.4 ± 0.5 96.6 ± 1.0 97.7 ± 0.8 98.0 ± 0.8 91.2 ± 1.6
Meteor 94.9 ± 1.0 94.8 ± 0.5 95.5 ± 1.0 96.3 ± 1.0 95.1 ± 1.2 92.7 ± 1.4
ALL+BLEU 93.5 ± 1.2 93.4 ± 0.6 92.3 ± 1.5 96.8 ± 0.9 97.6 ± 0.9 87.3 ± 1.9
ALL 92.0 ± 1.2 87.5 ± 0.7 93.4 ± 1.3 94.5 ± 1.2 97.8 ± 0.8 86.8 ± 1.8
BLEU 91.6 ± 1.4 95.8 ± 0.6 86.5 ± 2.0 92.9 ± 1.4 97.5 ± 0.9 85.1 ± 2.2

Table 4: Pearson’s r correlation between Trueskill scores of a metric and human judgments with the
corresponding 95% confidence intervals are shown. ALL represents the combination of all meaning
related features.

3. All meaning related features + Meteor

4. All meaning related features + DPMFComb

Then, we calculated the Trueskill scores for trans-
lation systems and finally fed them into WMT15
scrips to obtain Pearson’s r correlation similar to
the first experiment.

Results Combined meaning related features out-
perform the BLEU score (Table 4). Even though
the margin is relatively low, it is a promising indi-
cation. Moreover, combining them with a metric
increases the performance of the metric: 1.9pp for
BLEU, 0.9pp for METEOR and 0.6pp for DPM-
FComb. In other words, these features can utilize
some meaning or style related information which
is not captured by the conventional MT evaluation
metrics.

6 Discussion & Conclusion

In this paper, we investigate how meaning related
features influence the automatic evaluation of MT
systems. Our experiments prove the additional
benefit of these features in predicting human eval-
uation of translation quality. More specifically, we
find that:

• MT systems that are ranked higher by human
judges preserve the meaning (features such
as polarity, formality and readability) better
than the low ranked ones.

• Rankings of MT output generated according
to meaning based features correlate highly
with human rankings on translation quality
(See Figure 2).

• When meaning related features are combined
with form related lexical features, human

evaluation of MT system quality can be pre-
dicted with a higher accuracy. (See Table 4).

Extracting meaning related features from text
and using form related features for MT evalua-
tion have been studied separately. However, in-
tegrating meaning related features into MT qual-
ity evaluation can capture the meaning preserva-
tion from source to target languages. Our experi-
ments prove that this integrated approach achieves
a only slightly better performance than the form
based metrics (e.g. BLEU). Moreover, our exper-
iments indicate that the meaning related features
can boost the performance of BLEU, METEOR
and DPMFComb metrics without even specific op-
timization. Therefore, our method of integrat-
ing meaning related features to MT systems with
ranking components can also improve the perfor-
mances of other metrics instead of only relying on
form based features.

Commonly used evaluation metrics (e.g. BLEU
and METEOR) require a reference human transla-
tion to assess the quality of MT. We also use hu-
man translation as a reference since most meaning
related feature extraction tools are only available
for English and limited for other languages. Al-
though there are studies assessing the quality of
MT systems without human translation, meaning
related features are still not integrated to MT sys-
tems yet. As new tools for other languages become
available, we plan to extend our work to imple-
ment MT quality estimation for these languages
as well. As future work, we will investigate the
ways to develop more ”human-like” MT systems
by employing these meaning related and stylistic
features in the training of MT systems or in post-
processing steps such as parameter tuning.
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Abstract

In cross-lingual dependency annotation
projection, information is often lost dur-
ing transfer because of early decoding.
We present an end-to-end graph-based
neural network dependency parser that
can be trained to reproduce matrices of
edge scores, which can be directly pro-
jected across word alignments. We show
that our approach to cross-lingual depen-
dency parsing is not only simpler, but
also achieves an absolute improvement of
2.25% averaged across 10 languages com-
pared to the previous state of the art.

1 Introduction

Dependency parsing is an integral part of many
natural language processing systems. However,
most research into dependency parsing has fo-
cused on learning from treebanks, i.e. collec-
tions of manually annotated, well-formed syntac-
tic trees. In this paper, we develop and evaluate
a graph-based parser which does not require the
training data to be well-formed trees. We show
that such a parser has an important application in
cross-lingual learning.

Annotation projection is a method for develop-
ing parsers for low-resource languages, relying on
aligned translations from resource-rich source lan-
guages into the target language, rather than lin-
guistic resources such as treebanks or dictionar-
ies. The Bible has been translated completely into
542 languages, and partially translated into a fur-
ther 2344 languages. As such, the assumption
that we have access to parallel Bible data is much
less constraining than the assumption of access to
linguistic resources. Furthermore, for truly low-
resource languages, relying upon the Bible scales

∗Work done while at the University of Copenhagen.

better than relying on less biased data such as the
EuroParl corpus.

In Agić et al. (2016), a projection scheme is
proposed wherein labels are collected from many
sources, projected into a target language, and
then averaged. Crucially, the paper demonstrates
how projecting and averaging edge scores from a
graph-based parser before decoding improves per-
formance. Even so, decoding is still a requirement
between projecting labels and retraining from the
projected data, since their parser (TurboParser) re-
quires well-formed input trees. This introduces a
potential source of noise and loss of information
that may be important for finding the best target
sentence parse.

Our approach circumvents the need for decod-
ing prior to training, thereby surpassing a state-
of-the-art dependency parser trained on decoded
multi-source annotation projections as done by
Agić et al. We first evaluate the model across sev-
eral languages, demonstrating results comparable
to the state of the art on the Universal Dependen-
cies (McDonald et al., 2013) dataset. Then, we
evaluate the same model by inducing labels from
cross-lingual multi-source annotation projection,
comparing the performance of a model with early
decoding to a model with late decoding.

Contributions We present a novel end-to-end
neural graph-based dependency parser and apply
it in a cross-lingual setting where the task is to
induce models for truly low-resource languages,
assuming only parallel Bible text. Our parser is
more flexible than similar parsers, and accepts any
weighted or non-weighted graph over a token se-
quence as input. In our setting, the input is a dense
weighted graph, and we show that our parser is su-
perior to previous best approaches to cross-lingual
parsing. The code is made available on GitHub.1

1https://github.com/MichSchli/Tensor-LSTM
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2 Model

The goal of this section is to construct a first-order
graph-based dependency parser capable of learn-
ing directly from potentially incomplete matrices
of edge scores produced by another first-order
graph-based parser. Our approach is to treat the
encoding stage of the parser as a tensor transfor-
mation problem, wherein tensors of edge features
are mapped to matrices of edge scores. This al-
lows our model to approximate sets of scoring ma-
trices generated by another parser directly through
non-linear regression. The core component of the
model is a layered sequence of recurrent neural
network transformations applied to the axes of an
input tensor.

More formally, any digraph G = (V,E) can be
expressed as a binary |V | × |V |-matrix M , where
Mij = 1 if and only if (j, i) ∈ E – that is, if i has
an ingoing edge from j. If G is a tree rooted at v0,
v0 has no ingoing edges. Hence, it suffices to use a
(|V |−1)×|V |-matrix. In dependency parsing, ev-
ery sentence is expressed as a matrix S ∈ Rw×f ,
where w is the number of words in the sentence
and f is the width of a feature vector correspond-
ing to each word. The goal is to learn a function
P : Rw×f → Zw×(w+1)

2 , such that P (S) corre-
sponds to the matrix representation of the correct
parse tree for that sentence – see Figure 1 for an
example.

root John walks his dog




0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0




Figure 1: An example dependency tree and the
corresponding parse matrix.

In the arc-factored (first-order), graph-based
model, P is a composite function P = D ◦ E
where the encoder E : Rw×f → Rw×(w+1) is a
real-valued scoring function and the decoder D :

Rw×(w+1) → Zw×(w+1)
2 is a minimum spanning

tree algorithm (McDonald et al., 2005). Com-
monly, the encoder includes only local informa-
tion – that is, Eij is only dependent on Si and

Sj , where Si and Sj are feature vectors corre-
sponding to dependent and head. Our contribution
is the introduction of an LSTM-based global en-
coder where the entirety of S is represented in the
calculation of Eij .

We begin by extending S to a (w+1)×(f+1)-
matrix S∗ with an additional row corresponding to
the root node and a single binary feature denoting
whether a node is the root. We now compute a
3-tensor F = S � S∗ of dimension w × (w +
1) × (2f + 1) consisting of concatenations of all
combinations of rows in S and S∗. This tensor
effectively contains a featurization of every edge
(u, v) in the complete digraph over the sentence,
consisting of the features of the parent word u and
child word v. These edge-wise feature vectors are
organized in the tensor exactly as the dependency
arcs in a parse matrix such as the one shown in the
example in Figure 1.

The edges represented by elements Fij can as
such easily be interpreted in the context of re-
lated edges represented by the row i and the col-
umn j in which that edge occurs. The classi-
cal arc-factored parsing algorithm of McDonald
et al. (2005) corresponds to applying a function
O : R2f+1 → R pointwise to S � S∗, then de-
coding the resulting w × (w + 1)-matrix. Our
model diverges by applying an LSTM-based trans-
formation Q : Rw×(w+1)×(2f+1) → Rw×(w+1)×d

to S � S∗ before applying an analogous transfor-
mation O : Rd → R.

The Long Short-Term Memory (LSTM) unit is
a function LSTM(x, ht−1, ct−1) = (ht, ct) de-
fined through the use of several intermediary steps,
following Hochreiter et al. (2001). A concate-
nated input vector I = x ⊕ hprev is constructed,
where ⊕ represents vector concatenation. Then,
functions corresponding to input, forget, and out-
put gates are defined following the form ginput =
σ(WinputI+binput). Finally, the internal cell state
ct and the output vector ht at time t are defined us-
ing the Hadamard (pointwise) product •:

ct = gforget • cprev + ginput • tanh(WcellI + bcell)

ht = goutput • tanh(ct)

We define a function Matrix-LSTM inductively,
that applies an LSTM to the rows of a ma-
trix X . Formally, Matrix-LSTM is a function
M : Ra×b → Ra×c such that (h1, c1) =
LSTM(X1, 0, 0), ∀1 < i ≤ n (hi, ci) =
LSTM(Xi, hi−1, ci−1), andM(X)i = hi.
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Figure 2: Four-directional Tensor-LSTM applied to the example sentence seen in Figure 1. The word-
pair tensor S�S∗ is represented with blue units (horizontal lines), a hidden Tensor-LSTM layer H with
green units (vertical lines), and the output layer with white units. The recurrent connections in the hidden
layer along H and HT (2,1,3) are illustrated respectively with dotted and fully drawn lines.

An effective extension is the bidirectional
LSTM, wherein the LSTM-function is applied to
the sequence both in the forward and in the back-
ward direction, and the results are concatenated.
In the matrix formulation, reversing a sequence
corresponds to inverting the order of the rows.
This is most naturally accomplished through left-
multiplication with an exchange matrix Jm ∈
Rm×m such that:

Jm =



0 · · · 1
...

...
...

1 · · · 0




Bidirectional Matrix-LSTM is therefore defined as
a functionM2d : Ra×b → Ra×2c such that:

M2d(S) =M(S)⊕2 JaM(JaS)

Here, ⊕2 refers to concatenation along the second
axis of the matrix.

Keeping in mind the goal of constructing a ten-
sor transformationQ capable of propagating infor-
mation in an LSTM-like manner between any two
elements of the input tensor, we are interested in
constructing an equivalent of the Matrix-LSTM-
model operating on 3-tensors rather than matrices.
This construct, when applied to the edge tensor
F = S � S∗, can then provide a means of in-
terpreting edges in the context of related edges.

A very simple variant of such an LSTM-
function operating on 3-tensors can be constructed
by applying a bidirectional Matrix-LSTM to every
matrix along the first axis of the tensor. This forms

the center of our approach. Formally, bidirec-
tional Tensor-LSTM is a function T2d : Ra×b×c →
Ra×b×2h such that:

T2d(T )i =M2d(Ti)

This definition allows information to flow
within the matrices of the first axis of the tensor,
but not between them – corresponding in Figure
2 to horizontal connection along the rows, but no
vertical connections along the columns. To fully
cover the tensor structure, we must extend this
model to include connections along columns.

This is accomplished through tensor transpo-
sition. Formally, tensor transposition is an op-
erator T Tσ where σ is a permutation on the set
{1, ..., rank(T )}. The last axis of the tensor con-
tains the feature representations, which we are not
interested in scrambling. For the Matrix-LSTM,
this leaves only one option – MT (1,2). When the
LSTM is operating on a 3-tensor, we have two
options – T T (2,1,3) and T T (1,2,3). This leads to
the following definition of four-directional Tensor-
LSTM as a function T4d : Ra×b×c → Ra×b×4h
analogous to bidirectional Sequence-LSTM:

T4d(T ) = T2d(T )⊕3 T2d(T T (2,1,3))T (2,1,3)

Calculating the LSTM-function on T T (1,2,3)

and T T (2,1,3) can be thought of as constructing
the recurrent links either ”side-wards” or ”down-
wards” in the tensor – or, equivalently, construct-
ing recurrent links either between the outgoing
or between the in-going edges of every vertex in

222



the dependency graph. In Figure 2, we illustrate
the two directions respectively with full or dotted
edges in the hidden layer.

The output of Tensor-LSTM is itself a tensor.
In our experiments, we use a multi-layered vari-
ation implemented by stacking layers of models:
T4d,stack(T ) = T4d(T4d(...T4d(T )...)). We do not
share parameters between stacked layers. Train-
ing the model is done by minimizing the value
E(G,O(Q(S � S∗))) of some loss function E for
each sentence S with gold tensor G. We experi-
ment with two loss functions.

In our monolingual set-up, we exploit the fact
that parse matrices by virtue of depicting trees are
right stochastic matrices. Following this observa-
tion, we constrain each row of O(Q(S � S∗)) un-
der a softmax-function and use as loss the row-
wise cross entropy. In our cross-lingual set-up, we
use mean squared error. In both cases, prediction-
time decoding is done with Chu-Liu-Edmonds al-
gorithm (Edmonds, 1968) following McDonald et
al. (2005).

3 Cross-lingual parsing

Hwa et al. (2005) is a seminal paper for cross-
lingual dependency parsing, but they use very de-
tailed heuristics to ensure that the projected syn-
tactic structures are well-formed. Agić et al.
(2016) is the latest continuation of their work, pre-
senting a new approach to cross-lingual projec-
tion, projecting edge scores rather than subtrees.
Agić et al. (2016) construct target-language tree-
banks by aggregating scores from multiple source
languages, before decoding. Averaging before de-
coding is especially beneficial when the parallel
data is of low quality, as the decoder introduces
errors, when edge scores are missing. Despite av-
eraging, there will still be scores missing from the
input weight matrices, especially when the source
and target languages are very distant. Below, we
show that we can circumvent error-inducing early
decoding by training directly on the projected edge
scores.

We assume source language datasets L1, ...,Ln,
parsed by monolingual arc-factored parsers. In our
case, this data comes from the Bible. We assume
access to a set of sentence alignment functions
As : Ls × Lt → R0,1 where As(Ss, St) is the
confidence that St is the translation of Ss. Sim-
ilarly, we have access to a set of word alignment
functions WLs,Ss,St : Ss × St → R0,1 such that

Ss ∈ Ls, St ∈ Lt, and W (ws, wt) represents the
confidence that ws aligns to wt given that St is the
translation of Ss

For each source language Ls with a scoring
function scoreLs , we define a local edge-wise
voting function voteSs((us, vs), (ut, vt)) operat-
ing on a source language edge (us, vs) ∈ Ss and
a target language edge (ut, ut) ∈ St. Intuitively,
every source language edge votes for every tar-
get language edge with a score proportional to
the confidence of the edges aligning and the score
given in the source language. For every target lan-
guage edge (ut, vt) ∈ St:

voteSs((us, vs), (ut, vt)) =WLs,Ss,St(us, ut)

·WLs,Ss,St(vs, vt)

· scoreLs(us, vs)

Following Agić et al. (2016), a sentence-wise vot-
ing function is then constructed as the highest con-
tribution from a source-language edge:

voteSs(ut, vt) = max
us,vs∈Ss

voteSs((us, vs), (ut, vt))

The final contribution of each source language
datasetLs to a target language edge (ut, vt) is then
calculated as the sum for all sentences Ss ∈ Ls
over voteSs(ut, vt) multiplied by the confidence
that the source language sentence aligns with the
target language sentence. For an edge (ut, vt) in a
target language sentence St ∈ Lt:

voteLs(ut, vt) =
∑

Ss∈Ls
As(Ss, St) voteSs(ut, vt)

Finally, we can compute a target language scor-
ing function by summing over the votes for every
source language:

score(ut, vt) =

n∑
i=1

voteLi(ut, vt)

ZSt

Here, ZSt is a normalization constant ensuring
that the target-language scores are proportional to
those created by the source-language scoring func-
tions. As such, ZSt should consist of the sum over
the weights for each sentence contributing to the
scoring function. We can compute this as:

ZSt =

n∑

i=1

∑

Ss∈Li

As(Ss, St)
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The sentence alignment function is not a probabil-
ity distribution; it may be the case that no source-
language sentences contribute to a target language
sentence, causing the sum of the weights and the
sum of the votes to approach zero. In this case,
we define score(ut, vt) = 0. Before projection,
the source language scores are all standardized to
have 0 as the mean and 1 as the standard deviation.
Hence, this corresponds to assuming neither posi-
tive nor negative evidence concerning the edge.

We experiment with two methods of learning
from the projected data – decoding with Chu-Liu-
Edmonds algorithm and then training as proposed
in Agić et al. (2016), or directly learning to repro-
duce the matrices of edge scores. For alignment,
we use the sentence-level hunalign algorithm in-
troduced in Varga et al. (2005) and the token-level
model presented in Östling (2015).

4 Experiments

We conduct two sets of experiments. First, we
evaluate the Tensor-LSTM-parser in the monolin-
gual setting. We compare Tensor-LSTM to the
TurboParser (Martins et al., 2010) on several lan-
guages from the Universal Dependencies dataset.
In the second experiment, we evaluate Tensor-
LSTM in the cross-lingual setting. We include as
baselines the delexicalized parser of McDonald et
al. (2011), and the approach of Agić et al. (2016)
using TurboParser. To demonstrate the effective-
ness of circumventing the decoding step, we con-
duct the cross-lingual evaluation of Tensor-LSTM
using cross entropy loss with early decoding, and
using mean squared loss with late decoding.

4.1 Model selection and training

Our features consist of 500-dimensional word em-
beddings trained on translations of the Bible. The
word embeddings were trained using skipgram
with negative sampling on a word-by-sentence
PMI matrix induced from the Edinburgh Bible
Corpus, following (Levy et al., 2017). Our embed-
dings are not trainable, but fixed representations
throughout the learning process. Unknown tokens
were represented by zero-vectors.

We combined the word embeddings with one-
hot-encodings of POS-tags, projected across word
alignments following the method of Agić et al.
(2016). To verify the value of the POS-features,
we conducted preliminary experiments on En-
glish development data. When including POS-
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Figure 3: UAS per epoch on German development
data training from 5000 or 10000 randomly sam-
pled sentences with projected annotations.

tags, we found small, non-significant improve-
ments for monolingual parsing, but significant im-
provements for cross-lingual parsing.

The weights were initialized using the nor-
malized values suggested in Glorot and Bengio
(2010). Following Jozefowicz et al. (2015), we
add 1 to the initial forget gate bias. We trained
the network using RMSprop (Tieleman and Hin-
ton, 2012) with hyperparameters α = 0.1 and
γ = 0.9, using minibatches of 64 sentences. Fol-
lowing Neelakantan et al. (2015), we added a noise
factor n ∼ N (0, 1

(1+t)0.55
) to the gradient in each

update. We applied dropouts after each LSTM-
layer with a dropout probability p = 0.5, and
between the input layer and the first LSTM-layer
with a dropout probability of p = 0.2 (Bluche et
al., 2015). As proposed in Pascanu et al. (2012),
we employed a gradient clipping factor of 15. In
the monolingual setting, we used early stopping
on the development set.

We experimented with 10, 50, 100, and 200 hid-
den units per layer, and with up to 6 layers. Using
greedy search on monolingual parsing and evalu-
ating on the English development data, we deter-
mined the optimal network shape to contain 100
units per direction per hidden layer, and a total of
4 layers.

For the cross-lingual setting, we used two ad-
ditional hyper-parameters. We used the develop-
ment data from one of our target languages (Ger-
man) to determine the optimal number of epochs
before stopping. Furthermore, we trained only on
a subset of the projected sentences, choosing the
size of the subset using the development data.
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We experimented with either 5000 or 10000
randomly sampled sentences. There are two mo-
tivating factors behind this subsampling. First,
while the Bible in general consists of about 30000
sentences, for many low-resource languages we
do not have access to annotation projections for
the full Bible, because parts were never translated,
and because of varying projection quality. Second,
subsampling speeds up the training, which was
necessary to make our experiments practical: At
10000 sentences and on a single GPU, each epoch
takes approximately 2.5 hours. As such, training
for a single language could be completed in less
than a day. We plot the results in Figure 3. We
see that the best performance is achieved at 10000
sentences, and with respectively 6 and 5 epochs
for cross entropy and mean squared loss.

4.2 Results

In the monolingual setting, we compare our parser
to TurboParser (Martins et al., 2010) – a fast, ca-
pable graph-based parser used as a component in
many larger systems. TurboParser is also the sys-
tem of choice for the cross-lingual pipeline of
Agić et al. (2016). It is therefore interesting to
make a direct comparison between the two. The
results can be seen in Table 1.

Language TurboParser Tensor-LSTM
English* 83.84 85.81
German 81.45 82.64
Danish 81.82 82.24
Finnish 77.74 78.83
Spanish 83.19 86.69
French 81.17 84.63
Czech 81.32 85.04

Average 81.50 83.70

Table 1: Unlabeled Attachment Score on the UD
test data for TurboParser and Tensor-LSTM with
cross entropy loss. English development data was
used for model selection (marked *).

Note that in order for a parser to be directly
applicable to the annotation projection setup ex-
plored in the secondary experiment, it must be a
first-order graph-based parser. In the monolin-
gual setting, the best results reported so far (84.74,
on average) for the above selection of treebanks
were by the Parsito system (Straka et al., 2015), a
transition-based parser using a dynamic oracle.

For the cross-lingual annotation projection ex-
periments, we use the delexicalized system sug-
gested by McDonald et al. (2011) as a baseline.
We also compare against the annotation projec-
tion scheme using TurboParser suggested in Agić
et al. (2016), representing the previous state of
the art for truly low-resource cross-lingual depen-
dency parsing. Note that while our results for the
TurboParser-based system use the same training
data, test data, and model as in Agić et al., our
results differ due to the use of the Bible corpus
rather than a Watchtower publications corpus as
parallel data. The authors made results available
using the Edinburgh Bible Corpus for unlabeled
data. The two tested conditions of Tensor-LSTM
are the mean squared loss model without interme-
diary decoding, and the cross entropy model with
intermediary decoding. The results of the cross-
lingual experiment can be seen in Table 2.

5 Discussion

As is evident from Table 2, the variation in perfor-
mance across different languages is large for all
systems. This is to be expected, as the quality of
the projected label sets vary widely due to linguis-
tic differences. On average, Tensor-LSTM with
mean squared loss outperforms all other systems.
In Section 1, we hypothesized that incomplete pro-
jected scorings would have a larger impact upon
systems reliant on an intermediary decoding step.
To investigate this claim, we plot in Figure 4 the
performance difference with mean squared loss
and cross entropy loss for each language versus
the percentage of missing edge scores.
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Figure 4: Percentage of missing edge scores ver-
sus performance difference for Tensor-LSTM with
mean squared loss and cross entropy loss.
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Language Delexicalized TurboParser Tensor-LSTM Tensor-LSTM
(Decoding) (No decoding)

Czech (cs) 40.99 43.81 42.58 41.54
Danish (da) 49.65 54.87 54.93 54.15
English* (en) 48.08 52.52 52.91 52.90
Finnish (fi) 41.18 46.08 43.98 45.26
French (fr) 48.97 45.83 55.06 53.83
German* (de) 49.36 51.79 54.87 53.85
Spanish (es) 47.60 58.90 59.60 57.81
Persian (fa) 28.93 14.88 46.47 48.60
Hebrew (he) 19.06 52.89 26.17 31.41
Hindi (hi) 21.03 43.31 43.21 46.09

Average 39.49 46.29 47.98 48.54

Table 2: Unlabeled attachment scores for the various systems. Tensor-LSTM is evaluated using cross
entropy and mean squared loss. We include the results of two baselines – the delexicalized system
of McDonald et al. (2011) and the Turbo-based projection scheme of Agić et al. (2016). English and
German development data was used for hyperparameter tuning (marked *).

For languages outside the Germanic and Latin
families, our claim holds – the performance of the
cross entropy loss system decreases faster with the
percentage of missing labels than the performance
of the mean squared loss system. To an extent, this
confirms our hypothesis, as we for the average lan-
guage observe an improvement by circumventing
the decoding step. French and Spanish, however,
do not follow the same trend, with cross entropy
loss outperforming mean squared loss despite the
high number of missing labels.

In Table 2, performance on French and Span-
ish for both systems can be seen to be very high.
It may be the case that Indo-European target lan-
guages are not as affected by missing labels as
most of the source languages are themselves Indo-
European. Another explanation could be that
some feature of the cross entropy loss function
makes it especially well suited for Latin languages
– as seen in Table 1, French and Spanish are
also two of the languages for which Tensor-LSTM
yields the highest performance improvement.

To compare the effect of missing edge scores
upon performance without influence from linguis-
tic factors such as language similarity, we repeat
the cross-lingual experiment on one language with
respectively 10%, 20%, 30%, and 40% of the pro-
jected and averaged edge scores artificially set to
0, simulating missing data. We choose the English
data for this experiment, as the English projected
data has the lowest percentage of missing labels

across any of the languages. In Figure 5, we plot
the performance for each of the two systems ver-
sus the percentage of deleted values.
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Figure 5: Performance for Tensor-LSTM on En-
glish test data with 0-40% of the edge scores arti-
ficially maintained at 0.

As can be clearly seen, performance drops
faster with the percentage of deleted labels for
the cross entropy model. This confirms our in-
tuition that the initially lower performance us-
ing mean squared loss compared to cross entropy
loss is mitigated by a greater robustness towards
missing labels, gained by circumventing the de-
coding step in the training process. In Table 2,
this is reflected as dramatic performance increases
using mean squared error for Finnish, Persian,
Hindi, and Hebrew – the four languages furthest
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removed from the predominantly Indo-European
source languages and therefore the four languages
with the poorest projected label quality.

Several possible avenues for future work on this
project are available. In this paper, we used an ex-
tremely simple feature function. More complex
feature functions is one potential source of im-
provement. Another interesting direction for fu-
ture work would be to include POS-tagging di-
rectly as a component of Tensor-LSTM prior to
the construction of S � S∗ in a multi-task learn-
ing framework. Similarly, incorporating seman-
tic tasks on top of dependency parsing could lead
to interesting results. Finally, extensions of the
Tensor-LSTM function to deeper models, wider
models, or more connected models as seen in e.g.
Kalchbrenner et al. (2015) may yield further per-
formance gains.

6 Related Work

Experiments with neural networks for dependency
parsing have focused mostly on learning higher-
order scoring functions and creating efficient fea-
ture representations, with the notable exception
of Fonseca et al. (2015). In their paper, a con-
volutional neural network is used to evaluate lo-
cal edge scores based on global information. In
Zhang and Zhao (2015) and Pei et al. (2015), neu-
ral networks are used to simultaneously evaluate
first-order and higher-order scores for graph-based
parsing, demonstrating good results. Bidirectional
LSTM-models have been successfully applied to
feature generation (Kiperwasser and Goldberg,
2016). Such LSTM-based features could in fu-
ture work be employed and trained in conjunction
with Tensor-LSTM, incorporating global informa-
tion both in parsing and in featurization.

An extension of LSTM to tensor-structured data
has been explored in Graves et al. (2007), and fur-
ther improved upon in Kalchbrenner et al. (2015)
in the form of GridLSTM. Our approach is similar,
but simpler and computationally more efficient as
no within-layer connections between the first and
the second axes of the tensor are required.

Annotation projection for dependency parsing
has been explored in a number of papers, start-
ing with Hwa et al. (2005). In Tiedemann (2014)
and Tiedemann (2015) the process in extended and
evaluated across many languages. Li et al. (2014)
follows the method of Hwa et al. (2005) and adds
a probabilistic target-language classifier to deter-

mine and filter out high-uncertainty trees. In Ma
and Xia (2014), performance on projected data is
used as an additional objective for unsupervised
learning through a combined loss function.

A common thread in these papers is the use
of high-quality parallel data such as the EuroParl
corpus. For truly low-resource target languages,
this setting is unrealistic as parallel resources may
be restricted to biased data such as the Bible. In
Agić et al. (2016) this problem is addressed, and a
parser is constructed which utilizes averaging over
edge posteriors for many source languages to com-
pensate for low-quality projected data. Our work
builds upon their contribution by constructing a
more flexible parser which can bypass a source
of bias in their projected labels, and we therefore
compared our results directly to theirs.

Annotation projection procedures for cross-
lingual dependency parsing has been the focus
of several other recent papers (Guo et al., 2015;
Zhang and Barzilay, 2015; Duong et al., 2015; Ra-
sooli and Collins, 2015). In Guo et al. (2015), dis-
tributed, language-independent feature represen-
tations are used to train shared parsers. Zhang
and Barzilay (2015) introduce a tensor-based fea-
ture representation capable of incorporating prior
knowledge about feature interactions learned from
source languages. In Duong et al. (2015), a neural
network parser is built wherein higher-level layers
are shared between languages.

Finally, Rasooli and Collins (2015) leverage
dense information in high-quality sentence trans-
lations to improve performance. Their work can
be seen as opposite to ours – whereas Rasooli and
Collins leverage high-quality translations to im-
prove performance when such are available, we
focus on improving performance in the absence of
high-quality translations.

7 Conclusion

We have introduced a novel algorithm for graph-
based dependency parsing based on an extension
of sequence-LSTM to the more general Tensor-
LSTM. We have shown how the parser with a
cross entropy loss function performs comparably
to state of the art for monolingual parsing. Fur-
thermore, we have demonstrated that the flexibil-
ity of our parser enables learning from non well-
formed data and from the output of other parsers.
Using this property, we have applied our parser
to a cross-lingual annotation projection problem
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for truly low-resource languages, demonstrating
an average target-language unlabeled attachment
score of 48.54, which to the best of our knowledge
are the best results yet for the task.
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Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing, pages 523–530. Association for Computa-
tional Linguistics.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on

228



Empirical Methods in Natural Language Process-
ing, pages 62–72. Association for Computational
Linguistics.

Ryan T. McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Dipan-
jan Das, Kuzman Ganchev, Keith B. Hall, Slav
Petrov, Hao Zhang, Oscar Täckström, et al. 2013.
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Abstract

We propose UDP, the first training-free
parser for Universal Dependencies (UD).
Our algorithm is based on PageRank and a
small set of head attachment rules. It fea-
tures two-step decoding to guarantee that
function words are attached as leaf nodes.
The parser requires no training, and it is
competitive with a delexicalized transfer
system. UDP offers a linguistically sound
unsupervised alternative to cross-lingual
parsing for UD, which can be used as a
baseline for such systems. The parser has
very few parameters and is distinctly ro-
bust to domain change across languages.

1 Introduction

Grammar induction and unsupervised dependency
parsing are active fields of research in natural
language processing (Klein and Manning, 2004;
Gelling et al., 2012). However, many data-driven
approaches struggle with learning relations that
match the conventions of the test data, e.g., Klein
and Manning reported the tendency of their DMV
parser to make determiners the heads of German
nouns, which would not be an error if the test data
used a DP analysis (Abney, 1987). Even super-
vised transfer approaches (McDonald et al., 2011)
suffer from target adaptation problems when fac-
ing word order differences.

The Universal Dependencies (UD) project
(Nivre et al., 2015; Nivre et al., 2016) offers a
dependency formalism that aims at providing a
consistent representation across languages, while
enforcing a few hard constraints. The arrival of
such treebanks, expanded and improved on a reg-
ular basis, provides a new milestone for cross-
lingual dependency parsing research (McDonald
et al., 2013).

Furthermore, given that UD rests on a series of
simple principles like the primacy of lexical heads,
cf. Johannsen et al. (2015) for more details, we
expect that such a formalism lends itself more nat-
urally to a simple and linguistically sound rule-
based approach to cross-lingual parsing. In this
paper we present such an approach.

Our system is a dependency parser that requires
no training, and relies solely on explicit part-of-
speech (POS) constraints that UD imposes. In par-
ticular, UD prescribes that trees are single-rooted,
and that function words like adpositions, auxil-
iaries, and determiners are always dependents of
content words, while other formalisms might treat
them as heads (De Marneffe et al., 2014). We as-
cribe our work to the viewpoints of Bender (2009)
about the incorporation of linguistic knowledge in
language-independent systems.

Contributions We introduce, to the best of our
knowledge, the first unsupervised rule-based de-
pendency parser for Universal Dependencies.

Our method goes substantially beyond the exist-
ing work on rule-aided unsupervised dependency
parsing, specifically by:

i) adapting the dependency head rules to UD-
compliant POS relations,

ii) incorporating the UD restriction of function
words being leaves,

iii) applying personalized PageRank to improve
main predicate identification, and by

iv) making the parsing entirely free of language-
specific parameters by estimating adposition
attachment direction at runtime.

We evaluate our system on 32 languages1 in three
setups, depending on the reliability of available
POS tags, and compare to a multi-source delexi-

1Out of 33 languages in UD v1.2. We exclude Japanese
because the treebank is distributed without word forms and
hence we can not provide results on predicted POS.

230



calized transfer system. In addition, we evaluate
the systems’ sensitivity to domain change for a
subset of UD languages for which domain infor-
mation was retrievable. The results expose a solid
and competitive system for all UD languages. Our
unsupervised parser compares favorably to delex-
icalized parsing, while being more robust to do-
main change.

2 Related work

Cross-lingual learning Recent years have seen
exciting developments in cross-lingual linguistic
structure prediction based on transfer or projection
of POS and dependencies (Das and Petrov, 2011;
McDonald et al., 2011). These works mainly use
supervised learning and domain adaptation tech-
niques for the target language.

The first group of approaches deals with anno-
tation projection (Yarowsky et al., 2001), whereby
parallel corpora are used to transfer annotations
between resource-rich source languages and low-
resource target languages. Projection relies on the
availability and quality of parallel corpora, source-
side taggers and parsers, but also tokenizers, sen-
tence aligners, and word aligners for sources and
targets. Hwa et al. (2005) were the first to
project syntactic dependencies, and Tiedemann et
al. (2014; 2016) improved on their projection al-
gorithm. Current state of the art in cross-lingual
dependency parsing involves leveraging parallel
corpora for annotation projection (Ma and Xia,
2014; Rasooli and Collins, 2015).

The second group of approaches deals with
transferring source parsing models to target lan-
guages. Zeman and Resnik (2008) were the first
to introduce the idea of delexicalization: removing
lexical features by training and cross-lingually ap-
plying parsers solely on POS sequences. Søgaard
(2011) and McDonald et al. (2011) independently
extended the approach by using multiple sources,
requiring uniform POS and dependency represen-
tations (McDonald et al., 2013).

Both model transfer and annotation projection
rely on a large number of presumptions to derive
their competitive parsing models. By and large,
these presumptions are unrealistic and exclusive to
a group of very closely related, resource-rich Indo-
European languages. Agić et al. (2015; 2016)
exposed some of these biases in their proposal
for realistic cross-lingual tagging and parsing, as
they emphasized the lack of perfect sentence- and

word-splitting for truly low-resource languages.
Further, Johannsen et al. (2016) introduced joint
projection of POS and dependencies from multiple
sources while sharing the outlook on bias removal
in real-world multilingual processing.

Rule-based parsing Cross-lingual methods, re-
alistic or not, depend entirely on the availability
of data: for the sources, for the targets, or most
often for both sets of languages. Moreover, they
typically do not exploit constraints placed on lin-
guistic structures through a formalism, and they do
so by design.

With the emergence of UD as the practical stan-
dard for multilingual POS and syntactic depen-
dency annotation, we argue for an approach that
takes a fresh angle on both aspects. Specifically,
we propose a parser that i) requires no training
data, and in contrast ii) critically relies on exploit-
ing the UD constraints.

These two characteristics make our parser un-
supervised. Data-driven unsupervised dependency
parsing is now a well-established discipline (Klein
and Manning, 2004; Spitkovsky et al., 2010a;
Spitkovsky et al., 2010b). Still, the performance
of these parsers falls far behind the approaches in-
volving any sort of supervision.

Our work builds on the line of research on rule-
aided unsupervised dependency parsing by Gillen-
water et al. (2010) and Naseem et al. (2010), and
also relates to Søgaard’s (2012a; 2012b) work.
Our parser, however, features two key differences:

i) the usage of PageRank personalization (Lof-
gren, 2015), and of

ii) two-step decoding to treat content and func-
tion words differently according to the UD
formalism.

Through these differences, even without any train-
ing data, we parse nearly as well as a delexicalized
transfer parser, and with increased stability to do-
main change.

3 Method

Our approach does not use any training or unla-
beled data. We have used the English treebank
during development to assess the contribution of
individual head rules, and to tune PageRank pa-
rameters (Sec. 3.1) and function-word directional-
ity (Sec. 3.2). Adposition direction is calculated
on the fly at runtime. We refer henceforth to our
UD parser as UDP.
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3.1 PageRank setup

Our system uses the PageRank (PR) algorithm
(Page et al., 1999) to estimate the relevance of
the content words of a sentence. PR uses a ran-
dom walk to estimate which nodes in the graph are
more likely to be visited often, and thus, it gives
higher rank to nodes with more incoming edges, as
well as to nodes connected to those. Using PR to
score word relevance requires an effective graph-
building strategy. We have experimented with the
strategies by Søgaard (2012b), such as words be-
ing connected to adjacent words, but our system
fares best strictly using the dependency rules in
Table 1 to build the graph. UD trees are often very
flat, and a highly connected graph yields a PR dis-
tribution that is closer to uniform, thereby remov-
ing some of the difference of word relevance.

We build a multigraph of all words in the sen-
tence covered by the head-dependent rules in Ta-
ble 1, giving each word an incoming edge for each
eligible dependent, i.e., ADV depends on ADJ and
VERB. This strategy does not always yield con-
nected graphs, and we use a teleport probability of
0.05 to ensure PR convergence.

Teleport probability is the probability that, in
any iteration of the PR calculation, the next active
node is randomly chosen, instead of being one of
the adjacent nodes of the current active node. See
Brin and Page (1998) for more details on teleport
probability, where the authors refer to one minus
teleport probability as damping factor.

We chose this value incrementally in intervals
of 0.01 during development until we found the
smallest value that guaranteed PR convergence. A
high teleport probability is undesirable, because
the resulting stationary distribution can be almost
uniform. We did not have to re-adjust this value
when running on the actual test data.

The main idea behind our personalized PR ap-
proach is the observation that ranking is only rele-
vant for content words.2 PR can incorporate a pri-
ori knowledge of the relevance of nodes by means
of personalization, namely giving more weight to
certain nodes.

Intuitively, the higher the rank of a word, the
closer it should be to the root node, i.e., the main
predicate of the sentence is the node that should
have the highest PR, making it the dependent of
the root node (Fig. 1, lines 4-5). We use PR per-
sonalization to give 5 times more weight (over an

2ADJ, NOUN, PROPN, and VERB mark content words.

1: H = ∅; D = ∅
2: C = 〈c1, ...cm〉; F = 〈f1, ...fm〉
3: for c ∈ C do
4: if |H| = 0 then
5: h = root
6: else
7: h =argminj∈H {γ(j, c) | δ(j, c) ∧ κ(j, c)}
8: end if
9: H = H ∪ {c}

10: D = D ∪ {(h, c)}
11: end for
12: for f ∈ F do
13: h =argminj∈H {γ(j, f) | δ(j, f) ∧ κ(j, f)}
14: D = D ∪ {(h, f)}
15: end for
16: return D

Figure 1: Two-step decoding algorithm for UDP.

otherwise uniform distribution) to the node that is
estimated to be main predicate, i.e., the first verb
or the first content word if there are no verbs.

3.2 Head direction

Head direction is an important trait in dependency
syntax (Tesnière, 1959). Indeed, the UD feature
inventory contains a trait to distinguish the general
adposition tag ADP in pre- and post-positions.

Instead of relying on this feature from the tree-
banks, which is not always provided, we estimate
the frequency of ADP-NOMINAL vs. NOMINAL-
ADP bigrams.3 We calculate this estimation di-
rectly on input data at runtime to keep the system
training-free. Moreover, it requires very few ex-
amples to converge (10-15 sentences). If a lan-
guage has more ADP-NOMINAL bigrams, we con-
sider all its ADP to be prepositions (and thus de-
pendent of elements at their right). Otherwise, we
consider them postpositions.

For other function words, we have determined
on the English dev data whether to make them
strictly right- or left-attaching, or to allow ei-
ther direction. There, AUX, DET, and SCONJ

are right-attaching, while CONJ and PUNCT are
left-attaching. There are no direction constraints
for the rest. Punctuation is a common source of
parsing errors that has very little interest in this
setup. While we do evaluate on all tokens includ-
ing punctuation, we also apply a heuristic for the
last token in a sentence; if it is a punctuation, we
make it a dependent of the main predicate.

3NOMINAL= {NOUN, PROPN, PRON}
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ADJ −→ ADV
NOUN −→ ADJ, NOUN, PROPN
NOUN −→ ADP, DET, NUM

PROPN −→ ADJ, NOUN, PROPN
PROPN −→ ADP, DET, NUM

VERB −→ ADV, AUX, NOUN
VERB −→ PROPN, PRON, SCONJ

Table 1: UD dependency rules.

3.3 Decoding

Fig. 1 shows the tree-decoding algorithm. It has
two blocks, namely a first block (3-11) where we
assign the head of content words according to their
PageRank and the constraints of the dependency
rules, and a second block (12-15) where we assign
the head of function words according to their prox-
imity, direction of attachment, and dependency
rules. The algorithm requires:

1. The PR-sorted list of content words C.
2. The set of function words F , sorting is irrel-

evant because function-head assignations are
inter-independent.

3. A set H for the current possible heads, and
a set D for the dependencies assigned at
each iteration, which we represent as head-
dependent tuples (h, d).

4. A symbol root for the root node.
5. A function γ(n,m) that gives the linear dis-

tance between two nodes.
6. A function κ(h, d) that returns whether the

dependency (h, d) has a valid attachment di-
rection given the POS of the d (cf. Sec. 3.2).

7. A function δ(h, d) that determines whether
(h, d) is licensed by the rules in Table 1.

The head assignations in lines 7 and 13 read as
follow: the head h of a word (either c or f ) is the
closest element of the current list of heads (H) that
has the right direction (κ) and respects the POS-
dependency rules (δ). These assignations have a
back-off option to ensure the final D is a tree. If
the conditions determined by κ and δ are too strict,
i.e., if the set of possible heads is empty, we drop
the δ head-rule constraint and recalculate the clos-
est possible head that respects the directionality
imposed by κ. If the set is empty again, we drop
both constraints and assign the closest head.

Lines 4 and 5 enforce the single-root constraint.
To enforce the leaf status of function nodes, the
algorithm first attaches all content words (C), and

then all function words (F ) in the second block
where H is not updated, thereby ensuring leafness
for all f ∈ F . The order of head attachment is not
monotonic wrt. PR between the first and second
block, and can yield non-projectivities. Neverthe-
less, it still is a one-pass algorithm. Decoding runs
in less than O(n2), namely O(n× |C|). However,
running PR incurs the main computation cost.

4 Parser run example

This section exemplifies a full run of UDP for
the example sentence from the English test data:
“They also had a special connection to some ex-
tremists”.

4.1 PageRank
Given an input sentence and its POS tags, we ob-
tain rank of each word by building a graph using
head rules and running PR on it. Table 2 provides
the sentence, the POS of each word, the number
of incoming edges for each word after building
the graph with the head rules from Sec. 3.1, and
the personalization vector for PR on this sentence.
Note that all nodes have the same personalization
weight, except the estimated main predicate, the
verb “had”.

Word: They also had a special connection to some extremists
POS: PRON ADV VERB DET ADJ NOUN ADP DET NOUN

Personalization: 1 1 5 1 1 1 1 1 1
Incoming edges: 0 0 4 0 1 5 0 0 5

Table 2: Words, POS, personalization, and incom-
ing edges for the example sentence.

Table 4 shows the directed multigraph used for
PR in detail. We can see, e.g., that the four in-
coming edges for the verb “had” from the two
nouns, plus from the adverb “also” and the pro-
noun “They”.

After running PR, we obtain the following rank-
ing for content words:
C = 〈had,connection,extremists,special〉
Even though the verb has four incoming edges
and the nouns have five each, the personalization
makes the verb the highest-ranked word.

root They also had a special connection to some extremists

1 2 3

4

5

6

7 8

9

Figure 2: Example dependency tree predicted by
the algorithm.
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4.2 Decoding
Once C is calculated, we can follow the algo-
rithm in Fig. 1 to obtain a dependency parse.
Table 3 shows a trace of the algorithm, with
C = 〈had,connection,extremists,special〉 and
F = {They,also,a,to,some}.

it word h H
1 had root ∅
2 connection had {had}
3 extremists had {had, connection}
4 special connection {had, connection, extremists}
5 They had {had, connection, extremists, special}
6 also had ...
7 a connection ...
8 to extremists ...
9 some extremists ...

Table 3: Algorithm trace for example sentence. it:
iteration number, word: current word, H: set of
possible heads.

The first four iterations calculate the head of
content words following their PR, and the follow-
ing iterations attach the function words in F . Fi-
nally, Fig. 2 shows the resulting dependency tree.
Full lines are assigned in the first block (content
dependents), dotted lines are assigned in the sec-
ond block (function dependents). The edge labels
indicate in which iteration the algorithm has as-
signed each dependency. Note that the algorithm
is deterministic for a certain input POS sequence.
Any 10-token sentence with the POS labels shown
in Table 2 would yield the same dependency tree.4

5 Experiments

This section describes the data, metrics and com-
parison systems used to assess the performance
of UDP. We evaluate on the test sections of the
UD1.2 treebanks (Nivre et al., 2015) that contain
word forms. If there is more than one treebank
per language, we use the treebank that has the

4The resulting trees always pass the validation script in
github.com/UniversalDependencies/tools.

−→ They also had a special connection to some extremists

They - • •
also - • •
had -
a - • •
special - • •
connection • - •
to • - •
some • - •
extremists • • -

Table 4: Matrix representation of the directed
graph for the words in the sentence.

canonical language name (e.g., Finnish instead of
Finnish-FTB). We use standard unlabeled attach-
ment score (UAS) and evaluate on all sentences of
the canonical UD test sets.

5.1 Baseline

We compare our UDP system with the perfor-
mance of a rule-based baseline that uses the head
rules in Table 5. The baseline identifies the first
verb (or first content word if there are no verbs) as
the main predicate, and assigns heads to all words
according to the rules in Table 1. We have selected
the set of head rules to maximize precision on the
development set, and they do not provide full cov-
erage. The system makes any word not covered
by the rules (e.g., a word with a POS such as X or
SYM) either dependent of their left or right neigh-
bor, according to the estimated runtime parameter.

We report the best head direction and its score
for each language in Table 5. This baseline finds
the head of each token based on its closest possi-
ble head, or on its immediate left or right neigh-
bor if there is no head rule for the POS at hand,
which means that this system does not necessar-
ily yield well-formed tress. Each token receives
a head, and while the structures are single-rooted,
they are not necessarily connected. Note that we
do not include results for the DMV model by Klein
and Manning (2004), as it has been outperformed
by a system similar to ours (Søgaard, 2012b). The
usual adjacency baseline for unsupervised depen-
dency parsing, where all words depend on their
left or right neighbor, fares much worse than our
baseline (20% UAS below on average) even with
an oracle pick for the best per-language direction,
and we do not report those scores.

5.2 Evaluation setup

Our system relies solely on POS tags. To esti-
mate the quality degradation of our system un-
der non-gold POS scenarios, we evaluate UDP on
two alternative scenarios. The first is predicted
POS (UDPP ), where we tag the respective test
set with TnT (Brants, 2000) trained on each lan-
guage’s training set. The second is a naive type-
constrained two-POS tag scenario (UDPN ), and
approximates a lower bound. We give each word
either CONTENT or FUNCTION tag, depending on
the word’s frequency. The 100 most frequent
words of the input test section receive the FUNC-
TION tag.
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Finally, we compare our parser UDP to a super-
vised cross-lingual system (MSD). It is a multi-
source delexicalized transfer parser, referred to
as multi-dir in the original paper by McDonald
et al. (2011). For this baseline we train Tur-
boParser (Martins et al., 2013) on a delexicalized
training set of 20k sentences, sampled uniformly
from the UD training data excluding the target lan-
guage. MSD is a competitive and realistic baseline
in cross-lingual transfer parsing work. This gives
us an indication how our system compares to stan-
dard cross-lingual parsers.

5.3 Results

Table 5 shows that UDP is a competitive system;
because UDPG is remarkably close to the super-
vised MSDG system, with an average difference
of 6.4%. Notably, UDP even outperforms MSD
on one language (Hindi).

More interestingly, on the evaluation scenario
with predicted POS we observe that our system
drops only marginally (2.2%) compared to MSD
(2.7%). In the least robust rule-based setup, the
error propagation rate from POS to dependency
would be doubled, as either a wrongly tagged head
or dependent would break the dependency rules.
However, with an average POS accuracy by TnT
of 94.1%, the error propagation is 0.37, i.e, each
POS error causes 0.37 additional dependency er-
rors. In contrast, for MSD this error propagation
is 0.46, thus higher. 5

For the extreme POS scenario, content vs. func-
tion POS (CF), the drop in performance for UDP
is very large, but this might be too crude an eval-
uation setup. Nevertheless, UDP, the simple unsu-
pervised system with PageRank, outperforms the
adjacency baselines (BL) by ∼4% on average on
the two type-based naive POS tag scenario. This
difference indicates that even with very deficient
POS tags, UDP can provide better structures.

6 Discussion

In this section we provide a further error analysis
of the UDP parser. We examine the contribution
to the overal results of using PageRank to score
content words, the behavior of the system across
different parts of speech, and we assess the robust-
ness of UDP on text from different domains.

5Err. prop. = (E(ParseP )−E(ParseG))/E(POSP ),
where E(x) = 1−Accuracy(x).

Language BLG UDPG MSDG MSDP UDPP UDPN

Ancient Greek 42.2 L 43.4 48.6 46.5 41.6 27.0
Arabic 34.8 R 47.8 52.8 52.6 47.6 41.0
Basque 47.8 R 45.0 51.2 49.3 43.1 22.8

Bulgarian 54.9 R 70.5 78.7 76.6 68.1 27.1
Church Slavonic 53.8 L 59.2 61.8 59.8 59.2 35.2

Croatian 41.6 L 56.7 69.1 65.6 54.5 25.2
Czech 46.5 R 61.0 69.5 67.6 59.3 25.3

Danish 47.3 R 57.9 70.2 65.6 53.8 26.9
Dutch 36.1 L 49.5 57.0 59.2 50.0 24.1

English 46.2 R 53.0 62.1 59.9 51.4 27.9
Estonian 73.2 R 70.0 73.4 66.1 65.0 25.3
Finnish 43.8 R 45.1 52.9 50.4 43.1 21.6
French 47.1 R 64.5 72.7 70.6 62.1 36.3

German 48.2 R 60.6 66.9 62.5 57.0 24.2
Gothic 50.2 L 57.5 61.7 59.2 55.8 34.1
Greek 45.7 R 58.5 68.0 66.4 57.0 29.3

Hebrew 41.8 R 55.4 62.0 58.6 52.8 35.7
Hindi 43.9 R 46.3 34.6 34.5 45.7 27.0

Hungarian 53.1 R 56.7 58.4 56.8 54.8 22.7
Indonesian 44.6 L 60.6 63.6 61.0 58.4 35.3

Irish 47.5 R 56.6 62.5 61.3 53.9 35.8
Italian 50.6 R 69.4 77.1 75.2 67.9 37.6
Latin 49.4 L 56.2 59.8 54.9 52.4 37.1

Norwegian 49.1 R 61.7 70.8 67.3 58.6 29.8
Persian 37.8 L 55.7 57.8 55.6 53.6 33.9
Polish 60.8 R 68.4 75.6 71.7 65.7 34.6

Portuguese 45.8 R 65.7 72.8 71.4 64.9 33.5
Romanian 52.7 R 63.7 69.2 64.0 58.9 32.1

Slovene 50.6 R 63.6 74.7 71.0 56.0 24.3
Spanish 48.2 R 63.9 72.9 70.7 62.1 35.0
Swedish 52.4 R 62.8 72.2 67.2 58.5 25.3

Tamil 41.4 R 34.2 44.2 39.5 32.1 20.3

Average 47.8 57.5 63.9 61.2 55.3 29.9

Table 5: UAS for baseline with gold POS (BLG)
with direction (L/R) for backoff attachments,
UDP with gold POS (UDPG) and predicted POS
(UDPP ), PR with naive content-function POS
(UDPN ), and multi-source delexicalized with gold
and predicted POS (MSDG and MSDP , respec-
tively). BL values higher than UDPG are under-
lined, and UDPG values higher than MSDG are in
boldface.

6.1 PageRank contribution

UDP depends on PageRank to score content
words, and on two-step decoding to ensure the
leaf status of function words. In this section we
isolate the constribution of both parts. We do so
by comparing the performance of BL, UDP, and
UDPNoPR, a version of UDP where we disable
PR and rank content words according to their read-
ing order, i.e., the first word in the ranking is the
first word to be read, regardless of the specific
language’s script direction. The baseline BL de-
scribed in 5.1 already ensures function words are
leaf nodes, because they have no listed dependent
POS in the head rules. The task of the decoding
steps is mainly to ensure the resulting structures
are well-formed dependency trees.
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If we measure the difference between UDPNoPR

and BL, we see that UDPNoPR contributes with 4
UAS points on average over the baseline. Nev-
ertheless, the baseline is oracle-informed about
the language’s best branching direction, a property
that UDP does not have. Instead, the decoding step
determines head direction as described in Section
3.2. Complementarily, we can measure the contri-
bution of PR by observing the difference between
regular UDP and UDPNoPR. The latter scores on
average 9 UAS points lower than UDP. These 9
points are caused by the difference attachment of
content words in the first decoding step.

6.2 Breakdown by POS

UD is a constantly improving effort, and not all
v1.2 treebanks have the same level of formalism
compliance. Thus, the interpretation of, e.g., the
AUX–VERB or DET–PRON distinctions might dif-
fer across treebanks. However, we ignore these
differences in our analysis and consider all tree-
banks to be equally compliant.

The root accuracy scores oscillate around an av-
erage of 69%, with Arabic and Tamil (26%) and
Estonian (93%) as outliers. Given the PR per-
sonalization (Sec. 3.1), UDP has a strong bias for
choosing the first verb as main predicate. With-
out personalization, performance drops 2% on av-
erage. This difference is consistent even for verb-
final languages like Hindi, given that the main verb
of a simple clause will be its only verb, regardless
of where it appears. Moreover, using PR person-
alization makes the ranking calculations converge
a whole order of magnitude faster.

The bigram heuristic to determine adposition
direction succeeds at identifying the predominant
pre- or postposition preference for all languages
(average ADP UAS of 75%). The fixed direc-
tion for the other functional POS is largely effec-
tive, with few exceptions, e.g., DET is consistently
right-attaching on all treebanks except Basque (av-
erage overall DET UAS of 84%, 32% for Basque).
These alternations could also be estimated from
the data in a manner similar to ADP. Our rules
do not make nouns eligible heads for verbs. As a
result, the system cannot infer relative clauses. We
have excluded the NOUN→ VERB rule during de-
velopment because it makes the hierarchy between
verbs and nouns less conclusive.

We have not excluded punctuation from the
evaluation. Indeed, the UAS for the PUNCT is low

(an average of 21%, standard deviation of 9.6),
even lower than the otherwise problematic CONJ.
Even though conjunctions are pervasive and iden-
tifying their scope is one of the usual challenges
for parsers, the average UAS for CONJ is much
larger (an average of 38%, standard deviation of
13.5) than for PUNCT. Both POS show large stan-
dard deviations, which indicates great variability.
This variability can be caused by linguistic prop-
erties of the languages or evaluation datasets, but
also by differences in annotation convention.

6.3 Cross-domain consistency

Models with fewer parameters are less likely to
overfit for a certain dataset. In our case, a sys-
tem with few, general rules is less likely to make
attachment decisions that are very particular of a
certain language or dataset. Plank and van Noord
(2010) have shown that rule-based parsers can be
more stable to domain shift. We explore if their
finding holds for UDP as well, by testing on i) the
UD development data as a readily available proxy
for domain shift, and ii) manually curated domain
splits of select UD test sets.

Language Domain BLG MSDG UDPG MSDP UDPP

Bulgarian bulletin 48.3 67.5 67.4 65.4 61.5
legal 47.9 76.9 69.2 73.0 68.6
literature 53.6 74.2 69.0 72.8 66.6
news 49.3 74.6 70.2 73.0 68.2
various 51.4 74.2 72.5 72.6 69.5

Croatian news 41.2 62.4 57.9 61.8 52.2
wiki 41.9 64.8 55.8 58.2 56.3

English answers 44.1 61.6 55.9 59.5 53.7
email 42.8 58.8 52.1 57.1 56.3
newsgroup 41.7 55.5 49.7 52.9 51.1
reviews 47.4 66.8 54.9 63.9 52.2
weblog 43.3 51.6 50.9 49.8 53.8
magazine† 41.4 60.9 55.6 58.4 53.3
bible† 38.4 56.2 56.2 56.8 48.6
questions† 38.7 69.7 55.6 60.5 47.2

Italian europarl 50.8 64.1 70.6 62.7 69.7
legal 51.1 67.9 69.0 64.4 67.2
news 49.4 68.9 67.5 67.0 65.3
questions 48.7 80.0 77.0 79.1 76.1
various 49.7 67.8 69.0 65.3 67.6
wiki 51.8 71.2 68.1 70.3 66.6

Serbian news 42.8 68.0 58.8 65.6 53.3
wiki 42.4 68.9 58.8 62.8 55.8

Table 6: Evaluation across domains. UAS for
baseline with gold POS (BLG), UDP with gold
POS (UDPG) and predicted POS (UDPP ), and
multi-source delexicalized with gold and pre-
dicted POS (MSDG and MSDP ). English datasets
marked with † are in-house annotated. Lowest re-
sults per language underlined. Bold: UDP outper-
forms MSD.
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Development sets We have used the English de-
velopment data to choose which relations would
be included as head rules in the final system (Ta-
ble 1). It would be possible that some of the rules
are indeed more befitting for the English data or
for that particular section.

However, if we regard the results for UDPG in
Table 5, we can see that there are 24 languages
(out of 32) for which the parser performs better
than for English. This result indicates that the
head rules are general enough to provide reason-
able parses for languages other than the one cho-
sen for development. If we run UDPG on the de-
velopment sections for the other languages, we
find the results are very consistent. Any language
scores on average ±1 UAS with regards to the test
section. There is no clear tendency for either sec-
tion being easier to parse with UDP.

Cross-domain test sets To further assess the
cross-domain robustness, we retrieved the domain
(genre) splits from the test sections of the UD tree-
banks where the domain information is available
as sentence metadata: from Bulgarian, Croatian,
and Italian. We also include a UD-compliant Ser-
bian dataset which is not included in the UD re-
lease but which is based on the same parallel cor-
pus as Croatian and has the same domain splits
(Agić and Ljubešić, 2015). When averaging we
pool Croatian and Serbian together as they come
from the same dataset.

For English, we have obtained the test data
splits matching the sentences from the original dis-
tribution of the English Web Treebank. In addition
to these already available datasets, we have anno-
tated three different datasets to assess domain vari-
ation more extensively, namely the first 50 verses
of the King James Bible, 50 sentences from a
magazine, and 75 sentences from the test split in
QuestionBank (Judge et al., 2006). We include
the third dataset to evaluate strictly on questions,
which we could do already in Italian. While the
answers domain in English is made up of text
from the Yahoo! Answers forum, only one fourth
of the sentences are questions. Note these three
small datasets are not included in the results on
the canonical test sections in Table 5.

Table 7 summarizes the per-language average
score and standard deviation, as well as the macro-
averaged standard deviation across languages.
UDP has a much lower standard deviation across
domains compared to MSD. This holds across lan-

Language BLG MSDG UDPG MSDP UDPP

Bulgarian 50.1±2.4 73.5±3.5 69.7±1.8 71.3±3.3 66.9±3.2
Croatian+Serbian 42.1±0.7 66.0±3.0 57.8±1.4 62.1±3.0 54.4±2.0

English 42.2±2.8 60.1±6.2 53.9±2.5 57.3±4.3 52.0±3.3
Italian 50.3±1.2 70.0±5.4 70.1±3.3 68.1±6.0 68.7±3.9

Average Std. 1.8 4.5 2.5 4.2 3.1

Table 7: Average language-wise domain evalua-
tion. We report average UAS and standard devi-
ation per language. The bottom row provides the
average standard deviation for each system.

guages. We attribute this higher stability to UDP
being developed to satisfy a set of general prop-
erties of the UD syntactic formalism, instead of
being a data-driven method more sensitive to sam-
pling bias. This holds for both the gold-POS and
predicted-POS setup. The differences in standard
deviation are unsurprisingly smaller in the pre-
dicted POS setup. In general, the rule-based UPD
is less sensitive to domain shifts than the data-
driven MSD counterpart, confirming earlier find-
ings (Plank and van Noord, 2010).

Table 6 gives the detailed scores per language
and domain. From the scores we can see that
presidential bulletin, legal and weblogs
are amongst the hardest domains to parse. How-
ever, the systems often do not agree on which do-
main is hardest, with the exception of Bulgarian
bulletin. Interestingly, for the Italian data and
some of the hardest domains UDP outperforms
MSD, confirming that it is a robust baseline.

6.4 Comparison to full supervision

In order to assess how much information the sim-
ple principles in UDP provide, we measure how
many gold-annotated sentences are necessary to
reach its performance, that is, after which size the
treebank provides enough information for training
that goes beyond the simple linguistic principles
outlined in Section 3.

For this comparison we use a first-order non-
projective TurboParser (Martins et al., 2013) fol-
lowing the setup of Agić et al. (2016). The su-
pervised parsers require around 100 sentences to
reach UDP-comparable performance, namely a
mean of 300 sentences and a median of 100 sen-
tences, with Bulgarian (3k), Czech (1k), and Ger-
man (1.5k) as outliers. The difference between
mean and median shows there is great variance,
while UDP provides very constant results, also in
terms of POS and domain variation.
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7 Conclusion

We have presented UDP, an unsupervised depen-
dency parser for Universal Dependencies (UD)
that makes use of personalized PageRank and a
small set of head-dependent rules. The parser re-
quires no training data and estimates adposition di-
rection directly from the input.

We achieve competitive performance on all but
two UD languages, and even beat a multi-source
delexicalized parser (MSD) on Hindi. We eval-
uated the parser on three POS setups and across
domains. Our results show that UDP is less af-
fected by deteriorating POS tags than MSD, and
is more resilient to domain changes. Given how
much of the overall dependency structure can be
explained by this fairly system, we propose UDP
as an additional UD parsing baseline. The parser,
the in-house annotated test sets, and the domain
data splits are made freely available.6

UD is a running project, and the guidelines are
bound to evolve overtime. Indeed, the UD 2.0
guidelines have been recently released. UDP can
be augmented with edge labeling for some deter-
ministic labels like case or det. Some further
constrains can be incorporated in UDP. Moreover,
the parser makes no special treatment of multi-
word expression that would require a lexicon, co-
ordinations or proper names. All these three kinds
of structures have a flat tree where all words de-
pend on the leftmost one. While coordination at-
tachment is a classical problem in parsing and out
of the scope of our work, a proper name sequence
can be straightforwardly identified from the part-
of-speech tags, and it falls thus in the area of struc-
tures predictable using simple heuristics. More-
over, our use of PageRank could be expanded to
directly score the potential dependency edges in-
stead of words, e.g., by means of edge reification.
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Abstract

This paper presents a new approach to
the problem of cross-lingual dependency
parsing, aiming at leveraging training data
from different source languages to learn
a parser in a target language. Specifi-
cally, this approach first constructs word
vector representations that exploit struc-
tural (i.e., dependency-based) contexts but
only considering the morpho-syntactic in-
formation associated with each word and
its contexts. These delexicalized word em-
beddings, which can be trained on any set
of languages and capture features shared
across languages, are then used in com-
bination with standard language-specific
features to train a lexicalized parser in the
target language. We evaluate our approach
through experiments on a set of eight dif-
ferent languages that are part the Univer-
sal Dependencies Project. Our main re-
sults show that using such delexicalized
embeddings, either trained in a monolin-
gual or multilingual fashion, achieves sig-
nificant improvements over monolingual
baselines.

1 Introduction

Over the recent years, distributional and dis-
tributed representations of words have become a
critical component of many NLP systems (Turian
et al., 2010; Collobert et al., 2011). The reason for
this success is that these low-dimensional, dense
word vectors address two major problems that ap-
pear in many NLP applications, namely data spar-
sity and the inherent lack of expressivity of one-
hot representations, and they can also be trained on
large unannotated corpora which are cheap to pro-
duce and easily available. While they have proven

useful in a number of tasks, and especially in de-
pendency parsing (Koo et al., 2008), these word
vectors are often learned in a generic manner, only
using linear bag-of-word contexts (F. Brown et
al., 1992; Mikolov et al., 2013), without pay-
ing much attention to the specifics of the task to
be solved. Only very recently, people have tried
to learn dependency-based embeddings (Bansal
et al., 2014; Levy and Goldberg, 2014; Mad-
hyastha et al., 2014; Bansal, 2015), and these new
structure-aware representations have been shown
to improve parsing performance in a monolingual
setting.

We would like to generalize this idea to a multi-
lingual setting in a way that allows the transfer of
structural information associated with words from
one (or several) languages to others. While pre-
vious work have attempted to learn multilingual
word clusters or embeddings (Guo et al., 2015)
and use these for cross-lingual transfer, this pa-
per explores a different research direction. Specif-
ically, we investigate the use of vectorial rep-
resentations in which lemma information have
been abstracted away from both words and con-
texts, hence reduced to their morpho-syntactic at-
tributes. The appeal of these de facto delexicalized
word representations is that they further increase
the coverage over the available training data, po-
tentially allowing for better generalization. Fur-
thermore, while words tend to be hard to align in
a cross-lingual setting due to homonymy and pol-
ysemy, morpho-syntactic information tends to be
much more robust to language barrier (depending
on typological closeness), which make them par-
ticularly relevant for cross-lingual transfer. In con-
trast with delexicalized parsing approaches (Mc-
Donald et al., 2011), the proposed method uses
delexicalization during word embedding learning,
not during parsing. Once induced over different
source language datasets, these language-shared
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representations are used as additional features, in
combination with standard language-specific fea-
tures, in a standard lexicalized monolingual graph-
based dependency parser for the target language.
As far as we know, this is the first attempt at
constructing delexicalized word embeddings for
cross-lingual dependency parsing.

Through the use of these delexicalized word
embeddings, we wish to explore two main hy-
potheses. First and foremost, we want to assess to
what extent a parser for a particular language can
benefit from using morpho-syntactic regularities
extracted from other languages. By comparing the
performance of embeddings learned on different
sets of source languages in parsing a specific tar-
get language, we also hope to assess whether and
which typological similarities impact the learning
of “good” embeddings. The second hypothesis
looks at the choice of context types (sequential
vs structural) used for learning these embeddings.
That is, we wish to see if the use of syntactic struc-
ture delivers better parsing improvements, again in
relation to typological similarities or differences.
These hypotheses will be tested on treebanks from
the recent Universal Dependencies Project (Nivre
et al., 2016), which provides us with homoge-
neous syntactic dependency annotations in many
languages.

In section 2, we provide some background and
review previous work on graph-based dependency
parsing for mono- and cross-lingual settings and
on word embeddings. Section 3 details our ap-
proach for learning delexicalized word embed-
dings and using them in dependency parsing. In
section 4, we present some experimental results
that show the importance of grammatical embed-
dings for the task at hand. And finally in section
5, we draw some conclusions and present future
perspectives.

2 Preliminaries and Related Work

The approach proposed in this paper draws on
three different lines of work in dependency pars-
ing.

2.1 Graph-based Dependency Parsing

A dependency tree is a graphical representation of
the syntactic structure of a sentence. The task of
dependency parsing is to predict the dependency
tree of a given sentence x, Tx being the set of all
its possible trees. Assuming we have access to a

scoring function Score(•, •) that tells how well
a dependency tree fits the syntactic structure of a
sentence, the goal of dependency parsing is to find
the tree ŷ such that:

ŷ = argmax
t∈Tx

Score(x, t).

The size of Tx grows exponentially with the
length of x, |Tx| = |x||x|−2, making an exhaustive
search for the best tree impractical in most cases.
Thus in practice, some simplifying assumptions
are made. Here we use the graph-based, edge-
factored approach based on the assumption that
the score of a tree can be computed as the sum
of its edges scores (McDonald et al., 2005a). Let
score(•, •) be a scoring function for edges.

Score(x, t) =
∑

e∈t

score(x, e).

In this case, finding the best parse tree for x
boils down to finding the maximum spanning tree
in the complete graph whose vertices are the words
of x. The score of an edge e is here defined as the
dot product between a model w (a weight vector)
and the feature vector φ(x, e) of this edge.

score(x, e) = w · φ(x, e).
In this paper, we learn the modelw in an online

manner with the Passive-Aggressive (PA) algo-
rithm described in (Crammer et al., 2006). Specif-
ically, we use the PA-II that uses a squared hinge
loss in its predicted-loss cost-sensitive version, in
which the cost is computed in terms of the sym-
metric difference on the edges with respect to the
target tree.

2.2 Word Vectors for Dependency Parsing

Distributional and distributed word representa-
tions are dense vectorial representations of words
that live in a multi-dimensional integer or real
space whose size is much smaller than the size
of the original language vocabulary. There are
now a large variety of spectral and neural ap-
proaches for learning these representations, in-
cluding several variants of Principal Component
Analysis (Jolliffe, 2002) and several deep neural
net approaches. Most of these approaches have
in common that they solely exploit linear, bag-of-
word co-occurrence between words to derive these
low-dimensional representations (Mikolov et al.,
2013; Lebret and Collobert, 2014).

Starting with the work of Koo (2008), the in-
clusion of this type of low-dimensional word rep-
resentations as features has been shown to be a
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simple yet very effective way of improving de-
pendency parsing performance. The main appeal
of these low-dimensional dense representations is
that they mitigate major shortcomings of standard
one-hot encoding representations which are very
sparse and live in very high dimensional spaces,
thus lacking in expressivity and hindering gener-
alization. While it is still unclear whether pre-
trained embeddings (Andreas and Klein, 2014)
indeed capture interesting syntactic information,
more recent work have concentrated on learning
dependency-based word embeddings (Bansal et
al., 2014; Levy and Goldberg, 2014; Madhyastha
et al., 2014; Bansal, 2015). In these approaches,
word co-occurrences are defined in terms of de-
pendency contexts (x is the governor of word w),
instead of linear contexts (x appears within a range
of s around word w). Embedding techniques have
also started to be applied to objects other than
words, namely on dependency relations (Bansal,
2015; Kiperwasser and Goldberg, 2015).

In this paper, we depart from these approaches
by learning a low-dimensional word vector rep-
resentation that is based only on the morpho-
syntactic information associated with that word,
and learning is performed with simple PCA. Fur-
thermore, we do not use any auto-parsed data in
order to avoid errors from spreading into the em-
bedding. Another point is that even if we use a
first order parsing model, we use higher-order con-
texts for learning the embeddings. Bansal (2015)
also uses higher-order contexts but combines them
with a second-order dependency model.

2.3 Cross-lingual Dependency Parsing

Cross-lingual dependency parsing encompasses
several problems ranging from learning a parser
for a target language relying solely on annotated
data from a source language (Lynn et al., 2014) to
learning a unique parser that can handle various
languages (Ammar et al., 2016). Delexicalized
parsers (McDonald et al., 2011) have been used
to avoid the problems the arise from lexical trans-
lation. More recently, cross-lingual parsers have
been trained using cross-lingual word clusters as
well as multilingual word embeddings (Guo et al.,
2015) to alleviate the lack of lexical information.

Our work differs from previous studies in that
it assumes the availability of annotated data from
the target language for training the parser, but uses
multilingual embeddings to benefit from annotated

data in other languages. Another important differ-
ence is that while multilingual word embeddings
are usually used to replace lexical items, we use
morpho-syntactic embeddings that are less lan-
guage dependent.

3 Dependency Parsing with Delexicalized
Word Embeddings

Standard word embeddings have two major draw-
backs for our purposes: they represent word forms
which are not easy to transfer from one language
to another, and they rely on sequential contexts
which are not grammatically motivated for lan-
guages with free word order.

To circumvent these problems, we propose to
create embeddings for morpho-syntactic attribute
sets using structural information from dependency
trees. As we abstract away the lexical form of
words we call our embeddings delexicalized word
embeddings. The advantage of embedding sets
of morpho-syntactic attributes over word forms is
that morpho-syntactic attributes are shared across
languages much more frequently than lexical fea-
tures, and they also tend to be more stable through
translation. This allows a more reliable transfer
of linguistic knowledge from one language to an-
other. This also increases the vocabulary coverage
as the number of morpho-syntactic attributes is far
smaller than the number of word forms. Here,
we choose to learn representations for full at-
tribute sets (i.e., the set containing all the morpho-
syntactic attributes associated with a word form)
instead of learning representations for single at-
tributes and then composing those for each word.
This is in line with standard work embedding ap-
proaches which implicitly do the same in learning
a different representation for each distinct word
form of a lemma (e.g., be, am, is, were) without
any further analysis. We discuss this issue in more
detail in the experiment section.

3.1 Delexicalized Words

Let us briefly illustrate the kinds of morpho-
syntactic attributes we want to embed with some
examples. For these examples, we are using the
notation of the Universal Dependencies project.

The English word a is a determiner (its part-
of-speech or POS is DET), its number is singu-
lar and its definiteness is indefinite. As a de-
terminer, it does not have tense or mood, and
as most English words, it does not have gen-
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der. We would thus embed the feature set
DET:Definite=Ind|Number=Sing.

Looking at an example from a morpho-
logically richer language, we have Finnish
verb form oli (meaning was) which we encode as
VERB:Mood=Ind|Number=Sing|Person=3|Tense-
=Past|VerbForm=Fin|Voice=Act. This means that
oli is a finite verb form (not a participle) in
the indicative past, its voice is active and its
agreement is third person, singular.

This gives vocabulary sizes ranging from a hun-
dred or less for analytic languages (English has
about 120 such combinations) to several thousands
for synthetic ones (the Finnish part of the UD
Project has about 4000 such combinations).

3.2 Structural Contexts

Having decided to embed morpho-syntactic at-
tribute sets rather than words, we need to map
these new objects to dense vectors in Rd. To
this end, we apply principal component analy-
sis (PCA) to a co-occurrence matrix (possibly re-
weighted) whose lines represent our new attribute
sets (i.e., our delexicalized words) and whose
columns are their contexts, which are also ex-
pressed in terms of morpho-syntactic attributes.
We describe those contexts later on, but it is worth
noting that as we allow them to diverge from the
morpho-syntactic features sets, not including ev-
ery features for example, the number of context
can potentially reach a few tens of thousands.

As we want to learn embeddings specifically
tailored to dependency parsing, we use not only
sequential (i.e. linear) contexts but also structural
contexts based on dependency trees. Sequential
contexts are of the kind: “word x appears in a win-
dow of size l centered on word y”. Structural con-
texts are instead defined on the dependency tree:
“word x is the governor of word y”, or “x is a de-
pendent of y”or again “x is a sibling of y”.

The new structural contexts can be seen as fol-
lowing a certain path in the dependency tree link-
ing two words. Let up(x, t) be the function that
maps a word x to its governor (following the
upgoing edge) in tree t. As the root of a tree has
no governor we add a dummy token called nil for
that purpose. Then down(x, t) is the function that
maps x to the set of its dependents in t.

down(x, t) = {y ∈ t | up(y, t) = x}
Then we can define our new contexts as combina-
tions of up and down, for example the governor

of x is up(x, t), its dependents are down(x, t) and
its siblings are down(up(x, t), t) \ {x}.

We can also define similar functions over se-
quences. Let right(x, s) (respectively left(x, s))
be the word in sequence s standing just at the right
(respectively at the left) of x, then we can also ex-
press the sequential contexts in the same frame-
work. We also add two new dummy tokens begin
and end to avoid ill definition at the borders of
s. Using the notation fn(•) for f ◦ f ◦ · · · f(•)
where f is applied n times, we have that the win-
dow of size l centered on x is {righti(x, s) | i ∈
[i..l]} ∪ {lefti(x, s) | i ∈ [i..l]}. We can also de-
fine new contexts such as left or right siblings.

Let us now turn to an example to make our ap-
proach more concrete. Figure 1 shows a depen-
dency tree for a Gothic sentence1 from the Univer-
sal Dependencies Project. Each word is accompa-
nied with its part-of-speech and the corresponding
morpho-syntactic attributes. Colored links repre-
sent examples of contexts, orange links standing
for contexts of length 1 and blue links standing for
contexts of length 2.

Embedding Delexicalized Words With
Structural Contexts

Given the above definition of structural contexts,
there are still several design parameters to set in
order to construct embeddings. First, we distin-
guish different types of contexts, depending on
whether the contexts are sequential (with a dis-
tinction between left and right), governor, depen-
dents and siblings (with a distinction between first
left sibling, first right sibling and others). Second,
there are different context spans, where the span is
the maximum length (in term of function applica-
tions) of a context. It is equivalent to the window
size for sequential context. For example, the sib-
ling context has a fixed span of 2, but the governor
of span 2 means the governor of the governor (if it
exists, nil otherwise). Third, we distinguish differ-
ent granularity levels of contexts, corresponding
to the maximum number of morpho-syntactic at-
tributes used to model contexts. Like words, con-
texts are also defined in terms of morpho-syntactic
attributes, but we do not require complete sets
for them, hence allowing for different granularity

1The reader may notice that there is no punctuation in that
sentence, it is because there is originally no punctuation in
Ulfila’s Bible from which the sentence comes, but if there
were some (as in modern texts) we would use them just as
usual, treating any token as a word.
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jah all manageins iddjedun du imma

ROOT

CONJ
-

PRON
Case=Nom

Gender=Neut
Number=Sing

NOUN
Case=Gen

Gender=Fem
Number=Sing

VERB
Mood=Ind

Number=Sing
Person=1

Tense=Past
VerbForm=Fin

Voice=Act

ADP
-

PRON
Case=Dat

Gender=Masc
Number=Sing

Person=3
PronType=PrsRight Sib. Governor

Dependent
Grand Parent

Figure 1: Dependency tree of sentence jah all manageins iddjedun du imma (and all of the crowd went to
him) from Ulfila’s Bible, from the Gothic part of the Universal Dependencies Project. Under the words
are their morpho-syntactic analysis and the colored links represent some possible structural contexts.

levels. Taking an example from the sentence of
Figure 1, with a granularity of 0, the word man-
ageins triggers the context NOUN only (i.e., the
POS tag alone). With a granularity of 1, it trig-
gers NOUN:Case=Gen, NOUN:Gender=Fem and
NOUN:Number=Sing (i.e., the word POS tag is
crossed with each of the other attributes). And
with full granularity, the union over all subsets of
attributes (of size 0 to 3) is combined with the POS
tag. This gives 2a possible contexts for a morpho-
syntactic attributes set with a attributes.

Finally, other parameters are the embedding al-
gorithm (here we use PCA), the matrix normal-
ization method (he we use a simple L2-norm row
normalization), the size of the embedding space
and the number of contexts used. We can keep all
the contexts as their numbers range from 36 (each
part-of-speech counted twice for before and after
a word and two extra context representing the be-
ginning and the end of the sentence) to a few tens
of thousands.

3.3 From Word Embeddings to Edge
Embeddings to Parsing Features

As the dependency model factors on edges, we
need to turn the word embeddings into edge em-
beddings. We want an aggregating function that
preserves edge orientation and the dependency be-
tween the edge endpoints. So we chose to use the

outer product of the two original embeddings be-
cause it is not commutative and each output di-
mension depends on the two inputs. Let ⊗ denote
the outer product and let u and v be two vectors
of Rd, then:

u⊗ v = uv>

This operation yields a matrix in Rd×d but we
need a vector, so we take the vector vec(uv>). In
the following, whenever we use a matrix where
a vector is expected, we implicitly assume the
presence of a vec(•)2. There is a slight scalabil-
ity problem as the output size grows quadratically
with the size of the inputs. But in the case of de-
pendency parsing, where feature vectors are com-
monly a few millions dimensions long, for typi-
cal embeddings size (between 100 and 500) an in-
crease of a few tens of thousands dimensions is
acceptable.

We would like to use more context than just the
two nodes of the edge to represent it. In order
to define higher-order contexts, we use triplets of
delexicalized words centered on each side of the
edge. Specifically, we concatenate the representa-
tions associated with the triplets to keep a tractable
model of size 9d2. Note that applying an outer
product across each word of the triplet would be

2In this case, it does not matter if a matrix is vectorized by
the columns or by the rows, as soon as the same convention
is used consistently throughout the algorithm.
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prohibitive, leading to vectors of the order of 1012

dimensions which would not even fit in memory.
More formally, let ⊕ denote the concatenation

operator, Dep(e) (respectively Gov(e)) be the de-
pendent (respectively the governor) of an edge
e and let emb(•) be the embedding function.
φemb(•, •) being the embedding part of the fea-
ture vector. Using the notation of section 2.1, we
have:

φemb(x, e) =
⊕

i∈{−1,0,+1}
emb(Gov(e)i)

⊗
⊕

i∈{−1,0,+1}
emb(Dep(e)i).

score(x, e) = w·(φ(x, e)⊕ αφemb(x, e)).
Where α is a scalar allowing to tune the rela-
tive importance of each part of the feature vec-
tor, and φ(•, •) is the traditional dependency fea-
ture vector. This follows the same approach as
Kiperwasser and Goldberg (2015) and Chen et
al.(2014). As mentioned previously, we have spe-
cial tokens such as begin and end to represent the
word before the beginning and the end of a sen-
tence. We also have a root token that stands for the
extra root node added by the graphical dependency
model. And we also have a back-off embedding of
raw part-of-speech to handle unseen delexicalized
words in the test set.

4 Experiments

4.1 Data set

We have tested our parsing models based on delex-
icalized word embeddings on eight languages us-
ing the data of the Universal Dependencies (UD)
v1.3 (Nivre et al., 2016). We have chosen to work
on English (en), Basque (eu), Finnish (fi), French
(fr), Gothic (got), Hebrew (he), Hungarian (hu)
and Romanian (ro). These languages belong to
four different families, which are Indo-European
(en, fr, got, ro), Finno-Ugric (fi, hu), Semitic (he),
and Basque which forms a separate group. They
also display various levels of morphological com-
plexity not correlated with the families (en, fr and
he do not have case marking while the other five do
to various degrees) as well as different grammat-
ical typologies (eu is an ergative language, while
the other seven are accusative ones). When several
corpora are available for a language, we picked the
standard one. Table 1 provides some basic statis-
tics on the language datasets. Also note that our
experiments follow the train/dev/test split as pro-

vided by the UD Project.

4.2 Features
Dependency Features
For parsing, we use standard graphical depen-
dency parsing features that include word forms
and POS-tags of edge nodes and surrounding
words, edge length and direction and conjunction
of those basic features. The main difference with
the original MSTparser features of McDonald et
al.(2005b) is that instead of using truncated words
of length 5 as back-off features, we use the lem-
mas that are provided in the UD Project.

Embedding Contexts
For the embedding contexts, we consider four pa-
rameters, namely the type and span of contexts,
the granularity of the morpho-syntactic attributes
used in those contexts and the dimension of the
embedding space. Regarding the type of con-
texts we have experiments with three settings:
(i) strictly sequential contexts (Seq), (ii) strictly
structural contexts that use governor, dependents
and siblings information (Struct) and (iii) mixed
contexts using both dependency-based and se-
quential contexts (Mix). Regarding the span, we
have tried 1 and 2. Siblings are only used in struc-
tural and mixed contexts of span 2 because that is
the length of the path between a vertex and its sib-
lings in a tree. We have tried granularity of 0 and
full granularity. For the embedding space dimen-
sion we have tried 50, 150 and 500 dimensions, or
the maximum possible size3 if smaller than 500.
For better readability, we will use shortcuts to re-
fer to the different parameter settings: 1 = (span
1,granularity 0), 2 = (span 2, granularity 0) and
3 = (span 2, full granularity for contexts span 1,
granularity 0 for context span 2).

4.3 Experimental Settings
We have carried out two sets of experiments:
monolingual and cross-lingual. In the first set, em-
beddings are learned on a single language train-
ing set and then used to parse that same language.
In the second set, we have defined several clusters
of languages based on their phylogenetic relation-
ship and typological similarities. For a given clus-
ter, embeddings are learned on the training sets of

3Spectral-based dimension reduction such as PCA are
limited by the number of eigenvectors of the matrix to be re-
duced. For example a matrix of size 200×500 can at most be
reduced into a 200 × 200 matrix via PCA. When the number
of eigenvectors is smaller than 500, we use that value instead.
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Train Test
sentences words sentences words morpho-syntactic tokens POS

English 12 543 204 586 2 077 25 096 118 17
Basque 5 396 72 974 1 799 24 374 845 16
Finnish 12 217 162 721 648 9 140 1 592 15
French 14 557 356 216 298 7 018 195 17
Gothic 4 360 44 722 485 5 158 662 13
Hebrew 5 142 15 558 491 12 125 480 16
Hungarian 1 433 23 020 188 4 235 651 16
Romanian 4 759 108 618 794 18 375 412 17

Table 1: Number of sentences and words in the training and test sets, number of delexicalized word and
of POS-tags for each language. The total number or embedded tokens is |morpho-syntactic feature set|+
|POS|+ 3 because of the POS back-offs and the special begin, end and root tokens.

each language in that cluster, and in turn used to
parse each language in that cluster. It is possible
not to use any data from the target language when
learning the embeddings, but in this study we stick
to using target language data.

Besides embeddings, there are three additional
hyper-parameters that need to be tuned: the C ag-
gressiveness parameter of the PA-II algorithm, the
scaling factor α that controls the relative weight
of the embedding features in the edge scores, and
the number i of training iterations of the PA-II al-
gorithm. We have tuned these hyper-parameters
through a grid search on the development sets and
picked the values that were behaving best on aver-
age, giving C = 0.001, α = 0.001, i = 5.

All the scores reported below are Unlabeled
Attachment Scores (UAS) measured on the test
sets ignoring the punctuation marks. As a base-
line comparison we use our implementation of the
MSTparser without morpho-syntactic attributes
representation of any kind. We computed the sig-
nificance of the scores using the McNemar’s test.

4.4 Monolingual Experiments

Table 2 displays UAS scores for the monolin-
gual setting. Except for French and Romanian
that do not show real improvement, the six other
languages show substantial performance increases
with the embeddings. These improvements are
statistically significant for all languages, except
for Basque and Hebrew. One of our hypotheses
was that structure is important when learning an
embedding for dependency parsing and indeed our
results support it. The largest improvements ap-
pear with structural or mixed embeddings which
rely on syntactic structures.

The results for English are significant and close
to each other for all types of embeddings, this
tends to show that in English, sentence structure
and word order are very correlated and both con-
tribute information. Indeed that is what one ex-
pects for English which has a rigid syntax and a
poor morphology.

On the other side of the picture, Basque and
Gothic display the largest improvements with
structural morpho-syntactic embeddings. This is
also expected as those are both morphologically
rich languages with more flexible word order.
Even though the argument is less clear for Hun-
garian and Finnish, they both show that structure
is important for learning informative dependency
embeddings.

4.5 Cross-lingual Experiments

Table 3 summarizes the UAS scores achieved us-
ing delexicalized embeddings learned on several
languages. Parsing accuracy improve for four lan-
guages (en, eu, hu, ro) in the cross-lingual set-
ting compared to the best monolingual setting.
While the multilingual embeddings do not outper-
form the monolingual ones for the other four lan-
guages, they still deliver parsing performance that
are better than with the baseline MST parser for
all languages (but Gothic). That shows that indeed
using data from other languages is beneficial for
learning good embeddings for dependency pars-
ing, which was the second hypothesis we wanted
to evaluate. We also notice that the largest gains
are achieved with structural (or mixed) embed-
dings, giving more evidence to the importance of
structure for learning embeddings for dependency
parsing.
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Language Baseline Seq 1 Seq 2 Seq 3 Struct 1 Struct 2 Struct 3 Mix 1 Mix 2 Mix 3
English 85.62 86.07?

40 85.92∗80 86.06�121 86.01�37 85.95∗121 85.94∗50 86.10?
77 86.19?

50 85.84121
Basque 76.65 76.6038 76.7076 76.73500 76.6735 76.85119 76.90150 76.6650 76.72150 76.80500
Finnish 79.97 80.44 36 80.44 72 80.71�150 80.58∗33 80.35 114 80.58∗50 80.92?

69 80.4050 80.60∗50
French 83.99 83.48 40 83.55 50 83.47 150 83.42 37 83.68 128 83.71150 83.61 77 83.89 150 83.84 198
Gothic 79.16 78.9532 79.10 50 79.57 500 79.24 28 79.31 50 80.09�500 79.5950 79.62150 79.62 500
Hebrew 84.05 83.87 38 83.86 50 84.24 50 84.1835 84.32 50 84.14150 84.3250 84.3450 84.36150
Hungarian 79.15 79.2338 80.13∗76 79.83∗500 79.6734 80.13�118 79.69500 79.94∗50 79.6450 79.8050
Romanian 81.35 81.3440 81.2980 81.21 415 81.00 37 81.38 50 81.29 150 81.3050 81.26150 81.21415

Table 2: Best UAS scores for each embedding type in monolingual setting. The best score for each
language are in bold and in gray are the results above the baseline. The statistical significance (using
McNemar’s test) of an improvement over the baseline is indicated with a superscript mark: ∗ stands for
a significance with a p-value inferior than 0.05, � stands for p ≤ 0.01 and ? for p ≤ 0.001. The length of
the embeddings is reported as a subscript.

Language Baseline Best Best Best
Mono All Multilingual

English 85.62 86.19? 86.18?
seq3,50 86.32?

en,got,mix3,50
Basque 76.65 76.90 76.97∗struct3,50 76.68decl,seq2,50
Finnish 79.97 80.92? 80.89?

struct2,50 80.81�decl,seq2,50
French 83.99 83.89 83.87struct1,37 83.89en,fr,ro,mix1,77
Gothic 79.16 80.09� 79.80struct2,50 79.99∗got,ro,mix3,500
Hebrew 84.05 84.36 84.32seq3,150 84.13en,fr,he,mix1,77
Hungarian 79.15 80.13∗ 80.05∗mix2,150 80.30�decl,struct1,37
Romanian 81.35 81.38 81.31seq3,150 81.52hu,ro,mix3,50

Table 3: Best UAS scores in cross-lingual setting. Under Best All are the results using the embeddings
learned on the set of all languages, while under Best Multilingual are given the best results for each
language using only a subset of the languages for learning the embedding. The subscript represents the
context types and the number of dimensions of the embedding. The baselines and best monolingual
scores are also reported. Significance of scores uses the same conventions as in Table 2.

Let us now look more closely at which groups
of source languages are most helpful for specific
target languages. First, note in general the best
performing embeddings are never those obtained
by using the full set of languages (this is only the
case for Basque). This is expected since we have
picked languages with very different grammars
thus the full embeddings can be very noisy with
regard to a single language. In fact, the Basque re-
sults are rather surprising since this language dif-
fers the most from the others in terms of morphol-
ogy, but also one for which we had rather small
training data.

The best parsing performance for English are
achieved when using additional data from Gothic.
As both are Germanic languages, this tends to
show that data from genetically related languages

can help in learning a better representation. Even
though they do not achieve the best results, sim-
ilar patterns occur for French (French and Ro-
manian are Romance languages and English has
been heavily influenced by Romance languages)
and for Gothic (Gothic and Romanian are both
Indo-European languages). Similarly, Hungarian
and Romanian reach their best scores when parsed
with typologically close languages that have case
marking. And again, Basque, Finnish and Gothic
display similar patterns. Hebrew performs reason-
ably well with French and English which are two
languages with fairly restricted word orders.

As to why some languages have better mono-
lingual parsing results than multilingual results,
we think this is at least partly due to the lack of
flexibility of our model. That is, morpho-syntactic
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attributes sets are treated independently from one
another making some of them hard to use in the
cross-lingual setting. For example, Hebrew verbs
display ‘binyanim’ (internal flection classes) that
do not appear in any other language, similarly
Finnish has a lot of cases that are not found in
other languages. Those are indeed two languages
that do not perform well with other languages. We
thus believe that introducing compositionality in
our embedding model should help in solving those
problems and enhance the results further.

5 Conclusion

In this paper, we have described a new way to
induce multilingual embeddings, namely delex-
icalized word embeddings, that solely rely on
the morpho-syntactic attributes of words which
can easily be transferred across languages. This
new approach to multilingual embeddings allows
one to use annotated data from other languages
to further improve the resulting embeddings and
parsers, avoiding the problems that arise from lex-
icon alignment or cross-lingual word clustering.

In line with previous recent work, we have
shown that the syntactic structure is crucial when
it comes to learning embeddings for dependency
parsing. In addition, we have seen that the impact
of the structure on the quality of an embedding de-
pends on language typology.

In future work, we should see how those
morpho-syntactic embeddings can help in labeled
dependency parsing, as edge types and word
morpho-syntactic attributes are related. We would
like to investigate the impact of the embedding al-
gorithms (here we use PCA) on the final embed-
dings. We would also like to try other ways to turn
word embeddings into edge embeddings in order
to benefit more from the local neighborhoods. Fi-
nally, we would like to work on the embedding
of clusters of morpho-syntactic attributes to in-
duce higher-order embeddings for noun-phrases
or verb-phrases and to deal with agreement and
morpho-syntactic attributes hierarchy.
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Abstract

Recent work has addressed the problem of
detecting relevant claims for a given con-
troversial topic. We introduce the com-
plementary task of claim stance classi-
fication, along with the first benchmark
dataset for this task. We decompose
this problem into: (a) open-domain target
identification for topic and claim (b) senti-
ment classification for each target, and (c)
open-domain contrast detection between
the topic and the claim targets. Manual
annotation of the dataset confirms the ap-
plicability and validity of our model. We
describe an implementation of our model,
focusing on a novel algorithm for con-
trast detection. Our approach achieves
promising results, and is shown to out-
perform several baselines, which represent
the common practice of applying a single,
monolithic classifier for stance classifica-
tion.

1 Introduction

The need for making persuasive arguments arises
in many domains, including politics, law, mar-
keting, and financial and business advising. On-
demand generation of pro and con arguments for
a given controversial topic would therefore be of
great practical value. Natural use cases include
debating support, where the user is presented with
persuasive arguments for a topic of interest, and
decision support, where the pros and cons of a
given proposal are presented to the user.

A notable research effort in this area is the
IBM Debater® project whose goal is “to develop
technologies that can assist humans to debate and

∗Present affiliation - Amazon.

reason”1. As part of this research, Levy et al.
(2014) have developed context-dependent claim
detection. Given a controversial topic, such as

(1) The sale of violent video games to minors
should be banned ,

their system extracts, from corpora such as
Wikipedia, Context-Dependent Claims (CDCs),
defined as “general, concise statements that di-
rectly support or contest the given Topic”. A claim
forms the basis of an argument, being the assertion
that the argument aims to establish, and therefore
claim detection may be viewed as a first step in au-
tomated argument construction. Recent research
on claim detection (Levy et al., 2014; Lippi and
Torroni, 2015) was facilitated by the IBM argu-
mentative structure dataset (Aharoni et al., 2014),
which contains manually collected claims for a va-
riety of topics, as well as supporting evidence.

In this work we introduce the related task of
Claim Stance Classification: given a topic, and a
set of claims extracted for it, determine for each
claim whether it supports or contests the topic.
Sorting extracted claims into Pro and Con would
clearly improve the usability of both debating and
decision support systems. We introduce the first
benchmark for this task, by adding Pro/Con anno-
tations to the claims in the IBM dataset.

Based on the analysis of this dataset, we pro-
pose a semantic model for predicting claim stance.
We observed that both the debate topic and a
supporting/contesting claim often contain a target
phrase, about which they make a positive or a neg-
ative statement. The pro/con relation can then be
determined by the sentiments of the topic and the
claim towards their targets, as well as the semantic
relation between these targets. For example, sup-
pose that a topic expresses support for freedom of

1http://researcher.ibm.com/researcher/
view_group.php?id=5443
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speech. A Pro claim may support it by arguing in
favor of free discussion, or alternatively by criti-
cizing censorship. We say that freedom of speech
and free discussion are consistent targets, while
freedom of speech and censorship are contrastive.
Accordingly, we suggest that claim stance classi-
fication can be reduced to simpler, more tractable
sub-problems:

1. Identify the targets of the given topic and
claim.

2. Identify the polarity (sentiment) towards each
of the targets.

3. Determine whether the targets are consistent
or contrastive.

While our model seems intuitive, it was not clear a
priori how well it captures the semantics of claims
in practice. Some types of claims do not fit into
this decomposition. Consider the following Con
claim for the topic given in (1):

(2) Parents, not government bureaucrats, have
the right to decide what is appropriate for
their children.

In this example, there is no clear sentiment tar-
get in the claim that is either consistent or con-
trastive with the sale of violent video games to
minors. Nevertheless, extensive data annotation
confirmed that our model is applicable to about
95% of the claims in the dataset, and for these
claims, Pro/Con relations can be accurately pre-
dicted by solving the above sub-problems. Fur-
thermore, our analysis reveals that contrastive tar-
gets are quite common, and thus must be ac-
counted for. Our model highlights intriguing sub-
problems such as open-domain target identifica-
tion and open-domain contrast detection between
a given pair of phrases, which have received rela-
tively little attention in previous stance classifica-
tion work. We hope that the annotated data col-
lected in this work will facilitate further research
on these important subtasks.

We developed a classifier for each of the above
subtasks. Most notably, we present a novel
method for the challenging task of contrast detec-
tion. Empirical evaluation confirms that our mod-
ular approach outperforms several strong base-
lines that employ a single, monolithic classier.

2 Related Work

Previous work on stance classification focused
on analyzing debating forums (Somasundaran and

Wiebe, 2009; Somasundaran and Wiebe, 2010;
Walker et al., 2012b; Hasan and Ng, 2013; Walker
et al., 2012a; Sridhar et al., 2014), congressional
floor debates (Thomas et al., 2006; Yessenalina et
al., 2010; Burfoot et al., 2011), public comments
on proposed regulations (Kwon et al., 2007), and
student essays (Faulkner, 2014). Most of these
works relied on both generic features such as sen-
timent, and topic-specific features learned from la-
beled data for a closed set of topics. Simple classi-
fiers with unigram or ngram features are known to
be hard to beat for these tasks (Somasundaran and
Wiebe, 2010; Hasan and Ng, 2013; Mohammad et
al., 2016).

In addition to content-based features, previous
work also made use of various types of contex-
tual information, such as agreement/disagreement
between posts or speeches, author identity, con-
versation structure in debating forums, and dis-
course structure. Collective classification has been
shown to improve performance (Thomas et al.,
2006; Yessenalina et al., 2010; Burfoot et al.,
2011; Hasan and Ng, 2013; Walker et al., 2012a;
Sridhar et al., 2014).

The setting of ad-hoc claim retrieval, which we
address in this work, is different in several re-
spects. First, topics are not known in advance.
They may be arbitrarily complex, and belong to
any domain. Second, much of the contextual in-
formation that was exploited in previous work is
not available in this setting. In addition, claims
are short sentences, while previous work typically
addressed text spanning one or more paragraphs.
Moreover, since we may want to present to the
user only claims for which we are confident about
stance, reliable confidence ranking of our predic-
tions is important. We explore this aspect in our
evaluation.

Consequently, our approach relies on generic
sentiment analysis, rather than on topic or domain-
specific features. We focus on precise semantic
analysis of the debate topic and the claim, includ-
ing target identification, and contrast detection be-
tween the claim and the topic targets. While senti-
ment analysis is a well-studied task, open-domain
target identification and open-domain contrast de-
tection between two given phrases have received
little attention in previous work.

Consistent/contrastive targets were previously
discussed by Somasundaran et al. (2009) 2, who

2Termed same/alternative in their paper.
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used them in conjunction with discourse rela-
tions to improve the prediction of opinion polar-
ity. However, these targets and relations were not
automatically identified, but rather taken from a
labeled dataset. Somasundaran and Wiebe (2009)
considered debates comparing two products, such
as Windows and Mac. In comparison, topics in our
setting are not limited to product names, and the
scope of contrast we address is far more general.

Cabrio and Villata (2013) employ textual en-
tailment to detect support/attack relations between
arguments. However, as illustrated in Table 1,
claims typically refer to the pros and cons of the
topic target, but do not entail or contradict the
topic.

A recent related task is the SemEval 2016
tweets stance classification (Mohammad et al.,
2016). In particular, in its weakly supervised
subtask (Task B), no labeled training data was
provided for the single assessed topic (Donald
Trump). Beyond the obvious differences in lan-
guage and content between claims and tweets, the
setting of this task is rather different from ours:
the topic was known in advance to the participants,
and an unlabeled corpus of related tweets was pro-
vided. Top performing systems took advantage of
this setting, and developed offline rules for auto-
matically labeling the domain corpus. In our set-
ting, the topic is not known in advance, and obtain-
ing a large collection of claims for a given topic
does not seem feasible.

3 The Claim Polarity Dataset

The IBM argumentative structure dataset pub-
lished by Aharoni et al. (2014) contains claims
and evidence for 33 controversial topics. In this
work we used an updated version of this dataset,
which includes 55 topics. Topics were selected
at random from the debate motions database at
the International Debate Education Association
(IDEA) website3. Motions are worded as “This
house . . . ”, in the tradition of British Parliamen-
tary debates. Claims and evidence were manu-
ally collected from hundreds of Wikipedia articles.
The dataset contains 2,394 claims.

By definition, all claims in the dataset either
support or contest the topic, and Aharoni et al.
give a few examples for Pro and Con claims in
their paper. However, the dataset itself does not in-
clude stance annotations. We enhanced the dataset

3http://idebate.org/

with polarity annotations as follows. The polarity
of each claim with respect to the motion (Pro/Con)
was assessed by five annotators, and the final label
was determined by the majority annotation.4 Ta-
ble 1 shows examples of motions, claims and their
pro/con labeling.

4 Semantic Model for Claim Stance
Classification

In this section we propose a model for predicting
the stance of a claim c towards a topic sentence t.

We assume that c includes a claim target xc, de-
fined as a phrase about which c makes a positive
or a negative assertion. Specifically, it is defined
as the most explicit and direct sentiment target in
the claim. The claim sentiment sc ∈ {−1, 1} is the
sentiment of the claim towards its target, where 1
denotes positive sentiment and −1 denotes nega-
tive sentiment. Similarly, we define for a topic t
the topic target xt and topic sentiment st.

We say that the claim target xc is consistent with
the topic target xt if the stance towards xc implies
the same stance towards xt . Similarly, xc and xt
are contrastive if the stance towards xc implies the
opposite stance towards xt . The contrast relation
between xc and xt, denoted R(xc, xt) ∈ {−1, 1}
is 1 if xc and xt are consistent, and −1 if they are
contrastive. Using the above definitions, we define
the stance relation between c and t as

Stance(c, t) = sc ×R(xc, xt)× st (1)

where Stance(c, t) ∈ {−1, 1}, 1 indicates Pro
and −1 indicates Con. Rows 1-8 in Table 1 show
examples for xc, sc, xt, st and R(xc, xt). It is
easy to verify that the model correctly predicts the
claim polarity for these examples. For instance,
row 3 has xc=“Unity”, xt=“Multiculturalism”,
sc = 1,R(xc, xt) = −1, st = 1, and the resulting
stance is 1× (−1)× 1 = −1 (Con).
Continuous model: The above model produces
binary output (+1/-1). In practice, it would be de-
sirable to obtain confidence ranking of the model
predictions, which would allow presenting to the
user only the top k predictions, or predictions
whose confidence is above some threshold. We
therefore implemented a continuous variant of the
model, where sc, st, R(xc, xt) and the resulting
stance score are all real-valued numbers in [-1,1].

4Note that while we considered the original motion phras-
ing for Pro/Con labeling, the original dataset only contains
motion themes as the topics, e.g. boxing for “This house
would ban boxing”.
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# Debate Topic (Motion) Claim
1 This house believes that advertising is harm-

ful. 	
⇔ Marketing promotes consumerism and waste. 	 Pro

2 This house would ban boxing. 	 ⇔ Boxing remains the 8th most deadly sport. 	 Pro
3 This house would embrace multiculturalism.
⊕

6⇔ Unity is seen as an essential feature of the nation and the
nation-state. ⊕

Con

4 This house supports the one-child policy of
the republic of China. ⊕

6⇔ Children with many siblings receive fewer resources. 	 Pro

5 This house would build hydroelectric dams.
⊕

⇔ As an alternative energy source, a hydroelectric power
source is cheaper than both nuclear and wind power. ⊕

Pro

6 This house believes that it is sometimes right
for the government to restrict freedom of
speech. 	

⇔ Human rights can be limited or even pushed aside dur-
ing times of national emergency. 	

Pro

7 This house would abolish the monarchy. 	 ⇔ Hereditary succession is outdated. 	 Pro
8 This house would unleash the free market⊕ 6⇔ Virtually all developed countries today successfully pro-

moted their national industries through protectionism. ⊕
Con

9 This house supports the one-child policy of
the republic of China. ⊕

If, for any reason, the single child is unable to care for
their older adult relatives, the oldest generations would
face a lack of resources and necessities.

Con

Table 1: Sample topic and claim annotations. Targets are marked in bold. ⊕/	 denote positive/negative
sentiment towards the target, and⇔/ 6⇔ denote consistent/contrastive targets.

For each real-valued prediction, the class is given
by its sign, and the confidence is given by its ab-
solute value.

5 Model Assessment via Manual Data
Annotation

We assessed the validity and applicability of the
proposed model through manual annotation of the
IBM dataset.5 The labeled data was also used to
train and assess sub-components in the model im-
plementation. This section describes the annota-
tion process and the analysis of the annotation re-
sults.
Annotation Process: Each of the 55 topics was
annotated by one of the authors for its target xt
and sentiment st. xt was used as an input for
the claim annotation task. Each claim was labeled
independently by five annotators who were given
the definitions for claim target xc, claim sentiment
sc and the contrast relation R(xc, xt) (cf. Sec-
tion 4). The annotators were first asked to identify
xc and sc. If successful, they proceeded to deter-
mineR(xc, xt).

The final claim labels were derived from the five
individual annotations as follows. First, overlap-
ping claim targets were clustered together. If no
cluster contained the majority of the annotations

5The IBM Debating Technologies group in IBM Re-
search has already released several data resources, found
here: https://www.research.ibm.com/haifa/
dept/vst/mlta_data.shtml. We aim to release the
resource presented in this paper as well, as soon as we obtain
the required licenses.

(≥3), then the claim was labeled as incompatible
with our model. If a majority cluster was found,
we discarded annotations where the target was not
in this cluster, and selected xc, sc and R(xc, xt)
based on the majority of the remaining annota-
tions. We required absolute majority agreement
(≥3) for sc andR(xc, xt), otherwise the claim was
labeled as incompatible with our model.

Rows 1-8 in Table 1 show some examples of
annotated claims in our dataset. Row 9 is an ex-
ample of a claim that was found incompatible with
our model.
Data Annotation Results: Majority cluster was
found for 98.5% of the claims, and for 92.5% of
the claims, the majority of the annotators agreed
on the exact boundaries of the target. 94.4% of
the claims were found to be compatible with our
model. Furthermore, combining the labels for sc,
R(xc, xt) and st as in Equation (1) correctly pre-
dicted the Pro/Con labels in the dataset (which
were collected independently and were not pre-
sented to the annotators) for 99.6% of the compat-
ible claims. Given that the pro/con labels are ap-
proximately balanced (55.3% are Pro, 44.7% are
Con), this result provides a clear and strong evi-
dence for the applicability and validity of the pro-
posed model. This near-perfect correspondence
also indicates the high quality of both Pro/Con la-
bels and the model-based annotations.

Similar to pro/con labels, claim sentiment is ap-
proximately balanced between positive and nega-
tive (55% negative vs. 45% positive). Interest-
ingly, 20% of the compatible claims have a con-
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trastive relation with the topic target. Since con-
trastive targets flip polarity, stance classification
would fail in these cases, unless these cases are
correctly identified and accounted for. This high-
lights the importance of contrast classification for
claim pro/con analysis. We discuss contrast detec-
tion in Section 7.

6 Target Extraction and Targeted
Sentiment Analysis

Next, we describe an implementation of the stance
classification model. This section provides a
concise description of target identification and
targeted sentiment analysis. The next section
presents in more detail our novel contrast detec-
tion algorithm. We assume that for the user, di-
rectly specifying the topic target xt and the topic
sentiment st (e.g., <boxing, Con>) is as easy as
phrasing the topic as a short sentence (“This house
would ban boxing”), in terms of supervision ef-
fort. Therefore, we focus on finding xc and sc, the
claim target and sentiment, and assume that xt and
st are given.

6.1 Claim Target Identification

Previous work on targeted/aspect-based senti-
ment analysis focused on detecting in user re-
views sentiment towards products and their com-
ponents (Popescu and Etzioni, 2005; Hu and Liu,
2004b), or considered only named entities as tar-
gets (Mitchell et al., 2013). Here we address a
more general problem of open domain, generic
target identification. Table 1 illustrates the diver-
sity and complexity of claim targets.
We set up the problem of claim target identifica-
tion as a supervised learning problem, using an
L2-regularized logistic regression classifier. Tar-
get candidates are the noun phrases in the claim,
obtained from its syntactic parse6. We create one
training example from each such candidate phrase
x and claim c in our training set. The feature set is
summarized in Table 2. Candidate phrases that ex-
actly match the true target or overlap significantly
with it are considered positive training examples,
while the other candidates are considered negative
examples. We measured overlap using the Jaccard
similarity coefficient, defined as the ratio between
the number of tokens in the intersection and the
union of the two phrases, and considered an over-

6We used the ESG parser (McCord, 1990; McCord et al.,
2012).

Syntactic and Positional: The dependency relation of
x in c; whether x is a direct child of the root in the
dependency parse tree for c; the minimum distance of
x from the start or the end of the chunk containing it.
Wikipedia: whether x is a Wikipedia title, (e.g. human
rights)
Sentiment: The dependency relation connecting x to
any sentiment phrase in the rest of c. The (Hu and
Liu, 2004a) sentiment lexicon was used. For example,
Hereditary succession is the sentiment target of out-
dated, indicated by the subject-predicate relation con-
necting them (Table 1, row 7).
Topic relatedness: Semantic similarity between x and
the topic target , e.g. Marketing and advertising (Ta-
ble 1, row 1). We consider morphological similarity,
paths in WordNet (Miller, 1995; Fellbaum, 1998), and
cosine similarity of word2vec embeddings (Mikolov et
al., 2013).

Table 2: Features extracted for a target candidate
x in a claim c. Examples are taken from Table 1.

lap of 0.6 or higher as significant overlap7. The
candidate with the highest classifier confidence is
predicted to be the target.

6.2 Claim Sentiment Classification

This component determines the sentiment of the
claim towards its target. Given our open-domain
setting, and the relatively small amount of training
data available, we followed the common practice
of lexicon-based sentiment analysis (Liu, 2012,
pp. 50–53)8. Our method is similar to the one de-
scribed by Ding et al. (2008), and comprises the
following steps:
Sentiment matching: Positive and negative terms
from the sentiment lexicon of Hu and Liu (2004a)
are matched in the claim.
Sentiment shifters application: Sentiment
shifters (Polanyi and Zaenen, 2004) reverse the
polarity of sentiment words, and may belong to
various parts of speech, e.g. “not successful+”,
“prevented success+”, and “lack of success+”. We
manually composed a small lexicon of about 160
sentiment shifters. The scope was defined as the k
tokens following the shifter word.9

Sentiment weighting and score computation:
Following Ding et al., sentiment term weight de-
cays based on its distance from the claim target.
We used a weight of d−0.5, where d is the distance
in tokens between the sentiment term and the tar-
get. Let p and n be the weighted sums of positive

7Determined empirically based on the training set.
8Our sentiment analyzer was found to outperform the

Stanford sentiment analyzer (Socher et al., 2013) on claims.
9We experimentally set k = 8 based on the training data.
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and negative sentiments detected in the claim, re-
spectively. The final sentiment score is then given
by p−n

p+n+1 , following Feldman et al. (2011).

7 Contrast Classification

The most challenging subtask in our model im-
plementation is determining the contrast relation
between the topic target xt, and the claim target
xc. Previous work has focused on word-level con-
trast and synonym-antonym distinction (Moham-
mad et al., 2013; Yih et al., 2012; Scheible et
al., 2013). The algorithm presented in this sec-
tion addresses complex phrases, as well as consis-
tent/contrastive semantic relations that go beyond
synonyms/antonyms.

7.1 Algorithm

Consider the targets atheism and denying the exis-
tence of God. The relation between these targets
is determined based on the contrastive relation be-
tween God and atheism, which is flipped by the
negative polarity towards God, resulting in a con-
sistent relation between the targets. We call the
pair (God, atheism) the anchor pair, defined as the
pair of core phrases that establishes the semantic
link between the targets.

The following algorithm generalizes this notion,
analogously to our claim-level model. The input
for the algorithm includes xc, xt and a relatedness
measure r(u, v) ∈ [−1,+1] over pairs of phrases
u and v. Positive/negative values of r indicate
a consistent/contrastive relation, respectively, and
the absolute value indicates confidence.

First, anchor candidates are extracted from xc
and xt, as detailed in the next subsection. The
anchor pair is selected based on the association
strength of each anchor with the debate topic do-
main, as well as the strength of the semantic re-
lation between the anchors. Term association
with the domain is given by a TF-IDF measure
w(x) = tf(x)/df(x), where tf(x) is the fre-
quency of x in articles that were identified as rele-
vant to the topic in the labeled dataset, and df(x)
is its overall frequency in Wikipedia. We choose
in (xc, xt) the anchor pair (ac, at) that maximizes
w(u)× |r(u, v)| × w(v).

The contrast score is then predicted as
p(xc, ac)× r(ac, at)× p(xt, at), where p(u, v) ∈
[−1,+1] is the polarity towards v in u. Negative
polarity is determined by the presence of words
such as limit, ban, restrict, deny etc. We manu-

ally developed a small lexicon of stance flipping
words, which largely overlaps with our sentiment
shifters lexicon. We employ several relatedness
measures, described in the next subsection, and
the contrast scores obtained for these measures are
used as features in the contrast classifier, imple-
mented as a random forest classifier.

The above approach can be extended to find
the top-K anchor pairs for complex targets. We
use K = 3 in our experiments. When consider-
ing additional anchor pairs beyond the top-ranked
pair (ac, at), we multiply the above contrast score
by sgn(r(bc, bt)) for each such additional pair
(bc, bt). Thus, these pairs may affect the sign of
the contrast score but not its magnitude. Anchor
pair assignment is computed using the Hungarian
Method (Kuhn, 1955).

7.2 Contrast Relations

We initially implemented the following known re-
latedness measures: (i) morphological similarity,
(ii) cosine similarity using word2vec embeddings
(Mikolov et al., 2013), (iii) reachability in Word-
Net via synonym-antonym chains (Harabagiu et
al., 2006) and (iv) thesaurus-based synonym-
antonym relations using polarity-inducing LSA
(Yih et al., 2012). Note that the measures (i) and
(ii) above take values only in [0, 1], and thus are in-
dicative of similarity but not of contrast. All these
measures suffer from two limitations: (a) They
only operate at the token level, while our anchors
are often phrases (b) Their coverage on our data is
insufficient, in particular for contrastive anchors.

We developed a novel relatedness measure that
addresses these limitations, and is used in con-
junction with the other measures. Our method is
based on co-occurrence of the anchor pair with
consistent and contrastive cue-phrases. For exam-
ple, “vs”, “or” and “against” are contrastive cue
phrases, while “and”, “like” and “same as” are
consistent cue phrases. We compiled a list of 25
cue phrases.

The anchors are matched in a corpus we com-
posed from the union of two complementary
sources, which were found particularly effective
for this task:

Query logs: We obtained 2.2 billion queries
(450 million distinct queries) from the Blekko®
search engine. With over a million distinct queries
containing the words vs, vs., or versus, it is an
abundant resource for detecting contrast. Some
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examples are: “God or atheism”, “political cor-
rectness vs freedom of speech”, “free trade vs pro-
tectionism” and “advertising and marketing”.

Wikipedia headers: We considered article
titles, and section and subsection headers in
Wikipedia (3 million in total). For example, “Mil-
itary intervention vs diplomatic solution”.

Compared to full sentences, both queries and
headers are short, concise texts, and therefore
are less likely to suffer from contextual errors
(in which the context alters the meaning of the
matched pattern).

The score returned by our method is cal-
culated as follows. Let Lex+ and Lex− be
the lexicons of consistent and contrastive cue
phrases, respectively. Let Freq(u, v) be the num-
ber of documents (queries or headers), which
contain u and v separated by at most 3 to-
kens, and Freq(u, Lex+, v) is the size of the
subset of these documents, which also con-
tain a consistent cue phrase between u and v.
We then define the probability P (Lex+|u, v) as
Freq(u,Lex+,v)

Freq(u,v) . P (Lex−|u, v) is defined anal-
ogously for the contrastive lexicon. The re-
turned score is P (Lex+|u, v) if P (Lex+|u, v) >
P (Lex−|u, v), and −P (Lex−|u, v) otherwise.
We also experimented with other scoring methods,
based on pointwise mutual information between
the concurrences of the the pair (u,v) and the lex-
icon cue phrase, as well as statistical significance
tests for their co-occurrence. However, the above
method was found to perform best on our data.

Generating anchor candidates: Candidate
anchors for measures (i)-(iv) are all single to-
kens. For our method, we additionally consid-
ered phrases as anchors. Candidates were gener-
ated from diverse sources, including the output of
the ESG syntactic parser (McCord, 1990; McCord
et al., 2012), the TagMe Wikifier (Ferragina and
Scaiella, 2010), named entities recognized with
the Stanford NER (Finkel et al., 2005) and multi-
word expressions in WordNet. Candidates sub-
sumed by larger candidates were discarded. Fol-
lowing Levy et al. (2015), we kept only domi-
nant terms with respect to the topic, by applying a
statistical significance test (Hyper-geometric test
with Bonferroni correction).

Overall, our method detects many consistent
and contrastive pairs missed by previous methods.

7.3 Classification Output

The contrast classifier outputs a score in the [0, 1]
interval indicating the likelihood of xt and xc be-
ing consistent. We found that while it still can-
not predict reliably contrastive targets, this consis-
tency confidence score performs well on ranking
the targets according to their likelihood of being
consistent. We therefore use this score to re-rank
our predictions, so that claims that are likely to
have consistent targets would rank higher.

8 Evaluation

8.1 Experimental Setup

We evaluated the overall performance of the sys-
tem, as well as the performance of individual com-
ponents. The dataset was randomly split into a
training set, comprising 25 topics (1,039 claims),
and a test set, comprising 30 topics (1,355 claims).
The training set was used to train the target identi-
fication classifier and the contrast classifier in our
system, as well as the baselines described below.

We explore the trade-off between presenting
high-accuracy predictions to the user, and mak-
ing predictions for a large portion of the claims.
This tradeoff is controlled by setting a threshold
on the prediction confidence, and discarding pre-
dictions below that threshold. Let #claims be
the total number of claims. Given some thresh-
old α, we define #predicted(α) as the number
of corresponding predictions, and #correct(α)
as the number of correct predictions. We
then define: coverage(α) = #predicted(α)

#claims , and

accuracy(α) = #correct(α)
#predicted(α) .

We consider the macro averaged accuracy(α)
and coverage(α) over the test topics. Our evalu-
ation focuses on the following question: suppose
that we require a minimum coverage level, what is
the highest accuracy we can obtain? The result is
determined by an exhaustive search over threshold
values. This assessment was performed for vary-
ing coverage levels.

The following configurations were evaluated.
The first two configurations represent known
strong baselines in stance classification (cf. Sec-
tion 2).

Unigrams SVM: SVM with unigram features.
The SVM classifier gets the claim as an input, and
aims to predict the claim sentiment sc. Assuming
consistent targets (R(xc, xt) = 1), stance is then
predicted as sc × st, where st is the given topic
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Accuracy@Coverage
Configuration 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Baselines

Unigrams SVM 0.688 0.688 0.659 0.612 0.587 0.563 0.560 0.554 0.554 0.547
Unigrams+Sentiment SVM 0.717 0.717 0.717 0.709 0.693 0.691 0.687 0.668 0.655 0.632

Our System
Sentiment Score 0.752 0.720 0.720 0.720 0.720 0.720 0.636 0.636 0.636 0.636

+Targeted Sentiment 0.770 0.770 0.770 0.749 0.734 0.734 0.706 0.632 0.632 0.632
+Contrast Detection 0.849 0.847 0.836 0.793 0.767 0.740 0.704 0.632 0.632 0.632
Our System+Unigrams SVM 0.784 0.758 0.749 0.743 0.730 0.711 0.682 0.671 0.658 0.645

Table 3: Stance classification results. Majority baseline accuracy: 51.9%
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Figure 1: Performance of Sub-Components

sentiment.
Unigrams+Sentiment SVM: The unigram

SVM with additional sentiment features. We em-
ployed here a simplified version of the sentiment
analyzer (cf. Section 6.2), in which target identi-
fication is not performed, and sentiment terms are
weighted uniformly. The following three features
were used: the sums of positive and negative sen-
timents (p and n), and the final sentiment score.

The next three configurations are incremental
implementations of our system. For each configu-
ration, only the difference from the previous con-
figuration is specified.

Sentiment Score: Predicts sc as the sentiment
score of the simplified sentiment analyzer. Stance
is predicted as sc × st, similar to the SVM base-
lines.

+Targeted Sentiment: Employs the targeted
sentiment analyzer described in Section 6.2.

+Contrast Detection: Full implementation of
our model. Stance score is further multiplied by
the output of the contrast classifier,R(xc, xt), pre-
dicted for the extracted claim target xc and the
topic target xt. As discussed in the previous sec-
tion, this aims to rank higher claims with consis-
tent targets.

Lastly, we tested a combination of our system
with the unigrams SVM baseline.

Our System+Unigrams SVM: Adding the tar-
geted sentiment score as a feature to the unigrams
SVM. The SVM output is multiplied by the con-
trast classifier score.

For each configuration, if the classifier outputs
zero10, we predict the majority class in the train
set with a constant, very low confidence.

8.2 Results, Analysis and Discussion

The results are shown in Table 3. Comparing the
two baselines highlights the importance of sen-
timent in our open-domain setting, in which no
topic-specific training data is available.

Using only the simple sentiment score outper-
forms the baselines for coverage rates ≤ 0.6. For
higher coverage rates the performance drops from
72% to 63.6%. This happens since the senti-
ment analyzer makes predictions for 69.4% of the
claims, and the remaining claims are given the ma-
jority class with a fixed low confidence, as de-
scribed above. For coverage rates ≥ 0.7, these
claims are added together (since they all match
the same threshold), and thus accuracy is actually
computed over the whole test set.

Targeted sentiment analysis improves over the
non-weighted Sentiment Score baseline. It makes
predictions for 77.4% of the claims11, and simi-
lar to the previous configuration, accuracy drops
accordingly from 70.6% to 63.2% for higher cov-
erage rates (≥ 0.8).

Re-ranking based on target consistency confi-

10This can happen, for example, if the sentiment analyzer
does not match any sentiment term in the claim.

11Coverage is improved since sentiment weighting breaks
ties between positive and negative sentiments, which result in
zero predictions of the simple analyzer.
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dence substantially improves accuracy for lower
coverage rates (≤ 0.6). For instance, the classifier
achieves accuracy of 79.3% over 40% the claims,
and 83.6% for 30% of the claims.

Finally, combining our system with the uni-
grams SVM allows the classifier to make predic-
tions for claims that are not covered by the targeted
sentiment analyzer, and consequently this configu-
ration achieves the best accuracy for high coverage
rates (≥ 0.8). It outperforms the SVM baselines
for both low and high coverage rates.

Overall, the results confirm that our modular
approach outperforms the common practice of
monolithic classifiers for stance classification, in
particular for making high-accuracy stance predic-
tions for a large portion of the claims. Each com-
ponent was shown to contribute to the overall per-
formance.

We also assessed the performance for each sub-
task on the test set. Claim target identification
achieves accuracy of 0.752 for exact matching,
and 0.813 for relaxed matching (using the Jaccard
measure, as in Section 6.1). Figure 1 shows accu-
racy vs. coverage curves for targeted claim senti-
ment analysis and contrast detection. Both compo-
nents achieve higher accuracy for lower coverage
rates, illustrating the effectiveness of their confi-
dence score. As mentioned above, the sentiment
analyzer makes a prediction for nearly 80% of the
claims, and is shown to perform well. The con-
trast classifier, while not outperforming the major-
ity baseline over the whole dataset, achieves ac-
curacy that is much higher than the baseline for
lower coverage rates.

9 Conclusion

This work is the first to address claim stance clas-
sification with respect to a given topic. We pro-
posed a model that breaks down this complex task
into simpler, well defined subtasks. Extensive data
annotation and analysis has confirmed the appli-
cability and accuracy of this reduction. The an-
notated dataset, which we plan to share with the
community, is another contribution of this work.

The work also presented a concrete implemen-
tation of our model, using the collected labeled
data to train each component, and demonstrated
its effectiveness empirically. We plan to improve
each of these components in future work.
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Abstract

This paper provides a linguistic and prag-
matic analysis of the phenomenon of irony
in order to represent how Twitter’s users
exploit irony devices within their commu-
nication strategies for generating textual
contents. We aim to measure the impact
of a wide-range of pragmatic phenomena
in the interpretation of irony, and to inves-
tigate how these phenomena interact with
contexts local to the tweet. Informed by
linguistic theories, we propose for the first
time a multi-layered annotation schema
for irony and its application to a corpus of
French, English and Italian tweets.We de-
tail each layer, explore their interactions,
and discuss our results according to a qual-
itative and quantitative perspective.

1 Introduction

Irony is a complex linguistic phenomenon widely
studied in philosophy and linguistics (Grice et
al., 1975; Sperber and Wilson, 1981; Utsumi,
1996). Glossing over differences across ap-
proaches, irony can be defined as an incongruity
between the literal meaning of an utterance and
its intended meaning. For many researchers, irony
overlaps with a variety of other figurative devices
such as satire, parody, and sarcasm (Clark and
Gerrig, 1984; Gibbs, 2000). In this paper, we use
irony as an umbrella term that includes sarcasm,
although some researchers make a distinction be-
tween them, considering that sarcasm tends to be
more aggressive (Lee and Katz, 1998; Clift, 1999).

Different categories of irony have been studied
in the linguistic literature such as hyperbole, exag-
geration, repetition or change of register (see sec-
tion 3 for a detailed description). These categories
were mainly identified in literary texts (books, po-

ems, etc.), and as far as we know, no one explored
them in the context of social media. The goal of
the paper is thus four folds: (1) analyse if these
categories are also valid in social media contents,
focusing on tweets which are short messages (140
characters) where the context may not be explic-
itly represented; (2) examine whether these cate-
gories are linguistically marked; (3) test if there
is a correlation between the categories and mark-
ers; and finally (4) see if different languages have
a preference for different categories.

This analysis can be exploited in a purpose
of automatic irony detection, which is progres-
sively gaining relevance within sentiment analy-
sis (Maynard and Greenwood, 2014; Ghosh et al.,
2015). In particular, it will bring out the most
discriminant pragmatic features that need to be
taken into account for an accurate irony detection,
therefore helping systems improve beyond stan-
dard approaches that still heavily rely on features
gleaned from the utterance-internal context (Davi-
dov et al., 2010; Gonzalez-Ibanez et al., 2011;
Liebrecht et al., 2013; Buschmeier et al., 2014;
Hernández Farı́as et al., 2016).

To this end, informed by well-established lin-
guistic theories of irony, we propose for the first
time:

• A multi-layered annotation schema in order
to measure the impact of a wide-range of
pragmatic phenomena in the interpretation of
irony, and to investigate how these phenom-
ena interact with context local to the tweet.
The schema includes three layers: (1) irony
activation types according to a new perspec-
tive of how irony activation happens– explicit
vs. implicit, (2) irony categories as defined
in previous linguistic studies, and (3) irony
markers.

• A multilingual corpus annotated according
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to this schema. As the expression of irony
is very dependent on culture, we chose,
for this first study, three Indo-European
languages whose speakers share quite the
same cultural background: French, En-
glish and Italian. The corpus is freely
available for research purposes and can be
downloaded here http://github.com/
IronyAndTweets/.

• A qualitative and quantitative study, focus-
ing in particular on the interactions between
irony activation types and markers, irony cat-
egories and markers, and the impact of exter-
nal knowledge on irony detection. Our results
demonstrate that implicit activation of irony
is a major challenge for future systems.

The paper is organised as follows. We first
present our data. Sections 3 and 4 respectively de-
tail the annotation scheme and the annotation pro-
cedure. Section 5 discusses the reliability study
whereas Section 6 the quantitative results. In Sec-
tion 7, we compare our scheme to already existing
schemes for irony stressing the originality of our
approach and the importance of the reported re-
sults for automatic irony detection. Finally we end
the paper by showing how the annotated corpora
are actually exploited in automatic irony detection
shared tasks.

2 Data

The datasets used in this study are tweets about
hot topics discussed in the media. Our intuition
behind choosing such topics is that the pragmatic
context needed to infer irony is more likely to be
understood by annotators compared to tweets that
relate personal content. We relied on three corpora
in French, English and Italian, referred to as F, E
and I respectively. Table 1 shows the distribution
of ironic vs. non ironic tweets in the data.

Corpus Ironic Not Ironic

F 2,073 16,179
E 5,173 6,116
I 806 (Sentipolc) 5,642

+ 2,273 (TW-SPINO) (Sentipolc)

Table 1: Distribution of tweets in each corpus.

The selection of ironic vs non-ironic tweets has
been based on partly different criteria for the three

addressed languages in order to tackle their fea-
tures.
In English and French, users employ specific hash-
tags (#irony, #sarcasm, #sarcastic) to mark their
intention to be ironic. These hashtags have been
often used as gold labels to detect irony in a su-
pervised learning setting. Although this approach
cannot be generalized well since not all ironic
tweets contain hashtags, it has however shown to
be quite reliable as good inter-annotator agree-
ments (kappa around 0.75) between annotators’
irony label and the reference irony hashtags have
been reported (Karoui et al., 2015). Nevertheless,
irony corpus construction through hashtag filter-
ing is not always possible for all languages. For
instance, both in Czech and Italian, Twitter users
generally do not use the sarcasm (i.e. ‘#sarkas-
mus’, in Czech; ‘#sarcasmo’ in Italian) or irony
(‘#ironie’ in Czech or ‘#ironia’ in Italian) hashtag
variants to mark their intention to be ironic, thus in
such cases relying on simple self-tagging for col-
lecting ironic samples is not an option (Ptáček et
al., 2014; Bosco et al., 2013). Similar consider-
ations hold for Chinese (Tang and Chen, 2014).
For what concerns Italian, we observe that even if
occasionally Italian tweeters do use creative hash-
tags to explicitly mark the presence of irony, no
generic shared hashtags have been used for long-
time which can be considered as firmly established
indicators of irony like those used for English.

The corpora built for English and French are
new datasets built using the Twitter API as
follows. We first selected 9 topics (politics,
sport, artists, locations, Arab Spring, environ-
ment, racism, health, social media) discussed in
the French media from Spring 2014 until Autumn
2015 and in the American media from Spring 2014
until Spring 2016. For each topic, we selected a
set of keywords with and without hashtag: politics
(e.g. Hollande, Obama), sport (e.g. #Zlatan, #FI-
FAworldcup), etc. Then, we selected ironic tweets
containing the topic keywords and the French (En-
glish) ironic hashtags. Finally, we selected non
ironic tweets that contained only the topic key-
words without the ironic hashtag. We removed
duplicates, retweets and tweets containing pictures
which would need to be interpreted to understand
the ironic content. For English, since we were in-
terested in ironic tweets for our annotation pur-
pose, we stopped collecting messages when the
number of ironic tweets was sufficient; this ex-
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plains the fact that classes of Ironic and Not Ironic
tweets in the English dataset are pretty balanced,
i.e. the amount of ironic tweets is not very low
compared with the amount of not ironic ones.

Italian data are instead extracted from two ex-
isting annotated data: the Sentipolc corpus, re-
leasead for the shared task on sentiment analy-
sis and irony detection in Twitter at Evalita 2014
(Basile et al., 2014), and TW-SPINO which ex-
tends the Spinoza section of the Senti-TUT corpus
(Bosco et al., 2013). The Sentipolc dataset is a
collection of Italian tweets derived from two ex-
isting corpora Senti-TUT and TWITA (Basile and
Nissim, 2013). It includes Twitter data exploiting
specific keywords and hashtags marking political
topics. In Sentipolc, each tweet has an annotation
label among five mutually exclusive labels: posi-
tive opinion, negative opinion, irony, both positive
and negative, and objective. TW-SPINO instead
is from the Twitter section of Spinoza1, a popu-
lar collective Italian blog that publishes posts with
sharp satire on politics. Since there is a collec-
tive agreement about the fact that these posts in-
clude irony mostly about politics, they represent
a natural way to extend the sampling of ironic
expressions. Moreover, while Sentipolc collects
tweets spontaneously posted by Italian Twitter
users, Spinoza’s posts are selected and revised by
an editorial staff, which explicitly characterize the
blog as satiric. Such difference will possibly have
a reflection on the types and variety of irony we
detect in the tweets.

3 A multi-layered annotation schema for
irony in social media

To define our annotation schema, we analyzed the
different categories of irony studied in the linguis-
tic literature. Several categories have been pro-
posed, as shown in the first column of Table 2.
Since all these categories have been found in a
specific genre (literary texts), the first step was
to check their presence on a small subset of 150
ironic tweets from our corpus. Three observations
resulted from this first step, regarding irony acti-
vation, irony categories, and irony markers.

3.1 Irony activation

We observed that incongruity in ironic tweets of-
ten consists of at least two propositions (or words)
P1 and P2 which are in contradiction to each other

1http://www.spinoza.it/

(i.e. P2 = Contradiction(P1)). It is the pres-
ence of this contradiction that activates irony. This
contradiction can be at a semantic, veracity or in-
tention level. P1 and P2 can be both part of the
internal context of an utterance (that is explicitly
lexicalized), or one is present and the other one
implied. We thus defined two types of irony acti-
vation: EXPLICIT and IMPLICIT.

In EXPLICIT activation, one needs to rely exclu-
sively on the lexical clues internal to the utterance,
like in (1) where there is a contrast between P1

that contains no opinion word, and P2 which refers
to a situation which is commonly judged as being
negative, but in a communicative context which is
clearly unsuitable w.r.t. to the one expressed in P1.

(1) L’Italia [attende spiegazioni]P1 da cosı̀
tanti paesi che comincio a pensare che le nostre
richieste [finiscano nello spam]P2.
(Italy is [waiting for explanations]P1 from so
many countries that I suspect our requests are
being [labeled as spam]P2.)

Example (2) shows another example of explicit
semantic contradiction between P1 and P2.

(2) Ben non ! [Matraquer et crever des yeux]P1,
[ce n’est pas violent et ça respecte les droits]P2 !!!
#ironie
(Well, no ! [Clubbing and putting up eyes]P1,
[it is not violent and it does respect human
rights]P2 !!! #irony)

On the other hand, IMPLICIT activation arises
from a contradiction between a lexicalized propo-
sition P1 describing an event or state and a prag-
matic context P2 external to the utterance in which
P1 is false, not likely to happen or contrary to
the writer’s intention. The irony occurs because
the writer believes that his audience can detect the
disparity between P1 and P2 on the basis of con-
textual knowledge or common background shared
with the writer. For example, in (3), the negated
fact in P1 helps to recognize that the tweet is
ironic.

(3) La #NSA a mis sur écoutes un pays entier.
Pas d’inquiètude pour la #Belgique: [ce n’est pas
un pays entier.]P1 #ironie
(The #NSA wiretapped a whole country. No wor-
ries for #Belgium: [it is not a whole country.]P1

#irony)
−→ P2: Belgium is a country.
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State of the art irony categories Our categories Usage
Metaphor (Ritchie, 2005; Burgers,
2010)

AnalogyBoth:
Metaphor and
Comparison

Covers analogy, simile, and metaphor. Involves similarity
between two things that have different ontological concepts
or domains, on which a comparison may be based

Hyperbole (Berntsen and Kennedy,
1996; Mercier-Leca, 2003; Didio,
2007)

Hyperbole/
ExaggerationBoth

Make a strong impression or emphasize a point

Exaggeration (Didio, 2007)
Euphemism (Muecke, 1978; Seto,
1998)

EuphemismBoth Reduce the facts of an expression or an idea considered un-
pleasant in order to soften the reality

Rhetorical question (Barbe, 1995;
Berntsen and Kennedy, 1996)

Rhetorical
questionBoth

Ask a question in order to make a point rather than to elicit
an answer (P1: asking a question to have an answer, P2: no
intention to have an answer because it is already known)

Context shift (Haiman, 2001; Leech,
2016)

Context ShiftExp A sudden change of the topic/frame, use of exaggerated po-
liteness in a situation where this is inappropriate, etc.

False logic or misunderstanding (Didio,
2007)

False assertionImp A proposition, fact or an assertion fails to make sense
against the reality

Oxymoron (Gibbs, 1994; Mercier-Leca,
2003)

Oxymoron/
paradoxExp

Equivalent to “False assertion” except that the contradiction
is explicit

Paradox (Tayot, 1984; Barbe, 1995)
Situational irony (Shelley, 2001;
Niogret, 2004)

OtherBoth Humor or situational irony (irony where the incongruity is
not due to the use of words but to a non intentional contra-
diction between two facts or events)

Surprise effect, repetition, quotation
marks, emoticons, exclamation, capi-
tal letter, crossed-out text, special signs
(Haiman, 2001; Burgers, 2010)

Markers Words, expressions or symbols used to make a statement
ironic

Table 2: Irony categories in our annotation schema.

Note that inferring irony in both types of acti-
vation requires some pragmatic knowledge. How-
ever, in case of IMPLICIT, the activation of irony
happens only if the reader knows the context. To
help annotators identify irony activation type, we
apply the following rule: ifP1 andP2 can be found
in the tweet, then EXPLICIT, otherwise IMPLICIT.

3.2 Irony categories

Both explicit and implicit activation types can be
expressed in different ways which we call irony
categories. After a thorough inspection of how
categories have been defined in linguistic litera-
ture, some of them were grouped, like hyperbole
and exaggeration, as we observed that it is very
difficult to distinguish them in short messages. We
also discarded others, since we considered them as
markers rather than irony categories (see the last
row in Table 2). We finally retain eight categories,
as shown in Table 2: Five are more likely to be
found in both types of activation (marked Both)
while three may occur exclusively in a specific
type (marked Exp for explicit or Imp for implicit).

Categories are not mutually exclusive. Example
(5) shows a case of implicit irony activation where
the user uses a false assertion P1 and two rhetori-
cal questions.

(5) @infos140 @mediapart Serge Dassault ?

Corruption ? Non ! Il doit y avoir une erreur.
[C’est l’image même de la probité en politique]P1

#ironie.
(@infos140 @mediapart Serge Dassault? Cor-
ruption? No ! There must be an error. [He is
the perfect image of probity in politics]P1 #irony)
−→ P2: Serge Dassault is involved and has been
sentenced in many court cases.

3.3 Irony markers

As shown in Table 2, linguistic literature consid-
ers other forms of irony categories, such as sur-
prise effect, repetition, etc. Having a computa-
tional perspective in mind, we preferred to clearly
distinguish between categories of irony which are
pragmatic devices of irony as defined in the pre-
vious section, and irony markers which are a set
of tokens (words, symbols, propositions) that may
activate irony on the basis of the linguistic content
of the tweet only. This distinction is also moti-
vated by the fact that markers can either be present
in distinct irony categories, not present at all, or
present in non ironic tweets as well.

Eighteen markers have been selected for our
study. Some of them have shown their effective-
ness when used as surface features in irony de-
tection such as punctuation marks, capital letters,
reporting speech verbs, emoticons, interjections,
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negations, opinion and emotion words (Davidov
et al., 2010; Gonzalez-Ibanez et al., 2011; Reyes
et al., 2013; Karoui et al., 2015). We investigate
in addition novel markers (cf. Table 5): discourse
connectives as they usually mark oppositions, ar-
gumentation chains and consequences; named en-
tities and personal pronouns, as we assume they
can be an indicator of the topic discussed in the
tweet (media topic vs. a more personal tweet);
URLs as they give contextual information that
may help the reader to detect irony; and finally
false propositions. These last four markers might
be good features for an automatic detection of im-
plicit irony, for example by detecting that an exter-
nal context is needed. For example, in (2) mark-
ers are negations (no, not), punctuation (!, !!!),
opinion word (violent) whereas in (3) markers are
named entities (NSA, Belgium), negation (no, not)
and false proposition (it is not a whole country).

4 Annotation procedure

For each tweet t, the annotation works as follows2:

(a) Classify t into Ironic/Not ironic. In case an-
notators do not understand the tweet because
of cultural references or lack of background
knowledge, t can be classified into the No de-
cision class. Note that this third class con-
cerns only French and English corpora since
the Italian corpus already has annotations for
irony (cf. Section 2).

(b) If t is ironic, define its activation type: Can
P1 and P2 be found in the tweet? If yes then
explicit, otherwise implicit. Then specify the
pragmatic devices used to express irony by
selecting one or several categories.

(c) Identify text spans within the tweet that cor-
respond to a pre-defined list of linguistic
markers. Markers are annotated whatever the
class of t. This is very important for analyz-
ing the correlation between ironic (vs. non
ironic) readings and the presence (vs. ab-
sence) of these markers.

Linguistic markers were automatically identified
relying on dedicated resources for each language
(opinion and emotion lexicons, intensifiers, inter-
jections, syntactic parsers for named entities, etc.).

2The annotation manual is available at: github.com/
IronyAndTweets/Scheme

In case of missing markers or erroneous annota-
tions, automatic annotations were manually cor-
rected. Also, to ensure that the annotations were
consistent with the instructions given in the man-
ual, common errors are automatically detected:
ironic tweets without activation type or irony cat-
egory, absence of markers, etc. Annotators were
asked to correct their errors before continuing to
annotate new tweets.

In order to evaluate the stability of the schema
regarding language variations, we considered first
the French set with a total of 2,000 tweets. Such
tweets have been randomly selected from the ones
collected as described in Section 2. In order to be
sure to have a significant amount of ironic sam-
ples, 80% of the total tweets to be manually anno-
tated were selected from the ironic set (i.e. tweets
explicitly marked with hashtags like #ironie and
#sarcasme)3. Three French native speakers were
involved. The annotation of the French corpus
followed a three-step procedure where an interme-
diate analysis of agreement and disagreement be-
tween the annotators was carried out. Annotators
were first trained on 100 tweets, then were asked
to annotate separately 300 tweets (this step allows
to compute inter-annotator agreements, cf. next
section), to finally annotate 1,700 tweets. In the
last step, a revised version of the schema was pro-
vided. The adjudicated annotations performed in
the second step are part of the corpus.

Then we annotated the English and Italian sets
in two steps. First, a training phase (100 tweets
each) and then the effective annotation, with re-
spectively 550 and 500 tweets. Four native speak-
ers were involved: two for English and two for
Italian. All annotators are skilled in linguistics, re-
searchers and PhD students in computational lin-
guistics.

5 Qualitative results

We report on the reliability of the annotation
schema on the French data. Among 300 tweets,
annotators agreed on 255 tweets (174 ironic and
63 not ironic), among which 18 have been classi-
fied as No decision. We get a Cohen’s Kappa of
0.69 for Ironic/Not ironic classification which is a

3Notice that at this stage such hashtags have been re-
moved, and manual annotation have been applied to 2,000
tweets for all the layers foreseen by our schema. In this way,
the reliability of self-tagging has been confirmed, and it was
possible to identify the presence of irony also in tweets where
it was not explicitly marked by hashtags.
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very good score. When compared to gold standard
labels, we also obtained a good Kappa measure
(0.62), which shows that French irony hashtags are
quite reliable. We also noticed that more than 90%
of the tweets annotated as No decision due to the
lack of external context, are in fact ironic accord-
ing to gold labels. We however decided to keep
them for the experiments.

For EXPLICIT vs. IMPLICIT, agreement on ac-
tivation type knowing the tweet ironic obtained a
Kappa of 0.65. It was interesting to note that im-
plicit activation is the majority (76.42%). We ob-
served the same tendency in the other languages
too (cf. next section). This is an important re-
sult that shows that annotators are able to iden-
tify which are the textual spans that activate the
incongruity in ironic tweets, whether explicit or
implicit, and we expect automatic systems to do
as good as humans, at best.

Finally, for irony category identification, since
the same ironic tweet can belong to several irony
categories, we computed agreements by count-
ing, for each tweet, the number of common cat-
egories and then dividing by the total number of
annotated categories. We obtained 0.56 which
is moderate. This score reflects the complexity
of the identification of pragmatic devices. When
similar devices are grouped together (mainly hy-
perbole/exaggeration and euphemism, as they are
used to make the intended meaning either stronger
or weaker), the score increases to 0.60.

6 Quantitative results

The main aim of our corpus-based study is to ver-
ify if the different linguistic theories and defini-
tions made on irony can be applied to social media,
especially to tweets, and to study its portability to
several languages. Besides standard frequencies,
we provide the correlations between irony activa-
tion types and markers and between categories and
markers in order to bring out features that could be
used in a perspective of automatic irony detection.
In each corpus, all the frequencies presented here
are statistically significant from what would be ex-
pected by chance using the χ2 test (p < 0.05).

Table 3 gives the total number of annotated
tweets and the activation type for ironic tweets.
We observe that most irony activation types in the
French and English corpora are implicit with re-
spectively 73.01% and 66.28% while in the Italian
corpus, explicit activation is the majority. Notice

that the fact the analysis of the Italian dataset re-
sults in a different tendency on this respect can be
possibly related to the absence of user-genereted
ironic hashtags, while user explicitlty mark the in-
tention to be ironic (see Section 2).

Ironic Non Ironic No decision Total
explicit implicit

F 394 1066 380 160 2000
E 144 283 99 24 550
I 260 140 100 – 500

Table 3: Number of tweets in annotated corpora in
French (F), English (E) and Italian (I).

Table 4 gives the percentage of tweets belong-
ing to each category of irony split according to
explicit vs. implicit activation, when applicable.
Higher frequencies are in bold font. We note
that oxymoron/paradox is the most frequent cat-
egory for explicit irony in French, English and
Italian. Concerning implicit irony, false asser-
tion and other are the most frequent categories in
French and English (other is the most frequent one
in English because a majority of implicit ironic
tweets use situational irony, e.g. Libertarian Ron
Paul condemns Bill Clinton for taking advantage
of 20y/o but would not support any law to protect
her. #Monica). In Italian, false assertion, anal-
ogy and other are the most frequent categories. As
classes are not mutually exclusive, there are 64/38
tweets (resp. in French and English) that belong
to more than one category for explicit contradic-
tion. The most frequent combinations are oxy-
moron/rhetorical question and oxymoron/other for
both English and French; oxymoron/hyperbole for
French and oxymoron/analogy for English. Con-
cerning implicit activation, there are 134/62 tweets
(resp. in French and English) that belong to more
than one category. The most frequent combi-
nations are false assertion/other and false asser-
tion/hyperbole for both English and French; and
analogy/other for English4.

Table 5 provides the percentage of tweets con-
taining markers for ironic (explicit or implicit) and
non ironic tweets (row in gray). In French, in-
tensifiers, punctuation marks and interjections are
more frequent in ironic tweets whereas quotations
are more frequent in non ironic tweets. In En-
glish, discourse connectors, quotations, compari-
son words and reporting speech verbs are twice as

4For what concerns Italian, at the current stage, only the
category considered prevalent for implicit/explicit irony acti-
vation was annotated .
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Analogy Context Euphemism Hyperbole Rhetorical Oxymoron False Other
shift question assertion

F E I F E I F E I F E I F E I F E I F E I F E I

Ex 12 17 21 1 6 19 1 1 5 8 2 9 10 15 10 66 81 28 - - - 21 6 7
Im 2 13 26 - - - 1 1 4 10 7 5 14 1 12 - - - 56 20 34 32 65 19

Table 4: Categories in explicit (Ex) or implicit (Im) activation in French, English and Italian (in %).

frequent in ironic tweets as in non ironic tweets
whereas is it the opposite for personal pronouns.
Note that there is no English ironic tweet contain-
ing URL since they were all annotated as no deci-
sion because of a lack of knowledge from the an-
notators who did not understand the tweet and the
Web page pointed by the URL. In Italian, most of
markers are more frequent in ironic tweets, while
some, like quotations and URL, are more frequent
in non ironic tweets5.

Our study of negation as an irony marker ac-
tually considers negation words like no and not as
well as periphrastic forms of negation such as ne ...
pas in French. We however excluded lexical nega-
tions such as unreliable, unhappy, etc. We will fur-
ther refine our analysis by considering more words
that introduce negation. Also, regarding personal
pronouns, they are more common in French and
English than in Italian. Italian being a pro-drop
language can in part motivate the difference de-
tected with respect to pronouns.

Then, we investigated the correlation between
irony markers and irony activation types (resp. be-
tween irony markers and irony categories). Our
aim is to analyze to what extent these markers
can be indicators for irony prediction. Using the
Cramer’s V test (Cohen, 1988) on the number
of occurrences of each marker, we found a sta-
tistically significant (p < 0.05) large correlation
between markers and ironic/not ironic class for
French (V = 0.156, df = 14) and Italian (V =
0.31, df = 6); between medium and large for En-
glish (V = 0.132, df = 9). We also found a large
correlation between markers and irony activation
types for French (V = 0.196, df = 16), between
medium and large for Italian (V = 0.138, df = 5)
and medium for English (V = 0.083, df = 12).6

We also analyzed the correlations per marker
(df=1). The markers which are the most corre-

5For Italian, only values for markers automatically iden-
tified reliably, without need of manual correction, are re-
ported (e.g. emoticons, negations). Values for other markers
are currently missing since they require a manual check, for
instance the case of capital letters, because of the presence in
the Italian corpus where all the letters are capital.

6For both settings, frequencies < 5 were removed.

lated to ironic/non ironic class are: negations, in-
terjections, named entities and URL for French
(0.140 < V < 0.410); negations, discourse
connectors and personal pronouns for English
(0.120 < V < 0.170); and quotations, named en-
tities and URL for Italian (0.310 < V < 0.416).
The markers which are the most correlated to ex-
plicit/implicit activation are: opposition markers,
comparison words and false assertion for French
(0.140 < V < 0.190); opposition markers and
discourse connectors for English (0.110 < V <
0.120); and discourse connectors, punctuation and
named entities for Italian (0.136 < V < 0.213).
Note that even if opinion words are very frequent
in ironic tweets, they are however not correlated
with either irony/non irony classification or ex-
plicit/implicit activation (V < 0.06), as many non
ironic tweets also contain sentiment words.

Finally, when analyzing which markers are cor-
related to irony categories, the more discriminant
markers are: intensifiers, punctuation, false asser-
tion and opinion words for French (large Cramer’s
V); negations, discourse connectors and personal
pronouns for English (medium Cramer’s V); and
punctuation, interjections and named entities for
Italian (medium Cramer’s V).

7 Related work

Most state of the art approaches rely on auto-
matically built social media data collections to
detect irony using a variety of features gleaned
from the utterance-internal context going from n-
gram models, stylistic, to dictionary-based fea-
tures (Burfoot and Baldwin, 2009; Davidov et al.,
2010; Tsur et al., 2010; Gonzalez-Ibanez et al.,
2011; Liebrecht et al., 2013; Joshi et al., 2015;
Hernández Farı́as et al., 2015). In addition to the
above more lexical features, many authors point
out the contribution of pragmatic features, such as
the use of common vs. rare words or synonyms
(Barbieri and Saggion, 2014). Recent work ex-
plores other kinds of contextual information like
author profiles, conversational threads, or query-
ing external sources of information (Bamman and
Smith, 2015; Wallace et al., 2015; Karoui et al.,
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Emoticon Negation Discourse Humour #* Intensifier Punctuation False prop.* Surprise Modality Quotation
F E I F E I F E I F E I F E I F E I F E I F E I F E I F E I

Ex 7 2 1 37 58 15 6 41 29 2 14 - 22 9 2 51 30 14 8 0 - 3 0 - 0 2 3 6 21 3
Im 6 4 7 34 61 9 4 29 16 4 15 - 19 12 0 51 28 5 54 18 - 3 3 - 0 2 6 6 21 6
NI 5 10 0 58 75 9 4 13 18 0 0 - 11 9 0 28 30 17 0 0 - 2 0 - 1 6 3 1 10 26

Opposition Capital Pers. pro.* Interjection Comparison* Named E.* Report verb Opinion URL*
F E I F E I F E I F E I F E I F E I F E I F E I F E I

Ex 9 18 4 3 8 - 31 21 5 14 2 11 8 8 4 97 100 65 1 17 0 48 75 - 33 0 10
Im 3 11 6 2 6 - 31 24 3 12 0 13 2 12 3 91 97 43 1 14 0 41 74 - 29 0 2
NI 4 14 4 3 3 - 30 40 1 2 2 12 4 6 1 82 88 98 3 7 1 35 68 - 42 0 44

Table 5: Markers in ironic (Exp or Imp) and non ironic (NI) tweets in French, English and Italian (in %).
Markers with an * have not been studied in irony literature.

Negation Discourse Humour #* Intensifier Punctuation False prop.* Modality Quotation
F E I F E I F E I F E I F E I F E I F E I F E I

Analogy 46 56 2 6 29 8 6 15 - 21 10 0 49 24 2 13 8 - 0 3 2 0 24 1
Context sh. 40 100 3 0 11 3 0 0 - 0 0 1 60 44 1 0 0 - 0 11 0 0 44 0
Euphemism 50 67 1 6 0 2 0 0 - 50 33 0 72 0 1 44 0 - 0 33 0 0 0 1
Hyperbole 25 42 1 5 25 2 3 8 - 57 38 0 56 21 2 53 46 - 0 0 0 8 4 0
Rhet. ques. 43 70 2 2 36 3 2 17 - 17 9 0 93 86 1 9 3 - 0 3 0 7 23 1
Oxymoron 35 59 3 4 43 6 0 14 - 21 10 1 49 26 2 11 0 - 0 2 1 5 20 0
False asser. 18 57 1 4 25 3 3 7 - 10 16 0 29 14 2 95 89 - 0 0 0 4 16 1
Other 26 62 2 5 31 3 5 18 - 15 11 0 45 20 2 11 3 - 0 2 1 8 25 1

Opposition Pers. pro.* Interjection Comparison* Named E.* Report verb Opinion URL*
F E I F E I F E I F E I F E I F E I F E I F E I

Analogy 6 11 2 38 19 2 6 0 3 43 42 3 100 100 17 2 16 0 41 68 - 13 0 1
Context sh. 0 11 1 40 33 1 20 0 2 20 6 0 80 100 8 0 22 0 60 68 - 0 0 1
Euphemism 0 0 0 22 0 0 6 0 1 0 0 0 94 100 2 0 33 0 56 67 - 22 0 1
Hyperbole 2 4 0 29 33 1 18 0 2 0 8 0 88 88 6 3 13 0 84 88 - 21 0 1
Rhet. ques. 3 15 1 31 27 0 13 2 1 2 5 0 90 97 9 1 17 0 45 73 - 25 0 1
Oxymoron 12 19 1 32 21 0 15 3 2 2 6 0 99 100 10 1 19 0 55 75 - 11 0 2
False asser. 3 4 1 31 36 1 13 0 1 2 13 1 90 93 8 1 13 0 45 79 - 25 0 0
Other 2 11 2 29 22 0 10 0 2 1 10 0 91 98 6 1 16 0 32 74 - 30 0 1

Table 6: Percentage of tweets in each ironic category containing markers in French, English and Italian.

2015).
Compared to automatic irony detection, little ef-
forts have been done on corpus-based linguistic
study of irony. Most of these efforts focus on an-
alyzing the impact of irony in feeling expressions
and emotions, by manually annotating tweets at
both sentiment polarity and irony levels. E.g.
Van Hee et al. (2016) distinguish between ironic,
possibly ironic, and non-ironic tweets in English
and Dutch. For ironic statements, polarity change
that causes irony was annotated to specify whether
the change comes from an opposition explicitly
marked by a contrast between a positive situation
and a negative one, an hyperbole, or an under-
statement. Stranisci et al. (2016) recently extend
the Italian Senti-TUT schema (cf. Section 2) to
mark the aspects of the topic being discussed in
the tweet, as well as the sentiment expressed to-
wards each aspect. Bosco et al. (2016) propose
a second extension with the annotation of French
tweets using three labels: positive irony, negative
irony, and metaphorical expression.
Current state of the art corpus-based studies are
mainly oriented to a sentiment analysis perspec-
tive on irony, focusing almost exclusively on cap-

turing tweet’s overall sentiment, explicit polarity
change, or syntactic irony patterns. We argue in
this paper that irony should instead be an object
of study by its own by proposing a more linguistic
perspective in order to provide a deeper inspection
of what are the inferential mechanisms that acti-
vate irony, either explicit or implicit, and the cor-
relations between irony types and irony markers.
As far as we know, this is the first study that inves-
tigates the portability of a wide-range of pragmatic
devices in the interpretation of irony to social me-
dia data from a multilingual perspective.

8 Exploiting the annotated corpus for
automatic irony detection

The French and Italian parts of the anno-
tated corpus have been respectively exploited
as datasets for the first irony detection shared
tasks DEFT@TALN20177 and for the SEN-
TIPOLC@Evalita shared task on irony detection8

in both 2014 and 2016 editions (Basile et al., 2014;
Barbieri et al., 2016). In particular, currently only
the first layer of the annotation scheme has been

7https://deft.limsi.fr/2017/
8http://di.unito.it/sentipolc16
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exploited aiming at detecting if a given tweet is
ironic or not. The French task is ongoing. For
what concerns Italian, in Sentipolc the irony detec-
tion task is one three related but independent sub-
tasks focusing on subjectivity, polarity and irony
detection, respectively. All tweets of the cam-
paign are, therefore, annotated by a multi-layered
annotation scheme including tags for all the three
dimensions and available on the Task’s website.
In 2016 SENTIPOLC has been the most partic-
ipated EVALITA task with a total of 57 submit-
ted runs from 13 different teams. Not surprisingly,
results of the 12 systems evaluated for irony de-
tection seem to suggest that the task appears truly
challenging. However, organizers observe that its
complexity does not depend (only) on the inner
structure of irony, but on unbalanced data distri-
bution in Sentipolc (1 out of 7 examples is ironic
in the training set, as they reflect the distribution
in a realistic scenario) and on the overall availabil-
ity of a limited amount of examples (probably not
sufficient to generalise over the structure of ironic
tweets). The plan is to organize an irony detection
dedicated task including a larger and more bal-
anced dataset of ironic tweets in future campaigns.
In this perspective, it will be also interesting to in-
vestigate if the finer-grained annotation layers for
irony proposed here can have a role in the annota-
tion scheme proposed for the new task data.

9 Conclusion and future work

In this paper, we proposed a multi-layered anno-
tation schema for irony in tweets and a multilin-
gual corpus-based study for measuring the impact
of pragmatic phenomena in the interpretation of
irony. The results show that our schema is re-
liable for French and that it is portable to En-
glish and Italian, observing relatively the same
tendencies in terms of irony categories and mark-
ers. We observed correlations between markers
and ironic/non ironic classes, between markers
and irony activation types (explicit or implicit) and
between markers and irony categories.

These observations are interesting in a perspec-
tive of pragmatically and linguistically informed
automatic irony detection, since it brings out the
most discriminant features. On this line, we plan
to accomplish a validation of the schema based on
the definition of an automatic classification model
built upon such annotated features. Moreover, an
interesting challenge could be to apply the annota-

tion schema to a new language also less culturally
close to those addressed in this work.

Finally, another perspective is to investigate
how the application of our schema can contribute
to shed light on the issue of distinguishing be-
tween irony and sarcasm. This issue is challeng-
ing, and only recently addressed from computa-
tional linguistics. In particular, new data-driven
arguments for a possible separation between irony
and sarcasm emerged from recent work on Twit-
ter data (Sulis et al., 2016). It could be interesting
to see the relation between the finer-grained and
pragmatic phenomena related to irony investigated
in the present study and the higher-level distinc-
tion between irony and sarcasm.
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Abstract

Sentiment Analysis is a broad task that in-
volves the analysis of various aspect of the
natural language text. However, most of
the approaches in the state of the art usu-
ally investigate independently each aspect,
i.e. Subjectivity Classification, Sentiment
Polarity Classification, Emotion Recogni-
tion, Irony Detection. In this paper we
present a Multi-View Sentiment Corpus
(MVSC), which comprises 3000 English
microblog posts related the movie domain.
Three independent annotators manually
labelled MVSC, following a broad anno-
tation schema about different aspects that
can be grasped from natural language text
coming from social networks. The con-
tribution is therefore a corpus that com-
prises five different views for each mes-
sage, i.e. subjective/objective, sentiment
polarity, implicit/explicit, irony, emotion.
In order to allow a more detailed investi-
gation on the human labelling behaviour,
we provide the annotations of each human
annotator involved.

1 Introduction

The exploitation of user-generated content on the
Web, and in particular on the social media plat-
forms, has brought to a huge interest on Opin-
ion Mining and Sentiment Analysis. Both Natural
Language Processing (NLP) communities and cor-
porations are continuously investigating on more
accurate automatic approaches that can manage
large quantity of noisy natural language texts, in
order to extract opinions and emotions towards a
topic. The data are usually collected from Twitter,
the most popular microblogging platform. In this
particular environment, the posts, called tweets,

are constrained to a maximum number of char-
acters. This constraint, in addition to the social
media context, leads to a specific language rich of
synthetic expressions that allow the users to ex-
press their ideas or what happens to them in a short
but intense way.

However, the application of automatic senti-
ment classification approaches, in particular when
dealing with noisy texts, is subjected to the pres-
ence of sufficiently manually annotated dataset to
perform the training. The majority of the corpora
available in the literature are focused on only one
(or at most two) aspects related to Sentiment Anal-
ysis, i.e. Subjectivity, Polarity, Emotion, Irony.

In this paper we propose a Multi-View Senti-
ment Corpus1, manually labelled by three inde-
pendent annotators, that makes possible to study
Sentiment Analysis by considering several aspects
of the natural language text: subjective/objective,
sentiment polarity, implicit/explicit, irony and
emotion.

2 State of the Art

The work of Go et al. (2009) was the first at-
tempt to address the creation of a sentiment cor-
pus in a microblog environment. Their approach,
introduced in (Read, 2005), consisted to filter all
the posts containing emoticons and subsequently
label each post with the polarity class provided
by them. For example, :) in a tweet indicates
that the tweet contains positive sentiment and :(
indicates that the tweet contains negative senti-
ment. The same procedure was also applied in
(Pak and Paroubek, 2010), differently from the
aforementioned works they introduced the class of
objective posts, retrieved from Twitter accounts of
popular newspapers and magazines. Davidov et

1The proposed corpus is available at
www.mind.disco.unimib.it
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al. (2010) maintained the idea of distant supervi-
sion by combining 15 common emoticons and 50
sentiment-driven hashtags for automatic labelling.
However, an intervention of human experts was
needed to annotate the sentiment of frequent tags.
Kouloumpis et al. (2011) extended their work in
order to perform a 3-way polarity classification
(positive, negative and neutral) on the Edinburgh
Twitter corpus (Petrović et al., 2010).

Mohammad (2012) and Wang et al. (2012) ap-
plied the same distant supervision approach for
the construction of a large corpus for emotion
classification. They collect the data retrieving
tweets by considering as keywords a predefined
list of emotion hashtags. In (Mohammad, 2012),
the authors used the Ekman’s six basic emotions
(#anger, #disgust, #fear, #joy, #sadness, and #sur-
prise), while in (Wang et al., 2012) the authors ex-
panded this list by including both basic and sec-
ondary emotions and their lexical variants, for a
total of 131 keywords.

Hashtags have also been used to create datasets
for irony detection purposes. The work of Reyes
et al. (2013) proposed a corpus of 40000 tweets,
10000 ironic and 30000 non ironic tweets respec-
tively retrieved with the hashtags #irony for the
former and #education, #humor, #politics for the
latter.

However, each of these resources have been
created either fully automatically or in a semi-
supervised way based on the assumption that sin-
gle words and symbols are representative of the
whole document. Moreover, the use of hashtags
and emoticons for exploiting distant-supervision
approaches can definitely create a bias towards
posts that do not use these forms of expression
to communicate opinions and emotions. Adopt-
ing a manual annotation approach is crucial for
dealing with these issues and obtaining high qual-
ity labelling. In this direction the SemEval cor-
pora (Nakov et al., 2013; Rosenthal et al., 2014;
Nakov et al., 2016) have provided a fundamental
contribution. These datasets have been labelled
by taking advantage of crowdsourcing platforms,
such as Amazon Mechanical Turk and Crowd-
Flower. Although the size of these corpora is
very high (around 15-20K posts), Mozetič et al.
(2016) overly exceeded these dimensions propos-
ing a set of over 1.6 million sentiment labelled
tweets. This corpus, that is the largest manually-
labelled dataset reported in the literature, was an-

notated in 13 European languages.
Regarding emotion classification, Roberts et al.

(2012) introduced a corpus of tweets manually la-
belled with the Ekman’s six basic emotions and
love. In (Liew et al., 2016), the authors extended
their work by considering a fine-grained set of
emotion categories to better capture the richness
of expressed emotions.

The only manually-annotated corpus on irony
detection was proposed by (Gianti et al., 2012).
They studied the use of this particular device on
Italian tweets, focusing on the political domain.

In this paper, we present a Multi-View Senti-
ment Corpus (MSVC) on English microblog posts
that differs from the state of the art corpora for
several reasons:

• The proposed corpus is the first benchmark
that collects implicit or explicit opinions.
This contribution will allow researchers to
develop sentiment analysis approaches able
to model opinions not directly expressed.

• The corpus provides different annotations si-
multaneously: subjectivity/objectivity, polar-
ity, implicitness/explicitness, emotion, irony.
This characteristic allows researchers to per-
form wide-ranging studies on the users’ opin-
ions, instead of considering each of this view
as independent from the others.

• The corpus will show the label provided by
each annotator, instead of producing a fi-
nal label obtained by a majority voting rule.
Given the different expertise of the annotators
involved, a detailed investigation on single
behaviours can be performed to improve the
knowledge about the annotation procedures.

• This is the first corpus that explicitly la-
bels emojis. We aim to prove that the role
of the emojis is strictly related to the con-
text where they appear: their contribution in
terms of conveyed sentiment (or conveyed
topic) strictly depends on the domain where
they are used.

3 Annotation Procedure

The corpus has been annotated by considering dif-
ferent views related to the same post: subjectiv-
ity/objectivity, polarity, implicitness/explicitness,
presence of irony and emotion. In this section, we
provide a definition and examples for each of these
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views. Moreover, we present the characteristics of
the annotators in order to have more insights on
their behaviour.

3.1 Annotation of Subjectivity/Objectivity

Given a post p about a given topic t, its subjectiv-
ity or objectivity can be defined as follows (Liu,
2012):

Definition 1. An objective post po presents some
factual information about the world, while a sub-
jective post ps expresses some personal feelings,
views, or beliefs.

In microblogs contexts the recognition of objec-
tive posts can be easily misled by the presence of
hashtags and other linguistic artefacts that aim to
show the post as more appealing. The reported
examples are very similar, despite they belong to
different classes:

[Objective] “Tonight @CinemaX #SuicideSquad!! Come to
see #HarleyQuinn :)”

[Subjective] “-1 to #Deadpool...that’s tomorrow!!!! I can’t
waiit!”

3.2 Annotation of polarity

Given a subjective post ps that expresses an opin-
ion about a topic t, we want to determine its
polarity between positive, negative and neutral
classes. While the definition of positive and neg-
ative classes is commonly clear, the neutral label
is differently treated in the state of the art. As in
Pang and Lee (2008), we use neutral only in the
sense of a sentiment that lies between positive and
negative.

Posts that express a sentiment about specific as-
pects of a given topic t, such as actors, scenes,
commercials for a film are considered part of the
topic. Moreover, it is important to understand
what is the target of the opinion, because it can
lead to completely different interpretations.

[Positive] “Best Joker EVER!! #suicidesquad”

[Negative] “Deadpool is so childish! I slept during the
movie”

[Neutral] “Good movie, @VancityReynolds worst actor ever
#deadpool” (neutral - mixed sentiment)

[Neutral] “I love my boyfriend! We are watching deadpool
tonight” (positive about the boyfriend - neutral about
the film)

3.3 Annotation of explicit/implicit opinion
Given a subjective post ps that expresses an opin-
ion about a topic t, we can define its implicitness
or explicitness as follows (Liu, 2012):

Definition 2. An explicit opinion is a subjective
statement that gives an opinion.

Definition 3. An implicit (or implied) opinion is
an objective statement that implies an opinion.
Such an objective statement usually expresses a
desirable or undesirable fact.

The detection of an implicit opinion can be
complex because it does not rely on specific words
(e.g. amazing, awful), as in the following exam-
ples:

[Explicit - Positive] “Suicide Squad is a great movie and an
awesome cast”

[Implicit - Positive] “I’ve already watched Deadpool three
times this month”

[Implicit - Negative] “I went out the cinema after 15 min-
utes #suicidesquad”

3.4 Annotation of Irony
Given a subjective post ps that expresses an opin-
ion about a topic t, the presence of irony can be
detected focusing on the definition given by Wil-
son and Sperber (2007):

Definition 4. Irony is basically a communicative
act that expresses the opposite of what is literally
said.

Irony is one of the most difficult figurative lan-
guage to comprehend, and a person can perceive it
differently depending on several factors (e.g. cul-
ture, language).

[Ironic] “Hey @20thcenturyfox remember when you didn’t
want anything to do with #Deadpool and now it’s your
biggest opening weekend ever?”

3.5 Annotation of Emotion
A post p about the topic t can be associated to an
emotion e corresponding to the eight Plutchik pri-
mary emotions (shown in Figure 1): anger, antic-
ipation, joy, trust, fear, surprise, sadness and dis-
gust. We provide an example for each emotion.

[Anger] “ #Deadpool I wasted time and money grrrrrrrr”

[Anticipation] “Can’t wait to see Deadpool”

[Joy] “Deadpool was A-M- A-Z- I-N- G”

[Trust] “Best movie ever #Deadpool! Trust me!”

[Fear] “Saw #Deadpool last night. I was frightened during
some crude scenes!”
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[Surprise] “Much to my surprise, I actually liked Dead-
pool.”

[Sadness] “i finally got to watch deadpool and im so sad this
is so boring”

[Disgust] “Deadpool is everything I hate about our century
combined in the trashiest movie possible.”

Figure 1: Plutchik’s wheel of emotions.

3.6 Annotation of Emojis
Given a post p related to a specific topic t, each
emoji (if present) has been labelled as positive,
negative, neutral or topic-related according to the
context where it has been used. We provide an ex-
ample for each label.

3.7 Annotators
The complete set of posts has been labelled by
three different annotators. Each annotator is a very
proficient English speaker and he/she has a dif-
ferent level of NLP background and topic knowl-
edge from the others. We distinguish these two
types of knowledge because they are equally im-
portant and necessary for annotating a dataset, es-
pecially in a movie domain. A topic expert can be
very confident on understanding the meaning of
the text, but without any NLP knowledge he/she
would not be able to perform a confident anno-
tation, especially when dealing with the implic-
itness/explicitness and subjectivity/objectivity la-
bels. On the other hand, being only a NLP expert

is not sufficient when in the text subtle and sophis-
ticated references to the topic are present, resulting
in an incorrect annotation because of an improper
understanding.

The first annotator A1 is a NLP expert while
he/she is not very confident on the topic selected,
the second annotator A2 has a good expertise in
NLP and a good knowledge about the topic, the
third annotator A3 is a beginner in the field of NLP
but he/she is competent on the topic.

4 Dataset

The data has been retrieved by monitoring differ-
ent keywords on the Twitter microblogging plat-
form related to two popular movies: Deadpool and
Suicide Squad. This choice was motivated by the
intention to increase the number of opinionated
posts and therefore to have a variety of aspects to
be analysed. Also, both the movies were massive
blockbuster successes with popular actors and this
led to a very wide and diverse audience.

This case study is experimentally convenient for
our purposes because it represents a domain where
people are more willing to express opinions, so
that the final corpus will have a variety of opinion-
ated tweets expressed in diverse ways. The collec-
tion of the data has been performed in the narrow
days of the release date, Deadpool 18th February
2016 and Suicide Squad 1th August 2016.

After the streaming collection phase, we fil-
ter out the non-English tweets, duplicates and
retweets resulting in a dataset of millions of posts.
Then, we randomly sampled 3000 tweets equally
distributed between the topics, maintaining the
original daily distribution. This sample has been
manually annotated, obtaining a final corpus com-
posed of 1500 posts about Deadpool and 1500
posts about Suicide Squad.

On average, a tweet is composed of about 14
words of which one is a hashtag. Although this
number can lead to conclude that hashtags are an
important language expression and therefore they
can be used for automatically collecting opinions
and emotions, we found that most of them are
strongly related only to the topic, e.g. #Show-
TimeAtGC, #Joker, #HarleyQuinn, #DC. A pre-
liminary analysis of the user mentions has shown
that users are inclined to directly mention the
actors or the entertainment companies for com-
plaining or complimenting, and this, together with
hashtags, can be particularly helpful when per-
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forming aspect-based sentiment analysis.
Regarding emojis, the most frequent ones are

(as expected) sentiment-driven, i.e. joy, heart eyes,
sob.

5 Annotation Evaluations

The annotation of emotions, sentiment and other
emotional aspects in a microblog message is not
an easy task, and strongly depends on subjective
judgement of human annotators. Annotators can
disagree between themselves, and sometimes an
individual cannot be consistent with her/himself.
The disagreement depends on the complexity of
the annotation task, the use of complex language
(e.g., slang), or simply on the poor annotator work.

Table 1: Label distribution per annotator
A1 A2 A3

Subjective 0.671 0.748 0.657
Objective 0.330 0.252 0.343
None 0.330 0.252 0.343
Positive 0.509 0.476 0.426
Neutral 0.038 0.146 0.131
Negative 0.123 0.126 0.100
None 0.330 0.252 0.343
Explicit 0.254 0.512 0.416
Implicit 0.416 0.236 0.242
Not Ironic 0.980 0.988 0.971
Ironic 0.020 0.012 0.029
None 0.374 0.355 0.507
Joy 0.317 0.328 0.243
Anticipation 0.144 0.108 0.078
Disgust 0.070 0.071 0.047
Surprise 0.038 0.024 0.038
Sadness 0.035 0.044 0.036
Anger 0.014 0.034 0.028
Trust 0.008 0.034 0.022
Fear 0.001 0.001 0.002

In Table 1, we report some statistics that sum-
marize behaviours of the involved annotators. By
analysing the distributions, we can observe differ-
ent attitudes: A1 is inclined to label more posts as
positive against the neutral ones; A2 shows a pre-
disposition to identify a high number of explicit
expressions; A3 has a low sensibility to capture the
emotions behind the text. Moreover, we can high-
light a balanced distribution for implicit/explicit
opinions.

For those tweets encoding one of the eight emo-
tions, there is a predominance of the joy label.
Concerning the remaining classes the distributions
are skewed towards a specific label, i.e. Subjec-
tive, Positive and Not Ironic.

An analogous consideration can be drawn for
the emojii distribution (see Table 2). It turns out
that most of the emojis are positive, especially the
most popular ones and their presence provide an
insight of the human emotional perceptions.

Table 2: Emojii distribution
A1 A2 A3

Topic 0.141 0.129 0.095
Positive 0.559 0.601 0.593
Negative 0.141 0.187 0.173
Neutral 0.160 0.083 0.139

By a detailed analysis of the emoji annotations,
it emerges that the role of the emojis is closely re-
lated to the context where they appear: their con-
tribution in terms of conveyed sentiment (or con-
veyed topic) strictly depends on the domain where
they are used. In Table 3, we report a compari-
son between the label distribution of two emojis in
our corpus and the corresponding distribution in a
state of the art emoji sentiment lexicon (Novak et
al., 2015).

In the proposed corpus, the fire emoji has been
mainly labelled as positive because it represents
the word “hot”, whose meaning is intended as
something beautiful and trendy. However, in the
emojii sentiment lexicon the same emoji primarily
corresponds to a neutral sentiment. Similar con-
siderations can be drawn for the pistol emoji: in
our corpus it represents the topic underlying the
two movies, while in the state of the art lexicon it
is frequently used to denote a negative sentiment
orientation. As conclusion, any emoji should be
not considered as independent on the context and
therefore evaluated according to its semantic.

5.1 Agreement Measures

The kappa coefficient (Cohen, 1960) is the most
used statistic for measuring the degree of reliabil-
ity between annotators. The need for consistency
among annotators immediately arises due to the

Table 3: Emoji label distribution

Multi-View
Sentiment Corpus

Topic 0.127 0.476
Negative 0.079 0.143
Neutral 0.111 0.190
Positive 0.683 0.190

Emoji Sentiment
Ranking (Novak et al., 2015)

Negative 0.124 0.493
Neutral 0.613 0.209
Positive 0.263 0.298
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Table 4: Inter-agreement (PABAK-OS)
Subjective/Objective Sentiment Polarity Implicit/Explicit Irony Emotion

A1 vs A2 0.606 0.598 0.354 0.949 0.590
A2 vs A3 0.670 0.596 0.476 0.923 0.601
A1 vs A3 0.592 0.585 0.416 0.912 0.551

Table 5: Self-agreement (PABAK-OS)
Subjective/Objective Sentiment Polarity Implicit/Explicit Irony Emotion

A1 0.920 0.920 0.640 1.000 0.820
A2 0.878 0.867 0.670 0.960 0.865
A3 1.000 0.920 0.850 0.878 0.820

variability among human perceptions. This inter-
agreement measure can be summarized as:

k =
observed agreement− chanche agreement

1− chance agreement
(1)

However, considering only this statistic is not
appropriate when the prevalence of a given re-
sponse is very high or very low in a specific class.
In this case, the value of kappa may indicate a low
level of reliability even with a high observed pro-
portion of agreement. In order to address these
imbalances caused by differences in prevalence
and bias, Byrt et al. (1993) introduced a different
version of the kappa coefficient called prevalence-
adjusted bias-adjusted kappa (PABAK). The esti-
mation of PABAK depends solely on the observed
proportion of agreement between annotators:

PABAK = 2 · observed agreement− 1 (2)

A more reliable measure for estimating the agree-
ment among annotators is PABAK-OS (Parker et
al., 2011), which controls for chance agreement.
PABAK-OS aims to avoid the peculiar, unintuitive
results sometimes obtained from Cohen’s Kappa,
especially related to skewed annotations (preva-
lence of a given label).

We report in Table 4, the inter-agreement be-
tween couples of annotators distinguished for each
label. We can easily note that the highest agree-
ment is related to the irony/not-irony labelling.
This is due to the predominance of non-ironic
messages identified by all the annotators. Thus,
we perform a detailed analysis on the disagree-
ment between each couple of annotators regard-
ing only the ironic messages. From the results,
reported in Table 6, we can confirm that A1 and
A2 annotators are more willing to interpret irony
similarly (as already stated in Table 4).

Concerning the implicit/explicit labels, the
inter-agreement measure highlights the difficulties

Table 6: Count of disagreement on the irony label
Disagreement (irony)

A1 vs A2 76
A2 vs A3 114
A1 vs A3 132

encountered by the annotators to distinguish “ob-
jective statements” (see Definition 1) from “objec-
tive statements that imply an opinion” (see Defi-
nition 3). Regarding the remaining labels, we can
assert that there is a moderate agreement between
the labellers. An analogous conclusion can be de-
rived for the consensus about the emoji annotation,
where the inter-agreement is 0.731 for A1 vs A2,
0.771 for A2 vs A3, and 0.647 for A1 vs A3.

When dealing with complex annotations, the
perception of the same annotator on the same post
can change over time, resulting in inconsistent la-
belling. In order to estimate the uncertainty of the
annotation of each labeller, we sampled a portion
of tweets to be annotated twice by the same an-
notator. We report in Table 5 the self-agreement
measure, that is a valid index to quantify the qual-
ity of the labelling procedure. The resulting statis-
tics show that there is a high self-agreement for al-
most all the labels. The annotators can be consid-
ered moderately reliable for implicit/explicit anno-
tations and very accurate for the remaining labels.

6 Conclusion

In this paper we presented a Multi-View Sentiment
Corpus (MVSC), which simultaneously considers
different aspects related to sentiment analysis, i.e.
subjectivity, polarity, implicitness, irony, emotion.
We described the construction of the corpus, to-
gether with annotation schema, statistics and some
interesting remarks. The proposed corpus is aimed
at providing a benchmark to develop sentiment
analysis approaches able to model opinions not di-
rectly expressed. Researchers can also take advan-
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tage of the complete label set given by the annota-
tors to investigate their behaviours and the under-
lying annotation procedures. We finally provided
some interesting conclusions related to the use of
emojis, highlighting that their role is strictly re-
lated to the context where they appear. As future
work, we aim at defining novel machine learning
models able to simultaneously take advantage of
the multiple views available. Moreover, an anno-
tation scheme at a fine-grained level will be inves-
tigated.
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Abstract

Inferring implicit discourse relations in
natural language text is the most difficult
subtask in discourse parsing. Many neu-
ral network models have been proposed to
tackle this problem. However, the com-
parison for this task is not unified, so
we could hardly draw clear conclusions
about the effectiveness of various archi-
tectures. Here, we propose neural net-
work models that are based on feedfor-
ward and long-short term memory archi-
tecture and systematically study the effects
of varying structures. To our surprise, the
best-configured feedforward architecture
outperforms LSTM-based model in most
cases despite thorough tuning. Further,
we compare our best feedforward system
with competitive convolutional and recur-
rent networks and find that feedforward
can actually be more effective. For the first
time for this task, we compile and pub-
lish outputs from previous neural and non-
neural systems to establish the standard for
further comparison.

1 Introduction

The discourse structure of a natural language text
has been analyzed and conceptualized under vari-
ous frameworks (Mann and Thompson, 1988; Las-
carides and Asher, 2007; Prasad et al., 2008). The
Penn Discourse TreeBank (PDTB) and the Chi-
nese Discourse Treebank (CDTB), currently the
largest corpora annotated with discourse structures
in English and Chinese respectively, view the dis-
course structure of a text as a set of discourse re-
lations (Prasad et al., 2008; Zhou and Xue, 2012).
Each discourse relation (e.g. causal or temporal) is
grounded by a discourse connective (e.g. because
or meanwhile) taking two text segments as argu-

ments (Prasad et al., 2008). Implicit discourse re-
lations are those where discourse connectives are
omitted from the text and yet the discourse rela-
tions still hold.

While classifying explicit discourse relations is
relatively easy, as the discourse connective itself
provides a strong cue for the discourse relation
(Pitler et al., 2008), the classification of implicit
discourse relations has proved to be notoriously
hard and remained one of the last missing pieces in
an end-to-end discourse parser (Xue et al., 2015).
In the absence of explicit discourse connectives,
implicit discourse relations have to be inferred
from their two arguments. Previous approaches
on inferring implicit discourse relations have typ-
ically relied on features extracted from their two
arguments. These features include the Cartesian
products of the word tokens in the two arguments
as well as features manually crafted from vari-
ous lexicons such as verb classes and sentiment
lexicons (Pitler et al., 2009; Rutherford and Xue,
2014). These lexicons are used mainly to offset
the data sparsity problem created by pairs of word
tokens used directly as features.

Neural network models are an attractive alter-
native for this task, but it is not clear how well
they will fare with a small dataset, typically found
in discourse annotation projects. Many neural
approaches have been proposed. However, we
lack a unified standard comparison to really learn
whether we make any progress at all because not
all past studies agree on the same experimental
settings such as label sets to use. Previous work
used four binary classification (Pitler et al., 2008;
Rutherford and Xue, 2014) , 4-way coarse sense
classification (Rutherford and Xue, 2015) , and in-
termediate sense classification (Lin et al., 2009).
CoNLL Shared Task introduces a unified scheme
for evaluation along with a new unseen test set in
English in 2015 (Xue et al., 2015) and in Chinese
in 2016 (Xue et al., 2016). We want to corrobo-
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rate this new evaluation scheme by running more
benchmark results and providing the output under
this evaluation scheme. We systematically com-
pare the relative advantages of different neural ar-
chitectures and publish the outputs from the sys-
tems for the research community to conduct fur-
ther analysis.

In this work, we explore multiple neural ar-
chitectures in an attempt to find the best dis-
tributed representation and neural network archi-
tecture suitable for this task in both English and
Chinese. We do this by probing the different
points on the spectrum of structurality from struc-
tureless bag-of-words models to sequential and
tree-structured models. We use feedforward, se-
quential long short-term memory (LSTM), and
tree-structured LSTM models to represent these
three points on the spectrum. To the best of our
knowledge, there is no prior study that investigates
the contribution of the different architectures in
neural discourse analysis.

Our main contributions and findings from this
work can be summarized as follows:

• We establish that the simplest feedforward
discourse model outperforms systems with
surface features and perform comparably
with or even outperforms recurrent and con-
volutional architectures. This holds across
different label sets in English and in Chinese.

• We investigate the contribution of the linguis-
tic structures in neural discourse modeling
and found that high-dimensional word vec-
tors trained on a large corpus can compensate
for the lack of structures in the model, given
the small amount of annotated data.

• We collect and publish the system outputs
from many neural architectures on the stan-
dard experimental settings for the community
to conduct more error analysis. These are
made available on the author’s website.

2 Model Architectures

Following previous work, we assume that
the two arguments of an implicit discourse
relation are given so that we can focus on
predicting the senses of the implicit discourse
relations. The input to our model is a pair of
text segments called Arg1 and Arg2, and the
label is one of the senses defined in the Penn
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Figure 1: (Top) Feedforward architecture. (Bot-
tom) Sequential Long Short-Term Memory archi-
tecture.

Discourse Treebank as in the example below:
Input:
Arg1 Senator Pete Domenici calls this effort

“the first gift of democracy”
Arg2 The Poles might do better to view it as a

Trojan Horse.
Output:
Sense Comparison.Contrast

In all architectures, each word in the argument
is represented as a k-dimensional word vector
trained on an unannotated data set. We use
various model architectures to transform the
semantics represented by the word vectors into
distributed continuous-valued features. In the
rest of the section, we explain the details of the
neural network architectures that we design for
the implicit discourse relations classification task.
The models are summarized schematically in
Figure 1.

2.1 Bag-of-words Feedforward Model

This model does not model the structure or word
order of a sentence. The features are simply
obtained through element-wise pooling functions.
Pooling is one of the key techniques in neural net-
work modeling of computer vision (Krizhevsky et
al., 2012; LeCun et al., 2010). Max pooling is
known to be very effective in vision, but it is un-
clear what pooling function works well when it
comes to pooling word vectors. Summation pool-
ing and mean pooling have been claimed to per-
form well at composing meaning of a short phrase
from individual word vectors (Le and Mikolov,
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2014; Blacoe and Lapata, 2012; Mikolov et al.,
2013b; Braud and Denis, 2015). The Arg1 vector
a1 and Arg2 vector a2 are computed by applying
element-wise pooling function f on all of the N1

word vectors in Arg1w1
1:N1

and all of theN2 word
vectors in Arg2 w2

1:N2
respectively:

a1i = f(w1
1:N1,i)

a2i = f(w2
1:N2,i)

We consider three different pooling functions
namely max, summation, and mean pooling func-
tions:

fmax(w1:N , i) =
N

max
j=1

wj,i

fsum(w1:N , i) =
N∑

j=1

wj,i

fmean(w1:N , i) =
N∑

j=1

wj,i/N

Inter-argument interaction is modeled directly
by the hidden layers that take argument vectors
as features. Discourse relations cannot be deter-
mined based on the two arguments individually.
Instead, the sense of the relation can only be deter-
mined when the arguments in a discourse relation
are analyzed jointly. The first hidden layer h1 is
the non-linear transformation of the weighted lin-
ear combination of the argument vectors:

h1 = tanh(W1 · a1 +W2 · a2 + bh1)

where W1 and W2 are d × k weight matrices and
bh1 is a d-dimensional bias vector. Further hidden
layers ht and the output layer o follow the standard
feedforward neural network model.

ht = tanh(Wht · ht−1 + bht)

o = softmax(Wo · hT + bo)

where Wht is a d × d weight matrix, bht is a d-
dimensional bias vector, and T is the number of
hidden layers in the network.

2.2 Sequential Long Short-Term Memory
(LSTM)

A sequential Long Short-Term Memory Recurrent
Neural Network (LSTM-RNN) models the seman-
tics of a sequence of words through the use of hid-
den state vectors. Therefore, the word ordering
does affect the resulting hidden state vectors, un-
like the bag-of-word model. For each word vector

at word position t, we compute the corresponding
hidden state vector st and the memory cell vec-
tor from the previous step, using standard formula
for LSTM. The argument vectors are the results of
applying a pooling function over the hidden state
vectors.

a1i = f(s11:N1,i)

a2i = f(s21:N2,i)

In addition to the three pooling functions that we
describe in the previous subsection, we also con-
sider using only the last hidden state vector, which
should theoretically be able to encode the seman-
tics of the entire word sequence.

flast(s1:N,i) = sN,i

Inter-argument interaction and the output layer are
modeled in the same fashion as the bag-of-words
model once the argument vector is computed.

2.3 Tree LSTM
The principle of compositionality leads us to be-
lieve that the semantics of the argument vector
should be determined by the syntactic structures
and the meanings of the constituents. For a fair
comparison with the sequential model, we apply
the same formulation of LSTM on the binarized
constituent parse tree. The hidden state vector now
corresponds to a constituent in the tree. These hid-
den state vectors are then used in the same fashion
as the sequential LSTM. The mathematical formu-
lation is the same as Tai et al. (2015).

This model is similar to the recursive neural
networks proposed by Ji and Eisenstein (2015).
Our model differs from their model in several
ways. We use the LSTM networks instead of the
“vanilla” RNN formula and expect better results
due to less complication with vanishing and ex-
ploding gradients during training. Furthermore,
our purpose is to compare the influence of the
model structures. Therefore, we must use LSTM
cells in both sequential and tree LSTM models for
a fair and meaningful comparison. The more in-
depth comparison of our work and recursive neu-
ral network model by Ji and Eisenstein (2015) is
provided in the discussion section.

3 Corpora and Implementation

The Penn Discourse Treebank (PDTB) We use
the PDTB due to its theoretical simplicity in dis-
course analysis and its reasonably large size. The
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Sense Train Dev Test
Comparison.Concession 192 5 5
Comparison.Contrast 1612 82 127
Contingency.Cause 3376 120 197
Contingency.Pragmatic cause 56 2 5
Expansion.Alternative 153 2 15
Expansion.Conjunction 2890 115 116
Expansion.Instantiation 1132 47 69
Expansion.List 337 5 25
Expansion.Restatement 2486 101 190
Temporal.Asynchronous 543 28 12
Temporal.Synchrony 153 8 5
Total 12930 515 766

Table 1: The distribution of the level 2 sense labels
in the Penn Discourse Treebank. The instances
annotated with two labels are not double-counted,
and partial labels are excluded.

annotation is done as another layer on the Penn
Treebank on Wall Street Journal sections. Each
relation consists of two spans of text that are
minimally required to infer the relation, and the
sense is organized hierarchically. The classifica-
tion problem can be formulated in various ways
based on the hierarchy. Previous work in this
task has been done over three schemes of evalu-
ation: top-level 4-way classification (Pitler et al.,
2009), second-level 11-way classification (Lin et
al., 2009; Ji and Eisenstein, 2015), and modi-
fied second-level classification introduced in the
CoNLL 2015 Shared Task (Xue et al., 2015). We
focus on the second-level 11-way classification
because the labels are fine-grained enough to be
useful for downstream tasks and also because the
strongest neural network systems are tuned to this
formulation. If an instance is annotated with two
labels (∼3% of the data), we only use the first la-
bel. Partial labels, which constitute ∼2% of the
data, are excluded. Table 3 shows the distribution
of labels in the training set (sections 2-21), devel-
opment set (section 22), and test set (section 23).

Training Weight initialization is uniform random,
following the formula recommended by Bengio
(2012). The cost function is the standard cross-
entropy loss function, as the hinge loss function
(large-margin framework) yields consistently in-
ferior results. We use Adagrad as the optimiza-
tion algorithm of choice. The learning rates are
tuned over a grid search. We monitor the accuracy
on the development set to determine convergence
and prevent overfitting. L2 regularization and/or
dropout do not make a big impact on performance
in our case, so we do not use them in the final re-

sults.
Implementation All of the models are imple-
mented in Theano (Bergstra et al., 2010; Bastien
et al., 2012). The gradient computation is done
with symbolic differentiation, a functionality pro-
vided by Theano. Feedforward models and se-
quential LSTM models are trained on CPUs on
Intel Xeon X5690 3.47GHz, using only a single
core per model. A tree LSTM model is trained on
a GPU on Intel Xeon CPU E5-2660. All models
converge within hours.

4 Experiment on the Second-level Sense
in the PDTB

We want to test the effectiveness of the inter-
argument interaction and the three models de-
scribed above on the fine-grained discourse rela-
tions in English. The data split and the label set
are exactly the same as previous works that use
this label set (Lin et al., 2009; Ji and Eisenstein,
2015).
Preprocessing All tokenization is taken from the
gold standard tokenization in the PTB (Marcus et
al., 1993). We use the Berkeley parser to parse all
of the data (Petrov et al., 2006). We test the effects
of word vector sizes. 50-dimensional and 100-
dimensional word vectors are trained on the train-
ing sections of WSJ data, which is the same text
as the PDTB annotation. Although this seems like
too little data, 50-dimensional WSJ-trained word
vectors have previously been shown to be the most
effective in this task (Ji and Eisenstein, 2015).
Additionally, we also test the off-the-shelf word
vectors trained on billions of tokens from Google
News data freely available with the word2vec
tool. All word vectors are trained on the Skip-
gram architecture (Mikolov et al., 2013b; Mikolov
et al., 2013a). Other models such as GloVe and
continuous bag-of-words seem to yield broadly
similar results (Pennington et al., 2014). We keep
the word vectors fixed, instead of fine-tuning dur-
ing training.

4.1 Results

The feedforward model performs best overall
among all of the neural architectures we explore
(Table 2). It outperforms the recursive neural net-
work with bilinear output layer introduced by Ji
and Eisenstein (2015) (p < 0.05; bootstrap test)
and performs comparably with the surface fea-
ture baseline (Lin et al., 2009), which uses var-
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No hidden layer 1 hidden layer 2 hidden layers
Architecture k max mean sum last max mean sum last max mean sum last
Feedforward 50 31.85 31.98 29.24 - 33.28 34.98 37.85 - 34.85 35.5 38.51 -
LSTM 50 31.85 32.11 34.46 31.85 34.07 33.15 36.16 34.34 36.16 35.11 37.2 35.24
Tree LSTM 50 28.59 28.32 30.93 28.72 29.89 30.15 32.5 31.59 32.11 31.2 32.5 29.63
Feedforward 100 33.29 32.77 28.72 - 36.55 35.64 37.21 - 36.55 36.29 37.47 -
LSTM 100 30.54 33.81 35.9 33.02 36.81 34.98 37.33 35.11 37.46 36.68 37.2 35.77
Tree LSTM 100 29.76 28.72 31.72 31.98 31.33 26.89 33.02 33.68 32.63 31.07 32.24 33.02
Feedforward 300 32.51 34.46 35.12 - 35.77 38.25 39.56 - 35.25 38.51 39.03 -
LSTM 300 28.72 34.59 35.24 34.64 38.25 36.42 37.07 35.5 38.38 37.72 37.2 36.29
Tree LSTM 300 28.45 31.59 32.76 26.76 33.81 32.89 33.94 32.63 32.11 32.76 34.07 32.50

Table 3: Compilation of all experimental configurations for 11-way classification on the PDTB test set.
k is the word vector size. Bold-faced numbers indicate the best performance for each architecture, which
is also shown in Table 2.

Model Accuracy

PDTB Second-level senses
Most frequent tag baseline 25.71
Our best tree LSTM 34.07
Ji & Eisenstein, (2015) 36.98
Our best sequential LSTM variant 38.38
Our best feedforward variant 39.56
Lin et al., (2009) 40.20

Table 2: Performance comparison across different
models for second-level senses.
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Figure 2: Summation pooling gives the best per-
formance in general. The results are shown for the
systems using 100-dimensional word vectors and
one hidden layer.

ious lexical and syntactic features and extensive
feature selection. Tree LSTM achieves inferior
accuracy than our best feedforward model. The
best configuration of the feedforward model uses
300-dimensional word vectors, one hidden layer,
and the summation pooling function to derive ar-
gument feature vectors. The model behaves well
during training and converges in less than an hour
on a CPU.

The sequential LSTM model outperforms the
feedforward model when word vectors are not
high-dimensional and not trained on a large cor-
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Figure 3: Inter-argument interaction can be mod-
eled effectively with hidden layers. The results are
shown for the feedforward models with summa-
tion pooling, but this effect can be observed ro-
bustly in all architectures we consider.

pus (Figure 4). Moving from 50 units to 100 units
trained on the same dataset, we do not observe
much of a difference in performance in both ar-
chitectures, but the sequential LSTM model beats
the feedforward model in both settings (Table 3).
This suggests that only 50 dimensions are needed
for the WSJ corpus. However, the trend reverses
when we move to 300-dimensional word vectors
trained on a much larger corpus. These results
suggest an interaction between the lexical infor-
mation encoded by word vectors and the structural
information encoded by the model itself.

Hidden layers, especially the first one, make a
substantial impact on performance. This effect is
observed across all architectures (Figure 3). Strik-
ingly, the improvement can be as high as 8% abso-
lute when used with the feedforward model with
small word vectors. We tried up to four hidden
layers and found that the additional hidden lay-
ers yield diminishing—if not negative—returns.
These effects are not an artifact of the training
process as we have tuned the models quite exten-
sively, although it might be the case that we do not
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Figure 4: Comparison between feedforward and
sequential LSTM when using summation pooling
function.

have sufficient data to fit those extra parameters.
Summation pooling is effective for both feed-

forward and LSTM models (Figure 2). The word
vectors we use have been claimed to have some ad-
ditive properties (Mikolov et al., 2013b), so sum-
mation pooling in this experiment supports this
claim. Max pooling is only effective for LSTM,
probably because the values in the word vector en-
code the abstract features of each word relative to
each other. It can be trivially shown that if all of
the vectors are multiplied by -1, then the results
from max pooling will be totally different, but the
word similarities remain the same. The memory
cells and the state vectors in the LSTM models
transform the original word vectors to work well
the max pooling operation, but the feedforward net
cannot transform the word vectors to work well
with max pooling as it is not allowed to change
the word vectors themselves.

4.2 Why does the feedforward model
outperform the LSTM models?

Summing up vectors indeed works better than re-
current models. We provide further evidence for
this claim in Section 5. Sequential and tree LSTM
models might work better if we are given larger
amount of data. We observe that LSTM mod-
els outperform the feedforward model when word
vectors are smaller, so it is unlikely that we train
the LSTMs incorrectly. It is more likely that
we do not have enough annotated data to train a
more powerful model such as LSTM. In previous
work, LSTMs are applied to tasks with a lot of la-
beled data compared to mere 12,930 instances that
we have (Vinyals et al., 2015; Chiu and Nichols,
2015; İrsoy and Cardie, 2014). Another explana-
tion comes from the fact that the contextual infor-
mation encoded in the word vectors can compen-

sate for the lack of structure in the model in this
task. Word vectors are already trained to encode
the words in their linguistic context especially in-
formation from word order.

Our discussion would not be complete without
explaining our results in relation to the recursive
neural network model proposed by Ji and Eisen-
stein (2015). Why do sequential LSTM mod-
els outperform recursive neural networks or tree
LSTM models? Although this first comes as a sur-
prise to us, the results are consistent with recent
works that use sequential LSTM to encode syntac-
tic information. For example, Vinyals et al. (2015)
use sequential LSTM to encode the features for
syntactic parse output. Tree LSTM seems to show
improvement when there is a need to model long-
distance dependency in the data (Tai et al., 2015;
Li et al., 2015). Furthermore, the benefits of tree
LSTM are not readily apparent for a model that
discards the syntactic categories in the intermedi-
ate nodes and makes no distinction between heads
and their dependents, which are at the core of syn-
tactic representations.

Another point of contrast between our work and
Ji and Eisenstein’s (2015) is the modeling choice
for inter-argument interaction. Our experimen-
tal results show that the hidden layers are an im-
portant contributor to the performance for all of
our models. We choose linear inter-argument in-
teraction instead of bilinear interaction, and this
decision gives us at least two advantages. Lin-
ear interaction allows us to stack up hidden lay-
ers without the exponential growth in the number
of parameters. Secondly, using linear interaction
allows us to use high dimensional word vectors,
which we found to be another important compo-
nent for the performance. The recursive model by
Ji and Eisenstein (2015) is limited to 50 units due
to the bilinear layer. Our choice of linear inter-
argument interaction and high-dimensional word
vectors turns out to be crucial to building a com-
petitive neural network model for classifying im-
plicit discourse relations.

5 Extending the results across neural
architectures, label sets, and languages

We want to provide further evidence that feed-
forward models perform well without surface fea-
tures or without sophisticated recurrent or convo-
lutional structures across different label sets and
languages as well. Toward that goal, we evaluate
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our models on non-explicit discourse relation data
used in English and Chinese CoNLL 2016 Shared
Task.

5.1 English discourse relations
We follow the experimental setting used in
CoNLL 2015-2016 Shared Task. To compare our
results against previous systems, we compile all of
the official system outputs, and make them pub-
licly available. The label set is modified by the
shared task organizers into 15 different senses in-
cluding EntRel as another sense (Xue et al., 2015;
Xue et al., 2016). We use the 300-dimensional
word vector used in the previous experiment and
tune the number of hidden layers and hidden units
on the development set. We consider the fol-
lowing models: Bidirectional-LSTM (Akanksha
and Eisenstein, 2016), two flavors of convolutional
networks (Qin et al., 2016; Wang and Lan, 2016),
two variations of simple argument pooling (Mi-
haylov and Frank, 2016; Schenk et al., 2016), and
the best system using surface features alone (Wang
and Lan, 2015). The comparison results and brief
system descriptions are shown in Table 4.

Our model presents the state-of-the-art system
on the blind test set in English. We once again
confirm that manual features are not necessary for
this task and that our feedforward network outper-
forms the best available LSTM and convolutional
networks in many settings despite its simplicity.
While performing well in-domain, convolutional
networks degrade sharply when tested on the blind
slightly out-of-domain dataset.

5.2 Chinese discourse relations
We evaluate our model on the Chinese Discourse
Treebank (CDTB) because its annotation is the
most comparable to the PDTB (Zhou and Xue,
2015). The sense set consists of 10 different
senses, which are not organized in a hierarchy,
unlike the PDTB. We use the version of the data
provided to the CoNLL 2016 Shared Task partic-
ipants. This version has 16,946 instances of dis-
course relations total in the combined training and
development sets. The test set is not yet available
at the time of submission, so the system is eval-
uated based on the average accuracy over 7-fold
cross-validation on the combined set of training
and development sets.

To establish baseline comparison, we use Max-
Ent models loaded with the feature sets previ-
ously shown to be effective for English, namely

Model Acc.

CoNLL-ST 2015-2016 English (WSJ Test set)
Most frequent tag baseline 21.36
Our best LSTM variant 31.76
Wang and Lan (2015) - winning team 34.45
Our best feedforward variant 36.13

CoNLL-ST 2016 Chinese (CTB Test set)
Most frequent tag baseline 77.14
ME + Production rules 80.81
ME + Dependency rules 82.34
ME + Brown pairs (1000 clusters) 82.36
Out best LSTM variant 82.48
ME + Brown pairs (3200 clusters) 82.98
ME + Word pairs 83.13
ME + All feature sets 84.16
Our best feedforward variant 85.45

Table 5: Our best feedforward variant signifi-
cantly outperforms the systems with surface fea-
tures (p < 0.05). ME=Maximum Entropy model
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Figure 5: Comparing the accuracies across Chi-
nese word vectors for feedforward model.

dependency rule pairs, production rule pairs (Lin
et al., 2009), Brown cluster pairs (Rutherford and
Xue, 2014), and word pairs (Marcu and Echihabi,
2002). We use information gain criteria to select
the best subset of each feature set, which is crucial
in feature-based discourse parsing.

Chinese word vectors are induced through
CBOW and Skipgram architecture in word2vec
(Mikolov et al., 2013a) on Chinese Gigaword cor-
pus (Graff and Chen, 2005) using default settings.
The number of dimensions that we try are 50, 100,
150, 200, 250, and 300. We induce 1,000 and
3,000 Brown clusters on the Gigaword corpus.

Table 5 shows the results for the models which
are best tuned on the number of hidden units, hid-
den layers, and the types of word vectors. The
feedforward variant of our model significantly out-
performs the strong baselines in both English and
Chinese (p < 0.05 bootstrap test). This suggests
that our approach is robust against different label
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Systems Arg vector Features? Blind set WSJ Test WSJ Dev

Ours Summing vectors No 0.3767 0.3613 0.4032
Akanksha & Eisenstein (2016) 2-layer Bi-LSTM Yes 0.3675 0.3495 0.4072
Qin et al. (2016) Convolutional net No 0.3538 0.3820 0.4632
Mihaylov & Frank (2016) Averaging vectors Yes 0.3451 0.3919 0.4032
Schenk et al. (2016) Avg + Product No 0.3185 0.3761 0.4542
Wang & Lan (2016) Convolutional net No 0.3418 0.4091 0.4642
Wang & Lan (2015) N/A Yes 0.3629 0.3445 0.4272

Table 4: Comparing various systems on the CoNLL 2016 Shared Task standard datasets. Manual fea-
tures are no longer needed for a competitive system. While performing well in-domain, convolutional
networks degrade sharply when tested on the blind slightly out-of-domain dataset.

sets, and our findings are valid across languages.
Our Chinese model outperforms all of the feature
sets known to work well in English despite using
only word vectors. The choice of neural architec-
ture used for inducing Chinese word vectors turns
out to be crucial. Chinese word vectors from Skip-
gram model perform consistently better than the
ones from CBOW model (Figure 5). These two
types of word vectors do not show much differ-
ence in the English tasks.

6 Related Work

The prevailing approach for this task is to use sur-
face features derived from various semantic lexi-
cons (Pitler et al., 2009), reducing the number of
parameters by mapping raw word tokens in the ar-
guments of discourse relations to a limited num-
ber of entries in a semantic lexicon such as polar-
ity and verb classes. Along the same vein, Brown
cluster assignments have also been used as a gen-
eral purpose lexicon that requires no human man-
ual annotation (Rutherford and Xue, 2014). How-
ever, these solutions still suffer from the data spar-
sity problem and almost always require extensive
feature selection to work well (Park and Cardie,
2012; Lin et al., 2009; Ji and Eisenstein, 2015).
The work we report here explores the use of the
expressive power of distributed representations to
overcome the data sparsity problem found in the
traditional feature engineering paradigm.

Neural network modeling has been explored
to some extent in the context of this task. Re-
cently, Braud and Denis (2015) tested various
word vectors as features for implicit discourse re-
lation classification and show that distributed fea-
tures achieve the same level of accuracy as one-
hot representations in some experimental settings.
Ji et al. (2015; 2016) advance the state of the
art for this task by using recursive and recurrent
neural networks. In the work we report here, we

systematically explore the use of different neural
network architectures and show that when high-
dimensional word vectors are used as input, a
simple feed-forward architecture can outperform
more sophisticated architectures such as sequen-
tial and tree-based LSTM networks, given the
small amount of data.

Recurrent neural networks, especially LSTM
networks, have changed the paradigm of deriving
distributed features from a sentence (Hochreiter
and Schmidhuber, 1997), but they have not been
much explored in the realm of discourse parsing.
LSTM models have been notably used to encode
the meaning of source language sentence in neu-
ral machine translation (Cho et al., 2014; Devlin et
al., 2014) and recently used to encode the meaning
of an entire sentence to be used as features (Kiros
et al., 2015). Many neural architectures have been
explored and evaluated, but there is no single tech-
nique that is decidedly better across all tasks. The
LSTM-based models such as Kiros et al. (2015)
perform well across tasks but do not outperform
some other strong neural baselines. Ji et al. (2016)
uses a joint discourse language model to improve
the performance on the coarse-grained label in the
PDTB, but in our case, we would like to deduce
how well LSTM fares in fine-grained implicit dis-
course relation classification, which is more prac-
tical for application.

7 Conclusions and future work

We report a series of experiments that system-
atically probe the effectiveness of various neural
network architectures for the task of implicit dis-
course relation classification. We found that a
feedforward variant of our model combined with
hidden layers and high dimensional word vectors
outperforms more complicated LSTM and con-
volutional models. We also establish that manu-
ally crafted surface features are not necessary for
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this task. These results hold for different settings
and different languages. In addition, we collect
and compile the system outputs from all competi-
tive systems and make it available for the research
community to conduct further analysis. We en-
courage that researchers who work on this task to
evaluate their systems under the CoNLL Shared
Task 2015-2016 scheme to allow for easy compar-
ison and progress tracking.
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Chloé Braud1, Maximin Coavoux2 and Anders Søgaard1

1CoAStaL, DIKU, University of Copenhagen, University Park 5, 2100 Copenhagen
2LLF, CNRS, Univ Paris Diderot, Sorbonne Paris Cité
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Abstract

Discourse parsing is an integral part of
understanding information flow and argu-
mentative structure in documents. Most
previous research has focused on inducing
and evaluating models from the English
RST Discourse Treebank. However, dis-
course treebanks for other languages ex-
ist, including Spanish, German, Basque,
Dutch and Brazilian Portuguese. The tree-
banks share the same underlying linguistic
theory, but differ slightly in the way doc-
uments are annotated. In this paper, we
present (a) a new discourse parser which is
simpler, yet competitive (significantly bet-
ter on 2/3 metrics) to state of the art for
English, (b) a harmonization of discourse
treebanks across languages, enabling us to
present (c) what to the best of our knowl-
edge are the first experiments on cross-
lingual discourse parsing.

1 Introduction

Documents can be analyzed as sequences of hier-
archical discourse structures. Discourse structures
describe the organization of documents in terms of
discourse or rhetorical relations. For instance, the
three discourse units below can be represented by
the tree in Figure 1, where a relation COMPAR-
ISON holds between the segments 1 and 2, and a
relation ATTRIBUTION links the segment covering
the units 1 and 2, and the segment 3.1

1 Consumer spending in Britain rose 0.1% in
the third quarter from the second quarter

2 and was up 3.8% from a year ago,

3 the Central Statistical Office estimated.

1“NS” and “NN” in Figure 1 describe the nuclearity of the
segments, see Section 3.

1 2

3NN-COMPARISON

NS-ATTRIBUTION

Figure 1: Tree for the structure covering the seg-
ments 1 to 3 in document 1384 in the English RST
Discourse Treebank.

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) is a prominent linguistic the-
ory of discourse structures, in which texts are an-
alyzed as constituency trees, such as the one in
Figure 1. This theory guided the annotation of
the RST Discourse Treebank (RST-DT) (Carlson
et al., 2001) for English, from which several text-
level discourse parsers have been induced (Her-
nault et al., 2010; Joty et al., 2012; Feng and Hirst,
2014; Li et al., 2014; Ji and Eisenstein, 2014).
Such parsers have proven to be useful for various
downstream applications (Daumé III and Marcu,
2009; Burstein et al., 2003; Higgins et al., 2004;
Thione et al., 2004; Sporleder and Lapata, 2005;
Taboada and Mann, 2006; Louis et al., 2010; Bha-
tia et al., 2015).

There are discourse treebanks for other lan-
guages than English, including Spanish, German,
Basque, Dutch, and Brazilian Portuguese. How-
ever, most research experimenting with these lan-
guages has focused on rule-based systems (Pardo
and Nunes, 2008; Maziero et al., 2011) or has been
limited to intra-sentential relations (Maziero et al.,
2015).

Moreover, all discourse corpora are limited in
size, since annotation is complex and time con-
suming. This data sparsity makes learning hard,
especially considering that discourse parsing in-
volves several complex and interacting factors,
ranging from syntax and semantics, to pragmat-
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ics. We thus propose to harmonize existing cor-
pora in order to leverage information by combin-
ing datasets in different languages.

Contributions In this paper, we propose a new
discourse parser that is significantly better than
existing parsers for English on 2/3 standard met-
rics. Our parser relies on fewer features than pre-
vious work and is arguably algorithmically sim-
pler. Moreover, we present the first end-to-end
statistical discourse parsers for other languages
than English (6 languages, in total). We also
present the first experiments in cross-lingual dis-
course parsers, showing that discourse parsing is
possible even when no or very little labeled data
is available for the language of interest. We do so
by harmonizing available discourse treebanks, en-
abling us to apply models across languages. We
make the code and preprocessing scripts available
for download at https://bitbucket.org/
chloebt/discourse.

2 Related Work

The first text-level discourse parsers were devel-
oped for English, relying mainly on hand-crafted
rules and heuristics (Marcu, 2000a; Carlson et al.,
2001). Hernault et al. (2010, HILDA) greedily use
SVM classifiers to make attachment and labeling
decisions, building up a discourse tree. Joty et
al. (2012, TSP) build a two-stage parsing system,
training separate sequential models (CRF) for the
intra- and the inter-sentential levels. These mod-
els jointly learn the relation and the structure, and
a CKY-like algorithm is used to find the optimal
tree. Feng and Hirst (2014) use CRFs only as lo-
cal models for the inter- and intra-sententials lev-
els. For Brazilian Portuguese, for example, the
first system, called DiZer (Pardo and Nunes, 2008;
Maziero et al., 2011), was also rule-based, but
there has been some work on using classification
of intra-sentential relations (Maziero et al., 2015).

Recently studies have focused on building good
representations of the data. Feng and Hirst (2012)
introduced linguistic features, mostly syntactic
and contextual ones. Li et al. (2014) used a recur-
sive neural network that builds a representation for
each clause based on the syntactic tree, and then
apply two classifiers as in Hernault et al. (2010).
This leads to the best performing system for un-
labeled structure (85.0 in F1). The system pre-
sented by Ji and Eisenstein (2014, DPLP) jointly
learns the representation and the task: a large mar-

gin classifier is used to learn the actions of a shift-
reduce parser, optimizing at the same time the loss
of the parser and a projection matrix that maps the
bag-of-word representation of the discourse units
into a new vector space. This system, however,
only slightly outperforms the original bag-of-word
representation. DPLP is the best performing dis-
course parser for labeled structure, 71.13 in F1 for
nuclearity and 61.63% for relation.

Our system is similar to these last approaches in
learning a representation using a neural network.
However, we found that good performance can al-
ready be obtained without using all the words in
the discourse units, resulting in a parser that is
faster and easier to adapt, as demonstrated in our
multilingual experiments, see Section 7.

3 RST framework

Discourse analysis In building a discourse
structure, the text is first segmented into elemen-
tary discourse units (EDU), mostly clauses. EDUs
are the smallest discourse units (DUs). Discourse
relations are then used to build DUs, recursively.
A non-elementary DU is called a complex dis-
course unit (CDU). The structure of a document
is the set of linked DUs. In this paper, we focus on
the Rhetorical Structure Theory (RST), a theoret-
ical framework proposed by Mann and Thompson
(1988).

Nuclearity A DU is either a nucleus or a satel-
lite, the nucleus being the most important part
of the relation (i.e. of the text), while the satel-
lite contains additional, less important informa-
tion. In general, this feature depends on the re-
lation: a relation can be either mono-nuclear (with
a scheme nucleus-satellite or satellite-nucleus de-
pending on the relative order of the spans), or
multi-nuclear. Some relations can be either mono-
or multi-nuclear, such as consequence or evalua-
tion in the RST-DT.

Binary trees In the original RST framework,
each relation is associated with an application
scheme that defines the nuclearity of the DUs
(mono- or multi-nuclear relation), and the number
of DUs linked. Among the six schemes, two cor-
respond to a link between more than two DUs, ei-
ther a nucleus shared between two mono-nuclear
relations (e.g. motivation and enablement) or a
relation linking several nuclei (e.g. list). Marcu
(1997) proposed to simplify the representation to
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Corpus #Doc #Trees #Words #Rel #Lab #EDU max/min/avg #CDU

En-DT 385 385 206, 300 56 110 21,789 304/2/56.6 21,404
Pt-DT 330 329 135, 820 32 58 12,573 187/3/38.2 12,244
Es-DTa 266 266 69, 787 29 43 4,019 77/2/11.5 3,671
De-DT 174 173 32, 274 30 46 2,790 24/10/16.1 2,617
Nl-DT 80 80 27, 920 31 51 2,345 47/14/29.3 2,265
Eu-DT 88 85 27, 982 31 50 2,396 68/3/28.2 2,311

Table 1: Number of documents (#Doc), trees (#Trees, less than #Doc when we were unable to parse a
document, see Section 4.2), words (#Words, see Section 6), relations (#Rel, originally), labels (#Lab, re-
lation and nuclearity), EDUs (#EDU, max/min/avg number of EDUs per document), and CDUs (#CDU).

aThe test set contains 84 documents doubly annotated, we report figures for annotator A.

binary trees, and all discourse parsers are built on
a binary representation.

4 Data

We test our discourse parser on six languages,
using available RST corpora harmonized as de-
scribed in Section 4.2. Information about the
datasets are summarized in Table 1.

4.1 RST corpora
English The RST Discourse Treebank (Carl-
son and Marcu, 2001), from now on En-DT, is
the most widely used corpus to build discourse
parsers. It contains 385 documents in English
from the Wall Street Journal. The relation set
contains 56 relations (ignoring nuclearity and em-
bedding information2). The inter-annotator agree-
ment scores are 88.70 for the unlabeled structure
(score “Span”), 77.72 for the structure with nucle-
arity (“Nuclearity”) and 65.75 with relations (“Re-
lation”).3

Brazilian Portuguese We merged all the cor-
pora annotated for Brazilian Portuguese, as
in (Maziero et al., 2015), to form the Pt-DT.
The largest corpus is CST-News4 (Cardoso et al.,
2011), it is composed of 140 documents from the
news domain annotated with 31 relations. Authors
report agreement scores corresponding to nuclear-
ity (0.78 in F1) and relations (0.66).

The other corpora are: Summ-it5 (Collovini
et al., 2007) – 50 texts from science articles

2In this corpus, the embedded relations are annotated with
a specific label (suffix “-e”) that we removed.

3See Section 6 for a description of these metrics.
4http://nilc.icmc.usp.br/CSTNews/

login/?next=/CSTNews/
5http://www.inf.pucrs.br/ontolp/

downloads-ontolpplugin.php

in a newspaper, annotated with 29 relations;
Rhetalho6 (Pardo and Seno, 2005) – 40 texts from
the computer science and news domains, anno-
tated with 23 relations; and CorpusTCC6 (Pardo
and Nunes, 2003; Pardo and Nunes, 2004) – 100
introductions of scientific texts in computer sci-
ence, annotated with 31 relations.

Spanish The Spanish RST DT7 (da Cunha et
al., 2011), from now on Es-DT, contains 267 texts
written by specialists on different topics (e.g. as-
trophysics, economy, law, linguistics) The relation
set contains 29 relations. The authors report inter-
annotator agreement of 86% in precision for the
unlabeled structure, 82.46% for the structure with
nuclearity and 76.81% with relations.

German The Postdam Commentary Corpus
2.08 (Stede, 2004; Stede and Neumann, 2014),
from now on De-DT, contains newspaper com-
mentaries annotated at several levels. A part of this
corpus (MAZ) contains 175 documents annotated
within the RST framework using 30 relations.9

Dutch The corpus for Dutch (Vliet et al., 2011;
Redeker et al., 2012), from now on Nl-DT, con-
tains 80 documents from expository (encyclope-
dias and science news website) and persuasive
(fund-raising letters and commercial advertise-
ments) genres, annotated with 31 relations. The
authors report an agreement of 0.83 for discourse
spans, 0.77 for nuclearity and 0.70 for relations.

6http://conteudo.icmc.usp.br/pessoas/
taspardo/Projects.htm

7http://corpus.iingen.unam.mx/rst/
index_en.html

8http://angcl.ling.uni-potsdam.de/
resources/pcc.html

9We systematically ignore the first segment of each docu-
ment, the title, that is not linked to the rest of the text.
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Basque The Basque RST DT10 (Iruskieta et al.,
2013), from now on Eu-DT, contains 88 abstracts
from three specialized domains – medicine, termi-
nology and science –, annotated with 31 relations.
The inter-annotator agreement is 81.67% for the
identification of the CDU (Iruskieta et al., 2015),
and 61.47% for the identification of the relations.

Other corpora To the best of our knowledge,
the only two non English corpora not included
are the one annotated for Tamil (Subalalitha and
Parthasarathi, 2012) that we were unable to find,
and the (intra-sentential) one developed for Chi-
nese (Wu et al., 2016), for which we were unable
to produce RST trees since annotation does not
contain nuclearity indications.

For English, there are corpora annotated for
other domains than the one covered by the En-
DT. We however leave out-of-domain evaluation
for future work: it requires to decide how to use a
corpus annotated only at the sentence level (SFU
review corpus)11, or a corpus annotated with genre
specific relations (Subba and Di Eugenio, 2009).

4.2 Harmonization of the datasets

Recent discourse parsers built on the En-DT are
based on pre-processed data: the corpus contains
only binary trees, with the large label set mapped
to 18 coarse-grained classes. In this section, we
describe this pre-processing step for all corpora
used. Discourse corpora have been released under
three different file formats: dis (En-DT), lisp
(Rhetalho and CorpusTCC) and rs3 (all remain-
ing corpora). The first two ones are bracketed for-
mat, the third one is an XML encoding. In all
cases, the trees encoded do not look like the one in
Figure 1: the relations are annotated on the daugh-
ter nodes, on the satellite for mono-nuclear rela-
tions, or on all the nuclei for multi-nuclear rela-
tions. Moreover, in the rs3 format, the nuclearity
of the segments is not directly annotated, it has
to be retrieved using the type of the relation (in-
dicated at the beginning of each file) and the pre-
vious principle. Our pre-processing step leads to
corpora with bracketed files representing directly
the RST trees (as in Figure 1) with stand-off anno-
tation of the text of the EDUs.

Note that, even if harmonized, the corpora are
not parallel, making it hard to use them to study

10http://ixa2.si.ehu.es/diskurtsoa/en/
11https://www.sfu.ca/˜mtaboada/

research/SFU_Review_Corpus.html

language variations for the discourse level. Some
preliminary work exists on this question (Iruskieta
et al., 2015).

Pre-processing Some documents (format rs3)
contain several roots or empty segments. We were
generally able to remove useless units, that is units
that are not linked to other ones within the tree,
except for one document in the CST corpus (two
roots, both linked to other units).

Another issue concerns unordered EDUs: the
structure annotated contains nodes spanning non
adjacent EDUs. In general, we were able to cor-
rect these cases, but we failed to automatically
produce trees spanning only adjacent EDUs for
three documents in the Eu-DT, and one document
in the De-DT.

Binarization All the corpora contain non-binary
trees that we map to binary ones. In the En-DT,
common cases of non-binarity are nodes whose
daughters all hold the same multi-nuclear relation
– indicating that this relation spans multiple DUs,
e.g. list.12 In rare cases, the children are two satel-
lites and a nucleus – indicating that the nucleus
is shared by the satellites. These configurations
are the ones described in (Marcu, 1997) (see Sec-
tion 3), and choosing right or left-branching leads
to a similar interpretation. For the En-DT, right-
branching is the chosen strategy since (Soricut and
Marcu, 2003).

We found more diverse cases in the other cor-
pora, and, for some of them, right-branching is
impossible. It is the case when the daughters are
one nucleus (annotated with “Span”, only indicat-
ing that this node spans several EDUs) and more
than two satellites holding different relations – i.e.
the nucleus is shared by all the relations. More
precisely, the issue arises when the last two chil-
dren are satellites. Using right-branching, we end
with a node with two satellites as daughters, and
thus a ill-formed tree. In order to keep as often
as possible the “right-branching by default” strat-
egy, we first do a right-branching and then a left-
branching: beginning with four children – S1-Ri,
N2-Span, S3-Rj and S4-Rk, indicating the rela-
tionsRi(S1, N2), Rj(N2, S3) andRk(N2, S4)

13 –
, we end up with the tree in Figure 2. Finally, we
used a right-branching in all cases, except when
the two last children are satellites.

12Recall that in the original format, the relation is not an-
notated on the parent node but on the children.

13S being a satellite, N a nucleus and R a relation.
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S1

N2 S3

S4

SN-Ri

NS-Rj

NS-Rk

Figure 2: Binary tree for a nodeX with 4 children:
S1-Ri, N2-Span, S3-Rj and S4-Rk.

Label set harmonization We map all the rela-
tions used in the corpora to the 18 coarse grained
classes (Carlson and Marcu, 2001) used to build
the most recent discourse parsers on the En-DT.14

The mapping for the En-DT is given in (Carlson
and Marcu, 2001). For all the other corpora, we
first map all the relations that exist in this mapping
(i.e. used in the En-DT annotation scheme) to their
corresponding classes. We end with 18 problem-
atic relations, that is relations that were not used
when annotating the En-DT.

Among them, 10 can be mapped easily, be-
cause they directly correspond to a class – ex-
planation is mapped to the class EXPLANATION,
elaboration to ELABORATION, joint to JOINT –,
because they were just renamed – reformulation
is mapped to the class RESTATEMENT and solu-
tionhood (same as problem-solution) to TOPIC-
COMMENT –, or because they correspond to a
more-fine grained formulation of existing relations
– entity-elaboration is mapped to ELABORATION

and the 4 volitional/non-volitional cause and re-
sult are mapped to the class CAUSE, correspond-
ing to the relations cause and result in the En-DT.

For the remaining relations, we looked at the
definition of the relations15 to decide on a map-
ping. Note that this label mapping is made quite
easy by the fact that all the corpora were annotated
following the same underlying theory – they thus
use relations defined using similar criteria –, and
that we are using a coarse-grained classification –
we thus do not need to decide whether a relation
is equivalent to another one, but rather whether
it fits the properties of the other relations within
a specific class. Label mappings for corpora an-
notated following different frameworks are still

14The full mapping is provided in Appendix A.
15http://www.sfu.ca/rst/01intro/

definitions.html

discussed (Roze, 2013; Benamara and Taboada,
2015).

We decided on the following mapping, con-
sidering the properties of the relations and the
classes: parenthetical – used to give “additional
details” – is mapped to ELABORATION, con-
junction – similar to a list with only two ele-
ments – to JOINT, justify – similar to Explanation-
argumentative – and motivation – quite similar to
reason and grouped with evidence in (Benamara
and Taboada, 2015) – to EXPLANATION, prepara-
tion – presenting preliminary information, increas-
ing the readiness to read the nucleus – to BACK-
GROUND, and unconditional and unless – linked
to condition – to CONDITION.

Finally, note that this mapping does not lead to
having the same relation set for all the corpora, and
that the relation distribution could vary among the
datasets.

5 Discourse Parser

Our discourse parser builds discourse structures
from segmented texts, we did not implement dis-
course segmenters for each language. Discourse
segmenters only exist for English (Hernault et al.,
2010) (95, 0% in F1), Brazilian Portuguese (Pardo
and Nunes, 2008) (56.8%) and Spanish (da Cunha
et al., 2010; da Cunha et al., 2012) (80%). Dis-
course segmenters can be built quite easily rely-
ing only on manual rules as it is the case for the
Spanish and Portuguese ones, especially consid-
ering that segmentation has generally been made
coarser in the corpora built after the En-DT (Vliet
et al., 2011). While improving this first step is cru-
cial, we focus on the harder step of tree building.

5.1 Description of the Parser

We used the syntactic parser described in Coavoux
and Crabbé (2016), in the static oracle setting. We
chose this parser because it can take pre-trained
embeddings as input and, more importantly, be-
cause it was designed for morphologically rich
languages and thus takes as input not only tokens
and POS tags, but any token attribute that is then
mapped to a real-valued vector, which allows the
use of complex features.

The parser is a transition-based constituent
parser that uses a lexicalized shift-reduce transi-
tion system (Sagae and Lavie, 2005). The tran-
sition system is based on two data structures – a
stack (S) stores partial trees and a queue (B) con-
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tains the unparsed DUs. A parsing configuration
is a couple 〈S,B〉. In the initial configuration,
S is empty and B contains the whole document.
The parser iteratively applies actions to the cur-
rent configuration, in order to derive new config-
urations until it reaches a final state, i.e. a parsing
configuration where B is empty and S contains a
single element (the root of the tree).

The actions are defined as follows:

• SHIFT pops an EDU from B and pushes it
onto S.

• REDUCE-R-X and REDUCE-L-X pop two
DUs from S, push a new CDU with the label
X on S and assign its nucleus (Left or Right).

Scoring System As in Chen and Manning
(2014), at each parsing step, the parser scores ac-
tions with a feed-forward neural network. The in-
put of the network is a sequence of typed sym-
bols extracted from the top elements of S and B.
The symbols are typically discourse relations or
attributes of their nucleus EDU (e.g. first word of
EDU, see Section 5.3).

The first layer of the network projects these
symbols onto an embedding space (each type of
symbol has its own embedding matrix). The fol-
lowing two layers are non-linear layers with a
ReLU activation. The output of the network is a
probability distribution over possible actions com-
puted by a softmax layer.

To generate a set of training examples
{a(i), c(i)}Ni=1, we used the static oracle to extract
the gold sequence of actions and configurations for
each tree in the corpus. The objective function of
the parser is the negative log-likelihood of gold ac-
tions given corresponding configurations:

L(θ) = −
N∑

i=1

logP (a(i)|c(i);θ)

where θ is the set of all parameters, including em-
bedding matrices.

We optimized this objective with the averaged
stochastic gradient descent algorithm (Polyak and
Juditsky, 1992). At inference time, we used beam-
search to find the best-scoring tree.

5.2 Cross-lingual Discourse Parsing
Our first experiments are strictly monolingual, and
they are intended to give state-of-the-art perfor-
mance in a fully supervised setting. We consider

that we need at least 100 documents to build a
monolingual model, since we already keep around
65 documents for test and development.

We then evaluate multi-source transfer meth-
ods, considering one language as the target and the
others as sources. More precisely, we will evalu-
ate two settings: (1) training and optimizing only
on the available source data; (2) training on all
available data, including target ones if any, and
optimizing on the development set of the target
language. Setting (1) provides performance when
no data are available at all in the target language,
while (2) aims at evaluating if one can expect im-
provements by simply combining all the available
data.

When combining the corpora, we cannot ignore
lexical information as it has been done for syntac-
tic parsing with delexicalized models (McDonald
et al., 2011). Discourse parsing is a semantic task,
at least when it comes to predict a rhetorical re-
lation between two spans of text, and information
from words have proven to be crucial (Rutherford
and Xue, 2014; Braud and Denis, 2015). We thus
include word features using bilingual dictionaries
– i.e. translating the words used as features into
a single language (English) –, or through cross-
lingual word embeddings as proposed in (Guo et
al., 2015) for dependency parsing. More pre-
cisely, we used the cross-lingual word represen-
tations presented in (Levy et al., 2017) that al-
low multi-source learning and have proven useful
for POS tagging but also more semantic-oriented
tasks, such as dependency parsing and document
classification.

5.3 Features

As in previous studies, we used features repre-
senting the two EDUs on the top of the stack
and the EDU on the queue. If the stack contains
CDUs, we use the nuclearity principle to choose
the head EDU, converting multi-nuclear relations
into nucleus-satellite ones as done since (Sagae,
2009). However, we found that using these in-
formation also for the left and right children of
the two CDUs on the top of the stack, and adding
as a feature the representation built for these two
CDUs lead to important improvements.

Lexical features We use the first three words
and the last word along with their POS, features
that have proven useful for discourse (Pitler et al.,
2009), and the words in the head set (Sagae, 2009)
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– i.e. words whose head in the dependency graph
is not in the EDU –, here limited to the first three.16

This head set contains the head of the sentence (in
general, the main event), or words linked to the
main clause when the segment does not contain
the head (especially, discourse connectives that are
subordinating or coordinating conjunctions could
be found there). The words are the boundaries
could also contain discourse connectives, adverbs
or temporal expressions that could be relevant for
discourse structure. Note however that these fea-
ture have been built for English, and they could be
less useful for other languages. We leave the ques-
tion of investigating their utility linked to word or-
der differences for future work.

Note that we do not use all the words in the
EDUs as features, contrary to (Li et al., 2014; Ji
and Eisenstein, 2014). Our only word features are
the words in the head set and at the boundaries,
thus 7 words per EDU. When using word embed-
dings, we concatenate the vectors for each word,
each of d dimensions, keeping the same order to
build a vector of 7d dimensions (e.g., the first word
of the EDU corresponds to the first d dimensions,
the second has values between d and 2d).

Position and length Other features are used to
represent the position of the EDU in the document
and its length in tokens. We use thresholds to dis-
tinguish between very long (length l > 25 tokens),
long (l > 15), short (l > 5) and very short (l ≤ 5)
EDUs. We also distinguish between the “first” and
the “last” EDU in the document, and use also a
threshold on the ratio s =(position of the EDU di-
vided by the total number of EDUs) to separate
EDUs at the beginning (s < 0.25), in the first
middle (0.25 ≤ s < 0.5), in the second middle
(0.5 ≤ s < 0.75) or in the end (s >= 0.75).

Position of the head We add a boolean feature
indicating if the head of the sentence is in the cur-
rent EDU or outside.

Number/date/percent/money We also use 4 in-
dicators of the presence of a date, a number, an
amount of money and a percentage, features that
have proven to be useful for discourse (Pitler et
al., 2009). We build these features using simple
regular expressions.

Corpus Size dict. # words # unk. words

Pt-DT 18,049 13,417 6,929
Es-DT 22,815 6,961 3,231
De-DT 31,900 5,856 1,762
Nl-DT 19,012 3,316 1,428
Eu-DT 1,092 6,553 5,446

Table 2: Dictionary coverage for each dataset on
the train set when available, on the dev set else.

6 Experiment settings

Data For the En-DT, we follow previous works
in using the official test set of 38 documents. For
the Es-DT, we report results on the test set A.17

For all the other corpora, we randomly choose
38 documents to make a test set, and either use
the remaining documents as development set (Nl-
DT and Eu-DT), or split them into a development
set of 25 documents, the remaining being used as
training set (En-DT, Es-DT, Pt-DT and De-DT).

All the results given are based on a gold seg-
mentation of the documents.

Each dataset is parsed using UDPipe,18 thus
tokenizing, splitting into sentences and annotat-
ing each document based on the Universal Depen-
dency scheme (Nivre et al., 2016).

The word features for the non-English datasets
are translated using available bilingual Wiktionar-
ies19 without disambiguation, the coverage of each
dictionary is given in Table 2. We also look for a
translation of the lemma (and of the stems for the
languages for which a stemmer20 was available) as
a backup strategy. When no translation is found,
we keep the original token.

The word embeddings used were built on the
EuroParl corpus (Levy et al., 2017). We keep only
the 50 first dimensions of the vectors representing
the words, our preliminary experiments suggest-
ing no significant differences against keeping the
whole 200 dimensions. Unknown words are rep-
resented by the average vector of all word vectors.
For Basque, we had no access to these embed-
dings, we thus only report results using bilingual
Wiktionaries.

16Having more than three tokens in the head set is rare.
17We found similar performance on the other test set.
18http://ufal.mff.cuni.cz/udpipe
19https://en.wiktionary.org/wiki/User:

Matthias_Buchmeier
20https://pypi.python.org/pypi/

snowballstemmer
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Parameter tuning In our experiments
we optimized on the development set the
following parameters: the learning rate
∈ {0.01, 0.02, 0.03}, the learning rate decay
constant ∈ {10−5, 10−6, 10−7, 0}, the number of
iterations ∈ [1 − 20], and the size of the beam
∈ {1, 2, 4, 8, 16, 32}. We fixed the number N of
hidden layers to 2 and the size of the hidden layers
H to 128 after experimenting on the En-DT (with
N ∈ {1, 2, 3} and H ∈ {64, 128}).

We fixed the size of the vectors for each feature
to 50 for word features,21 16 for POS, 6 for posi-
tion, 4 for length, and 2 for other features.

Metrics Following (Marcu, 2000b) and most
subsequent work, output trees are evaluated
against gold trees in terms of how similar they
bracket the EDUs (Span), how often they agree
about nuclei when predicting a true bracket (Nu-
clearity), and in terms of the relation label, i.e., the
overlap between the shared brackets between pre-
dicted and gold trees (Relation).22 These scores
are analogous to labeled and unlabeled syntactic
parser evaluation metrics.

Baseline Since we do not have state-of-the-art
results for most of the languages, we provide re-
sults for a simple most frequent baseline (Sys-
tem MFS) that labels all nodes with the most fre-
quent relation in the training or development set
– that is NN-JOINT for De-DT and Es-DT, and
NS-ELABORATION for the others –, and build the
structure by right-branching.

7 Results

Monolingual experiments Monolingual exper-
iments are aimed at evaluating performance for
languages having a large annotated corpus (at least
100 documents). Our results are summarized in
Table 3. Our parser is competitive with state-of-
the-art systems for English (first line in Table 3),
with even better performance for unlabeled struc-
ture (85.04%) and structure labeled with nuclear-
ity (72.29%). These results show that using all the
words in the units (Ji and Eisenstein, 2014; Li et
al., 2014), is not as useful as using more contextual
information, that is taking more DUs into account
(left and right children of the CDUs in the stack).
However, the slight drop for Relation shows that

21When using embeddings, the final vector is of size 350.
22We use the evaluation script provided at https://

github.com/jiyfeng/DPLP.

we probably miss some lexical information, or
that we need to choose a more effective combi-
nation scheme than concatenation. We plan to use
bi-LSTM encoders (Hochreiter and Schmidhuber,
1997) to construct fixed-length representations of
EDUs.

For the other languages, performance are still
high for unlabeled structure, but far lower for la-
beled structure except for Spanish. For this lan-
guage, the quite high performance obtained were
unexpected, since the corpus is far much smaller
than the Portuguese one. One possible explana-
tion is that the Portuguese corpus is in fact a mix
of different corpora, with varied domains, and pos-
sibly changes in annotation choices. On the other
hand, the low results for German show the sparsity
issue since it is the language for which we have the
fewest annotations (“#CDU”, see Table 1).

Cross-lingual experiments When only relying
on data from different languages (“Cross” in Ta-
ble 3), we observe a large drop in performance
compared to monolingual systems. The source-
only discourse parsers still have fairly high per-
formance for unlabeled structure (around 70% or
higher), the scores being especially low for rela-
tion identification. This could indicate that our
representation does not generalize well. But it also
comes from differences among the corpora. For
example, only the En-DT and the Pt-DT use the
relation ATTRIBUTION. This leads to a large drop
in performance associated with this relation, when
one of these corpora is not in the training data, es-
pecially for the source-only system for the En-DT
(from 93% in F1 to 30%). On the other hand, on
the En-DT, we observe improvement for other re-
lations either largely represented in all the corpora
(e.g. JOINT +3%), or under-represented in the En-
DT (e.g. CONDITION +3%).

When combining corpora for source and target
languages (“+ dev.” in Table 3), we obtain our best
performing system for English, with all scores im-
proved compared to our best monolingual system
(+0.8 for Nuclearity and +1.3 for Relation). Oth-
erwise scores are similar to the monolingual case.

Finally, for languages without training set (Nl-
DT and Eu-DT), this strategy allows us to build
parsers outperforming our simple baseline (MFS)
by around 11−13% for Span, 8−15% for Nuclear-
ity and 6−11% for Relation. Having at least some
annotated data to make a development set allows
improvements against only using corpora in other
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System En-DT Pt-DT Es-DT De-DT Nl-DT Eu-DT
Sp Nuc Rel Sp Nuc Rel Sp Nuc Rel Sp Nuc Rel Sp Nuc Rel Sp Nuc Rel

MFS 58.2 33.4 22.1 57.3 33.9 23.23 82.0 51.5 17.7 61.3 37.8 13.2 57.9 35.5 22.0 63.2 34.9 18.8

Li et al.a 85.0 70.8 58.6 - - - - - - - - - - - - - - -
DPLPa 82.1 71.1 61.6 - - - - - - - - - - - - - - -

Mono 85.0 72.3 60.1 82.0 65.1 49.9 89.7 72.7 54.4 80.2 53.9 35.0 - - - - - -
+ emb. 83.5 68.5 55.9 81.3 62.9 48.8 89.3 72.4 51.4 77.7 51.6 31.1 - - - - - -

Cross 76.3 50.5 31.3 76.5 54.6 35.5 78.1 45.4 27.0 76.0 46.0 26.1 69.5 42.1 25.3 78.6 53.0 26.4
+ dev. 85.1 73.1 61.4 81.9 65.1 49.8 88.8 68.0 50.4 79.6 53.6 34.1 69.2 43.4 28.3 76.7 50.5 29.5

Humanb 88.7 77.7 65.8 - 78 66 86 82.5 76.8 - - - 83 77 70 81.7 - 61.5

Table 3: Performance of our monolingual and cross-lingual systems for Span (Sp), Nuclearity (Nuc)
and Relation (Rel). “MFS” corresponds to the baseline system described in Section 6; “+ emb.” is
the monolingual system using word embeddings; “+dev.” means that the system is optimized on the
development set of the target language (vs the union of the source development sets). For cross-lingual
systems, we only report our best results using either word embeddings or bilingual dictionaries.

aScores reported from (Li et al., 2014), and DPLP (Ji and Eisenstein, 2014).
bFor Brazilian Portuguese, inter-annotator agreement scores are only available for the CST-news corpus ; For Spanish, only

precision scores are reported ; For Basque, the scores reported are different (Iruskieta et al., 2015).

languages (around +3% for the Nl-DT and the Eu-
DT for Relation). On the other hand, we probably
overfit our development data for the Eu-DT, since
better results were obtained for unlabeled structure
(+2%) and structure with nuclearity (+2.5%) us-
ing only data in other languages.

Word embeddings Using word embeddings
(“+emb” in Table 3) for monolingual systems of-
ten leads to an important drop in performance, es-
pecially for Relation (from −1.1 to −4.2%). This
demonstrates that these embeddings do not pro-
vide the large range of information needed for re-
lation identification, a task inherently semantic.
We believe however that the results are not too low
to prevent for interesting applications. It is note-
worthy that the English parser with embeddings is
still better than the systems proposed in (Hernault
et al., 2010; Joty et al., 2013).

For cross-lingual experiments, the bilingual dic-
tionaries perform generally better than embed-
dings (except for Pt-DT and De-DT for source-
only systems), demonstrating again that we need
representations more tailored to the task to lever-
age all relevant lexical information.

8 Conclusion

We introduced a new discourse parser that ob-
tains state-of-the-art performance for English. We
harmonized discourse treebanks for several lan-
guages, enabling us to present results for five other
languages for which available corpora are smaller,
including the first cross-lingual discourse parsing

results in the literature.

Acknowledgements

We thank the three anonymous reviewers for their
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tomático para el español. Procesamiento del
lenguaje natural, 45:145–152.

Iria da Cunha, Juan-Manuel Torres-Moreno, and Ger-
ardo Sierra. 2011. On the development of the RST
Spanish Treebank. In Proceedings of the Fifth Lin-
guistic Annotation Workshop, LAW.

Iria da Cunha, Eric SanJuan, Juan-Manuel Torres-
Moreno, Marina Lloberes, and Irene Castellón.
2012. DiSeg 1.0: The first system for Span-
ish discourse segmentation. Expert Syst. Appl.,
39(2):1671–1678.
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Daniel Zeman, and Hanzhi Zhu. 2016. Univer-
sal dependencies 1.3. LINDAT/CLARIN digital li-
brary at Institute of Formal and Applied Linguistics,
Charles University in Prague.

Thiago A. S. Pardo and Maria das Graças Volpe
Nunes. 2003. A construção de um corpus de textos

cientı́ficos em Português do Brasil e sua marcação
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Classe Relations

ATTRIBUTION attribution, attribution-negative
BACKGROUND background, circumstance, circunstancia, fondo,

preparación, preparation, prestatzea, testuingurua,
zirkunstantzia

CAUSE causa, cause, cause-result, consequence, kausa,
non-volitional-cause, non-volitional-result, ondorioa,
result, resultado, volitional-cause, volitional-result

COMPARISON analogy, comparison, preference, proportion
CONDITION alderantzizko-baldintza, alternativa, aukera, baldintza,

condición, condición-inversa, condition, contingency,
ez-baldintzatzailea, hypothetical, otherwise,
unconditional, unless

CONTRAST antitesia, antithesis, antı́tesis, concesión, concession,
contrast, contraste, kontrastea, kontzesioa

ELABORATION definition, e-elaboration, elaboración, elaboration,
elaboration-additional, elaboration-general-specific,
elaboration-object-attribute, elaboration-part-whole,
elaboration-process-step, elaboration-set-member,
elaborazioa, example, parenthetical

ENABLEMENT ahalbideratzea, capacitación, enablement, helburua,
propósito, purpose

EVALUATION comment, conclusion, ebaluazioa, evaluación, evaluation,
interpretación, interpretation, interpretazioa

EXPLANATION ebidentzia, evidence, evidencia, explanation,
explanation-argumentative, justificación, justifikazioa,
justify, motibazioa, motivación, motivation, reason

JOINT bateratzea, conjunción, conjunction, disjunction,
disjuntzioa, disyunción, joint, konjuntzioa, list, lista, unión

MANNER-MEANS manner, means, medio, metodoa
SAME-UNIT same-unit
SUMMARY birformulazioa, definitu-gabeko-erlazioa, laburpena,

reformulación, restatement, resumen, summary
TEMPORAL inverted-sequence, secuencia, sekuentzia, sequence,

temporal-after, temporal-before, temporal-same-time
TEXTUAL-ORGANIZATION textual-organization
TOPIC-CHANGE topic-drift, topic-shift
TOPIC-COMMENT arazo-soluzioa, comment-topic, problem-solution,

question-answer, rhetorical-question, solución,
solutionhood, statement-response, topic-comment

Table 4: Mapping of all the relations found in the datasets: for each class, we give the set of relation
names as they appear in the corpora (removing only the possible suffixes “-e”, “-s”, “-mn”). We ignore
the simplest differences in names (e.g. textual-organization and textualorganization).
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Abstract

In an end-to-end dialog system, the aim
of dialog state tracking is to accurately
estimate a compact representation of the
current dialog status from a sequence of
noisy observations produced by the speech
recognition and the natural language un-
derstanding modules. This paper intro-
duces a novel method of dialog state track-
ing based on the general paradigm of
machine reading and proposes to solve
it using an End-to-End Memory Net-
work, MemN2N, a memory-enhanced neu-
ral network architecture. We evaluate the
proposed approach on the second Dia-
log State Tracking Challenge (DSTC-2)
dataset. The corpus has been converted
for the occasion in order to frame the hid-
den state variable inference as a question-
answering task based on a sequence of ut-
terances extracted from a dialog. We show
that the proposed tracker gives encourag-
ing results. Then, we propose to extend
the DSTC-2 dataset and the definition of
this dialog state task with specific reason-
ing capabilities like counting, list mainte-
nance, yes-no question answering and in-
definite knowledge management. Finally,
we present encouraging results using our
proposed MemN2N based tracking model.

1 Introduction

One of the core components of state-of-the-art and
industrially deployed dialog systems is a dialog
state tracker. Its purpose is to provide a compact
representation of a dialog produced from past user
inputs and system outputs which is called the di-
alog state. The dialog state summarizes the infor-

∗Work carried out as an intern at XRCE

mation needed to successfully maintain and finish
a dialog, such as users’ goals or requests. In the
simplest case of a so-called slot-filling schema, the
state is composed of a predefined set of variables
with a predefined domain of expression for each
of them. As a matter of fact, in the recent con-
text of end-to-end trainable machine learnt dialog
systems, state tracking remains a central element
of such architectures (Wen et al., 2016). Current
models, mainly based on the principle of discrim-
inative learning, tend to share three common lim-
itations. First, the tracking task is perform using
a fixed window of the past dialog utterances as
support for decision. Second, the possible cor-
relations between the set of tracked variables are
not leveraged and individual trackers tend to be
learnt independently. Third, the tracking task is
summarized as the capability of inferring values
for a predefined set of latent variables. Starting
from these observations, we propose to formalize
the task of state tracking as a particular instance of
machine reading problem. Indeed, these formal-
ization and the proposed resolution model called
MemN2N (Weston et al., 2015) allow to define a
tracker that is be able to decide at the utterance
level on the basis on the current entire dialog. In-
deed, the model learns to focus its attention on the
meaningful parts of the dialog regarding the cur-
rently asked slot and can eventually capture possi-
ble correlation between slots. As far as our knowl-
edge goes, it is the first attempt to explicitly frame
the task of dialog state tracking as a machine read-
ing problem. Finally, such formalization allows
for the implementation of approximate reasoning
capability that has been shown to be crucial for
any machine reading tasks (Weston et al., 2015)
while extending the task from slot instantiation
to question answering. This paper is structured
as follows, Section 2 recalls the main definitions
associated to transactional dialogs and describes
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the associated problem of statistical dialog state
tracking with both the generative and discrimina-
tive approaches. At the end of this section, the
limitations of the current models in terms of nec-
essary annotations and reasoning capabilities are
addressed. Then, Section 3 depicts the proposed
machine reading model for dialog state tracking
and proposes to extend a state of the art dialog
state tracking dataset, DSTC-2, to several simple
reasoning capabilities. Section 4 illustrates the ap-
proach with experimental results obtained using a
state of the art benchmark for dialog state track-
ing.

2 Dialog state tracking

2.1 Main Definitions

A dialog state tracking task is formalized as fol-
lows: at each turn of a dyadic dialog, the dialog
agent chooses a dialog act d to express and the
user answers with an utterance u. In the simplest
case, the dialog state at each turn is defined as
a distribution over a set of predefined variables,
which define the structure of the state (Williams
et al., 2005). This classic state structure is com-
monly called slot filling or semantic frame. In
this context, the state tracking task consists of
estimating the value of a set of predefined vari-
ables in order to perform a procedure or trans-
action which is the purpose of the dialog. Typ-
ically, a natural language understanding module
processes the user utterance and generates an N-
best list o = {(d1, f1), . . . ,(dn, fn)}, where di is the
hypothesized user dialog act and fi is its confi-
dence score. Various approaches have been pro-
posed to define dialog state trackers. The tradi-
tional methods used in most commercial imple-
mentations use hand-crafted rules that typically
rely on the most likely result from an NLU module
(Yeh et al., 2014) and hardly models uncertainty.
However, these rule-based systems are prone to
frequent errors as the most likely result is not al-
ways the correct one (Williams, 2014).

More recent methods employ statistical ap-
proaches to estimate the posterior distribution over
the dialog states allowing them to leverage the un-
certainty of the results of the NLU module. In
the simplest case where no ASR and NLU mod-
ules are employed, as in a text based dialog system
(Henderson et al., 2013), the utterance is taken as
the observation using a so-called bag of words rep-
resentation. If an NLU module is available, stan-

dardized dialog act schemes can be considered as
observations (Bunt et al., 2010). Furthermore, if
prosodic information is available from the ASR
component of the dialog system (Milone and Ru-
bio, 2003), it can also be considered as part of the
observation definition. A statistical dialog state
tracker maintains, at each discrete time step t, the
probability distribution over states, b(st), which
is the system’s belief over the state. The actual
slot filling process is composed of the cyclic tasks
of information gathering and integration, in other
words – dialog state tracking. In such framework,
the purpose is to estimate as early as possible in
the course of a given dialog the correct instantia-
tion of each variable. In the following, we will as-
sume the state is represented as a set of variables
with a set of known possible values associated to
each of them. Furthermore, in the context of this
paper, only the bag of words has been considered
as an observation at a given turn but dialog acts or
detected named entity provided by an SLU mod-
ule could have also been incorporated.

Two statistical approaches have been consid-
ered for maintaining the distribution over a state
given sequential NLU output. First, the discrimi-
native approach aims to model the posterior prob-
ability distribution of the state at time t + 1 with
regard to state at time t and observations z1:t . Sec-
ond, the generative approach attempts to model the
transition probability and the observation proba-
bility in order to exploit possible interdependen-
cies between hidden variables that comprise the
dialog state.

2.2 Generative Dialog State Tracking

A generative approach to dialog state tracking
computes the belief over the state using Bayes’
rule, using the belief from the last turn b(st−1)
as a prior and the likelihood given the user ut-
terance hypotheses p(zt |st), with zt the observa-
tion gathered at time t. In prior works (Williams
et al., 2005), the likelihood is factored and
some independence assumptions are made: bt ∝
∑st−1,zt p(st |zt ,st−1)p(zt |st−1)b(st−1). A typical
generative model uses a factorial hidden Markov
model (Ghahramani and Jordan, 1997). In this
family of approaches, scalability is considered as
one of the main issues. One way to reduce the
amount of computation is to group the states into
partitions, as proposed in the Hidden Information
State (HIS) model (Gasic and Young, 2011). Other
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approaches to cope with the scalability problem in
dialog state tracking is to adopt a factored dynamic
Bayesian network by making conditional inde-
pendence assumptions among dialog state compo-
nents, and then using approximate inference algo-
rithms such as loopy belief propagation (Thom-
son and Young, 2010) or a blocked Gibbs sam-
pling as (Raux and Ma, 2011). To cope with such
limitations, discriminative methods of state track-
ing presented in the next part of this section aim
at directly model the posterior distribution of the
tracked state using a chosen parametric form.

2.3 Discriminative Dialog State Tracking
The discriminative approach of dialog state track-
ing computes the belief over a state via a para-
metric model that directly represents the belief
b(st+1) = p(ss+1|st ,zt). For example, Maximum
Entropy has been widely used in the discrimina-
tive approach (Metallinou et al., 2013). It for-
mulates the belief as follows: b(s) = P(s|x) =
η .ewT φ(x,s), where η is the normalizing constant,
x = (du

1 ,d
m
1 ,s1, . . . ,du

t ,d
m
t ,st) is the history of user

dialog acts, du
i , i ∈ {1, . . . , t}, the system dialog

acts, dm
i , i ∈ {1, . . . , t}, and the sequence of states

leading to the current dialog turn at time t. Then,
φ(.) is a vector of feature functions on x and s.
Finally, w is the set of model parameters to be
learned from annotated dialog data. Finally, deep
neural models, performing on a sliding window of
features extracted from previous user turns, have
also been proposed in (Henderson et al., 2014c;
Mrksic et al., 2016). Of the current literature,
this family of approaches have proven to be the
most efficient for publicly available state tracking
datasets. Recently, deep learning based models
implementing this strategy (Mrksic et al., 2016;
Henderson et al., 2014a; Williams et al., 2016)
have shown state of the art results. This ap-
proaches tends to leverage unsupervised training
word representation (Mikolov et al., 2013).

2.4 Current Limitations
Using error analysis (Henderson et al., 2014b),
three limitations can be observed in the application
of these inference approaches. First, current mod-
els tend to fail at considering long-tail dependen-
cies that occurs on dialogs. For example, coref-
erences, inter-utterances informations and correla-
tions between slots have been shown to be difficult
to handle even with the usage of recurrent network
models (Henderson et al., 2014a). To illustrate the

Figure 1: T-SNE transformation of the final state
of DSTC-2 train set.

inter-slot correlation, Figure 1 depicted the t-SNE
(van der Maaten and Hinton, 2008) projected fi-
nal state of the dialog of the DSTC-2 training set.
On the other hand, reasoning capabilities, as re-
quired in machine reading applications (Poon and
Domingos, 2010; Etzioni et al., 2007; Berant et
al., 2014; Weston et al., 2015) remain absent in
these classic formalizations of dialog state track-
ing. Finally, tracking definition is limited to the
capability to instantiate a predefined set of slots.
In the next section, we present a model of dialog
state tracking that aims at leveraging the current
advances of MemN2N, a memory-enhanced neural
networks and their approximate reasoning capabil-
ities that seems particularly adapted to the sequen-
tial, long range dependency equipped and sparse
nature of complex dialog state tracking tasks. Fur-
thermore, this model allows to relax the hypothe-
sis of strict utterance-level annotation that does not
corresponds to common practices in industrial ap-
plications of transactional conversational user in-
terfaces where annotations tend to be placed at a
multi-utterance level or full-dialog level only.

3 Machine Reading Formulation of
Dialog State Tracking

We propose to formalize the dialog state tracking
task as a machine reading problem (Etzioni et al.,
2007; Berant et al., 2014). In this section, we re-
call the main definitions of the task of machine
reading, then describes the MemN2N, a memory-
enhanced neural network architectures proposed
to handle such tasks in the context of dialogs. Fi-
nally, we formalize the task of dialog state track-
ing as a machine reading problem and propose to

307



solve it using a memory-enhanced neural architec-
ture of inference.

3.1 Machine Reading

The task of textual understanding has recently
been formulated as a supervised learning problem
(Kumar et al., 2015; Hermann et al., 2015). This
task consists in estimating the conditional prob-
ability p(a|d,q) of an answer a to a question q
where d is a document. Such an approach requires
a large training corpus of {Document - Query -
Answer} triples and until now such corpora have
been limited to hundreds of examples (Richard-
son et al., 2013). In the context of dialog state
tracking, it can be understood as the capability of
inferring a set of latent values l associated with
a set of variables v related to a given dyadic or
multi-party conversation d, from direct correlation
and/or reasoning, using the course of exchanges of
utterances, p(l|d,v).

State updates at an utterance-level are rarely
provided off-the-shelf from a production environ-
ment. In these environments, annotation is of-
ten performed afterhand for the purpose of log-
ging, monitoring or quality assessment. In the
limit cases, as in human-to-human dialog sys-
tems, dialog-level annotations remains a common
practice of annotation especially in personal assis-
tance, customer care dialogs and, in a more gen-
eral sense, industrial application of transactional
conversational user interfaces. Another frequent
setting consist of informing the state after a given
number of utterance exchange between the locu-
tors. So an additional effort of specific annota-
tion is often needed in order to train a state of
the art statistical state tracking model (Henderson
et al., 2014b). In that sense, formalizing dialog
state tracking at a sub-dialog level in order to in-
fer hidden state variables with respect to a list of
utterances started from the first one to any given
utterance of a given dialog seems particularly ap-
propriate. In the context of dialog state tracking
challenges, the DSTC-4 dialog corpus have been
designed in such purpose but only consists of 22
dialogs. Concerning the DSTC-2 corpus, the train-
ing data contains 2207 dialogs (15611 turns) and
the test set consists of 1117 dialogs (Williams et
al., 2016). This dataset is more suitable for our
experiments.

For these reasons, the machine reading
paradigm becomes a promising formulation for

the general problem of dialog state tracking.
Furthermore, current approaches and available
datasets for state tracking do not explicitly cover
reasoning capabilities such as temporal and spatial
reasoning, counting, sorting and deduction. We
suggest that in the future dataset dialogs express-
ing such specific abilities should be developed. In
this last part, several reasoning enhancements are
suggested to the DSTC-2 dataset.

3.2 End-to-End Memory Networks
The MemN2N architecture, introduced by (Weston
et al., 2015), consists of two main components:
supporting memories and final answer prediction.
Supporting memories are in turn comprised of a
set of input and output memory representations
with memory cells. The input and output memory
cells, denoted by mi and ci, are obtained by trans-
forming the input context x1, . . . ,xn (i.e a set of ut-
terances) using two embedding matrices A and C
(both of size d×|V |where d is the embedding size
and |V | the vocabulary size) such that mi = AΦ(xi)
and ci =CΦ(xi) where Φ(·) is a function that maps
the input into a bag of dimension |V |.

Similarly, the question q is encoded using an-
other embedding matrix B ∈ Rd×|V |, resulting in a
question embedding u = BΦ(q). The input mem-
ories {mi}, together with the embedding of the
question u, are utilized to determine the relevance
of each of the stories in the context, yielding in a
vector of attention weights

pi = softmax(u>mi) (1)

where softmax(ai) =
eai

∑i eai
. Subsequently, the re-

sponse o from the output memory is constructed
by the weighted sum:

o = ∑
i

pici (2)

Other models of parametric encoding for the ques-
tion and the document have been proposed in (Ku-
mar et al., 2015). For the purpose of this presenta-
tion, we will keep with definition of Φ.

For more difficult tasks requiring multiple sup-
porting memories, the model can be extended to
include more than one set of input/output memo-
ries by stacking a number of memory layers. In
this setting, each memory layer is named a hop
and the (k+ 1)th hop takes as input the output of
the kth hop:

uk+1 = ok +uk (3)
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Lastly, the final step, the prediction of the an-
swer to the question q, is performed by

â = softmax(W (oK +uK)) (4)

where â is the predicted answer distribution, W ∈
R|V |×d is a parameter matrix for the model to learn
and K the total number of hops.

Two weight tying schemes of the embedding
matrices have been introduced in (Weston et al.,
2015):

1. Adjacent: the output embedding matrix in
the kth hop is shared with the input embed-
ding matrix in the (k+ 1)th hop, i.e., Ak+1 =
Ck for k ∈ {1,K− 1}. Also, the weight ma-
trix W in Equation (4) is shared with the out-
put embedding matrix in the last memory hop
such that W> =CK .

2. Layer-wise: all the weight matrices Ak and
Ck are shared across different hops, i.e., A1 =
A2 = . . .= AK and C1 =C2 = . . .=CK .

In the next section, we show how the task of di-
alog state tracking can be formalized as machine
reading task and solved using such memory en-
hanced model.

3.3 Dialog Reading Model for State Tracking

In this section, we formalize dialog state tracking
using the paradigm of machine reading. As far as
our knowledge goes, it is the first attempt to ap-
ply this approach and develop a specific dataset
format, detailed in Section 4, from an existing
and publicly available dialog state tracking chal-
lenge dataset to fulfill this task. Assuming (1)
a dyadic dialog d composed of a list of utter-
ances, (2) a state composed with (2a) a set of
variables vi with i = {1, . . . ,n}and (2b) a set of
corresponding assigned values li. One can de-
fine a question qv that corresponds to the specific
querying of a variable in the context of a dialog
p(li|qvi ,d). In such context, a dialog state track-
ing task consists in determining for each variable
v, l∗ = argmaxli∈L p(li|qvi ,d), with L the specific
domain of expression of a variable vi.

In addition to the actual dataset, we propose
to investigate four general reasoning tasks using
DSTC-2 dataset as a starting point. In such way,
we leverage the dataset of DSTC-2 to create more
complex reasoning task than the ones present in
the original dialogs of the dataset by performing
rule-based modification over the corpus. Obvi-
ously, the goal is to develop resolution algorithms

that are not dedicated to a specific reasoning task
but inference models that will be as generic as pos-
sible. In the rest of the section, each of the reason-
ing tasks associated with dialog state tracking are
described and the generation protocol is explained
with examples.

Factoid Questions : This first task corresponds
to the current formulation of dialog state tracking.
It consists of questions where a previously given
a set of supporting facts, potentially amongst a set
of other irrelevant facts, provides the answer. This
kind of task was already employed in (Weston et
al., 2014) in the context of a virtual world. In that
sense, the result obtained to such task are compa-
rable with the state of the art approaches.

Yes/No Questions : This task tests the ability
of a model to answer true/false type questions like
“Is the food italian ?”. The conversion of a dialog
to such format is deterministic regarding the fact
that the utterances and corresponding true states
are known at each utterance of a given dialog.

Indefinite Knowledge : This task tests a more
complex natural language construction. It tests
if statements can be models in order to describe
possibilities rather than certainties, as proposed in
(Weston et al., 2014). In our case, the answer will
be “maybe” to the question “Is the price-range re-
quired moderate ?” if the slot hasn’t been men-
tioned yet throughout the current dialog. In the
case of state tracking, it will allow to seamlessly
deal with unknown information about the dialog
state. Concretely, this set of questions and an-
swers are generated has a super-set of the Yes-No
Questions set. First, sub-dialog starting from the
first utterance of a given dialog are extracted un-
der the condition that a given slot is not informed
in the corresponding annotation. Then, a question-
answering question is generated.

Counting and Lists/Sets : This last task tests
the capacity of the model to perform simple count-
ing operations, by asking about the number of ob-
jects with a certain property, e.g. “How many area
are requested ?”. Similarly, the ability to produce
a set of single word answers in the form of a list,
e.g. “What are the area requested ?” is inves-
tigated. Table 1 give an example of each of the
question type presented below on a dialog sample
of DSTC-2 corpus.

Inference procedure: Concretely, the current
set of utterances of a dialog will be placed into the
memory using sentence based encoding and the
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Figure 2: Illustration of the proposed MemN2N based state dialog tracker model with 3 hops.

question will be encoded as the controller state at
t = 1. The answer will be produced using a soft-
max operation over the answer vocabulary that is
supposed fixed. We consider this hypothesis valid
in the case of factoid and list questions because
the set of value for a given variable is often con-
sidered known. In the cases of Yes/No and Indef-
inite knowledge question, {Yes, No, Maybe} are
added to the output vocabulary. Following (We-
ston et al., 2014), a list-task answer will be consid-
ered as a single element in the answer set and the
count question. A possible alternative would be to
change the activation function used at the output of
the MemN2N from softmax activation function to a
logistic one and to use a categorical cross entropy
loss. A drawback of such alternative would be the
necessity of cross-validating a decision threshold
in order to select a eligible answers. Concerning
the individual numbers for the count question set,
the numbers founded on the training set are added
into the vocabulary.

We believe more reasoning capabilities need to
be explore in the future, like spacial and tempo-
ral reasoning or deduction as suggested in (We-
ston et al., 2015). However, it will probably need
the development of a new dedicated resource. An-
other alternative could be to develop a question-
answering annotation task based on a dialog cor-
pus where reasoning task are present. The closest
work to our proposal that can be cited is (Bordes
and Weston, 2016). In this paper, the authors de-
fines a so-called End-to-End learnable dialog sys-
tem to infer an answer from a finite set of eligible
answers w.r.t the current list of utterances of the di-
alog. The authors generate 5 artificial tasks of dia-
log. However the reasoning capabilities are not ex-
plicitly addressed and the author explicitly claim
that the resulting dialog system is not satisfactory

yet. Indeed, we believe that having a proper di-
alog state tracker where a policy is built on top
can guarantee dialog achievement by properly op-
timizing a reward function throughout a explicitly
learnt dialog policy. In the case of proper end-to-
end systems, the objective function is still not ex-
plicitly defined (Serban et al., 2015) and the result-
ing systems tend to be used in the context of chat-
oriented and non-goal oriented dialog systems. In
the next section, we present experimental details
and results obtained on the basis of the DSTC-2
dataset and its conversion to the four mentioned
reasoning tasks.

4 Experiments

4.1 Dataset and Data Preprocessing
In the DSTC-2 dialog corpus, a user queries a
database of local restaurants by interacting with
a dialog system. A dialog proceeds as follows:
first, the user specifies constraints concerning the
restaurant. Then, the system offers the name of
a restaurant that satisfies the constraints. Finally,
the user accepts the offer and requests additional
information about the accepted restaurant. In this
context, the dialog state tracker should be able to
track several types of information that compose
the state like the geographic area, the food type
and the price range slots. In order to make com-
parable experiments, sub-dialogs generated from
the first utterance to each utterance of each dia-
log of the corpus have been generated. The corre-
sponding question-answer pairs have been gener-
ated using the annotated state for each of the sub-
dialog. In the case of factoid question, this setting
allows for fair comparison at the utterance-level
state tracking gains with the prior art. The same
protocol has been adopted for the generated rea-
soning task. In that sense, the tracker task consists
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Index Actor Utterance
1 Cust Im looking for a cheap restaurant in the west or east part of town.
2 Agent Thanh Binh is a nice restaurant in the west of town in the cheap price range.
3 Cust What is the address and post code.
4 Agent Thanh Binh is on magdalene street city centre.
5 Cust Thank you goodbye.
6 Factoid Question What is the pricerange ? Answer: {Cheap}
7 Yes/No Question Is the Pricerange Expensive ? Answer: {No}
8 Indefinite Knowledge Is the FoodType chinese ? Answer: {Maybe}
8 Listing task What are the areas ? Answer: {West,East}

Table 1: : Dialog state tracking question-answering examples from DSTC2 dataset

in finding the value l∗ as defined in Section 3.3. In
the overall dialog corpus, Area slot counts 5 pos-
sible values, Food slot counts 91 possible values
and Pricerange slot counts 3 possible values. In or-
der to exhibit reasoning capability of the proposed
model in the context of dialog state tracking, three
other dataset have been automatically generated
from the dialog corpus in order to support 3 capa-
bilities of reasoning described in Section 3.3. Dia-
log modification has been required for two reason-
ing tasks, List and Count. Two types of rules have
been developed to automatically produce modified
dialogs. On a first hand, string matching has been
performed to determine the position of a slot val-
ues in a given utterance and an alternative state-
ment has been produced as a substitution. For ex-
ample, the utterance “I’m looking for a chinese
restaurant in the north” can be replaced by “I’m
looking for a chinese restaurant in the north or the
west of town”. A second type of modification has
been performed in an inter-utterance fashion. For
example, assuming a given value “north” has been
informed in the current state of a given dialog, one
can add lately in the dialog a remark like “I would
also accept a place east side of town”. This kind
of statement tends to not affect the overall flow
of the dialog and allows to add richer semantic
to the dialog. In the future, we plan to develop
a richer set of generation procedures to augment
the dataset. Nevertheless, we believe this simple
dialog augmentation strategy allows to exhibit the
competency of the proposed model beyond factoid
questions.

4.2 Training Details
As suggested in (Sukhbaatar et al., 2015), 10% of
the set was held-out to form a validation set for
hyperparameter tuning. Concerning the utterance
encoding, we use the so-called Temporal Encod-
ing technique. In fact, reading tasks require some
notion of temporal context. To enable the model

to address them, the memory vector is modified
as such mi = ∑ j Axi j + TA(i), where TA(i) is the
ith row of a dedicated matrix TA that encodes tem-
poral information. The output embedding is aug-
mented in the same way with a matrix Tc (e.g.
ci = ∑ j Cxi j +TC(i)). Both TA and TC are learned
during training in an end-to-end fashion. They are
also subject to the same sharing constraints as A
and C. The embedding matrix A and B are ini-
tialized using GoogleNews word2vec embedding
model (Mikolov et al., 2013). Also suggested on
(Sukhbaatar et al., 2015), utterances are indexed
in reverse order, reflecting their relative distance
from the question so that x1 is the last sentence
of the dialog. Furthermore, adjacent weight tying
schema has been adopted. Learning rate η is ini-
tially assigned a value of 0.005 with exponential
decay applied every 25 epochs by η/2 until 100
epochs are reached. Then, linear start is used in
all our experiments as proposed by (Sukhbaatar et
al., 2015). More precisely, the softmax function in
each memory layer is removed and re-inserted af-
ter 20 epochs. Batch size is set to 16 and gradients
with an L2 norm larger than 40 are divided by a
scalar to have norm 40. All weights are initialized
randomly from a Gaussian distribution with zero
mean and σ = 0.1. In all our experiments, we have
tested a set of the embedding size d ∈ {20,40,60}.
After validation, each model uses a 5-hops depth
configuration.

4.3 Experimental results
Table 3 presents tracking accuracy obtained for
three variables of the DSTC2 dataset formulated
as Factoid Question task. We compare with two
established utterance-level discriminative neural
trackers, a Recurrent Neural Network (RNN)
model (Henderson et al., 2014a) and the Neural
Belief Tracker (Mrksic et al., 2016). As suggested
in this last work, the first RNN baseline model
uses no semantic (i.e. synonym) dictionary, while
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Locutor Utterance Hop 1 Hop 2 Hop 3 Hop 4 Hop 5
Cust Im looking for a cheap restaurant that serves chinese food 0.00 0.18 0.11 0.04 0.00
Agent What part of town do you have in mind 0.33 0.30 0.00 0.00 0.00
Cust I dont care 0.00 0.00 0.17 0.37 1.00
Agent Rice house serves chinese food in the cheap price range 0.01 0.00 0.00 0.00 0.00
Cust What is the address and telephone number 0.58 0.09 0.01 0.00 0.00
Agent Sure rice house is on mill road city centre 0.03 0.00 0.00 0.00 0.00
Cust Phone number 0.00 0.00 0.00 0.00 0.00
Agent The phone number of rice house is 765-239-09 0.02 0.01 0.00 0.00 0.00
Cust Thank you good bye 0.02 0.42 0.71 0.59 0.00
What is the area ? Answer: dontcare

Table 2: Attention shifting example for the Area slot from DSTC2 dataset, the values corresponds the pi

values affected to each memory block mi at each hop of the MemN2N

the improved baseline uses a hand-crafted seman-
tic dictionary designed for the DSTC2 ontology.
In this context, a MemN2N model allows to ob-
tain competitive results with the most close, non-
memory enhanced, state of the art approach of re-
current neural network with word embedding as
prior knowledge.

Model Area Food Price Joint
RNN - no dict. 0.92 0.86 0.86 0.69
RNN + sem. dict. 0.91 0.86 0.93 0.73
NBT-DNN 0.90 0.84 0.94 0.72
NBT-CNN 0.90 0.83 0.93 0.72
MemN2N(d = 40) 0.89 0.88 0.95 0.74

Table 3: One supporting fact task : Acc. ob-
tained on DSTC2 test set

As a second result, Table 4 presents the perfor-
mance obtained for the four reasoning tasks. The
obtained results lead us to think that MemN2N are
a competitive alternative for the task dialog state
tracking but also increase the spectrum of def-
inition of the general dialog state tracking task
to machine reading and reasoning. In the future,
we believe new reasoning capabilities like spacial
and temporal reasoning and deduction should be
exploited on the basis of a specifically designed
dataset.

5 Conclusion and Further Work

This paper describes a novel method of dialog
state tracking based on the paradigm of machine
reading and solved using MemN2N, a memory-
enhanced neural network architecture. In this con-
text, a dataset format inspired from the current
datasets of machine reading tasks has been devel-
oped for this task. It is the first attempt to solve
this classic sub-problem of dialog management in

Variable d Yes-No I.K. Count. List.
20 0.85 0.79 0.89 0.41

Food 40 0.83 0.84 0.88 0.42
60 0.82 0.82 0.90 0.39
20 0.86 0.83 0.94 0.79

Area 40 0.90 0.89 0.96 0.75
60 0.88 0.90 0.95 0.78
20 0.93 0.86 0.93 0.83

PriceRange 40 0.92 0.85 0.90 0.80
60 0.91 0.85 0.91 0.81

Table 4: Reasoning tasks : Acc. on DSTC2 rea-
soning datasets

such way. Beyond the experimental results pre-
sented in the experimental section, the proposed
approach offers several advantages compared to
state of the art methods of tracking. First, the pro-
posed method allows to perform tracking on the
basis of segment-dialog-level annotation instead
of utterance-level one that is commonly admitted
in academic datasets but tedious to produce in a
large scale industrial environment. Second, we
propose to develop dialog corpus requiring rea-
soning capabilities to exhibit the potential of the
proposed model. In future work, we plan to ad-
dress more complex tasks like spatial and tempo-
ral reasoning, sorting or deduction and experiment
with other memory enhanced inference models.
Indeed, we plan to experiment and compare the
same approach with Stacked-Augmented Recur-
rent Neural Network (Joulin and Mikolov, 2015)
and Neural Turing Machine (Graves et al., 2014)
that sounds also promising for these family of rea-
soning tasks.
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Abstract

Automated discourse analysis tools based
on Natural Language Processing (NLP)
aiming at the diagnosis of language-
impairing dementias generally extract sev-
eral textual metrics of narrative transcripts.
However, the absence of sentence bound-
ary segmentation in the transcripts pre-
vents the direct application of NLP meth-
ods which rely on these marks to func-
tion properly, such as taggers and parsers.
We present the first steps taken towards
automatic neuropsychological evaluation
based on narrative discourse analysis, pre-
senting a new automatic sentence segmen-
tation method for impaired speech. Our
model uses recurrent convolutional neu-
ral networks with prosodic, Part of Speech
(PoS) features, and word embeddings. It
was evaluated intrinsically on impaired,
spontaneous speech, as well as, normal,
prepared speech, and presents better re-
sults for healthy elderly (CTL) (F1 = 0.74)
and Mild Cognitive Impairment (MCI) pa-
tients (F1 = 0.70) than the Conditional
Random Fields method (F1 = 0.55 and
0.53, respectively) used in the same con-
text of our study. The results suggest that
our model is robust for impaired speech
and can be used in automated discourse
analysis tools to differentiate narratives
produced by MCI and CTL.

1 Introduction

Mild Cognitive Impairment (MCI) has recently re-
ceived much attention, as it may represent a pre-
clinical state of Alzheimer’s disease (AD). MCI
can affect one or multiple cognitive domains (e.g.
memory, language, visuospatial skills and the ex-

ecutive function); the kind that affects memory,
called amnestic MCI, is the most frequent and that
which most often converts to AD (Janoutová et al.,
2015). As dementias are chronic progressive dis-
eases, it is important to identify them in the early
stages, because early detection yields a greater
chance of success for non-pharmacological treat-
ment strategies such as cognitive training, physical
activity and socialization (Teixeira et al., 2012).
The definition of MCI diagnostic criteria is con-
ducted mainly by the cognitive symptoms pre-
sented by patients in standardized tests and by
functional impairments in daily life (McKhann et
al., 2011). Difficulties related with narrative dis-
course deficits (e.g. repetitions or gaps during
the narrative) may lead an elderly individual to
look for a specialist. Narrative discourse is the re-
production of an experienced episode (necessarily
evoking memory), respecting temporal and causal
relations among events. Although MCI is clini-
cally characterized by episodic memory deficits,
language impairment may also occur.

Certain widely used neuropsychological tests
require patients to retell or understand a story.
This is the case of the logical memory test, where
one reproduces a story after listening to it. The
higher the number of recalled elements from the
narrative, the higher the memory score (Wech-
sler, 1997; Bayles and Tomoeda, 1991; Morris et
al., 2006). However, the main difficulties in ap-
plying these tests are: (i) time required, since it
is a manual task; and (ii) the subjectivity of the
clinician. Therefore, automatic analysis of dis-
course production is seen as a promising solution
for MCI diagnosis, because its early detection en-
sures a greater chance of success in addressing
potentially reversible factors (Muangpaisan et al.,
2012). Since discourse is a natural form of com-
munication, it favors the observation of the pa-
tient’s functionality in everyday life. Moreover, it
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provides data for observing the language-cognitive
skills interface, such as executive functions (plan-
ning, organizing, updating and monitoring data).

With regard to the Wechsler Logical Memory
(WLM) test, the original narrative used is short,
allowing for the use of Automatic Speech Recog-
nition (ASR) output even without capitalization
and sentence segmentation, as shown by Lehr et
al. (2012) for English. They based their method
on automatic alignment of the original and patient
transcripts in order to calculate the number of re-
called elements.

The evaluation of narrative discourse pro-
duction from the standpoint of linguistic im-
pairment is an attractive alternative as it al-
lows for linguistic microstructure analysis, includ-
ing phonetic-phonological, morphosyntactic and
semantic-lexical components, as well as semantic-
pragmatic macrostructures. Automated discourse
analysis tools based on Natural Language Pro-
cessing (NLP) resources and tools aiming at the
diagnosis of language-impairing dementias via
machine learning methods are already available
for the English language (Fraser et al., 2015b;
Yancheva et al., 2015; Roark et al., 2011) and
also for Brazilian Portuguese (BP) (Aluı́sio et al.,
2016). The latter study used a publicly available
tool, Coh-Metrix-Dementia1, to extract 73 textual
metrics of narrative transcripts, comprising several
levels of linguistic analysis from word counts to
semantics and discourse. However, the absence
of sentence boundary segmentation in transcripts
prevents the direct application of NLP methods
that rely on these marks in order for the tools
to function properly. To our knowledge, only
one study evaluating automatic sentence segmen-
tation in English transcripts of elderly aphasic ex-
ists (Fraser et al., 2015a).

The purpose of this paper is to present our
method, DeepBond, for automatic sentence seg-
mentation of spontaneous speech of healthy el-
derly (CTL) and MCI patients. Although it was
evaluated for BP data, it can be adapted to other
languages as well.

2 Related Work

The sentence boundary detection task has been
treated by many researchers. Liu et al. (2006)
investigated the imbalanced data problem, since
there are more non-boundary words than not; their

1http://143.107.183.175:22380/

study was carried out using two speech corpora:
conversational telephone and broadcast news, both
for English.

More recent studies have focused on Condi-
tional Random Field (CRF) and Neural Network
models. Wang et al. (2012) and Hasan et
al. (2014) use CRF based methods to iden-
tify word boundaries in speech corpora datasets,
more specifically on English broadcast news data
and English conversational speech (lecture record-
ings), respectively. Khomitsevich et al. (2015),
similar to our work, used a combination of two
models, one based on Support Vector Machines to
deal with prosodic information, and other based
on CRF to deal with lexical information. They
combine the two models using a logistic regres-
sion classifier.

Xu et al. (2014) uses a combination of CRF
and a Deep neural network (DNN) to detect sen-
tence boundaries on broadcast news data. Che et
al. (2016) uses two different convolutional neural
network (CNN), one which moves in only one di-
mension and another which moves in two. They
achieved good results on a TED talks dataset. Tilk
and Alumäe (2015) use a recurrent neural net-
work (RNN) with long short-term memory units
to restore punctuation in speech transcripts from
broadcast news and conversations.

Although there are proposed methods for
sentence segmentation of Portuguese datasets
(Silla Jr. and Kaestner, 2004; Batista and Mamede,
2011; López and Pardo, 2015), none of them
are used for transcriptions produced in a clini-
cal setting for the elderly with dementia and re-
lated syndromes. The study most similar to our
scenario is (Fraser et al., 2015a), which proposes
a segmentation method for aphasic speech based
on lexical, PoS and prosodic features using tools
and a generic acoustic model trained for English.
Their approach is based on a CRF model, and the
best results for this study were obtained for non-
spontaneous broadcast news data.

Our method uses recurrent convolutional neu-
ral networks with prosodic, PoS features, and also
word embeddings and was evaluated intrinsically
on impaired, spontaneous speech and normal, pre-
pared speech. Although DNNs have already been
used for this task, our work was the first, to the
best of our knowledge, to evaluate them on im-
paired speech.
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3 Datasets

A total of 60 participants from a research project
on diagnostic tools for language impaired de-
mentias produced narratives used to evaluate our
method. Two datasets were used to train our model
(Sections 3.1 and 3.2). As a preprocessing step
we have removed capitalization information and
in order to simulate high-quality ASR, we left all
speech disfluences intact. Demographic informa-
tion for participants in our study is presented in
Table 1. A third dataset was used in robustness
tests (Section 3.3).

Info CTL MCI AD

Avg. Age 74.8 73.3 78.2
Avg. Education 11.4 10.8 8.6
No. of Male/Female 4/16 6/14 10/10

Table 1: Demographic information of participants
in the Cinderella dataset. The Avg. Education is
given in years.

3.1 The Cinderella Dataset
The Cinderella dataset consists of spontaneous
speech narratives produced during a test to elicit
narrative discourse with visual stimuli, using a
book consisting of sequenced pictures based on
the Cinderella story. In the test, an individual ver-
bally tells the story to the examiner based on the
pictures. The narrative is manually transcribed by
a trained annotator who scores the narrative by
counting the number of recalled propositions.

This dataset consists of 60 narrative texts from
BP speakers, 20 controls, 20 with AD, and 20 with
MCI, diagnosed at the Medical School of Uni-
versity of São Paulo and also used in Aluı́sio et
al. (2016). Counting all patient groups, this dataset
has an audio duration of 4h and 11m, an average
of 1843/60 = 30.72 sentences per narrative, and
sentence averages of 23807/1843 = 12.92 words.
AD narratives were only used for training the lex-
ical model.

3.2 The Brazilian Constitution Dataset
This dataset was made available by the LaPS (Sig-
nal Processing Laboratory) at the Federal Univer-
sity of Pará (Batista, 2013), and is composed of
articles from Brazil’s 1988 constitution, in which
the speech is prepared and read. Each file has an
averages 30 seconds.

A preprocessing step removed lexical tips
which indicate the beginning of the articles, sec-
tions and paragraphs. This removal was carried
out on both the transcripts and audio. In addition,
we separated the new dataset organized by articles,
totaling 357 texts. Then, we marked the end of
each article and paragraph and inserted punctua-
tion at the end. Titles and chapters have been ig-
nored during this process. We randomly selected
60 texts from this dataset, forcing only the con-
dition that the number of sentences of each text
sentence was greater than 12. We refer to the large
dataset as Constitution L, and the dataset with the
60 texts as Constitution S.

The average number of sentences in each text
of Constitution L is 2698/357 = 7.56, and the av-
erage size of these sentences have 63275/2698 =
23.45 words while Constitution S has on average
1409/60 = 23.48 sentences, and these sentences
average 30521/1409 = 21.66 words. The total
audio duration of Constitution L is 7h 39m, and
Constitution S is 3h 43m.

3.3 The Dog Story Dataset

The Dog Story dataset is available from the BALE
(Battery of Language Assessment in Aging, in En-
glish) instrument, described in (Jerônimo, 2016).
It is composed of transcriptions from the narrative
production test based on the presentation of a set
of seven pictures telling a story of a boy who hides
a dog that he found on the street (Le Boeuf, 1976).
This battery was chosen because its aim is to al-
low for its administration to elderly people who
are illiterate and/or of low educational level, who
represent the majority of the aged sample assisted
by the public health system in Brazil.

This dataset consists of 10 narratives transcripts
(6 CTL and 4 MCI), where the average number
of sentences and the average size of the sentences
are 16.60 and 6.58, respectively. When compared
with the Cinderella dataset, the dataset is com-
posed of less sentences and the sentences have
fewer words on average.

4 Features

4.1 Lexical features

We divide our lexical features into two groups:
PoS features and word embeddings, where every
word is represented in a high dimensionality con-
tinuous vector.

The PoS features where extracted using a BP
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Figure 1: Architecture of the RCNN for both lexical and prosodic model.

morphosyntatic tagger called nlpnet2 trained on a
revised version of the Mac-Morpho corpus (Fon-
seca et al., 2015), which contains a set of 25 tags.

The word embeddings used in this work have
50 dimensions and were trained by Fonseca et
al. (2015) with articles from the BP version of
Wikipedia and a large journalistic corpus with ar-
ticles from the news site G13, totaling 240 million
tokens and a vocabulary of 160,270 words. All
of these tokens were made lowercase and trained
with a neural language model described in (Col-
lobert et al., 2011).

4.2 Prosodic features
We used three prosodic features: F0, intensity and
duration which were extracted at the phonetic level
using PRAAT (Boersma and others, 2002) from
forced alignment output. Alignment was done us-
ing using the HTK toolkit (Young et al., 2002)
with clean speech corpora and a pronunciation dic-
tionary phonetically transcribed by Petrus (Ser-
rani, 2015) and augmented by our rule-based al-
gorithm to insert multiple pronunciations, render-
ing a suitable model for ASR. The features were
calculated for the first, last, penultimate and an-
tepenultimate vowels of each word and pauses.
These vowels were chosen based on knowledge
of the BP which typically exhibits stress on the
penultimate vowel, with notable patterns observed
for final vowel stressing, for example words end-
ing in “i” (“Barueri”) or a nasal consonant (“Re-
nan”), and the antepenultimate vowel (usually in-
dicated by a stress diacritic) like “helicóptero”
(“helicopter”), “espı́rito” (“spirit”) and “árvore”
(“tree”). Also, Portuguese, like most western lan-
guages, distinguishes sentence types by rising and
falling pitch patterns, giving the listener a clue as

2nilc.icmc.usp.br/nlpnet/
3g1.globo.com/

to whether the speaker has finished a sentence or
not. Pause duration was also calculated since the
length of a pause can be indicative of the presence
of a punctuation mark (Beckman and Ayers Elam,
1997).

5 Model description

To automatically extract features from the in-
put and also deal with the problem of long de-
pendencies between words, we propose a model
based on recurrent convolutional neural networks
(RCNN), which was inspired by the work of Lai
et al. (2015). The architecture of our model can be
seen in Figure 1. First, we show how to prepare the
input for the network, then we go through the net-
works layers and describe the training procedure,
finally, we discuss the experimental settings.

5.1 Input preparation
In our approach, the input to the network is a
transcribed narrative which is categorized as CTL
(healthy elderly individuals) and MCI (MCI pa-
tients). The narratives contain a sequence of words
w1, w2, . . . , wm. Each word is annotated with a
label, to indicate whether it precedes a bound-
ary (y = B) or not (y = NB). We do not
make a distinction between punctuation marks, so
a boundary is defined as a period, exclamation
mark, question mark, colon or semicolon. With
this approach, we can see this task as a binary clas-
sification problem.

5.2 Representation
Our input contains transcribed narratives with m
words in it. We represent the narrative i as Xi ∈
Rm×n, Xi = {x1, x2, . . . , xm×n}, where n is the
number of features. We represent the boundaries
as Yi ∈ R2, Yi = {0, 1}, where 0 stands for NB
and 1 denotes B. Our final model consists of a
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combination of two models. The first model is
responsible for treating only lexical information,
while the second treats only prosodic information.
Both models have the same architecture shown in
Figure 1. This strategy is based on the idea that we
can train the lexical model with even more data,
since textual information is easily found on the
web. In order to obtain the most probable class y
for the wj word, a linear combination was created
between these two models, where one receives the
weighted complement of the other:

α·Plexical(y |wj)+(1−α)·Pprosodic(y |wj) (1)

Then, the most probable class is the one that max-
imizes the linear combination from previous equa-
tion.

5.2.1 Embedding layer
The data input for the lexical model is divided into
two features: word embeddings with dimensions
|ew|, and the PoS tags with dimensions |et|. Given
a word w, the respective embedding ew ∈ Eword

is fetched and concatenated with the word’s PoS
vector et ∈ Etag, thus obtaining a new vector size
d = |ew| + |et|. Out of vocabulary words share
a single and randomly generated vector that repre-
sents an unknown word.

In the prosodic model we directly feed informa-
tion about pitch, intensity and duration from the
first, last, penultimate and ante-penultimate vow-
els of each word. Moreover, we feed the informa-
tion about pause duration after each word, where
duration of zero seconds denotes no pause. There-
fore, for the prosodic model, we have a vector with
dimensions d = 4 · 3 + 1 = 13.

5.2.2 Convolutional and pooling layer
Once we have a matrix formed by the features of
the words in the text, the convolutional layer re-
ceives it, which, in turn, is responsible for the au-
tomatic extraction of nf new features depending
on hc neighboring words (Kim, 2014). The con-
volutional layer produces a new feature cj by ap-
plying a filterW ∈ Rhc·d to a window of hc words
xj−hc+1:j in a sentence with length m:

cj = f(Wx(j−hc+1):j + b), hc ≤ j ≤ m (2)

Where b ∈ R represents a bias term and f is a
non-linear function.

Our convolutional layer simply moves one di-
mension vertically, making one step at a time,

which gives us m − hc + 1 generated features.
Since we want to classify exactly m elements,
we add p = bhc/2c zero-padding on both sides
of the text. Applying this strategy for each en-
try xj yields the complete feature map c ∈
R(m−hc+1)+2·p.

In addition, we apply a max-pooling operation
over time, looking at a region of hm elements to
find the most significant features:

ĉ = max
1≤j≤m

{c(j−hm+1):j} (3)

5.2.3 Recurrent layer

The new features extracted are fed into a recurrent
bidirectional layer which has nr units. A recurrent
layer is able to store historic information by con-
necting the previous hidden state with the current
hidden state at a time t. The values in the hidden
and output layers are computed as follows:

ht = f(Wxxt +Whht−1 + bh) (4)

yt = g(Wyht + by) (5)

where Wx, Wh, and Wy are the connection
weights, by and bh are bias vectors, and f and g
are non-linear functions. Here, we use a special
unit known as Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), which is
able to learn over long dependencies between
words by a purpose-built memory cell. Figure 2
shows a single LSTM memory cell.

Figure 2: Diagram of a LSTM memory cell.

The LSTM updates for time steps t are done
as described by Jozefowicz et al. (2015), which
is a slight simplification of the one described by
Graves and Jailty (2014), where the memory cell
is implemented as follows:
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it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

where σ(z) = 1/(1+ e−z) is the sigmoid func-
tion, ht ∈ Rnr is the hidden unit, it ∈ Rnr is the
input gate, ft ∈ Rnr is the forget gate, ot ∈ Rnr

is the output gate, gt ∈ Rnr is the input modula-
tion gate, and ct ∈ Rnr is the memory cell unit,
which is the summation of the previous memory
cell modulated by the forget gate ft, and a func-
tion of the current input with previous hidden state
modulated by the input gate it.

As in Graves and Jaitly (2014), we used the
features by looking at forward states and back-
ward states. This kind of mechanism is known
as a bidirectional neural network (BRNN), since
it learns weights based on both past and future el-
ements given a timestep t. In order to implement
the BRNN, we reversed the sentences as a trick
before we fed them to a regular LSTM layer, dou-
bling the number of weights used in the recurrent
layer. The output from this layer is the summation
of the forward output with backward output:

yt =
←−yt +−→yt (6)

With a bidirectional LSTM layer, we are able
to explore the principle that words nearby have a
greater influence in classification, while consider-
ing that words farther away can also have some
impact. This often happens, for example, in the
case of question words and conjunctions: por que
(“why”); qual (“which”); quem (“who”); quando
(“when”), etc.

5.2.4 Fully connected layer
After the BRNN layer, dropout is used to pre-
vent co-adaptation of hidden units during forward-
backpropagation, where we ignore some neurons
meaning to reduce the chance of overfitting the
model (Srivastava et al., 2014).

The last layer receives the output from the
BRNN in each timestep and passes them trough a
fully connected layer, where the softmax operation
is calculated, giving us the probability of whether

or not the word precedes a boundary:

ŷt = softmax(Wyt + b) (7)

Where W ∈ Rnr×2 is a matrix of weights, b ∈
Rnr is a bias vector, and softmax is defined as:

sj(z) =
ezj

∑K
k=1 e

zk
, for j = 1, 2, . . . ,K (8)

5.3 Training
We define all of the parameters to be trained as θ.

θ =
{
Eword, Etag, W

(c), b(c), W (f),

b(f),
←−
W (r),

←−
b (r),

−→
W (r),

−→
b (r)

}
(9)

Where Eword ∈ R|V |×|ew| is the lookup table
for the word embeddings, Etag ∈ R|Vtag |×|et| is
the lookup table for PoS tags, and |V |, |Vtag| rep-
resents the size of the vocabulary for word embed-
dings and PoS tags, respectively.

For the convolutional layer: the weightsW (c) ∈
Rnf×hc·d and the bias vector b(c) ∈ Rnf .

For the fully connected layer: the weights ma-
trixW (f) ∈ Rnr×2 and the bias vector b(f) ∈ Rnr .

For the BRNN layer we divide the set of param-
eters from BRNN into two sets. Those from the
forward pass and backward pass. Each set con-
tains the weights for an input W (r)

x ∈ Rnr×nf ,
the weights for previous hidden states W (r)

h ∈
Rnr×nr , and the bias vectors b(r) ∈ Rnr for
all gates (i, f, o, g). Additionally, we have the
weights for an output in a timestep W

(r)
y ∈

Rnr×nr and a bias vector by ∈ Rnr .
We define the loss function L as categorical

cross-entropy (Murphy, 2012), shown in the equa-
tion below, which aims to minimize the negative
log likelihood in relation to the weights. Since we
have an unbalanced class problem, we give differ-
ent weights for each class, where the weight of the
minority class (B) is greater than that of the ma-
jority (NB).

L(y, ŷ) = −
∑

i

yi log(ŷi) cwyi (10)

Where y are our real targets, ŷ are our predic-
tions, and cw are the class weights for ` = B and
` = NB, calculated as follows:

cw` =
|y|

2 · |y = `| (11)

We minimize the loss function with respect to
all weights θ 7→ L by using RMSProp algorithm
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(Tieleman and Hinton, 2012) with backpropaga-
tion to compute the gradients∇L. The update step
for a timestep t is made by normalizing the gradi-
ents by an exponent moving at an average rt:

rt = γrt−1 + (1− γ)∇L(θt)2 (12)

θt+1 = θt − η
∇L(θt)√
rt + ε

(13)

Where η is the learning rate and 0 < γ < 1 is
the forgetting factor.

5.4 Experiment settings
We break the text in tokens delimited by spaces.
We do not remove stopwords from the texts, since
they can be important features for our domain.

We ran a 5-fold cross-validation for the group
being analyzed (CLT or MCI), which leaves about
10% of the data for testing, the rest for training.

The weight matrix for tag embeddingsEtag was
generated randomly from a gaussian distribution
scaled by fan in + fan out (Glorot and Bengio,
2010). Both embeddings matrix Eword and Etag

were adjusted during training. We follow previ-
ous studies on sentence boundary detection to set
the network hyper-parameters (Tilk and Alumäe,
2015; Che et al., 2016). The values for each pa-
rameter are shown in Table 2.

Var. Parameter Lexical Prosodic

|ew| Word emb. size 50 -
|et| Tag emb. size 10 -
nf Conv. filters 100 8
hc Filter length 7 5
hm Max-pool size 3 3
nr Recurrent units 100 100
γ Forget factor 0.9 0.9
η Learning rate 0.001 0.001

Table 2: RCNN Hyper-parameters.

We tried three different learning rate values η ∈
{0.01, 0.003, 0.001} for both lexical and prosodic
models, and found that 0.001 yielded best results.
We trained our network over 20 epochs using a
bucket strategy, which groups training examples in
buckets of similar sentence size. Our implementa-
tion is based on Theano (Bergstra et al., 2010), a
library that defines, optimizes and evaluates math-
ematical expressions in an effective way.

6 Evaluation

We evaluated our method intrinsically and also
compared it with the method developed by Fraser
et al. (2015a) for all of the datasets. We also per-
formed robustness tests to indicate how well our
method responds to both (i) test data that varies
from Cinderella training data and (ii) train data
that varies from Cinderella testing data.

If we classified all words as NB, our method
would have an accuracy superior to 90%. For this
reason, we use the F1 metric, which is defined
as the harmonic mean between precision and re-
call. And since we are more interested in knowing
whether our method correctly identifies the bound-
aries, we ignore theNBs and calculate F1 only for
the positive class (B).

6.1 Results

In this subsection, we evaluate the performance of
our classifier (RCNN) for the Cinderella and Con-
stitution datasets. Table 3 summarizes the results.

From Table 3 we can see that our approach
presents better results for the Constitution dataset
than Cinderella. This may be related to the text
quality, as the Cinderella transcripts presents many
disfluences, characteristic of spontaneous speech.
As expected, results for CTL were higher than
for MCI, since CTL narratives contain less dis-
fluencies. Another important observation is that
our method performs much better than the base-
line. Where the baseline represents the results
for a classifier that predicts all words as B. The
Constitution results show us that traditional ma-
chine learning techniques used in NLP can be ap-
plied to this scenario, since the differences in the
Cinderella data are few. Another reason that sup-
ports this statement is that F1 results from related
studies on sentence boundary detection based on
well-written texts are between 0.7 and 0.8 for two
classes (Wang et al., 2012; Khomitsevich et al.,
2015; Tilk and Alumäe, 2015; Che et al., 2016).
When we compare the Constitution size relation
we find out that corpus size is not greatly affected
by the results, since the results for Constitution S
were slightly better than for Constitution L. We
think that, even with less data, our method per-
forms better on Constitution S because of the dis-
tribution of sentence quantity in the dataset, where
Constitution S has an average of 23.48 sentences
per text, while Constitution L has an average of
only 7.56 sentences per text.
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Features Cinderella Constitution

CTL MCI L S

P R F1 P R F1 P R F1 P R F1

Baseline 0.07 1.00 0.13 0.08 1.00 0.14 0.03 1.00 0.07 0.04 1.00 0.08
PoS 0.36 0.82 0.50 0.32 0.83 0.46 0.30 0.89 0.44 0.29 0.79 0.42
Prosody 0.20 0.59 0.30 0.19 0.58 0.29 0.54 0.84 0.66 0.48 0.85 0.61
Embeddings 0.70 0.70 0.70 0.63 0.77 0.69 0.60 0.63 0.63 0.60 0.64 0.62
PoS + Pros. 0.40 0.74 0.52 0.36 0.80 0.49 0.52 0.91 0.66 0.57 0.85 0.68
Emb. + PoS 0.71 0.72 0.71 0.64 0.75 0.69 0.64 0.72 0.68 0.63 0.67 0.65
Emb. + Pros. 0.71 0.74 0.72 0.64 0.77 0.70 0.71 0.83 0.76 0.74 0.81 0.77
All 0.72 0.76 0.74 0.66 0.74 0.70 0.77 0.82 0.79 0.76 0.85 0.80

Table 3: F1 for boundary class for each feature set on Cinderella and Constitution data using our method.

We also evaluated the performance of different
feature sets with our datasets. Embeddings have
a great impact on both datasets. The PoS infor-
mation was influential on both datasets, but by a
small margin, since it has a small difference when
used with embeddings (0.01) on the Cinderella,
and (0.03) Constitution data. This tells us that
embeddings already bring enough morphosyntac-
tic information. It is evident that the weight of the
prosodic features is higher on Constitution, which
is based on prepared speech, than in Cinderela.
This result is consistent with those found by Kolár
et al. (2009) and Fraser et al. (2015a). We also
believe that the quality of the audio recordings
may have impacted the weight of the prosodic fea-
tures, since the Constitution dataset was recorded
by speech processing experts in a studio and the
Cinderella dataset was recorded in a clinical set-
ting. In light of this, we can see that our method
performs better when all features are used. Fur-
thermore, the best results were obtained by using
α = 0.6, from the linear combination in Equa-
tion 1, showing that our model lends more weight
to the lexical model.

6.2 Comparison of methods

In order to compare our model with related work,
we replicated the approach proposed by Fraser et
al. (2015a), which uses a CRF model for sen-
tence segmentation. To explain the choice for a re-
current convolutional model, we split our method
in three: (i) Multilayer Perceptron (MLP): we re-
moved the convolutional and the recurrent layer
of our model, and added a hidden fully-connected
layer with 100 units and sigmoid activation; (ii)
CNN: we simply removed the recurrent layer from
our model and passed the output from the convolu-
tional to the fully-connected layer; (iii) Recurrent

Neural Network (RNN): analogous to the CNN
model, we removed the convolutional layer and
connected the embedding layer with the recurrent
layer. The results for each method are presented in
Table 4.

Our method achieved the best results in both
datasets. We can see that the CRF method, used
by Fraser et al. (2015a), obtained the worst results
on Constitution, and was only better than RNN on
the Cinderella data. These results were similar to
those reported in their paper, which suggests that
our replication was faithful. We believe that the
RNN performed poorly because it has a large set
of weights to be trained, and since we have rela-
tively little data, it failed to achieve good results.
This may be related to the fact that LSTM units
are very complex and need more data to be able
to converge. Looking at the Constitution results,
which have about three times more words than the
Cinderella data, we can note the difference (∼ 0.2)
with relation to corpus size.

MLP and CNN alone were able to achieve bet-
ter results than CRF and RNN, but MLP results for
the MCI subset were not as good as CNN, which
indicates that MLP alone is not able to deal with
narratives that are potentially impaired. However,
for the Constitution data, MLP obtained results
very close (∼ 0.02) to our best method.

Our RCNN achieved the best results on both
datasets, implying that a union of these models
was a good choice in order to deal with impaired
speech. We believe that the greatest influence was
from the CNN, and the addition of a recurrent
layer with LSTM was able to deal with some par-
ticular cases, likely over long dependencies sim-
ilar to the findings in (Tilk and Alumäe, 2015),
where the CNN was not able to do so due to the
fixed filter length in the convolution process, a re-
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Methods Cinderella Constitution

CTL MCI L S

P R F1 P R F1 P R F1 P R F1

CRF 0.70 0.45 0.55 0.62 0.46 0.53 0.89 0.36 0.51 0.84 0.34 0.48
MLP 0.59 0.79 0.67 0.47 0.80 0.59 0.75 0.79 0.77 0.76 0.80 0.78
RNN 0.27 0.68 0.39 0.73 0.25 0.37 0.43 0.92 0.58 0.44 0.85 0.57
CNN 0.64 0.79 0.71 0.59 0.77 0.67 0.65 0.85 0.73 0.58 0.89 0.70
RCNN 0.72 0.76 0.74 0.66 0.74 0.70 0.77 0.82 0.79 0.76 0.85 0.80

Table 4: Best F1 results for each method.

sult which was also noted in (Che et al., 2016).

6.3 Robustness tests
Robustness was evaluated by measuring F1 on
both out-of-genre and in-genre data. The results
for each configuration are presented in Table 5.

Trained on Tested on P R F1

Constitution Cinderella CTL 0.19 0.29 0.23
Constitution Cinderella MCI 0.20 0.25 0.22
Cinderella Dog story CTL 0.72 0.62 0.66
Cinderella Dog story MCI 0.65 0.64 0.64

Table 5: Results for robustness tests

We evaluated our method by changing the cor-
pus genre: training with the Constitution and test-
ing with the Cinderella dataset. This evaluation
shows that our method performed poorly in this
scenario, probably because the differences in the
lexical clues between these datasets are high, since
the Constitution is composed of prepared speech
and Cinderella of spontaneous speech. When we
maintain the corpus genre but change the story
used in the neuropsychological test, our method
can still achieve good results, yielding a small dif-
ference of 0.08 for CTL and 0.06 for MCI from
our best results. We believe that these results are
related with the linear combination weight from
Equation 1, where the results were obtained by us-
ing α = 0.8, lending less weight to the prosodic
model when compared to our best results (where
it has 40% of influence). Since the Dog Story
and Cinderella datasets are composed of sponta-
neous speech, the lexical clues found in this kind
of speech helped the method to achieve good per-
formance.

7 Conclusions and Future Work

We have shown that our model, using a recur-
rent convolutional neural network, is benefited by

word embeddings and can achieve promising re-
sults even with a small amount of data. We found
that our method is better for cases where speech
is planned, since the prosodic features lend more
weight to the classification. Our method achieved
good results on impaired speech transcripts even
with little data, with an F1 result of 0.74 on CTL
patients, which is comparable with the results
from other studies using broadcast news and con-
versational data (Wang et al., 2012; Khomitsevich
et al., 2015; Tilk and Alumäe, 2015; Che et al.,
2016). Moreover, our method achieved good re-
sults in robustness tests when we changed the story
used in the neuropsychological test.

As for future work, we plan to evaluate our
method on English data for comparison with re-
lated work. Also, we plan on using more text
data to train the lexical model, as it is independent
from the prosodic model and lends more weight in
our evaluations. Moreover, we will evaluate our
method with the output of an ASR system for BP,
as a higher word recognition error rate can greatly
affect our results. Lastly, we would like to evaluate
our method with datasets with higher quality au-
dio, more robust acoustic models and a manually
aligned portion of the database as better audio seg-
mentation would greatly improve the model and
the usefulness of prosodic features.

With respect to improvements in the corpus, our
dataset consists of spontaneous speech narratives
and was annotated only with periods. Since there
are initial conjunctions such as “and”, “moreover”,
and “however”, we could include commas. This
would turn our problem into a ternary problem.
This could be done by increasing the number of
neurons in the last layer of our architecture.
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Abstract

We present the joint task of incremen-
tal disfluency detection and utterance seg-
mentation and a simple deep learning sys-
tem which performs it on transcripts and
ASR results. We show how the constraints
of the two tasks interact. Our joint-task
system outperforms the equivalent indi-
vidual task systems, provides competitive
results and is suitable for future use in con-
versation agents in the psychiatric domain.

1 Introduction

Artificial conversational systems promise to be a
valuable addition to the existing set of psychi-
atric health care delivery solutions. As artificial
systems, they can ensure that interview protocols
are followed, and, perhaps surprisingly, due to
being “just a computer”, even seem to increase
their interlocutors’ willingness to disclose (Lucas
et al., 2014). Interactions with such conversational
agents have been shown to contain interpretable
markers of psychological distress, such as rate of
filled pauses, speaking rate, and various tempo-
ral, utterance and turn-related interactional fea-
tures (DeVault et al., 2013). Filled pauses and dis-
fluencies in general have also been shown to pre-
dict outcomes to psychiatric treatment (Howes et
al., 2012; McCabe et al., 2013).

Currently, these systems are only used to elicit
material that is then analysed offline. For offline
analysis of transcripts with gold standard utter-
ance segmentation, much work exists on detecting
disfluencies (Johnson and Charniak, 2004; Qian
and Liu, 2013; Honnibal and Johnson, 2014). To
enable more cost-effective analysis, however, and
possibly even let the interaction script itself be de-
pendent on an analysis hypothesis, it would be bet-
ter to be able to work directly off the speech sig-

nal, and online (incrementally). This is what we
explore in this paper, presenting and evaluating a
model that works with online, incremental speech
recognition output to detect disfluencies with var-
ious degrees of fine-grainedness.

As a second contribution, we combine incre-
mental disfluency detection with another lower-
level task that is important for responsive con-
versational systems, namely the detection of turn-
taking opportunities through detection of utter-
ance boundaries. (See for example (Schlangen
and Skantze, 2011) for arguments for incremen-
tal processing and responsive turn-taking in con-
versational systems, and (Schlangen, 2006; At-
terer et al., 2008; Raux, 2008; Manuvinakurike
et al., 2016, inter alia) for examples of incremen-
tal utterance segmentation). Besides both being
relevant for interactive health assessment systems,
these tasks also have an immanent connection, as
the approach typically used for turn-end detection
is simply waiting for a silence of a certain dura-
tion, and hence is mislead by intra-turn silent dis-
fluencies. Similarly, without gold standard seg-
mentation, disfluent restarts and repairs may be
predicted at fluent utterance boundaries. We hence
conjecture that the tasks can profitably be done
jointly.

2 Related Work

As a separate task, there has been extensive work
on utterance segmentation. Cuendet (2006) re-
ports an NIST-SU utterance segmentation error
rate result on the Switchboard corpus at 48.50,
using a combination of lexical and acoustic fea-
tures. Ang et al. (2005) report NIST-SU scores
in the region of 34.35–45.92 on the ICSI Meet-
ing Corpus. Martı́nez-Hinarejos et al. (2015) re-
port state-of-the-art dialogue act segmentation re-
sults on Switchboard at 23.0 NIST-SU, however
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this is not on the level of full dialogues, but on
pre-segmented turn stretches. For the equivalent
task of sentence boundary detection, Seeker et al.
(2016) report an F-score of 0.7665 on Switchboard
data, using a joint dependency parsing framework,
and Xu et al. (2014) implement a deep learning
architecture and report an 0.810 F-score and 35.9
NIST-SU error rate on broadcast news speech us-
ing prosodic and lexical features using a DNN for
prosodic features, combined with a CRF classifier.
However scaling this to spontaneous speech and
the challenges of incrementality explained here, is
yet to be tested.

Strongly incremental approaches to the task are
rare, however (Atterer et al., 2008) achieve a word-
by-word F-score of 0.511 on predicting whether
the current word is the end of the utterance (dia-
logue act) on Switchboard, and using ground-truth
syntactic information indicating sentence structure
information achieve 0.559.

Disfluency detection on pre-segmented utter-
ances in the Switchboard corpus has also had a
lot of attention, and has also reached high per-
formance (Johnson and Charniak, 2004; Georgila,
2009; Qian and Liu, 2013; Honnibal and John-
son, 2014). On detection on Switchboard tran-
scripts, Honnibal and Johnson (2014) achieve
0.841 reparandum word accuracy using a joint
dependency parsing approach, and Hough and
Purver (2014) in a strongly incrementally operat-
ing system without look-ahead achieve 0.779, us-
ing a pipeline of classifiers and language model
features. The potentially live approaches tend to
use acoustic information (Moniz et al., 2015) and
do not perform on a comparable level to their
transcription-based task analogues, nor achieve
the same fine-grained analysis of disfluency struc-
ture, which is often needed to identify the disflu-
ency type and compute its meaning.

Live incremental approaches to both tasks have
not been able to benefit from reliable ASR hy-
potheses arriving in a timely manner until recently.
Now the arrival of improved performance, in terms
of low Word Error Rate (WER) and better live per-
formance properties is making this possible (Bau-
mann et al., 2016). In this paper we define a
joint task in a live setting. After defining the task
we present a simple deep learning system which
simultaneously detects disfluencies and predicts
up-coming utterance boundaries from incremental
word hypotheses and derived information.

3 The Tasks: Real-time disfluency
prediction and utterance segmentation

3.1 Incremental disfluency detection
Disfluencies, in their fullest form as speech re-
pairs, are typically assumed to have a tripartite
reparandum-interregnum-repair structure (terms
originally proposed by Shriberg (1994)), as exhib-
ited by the following example.

John [ likes
︸ ︷︷ ︸
reparandum

+ { uh }
︸ ︷︷ ︸
interregnum

loves ]
︸ ︷︷ ︸

repair

Mary

(1)

If reparandum and repair are absent, the dis-
fluency reduces to an isolated edit term. In the
example given here, the interregnum is filled by
a marked, lexicalised edit term, but more phrasal
terms such as I mean and you know can also occur.

The task of disfluency detection then is to recog-
nise these elements and their structure, and the
task of incremental disfluency detection adds the
challenge of doing this in real-time, from “left-to-
right”. In that latter setting, detection runs into
the same problem as a human processor of such
an utterance: Only by the time the interregnum
is encountered, or possibly even only when the
repair is seen, does it become clear that earlier
material now is to be considered as “to be re-
paired” (reparandum).1 Hence, the task cannot be
set up as a straightforward sequence labelling task
where the tags “reparandum”, “interregnum” and
“repair” are distributed left-to-right over words as
indicated in the example above; in this example, it
would unfairly require the prediction that “likes”
is going to be repaired, at a point when no evi-
dence is available for making it.

We follow Hough and Schlangen (2015) and use
a tag set that encodes the reparandum start only at
a time when it can be guessed, namely at the onset
of the actual repair. This is illustrated in Figure 1
in the “disfluency (complex)” row. Here, the word
at the repair onset, “to”, gets tagged as repair on-
set (rpS) and, at the same time, as repairing mate-
rial beginning 5 tokens in the past (-5, yielding the
complex label rpS-5). Additionally, we annotate
all repair words (as rpMid, if the word is neither
first nor last word of the repair, and together with
the disfluency type, if it is the final word; here, the

1Looking at it from a different perspective, this problem
has been called the continuation problem by Levelt (1983):
the repair material can only be integrated with the previous
material, if it is identified as replacing the reparandum.
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| A uh flight [ to Boston + { uh I mean } to Denver ] on Friday | Thank you |
Disfluency (simple) f e f f f e e e rpS f f f f f

Disfluency (complex) f e f f f e e e rpS−5 rpESub f f f f

Utterance segmentation .w- -w- -w- -w- -w- -w- -w- -w- -w- -w- -w- -w. .w- -w.
Joint task (simple) .f- -e- -f- -f- -f- -e- -e- -e- -rpS- -f- -f- -f . .f- -f .
Joint task (complex) .f- -e- -f- -f- -f- -e- -e- -e- -rpS−5- -rpESub- -f- -f . .f- -f .

Figure 1: An utterance with the traditional repair disfluency and segmentation annotation in-line
(Shriberg, 1994; Meteer et al., 1995) and our incrementally-oriented tag schemes

label is rpESub for substitution),2 editing terms (e)
and fluent material (f ) as well. From the complex
tag set, we can reconstruct the disfluency structure
as in (1) in a strongly incremental fashion. We
also define a reduced tag set (shown in Figure 1 as
“disfluency (simple)” that only tags fluent words,
editing terms, and the repair onset.

3.2 Incremental utterance segmentation
We formulate incremental utterance segmentation
as the judgement in real time as to when the
current utterance is going to end, and so like
(Schlangen, 2006; Atterer et al., 2008), we move
from purely reactive approach, signalled by si-
lence, to prediction. To allow prediction to be
possible we use four tags for classifying stretches
of acoustic data (which can be the time spans of
forced aligned gold standard words, or the word
hypotheses timings provided by an ASR), which
are equivalent to a BIES (Beginning, Inside, End
and Single) scheme for utterances– see Table 1.

The tag set allows evidence from the prior con-
text of the word (the acoustic and linguistic infor-
mation preceding the word) to be used to predict
whether this word continues a current utterance
(the - prefix) or starts anew (the . prefix), and
also permits the online prediction of whether the
next word (or segment) will continue the current
utterance (the - suffix) or the current word ends
the utterance (the . suffix). From these utterance
boundary predictions can be derived when -w. or
.w. is predicted (i.e. “will end utterance”). The
tag set is summarized in Table 1 and an example is
in Fig. 1, row “utterance segmentation”.

3.3 Defining the joint task
Studying the two phenomena in natural dialogue
corpora, for example in terms of rich transcription
mark-up in the SWBD annotation manual (Meteer
et al., 1995), there are several constraints:

2The other repair type is delete rpEDel. Verbatim
reparandum-repair repetitions are subsumed by rpESub.

-w- -w. .w- .w.
f 1 1 1 1
e 1 1 1 1

rpS 1 1 0 0

-w- -w. .w- .w.
f 1 1 1 1
e 1 1 1 1

rpS-[1-8] 1 0 0 0
rpMid 1 0 0 0
rpESub 1 1 0 0
rpEDel 1 1 0 0

rpS-[1-8]ESub 1 1 0 0
rpS-[1-8]EDel 1 1 0 0

Figure 2: The joint tag set for the task. 1= tag in
set, simple (top) and complex (bottom).

C1 Repair onsets cannot begin an utterance (by
definition of first position repairs needing a
preceding reparandum).

C2 Repairs must be completed within the utter-
ance in which they begin.

C3 Utterances can be interrupted or abandoned,
but these are different to within-dialogue-act
repairs.

Given these constraints, we can generate a joint
tag set as a subset of the cross product of both tag
schemes. The utterance segmentation tags in Ta-
ble 1 are combined with the simple strongly in-
cremental disfluency tags described in §3.1. The
joint set for both the simple and complex tasks
is in Fig. 2, where 1 indicates the tag is in the
set and 0 otherwise. In the simple task, there are
10 tags. The joint set for the full task including
disfluency structure detection has 53 possible tags
(rather than the full cross product, which would
be 92). In reality, in the training corpus, only 43
of these possible combinations were found, so this
constituted our tag set in practice. See Fig. 1 (bot-
tom 2 rows) for example sequences.

3.4 Research questions
Given the formulation of the joint task, we would
like to ask the following questions of scalable, au-
tomatic approaches to it:
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-w- a word which continues the current utterance and whose following word will continue it
-w. a word which continues the current utterance and is the last word of it
.w- a word which is the beginning of an utterance and whose following word will continue it
.w. a word constituting an entire utterance

Table 1: The tag set for the continuity of each word within a dialogue act

Q1 Given the interaction between the two tasks,
can a system which performs both jointly
help improve equivalent systems doing the
individual tasks?

Q2 Given the incremental availability of word
timings from state-of-the-art ASR, to what
extent can word timing data help perfor-
mance of either task?

Q3 To what extent is it possible to achieve a good
online accuracy vs. final accuracy trade-off in
a live, incremental, system?

To address these questions we use a combi-
nation of a deep learning architecture for se-
quence labelling and incremental decoding tech-
niques which we will now explain.

4 LSTMs and Incremental Decoding for
Live Prediction

Our systems consist of deep learning sequence
models which consume incoming words and use
word embeddings in addition to other features to
predict disfluency and utterance segmentation la-
bels for each word, in a strictly left-to-right, word-
by-word fashion. We also use word timings as in-
put to a separate classifier whose output is com-
bined with that of the deep learning architecture in
an incremental decoder. See Fig. 3 for the over-
all architecture. We describe the elements of the
system below.

4.1 Input Features
In our systems we use the following input features:
• Words in a backwards window from the most

recent word (transcribed or ASR)
• Durations of words in the current window

(from transcription or ASR word timings)
• Part-Of-Speech (POS) tags for words in cur-

rent window (either reference, or from an in-
cremental CRF tagger)

For incremental ASR, we use the free trial ver-
sion of IBM’s Watson Speech-To-Text service.3

The service provides good quality ASR on noisy
3https://www.ibm.com/watson/

developercloud/speech-to-text.html
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Figure 3: Schematic structure of the system.

data- on our selected heldout data on Switchboard,
the average WER is 26.5%. The Watson service,
crucially for our task, does not filter out hesita-
tion markers or disfluencies, which is rare for cur-
rent web-based services (Baumann et al., 2016).
The service also outputs results incrementally, so
silence-based end-pointing is not used. The ser-
vice also returns word timings, which upon man-
ual inspection were close enough to the reference
timings to use as features in the live version of our
system. In this paper, the durations are not features
in the principal RNN but in an orthogonal logistic
regression classifier– see §4.3.

For POS-tagging, we use the NLTK CRF tag-
ger, which when trained on our training data and
tested on our heldout data achieves 0.915 accuracy
on all tags, which was sufficiently good for our
purposes. Crucially, for the label UH, which is im-
portant evidence for an edit term, it achieves an
F-score of 0.959.

4.2 Architectures
We use two well-studied deep learning architec-
tures for our sequence labelling task– the El-
man Recurrent Neural Network (RNN) and the
Long Short-Term Memory (LSTM) RNN. Archi-
tecturally the RNNs here reproduce approximately
the identical set-up as described in (Mesnil et al.,
2013; Hough and Schlangen, 2015).

Input and word embeddings Following (Mes-
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nil et al., 2013), we use 1-of-N, or ‘one-hot’, vec-
tors as our raw input to the network, which provide
unique indices to dense vectors in a word embed-
ding matrix. The initial word embeddings were
obtained from Switchboard data using the python
implementation of word2vec in gensim,4 using
a skip-gram context model. The training data for
the initial embeddings was cleaned of disfluencies,
effecting a ‘clean’ language model (Johnson and
Charniak, 2004). These embeddings were then
further updated as part of the objective function
during the task-specific training itself. Instead of
single word/POS inputs we use context windows
which, like n-gram language models, are back-
wards from the current word. The internal rep-
resentation of context windows of length n in the
network is created through the ordered concatena-
tion of the n corresponding word embedding vec-
tors of size 50, resulting in an input to the network
of dimension R50n. We use n =2 in our experi-
ments here.

RNN architecture and activation functions In
addition to the embedding layer, we use a (re-
current) hidden layer of 50 nodes and an output
layer the size of our training tag sets (43 nodes
for the complex task and 10 nodes for the simple
task). The standard Elman RNN dynamics in the
recurrent hidden layer at time t is as in (3), where
the hidden layer h(t) is calculated as the Sigmoid
function (2) of the addition of the weight matrix
U ′ applied via dot product to the current input vec-
tor x(t) and the weight matrix V ′ applied via dot
product to the stored previous value of the hidden
layer at time t−1, i.e. h(t−1).

s(x) =
1

1 + e−x
(2)

h(t) = s(U ′x(t) + V ′h(t−1)) (3)

We use the standard softmax function for the
node activation function of the output layer.

At decoding time, the compression of the con-
text into the hidden layer allows us to save the cur-
rent state of the decode live compactly from ASR
results as they become available to the network.
In order to integrate the new incoming words and
POS tags with the history, it is only necessary to
store the current hidden layer activation h(t) (and
the output softmax layer too, if that is being used
by another process), and wait for new information
to the input layer.

4http://radimrehurek.com/gensim/

LSTM unit In our LSTM, we include recurrent
LSTM units that uses the input x(t), the hidden
state activation h(t−1), and memory cell activa-
tion c(t−1) to compute the hidden state activation
h(t) at time t. It uses a combination of a mem-
ory cell c and three types of gates: input gate i,
forget gate f , and output gate o to decide if the in-
put needs to be remembered (using the input gate),
when the previous memory needs to be retained
(forget gate), and when the memory content needs
to be output (using the output gate). For each
time step t the cell activations c(t) and h(t) are
computed by the below steps, whereby the � is
element-wise multiplication.

i(t) = s(W
′
ix(t) + U

′
ih(t−1) + V

′
i c(t−1)) (4)

f(t) = s(W
′
fx(t) + U

′
fh(t−1) + V

′
f c(t−1))

c(t) = f(t)� c(t−1) + i(t)� tanh(W
′
cx(t) + U

′
ch(t−1))

o(t) = s(W
′
ox(t) + U

′
oh(t−1) + V

′
oc(t))

h(t) = o(t)� tanh(c(t))

While many more weight matrices need to be
learned (all the W ′, U ′ and V ′ subscripted matri-
ces), as with the standard RNN, at decoding time
it is efficient to store the current decoding state in
a compact way, as it is only neccessary to save the
activation of the memory cell c(t) and the hidden
layer h(t) to save the current state of the network.
See Fig. 3 for the schematic overall disfluency de-
tection architecture for the LSTM.

Learning: error function and parameter up-
date As is common for RNNs (De Mulder et al.,
2015) we use negative log likelihood loss (NLL)
as a cost function and use stochastic gradient de-
scent over the parameters, including the embed-
ding vectors, to minimize it. We use a batch size
of 9 words, consistent with our repair tag scheme.
Both networks use a learning rate of 0.005 and L2
regularisation on the parameters to be learned with
a weight of 0.0001.

4.3 Incremental decoding and timing driven
classifier

Markov model For decoding optimization we use
Viterbi decoding on the sequence of softmax out-
put distributions from the network in the spirit of
(Guo et al., 2014). We use a Markov model which
is hand-crafted to ensure legal tag sequences are
outputted for the given tag set. In our joint task,
this permits ‘late’ detection of an utterance bound-
ary if the probability for a -w. and following
.w- or .w. tag on their own are not the arg
max, but their combined probability permits the
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best sequence. Similarly, in the complex task, re-
pairs where evidence of a repair end tag is strong,
but the repair onset tag was not the arg max can
be detected at the repair end. From an incremental
perspective, in Viterbi decoding there is the danger
of output ‘jitter’. We investigate how different out-
put representations have different effects on output
prediction stability in our evaluation.

Timing driven classifier As an edition to the
decoding step, we experimented with an indepen-
dent timing driven classifier which consumes the
durations of the last three words and outputs a
probability that this is a fluent continuation or the
beginning of a new utterance. We train a logistic
regression classifier on our training data. Combin-
ing this two-class probability with the probability
of the relevant utterance segmentation tags in de-
coding boosted performance considerably.

5 Evaluation Criteria

Accuracy On transcripts, we calculate repair
onset detection accuracy FrpS, where applicable
reparandum word accuracy Frm, and F1 accuracy
for edit term words Fe, which includes interregna.
For utterance segementation we also use word-
level F1 scores for utterance boundaries (end-of-
utterance words) FuttSeg. Carrying out the task
live, on speech recognition hypotheses which very
well may not be identical to the annotated gold-
standard transcription, requires the use of time-
based metrics of local accuracy in a time win-
dow (i.e. within this time window, has a disflu-
ency/utterance boundary been detected, even if
not on the identical words?)– we therefore cal-
culate the F1 score over 10 second windows of
each speaker’s channel. While this window-ing
can give higher scores on certain phenomena, it
tends to follow the word-level F-score so is a good
time-based indicator of accuracy.

For utterance segmentation, for comparison to
previous work we also use NIST-SU error rate
(Ang et al., 2005). NIST-SU is the ratio of the
number of incorrect utterance boundary hypothe-
ses (missed boundaries and false positives) made
by a system to the number of reference boundaries.

For a more coarse-grained metric which in-
cludes both tasks, which is useful in our target do-
main of interactions in a clinical context (Howes et
al., 2014), we look at the rpS : UttSeg ratio per
speaker correlation (Pearson’s R). This gives us
the best approximation as to how good the system

is at estimating repair rate per utterance.

Timeliness and diachronic metrics Crucial for
the live nature of the system, we measure latency
(i.e. how close to the actual time a disfluency or
boundary event occurred has one been predicted?)
and also stability of output over time (i.e. how
much does the output change?). For latency we
use Zwarts et al. (2010)’s time-to-detection met-
ric: the average distance (in numbers of words)
consumed before first detection of gold standard
repairs from the repair onset word, TDrpS.5 We
generalize this measure to the other tags of interest
to give TDe and TDuttSeg and also, particularly
crucially for the ASR results, report the metrics in
terms of time in seconds.6

For stability, incorporating insights from the
evaluation of incremental processors by Baumann
et al. (2011), we measure the edit overhead (EO)
of the output labels– this is the percentage of un-
necessary edits (insertions and deletions) required
to get to the final labels outputted by the system.

6 Experimental Set-up

We experiment with the 2 joint output representa-
tions in Fig. 1 and implement an RNN and LSTM
using Theano (Bergstra et al., 2010) as an exten-
sion to the code in Mesnil et al. (2013). We also
run the 3 individual versions of the tasks with
the tag sets shown in Fig. 1 for comparison. We
also train a word timings driven classifier which
adds information to the decoding step as explained
above to try to answer Q2.7

Data We train on transcripts and test on both
transcripts and ASR hypotheses. We use the
standard Switchboard training data for disflu-
ency detection (all conversation numbers begin-
ning sw2*,sw3* in the Penn Treebank III release:
100k utterances, 650K words) and use the stan-
dard heldout data (PTB III files sw4[5-9]*: 6.4K
utterances, 49K words) as our validation set. We
test on the standard test data (PTB III files 4[0-
1]*) with punctuation removed from all files.8 For

5Our measure is in fact one word earlier by default than
Zwarts et al. (2010) as we take detection after the end of the
repair onset word as the earliest possible detection point.

6These measures only apply to repairs and utterance
boundaries detected correctly.

7All experiments are reproducible. The code
can be downloaded at https://github.com/
dsg-bielefeld/deep_disfluency

8We include partial words as these may in theory become
available from the ASR in the live setting.
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Eval.
Method

System Frm

(per
word)

Frps

(per
word)

Frps

(per
10s
win-
dow)

Fe

(per
word)

Fe

(per
10s
win-
dow)

FuttSeg

(per
word)

FuttSeg

(per
10s
win-
dow)

NIST
SU
(word)

rps /
uttSeg
/
speaker
correl.

Transcript

LSTM +timing - 0.719 0.764 0.918 0.889 0.748 0.707 43.64 0.91
LSTM - 0.720 0.766 0.915 0.890 0.688 0.666 51.89 0.92
LSTM(complex)
+timing

0.601 0.693 0.730 0.91 0.888 0.707 0.685 50.07 0.82

LSTM(complex) 0.599 0.686 0.727 0.907 0.889 0.638 0.638 58.91 0.84
RNN +timing - 0.683 0.730 0.909 0.886 0.704 0.710 52.42 0.86
RNN - 0.685 0.728 0.908 0.884 0.647 0.635 57.75 0.87
RNN(complex)
+timing

0.572 0.663 0.715 0.908 0.882 0.699 0.669 50.89 0.83

RNN(complex) 0.568 0.659 0.713 0.905 0.882 0.621 0.613 60.74 0.81

ASR

LSTM +timing - - 0.551 - 0.727 - 0.685 - 0.72
LSTM - - 0.548 - 0.726 - 0.630 - 0.79
LSTM(complex)
+timing

- - 0.555 - 0.721 - 0.665 - 0.68

LSTM(complex) - - 0.557 - 0.721 - 0.601 - 0.67
RNN +timing - - 0.542 - 0.718 - 0.681 - 0.69
RNN - - 0.540 - 0.718 - 0.627 - 0.68
RNN(complex)
+timing

- - 0.543 - 0.718 - 0.663 - 0.72

RNN(complex) - - 0.540 - 0.718 - 0.577 - 0.81

Table 2: Non-incremental (dialogue-final) results on transcripts and ASR results.
Eval.
Method

System Frps

(per
word)

Frps

(per 10s
window)

Fe

(per
word)

Fe (per
10s
window)

FuttSeg

(per
word)

FuttSeg

(per 10s
window)

NIST
SU
(word)

Transcript
LSTM (uttSeg only) - - - - 0.727 0.679 46.17
LSTM (disf only) 0.711 0.760 0.912 0.886 - - -
LSTM (joint task) 0.719 0.764 0.918 0.889 0.748 0.707 43.64

ASR
LSTM (uttSeg only) - - - - - 0.657 -
LSTM (disf only) - 0.531 - 0.721 - - -
LSTM (joint task) - 0.551 - 0.727 - 0.685 -

Table 3: Comparison of the joint vs. individual task performances

the ASR results evaluation, we only select a subset
of the heldout and test data whereby both chan-
nels achieved below 40% WER to ensure good
separation– this left us with 18 dialogues in the
validation data and 17 dialogues for testing.

We train all RNNs for a maximum of 50 epochs
else halt training if there is no improvement on the
best Frm score on the transcript validation set after
10 epochs.

7 Results and Discussion

Our dialogue-final accuracy results are in Table 2.
On transcripts, our best per-word FrpS reaches
0.720 and best Fe reaches 0.918. For utterance
segmentation, perword accuracy reaches 0.748
and the lowest NIST-SU error rate is 43.64. This
is competitive with (Seeker et al., 2016)’s 0.767
F-score and out-performs (Cuendet, 2006) on the
Switchboard data. The best rpS : uttSeg correla-
tion per speaker reaches 0.92 (p<0.0001).

In comparison to incremental approaches, we

outperform (Atterer et al., 2008)’s 0.511 accuracy
on end-of-utterance. Their work allows no predic-
tion lag in a strictly incremental setting, so is at a
disadvantage, however our result of 0.748 on tran-
scripts is reported alongside the average time to
detection of 0.399 words, which suggests on aver-
age the uttSeg when predicted correctly, is done so
with no latency.

With the exception of one metric, the LSTM
outperforms the RNN on transcripts. The sys-
tems using the timing model in general outperform
those with lexical information only on the utter-
ance segmentation metrics, whilst not having an
impact on disfluency detection.

According to the window-based accuracies, on
ASR results there is significant degradation in ac-
curacy for repair onsets (best FrpS=0.557) how-
ever utterance segmentation did not suffer the
same loss, with the best system achieving 0.685
accuracy. The rpS : uttSeg Pearson’s R correla-
tion per speaker reaches 0.81 (p<0.0001) in a sys-
tem with otherwise poor performance– the second
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Eval.
method

System TTDrps

(word)
TTDrps

(time
in s)

TTDe

(word)
TTDe

(time
in s)

TTDuttSeg

(word)
TTDuttSeg

(time in
s)

EO

Transcript

LSTM +timing 0.004 0.253 0.573 0.614 0.399 1.837 11.44
LSTM 0.003 0.248 0.591 0.605 0.327 1.114 11.05
LSTM(complex) 0.093 0.281 0.114 0.348 0.283 1.107 7.63
LSTM(complex)
+timing

0.090 0.293 0.135 0.483 0.369 1.960 8.51

ASR

LSTM +timing - 0.202 - 0.734 - 3.247 20.71
LSTM - 0.199 - 0.649 - 1.645 20.44
LSTM(complex) - 0.236 - 0.341 - 2.303 20.70
LSTM(complex)
+timing

- 0.239 - 0.594 - 4.099 21.46

Table 4: Incremental results on transcripts and ASR results.

best achieved was 0.79 (p<0.0001).
For disfluency detection, standard approaches

use pre-segmented utterances to evaluate perfor-
mance, so this result is difficult to compare. How-
ever in the simple task, the accuracy of 0.720
repair onset prediction is respectable (compara-
ble to (Georgila, 2009)), and is useful enough to
allow realistic relative repair rates, in line with
our motivation. The complex tagging system per-
forms poorly on repairs compared to the litera-
ture, however the lack of segementation makes
this a considerably harder task, in the same way
as dialogue act tagging results are lower on un-
segmented transcripts (Martı́nez-Hinarejos et al.,
2015). Edit term detection performs very well at
0.918, approaching the state-of-the-art on Switch-
board reported at 0.938 (Hough and Purver, 2014).

The utility of a joint task As can be seen in
Table 3, the overall best performing systems on
the individual tasks do not reach the results in any
relevant metric of the best performing combined
system. The disfluency-only systems were run ig-
noring all utterance boundary information, which
puts this setting at a disadvantage to previous ap-
proaches, however it is clear that on unsegmented
data our posing of the task jointly is useful.

Incrementality Incrementally the differences
between the architectures was neglible– results for
the LSTM are in Table 4. The latency for repair
onset detection is very low, being detected as little
as 0.196 seconds after the onset word is finished
(or on transcripts largely directly after the word
has been consumed as TTDrps (word) = 0.003).
Utterance boundaries were detected just over a
second after the end of the last word of the previ-
ous utterance. However, the fact that TTDuttSeg

on the word level reaches 0.283 suggests the time-
based average is being weighed down by occa-

sional long silences, which could be thresholded
in future work. The EO measure of stability is
severely affected by jittering ASR hypotheses, but
given its worst result is 21.46% this is still a fairly
stable incremental system.

Error Analysis To explore the errors being
made by the systems, and how the RNN and
LSTM may differ in ability, we performed an
error analysis on the simple versions with the
timing models– see Fig. 4. One can observe
a boost in recall for various repair types in the
LSTM, where it is performing better on repairs
with longer reparanda. Characterizing repetitions
as verbatim repeats, substitutions as the other re-
pairs marked with a repair phase, and deletes as
those without one, we see the LSTM outperform-
ing the RNN on the rarer types. Whilst the prob-
lem is attenuated by the memory facility of the
LSTM, our best system still suffers the vanish-
ing gradient problem for predicting longer repairs
with reparanda over 3 words long. Also we show
in uttSeg detection all systems falter on long dis-
tance projections with coordinating conjunctions,
which would potentially be dealt with more eas-
ily in a parsing framework, or a hierarchical deep
learning framework.

We also investigated the uttSeg detection errors
and see that the networks are generally not con-
fusing disfluencies with boundaries. However, our
best system incorrectly labelled 3.6% of the ref-
erence uttSegs as rpS (hence also affecting the
precision of the rpS prediction)– upon inspection
these were largely abandoned utterances, which
according to the constraint C3 we posited above
are not marked as disfluencies in the same way
intra-utterance repairs are in the reference. Due to
the original annotation instructions of (Meteer et
al., 1995), these are segmented and not included in
the traditional disfluency detection task. However,
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(a)
Reparandum
length

(support) RNN
recall %

LSTM
recall %

1 (1487) 72.2 78.3
2 (477) 59.3 64.8
3 (155) 47.7 57.4
4 (73) 47.9 49.3
5 (31) 41.9 45.2
6 (15) 40.0 60.0
7 (9) 33.3 33.3
8 (4) 25.0 25.0

(b)
Repair
Type

(support) RNN
recall %

LSTM
recall %

repeat (1043) 79.1 83.4
substitution (1076) 59.2 66.4
delete (132) 19.7 30.3

(c)
uttSeg Error Type RNN

% error
LSTM
% error

FN, predicted rpS 2.9 3.6
FN, predicted e 4.9 4.4
FN, predicted CC 16.3 15.0
FN, predicted subj 7.0 6.5
FN, predicted proper 1.2 1.1
FN, predicted it 1.1 1.2
FN, predicted grounding 1.0 0.8
FN, predicted other 8.8 8.6
FN all 43.1 41.1
FP, predicted uttSeg for rpS 0.9 0.5
FP, predicted uttSeg for e 3.4 2.7
FP, predicted uttSeg for CC 5.1 3.6
FP, predicted uttSeg for subj 2.0 1.6
FP, predicted uttSeg for proper 0.9 0.6
FP, predicted uttSeg for it 0.5 0.4
FP, predicted uttSeg for grounding 0.7 0.4
FP, predicted uttSeg for other 6.9 2.7
FP all 20.4 12.5

Figure 4: Error analysis: (a) recall rates for
rpS onsets of repairs with different reparandum
lengths and (b) types, and (c) the source of errors
in uttSeg detection.

intuitively these can be construed as a disfluency
type, and in future we will treat them as a special
type of uttSeg/disfluency hybrid.

As can be seen in Fig. 4 (c) other main sources
of error are on coordinating conjunctions (CC)
such as ‘and’ and ‘or’, nouns with nominative sub-
ject marking case like ‘I’ and ‘we’ (subj), other
proper nouns, variants of ‘it’ and grounding ut-
terances like ‘yeah’ and ‘okay’. uttSeg detection
in both systems achieved high precision but rela-
tively low recall.

8 Conclusion

We have presented the joint task of incremental ut-
terance segmentation and disfluency detection and

show a simple deep learning system which per-
forms it on transcripts and ASR results. As re-
gards the research questions posed in §3.4, in an-
swer to Q1, we showed that, all else being equal,
a deep learning system can perform both tasks
jointly improves over equivalent systems doing the
individual tasks. In answer to Q2, we showed that
word timing information, both from transcripts
and ASR results, helps the utterance segmenta-
tion and the joint task across all settings whilst not
aiding disfluency detection on its own, and in re-
sponse to Q3, we achieve a good online accuracy
vs. final accuracy trade-off in a live, incremental,
system, however still experience some time delays
for utterance segmentation in our most accurate
system.

We conclude that our joint-task system for
disfluency detection and utterance segmentation
shows a new benchmark for the joint task on
Switchboard data and due its incremental func-
tioning on unsegmented data, including ASR re-
sult streams, it is suitable for live systems, such
as conversation agents in the psychiatric domain.
In future work we intend to optimize the inputs to
our networks after this exploration, including us-
ing raw acoustic features, and combining the task
with language modelling and dialogue act tagging.
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Abstract

A major motivation for unsupervised mor-
phological analysis is to reduce the sparse
data problem in under-resourced languages.
Most previous work focuses on segmenting
surface forms into their constituent morphs
(e.g., taking: tak +ing), but surface form
segmentation does not solve the sparse data
problem as the analyses of take and taking
are not connected to each other. We extend
the MorphoChains system (Narasimhan et
al., 2015) to provide morphological anal-
yses that can abstract over spelling dif-
ferences in functionally similar morphs.
These analyses are not required to use all
the orthographic material of a word (stop-
ping: stop +ing), nor are they limited to
only that material (acidified: acid +ify
+ed). On average across six typologically
varied languages our system has a similar
or better F-score on EMMA (a measure of
underlying morpheme accuracy) than three
strong baselines; moreover, the total num-
ber of distinct morphemes identified by our
system is on average 12.8% lower than for
Morfessor (Virpioja et al., 2013), a state-
of-the-art surface segmentation system.

1 Introduction

Most previous work on unsupervised morphologi-
cal analysis has focused on the problem of segmen-
tation: segmenting surface forms into their con-
stituent morphs (Goldsmith, 2001; Creutz and La-
gus, 2007; Poon et al., 2009; Lee et al., 2011; Virpi-
oja et al., 2013; Sirts and Goldwater, 2013). How-
ever, the focus on surface segmentation is largely
due to ease of model definition and implementa-
tion rather than linguistic correctness. Even in lan-
guages with primarily concatenative morphology,
spelling (or phonological) changes often occur at

morpheme boundaries, so that a single morpheme
may have multiple surface forms. For example, the
past tense in English may surface as -ed (walked),
-d (baked), -ted (emitted), -ped (skipped), etc.

A major motivation for unsupervised morpholog-
ical analysis is to reduce the sparse data problem in
under-resourced languages. While surface segmen-
tation can help, the example above illustrates its
limitations: for more effective parameter sharing, a
system should recognize that -ed, -d, -ted, and -ped
share the same linguistic function. The importance
of identifying underlying morphemes rather than
surface morphs is widely recognized, for example
by the MorphoChallenge organizers, who in later
years provided datasets and evaluation measures to
encourage this deeper level of analysis (Kurimo et
al., 2010). Nevertheless, only a few systems have
attempted this task (Goldwater and Johnson, 2004;
Naradowsky and Goldwater, 2009), and as far as
we know, only one, the rule-based MORSEL (Lig-
nos et al., 2009; Lignos, 2010), has come close to
the level of performance achieved by segmentation
systems such as Morfessor (Virpioja et al., 2013).

We present a system that adapts the unsupervised
MorphoChains segmentation system (Narasimhan
et al., 2015) to provide morphological analyses that
aim to abstract over spelling differences in func-
tionally similar morphemes. Like MorphoChains,
our system uses an unsupervised log-linear model
whose parameters are learned using contrastive esti-
mation (Smith and Eisner, 2005). The original Mor-
phoChains system learns to identify child-parent
pairs of morphologically related words, where the
child (e.g., stopping) is formed from the parent
(stop) by adding an affix and possibly a spelling
transformation (both represented as features in the
model). However, these spelling transformations
are never used to output underlying morphemes,
instead the system just returns a segmentation by
post-processing the inferred child-parent pairs.

We extend the MorphoChains system in sev-
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eral ways: first, we use the spelling transforma-
tion features to output underlying morphemes for
each word rather than a segmentation; second, we
broaden the types of morphological changes that
can be identified to include compounds; and third,
we modify the set of features used in the log-linear
model to improve the overall performance. We eval-
uate using EMMA (Spiegler and Monson, 2010), a
measure that focuses on the identity rather than the
spelling of morphemes. On average across six typo-
logically varied languages (English, German, Turk-
ish, Finnish, Estonian, Arabic), our system outper-
forms both the original MorphoChains system and
the MORSEL system, and performs similarly to
the surface segmentation system Morfessor. These
results are (to our knowledge) the best to date from
a system for identifying underlying morphemes;
moreover, the total number of distinct morphemes
identified by our system is on average 12.8% lower
than for Morfessor, suggesting that it does a bet-
ter job of abstracting over surface spellings and
inducing a compact representation of the data.

2 Morphological Chains and Analyses

We base our work on the MorphoChains segmen-
tation system (Narasimhan et al., 2015),1 which
defines a morphological chain as a sequence of
child-parent pairs. Each pair consists of two mor-
phologically related words where the child must be
longer than the parent. To analyse a word we want
to find the best parent for that word; we do so recur-
sively until we conclude that the stop condition is
met (i.e. a word doesn’t have a morphological par-
ent). The word standardizes, for example, produces
the following chain:

standardizes→ standardize→ standard

which consists of the child-parent pairs (standard-
izes, standardize), (standardize, standard) and
(standard, NONE). Each child-parent pair is an-
notated with a type indicating the kind of trans-
formation that relates the child-parent pair. The
set of transformations defined by MorphoChains
is: suffixation as in (dogs, dog), prefixation as in
(undone, done), deletion as in (baked, bake)2, rep-
etition as in (stopped, stop), and modification as in

1We modified the implementation available at https:
//github.com/karthikncode/MorphoChain.

2The system could in principle learn that bake is the parent
of baked with type suffix, which would imply the analysis bake
+d. However, we hope it learns instead the type delete, which
implies the (correct) analysis bake +ed. Similar alternative
analyses are possible for the other example types shown.

Word MorphoChains Our Model
stopping stopp +ing stop +ing
doubled double +d double +ed
acidified acid +ifi +ed acid +ify +ed

Table 1: Examples outputs of two models.

(worried, worry). We add a sixth type, compound-
ing as in (darkroom, room). The delete, repeat, and
modify types all assume the change occurs to the
final character of the stem, while compounding can
simply concatenate the two stems, or can introduce
an extra character (as in higher-rate or German
schilddruese +n+ krebs (‘thyroid cancer’).

Any word (undone) has many possible parents,
some linguistically plausible (undo, done) and
others not (und, ndone). Our system, like Mor-
phoChains, learns a log-linear model to discrimi-
nate plausible from implausible parents amongst
the complete parent candidate set for each word.
The candidate set is generated by taking all possible
splits of the word and applying all possible transfor-
mation types. For example, some parent candidates
for the word dogs include (dog, suffix), (do, suffix),
(gs, prefix), (doga, delete), (dogb, delete), (doe,
delete), and (doe, modify). The last two imply
analyses of doe +gs and doe +s, respectively.

The examples above indicate how analyses can
be induced recursively by tracking the transfor-
mation type and orthographic change associated
with each parent-child pair. However, the original
MorphoChains algorithm did not do so, instead
it only used the transformation types to predict
morph boundaries. Table 1 contrasts the word seg-
mentation into morphs produced by the original
MorphoChains model and the morpheme analysis
produced by our model. Table 2 provides additional
examples of our recursive analysis process.

2.1 Model
We predict child-parent pairs using a log-linear
model, following Narasimhan et al. (2015). The
model consists of a set of features represented by a
feature vector φ :W ×Z → Rd, whereW is a set
of words and Z is the set of (parent, type) pairs
for words inW . The model defines the conditional
probability of a particular (parent, type) pair z ∈
Z given word w ∈ W as:

P (z|w) = eθ·φ(w,z)∑
z′∈C(w) e

θ·φ(w,z′) , z ∈ C(w) (1)
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Step Word Child-Parent Pair Type Change Analysis
1 acidified (acidified, acidify) modify add +ed +ed
2 (acidify, acid) suffix add +ify +ify +ed
3 (acid, NONE) stop add acid acid +ify +ed
1 doubled (doubled, double) delete add +ed +ed
2 (double, NONE) stop add double double +ed
1 higher-rate (higher-rate, rate) compound keep higher
2 (rate, NONE) stop add rate rate
3 (higher, high) suffix add +er +er rate
4 (high, NONE) stop add high high +er rate

Table 2: Examples of step-by-step derivations of morphological analysis of English words.

where C(w) ⊂ Z denotes the set of parent candi-
dates for w and θ is a weight vector.

Our goal is to learn the feature weights in an
unsupervised fashion. Following Narasimhan et al.
(2015), we do so using Contrastive Estimation (CE)
(Smith and Eisner, 2005). In CE every training ex-
ample w ∈ W serves as both a positive example
and a set of implied negative examples—strings
that are similar to w but don’t occur in the corpus.
The negative examples are the source of the proba-
bility mass allocated to the positive examples. The
word w and its negative examples constitute the
neighbourhood N (w) of w.

Given the list of wordsW and their neighbour-
hoods, the CE likelihood is defined as:

LCE(θ,W) =

∏

w∗∈W

∑
z∈C(w∗) e

θ·φ(w∗,z)
∑

w∈N(w∗)
∑

z∈C(w) e
θ·φ(w,z) . (2)

We use the same neighbourhood functions as
Narasimhan et al. (2015). Specifically, for each
word w in the corpusW , we create neighbours in
two ways: by swapping two adjacent characters of
w (walking→walkign) and by swapping two pairs
of adjacent characters, where one pair is at the be-
ginning of the word, and the other at the end of the
word (walking→awlkign).

We use LBFGS-B (Zhu et al., 1997) to optimize
the regularized log-likelihood of the model:

LLCE(θ,W) =
∑

w∗∈W


log

∑

z∈C(w∗)

eθ·φ(w
∗,z)

−log
∑

w∈N(w∗)

∑

z∈C(w)

eθ·φ(w,z)


− λ‖θ‖2 (3)

2.2 Features
MorphoChains used a rich set of features from
which we have kept some, discarded others and
added new ones to improve overall performance.
This section describes our set of features, with ex-
amples shown in Table 3.

Presence in Training Data We want fea-
tures that signal which parents are valid words.
Narasimhan et al. (2015) used each word’s log fre-
quency. However the majority of words in the train-
ing data (word frequency lists) occur only once,
which makes their frequency information unreli-
able.3 Instead, we use an out-of-vocabulary feature
(OOV) for parents that don’t occur in the training
data.

Semantic Similarity Morphologically related
words exhibit semantic similarity among their word
embeddings (Schone and Jurafsky, 2000; Baroni et
al., 2002). Semantic similarity was an important
feature in MorphoChains: Narasimhan et al. (2015)
concluded that up to 25 percent of their model’s
precision was due to the semantic similarity fea-
ture. We use the same feature here (COS). For a
child-parent pair (wA, wB) with word embeddings
vwA and vwB respectively we compute semantic
similarity as:

cos(wA, wB) =
vwA · vwB

‖vwA‖‖vwB‖
(4)

Affixes Candidate pairs where the child contains
a frequently occurring affix are more likely to be
correct. To identify possible affixes to use as fea-
tures, Narasimhan et al. (2015) counted the number
of words that end (or start) with each substring

3The prevalence of singleton word types in the Mor-
phoChallange 2010 training data for English, German, Turkish
ranges from 50.73 to 58.76 %.
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No Child Parent Candid. Active Features
1 dog (og, prefix) OOV, PREF=d
2 decided (decide,delete) DELETED=e, SUF=ed, SUFLIST

3 decided (decids, delete) OOV, DELETED=s, SUF=ed, SUFLIST

4 stopped (stop, repeat) REPEATED=p, RENV2=op, RENV1=o, SUF=ed, SUFLIST

5 worried (worry, suffix) MODIFIED=y-i, SUF=ed, SUFLIST

6 higher-rate (rate, compound) HEAD=rate,MODIFIER=higher,CONNECTOR=-,COMPOUND

7 ratepayer (payer, compound) HEAD=payer, MODIFIER=rate, COMPOUND

8 decided (deci, compound) OOV, HEAD=deci, MODIFIER=ded
9 high (-, stop) STOPLEN=4, STOPCOS=0.2
10 decided (-, stop) STOPLEN=7, STOPCOS=0.5
11 unstable (able, prefix) PREF=unst
12 unable (able, prefix) PREF=un, PREFLIST

Table 3: Examples illustrating which of the binary features in the model are active for various potential
child-parent pairs. Not shown here is the real-valued semantic similarity feature COS, used in all examples
except 9 and 10, where it is replaced by the binary feature STOPCOS=y, for y in increments of 0.1.

Prefixes
al, ar, ba, be, bo, ca, car, co, de, dis, en, ha, ho,
in, inter, la, le, li, lo, ma, mar, mc, mi, mis, mo,
out, over, pa, po, pre, pro, ra, re, ro, se, ta, to, un,
under, up

Suffixes
a, age, al, an, ar, ary, as, ation, b, ble, ch, e, ed,
el, en, er, ers, es, est, et, ful, i, ia, ic, ie, ies, in,
ing, ings, is, ism, ist, ists, land, le, led, les, less,
ley, ling, ly, m, man, ment, ments, ner, ness, o,
or, p, s, se, son, t, ted, ter, ters, th, ting, ton, ts, y

Table 4: The likely English affixes found by using
Letter Successor Entropy.

and selected the most frequent ones. However, all
words that end with ing also end with ng and g,
which means that they also become affix candi-
dates. Furthermore, there are more words that end
with ng or g than with ing, therefore valid affixes
might be excluded from the list because of their
more frequent substrings.

We therefore modify the affix features in two
ways. First, we identify a more precise set of likely
affixes using Letter Successor Entropy (LSE) val-
ues (Hafer and Weiss, 1974), which are typically
high at morph boundaries. LSE is computed at
each point in the word as the entropy of the dis-
tribution over the next character given the word
prefix so far. When selecting likely affixes, we
use an LSE threshold value of 3.0 as suggested by
Hafer and Weiss (1974), and we require that the
affix has appeared in at least 50 types with a cor-

pus frequency of at least 100. We then define two
features (PREFLIST, SUFLIST), which are active if
the proposed prefix or suffix for a parent-child pair
is in the set of likely prefixes or suffixes. Table 4
shows the list of likely English affixes found by us-
ing LSE (62 suffixes and 42 prefixes). For German
and Turkish, our other two development languages
(see §3), the lists contain 498 suffixes/183 prefixes
and 181 suffixes/35 prefixes, respectively.4

In addition, we use a much larger set of affix fea-
tures, PREF=x and SUF=x, where x is instantiated
with all possible word prefixes (suffixes) for which
both w and xw (wx) are words in the training data.

Transformations To help distinguish between
probable and improbable transformations, we intro-
duce transformation-specific features. For deletion
we use the deleted letter (DELETED). For repeti-
tion we use the repeated letter and its preceding
2- and 1-character contexts (REPEATED, RENV2
RENV1). For modification we use the combination
of the involved letters (MODIFIED). Finally, for
compounding we use the headword (i.e. the parent
of the compound), the modifier and the connector,
if such exists (HEAD, MODIFIER, CONNECTOR).
Since these compound features can be very sparse,
we also add a single COMPOUND feature, which is
active when both parts of the compound are present
in the training data.

Stop Condition To identify words with no par-
ents we use two types of binary features suggested

4In MorphoChains, the number of affixes was set manually
for each language tested: 300 for English, 500 for Turkish,
and 100 for Arabic.
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by Narasimhan et al. (2015). STOPCOS=y is the
maximum cosine similarity between the word and
any of its parent candidates (using bins of size
0.1), and STOPLEN=x is instantiated for all pos-
sible word lengths x in the training data. For il-
lustration, if we are considering whether decided
is a word with no parents (Table 3 Example 10),
the binary features STOPLEN=7 and STOPCOS=0.5
become active.

We discard the starting and ending character un-
igram and bigram features used by MorphoChains,
because of the large number5 and the sparsity of
these features.

2.3 Data Selection
Most unsupervised morphology learners are sensi-
tive to the coverage and the quality of training data.
In a large corpus, however, many word types oc-
cur only once because of the Zipfian distribution of
word types. Low-frequency types can be either rare
but valid words or they can be foreign words, ty-
pos, non-words, etc. This makes learning from low-
frequency words unreliable, but discarding them
dramatically reduces the size of the training data
(including many valid words).

To seek balance between the quality and the cov-
erage of the training data we try to identify which
low-frequency words are likely to provide useful
statistical support for our model, so we can include
those in the training data and discard the other low-
frequency words. First, we set a frequency-based
pruning threshold (PT) at the frequency for which
at least 50% of the words above this frequency have
a word embedding (see §3); next we set a learn-
ing threshold (LT) at the median frequency of the
words with frequencies above PT; finally we adopt
the algorithm by Neuvel and Fulop (2002) to de-
cide which words with frequencies below PT can
be useful to analyse the words with frequencies
above LT. We filter out any remaining words with
frequencies below PT.

The outline of the adapted version of the algo-
rithm by Neuvel and Fulop (2002) is:
1) For every word pair in the top 20k most frequent
words in training data:

1.1) We find the pair’s orthographic sim-
ilarities as the longest common subsequence:
receive⇔reception.

1.2) We find the pair’s orthographic differ-
5For English there can be 676 different letter bigrams of

which 99% occur at least once at the beginning of some word
in the word frequency list.

ences with respect to their orthographic similar-
ities: receive⇔reception.
2) For all word-pairs with the same orthographic
differences we merge their similarities and differ-
ences into Word Formation Strategies (WFS):
so receive⇔reception, conceive⇔conception,
deceive⇔deception give *##ceive⇔*##ception,
where * and # stand for the optional and mandatory
character wild cards respectively.
3) We discard those WFS that that are suggested
by less than 10 word pairs;
4) For each WFS and for each word with a fre-
quency below PT:

4.1) if a word w matches either of the sides of a
WFS and the other side of a WFS predicts a word
w’ with a frequency above the LT, we keep w in
the training data, otherwise we discard it.

For more detailed description of the algorithm
see Neuvel and Fulop (2002).

3 Experiments

Data We conduct experiments on six languages:
Arabic, English, Estonian, Finnish, German and
Turkish. For the word embeddings required by
our system and the MorphoChains baseline, we
used word2vec (Mikolov et al., 2013) to train a
Continuous Bag of Words model on a sub-sample
of the Common Crawl (CC) corpus6 for each lan-
guage (Table 5 lists corpus sizes). We trained 100-
dimensional embeddings for all words occurring
at least 25 times, using 20 iterations and default
parameters otherwise.

For all languages except Estonian, we train and
evaluate all systems on the data from the Morpho
Challenge 2010 competition.7 The training data
consists of word lists with word frequencies. The
official test sets are not public, but a small labelled
training and development set is provided for each
language in addition to the large unannotated word
list, since the challenge included semi-supervised
systems. Thus, for experiments on Arabic, English,
Finnish, German and Turkish we evaluated on the
annotated training and development gold standard
analyses form the Morpho Challenge 2009/2010
competition data sets. The gold standard labels
include part of speech tags and functional labels
for inflectional morphemes, with multiple analyses
given for words with part of speech ambiguity or

6Common Crawl http://commoncrawl.org
7Morpho Challenge 2010: http://research.ics.

aalto.fi/events/morphochallenge2010
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Lang Train
(#types)

Test
(#cases)

Embeddings
(#tokens)

ARA
MC-10
(19K)

MC-09
(690)

CC
(461M)

ENG
MC-10
(878K)

MC-10
(1569)

CC
(1.78B)

EST
CC

(470K)
S&G2013

(1500)
CC

(329M)

FIN
MC-10
(2.9M)

MC-10
(1835)

CC
(1.18B)

GER
MC-10
(2.3M)

MC-10
(1779)

CC
(856M)

TUR
MC-10
(617K)

MC-10
(1760)

CC
(1.21B)

Table 5: Data statistics. MC-09/10: Morpho Chal-
lenge 2009/2010. CC: A sub-sample of Common
Crawl. S&G2013: Sirts and Goldwater (2013)

functionally different but orthographically equiva-
lent inflectional morphemes. For example, rocki-
ness is analysed as rock N y s ness s, while rocks
has two analyses: rock N +PL and rock V +3SG.

For Estonian we train on word lists extracted
from Common Crawl and test on data prepared by
Sirts and Goldwater (2013). The Estonian test set
contains only surface segmentation into morphs
(e.g. kolmandal is analysed kolmanda l). Table 5
provides information about each dataset.

Since we are developing an unsupervised system,
we want to make sure that it generalizes to new lan-
guages. We therefore divide the languages into
three development languages (English, German,
Turkish) and three test languages (Finnish, Esto-
nian, Arabic). We used the development languages
to choose features, design the data selection pro-
cedure and select best values for hyperparameters.
The system that performed best on those languages
was then used unmodified on the test languages.

Hyperparameters In addition to threshold val-
ues described above, we use the same λ = 1 (Equa-
tion 3) as Narasimhan et al. (2015). To control for
under segmentation we downscale weights of the
stop features by a factor of 0.8. We set the maxi-
mum affix length to 8 characters and the minimum
word length to 1 character.

Evaluation Metric We test our model on the task
of unsupervised morpheme analysis induction. We
follow the format of Morpho Challenge 2010 and
use Evaluation Metric for Morphological Analysis

(EMMA) (Spiegler and Monson, 2010) to evaluate
predicted outputs. EMMA works by finding the
optimal one-to-one mapping between the model’s
output and the reference analysis (i.e., the spelling
of the morphemes in the analysis doesn’t matter).
These are used to compute precision, recall, and
F-score against the reference morphemes.

Baselines We compare our model to three other
systems: Morfessor 2.0 (Virpioja et al., 2013),
MORSEL (Lignos et al., 2009; Lignos, 2010) and
MorphoChains (Narasimhan et al., 2015). We also
use a trivial baseline Words which outputs the input
word.

Morfessor (Morf.2.0) is a family of probabilistic
algorithms that perform unsupervised word seg-
mentation into morphs.Since the release of the ini-
tial version of Morfessor, it has become popular as
an automatic tool for processing morphologically
complex languages.

MORSEL is a rule-based unsupervised morphol-
ogy learner designed for affixal morphology. Like
our own system, it outputs morphological analy-
ses of words rather than segmentations. MORSEL
achieved excellent performance on the Morpho
Challenge 2010 data sets.

MorphoChains (MC) is the model upon which
our own system is based, but as noted above it
performs segmentation rather than analysis. In con-
trast to Morfessor and MORSEL, which analyse
words based only on orthographic patterns, Mor-
phoChains (like our extension) uses both ortho-
graphic and the semantic information.

All three baselines have multiple hyperparame-
ters. Since performance tends to be most sensitive
to the treatment of word frequency (including pos-
sibly discarding low-frequency words), for each
system we tuned the hyperparameters related to
word frequency to optimize average performance
on the development languages, and kept these hy-
perparameters fixed for the test languages.

4 Results and Discussion

Table 6 gives the performance of all models on the
three development languages. Our model outper-
forms all baselines on every language, and is a clear
improvement over the original MorphoChains.8

8In the results reported by Narasimhan et al. (2015), Mor-
phoChains appeared to outperform Morfessor, whereas we
find the opposite. There are several possible reasons for the dis-
crepancy. First, Narasimhan et al. (2015) used a segmentation-
based metric rather than EMMA, so the scores are not compa-
rable. Second, Narasimhan et al. (2015) appear to have tuned

342



Lang Method Prec Recall F-1
ENG Words 0.750 0.362 0.489

Morf.2.0 0.788 0.712 0.749
MORSEL 0.784 0.725 0.752
MC 0.685 0.729 0.706
Our Model 0.787 0.741 0.763

GER Words 0.776 0.258 0.387
Morf.2.0 0.690 0.468 0.558
MORSEL 0.670 0.449 0.538
MC 0.649 0.397 0.492
Our Model 0.590 0.548 0.568

TUR Words 0.702 0.201 0.313
Morf.2.0 0.598 0.338 0.432
MORSEL 0.626 0.324 0.427
MC 0.577 0.330 0.420
Our Model 0.596 0.351 0.442

AVG Words 0.743 0.274 0.396
Morf.2.0 0.692 0.506 0.580
MORSEL 0.693 0.449 0.572
MC 0.637 0.485 0.539
Our Model 0.658 0.547 0.591

Table 6: Results on development languages. Scores
calculated using EMMA. Words=Trivial baseline
which outputs the input word.

To see where the benefit is coming from, we per-
formed ablation tests (Table 7). Results show the
importance of the LSE-based affix features (Model-
A). Using these features gives gains of +1.0%, 3.8%
and 0.6% F-1 absolute on English, German and
Turkish respectively over using the raw affix oc-
currence frequencies as used by Narasimhan et al.
(2015). We can see that our data selection scheme
(Model-D) is important for English (+3.5%) and
German (+1.1%). Although we expected that the
data selection scheme would have the biggest im-
pact on Turkish because of its small training data, it
has very little effect on this language. As expected,
the compounding transformation (Model-C) has a
prominent impact on German (+2.7%) and a mod-
est effect on English and Turkish. The three fea-
tures PREFLIST, SUFLIST, COMPOUND (Model-B)
have the least impact on the model’s performance
(on average 0.5% F-1 absolute), however the effect
is substantial considering that this gain is achieved

their hyperparameters separately for each language. Finally,
it is not clear how they tuned the frequency-related hyperpa-
rameters for Morfessor. We found that Morfessor performed
better than MorphoChains when either low frequency words
are pruned from its input, or its log-frequency option is used
rather than raw frequency.

Lang Method Prec Recall F-1
ENG Model-D 0.710 0.746 0.728

Model-C 0.811 0.705 0.754
Model-B 0.775 0.738 0.756
Model-A 0.755 0.751 0.753
Full Model 0.787 0.741 0.763

GER Model-D 0.633 0.497 0.557
Model-C 0.666 0.456 0.541
Model-B 0.608 0.530 0.566
Model-A 0.636 0.455 0.530
Full Model 0.590 0.548 0.568

TUR Model-D 0.554 0.365 0.440
Model-C 0.601 0.344 0.438
Model-B 0.604 0.344 0.437
Model-A 0.588 0.346 0.436
Full Model 0.596 0.351 0.442

Table 7: Ablation analysis. -D=no data selection,
-C=no compound transformations, -B=no PRE-
FLIST, SUFLIST, COMPOUND features, -A=no other
LSE-based affix features.

by merely 3 features as opposed to a new feature
type with many instantiations.

Table 8 shows some example outputs for English,
German and Turkish. These analyses include some
correctly identified spelling changes (Example 1)
compounds (Example 4), and purely concatenative
morphology (Example 6). In Example 2, +ble is
counted as incorrect because our model predicts
+ble both for deplorable and reproducible while the
reference analysis uses able s and ible s, respec-
tively. Since EMMA uses one-to-one alignment,
it deems one of the alignments wrong. The op-
posite problem occurs in Example 4: our model
analyses aus in two ways, either as a prefix aus+
or as a separate word aus (part of a compound),
whereas the reference analysis always treats it as a
separate word aus. Example 6 illustrates an over-
segmentation error, caused by encountering two
similar forms of the verb giy, giymeyin and giymeyi.

Performance of all models on the three test lan-
guages is shown in Table 9. On average, our model
does better than MorphoChains and MORSEL, but
slightly worse than Morfessor. However, this dif-
ference is mainly due to Morfessor’s very good
performance on Estonian, which is the only test set
using gold standard segmentations rather than anal-
yses. All systems perform poorly on Arabic since
they do not handle templatic morphology; neverthe-
less our model and Morfessor perform considerably
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No Lang. Test Word Reference Analysis Our Model
1 ENG acknowledging ac p knowledge N +PCP1 ac+ knowledge +ing
2 ENG reproducible re p produce V ible s re+ produce +ble
3 GER wohnstuben wohn V stube N +PL wohn stube +n
4 GER ausdrueckliche aus drueck V lich +ADJ-e aus+ drueck +lich +e
5 TUR budaklara budak +PL +DAT budak +lar +a
6 TUR giymeyin giy +NEG ma +P2 PL giy +me +yi +n

Table 8: Examples morpheme analyses produced by our model on the development languages. Reference
analyses in bold correspond to the predicted analyses that are incorrect. See text for further explanation.

Lang Method Prec Recall F-1
ARA Words 1.000 0.112 0.202

Morf.2.0 0.719 0.224 0.342
MORSEL 0.993 0.135 0.238
MC 0.988 0.125 0.221
Our Model 0.839 0.206 0.331

FIN Words 0.902 0.282 0.430
Morf.2.0 0.704 0.389 0.501
MORSEL 0.698 0.504 0.585
MC 0.557 0.483 0.518
Our Model 0.588 0.514 0.549

EST* Words 0.951 0.572 0.715
Morf.2.0 0.858 0.785 0.820
MORSEL 0.686 0.777 0.729
MC 0.840 0.611 0.707
Our Model 0.756 0.763 0.760

AVG Words 0.951 0.322 0.449
Morf.2.0 0.760 0.466 0.554
MORSEL 0.792 0.472 0.517
MC 0.785 0.413 0.492
Our Model 0.728 0.494 0.547

Table 9: Results on test languages. Scores calcu-
lated using EMMA. *=reference analysis contains
word segmentation.

better than the others. Overall, our model performs
consistently near the top even if not the best for any
of the three languages.

Lexical Inventory Size One of the motivations
for unsupervised morphological analysis is to re-
duce data sparsity in downstream applications,
which implies that for a given level of accuracy,
systems that produce a more compact representa-
tion (i.e., a smaller morpheme inventory) should be
preferred. To see how compactly each model repre-
sents the test set, we count the number of unique
morphemes (or morphs, or labels) in the predicted
output of each model and compare it with the num-
ber of labels in the reference analysis and the num-

Method ENG GER TUR FIN EST
Morf.2.0 1439 2005 1873 2586 1620
MC 1442 2004 1912 2718 1635
MORSEL 1373 1865 1748 2177 1562
Ours 1336 1600 1725 2114 1616
Ref.Anal 1257 1520 1361 1966 1548
Words 1569 1779 1760 1835 1500

Table 10: The number of distinct morphemes iden-
tified by each model. The number of distinct labels
used in the reference analysis and the number of
words in unanalysed test sets are given for compar-
ison.

ber of words in the test set. Table 10 summarizes
this information9. For all languages except Esto-
nian our model finds the most compact set of items.
The number of distinct morphemes identified by
our model is only about 5%, 4.5% and 8.0% larger
than in the reference analysis for English, German
and Finnish respectively. On average our model
identified 12.8% and 14.8% fewer morphemes than
Morfessor and MorphoChains respectively, while
on average performing no worse or better than the
two word segmentation systems. MORSEL pro-
duces the second most compact output with only
a 3.2% larger set of distinct morphemes than our
model, leaving the two word segmentation systems,
Morfessor and MorphoChains, in the third and the
forth place respectively. These results suggest that
systems that attempt to output morphological anal-
ysis succeed in reusing the same morphemes more
frequently than the systems that perform surface
segmentation.

5 Conclusion

We presented an unsupervised log-linear model that
learns to identify morphologically related words

9Arabic is excluded because of the low overall perfor-
mance of all models (maximum recall 22.4%).

344



and the affixes and spelling transformations that
relate them. It uses these to induce morpheme-
level analyses of each word and an overall com-
pact representation of the corpus. In tests on six
languages, our system’s EMMA scores are consid-
erably better than its inspiration, the segmentation
system MorphoChains, and it also outperformed
the rule-based analysis system MORSEL. Our sys-
tem achieved similar EMMA performance to Mor-
fessor but with a more compact representation—the
first probabilistic system we are aware of to do so
well. In future work, we hope to investigate further
improvements to the system and perform extrinsic
evaluation on downstream tasks.
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Abstract

Part of speech (POS) taggers and depen-
dency parsers tend to work well on ho-
mogeneous datasets but their performance
suffers on datasets containing data from
different genres. In our current work,
we investigate how to create POS tagging
and dependency parsing experts for het-
erogeneous data by employing topic mod-
eling. We create topic models (using
Latent Dirichlet Allocation) to determine
genres from a heterogeneous dataset and
then train an expert for each of the gen-
res. Our results show that the topic mod-
eling experts reach substantial improve-
ments when compared to the general ver-
sions. For dependency parsing, the im-
provement reaches 2 percent points over
the full training baseline when we use two
topics.

1 Introduction

POS tagging and dependency parsing perform
well when trained and tested on datasets that are
predominantly in the same text domain. However,
there is decrease in accuracy for heterogeneous
datasets, i.e., for datasets that consist of a mix-
ture of data from different domains. Our current
work focuses on improving POS tagging and de-
pendency parsing for such heterogeneous datasets
from a variety of different genres by creating ex-
perts for automatically detected topics. In our
case, the datasets consist of newspaper reports on
the one hand and biomedical extracts on the other.

For determining the topic of a sentence, we use
Latent Dirichlet Allocation (LDA), which finds
the latent topic structure in a document. In our
case, a document to be clustered consists of a sin-
gle sentence. We then assign each sentence to

the most likely topic, for both training and test
sentences. We consequently train an expert for
each topic and then use this expert to POS tag and
parse the test sentences belonging to this topic.
We assume that the topics detected by the topic
modeler do not only pertain to lexical differences,
which can be beneficial for the POS tagger and the
parser, but also to syntactic phenomena. Thus, one
topic may focus on “incomplete” sentences, such
as headlines in a newspaper.

Our work is related to domain adaptation since
the aim is to improve (morpho-)syntactic analy-
sis for different domains. However, our approach
can be regarded as a more general approach to the
problem of domains as it is based on automati-
cally determining the genres present in the dataset.
Thus, no manual work is involved.

Our results show small to considerable im-
provements over a competitive baseline of using
the full training set. For POS tagging, there is an
improvement of 0.3 percent points over the full
training set. For dependency parsing, the gain is
more pronounced: almost 2% over the full train-
ing set.

The remainder of the paper is structured as fol-
lows: Section 2 discusses our research questions
and section 3 the related work in the area. Sec-
tion 4 describes the setup for our experiments, and
section 5 shows the experimental results. We draw
our conclusions in Section 6.

2 Research Questions

Our aim is to create POS tagging and parsing ex-
perts for heterogeneous datasets, with sentences
from different genres. For example, the dataset
might be a mixture of newspaper articles, blogs,
financial reports, research papers and even spe-
cialized texts such as biomedical research papers
and law texts. We create experts such that each
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expert would learn specific information about its
own genre. We determine these experts by per-
forming topic modeling on sentences and then
train an expert on the sentences of the topic.
We group sentences based on their most probable
topic. To test our hypothesis that topic modeling
can serve to group sentences into topics, we create
a mixed dataset from the financial domain (using
the Penn Treebank (Marcus et al., 1994)) and from
the biomedical domain (using the GENIA Corpus
(Tateisi and Tsujii, 2004)) such that the new hand-
crafted corpus consists of sentences from both do-
mains in equal measure. Consequently, there is a
clear difference in the genres in our corpus, and
we have gold standard topic information.

We perform topic modeling on training and test
data simultaneously: We assign a test sentence to
the topic with the highest probability. This means
that we currently simplify the problem of assign-
ing new sentences to topics. In the future, we
plan to assign new sentences to topics based their
similarity to sentences in the topics created dur-
ing training, following the work by Plank and van
Noord (2011).

Our current research focuses on answering the
following questions for POS tagging and parsing
tasks:

Question 1: Does Topic Modeling Detect
Topics?

In this question, we investigate whether an unsu-
pervised topic modeler can detect topics in a het-
erogeneous corpus. We use our artificially created
heterogeneous corpus containing sentences from
the Wall Street Journal (WSJ) section of the Penn
Treebank (Marcus et al., 1994) and from the GE-
NIA Corpus (Tateisi and Tsujii, 2004) and take
their original corpus as the gold standard topic.
We assume that a good split into the known top-
ics, financial news and biomedical abstracts, will
also improve POS tagging and parsing accuracy.
If we assume two topics, we should be able to see
a clear distinction between WSJ and GENIA sen-
tences. I.e., for each topic, we should have a clear
correspondence of its sentences to either WSJ or
GENIA. We thus calculate the percentage of sen-
tences in a given topic that belong to GENIA and
expect that one topic should have a high percent-
age and the other one a low percentage. We also
experiment with a larger number of topics, to see
if we can profit from a finer grained topic defini-

tion. However, this advantage will be offset by a
smaller training set since we split into more sets.

Question 2: Does POS Tagging Benefit from
Using Topics?

In this question, we examine whether the perfor-
mance of POS tagging improves if we create ex-
perts based on the topics detected by the topic
modeler. Thus, we use the topics created for the
previous sections and train a POS tagging expert
on the training part of each topic. We then use
the expert to tag the test sentences from this topic.
In this setting, we can see if the experts can ef-
fectively handle the data sparseness caused by di-
viding the training set into multiple experts. We
experiment with one setting in which we use topic
modeling as hard clustering, i.e., we assign each
sentence to the topic for which the topic modeler
gave the highest probability. We also experiment
with soft clustering, in which we add each sen-
tence to all topics, weighted by its probability dis-
tribution.

Question 3: Does Dependency Parsing Benefit
from the Topics?

Here, we investigate the effects of using topic
modeling experts for dependency parsing. We first
use gold POS tags in order to abstract away from
POS tagging quality. In a second step, we in-
vestigate the interaction between POS tagging and
parsing experts. I.e., we are interested in whether
dependency parsing can profit from using the POS
tags that were determined by the POS tagging ex-
perts. This allows us to determine whether inte-
grating POS information given by the POS experts
can improve dependency parsing or whether there
is no interaction between the two levels.

Question 4: What do the Experts Learn?

In this question, we will analyze the results from
question 3 in more detail to investigate how
the topic modeling experts improve parsing re-
sults. We are interested in whether there are spe-
cific types of sentences or dependencies that are
grouped by the topic models, so that the pars-
ing experts focus on a specific subset of syntactic
properties.

3 Related Work

To the best of our knowledge, there is little direct
correlation between our work on POS tagging and
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parsing experts to that of the previous work done
in the area. However, our work is comparable to
domain adaptation since we create experts to tag
and parse heterogeneous datasets. The work in
this is area is largely driven by the unavailability
of examples from the target domain. Our work
focuses on creating experts using topic modeling
which will be able to tag and parse target domain
sentences belonging to a specific topic. Compared
to POS tagging, there has been significant work on
domain adaptation in dependency parsing.

Dredze et al. (2007) found that problems in do-
main adaptation are compounded by differences
in the annotation schemes between the treebanks.
Blitzer et al. (2006) experimented with structural
correspondence learning (SCL), which focuses on
finding frequently occurring pivot features that oc-
cur commonly across domains in the unlabeled
data but equally characterize source and target
domains. Similar to our work, Blitzer et al.
used the WSJ as the source and MEDLINE ab-
stracts as the target domain. They established that
SCL reaches better results in both POS tagging
and parsing than supervised and semi-supervised
learning even when there is no training data avail-
able in the target domain.

For POS tagging, Clark et al. (2003) applied
an agreement-based and a baseline co-training
method by using a Markov model tagger and a
maximum entropy tagger. In case of the baseline,
all the sentences from one tagger are added to train
the other whereas in the agreement-based method,
both taggers have to reach to the same decision for
a sentence to be added to the training. Kübler and
Baucom (2011) used a similar concept but with
three different taggers and showed that selecting
sentences as well as sequences of words for which
all taggers agree yield the highest gains. Sagae
and Tsujii (2007) emulate a single iteration of co-
training by using MaxEnt and SVM, selecting the
sentences where both models agreed and adding
these sentences to the training set. Their approach
reached the highest results on the domain adapta-
tion task of CoNLL 2007 (Nivre et al., 2007).

In the CoNLL 2007 shared task on domain
adaptation for dependency parsing, Attardi et al.
(2007) used a tree revision method that corrects
the mistakes caused by the base parser for the
target domain. Later, Kawahara and Uchimoto
(2008) employed a single parser approach using
a second order MST parser and combining labeled

data from the known domain with unlabeled data
of the new domain by simple concatenation and
judging the efficacy of the resulting most reliable
parses. Finkel and Manning (2009) devised a new
model for named entity recognition as well as de-
pendency parsing by using hierarchical Bayesian
prior. This is influenced by the notion that differ-
ent domains may have different features specific
to each domain. However, instead of applying a
constant prior over all the parameters, a hierarchi-
cal Bayesian global is used. This enables shar-
ing of information across domains but also allows
to override this information if there is ample evi-
dence.

McClosky et al. (2010) designed the problem
as “multiple source parse adaptation”, in which
a parser was trained on multiple domains and
learned the statistics as well as domain differences
which affects the parser accuracy. Their parser
outperformed the state-of-the-art baselines. This
approach is similar to our work as we create ex-
perts based on topics, and each expert learns the
specifics of the particular topic with which it is as-
sociated.

The closest approach to ours is the one by Plank
and van Noord (2011), who employ a similar idea
of using topic modeling for creating parsing ex-
perts. However, their task is to determine in a do-
main adaption setting which sentences of an out-
of-domain training set are the most similar to the
test set. Thus, they create a specialized training
set for every document they need to parse while
we create more general experts. In the work by
Plank and van Noord (2011), the topic distribution
in a document is used as features for their similar-
ity metrics.

4 Experimental Setup

4.1 Data Sets

For our experiments, we use the Wall Street Jour-
nal (WSJ) section of the Penn Treebank (Marcus
et al., 1994) and the GENIA Corpus (Tateisi and
Tsujii, 2004). Both corpora use the Penn Tree-
bank POS tagset (Santorini, 1990) with minor dif-
ferences: The tagset used in GENIA is based on
the Penn Treebank tagset, but it uses the tags for
proper names and symbols only in very restricted
contexts.

For the WSJ corpus, we extract the POS annota-
tion from the syntactically annotated corpus. The
GENIA Corpus comprises biomedical abstracts
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from Medline, and it is annotated on different lin-
guistic levels, including POS tags, syntax, coref-
erence, and events, among others. We use GENIA
1.0 trees (Ohta et al., 2002) created in the Penn
Treebank format1. Both treebanks were converted
to dependencies using pennconverter (Johansson
and Nugues, 2007).

For our experiments, we need a balanced data
set, both for the training and the test set. Since
GENIA is rather small and since there is no stan-
dard data split for GENIA, we decided to extract
the last 850 sentences for the test set. The remain-
ing 17 181 sentences are used for training. For
WSJ, we chose the same number of sentences for
both training and the test set, the training sentences
are selected randomly from sections 02-21 and the
test sentences from section 22.

4.2 Topic Modeling
Probabilistic topic modeling is a class of algo-
rithms which detects the thematic structure in a
large volume of documents. Topic modeling is un-
supervised, i.e., it does not require annotated doc-
uments (Blei, 2012) but rather discovers similarity
between documents. Latent Dirichlet Allocation
(LDA) is one of the topic modeling algorithms. It
is a generative probabilistic model that approxi-
mates the underlying hidden topical structure of
a collection of texts based on the distribution of
words in the documents (Blei et al., 2003).

We use the topic modeling toolkit MAL-
LET (McCallum, 2002). The topic modeler in
MALLET implements Latent Dirichlet Allocation
(LDA), clustering documents into a predefined
number of topics. As a result, it provides differ-
ent types of information such as:

• Topic keys: The highest ranked words per
topic with their probabilities;

• Document topics: The topic distribution for
each document (i.e., the probability that a
document belongs to a given topic); and

• Topic state, which correlates all words and
topics.

For our experiments, we use sentences as docu-
ments. Based on the document topic information,
we then group the sentences into topics. We col-
lect all sentences from the training and test set,
cluster them via the MALLET topic modeler, and

1http://nlp.stanford.edu/ mcclosky/biomedical.html

determine for which expert(s) the sentence is rel-
evant. There are several ways of determining the
best expert, see below. Then, we separate the sen-
tences for each expert into training and test sen-
tences, based on the previously determined data
splits (see above).

We can determine experts based on hard or soft
clustering decisions: For hard clustering, the sen-
tences are assigned to hard topics, based on the
topic that has the highest probability in that sen-
tence. I.e., if for sentence sx, MALLET lists the
topic t1 as the topic with the highest probability,
then sx is added to the data set of topic t1. In
other words, the data set of topic t1 consists of all
sentences for which MALLET showed topic t1 as
the most likely topic. This means that the data set
sizes vary between topics.

For soft clustering experiments, we utilize the
entire topic distribution of a sentence by weight-
ing sentences in the training data based on their
topic distribution. We simulate weighting training
sentences by adding multiple copies to the train-
ing files of the experts. Thus, for 2-topic experi-
ments, a sentence with 80% probability for topic 1
will be included 8 times in the expert for topic 1
and 2 times in the expert for topic 2, rounding up
small percentages so that every sentence will be
added to every expert at least once. Thus, we use
a more fine grained topic model while mitigating
data sparseness, but we risk adding non-typical /
irrelevant sentences to experts.

4.3 POS Tagging

For part of speech tagging, we use the TnT (Tri-
grams’n’Tags) tagger (Brants, 2000). TnT is based
on a second order Markov Model and has an elab-
orate model for guessing the POS tags for un-
known words. We use TnT mainly because of its
speed and because it allows the manual inspection
of the trained models (emission and transition fre-
quencies).

4.4 Dependency Parsing

For the parsing experiments, we used the depen-
dency parser of the MATE Tools2, a Java imple-
mentation of a graph-based parser (Bohnet, 2010).

4.5 Evaluation

We used the script tnt-diff that is part of
TnT to evaluate the POS tagging results and the

2code.google.com/p/mate-tools
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2 topics 10 topics
T. % in train %in test % in train % in test
1 0.71 0.71 0.48 0.52
2 97.99 98.6 98.58 98.35
3 1.16 0.73
4 94.87 97.14
5 0.17 0
6 0.28 0.29
7 99.47 99.12
8 98.93 100
9 98.92 99.33

10 94.85 95.35

Table 1: Distribution of sentences from the
WSJ+GENIA data set given 2 and 10 topics
(showing the percentage of GENIA sentences per
topic).

CoNLL shared task evaluation script3 for evaluat-
ing the parsing results.

4.6 Baselines

We use two baselines: For the first baseline, we
take the complete training set when no topic mod-
eling is performed. Note that this is a very com-
petitive baseline since the topic modeling experts
have access to considerably smaller amounts of
training data. In order to avoid differences in accu-
racy resulting from different training set sizes, we
create a second baseline by splitting the sentences
randomly into the same number of groups as the
number of topics, while maintaining the equal dis-
tribution of WSJ and GENIA sentences. I.e., we
assume the same number of random “topics”, all
of the same size. Thus, in the 2-topic setting with
the genres, we create two separate training sets,
each containing half of the WSJ training set and
half of the GENIA one. In this setting, we test all
experts on the whole test set and average over the
results.

5 Experimental Results

5.1 Does Topic Modeling Detect Topics?

Here we investigate whether LDA can separate the
sentences into meaningful topics. Table 1 shows
the distribution of sentences in the training and test
set into different topics when we assume 2 or 10
topics. These results indicate that the topic mod-
eler separates topics very efficiently. For the 2-

3http://ilk.uvt.nl/conll/software/eval.pl

Accuracy
Setting 2 topics 10 topics
Full training set 96.69
Random split 96.41 95.48
Topic model 96.95 96.38
Soft Clustering 96.8 96.88

Table 2: Results of the POS tagging experiments.

topic experiments, a clear split is evident as the
majority of the GENIA sentences are clustered in
topic 2; the misclassified sentences constitute less
than 1%. For the 10-topic experiments, we notice
that topics 2, 4, 7, 8, 9, and 10 contain mainly GE-
NIA sentences while the remaining topics cover
mainly WSJ sentences. In both settings, the error
rate is between 0.2% and 5%, i.e., we obtain a dis-
tinct split between GENIA and WSJ, which should
give us a good starting point for the following ex-
periments.

5.2 POS Tagging Experts

In this section, we investigate whether the POS
tagger can benefit from using topic modeling, i.e.,
whether POS tagging results can be improved by
training experts for genres provided by topic mod-
eling. We compare the topic modeling approach
to our two baselines for the 2-topic and 10-topic
setting. We also perform a soft clustering exper-
iment, in which each sentence is added to every
topic, weighted by its probability (see section 4.2).

The results in Table 2 show that if we assume
a 2-topic setting, the experts perform better than
both baselines, i.e., the model trained on the full
training set and the model with randomly chosen
“topics”. The 2-topic expert model reaches an ac-
curacy of 96.95%, which is slightly higher than
the full training set accuracy of 96.69%. We know
that the 2-topic setting provides a clear separation
between WSJ and GENIA (Table 1). Thus, this
setting outperforms the full training set using a
smaller amount of training data. There is also an
increase of 0.54 percent points over the accuracy
of the 2 random split setting.

For the 10-topic setting, the topic expert model
outperforms the random split of the same size by
0.9 percent points, which is a higher difference
than for the 2-topic setting. This shows that the
finer grained splits model important information.
However, the topic expert model does not reach
the accuracy of the baseline using the full training
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Setting
LAS UAS

2 topics 10 topics 2 topics 10 topics
Full training set 88.67 91.71
Random split 87.84 84.91 90.86 88.64
Topic model 90.51 88.38 92.14 90.3
Soft clustering 89.86 89.91 91.99 91.84

Table 3: Results of the dependency parsing experiments using gold POS tags.

set. This can be attributed to the reduced size of
the training set for the experts.

Since training set size is a detrimental factor for
the larger number of topics, we also conducted an
experiment where we used soft clustering so that
every sentence is represented in every topic, but to
a different degree. The last row in table 2 reports
the results of this experiment. We notice that the
2-topic experts cannot benefit from the soft clus-
tering. Since the separation between WSJ and GE-
NIA is very clearly defined for the 2-topic exper-
iments, the advantage of having a larger training
set is outweighed by too many irrelevant exam-
ples from the other topic. However, the 10-topic
model profits from the soft clustering, which in-
dicates that soft clustering can alleviate the data
sparseness problem of the POS tagging experts for
larger numbers of topics. A more detailed analy-
sis of the POS tagging results (on a slightly dif-
ferent data split), see (Mukherjee et al., 2016).
This work includes an experiment showing that the
POS tagging experts also increase performance for
the WSJ corpus only, showing that POS tagging
experts also perform better on more homogeneous
collections, i.e., they adjust to less obvious differ-
ences between sentences.

5.3 Dependency Parsing Experts

5.3.1 Using Gold POS Tags

We now look into the parsing experiments using
gold standard POS tags. The choice of gold POS
tags allows us to focus on the contribution of the
topic modeling experts on parsing results.

The results of the experiments are shown in Ta-
ble 3, for 2-topic and 10-topic settings and in com-
parison to the two baselines, for the hard and soft
clustering experiments. The hard clustering re-
sults indicate that the 2-topic expert model reaches
an improvement over the baseline using the full
training set for both the labeled attachment score
(LAS) and the unlabeled attachment score (UAS).
We find an increase of around 2% over the baseline

for LAS, and an increase of 0.43% for UAS. How-
ever, for the 10-topic setting, both the LAS and
the UAS are slightly lower than the baseline. For
LAS, the difference is 0.29 percent points while
for UAS, the difference is 1.41 percent points.
This shows that the gain in LAS and UAS is off-
set by the reduced training set, parallel to the re-
sults for POS tagging. Both the 2-topic and the 10-
topic experts outperform the random split baseline
(which uses similar training set sizes), with a gain
of more than 3 percent points.

The soft clustering results show the same trends
as in the POS tagging experiments: For the 2-topic
setting, soft clustering outperforms the full base-
line by 1.19 percent points. But it does not exceed
the hard clustering results. In the 10-topic set-
ting, soft clustering outperforms the full baseline
as well as the hard clustering setting. This is be-
cause sentences with a 50% probability of belong-
ing to topic 1 and a 40% probability for topic 3
need to be considered to belong to both topics.
This result also shows that this method effectively
handles the training data sparsity in the 10-topic
setting.

5.3.2 Using the POS Tagger
In section 5.3, we use the gold standard POS tags
in the POS tags. In this section, we explore the
results of using POS tags from the POS tagger TnT
as the input for the parser. This gives rise to four
major scenarios:

1. The full training set is used for POS tagging
and for parsing (full baseline).

2. Random splits are used for parsing and POS
tagging. I.e., the POS tagger and parser are
trained on random splits (random baseline).

3. Topic models are used for training the parser,
but TnT is trained on the whole training set.

4. Topic models are used for training the parser
and the POS tagger.
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Setting
LAS UAS

2 topics 10 topics 2 topics 10 topics
1. Full set POS + full set parsing 86.70 90.26
2. Random split POS + random split parsing 85.77 81.33 89.11 85.73
3. Full set POS + topic model parsing 88.30 86.13 90.43 88.47
4. Topic model POS + Topic model parsing 88.35 85.68 90.55 88.15

Table 4: Results of the dependency parsing experiments using TnT POS tags.

Sentence
Fulltext

LAS
2-topic
LAS

Phyllis Kyle, Stephenson Newport News , Va . 0 25.00
But volume rose only to 162 million shares from 143 million Friday . 46.15 61.54
Fidelity , for example , prepared ads several months ago in case of a
market plunge .

47.06 82.35

CALL IT un-advertising . 50.00 75.00
( See related story : ” And Bills to Make Wishes Come True ” – WSJ
Oct. 17 , 1989 .

52.38 61.90

Table 5: Comparison of LAS for the sentences with the lowest LAS in the fulltext setting.

We use the random split case as the lower base-
line for these experiments and the full training set
as the more competitive baseline. Table 4 shows
the results.

Table 4 shows that in the 2-topic setting, us-
ing topic modeling experts on the POS level as
well as on the parsing level reaches the highest re-
sults with an improvement of around 2% in LAS
in comparison to the full baseline parser, from
86.70% to 88.35%. The gain in UAS is consid-
erably smaller: The topic modeling expert reaches
90.55% as opposed to 90.26% for the full baseline.
In contrast, the topic modeling setting for the 10-
topic setting outperforms the random baseline but
does not reach the full baseline, thus mirroring the
trends we have seen before.

When we compare the experiments where we
use the full POS tagging baseline along with topic
model parsing experts (row 3 in table 4) to the full
topic model (row 4), we see that the latter model
reaches only very minimal gains by using the topic
modeling POS tagger when we use 2 topics, and
we have a negative trend when we use 10 topics.
I.e. the overall quality of the POS tagger is more
important than its specialization. Thus, even if the
topic model POS tagger outperforms its full base-
line, the learned adaptations only have a minimal
effect on parsing accuracy.

5.4 Analysis of Results

We now have a closer look at the results pre-
sented for the parsing experiments using gold POS
tags in section 5.3.1. The results show that the
2-topic parsing experts outperform the general
parser trained on the full training set by almost
2 percent points. We looked at the 5 sentences
that had the lowest LAS when we used the gen-
eral parser. These sentences are shown in table 5,
along with their LAS for both settings. The table
clearly shows that the topic expert parsers reach a
much higher LAS across all these sentences, and
the highest increase reaches 35 percent points. We
also see that there are two headlines among these
sentences. They are different in their syntactic
patterns from other sentences and thus difficult to
parse. For this reason, we decided to have a closer
at all “incomplete” sentences, i.e., sentences that
do not have verbs, as an approximation of head-
lines. We found that of the 1 310 sentences in
the training set, 437 were grouped into topic 1,
the other 873 sentences in topic 2. In the test set,
we had 65 such sentences, 15 in topic 1 and 50 in
topic 2. For the sentences in topic 1, we calculate
an LAS of 76.54, for the ones in topic 2 an LAS
of 89.91. These results show that the parser expert
for topic 2 has adapted substantially better to the
syntax of such untypical sentences than the parser
expert for topic 1.

We also looked at the dependency labels that
were mislabeled most often by the more general,
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Gold Dep. Pred. Dep. Fulltext Topic 1 Topic 2
ADV NMOD 121 37 86
PMOD NMOD 101 21 67
NMOD ADV 100 34 57
AMOD NMOD 91 26 83
CONJ NMOD 86 13 56

Table 6: The 5 most frequent dependency label confusions of the full baseline parser.

full baseline parser. The 5 most frequent combina-
tions are shown in table 6, with their frequencies
in the test sentences of the two topics. These num-
bers show that the topic 1 expert is much better
adapted to these confusion sets, resulting in lower
error rates than the topic 2. This shows very dra-
matically that the two topics learn different pat-
terns.

6 Conclusion and Future Work

In these experiments, we have shown that we can
improve parsing results on heterogeneous domains
by using unsupervised topic modeling to separate
the data into different topics. We can then train
POS tagging and parsing experts on the individ-
ual topics, which show an increased accuracy in
comparison to their counterparts trained on the
whole, heterogenous training set. We can mitigate
the data sparsity resulting from having to split the
training set into different topics by assigning every
sentence to every topic but weighting their impor-
tance to a topic by the probabilities of the topic
modeler. We also showed that while the POS tag-
ger and the dependency parser individually profit
from the split into topic experts, the combination
of topic expert POS tagger and parser does not
improve over using a POS tagger trained on the
whole data set. We will have to investigate the
reasons for this behavior in future work.

We will also investigate methods of how to as-
sign test sentences to topics without having to re-
run the topic modeler on the whole data set.
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Abstract

In this paper, we present how the princi-
ples of universal dependencies and mor-
phology have been adapted to Hungarian.
We report the most challenging grammati-
cal phenomena and our solutions to those.
On the basis of the adapted guidelines,
we have converted and manually corrected
1,800 sentences from the Szeged Tree-
bank to universal dependency format. We
also introduce experiments on this manu-
ally annotated corpus for evaluating auto-
matic conversion and the added value of
language-specific, i.e. non-universal, an-
notations. Our results reveal that convert-
ing to universal dependencies is not nec-
essarily trivial, moreover, using language-
specific morphological features may have
an impact on overall performance.

1 Introduction

Morphological tagging and syntactic parsing are
key components in most natural language process-
ing (NLP) applications. Linguistic resources and
parsers for morphological and syntactic analysis
have been developed for several languages, see
e.g. the shared tasks on morphologically rich lan-
guages (Seddah et al., 2013; Seddah et al., 2014).
However, the comparison of results achieved for
different languages is not straightforward as most
languages and databases apply a unique tagset,
moreover, they were annotated following differ-
ent guidelines. In order to overcome these issues,
the project Universal Dependencies and Morphol-
ogy (UD) has recently been initiated within the
NLP community (Nivre, 2015). The main goal of
the UD project is to develop a “universal”, i.e. a
language-independent morphological and syntac-
tic representation which can contribute to the im-

plementation of multilingual morphological and
syntactic parsers from a computational linguistic
point of view. Furthermore, it can enhance studies
on linguistic typology and contrastive linguistics.

From the viewpoint of syntactic parsing, the
languages of the world are usually categorized ac-
cording to their level of morphological richness
(which is negatively correlated with configura-
tionality). At one end, there is English, a strongly
configurational language while there is Hungarian
at the other end of the spectrum with rich mor-
phology and free word order (Fraser et al., 2013).
In this paper, we present how UD principles were
adapted to Hungarian, with special emphasis on
Hungarian-specific phenomena.

Hungarian is one of the prototypical morpho-
logically rich languages thus our UD principles
can provide important best practices for the uni-
versalization of other morphologically rich lan-
guages. The UD guidelines for Hungarian were
motivated by both linguistic considerations and
data-driven observations. We developed a con-
verter from the existing Szeged Dependency Tree-
bank (Vincze et al., 2010) to UD and manually
corrected 1,800 sentences from the newspaper do-
main. The experiences gained during the converter
development and during the manual correction
could reinforce the linguistic guidelines. More-
over, the manually corrected gold standard corpus
provides the opportunity for empirical evaluations
like assessing the converter and comparing depen-
dency parsers employing the original and the uni-
versal morphological representations. Thus, we
evaluated the quality of the automatic conversion,
which reveals that converting to universal depen-
dencies is not necessarily trivial, at least for Hun-
garian. We also show that using different morpho-
logical tagsets may have an impact on overall pars-
ing performance and utilizing language-specific,
i.e. non-universal, information has a considerable
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added value at both the morphological and syntac-
tic layers.

The chief contributions of the paper are the in-
troduction of

• the universal morphology and dependency
principles for Hungarian, leading to insights
for other morphologically rich languages,

• empirical experiments on the upper bound
of the accuracy of automatic conversion and
pre-parsing,

• comparative evaluations for assessing the
added value of language-specific informa-
tion at the morphological and syntactic layers
along with the interaction of these two.

2 Related Work

Standardized tagsets for both morphological and
syntactic annotations have been constantly devel-
oped in the international NLP community. For
instance, the MSD morphological coding system
was developed for a set of Eastern European lan-
guages (Erjavec, 2012), within the MULTEXT-
EAST project. Interset functions as an interlingua
for several morphological coding systems, which
can convert different tagsets to the same mor-
phological representation (Zeman, 2008). There
have also been some attempts to define a com-
mon set of parts-of-speech: Rambow et al. (2006)
defined a multilingual tagset for part-of-speech
(POS) tagging and parsing, while McDonald and
Nivre (2007) identified eight POS tags based on
data from the CoNLL-2007 Shared Task (Nivre
et al., 2007). Petrov et al. (2012) offered a tagset
of 12 POS tags and applied this tagset to 22 lan-
guages.

Now, Universal Dependencies (UD) is the latest
standardized tagset that we are aware of. UD is
an international project that aims at developing a
unified annotation scheme for dependency syntax
and morphology in a language-independent frame-
work (Nivre, 2015). Hungarian was among the
first 10 languages of the project, participating also
in the first official release in January 2015. In the
latest release (Version 1.3, May 2016), there are
annotated datasets available for 40 languages, in-
cluding English, German, French, Hungarian and
Irish, among others1. In these datasets, the very
same tagsets are applied at the morphological and

1http://universaldependencies.org/

syntactic levels and texts are annotated on the ba-
sis of the same linguistic principles, to the widest
extent possible.

The UD tagset encodes morphological informa-
tion in the form of POS tags and feature–value
pairs. As for syntactic information, each word is
assigned to its parent word in the dependency tree
and the grammatical function of the specific word
is encoded in dependency labels. Dependency la-
bels, POS tags and features are universal (i.e. there
is a fixed set of them without the possibility of in-
troducing new members), but values and depen-
dency labels can have language-specific additions
if needed. Features are divided into the categories
lexical features and inflectional features. Lexical
features are features that are characteristics of the
lemmas rather than the word forms, whereas in-
flectional features are those that are characteristics
of the word forms. Both lexical and inflectional
features can have layered features: some features
are marked more than once on the same word,
e.g. a Hungarian noun may denote its possessor’s
number as well as its own number. In this case, the
Number feature has an added layer, Num[psor].

Up to now, several papers have been published
on the general principles behind UD (Nivre, 2015;
Nivre et al., 2016) or on specific treebanks. For
instance, there are UD treebanks available for ag-
glutinative languages such as Finnish (Haverinen
et al., 2014; Pyysalo et al., 2015), Estonian (Muis-
chnek et al., 2016) and Japanese (Tanaka et al.,
2016), for Slavic languages (Zeman, 2015) and
spoken Slovenian (Dobrovoljc and Nivre, 2016)
and for Nordic languages such as Norwegian
(Øvrelid and Hohle, 2016), Danish (Johannsen et
al., 2014) and Swedish (Nivre, 2014), together
with several other languages (Persian (Seraji et al.,
2016) and Basque (Aranzabe et al., 2014), just to
name a few). Recently, a further extension on the
UD relations has been proposed: enhanced En-
glish dependencies are described in Schuster and
Manning (2016).

Our UD principles introduced in this paper
follow the central UD guidelines (Nivre, 2015)
and we did our best to align with the exist-
ing guidelines for other morphologically rich lan-
guages as well. On the other hand, there are sev-
eral Hungarian-specific phenomena that required
changes and extensions of the original UD princi-
ples.

The only available manually annotated tree-
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bank for Hungarian is the Szeged Corpus (Csendes
et al., 2004) and Szeged Dependency Treebank
(Vincze et al., 2010). It contains approximately
82,000 sentences and 1.5 million tokens, all man-
ually annotated for POS-tagging and constituency
and dependency syntax. We developed an au-
tomatic tool that converts the morphological de-
scriptions of the Szeged Corpus to universal mor-
phology tags and the dependency trees of the
Szeged Treebank to universal dependencies.

3 Universal Morphology for Hungarian

In this section, we present the morphological
tagset applied to Hungarian.

When adapting the principles of Universal Mor-
phology to Hungarian, we were able to automati-
cally convert most of the morphological features
used in the Szeged Treebank 2.5 (Vincze et al.,
2014), which was based on MSD principles (Er-
javec, 2012). However, we faced some problem-
atic issues, which we will discuss in detail in this
section. The details of universal morphological
codeset of Hungarian are available on our web-
site2.

3.1 Possessive constructions

The possessor in Hungarian possessive construc-
tions can have two different surface forms, without
any difference in meaning: the possessor can be
morphologically marked or not, just like the En-
glish constructions the girl’s doll and the doll of
the girl. Thus, both of the following possessive
constructions are widely used:

(1) a
the

szomszéd
neighbor

kertje
garden-3SGPOSS

the neighbor’s garden

(2) a
the

szomszédnak
neighbor-DAT

a
the

kertje
garden-3SGPOSS

the neighbor’s garden

In Example 1, the possessor is not marked, i.e. it
shares its form with the nominative form of the
noun, however, in Example 2, the possessor is
morphologically marked, sharing its from with the
dative form of the noun. Nevertheless, the pos-
sessed is morphologically marked in both cases,
which was a novelty in the UD project as the lan-
guages already included in the data do not mark

2http://rgai.inf.u-szeged.hu/project/
nlp/research/msdkr/univmorph.html

the possessor on the possessed noun but use deter-
miners for this purpose (cf. my car but az autóm
(the car-1SGPOSS)). Moreover, the number of the
possessed can be marked on the noun in elliptical
constructions such as:

(3) Láttam
see-PAST-2SGPOSS-ACC

az
the

autódat
car-2SG-POSS

,
,
de
but

a
the

szomszédét
neighbor-POSSD.SG-ACC

nem
not

.

I could see your car but not that of the
neighbor.

(4) Láttam
see-PAST-2SGPOSS-ACC

a
the

gyerekeidet
child-2SG-PL-POSS

,
,
de
but

a
the

szomszédéit
neighbor-POSSD.PL-ACC

nem
not

.

I could see your children but not those of
the neighbor.

Hence, we had to introduce novel morpholog-
ical features to mark the person and number fea-
tures of the possessor on Hungarian nouns. Num-
ber denotes the number of the noun, Number[psor]
and Person[psor] denote the number and person
of the possessor, and Number[psed] denotes the
number of the possessed. Below, there is a sample
word annotated according to the Universal Mor-
phology principles.

(5) házaiménak
house-1SGPOSS-PL-POSSD.SG-DAT
to that of my houses
NOUN
Case=Dat|Number=Plur|Number[psed]=Sing
|Number[psor]=Sing|Person[psor]=1

3.2 Object-verb agreement
Another Hungarian-specific feature was the def-
initeness of the object. As a special type of
agreement, the definiteness of their objects deter-
mines which paradigm of the verb is to be cho-
sen. In other words, the form of the verb changes
when the definiteness of the object also changes
(Törkenczy, 2005). For instance, proper nouns and
NPs with a definite article are typical examples of
definite objects and trigger the objective form of
the verb (see Example 6) while bare nouns and
NPs with an indefinite article are indefinite objects
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(see Example 7) and trigger the subjective form of
the verb. Second person objects also trigger a spe-
cial form of the verb as listed in Example 8:

(6) Látom
see-1SGOBJ

Pistit
Steve-ACC

.

.
I can see Steve.

(7) Látok
see-1SGSUBJ

egy
a

gyereket
kid-ACC

az
the

udvaron
yard-SUP

.

.
I can see a kid in the yard.

(8) Látlak
see-1SGOBJ2

.

.
I can see you.

In this way, the feature Definiteness needs to be
applied to verbs in Hungarian, moreover, it has a
language-specific feature due to the special form
triggered by the second person objects. Thus, Def-
initeness has three possible values in Hungarian:
Definite, Indefinite, 2.

3.3 Determiners and pronouns
Determiners, pronouns and ordinal numbers also
constituted a peculiarity. According to Hungarian
grammatical traditions, ordinal numbers have been
treated as numerals but in the universal morphol-
ogy, they have to be annotated as adjectives. Thus,
their POS tags were automatically converted to ad-
jectives.

Demonstrative pronouns were also treated dif-
ferently in the original annotation used in the
Szeged Treebank and in universal morphology.
While demonstrative pronouns ez and az are
tagged as pronouns independently of their posi-
tions, in universal morphology such words occur-
ring before an article should be tagged as a deter-
miner (see Example 9) but when they are used as
an NP, they should be tagged as a pronoun (see
Example 10).

(9) Olvastam
read-PAST-1SGOBJ

azt
that-ACC

a
the

könyvet
book-ACC

.

.
I have read that book.

(10) Olvastam
read-PAST-1SGOBJ

azt
that-ACC

.

.
I have read that.

These cases were also automatically converted,
following the universal morphology guidelines.

3.4 Verbal prefixes

In our original treebank, verbal particles that were
spelt as a separate token had their own part-of-
speech, i.e. verbal particle. According to the
UD description however, not all function words
that are traditionally called particles automatically
qualify for the PART tag. They may be adpositions
or adverbs by origin, therefore should be tagged
ADP or ADV, respectively. Thus, we manually
compiled a list that contained the original part-of-
speech of words that were tagged as verbal pre-
fixes, for instance, el “away” was treated as an ad-
verb and agyon brain-SUP as a noun – the latter
is usually used in phrases like agyonüt “kill some-
one by hitting on his head”. Based on this list, we
were able to automatically assign UD POS tags to
verbal prefixes.

4 Universal Dependency in Hungarian

When adapting the universal dependency labels to
Hungarian, we could find a one-to-one correspon-
dence between the original labels of the Szeged
Treebank and the UD labels only in most of the
cases, and these labels could be automatically con-
verted to the UD format, making use of the de-
pendency and morphological annotations found in
the original treebank. However, we encountered
some problematic cases during conversion, which
we will discuss below in detail. The details of uni-
versal dependency rules of Hungarian are avail-
able on our website3.

4.1 Non-overt copulas

Traditionally, it is the verb that functions as the
head of the clause in dependency grammars but in
certain languages, there are verbless clauses where
the predicate consists of a single nominal element
(typically a noun or an adjective) at the surface
level. The dependency analysis of such sentences
may be problematic due to the lack of an overt
verb. Some studies such as Polguère and Mel’čuk
(2009) argue for a zero copula in such cases, es-
pecially when the copula is empty only in certain
slots of the verbal paradigm. For instance, in Hun-
garian, the copula has its zero form only in the
present tense, indicative mood, third person forms
as shown in Examples 11-14:

(11) Present tense, indicative mood, Sg1:

3http://rgai.inf.u-szeged.hu/
dependency
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Én
I

tanár
teacher

vagyok
be-1SG

.

.

I am a teacher.

(12) Present tense, indicative mood, Sg3:

Ő
he

tanár
teacher

.

.

He is a teacher.

(13) Past tense, indicative mood, Sg3:

Ő
he

tanár
teacher

volt
be-PAST-3SG.

.

He was a teacher.

(14) Present tense, imperative mood, Sg3:

Ő
he

legyen
be-IMP-3SG

tanár
teacher

!
!

He should be a teacher.

The original dependency analysis in the Szeged
Treebank inserts a zero copula (VAN), i.e. a virtual
node in the dependency tree, which functions as
the head of the clause and the nominal predicate is
attached to it. Figure 1 shows such an analysis of
the sentence E gondolat sem új (this thought not
new) “This thought is not novel at all”.

Beside the function head analysis (i.e. where
function words, e.g. the copula is the head), there
is another approach to dependencies, namely, the
content head analysis, where the head is a con-
tent word instead of a function word. In the latter
case, the main grammatical relations can be found
among content words and all the other function
words are attached to the main structure. UD ap-
plies the content head analysis, which means that
in copular constructions, the nominal element is
the head and the copula (if present) is attached to
it with a cop relation. In a similar way, the head
of adpositional constructions is the noun and the
adposition is attached to it.

Sentences with nominal predicates were au-
tomatically converted from the original treebank
into the UD format: Figure 2 shows the UD anal-
ysis of the sentence found in Figure 1. Likewise,
postpositional constructions were converted: the
noun was treated as the head and the postposition
was attached to it with a case label.

E gondolat sem VAN új .

ROOT

DET

SUBJ

NEG PRED
PUNCT

Figure 1: A function head analysis in the Szeged
Dependency Treebank (E gondolat sem VAN új
(this thought IS not new) “This thought is not
novel at all”).

E gondolat sem új .

root

det

nsubj

neg punct

Figure 2: A content head analysis in the Hungarian
UD treebank (E gondolat sem új (this thought not
new) “This thought is not novel at all”).

4.2 Subordinate clauses
Subordinate clauses proved also to be a problem-
atic issue as UD principles make a sharp distinc-
tion among several types of subordinate clauses
– e.g. clausal subject, clausal object, adverbial
clause – in contract with the Szeged Dependency
Treebank, which applies one single label for all
types of subordinate clauses. Some types of sub-
ordinate clauses had a special label in the con-
stituency version of the treebank hence their con-
version was straightforward. In other cases, we
could rely on manually constructed conversion
rules but the resulting trees had to be corrected
manually.

4.3 Multiword named entities
The UD treatment of multiword named entities re-
quired a Hungarian-specific solution. According
to the UD principles, the first token of the multi-
word expressions should be marked as the head.
However, in Hungarian, it is always the last ele-
ment of the multiword expression that is inflected.
Examples 15-16 demonstrate that the first element
cannot be inflected, only the last one:

(15) Találkoztam
meet-PAST-1SG

Kovács
Kovács

Jánossal
János-INSTR

.

.

I met János Kovács4.
4The standard order of person names is surname + first
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(16) *Találkoztam
meet-PAST-1SG

Kováccsal
Kovács-INSTR

János
János

.

.
I met János Kovács.

Due to the above morphosyntactic facts, we
marked the last token of multiword named entities
as the head in the Hungarian UD treebank while
all the other UD treebanks mark the first token as
the head.

4.4 Dative forms

In Hungarian, nouns that bear the suffix -nAk can
fulfill several grammatical roles in the sentence
such as:

(17) indirect object:

Laci
Leslie

adott
give-PAST-3SG

a
the

barátjának
friend-3SGPOSS-DAT

egy
an

almát
apple-ACC

.

.

Leslie gave an apple to his friend.

(18) possessor:

Laci
Leslie

elvette
take-PAST-3SGOBJ

a
the

barátjának
friend-3SGPOSS-DAT

a
the

könyvét
book-3SGPOSS-ACC

.

.

Leslie took his friend’s book.

(19) dativus ethicus:

Nekem
I-DAT

nehogy
so.as.not.to

eladd
sell-IMP-2SGOBJ

az
the

autódat
car-2SGPOSS-ACC

!
!

As for me, you should not sell you car.

(20) experiencer:

Nekem
I-DAT

nagyon
very

tetszett
like-PAST-3SG

az
the

előadás
performance

.

.

I really liked the performance.

(21) semantic subject:

name in Hungarian.

Lacinak
Leslie-DAT

bocsánatot
apology-ACC

kellett
must-PAST-3SG

kérnie
ask-INF-3SG

a
the

barátjától
friend-3SGPOSS-ABL

.

.

Leslie had to apologize to his friend.

While these forms do not show any difference at
the morphological level, they have very different
roles at the syntactic and semantic levels. Thus we
decided not to make any distinction in the morpho-
logical annotation but they should have different
syntactic labels. Indirect objects are marked with
the label iobj, possessors with the label nmod:poss
and other occurrences with nmod:obl. Obviously,
these annotations had to be carried out manually
as most of these cases could not be easily and un-
equivocally converted to the UD format only on
the basis of morphology and syntax. Consider the
following examples (Example 19 is repeated for
convenience):

(22) Nekem
I-DAT

nehogy
so.as.not.to

eladd
sell-IMP-2SGOBJ

az
the

autódat
car-2SGPOSS-ACC

!
!

As for me, you should not sell your car.

(23) Nehogy
so.as.not.to

eladd
sell-IMP-2SGOBJ

nekem
I-DAT

az
the

autódat
car-2SGPOSS-ACC

!
!

You should not sell your car to me.

Example 22 contains a dativus ethicus whereas
Example 23 contains an indirect object. The two
sentences only have different word orders thus
their automatic distinction would not be straight-
forward.

4.5 Light verb constructions
Light verb constructions are verb + noun combi-
nations where most of the semantic content of the
whole expression is carried by the noun while the
syntactic head is the verb (e.g. to have a shower, to
make a decision). They are not uniformly treated
in Version 1.3 of the UD treebanks. Light verb
constructions are either not marked at all or if they
are marked, they may have a special structure or
special labels (Nivre and Vincze, 2015). The Hun-
garian treebank belongs to the latter group, that is,
members of light verb constructions bear a special

361



label. For instance, Figure 3 shows that the label
dobj:lvc can be found between the nominal
and verbal component of the light verb construc-
tion döntést hoz (decision-ACC bring) “to make a
decision”. In this way, the dobj part of the la-
bel marks that syntactically it is a verb–object re-
lation but semantically, it is a light verb construc-
tion, marked by the lvc extension of the label.

A bizottság döntést hozott az ülésen .

root

nsubj

det

punct

dobj:lvc
nmod:obl

det

Figure 3: Light verb construction in the Hungar-
ian UD treebank (A bizottság döntést hozott az
ülésen (the committee decision-ACC bring-PAST-
3SG the meeting-SUP) “The committee made a
decision at the meeting”).

5 Experiments

We developed a converter from the existing
Szeged Dependency Treebank (Vincze et al.,
2010) to UD and manually corrected 1,800 sen-
tences from the newspaper domain. The manually
corrected UD sentences are available in the UD
repository v3.0. The experiences gained during
the manual correction could reinforce the linguis-
tic conversion rules and the manually corrected
gold standard corpus provides the opportunity for
empirical evaluations which we introduce in this
section.

5.1 On the Accuracy of Automatic
Converters

Most of the UD treebanks are the result of auto-
matic conversion from a dependency treebank of
originally different principles. The accuracy of
these automatic converters is unknown, i.e. we do
not know how much information was lost or how
much noise was introduced by the converters. To
empirically investigate this in the case of Hungar-
ian UD, we compared the converted and the manu-
ally corrected, i.e. gold standard, trees of the 1800
sentences.

The converter itself is based on linguistic rules
(it is available on our website5) which were itera-

5http://rgai.inf.u-szeged.hu/
dependency

tively improved by manually investigating the re-
sults of conversion on sentences of the Szeged De-
pendency Treebank. The final version of the con-
verted achieves an UAS of 87.81 and a LAS of
75.99 on the 1800 sentences compared against the
manually corrected UD trees. We believe that this
level of accuracy is not sufficient for releasing the
rest of the 80,000 sentences of the automatically
converted Szeged Dependency Treebank. On the
other hand, some of the shortcomings of the auto-
matic conversion could be corrected by exploiting
annotation found in other versions of the Szeged
Treebank. For instance, the type of certain subor-
dinate clauses is marked in the constituency ver-
sion of the treebank, which can be transformed
into UD labels. Moreover, coreference annota-
tions from the subcorpora annotated for corefer-
ence relations could enhance the proper attach-
ment of relative clauses. We intend to add these
pieces of information to our converter in the fu-
ture, hence higher accuracy scores can be provi-
sioned for the automatic conversion process: just
with the above mentioned corrections, an addi-
tional 6 percentage points could be achieved in
terms of LAS as about 20% of the errors are due
to subordinate or relative clauses.

5.2 On the Price of Universality

We carried out experiments for investigating
whether is there any difference between using the
original MSD (Vincze et al., 2014) and the new
universal morphological (UM) descriptions. We
were particularly interested in the utility of the
two representations for dependency parsing. We
trained two models of the MarMot morphological
tagger (Mueller et al., 2013) using the two mor-
phological representation in 10-fold cross-tagging
on our manually corrected 1800 sentences. Then
we trained and evaluated the Bohnet dependency
parser (Bohnet, 2010) on the train/test split of the
UD repository v3.0 utilizing the two different pre-
dicted morphological descriptions. We used the
default parameters for both the MarMot and the
Bohnet parser.

Table 1 presents unlabeled (UAS) and labeled
(LAS) attachment scores achieved by the parser
on the test set. The first column of the table in-
dicates whether the universal morphology (UM)
or the original MSD morphological codes were
employed in the experiment. The second column
of the table shows which dependency label set
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Morph. labels Dep labels UAS LAS (full label) LAS (main label)
UM full label 81.94 76.98 78.39
MSD full label 82.27 77.50 78.75
UM main label 81.70 – 78.39
MSD main label 82.17 – 78.58

Table 1: Dependency parsing results on the Hungarian Universal Dependency dataset. In the case of
LAS(main label) we do not check the language specific part of the dependency labels in the evaluations
while we compare the universal and language-specific dependency labels at LAS(full label).

was used for training the Bohnet parser. main la-
bel refers here to the universal dependency labels
while full label refers to using the concatenation
of universal and language-specific labels. The dif-
ference between the last two columns of the table
is that we checked the full or only the main depen-
dency labels at evaluations.

Table 1 shows the MSD outperforms UM con-
sistently at each of the experiments. Although
these differences are not high, this suggests that
some information encoded in the MSD morphol-
ogy is not represented in UM, i.e. we have to
pay a price to be universal. We can observe the
greatest difference when training and evaluating
on full dependency labels, i.e. language-specific
morphological features contribute to the predic-
tion of language-specific dependency labels.

We made a manual error analysis of the results
with regard to attachment (UAS) errors, i.e. we
compared the outputs of the dependency parsers
trained by using predicted universal codes and pre-
dicted MSD morphological codes, respectively.
Results are presented in Table 2. We found that
the benefits of the original language-specific an-
notation (MSD) mostly manifests in the treatment
of subordinate clauses, adverbial modifiers and in-
finitival complements. These results might be ex-
plained by the fact that in certain cases, MSD
contains more detailed grammatical information
than the UM formalism. For instance, MSD en-
codes whether a conjunction connects clauses or
words/phrases, which information is missing from
UM. Also, higher results were achieved for cases
when two nouns or adjectives were following each
other and one of them modified the other (as in
magas rangú képviselői “representatives of high
standings”). However, sentences containing an
overt or covert form of the copula could be parsed
more effectively by using universal morphology
codes.

Error type MSD % UM %
Coordination 100 32.05 98 30.34
Article 44 14.10 44 13.62
Adverbial 35 11.22 43 13.31
Other 37 11.86 31 9.60
Part/adj compl. 31 9.94 32 9.91
Adjacent N/A 15 4.81 20 6.19
Subordination 13 4.17 17 5.26
Copula 14 4.49 11 3.41
Infinitive 9 2.88 15 4.64
Nominal arg. 8 2.56 8 2.48
Possessor 6 1.92 4 1.24
Total 312 100 323 100

Table 2: Error analysis: the number and ratio of
specific error types.

5.3 The Added Value of Language-specific
UD Labels

We also investigated the impact of the language-
specific parts of the dependency labels. As the
numbers in Table 1 show, slightly better results can
be achieved both in terms of UAS and LAS when
training the model with full labels than with main
labels. This highlights the importance of adding
language specific distinctions to the universal ones
because they may contain information that can be
exploited during the tree decoding. They con-
tribute even to unlabeled attachment decisions. To
take an example, UD does not make any distinc-
tion among different types of nominal modifiers,
treating them as nmod. However, for Hungarian,
we applied extra labels such as nmod:poss for
possessors (see Section 3.1) and nmod:obl for
nominal arguments of the verb. As for the first, it
should always be attached to the possessed noun,
whereas the second one is attached to a verb (see
also Examples 18 and 19 with the dative morpho-
logical case). Thus, the parser can learn these fine-
grained distinctions, which might be beneficial for
the unlabeled attachment scores as well.

363



Also, we would like to point out that the uti-
lization of language-specific labels does not con-
tradict the UD principles. In UD, each language
should select the appropriate labels according to
their needs but there is no need to apply all of
the labels/features. General labels like nsubj or
dobj will be used in most (maybe all) of the UD
languages but there are other labels or feature-
value pairs that are applicable for only a hand-
ful of languages. These ones are now called as
“language-specific” features but in principle, their
status is not different from those that are more
widely applied. So we believe that introducing
“language-specific” additions does not harm the
UD principles. Moreover, the chief objective of
our experiments was to highlight the added value
of language-specific features and we were able to
show that they can even improve parsing accuracy
when evaluated exclusively on the general labels.
The main goal of UD is to provide a way where
the parsing results over languages are compara-
ble, hence using language specific features during
decoding but evaluating only on general labels is
in line with this comparison principle. Moreover,
it indicates for UD treebank developers that – be-
sides general labels – language-specific ones have
to be taken seriously.

6 Conclusions

In this paper, the principles of universal depen-
dencies and morphology for Hungarian were in-
troduced by reporting the most challenging gram-
matical phenomena and our solutions to those.
We converted then manually corrected 1,800 sen-
tences from the Szeged Treebank to universal
dependency format and introduced experiments
on this manually annotated corpus for evaluat-
ing automatic conversion and the added value of
language-specific, i.e. non-universal, annotations.
We would like to draw the attention to the im-
portance of understanding i) the information loss
of the automatic UD converters; ii) what is the
price of being constrained by universal morphol-
ogy principles and; iii) the utility of exploiting
language-specific dependency labels in UD.
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Abstract

Neural attention models have achieved
great success in different NLP tasks. How-
ever, they have not fulfilled their promise
on the AMR parsing task due to the data
sparsity issue. In this paper, we de-
scribe a sequence-to-sequence model for
AMR parsing and present different ways
to tackle the data sparsity problem. We
show that our methods achieve significant
improvement over a baseline neural atten-
tion model and our results are also compet-
itive against state-of-the-art systems that
do not use extra linguistic resources.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism
where the meaning of a sentence is encoded as a
rooted, directed graph. Figure 1 shows an exam-
ple of an AMR in which the nodes represent the
AMR concepts and the edges represent the rela-
tions between the concepts they connect. AMR
concepts consist of predicate senses, named entity
annotations, and in some cases, simply lemmas of
English words. AMR relations consist of core se-
mantic roles drawn from the Propbank (Palmer et
al., 2005) as well as very fine-grained semantic re-
lations defined specifically for AMR. These prop-
erties render the AMR representation useful in ap-
plications like question answering and semantics-
based machine translation.

The task of AMR graph parsing is to map nat-
ural language strings to AMR semantic graphs.
Recently, a sizable new corpus of English/AMR
pairs (LDC2015E86) has been released. Different
parsers have been developed to tackle this prob-
lem (Flanigan et al., 2014; Wang et al., 2015b;

*Both authors contribute equally.

describe-01

person

genius

ARG0
ARG1

ARG2

name

“Ryan”

name

op1

Figure 1: An example of AMR graph representing
the meaning of: “Ryan’s description of himself: a
genius.”

Artzi et al., 2015; Pust et al., 2015; Peng et al.,
2015). Most of these parsers have used external re-
sources such as dependency parses, semantic lexi-
cons, etc., to tackle the sparsity issue.

Recently, Sutskever et al. (2014) introduced
a neural network model for solving the general
sequence-to-sequence problem, and Bahdanau et
al. (2014) proposed a related model with an atten-
tion mechanism that is capable of handling long
sequences. Both models achieve state-of-the-art
results on large scale machine translation tasks.

However, sequence-to-sequence models mostly
work well for large scale parallel data, usually in-
volving millions of sentence pairs. Vinyals et al.
(2015) present a method which linearizes parse
trees into a sequence structure and therefore a
sequence-to-sequence model can be applied to the
constituent parsing task. Competitive results have
been achieved with an attention model on the Penn
Treebank dataset, with only 40K annotated sen-
tences.

AMR parsing is a much harder task in that the
target vocabulary size is much larger, while the
size of the dataset is much smaller. While for
constituent parsing we only need to predict non-
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terminal labels and the output vocabulary is lim-
ited to 128 symbols, AMR parsing has both con-
cepts and relation labels, and the target vocabu-
lary size consists of tens of thousands of sym-
bols. Barzdins and Gosko (2016) applied a sim-
ilar approach where AMR graphs are linearized
using depth-first search and both concepts and re-
lations are treated as tokens (see Figure 3). Due to
the data sparsity issue, their AMR parsing results
are significantly lower than state-of-the-art models
when using the neural attention model.

In this paper, we present a method which lin-
earizes AMR graphs in a way that captures the
interaction of concepts and relations. To over-
come the data sparsity issue for the target vocab-
ulary, we propose a categorization strategy which
first maps low frequency concepts and entity sub-
graphs to a reduced set of category types. In or-
der to map each type to its corresponding target
side concepts, we use heuristic alignments to con-
nect source side spans and target side concepts or
subgraphs. During decoding, we use the mapping
dictionary learned from the training data or heuris-
tic rules for certain types to map the target types to
their corresponding translation as a postprocessing
procedure.

Experiments show that our linearization strat-
egy and categorization method are effective for the
AMR parsing task. Our model improves signifi-
cantly in comparison with the previously reported
sequence-to-sequence results and provides a com-
petitive benchmark in comparison with state-of-
the-art results without using dependency parses or
other external semantic resources.

2 Sequence-to-sequence Parsing Model

Our model is based on an existing sequence-to-
sequence parsing model (Vinyals et al., 2015),
which is similar to models used in neural machine
translation.

2.1 Encoder-Decoder

Encoder. The encoder learns a context-aware
representation for each position of the input se-
quence by mapping the inputs w1, . . . , wm into a
sequence of hidden layers h1, . . . , hm. To model
the left and right contexts of each input position,
we use a bidirectional LSTM (Bahdanau et al.,
2014). First, each input’s word embedding repre-
sentation x1, . . . , xm is obtained though a lookup
table. Then these embeddings serve as the input to

two RNNs: a forward RNN and a backward RNN.
The forward RNN can be seen as a recurrent func-
tion defined as follows:

hfwi = f(xi, h
fw
i−1) (1)

Here the recurrent function f we use is Long-
Short-Term-Memory (LSTM) (Hochreiter and
Schmidhuber, 1997). The backward RNN works
similarly by repeating the process in reverse order.
The outputs of forward RNN and backward RNN
are then depth-concatenated to get the final repre-
sentation of the input sequence.

hi = [hfwi , hbwm−i+1] (2)

Decoder. The decoder is also an LSTM model
which generates the hidden layers recurrently. Ad-
ditionally, it utilizes an attention mechanism to put
a “focus” on the input sequence. At each output
time step j, the attention vector d

′
j is defined as

a weighted sum of the input hidden layers, where
the masking weight αj

i is calculated using a feed-
forward neural network. Formally, the attention
vector is defined as follows:

uji = vT tanh(W1hi +W2dj) (3)

αj
i = softmax(uji ) (4)

d
′
j =

m∑

i=1

αj
ihi (5)

where dj is the output hidden layer at time step
j, and v, W1, and W2 are parameters for the
model. Here the weight vector αj

1, . . . , α
j
m is

also interpreted as a soft alignment in the neural
machine translation model, which similarly could
also be treated as a soft alignment between token
sequences and AMR relation/concept sequences in
the AMR parsing task. Finally, we concatenate the
hidden layer dj and attention vector d

′
j to get the

new hidden layer, which is used to predict the out-
put sequence label.

P (yj |w, y1:j−1) = softmax(W3[dj , d
′
j ]) (6)

2.2 Parse Tree as Target Sequence
Vinyals et al. (2015) designed a reversible way of
converting the parse tree into a sequence, which
they call linearization. The linearization is per-
formed in the depth-first traversal order. Figure 2
shows an example of the linearization result. The
target vocabulary consists of 128 symbols.
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John has a dog .

S

NP VP .

NNP VBZ NP

NP NP

John has a dog . (S (NP NNP )NP (VP VBZ (NP DT NN )NP )VP . )S

Figure 2: Example parsing task and its lineariza-
tion.

In practice, they found that using the attention
model is more data efficient and works well on
the parsing task. They also reversed the input sen-
tence and normalized the part-of-speech tags. Af-
ter decoding, the output parse tree is recovered
from the output sequence of the decoder in a post-
processing procedure. Overall, the sequence-to-
sequence model is able to match the performance
of the Berkeley Parser (Petrov et al., 2006).

3 AMR Linearization

Barzdins and Gosko (2016) present a similar lin-
earization procedure where the depth-first traver-
sal result of an AMR graph is used as the AMR
sequence (see Figure 3). The bracketing structure
of AMR is hard to maintain because the predic-
tion of relation (with left parenthesis) and the pre-
diction of an isolated right parenthesis are not cor-
related. As a result, the output AMR sequences
usually have parentheses that do not match.

We present a linearization strategy which cap-
tures the bracketing structure of AMR and the con-
nection between relations and concepts. Figure 3
shows the linearization result of the AMR graph
shown in Figure 1. Each relation connects the
head concept to a subgraph structure rooted at the
tail concept, which shows one branch below the
head concept. We use the relation label and left
parenthesis to show the beginning of the branch
(subgraph) and use right parenthesis paired with
the relation label to show the end of the branch.
We additionally add “-TOP-(” at the beginning to
show the start of the traversal of the AMR graph
and add “)-TOP-” at the end to show the end of
traversal. When a symbol is revisited, we replace
the symbol with “-RET-”. We additionally add the
revisited symbol before “-RET-” to decide where
the reentrancy is introduced to.1 We also get rid of

1This is an approximation because one concept can appear
multiple times, and we simply attach the reentrancy to the
most recent appearance of the concept. An additional index
would be needed to identify the accurate place of reentrancy.

(describe-01 :ARG0 (person :name (name :op1 “Ryan”) ) 
  :ARG1 (person ) :ARG2 genius)

-TOP-( describe-01 ARG0( person name( name op1( “Ryan” )op1 
)name )ARG0 ARG1( person -RET- )ARG1 ARG2( genius )ARG2 )-TOP-

Barzdins and Gosko (2016) 

Our linearization

Figure 3: Comparison of AMR linearization

variables and only keep the full concept label. For
example, “g / genius” to “genius”.

We can easily recover the original AMR graph
from its linearized sequence. The sequence also
captures the branching information of each rela-
tion explicitly by representing it with a start sym-
bol and an end symbol specific to that relation.
During our experiments, most of the output se-
quences have a matching bracketing structure us-
ing this linearization strategy. The idea of lin-
earization is basically a depth-first traversal of the
AMR where the original graph structure can be
reconstructed with the linearization result. Even
though we call it a sequence, its core idea is actu-
ally generating a graph structure from top-down.

4 Dealing with the Data Sparsity Issue

While sequence-to-sequence models can be suc-
cessfully applied to constituent parsing, they do
not work well on the AMR parsing task as shown
by Barzdins and Gosko (2016). The main bottle-
neck is that the size of target vocabulary for AMR
parsing is much larger than constituent parsing,
tens of thousands in comparison with 128, and the
size of training data is less than half of that avail-
able for parsing.

In this section, we present a categorization
method which significantly reduces the target vo-
cabulary size, as the alignment from the attention
model does not work well on the relatively small
dataset. To adjust for the alignment errors made
by the attention model, we propose to add super-
vision from an alignment produced by an external
aligner which can use lexical information to over-
come the limit of data size.

4.1 AMR Categorization

We define several types of categories and map low
frequency words into these categories.

1. DATE: we reduce all the date entity sub-
graphs to this category, ignoring details of the
specific date entity.
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Before linearization:

chinese seismology be gallop down the 
wrong road .

(g / gallop-01

                               :ARG0 (s / seismology

                                                                   :mod (c / country :wiki "China"

                                                                                         :name (n / name :op1 "China")))

                    :ARG1 (r / road

                                              :mod (w / wrong))

                             :direction (d / down))

Sentence side (lemmatized, 

lower cased)
AMR side

After linearization:

NE_country-0 -SURF--0 be -VERB--0 
down the wrong -SURF—1 .

-TOP-( -VERB--0 ARG0( -SURF--0 

mod( NE_country-0 )mod )ARG0 ARG1( 

-SURF—1 mod( wrong )mod 

)ARG1 direction( down )direction )-TOP-

Figure 4: An example of categorized sentence-AMR pair.

2. NE {ent}: we reduce all named entity sub-
graphs to this category, where ent is the root
label of each subgraph, such as country or
person.

3. -VERB-: we map predicate variables with
low frequency (n < 50) to this category

4. -SURF-: we map non-predicate variables
with low frequency (n < 50) to this category

5. -CONST-: we map constants other than num-
bers, “-”, “interrogative”, “expressive”, “im-
perative” to this category.

6. -RET-: we map all revisited concepts to this
category.

7. -VERBAL-: we additionally use the verbal-
ization list 2 from the AMR website and map
matched subgraphs to this category.

After the re-categorization, the vocabulary size is
substantially reduced to around 2000, though this
vocabulary size is still very large for the relatively
small dataset. These categories and the frequent
concepts amount to more than 90% of all the target
words, and each of these are learned with a larger
number of occurrences.

4.2 Categorize Source Sequence
The source side tokens also have sparsity issues.
For example, even if we have mapped the number
1997 to “DATE”, we can not easily generalize it

2http://amr.isi.edu/download/lists/verbalization-list-
v1.06.txt

to the token 1993 if it does not appear in the train-
ing data. Also, some special 6-digit date formats
such as “YYMMDD” are hard to learn using co-
occurrence statistics.

Our basic approach to dealing with this issue is
to generalize these sparse tokens or spans to some
special categories (currently we use the same set
of categories defined in the previous section). On
the training data, we can use the heuristic align-
ment. For example, if we learned from the heuris-
tic alignment that “010911” is aligned to a date-
entity of September 11, 2001 on the AMR side,
we use the same category “DATE” to replace this
token. We distinguish this alignment from other
date alignments by assigning a unique indexed cat-
egory “DATE-X” to both sides of the alignment,
where “X” counts from 0 and adds one for each
new date entity from left to right on the sentence
side. The same index strategy goes for all the
other categories. Figure 4 shows an example of the
linearized parallel sequence. The first infrequent
non-predicate variable “seismology” is mapped to
“-SURF–0”, then “wrong” to “-SURF–1” based
on its position on the sentence side. The indexed
category labels are then projected onto the tar-
get side based on the heuristic alignment. Dur-
ing this re-categorization procedure, we build a
map Q from each token or span to its most likely
concept or category on the target side based on
relative frequency. We also dump a DATE tem-
plate for recognizing new date entities by abstract-
ing away specific date fields such as “1997” to
“YEAR”, “September” to “MONTH”. For exam-
ple, we build a template “MONTH DAY, YEAR”
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from the specific date mention “June 6, 2007”.
During decoding, we are only given the sen-

tence. We first use the date templates learned from
the training data to recognize dates in each sen-
tence. We also use a named entity tagger to rec-
ognize named entity mentions in the sentence. We
use the entity name and wiki information from Q
if there is a match of the entity mention, otherwise
for convenience we simply use “person” as the en-
tity name and use wiki “-”. For each of the other
tokens, we first look it up in Q and replace it with
the most likely mapping. If there is no match, we
further look it up in the verbalization list. In case
there is still no match, we use the part of speech in-
formation to assign its category. We replace verbs
with category “-VERB-” and nouns with category
“-SURF-”. In accordance with the categorized to-
ken sequence, we also index each category in the
resulting sequence from left to right.

4.3 Recovering AMR graph
During decoding, our output sequences usually
have categories and we need to map each category
to AMR concepts or subgraphs. When we cate-
gorize the tokens in each sentence before decod-
ing, we save the mapping from each category to
its original token as table D. As we use the same
set of categories on both source and target sides,
we heuristically align target side category label
to its source side counterpart from left to right.
Given table D, we know which source side token
it comes from and use the most frequent concept
or subgraph of the token to replace the category.

4.4 Supervised Attention Model
In this section, we propose to learn the attention
vector in a supervised manner. There are two main
motivations behind this. First, the neural atten-
tion model usually utilizes millions of data points
to train the model, which learns a quite reason-
able attention vector that at each output time step
constrains the decoder to put a focus on the in-
put sequences (Bahdanau et al., 2014; Vinyals et
al., 2015). However, we only have 16k sentences
in the AMR training data and our output vocab-
ulary size is quite large, which makes it hard for
the model to learn a useful alignment between the
input sequence and AMR concepts/relations. Sec-
ond, as argued by Liu et al. (2016), the sequence-
to-sequence model tries to calculate the attention
vector and predict the current output label simulta-
neously. This makes it impossible for the learned

soft alignment to combine information from the
whole output sentence context. However, tradi-
tional word alignment can easily use the whole
output sequence, which will produce a more in-
formed alignment.

Similar to the method used by Liu et al. (2016),
we add an additional loss to the original objec-
tive function to model the disagreement between
the reference alignment and the soft alignment
produced by the attention mechanism. Formally,
for each input/output sequence pair (w,y) in the
training set, the objective function is defined as:

− 1

n

n∑

j=1

log p(yj |w, y1:j−1) + λΘ(ᾱj , αj) (7)

where ᾱj is the reference alignment for output po-
sition j, which is provided by the existing aligner,
αj is the soft alignment, Θ() is cross-entropy func-
tion, n is the length of output sequence and λ is
the hyperparameter which serves as a trade-off be-
tween sequence prediction and alignment super-
vision. Note that the supervised attention part
doesn’t affect the decoder which will predict the
output label given learned weights.

One issue with this method is how we represent
ᾱ. As the output of conventional aligner is a hard
decision, alignment is either one or zero for each
input position. In addition, multiple input words
could be aligned to one single concept. Finally,
in the AMR sequences, there are many output la-
bels (mostly relations) which don’t align to any
word in the input sentence. We utilize a heuristic
method to process the reference alignment. We as-
sign an equal probability among the words that are
aligned to one AMR concept. Then if the output
label doesn’t align to any input word, we assign an
even probability for every input word.

5 Experiments

We evaluate our system on the released dataset
(LDC2015E86) for SemEval 2016 task 8 on mean-
ing representation parsing (May, 2016). The
dataset contains 16,833 training, 1,368 develop-
ment and 1,371 test sentences which mainly cover
domains like newswire, discussion forum, etc. All
parsing results are measured by Smatch (version
2.0.2) (Cai and Knight, 2013).

5.1 Experiment Settings
We first preprocess the input sentences with to-
kenization and lemmatization. Then we extract
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the named entities using the Illinois Named Entity
Tagger (Ratinov and Roth, 2009).

For training all the neural AMR parsing sys-
tems, we use 256 for both hidden layer size and
word embedding size. Stochastic gradient descent
is used to optimize the cross-entropy loss function
and we set the drop out rate to be 0.5. We train our
model for 150 epochs with initial learning rate of
0.5 and learning rate decay factor 0.95 if the model
doesn’t improve for the 3 last epochs.

5.2 Baseline Model

Our baseline model is a plain sequence-to-
sequence model which has been used in the con-
stituent parsing task (Vinyals et al., 2015). While
they use a 3-layer deep LSTM, we only use a
single-layer LSTM for both encoder and decoder
since our data is relatively small and empiri-
cal comparison shows that stacking more layers
doesn’t help in our case. AMR linearization fol-
lows Section 3 without categorization. Since we
don’t restrict the input/output vocabulary in this
case, our vocabulary size is quite large: 10,886
for output vocabulary and 2,2892 for input vo-
cabulary. We set them to 10,000 and 20,000 re-
spectively and replace the out of vocabulary words
with UNK .

5.3 Impact of Re-Categorization

We first inspect the influence of utilizing catego-
rization on the input and output sequence. Table
1 shows the Smatch evaluation score on develop-
ment set.

System P R F
Baseline 0.42 0.34 0.37
Re-Categorization (n = 50) 0.55 0.46 0.50

Table 1: Re-Categorization impact on develop-
ment set

We see from the table that re-categorization
improves the F-score by 13 points on the de-
velopment set. As mentioned in section 4.1,
by setting the low frequency threshold n to 50
and re-categorizing them into a reduced set of
types, we now reduce the input/output vocabu-
lary size to (2,000, 6,000). This greatly reduces
the label sparsity and enables the neural attention
model to learn a better representation on this small
scale data. Another advantage of this method
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Figure 5: AMR parsing performance on develop-
ment set given different categorization frequency.

is that although AMR tries to abstract away sur-
face forms and retain the semantic meaning struc-
ture of the sentence, a large portion of the con-
cepts are coming from the surface form and have
exactly same string form both in input sentence
and AMR graph. For example, nation in sen-
tence is mapped to concept (n / nation) in
the AMR. For the frequent concepts in the out-
put sequence, since the model can observe many
training instances, we assume that it can be pre-
dicted by the attention model. For the infrequent
concepts, because of the categorization step, we
only require the model to predict the concept type
and its relative position in the graph. By applying
the post-processing step mentioned in Section 4.3,
we can easily recover the categorized concepts to
their original form.

We also inspect how the value of re-
categorization frequency threshold n affects the
AMR parsing result. As shown in Figure 5, set-
ting n to 0, which means no output labels will
be categorized into types -VERB- and -SURF-,
doesn’t improve the baseline system. The reason
is that we still have a large output vocabulary size
and training data is still sparse with respect to the
low frequency output labels. Also, if we set n too
high, although the output vocabulary size becomes
smaller, some of the frequent output labels that the
model handles well originally will be put into the
coarse-grained types, losing information in the re-
covery process. Thus we can see from the plot that
after the optimal point the Smatch score will drop.
Therefore, we choose to set n = 50 in the subse-
quent experiments.
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5.4 Impact of Supervised Alignment

Choice of External Aligner. There are two ex-
isting AMR aligners: one is a rule-based aligner
coming with JAMR (Flanigan et al., 2014), which
defines regular expression patterns to greedily
match between AMR graph fragment and in-
put token spans; another one is an unsupervised
aligner (Pourdamghani et al., 2014) which adopts
the traditional word alignment method in machine
translation. Although evaluated on different set
of manual alignment test sentences, both aligners
achieved ∼90% F1 score. Here we choose to use
the second aligner, as it covers broader domains.

Different alignment configurations To balance
between the sequence learning and alignment
agreement, We empirically tune the hyperparam-
eter λ and set it to 0.3. For the external alignment
we use for reference, we convert it to a vector with
equal probability as discussed in Section 4.4. We
then train a sequence-to-sequence model with re-
categorized input/output and report the result on
development set.

System P R F
Baseline 0.42 0.34 0.37
Categorization (n = 50) 0.55 0.46 0.50
SuperAttn+Cate (n = 50) 0.56 0.49 0.52

Table 2: Supervised attention impact on develop-
ment set

As shown in Table 2, the supervised attention
model is able to further improve the Smatch score
by another 2 points, which are mainly contributed
by 3 points increase in recall. Since the refer-
ence/external alignment is mostly between the in-
put tokens and AMR graph concepts, we believe
that the supervised attention model is able to con-
strain the decoder so that it will output concepts
which can be aligned to some tokens in the input
sentence.

System P R F
SuperAttn+Cate (n = 50) 0.56 0.49 0.52
NO-RELATION-ALIGN 0.46 0.40 0.43

Table 3: Supervised attention impact on develop-
ment set

Because we have relations in the AMR graph,
the alignment problem here is different from the

word alignment in machine translation. To verify
the effectiveness of our setup, we also compare our
configuration to the condition NO-RELATION-
ALIGN where we only ignore the alignment be-
tween sentence and AMR relations by putting an
all zero vector as the reference attention for each
output relation label. From Table 3 we see that
simply ignoring the reference attention for rela-
tions would greatly affect the model performance,
and how we effectively represent the reference
alignment for relations is crucial for the supervised
attention model.

5.5 Results

In this section we report our final result on the
test set of SemEval 2016 Task 8 and compare our
model with other parsers. We train our model uti-
lizing re-categorization and supervised attention
with hyperparameters tuned on the development
set. Then we apply our trained model on the test
set.

Firstly, we compare our model to the exist-
ing sequence-to-sequence AMR parsing model
of Barzdins and Gosko (2016). As shown in ta-
ble 4, the word-level model in Barzdins and Gosko
(2016) is basically our baseline model. The sec-
ond model they use is a character-based sequence-
to-sequence model. Our model can also be re-
garded as a word-level model; however, by uti-
lizing carefully designed categorization and super-
vised attention, our system outperforms both their
results by a large margin.

System P R F
Our system 0.55 0.50 0.52
Barzdins and Gosko (2016)† - - 0.37
Barzdins and Gosko (2016)? - - 0.43

Table 4: Compare to other sequence-to-sequence
AMR parser. Barzdins and Gosko (2016)† is
the word-level neural AMR parser, Barzdins and
Gosko (2016)? is the character-level neural AMR
parser.

Table 5 gives the comparison of our system
to some of the teams participating in SemEval16
Task 8. Since a large portion of the teams ex-
tend on the state-of-the-art system CAMR (Wang
et al., 2015b; Wang et al., 2015a; Wang et al.,
2016), here we just pick typical teams that rep-
resent different approaches. We can see from the
table that our system fails to outperform the state-
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of-the-art system. However, the best perform-
ing system CAMR uses a dependency structure
as a starting point, where dependency parsing has
achieved high accuracy recently and can be trained
on larger corpora. Also, it utilizes semantic role
labeling and complex features, which makes the
training process a long pipeline. Our system only
needs minimal preprocessing, and doesn’t need
the dependency parsing step. Our approach is
competitive with the SHRG (Synchronous Hyper-
edge Replacement Grammar) method of Peng et
al. (2015), which does not require a dependency
parser and uses SHRG to formalize the string-to-
graph problem as a chart parsing task. However,
they still need a concept identification stage, while
our model can learn the concepts and relations
jointly.

System P R F
Our system 0.55 0.50 0.52
Peng and Gildea (2016) 0.56 0.55 0.55
CAMR 0.70 0.63 0.66

Table 5: Comparison to other AMR parsers.

6 Discussion

In this paper, we have proposed several methods to
make the sequence-to-sequence model work com-
petitively against conventional AMR parsing sys-
tems. Although we haven’t outperformed state-
of-the-art system using the conventional meth-
ods, our results show the effectiveness of our
approaches to reduce the sparsity problem when
training sequence-to-sequence model on a rela-
tively small dataset. Our work could be aligned
with the effort to handle low-resource data prob-
lems when building the end-to-end neural network
model.

In neural machine translation, the attention
model is traditionally trained on millions of sen-
tence pairs, while facing low-resource language
pairs, the neural MT system performance tends to
downgrade (Zoph et al., 2016). There has been
growing interest in tackling sparsity/low-resource
problem in neural MT. Zoph et al. (2016) use a
transfer learning method to first pre-train the neu-
ral model on rich-resource language pairs and then
import the learned parameters to continue training
on low-resource language pairs so that the model
can alleviate the sparsity problem through shared

parameters. Firat et al. (2016) builds a multilin-
gual neural system where the attention mechanism
can be shared between different language pairs.
Our work could be seen as parallel efforts to han-
dle the sparsity problem since we focus on the in-
put/output categorization and external alignment,
which are both handy for low-resource languages.

In this paper, we haven’t used any syntac-
tic parser. However, as shown in previous
works (Flanigan et al., 2014; Wang et al., 2015b;
Artzi et al., 2015; Pust et al., 2015), using de-
pendency features helps improve the parsing per-
formance significantly because of the linguistic
similarity between the dependency tree and AMR
structure. An interesting extension would be to
use a linearized dependency tree as the source se-
quence and apply sequence-to-sequence to gener-
ate the AMR graph. Our parser could also benefit
from the modeling techniques in Wu et al. (2016).

7 Conclusion

Neural attention models have achieved great suc-
cess in different NLP tasks. However, they have
not been as successful on AMR parsing due to the
data sparsity issue. In this paper, we described
a sequence-to-sequence model for AMR parsing
and present different ways to tackle the data spar-
sity problems. We show that our methods have led
to significant improvement over a baseline neural
attention model, and our model is also competi-
tive against models that do not use extra linguistic
resources.
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Abstract

In recent years, knowledge graphs such
as Freebase that capture facts about enti-
ties and relationships between them have
been used actively for answering factoid
questions. In this paper, we explore the
problem of automatically generating ques-
tion answer pairs from a given knowl-
edge graph. The generated question an-
swer (QA) pairs can be used in several
downstream applications. For example,
they could be used for training better QA
systems. To generate such QA pairs, we
first extract a set of keywords from enti-
ties and relationships expressed in a triple
stored in the knowledge graph. From each
such set, we use a subset of keywords to
generate a natural language question that
has a unique answer. We treat this sub-
set of keywords as a sequence and pro-
pose a sequence to sequence model using
RNN to generate a natural language ques-
tion from it. Our RNN based model gen-
erates QA pairs with an accuracy of 33.61
percent and performs 110.47 percent (rel-
ative) better than a state-of-the-art tem-
plate based method for generating natu-
ral language question from keywords. We
also do an extrinsic evaluation by using
the generated QA pairs to train a QA sys-
tem and observe that the F1-score of the
QA system improves by 5.5 percent (rela-
tive) when using automatically generated
QA pairs in addition to manually gener-
ated QA pairs available for training.

∗This work was done while the author was a part of IBM
Research India

†This work was done while the author was a part of IBM
Research India

1 Introduction

Knowledge graphs store information about mil-
lions of things (or entities) and relationships be-
tween them. Freebase1 is one such knowledge
graph that describes and organizes more than 3
billion facts in a consistent ontology. Knowl-
edge graphs usually capture relationships be-
tween different things that can be viewed as
triples (for example, CEO(Sundar Pichai,
Google)). Such triples are often referred to as
facts and can be used for answering factoid ques-
tions. For example, the above triple can be used to
answer the question “Who is the CEO of Google
?”. It is not surprising that knowledge graphs are
increasingly used for building Question Answer-
ing systems (Ferrucci, 2012; Yahya et al., 2013;
He et al., 2014; Zou et al., 2014).

In this paper, we focus on exploiting knowledge
graphs for a related but different purpose. We
propose that such triples or facts can be used for
automatically generating Question Answer (QA)
pairs. The generated QA pairs can then be used in
certain downstream applications. For example, if
some domain-specific knowledge graphs are avail-
able (such as History, Geography) then such QA
pairs generated from them can be used for devel-
oping quiz systems for educational purposes.

We now formally define the problem and then
illustrate it with the help of an example. Consider
a triple consisting of a subject, predicate and
object. Typically, the predicate has a domain
(subject type) and a range (object type) associated
with it. The predicate may have zero or more
parents in the knowledge graph. For the sake
of simplicity let us assume that the predicate
has a single parent. We define a set consisting
of the subject, predicate, object, domain, range
and predicate parent. We propose an approach

1https://www.freebase.com/
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Predicate CEO
Subject Sundar Pichai
Object Google
Parent Predicate designation
Domain person
Range organization

CEO, designation,
Keywords Sundar Pichai, person,

Google, organization

Table 1: An example set of keywords constructed
from the triple CEO(Sundar Pichai, Google)

to generate natural language factoid questions
using a subset of this set such that the answer to
the question also lies in the set. Given the set of
keywords, as shown in Table 1, we could generate
the following QA pairs (keywords are italicized):

Q: What is the designation of Sundar Pichai at
Google?
A: CEO
Q: Which organization is Sundar Pichai the CEO
of?
A: Google

The above problem is similar to the problem
of generating questions from Web queries (in-
stead of entities and relations) which was first sug-
gested by Lin (Lin, 2008). However, unlike ex-
isting works on query-to-questions which mainly
rely on template based approaches, we formulate
this as a sequence to sequence generation prob-
lem wherein the ordered set of keywords is an in-
put sequence and the natural language question is
the output sequence. We use a Recurrent Neural
Network (RNN) (Werbos, 1990; Rumelhart et al.,
1988) based model with Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
units to generate questions from the given set of
keywords.

The input to our question generation model is a
set of keywords extracted from triples in a knowl-
edge graph. For this, it is important to first select a
subset of triples from which interesting and mean-
ingful questions can be constructed. For example,
no interesting questions can be constructed from
the triple wikipage page ID(Google, 57570) and
hence we should eliminate such triples. Further,
even for an interesting triple, it may be possible to
use only certain subsets of keywords to construct

a meaningful question. For example, for the set
of keywords shown in Table 1, it is not possible
to use the subset {person, designation} to form an
interesting question. Hence, we need to automati-
cally identify the right set of keywords that should
be used to form the question such that the answer
also lies in the set. In addition to the question gen-
eration model, we also propose a method for ex-
tracting a meaningful subset of keywords from the
triples represented in the knowledge graph.

While our goal in this paper is to generate a
set of question answer pairs for a given entity in
a knowledge graph, we train the RNN model for
generating natural language questions from a se-
quence of keywords using an open domain Com-
munity Question Answering (CQA) data. This en-
sures that the same trained RNN can be used with
different knowledge graphs.

The main contributions of our work can be sum-
marized as follows:

• We propose a method for extracting triples
and keywords from a knowledge graph for
constructing question keywords and answer
pairs.

• We formulate the problem of generating nat-
ural language questions from keywords as a
sequence to sequence learning problem that
performs 110.47 % (relative) better than ex-
isting template based approaches.

• We train our model using 1M questions from
WikiAnswers thereby ensuring that it is not
tied to any specific knowledge graph.

• Finally, we show that appending the automat-
ically generated QA pairs to existing training
data for training a state of the art QA system
(Jonathan Berant, 2014) improves the perfor-
mance of the QA system by 5.5 percent (rel-
ative).

The remainder of this paper is organized as fol-
lows. In next section, we describe related work,
followed by a description of our overall approach
for extracting keywords from triples and generat-
ing natural language question answer pairs from
them. We then describe the experiments per-
formed to evaluate our system and then end with
concluding remarks.
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2 Related Work

There is only very recent work around generation
of question answer pairs from knowledge graph
(Seyler et al., 2015). On the other hand, there
are several works around question generation that
have been proposed in past with different motiva-
tions. We first present a brief overview of the ques-
tion generation techniques proposed in the litera-
ture along with their limitations and then discuss
the work around generation of questions answer
pairs from knowledge graph.

A number of papers have looked at the problem
of generating vocabulary questions using Word-
Net (Miller et al., 1990) and distributional sim-
ilarity techniques (Brown et al., 2005; Heilman
and Eskenazi, 2007). There are numerous works
in automatic question generation from text. Many
proposed methods are syntax based methods that
use the parse structure of sentences, identify key
phrases and apply some known transformation
rules to create questions (Ali et al., 2010; Kalady
et al., 2010; Varga, 2010). Mannem et al. (2010)
further use semantic role labeling for transforma-
tion rules. There are also template based meth-
ods proposed where a question template is a pre-
defined text with placeholder variables to be re-
placed with content from source text. Cai et al.
(2006) propose an XML markup language that is
used to manually create question templates. This
is sensitive to the performance of syntactic and se-
mantic parsing. Heilman and Smith (2010) use
a rule based approach to transform a declarative
sentence into several candidate questions and then
rank them using a logistic regression model. These
approaches involve creating templates manually
and thus require huge manual work and have low
recall.

A problem that has been studied recently and
is similar to our problem of generating questions
using knowledge graph is that of generating ques-
tions from Web queries. The motivation here is
to automatically generate questions from queries
for community-based question answering services
such as Yahoo! Answers and WikiAnswers. The
idea was first suggested by (Lin, 2008) and further
developed by (Zhao et al., 2011) and (Zheng et
al., 2011). Both of these approaches are template
based approaches where the templates are learnt
using a huge question corpus along with query
logs. Dror et al. (2013) further proposed a learn-
ing to rank based method to obtain grammatically

correct and diverse questions from a given query
where the candidate questions are generated us-
ing the approach proposed by (Zhao et al., 2011).
These approaches use millions of query question
pairs to learn question templates and thus have bet-
ter generalization performance compared to earlier
methods where templates were learnt manually.

Recently, Seyler et al. (2015) proposed a
method to generate natural language questions
from knowledge graphs given a topic of interest.
They also provide a method to estimate difficulty
of generated questions. The generation of ques-
tion is done by manually created template patterns
and therefore is limited in application. In con-
trast we propose an RNN based method to learn
generation of natural language questions from a
set of keywords. The model can be trained using
a dataset containing open domain keywords and
question pairs.

3 Approach

In this section we propose an approach to generate
Question Answer (QA) pairs for a given entity E.
Let KG be the knowledge graph which contains
information about various entities in the form of
triples. A triple consists of a subject, a predicate
and an object. Subjects and objects are nodes in
the KG, which could represent a person, a place,
an abstract concept or any physical entity. Pred-
icates are edges in the KG. They define type of
relationship between the subject and the object.

The framework to generate QA pairs consists
two major modules. The first module, Ques-
tion Keywords and Answer Extractor, is lan-
guage independent and extracts required knowl-
edge about the entity E from the KG. The second
module is a language dependent RNN based Nat-
ural Language Question Generator. When fed
with the information extracted from the first part it
generates natural language QA pairs.

3.1 Question Keywords and Answer
Extractor

Question keywords are keywords necessary to
generate a question in natural language, or it could
also be viewed as a concise representation of a nat-
ural language question. For example, to generate
a QA pair for the entity London. We can gener-
ate a natural language question like What is the
capital city of United Kingdom? with the key-
words {Capital, City, United Kingdom}. Also
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Figure 1: Triples with the entity London in a
knowledge graph

since London is the answer to the above ques-
tion, ({Capital, City, United Kingdom}, London)
together will form a Question Keyword and An-
swer (QKA) pair. One important note is that Cap-
ital, City, United Kingdom and London are the
English labels of the node that represent these en-
tities in the KG.

Column A Column B Column C
Subject United Kingdom Stephen Wolfram London
Domain Country Person Location
Predicate Capital Birth Place Contains
Object London London Buckingham Palace
Range City Location Location

Table 2: Examples of 5-tuples (subject, domain,
predicate, object, range) for the entity London

In order to retrieve information about the given
entity E, we need to first identify the node n that
represents the entity E in the KG. One way
to identify node n is to leverage the label (e.g,
rdfs:label) property.

The next step is to retrieve all the neighbours
of n. Let mi be a neighbour of n in KG, con-
nected by a predicate pi. Here i is the index over
all predicates whose subject or object is n. Figure
1 shows the entity London with three neighbours
United Kingdom, Stephen Wolfram and Bucking-
ham Palace. Each of these neighbours are related
to London by a predicate. For example, Stephen
Wolfram is related to London as it is his Birth
Place.

Given a predicate pi, let sub(pi) be the subject
of pi and obj(pi) be the object of pi. A predicate
is usually defined with a domain (subject type) and
a range (object type) to provide better semantics.
The domain and range defines the entity types that
can be used as the subject and object of the predi-
cate respectively. Let domain(pi) and range(pi)
be the domain and range of pi respectively. Let

{sub(pi), domain(pi), pi, obj(pi), range(pi)} be
the 5-tuple associated with every pi. Some exam-
ples of 5-tuples are shown column wise in Table
2.

We now describe how QKA pairs are extracted
from 5-tuple. LetQk be the question keywords set
and Ak be the answer to the question to be gen-
erated using Qk. (Qk, Ak) together will form a
QKA pair. In this work, we consider only a single
5-tuple to generate a QKA pair. For example, we
can generate QKA pair like ({Capital, City, United
Kingdom}, London) using Column A of Table 2.
But we will not generate QKA pair like ({Capital,
City, United Kingdom, Birth Place, Stephen Wol-
fram}, London) using both Column A & B of Table
2.

We use the following rules to generate QKA
pairs from 5-tuples.

1. Unique Forward Relation : If pi is unique
for sub(pi) in KG, then Qk will include
sub(pi), pi and range(pi). Ak will be
obj(pi). If pi is not unique for sub(pi), then
there could be multiple possible answers to
the generated question including obj(pi), and
therefore we do not generate such a QKA
pair. When this is applied to Column A of
Table 2, we generate ({Capital, City, United
Kingdom}, London) as a QKA pair. There
is no QKA pair generated for Column C us-
ing this rule as London contains many loca-
tions like Buckingham Palace, City of West-
minster, etc.

2. Unique Reverse Relation : If pi is unique
for obj(pi) in KG, then Qk will include
obj(pi), pi and domain(pi). Ak is sub(pi).
Similar to unique forward relation, this rule
can be applied to Column A of Table 2 and
cannot be applied to Column B & C.

3.2 RNN based Natural Language Question
Generator

In the previous sub-section, we proposed an ap-
proach for creating question keywords and an-
swer pairs. Now we propose a model for gen-
erating natural language questions from a given
set of question keywords. We treat the keywords,
QK = {qk1, · · · , qkm}, as an input sequence and
the question, Q = {q1, · · · , ql}, as the output se-
quence. This design choice of treating a set of key-
words as a sequence and not as a bag of words
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allows us to generate different semantically valid
questions from the same set K based on the order
of the words in the set. For example, given the
question keywords, QK = {King, Sweden} we
can generate two semantically valid questions by
changing the order of King and Sweden: (i) Who
is the King of Sweden? and (ii) Does Sweden have
a King?

We propose a Natural Language Question Gen-
eration (NLQG) model that first encodes the in-
put sequence using some distributed representa-
tion and then decodes the output sequence from
this encoded representation. Specifically, we use
a RNN based encoder and decoder recently pro-
posed for language processing tasks by number of
groups (Cho et al., 2014; Sutskever et al., 2014).
We now formally define the encoder and decoder
models.

Let m be the number of keywords in the in-
put sequence. We represent each keyword using
a fixed size vector xi ∈ <n. The function of the
encoder is to map this sequence of xi’s to a fixed
size encoding. We use a RNN to compute hm us-
ing the following recursive equation:

hi = Φ(hi−1, xi), (1)

where, hi ∈ <n is the hidden representation at po-
sition i. hm is the final encoded hidden state vector
for this sequence. We use LSTM units (Hochreiter
and Schmidhuber, 1997) as Φ for our implemen-
tation based on its recent success in language pro-
cessing tasks (Bahdanau et al., 2015).

The function of the decoder is to compute
the probability of the output sequence Q =
{q1, · · · , ql} given the encoded vector hm. Note
that l is the length of the output sequence and may
be different from m. This joint conditional proba-
bility of Q is decomposed into l conditional prob-
abilities:

p(q1, · · · , ql|hm) =
l∏

j=1

p(qj |{q1, · · · , qj−1}, hm).

(2)
Now we model p(qj |q<j , hm) at each position j
by using a RNN decoder as follows:

p(qj |q<j , hm) = Θ(qj−1, gj , hm), (3)

where Θ is a non-linear function, that outputs the
probability of qj , and gj is the hidden state of the
decoder RNN.

To train this RNN model, we use a keyword se-
quence and question pairs generated from an open

domain Community Question Answering website.
We provide more details on how the data is created
and used for training in the experiments section.

At runtime, every permutation of the question
keywords QK extracted is fed as input to the
trained RNN. We pick the question Q with the
highest probability of generation across all permu-
tations, as the question generated from the ques-
tion keywords QK.

4 Experiments

In this section we perform experiments to demon-
strate how the proposed approach outperforms the
existing template based approach for generating
questions from the keywords. We also evaluate the
quality of the QA pairs generated from knowledge
graph.

4.1 Datasets

For training the K2Q-RNN model we require a
set of keywords and question pairs. We use a
large collection of open-domain questions avail-
able from WikiAnswers dataset2. This dataset has
around 20M questions. We randomly selected
1M questions from this corpus for training and
5k questions for testing (the maximum length of
a question was restricted to 50 words). We ex-
tract keywords from the selected questions by re-
taining only Nouns, Verbs and Adjectives in the
question. The parts of speech tags were identified
using Stanford Tagger (Toutanova et al., 2003).
We form an ordered sequence of keywords by
retaining these extracted words in the same or-
der in which they appear in the original question.
This sequence of keywords along with the original
question forms one input-output sequence pair for
training.

4.2 Methods

We evaluate and compare the following methods:
K2Q-RNN: This is our approach proposed in

the paper. For the encoder we use a bi-directional
RNN containing one hidden layer of 1000 units.
Each word in the input vocabulary is represented
using a word vector which is randomly initialized
and learnt during the training process. The de-
coder also contains one hidden layer comprising
of 1000 units. At the output layer of the decoder
a softmax function gives the distribution over the
entire target vocabulary. We use the top 30,000

2
Available at http://knowitall.cs.washington.edu/oqa/data/wikianswers/
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most frequent words in the 1M training questions
as the target vocabulary. If any sequence contains
a word not belonging to this list then that word
is mapped to a special token ([UNK]) that is also
considered a part of the output vocabulary. We
use a mini batch stochastic gradient descent al-
gorithm together with Adadelta (Zeiler, 2012) to
train our model. We used a mini-batch size of 50
and trained the model for 10 epochs. We used the
beam search with the beam size to 12 to generate
the question that approximately maximizes condi-
tional probability defined in Equation 2.

K2Q-PBSMT: As mentioned earlier, we treat
the problem of generating questions from key-
words as a sequence to sequence translation prob-
lem. A Phrase Based Machine Translation Sys-
tem (PBSMT) can also be employed for this task
by considering that the keyword sequences be-
long to a source language and the question se-
quences belong to a target language. We compare
our approach with a standard phrase-based MT
system, MOSES (Koehn et al., 2007) trained us-
ing the same 1M sequence pairs constructed from
the WikiAnswers dataset. We used a 5-gram lan-
guage model trained on the 1M target question se-
quences and tuned the parameters of the decoder
using 1000 held-out sequence (these were held out
from the 1M training pairs).

K2Q-Template: For template based approach
we use the method proposed by (Zhao et al., 2011)
along with the Word2Vec (Mikolov et al., 2015)
ranking as proposed by (Raghu et al., 2015). The
Word2Vec ranking provides better generalization
than the ranking proposed by (Zhao et al., 2011).
We learn the templates using the same 1M training
pairs extracted from WikiAnswers.

4.3 Evaluation metrics

We evaluate the performance of K2Q RNN with
other baselines to compare the K2Q approaches,
we use BLEU score (Papineni et al., 2002) be-
tween the generated question and the reference
question. BLEU score is typically used in evaluat-
ing the performance of MT systems and captures
the average n-gram overlap between the generated
sequence and the reference sequence. We consider
n-grams upto length 4. BLEU score does not cap-
ture the true performance of the system. For ex-
ample, if the trained model simply reproduces all
keywords in the generated question then also the
unigram overlap will be high resulting in a higher

Method BLEU Score Human Judgment accuracy (%)
K2Q-Template 25.58 28.57
K2Q-PBSMT 50.90 44.29

K2Q-RNN 50.14 60.13

Table 3: Automatic Evaluation (column 2): The
BLEU scores of generated questions for the test
set. Human Evaluation (Column 3): Percentage
of perfect questions generated by K2Q-Template,
K2Q-PBSMT, and K2Q-RNN

BLEU score. Further, we had only one reference
question (ground truth) per test instance which is
not sufficient to capture the different ways of ex-
pressing the question. In this case, BLEU score
will be unnecessarily harsh on the model even if it
generates a valid paraphrase of the reference ques-
tion. To account for this we also perform a man-
ual evaluation. We show the generated output to
four human annotator and ask him/her to assign
following ratings to the generated question, Rat-
ing 4 : Perfect without error, Rating 3 : Good with
one error, missing/addition of article or preposi-
tion, but still meaningful, Rating 2 : Many errors,
Rating 1 : Failure.

4.4 Results

4.4.1 RNN based Natural Language Question
Generator

We first evaluate the performance of K2Q ap-
proaches using 5000 test instances from the
WikiAnswers dataset. We extract the keyword se-
quence from these test questions using the same
method described above. We compute the BLEU
score by comparing the generated question with
the original question. The results are presented
in Table 3. Both K2Q-RNN and K2Q-PBSMT
clearly outperform the template based method
which shows that there is merit in formulating this
problem as a sequence to sequence learning prob-
lem. To be sure that the results are not mislead-
ing due to some of the drawbacks of BLEU score
as described earlier, we also do a manual evalu-
ation. For this, we randomly selected 700 ques-
tions from the test set. We showed the questions
generated by the three methods to different human
annotators and asked them to assign a score of
1 to 4 to each question (based on the guidelines
described earlier). The evaluators had no knowl-
edge about the method used to generate each ques-
tion shown to them. We only consider questions
with rating 4 (perfect without any errors) for each
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Ground truth K2Q-PBSMT K2Q-RNN
pitching in baseball ? pitching in baseball ? what is pitching in baseball ?

difference between mergeracqs and amalgamation ? what is the difference between mergeracqs amalgamation ? what is the difference between mergeracqs and amalgamation ?
did great britain control iraq ? great britain control in iraq ? how did the great britain control the iraq ?

what is the critical analysis of the poem a river ? critical analysis of the poem a river ? what is the most critical analysis of the poem a river ?
global warming affect population growth ? global warming affect the population growth ? can global warming affect the population growth ?

Table 4: Example questions from Ground truth, K2Q-PBSMT and K2Q-RNN

Entity Keyword Query Generated Question Answer

Alan Turing

birth place alan turing
inventor lu decomposition
tv episodes alan turing
author mathematical logic

where is the birth place of alan turing ? ( )
who was the inventor of lu decomposition ? ( )
tv episodes of alan turing ? ( )
what is the author of the mathematical logic ? (x)

maida vale ( )
alan turing ( )
dangerous knowledge ( )
alan turing ( )

France

ioc code france
capital france
location lake annecy
albin haller country

what is the ioc code for france ? ( )
what is the capital of france ? ( )
what is the location of lake annecy ? ( )
is albin haller a country ? (x)

fr ( )
paris ( )
france ( )
france (x)

Wimbledon
wimbledon first date occurrence
current frequency wimbledon
official website wimbledon

what was the wimbledon first date of occurrence ? ( )
what is the current frequency of wimbledon ? ( )
what is the official website for wimbledon ? ( )

1877-07-09 ( )
yearly ( )
http://www.wimbledon.com/ ( )

Table 5: Example question-answer pairs extracted for different entities by using Freebase and K2Q-RNN.
Question-Answer pairs are considered correct if and only if both are marked with by human judges.
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Figure 2: Ratings given by human judges for gen-
erated questions for K2Q-Template, K2Q-PBSMT
and K2Q-RNN ( Best viewed in color).

method and calculate the accuracy, shown in Ta-
ble 3. Figure 2 shows the distribution of ratings
assigned by the annotators. Once gain K2Q-RNN
and K2Q-PBSMT outperform the template based
approach. Further, the human evaluation shows
K2Q-RNN performs better than K2Q-PBSMT. Ta-
ble 4 shows example questions that may have a
high BLEU score for K2Q-PBSMT, however the
K2Q-RNN has a better human judgement.

Next, we also compare the performance of these
methods for input keyword sequences of different
lengths. For this, we consider all test instances
having k keywords and mark the generated ques-
tion as correct if it was given a rating of 4 by the
human annotator. The results of this experiment
are plotted in Figure 3 where the x-axis represents
number of keywords and y-axis represents the per-
centage of test instances for which correct (rat-
ing 4) questions were generated. Once again we
see that K2Q-RNN clearly outperforms the other
methods at all input sequence sizes.
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Figure 3: The plot shows the performance of 3
methods K2Q-Template, K2Q-PBSMT, and K2Q-
RNN as a functions of number of keywords.

4.4.2 Generating Question-Answers pairs
from Freebase

In this section we describe the performance of
K2Q-RNN for generating QA pairs from a Knowl-
edge Graph. For our evaluation purpose, we use
Freebase as the Knowledge Graph. We randomly
picked 27 Freebase entities of various types (per-
son, location, organization, etc) and extracted all
5-tuples containing them. To create a diverse QA
pairs we retained only two instances (5-tuples) for
each predicate or relation type. Some predicates
(like summary, quotations) have long text as their
objects, some predicates (like Daylife Topic ID,
Hero image ID) are difficult for annotator to val-
idate. So, we filtered the list further by remov-
ing above mentioned predicates and generated a
total of 485 QKA pairs. We manually evaluated
these generated QA pairs and marked them as cor-
rect only if generated question along with the an-
swer together convey the information represented
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Train Sources Train Test F1-score(%)
WQ 3778 2032 39.9

WQ+GQA 11334 2032 42.1
WQ+GT 11334 2032 43.6

Table 6: PARASEMPRE Evaluation:
WQ=WebQuestions, GQA=Generated QA pairs
from SimpleQuestions test dataset, GT=Ground
truth data from SimpleQuestions test dataset.

in the 5-tuple. A few QA pairs were marked cor-
rect by the annotators, even though the question
was not grammatically correct but convey the right
intent. Some examples of such questions are melt-
ing point of propyl alcohol?, stanford university
student radio station?. Overall, 33.61% of the QA
pairs generated by our method were annotated cor-
rect. Table 5 shows some correct and incorrect QA
pairs generated by our method.

4.4.3 Extrinsic Evaluation

As an extrinsic evaluation of the quality of our
QA generation model, we use QA pairs gener-
ated by our model to improve the performance of
a state of the art QA system called PARASEM-
PRE (Jonathan Berant, 2014). PARASEMPRE is
a semantic parser, which maps natural language
questions to intermediate logical forms which in
turn are used to answer the question. The standard
training set used for training PARASEMPRE is a
part of the WebQuestions and contains 3778 QA
pairs. We appended this train with 7556 automat-
ically generated QA pairs (resulting in tripling of
the training set). Table 6 then compares the same
system trained on the following different training
sets: (i) Only Web Questions (WQ) dataset (ii)
WQ + Generated Question Answers (GQA) and
(iii) WQ + Ground Truth (GT) QA pairs. The GT
QA pairs were obtained from the SimpleQuestions
(Bordes et al., 2015) test data and have a one-to-
one correspondence to the GQA data (hence the
results are comparable). We see a relative im-
provement of 5.5% in the F1-score of the system
by adding GQA. Further, the performance gains
are comparable to those obtained by using GT QA
pairs.

4.4.4 Error analysis

We inspected all the QA pairs generated by our
method to identify some common mistakes. We
found that most errors corresponded to (i) con-

fusion between is/are and do/does (ii) incorrect
use of determiners (missing articles, confusion be-
tween a/the and addition of extra articles). An-
other problem occurs when the extracted keyword
sequence contains a stop word. This happens
when dealing with triples such as ({also known
as, Andre Agassi}, Agassi). Since, during train-
ing we retain only content words (nouns, adjec-
tives, verbs) in the input sequence, the model fails
to deal with such stop words at test time and sim-
ply produces unknown token (UNK) in the output.
Another set of errors corresponds to mismatch be-
tween the subject type and question type. For ex-
ample, we observed that in a few cases, the model
incorrectly generates a what question instead of a
who question when the answer type is a person.

5 Conclusions

In this paper we propose a method for generat-
ing QA pairs for an given entity using a knowl-
edge graph. We also propose an RNN based ap-
proach for generating natural language questions
from an input keyword sequence. The proposed
method performs significantly better than previ-
ously proposed template based method. We also
do an extrinsic evaluation to show that the gener-
ated QA pairs help in improving the performance
of a downstream QA system. In future, we plan
to extend this work to support predicates with stop
words and support predicates in various tenses.
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Abstract

To analyze the limitations and the future
directions of the extractive summarization
paradigm, this paper proposes an Inte-
ger Linear Programming (ILP) formula-
tion to obtain extractive oracle summaries
in terms of ROUGEn. We also propose an
algorithm that enumerates all of the ora-
cle summaries for a set of reference sum-
maries to exploit F-measures that evalu-
ate which system summaries contain how
many sentences that are extracted as an or-
acle summary. Our experimental results
obtained from Document Understanding
Conference (DUC) corpora demonstrated
the following: (1) room still exists to
improve the performance of extractive
summarization; (2) the F-measures de-
rived from the enumerated oracle sum-
maries have significantly stronger correla-
tions with human judgment than those de-
rived from single oracle summaries.

1 Introduction

Recently, compressive and abstractive summariza-
tion are attracting attention (e.g., Almeida and
Martins (2013), Qian and Liu (2013), Yao et al.
(2015), Banerjee et al. (2015), Bing et al. (2015)).
However, extractive summarization remains a pri-
mary research topic because the linguistic qual-
ity of the resultant summaries is guaranteed, at
least at the sentence level, which is a key require-
ment for practical use (e.g., Hong and Nenkova
(2014), Hong et al. (2015), Yogatama et al. (2015),
Parveen et al. (2015)).

The summarization research community is ex-
periencing a paradigm shift from extractive to
compressive or abstractive summarization. Cur-
rently our question is: “Is extractive summariza-

tion still useful research?” To answer it, the ul-
timate limitations of the extractive summarization
paradigm must be comprehended; that is, we have
to determine its upper bound and compare it with
the performance of the state-of-the-art summariza-
tion methods. Since ROUGEn is the de-facto auto-
matic evaluation method and is employed in many
text summarization studies, an oracle summary is
defined as a set of sentences that have a maximum
ROUGEn score. If the ROUGEn score of an or-
acle summary outperforms that of a system that
employs another summarization approach, the ex-
tractive summarization paradigm is worthwhile to
leverage research resources.

As another benefit, identifying an oracle sum-
mary for a set of reference summaries allows us to
utilize yet another evaluation measure. Since both
oracle and extractive summaries are sets of sen-
tences, it is easy to check whether a system sum-
mary contains sentences in the oracle summary.
As a result, F-measures, which are available to
evaluate a system summary, are useful for evaluat-
ing classification-based extractive summarization
(Mani and Bloedorn, 1998; Osborne, 2002; Hi-
rao et al., 2002). Since ROUGEn evaluation does
not identify which sentence is important, an F-
measure conveys useful information in terms of
“important sentence extraction.” Thus, combining
ROUGEn and an F-measure allows us to scrutinize
the failure analysis of systems.

Note that more than one oracle summary might
exist for a set of reference summaries because
ROUGEn scores are based on the unweighted
counting of n-grams. As a result, an F-measure
might not be identical among multiple oracle sum-
maries. Thus, we need to enumerate the oracle
summaries for a set of reference summaries and
compute the F-measures based on them.

In this paper, we first derive an Integer Linear
Programming (ILP) problem to extract an oracle
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summary from a set of reference summaries and
a source document(s). To the best of our knowl-
edge, this is the first ILP formulation that extracts
oracle summaries. Second, since it is difficult
to enumerate oracle summaries for a set of ref-
erence summaries using ILP solvers, we propose
an algorithm that efficiently enumerates all ora-
cle summaries by exploiting the branch and bound
technique. Our experimental results on the Doc-
ument Understanding Conference (DUC) corpora
showed the following:

1. Room still exists for the further improvement
of extractive summarization, i.e., where the
ROUGEn scores of the oracle summaries are
significantly higher than those of the state-of-
the-art summarization systems.

2. The F-measures derived from multiple oracle
summaries obtain significantly stronger cor-
relations with human judgment than those de-
rived from single oracle summaries.

2 Definition of Extractive Oracle
Summaries

We first briefly describe ROUGEn. Given set of
reference summaries R and system summary S,
ROUGEn is defined as follows:

ROUGEn(R, S) =

|R|∑

k=1

|U(Rk)|∑

j=1

min{N(gnj ,Rk), N(gnj ,S)}

|R|∑

k=1

|U(Rk)|∑

j=1

N(gnj ,Rk)
.

(1)

Rk denotes the multiple set of n-grams that oc-
cur in k-th reference summary Rk, and S de-
notes the multiple set of n-grams that appear in
system-generated summary S (a set of sentences).
N(gnj ,Rk) and N(gnj ,S) return the number of
occurrences of n-gram gnj in the k-th reference
and system summaries, respectively. Function
U(·) transforms a multiple set into a normal set.
ROUGEn takes values in the range of [0, 1], and
when the n-gram occurrences of the system sum-
mary agree with those of the reference summary,
the value is 1.

In this paper, we focus on extractive summariza-
tion, employ ROUGEn as an evaluation measure,

and define the oracle summaries as follows:

O = arg max
S⊆D

ROUGEn(R, S)

s.t. `(S) ≤ Lmax.
(2)

D is the set of all the sentences contained in the
input document(s), and Lmax is the length limi-
tation of the oracle summary. `(S) indicates the
number of words in the system summary. Eq. (2)
is an NP-hard combinatorial optimization prob-
lem, and no polynomial time algorithms exist that
can attain an optimal solution.

3 Related Work

Lin and Hovy (2003) utilized a naive exhaustive
search method to obtain oracle summaries in terms
of ROUGEn and exploited them to understand the
limitations of extractive summarization systems.
Ceylan et al. (2010) proposed another naive ex-
haustive search method to derive a probability
density function from the ROUGEn scores of or-
acle summaries for the domains to which source
documents belong. The computational complex-
ity of naive exhaustive methods is exponential to
the size of the sentence set. Thus, it may be pos-
sible to apply them to single document summa-
rization tasks involving a dozen sentences, but it
is infeasible to apply them to multiple document
summarization tasks that involve several hundred
sentences.

To describe the difference between the ROUGEn
scores of oracle and system summaries in multiple
document summarization tasks, Riedhammer et al.
(2008) proposed an approximate algorithm with a
genetic algorithm (GA) to find oracle summaries.
Moen et al. (2014) utilized a greedy algorithm for
the same purpose. Although GA or greedy algo-
rithms are widely used to solve NP-hard combi-
natorial optimization problems, the solutions are
not always optimal. Thus, the summary does not
always have a maximum ROUGEn score for the
set of reference summaries. Both works called the
summary found by their methods the oracle, but it
differs from the definition in our paper.

Since summarization systems cannot reproduce
human-made reference summaries in most cases,
oracle summaries, which can be reproduced by
summarization systems, have been used as train-
ing data to tune the parameters of summarization
systems. For example, Kulesza and Tasker (2011)
and Sipos et al. (2012) trained their summarizers
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with oracle summaries found by a greedy algo-
rithm. Peyrard and Eckle-Kohler (2016) proposed
a method to find a summary that approximates a
ROUGE score based on the ROUGE scores of in-
dividual sentences and exploited the framework
to train their summarizer. As mentioned above,
such summaries do not always agree with the or-
acle summaries defined in our paper. Thus, the
quality of the training data is suspect. Moreover,
since these studies fail to consider that a set of ref-
erence summaries has multiple oracle summaries,
the score of the loss function defined between their
oracle and system summaries is not appropriate in
most cases.

As mentioned above, no known efficient algo-
rithm can extract “exact” oracle summaries, as de-
fined in Eq. (2), i.e., because only a naive exhaus-
tive search is available. Thus, such approximate
algorithms as a greedy algorithm are mainly em-
ployed to obtain them.

4 Oracle Summary Extraction as an
Integer Linear Programming (ILP)
Problem

To extract an oracle summary from document(s)
and a given set of reference summaries, we start
by deriving an Integer Linear Programming (ILP)
problem. Since the denominator of Eq. (1) is con-
stant for a given set of reference summaries, we
can find an oracle summary by maximizing the nu-
merator of Eq. (1). Thus, the ILP formulation is
defined as follows:

maximize
z

|R|∑

k=1

|U(Rk)|∑

j=1

zkj (3)

s.t.

|D|∑

i=1

`(si)xi ≤ Lmax (4)

∀j :

|D|∑

i=1

N(gnj , si)xi ≥ zkj (5)

∀j : N(gnj ,Rk) ≥ zkj (6)

∀i : xi ∈ {0, 1} (7)

∀j : zkj ∈ Z+. (8)

Here, zkj is the count of the j-th n-gram of
the k-th reference summary in the oracle sum-
mary, i.e., zkj = min{N(gnj ,Rk), N(gnj ,S)}.
`(·) returns the number of words in the sen-
tence, xi is a binary indicator, and xi = 1
denotes that the i-th sentence si is included in

Root 

Figure 1: Example of a search tree

the oracle summary. N(gnj , si) returns the num-
ber of occurrences of n-gram gnj in the i-th sen-
tence. Constraints (5) and (6) ensure that zkj =
min{N(gnj ,Rk), N(gnj ,S)}.

5 Branch and Bound Technique for
Enumerating Oracle Summaries

Since enumerating oracle summaries with an ILP
solver is difficult, we extend the exhaustive search
approach by introducing a search and prune tech-
nique to enumerate the oracle summaries. The
search pruning decision is made by comparing the
current upper bound of the ROUGEn score with the
maximum ROUGEn score in the search history.

5.1 ROUGEn Score for Two Distinct Sets of
Sentences

The enumeration of oracle summaries can be re-
garded as a depth-first search on a tree whose
nodes represent sentences. Fig. 1 shows an ex-
ample of a search tree created in a naive exhaus-
tive search. The nodes represent sentences and the
path from the root node to an arbitrary node repre-
sents a summary. For example, the red path in Fig.
1 from the root node to node s2 represents a sum-
mary consisting of sentences s1, s2. By utilizing
the tree, we can enumerate oracle summaries by
exploiting depth-first searches while excluding the
summaries that violate length constraints. How-
ever, this naive exhaustive search approach is im-
practical for large data sets because the number of
nodes inside the tree is 2|D|.

If we prune the unwarranted subtrees in each
step of the depth-first search, we can make the
search more efficient. The decision to search or
prune is made by comparing the current upper

388



bound of the ROUGEn score with the maximum
ROUGEn score in the search history. For instance,
in Fig. 1, we reach node s2 by following this path:
“Root→ s1,→ s2”. If we estimate the maximum
ROUGEn score (upper bound) obtained by search-
ing for the descendant of s2 (the subtree in the
blue rectangle), we can decide whether the depth-
first search should be continued. When the upper
bound of the ROUGEn score exceeds the current
maximum ROUGEn in the search history, we have
to continue. When the upper bound is smaller than
the current maximum ROUGEn score, no summary
is optimal that contains s1, s2, so we can skip sub-
sequent search activity on the subtree and proceed
to check the next branch: “Root→ s1→ s3”.

To estimate the upper bound of the ROUGEn
score, we re-define it for two distinct sets of sen-
tences, V and W , i.e., V ∩W = φ, as follows:

ROUGEn(R, V ∪W ) = ROUGEn(R, V )

+ ROUGE′n(R, V,W ).

(9)

Here ROUGE′n is defined as follows:

ROUGE′n(R, V,W ) =

|R|∑

k=1

∑

tn∈U(Rk)

min{N(tn,Rk \ V), N(tn,W)}

|R|∑

k=1

∑

tn∈U(Rk))

N(tn,Rk)
.

(10)

V,W are the multiple sets of n-grams found in the
sets of sentences V and W , respectively.

Theorem 1. Eq. (9) is correct.

We omit the proof of Theorem 1 due to space
limitations.

5.2 Upper Bound of ROUGEn

Let V be the set of sentences on the path from the
current node to the root node in the search tree, and
let W be the set of sentences that are the descen-
dants of the current node. In Fig. 1, V={s1, s2}
andW={s3, s4, s5, s6}. According to Theorem 1,
the upper bound of the ROUGEn score is defined
as:

̂ROUGEn(R, V ) = ROUGEn(R, V ) +

max
Ω⊆W

{ROUGE′n(R, V,Ω):`(Ω)≤Lmax−`(V )}.(11)

Algorithm 1 Algorithm to Find Upper Bound of
ROUGEn

1: Function: ̂ROUGEn(R, V )
2: W ← descendant(last(V )), W ′ ← φ
3: U ← ROUGE(R, V )
4: for each w ∈W do
5: append(W ′, ROUGE′n(R,V,{w})

`(w)
)

6: end for
7: sort(W ′, ’descend’)
8: for each w ∈W ′ do
9: if Lmax − `({w}) ≥ 0 then

10: U ← U + ROUGE′n(R, V, {w})
11: Lmax ← Lmax − `({w})
12: else
13: U ← U +

ROUGE′n(R, V, {w})
`({w}) × Lmax

14: break the loop
15: end if
16: end for
17: return U
18: end

Since the second term on the right side
in Eq. (11) is an NP-hard problem, we
turn to the following relation by intro-
ducing inequality, ROUGE′n(R, V,Ω) ≤∑

ω∈Ω ROUGE′n(R, V, {ω}),

max
Ω⊆W

{
ROUGE′n(R, V,Ω):`(Ω)≤Lmax−`(V )

}

≤max
x

{∑|W |
i=1 ROUGE′n(R, V, {wi})xi:

∑|W |
i=1`({wi})xi≤Lmax−`(V )

}
. (12)

Here, x = (x1, . . . , x|W |) and xi ∈ {0, 1}. The
right side of Eq. (12) is a knapsack problem, i.e., a
0-1 ILP problem. Although we can obtain the op-
timal solution for it using dynamic programming
or ILP solvers, we solve its linear programming
relaxation version by applying a greedy algorithm
for greater computation efficiency. The solution
output by the greedy algorithm is optimal for the
relaxed problem. Since the optimal solution of
the relaxed problem is always larger than that of
the original problem, the relaxed problem solution
can be utilized as the upper bound. Algorithm 1
shows the pseudocode that attains the upper bound
of ROUGEn. In the algorithm, U indicates the up-
per bound score of ROUGEn. We first set the initial
score of upper bound U to ROUGEn(R, V ) (line
3). Then we compute the density of the ROUGE′n
scores (ROUGE′n(R, V, {w})/`(w)) for each sen-
tence w in W and sort them in descending or-
der (lines 4 to 6). When we have room to add
w to the summary, we update U by adding the
ROUGE′n(R, V, {w}) (line 10) and update length
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Algorithm 2 Greedy algorithm to obtain initial
score
1: Function: GREEDY(R, D, Lmax)
2: L← 0, S ← φ,E ← D
3: while E 6= φ do
4: s∗← arg max

s∈E

{
ROUGEn(R, S ∪ {s})−ROUGEn(R, S)

`({s})

}

5: L← L+ `({s∗})
6: if L ≤ Lmax then
7: S ← S ∪ {s∗}
8: end if
9: E ← E \ {s∗}

10: end while
11: i∗ ← arg max

i∈D,`({i})≤Lmax

ROUGEn(R, {i})

12: S∗ ← arg max
K∈{{i∗},S}

ROUGEn(R,K)

13: return ROUGEn(R, S
∗)

14: end

constraint Lmax (line 11). When we do not have
room to add w, we update U by adding the score
obtained by multiplying the density ofw by the re-
maining length, Lmax (line 13), and exit the while
loop.

5.3 Initial Score for Search

Since the branch and bound technique prunes
the search by comparing the best solution found so
far with the upper bounds, obtaining a good solu-
tion in the early stage is critical for raising search
efficiency.

Since ROUGEn is a monotone submodular func-
tion (Lin and Bilmes, 2011), we can obtain a
good approximate solution by a greedy algorithm
(Khuller et al., 1999). It is guaranteed that the
score of the obtained approximate solution is
larger than 1

2(1− 1
e )OPT, where OPT is the score

of the optimal solution. We employ the solution as
the initial ROUGEn score of the candidate oracle
summary.

Algorithm 2 shows the greedy algorithm. In it,
S denotes a summary and D denotes a set of sen-
tences. The algorithm iteratively adds sentence s∗

that yields the largest gain in the ROUGEn score
to current summary S, provided the length of the
summary does not violate length constraint Lmax

(line 4). After the while loop, the algorithm com-
pares the ROUGEn score of S with the maximum
ROUGEn score of the single sentence and outputs
the larger of the two scores (lines 11 to 13).

5.4 Enumeration of Oracle summaries

By introducing threshold τ as the best ROUGEn
score in the search history, pruning decisions in-
volve the following three conditions:

Algorithm 3 Branch and bound technique to enu-
merate oracle summaries
1: Read R,D,Lmax

2: τ ← GREEDY(R,D,Lmax),Oτ ← φ
3: for each s ∈ D do
4: append(S,〈ROUGEn(R, {s}), s〉)
5: end for
6: sort(S,’descend’)
7: call FINDORACLE(S,C)
8: output Oτ
9: Procedure: FINDORACLE(Q,V )

10: while Q 6= φ do
11: s←shift(Q)
12: append(V, s)
13: if Lmax − `(V ) ≥ 0 then
14: if ROUGEn(R, V ) ≥ τ then
15: τ ← ROUGEn(R, V )
16: append(Oτ , V )
17: call FINDORACLE(Q,V )
18: else if ̂ROUGEn(R, V ) ≥ τ then
19: call FINDORACLE(Q,V )
20: end if
21: end if
22: pop(V )
23: end while
24: end

1. ROUGEn(R, V ) ≥ τ ;

2. ROUGEn(R, V ) < τ , ̂ROUGEn(R, V ) < τ ;

3. ROUGEn(R, V ) < τ , ̂ROUGEn(R, V ) ≥ τ .

With case 1, we update the oracle summary
as V and continue the search. With case 2, be-
cause both ROUGEn(R, V ) and ̂ROUGEn(R, V )
are smaller than τ , the subtree whose root node
is the current node (last visited node) is pruned
from the search space, and we continue the depth-
first search from the neighbor node. With case 3,
we do not update oracle summary as V because
ROUGEn(R, V ) is less than τ . However, we might
obtain a better oracle summary by continuing the
depth-first search because the upper bound of the
ROUGEn score exceeds τ . Thus, we continue to
search for the descendants of the current node.

Algorithm 3 shows the pseudocode that enu-
merates the oracle summaries. The algorithm
reads a set of reference summaries R, length lim-
itation Lmax, and set of sentences D (line 1) and
initializes threshold τ as the ROUGEn score ob-
tained by the greedy algorithm (Algorithm 2).
It also initializes Oτ , which stores oracle sum-
maries whose ROUGEn scores are τ , and priority
queueC, which stores the history of the depth-first
search (line 2). Next, the algorithm computes the
ROUGEn score for each sentence and stores S af-
ter sorting them in descending order. After that,
we start a depth-first search by recursively call-
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Year Topics Docs. Sents. Words Refs. Length
01 30 10 365 7706 89 100
02 59 10 238 4822 116 100
03 30 10 245 5711 120 100
04 50 10 218 4870 200 100
05 50 29.5 885 18273.5 300 250
06 50 25 732.5 15997.5 200 250
07 45 25 516 11427 180 250

Table 1: Statistics of data set

ing procedure FINDORACLE. In the procedure,
we extract the top sentence from priority queue
Q and append it to priority queue V (lines 11 to
12). When the length of V is less than Lmax, if
ROUGEn(R, V ) is larger than threshold τ (case 1),
we update τ as the score and append current V to
Oτ . Then we continue the depth-first search by
calling the procedure the FINDORACLE (lines 15
to 17). If ̂ROUGEn(R, V ) is larger than τ (case 3),
we do not update τ and Oτ but reenter the depth-
first search by calling the procedure again (lines
18 to 19). If neither case 1 nor case 3 is true, we
delete the last visited sentence from V and return
to the top of the recurrence.

6 Experiments

6.1 Experimental Setting

We conducted experiments on the corpora devel-
oped for a multiple document summarization task
in DUC 2001 to 2007. Table 1 show the statistics
of the data. In particular, the DUC-2005 to -2007
data sets not only have very large numbers of sen-
tences and words but also a long target length (the
reference summary length) of 250 words.

All the words in the documents were stemmed
by Porter’s stemmer (Porter, 1980). We computed
ROUGE1 scores, excluding stopwords, and com-
puted ROUGE2 scores, keeping them. Owczarzak
et al. (2012) suggested using ROUGE1 and keeping
stopwords. However, as Takamura et al. argued
(Takamura and Okumura, 2009), the summaries
optimized with non-content words failed to con-
sider the actual quality. Thus, we excluded stop-
words for computing the ROUGE1 scores.

We enumerated the following two types of ora-
cle summaries: those for a set of references for a
given topic and those for each reference in the set
of references.

6.2 Results and Discussion

6.2.1 Impact of Oracle ROUGEn scores
Table 2 shows the average ROUGE1,2 scores of the
oracle summaries obtained from both a set of ref-
erences and each reference in the set (“multi” and
“single”), those of the best conventional system
(Peer), and those obtained from summaries pro-
duced by a greedy algorithm (Algorithm 2).

Oracle (single) obtained better ROUGE1,2

scores than Oracle (multi). The results imply that
it is easier to optimize a reference summary than a
set of reference summaries. On the other hand,
the ROUGE1,2 scores of these oracle summaries
are significantly higher than those of the best sys-
tems. The best systems obtained ROUGE1 scores
from 60% to 70% in “multi” and from 50% to 60%
in “single” as well as ROUGE2 scores from 40% to
55% in “multi” and from 30% to 40% in “single”
for their oracle summaries.

Since the systems in Table 2 were developed
over many years, we compared the ROUGEn
scores of the oracle summaries with those of the
current state-of-the-art systems using the DUC-
2004 corpus and obtained summaries generated by
different systems from a public repository1 (Hong
et al., 2014). The repository includes summaries
produced by the following seven state-of-the-art
summarization systems: CLASSY04 (Conroy et
al., 2004), CLASSY11 (Conroy et al., 2011), Sub-
modular (Lin and Bilmes, 2012), DPP (Kulesza
and Tasker, 2011), RegSum (Hong and Nenkova,
2014), OCCAMS V (Davie et al., 2012; Conroy
et al., 2013), and ICSISumm (Gillick and Favre,
2009; Gillick et al., 2009). Table 3 shows the re-
sults.

Based on the results, RegSum (Hong
and Nenkova, 2014) achieved the best
ROUGE1=0.331 result, while ICSISumm (Gillick
and Favre, 2009; Gillick et al., 2009) (a compres-
sive summarizer) achieved the best result with
ROUGE2=0.098. These systems outperformed
the best systems (Peers 65 and 67 in Table 2), but
the differences in the ROUGEn scores between the
systems and the oracle summaries are still large.
More recently, Hong et al. (2015) demonstrated
that their system’s combination approach achieved
the current best ROUGE2 score, 0.105, for the
DUC-2004 corpus. However, a large difference
remains between the ROUGE2 score of oracle and

1http://www.cis.upenn.edu/˜nlp/
corpora/sumrepo.html
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01 02 03 04 05 06 07
R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle (multi) .400 .164 .452 .186 .434 .185 .427 .162 .445 .177 .491 .211 .506 .236
Oracle (single) .500 .226 .515 .225 .525 .258 .519 .228 .574 .279 .607 .303 .622 .330
Greedy .387 .161 .438 .184 .424 .182 .412 .157 .430 .173 .473 .206 .495 .234
Peer .251 .080 .269 .080 .295 .094 .305 .092 .262 .073 .305 .095 .363 .117
ID T T 19 19 26 13 67 65 10 15 23 24 29 15

Table 2: ROUGE1,2 scores of oracle summaries, greedy summaries, and system summaries for each data
set

System ROUGE1 ROUGE2

Oracle (multi) .427 .162
Oracle (single) .519 .228
CLASSY04 .305 .0897
CLASSY11 .286 .0919
Submodular .300 .0933
DPP .309 .0960
RegSum .331 .0974
OCCAMS V .300 .0974
ICSISumm .310 .0980

Table 3: ROUGE1,2 scores for state-of-the-art sum-
marization systems on DUC-2004 corpus

their summaries.
In short, the ROUGEn scores of the oracle sum-

maries are significantly higher than those of the
current state-of-the-art summarization systems,
both extractive and compressive summarization.
These results imply that further improvement of
the performance of extractive summarization is
possible.

On the other hand, the ROUGEn scores of the or-
acle summaries are far from ROUGEn = 1. We be-
lieve that the results are related to the summary’s
compression rate. The data set’s compression rate
was only 1 to 2%. Thus, under tight length con-
straints, extractive summarization basically fails to
cover large numbers of n-grams in the reference
summary. This reveals the limitation of the extrac-
tive summarization paradigm and suggests that we
need another direction, compressive or abstractive
summarization, to overcome the limitation.

6.2.2 ROUGE Scores of Summaries Obtained
from Greedy Algorithm

Table 2 also shows the ROUGE1,2 scores of the
summaries obtained from the greedy algorithm
(greedy summaries). Although there are statisti-
cally significant differences between the ROUGE

single multi
ROUGE1 .451 .419
ROUGE2 .536 .530

Table 4: Jaccard Index between both oracle and
greedy summaries

scores of the oracle summaries and greedy sum-
maries, those obtained from the greedy summaries
achieved near optimal scores, i.e., approximation
ratio of them are close to 0.9. These results are
surprising since the algorithm’s theoretical lower
bound is 1

2(1− 1
e )(' 0.32)OPT.

On the other hand, the results do not support
that the differences between them are small at the
sentence-level. Table 4 shows the average Jaccard
Index between the oracle summaries and the cor-
responding greedy summaries for the DUC-2004
corpus. The results demonstrate that the oracle
summaries are much less similar to the greedy
summaries at the sentence-level. Thus, it might
not be appropriate to use greedy summaries as
training data for learning-based extractive summa-
rization systems.

6.2.3 Impact of Enumeration
Table 5 shows the median number of oracle sum-
maries and the rates of the reference summaries
that have multiple oracle summaries for each data
set. Over 80% of the reference summaries and
about 60% to 90% of the topics have multiple or-
acle summaries. Since the ROUGEn scores are
based on the unweighted counting of n-grams,
when many sentences have similar meanings, i.e.,
many redundant sentences, the number of oracle
summaries that have the same ROUGEn scores in-
creases. The source documents of multiple docu-
ment summarization tasks are prone to have many
such redundant sentences, and the amount of ora-
cle summaries is large.
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Median Rate
single multi single multi

ROUGE1 ROUGE2 ROUGE1 ROUGE2 ROUGE1 ROUGE2 ROUGE1 ROUGE2

01 8 9 4 5 .854 .787 .833 .733
02 7.5 5.5 4 4 .897 .836 .814 .780
03 8 10.5 3.5 4 .833 .858 .800 .900
04 8 8 3.5 3 .865 .865 .780 .760
05 35 35.5 2 3 .916 .907 .580 .660
06 28 22 2.5 3 .877 .880 .700 .720
07 23 16 4 2 .910 .878 .733 711

Table 5: Median number of oracle summaries and rates of reference summaries and topics with multiple
oracle summaries for each data set

The oracle summaries offer significant bene-
fit with respect to evaluating the extracted sen-
tences. Since both the oracle and system sum-
maries are sets of sentences, it is easy to check
whether each sentence in the system summary is
contained in one of the oracle summaries. Thus,
we can exploit the F-measures, which are use-
ful for evaluating classification-based extractive
summarization (Mani and Bloedorn, 1998; Os-
borne, 2002; Hirao et al., 2002). Here, we have
to consider that the oracle summaries, obtained
from a reference summary or a set of reference
summaries, are not identical at the sentence-level
(e.g., the average Jaccard Index between the ora-
cle summaries for the DUC-2004 corpus is around
0.5). The F-measures are varied with the ora-
cle summaries that are used for such computa-
tion. For example, assume that we have sys-
tem summary S={s1, s2, s3, s4} and oracle sum-
maries O1={s1, s2, s5, s6} and O2={s1, s2, s3}.
The precision for O1 is 0.5, while that for O2 is
0.75; the recall for O1 is 0.5, while that for O2 is
1; the F-measure for O1 is 0.5, while that for O2 is
0.86.

Thus, we employ the scores gained by averag-
ing all of the oracle summaries as evaluation mea-
sures. Precision, recall, and F-measure are defined
as follows: P={∑O∈Oall

|O ∩ S|/|S|}/|Oall|,
R={∑O∈Oall

|O ∩ S|/|O|}/|Oall|,
F-measure=2PR/(P +R).

To demonstrate F-measure’s effectiveness, we
investigated the correlation between an F-measure
and human judgment based on the evaluation re-
sults obtained from the DUC-2004 corpus. The re-
sults include summaries generated by 17 systems,
each of which has a mean coverage score assigned
by a human subject. We computed the correla-

tion coefficients between the average F-measure
and the average mean coverage score for 50 topics.
Table 6 shows Pearson’s r and Spearman’s ρ. In
the table, “F-measure (R1)” and “F-measure (R2)”
indicate the F-measures calculated using oracle
summaries optimized to ROUGE1 and ROUGE2,
respectively. “M” indicates the F-measure calcu-
lated using multiple oracle summaries, and “S” in-
dicates F-measures calculated using randomly se-
lected oracle summaries. “multi” indicates oracle
summaries obtained from a set of references, and
“single” indicates oracle summaries obtained from
a reference summary in the set. For “S,” we ran-
domly selected a single oracle summary and cal-
culated the F-measure 100 times and took the av-
erage value with the 95% confidence interval of
the F-measures by bootstrap resampling.

The results demonstrate that the F-measures are
strongly correlated with human judgment. Their
values are comparable with those of ROUGE1,2.
In particular, F-measure (R1) (single-M) achieved
the best Spearman’s ρ result. When comparing
“single” with “multi,” Pearson’s r of “multi” was
slightly lower than that of “single,” and the Spear-
man’s r of “multi” was almost the same as those of
“single.” “M” has significantly better performance
than “S.” These results imply that F-measures
based on oracle summaries are a good evaluation
measure and that oracle summaries have the po-
tential to be an alternative to human-made ref-
erence summaries in terms of automatic evalua-
tion. Moreover, the enumeration of the oracle
summaries for a given reference summary or a set
of reference summaries is essential for automatic
evaluation.
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Metric r ρ
ROUGE1 .861 .760
ROUGE2 .907 .831
F-measure (R1) (single-M) .857 .855
F-measure (R1) (single-S) .815-.830 .811-.830
F-measure (R2) (single-M) .904 .826
F-measure (R2) (single-S) .855-.865 .740-.760
F-measure (R1) (multi-M) .814 .841
F-measure (R1) (multi-S) .794-.802 .803-.813
F-measure (R2) (multi-M) .824 .846
F-measure (R2) (multi-S) .806-.816 .797-.817

Table 6: Correlation coefficients between auto-
matic evaluations and human judgments on DUC-
2004 corpus

6.2.4 Search Efficiency
To demonstrate the efficiency of our search algo-
rithm against the naive exhaustive search method,
we compared the number of feasible solutions
(sets of sentences that satisfy the length constraint)
with the number of summaries that were checked
in our search algorithm.

Table 7 shows the median number of feasible
solutions and checked summaries yielded by our
method for each data set (in the case of “sin-
gle”). The differences in the number of feasible
solutions between ROUGE1 and ROUGE2 are very
large. Input set (|D|) of ROUGE1 is much larger
than ROUGE1. On the other hand, the differences
between ROUGE1 and ROUGE2 in our method are
of the order of 10 to 102. When comparing our
method with naive exhaustive searches, its search
space is significantly smaller. The differences are
of the order of 107 to 1030 with ROUGE1 and 104

to 1017 with ROUGE2. These results demonstrate
the efficiency of our branch and bound technique.

In addition, we show an example of the pro-
cessing time for extracting one oracle summary
and enumerating all of the oracle summaries for
the reference summaries in the DUC-2004 cor-
pus with a Linux machine (CPU: Intel R© Xeon R©
X5675 (3.07GHz)) with 192 GB of RAM. We
utilized CPLEX 12.1 to solve the ILP problem.
Our algorithm was implemented in C++ and com-
plied with GCC version 4.4.7. The results show
that we needed 0.026 and 0.021 sec. to extract
one oracle summary per reference summary and
0.047 and 0.031 sec. to extract one oracle sum-
mary per set of reference summaries for ROUGE1

and ROUGE2, respectively. We needed 11.90 and
1.40 sec. to enumerate the oracle summaries
per reference summary and 102.94 and 3.65 sec.
per set of reference summaries for ROUGE1 and

ROUGE1 ROUGE2

Naive Proposed Naive Proposed
01 3.66×1013 5.75×103 3.32×107 1.00×103

02 1.12×1012 4.64×103 1.34×107 8.87×102

03 1.62×1011 3.65×103 6.37×106 8.19×102

04 9.65×1010 4.47×103 6.90×106 9.83×102

05 5.48×1036 2.32×106 3.48×1021 7.03×104

06 1.94×1032 1.97×106 2.11×1020 5.08×104

07 4.14×1028 1.40×106 1.81×1019 2.60×104

Table 7: Median number of summaries checked by
each search method

ROUGE2, respectively. The extraction of one or-
acle summary for a reference summary can be
achieved with the ILP solver in practical time and
the enumeration of oracle summaries is also effi-
cient. However, to enumerate oracle summaries,
we needed several weeks for some topics in DUCs
2005 to 2007 since they hold a huge number of
source sentences.

7 Conclusions

To analyze the limitations and the future direction
of extractive summarization, this paper proposed
(1) Integer Linear Programming (ILP) formulation
to obtain extractive oracle summaries in terms of
ROUGEn scores and (2) an algorithm that enumer-
ates all oracle summaries to exploit F-measures
that evaluate the sentences extracted by systems.

The evaluation results obtained from the cor-
pora of DUCs 2001 to 2007 identified the follow-
ing: (1) room still exists to improve the ROUGEn
scores of extractive summarization systems even
though the ROUGEn scores of the oracle sum-
maries fell below the theoretical upper bound
ROUGEn=1. (2) Over 80% of the reference sum-
maries and from 60% to 90% of the sets of refer-
ence summaries have multiple oracle summaries,
and the F-measures computed by utilizing the enu-
merated oracle summaries showed stronger corre-
lation with human judgment than those computed
from single oracle summaries.
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Abstract

We present a memory augmented neural
network for natural language understand-
ing: Neural Semantic Encoders. NSE is
equipped with a novel memory update rule
and has a variable sized encoding memory
that evolves over time and maintains the
understanding of input sequences through
read, compose and write operations. NSE
can also access1 multiple and shared mem-
ories. In this paper, we demonstrated the
effectiveness and the flexibility of NSE
on five different natural language tasks:
natural language inference, question an-
swering, sentence classification, document
sentiment analysis and machine transla-
tion where NSE achieved state-of-the-art
performance when evaluated on publically
available benchmarks. For example, our
shared-memory model showed an encour-
aging result on neural machine translation,
improving an attention-based baseline by
approximately 1.0 BLEU.

1 Introduction

Recurrent neural networks (RNNs) have been suc-
cessful for modeling sequences (Elman, 1990).
Particularly, RNNs equipped with internal short
memories, such as long short-term memories
(LSTM) (Hochreiter and Schmidhuber, 1997)
have achieved a notable success in sequential tasks
(Cho et al., 2014; Vinyals et al., 2015). LSTM is
powerful because it learns to control its short term
memories. However, the short term memories in
LSTM are a part of the training parameters. This
imposes some practical difficulties in training and
modeling long sequences with LSTM.

1By access we mean changing the memory states by the
read, compose and write operations.

Recently several studies have explored ways of
extending the neural networks with an external
memory (Graves et al., 2014; Weston et al., 2015;
Grefenstette et al., 2015). Unlike LSTM, the short
term memories and the training parameters of such
a neural network are no longer coupled and can be
adapted. In this paper we propose a novel class of
memory augmented neural networks called Neu-
ral Semantic Encoders (NSE) for natural language
understanding. NSE offers several desirable prop-
erties. NSE has a variable sized encoding memory
which allows the model to access entire input se-
quence during the reading process; therefore ef-
ficiently delivering long-term dependencies over
time. The encoding memory evolves over time
and maintains the memory of the input sequence
through read, compose and write operations. NSE
sequentially processes the input and supports word
compositionality inheriting both temporal and hi-
erarchical nature of human language. NSE can
read from and write to a set of relevant encod-
ing memories simultaneously or multiple NSEs
can access a shared encoding memory effectively
supporting knowledge and representation sharing.
NSE is flexible, robust and suitable for practical
NLU tasks and can be trained easily by any gradi-
ent descent optimizer.

We evaluate NSE on five different real tasks.
For four of them, our models set new state-of-
the-art results. Our results suggest that a NN
model with the shared memory between encoder
and decoder is a promising approach for sequence
transduction problems such as machine translation
and abstractive summarization. In particular, we
observe that the attention-based neural machine
translation can be further improved by shared-
memory models. We also analyze memory access
pattern and compositionality in NSE and show that
our model captures semantic and syntactic struc-
tures of input sentence.

397



Memory

Read

Input

Output

Shared memory

Input

(a) (b)

Compose Write

Memory

Read

Output
Compose Write

Figure 1: High-level architectures of the Neural Semantic Encoders. NSE reads and writes its own
encoding memory in each time step (a). MMA-NSE accesses multiple relevant memories simultaneously
(b).

2 Related Work

One of the pioneering work that attempts to ex-
tend deep neural networks with an external mem-
ory is Neural Turing Machines (NTM) (Graves et
al., 2014). NTM implements a centralized con-
troller and a fixed-sized random access memory.
The NTM memory is addressable by both con-
tent (i.e. soft attention) and location based access
mechanisms. The authors evaluated NTM on al-
gorithmic tasks such as copying and sorting se-
quences.

Comparison with Neural Turing Machines:
NSE addresses certain drawbacks of NTM. NTM
has a single centralized controller, which is usu-
ally an MLP or RNN while NSE takes a modular
approach. The main controller in NSE is decom-
posed into three separate modules, each of which
performs for read, compose or write operation. In
NSE, the compose module is introduced in addi-
tion to the standard memory update operations (i.e.
read-write) in order to process the memory entries
and input information.

The main advantage of NSE over NTM is in its
memory update. Despite its sophisticated address-
ing mechanism, the NTM controller does not have
mechanism to avoid information collision in the
memory. Particularly the NTM controller emits
two separate set of access weights (i.e. read weight
and erase and write weights) that do not explic-
itly encode the knowledge about where informa-
tion is read from and written to. Moreover the
fixed-size memory in NTM has no memory allo-
cation or de-allocation protocol. Therefore unless
the controller is intelligent enough to track the pre-
vious read/write information, which is hard for an
RNN when processing long sequences, the mem-
ory content is overlapped and information is over-

written throughout different time scales. We think
that this is a potential reason that makes NTM hard
to train and makes the training not stable. We also
note that the effectiveness of the location based ad-
dressing introduced in NTM is unclear. In NSE,
we introduce a novel and systematic memory up-
date approach based on the soft attention mech-
anism. NSE writes new information to the most
recently read memory locations. This is accom-
plished by sharing the same memory key vector
between the read and write modules. The NSE
memory update is scalable and potentially more
robust to train. NSE is provided with a variable
sized memory and thus unlike NTM, the size of the
NSE memory is more relaxed. The novel memory
update mechanism and the variable sized memory
together prevent NSE from the information colli-
sion issue and avoid the need of the memory allo-
cation and de-allocation protocols. Each memory
location of the NSE memory stores a token repre-
sentation in input sequence during encoding. This
provides NSE with an anytime-access to the entire
input sequence including the tokens from the fu-
ture time scales, which is not permitted in NTM,
RNN and attention-based encoders.

Lastly, NTM addresses small algorithmic prob-
lems while NSE focuses on a set of large-scale lan-
guage understanding tasks.

The RNNSearch model proposed in (Bahdanau
et al., 2015) can be seen as a variation of memory
augmented networks due to its ability to read the
historic output states of RNNs with soft attention.
The work of Sukhbaatar et al. (2015) combines the
soft attention with Memory Networks (MemNNs)
(Weston et al., 2015). Similar to RNNSearch,
MemNNs are designed with non-writable mem-
ories. It constructs layered memory representa-
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tions and showed promising results on both arti-
ficial and real question answering tasks. We note
that RNNSearch and MemNNs avoid the memory
update and management overhead by simply using
a non-writable memory storage. Another variation
of MemNNs is Dynamic Memory Network (Ku-
mar et al., 2016) that is equipped with an episodic
memory and seems to be flexible in different set-
tings.

Although NSE differs from other memory-
augumented NN models in many aspects, they all
use soft attention mechanism with a type of sim-
ilarity measures to retrieve relevant information
from the external memory. For example, NTM im-
plements cosine similarity and MemNNs use vec-
tor dot product. NSE uses the vector dot prod-
uct for the similarity measure in NSE because it is
faster to compute.

Other related work includes Neural Program-
Interpreters (Reed and de Freitas, 2016), which
learns to run sub-programs and to compose them
for high-level programs. It uses execution traces
to provide the full supervision. Researchers have
also explored ways to add unbounded memory to
LSTM (Grefenstette et al., 2015) using a particu-
lar data structure. Although this type of architec-
ture provides a flexible capacity to store informa-
tion, the memory access is constrained by the data
structure used for the memory bank, such as stack
and queue.

Overall it is expensive to train and to scale the
previously proposed memory-based models. Most
models required a set of clever engineering tricks
to work successfully. Most of the aforementioned
memory augmented neural networks have been
tested on synthetic tasks whereas in this paper we
evaluated NSE on a wide range of real and large-
scale natural language applications.

3 Proposed Approach

Our training set consists of N examples
{Xi, Y i}Ni=1, where the input Xi is a sequence
wi1, w

i
2, . . . , w

i
Ti

of tokens while the output Y i can
be either a single target or a sequence. We trans-
form each input token wt to its word embedding
xt.

Our Neural Semantic Encoders (NSE) model
has four main components: read, compose and
write modules and an encoding memory M ∈
Rk×l with a variable number of slots, where k
is the embedding dimension and l is the length

of the input sequence. Each memory slot vector
mt ∈ Rk corresponds to the vector representation
of information about word wt in memory. In par-
ticular, the memory is initialized by the embedding
vectors {xt}lt=1 and is evolved over time, through
read, compose and write operations. Figure 1 (a)
illustrates the architecture of NSE.

3.1 Read, Compose and Write
NSE performs three main operations in every time
step. After initializing the memory slots with
the corresponding input representations, NSE pro-
cesses an embedding vector xt and retrieves a
memory slot mr,t that is expected to be associa-
tively coherent (i.e. semantically associated) with
the current input word wt.2 The slot location r
(ranging from 1 to l) is defined by a key vector zt
which the read module emits by attending over the
memory slots. The compose module implements a
composition operation that combines the memory
slot with the current input. The write module then
transforms the composition output to the encoding
memory space and writes the resulting new repre-
sentation into the slot location of the memory. In-
stead of composing the raw embedding vector xt,
we use the hidden state ot produced by the read
module at time t

Concretely, let el ∈ Rl and ek ∈ Rk be vectors
of ones and given a read function fLSTMr , a com-
position fMLP

c and a write fLSTMw NSE in Figure
1 (a) computes the key vector zt, the output state
ht, and the encoding memory Mt in time step t as

ot = fLSTMr (xt) (1)

zt = softmax(o>t Mt−1) (2)

mr,t = z>t Mt−1 (3)

ct = fMLP
c (ot,mr,t) (4)

ht = fLSTMw (ct) (5)

Mt =Mt−1(1− (zt⊗ek)>)+(ht⊗el)(zt⊗ek)>
(6)

where 1 is a matrix of ones, ⊗ denotes the outer
product which duplicates its left vector l or k times
to form a matrix. The read function fLSTMr se-
quentially maps the word embeddings to the inter-
nal space of the memory Mt−1. Then Equation 2
looks for the slots related to the input by comput-
ing association degree between each memory slot

2Such a coherence is calculated by a soft attention with
dot product similarity.
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and the hidden state ot. We calculate the associa-
tion degree by the dot product and transform this
scores to the fuzzy key vector zt by normalizing
with softmax function. Since our key vector is
fuzzy, the slot to be composed is retrieved by tak-
ing weighted sum of the all slots as in Equation 3.
This process can also be seen as the soft attention
mechanism (Bahdanau et al., 2015). In Equation 4
and 5, we compose and process the retrieved slot
with the current hidden state and map the result-
ing vector to the encoder output space. Finally, we
write the new representation to the memory loca-
tion pointed by the key vector in Equation 6 where
the key vector zt emitted by the read module is
reused to inform the write module of the most re-
cently read slots. First the slot information that
was retrieved is erased and then the new represen-
tation is located. NSE performs this iterative pro-
cess until all words in the input sequence are read.
The encoding memories {M}Tt=1 and output states
{h}Tt=1 are further used for the tasks.

Although NSE reads a single word at a time,
it has an anytime-access to the entire sequence
stored in the encoding memory. With the encoding
memory, NSE maintains a mental image of the in-
put sequence. The memory is initialized with the
raw embedding vector at time t = 0. We term such
a freshly initialized memory a baby memory. As
NSE reads more input content in time, the baby
memory evolves and refines the encoded mental
image.

The read fLSTMr , the composition fMLP
c and

the write fLSTMw functions are neural networks
and are the training parameters in our NSE. As the
name suggests, we use LSTM and multi-layer per-
ceptron (MLP) in this paper. Since NSE is fully
differentiable, it can be trained with any gradient
descent optimizer.

3.2 Shared and Multiple Memory Accesses

For sequence to sequence transduction tasks like
question answering, natural language inference
and machine translation, it is beneficial to access
other relevant memories in addition to its own one.
The shared or the multiple memory access allows
a set of NSEs to exchange knowledge represen-
tations and to communicate with each other to ac-
complish a particular task throughout the encoding
memory.

NSE can be extended easily, so that it is able
to read from and write to multiple memories si-

multaneously or multiple NSEs are able to access
a shared memory. Figure 1 (b) depicts a high-
level architectural diagram of a multiple memory
access-NSE (MMA-NSE). The first memory (in
green) is the shared memory accessed by more
than one NSEs. Given a shared memory Mn ∈
Rk×n that has been encoded by processing a rele-
vant sequence with length n, MMA-NSE with the
access to one relevant memory is defined as

ot = fLSTMr (xt) (7)

zt = softmax(o>t Mt−1) (8)

mr,t = z>t Mt−1 (9)

znt = softmax(o>t M
n
t−1) (10)

mn
r,t = zn>t M

n
t−1 (11)

ct = fMLP
c (ot,mr,t,m

n
r,t) (12)

ht = fLSTMw (ct) (13)

Mt =Mt−1(1− (zt⊗ek)>)+(ht⊗el)(zt⊗ek)>
(14)

Mn
t =Mn

t−1(1−(znt ⊗ek)>)+(ht⊗en)(znt ⊗ek)>
(15)

and this is almost the same as standard NSE. The
read module now emits the additional key vector
znt for the shared memory and the composition
function fMLP

c combines more than one slots.
In MMA-NSE, the different memory slots are

retrieved from the shared memories depending on
their encoded semantic representations. They are
then composed together with the current input and
written back to their corresponding slots. Note
that MMA-NSE is capable of accessing a variable
number of relevant shared memories once a com-
position function that takes in dynamic inputs is
chosen.

4 Experiments

We describe in this section experiments on five dif-
ferent tasks, in order to show that NSE can be ef-
fective and flexible in different settings.3 We re-
port results on natural language inference, ques-
tion answering (QA), sentence classification, doc-
ument sentiment analysis and machine translation.
All five tasks challenge a model in terms of lan-
guage understanding and semantic reasoning.

The models are trained using Adam (Kingma
and Ba, 2014) with hyperparameters selected on

3Code for the experiments and NSEs is available at
https://bitbucket.org/tsendeemts/nse.
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Model d |θ|M Train Test
Classifier with handcrafted features (Bowman et al., 2015) - - 99.7 78.2
LSTM encoders (Bowman et al., 2015) 300 3.0M 83.9 80.6
Dependency Tree CNN encoders (Mou et al., 2016) 300 3.5M 83.3 82.1
SPINN-PI encoders (Bowman et al., 2016) 300 3.7M 89.2 83.2
NSE 300 3.4M 86.2 84.6
MMA-NSE 300 6.3M 87.1 84.8
LSTM attention (Rocktäschel et al., 2016) 100 242K 85.4 82.3
LSTM word-by-word attention (Rocktäschel et al., 2016) 100 252K 85.3 83.5
MMA-NSE attention 300 6.5M 86.9 85.4
mLSTM word-by-word attention (Wang and Jiang, 2015) 300 1.9M 92.0 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 450 3.4M 89.5 86.3
Decomposable attention model (Parikh et al., 2016) 200 582K 90.5 86.8
Full tree matching NTI-SLSTM-LSTM global attention (Munkhdalai and Yu, 2017) 300 3.2M 88.5 87.3

Table 1: Training and test accuracy on natural language inference task. d is the word embedding size and
|θ|M the number of model parameters.

development set. We chose two one-layer LSTM
for read/write modules on the tasks other than
QA on which we used two-layer LSTM. The pre-
trained 300-D Glove 840B vectors and 100-D
Glove 6B vectors (Pennington et al., 2014) were
obtained for the word embeddings.4 The word
embeddings are fixed during training. The embed-
dings for out-of-vocabulary words were set to zero
vector. We crop or pad the input sequence to a
fixed length. A padding vector was inserted when
padding. The models were regularized by using
dropouts and an l2 weight decay.5

4.1 Natural Language Inference
The natural language inference is one of the main
tasks in language understanding. This task tests
the ability of a model to reason about the seman-
tic relationship between two sentences. In order to
perform well on the task, NSE should be able to
capture sentence semantics and be able to reason
the relation between a sentence pair, i.e., whether
a premise-hypothesis pair is entailing, contradic-
tory or neutral. We conducted experiments on
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015), which consists of
549,367/9,842/9,824 premise-hypothesis pairs for
train/dev/test sets and target label indicating their
relation.

Following the setting in (Mou et al., 2016; Bow-
man et al., 2016) the NSE output for each sen-
tence was the input to a MLP, where the input layer
computes the concatenation [hpl ;h

h
l ], absolute dif-

ference hpl − hhl and elementwise product hpl · hhl
of the two sentence representations. In addition,
the MLP has a hidden layer with 1024 units with

4http://nlp.stanford.edu/projects/glove/
5More detail on hyper-parameters can be found in code.

ReLU activation and a softmax layer. We set the
batch size to 128, the initial learning rate to 3e-4
and l2 regularizer strength to 3e-5, and train each
model for 40 epochs. The write/read neural nets
and the last linear layer were regularized by using
30% dropouts.

We evaluated three different variations of NSE
show in Table 1. The NSE model encodes each
sentence simultaneously by using a separate mem-
ory for each sentence. The second model - MMA-
NSE first encodes the premise and then the hy-
pothesis sentence by sharing the premise encoded
memory in addition to the hypothesis memory. For
the third model, we use inter-sentence attention
which selectively reconstructs the premise repre-
sentation.

Table 1 shows the results of our models along
with the results of published methods for the task.
The classifier with handcrafted features extracts a
set of lexical features. The next group of models
are based on sentence encoding. While most of
the sentence encoder models rely solely on word
embeddings, the dependency tree CNN and the
SPINN-PI models make use of sentence parser
output. The SPINN-PI model is similar to NSE in
spirit that it also explicitly computes word compo-
sition. However, the composition in the SPINN-
PI is guided by supervisions from a dependency
parser. NSE outperformed the previous sentence
encoders on this task. The MMA-SNE further
slightly improved the result, indicating that read-
ing the premise memory is helpful while encoding
the hypothesis.

The last set of methods designs inter-sentence
relation with parameterized soft attention (Bah-
danau et al., 2015). Our MMA-NSE attention
model is similar to the LSTM attention model.
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Particularly, it attends over the premise encoder
outputs {hp}Tt=1 in respect to the final hypothe-
sis representation hhl and constructs an attentively
blended vector of the premise. This model ob-
tained 85.4% accuracy score. The best performing
model for this task performs tree matching with
attention mechanism and LSTM.

4.2 Answer Sentence Selection

Answer sentence selection is an integral part of the
open-domain question answering. For this task, a
model is trained to identify the correct sentences
that answer a factual question, from a set of candi-
date sentences. We experiment on WikiQA dataset
constructed from Wikipedia (Yang et al., 2015).
The dataset contains 20,360/2,733/6,165 QA pairs
for train/dev/test sets.

The MLP setup used in the language inference
task is kept same, except that we now replace the
softmax layer with a sigmoid layer and model
the following conditional probability distribution.

pθ(y = 1|hql , hal ) = sigmoid(oQA) (16)

where hql and hal are the question and the answer
encoded vectors and oQA denotes the output of the
hidden layer of the MLP. We trained the MMA-
NSE attention model to minimize the sigmoid
cross entropy loss. MMA-NSE first encodes the
answers and then the questions by accessing its
own and the answer encoding memories. In our
preliminary experiment, we found that the multi-
ple memory access and the attention over answer
encoder outputs {ha}Tt=1 are crucial to this prob-
lem. Following previous work, we adopt MAP and
MRR as the evaluation metrics for this task.6

We set the batch size to 4 and the initial learning
rate to 1e-5, and train the model for 10 epochs. We
used 40% dropouts after word embeddings and no

6We used trec eval script to calculate the evaluation met-
rics

Model MAP MRR
Classifier with features (2013) 0.5993 0.6068
Paragraph Vector (2014) 0.5110 0.5160
Bigram-CNN (2014) 0.6190 0.6281
3-layer LSTM (2016) 0.6552 0.6747
3-layer LSTM attention (2016) 0.6639 0.6828
NASM (2016) 0.6705 0.6914
MMA-NSE attention 0.6811 0.6993

Table 2: Experiment results on answer sentence
selection.

l2 weight decay. The word embeddings are pre-
trained 300-D Glove 840B vectors. For this task,
a linear mapping layer transforms the 300-D word
embeddings to the 512-D LSTM inputs.

Table 2 presents the results of our model and
the previous models for the task.7 The classifier
with handcrafted features is a SVM model trained
with a set of features. The Bigram-CNN model is a
simple convolutional neural net. While the LSTM
and LSTM attention models outperform the pre-
vious best result by nearly 5-6% by implement-
ing deep LSTM with three hidden layers, NASM
improves it further and sets a strong baseline by
combining variational auto-encoder (Kingma and
Welling, 2014) with the soft attention. Our MMA-
NSE attention model exceeds the NASM by ap-
proximately 1% on MAP and 0.8% on MRR for
this task.

4.3 Sentence Classification

We evaluated NSE on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013). This dataset
comes with standard train/dev/test sets and two
subtasks: binary sentence classification or fine-
grained classification of five classes. We trained
our model on the text spans corresponding to la-
beled phrases in the training set and evaluated the
model on the full sentences.

The sentence representations were passed to a
two-layer MLP for classification. The first layer
of the MLP has ReLU activation and 1024 or
300 units for binary or fine-grained setting. The
second layer is a softmax layer. The read/write
modules are two one-layer LSTM with 300 hidden
units and the word embeddings are the pre-trained
300-D Glove 840B vectors. We set the batch size
to 64, the initial learning rate to 3e-4 and l2 regu-
larizer strength to 3e-5, and train each model for
25 epochs. The write/read neural nets and the last
linear layer were regularized by 50% dropouts.

Table 3 compares the result of our model with
the state-of-the-art methods on the two subtasks.
Most best performing methods exploited the parse
tree provided in the treebank on this task with
the exception of the DMN. The Dynamic Memory
Network (DMN) model is a memory-augmented
network. Our model outperformed the DMN and
set the state-of-the-art results on both subtasks.

7Inclusion of simple word count feature improves the per-
formance by around 0.15-0.3 across the board
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Model Bin FG
RNTN (Socher et al., 2013) 85.4 45.7
Paragraph Vector (Le and Mikolov, 2014) 87.8 48.7
CNN-MC (Kim, 2014) 88.1 47.4
DRNN (Irsoy and Cardie, 2015) 86.6 49.8
2-layer LSTM(Tai et al., 2015) 86.3 46.0
Bi-LSTM(Tai et al., 2015) 87.5 49.1
CT-LSTM(Tai et al., 2015) 88.0 51.0
DMN (Kumar et al., 2016) 88.6 52.1
NSE 89.7 52.8

Table 3: Test accuracy for sentence classification.
Bin: Binary, FG: fine-grained 5 classes.

4.4 Document Sentiment Analysis

We evaluated our models for document-level sen-
timent analysis on two publically available large-
scale datasets: the IMDB consisting of 335,018
movie reviews and 10 different classes and Yelp
13 consisting of 348,415 restaurant reviews and 5
different classes. Each document in the datasets
is associated with human ratings and we used
these ratings as gold labels for sentiment classifi-
cation. Particularly, we used the pre-split datasets
of (Tang et al., 2015).

We stack a NSE or LSTM on the top of an-
other NSE for document modeling. The first NSE
encodes the sentences and the second NSE or
LSTM takes sentence encoded outputs and con-
structs document representations. The document
representation is given to a output softmax layer.
The whole network is trained jointly by backprop-
agating the cross entropy loss. We used one-layer
LSTM with 100 hidden units for the read/write
modules and the pre-trained 100-D Glove 6B vec-
tors for this task. We set the batch size to 32,
the initial learning rate to 3e-4 and l2 regular-
izer strength to 1e-5, and trained each model
for 50 epochs. The write/read neural nets and
the document-level NSE/LSTM were regularized
by 15% dropouts and the softmax layer by 20%
dropouts. In order to speedup the training, we cre-
ated document buckets by considering the number
of sentences per document, i.e., documents with
the same number of sentences were put together
in the same bucket. The buckets were shuffled
and updated per epoch. We did not use curricu-
lum scheduling (Bengio et al., 2009), although it
is observed to help sequence training.

Table 4 shows our results. We report two per-
formance metrics: accuracy and MSE. The best
results on the task were previously obtained by
Conv-GRNN and LSTM-GRNN, which are also

Model Yelp 13 IMDB
Acc MSE Acc MSE

Classifier (2015) 59.8 0.68 40.5 3.56
PV (2015) 57.7 0.86 34.1 4.69
CNN (2015) 59.7 0.76 37.6 3.30
Conv-GRNN (2015) 63.7 0.56 42.5 2.71
LSTM-GRNN (2015) 65.1 0.50 45.3 3.00
NSE-NSE 66.6 0.48 48.3 1.94
NSE-LSTM 67.0 0.47 48.1 1.98

Table 4: Results of document-level sentiment clas-
sification. PV: paragraph vector, Acc: accuracy,
and MSE: mean squared error.

Model Train Dev Test
Baseline LSTM-LSTM 28.06 17.96 17.02
NSE-LSTM 28.73 17.67 17.13
NSE-NSE 29.89 18.53 17.93

Table 5: BLEU scores for English-German trans-
lation task.

stacked models. These models first learn the sen-
tence representations with a CNN or LSTM and
then combine them for document representation
using a gated recurrent neural network (GRNN).
Our NSE models outperformed the previous state-
of-the-art models in terms of both accuracy and
MSE, by approximately 2-3%. On the other hand,
all systems tend to show poor results on the IMDB
dataset. That is, the IMDB dataset contains longer
documents than the Yelp 13 and it has 10 classes
while the Yelp 13 dataset has five classes to distin-
guish.8 The stacked NSEs (NSE-NSE) performed
slightly better than the NSE-LSTM on the IMDB
dataset. This is possibly due to the encoding mem-
ory of the document level NSE that preserves the
long dependency in documents with a large num-
ber of sentences.

4.5 Machine Translation
Lastly, we conducted an experiment on neural ma-
chine translation (NMT). The NMT problem is
mostly defined within the encoder-decoder frame-
work (Kalchbrenner and Blunsom, 2013; Cho et
al., 2014; Sutskever et al., 2014). The encoder
provides the semantic and syntactic information
about the source sentences to the decoder and the
decoder generates the target sentences by condi-
tioning on this information and its partially pro-
duced translation. For an efficient encoding, the
attention-based NTM was introduced (Bahdanau
et al., 2015).

8The average number of sentences and words in a docu-
ment for IMDB: 14, 152 and Yelp 13: 9, 326
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For NTM, we implemented three different mod-
els. The first model is a baseline model and is
similar to the one proposed in (Bahdanau et al.,
2015) (RNNSearch). This model (LSTM-LSTM)
has two LSTM for the encoder/decoder and has
the soft attention neural net, which attends over
the source sentence and constructs a focused en-
coding vector for each target word. The second
model is an NSE-LSTM encoder-decoder which
encodes the source sentence with NSE and gen-
erates the targets with the LSTM network by us-
ing the NSE output states and the attention net-
work. The last model is an NSE-NSE setup,
where the encoding part is the same as the NSE-
LSTM while the decoder NSE now uses the out-
put state and has an access to the encoder mem-
ory, i.e., the encoder and the decoder NSEs ac-
cess a shared memory. The memory is encoded
by the first NSEs and then read/written by the de-
coder NSEs. We used the English-German trans-
lation corpus from the IWSLT 2014 evaluation
campaign (Cettolo et al., 2012). The corpus con-
sists of sentence-aligned translation of TED talks.
The data was pre-processed and lowercased with
the Moses toolkit.9 We merged the dev2010 and
dev2012 sets for development and the tst2010,
tst2011 and tst2012 sets for test data10. Sentence
pairs with length longer than 25 words were fil-
tered out. This resulted in 110,439/4,998/4,793
pairs for train/dev/test sets. We kept the most fre-
quent 25,000 words for the German dictionary.
The English dictionary has 51,821 words. The
300-D Glove 840B vectors were used for embed-
ding the words in the source sentence whereas a
lookup embedding layer was used for the target
German words. Note that the word embeddings
are usually optimized along with the NMT mod-
els. However, for the evaluation purpose we in this
experiment do not optimize the English word em-
beddings. Besides, we do not use a beam search to
generate the target sentences.

The LSTM encoder/decoders have two layers
with 300 units. The NSE read/write modules are
two one-layer LSTM with the same number of
units as the LSTM encoder/decoders. This en-
sures that the number of parameters of the mod-
els is roughly the equal. The models were trained
to minimize word-level cross entropy loss and
were regularized by 20% input dropouts and the

9https://github.com/moses-smt/mosesdecoder
10We modified prepareData.sh script:

https://github.com/facebookresearch/MIXER

30% output dropouts. We set the batch size to
128, the initial learning rate to 1e-3 for LSTM-
LSTM and 3e-4 for the other models and l2 regu-
larizer strength to 3e-5, and train each model for
40 epochs. We report BLEU score for each mod-
els.11

Table 5 reports our results. The baseline LSTM-
LSTM encoder-decoder (with attention) obtained
17.02 BLEU on the test set. The NSE-LSTM im-
proved the baseline slightly. Given this very small
improvement of the NSE-LSTM, it is unclear
whether the NSE encoder is helpful in NMT. How-
ever, if we replace the LSTM decoder with another
NSE and introduce the shared memory access to
the encoder-decoder model (NSE-NSE), we im-
prove the baseline result by almost 1.0 BLEU. The
NSE-NSE model also yields an increasing BLEU
score on dev set. The result demonstrates that the
attention-based NMT systems can be improved by
a shared-memory encoder-decoder model. In ad-
dition, memory-based NMT systems should per-
form well on translation of long sequences by pre-
serving long term dependencies.

5 Qualitative Analysis

5.1 Memory Access and Compositionality
NSE is capabable of performing multiscale com-
position by retrieving associative slots for a partic-
ular input at a time step. We analyzed the memory
access order and the compositionality of memory
slot and the input word in the NSE model trained
on the SNLI data.

Figure 2 shows the word association graphs for
the two sentence picked from SNLI test set. The
association graph was constructed by inspecting
the key vector z. For an input word, we connect
it to the most active slot pointed by z12.

Note the graph components clustered around
the semantically rich words: ”sits”, ”wall” and
”autumn” (a) and ”Three”, ”puppies”, ”tub” and
”vet” (b). The memory slots corresponding to
words that are semantically rich in the current con-
text are the most frequently accessed. The graph is
able to capture certain syntactic structures includ-
ing phrases (e.g., ”hand built rock wall”) and mod-
ifier relations (between ”sits” and ”quietly” and

11We computed the BLEU score with multi-bleu.perl script
of the Moses toolkit

12Since z is fuzzy, we visualize the highest scoring slot.
For a few inputs, z pointed to a slot corresponding to the same
word. In this case, we masked out those slots and showed the
second best scoring slot.
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(a) (b)

Figure 2: Word association or composition graphs produced by NSE memory access. The directed arcs
connect the words that are composed via compose module. The source nodes are input words and the
destination nodes (pointed by the arrows) correspond to the accessed memory slots. < S > denotes the
beginning of sequence.

between ”tub” and ”sprayed with water”). An-
other interesting property is that the model tends
to perform sensible compositions while process-
ing the input sentence. For example, NSE re-
trieved the memory slot corresponding to ”wall”
or ”Three” when reading the input ”rock” or
”are”.

In Appendix A, we show a step-by-step visu-
alization of NSE memory states for the first sen-
tence. Note how the encoding memory is evolved
over time. In time step four (t = 4), the mem-
ory slot for ”quietly” encodes information about
”quiet(ly) little child”. When t = 6, the model
forms another composition involving ”quietly”,
”quietly sits”. In the last time step, we are
able to find the most or the least frequently ac-
cessed slots in the memory. The least accessed
slots correspond to function words while the fre-
quently accessed slots are content words and tend
to carry out rich semantics and intrinsic compo-
sitions found in the input sentence. Overall the
model is less constrained and is able to compose
multiword expressions.

6 Conclusion

Our proposed memory augmented neural net-
works have achieved the state-of-the-art results
when evaluated on five representative NLP tasks.
NSE is capable of building an efficient architec-
ture of the single, shared and multiple memory
accesses for a specific NLP task. For example,
for the NLI task NSE accesses premise encoded
memory when processing hypothesis. For the QA
task, NSE accesses answer encoded memory when
reading question for QA. In machine translation,
NSE shares a single encoded memory between en-
coder and decoder. Such flexibility in the architec-
tural choice of the NSE memory access allows for

the robust models for a better performance.
The initial state of the NSE memory stores in-

formation about each word in the input sequence.
We in this paper used word embeddings to rep-
resent the words in the memory. Different vari-
ations of word representations such as character-
based models are left to be evaluated for memory
initialization in the future. We plan to extend NSE
so that it learns to select and access a relevant sub-
set from a memory set. One could also explore
unsupervised variations of NSE, for example, to
train them to produce encoding memory and repre-
sentation vector of entire sentences or documents
using either new or existing models such as the
skip-gram model (Mikolov et al., 2013).
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A Step-by-step visualization of memory
states in NSE

Each small table represents the memory state at a
single time step. The current time step and input
token are listed on the top of the table. The mem-
ory slots pointed by the query vector is highlighted
in red color. The brackets represent the word com-
position order in each slot.

t=0
input:
<S>
A
little
child
sits
quietly
on
a
hand
built
rock
wall
in
autumn

t=1
input: <S>
<S>
(<S>A)
little
child
sits
quietly
on
a
hand
built
rock
wall
in
autumn

t=2
input: A
(A <S>)
(<S>A)
little
child
sits
quietly
on
a
hand
built
rock
wall
in
autumn

t=3
input: little
(A <S>)
(<S>A)
little
child
sits
(little quietly)
on
a
hand
built
rock
wall
in
autumn

t=4
input: child
(A <S>)
(<S>A)
little
child
sits
(child (little quietly))
on
a
hand
built
rock
wall
in
autumn

t=5
input: sits
(A <S>)
(<S>A)
little
child
sits
(child (little quietly))
on
a
hand
built
rock
wall
in
(sits autumn)

t=6
input: quietly
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
built
rock
wall
in
(sits autumn)

t=7
input: on
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
built
rock
wall
in
(on (sits autumn))

t=8
input: a
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
wall
in
(on (sits autumn))

t=9
input: hand
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
(hand wall)
in
(on (sits autumn))

t=10
input: built
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
(built (hand wall))
in
(on (sits autumn))

t=11
input: rock
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
(rock (built (hand wall)))
in
(on (sits autumn))

t=12
input: wall
(A <S>)
(<S>A)
little
child
(wall (quietly sits))
(child (little quietly))
on
a
hand
(a built)
rock
(rock (built (hand wall)))
in
(on (sits autumn))

t=13
input: in
(A <S>)
(<S>A)
little
child
(wall (quietly sits))
(child (little quietly))
on
a
hand
(a built)
(in rock)
(rock (built (hand wall)))
in
(on (sits autumn))

t=14
input: autumn
(A <S>)
(<S>A)
little
child
(wall (quietly sits))
(child (little quietly))
on
a
hand
(autumn (a built))
(in rock)
(rock (built (hand wall)))
in
(on (sits autumn))
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Abstract

Comparing NLP systems to select the best
one for a task of interest, such as named
entity recognition, is critical for practition-
ers and researchers. A rigorous approach
involves setting up a hypothesis testing
scenario using the performance of the sys-
tems on query documents. However, often
the hypothesis testing approach needs to
send a large number of document queries
to the systems, which can be problematic.
In this paper, we present an effective al-
ternative based on the multi-armed ban-
dit (MAB). We propose a hierarchical gen-
erative model to represent the uncertainty
in the performance measures of the com-
peting systems, to be used by Thompson
Sampling to solve the resulting MAB. Ex-
perimental results on both synthetic and
real data show that our approach requires
significantly fewer queries compared to
the standard benchmarking technique to
identify the best system according to F-
measure.

1 Introduction

F-measureAs new NLP systems are (continually)
introduced for a task of interest, such as named
entity recognition (NER), it is crucial for prac-
tioneers and researchers to select the best system.
These systems may be designed based on different
models and/or learning algorithms. For instance,
due to recent advancement in NER research, sev-
eral NER systems have been proposed and then
supported in APIs such as OpenNLP (Ingersoll
et al., 2013), Stanford NER (Finkel et al., 2005),
ANNIE (Cunningham et al., 2002) and Meaning
Cloud (MeaningCloud-LLC, 1998) to name a few.

Often, the competing NLP systems are bench-
marked according to their average performance
measure, e.g. F-measure capturing both Precision
and Recall, across a set of example documents.
Each document produces a single F-measure and
the true performance of the system is considered
to be the expected value across all possible doc-
uments from the domain. Performance on indi-
vidual documents correspond to samples from the
performance distribution of the system, and can
then be used to determine the best system (or set
of systems should the highest performing system
not be unique) using rigorous hypothesis testing.
However, this approach usually requires querying
each competing system with a large number of
documents, which can be problematic if either the
number of test documents is limited, or the sys-
tems are implemented as APIs by a third party and
performing each query incurs a cost.

In this paper, we present a statistically effective
method to identify the best system from a pool of
systems. Our approach requires significantly fewer
example documents to reach similar guarantees as
the traditional hypothesis testing set up, hence re-
ducing the cost and increasing the speed of infer-
ence. Inspired by the previous work (Scott, 2015;
Gabillon et al., 2012; Maron and Moore, 1993),
We formulate the benchmarking problem as a se-
quential decision process of choosing the best arm
as the results of new queried documents are re-
ceived. More specifically, our formulation is based
on the best arm identification in a multi-armed
bandit (MAB) decision process. This allows us to
adapt Thompson Sampling (Thompson, 1933) and
its variants (Russo, 2016) to efficiently solve the
resulting MAB problem.

A crucial difference between the MAB ap-
proach and the traditional hypothesis testing is that
it is a sequential testing process, instead of a static
testing process which forces the benchmarker to
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wait for a final answer at the end of an experi-
ment. As such, we need to model the uncertainty
regarding the estimated F-measure of each com-
peting system, and continually update it as each
new document is queried. We propose a novel hi-
erarchical model for this purpose, which is gener-
ally applicable to document-level evaluation tasks
based on F-measure. The inference in our model
is done using standard sampling techniques, such
as Gibbs sampling.

We analyse empirically the performance of our
approach versus the standard hypothesis testing
baselines on synthetic datasets as well as real data
for the tasks of sentiment classification and named
entity recognition. The empirical results confirm
that the number of query documents needed to
achieve a particular statistical significance level
with our approach is much lower than that required
by the hypothesis testing baselines.

2 Best Arm Selection in Multi-Armed
Bandit

Our aim is to identify the best system among a
finite set of systems based on the noisy sequen-
tial measurements of their quality. We formulate
this problem as the best arm selection in multi-
armed bandit. MAB is a sequential decision pro-
cess where at each time step n an arm an from
the collection of K slot machines is chosen and
played by the gambler. Each arm a ∈ {1, . . . ,K}
is associated with an unknown reward distribution
f(y|θa) from which the reward is generated when
the arm is pulled. In the best arm selection prob-
lem, the gambler’s goal is to select the arm which
has the highest expected reward.

In the common formulation of the MAB, the
gambler wants to maximise his cumulative re-
wards. Intuitively, maximising cumulative rewards
eventually leads to the selection of the best arm
since it is the optimal decision. However, (Bubeck
et al., 2009) gives a theoretical analysis that any
strategies for optimising cumulative reward is sub-
optimal in identifying the best performing arm.
To this end, several algorithms have been pro-
posed for the best arm selection e.g. (Maron and
Moore, 1993; Gabillon et al., 2012; Russo, 2016).
Although originally developed for maximising cu-
mulative rewards, (Chapelle and Li, 2011; Scott,
2015) provide extensive empirical evidence for the
practical success of the Thompson Sampling algo-
rithm for the best arm selection. In what follows,

we present Thompson Sampling (TS) and one of
its variants, called Pure Exploration TS (PETS),
designed specifically for the best arm selection.

2.1 Thompson Sampling

Let us denote by (a1, y1), . . . , (aT , yT ) the se-
quence of pulled arms and the revealed rewards,
at is the arm pulled at time step t and yt is its as-
sociated reward. Note that this sequence is con-
tinually growing as the experiment progresses and
new arms are pulled. Let f(y|θa) be the proba-
bility distribution to model the unknown reward
function of the arm a. Had we known the param-
eters of the reward functions, the best arm could
then be selected as

argmaxaEf(y|θa)[y] = argmaxa

∫
f(y|θa)ydy.

Let us denote the collection of all parameters
by Θ := (θ1, . . . ,θK). Assuming a prior over the
parameters π0(Θ), we take a Bayesian approach
and reason about the posterior of the parameters:

πT (Θ) =
π0(Θ)LT (Θ)∫

Θ′ π0(Θ
′)LT (Θ′)dΘ′

where Θ is the parameter domain, and LT (Θ) is
the likelihood of the observed data {(at, yt)}T1

LT (Θ) :=

T∏

t=1

f(yt|θat).

The posterior probability that a particular arm a is
optimal (i.e. has the highest expected reward) is:

αT,a :=

∫

Θa

πT (Θ)dΘ

where Θa is the set of those parameter values un-
der which the arm a would be selected as the opti-
mal arm:

Θa := {Θ ∈ Θ|Ef(y|θa) = argmaxa′ Ef(y|θa′ )}

In Thompson Sampling the next arm to pull is
sampled according to the posterior probability of
the arm being optimal. That is, an arm a is se-
lected with probability αT,a. Efficient implemen-
tation of Thompson Sampling generates a sample
from αT,a indirectly by first generating a sample
Θ̂ from πn(Θ) and then selecting the next arm to
pull by argmaxaEf(y|θ̂a)[y].
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Algorithm 1 Pure Exploration TS (PETS)
Initialization: Pull each arm once
t = K
while termination condition is not met do

Θ̂ ∼ πt(Θ)
a← argmaxk Ef(y|θ̂k)[y]

r ∼ uniform(0, 1)
if r ≤ β then

Pull a and update the posterior πt+1(Θ)
else

b← a
while b = a do

Θ̂ ∼ πt(Θ)
b← argmaxk Ef(y|θ̂k)[y]

end while
Pull b and update the posterior πt+1(Θ)

end if
t← t+ 1

end while

2.2 Pure Exploration Thompson Sampling

Thompson sampling can perform poorly for the
best arm identification problem. The reason is that
once it discovers a particular arm is performing
well, it becomes overconfident and almost always
selects that arm in the future iterations. In case
that arm is not the best arm, it takes a long time
for the algorithm to divert from it. For example, if
αT,a = 90%, then the algorithm selects an arm
other than a on average on every 10 iterations,
which would make it significantly longer to get to
a point where αT ′,a′ = 95%, i.e. the point where
the algorithm terminates with confidence 95% in a
different arm a′.

Let αT := (αT,1, . . . , αT,K) be the vector
of arm probabilities to be optimal. Pure Explo-
ration Thompson Sampling (Russo, 2016) ad-
dresses the above deficiency of Thompson Sam-
pling by throwing away, with probability β, the
arm a sampled from αT . Instead, it samples an-
other arm b 6= a with the probability proportional
to αT,b. The exploration parameter β prevents the
algorithm from exclusively focusing on one arm.
Usually β is set to .5 but we empirically inves-
tigate other values for this parameter in §4. We
can revert to basic Thompson Sampling by setting
β = 1 in PETS. Similar to Thompson Sampling,
this arm selection method can be efficiently im-
plemented as shown in Algorithm 1. We terminate
the algorithm when it reaches a maximum number
of queries or when αT,a ≥ 1 − δ, where δ is the
confidence parameter provided in the input.

3 A Probabilistic Generative Model of
F-measure

In this section we present a novel hierarchical
Bayesian model for capturing the uncertainty over
systems’ F-measures, as the prediction outcome
on new query documents are received. We present
this model for F-measure, however, we note that it
can be extended for other performance measures
as well.

F-measure is defined as the harmonic mean of
the precision and recall:

F-measure :=
2

1
precision + 1

recall

precision :=
TP

TP + FP
, recall :=

TP

TP + FN

where (TP, FP, TN,FN) denote true posi-
tive, false positive, true negative, and false neg-
ative counts. These counts result from compar-
ing the predictions of a system with the ground
truth annotations, and they sum to the total
number of annotated data items N . We denote
the normalised version of the counts by rates
( ˆTP , F̂P , ˆTN, ˆFN), which are derived by divid-
ing the raw counts by N . Importantly, the rate
statistics are enough to calculate precision, recall,
and F-measure.

Instead of modelling the uncertainty over the F-
measure of a system directly, we model the un-
certainty over its rate statistics. Any distribution
over ( ˆTP , F̂P , ˆTN, ˆFN) then induces a distribu-
tion over F-measure. The benefit of working with
the rate statistics is that they relate more naturally
to the observed (TP, FP, TN, FN) counts, as es-
tablished in our generative model in the following.

More specifically, we assume a hierarchical
model to generate the rate statistics of the sys-
tems and the observed (TPd, FPd, TNd, FNd)
counts over a collection of documents d ∈ D.
For each system, we draw its rate statistics θk :=
( ˆTP k, F̂P k, ˆTNk, ˆFNk) from a Dirichlet prior.
To generate the counts statistics resulting from ap-
plying the system at on the document dt, we first
generate a document-specific rate vector µdt from
a Dirichlet distribution centred around θat . Note
that including explicit document-specific rates µdt
in the model (from which the binomial counts
are drawn) is necessary in order to allow for
sufficient variation in the observed error rates
across documents, due to the inherent differences
in difficulty of labelling different documents.1

1In other words, in order to model the observed vari-
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θ0

θk

k ∈ [1 . . .K]

t ∈ [1 . . . T ]

cdt

at

µdt

Figure 1: The graphical model for the probabilis-
tic generation of a system’s parameters θk and a
document’s counts cdt , as the selected system at
is applied onto the document dt at the time step t.
The observed quantities are shaded.

We then generate the observed counts cdt :=
(TPdt , FPdt , TNdt , FNdt) from the Bionomial
distribution with parameters µdt and Ndt , where
Ndt is the number data items in dt. In summary,
the generative model is as follows:

∀k ∈ [1..K] : θk ∼ Dirichlet(θ0, α0)

∀t ∈ [1..T ] : µdt ∼ Dirichlet(θat , α)

cdt ∼ Bionomial(µdt , Ndt)

where α0 and α are the concentration parameters,
which we set to 1 in our experiments in §4. Fig-
ure 1 depicts the graphical model.

For inference, the quantities of interest are the
unknown rates for the systems {θk}Kk=1. The
observed quantities are document-specific counts
{cdt}Tt=1, and we would like to marginalise out the
latent document-specific rate variables {µdt}Tt=1.
We resort to Gibbs sampling for inference in our
model. That is, we iteratively select a hidden vari-
able and sample a value from its posterior given all
the other variables are fixed to their current values.
In our experiments, we collect 1000 samples from
the posterior.2 Algorithm 2 depicts the sampling-
based inference for the posterior embedded in the
PETS algorithm for the best system identification.

F-measure is a frequently used evaluation mea-
sure, which can straightforwardly be parametrized
to allows for varying the importance of precision

ability in (TP,FP,TN,FN) counts, we had to use a Dirichlet-
Compound-Multinomial with shared Dirichlet prior rather
than a simple Multinomial with a shared Dirichlet Prior.

2We make use of the JAGS (Just Another Gibbs Sampler)
toolkit (Plummer, 2003) for inference in our model.

Algorithm 2 Identifying the best system
Require: K: Number of arms, J : Number of sam-

ples from posterior π(.), D: Document collection,
Fmeasure( ˆTP , ˆTN, F̂P , ˆFN) := 2T̂P

2T̂P+F̂P+ ˆFN
,

NextDoc(a,D): Next document for an arm a from D
1: for k ∈ [1..K] do
2: Dk ← NextDoc(k,D)

3: Sk ← {θ̃j |∀j ∈ [1..J ] : θ̃j
Gibbs∼ π(θj |Dk)}

4: end for
5: while termination condition is not met do
6: for k ∈ [1..K] do
7: fk ∼ {Fmeasure(θ̃)|θ̃ ∈ Sk}
8: end for
9: a← argmaxk fk

10: r ∼ uniform(0, 1)
11: b← a
12: if r > β then
13: while b = a do
14: for k ∈ [1..K] do
15: fk ∼ {Fmeasure(θ̃)|θ̃ ∈ Sk}
16: end for
17: b← argmaxk fk
18: end while
19: end if
20: Db ← Db ∪ NextDoc(b,D)

21: Sb ← {θ̃j |∀j ∈ [1..J ] : θ̃j
Gibbs∼ π(θj |Db)}

22: end while

versus recall:

Fβ-measure :=
2

β
precision + 1−β

recall

where β is a parameter trading off precision and
recall. We note that our approach can be ap-
plied straightforwardly to Fβ-measure to put more
weight on precision or recall where appropriate.

4 Empirical Results and Analysis

We designed two sets of experiments to exam-
ine the efficiency and performance of each algo-
rithm using synthetic data as well as real data for
sentence level sentiment classification and named
entity recognition tasks. With the synthetic data,
we analyse our probabilistic generative model for
F-measure in combination with the arm selection
algorithms. With the real data, we showcase the
statistical efficiency of our best system identifica-
tion approach compared to the standard hypothesis
testing approach (Demšar, 2006).

In the real data experiments, we define the “best
system” as the system with the highest F-measure
based on all documents in the collection. The “suc-
cess rate” in the NER/Sentiment tasks is then sim-
ply the percentage of times the best system is cor-
rectly identified (i.e. ranked highest when the sys-
tem selection algorithm is terminated) over mul-
tiple runs of the selection algorithm on random
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reorderings of the document collection. We em-
phasise that, in these experiments, we simulate a
scenario where the aim is to select the best system
with the minimum number of queries to showcase
the effectiveness of our approach.

4.1 Baselines

As baselines, we consider the minimum number
of documents needed by the standard statistical
power approach. The power of a binary hypothesis
testing is the probability that the test correctly re-
jects the null hypothesis (H0) when the alternative
hypothesis (H1) is true. In order to find a lower-
bound for the number of documents, we make use
of the power calculation for a paired T-Test.

The T-Test indicates whether or not the differ-
ence between two groups’ averages most likely re-
flects a “real” difference in the population from
which the groups were sampled. Assuming we
have two competing systems, we can set up a T-
Test to assess whether there is a meaningful differ-
ence between the F-measures of the two systems.

We assume an efficient experimental design
where the same number of (identical) documents
are sent to each system. Assuming a typical power
setting of 80% and a significance level of 5%, we
can calculate an “Oracle baseline” by making use
of the true effect size (the standardised difference
in mean performance) across the top two systems.3

Obviously this quantity would not be known a-
priori of running the experiment, hence the sample
size calculated based on this effect size provides a
lower-bound on the number of samples that ought
be needed4.

Across the systems, average performance on in-
dividual documents will vary due to variations in
the inherent difficulty of each document. In other
words, some documents are harder to label than
others. Thus we make use of a paired sample test
for the power calculation. Effect sizes are calcu-
lated as follows:

• For the synthetic experiments, the variation
in difficulty of the documents is not mod-
elled, so we calculate the effect size by sim-
ply using the parameters of the simulation as:

3For the power calculation, we use the following R
command power.t.test(delta=effect, sd=1,
sig.level=0.05, power=.8, type="paired",
alternative="one.sided").

4Note that the T-Test assumes Gaussian distributed data,
but the violation of this assumption is unlikely to greatly ef-
fect the sample size estimates.

µ1−µ2√
(σ2

1+σ
2
2)

, where µ1 is the mean performance

on the best system and µ2 is the mean perfor-
mance on the second best system (likewise
for the standard deviations σ1 and σ2.

• For the experiments on real data, variation
will be document dependent and hence we
calculate the effect size as AV G(f1−f2)

STDEV (f1−f2) ,
where we directly measure the average and
standard deviation of the performance dif-
ferences between the top performing APIs
across the documents.

Since we are comparing many APIs at once, and
a priori of running the experiment we don’t know
which two systems are the best, we make use of
two settings for the confidence level (aka P-value
threshold) for the power calculation:

• Baseline2: Assume the top two systems are
known a priori and use the significance level
of 5% directly to produce a lower bound on
the number of iterations.

• BaselineK−1: Assume one system is new and
is being compared with all other k − 1 APIs.
We reduce the required significance level α
using a Bonferroni correction to be α/(k−1)
to take into account the k − 1 comparisons
being performed.

We stress that this is an unrealistic scenario in
which the effect size is known before running the
experiment. If this value is not known or needs to
be estimated before the experiment a much larger
value would be used, for example a value based on
the error threshold ε might be appropriate.

4.2 Synthetic Data Experiments
Datasets. For the synthetic data, we generate
the (TP, FP, TN, FN) counts of applying the
competing systems on hypothetical documents,
assuming that we know the systems’ true rates.
An important factor in the difficulty of the prob-
lem is the different in the Fscore of the top two
performing systems, which we denote by margin.
We consider three levels of problem difficulty
by considering the margin m ∈ {.01, .025, .05},
and for each margin we consider 5 configurations
whose competing systems have the specified
margin. Having the true ( ˆTP , F̂P , ˆTN, ˆFN)
rates for a competing system, the count statistics
for its results on hypothetical documents are
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margin .05 margin .025 margin .01
# queries success% # queries success% # queries success%

Baseline2 120 - 440 - 2725 -
BaselineK−1 185 - 680 - 4195 -
Hierarchical

+ Thomp. Samp. 22 ± 5 100 41 ± 6 96 66 ± 8 100
+ Pure Eexpl. TS 19 ± 3 100 27 ± 5 100 64 ± 9 96

Gaussian
+ Thomp. Samp. 513 ± 46 100 1169 ± 84 100 2000 ± 0 100
+ Pure Eexpl. TS 360 ± 33 100 848 ± 63 100 1965 ± 19 100

Table 1: Average number of queries across different margins. The number of systems is 5, and the maxi-
mum number of queries is set to 2000, and δ = 0.05.

then generated based on our generative model.
For each competing configuration, we repeat the
experiment multiple times in order to account for
the randomness inherent in the algorithms and the
generated documents. In different experiments,
we let the number of competing systems K be
{5, 10, 20}.

Margin and the number of systems. In this
experiment, we investigate the relation between
the margin and the number of documents queried
by each algorithm. Intuitively, as the margin
between the top performing systems decreases,
more queries are required to segregate the best
system among the top performing ones. We run
each algorithm for 500 times on the competing
configurations for each margin with K = 5. The
maximum number of queries allowed is 2000,
and the algorithm can terminate earlier as soon as
αT,a ≥ .95, i.e. δ = 0.05.

Table 1 summarises the average number of
queries and the success rates of TS and PETS in
combination with our hierarchical Bayesian model
for F-measure across different margins. We see
that the number of query documents increases as
the margin decreases. It is also worth noting that
PETS requires slightly smaller number of queries
than Thompson Sampling. Interestingly, the num-
ber of samples required by the hypothesis testing
baselines is much more than that required by the
TS/PETS combined with our hierarchical model.

We then ask the question whether the number
of competing systems is important. Table 2
summarises the average number of queries and the
success rate of each algorithm on the competing
configurations for the margin 0.05 for varying
number of systems K ∈ {5, 10, 20}. As seen, the

number of queries increases (sub)linearly with the
number of competing systems.

Hierarchical vs Gaussian. We compare our hier-
archical model for capturing the uncertainty over
F-measure with the Gaussian distribution. That is,
we associate a Gaussian distribution to each sys-
tem to model its posterior over the F-measure. The
use of the Gaussian distribution to model the mean
of sampled F-measures is motivated by the law of
large numbers. This approach directly models the
uncertainty of a system’s F-measure, as opposed to
our indirect modelling approach where posterior
distribution is constructed using the distribution of
(F̂P , ˆFN, ˆTP , ˆTN) rates.

Tables 1 and 2 show the average number of
queries and success rates for algorithms using
our hierarchical model vs the Gaussian distribu-
tion based model. The general trend is that using
the Gaussian model in TS/PETS requires signif-
icantly more queries compared to the hierarchi-
cal model as well as the baselines. Needing more
queries compared to the baselines highlights the
importance of choosing the right distribution for
capturing the uncertainty over the F-measure in
TS/PETS. Needing more queries compared to the
hierarchical variant is somewhat expected as the
synthetic data is generated according to the hierar-
chical model. However, we will see similar trends
in the experiments on the real data.

4.3 Sentiment Analysis

We consider the task of sentence level sentiment
prediction for medical documents. The aim is to
benchmark systems according to how well they
can predict the polarity of sentences contained in
a medical report, where each report corresponds
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K : 5 K : 10 K : 20
# queries success% # queries success% # queries success%

Baseline2 120 - 245 - 400 -
BaselineK−1 185 - 380 - 620 -
Hierarchical

+ Thomp. Samp. 22 ± 5 100 43 ± 6 96 70 ± 14 100
+ Pure Eexpl. TS 19 ± 3 100 35 ± 5 100 64 ± 13 100

Gaussian
+ Thomp. Samp. 513 ± 46 100 1019 ± 59 100 1404 ± 75 100
+ Pure Eexpl. TS 360 ± 33 100 661 ± 38 100 937 ± 62 100

Table 2: Average number of queries across different number of competing systems. The margin is 0.05,
and the maximum number of queries is set to 2000, and δ = 0.05.

to a patient.

Dataset. We make use of a biomedical cor-
pus (Martinez et al., 2015) consisting of CT
reports for fungal disease detection collected from
three hospitals. For each report, only the free text
section were used, which contains the radiolo-
gist’s understanding of the scan and the reason
for the requested scan as written by clinicians.
Every report was de-identified: any potentially
identifying information such as name, address,
age/birthday, gender were removed. There are a
total of 358 test documents, where the average
number of sentences per document is 23.

Competing Systems. We make use of a variant of
the coarse-to-fine model proposed in (McDonald
et al., 2007) for sentiment analysis. Briefly
speaking, the model couples the sentiment of the
sentences contained in a report with the overall
sentiment of the report. We train four versions
of the model, each of which corresponds to a
different training condition:

• Mfull: where the model is trained on the fully
annotated data DF , i.e. the data annotated at
both the sentence and report level.

• Mpartial: where the model is trained on both
DF and the partially annotated data DP in
which the sentence level annotation is miss-
ing but the reports are labeled.

• Munlab: where the model is trained onDF and
DU in which the annotation is missing at both
sentence and report level.

• Mall: where the model is trained on all of the
available data described above.

# queries % success
Baseline2 856 -
BaselineK−1 1320 -
Hierarchical
+ Thomp. Samp. 152 ± 36 100
+ Pure Eexpl. TS 123 ± 37 100
Gaussian
+ Thomp. Samp. 500 ± 0 100
+ Pure Eexpl. TS 500 ± 0 100

Table 3: Sentiment classification for biomedical
reports with 4 competing models. The maximum
number of queries is set to 500, and δ = 0.05.

We expect Mall to outperform the other models.
The aim is to analyse the behaviour of our best
system selection methods on real data compared
to the baselines.

Results. Table 3 presents the results. As seen
the number of queries needed for the TS/PETS
combined with the hierarchical model is much
less than that of the baselines and the Gaussian
variant.

4.4 Named Entity Recognition

In our second set of experiment, we attempt to
see how our frameworks and F1 models perform
using realistic data.

MASC Corpus. For benchmarking the NER
systems, we use the Manually Annotated Sub-
Corpus (MASC) (Ide et al., 2008) that includes 19
different domains. The corpus consists of approx-
imately 500K words of contemporary American
English written and spoken data drawn from the
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Open American National Corpus (OANC). This
corpus includes a wide variety of linguistic anno-
tations with a balanced selection of texts from a
broad range of genres/domains. The diversity of
the corpus will enable us to assess the robustness
of tools across different domains. The number of
documents in the MASC corpus is about 392.

Competing Systems. We evaluate the per-
formance of 5 popular NER systems implemented
as API in third party implementations:

• OpenNLP (Ingersoll et al., 2013): The
Apache OpenNLP library is a machine learn-
ing based toolkit for the text processing. It is
based on the maximum entropy and percep-
tron.

• Stanford NER (Finkel et al., 2005): It is based
on linear chain Conditional Random Field
(CRF) sequence models. It is part of the Stan-
ford CoreNLP, which is an integrated suite of
NLP tools in Java.

• ANNIE (Cunningham et al., 2002): ANNIE
uses gazetteer-based lookups and finite state
machines for entity identification and classifi-
cation. It can recognise persons, locations, or-
ganisations, dates, addresses and other named
entity types. ANNIE is part of the GATE
framework. It can be used as a Web Service
but it also provides its own interface for inde-
pendent use.

• Meaning Cloud (MeaningCloud-LLC, 1998):
It is based on a hybrid approach combining
machine learning with a rule based system.
The software is available as a cloud based so-
lution and on-premise as a plugin module for
the GATE framework.

• LingPipe (Alias-i, 2008): It is a set of Java
libraries developed by Alias-I for NLP. The
NER component is based on a 1st-order Hid-
den Markov Model with variable-length n-
grams as the feature set and uses the IOB an-
notation scheme for the output.

Results. Table 4 presents the results. As seen the
number of queries needed for the TS/PETS com-
bined with the hierarchical model is much less
than that of the baselines and the Gaussian vari-
ant.

# queries % success
Baseline2 125 -
BaselineK−1 240 -
Hierarchical
+ Thomp. Samp. 25 ± 6 99
+ Pure Eexpl. TS 24 ± 5 98
Gaussian
+ Thomp. Samp. 539 ± 3 100
+ Pure Eexpl. TS 412 ± 2 100

Table 4: Named entity recognition on MASC doc-
uments with 5 competing systems. The maximum
number of queries is set to 2000, and δ = .05.

5 Conclusion

We have presented a novel approach for bench-
marking NLP systems based on the multi-armed
bandit (MAB) problem. We have proposed a hier-
archical generative model to represent the uncer-
tainty in the performance measures of the compet-
ing systems, to be used by the Thompson Sam-
pling algorithm to solve the resulting MAB prob-
lem. Experimental results on both synthetic and
real data show that our approach requires sig-
nificantly fewer queries compared to the stan-
dard benchmarking technique to identify the best
system according to F-measure. Future work in-
cludes applying our approach to other NLP prob-
lems, particularly emerging document-level prob-
lem settings such document-wise machine transla-
tion.
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Abstract

We present a Character-Word Long Short-
Term Memory Language Model which
both reduces the perplexity with respect
to a baseline word-level language model
and reduces the number of parameters
of the model. Character information can
reveal structural (dis)similarities between
words and can even be used when a word
is out-of-vocabulary, thus improving the
modeling of infrequent and unknown words.
By concatenating word and character
embeddings, we achieve up to 2.77%
relative improvement on English compared
to a baseline model with a similar amount of
parameters and 4.57% on Dutch. Moreover,
we also outperform baseline word-level
models with a larger number of parameters.

1 Introduction

Language models (LMs) play a crucial role in
many speech and language processing tasks, among
others speech recognition, machine translation and
optical character recognition. The current state of
the art are recurrent neural network (RNN) based
LMs (Mikolov et al., 2010), and more specifically
long short-term memory models (LSTM) (Hochre-
iter and Schmidhuber, 1997) LMs (Sundermeyer
et al., 2012) and their variants (e.g. gated recurrent
units (GRU) (Cho et al., 2014)). LSTMs and GRUs
are usually very similar in performance, with GRU
models often even outperforming LSTM models
despite the fact that they have less parameters to
train. However, Jozefowicz et al. (2015) recently
showed that for the task of language modeling
LSTMs work better than GRUs, therefore we focus
on LSTM-based LMs.

In this work, we address some of the drawbacks
of NN based LMs (and many other types of LMs).

A first drawback is the fact that the parameters for
infrequent words are typically less accurate because
the network requires a lot of training examples to
optimize the parameters. The second and most
important drawback addressed is the fact that the
model does not make use of the internal structure
of the words, given that they are encoded as one-hot
vectors. For example, ‘felicity’ (great happiness) is
a relatively infrequent word (its frequency is much
lower compared to the frequency of ‘happiness’
according to Google Ngram Viewer (Michel et al.,
2011)) and will probably be an out-of-vocabulary
(OOV) word in many applications, but since there
are many nouns also ending on ‘ity’ (ability, com-
plexity, creativity . . . ), knowledge of the surface
form of the word will help in determining that ‘felic-
ity’ is a noun. Hence, subword information can play
an important role in improving the representations
for infrequent words and even OOV words.

In our character-word (CW) LSTM LM, we
concatenate character and word embeddings and
feed the resulting character-word embedding to the
LSTM. Hence, we provide the LSTM with infor-
mation about the structure of the word. By concate-
nating the embeddings, the individual characters
(as opposed to e.g. a bag-of-characters approach)
are preserved and the order of the characters is im-
plicitly modeled. Moreover, since we keep the total
embedding size constant, the ‘word’ embedding
shrinks in size and is partly replaced by character
embeddings (with a much smaller vocabulary and
hence a much smaller embedding matrix), which
decreases the number of parameters of the model.

We investigate the influence of the number of
characters added, the size of the character embed-
dings, weight sharing for the characters and the size
of the (hidden layer of the) model. Given that com-
mon or similar character sequences do not always
occur at the beginning of words (e.g. ‘overfitting’
– ‘underfitting’), we also examine adding the charac-
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ters in forward order, backward order or both orders.
We test our CW LMs on both English and

Dutch. Since Dutch has a richer morphology
than English due to among others its productive
compounding (see e.g. (Réveil, 2012)), we expect
that it should benefit more from a LM augmented
with formal/morphological information.

The contributions of this paper are the following:

1. We present a method to combine word
and subword information in an LSTM LM:
concatenating word and character embeddings.
As far as we know, this method has not been
investigated before.

2. By decreasing the size of the word-level em-
bedding (and hence the huge word embedding
matrix), we effectively reduce the number of
parameters in the model (see section 3.3).

3. We find that the CW model both outperforms
word-level LMs with the same number of
hidden units (and hence a larger number of
parameters) and word-level LMs with the
same number of parameters. These findings
are confirmed for English and Dutch, for a
small model size and a large model size. The
size of the character embeddings should be
proportional to the total size of the embedding
(the concatenation of characters should not
exceed the size of the word-level embedding),
and using characters in the backward order
improves the perplexity even more (see
sections 3.1, 4.3 and 4.4).

4. The LM improves the modeling of OOV
words by exploiting their surface form (see
section 4.7).

The remainder of this paper is structured as
follows: first, we discuss related work (section 2);
then the CW LSTM LM is described (section 3) and
tested (section 4). Finally, we give an overview of
the results and an outlook to future work (section 5).

2 Related work

Other work that investigates the use of character in-
formation in RNN LMs either completely replaces
the word-level representation by a character-level
one or combines word and character information.
Much research has also been done on modeling
other types of subword information (e.g. mor-
phemes, syllables), but in this discussion, we limit
ourselves to characters as subword information.

Research on replacing the word embeddings
entirely has been done for neural machine transla-
tion (NMT) by Ling et al. (2015) and Costa-jussà
and Fonollosa (2016), who replace word-level
embeddings with character-level embeddings.
Chung et al. (2016) use a subword-level encoder and
a character-level decoder for NMT. In dependency
parsing, Ballesteros et al. (2015) achieve improve-
ments by generating character-level embeddings
with a bidirectional LSTM. Xie et al. (2016) work
on natural language correction and also use an
encoder-decoder, but operate for both the encoder
and the decoder on the character level.

Character-level word representations can also
be generated with convolutional neural networks
(CNNs), as Zhang et al. (2015) and Kim et al. (2016)
have proven for text classification and language
modeling respectively. Kim et al. (2016) achieve
state-of-the-art results in language modeling for
several languages by combining a character-level
CNN with highway (Srivastava et al., 2015) and
LSTM layers. However, the major improvement
is achieved by adding the highway layers: for a
small model size, the purely character-level model
without highway layers does not perform better
than the word-level model (perplexity of 100.3
compared to 97.6), even though the character model
has two hidden layers of 300 LSTM units each and
is compared to a word model of two hidden layers
of only 200 units (in order to keep the number
of parameters similar). For a model of larger
size, the character-level LM improves the word
baseline (84.6 compared to 85.4), but the largest
improvement is achieved by adding two highway
layers (78.9). Finally, Jozefowicz et al. (2016) also
describe character embeddings generated by a CNN,
but they test on the 1B Word Benchmark, a data set
of an entirely different scale than the one we use.

Other authors combine the word and character
information (as we do in this paper) rather than
doing away completely with word inputs. Chen et
al. (2015) and Kang et al. (2011) work on models
combining words and Chinese characters to learn
embeddings. Note however that Chinese characters
more closely match subwords or words than
phonemes. Bojanowski et al. (2015) operate on the
character level but use knowledge about the context
words in two variants of character-level RNN LMs.
Dos Santos and Zadrozny (2014) join word and
character representations in a deep neural network
for part-of-speech tagging. Finally, Miyamoto and
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Cho (2016) describe a LM that is related to our
model, although their character-level embedding
is generated by a bidirectional LSTM and we do
not use a gate to determine how much of the word
and how much of the character embedding is used.
However, they only compare to a simple baseline
model of 2 LSTM layers of each 200 hidden units
without dropout, resulting in a higher baseline
perplexity (as mentioned in section 4.3, our CW
model also achieves larger improvements than
reported in this paper with respect to that baseline).

We can conclude that in various NLP tasks, char-
acters have recently been introduced in several dif-
ferent manners. However, the models investigated
in related work are either not tested on a competitive
baseline (Miyamoto and Cho, 2016) or do not per-
form better than our models (Kim et al., 2016). In
this paper, we introduce a new and straightforward
manner to incorporate characters in a LM that (as
far as we know) has not been investigated before.

3 Character-Word LSTM LMs

A word-level LSTM LM works as follows: a word
encoded as a one-hot column vector wt (at time
step t) is fed to the input layer and multiplied with
the embedding matrix Ww, resulting in a word
embedding et:

et=Ww×wt (1)

The word embedding of the current word et will
be the input for a series of non-linear operations in
the LSTM layer (we refer to (Zaremba et al., 2015)
for more details about the equations of the LSTM
cell). In the output layer, probabilities for the next
word are calculated based on a softmax function.

In our character-word LSTM LM, the only differ-
ence with the baseline LM is the computation of the
‘word’ embedding, which is now the result of word
and character input rather than word input only. We
concatenate the word embedding with embeddings
of the characters occurring in that word:

e>t =[(Ww×wt)
>(W1

c×c1t )
>

(W2
c×c2t )

> ... (Wn
c ×cnt )

>]
(2)

where c1t is the one-hot encoding of the first charac-
ter added, W1

c its embedding matrix and n the total
number of characters added to the model. The word
wt and its characters c1t ,c2t ...cnt are each projected
onto their own embeddings, and the concatenation

wte.g. cat

c1
tc

c2
ta

c3
tt

embedding

ht−1

LSTM

ht

1

Figure 1: Concatenating word and character
embeddings in an LSTM LM.

of the embeddings is the input for the LSTM layer.
By concatenating the embeddings, we implicitly
preserve the order of the characters: the embedding
for e.g. the first character of a word will always cor-
respond to the same portion of the input vector for
the LSTM (see figure 1). We also experimented with
adding word and character embeddings (a method
which does not preserve the order of the characters),
but that did not improve the perplexity of the LM.

The number of characters added (n) is fixed. If
a word is longer than n characters, only the first
(or last, depending on the order in which they are
added) n characters are added. If the word is shorter
than n, it is padded with a special symbol. Because
we can still model the surface form of OOV words
with the help of their characters, this model reduces
the number of errors made immediately after OOV
words (see section 4.7).

3.1 Order of the characters
The characters can be added in the order in which
they appear in the word (in the experiments this is
called ‘forward order’), in the reversed order (‘back-
ward order’) or both (‘both orders’). In English and
Dutch (and many other languages), suffixes can bear
meaningful relations (such as plurality and verb con-
jugation) and compounds typically have word-final
heads. Hence, putting more emphasis on the end of
a word might help to better model those properties.
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3.2 Weight sharing
Note that in equation 2 each position in the word
is associated with different weights: the weights
for the first character c1t , W1

c , are different from the
weights for the character in the second position, W2

c .
Given that the input ‘vocabulary’ for characters is
always the same, one could argue that the same set
of weights Wc could be used for all positions in the
word:

e>t =[(Ww×wt)
>(Wc×c1t )

>

(Wc×c2t )
> ... (Wc×cnt )

>]
(3)

However, one could also argue in favor of the
opposite case (no shared weights between the
characters): for example, an ‘s’ at the end of a word
often has a specific meaning, such as indicating
a third person singular verb form of the present
tense (in English), which it does not have at other
positions in the word. Both models with and
without weight sharing are tested (see section 4.6).

3.3 Number of parameters
Given that a portion of the total embedding is
used for modeling the characters, the actual ‘word’
embedding is smaller which reduces the number
of parameters significantly. In a normal word-level
LSTM LM, the number of parameters in the
embedding matrix is

V ×E (4)

with V the vocabulary size and E = Ew the total
embedding size/word embedding size. In our CW
model however, the number of parameters is

V ×(E−n×Ec)+n×(C×Ec) (5)

with n the number of characters,Ec the size of the
character embedding andC the size of the character
vocabulary. SinceV is by far the dominant factor, re-
ducing the size of the purely word-level embedding
vastly reduces the total number of parameters to
train. If we share the character weights, that number
becomes even smaller:

V ×(E−n×Ec)+C×Ec (6)

4 Experiments

4.1 Setup
All LMs were trained and tested with TensorFlow
(Abadi et al., 2015). We test the performance of

the CW architectures for a small model and a large
model, with hyperparameters based on Zaremba et
al. (2015) and Kim et al. (2016)). The small LSTM
consists of 2 layers of 200 hidden units and the large
LSTM has 2 layers of 650 hidden units. The total
size of the embedding layer always equals the size
of the hidden layer. During the first 4/6 (small/large
model) epochs, the learning rate is 1, after which
we apply an exponential decay:

ηi=α ηi−1 (7)

where ηi is the learning rate at epoch i and α the
learning rate decay, which is set to 0.5 for the small
LSTM and to 0.8 for the large LSTM. The smaller
α, the faster the learning rate decreases. The to-
tal number of epochs is fixed to 13/39 (small/large
model). During training, 25% of the neurons are
dropped (Srivastava et al., 2014) for the small model
and 50% for the large model. The weights are ran-
domly initialized to small values (between -0.1 and
0.1 for the small model and between -0.05 and 0.05
for the large model) based on a uniform distribution.
We train on mini-batches of 20 with backpropaga-
tion through time, where the network is unrolled for
20 steps for the small LSTM and 35 for the large
LSTM. The norm of the gradients is clipped at 5 for
both models.

For English, we test on the publicly available
Penn Treebank (PTB) data set, which contains 900k
word tokens for training, 70k word tokens as vali-
dation set and 80k words as test set. This data set
is small but widely used in related work (among
others Zaremba et al. (2015) and Kim et al. (2016)),
enabling the comparison between different models.
We adopt the same pre-processing as used by previ-
ous work (Mikolov et al., 2010) to facilitate compar-
ison, which implies that the dataset contains only
lowercase characters (the size of the character vocab-
ulary is 48). Unknown words are mapped to 〈unk〉,
but since we do not have the original text, we cannot
use the characters of the unknown words for PTB.

The Dutch data set consists of components g, h, n
and o of the Corpus of Spoken Dutch (CGN) (Oost-
dijk, 2000), containing recordings of meetings,
debates, courses, lectures and read text. Approx-
imately 80% was chosen as training set (1.4M word
tokens), 10% as validation set (180k word tokens)
and 10% as test set (190k word tokens). The size of
the Dutch data set is chosen to be similar to the size
of the English data set. We also use the same vocab-
ulary size as used for Penn Treebank (10k), since
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we want to compare the performance on different
languages and exclude any effect of the vocabulary
size. However, we do not convert all uppercase char-
acters to lowercase (although the data is normalized
such that sentence-initial words with a capital are
converted to lowercase if necessary) because the
fact that a character is uppercase is meaningful in it-
self. The character vocabulary size is 88 (Dutch also
includes more accented characters due to French
loan words, e.g. ‘café’). Hence, we do not only com-
pare two different languages but also models with
only lowercase characters and models with both
upper- and lowercase characters. Moreover, since
we have the original text at our disposal (as opposed
to PTB), we can use the characters of the unknown
words and still have a character-level representation.

4.2 Baseline models
In our experiments, we compare the CW model
with two word-level baselines: one with the
same number of hidden units in the LSTM layers
(thus containing more parameters) and one with
approximately the same number of parameters as
the CW model (like Kim et al. (2016) do), because
we are interested in both reducing the number of
parameters and improving the performance. For
the latter baseline, this implies that we change the
number of hidden units from 200 to 175 for the
small model and from 650 to 475 for the large,
keeping the other hyperparameters the same.

The number of parameters for those models is
larger than for all CW models except when only 1 or
2 characters are added. The size difference between
the CW models and the smaller word-level models
becomes larger if more characters are added, if the
size of the characters embeddings is larger and if the
character weights are shared. The size of the embed-
ding matrix for a word-level LSTM of size 475 is
10,000× 475 = 475,000 (V is 10k in all our exper-
iments), whereas for a CW model with 10 character
embeddings of size 25 it is of size 10,000× (650 -
10× 25) + 10× (48× 25) = 412,000 (the size of the
character vocabulary for PTB is 48), following equa-
tion 5. If the character weights are shared, the size of
the embedding matrix is only 401,200 (equation 6).

The baseline perplexities for the smaller word-
level models are shown in table 1. In the remainder
of this paper, ‘wx’ = means word embeddings
of size x for a word-level model and ‘cx’ means
character embeddings of size x for CW models.

Perplexity
Corpus Size Validation Test

PTB
small

w200 100.7 96.86
w175 102.62 98.82

large
w650 87.38 83.6
w465 88.39 84.38

CGN
small

w200 69.13 76
w175 69.6 76.78

large
w650 63.36 70.69
w475 63.88 70.88

Table 1: Perplexities for the baseline models.
Baselines w200 and w650 have the same number of
hidden units as the CW models and baselines w175
and w475 approximately have the same number of
parameters as the CW models.

4.3 English
In figure 2, the results for a small model trained on
Penn Treebank are shown. Almost all CW models
outperform the word-based baseline with the same
number of parameters (2 LSTM layers of 175 units).
Only the CW models in which the concatenated
character embeddings take up the majority of
the total embedding (more than 7 characters of
embedding size 15) perform worse. With respect
to the word-level LM with more parameters, only
small improvements are obtained. The smaller the
character embeddings, the better the performance of
the CW model. For example, for a total embedding
size of only 200, adding 8 character embeddings
of size 15 results in an embedding consisting of
120 units ‘character embedding’ and only 80 units
‘word embedding’, which is not sufficient. The
two best performing models add 3 and 7 character
embeddings of size 5, giving a perplexity of 100.12
and 100.25 respectively, achieving a relative
improvement of 2.44%/2.31% w.r.t. the w175
baseline and 0.58%/0.45% w.r.t. the w200 baseline.
For those models, the ‘word embedding’ consists
of 185 and 165 units respectively.

We test the performance of the CW architecture
on a large model too. In figure 3, the results for
different embedding sizes are shown. Just like we
saw for the small model, the size of the character
embeddings should not be too large: for embed-
dings of size 50 (‘c50’), the performance drops
when a larger number of characters is added. The
best result is obtained by adding 8 characters with
embeddings of size 25 (‘c25’): a perplexity of 85.97
(2.74%/1.61% relative improvement with respect to
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Figure 2: Validation perplexity results on PTB,
small model. Different sizes for the character
embeddings are tested (‘c5’, ‘c10’, ‘c15’).

the w475/w650 baseline). For embeddings of size
10, adding more than 10 characters gives additional
improvements (see figure 4).

We also verify whether the order in which the
characters are added is important (figure 4). The
best result is achieved by adding the first 3 and
the last 3 characters to the model (‘both orders’),
giving a perplexity of 85.69, 3.05%/1.87% relative
improvement with respect to the w475/w650
baseline. However, adding more characters in both
orders causes a decrease in performance. When only
adding the characters in the forward order or the
backward order, adding the characters in backward
order seems to perform slightly better overall (best
result: adding 9 characters in the backward order
gives a perplexity of 85.7 or 3.04%/1.92% improve-
ment with respect to the w475/w650 baseline).

We can conclude that the size of the character
embeddings should be proportional to the total em-
bedding size: the word-level embedding should be
larger than the concatenation of the character-level
embeddings. Adding characters in the backward
order is slightly better than adding them in the
forward order, and the largest improvement is
made for the large LSTM LM. The test perplexities
for some of the best performing models (table 2)
confirm these findings.
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Large baseline w475
Large baseline w650

Large CW c10
Large CW c25
Large CW c50

Figure 3: Validation perplexity results on PTB,
large model. Different sizes for the character
embeddings are tested (‘c10’, ‘c25’, ‘c50’).

If we compare the test perplexities with two
related models that incorporate characters, we see
that our models perform better. Kim et al. (2016)
generate character-level embeddings with a
convolutional neural network and also report results
for both a small and a large model. Their small
character-level model has more hidden units than
ours (300 compared to 200), but it does not improve
with respect to the word-level baseline (since we do
not use highway layers, we only compare with the
results for models without highway layers). Their
large model slightly improves their own baseline
perplexity (85.4) by 0.94%. Compare with our
results: 2.64% perplexity reduction for the best
small LSTM (c5 with n=3) and 2.77% for the best
large LSTM (c10 with n = 3+3(b)). Miyamoto
and Cho (2016) only report results for a small
model that is trained without dropout, resulting
in a baseline perplexity of 115.65. If we train our
small model without dropout we get a comparable
baseline perplexity (116.33) and a character-word
perplexity of 110.54 (compare to 109.05 reported
by Miyamoto and Cho (2016)). It remains to be seen
whether their model performs equally well com-
pared to better baselines. Moreover, their hybrid
character-word model is more complex than ours
because it uses a bidirectional LSTM to generate
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Figure 4: Validation perplexity results on PTB,
large model. Several options for the order in which
the characters are added are investigated.

the character-level embedding (instead of a lookup
table) and a gate to determine the mixing weights
between the character- and word-level embeddings.

4.4 Dutch
As we explained in the introduction, we expect that
using information about the internal structure of
the word will help more for languages with a richer
morphology. Although Dutch is still an analytic
language (most grammatical relations are marked
with separate words or word order rather than mor-
phemes), it has a richer morphology than English be-
cause compounding is a productive and widely used
process and because it has more lexical variation
due to inflection (e.g. verb conjugation, adjective in-
flection). The results for the LSTM LMs trained on
Dutch seem to confirm this hypothesis (see figure 5).

The CW model outperforms the baseline
word-level LM both for the small model and the
large model. The best result for the small model
is obtained by adding 2 or 3 characters, giving a
perplexity of 67.59 or 67.65 which equals a relative
improvement of 2.89%/2.23% (w175/w200) and
2.80%/2.14% (w175/w200) respectively.

For the large model, we test several embedding
sizes and orders for the characters. The best model
is the one to which 6 characters in backward
order are added, with a perplexity of 60.88 or

Small model Perplexity
Baseline w175/w200 98.82/96.86
(Kim et al., 2016) 100.3
(Miyamoto and Cho, 2016) 109.05
c5 with n=3 96.21
c5 with n=7 96.35
Large model Perplexity
Baseline w475/w650 84.38/83.6
(Kim et al., 2016) 84.6
c25 with n=8 82.69
c10 with n=9(b) 82.68
c10 with n=3+3(b) 82.04

Table 2: Test perplexity results for the best
models on PTB. Baseline perplexities are for sizes
w175/w200 for a small model and w475/w650 for
a large model. n = number of characters added,
(b) means backward order. Comparison with other
character-level LMs (Kim et al., 2016) (we only
compare to models without highway layers) and
character-word models (Miyamoto and Cho, 2016)
(they do not use dropout and only report results for
a small model).

4.70%/3.91% (w475/w650) relative improvement.
Just like for PTB, an embedding size of 25 proves to
be the best compromise: if the characters are added
in the normal order, 4 characters with embeddings
of size 25 is the best model (perplexity 61.47 or
3.77%/2.98% (w475/w650) relative improvement).

These results are confirmed for the test set
(table 3). The best small model has a perplexity
of 75.04 which is 2.27% compared to the baseline
and the best large model has a perplexity of 67.64,
a relative improvement of 4.57%. The larger
improvement for Dutch might be due to the fact that
it has a richer morphology and/or the fact that we
can use the surface form of the OOV words for the
Dutch data set (see sections 4.1 and 4.7).

4.5 Random CW models
In order to investigate whether the improvements
of the CW models are not caused by the fact that
the characters add some sort of noise to the input,
we experiment with adding real noise – random
‘character’ information – rather than the real char-
acters. Both the number of characters (the length of
the random ‘word’) and the ‘characters’ themselves
are generated based on a uniform distribution. In
table 4, the relative change in perplexity, averaged
over models to which 1 to 10 characters are added,
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Figure 5: Validation perplexity results on CGN.
Several options for the size and order of the
character embeddings are investigated.

Small model Perplexity
Baseline w175/w200 76.78/76
c10 with n=2 75.23
c10 with n=3 75.04
Large model Perplexity
Baseline w475/w650 70.88/70.69
c25 with n=4 68.79
c25 with n=6(b) 67.64

Table 3: Test perplexity results for the best models
on CGN. Baseline perplexities are for sizes
w175/w200 for a small model and w475/w650 for
a large model. n = number of characters added, (b)
means backward order.

with respect to the baseline word-level LM and the
CW model with real characters is shown.

For English, adding random information had a
negative impact on the performance with respect
to both the baseline and the CW model. For Dutch
on the other hand, adding some random noise to the
word-level model gave small improvements. How-
ever, the random models perform much worse than
the CW models. We can conclude that the characters
provide meaningful information to the LM.

Relative change in
valid perplexity w.r.t.

Baseline Char-Word

PTB
small c5 0.34 (0.30) 0.54 (0.46)
large c15 0.00 (0.29) 0.53 (0.49)

CGN
small c10 - 0.18 (0.53) 1.79 (0.47)
large c10 - 0.15 (0.26) 1.52 (1.24)

Table 4: Relative change in validation perplexity
for models to which random information is
added, w.r.t. word-level and CW models. The
improvements are averaged over the results for
adding 1 to 10 characters/random information, the
numbers between brackets are standard deviations.
Negative numbers indicate a decrease in perplexity.

4.6 Sharing weights
We repeat certain experiments with the CW models,
but with embedding matrices that are shared
across all character positions (see section 3.2).
Note that sharing the weights does not imply
that the position information is lost, because for
example the first portion of the character-level
embedding always corresponds to the character
on the first position. Sharing the weights ensures
that a character is always mapped onto the same
embedding, regardless of the position of that
character in the word, e.g. both occurrences of ‘i’
in ‘felicity’ are represented by the same embedding.
This effectively reduces the number of parameters.

We compare the performance of the CW models
with weight sharing with the baseline word-level
LM and the CW model without weight sharing. In
table 5, the relative change with respect to those
LMs is listed.

CW models with weight sharing generally
improve with respect to a word-level baseline,
except for the small English LM. For Dutch, the
improvements are more pronounced. The difference
with the CW model without weight sharing is small
(right column), although not sharing the weights
works slightly better, which suggests that characters
can convey different meanings depending on the
position in which they occur. Again, the results are
more clear-cut for Dutch than for English.

4.7 Dealing with out-of-vocabulary words
As we mentioned in the introduction, we expect that
by providing information about the surface form of
OOV words (namely, their characters), the number
of errors induced by those words should decrease.
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Relative change in
valid perplexity w.r.t.

Baseline Char-Word

PTB
small c10 0.53 (0.88) 0.19 (0.67)
large c10 - 0.54 (0.37) - 0.02 (0.22)

CGN
small c10 - 1.70 (0.34) 0.24 (0.30)
large c10 - 2.10 (0.32) 0.15 (0.50)

Table 5: Relative change in validation perplexity for
CW models with weight sharing for the characters,
w.r.t. baseline and CW models without weight
sharing. The improvements are averaged over the
results for adding 1 until 10 characters, the numbers
between brackets are standard deviations. Negative
numbers indicate a decrease in perplexity.

We conduct the following experiment to check
whether this is indeed the case: for the CGN test
set, we keep track of the probabilities of each word
during testing. If an OOV word is encountered, we
check the probability of the target word given by
a word-level LM and a CW LM. The word-level
model is a large model of size 475 and the CW
model is a large model in which 6 characters embed-
dings of size 25 in the backward order are used (the
best performing CW model in our experiments).

We observe that in 17,483 of the cases, the CW
model assigns a higher probability to the target
word following an OOV word, whereas the opposite
happens only in 10,724 cases. This is an indication
that using the character information indeed helps
in better modeling the OOV words.

5 Conclusion and future work

We investigated a character-word LSTM language
model, which combines character and word
information by concatenating the respective
embeddings. This both reduces the size of the
LSTM and improves the perplexity with respect
to a baseline word-level LM. The model was
tested on English and Dutch, for different model
sizes, several embedding sizes for the characters,
different orders in which the characters are added
and for weight sharing of the characters. We can
conclude that for almost all setups, the CW LM
outperforms the word-level model, whereas it has
fewer parameters than the word-level model with
the same number of LSTM units. If we compare
with a word-level LM with approximately the same
number of parameters, the improvement is larger.

One might argue that using a CNN or an RNN

to generate character-level embeddings is a more
general approach to incorporate characters in a LM,
but this model is simple, easier to train and smaller.
Moreover, related models using a CNN-based
character embedding (Kim et al., 2016) do not
perform better.

For both English and Dutch, we see that the size
of the character embedding is important and should
be proportional to the total embedding size: the
total size of the concatenated character embeddings
should not be larger than the word-level embedding.
Not using the characters in the order in which they
appear in the word, but in the reversed order (and
hence putting more emphasis on the end of the
word), performs slightly better, although adding
only a few characters both from the beginning and
the end of the word achieves good performance too.

Using random inputs instead of the charac-
ters performed worse than using the characters
themselves, thus refuting the hypothesis that the
characters simply introduce noise. Sharing the
weights/embedding matrices for the characters
reduces the size of the model even more, but causes
a small increase in perplexity with respect to a
model without weight sharing. Finally, we observe
that the CW models are better able to deal with
OOV words than word-level LMs.

In future work, we will test other architectures
to incorporate character information in a word-level
LSTM LM, such as combining a character-level
LSTM with a word-level LSTM. Another rep-
resentation that might be useful uses character
co-occurrence vectors (by analogy with the acoustic
co-occurrences used by Van hamme (2008; 2012))
rather than one-hot character vectors, because
co-occurrences intrinsically give information about
the order of the characters. Other models could
be more inspired by human language processing:
according to the theory of blocking, we humans
have both a mental lexicon of frequent words and
a morphological module that is used to process
infrequent/ unknown words or to create new words
(see e.g. (Aronoff and Anshen, 2001)). This could
correspond to a word-level LM for frequent words
and a subword-level LM for infrequent words.
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Abstract

We propose a novel hierarchical Recurrent
Neural Network (RNN) for learning se-
quences of Dialogue Acts (DAs). The in-
put in this task is a sequence of utterances
(i.e., conversational contributions) com-
prising a sequence of tokens, and the out-
put is a sequence of DA labels (one label
per utterance). Our model leverages the hi-
erarchical nature of dialogue data by using
two nested RNNs that capture long-range
dependencies at the dialogue level and the
utterance level. This model is combined
with an attention mechanism that focuses
on salient tokens in utterances. Our exper-
imental results show that our model out-
performs strong baselines on two popular
datasets, Switchboard and MapTask; and
our detailed empirical analysis highlights
the impact of each aspect of our model.

1 Introduction

The sequence-labeling task involves learning a
model that maps an input sequence to an output
sequence. Many NLP problems can be treated as
sequence-labeling tasks, e.g., part-of-speech (PoS)
tagging (Toutanova et al., 2003; Toutanova and
Manning, 2000), machine translation (Brown et
al., 1993) and automatic speech recognition (Gales
and Young, 2008). Recurrent Neural Nets (RNNs)
have been the workhorse model for many NLP
sequence-labeling tasks, e.g., machine transla-
tion (Sutskever et al., 2014) and speech recogni-
tion (Amodei et al., 2015), due to their ability to
capture long-range dependencies inherent in natu-
ral language.

In this paper, we propose a hierarchical RNN
for labeling a sequence of utterances (i.e., con-
tributions) in a dialogue with their Dialogue Acts

(DAs). This task is particularly useful for dialogue
systems, as knowing the DA of an utterance sup-
ports its interpretation, and the generation of an
appropriate response. The DA classification prob-
lem differs from the aforementioned tasks in the
structure of the input and the immediacy of the
output. The input in these tasks is a sequence of
tokens, e.g., a sequence of words in PoS tagging;
while in DA classification, the input is hierarchi-
cal, i.e., a conversation comprises a sequence of
utterances, each of which has a sequence of to-
kens (Figure 1). In addition, to be useful for dia-
logue systems, the DA of an utterance must be de-
termined immediately, hence a bi-directional ap-
proach is not feasible.

As mentioned above, RNNs are able to capture
long-range dependencies. This ability was har-
nessed by Shen and Lee (2016) for DA classifica-
tion. However, they ignored the conversational di-
mension of the data, treating the utterances in a di-
alogue as separate instances — an assumption that
results in loss of information. To overcome this
limitation, we designed a two-layer RNN model
that leverages the hierarchical nature of dialogue
data: an outer-layer RNN encodes the conversa-
tional dimension, and an inner-layer RNN encodes
the utterance dimension.

One of the difficulties of sequence labeling is
that different elements of an input sequence have
different degrees of importance for the task at
hand (Shen and Lee, 2016), and the noise intro-
duced by less important elements might degrade
the performance of a labeling model. To address
this problem, we incorporate into our model the
attention mechanism described in (Shen and Lee,
2016), which has yielded performance improve-
ments in DA classification compared to traditional
RNNs.

Our empirical results show that our hierarchical
RNN model with an attentional mechanism out-
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Figure 1: Switchboard data example.

performs strong baselines on two popular datasets:
Switchboard (Jurafsky et al., 1997; Stolcke et al.,
2000) and MapTask (Anderson et al., 1991). In
addition, we provide an empirical analysis of the
impact of the main aspects of our model on per-
formance: utterance RNN, conversation RNN, and
information source for the attention mechanism.

This paper is organised as follows. In the next
section, we discuss related research in DA classi-
fication. In Section 3, we describe our RNN. Our
experiments and results are presented in Section 4,
followed by our analysis and concluding remarks.

2 Related Research

Independent DA classification. In this ap-
proach, each utterance is treated as a separate in-
stance, which allows the application of general
classification algorithms. Julia et al. (2010) em-
ployed a Support Vector Machine (SVM) with
n-gram features obtained from an utterance-level
Hidden Markov Model (HMM) to ascribe DAs
to audio signals and textual transcriptions of the
MapTask corpus. Webb et al. (2005) used a simi-
lar approach, employing cue phrases as features.

Sequence-based DA classification. This ap-
proach takes advantage of the sequential nature of
conversations. In one of the earliest works in DA
classification, Stolcke et al. (2000) used an HMM
with a trigram language model to classify DAs in
the Switchboard corpus, achieving an accuracy of
71.0%. In this work, the trigram language model
was employed to calculate the symbol emission
probability of the HMM. Surendran et al. (2006)
also used an HMM, but employed output sym-
bol probabilities produced by an SVM classifier,
instead of emission probabilities obtained from

a trigram language model. More recently, the
Recurrent Convolutional Neural Network model
proposed by Kalchbrenner and Blunsom (2013)
achieved an accuracy of 73.9% on the Switch-
board corpus. In this work, a Convolutional Neu-
ral Network encodes each utterance into a vector,
which is then treated as input to a conversation-
level RNN. The DA is then classified using a
softmax layer applied on top of the hidden states
of the RNN.

Attention in Neural Models. Attentional Neu-
ral Models have been successfully applied to
sequence-to-sequence mapping tasks, notably ma-
chine translation and DA classification. Bah-
danau et al. (2014) proposed an attentional
encoder-decoder architecture for machine trans-
lation. The encoder encodes the input sequence
into a sequence of hidden vectors; the decoder
decodes the information stored in the hidden se-
quence to generate the output; and the attentional
mechanism is used to summarize a sentence into
a context vector dynamically, helping the decoder
decide which part of the sequence to attend to
when generating a target word. As mentioned
above, Shen and Lee (2016) employed an atten-
tional RNN for independent DA classification;
they achieved an accuracy of 72.6% on textual
transcriptions of the Switchboard corpus.

3 Model Description

Suppose we have a sequence of observations ooo :=
{ooo1, ooo2, . . . , ooom} and the corresponding sequence
of labels yyy := {y1, y2, . . . , ym}, where each ob-
servation ooot is a sequence. Our hierarchical-
attentional model, denoted HA-RNN, learns the
conditional probability P (yyy|ooo) relating the ob-
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Figure 2: HA-RNN – Hierarchical-attentional RNN model.

served sequence to its label sequence, based on the
following decomposition:

P ({y1, y2, ..., ym}|{ooo1, ooo2, ..., ooom})

=

m∏

t=1

P (yt|yyy<t, ooo≤t)
(1)

Note that our model conditions on the full his-
tory, rather than a finite history as done in Markov
models, such as maximum entropy Markov mod-
els (McCallum et al., 2000).

We employ neural networks to model the con-
stituent conditional distributions. Our model com-
prises three main elements (Figure 2): (1) an
utterance-level RNN that encodes the information
within the utterances; (2) an attentional mecha-
nism that highlights the important parts of an input
utterance, and summarizes the information within
the utterance into a real-valued vector; and (3) a
conversation-level RNN that encodes the informa-
tion of the whole dialogue sequence. As discussed
in Section 1, our hierarchical-RNN design was
motivated by the structure of the input data, while
the attentional mechanism has proven to be effec-
tive in DA classification (Shen and Lee, 2016).

Utterance-level RNN. This RNN was imple-
mented using LSTM (Hochreiter and Schmidhu-
ber, 1997; Graves, 2013). First, an embedding
matrix maps each token (e.g., word or punctua-
tion marker) into a dense vector representation.
Let us denote the sequence of tokens in the t-
th utterance as ooot := {o1t , o2t , . . . , ont }, which is

mapped into the sequence of embedding vectors
xxxt := {xxx1t ,xxx2t , . . . ,xxxnt } using the token embed-
ding tablewww:

xxxit = ewewew(o
i
t) (2)

The utterance RNN then takes as input this se-
quence of vectors, and produces a sequence of cor-
responding hidden vectors hhht = {hhh1t ,hhh2t , . . . ,hhhnt },
which capture the information within the tokens,
and put the tokens in their sentential context:

hhhit = RNNutter(hhh
i−1
t ,xxxit) (3)

The parameters of the utterance RNN and the
token embeddings are learned during training.

Attentional mechanism. This mechanism sum-
marizes the hidden vectors of the utterance-level
RNN into a single vector representing the whole
utterance. The attention vector is a sequence of
positive numbers that sum to 1, where each num-
ber corresponds to a token in an utterance, and rep-
resents the importance of the token for understand-
ing the DA associated with the utterance. The final
representation zzzt of the t-th utterance is the sum of
the corresponding elements of its hidden vectors
weighted by attention weights:

zzzt =
∑

i

αi
thhh

i
t (4)

We posit that the main factors for determining
the importance of a token for DA classification
are: (1) the meaning of the token, as represented
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by its embedding vector; and (2) the full context
of the conversation, particularly the previous DA.
For example, if the DA of an utterance is Yes-No-
Question, and there is a “yes” or “no” token in the
next utterance, this token is likely to be important.
Equation 5 integrates these factors to compute at-
tention scores:

sit = UUU · tanh
(
W (in) · xxxit +W (co) · gggt−1
+ eaeaea(yt−1) + bbb(in)

)
(5)

where vector eaeaea(yt−1) denotes the embedding of
the previous DA, which is similar to the embed-
ding of tokens; and vector gggt−1 is the previous
hidden vector of the conversation-level RNN, de-
tailed below, which summarizes the conversation
so far. W (in) and W (co) are parameter matrices for
the input tokens and the conversational context re-
spectively, and UUU and bbb(in) are parameter vectors
— all of which are learned during training. The
scores sit are mapped into a probability vector by
means of a softmax function:

αααt = softmax(ssst) (6)

Conversation-level RNN. This RNN is struc-
turally similar to the utterance-level RNN. The in-
put to the conversation-level RNN is the sequence
of vectors zzz generated for the utterances in a con-
versation, which is then encoded by the RNN into
a sequence of hidden vectors ggg:

gggt = RNNconvers(gggt−1, zzzt) (7)

This information is then used in the generation of
the output DA:

yt|yyy<t, ooo≤t∼softmax(WWW (out) ·gggt + bbb(out)) (8)

where the matrix WWW (out), vector bbb(out) and the
parameters of the conversation-level network
RNNconvers are learned during the training.

During testing, ideally a given sequence of ob-
served utterances ooo should be decoded to a label
sequence yyy that maximizes the conditional prob-
ability P (yyy|ooo) according to the model. How-
ever, finding the highest-scoring label sequence
is a computationally hard problem, since the
conversation-level RNN does not lend itself to dy-
namic programming. Therefore, we employ a
greedy decoding approach, where, going left-to-
right, at each step we choose the yt with the high-
est probability in the local DA distribution. This

method is common practice in sequence-labeling
RNNs, e.g., in neural machine translation (Bah-
danau et al., 2014; Sutskever et al., 2014; Luong
et al., 2015).

4 Experiments

4.1 Data sets
We tested our models on the Switchboard cor-
pus (Jurafsky et al., 1997; Stolcke et al., 2000)
and the MapTask corpus (Anderson et al., 1991)
— two popular datasets used for DA classification.
At this stage of our research, we consider only
transcriptions of the conversations in both corpora
(the incorporation of phonetic input (Taylor et al.,
1998; Wright Hastie et al., 2002; Julia et al., 2010)
is the subject of future work). Thus, we compare
our results only with those obtained by systems
that employ transcriptions exclusively.

Switchboard corpus. This corpus contains DA-
annotated transcriptions of 1155 telephone con-
versations with no specific topic, which have an
average of 176 utterances. Originally, there were
approximately 226 DA tags in the corpus, but in
the DA classification literature, the tags are usu-
ally clustered into 42 tags.1 Table 1(a) shows per-
centages of the seven most frequent tags in the
data. Following (Stolcke et al., 2000), in our ex-
periments we use 1115 conversations for training,
21 for development and 19 for testing.

MapTask corpus. This is a richly annotated cor-
pus that comprises 128 dialogues about instruction
following, containing 212 utterances on average.
Each conversation has an instruction giver and an
instruction follower. The instruction giver gives
directions with reference to a map, which the in-
struction follower must follow. The MapTask cor-
pus has 13 DA tags, including the “unclassifiable”
tag. Table 1(b) shows percentages of the seven
most frequent tags in the data. We randomly split
this data into 80% training, 10% development and
10% test sets, which contain 103, 12 and 13 con-
versations respectively.

4.2 Results
We experimented with different embedding sizes
and hidden layer dimensions for our model HA-
RNN, and selected the following, which yielded

1The official manual stated that there were originally 220
tags. We follow the tag-clustering procedure by Christopher
Potts described in compprag.christopherpotts.
net/swda.html.
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DA tag Example Percentage
Statement-non-opinion I’m twenty-eight 36%
Acknowledge (Backchannel) Uh-huh 19%
Statement-opinion I think it’s great 13%
Agree/Accept That’s exactly it 5%
Abandoned or Turn-Exit So, 5%
Appreciation I can imagine. 2%
Yes-No-Question Do you? 2%

DA tag Example Percentage
Acknowledge Mmhmm 21%
Instruct And we’re finished 16%
Reply y Yeah 12%
Explain I’ve got a bridge 8%
Check Is that it 8%
Ready And then 8%
Align See what i mean 7%

(a) Switchboard (b) MapTask

Table 1: Seven most frequent DAs and examples for (a) Switchboard and (b) MapTask.

Model Accuracy
RCNN 73.9%
RNN-Attentional-C 72.6%
HMM-trigram-C 71.0%
HA-RNN 74.5%

Table 2: Performance on Switchboard.

Model Accuracy
HMM-trigram-C 52.3%
Random Forest 52.5%
Random Forest + prev DA 55.3%
HA-RNN 63.3%

Table 3: Performance on MapTask.

the best performance with reasonable run times.
The word-embedding size was set to 250, and the
DA-embedding size to 180. The hidden dimen-
sion of the utterance-level RNN was set to 160,
and the hidden dimension of the conversation-
level RNN was set to 250. Our model was im-
plemented with the CNN package.2 During train-
ing, the negative log-likelihood was optimized us-
ing Adagrad (Duchi et al., 2011), with dropout rate
0.5 to prevent over-fitting (Srivastava et al., 2014).
Training terminated when the log-likelihood of the
development set did not improve. As mentioned in
Section 3, during testing, the sequence of output
labels was generated with greedy decoding. Sta-
tistical significance was computed on the MapTask
test data using McNemar’s test with α = 0.05 (we
could not compute statistical significance for the
Switchboard results, because they were obtained
from the literature, and we did not have access to
per-conversation labels).

Switchboard. We compare our model’s perfor-
mance with that of the following strong base-
lines: (RCNN) the recurrent convolutional neu-
ral network model from (Kalchbrenner and Blun-
som, 2013); (RNN-Attentional-C) the attention-
based RNN classifier from (Shen and Lee, 2016);
and (HMM-trigram-C) the HMM-based classifier
from (Stolcke et al., 2000).

The results in Table 2 show that our model
outperforms these baselines.3 The higher ac-

2github.com/clab/cnn.
3Two other works on Switchboard DA classification

(Gambäck et al., 2011; Webb and Ferguson, 2010) used ex-
perimental setups that differ from ours, respectively obtaining

curacy of our model compared to classifier-
based approaches (i.e., RNN-Attentional-C and
HMM-trigram-C) confirms that taking into ac-
count dependencies among the DAs through the
conversation-level RNN improves accuracy. Fur-
thermore, the better performance of our model
compared to RCNN shows that summarizing utter-
ances with an RNN augmented with an attention
architecture is more effective than using a convo-
lution architecture for DA sequence labeling.

MapTask. Due to the unavailability of standard
training/development/test sets for this dataset, we
compare the results obtained by our model with
those obtained by our implementation of the
following independent DA classifiers: HMM-
trigram-C (Stolcke et al., 2000); Random Forest
– an instance-based random forest classifier; and
Random Forest + prev DA – a random forest clas-
sifier that uses the previous DA tag.

The results in Table 3 show that our model
outperforms these baselines (statistically signifi-
cant). These results reinforce the insights from
the Switchboard corpus, whereby taking into ac-
count conversational dependencies between DAs
substantially improves DA-labeling performance.4

accuracies of 77.85% and 80.72%. However, these results are
not directly comparable to Stolcke et al.’s (2000) or ours, and
are therefore excluded from our comparison.

4Two studies on MapTask DA classification were per-
formed under experimental setups that differ from ours: Ju-
lia et al. (2010) employed HMM+SVM on text transcrip-
tions and audio signals, obtaining an accuracy of 55.4%
for transcriptions only. Surendran and Levow (2006) used
Viterbi+SVM, posting a classification accuracy of 59.1% for
transcriptions — the best result among systems that employ
transcription data exclusively. Unfortunately, Julia et al.’s de-
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5 Analysis

5.1 Architectural analysis

We investigate the influence of the main compo-
nents of our model on performance by creating
variants of our model through the addition or re-
moval of connections or layers. We then compare
the performance of these variants with that of the
original model in terms of DA-classification accu-
racy and negative log-likelihood on the test, devel-
opment and training partitions of our datasets. As
done in Section 4, statistical significance is calcu-
lated for the test partitions of both datasets using
McNemar’s test with α = 0.05.

Does an RNN at the utterance level help? To
answer this question, we create a variant, denoted
woUttRNN, where attentional coefficients are ap-
plied directly to the token embeddings. Thus,
Equation 4 is changed to Equation 9:

zzzt =
∑

i

αi
txxx

i
t (9)

As seen in Tables 4 and 5, removing the
utterance-level RNN (woUttRNN) reduces the ac-
curacy and increases the negative log likelihood
for the training, development and test partitions of
both datasets. These changes are statistically sig-
nificant for the test set.

Which sources of information are critical for
computing the attentional component? In our
main model, HA-RNN, we calculate the atten-
tional signal using information from the previ-
ous DA, the previous hidden vector representa-
tion of the conversation-level RNN, and the em-
beddings of the tokens. To determine the con-
tribution of the first two resources to the perfor-
mance of the model, we create two variants of
HA-RNN: woDA2Attn, which employs only the
previous conversation-level RNN hidden vector;
and woHid2Attn, which employs only the previ-
ous DA. Thus, in woDA2Attn, Equation 5 becomes
Equation 10, and in woHid2Attn, Equation 5 be-
comes Equation 11:

sit =UUU·tanh(W (in) ·xxxit+W (co) ·gggt−1+bbb(in)) (10)

sit =UUU·tanh(W (in) ·xxxit+eaeaea(yt−1)+bbb(in)) (11)

scription of their MapTask subset is not sufficient to replicate
their experiment, and Surendran and Levow’s data split is not
accessible. Notwithstanding the difference in conditions, our
model’s accuracy is superior to theirs.

As seen in Tables 4 and 5, both of these
resources provide valuable information, but the
changes in performance due to the omission of
these resources are smaller than those obtained
with woUttRNN. Removing the DA connection
(woDA2Attn) or the previous conversation-level
RNN hidden vector (woHid2Attn) leads to statis-
tically significant drops in accuracy and increases
in negative log-likelihood on the test partitions of
both datasets. The changes in performance with
respect to the development and training sets vary
across the datasets. As seen in Table 4, both mod-
els exhibit accuracy drops (and small increases in
negative log-likelihood) on the Switchboard de-
velopment set, but small accuracy increases (and
negative log-likelihood drops) on the Switchboard
training set — an indication of over-fitting. In con-
trast, as seen in Table 5, both models yield a neg-
ligible or no drop in accuracy on the MapTask de-
velopment set, while both yield a drop in accuracy
on the training set.

How important is the RNN at the conversation
level? To answer this question, we create a vari-
ant of our HA-RNN model, denoted woConvRNN,
where the recurrent connections between the units
in the conversation-level RNN are removed. The
LSTM basis function is calculated with a fixed
vector ggg0 instead of the previous time step’s vec-
tor. Thus Equation 7 becomes Equation 12:

gggt = fff(ggg0, zzzt) (12)

As seen in Tables 4 and 5, HA-RNN outperforms
woConvRNN on the training/development/test par-
titions of both datasets. The difference between
the performance of HA-RNN and woConvRNN is
statistically significant for the test set.

How effective are the DA connections? We
have seen that the DA connections improve our
model’s performance when they are used to cal-
culate the attentional signal. However, intuitively,
the previous DA can also directly provide informa-
tion about the current DA. For example, it is often
the case that a Yes-No-Question is followed by Re-
ply y or Reply n. To reflect this observation, we
create another model, denoted wDA2DA, that has
an additional direct connection between the previ-
ous DA and the current DA. That is, Equation 8
becomes Equation 13:

yt|yyy<t, ooo≤t∼softmax(WWW (out)·gggt+eoeoeo(yt−1)+bbb(out))
(13)
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Accuracy Neg log likelihood
Test Dev Train Test Dev Train

HA-RNN 74.5% 76.2% 80.0% 3770 2819 130333
woUttRNN 71.8% 73.3% 77.4% 4542 3474 163350
woDA2Attn 72.7% 74.3% 80.5% 3835 2932 127445
woHid2Attn 72.8% 75.0% 81.0% 4024 2917 124483
woConvRNN 71.8% 74.1% 76.7% 4537 3648 165734
wDA2DA 71.0% 72.7% 79.2% 4737 3884 150436

Table 4: Performance of variants of the HA-RNN model on Switchboard.

Accuracy Neg log likelihood
Test Dev Train Test Dev Train

HA-RNN 63.3% 61.9% 73.4% 3486 3228 18191
woUttRNN 56.9% 58.0% 62.2% 3823 3445 25074
woDA2Attn 61.4% 61.7% 70.1% 3539 3212 19780
woHid2Attn 62.2% 61.9% 71.8% 3487 3248 19132
woConvRNN 58.9% 60.0% 66.9% 3579 3248 20961
wDA2DA 58.2% 58.4% 69.3% 4014 3663 21135

Table 5: Performance of variants of the HA-RNN model on MapTask.

As seen in Tables 4 and 5, wDA2DA performs
much worse than HA-RNN. We posit that this hap-
pens due to the exposure bias problem (Ranzato et
al., 2015). That is, during training, the model has
access to the correct DA of the previous utterance.
However, during testing, the decoding process has
access only to predicted DAs, which may lead to
the propagation of errors. To quantify the effect of
this problem on our model, we designed another
experiment where the variants of our model can
access the correct DA even during testing; the re-
sults for the test partitions of both datasets appear
in Table 6.

The results in Table 6 show that exposure bias
has different effects on the different variants of our
model. As expected, woDA2Attn, which does not
consider the previous DA, exhibits no change in
performance between the oracle and greedy con-
ditions. The models that employ a DA connection
to compute the attention signal (HA-RNN, woUt-
tRNN, woHid2Attn, woConvRNN) show a slight
improvement in accuracy when using the correct
DA as input, instead of the predicted DA. In con-
trast, wDA2DA shows large improvements when
using the correct DA (3.5% on Switchboard and
6.8% on MapTask), becoming the best-performing
model for both datasets. This improvement may

be attributed to the direct connection between the
DAs in this model, which increases the influence
of previous DAs on the prediction of the current
DA — previous DA predictions that are largely
correct will substantially improve the performance
of wDA2DA, while noisy DA predictions will have
the opposite effect.

5.2 Attentional Analysis

We analyze how our model HA-RNN distributes
attention over the tokens in an utterance in order
to identify tokens in focus.

Figure 3 shows how the attentional vector high-
lights the most important tokens in sample utter-
ances in the context of the DA-classification task.
For example, in “yes I do”, the most important to-
ken that identifies the Reply y class is the token
“yes”, which receives most of the probability mass
from the attention mechanism.

Table 7 shows the most attended tokens for
four classes of DA in MapTask. We compiled
these lists by computing the average attention that
a token received for all the utterances in a DA
class (we excluded tokens that appear less than 5
times). As shown in Table 7, both important to-
kens “move” and “yes” in Figure 3 appear in their
respective DA columns. Two of the most common
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Switchboard MapTask
Oracle Greedy Oracle Greedy

HA-RNN 74.6% 74.5% 64.1% 63.3%
woUttRNN 73.2% 71.8% 56.9% 57.1%
woDA2Attn 73.7% 73.7% 61.4% 61.4%
woHid2Attn 73.8% 72.8% 62.4% 62.2%
woConvRNN 72.2% 71.8% 58.9% 58.9%
wDA2DA 75.0% 71.5% 65.0% 58.2%

Table 6: Performance of oracle and greedy decoding on Switchboard and MapTask test data.

Figure 3: Sample DAs with highlighted attention vectors for MapTask.

Acknowledge Instruct Reply y Reply n
mmhmm move mmhmm nope
uh-huh continue uh-huh i’ve

yes drop yes no
yeah starting yep it’s
see pass aye you
go reach i’ve go
aye stop yeah don’t
no coming i’m not
you go you haven’t
i’m whatever go just

Table 7: Sample DA-specific high-focus tokens
for MapTask.

labels, Acknowledge and Reply y, have very simi-
lar attended tokens. In fact, many utterances in Ac-
knowledge and Reply y have the same text form.
Thus, the distinction between the two classes is

highly dependent upon the conversational context.
Also, note that although Reply n is not one of the
most common DAs in MapTask, our model can
still learn the most important tokens for this DA.

6 Conclusions

In this paper, we proposed a novel hierarchical
RNN for learning sequences of DAs. Our model
leverages the hierarchical nature of dialogue data
by using two nested RNNs that capture long-range
dependencies at the conversation level and the ut-
terance level. We further combine the model with
an attention mechanism to focus on salient tokens
in utterances. Our experimental results show that
our model outperforms strong baselines on two
popular datasets: Switchboard and MapTask. In
the future, we plan to address the exposure bias
problem, and incorporate acoustic features and
speaker information into our model.
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Abstract

Teaching machines to accomplish tasks
by conversing naturally with humans is
challenging. Currently, developing task-
oriented dialogue systems requires creating
multiple components and typically this in-
volves either a large amount of handcraft-
ing, or acquiring costly labelled datasets
to solve a statistical learning problem for
each component. In this work we intro-
duce a neural network-based text-in, text-
out end-to-end trainable goal-oriented di-
alogue system along with a new way of
collecting dialogue data based on a novel
pipe-lined Wizard-of-Oz framework. This
approach allows us to develop dialogue sys-
tems easily and without making too many
assumptions about the task at hand. The
results show that the model can converse
with human subjects naturally whilst help-
ing them to accomplish tasks in a restaurant
search domain.

1 Introduction

Building a task-oriented dialogue system such as
a hotel booking or a technical support service is
difficult because it is application-specific and there
is usually limited availability of training data. To
mitigate this problem, recent machine learning ap-
proaches to task-oriented dialogue system design
have cast the problem as a partially observable
Markov Decision Process (POMDP) (Young et al.,
2013) with the aim of using reinforcement learn-
ing (RL) to train dialogue policies online through
interactions with real users (Gašić et al., 2013).
However, the language understanding (Henderson
et al., 2014; Yao et al., 2014) and language gener-
ation (Wen et al., 2015b; Wen et al., 2016) mod-
ules still rely on supervised learning and therefore

need corpora to train on. Furthermore, to make
RL tractable, the state and action space must be
carefully designed (Young et al., 2013; Young et
al., 2010), which may restrict the expressive power
and learnability of the model. Also, the reward
functions needed to train such models are difficult
to design and hard to measure at run-time (Su et
al., 2015; Su et al., 2016).

At the other end of the spectrum, sequence to
sequence learning (Sutskever et al., 2014) has in-
spired several efforts to build end-to-end trainable,
non-task-oriented conversational systems (Vinyals
and Le, 2015; Shang et al., 2015; Serban et al.,
2015b). This family of approaches treats dialogue
as a source to target sequence transduction problem,
applying an encoder network (Cho et al., 2014) to
encode a user query into a distributed vector rep-
resenting its semantics, which then conditions a
decoder network to generate each system response.
These models typically require a large amount of
data to train. They allow the creation of effective
chatbot type systems but they lack any capability
for supporting domain specific tasks, for example,
being able to interact with databases (Sukhbaatar
et al., 2015; Yin et al., 2015) and aggregate useful
information into their responses.

In this work, we propose a neural network-based
model for task-oriented dialogue systems by bal-
ancing the strengths and the weaknesses of the two
research communities: the model is end-to-end
trainable1 but still modularly connected; it does not
directly model the user goal, but nevertheless, it
still learns to accomplish the required task by pro-
viding relevant and appropriate responses at each
turn; it has an explicit representation of database
(DB) attributes (slot-value pairs) which it uses to
achieve a high task success rate, but has a dis-
tributed representation of user intent (dialogue act)

1We define end-to-end trainable as that each system mod-
ule is trainable from data except for a database operator.
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Figure 1: The proposed end-to-end trainable dialogue system framework

to allow ambiguous inputs; and it uses delexicalisa-
tion2 and a weight tying strategy (Henderson et al.,
2014) to reduce the data required to train the model,
but still maintains a high degree of freedom should
larger amounts of data become available. We show
that the proposed model performs a given task very
competitively across several metrics when trained
on only a few hundred dialogues.

In order to train the model for the target appli-
cation, we introduce a novel pipe-lined data col-
lection mechanism inspired by the Wizard-of-Oz
paradigm (Kelley, 1984) to collect human-human
dialogue corpora via crowd-sourcing. We found
that this process is simple and enables fast data
collection online with very low development costs.

2 Model

We treat dialogue as a sequence to sequence map-
ping problem (modelled by a sequence-to-sequence
architecture (Sutskever et al., 2014)) augmented
with the dialogue history (modelled by a set of
belief trackers (Henderson et al., 2014)) and the
current database search outcome (modelled by a
database operator), as shown in Figure 1. At each
turn, the system takes a sequence of tokens2 from
the user as input and converts it into two inter-
nal representations: a distributed representation
generated by an intent network and a probability
distribution over slot-value pairs called the belief
state (Young et al., 2013) generated by a set of be-
lief trackers. The database operator then selects the

2Delexicalisation: we replaced slots and values by generic
tokens (e.g. keywords like Chinese or Indian are replaced by
<v.food> in Figure 1) to allow weight sharing.

most probable values in the belief state to form a
query to the DB, and the search result, along with
the intent representation and belief state are trans-
formed and combined by a policy network to form
a single vector representing the next system action.
This system action vector is then used to condition
a response generation network (Wen et al., 2015a;
Wen et al., 2015b) which generates the required
system output token by token in skeletal form. The
final system response is then formed by substitut-
ing the actual values of the database entries into
the skeletal sentence structure. A more detailed
description of each component is given below.

2.1 Intent Network

The intent network can be viewed as the en-
coder in the sequence-to-sequence learning frame-
work (Sutskever et al., 2014) whose job is to en-
code a sequence of input tokens wt

0, w
t
1, ...w

t
N into

a distributed vector representation zt at every turn
t. Typically, a Long Short-term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997) is
used and the last time step hidden layer zNt is taken
as the representation,

zt = zNt = LSTM(wt
0, w

t
1, ...w

t
N ) (1)

Alternatively, a convolutional neural network
(CNN) can be used in place of the LSTM as the
encoder (Kalchbrenner et al., 2014; Kim, 2014),

zt = CNN(wt
0, w

t
1, ...w

t
N ) (2)

and here we investigate both. Since all the slot-
value specific information is delexicalised, the en-
coded vector can be viewed as a distributed intent

439



Figure 2: Tied Jordan-type RNN belief tracker with delexicalised CNN feature extractor. The output of
the CNN feature extractor is a concatenation of top-level sentence (green) embedding and several levels
of intermediate ngram-like embeddings (red and blue). However, if a value cannot be delexicalised in the
input, its ngram-like embeddings will all be padded with zeros. We pad zero vectors (in gray) before each
convolution operation to make sure the representation at each layer has the same length. The output of
each tracker pt

s is a distribution over values of a particular slot s.

representation which replaces the hand-coded di-
alogue act representation (Traum, 1999) in tradi-
tional task-oriented dialogue systems.

2.2 Belief Trackers

Belief tracking (also called Dialogue State track-
ing) provides the core of a task-oriented spoken
dialogue system (SDS) (Henderson, 2015). Cur-
rent state-of-the-art belief trackers use discrimi-
native models such as recurrent neural networks
(RNN) (Mikolov et al., 2010; Wen et al., 2013) to
directly map ASR hypotheses to belief states (Hen-
derson et al., 2014; Mrkšić et al., 2016). Although
in this work we focus on text-based dialogue sys-
tems, we retain belief tracking at the core of our
system because: (1) it enables a sequence of free-
form natural language sentences to be mapped into
a fixed set of slot-value pairs, which can then be
used to query a DB. This can be viewed as a simple
version of a semantic parser (Berant et al., 2013);
(2) by keeping track of the dialogue state, it avoids
learning unnecessarily complicated long-term de-
pendencies from raw inputs; (3) it uses a smart
weight tying strategy that can greatly reduce the
data required to train the model, and (4) it provides
an inherent robustness which simplifies future ex-
tension to spoken systems.

Using each user input as new evidence, the task
of a belief tracker is to maintain a multinomial dis-

tribution p over values v ∈ Vs for each informable
slot s, and a binary distribution for each requestable
slot3. Each slot in the ontology G4 has its own
specialised tracker, and each tracker is a Jordan-
type (recurrence from output to hidden layer) (Jor-
dan, 1989) RNN5 with a CNN feature extractor, as
shown in Figure 2. Like Mrkšić et al. (2015), we
tie the RNN weights together for each value v but
vary features f tv when updating each pre-softmax
activation gtv. The update equations for a given slot
s are,

f tv = f tv,cnn ⊕ pt−1v ⊕ pt−1∅ (3)

gtv = ws · sigmoid(Wsf
t
v + bs) + b′s (4)

ptv =
exp(gtv)

exp(g∅,s) +
∑

v′∈Vs
exp(gtv′)

(5)

where vector ws, matrix Ws, bias terms bs and b′s,
and scalar g∅,s are parameters. pt∅ is the probability
that the user has not mentioned that slot up to turn t
and can be calculated by substituting g∅,s for gtv in
the numerator of Equation 5. In order to model the
discourse context at each turn, the feature vector

3Informable slots are slots that users can use to constrain
the search, such as food type or price range; Requestable slots
are slots that users can ask a value for, such as address.

4A small knowledge graph defining the slot-value pairs the
system can talk about for a particular task.

5We don’t use the recurrent connection for requestable
slots since they don’t need to be tracked.

440



f tv,cnn is the concatenation of two CNN derived
features, one from processing the user input ut at
turn t and the other from processing the machine
response mt−1 at turn t− 1,

f tv,cnn = CNN(u)
s,v (ut)⊕ CNN(m)

s,v (mt−1) (6)

where every token in ut andmt−1 is represented by
an embedding of size N derived from a 1-hot input
vector. In order to make the tracker aware when
delexicalisation is applied to a slot or value, the
slot-value specialised CNN operator CNN(·)

s,v(·) ex-
tracts not only the top level sentence representation
but also intermediate n-gram-like embeddings de-
termined by the position of the delexicalised token
in each utterance. If multiple matches are observed,
the corresponding embeddings are summed. On the
other hand, if there is no match for a particular slot
or value, the empty n-gram embeddings are padded
with zeros. In order to keep track of the position of
delexicalised tokens, both sides of the sentence are
padded with zeros before each convolution opera-
tion. The number of vectors is determined by the
filter size at each layer. The overall process of ex-
tracting several layers of position-specific features
is visualised in Figure 2.

The belief tracker described above is based
on Henderson et al. (2014) with some modifica-
tions: (1) only probabilities over informable and
requestable slots and values are output, (2) the re-
current memory block is removed, since it appears
to offer no benefit in this task, and (3) the n-gram
feature extractor is replaced by the CNN extrac-
tor described above. By introducing slot-based
belief trackers, we essentially add a set of interme-
diate labels into the system as compared to train-
ing a pure end-to-end system. Later in the paper
we will show that these tracker components are
critical for achieving task success. We will also
show that the additional annotation requirement
that they introduce can be successfully mitigated
using a novel pipe-lined Wizard-of-Oz data collec-
tion framework.

2.3 Policy Network and Database Operator
Database Operator Based on the output pt

s of
the belief trackers, the DB query qt is formed by,

qt =
⋃

s′∈SI

{argmax
v

pt
s′} (7)

where SI is the set of informable slots. This query
is then applied to the DB to create a binary truth

value vector xt over DB entities where a 1 indi-
cates that the corresponding entity is consistent
with the query (and hence it is consistent with the
most likely belief state). In addition, if x is not
entirely null, an associated entity pointer is main-
tained which identifies one of the matching entities
selected at random. The entity pointer is updated
if the current entity no longer matches the search
criteria; otherwise it stays the same. The entity
referenced by the entity pointer is used to form the
final system response as described in Section 2.4.

Policy network The policy network can be
viewed as the glue which binds the system modules
together. Its output is a single vector ot represent-
ing the system action, and its inputs are comprised
of zt from the intent network, the belief state pt

s,
and the DB truth value vector xt. Since the genera-
tion network only generates appropriate sentence
forms, the individual probabilities of the categor-
ical values in the informable belief state are im-
material and are summed together to form a sum-
mary belief vector for each slot p̂t

s represented by
three components: the summed value probabilities,
the probability that the user said they "don’t care"
about this slot and the probability that the slot has
not been mentioned. Similarly for the truth value
vector xt, the number of matching entities mat-
ters but not their identity. This vector is therefore
compressed to a 6-bin 1-hot encoding x̂t, which
represents different degrees of matching in the DB
(no match, 1 match, ... or more than 5 matches).
Finally, the policy network output is generated by
a three-way matrix transformation,

ot = tanh(Wzozt +Wpop̂t +Wxox̂t) (8)

where matrices Wzo, Wpo, and Wxo are param-
eters and p̂t =

⊕
s∈G p̂t

s is a concatenation of all
summary belief vectors.

2.4 Generation Network

The generation network uses the action vector
ot to condition a language generator (Wen et al.,
2015b). This generates template-like sentences
token by token based on the language model prob-
abilities,

P (wt
j+1|wt

j ,h
t
j−1,ot) = LSTMj(w

t
j ,h

t
j−1,ot)

(9)
where LSTMj(·) is a conditional LSTM operator
for one output step j, wt

j is the last output token (i.e.
a word, a delexicalised slot name or a delexicalised
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slot value), and ht
j−1 is the hidden layer. Once

the output token sequence has been generated, the
generic tokens are replaced by their actual values:
(1) replacing delexicalised slots by random sam-
pling from a list of surface forms, e.g. <s.food> to
food or type of food, and (2) replacing delexicalised
values by the actual attribute values of the entity
currently selected by the DB pointer. This is simi-
lar in spirit to the Latent Predictor Network (Ling
et al., 2016) where the token generation process is
augmented by a set of pointer networks (Vinyals
et al., 2015) to transfer entity specific information
into the response.

Attentive Generation Network Instead of de-
coding responses directly from a static action vec-
tor ot, an attention-based mechanism (Bahdanau
et al., 2014; Hermann et al., 2015) can be used to
dynamically aggregate source embeddings at each
output step j. In this work we explore the use of an
attention mechanism to combine the tracker belief
states, i.e. ot is computed at each output step j by,

o
(j)
t = tanh(Wzozt + p̂

(j)
t +Wxox̂t) (10)

where for a given ontology G,

p̂
(j)
t =

∑

s∈G
α(j)
s tanh(Ws

po · p̂t
s) (11)

and where the attention weights α(j)
s are calculated

by a scoring function,

α(j)
s = softmax

(
rᵀ tanh(Wr · ut)

)
(12)

where ut = zt⊕ x̂t⊕ p̂t
s⊕wt

j⊕ht
j−1,matrix Wr,

and vector r are parameters to learn and wt
j is the

embedding of token wt
j .

3 Wizard-of-Oz Data Collection

Arguably the greatest bottleneck for statistical ap-
proaches to dialogue system development is the
collection of appropriate training data, and this
is especially true for task-oriented dialogue sys-
tems. Serban et al (Serban et al., 2015a) have
catalogued existing corpora for developing con-
versational agents. Such corpora may be useful for
bootstrapping, but, for task-oriented dialogue sys-
tems, in-domain data is essential6. To mitigate this
problem, we propose a novel crowdsourcing ver-
sion of the Wizard-of-Oz (WOZ) paradigm (Kelley,
1984) for collecting domain-specific corpora.

6E.g. technical support for Apple computers may differ
completely from that for Windows, due to the many differ-
ences in software and hardware.

Based on the given ontology, we designed two
webpages on Amazon Mechanical Turk, one for
wizards and the other for users (see Figure 4 and 5
for the designs). The users are given a task specify-
ing the characteristics of a particular entity that they
must find (e.g. a Chinese restaurant in the north)
and asked to type in natural language sentences
to fulfil the task. The wizards are given a form to
record the information conveyed in the last user
turn (e.g. pricerange=Chinese, area=north) and
a search table showing all the available matching
entities in the database. Note these forms contain
all the labels needed to train the slot-based belief
trackers. The table is automatically updated every
time the wizard submits new information. Based on
the updated table, the wizard types an appropriate
system response and the dialogue continues.

In order to enable large-scale parallel data collec-
tion and avoid the distracting latencies inherent in
conventional WOZ scenarios (Bohus and Rudnicky,
2008), users and wizards are asked to contribute
just a single turn to each dialogue. To ensure coher-
ence and consistency, users and wizards must re-
view all previous turns in that dialogue before they
contribute their turns. Thus dialogues progress in a
pipe-line. Many dialogues can be active in parallel
and no worker ever has to wait for a response from
the other party in the dialogue. Despite the fact that
multiple workers contribute to each dialogue, we
observe that dialogues are generally coherent yet
diverse. Furthermore, this turn-level data collection
strategy seems to encourage workers to learn and
correct each other based on previous turns.

In this paper, the system was designed to assist
users to find a restaurant in the Cambridge, UK area.
There are three informable slots (food, pricerange,
area) that users can use to constrain the search
and six requestable slots (address, phone, postcode
plus the three informable slots) that the user can
ask a value for once a restaurant has been offered.
There are 99 restaurants in the DB. Based on this
domain, we ran 3000 HITs (Human Intelligence
Tasks) in total for roughly 3 days and collected
1500 dialogue turns. After cleaning the data, we
have approximately 680 dialogues in total (some of
them are unfinished). The total cost for collecting
the dataset was ∼ 400 USD.

4 Empirical Experiments

Training Training is divided into two phases.
Firstly the belief tracker parameters θb are
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Table 1: Tracker performance in terms of Precision, Recall, and F-1 score.

Tracker
type

Informable Requestable

Prec. Recall F-1 Prec. Recall F-1

cnn 99.77% 96.09% 97.89% 98.66% 93.79% 96.16%
ngram 99.34% 94.42% 96.82% 98.56% 90.14% 94.16%

trained using the cross entropy errors between
tracker labels yt

s and predictions pt
s, L1(θb) =

−∑t

∑
s(y

t
s)

ᵀ logpt
s. For the full model, we have

three informable trackers (food, pricerange, area)
and seven requestable trackers (address, phone,
postcode, name, plus the three informable slots).

Having fixed the tracker parameters, the re-
maining parts of the model θ\b are trained
using the cross entropy errors from the gen-
eration network language model, L2(θ\b) =
−∑t

∑
j(y

t
j)

ᵀ logpt
j , where yt

j and pt
j are out-

put token targets and predictions respectively, at
turn t of output step j. We treated each dialogue
as a batch and used stochastic gradient decent with
a small l2 regularisation term to train the model.
The collected corpus was partitioned into a train-
ing, validation, and testing sets in the ratio 3:1:1.
Early stopping was implemented based on the vali-
dation set for regularisation and gradient clipping
was set to 1. All the hidden layer sizes were set to
50, and all the weights were randomly initialised
between -0.3 and 0.3 including word embeddings.
The vocabulary size is around 500 for both input
and output, in which rare words and words that can
be delexicalised are removed. We used three con-
volutional layers for all the CNNs in the work and
all the filter sizes were set to 3. Pooling operations
were only applied after the final convolution layer.

Decoding In order to decode without length
bias, we decoded each system response mt based
on the average log probability of tokens,

m∗t = argmax
mt

{log p(mt|θ, ut)/Jt} (13)

where θ are the model parameters, ut is the user
input, and Jt is the length of the machine response.

As a contrast, we also investigated the MMI cri-
terion (Li et al., 2016) to increase diversity and
put additional scores on delexicalised tokens to en-
courage task completion. This weighted decoding
strategy has the following objective function,

m∗t = argmax
mt

{ log p(mt|θ, ut)/Jt− (14)

λ log p(mt)/Jt + γRt}

where λ and γ are weights selected on validation
set and log p(mt) can be modelled by a standalone
LSTM language model. We used a simple heuris-
tic for the scoring function Rt designed to reward
giving appropriate information and penalise spu-
riously providing unsolicited information7. We
applied beam search with a beamwidth equal to 10,
the search stops when an end of sentence token is
generated. In order to obtain language variability
from the deployed model we ran decoding until we
obtained 5 candidates and randomly sampled one
as the system response.

Tracker performance Table 1 shows the eval-
uation of the trackers’ performance. Due to delex-
icalisation, both CNN type trackers and N-gram
type trackers (Henderson et al., 2014) achieve high
precision, but the N-gram tracker has worse recall.
This result suggests that compared to simple N-
grams, CNN type trackers can better generalise
to sentences with long distance dependencies and
more complex syntactic structures.

Corpus-based evaluation We evaluated the
end-to-end system by first performing a corpus-
based evaluation in which the model is used to pre-
dict each system response in the held-out test set.
Three evaluation metrics were used: BLEU score
(on top-1 and top-5 candidates) (Papineni et al.,
2002), entity matching rate and objective task suc-
cess rate (Su et al., 2015). We calculated the entity
matching rate by determining whether the actual
selected entity at the end of each dialogue matches
the task that was specified to the user. The dialogue
is then marked as successful if both (1) the offered
entity matches, and (2) the system answered all the
associated information requests (e.g. what is the
address?) from the user. We computed the BLEU
scores on the template-like output sentences before
lexicalising with the entity value substitution.

7We give an additional reward if a requestable slot (e.g.
address) is requested and its corresponding delexicalised slot
or value token (e.g. <v.address> and <s.address>) is gener-
ated. We give an additional penalty if an informable slot is
never mentioned (e.g. food=none) but its corresponding delex-
icalised value token is generated (e.g. <v.food>). For more
details on scoring, please see Table 5.
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Table 2: Performance comparison of different model architectures based on a corpus-based evaluation.

Encoder Tracker Decoder Match(%) Success(%) T5-BLEU T1-BLEU

Baseline
lstm - lstm - - 0.1650 0.1718
lstm turn recurrence lstm - - 0.1813 0.1861

Variant
lstm rnn-cnn, w/o req. lstm 89.70 30.60 0.1769 0.1799
cnn rnn-cnn lstm 88.82 58.52 0.2354 0.2429

Full model w/ different decoding strategy
lstm rnn-cnn lstm 86.34 75.16 0.2184 0.2313
lstm rnn-cnn + weighted 86.04 78.40 0.2222 0.2280
lstm rnn-cnn + att. 90.88 80.02 0.2286 0.2388
lstm rnn-cnn + att. + weighted 90.88 83.82 0.2304 0.2369

Table 2 shows the result of the corpus-based
evaluation averaging over 5 randomly initialised
networks. The Baseline block shows two baseline
models: the first is a simple turn-level sequence to
sequence model (Sutskever et al., 2014) while the
second one introduces an additional recurrence to
model the dependency on the dialogue history fol-
lowing Serban et al (Serban et al., 2015b). As can
be seen, incorporation of the recurrence improves
the BLEU score. However, baseline task success
and matching rates cannot be computed since the
models do not make any provision for a database.

The Variant block of Table 2 shows two variants
of the proposed end-to-end model. For the first one,
no requestable trackers were used, only informable
trackers. Hence, the burden of modelling user re-
quests falls on the intent network alone. We found
that without explicitly modelling user requests, the
model performs very poorly on task completion
(∼ 30%), even though it can offer the correct entity
most of the time(∼ 90%). More data may help
here; however, we found that the incorporation of
an explicit internal semantic representation in the
full model (shown below) is more efficient and
extremely effective. For the second variant, the
LSTM intent network is replaced by a CNN. This
achieves a very competitive BLEU score but task
success is still quite poor (∼ 58% success). We
think this is because the CNN encodes the intent by
capturing several local features but lacks the global
view of the sentence, which may easily result in an
unexpected overfit.

The Full model block shows the performance of
the proposed model with different decoding strate-
gies. The first row shows the result of decoding us-
ing the average likelihood term (Equation 13) while
the second row uses the weighted decoding strat-
egy (Equation 14). As can be seen, the weighted

decoding strategy does not provide a significant
improvement in BLEU score but it does greatly
improve task success rate (∼ 3%). The Rt term
contributes the most to this improvement because it
injects additional task-specific information during
decoding. Despite this, the most effective and ele-
gant way to improve the performance is to use the
attention-based mechanism (+att.) to dynamically
aggregate the tracker beliefs (Section 2.4). It gives
a slight improvement in BLEU score (∼ 0.01) and
a big gain on task success (∼ 5%). Finally, we can
improve further by incorporating weighted decod-
ing with the attention models (+ att. + weighted).

As an aside, we used t-SNE (der Maaten and Hin-
ton, 2008) to produce a reduced dimension view of
the action embeddings ot, plotted and labelled by
the first three generated output words (full model
w/o attention). The figure is shown as Figure 3.
We can see clear clusters based on the system in-
tent types, even though we did not explicitly model
them using dialogue acts.

Human evaluation In order to assess opera-
tional performance, we tested our model using paid
subjects recruited via Amazon Mechanical Turk.
Each judge was asked to follow a given task and
to rate the model’s performance. We assessed the
subjective success rate, and the perceived compre-
hension ability and naturalness of response on a
scale of 1 to 5. The full model with attention and
weighted decoding was used and the system was
tested on a total of 245 dialogues. As can be seen
in Table 3, the average subjective success rate was
98%, which means the system was able to complete
the majority of tasks. Moreover, the comprehen-
sion ability and naturalness scores both averaged
more than 4 out of 5. (See Appendix for some
sample dialogues in this trial.)

We also ran comparisons between the NN model
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Figure 3: The action vector embedding ot generated by the NN model w/o attention. Each cluster is
labelled with the first three words the embedding generated.

Table 3: Human assessment of the NN system. The
rating for comprehension/naturalness are both out
of 5.

Metric NN

Success 98%

Comprehension 4.11
Naturalness 4.05

# of dialogues: 245

and a handcrafted, modular baseline system (HDC)
consisting of a handcrafted semantic parser, rule-
based policy and belief tracker, and a template-
based generator. The result can be seen in Table 4.
The HDC system achieved ∼ 95% task success
rate, which suggests that it is a strong baseline
even though most of the components were hand-
engineered. Over the 164 dialogues tested, the
NN system (NN) was considered better than the
handcrafted system (HDC) on all the metrics com-
pared. Although both systems achieved similar suc-
cess rates, the NN system (NN) was more efficient
and provided a more engaging conversation (lower
turn number and higher preference). Moreover, the
comprehension ability and naturalness of the NN
system were also rated higher, which suggests that
the learned system was perceived as being more
natural than the hand-designed system.

5 Conclusions and Future Work

This paper has presented a novel neural network-
based framework for task-oriented dialogue sys-
tems. The model is end-to-end trainable using two

Table 4: A comparison of the NN system with a
rule-based modular system (HDC).

Metric NN HDC Tie

Subj. Success 96.95% 95.12% -
Avg. # of Turn 3.95 4.54 -

Comparisons(%)
Naturalness 46.95* 25.61 27.44
Comprehension 45.12* 21.95 32.93
Preference 50.00* 24.39 25.61
Performance 43.90* 25.61 30.49

* p <0.005, # of comparisons: 164

supervision signals and a modest corpus of training
data. The paper has also presented a novel crowd-
sourced data collection framework inspired by the
Wizard-of-Oz paradigm. We demonstrated that the
pipe-lined parallel organisation of this collection
framework enables good quality task-oriented dia-
logue data to be collected quickly at modest cost.

The experimental assessment of the NN dialogue
system showed that the learned model can interact
efficiently and naturally with human subjects to
complete an application-specific task. To the best
of our knowledge, this is the first end-to-end NN-
based model that can conduct meaningful dialogues
in a task-oriented application.

However, there is still much work left to do.
Our current model is a text-based dialogue sys-
tem, which can not directly handle noisy speech
recognition inputs nor can it ask the user for con-
firmation when it is uncertain. Indeed, the extent
to which this type of model can be scaled to much
larger and wider domains remains an open question
which we hope to pursue in our further work.
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Wizard-of-Oz data collection websites

Figure 4: The user webpage. The worker who plays a user is given a task to follow. For each mturk
HIT, he/she needs to type in an appropriate sentence to carry on the dialogue by looking at both the task
description and the dialogue history.

Figure 5: The wizard page. The wizard’s job is slightly more complex: the worker needs to go through
the dialogue history, fill in the form (top green) by interpreting the user input at this turn, and type in
an appropriate response based on the history and the DB result (bottom green). The DB search result is
updated when the form is submitted. The form can be divided into informable slots (top) and requestable
slots (bottom), which contains all the labels we need to train the trackers.

Scoring Table

Table 5: Additional Rt term for delexicalised tokens when using weighted decoding (Equation 14). Not
observed means the corresponding tracker has a highest probability on either not mentioned or dontcare
value, while observed mean the highest probability is on one of the categorical values. A positive score
encourages the generation of that token while a negative score discourages it.

Delexicalised token Examples Rt (observed) Rt (not observed)

informable slot token <s.food>, <s.area>,... 0.0 0.0
informable value token <v.food>, <v.area>,... +0.05 -0.5
requestable slot token <s.phone>,<s.address>,... +0.2 0.0
requestable value token <v.phone>,<v.address>,... +0.2 0.0
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and Andrew Senior. 2016. Latent predictor networks
for code generation. In ACL, pages 599–609, Berlin,
Germany, August. ACL.

Tomáš Mikolov, Martin Karafiat, Lukáš Burget, Jan
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Hao Su, David Vandyke, and Steve Young. 2016.
Multi-domain neural network language generation
for spoken dialogue systems. In NAACL-HLT, pages
120–129, San Diego, California, June. ACL.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken
language understanding using long short-term mem-
ory neural networks. In IEEE SLT, pages 189–194,
December.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2015. Neural enquirer: Learning to query tables.
arXiv preprint:1512.00965.

Steve Young, Milica Gašić, Simon Keizer, François
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Appendix: Sample dialogues

Table 6: Some samples of real conversational logs between online judges and the end-to-end system.
Human : Restaurant in any area that serves Vietnamese food
Machine : thanh binh serves vietnamese food type , is there anything else i can help you with ?
Human : What is the phone number and post code
Machine : the number is 01223 362456 and the area code is c.b 3, 0 a.f . is there anything else i can do for you ?
Human : Good bye
Machine : thank you for using the cambridge restaurant system .

Human : i am looking for moderately priced halal food
Machine : i am sorry , there are no halal restaurants in the moderate price range . would you like something else ?
Human : how about european food
Machine : galleria serves european food type and is in the moderate price range .
Human : address and postcode
Machine : the address is 33 bridge street and the area code is c.b 2, 1 u.w . is there anything else i can help you with today ?
Human : thanks
Machine : galleria is a european restaurant in the moderate price range . would you like their phone ?
Human : thank you
Machine : thank you for using the cambridge restaurant system . good bye

Human : Hi, I’m hungry for some Indonesian food
Machine : i am sorry , there are no indonesian restaurants . would you like a different food ?
Human : Oh no. How about Indian?
Machine : there are 9 restaurants serving indian types of food . do you have a preference on side of town ?
Human : East side please
Machine : sitar tandoori is a indian restaurant in the east side of town . would you like their information ?
Human : Yes, the address and phone number please
Machine : sitar tandoori is located at 43 high street cherry hinton cherry hinton and their phone number is 01223 249955 .
Human : Okay, thank you
Machine : thank you , goodbye .

Human : hello
Machine : what cuisine would you like ?
Human : afghan
Machine : i am sorry , there are no afghan restaurants . would you like something else ?
Human : korean
Machine : little seoul serves korean food , it is located at 108 regent street city centre .
Human : is it expensive?
Machine : little seoul serves korean food and is in the expensive price range .
Human : what area is that
Machine : little seoul is located in the centre area of town . would you like their number ?
Human : yes
Machine : the telephone number is 01223 308681 . is there anything else i can help you with today ?
Human : no goodbye
Machine : thank you for using the cambridge restaurant system , goodbye .

Human : I want to find a restaurant in the east part of town that serves creative food
Machine : i am sorry , there are no creative restaurants in the east side of town . would you like a different restaurant ?
Human : how about indian food?
Machine : curry prince is a indian restaurant in the east of town . would you like their phone number ?
Human : yes, may i have the address and phone number?
Machine : curry prince is located at 451 newmarket road fen ditton and their phone is 01223 566388 . is there anything else i can help you with today ?
Human : no, thank you goodbye
Machine : thank you for using the cambridge restaurant system . good bye

Machine : what food are you interested ?
Human : english
Machine : i am sorry , there are no english restaurants . would you like to try a different food type ?
Human : chinese
Machine : there are 8 restaurants serving chinese type of cuisine . do you have a preference of area ?
Human : south part
Machine : the good luck chinese food takeaway is a chinese restaurant in the south of town . would you like the phone number ?
Human : no. just address and price range
Machine : the good luck chinese food takeaway is located at 82 cherry hinton road cherry hinton . is there anything else i can help you with ?
Human : what is their price range?
Machine : the good luck chinese food takeaway is expensively priced chinese restaurant in the south area . would you like more information ?
Human : no goodbye
Machine : thank you for using the cambridge restaurant system . good bye .

Human : Is there a gastropub anywhere around here?
Machine : there are 3 gastropub restaurants . would you like more information ?
Human : Is there one on the west side?
Machine : i am sorry , there are no gastropub restaurants in the west side of town . would you like something else ?
Human : How about east?
Machine : royal standard is a gastropub restaurant in the east of town .
Human : What’s the address?
Machine : the address is 290 mill road city centre .
Human : Thanks, bye
Machine : thank you for using the cambridge restaurant system . good bye
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Abstract

In this paper we tackle a unique and im-
portant problem of extracting a structured
order from the conversation a customer
has with an order taker at a restaurant.
This is motivated by an actual system un-
der development to assist in the order tak-
ing process. We develop a sequence-to-
sequence model that is able to map from
unstructured conversational input to the
structured form that is conveyed to the
kitchen and appears on the customer re-
ceipt. This problem is critically differ-
ent from other tasks like machine trans-
lation where sequence-to-sequence mod-
els have been used: the input includes
two sides of a conversation; the out-
put is highly structured; and logical ma-
nipulations must be performed, for ex-
ample when the customer changes his
mind while ordering. We present a novel
sequence-to-sequence model that incorpo-
rates a special attention-memory gating
mechanism and conversational role mark-
ers. The proposed model improves per-
formance over both a phrase-based ma-
chine translation approach and a standard
sequence-to-sequence model.

1 Introduction

Extracting structured information from unstruc-
tured text is a critically important problem in nat-
ural language processing. In this paper, we attack
a deceptively simple form of the problem: under-
standing what a customer wants when ordering at a
restaurant. In this problem, we seek to convert the
conversation between the customer and the order
taker, i.e. the waiter or waitress, into the structured
form that is conveyed to the kitchen to prepare the
food, and which appears on the customer receipt.

Hi, how can I help you ?
We’d like a large cheese pizza.
Any toppings?
Yeah, how about pepperoni and two diet cokes.
What size?
Uh, medium and make that three cokes.
Anything else?
A small Caesar salad with the dressing on the side
Sure, is that it?
Yes, that’s all, thanks.

Waiter:
Customer:
Waiter:
Customer:
Waiter:
Customer:
Waiter:
Customer:
Waiter:
Customer:

Figure 1: A conversation example of an order-
taking interaction at a restaurant.

Item Size Qty Modifiers
Pizza large 1 add pepperoni
Caesar Salad small 1 side dressing
Diet Coke medium 3

Table 1: An example of the structured data record
corresponding to the conversation in Figure 1

We develop this system to analyze real-time in-
teractions with the aim of discovering errors in the
order-entry process. Note that the objective is to
analyze the interaction and suggest corrections to
the human order-taker. Thus, we take both sides
of the order-taking interaction as input, and are not
attempting to predict the order-taker’s side of the
conversation.

While we focus on the restaurant domain in
this work, this problem is relevant in any scenario
in which a conversation results in the creation of
structured information. Other examples include
a sales interaction which results in a purchase or-
der, a call to a help desk which results in a service
record, or a conversation with a travel agent that
results in an itinerary.

An example of the problem of interest is shown
in Figure 1. The structured data record that cor-
responds to this conversation is shown in Table 1.
There are several things to note about this exam-
ple:
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• The output is a stylized and structured repre-
sentation of the input

• The items in the structured order may appear
in a different sequence than they are men-
tioned

• Inference occurs across turns, for example
that “medium” applies to the coke and not the
pizza whose size was earlier specified

• Logical manipulations must be done, for ex-
ample changing the number of cokes from
two to three

• In contrast to machine translation, we do not
wish to create a verbatim “translation” of the
input, but instead a logical distillation of it

To attack this problem, we implemented two
baselines and several sequence-to-sequence mod-
els. The first baseline is an information-retrieval
approach based on a TF-IDF match (Salton et al.,
1975) which finds the most similar conversation in
the training data, and returns the associated order.
The second uses phrase-based machine translation
(Koehn et al., 2003) to “translate” from the conver-
sational input to the tokens in the structured order.
We compare these to a sequence-to-sequence (s2s)
model with attention (Chan et al., 2016; Bahdanau
et al., 2014; Devlin et al., 2015; Yao and Zweig,
2015; Sutskever et al., 2014; Mei et al., 2016),
and then extend the s2s model with the addition
of a gating mechanism on the attention memory
and with an auxiliary input that indicates the con-
versational role of the speaker (customer or order-
taker). We show that it is in fact possible to extract
the orders from conversations recorded at a real
restaurant 1, and achieve an F measure of over 70
from raw text and 65 from ASR transcriptions.

2 Problem Formulation

The precise problem setting in this paper is as fol-
lows. The training data consists of input/output
pairs of examples (X1, Y1), . . . , (XN , YN ), where
Xk is a conversation consisting of several utter-
ances, similar to the example shown in Figure 1,
and Yk is the corresponding structured data record
such as the one in Table 1.

1The restaurant will remain anonymous for business rea-
sons, and we have changed the names of menu items in our
examples accordingly.

GRU

Attention	layer

M
em

.

GRU

Cu.		:	We’d	 like	a	large	pizza
Wa.	:	Any	topping
Cu.		:	pepoeroni

(Large	Pizza,	Qty=1,	
add	peperoni)

Figure 2: An input unstructured conversation and
the corresponding structured record.

Given a conversation Xk, the goal of our model
is to extract the structured data record Yk so that:

Yk = argmax
Y

logP (Y |Xk) (1)

We cast this task as a sequence modeling prob-
lem which aims to map the sequence of words
in a conversation Xk to the sequence of tokens
in the corresponding structured data record Yk.
The input sequence is formed by concatenating
the utterances in the conversation, while the out-
put sequence is formed by concatenating the rows
in the structured data record. For example, the
utterances in the conversation shown in Figure
1 are concatenated to predict the sequence y =
Pizza, size=large, qty=1, modifiers=(add pepper-
oni) | Diet Coke, size=medium, qty=3 | Caesar
Salad, size=small, qty=1, modifiers=(side dress-
ing) which is derived from Table 1. Under this se-
quential model, the conditional probability of the
structured data record Y given the observed con-
versation X can be written as

P (Y |X, θ) =
T∏

t=1

P (yt|y1:t−1, X, θ) (2)

where y1:t−1 denotes the first t − 1 terms in the
structured data record and θ represents the model
parameters.

3 Model

The proposed model is based on an encoder-
decoder architecture with attention (Bahdanau et
al., 2014), as shown in Figure 2. The encoder net-
work reads the input conversation X one word at
a time and updates its hidden state ht according to
current input wt and previous hidden state ht−1,

ht = fe(wt, ht−1), t ∈ {1, · · · ,M} (3)

where fe is a nonlinear function which is elabo-
rated in the following section. After reading all
the tokens, the encoder network yields a context
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vector c as the representation of the entire conver-
sation.

The decoder then processes this representa-
tion and generates a hypothesized structured data
record Y as an output sequence, word by word
given the context vector c and all previous pre-
dicted tokens. The conditional probability can be
expressed as follows:

P (yt|y1, · · · , yt−1,X) = fd(yt−1, st, c) (4)

st = g(yt−1, st−1, c) t ∈ {1, · · · , N} (5)

where fd and g are nonlinear functions and st is
the hidden state of decoder at time t. Critically,
our decoder also utilizes an attention mechanism,
which stores the intermediate encoder representa-
tions of each input word for use by the decoder.

Two improvements to the conventional encoder-
decoder model architecture are proposed in this
work. First, we incorporate gates controlled by the
encoder into the neural attention memory to adap-
tively modulate the representations in the memory
based on their semantic importance. Second, we
propose a way to incorporate conversational role
information into the model to reflect the fact that
different participants in a multi-party interaction
have different roles and the meaning of certain ut-
terances may be dependent on the speaker’s role.

A detailed illustration of the proposed model is
shown in Figure 3. We elaborate on each compo-
nent of this model in the following sections.

3.1 Encoder Network

The encoder network is designed to generate a se-
mantically meaningful representation of unstruc-
tured conversations. Several neural network ar-
chitectures have been proposed for this purpose,
including CNNs (Kalchbrenner et al., 2014; Hu
et al., 2014), RNNs (Sutskever et al., 2014) and
LSTMs (Hochreiter and Schmidhuber, 1997). In
this work, we use an encoder constructed from a
recurrent neural network with gated RNN units
(GRU) (Cho et al., 2014). The GRU has been
shown to alleviate the gradient vanishing problem
of RNNs, enabling the model to learn long term
dependencies in the input sequence. GRUs have
been shown to perform comparably to LSTMs
(Chung et al., 2014).

At time t, the new state of a GRU is computed
as follows:

ℎ1

ℎ1

ℎ2

ℎ2

ℎ3

ℎ3

𝑊𝑔

𝑤1 𝑤2 𝑤3

𝑔1 𝑔2 𝑔3

𝑐1 𝑐2 𝑐3

…

…

…

+

𝑠𝑡−1

𝑠𝑡a𝑡

𝑦𝑡

α1 α2 α3 𝑦𝑡−1

Figure 3: Graphical structure of memory-gated
encoder-decoder model with attention mechanism.
w1 represents input;

−→
h1 and

←−
h1 are the hidden

states of forward and backward GRUs, respec-
tively. g1, α1 represent the context gates and atten-
tion weights, respectively. Small dot node means
element-wise product.

zt = σ(Wzxt + Uzht−1 + bz) (6)

rt = σ(Wrxt + Urht−1 + br) (7)

ĥt = tanh(Whxt + Uh(rt � ht−1)) (8)

ht = (1− zt)� ht−1 + zt � ĥt (9)

where � stands for element-wise multiplica-
tion. W , U are weight matrixes applied to input
and previous hidden state, respectively .ht is a lin-
ear combination of the previous state ht−1 and the
hypothesis state ĥt. ĥt is computed with new se-
quence information. The update gate, zt, controls
to what extent the past information is kept and how
much new information is added. The reset gate, rt,
controls to what extent the history state contributes
to the hypothesis state. If rt is zero, then GRU ig-
nores all the history information.

The conversation encoding is obtained by con-
catenating the GRU hidden state vectors from the
forward and backward directions. Thus the en-
coder operation can be summarized as follows

xt = Wewt, t ∈ [1, T ] (10)
−→
ht =

−−−→
GRU(xt), t ∈ [1, T ] (11)

←−
ht =

←−−−
GRU(xt), t ∈ [T, 1] (12)

h+t =
−→
ht ⊕

←−
ht (13)
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wherewt is the one-hot input vector,We is the em-
bedding matrix, and xt is the word embedding for
wt. The functions

−−−→
GRU(xt) and

←−−−
GRU(xt) repre-

sent the GRU operating in the forward and back-
ward directions, respectively, with processing de-
fined by equations 6–9.

This produces a sequence of context vectors, h+t
which are subsequently consumed by an attention
mechanism in the decoder. We use the final atten-
tion vector h+T to initialize the hidden state of the
decoder.

3.2 Memory Gate

In most sequence-to-sequence tasks such as ma-
chine translation, every word in the input is im-
portant. However, in our scenario, where the input
to the system is conversational speech, not all the
words in the conversation contribute to the predic-
tion of structured data record. For example, it is
reasonable to ignore the chit-chat that is present in
many conversations. Further, in other tasks, gat-
ing mechanisms have been shown to be useful to
dynamically select important information (Yao et
al., 2015; Hochreiter and Schmidhuber, 1997; Tu
et al., 2016).

In light of this, we propose the use of an addi-
tional memory gate to select important informa-
tion from the memory vector. The memory gate
we use consists of a single-layer feed-forward neu-
ral network

gt = σ(Wgh
+
t + bg) (14)

where σ is a sigmoid activation function and Wg

and bg are weight matrix and bias, respectively,
and h+t is the context vector at time t defined in
equation 10. The gate is then applied to the con-
text vector h+t using an element-wise multiplica-
tion operation.

ct = gt � h+t (15)

After applying memory gate, the gated context
vector ct is then fed into attention memory of the
decoder network in place of the original context
vector h+t . Figure 4 illustrates an example of the
gating weights for a sample utterance. The darker
colors indicates values close to 1 while the lighter
colors indicate values close to 0. As the figure
shows, the network learns to suppress semanti-
cally unimportant words.

3.2.1 Role Information
In many sequence-to-sequence models, there is no
notion of different speakers with different roles.
Inspired by the work in dialog generation (Li et al.,
2016) and spoken language understanding (Hori
et al., 2016), we propose the addition of speaker
information into the encoder network to explicitly
model the interaction patterns of the customer and
order-taker.

Specifically we learn separate word and role
embeddings, and concatenate them to form the in-
put. The input to the encoder network becomes:

xwt = Wewt, t ∈ [1, T ] (16)

xrt = Wrrt, t ∈ [1, T ] (17)

xt = xwt ⊕ xrt , t ∈ [1, T ] (18)

3.3 Decoder Network

The decoder network is used to predict the next
word given all the previously predicted words and
the context vectors from the encoder network (Lu-
ong et al., 2015; Bahdanau et al., 2014).

We use an RNN with GRU units to predict each
word yt sequentially based on the previously pre-
dicted word yt−1 and the output of the attention
process at that computes a weighted combination
of the context vectors in memory.

If we define st as the hidden layer of the decoder
at time t, the decoder’s operation can be expressed
as

st =
−−−→
GRU(yt−1 ⊕ at) (19)

yt = softmax(Wost + bo) (20)

where yt−1 ⊕ at is the concatenation of the pre-
viously predicted output yt−1 and the output of
the attention process at, and

−−−→
GRU(·) is defined

by equations 6–9, as before.
The attention vector at is computed as a linear

combination of the gated context vectors gener-
ated by the encoder network. This can be written
as

at =

M∑

j=1

αijcj (21)

where the weights αij are computed as

αij =
exp(eij)∑N
k=1 exp(eik)

(22)
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A single-layer feed-forward neural network is
used to compute eij as

eij = V T
a tanh(Wast−1 + Uacj) (23)

where Va, Wa, and Ua are weight matrices.

3.4 Model Training

The model is trained to maximize the log proba-
bility of the structured data records given the cor-
responding conversation,

∑

(Yk,Xk)∈D
logP (Yk|Xk) (24)

where D is the set containing all the training pairs
and P (Yk|Xk) is computed with equation 2. The
standard adadelta algorithm (Zeiler, 2012) is used
for parameter updates. Gradients are clipped to 1
to avoid exponentially increasing values (Pascanu
et al., 2013).

4 Experiments

In this section, we evaluate our proposed model
on two data sets and compare performance with
several baseline systems.

4.1 Data sets

We conducted experiments on a corpus of con-
versations between a customer and an order taker
(waiter or waitress) captured in a real restaurant
environment. The conversations were manually
transcribed by professional annotators. There are
4823 examples in the training set, 543 in the de-
velopment (dev) set, and 843 in the test set. There
are approximately 260 unique items in the record
and 150 unique modifiers on these items, but not
all modifiers apply to all items. We experimented
with two version of the dev and test sets. The first
is manually transcribed in the same manner as the
training set, while the second is generated by a
speech recognition decoder that was trained on the
conversations in the training set. We denote the
second set as ASR-dev and ASR-test. Table 2 lists
the statistics of the data sets. Note that the audio
of a conversation was collected as a single file and
then automatically segmented into turns for ASR
decoding. This process was not perfect and likely
introduced some errors. Thus, the average length
and number of turns of differ between the ASR
transcriptions and the manual transcriptions.

Data Avg Avg Avg
Set Turns Length # Items

Training 8.8 53.5 3.7
Dev 9.7 57.07 3.8
Test 8.7 50.96 3.5

ASR-Dev 8.5 49.8 3.8
ASR-Test 7.8 44.7 3.5

Table 2: Statistics of the experimental corpus. The
table denotes the average number of utterances in
a conversation, average length of a conversation in
words, and average number of items in an order.

4.2 Experimental setup

All words are lower-cased and an unknown word
token is used for words which appear less than
four times in the training set. The word embed-
ding matrix is initialized by randomly sampling
from a normal distribution, and scaled by 0.01.
The recurrent connections of the GRU are initial-
ized with orthogonal matrices (Saxe et al., 2013)
and biases are initialized to zero. A single layer
GRU is used for both the encoder and decoder.
The network has 600 hidden units and uses 300-
dimensional word embeddings. The dropout rate
is set to 0.5. We did not tune hyper-parameters
except for the dimension of the role embedding
which is selected from {3, 5, 10} on the dev set.
During inference, we use beam search decod-
ing with a beam of 5 to generate the structured
records. In order to decode without a length bias,
the log probability of decoded results is normal-
ized by the number of tokens.

4.3 Evaluation

A typical metric to evaluate a generation system
is BLEU score (Papineni et al., 2002) which uses
ngram overlap to quantify the degree to which a
hypothesis matches the reference. However, our
scenario is more demanding: order items are ei-
ther correct or incorrect. Therefore, we adopt pre-
cision and recall at the item level as our evaluation
metric. Note that an item is defined as a row in the
structured data record and typically includes mul-
tiple fields. Using Table 1 as an example, there
are three items to be scored. Only when the model
produces an item that is exactly the same as the
reference item do we count it as correct. As an
additional measure, we report accuracy of the en-
tire order, in which every item in an order must be
correct for the order to be counted as correct.
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Model Dev Test
Gate Role Recall Prec F1 Accy Recall Prec F1 Accy

IR - - 26.5 22.7 24.5 11.4 29.7 25.6 27.5 14.1
PBMT - - 64.4 19.3 35.2 29.3 62.6 20.8 36.0 28.4
NAM - - 64.9 70.9 67.9 45.7 68.4 71.3 69.8 48.1
NAM - X 65.6 71.6 68.6 45.3 68.8 72.9 70.8 49.1
NAM X - 67.6 72.7 70.1 46.2 68.3 74.1 71.1 48.5
NAM X X 66.9 71.6 69.2 48.8 70.2 72.3 71.2 51.8

Table 3: Results of different methods on dev and test set. Human transcriptions are used.

Model Dev Test
Gate Role Recall Prec F1 Accy Recall Prec F1 Accy

IR - - 21.9 18.9 20.3 6.9 25.7 19.3 23.8 10.2
PBMT - - 56.8 20.4 34.1 23.3 56.9 21.5 35.0 24.7
NAM - - 56.7 63.5 60.0 36.9 60.3 66.7 63.4 40.6
NAM - X 57.1 64.7 60.8 38.1 62.5 67.4 64.9 42.5
NAM X - 57.0 64.6 60.7 39.2 60.3 68.3 64.2 40.8
NAM X X 58.5 65.2 61.8 40.5 63.0 68.4 65.7 45.9

Table 4: Results of different methods on ASR-dev and ASR-test set.

4.4 Baseline systems

We compare the performance of our neural model
with baseline models that employ information re-
trieval (IR) and phrase-based machine translation
(PBMT) approaches.

IR: The IR method treated the training set of
transcriptions as a collection of documents, each
mapped to a corresponding order. The test conver-
sation was used as a query to find the most similar
training set conversation. The corresponding or-
der was returned as the estimated order. In our ex-
periment, we use TFIDF to compute the similarity
score.

PBMT: The goal of a phrase-based translation
model is to map a conversation into its structured
record with alignment and language models. In
our experiments, we use the Moses decoder, a
state-of-the-art phrase-based MT system available
for research purposes. We use GIZA++ (Och and
Ney, 2003) to learn word alignment and irstlm to
learn the language model. The models are trained
on the conversation/order pairs in the training set
and used to predict the structured data record given
a conversation.

4.5 Results

First we discuss the performance of our models
on manually transcribed data and then examine the
results on ASR recognized data. Table 3 lists the
experiment results on manually transcribed dev
and test sets. We refer to our model as the neu-
ral attention model (NAM). We see that the NAM
is superior to both the IR and PBMT methods
by a large margin. Both the proposed memory
gate and role modifications yield improvements
over the basic NAM. When combined, these pro-
duce the best performance in terms of accuracy
on the dev set, and both F1 and accuracy on the
test set. While there are only small differences in
the scores among some of the NAM methods, we
are unaware of a measure of statistical significance
suitable for this task.

Though not reported, we also found that a ba-
sic encoder-decoder s2s model without attention
performs poorly; it cannot summarize information
across multiple turns into a single vector. The at-
tention mechanism, acting on the entire encoding
sequence, is critical in our task.

Table 4 shows results on the ASR-dev and ASR-
test sets. These data sets are quite noisy since the
speech recognizer in this domain has a word error
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Figure 4: Example of memory gate weights at each time stamp.

(a) Attention weight of NAM (b) Attention weight of NAM with memory gate

Figure 5: Examples of attention weights of models (a) without memory gate and (b) with memory gate.
(b) shows sparse and more focused attention weights. (Better viewed in color.)

rate around 25%. With this noisy data, we find that
the memory gate and role additions consistently
improve performance. When combined, both F1
and accuracy improved.

4.6 Qualitative analysis

Figure 6 shows a sample input and the output from
each model. We see that the NAM augmented with
memory gates and role information successfully
captures the interaction and generates the correct
record.

To better understand the proposed model, we
visualize the attention weight at each time step
in Figure 5. The figure compares the attention
weights produced by a conventional context mem-

ory and the proposed gated context memory. We
see that both models are able to learn good soft
alignment between the input conversation and the
output structured data record. However, the atten-
tion weights in 5(b), with our proposed gated at-
tention mechanism, are sparser than those in 5(a)
and better able to ignore uninformative terms in
the input.

5 Related Work

There has been much work on information extrac-
tion from single utterances. Kate and Mooney
(2006) proposed the use of SVM classifiers based
on string kenels to parse natural language to
a formal meaning representation. Wong and
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My	name’s	Alexis	how	can	I	help	you.
Yeah	can	I	get	a	cheese pizzacombo?
Something todrink?
Change	that	to	a	mushroompizza
combowith	a	large	sprite no	ice.
Okay.
Thank	you.
Thank	you.

Waiter:
Customer:
Waiter:
Customer:

Waiter:
Customer:
Waiter:

NAM:	
Cheese Pizza,Qty=1,Combo=True
Sprite,Size=Lrg,Qty=1,Modifier=(no ice );
Caesar Salad, Size=Med,Qty=1

NAM +Memory Gate:	
Cheese Pizza,Qty=1,Combo=True
Sprite,Size=Lrg,Qty=1,Modifier=(no ice );
Caesar Salad, Size=Med,Qty=1
Mushroom	Pizza,	Qty=1,	Combo=True
Sprite,Size=Lrg,Qty=1,Modifier=(no ice );
Caesar Salad, Size=Med,Qty=1

NAM +Memory Gate	+	Role:	
Mushroom	Pizza,	Qty=1,	Combo=True
Sprite,Size=Lrg,Qty=1,Modifier=(no ice );
Caesar Salad, Size=Med,Qty=1

Figure 6: Examples of outputs generated by each
model for the conversation in first row.

Mooney (2006) used syntax-based statistical ma-
chine translation method to do semantic parsing.
Translation of natural language to a formal mean-
ing representation is captured by a synchronous
context-free grammar in (Wu, 1997; Chiang et al.,
2006). Quirk et al. (2015) created models to map
natural language descriptions to executable code
using productions from the formal language. Belt-
agy and Quirk (2016) improved the performance
of semantic parsing on If-Then statements by us-
ing neural networks to model derivation trees and
leveraged several techniques like synthetic train-
ing data from paraphrases and grammar combina-
tions to improve generalization and reduce over-
fitting. In addition, there are some other research
works focusing on text generation from structured
data records. Angeli et al. (2010) proposed of a
domain independent probabilistic approach to per-
forming content selection and surface realization,
making text generation as a local decision process.
Konstas and Lapata (2013) created a global model
to generate text from structured records, which
jointly modeled content selection and surface real-
ization with a probabilistic context-free grammar.
In contrast, in this paper we focus on generating
structured data records from text descriptions.

Using spoken language understanding tech-
niques, (Mesnil et al., 2015) tag each word in a
sentence with a predefined slot. A dialog model-
ing approach (Young et al., 2013) is also relevant
to our task. However, this approach requires the
definition of semantic slot names and human la-
beling of dialog acts in each utterance.

There are a number of relevant applications of
neural attention models. Nallapati et al. (2016)
proposed using sequence to sequence model to
summarize source code into natural language; they
used a LSTM as encoder and another attentional
LSTM and decoder to jointly learn content selec-
tion and realization. Dong and Lapata (2016) pre-
sented a sequence to sequence model with a tree
structure decoder to map natural language to its
logical form. The tree structure decoder shows
superior performance on data that has nested out-
put structure. It has also been used in other do-
mains including machine translation (Sutskever et
al., 2014; Bahdanau et al., 2014), and image cap-
tion generation (Fang et al., 2015). From this
perspective, the most related work is (Mei et al.,
2016) in which they proposed using a sequence-to-
sequence model to map navigational instructions
in natural language to actions, which is conceptu-
ally similar to our work. However, we start from
conversations and our structured data records are
more complex.

6 Conclusion

In this paper we have presented an end to
end method for extracting structured information
from unstructured conversations using an encoder-
decoder neural network. The restaurant-ordering
domain we study is distinguished from past work
by its conversational nature, and the need to han-
dle user corrections and modifications. We incor-
porate a memory gate and role information into
the encoder network to selectively keep impor-
tant information and capture interaction patterns
between conversation participants. Experimental
results on both a human transcribed data set and
ASR-recognized data set demonstrate the feasibil-
ity and effectiveness of our approach.
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Abstract

We present a deterministic sieve-based
system for attributing quotations in literary
text and a new dataset: QuoteLi31. Quote
attribution, determining who said what in
a given text, is important for tasks like
creating dialogue systems, and in newer
areas like computational literary studies,
where it creates opportunities to analyze
novels at scale rather than only a few at
a time. We release QuoteLi3, which con-
tains more than 6,000 annotations linking
quotes to speaker mentions and quotes to
speaker entities, and introduce a new al-
gorithm for quote attribution. Our two-
stage algorithm first links quotes to men-
tions, then mentions to entities. Using two
stages encapsulates difficult sub-problems
and improves system performance. The
modular design allows us to tune either
for overall performance or for the high
precision appropriate for many use cases.
Our system achieves an average F-score
of 87.5% across three novels, outperform-
ing previous systems, and can be tuned for
precision of 90.4% at a recall of 65.1%.

1 Introduction

Dialogue, representing linguistic and social rela-
tionships between characters, is an important com-
ponent of literature. In this paper, we consider the
task of quote attribution for literary text: identify-
ing the speaker for each quote. This task is im-
portant for developing realistic character-specific
conversational models (Vinyals and Le, 2015; Li
et al., 2016), analyzing discourse structure, and lit-
erary studies (Muzny et al., 2016). But identifying
speakers can be difficult; authors often refer to the

1Quotes in Literary text from 3 novels.

speaker only indirectly via anaphora, or even omit
mention of the speaker entirely (Table 1).

Prior work has produced important datasets la-
beling quotes in novels, providing training data for
supervised methods. But some of these model the
quote-attribution task at the mention-level (Elson
and McKeown, 2010; O’Keefe et al., 2012), and
others at the entity-level (He et al., 2013), leading
to labels that are inconsistent across datasets.

We propose entity-level quote attribution as the
end goal but with mention-level quote attribution
as an important intermediary step. Our first con-
tribution is the QuoteLi3 dataset, a unified combi-
nation of data from Elson and McKeown (2010)
and He et al. (2013) with the addition of more
than 3,000 new labels from expert annotators. This
dataset provides both mention and entity labels for
Pride and Prejudice, Emma, and The Steppe.

Next, we describe a new deterministic system
that models quote attribution as a two-step process
that i) uses textual cues to identify the mention that
corresponds to the speaker of a quote, and ii) re-
solves the mention to an entity. This system im-
proves over previous work by 0.8-2.1 F1 points
and its modular design makes it easy to add sieves
and incorporate new knowledge.

In summary, our contributions are:
• A unified dataset with both quote-mention

and quote-speaker links labeled by expert an-
notators.
• A new quote attribution strategy that im-

proves on all previous algorithms and allows
the incorporation of both rich linguistic fea-
tures and machine learning components.
• A new annotation tool designed with the

specifics of this task in mind.
We freely release the data, system, and annotation
tool to the community.2

2nlp.stanford.edu/˜muzny/quoteli.html
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Type Example Speaker
Explicit “Do you really think so?” cried Elizabeth, brightening up ... Elizabeth Bennet
Anaphoric
(pronoun)

“You are uniformly charming!” cried he, with an air of awkward
gallantry;

Mr. Collins

Anaphoric
(other)

“I see your design, Bingley,” said his friend. Mr. Darcy

Implicit “Then, my dear, you may have the advantage of your friend, and
introduce Mr. Bingley to her.”

Mr. Bennet

“Impossible, Mr. Bennet, impossible, when I am not acquainted
with him myself; how can you be so teazing?”

Mrs. Bennet

“I honour your circumspection. [...] I will take it on myself.” Mr. Bennet
The girls stared at their father. Mrs. Bennet said only, “Nonsense,
nonsense!”

Mrs. Bennet

Table 1: Quotes where speakers are mentioned explicitly, by anaphor, or implicitly (conversationally).

2 Related Work

Early work in quote attribution focused on iden-
tifying spans associated with content (quotes),
sources (mentions), and cues (speech verbs) in
newswire data. This is the approach taken by
Pareti et al. (2012; 2013). More recent work by
Almeida et al. (2014) performed entity-level quote
attribution and showed that a joint model of coref-
erence and quote attribution can help both tasks.

In the literary domain, Glass and Bangay (2007)
did early work modeling both the mention-level
and entity-level tasks using a rule-based system.
However, their system relied on identifying a main
speech verb to then identify the actor (i.e. the men-
tion) and link to the speaker (i.e. the entity) from
a character list. This system worked very well but
was limited to explicitly cued speakers and did not
address implicit speakers at all.

Elson and McKeown (2010) took important first
steps towards automatic quote attribution. They
formulated the task as one of mention identifica-
tion in which the goal was to link a quote to the
mention of its speaker. Their method achieved
83.0% accuracy overall, but used gold-label infor-
mation at test time. Their corpus, the Columbia
Quoted Speech Corpus (CQSC), is the most well-
known corpus and was used by follow-up work.
However, a result of their Mechanical Turk-based
labeling strategy was that this corpus contains
many unannotated quotes (see Table 4).

O’Keefe et al. (2012) also treated quote attri-
bution as mention identification, using a sequence
labeling approach. Their approach was success-
ful in the news domain but it failed to beat their
baseline in the literary domain (53.5% vs 49.8%

Quote Types Emma The Steppe
with mention 546 (74.4%) 371 (59.6%)
with speaker 491 (66.9%) 258 (41.5%)

Table 4: Coverage of the CQSC labels

accuracy). This work quantitatively showed that
quote attribution in literature was fundamentally
different from the task in newswire.

We compare against He et al. (2013), the pre-
vious state-of-the-art system for quote attribution.
They re-formulated quote attribution as quote-
speaker labeling rather than quote-mention label-
ing. They used a supervised learner and a genera-
tive actor topic model (Celikyilmaz et al., 2010) to
achieve accuracies ranging from 82.5% on Pride
& Prejudice to 74.8% on Emma.

3 Data: The QuoteLi3 Corpus

We build upon the datasets of He et al. (2013) and
Elson and McKeown (2010) to create a compre-
hensive new dataset of quoted speech in literature:
QuoteLi3. This dataset covers 3 novels and 3103
individual quotes, each linked to speaker and men-
tion for a total of 6206 labels, more than 3000
of which are newly annotated. It is composed
of expert-annotated dialogue from Jane Austen’s
Pride and Prejudice, Emma, and Anton Chekhov’s
The Steppe.

3.1 Previous Datasets

The datasets described in section 2 are valuable
but incomplete and hard to integrate with one an-
other given their different designs.

The Columbia Quoted Speech Corpus is a
large dataset that includes both quote-mention and
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Novel He et al. CQSC (Elson and McKeown, 2010) QuoteLi3
q-mention q-speaker q-mention q-speaker q-mention q-speaker

Pride and Prejudice #    
Emma H# H#   
The Steppe H# H#   

Table 2: Label coverage per novel:  is full, H# is partial, and # is no coverage of annotations.

QuoteLi3 (uncollapsed) QuoteLi3 (collapsed) He et al.
Quote Type P & P Emma The Steppe P & P Emma The Steppe P & P Emma The Steppe
Explicit (ES) 555 240 278 326 128 184 305 106 112
Anaphoric (AS) 528 132 180 309 73 106 292 55 39

pronoun (AS(p)) 405 112 106 241 58 58
other (AS(o)) 123 20 74 68 15 48

Implicit (IS) 664 362 164 655 357 158 663 236 93
Total 1747 734 622 1290 558 448 1260 397 244
All 3103 2296 1901

Table 3: Breakdown of our dataset by novel and type of quote (uncollapsed). For comparison with the
dataset from He et al. (2013), we provide the collapsed statistics assuming one speaker per paragraph.

quote-speaker labels (Elson and McKeown, 2010).
It suffers from problems often associated with
crowdsourced labels and the use of low-accuracy
tools. In this corpus, quote-mention labels were
gathered from Mechanical Turk, where each quote
was linked to a mention by 3 different annotators.
Elson and McKeown (2010) report that 65% of the
quotes in CQSC had unanimous agreement and
that 17.6% of the quotes in this corpus were un-
labeled. To generate quote-speaker labels, an off-
the-shelf coreference tool3 was used to link men-
tions and form coreference chains. We find that
57.8% of the quotes in this corpus either i) have
no speaker label (48.1%) or ii) the speaker can-
not be linked to a known character entity (9.7%).
O’Keefe et al. (2012) find that 8% of quotes with
speaker labels are incorrectly labeled. Our analy-
sis of the relevant part of CQSC for this work is
shown in Table 4.

The data from He et al. (2013) includes high-
quality speaker labels but lacks quote-mention la-
bels. There is no overlap in the data provided
by He et al. (2013) and CQSC, but this work
did evaluate their system on a subset of CQSC.
This dataset assumes that all quoted text within
a paragraph should be attributed to the same
speaker.4 While this assumption is correct for
Pride and Prejudice, it is incorrect for novels like
The Steppe, which use more complex conversa-

3Even current state-of-the-art coreference tools achieve
just over 65% average F1 scores (Clark and Manning, 2016).

4For first-level quotes, there is typically just one speaker
per paragraph. This assumption breaks down in some cases
and it is very rarely true for nested quotes.

tional structures5. This assumption leads to a
problematic method of system evaluation in which
all quotes within a paragraph are considered in the
gold labels to be one quote, even if they were in
fact uttered by different characters. We refer to
this strategy as having “collapsed” quotes in our
evaluations and present it for the purpose of pro-
viding a faithful comparison to previous work.

In QuoteLi3 we add the annotations that are
missing from both datasets and correct the exist-
ing ones where necessary. A summary of the an-
notations included in this dataset and comparison
to the previous data that we draw from is described
in Table 2. Our final dataset is described in Table
3. It features a complete set of annotations for both
quote-mention and quote-speaker labels.

3.2 Annotation

Two of the authors of the paper were the annota-
tors of our dataset. They used annotation guide-
lines consisting of an example excerpt and a de-
scription, which is included in the supplementary
materials §A.5. The annotators were instructed
to identify the speaker (from a character list) for
each quote and to identify the mention that most
directly helped them determine the speaker. Un-
like Elson and McKeown (2010), mentions can be
pronouns and vocatives, not just explicit name ref-
erents. Mentions that were closer to the quote and
speech verbs were favored over indirect mentions
(such as those in conversational chains). Figure 1
shows an example from Pride and Prejudice.

Annotation was done using a browser-based an-

5See supplemental section A.1.
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Figure 1: Conversation from Pride and Prejudice annotated with our annotation tool. Speakers are
indicated by color, mentions are marked by dashed outlines, and quote-to-mention links by blue lines.

notation tool developed by the authors. Previ-
ously developed tools were either not designed
for the task (BRAT (Stenetorp et al., 2012),
WebAnno (Yimam et al., 2013), CHARLES (Vala
et al., 2016)) or unavailable (He et al., 2013). One
problem with the CQSC annotations was that the
annotators were shown short snippets that lacked
the context to determine the speaker and no char-
acter list. We designed our tool to provide con-
text and a character list including name, aliases,
gender, and description of the character. Simi-
lar to CHARLES, the character list is not static
and the annotator can add to the list of characters.
Our tool also features automatic data consistency
checks such as ensuring that all quotes are linked
to a mention.

Our expert annotators achieved high inter-
annotator agreement with a Cohen’s κ of .97 for
quote-speaker labels and a κ of .95 for quote-
mention labels.6 To preseve the QuoteLi3 data
for train, dev, and testing sets, we calculated this
inter-annotator agreement on excerpts from Alice
in Wonderland and The Adventures of Huckleberry
Finn containing 176 quotes spoken by 10 char-
acters, chosen to be similar to the data found in
QuoteLi3.

6The reported agreement is the average of the Cohens
kappas from these passages.

3.3 Statistics
Table 3 shows the statistics of our annotated cor-
pus. Unlike He et al. (2013), we do not assume
that all quotes in the same paragraph are spoken
by the same speaker. To compare with the dataset
used by He et al. (2013), we provide the col-
lapsed statistics as well. As Table 3 shows, we
have roughly the same number of annotated quotes
for Pride and Prejudice as He et al. (2013). For
Emma and The Steppe, which were taken from the
CQSC corpus, we have considerably more quotes
because of our added annotations (see Table 4).

4 The Quote Attribution Task

The task of quote attribution can be summarized
as “who said that?” Given a text as input, the fi-
nal output is a speaker for each uttered quote in
the text. We assume that all quotes have been
previously identified. O’Keefe et al. (2012) find
that regular-expression approaches to quote detec-
tion yield over 99% accuracy for clean English-
language data. A number of other approaches to
quote detection have been studied in recent years
for more complex data (Pouliquen et al., 2007;
Pareti et al., 2013; Muzny et al., 2016; Scheible et
al., 2016). Following He et al. (2013), we assume
that there is a predefined list of characters avail-
able, with the name, aliases, and gender of each
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character.7

Some key challenges in quote attribution are re-
solving anaphora (i.e., coreference) and following
conversational threads. Literature often follows
specific patterns that make some quotes easier to
attribute than others. Therefore, an approach that
anchors conversations on easily identifiable quotes
can outperform approaches that do not.

Figure 1 shows an example of a complex con-
versation at the beginning of Pride and Preju-
dice. This example illustrates the spectrum of easy
to difficult cases found in the task: simple ex-
plicit named mention (lines 9, 13, 21), nominal
mentions (lines 7, 19, 27), and pronoun mentions
(line 5). Sometimes explicitly named mentions
embedded in more complex sentences can still
be challenging as they require good dependency
parses. This example also illustrates a conver-
sational chain with alternating speakers between
Mrs. Bennet and Elizabeth Bennet (lines 7 to 11),
and between Mr. Bennet and Mrs. Bennet (lines
27 to 34). In this case, vocatives (expressions that
indicate the party being addressed) are cues for
who the other speaker is (lines 9, 23, 31). When
the simple alternation pattern is broken, explicit
speech verbs with the speaking character are spec-
ified. To summarize, there are several explicit cues
and some easy cases in a conversation that can be
leveraged to make the hard cases easier to address.

First, consider the quote→mention linking sub-
task. This is an inherently ambiguous task (i.e.
any mention from the same coreference chain is
valid,) but we know that if the target quote is
linked to the annotated mention that this is one
correct option. This means that the evaluation of
the quote→mention stage is a lower-bound. In
other words, since a given quote may have multi-
ple mentions that could be considered correct, our
system may choose a “wrong” mention for a quote
but link it to the correct speaker in the end. Thus,
if our mention→speaker system could perfectly
resolve every mention to its correct speaker, our
overall quote attribution system would be guaran-
teed to get at minimum the same results as the
quote→mention stage.

The quote→speaker task can be tackled directly
without addressing quote→mention, but identify-
ing a mention associated with the speaker allows
us to incorporate key outside information. An-

7Character lists are available on sites like sparknotes.com.
The automatic extraction of characters from a novel has been
identified as a separate problem (Vala et al., 2015).

other advantage of this approach is that we can
then separately analyze and improve the perfor-
mance of the two stages.

Therefore we evaluate both subtasks to give a
more complete picture of when the system fails
and succeeds. We use precision, recall, and F1 so
that we can tune the system for different needs.

5 Approach

Our model is a two-stage deterministic pipeline.
The first stage links quotes to specific mentions in
the text and the second stage matches mentions to
the entity that they refer to.

By doing both quote→mention and
mention→entity linking, our system is able
to leverage additional contextual information,
resulting in a richer, labeled output. Its modular
design means that it can be easily updated to
account for improvements in various sub-areas
such as coreference resolution. We use a sieve-
based architecture because having accurate labels
for the easy cases allows us to first find anchors
that help resolve harder, often conversational,
cases. Sieve-based systems have been shown to
work well for tasks like coreference resolution
(Raghunathan et al., 2010; Lee et al., 2013),
entity linking (Hajishirzi et al., 2013), and event
temporal ordering (Chambers et al., 2014).

5.1 Quote→Mention

The quote→mention stage is a series of determin-
istic sieves. We describe each in detail in the fol-
lowing sections and show examples in Table 5.

Trigram Matching This sieve is similar to pat-
terns used in Elson and McKeown (2010). It uses
patterns like Quote-Mention-Verb (e.g ‘‘...’’
she said) where the mention is either a charac-
ter name or pronoun to isolate the mention. Other
patterns include Quote-Verb-Mention, Mention-
Verb-Quote, and Verb-Mention-Quote.

Dependency Parses The next sieve in our
pipeline inspects the dependency parses of the sen-
tences surrounding the target quote. We use the
enhanced dependency parses (Schuster and Man-
ning, 2016) produced by Stanford CoreNLP (Chen
and Manning, 2014) to extract all verbs and their
dependent nsubj nodes. If the verb is a common
speech verb8 and its nsubj relation points to a

8This list of verbs as well as the family relation nouns list
are available in supplemental section A.4.
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Sieve Example
Trigram Matching “They have none of them much to recommend them,” replied he.
Dependency Parses Mrs. Bennet said only, “Nonsense, nonsense!”
Single Mention Detection ...Elizabeth impatiently. “There has been many a one, I fancy, overcome in the same

way. I wonder who first discovered the efficacy of poetry in driving away love!”
Vocative Detection “My dear Mr. Bennet,...” “Is that his design in settling here?”
Paragraph Final Mention Linking After a silence of several minutes, he came towards her in an agitated manner, and thus

began, “In vain have I struggled...”
Supervised Sieve –
Conversation Detection “Aye, so it is,” cried her mother ...

“Then, my dear, you may have the advantage of your friend, and introduce Mr. Bingley
to her.”
“Impossible, Mr. Bennet, impossible, when I am not acquainted with him myself; how
can you be so teazing?”

Loose Conversation Detection “I will not trust myself on the subject,” replied Wickham; ”I can hardly be just to him.”
Elizabeth was again deep in thought, and after a time exclaimed, “To treat in ... the
favourite of his father!” She could have added, “A young man, too,... being amiable”–
but she contented herself with, “and one, too, ... in the closest manner!”
“We were born in the same parish, within the same park; the greatest part of our youth
was passed together;...”

Table 5: Quote→Mention sieves and example quotes that they apply to.

Sieve Example
Exact Name Match “Do you really think so?” cried Elizabeth, brightening up for a moment.
Coreference Disambiguation “You are uniformly charming!” cried he, with an air of awkward gallantry;
Conversational Pattern “Impossible, Mr. Bennet, impossible ...” (Mrs. Bennet)

“I honour your circumspection...I will take it on myself.” (Mr. Bennet)
The girls stared at their father. Mrs. Bennet said only, “Nonsense, nonsense!”
(Mrs. Bennet)

Family Noun Vocative Disambiguation “...You know, sister, we agreed long ago never to mention a word about it. And
so, is it quite certain he is coming?”
“You may depend on it,” replied the other ...

Majority Speaker –

Table 6: Mention→Speaker Sieves and example quotes that they apply to. Bold text indicates where the
speaker information comes from while italic text indicates the target quote being labeled.

character name, a pronoun, or an animate noun,9

we assign the quote to the target mention.

Single Mention Detection If there is only a sin-
gle mention in the non-quote text in the paragraph
of the target quote, link the quote to that mention.

Vocative Detection If the preceding quote con-
tains a vocative pattern (see supplemental section
A.2), link the target quote to that mention. Voca-
tive detection only matches character names and
animate nouns.

Paragraph Final Mention Linking If the target
quote occurs at the end of a paragraph, link it to the
final mention occurring in the preceding sentence.

Conversational Pattern If a quote in paragraph
n has been linked to mention mn, then this sieve
links an unattributed quote two paragraphs ahead,
n + 2, to mention mn if they appear to be in con-
versation. We consider two quotes “in conversa-
tion” if the paragraph between is also a quote, and

9The list of animate nouns is from Ji and Lin (2009).

the quote in paragraph n + 2 appears without ad-
ditional (non-quote) text.

Loose Conversational Pattern We include a
looser form of the previous sieve as a final, high-
recall, step. If a quote in paragraph n has been
linked to mention mn, then this sieve links quotes
in paragraph n+ 2 to mn without restriction.

5.2 Mention→Speaker

The second stage of our system involves link-
ing the mentions identified in the first stage to a
speaker entity. We again use several simple, de-
terministic sieves to determine the entity that each
mention and quote should be linked to. A descrip-
tion of these sieves and example mentions and
quotes that they are applied to appears in Table 6.

For the following sieves, we construct an or-
dered list of top speakers by counting proper name
and pronoun mentions around the target quote. If
gender for the target quote’s speaker can be deter-
mined either by the gender of a pronoun mention
or the gender of an animate noun (Bergsma and
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Lin, 2006), this information is used to filter the
candidate speakers in the top speakers list.

We use a window size from 2000 tokens be-
fore the target quote to 500 tokens after the tar-
get quote. If no speakers matching in gender can
be found in this window, it is expanded by 2000
tokens on both sides.

Exact Name Match If the mention that a quote
is linked to matches a character name or alias in
our character list, label the quote with that speaker.

Coreference Disambiguation If the mention is
a pronoun, we attempt to disambiguate it to a spe-
cific character using the coreference labels pro-
vided by BookNLP (Bamman et al., 2014).

Conversational Pattern Similarly as in the
quote→mention section, we match a target quote
to the same speaker as a quote in paragraph n+2,
if they are in the same conversation and it is la-
beled. Next, we match it to the quote in paragraph
n − 2 if they are in the same conversation and it
is labeled. This sieve receives gender information
from the mention that the target quote is linked to.

Family Noun Vocative Disambiguation If the
target quote is linked to a vocative in the list
of family relations (e.g. “papa”), pick the first
speaker in top speakers that matches the last name
of the speaker of the quote containing the vocative.

Majority Speaker If none of the previous sieves
identified a speaker for the quote, label the quote
with the first speaker in the top speakers list.

6 Experiments

In all experiments, we divide the data as follows:
Pride and Prejudice is split as in He et al. (2013)
with chapters 19-26 as the test set, 27-33 as the
development set, and all others as training. Emma
and The Steppe are not used for training.

6.1 Baseline

As a baseline, for the quote→mention stage we
choose the mention that is closest to the quote in
terms of token distance. This is similar to the ap-
proach taken in BookNLP (Bamman et al., 2014),
in which quotes are attributed to a mention by first
looking for the closest mention in the same sen-
tence to the left and right of the quote, then before
a hard stop or another quote to the left and right of
the target quote. For the mention→speaker stage,

Test ES AS(p) AS(o) IS All
P & P 98.4 77.3 42.9 82.3 85.1
Emma 92.1 62.5 35.0 71.5 75.9
The Steppe 97.5 67.0 14.9 60.4 72.7

Table 9: Breakdown of the accuracy of our system
per type of quote (see Table 3) in each test set.

we use the Exact Name Match and Coreference
Disambiguation sieves.

6.2 Comparison to Previous Work

Table 7 shows a direct comparison of our work
versus the previous systems. We replicate the test
conditions used by He et al. (2013) as closely as
possible in this comparison.

In this comparison, the evaluations based on
CQSC are of non-contiguous subsets of the quotes
that are also not necessarily the same between our
work and the previous work. As discussed in sec-
tion 3, CQSC provides an incomplete set of quote-
speaker labels. In this work we follow the same
methodology as He et al. (2013) to extract a test
set of unambiguously labeled quotes by using a
list of character names to identify those that are
unambiguously labeled. In section 7, we analyze
The Steppe and Emma more thoroughly, showing
that this method results in an easier subset of the
quotes in these novels.

Our preferred evaluation, shown in Table 8, dif-
fers from previous evaluations in four important
ways. We hope that this work can establish consis-
tent guidelines for attributing quotes and evaluat-
ing system performance to encourage future work.
• Each quote is attributed separately.10

• The test sets are composed of every quote
from the test portion of each novel, no sub-
sets are used because of incomplete annota-
tions.11

• No gold data is used at test time.12

• Precision and recall are reported in prefer-
ence to accuracy for a more fine-grained un-
derstanding of the underlying system.

10This is in contrast to the work of He et al. (2013)
11This is in contrast to the work of Elson and McKeown

(2010) and He et al. (2013). The work of O’Keefe et al.
(2012) is the only previous work to augment the unlabeled
portions of CQSC. They achieved 53.3% accuracy on CQSC
from a rule-based system similar to our baseline. This data is
not available.

12Gold data was used at test time by Elson and McKeown
(2010) who achieved 83.0% accuracy on the CQSC.
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Test He et al. Baseline This work + supervised
Pride and Prejudice 82.5 45.3 83.6 85.2
Emma 74.8∗ 40.7∗ 75.3∗ 76.1∗

The Steppe 80.3∗ 66.7∗ 81.8∗ 83.8∗

Table 7: Comparison with previous work. This table reports accuracy and comes with some caveats: ∗
indicates that a non-contiguous subset of the quotations were used (not all subsets are guaranteed to be
the same as described in section 6.2), and all quotes within the same paragraph were collapsed. Emma
and The Steppe come from CQSC. All systems are trained on Pride and Prejudice.

System Test Quote→Mention Mention→Speaker
P R F1 P R F1 Accuracy

+supervised Pride and Prejudice 86.7 93.5 89.9 85.1 100 92.0 85.1
+supervised Emma 75.2 85.2 79.9 75.9 100 86.3 75.9
+supervised The Steppe 81.7 88.6 85.0 72.7 100 84.2 72.7

Average 81.2 89.1 84.9 77.9 100 87.5
+precision Pride and Prejudice 90.2 80.1 84.9 92.1 70.9 80.1
+precision Emma 84.6 68.3 75.6 85.7 59.0 69.9
+precision The Steppe 92.5 75.3 83.0 93.3 65.5 77.0

Average 89.1 74.6 81.2 90.4 65.1 75.7

Table 8: Precision, recall, and F-Score of our systems on un-collapsed quotations and the fully annotated
test sets from the QuoteLi3 dataset.

6.3 Adding a Supervised Component

To test how orthogonal our two-stage approach is
to previous systems, we experiment by adding a
supervised sieve to the quote→mention stage. We
train a binary classifier, using a maxent model to
distinguish between the correct and incorrect can-
didate mentions.

Candidate Mentions We take as candidate
mentions all token spans corresponding to names,
pronouns, and animate nouns in a one-paragraph
range on either side of the quote. Names are de-
termined by scanning for matches to the charac-
ter list. We restrict pronouns to singular gendered
pronouns, i.e. ‘he’ or ‘she’.

Features We featurize each (quote, mention)
pair based on attributes of the quote, mention, and
how far apart they are from one another. These
features largely align with previous work and can
be found in supplemental section A.3 (Elson and
McKeown, 2010; He et al., 2013).

Prediction At test time our model predicts for
each quote whether each candidate mention is or
is not the correct mention to pair with that quote.
If the model predicts more than one mention to be
correct, we take the most confident result.

This sieve goes just before the conversation pat-

tern detection sieves in the quote→mention stage
(see Table 5). This forms our +supervised system.

6.4 Creating a High-Precision System

One advantage of our sieve design is that we can
easily add and remove sieves from our pipeline.
This means that we can determine the combination
of sieves that result in the system that achieves the
highest precision with respect to the final speaker
label. We use an ablation test to find the combina-
tion of sieves with the highest precision (95.6%)
for speaker labels on the development set from
Pride and Prejudice. These results are achieved by
removing the Loose Conversation Detection sieve
for the quote→mention stage and keeping only the
Exact Name Match and Coreference Disambigua-
tion sieves for the mention→speaker stage.

Together, these sieves create a system that we
call +precision that emphasizes overall precision
rather than F-score or accuracy.

7 Results

We show that a simple deterministic system
can achieve state-of-the-art results. Adding a
lightweight supervised component improves the
system across all test sets. The sieve design allows
us to create a high precision system that might be
more appropriate for real-world applications that
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value precision over recall.
The results in Table 8 confirm that the subset

of test quotes from Emma and The Steppe used in
previous work were an easier subset of the whole
set of quotations. When evaluating based off of
the whole set of quotations, we lose 0.2 and 11.1
points of accuracy for Emma and The Steppe, re-
spectively. As we show in Table 4, The Steppe
is missing a significant portion (50.9%) of the an-
notations whereas Emma is missing 28.6%. Our
error analysis shows us that The Steppe features
more complicated conversation patterns than the
novels of Jane Austen, which makes the task of
quote attribution more difficult.

One type of error analysis we performed was
inspecting the accuracy of our system by quote
type. As seen in Table 9, the main challenge lies
in identifying anaphoric and implicit speakers. We
find that resolving non-pronoun anaphora is much
more challenging for our system than pronouns.
This is because the only mechanism for dealing
with these mentions is the Family Noun Vocative
Disambiguation sieve; otherwise, the only infor-
mation we gather from them is gender informa-
tion. This indicates that adding information about
the social network of a novel and attributes of each
character (such as job and relationships to other
characters) would further increase system perfor-
mance.

8 Conclusion

In this paper, we provided an improved, con-
sistently annotated dataset for quote attribution
with both quote-mention and quote-speaker anno-
tations. We described a two-stage quote attribution
system that first links quotes to mentions and then
mentions to speakers, and showed that it outper-
forms the existing state-of-the-art. We established
a thorough evaluation and showed how our system
can be tweaked for higher precision or refined with
a supervised sieve for better overall performance.

A clear direction for future work is to expand
the dataset to a more diverse set of novels by lever-
aging our annotation tool on Mechanical Turk or
other crowdsourcing platforms. This work has
also provided the background to see the pitfalls
that a dataset produced in such a way might en-
counter. For example, annotators could label men-
tions and speakers separately, and examples with
high uncertainty could be transferred to expert an-
notators. An expanded dataset would allow us to

evaluate how well our system generalizes to other
novels and also allow us to train better models.
Another interesting direction is to eliminate the
use of predefined character lists by automatically
extracting the list of characters (Vala et al., 2015).
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A Supplemental Material

A.1 Nested Conversation Example

Figure 2: An example paragraph that contains
multiple speakers from The Steppe

Figure 2 shows a screen shot of our annotation
tool displaying a paragraph with a complex con-
versational structure from The Steppe.

A.2 Vocative Patterns

Pattern Example
between , and ! , Nastasya!
between , and ? , Mr. Bennet?
between , and . , Yegorushka.
between , and ; , papa;
between , and , , Emma,
between “ and , “Father Christopher,
between , and ” , mother”
after the word “dear” Dear Lydia
between “oh” and ! Oh Henry!

Table 10: Vocative patterns for extracting men-
tions.

A.3 Supervised Classifier Features

We used the following features in our supervised
classifier:
• Distance: token distance, ranked distance

(relative to mentions), paragraph distance
(left paragraph and right paragraph separate)
• Mention: Number of quotes in the men-

tion paragraph, number of words in mention
paragraph, the order of the mention within
the paragraph (compared to other mentions),
whether the mention is within conversation

(i.e. no non-quote text in the same para-
graph), whether the mention is within a
quote, POS of the previous and next words.
• Quote: the length of the quote, the order of

the quote (i.e. whether it is the first or second
quote in a paragraph), the number of words in
the paragraph, number of names in the para-
graph, whether the quote contains text in it,
whether the present quote contains the name
of the mention (if mention is a name).

A.4 Words Lists
Common Speech Verbs Similar to He et al.
(2013), we use say, cry, reply, add, think, observe,
call, and answer, present in the training data from
Pride and Prejudice.

Family Relation Nouns ancestor aunt bride
bridegroom brother brother-in-law child chil-
dren dad daddy daughter daughter-in-law father
father-in-law fiancee grampa gramps grand-
child grandchildren granddaughter grandfather
grandma grandmother grandpa grandparent
grandson granny great-granddaughter great-
grandfather great-grandmother great-grandparent
great-grandson great-aunt great-uncle groom
half-brother half-sister heir heiress husband ma
mama mom mommy mother mother-in-law nana
nephew niece pa papa parent pop second cousin
sister sister-in-law son son-in-law stepbrother
stepchild stepchildren stepdad stepdaughter
stepfather stepmom stepmother stepsister stepson
uncle wife

A.5 Annotation Guidelines
• Each quote should be annotated with the

character that is that quote’s speaker.
• Each quote should be linked to a mention that

is the most obvious indication of that quote’s
speaker.

– Quotes can be linked to mentions inside
other quotes.

– Multiple quotes may be linked to the
same mention.

• Mentions should also be annotated with the
character that they refer to.

– If a character’s name is meaningfully
associated with an article (e.g. “...,”
said the Bear), include that article in the
mention.
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Abstract

Domain dependence of NLP systems is one
of the major obstacles to their application
in large-scale text analysis, also restrict-
ing the applicability of FrameNet semantic
role labeling (SRL) systems. Yet, current
FrameNet SRL systems are still only eval-
uated on a single in-domain test set. For
the first time, we study the domain depen-
dence of FrameNet SRL on a wide range of
benchmark sets. We create a novel test set
for FrameNet SRL based on user-generated
web text and find that the major bottleneck
for out-of-domain FrameNet SRL is the
frame identification step. To address this
problem, we develop a simple, yet efficient
system based on distributed word repre-
sentations. Our system closely approaches
the state-of-the-art in-domain while outper-
forming the best available frame identifica-
tion system out-of-domain. We publish our
system and test data for research purposes.1

1 Introduction

Domain dependence is a major problem for super-
vised NLP tasks such as FrameNet semantic role
labeling (SRL): systems generally exhibit a strong
performance drop when applied to test data from
a different distribution than the training data. This
prohibits their large-scale use in language technol-
ogy applications.

The same problems are expected for FrameNet
SRL, but due to a lack of datasets, state-of-the-
art FrameNet SRL is only evaluated on a single
in-domain test set, see e.g. Das et al. (2014) and
FitzGerald et al. (2015).

In this work, we present the first comprehensive
study of the domain dependence of FrameNet SRL

1www.ukp.tu-darmstadt.de/ood-fn-srl

on a range of benchmark datasets. This is crucial as
the demand for semantic textual analysis of large-
scale web data keeps growing.

Based on FrameNet (Fillmore et al., 2003),
FrameNet SRL extracts frame-semantic structures
on the sentence level that describe a specific
situation centered around a semantic predicate,
often a verb, and its participants, typically
syntactic arguments or adjuncts of the predicate.
The predicate is assigned a frame label, essentially
a word sense label, that defines the situation and
determines the semantic roles of the participants.
The following sentence from FrameNet provides
an example of the Grinding frame and its roles:

[The mill]Grinding cause grindsGrinding [the
malt]Patient [to grist]Result.

FrameNet SRL consists of two steps, frame iden-
tification (frameId), assigning a frame to the current
predicate, and role labeling (roleId), identifying the
participants and assigning them role labels licensed
by the frame. The frameId step reduces the hun-
dreds of role labels in FrameNet to a manageable
set of up to 30 roles. Thus, FrameNet SRL dif-
fers from PropBank SRL (Carreras and Màrquez,
2005), that only uses a small set of 26 syntactically
motivated role labels and puts less weight on the
predicate sense. The advantage of FrameNet SRL
is that it results in a more fine-grained and rich
interpretation of the input sentences which is cru-
cial for many applications, e.g. reasoning in online
debates (Berant et al., 2014).

Domain dependence is a well-studied topic for
PropBank SRL. However, to the best of our knowl-
edge, there exists no analysis of the performance
of modern FrameNet SRL systems when applied
to data from new domains.

In this work, we address this problem as fol-
lows: we introduce a new benchmark dataset YAGS
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(Yahoo! Answers Gold Standard), which is based
on user-generated questions and answers and exem-
plifies an out-of-domain application use case. We
use YAGS, along with other out-of-domain test sets,
to perform a detailed analysis of the domain depen-
dence of FrameNet SRL using Semafor (Das et
al., 2014; Kshirsagar et al., 2015) to identify which
of the stages of FrameNet SRL, frameId or roleId,
is particularly sensitive to domain shifts. Our re-
sults confirm that the major bottleneck in FrameNet
SRL is the frame identification step. Motivated
by that, we develop a simple, yet efficient frame
identification method based on distributed word
representations that promise better domain gener-
alization. Our system’s performance matches the
state-of-the-art in-domain (Hermann et al., 2014),
despite using a simpler model, and improves on the
out-of-domain performance of Semafor.

The contributions of the present work are two-
fold: 1) we perform the first comprehensive study
of the domain generalization capabilities of open-
source FrameNet SRL, and 2) we propose a new
frame identification method based on distributed
word representations that enhances out-of-domain
performance of frame identification. To enable our
study, we created YAGS, a new, substantially-sized
benchmark dataset for the out-of-domain testing of
FrameNet SRL; we publish the annotations for the
YAGS benchmark set and our frame identification
system for research purposes.

2 Related work

The domain dependence of FrameNet SRL sys-
tems has been only studied sparsely, however, there
exists a large body of work on out-of-domain Prop-
Bank SRL, as well as on general domain adaptation
methods for NLP. This section briefly introduces
some of the relevant approaches in these areas, and
then summarizes the state-of-the-art in FrameNet
frame identification.

Domain adaptation in NLP Low out-of-
domain performance is a problem common to
many supervised machine learning tasks. The
goal of domain adaptation is to improve model
performance on the test data originating from
a different distribution than the training data
(Søgaard, 2013). For NLP, domain adaptation has
been studied for various tasks such as POS-tagging
and syntactic parsing (Daumé III, 2007; Blitzer
et al., 2006). For the complex task of SRL, it
is strongly associated with PropBank, because

the corresponding CoNLL shared tasks promote
out-of-domain evaluation (Surdeanu et al., 2008;
Hajič et al., 2009). In the shared tasks, in-domain
newspaper text from the WSJ Corpus is contrasted
to out-of-domain data from fiction texts in the
Brown Corpus. Most of the participants in the
shared tasks do not consider domain adaptation
and report systematically lower scores for the
out-of-domain data (Hajič et al., 2009).

Representation learning has been successfully
used to improve on the CoNLL shared task re-
sults (Huang and Yates, 2010; FitzGerald et al.,
2015; Yang et al., 2015). Yang et al. (2015) re-
port the smallest performance difference (5.5 points
in F1) between in-domain and out-of-domain test
data, leading to the best results to date on the
CoNLL 2009 out-of-domain test. Their system
learns common representations for in-domain and
out-of-domain data based on deep belief networks.

Domain dependence of FrameNet SRL The
FrameNet 1.5 fulltext corpus, used as a standard
dataset for training and evaluating FrameNet SRL
systems, contains texts from several domains (Rup-
penhofer et al., 2010). However, the standard data
split used to evaluate modern systems (Das and
Smith, 2011) ensures the presence of all domains
in the training as well as test data and cannot be
used to assess the systems’ ability to generalize.
Moreover, all the texts in the FrameNet fulltext
corpus, based on newspaper and literary texts, are
post-edited and linguistically well-formed. The
FrameNet test setup thus cannot provide informa-
tion on SRL performance on less edited out-of-
domain data, e.g. user-generated web data.

There are few studies related to the out-of-
domain generalization of FrameNet SRL. Johans-
son and Nugues (2008) evaluate the impact of dif-
ferent parsers on FrameNet SRL using the Nuclear
Threats Initiative (NTI) data as an out-of-domain
test set. They observe low domain generalization
abilities of their supervised system, but find that
using dependency parsers instead of constituency
parsers is beneficial in the out-of-domain scenario.
Croce et al. (2010) use a similar in-domain/out-of-
domain split to evaluate their approach to open-
domain FrameNet SRL. They integrate a distri-
butional model into their SRL system to general-
ize lexicalized features to previously unseen argu-
ments and thus create an SRL system with a smaller
performance gap between in-domain and out-of-
domain test data (only 4.5 percentage points F1).
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Note that they only evaluate the role labeling step.
It is not transparent how their results would transfer
to the current state-of-the-art SRL systems that al-
ready integrate methods to improve generalization,
for instance using distributed representations.

Palmer and Sporleder (2010) analyze the
FrameNet 1.3 training data coverage and the per-
formance of the Shalmaneser SRL system (Erk
and Padó, 2006) for frame identification on sev-
eral test sets across domains, i.e. the PropBank
and NTI parts of the FrameNet fulltext corpus and
the fictional texts from the SemEval-2007 shared
task (Baker et al., 2007). Having observed that
the majority of errors results from coverage gaps
in FrameNet, they suggest to focus on developing
frame identification systems that generalize well
to new domains. Our observations support their
findings and show that the problem still persists
even when modern SRL methods and the extended
FrameNet 1.5 lexicon are used.

Søgaard et al. (2015) annotate 236 tweets with
FrameNet labels to apply SRL to knowledge ex-
traction from Twitter. They report that the frameId
performance of Semafor 2.1 (Das et al., 2010)
on the new test set is similar to its performance on
the SemEval-2007 newswire test set (Baker et al.,
2007). For full SRL, there are large differences: F1

reaches only 25.96% on the Twitter set compared
to the 46.5% reported by Das et al. (2010) on the in-
domain set. These results show that there is ample
room for improvement for SRL on Twitter data.

Recent FrameNet SRL systems are not evalu-
ated in the context of their domain dependence:
Kshirsagar et al. (2015) use the domain adaptation
approach from Daumé III (2007) to augment the
feature space for FrameNet SRL with FrameNet
example sentences; FitzGerald et al. (2015) and
Hermann et al. (2014) adopt deep learning meth-
ods, including learning representations that may
generalize better to unseen data, to present state-
of-the-art results for FrameNet SRL. All of the
former only use the already introduced split of the
FrameNet fulltext corpus for testing, as does the
long-time state-of-the-art system Semafor (Das
et al., 2014). Out-of-domain evaluation is lacking,
as are datasets that enable this kind of evaluation.

Frame identification Current state of the art in
frame identification is the approach by Hermann
et al. (2014), further referred to as Hermann-14,
followed by the previous state-of-the art model
Semafor (Das et al., 2014).

The frame identification system of Semafor
relies on an elaborate feature set based on syntac-
tic and lexical features, using the WordNet hierar-
chy as a source of lexical information, and a label
propagation-based approach to take unknown pred-
icates into account. Semafor is not specifically
designed for out-of-domain use: the WordNet cov-
erage is limited, and the quality of syntactic parsing
might drop when the system is applied to out-of-
domain data, especially in case of non-standard
user-generated texts.
Hermann-14 uses distributed word representa-

tions augmented by syntactic information. General-
purpose distributed word representations (such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014)) are beneficial for many NLP
tasks: word representations are calculated on a
large unlabeled corpus, and then used as input for
high-level tasks for which training data is scarce,
such as syntactic parsing, word sense disambigua-
tion, and SRL. In the syntax-augmented representa-
tions of Hermann-14, a region of the input vector,
a container, is reserved for each syntactic path that
can connect predicates to their arguments. This
container is populated with a corresponding argu-
ment word representation, if the argument on this
path is found in the training data. Hermann-14
uses the WSABIE algorithm (Weston et al., 2011)
to map input and frame representations to a com-
mon latent space. WSABIE uses WARP loss and
gradient-based updates to minimize the distance
between the latent representations of the predicate
target and the correct frame, while maximizing the
distance to all the other irrelevant frames. During
testing, cosine similarity is used to find the closest
frame given the input. One advantage of this ap-
proach is that similar frames are positioned close
to each other in the latent space which allows infor-
mation to be shared between similar predicates and
similar frames. This system is the current state-of-
the-art for in-domain frame identification, but has
not been applied in an out-of-domain setting.

3 Out-of-domain FrameNet test data

This section describes available in-domain and out-
of-domain FrameNet test sets and the creation of
YAGS, a new out-of-domain FrameNet test set.

FrameNet test sets FrameNet SRL is typically
evaluated on das-test, the test set first introduced
by Das and Smith (2011). It is a held-out set ran-
domly sampled from the FrameNet 1.5 fulltext cor-
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Figure 1: Example sentence from YAGS with multiword predicate and typo (mortal vs. mortar).

pus. While the FrameNet fulltext corpus contains
data from various sources, we consider das-test an
in-domain test set: all data sources of the test set
are also represented in the training set.

There are two additional datasets from other do-
mains that we use in our study on domain gener-
alization: The MASC word sense sentences cor-
pus contains FrameNet annotations for a lexical
sample of roughly 100 lemmas from ANC (Passon-
neau et al., 2012). The Twitter-based dataset from
Søgaard et al. (2015), henceforth TW, has some
very distinctive properties: it does not provide a
gold standard, but annotations by three annotators.
This leads to a high variance in role annotations:
the annotator TW3 annotated only 82% of the num-
ber of roles annotated by TW1, see Table 1. Like
Søgaard et al. (2015), we report SRL results as
averages over the three annotations (TW-av).

Table 1 shows statistics on these datasets. For
TW, it displays the statistics for each annotator.
The TW datasets are fairly small, containing only
around 1,000 frame labels. The MASC dataset is of
substantial size, but it constitutes a lexical sample
and therefore a slightly artificial evaluation setup.
There is another Twitter-based test set (Johannsen
et al., 2015), which we do not use in our experi-
ments, because it was created semi-automatically
and is therefore of lower quality. We conclude that
existing out-of-domain test sets for FrameNet SRL
are insufficient, in particular for increasingly im-
portant domains like user-generated text, because
available datasets are either small or of low quality.

YAGS: a new FrameNet test set based on user-
generated text To address the need for new out-
of-domain test datasets, we created YAGS, a new
FrameNet-annotated evaluation dataset based on
question-answer data from Yahoo! Answers (YA),
a community-driven question-and-answer forum.
The corpus is based on a random sample of 55
questions and their answers from the test split of
the YA Manner Questions dataset used by Sur-
deanu et al. (2011) and published as part of the Ya-
hoo! Webscope program (https://webscope.
sandbox.yahoo.com/).

YAGS contains 1,415 sentences, 3,091 frame
annotations, and 6,081 role annotations. Figure 1
shows a sentence from YAGS that demonstrates
some non-standard properties of the user-generated
question-answer data, such as typos (mortal instead
of mortar). We publish the annotations as stand-off
annotations to the original dataset.

Annotation study Each document was anno-
tated by a two linguistically trained annotators pro-
vided with detailed guidelines and then curated by
an experienced expert, all using WebAnno 2.0.0
(Yimam et al., 2014). Up to five predicates per
sentence were pre-selected automatically based
on lemma and POS, preferring verbal predicates
to other POS, which leads to a larger proportion
of verbs in YAGS. The annotation task was to
identify the correct frame label for each predi-
cate, if any, and then to identify the role spans
as arguments and adjuncts of the frame, and to la-
bel them with the appropriate role. For reference,
annotators accessed the FrameNet 1.5 definitions
and examples with the FrameNet Explorer tool
(www.clres.com/FNExplorer.html).

Inter-rater agreement for frame labels is Krip-
pendorff’s α=0.76; agreement for role labels given
matching spans is α=0.62, and Krippendorff’s α
unitizing agreement for role spans is 0.7 – a good
result for such a difficult task on user-generated
text. Average pairwise F1 agreement for frame la-
bels is high at 0.96, higher than the 0.84 reported
by Søgaard et al. (2015) for the TW sets. Our high
frame agreement is a result of annotator experience
and our elaborate annotation setup.

YAGS statistics and properties Table 1 presents
dataset statistics for YAGS and the other test sets.
Due to the predicate selection, YAGS contains a
larger proportion of verbal predicates than the other
sets, and has three times more frames and roles
than TW, approximating the size of das-test. The
proportion of core roles, roles that are obligatory
for a frame and thus typically more frequent in
datasets than non-core roles, in the out-of-domain
test sets (TW, YAGS, MASC) is slightly smaller
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data s f a n v r cr

das-test 2,420 4,458 12 42 33 7,172 83
YAGS 1,415 3,091 5 18 75 6,081 74
MASC 8,444 7,226 25 42 33 11,214 78
TW1 236 1,085 10 47 40 1,704 77
TW2 236 1,027 11 46 39 1,614 79
TW3 236 1,038 11 47 39 1,399 89

Table 1: Text dataset statistics: sentences s; frames
f; % of adjectives a, nouns n and verbs v; roles r,
% of core roles cr. Subscripts for TW indicate the
respective annotator.

compared to das-test. This goes along with a larger
variance of roles in YAGS.

The user-generated aspect of YAGS manifests in
spelling errors, and in the lack of punctuation and
structure of the texts. The language is informal, but
there are only few emoticons or other special words
such as the hashtags typically found in tweets.

In the next section, we use the test sets from
Table 1 to analyze the domain generalization capa-
bilities of an open-source FrameNet SRL system.

4 Domain generalization capabilities of
open-source FrameNet SRL

To analyze the domain generalization capabilities
of contemporary open-source SRL, we ran the
frame identification from Semafor (Das et al.,
2014) with the enhanced role labeler from Kshir-
sagar et al. (2015), both trained on the in-domain
das-train set, on the four test sets das-test, YAGS,
TW, and MASC. The systems receive text anno-
tated with predicate spans as input, which has be-
come the standard in recent evaluations.

Evaluation script The Semafor evaluation
script (Das et al., 2014) provides precision P, recall
R, and F1 scores for full SRL (SRL), and accuracy
A for frame identification (frameId). Full SRL eval-
uation can be performed with and without using
gold frames instead of predicted (auto) frames.

The script does not provide results on the
role labeling (argument identification and labeling,
roleId) alone: the scoring mechanism for SRL/gold
also considers the by default correct gold frames.
This is useful when comparing different SRL sys-
tems on the same test set, but not sufficient when 1)
comparing role labeling performance on different
test sets with a different ratio of frame labels to role
labels (resulting from different annotation strate-
gies), and 2) analyzing the contribution of frameId
and roleId to full SRL performance across test sets.

data frameId roleId SRL
auto auto gold auto gold

das-test 82.09 30.08 55.20 55.40 73.16
YAGS 59.62 18.60 56.99 37.22 72.58
MASC 39.52 19.46 51.74 29.05 71.08
TW-av 62.17 15.91 61.45 38.44 76.74

Table 2: Semafor performance on test sets in %:
exact frameId A; then F1 for roleId and SRL with
system frames (auto) and gold frames (gold).

We therefore evaluate the output of the script to re-
tain the original counts for role labels and compute
scores on the role labeling proper (roleId). More-
over, there are two evaluation settings for frameId:
exact frame match and partial frame match. We use
the exact match setting that does not credit related
frames and roles.

Results Table 2 presents scores for exact match
frameId and for SRL and roleId with automatic
frames (auto) and with gold frames (gold). For TW,
the results are averaged over the number of annota-
tors. According to column SRL/auto, we observe
best Semafor performance for full SRL on das-
test, results for the other test sets are at least 16 per-
centage points F1 lower. This is mostly due to the
worse frameId performance of Semafor on the
new test sets, as shown in column frameId: frameId
performance is at least 19 percentage points lower.
This negatively affects roleId for the out-of-domain
test sets (see column roleId/auto). RoleId/auto
scores are also low on das-test, but higher than
for the other sets.

When using gold frame labels, roleId and SRL
performance improve for all test sets. As shown in
columns roleId/gold and SRL/gold, the difference
between in-domain and out-of-domain evaluation
vanishes. Only MASC scores are still two points
lower for full SRL than those for das-test. TW-av
scores even surpass the in-domain scores.2

This shows how much FrameNet role labels are
dependent on correct frame labels. Thus, it is cru-
cial to improve the out-of-domain performance of
frameId systems.

Domain dependence appears to be less of a prob-
lem for the role labeling step. The MASC dataset
is the most difficult for both frameId and roleId.
This is mostly a consequence of the lower training
data coverage of MASC, as discussed below.

2Our TW-av results are not comparable to those from
Søgaard et al. (2015) because their test setup includes predi-
cate target identification and uses different evaluation metrics.
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dataset lemmas /∈ senses /∈ monosemous
lexicon das-train das-train ∈ das-train

das-test 2.59 9.99 14.03 53.99
YAGS 2.79 17.33 30.36 27.07
MASC 7.45 21.72 51.25 23.51
TW1 1.01 17.51 36.06 26.73
TW2 1.27 17.91 51.25 27.07
TW3 1.25 17.24 35.65 27.17

Table 3: Training data coverage of test sets in %.
Sense is a combination of predicate lemma, POS
and frame; lexicon refers to the Semafor lexicon.

Analysis In our study, it became clear that do-
main dependence is crucial to the frame identifica-
tion step in SRL. The lower scores for the out-of-
domain test sets can be a result of different domain-
specific predicate-frame distributions, or a lack of
coverage of the domain in the training data.

To get a better understanding of these phenom-
ena, we compared detailed statistics of the different
test sets, cf. Table 3. Das-test has the largest pred-
icate coverage and contains a lot of monosemous
predicates, which boosts the overall performance.
The occurrence of fewer monosemous predicates is
expected for the lexical sample dataset MASC, but
might indicate a domain preference for polysemous
predicates in the YAGS and TW datasets.

The percentage of unseen predicates (lemmas /∈
das-train) is slightly higher for the user-generated
test sets than for das-test, and much higher for
MASC. This is mirrored in the lower frameId per-
formance for MASC compared to the other test
sets, and the slightly higher performance of TW-av
and YAGS. Not all errors can be explained by insuf-
ficient training data coverage, which indicates that
domain effects occur for the out-of-domain sets.

To support this assumption, we performed a de-
tailed error analysis on the misclassified instances
for all test sets. We compute the proportion of
wrongly classified instances with unseen predicates,
predicates that do not occur in the training set. For
MASC, the majority of the errors, 68%, are based
on unseen predicates, while the number ranges be-
tween 37% and 43% for the other test sets, i.e. 37%
for TW, 39% for das-test and 43% for YAGS. This
shows that training data coverage is a bigger issue
for MASC than for the other test sets. The pro-
portions of in-train errors for YAGS and TW-av
are similar to das-test. Together with the fact that
overall proportion of errors is still much higher for
the user-generated test sets YAGS and TW-av, this
further supports our hypothesis of domain effects

for YAGS and TW-av. Manual analysis further-
more shows that there are differences in frequently
confused frames between the in-domain das-test
and out-of-domain YAGS and TW-av.

In the next section, we study new methods to
improve out-of-domain frame identification.

5 Frame identification with distributed
word representations

Given a predicate and a set of frames associated
with this predicate, a frame identification system
has to choose the correct frame based on the con-
text. In this section we introduce our frame identi-
fication method and compare it to the state of the
art in both in-domain and out-of-domain settings.

Our system SimpleFrameId We developed a
straightforward approach to frame identification
based on distributed word representations, and
were surprised to find that this simple model
achieves results comparable to the state-of-the-
art system, Hermann-14. Our initial attempts
to replicate Hermann-14, which is not publicly
available, revealed that the container-based input
feature space is very sparse: there exist many syn-
tactic paths that can connect a predicate to its argu-
ments, but a predicate instance rarely has more than
five arguments in the sentence. So by design the
input representation bears no information in most
of its path containers. Moreover, Hermann-14
makes heavy use of automatically created depen-
dency parses, which might decline in quality when
applied to a new domain. We demonstrate that our
simple system achieves competitive in-domain and
out-of-domain performance.

Our system, called SimpleFrameId, is specified
as follows: given the lexicon L, the vector space
vsm and the training data, our goal is to predict the
frame f given the sentence S and the predicate p.
From the machine learning perspective, the lexicon
and the vector space are external resources. The
lexicon contains associations between predicates
and frames, and we further denote the set of frames
available for a predicate as L(p). The vector space
provides a pre-defined dense vector representation
vsm(w) for each wordw. In our case vsm is a sim-
ple word lookup function, since we do not modify
our word representations during training.

From the sentence we extract the context rep-

resentation, xc =

∑
w∈C vsm(w)

|C| . We experiment
with two kinds of contexts: SentBOW includes all

476



the words in the sentence, i.e. C = S, DepBOW
considers the dependency parse of the sentence and
only includes direct dependents of the predicate,
C = dep(p, S). As for the predicate, the plain em-
bedding from the source vector space model is used,
xp = vsm(p). A simple concatenation of xc and
xp serves as input to the disambiguation classifier
D, which outputs weights D(xc, xp, f) for each
frame known to the system f ∈ L. Note that the
classifier itself is agnostic to the predicate’s part of
speech and exact lemma and only relies on the word
representations from the vsm. We experiment with
two different classification methods: one is a two-
layer neural networkDNN , the other one isDWSB ,
which follows the line of Hermann-14 and learns
representations for frames and predicates in the
same latent space using the WSABIE algorithm.3

Hyperparameters are tuned on the development sets
das-dev and YAGS-dev (sampled from YAGS); we
test on the remaining 2,093 instances in YAGS-test.

Lexicon-based filtering In the testing stage,
the classifier outputs weights for all the frames
available in the lexicon, and the best-scoring
frame is selected, f ← argmaxf∈LD(xc, xp, f).
Since the lexicon specifies available frames for
each lexical unit (i.e. lemma and POS), ad-
ditional filtering can be performed, which lim-
its the search only to the available frames,
f ← argmaxf∈L(p)D(xc, xp, f). If the predicate
is unknown to the lexicon, p /∈ L, the overall best-
scoring frame is chosen. If the target has only one
entry in the lexicon, it’s declared unambiguous and
the frame is assigned directly.

Despite being common, this setup has several
flaws that can obscure the differences between sys-
tems in the testing stage. As we showed in Section
4, the FrameNet lexicon has coverage issues when
applied to new domains. Neither the predicate list
nor the frame associations are guaranteed to be
complete, and hence the total results are highly de-
termined by the lexicon coverage.4 To take this
into account, we also perform evaluation in the
no-lexicon setting, where frames are assigned
directly by the classifier and no lexicon-based fil-

3In our implementation, we use the LightFM package
(Kula, 2015) with the WARP option for hybrid matrix fac-
torization.

4A justification for this can also be found in Hermann
et al. (2014): the difference in Hermann-14 accuracy
when switching from the Semafor lexicon to the full lexi-
con is comparable to the difference between Semafor and
Hermann-14 when evaluated on the same lexicon.

system total ambig no-lex

DataBaseline 79.09 70.68 2.21
LexiconBaseline 79.05 56.62 2.21
Semafor* 83.60 69.19 -
Hermann-14* (best) 88.41 73.10 -

WSB+SentBOW 84.46 67.56 72.05
WSB+DepBOW 85.69 69.93 71.21
NN+SentBOW 87.63 73.80 77.49
NN+DepBOW 87.53 73.58 76.51

Table 4: In-domain system comparison on das-
test, * denotes results from Hermann et al. (2014);
ambig: evaluation on ambiguous predicates; no-
lex: system without lexicon filter.

tering is performed. We find that our frame identi-
fication system performs surprisingly well in this
setting, and we encourage the no-lexicon per-
formance to be additionally reported in the future,
since it better reflects the frame identification qual-
ity and smoothens the effect of lexicon coverage.

Baselines We employ two majority baseline mod-
els for comparison. The DataBaseline assigns
frames based on how often a frame is evoked
by the given predicate. This corresponds to the
most frequent sense baseline in word sense dis-
ambiguation (WSD). The frames available for
predicates are obtained by scanning the training
data. The LexiconBaseline calculates overall
frame counts first (i.e. how often a frame appears
in the training data in general), and, given the predi-
cate, selects the overall most frequent frame among
the ones available for this predicate. We expect this
baseline to better handle the cases when limited
data is available for a given predicate sense.

Experiments In our experiments, we generate
the lexicon L in the same way as in Hermann-14,
by scanning the “frames” folder of the FrameNet
1.5 distribution. For the external vector space
model vsm we use dependency-based word em-
beddings from Levy and Goldberg (2014).

In-domain performance We report the perfor-
mance of our system in the in-domain setting
to compare to the state-of-the-art results from
Hermann-14.5 We train our system on das-train
and test it on das-test using the full FrameNet lexi-
con. When available, we report the no-lexicon
scores as well. As Table 4 shows, our system out-

5Based on the errata version of Hermann et al.
(2014) in http://www.aclweb.org/anthology/P/
P14/P14-1136v2.pdf
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system das-test YAGS MASC TW-av

DataBaseline 79.09 52.27 43.85 47.68
LexiconBaseline 79.05 50.02 36.86 55.40
Semafor 82.09 60.01 39.52 62.17

WSB+SentBOW 84.46 59.68 54.90 66.84
WSB+DepBOW 85.69 61.50 54.56 67.14
NN+SentBOW 87.63 62.03 53.73 68.67
NN+DepBOW 87.53 62.51 55.09 67.76

Table 5: Out-of-domain frameId, total accuracy.
Semafor scores calculated during our own exper-
iments; YAGS results on YAGS-test.

performs Semafor and performs on par with the
results reported for Hermann-14. One interest-
ing observation is that our systems perform al-
most as well in the no-lexicon setting as the
DataBaseline, which has access to the lexicon,
in the total setting. To our surprise, the WSABIE-
based frame identification did not yield a consistent
improvement in-domain, compared to the simple
NN-based approach. We also observe that in many
cases the SentBOW representation performs on
par with the DepBOW, while requiring significantly
less data preprocessing: SentBOW only uses tok-
enization, whereas DepBow relies on lemmatiza-
tion, POS-tagging, and dependency parsing. We
attribute this effect to the fact that SentBOW pro-
vides more context information than the sparse,
dependency-filtered DepBOW.

Out-of-domain performance We also investi-
gate how well the systems perform in the out-of-
domain setting. Table 5 summarizes the results.
Each of the systems was trained on das-train and
tested on a variety of test sets. As we can see, our
systems outperform Semafor for all datasets. The
YAGS dataset is the only dataset on which we do
not strongly outperform Semafor. We attribute
this to the complexity of the YAGS dataset that
contains a high proportion of verbs.

Overall out-of-domain performance stays behind
the F1-agreement observed for the human annota-
tors for TW and YAGS, which shows that there is
a large margin for improvement. Corresponding
scores for in-domain data are not available.

Error analysis To further investigate the perfor-
mance of our system in the out-of-domain setup we
analyse statistics on the errors made by the system
variant NN+SentBOW.

The system’s wrong predictions are affected by
the lexicon in two ways. First, if the predicate is

not listed in the lexicon (unknown), the system has
to choose among all frames. As we have shown
before, the quality of predictions for unknown pred-
icates is generally lower. The second case is when
the predicate is listed in lexicon (so it is not un-
known), but the correct frame is not associated
with this predicate. We further refer to this class
of errors as unlinked. For unlinked predicates, the
system is restricted to the set of frames provided by
the lexicon, and by design has no means to select
the right frame for a given predicate occurrence.

The unlinked-predicate issue points to a ma-
jor design flaw in the standard frameId architec-
ture. Although choosing among frames defined in
the lexicon provides a quality boost, it also ren-
ders many instances intractable for the system, if
the lexicon coverage is incomplete. As Table 6
shows, unknown and unlinked predicates are al-
most non-present in the in-domain case, but are a
major source of errors in the out-of-domain case
and even might be responsible for the majority of
errors occurring due to domain shift (see MASC).
It is important to point out that there is still no guar-
antee that these would be classified correctly once
the missing linking information is available in the
lexicon. However, if the correct frame is not listed
among the frames available for the predicate, the
misclassification is inevitable.

A more detailed analysis of the errors made
by the system shows that the majority of false
predictions for known and linked predicates are
due to the domain differences in word usage. For
example, the predicate window was assigned
the frame Connecting architecture instead of
the correct frame Time period of action in the
following sentence:

“No effect of anesthetic protocol on IOP during a
12 minute measurement [window].”

This problem is also relevant in generic WSD
(Agirre et al., 2010) and benefits from the same
solutions, for instance adapting embeddings to a
particular domain (Taghipour and Ng, 2015) and
efficient use of embeddings (Iacobacci et al., 2016).

Another major source of errors are subtle syn-
tactic and semantic differences between frames
which are hard to resolve on the sentence level
(e.g. distinguishing between Similarity and Iden-
ticality for the predicate different). This could
be addressed by incorporating subcategorization
information and document context into the disam-
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dataset % errors accuracy loss
unk unl

∑
unk∪unl total

test-das 0.83 0.66 1.49 0.18 -
YAGS-test 3.76 13.05 16.81 6.40 25.60
MASC 12.15 33.70 45.85 24.03 33.90
TW-avg 10.40 9.68 20.08 6.31 18.96

Table 6: Error sources for NN+Dep; unk is the
percentage of unknown and unl is the percentage of
unlinked predicates among misclassified instances.

biguation model, which has been proposed in re-
cent work in FrameNet SRL, see e.g. Hermann et
al. (2014) and Roth and Lapata (2015).

To further explore the impact of user-generated
text, we applied word-processor spelling correction
to YAGS and tested our systems on the corrected
set. The results do not change significantly, which
indicates that a) our distributed representations pro-
vide enough information to classify also noisy user-
generated text, and b) frameId errors cannot be
attributed to preprocessing problems at large scale.

6 Discussion and outlook

Our analysis in Section 4 shows that domain adap-
tation is mainly required for the frameId step
of FrameNet SRL. Unlike in PropBank SRL, in
FrameNet SRL there is no significant performance
drop for roleId once correct frames are available.
The number of available roles given the correct
frame is lower, on average 10, which reduces the
complexity of the roleId task.

In Section 5 we introduced a simple, yet effi-
cient frame identification method and evaluated
it on in-domain and out-of-domain data. The
method achieves competitive in-domain results,
and outperforms the best available open-source sys-
tem in out-of-domain accuracy. We also observe
that our system performs well in the newly intro-
duced no-lexicon evaluation setting, where no
lexicon-based filtering is applied.

We identified a major issue in the standard
frameId architecture: shifting to a new domain
might render the predicate-frame associations in
the FrameNet lexicon incomplete, which leads to
errors for a standard classifier trained on in-domain
data. One could optimize a frameId system to work
in the no-lexicon setting which does not rely
on the lexicon knowledge at all. However, in this
setting the classification results are currently lower.
Manually or automatically increasing both predi-
cate and predicate-frame association coverage of

the FrameNet lexicon could help, and we suggest
investigating this line of research in future work.

While our method achieves state-of-the-art re-
sults on out-of-domain data, overall results are still
significantly lower than the human performance ob-
served for YAGS and TW, which shows that there is
large room for improvement. Some further benefits
could be gained from combining the WSABIE and
NN-based classification, using advanced context
representations, e.g. context2vec (Melamud et al.,
2016) and incorporating syntactic information into
the model. The out-of-domain performance could
be further improved by adapting word representa-
tions to a new domain.

A direct comparison to the Hermann-14 sys-
tem in the out-of-domain setup would shed some
more light on the properties of the task affecting
the out-of-domain performance. On the one hand,
we expect Hermann-14 to perform worse due to
its heavy reliance on syntactic information, which
might decline in quality when moved to a new do-
main; on the other hand, the WSABIE-based clas-
sification might smoothen this effect. We make our
dataset publicly available to enable comparison to
related work.6

7 Conclusion

Domain dependence is a well-known issue for su-
pervised NLP tasks such as FrameNet SRL. To the
best of our knowledge, there is no recent study of
the domain dependence of FrameNet SRL, also
prohibited by a lack of appropriate datasets.

To address this problem, we 1) present the first
comprehensive study of the domain generalization
performance of the open-source Semafor system
on several diverse benchmark sets. As a prerequi-
site, we introduce YAGS, a new, substantially sized
test set in the domain of user-generated question-
and-answer text. We find that the major bottleneck
for out-of-domain FrameNet SRL is the frame iden-
tification step; we 2) explore a promising way to
improve out-of-domain frame identification, i.e. us-
ing distributed word representations. Our simple
frame identification system based on distributed
word representations achieves higher scores for
out-of-domain frame identification than previous
systems and approaches state-of-the-art results in-
domain. To support reproducibility of our results,
we publish the YAGS test set annotations and our
frame identification system for research purposes.

6www.ukp.tu-darmstadt.de/ood-fn-srl

479



Acknowledgements

This work was supported by FAZIT-Stiftung and by
the German Research Foundation (DFG) through
grant GU 798/18-1 (QAEduInf) and the research
training group “Adaptive Preparation of Informa-
tion form Heterogeneous Sources” (AIPHES, GRK
1994/1). We thank Orin Hargraves and our annota-
tors for their excellent work on the annotation study,
Dr. Richard Eckart de Castilho for support regard-
ing WebAnno, as well as Dr. Judith Eckle-Kohler
and the anonymous reviewers for their comments
on earlier versions of this paper.

References
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Ganchev, and Dipanjan Das. 2015. Semantic role la-
beling with neural network factors. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 960–970, Lis-
bon, Portugal, September. Association for Computa-
tional Linguistics.
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Lluı́s Màrquez, and Joakim Nivre. 2008. The conll
2008 shared task on joint parsing of syntactic and se-
mantic dependencies. In CoNLL 2008: Proceedings
of the Twelfth Conference on Computational Natu-
ral Language Learning, pages 159–177, Manchester,
England, August. Coling 2008 Organizing Commit-
tee.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-
factoid questions from web collections. Computa-
tional Linguistics, 37(2):351–383.

481



Kaveh Taghipour and Hwee Tou Ng. 2015. Semi-
Supervised Word Sense Disambiguation Using
Word Embeddings in General and Specific Domains.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 314–323, Denver, Colorado, May–June. Asso-
ciation for Computational Linguistics.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. WSABIE: Scaling Up to Large Vocabu-
lary Image Annotation. In Proceedings of the
Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Three, IJ-
CAI’11, pages 2764–2770, Barcelona, Catalonia,
Spain. AAAI Press.

Haitong Yang, Tao Zhuang, and Chengqing Zong.
2015. Domain adaptation for syntactic and seman-
tic dependency parsing using deep belief networks.
Transactions of the Association for Computational
Linguistics, 3:271–282.

Seid Muhie Yimam, Richard Eckart de Castilho, Iryna
Gurevych, and Chris Biemann. 2014. Auto-
matic Annotation Suggestions and Custom Annota-
tion Layers in WebAnno. In Kalina Bontcheva and
Zhu Jingbo, editors, Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics. System Demonstrations, pages 91–96,
Stroudsburg, PA 18360, USA. Association for Com-
putational Linguistics.

482



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 483–493,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

TDParse: Multi-target-specific sentiment recognition on Twitter

Bo Wang Maria Liakata Arkaitz Zubiaga Rob Procter
Department of Computer Science

University of Warwick
Coventry, UK

{bo.wang, m.liakata, a.zubiaga}@warwick.ac.uk

Abstract
Existing target-specific sentiment recogni-
tion methods consider only a single tar-
get per tweet, and have been shown to
miss nearly half of the actual targets men-
tioned. We present a corpus of UK elec-
tion tweets, with an average of 3.09 enti-
ties per tweet and more than one type of
sentiment in half of the tweets. This re-
quires a method for multi-target specific
sentiment recognition, which we develop
by using the context around a target as well
as syntactic dependencies involving the
target. We present results of our method
on both a benchmark corpus of single tar-
gets and the multi-target election corpus,
showing state-of-the art performance in
both corpora and outperforming previous
approaches to multi-target sentiment task
as well as deep learning models for single-
target sentiment.

1 Introduction

Recent years have seen increasing interest in min-
ing Twitter to assess public opinion on political
affairs and controversial issues (Tumasjan et al.,
May 2010; Wang et al., 2012) as well as products
and brands (Pak and Paroubek, 2010). Opinion
mining from Twitter is usually achieved by deter-
mining the overall sentiment expressed in an entire
tweet. However, inferring the sentiment towards
specific targets (e.g. people or organisations) is
severely limited by such an approach since a tweet
may contain different types of sentiment expressed
towards each of the targets mentioned. An early
study by Jiang et al. (2011) showed that 40% of
classification errors are caused by using tweet-
level approaches that are independent of the target.
Consider the tweet:

“I will b voting 4 Greens ... 1st reason:
2 remove 2 party alt. of labour or con-
servative every 5 years. 2nd: fracking”

The overall sentiment is positive but there is a
negative sentiment towards “labour”, “conserva-
tive” and “fracking” and a positive sentiment to-
wards “Greens”. Examples like this are common
in tweets discussing topics like politics. As has
been demonstrated by the failure of election polls
in both referenda and general elections (Burnap et
al., 2016), it is important to understand not only
the overall mood of the electorate, but also to dis-
tinguish and identify sentiment towards different
key issues and entities, many of which are dis-
cussed on social media on the run up to elections.

Recent developments on target-specific Twit-
ter sentiment classification have explored differ-
ent ways of modelling the association between tar-
get entities and their contexts. Jiang et al. (2011)
propose a rule-based approach that utilises de-
pendency parsing and contextual tweets. Dong
et al. (2014), Tang et al. (2016a) and Zhang et
al. (2016) have studied the use of different recur-
rent neural network models for such a task but the
gain in performance from the complex neural ar-
chitectures is rather unclear1

In this work we introduce the multi-target-
specific sentiment recognition task, building a cor-
pus of tweets from the 2015 UK general election
campaign suited to the task. In this dataset, tar-
get entities have been semi-automatically selected,
and sentiment expressed towards multiple target
entities as well as high-level topics in a tweet
have been manually annotated. Unlike all ex-
isting studies on target-specific Twitter sentiment
analysis, we move away from the assumption that

1They have yet to show a clear out-performance on a
benchmarking dataset and our multi-target corpus, possibly
because they usually require large amount of training data.
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each tweet mentions a single target; we introduce
a more realistic and challenging task of identify-
ing sentiment towards multiple targets within a
tweet. To tackle this task, we propose TDParse,
a method that divides a tweet into different seg-
ments building on the approach introduced by Vo
and Zhang (2015). TDParse exploits a syntactic
dependency parser designed explicitly for tweets
(Kong et al., 2014), and combines syntactic infor-
mation for each target with its left-right context.

We evaluate and compare our proposed sys-
tem both on our new multi-target UK election
dataset, as well as on the benchmarking dataset
for single-target dependent sentiment (Dong et al.,
2014). We show a clear state-of-the-art perfor-
mance of TDParse over existing approaches for
tweets with multiple targets, which encourages
further research on the multi-target-specific sen-
timent recognition task.2

2 Related Work: Target-dependent
Sentiment Classification on Twitter

The 2015 Semeval challenge introduced a task
on target-specific Twitter sentiment (Rosenthal et
al., 2015) which most systems (Boag et al., 2015;
Plotnikova et al., 2015) treated in the same way as
tweet level sentiment. The best performing sys-
tem in the 2016 Semeval Twitter challenge sub-
stask B (Nakov et al., 2016), named Tweester,
also performs on tweet level sentiment classifi-
cation. This is unsurprising since tweets in both
tasks only contain a single predefined target en-
tity and as a result often a tweet-level approach is
sufficient. An exception to tweet level approaches
for this task, showing promise, is Townsend et
al. (2015), who trained a SVM classifier for tweet
segmentation, then used a phrase-based sentiment
classifier for assigning sentiment around the tar-
get. The Semeval aspect-based sentiment analy-
sis task (Pontiki et al., 2015; Pateria and Choubey,
2016) aims to identify sentiment towards entity-
attribute pairs in customer reviews. This differs
from our goal in the following way: both the en-
tities and attributes are limited to a predefined in-
ventory of limited size; they are aspect categories
reflected in the reviews rather than specific tar-
gets, while each review only has one target entity,
e.g. a laptop or a restaurant. Also sentiment clas-
sification in formal text such as product reviews

2The data and code can be found at https://goo.gl/
S2T1GO

is very different from that in tweets. Recently
Vargas et al. (2016) analysed the differences be-
tween the overall and target-dependent sentiment
of tweets for three events containing 30 targets,
showing many significant differences between the
corresponding overall and target-dependent senti-
ment labels, thus confirming that these are distinct
tasks.

Early work tackling target-dependent sentiment
in tweets (Jiang et al., 2011) designed target-
dependent features manually, relying on the syn-
tactic parse tree and a set of grammar-based rules,
and incorporating the sentiment labels of related
tweets to improve the classification performance.
Recent work (Dong et al., 2014) used recursive
neural networks and adaptively chose composi-
tion functions to combine child feature vectors ac-
cording to their dependency type, to reflect senti-
ment signal propagation to the target. Their data-
driven composition selection approach replies on
the dependency types as features and a small set
of rules for constructing target-dependent trees.
Their manually annotated dataset contains only
one target per tweet and has since been used for
benchmarking by several subsequent studies (Vo
and Zhang, 2015; Tang et al., 2016a; Zhang et
al., 2016). Vo and Zhang (2015) exploit the
left and right context around a target in a tweet
and combine low-dimensional embedding features
from both contexts and the full tweet using a num-
ber of different pooling functions. Despite not
fully capturing semantic and syntactic information
given the target entity, they show a much better
performance than Dong et al. (2014), indicating
useful signals in relation to the target can be drawn
from such context representation. Both Tang et
al. (2016a) and Zhang et al. (2016) adopt and
integrate left-right target-dependent context into
their recurrent neural network (RNN) respectively.
While Tang et al (2016a) propose two long short-
term memory (LSTM) models showing competi-
tive performance to Vo and Zhang (2015), Zhang
et al (2016) design a gated neural network layer
between the left and right context in a deep neu-
ral network structure but require a combination
of three corpora for training and evaluation. Re-
sults show that conventional neural network mod-
els like LSTM are incapable of explicitly captur-
ing important context information of a target (Tang
et al., 2016b). Tang et al. (2016a) also experi-
ment with adding attention layers for LSTM but
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fail to achieve competitive results possibly due to
the small training corpus.

Going beyond the existing work we study the
more challenging task of classifying sentiment to-
wards multiple target entities within a tweet. Us-
ing the syntactic information drawn from tweet-
specific parsing, in conjunction with the left-right
contexts, we show the state-of-the-art performance
in both single and multi-target classification tasks.
We also show that the tweet level approach that
many sentiment systems adopted in both Semeval
challenges, fail to capture all target-sentiments in
a multi-target scenario (Section 5.1).

3 Creating a Corpus for Target Specific
Sentiment in Twitter

We describe the design, collection and annotation
of a corpus of tweets about the 2015 UK election.

3.1 Data Harvesting and Entity Recognition

We collected a corpus of tweets about the UK
elections, as we wanted to select a political event
that would trigger discussions on multiple enti-
ties and topics. Collection was performed through
Twitter’s streaming API and tracking 14 hash-
tags3. Data harvesting was performed between
7th February and 30th March 2015. This led to
the collection of 712k tweets, from which a sub-
set was sampled for manual annotation of target-
specific sentiment. We also created a list of 438
topic keywords relevant to 9 popular election is-
sues4 for data sampling. The initial list of 438
seed words provided by a team of journalists was
augmented by searching for similar words within
a vector space on the basis of cosine similarity.
Keywords are used both in order to identify the-
matically relevant tweets and also targets. We also
consider named entities as targets.

Sampling of tweets was performed by removing
retweets and making sure each tweet contained at
least one topic keyword from one of the 9 election
issues, leading to 52,190 highly relevant tweets.
For the latter we ranked tweets based on a “simi-
larity” relation, where “similarity” is measured as
a function of content overlap (Mihalcea, 2004).
Formally, given a tweet Si being represented by

3#ukelection2015, #ge2015, #ukge2015, #ukgeneralelec-
tion2015, #bbcqt, #bbcsp, #bbcdp, #marrshow, #generalelec-
tion2015, #ge15, #generalelection, #electionuk, #ukelection
and #electionuk2015

4EU and immigration, economy, NHS, education, crime,
housing, defense, public spending, environment and energy

the set of N words that appear in the tweet: Si =
W 1

i ,W
2
i , ...,W

N
i and our list of curated topic key-

words T , the ranking function is defined as:

log(|Si|) ∗ |Wi ∈ Si ∩Wi ∈ T | (1)

where |Si| is the total number of words in the
tweet; unlike Mihalcea (2004) we prefer longer
tweets. We used exact matching with flexibility
on the special characters at either end. TF-IDF
normalisation and cosine similarity were then ap-
plied to the dataset to remove very similar tweets
(empirically we set the cosine similarity thresh-
old to 0.6). We also collected all external URLs
mentioned in our dataset and their web content
throughout the data harvesting period, filtering out
tweets that only contain an external link or snip-
pets of a web page. Finally we sampled 4,500
top-ranked tweets keeping the representation of
tweets mentioning each election issue proportion-
ate to the original dataset.

For annotation we considered sentiment to-
wards two types of targets: entities and topic
keywords. Entities were processed in two ways:
firstly, named entities (people, locations, and
organisations) were automatically annotated by
combining the output of Stanford Named Entity
Recognition (NER) (Finkel et al., 2005), NLTK
NER (Bird, 2006) and a Twitter-specific NER
(Ritter et al., 2011). All three were combined for
a more complete coverage of entities mentioned
in tweets and subsequently corrected by remov-
ing wrongly marked entities through manual an-
notation. Secondly, to make sure we covered all
key entities in the tweets, we also matched tweets
against a manually curated list of 7 political-party
names and added users mentioned therein as enti-
ties. The second type of targets matched the topic
keywords from our curated list.

3.2 Manual Annotation of Target Specific
Sentiment

We developed a tool for manual annotation of sen-
timent towards the targets (i.e. entities and topic
keywords) mentioned in each tweet. The annota-
tion was performed by nine PhD-level journalism
students, each of them annotating approximately a
ninth of the dataset, i.e. 500 tweets. Additionally,
they annotated a common subset of 500 tweets
consistign of 2,197 target entities, which was used
to measure inter-annotator agreement (IAA). An-
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Figure 1: Annotation tool for human annotation of target specific sentiment analysis

notators were shown detailed guidelines5 before
taking up the task, after which they were redi-
rected to the annotation tool itself (see Figure 1).

Tweets were shown to annotators one by one,
and they had to complete the annotation of all tar-
gets in a tweet to proceed. The tool shows a tweet
with the targets highlighted in bold. Possible an-
notation actions consisted in: (1) marking the sen-
timent for a target as being positive, negative, or
neutral, (2) marking a target as being mistakenly
highlighted (i.e. ‘doesnotapply’) and hence re-
moving it, and (3) highlighting new targets that
our preprocessing step had missed, and associat-
ing a sentiment value with them. In this way we
obtained a corrected list of targets for each tweet,
each with an associated sentiment value.

We measure inter-annotator agreement in two
different ways. On the one hand, annotators
achieved κ = 0.345 (z = 92.2, p < 0.0001) (fair
agreement)6 when choosing targets to be added or
removed. On the other hand, they achieved a sim-
ilar score of κ = 0.341 (z = 77.7, p < 0.0001)
(fair agreement) when annotating the sentiment of
the resulting targets. It is worth noting that the
sentiment annotation for each target also involves
choosing among not only positive/negative/neutral
but also a fourth category ‘doesnotapply’. The re-
sulting dataset contains 4,077 tweets, with an av-
erage of 3.09 entity mentions (targets) per tweet.
As many as 3,713 tweets have more than a sin-
gle entity mention (target) per tweet, which makes
the task different from 2015 Semeval 10 subtask
C (Rosenthal et al., 2015) and a target-dependent
benchmarking dataset of Dong et al. (2014) where
each tweet has only one target annotated and thus

5This guidelines can be found along with our released cor-
pus: https://goo.gl/CjuHzd

6We report the strength of agreement using the bench-
marks by Landis and Koch (1977) for interpreting Fleiss’
kappa.

one sentiment label assigned. The number of tar-
gets in the 4,077 tweets to be annotated originally
amounted to 12,874. However, the annotators un-
highlighted 975 of them, and added 688 new ones,
so that the final number of targets in the dataset is
12,587. These are distributed as follows: 1,865 are
positive, 4,707 are neutral, and 6,015 are negative.
This distribution shows the tendency of a theme
like politics, where users tend to have more nega-
tive opinions. This is different from the Semeval
dataset, which has a majority of neutral sentiment.
Looking at the annotations provided for different
targets within each tweet, we observe that 2,051
tweets (50.3%) have all their targets consistently
annotated with a single sentiment value, 1,753
tweets (43.0%) have two different sentiments, and
273 tweets (6.7%) have three different sentiment
values. These statistics suggest that providing a
single sentiment for the entire tweet would not be
appropriate in nearly half of the cases confirming
earlier observations (Jiang et al., 2011).

We also labelled each tweet containing one or
more topics from the 9 election issues, and asked
the annotators to mark the author’s sentiment to-
wards the topic. Unlike entities, topics may not be
directly present in tweets. We compare topic sen-
timent with target/entity sentiment for 3963 tweets
from our dataset adopting the approach by Var-
gas et al. (2016). Table 1 reports the individ-
ual c(starget), c(stopic) and joint c(starget, stopic)
distributions of the target/entity starget and topic
stopic sentiment. While starget and stopic report
how often each sentiment category occurs in the
dataset, the joint distribution c(starget, stopic) (the
inner portions of the table) shows the discrepan-
cies between target and topic sentiments. We ob-
serve marked differences between the two senti-
ment labels. For example it shows the topic senti-
ment is more neutral (1438.7 vs. 1104.1) and less
negative (1930.7 vs. 2285.5) than the target sen-
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timent. There is also a number of tweets express-
ing neutrality towards the topics mentioned but po-
larised sentiment towards targets (i.e. we observe
c(stopic = neu ∩ stargets = neg) = 258.6 also
c(stopic = neu ∩ stargets = pos) = 101.4), and
vice versa. This emphasises the importance of dis-
tinguishing target entity sentiment not only on the
basis of overall tweet sentiment but also in terms
of sentiment towards a topic.

c(starget, stopic)
stopic c(stopic)negative neutral positive

s t
a
rg
et negative 1553.9 258.6 118.3 1930.9

neutral 557.6 744.1 137.0 1438.7
positive 174.0 101.4 318.1 593.5
c(starget) 2285.5 1104.1 573.4 3963.0

Table 1: Individual c(starget), c(stopic) and joint
c(starget, stopic) distributions of sentiments

4 Developing a state-of-the-art approach
for target-specific sentiment

4.1 Model development for single-target
benchmarking data

Firstly we adopt the context-based approach by Vo
and Zhang (2015), which divides each tweet into
three parts (left context, target and right context),
and where the sentiment towards a target entity
results from the interaction between its left and
right contexts. Such sentiment signal is drawn by
mapping all the words in each context into low-
dimensional vectors (i.e. word embeddings), us-
ing pre-trained embedding resources, and apply-
ing neural pooling functions to extract useful fea-
tures. Such context set-up does not fully cap-
ture the syntactic information of the tweet and the
given target entity, and by adding features from
the full tweet (as done by Vo and Zhang (2015))
interactions between the left and right context are
only implicitly modeled. Here we use a syntactic
dependency parser designed explicitly for tweets
(Kong et al., 2014) to find the syntactically con-
nected parts of the tweet to each target. We then
extract word embedding features from these syn-
tactically dependent tokens [D1, ..., Dn] along its
dependency path in the parsing tree to the target7,
as well as from the left-target-right contexts (i.e.
L − T − R). Feature vectors generated from dif-
ferent contexts are concatenated into a final feature

7Empirically the proximity/location of such syntactic re-
lations have not made much difference when used in feature
weighting and is thus ignored.

vector as shown in (2), where P (X) presents a list
of k different pooling functions on an embedding
matrix X . Not only does this proposed framework
make the learning process efficient without labor
intensive manual feature engineering and heavy
architecture engineering for neural models, it has
also shown that complex syntactic and semantic
information can be effectively drawn by simply
concatenating different types of context together
without the use of deep learning (other than pre-
trained word embeddings).

F = [P (D), P (L), P (T ), P (R)];

with P (X) = [f1(X), ..., fk(X)]
(2)

Data set: We evaluate and compare our pro-
posed system to the state-of-the-art baselines on
a benchmarking corpus (Dong et al., 2014) that
has been used by several previous studies (Vo and
Zhang, 2015; Tang et al., 2016a; Zhang et al.,
2016). This corpus contains 6248 training tweets
and 692 testing tweets with a sentiment class bal-
ance of 25% negative, 50% neutral and 25% pos-
itive. Although the original corpus has only an-
notated one target per tweet, without specifying
the location of the target, we expand this notion
to consider cases where the target entity may ap-
pear more than once at different locations in the
tweet, e.g.:

“Nicki Minaj has brought back the female rap-
per. - really? Nicki Minaj is the biggest parody in
popular music since the Lonely Island.”

Semantically it is more appropriate and mean-
ingful to consider both target appearances when
determining the sentiment polarity of “Nicki Mi-
naj” expressed in this tweet. While it isn’t clear
if Dong et al. (2014) and Tang et al. (2016a)
have considered this realistic same-target-multi-
appearance scenario, Vo et al. (2015) and Zhang
et al. (2016) do not take it into account when ex-
tracting target-dependent contexts. Contrary to
these studies we extend our system to fully incor-
porate the situation where a target appears multi-
ple times at different locations in the tweet. We
add another pooling layer in (2) where we apply
a medium pooling function to combine extracted
feature vectors from each target appearance to-
gether into the final feature vector for the senti-
ment classification of such targets. Now the fea-
ture extraction function P (X) in (2) becomes:
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P (X) = [Pmedium([f1(X1), ..., f1(Xm)]),

... ... ,

Pmedium([fk(X1), ..., fk(Xm)])]

(3)

where m is the number of appearances of the tar-
get and Pmedium represents the dimension-wise
medium pooling function.

Models: To investigate different ways of mod-
elling target-specific context and evaluate the
benefit of incorporating the same-target-multi-
appearance scenario, we build these models:

• Semeval-best: is a tweet-level model using
various types of features, namely ngrams, lex-
ica and word embeddings with extensive data
pre-processing and feature engineering. We
use this model as a target-independent base-
line as it approximates and beats the best per-
forming system (Boag et al., 2015) in Semeval
2015 task 10. It also outperforms the high-
est ranking system, Tweester, on the Semeval
2016 corpus (by +4.0% in macro-averaged re-
call) and therefore constitutes a state-of-the art
tweet level baseline.

• Naive-seg models: Naive-seg- slices each
tweet into a sequence of sub-sentences by us-
ing punctuation (i.e. ’,’ ’.’ ’?’ ’!’). Em-
bedding features are extracted from each sub-
sentence and pooling functions are applied to
combine word vectors. Naive-seg extends it
by adding features extracted from the left-
target-right contexts, while Naive-seg+ ex-
tends Naive-seg by adding lexicon filtered sen-
timent features.

• TDParse models: as described in Section 4.1.
TDParse- uses a dependency parser to extract
a syntactic parse tree to the target and map all
child nodes to low-dimensional vectors. Fi-
nal feature vectors for each target are gener-
ated using neural pooling functions. While
TDParse extends it by adding features ex-
tracted from the left-target-right contexts, TD-
Parse+ uses three sentiment lexica for fil-
tering words. TDParse+ (m) differs from
TDParse+ by taking into account the ‘same-
target-multi-appearance’ scenario. Both TD-
Parse+ and TDParse+ (m) outperform state-
of-the-art target-specific models.

• TDPWindow-N: the same as TDParse+ with
a window to constrain the left-right context.

For example if N = 3 then we only consider 3
tokens on each side of the target when extract-
ing features from the left-right context.

4.2 Experimental Settings

To compare our proposed models with Vo &
Zhang (2015), we have used the same pre-trained
embedding resources and pooling functions (i.e.
max, min, mean, standard deviation and product).
For classification we have used LIBLINEAR (Fan
et al., 2008), which approximates a linear SVM. In
tuning the cost factorC we perform five-fold cross
validation on the training data over the same set of
parameter values for both Vo and Zhang (2015)’s
implementation and our system. This makes sure
our proposed models are comparable with those of
Vo and Zhang (2015).

Evaluation metrics: We follow previous work
on target-dependent Twitter sentiment classifica-
tion, and report our performance in accuracy,
3-class macro-averaged (i.e. negative, neutral
and positive) F1 score as well as 2-class macro-
averaged (i.e. negative and positive) F1 score 8,
as used by the Semeval competitions (Rosenthal
et al., 2015) for measuring Twitter sentiment clas-
sification performance.

4.3 Experimental results and comparison
with other baselines

We report our experimental results in Table 2
on the single-target benchmarking corpus (Dong
et al., 2014), with three model categories: 1)
tweet-level target-independent models, 2) target-
dependent models without considering the ‘same-
target-multi-appearance’ scenario and 3) target-
dependent models incorporating the ‘same-target-
multi-appearance’ scenario. We include the mod-
els presented in the previous section as well as
models for target specific sentiment from the lit-
erature where possible.

Among the target-independent baseline models
Target-ind (Vo and Zhang, 2015) and Semeval-
best have shown strong performance compared
with SSWE (Tang et al., 2014) and SVM-ind
(Jiang et al., 2011) as they use more features,
especially rich automatic features using the em-
beddings of Mikolov et al. (2013). Interestingly
they also perform better than some of the target-
dependent baseline systems, namely SVM-dep

8Note that this isn’t a binary classification task; the F1

score is still effected by the neutral tweets.
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(Jiang et al., 2011), Recursive NN and AdaRNN
(Dong et al., 2014), showing the difficulty of fully
extracting and incorporating target information in
tweets. Basic LSTM models (Tang et al., 2016a)
completely ignore such target information and as
a result do not perform as well.

Among the target-dependent systems neural
network baselines have shown varying results.
The adaptive recursive neural network, namely
AdaRNN (Dong et al., 2014), adaptively selects
composition functions based on the input data
and thus performs better than a standard recur-
sive neural network model (Recursive NN (Dong
et al., 2014)). TD-LSTM and TC-LSTM from
Tang et al. (2016a) model left-target-right con-
texts using two LSTM neural networks and by do-
ing so incorporate target-dependent information.
TD-LSTM uses two LSTM neural networks for
modeling the left and right contexts respectively.
TC-LSTM differs from (and outperforms) TD-
LSTM in that it concatenates target word vec-
tors with embedding vectors of each context word.
We also test the Gated recurrent neural network
models proposed by Zhang et al. (2016) on the
same dataset. The gated models include: GRNN,
that includes gates in its recurrent hidden lay-
ers, G3 that connects left-right context using a
gated NN structure, and a combination of the two
- GRNN+G3. Results show these gated neu-
ral network models do not achieve state-of-the-
art performance. When we compare our target-
dependent model TDParse+, which incorporates
target-dependent features from syntactic parses,
against the target-dependent models proposed by
Vo and Zhang (2015), namely Target-dep which
combines full tweet (pooled) word embedding
features with features extracted from left-target-
right contexts and Target-dep+ that adds target-
dependent sentiment features on top of Target-
dep, we see that our method beats both of these,
without using full tweet features9. TDParse+ also
outperforms the state-of-the-art TC-LSTM.

When considering the ‘same-target-multi-
appearance’ scenario, our best model - TDParse+
improves its performance further (shown as TD-
Parse+ (m) in Table 2). Even though TDParse
doesn’t use lexica, it shows competitive results
to Target-dep+ which uses lexicon filtered sen-

9Note that the results reported in Vo and Zhang (2015)
(71.1 in accuracy and 69.9 in F1) were not possible to repro-
duce by running their code with very fine parameter tuning,
as suggested by the authors

Model Accuracy 3 Class F1 2 Class F1

SSWE 62.4 60.5
SVM-ind 62.7 60.2

LSTM 66.5 64.7
Target-ind 67.05 63.4 58.5

Semeval-best 67.6 64.3 59.2
SVM-dep 63.4 63.3

Recursive NN 63.0 62.8
AdaRNN 66.3 65.9

Target-dep 70.1 67.4 63.2
Target-dep+ 70.5 68.1 64.1
TD-LSTM 70.8 69.0
TC-LSTM 71.5 69.5

GRNN 68.5 65.8 61.0
G3 68.5 67.0 63.9

GRNN+G3 67.9 65.2 60.5
TDParse+ 72.1 69.8 66.0

Target-dep+ (m) 70.7 67.8 63.4
Naive-seg- 63.0 57.6 51.5
Naive-seg 70.8 68.4 64.5

Naive-seg+ 70.7 67.7 63.2
TDParse- 61.7 57.0 51.1
TDParse 71.0 68.4 64.3

TDParse+ (m) 72.5 70.3 66.6
TDPWindow-2 68.2 64.7 59.2
TDPWindow-7 71.2 68.5 64.2
TDPWindow-12 70.5 67.9 63.8

Table 2: Performance comparison on the bench-
marking data (Dong et al., 2014)

timent features. In the case of TDParse-, which
uses exclusively features from syntactic parses,
while it performs significantly worse than Target-
ind, that uses only full tweet features, when the
former is used in conjunction with features from
left-target-right contexts it achieves better results
than the equivalent Target-dep and Target-dep+.
This indicates that syntactic target information
derived from parses complements well with the
left-target-right context representation. Clausal
segmentation of tweets or sentences can provide a
simple approximation to parse-tree based models
(Li et al., 2015). In Table 2 we can see our
naive tweet segmentation models Naive-seg and
Naive-seg+ also achieve competitive performance
suggesting to some extent that such simple
parse-tree approximation preserves the semantic
structure of text and that useful target-specific
information can be drawn from each segment or
clause rather than the entire tweet.

5 Evaluating Baselines for target-specific
sentiment in a multi-target setting

We perform multi-target-specific sentiment clas-
sification on our election dataset by extending
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and applying our models described in Section 4.1.
We compare the results with our other devel-
oped baseline models in Section 4.1, including
a tweet-level model Semeval-best and clausal-
segmentation models that provide simple parse-
tree approximation, as well as state-of-the-art
target-dependent models by Vo and Zhang (2015)
and Zhang et al. (2016). The experimentation set-
up is the same as described in Section 4.210.

Data set: Our election data has a train-
ing/testing ratio of 3.70, containing 3210 training
tweets with 9912 target entities and 867 testing
tweets with 2675 target entities.

Models: In order to limit our use of external
resources we do not include Naive-seg+ and TD-
Parse+ for evaluation as they both use lexica for
feature generation. Since most of our tweets here
contain N > 1 targets and the target-independent
classifiers produce a single output per tweet, we
evaluate its resultN times against the ground truth
labels, to make different models comparable.

Results: Overall the models perform much
poorer than for the single-target benchmarking
corpus, especially in 2-class F1 score, indicat-
ing the challenge of the multi-target-specific sen-
timent recognition. As seen in Table 3 though
the feature-rich tweet-level model Semeval-best
gives a reasonably strong baseline performance
(same as in Table 2), both it and Target-ind
perform worse than the target-dependent baseline
models Target-dep/Target-dep+ (Vo and Zhang,
2015), indicating the need to capture and utilise
target-dependent signals in the sentiment classifi-
cation model. The Gated neural network models -
G3/GRNN/GRNN+G3 (Zhang et al., 2016) also
perform worse than Target-dep+ while the com-
bined model - GRNN+G3 fails to boost perfor-
mance, presumably due to the small corpus size.

Our final model TDParse achieves the best per-
formance especially in 3-class F1 and 2-class F1

scores in comparison with other target-dependent
and target-independent models. This indicates that
our proposed models can provide better and more
balanced performance between precision and re-
call. It also shows the target-dependent syntac-
tic information acquired from parse-trees is ben-
eficial to determine the target’s sentiment partic-
ularly when used in conjunction with the left-

10Class weight parameter is not optimised for all experi-
ments, though better performances can be achieved here by
tuning the class weight due to the class imbalance nature of
this dataset.

Model Accuracy 3 Class F1 2 Class F1

Semeval-best 54.09 42.60 40.73
Target-ind 52.30 42.19 40.50
Target-dep 54.36 41.50 38.91

Target-dep+ 55.85 43.40 40.85
GRNN 54.92 41.22 38.57

G3 55.70 41.40 37.87
GRNN+G3 54.58 41.04 39.46
Naive-seg- 51.89 39.94 37.17
Naive-seg 55.07 43.89 40.69
TDParse- 52.53 42.71 40.67
TDParse 56.45 46.09 43.43

TDPWindow-2 55.10 43.81 41.36
TDPWindow-7 55.70 44.66 41.35
TDPWindow-12 56.82 45.45 42.69

Table 3: Performance comparison on the election
dataset11

S1 Semeval-best Target-dep+ TDParse
Macro 3-class-F1 50.11 46.24 47.08
Micro 3-class-F1 59.72 55.82 57.47
Macro 2-class-F1 46.59 43.42 42.95

S2 Semeval-best Target-dep+ TDParse
Macro 3-class-F1 37.15 41.81 43.07
Micro 3-class-F1 45.17 51.66 52.05
Macro 2-class-F1 37.05 39.75 40.92

S3 Semeval-best Target-dep+ TDParse
Macro 3-class-F1 35.08 42.83 51.26
Micro 3-class-F1 38.16 46.05 53.07
Macro 2-class-F1 35.17 40.53 50.14

Table 4: Performance analysis in S1, S2 and S3

target-right contexts originally proposed by Vo
and Zhang (2015) and in a scenario of multiple tar-
gets per tweet. Our clausal-segmentation baseline
- Naive-seg models approximate such parse-trees
by identifying segments of the tweet relevant to
the target, and as a result Naive-seg achieves com-
petitive performance compared to other baselines.

5.1 State-of-the-art tweet level sentiment vs
target-specific sentiment in a multi-target
setting

To fully compare our multi-target-specific mod-
els against other target-dependent and target-
independent baseline methods, we conduct an ad-
ditional experiment by dividing our election data
test set into three disjoint subsets, on the basis
of number of distinct target sentiment values per
tweet: (S1) contains tweets having only one tar-
get sentiment, where the sentiment towards each
target is the same; (S2) and (S3) contain two and
three different types of targeted sentiment respec-

11Any further results will be shared on our Github page:
https://goo.gl/S2T1GO
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tively (i.e. in S3, positive, neutral and negative
sentiment are all expressed in each tweet). As de-
scribed in Section 3.2, there are 2,051, 1,753 and
273 tweets in S1, S2 and S3 respectively.

Table 4 shows results achieved by the tweet-
level target-independent model - Semeval-best,
the state-of-the-art target-dependent baseline
model - Target-dep+, and our proposed final
model - TDParse, in each of the three subsets.
We observe Semeval-best performs the best in
S1 compared to the two other models but its
performance gets worse when different types of
target sentiment are mentioned in the tweet. It has
the worst performance in S2 and S3, which again
emphasises the need for multi-target-specific
sentiment classification. Finally, our proposed
final model TDParse achieves better performance
than Target-dep+ consistently over all subsets
indicating its effectiveness even in the most
difficult scenario S3.

6 Conclusion and Future work

In this work we introduce the challenging task
of multi-target-specific sentiment classification for
tweets. To help the study we have generated
a multi-target Twitter corpus on UK elections
which will be made publicly available. We de-
velop a state-of-the-art approach which utilises
the syntactic information from parse-tree in con-
junction with the left-right context of the target.
Our method outperforms previous approaches on
a benchmarking single-target corpus as well as our
new multi-target election data. Future work could
investigate sentiment connections among all tar-
gets appearing in the same tweet as a multi-target
learning task, as well as a hybrid approach that
applies either Semeval-best or TDParse depending
on the number of targets detected in the tweet.
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Abstract

We propose a new evaluation for auto-
matic solvers for algebra word problems,
which can identify mistakes that existing
evaluations overlook. Our proposal is to
evaluate such solvers using derivations,
which reflect how an equation system was
constructed from the word problem. To
accomplish this, we develop an algorithm
for checking the equivalence between two
derivations, and show how derivation an-
notations can be semi-automatically added
to existing datasets. To make our exper-
iments more comprehensive, we include
the derivation annotation for DRAW-1K, a
new dataset containing 1000 general alge-
bra word problems. In our experiments,
we found that the annotated derivations
enable a more accurate evaluation of au-
tomatic solvers than previously used met-
rics. We release derivation annotations for
over 2300 algebra word problems for fu-
ture evaluations.

1 Introduction

Automatically solving math reasoning problems is
a long-pursued goal of AI (Newell et al., 1959;
Bobrow, 1964). Recent work (Kushman et al.,
2014; Shi et al., 2015; Koncel-Kedziorski et al.,
2015) has focused on developing solvers for alge-
bra word problems, such as the one shown in Fig-
ure 1. Developing a solver for word problems can
open several new avenues, especially for online
education and intelligent tutoring systems (Kang
et al., 2016). In addition, as solving word prob-
lems requires the ability to understand and ana-
lyze natural language, it serves as a good test-bed
for evaluating progress towards goals of artificial
intelligence (Clark and Etzioni, 2016).

Am=Bn Cm + Dn = E

      Costs of apple and orange are in ratio 5 : 15 at the Acme Market. 
Mark wanted some fruits so he buys 5 apples and 5 oranges for 100 
dollars. Find cost of each.

5m=15n,5m+5n=100	(m=15,n=5) 	

Solution Equation System Derivation

Figure 1: An algebra word problem with its solution, equa-
tion system and derivation. Evaluating solvers on derivation
is more reliable than evaluating on solution or equation sys-
tem, as it reveals errors that other metric overlook.

An automatic solver finds the solution of a
given word problem by constructing a deriva-
tion, consisting of an un-grounded equation
system1 ({Am = Bn, Cm + Dn = E} in Figure 1)
and alignments of numbers in the text to
its coefficients (blue edges). The deriva-
tion identifies a grounded equation system
{5m = 15n, 5m + 5n = 100}, whose solution can
then be generated to answer the problem. A
derivation precisely describes how the grounded
equation system was constructed from the word
problem by the automatic solver. On the other
hand, the grounded equation systems and the so-
lutions are less informative, as they do not explain
which span of text aligns to the coefficients in the
equations.

While the derivation is clearly the most in-
formative structure, surprisingly, no prior work
evaluates automatic solvers using derivations di-
rectly. To the best of our knowledge, none of the
current datasets contain human-annotated deriva-
tions, possibly due to the belief that the current
evaluation metrics are sufficient and the benefit
of evaluating on derivations is minor. Currently,
the most popular evaluation strategy is to use so-
lution accuracy (Kushman et al., 2014; Hosseini
et al., 2014; Shi et al., 2015; Koncel-Kedziorski et

1Also referred to as a template. We use these two terms
interchangeably.
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al., 2015; Zhou et al., 2015; Huang et al., 2016),
which computes whether the solution was correct
or not, as this is an easy-to-implement metric. An-
other evaluation strategy was proposed in (Kush-
man et al., 2014), which finds an approximate
derivation from the gold equation system and uses
it to compare against a predicted derivation. We
follow (Kushman et al., 2014) and call this evalu-
ation strategy the equation accuracy. 2

In this work, we argue that evaluating solvers
against human labeled derivation is important. Ex-
isting evaluation metrics, like solution accuracy
are often quite generous — for example, an incor-
rect equation system, such as,

{m+ 5 = n+ 15, m+ n = 15 + 5}, (1)

can generate the correct solution of the word prob-
lem in Figure 1. While equation accuracy appears
to be a stricter metric than solution accuracy, our
experiments show that the approximation can mis-
lead evaluation, by assigning higher scores to an
inferior solver. Indeed, a correct equation system,
(5m = 15n, 5m+5n = 100), can be generated by
using a wrong template, Am = Bn, Am+ An = C,
and aligning numbers in the text to coefficients in-
correctly. We show that without knowing the cor-
rect derivation at evaluation time, a solver can be
awarded for the wrong reasons.

The lack of annotated derivations for word
problems and no clear definition for comparing
derivations present technical difficulties in using
derivation for evaluation. In this paper, we address
these difficulties and for the first time propose to
evaluate the solvers using derivation accuracy. To
summarize, the contributions of this paper are:

• We point out that evaluating using derivations
is more precise compared to existing metrics.
Moreover, contrary to popular belief, there is
a meaningful gap between the derivation ac-
curacy and existing metrics, as it can discover
crucial errors not captured previously.

• We formally define when two derivations are
equivalent, and develop an algorithm that can
determine the same. The algorithm is simple

2Note that an approximation of the derivation is neces-
sary, as there is no annotated derivation. From the brief de-
scription in their paper and the code released by Kushman et
al. (2014), we found that their implementation assumes that
the first derivation that matches the equations and generates
the correct solution is the correct reference derivation against
which predicted derivations are then evaluated.

Word Problem x We are mixing a solu-
tion of 32% sodium and
another solution of 12%
sodium. How many liters
of 32% and 12% solution
will produce 50 liters of a
20% sodium solution?

Textual Numbers Q(x) {321, 121, 322, 122, 50, 20}
Equation System y 32m + 12n = 20 ∗ 50,

m+ n = 50
Solution m = 20, n = 30

Template T Am + Bn = C ∗ D,
m + n = C

Coefficients C(T ) A, B, C, D
Alignments A {321 → A, 121 → B,

50→ C, 20→ D}
EquivTNum {[321, 322], [121, 122]}
Derivation z (T,A)

Table 1: The symbols we used in the paper. Our proposed
annotations are shown in bold. Equivalent textual numbers,
described in EquivTNum, are distinguished with subscripts.

to implement, and can accurately detect the
equivalence even if two derivations have very
different syntactic forms.

• We annotated over 2300 word algebra prob-
lems3 with detailed derivation annotations,
providing high quality labeled semantic
parses for evaluating word problems.

2 Evaluating Derivations

We describe our notation and revisit the notion of
derivation introduced in (Kushman et al., 2014).
We then formalize the notion of derivation equiv-
alence and provide an algorithm to determine it.

Structure of Derivation The word problem in
Table 1 shows our notation, where our proposed
annotations are shown in bold. We denote a word
problem by x and an equation system by y.

An un-grounded equation system (or template)
T is a family of equation systems parameter-
ized by a set of coefficients C(T ) = {ci}ki=1,
where each coefficient ci aligns to a textual num-
ber (e.g., four) in the word problem. We also
refer to the coefficients as slots of the template.
We use (A, B, C, . . .) to represents coefficients and
(m, n, . . .) to represent the unknown variables in
the templates.

LetQ(x) be the set of all the textual numbers in
the problem x, and C(T ) be the coefficients to be
determined in the template T . An alignment is a
set of tuples A = {(q, c) | q ∈ Q(x), c ∈ C(T ) ∪
{ε}} aligning textual numbers to coefficient slots,

3available at https://aka.ms/datadraw
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where a tuple (q, ε) indicates that the number q is
not relevant to the final equation system.

Note that there may be multiple semantically
equivalent textual numbers. e.g., in Figure 1, ei-
ther of the 32 can be aligned to coefficient slot A
in the template. These equivalent textual numbers
are marked in the EquivTNum field in the annota-
tion. If two textual numbers q, q′ ∈ EquivTNum,
then we can align a coefficient slot to either q or
q′, and generate a equivalent alignment.

An alignmentA and a template T together iden-
tify a derivation z = (T,A) of an equation sys-
tem. Note that there may be multiple valid deriva-
tions, using one of the equivalent alignments. We
assume there exists a routine Solve(y) that find
the solution of an equation system. We use a Gaus-
sian elimination solver for our Solve routine. We
use hand-written rules and the quantity normalizer
in Stanford CoreNLP (Manning et al., 2014) to
identify textual numbers.

Derivation Equivalence We define two deriva-
tions (T1, A1) and (T2, A2) to be equivalent iff the
corresponding templates T1, T2 and alignments
A1, A2 are equivalent.

Intuitively, two templates T1, T2 are equivalent
if they can generate the same space of equation
systems – i.e., for every assignment of values to
slots of T1, there exists an assignment of values to
slots of T2 such that they generate the same equa-
tion systems. For instance, template (2) and (3)
below are equivalent

m = A + Bn m = C− n (2)

m+ n = A m− Cn = B. (3)

because after renaming (A, B, C) to (B, C, A) re-
spectively in template (2), and algebraic manip-
ulations, it is identical to template (3). We can
see that any assignment of values to correspond-
ing slots will result in the same equation system.

Similarly, two alignments A1 and A2 are equiv-
alent if corresponding slots from each template
align to the same textual number. For the above
example, the alignment {1 → A, 3 → B, 4 → C}
in template (2), and alignment {1 → B, 3 →
C, 4 → A} in template (3) are equivalent. Note
that the alignment {1→ A, 3→ B, 4→ C} for (2)
is not equivalent to {1 → A, 3 → B, 4 → C} in
(3), because it does not respect variable renaming.
Our definition also allows two alignments to be

Algorithm 1 Evaluating Derivation
Input: Predicted (Tp, Ap) and gold (Tg, Ag) derivation
Output: 1 if predicted derivation is correct, 0 otherwise
1: if |C(Tp)| 6= |C(Tg)| then . different # of coeff. slots
2: return 0
3: end if
4: Γ← TEMPLEQUIV(Tp,Tg)
5: if Γ = ∅ then . not equivalent templates
6: return 0
7: end if
8: if ALIGNEQUIV(Γ, Ap, Ag) then . Check alignments
9: return 1

10: end if
11: return 0
12:
13: procedure TEMPLEQUIV(T1, T2)
14: . Note that here |C(T1)| = |C(T2)| holds
15: Γ← ∅
16: for each 1-to-1 mapping γ : C(T1)→ C(T2) do
17: match← True
18: for t = 1 · · ·R do . R : Rounds
19: Generate random vector v
20: A1 ← {(vi → ci)},A2 ← {(vi → γ(ci))}
21: if Solve(T1, A1) 6= Solve(T2, A2) then
22: match← False; break
23: end if
24: end for
25: if match then Γ← Γ ∪ {γ}
26: end for
27: return Γ . Γ 6= ∅ iff the templates are equivalent
28: end procedure
29:
30: procedure ALIGNEQUIV(Γ, A1, A2)
31: for mapping γ ∈ Γ do
32: if following holds true,

(q, c) ∈ A1 ⇐⇒ {(q, γ(c)) or (q′, γ(c))} ∈ A2

33: where (q′, q) ∈ EquivTNum
34: then return 1
35: end if
36: end for
37: return 0
38: end procedure

equivalent, if they use textual numbers in equiva-
lent positions for corresponding slots (as described
by EquivTNum field).

In the following, we carefully explain how tem-
plate and alignment equivalence are determined
algorithmically. Algorithm 1 shows the complete
algorithm for comparing two derivations.

Template Equivalence We propose an approx-
imate procedure TEMPLEQUIV (line 13) that de-
tects equivalence between two templates. The pro-
cedure relies on the fact that under appropriate re-
naming of coefficients, two equivalent templates
will generate equations which have the same solu-
tions, for all possible coefficient assignments.

For two templates T1 and T2, with the same
number of coefficients |C(T1)| = |C(T2)|, we rep-
resent a choice of renaming coefficients by γ, a
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1-to-1 mapping from C(T1) to C(T2). The two
templates are equivalent if there exists a γ such
that solutions of the equations identified by T1
and T2 are same, for all possible coefficient as-
signments. The TEMPLEQUIV procedure exhaus-
tively tries all possible renaming of coefficients
(line 16), checking if the solutions of the equa-
tion systems generated from a random assignment
(line 19) match exactly. It declares equivalence if
for a renaming γ, the solutions match for R = 10
such random assignments.4 The procedure returns
all renamings Γ of coefficients between two tem-
plates under which they are equivalent (line 27).
We discuss its effectiveness in §3.

Alignment Equivalence The TEMPLEQUIV

procedure returns every mapping γ in Γ under
which the templates were equivalent (line 4).
Recall that γ identifies corresponding slots, c
and γ(c), in T1 and T2 respectively. We describe
alignment equivalence using these mappings.

Two alignmentsA1 andA2 are equivalent if cor-
responding slots (according to γ) align to the same
textual number. More formally, if we find a map-
ping γ such that for each tuple (q, c) in A1 there is
(q, γ(c)) in A2, then the alignments are equivalent
(line 33). We allow for equivalent textual numbers
(as identified by EquivTNum field) to match when
comparing tuples in alignments.

The proof of correctness of Algorithm 1 is
sketched in the appendix. Using Algorithm 1,
we can define derivation accuracy, to be 1 if the
predicted derivation (Tp, Ap) and the reference
derivation (Tg, Ag) are equivalent, and 0 other-
wise.

Properties of Derivation Accuracy By com-
paring derivations, we can ensure that the follow-
ing errors are detected by the evaluation.

Firstly, correct solutions found using incorrect
equations will be penalized, as the template used
will not be equivalent to reference template. Sec-
ondly, correct equation system obtained by an in-
correct template will also be penalized for the
same reason. Lastly, if the solver uses the correct
template to get the correct equation system, but
aligns the wrong number to a slot, the alignment
will not be equivalent to the reference alignment,
and the solver will be penalized too.

4Note that this procedure is a Monte-Carlo algorithm, and
can be made more precise by increasing R. We found mak-
ing R larger than 10 did not have an impact on the empirical
results.

We will see some illustrative examples of above
errors in §5.3. Note that the currently popular eval-
uation metric of solution accuracy will not detect
any of these error types.

3 Annotating Derivations

As none of the existing benchmarks contain
derivation annotations, we decided to augment ex-
isting datasets with these annotations. We also an-
notated DRAW-1K, a new dataset of 1000 general
algebra word problems to make our study more
comprehensive. Below, we describe how we re-
duced annotation effort by semi-automatic gener-
ated some annotations.

Annotating gold derivations from scratch for all
problems is time consuming. However, not all
word problems require manual annotation – some-
times all numbers appearing in the equation sys-
tem can be uniquely aligned to a textual number
without ambiguity. For such problems, the an-
notations are generated automatically.5 We iden-
tify word problems which have at least one align-
ment ambiguity – multiple textual numbers with
the same value, which appears in the equation sys-
tem. A example of such a problem is shown in
Figure 1, where there are three textual numbers
with value 5, which appears in the equation sys-
tem. Statistics for the number of word problems
with such ambiguity is shown in Table 2.

We only ask annotators to resolve such align-
ment ambiguities, instead of annotating the entire
derivation. If more than one alignments are gen-
uinely correct (as in word problem of Table 1), we
ask the annotators to mark both (using the Equiv-
TNum field). This ensures our derivation annota-
tions are exhaustive – all correct derivations are
marked. With the correct alignment annotations,
templates for all problems can be easily induced.

Annotation Effort To estimate the effort re-
quired to annotate derivations, we timed our an-
notators when annotating 50 word problems (all
involved alignment ambiguities). As a control, we
also asked annotators to annotate the entire deriva-
tion from scratch (i.e., only provided with the
word problem and equations), instead of only fix-
ing alignment ambiguities. When annotating from
scratch, annotators took an average of 4 minute per
word problem, while when fixing alignment am-
biguities this time dropped to average of 1 minute

5Annotations for all problems are manually verified later.
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Dataset DRAW-1K ALG-514 DOLPHIN-L

# problems 1000 514 832
w/ ambiguity 21% 23% 35%
vocab. 2.21k 1.83k 0.33k

Number of Templates

before 329 30 273
after 224 24 203
% reduction 32% 20% 25%

Table 2: Statistics of the datasets. At least 20% of problems
in each dataset had alignment ambiguities that required hu-
man annotations. The number of templates before and after
annotation is also shown (reduction > 20%).

per word problem. We attained a inter-annotator
agreement of 92% (raw percentage agreement),
with most disagreements arising on EquivTNum
field.6

Reconciling Equivalent Templates The num-
ber of templates has been used as a measure of
dataset diversity (Shi et al., 2015; Huang et al.,
2016), however prior work did not reconcile the
equivalent templates in the dataset. Indeed, if
two templates are equivalent, we can replace one
with the other and still generate the correct equa-
tions. Therefore, after getting human judgements
on alignments, we reconcile all the templates us-
ing TEMPLEQUIV as the final step of annotation.

TEMPLEQUIV is quite effective (despite being
approximate), reducing the number of templates
by at least 20% for all datasets (Table 2). We
did not find any false positives generated by the
TEMPLEQUIV in our manual examination. The re-
duction in Table 2 clearly indicates that equivalent
templates are quite common in all datasets, and
number of templates (and hence, dataset diversity)
can be significantly overestimated without proper
reconciliation.

4 Experimental Setup

We describe the three datasets used in our experi-
ments. Statistics comparing the datasets is shown
in Table 2. In total, our experiments involve over
2300 word problems.

Alg-514 The dataset ALG-514 was introduced
in (Kushman et al., 2014). It consists of 514 gen-
eral algebra word problems ranging over a vari-
ety of narrative scenarios (distance-speed, object
counting, simple interest, etc.).

6These were adjudicated on by the first author.

Dolphin-L DOLPHIN-L is the linear-T2 subset
of the DOLPHIN dataset (Shi et al., 2015), which
focuses on number word problems – algebra word
problems which describe mathematical relation-
ships directly in the text. All word problems in
the linear-T2 subset of the DOLPHIN dataset can
be solved using linear equations.

DRAW-1K Diverse Algebra Word (DRAW-1K),
consists of 1000 word problems crawled from
algebra.com. Details on the dataset creation
can be found in the appendix. As ALG-514 was
also crawled from algebra.com, we ensured
that there is little overlap between the datasets.

We randomly split DRAW-1K into train, devel-
opment and test splits with 600, 200, 200 prob-
lems respectively. We use 5-fold cross validation
splits provided by the authors for DOLPHIN-L and
ALG-514.

4.1 Evaluation

We compare derivation accuracy against the fol-
lowing evaluation metrics.

Solution Accuracy We compute solution accu-
racy by checking if each number in the reference
solution appears in the generated solution (disre-
garding order), following previous work (Kush-
man et al., 2014; Shi et al., 2015).

Equation Accuracy An approximation of
derivation accuracy that is similar to the one used
in Kushman et al. (2014). We approximate the
reference derivation z̃ by randomly chosen from
the (several possible) derivations which lead to
the gold y from x. Derivation accuracy is com-
puted against this (possibly incorrect) reference
derivation. Note that in equation accuracy, the
approximation is used instead of annotated deriva-
tion. We include the metric of equation accuracy
in our evaluations to show that human annotated
derivation is necessary, as approximation made by
equation accuracy might be problematic.

4.2 Our Solver

We train a solver using a simple modeling ap-
proach inspired by Kushman et al. (2014) and
Zhou et al. (2015). The solver operates as fol-
lows. Given a word problem, the solver ranks
all templates seen during training, Γtrain, and se-
lects the set of the top-k (we use k = 10) tem-
plates Π ⊂ Γtrain. Next, all possible derivations
D(Π) that use a template from Π are generated
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Setting Soln. Acc. Eqn. Acc. Deriv. Acc.

ALG-514

TE 76.2 72.7 75.5
TD 78.4 73.9 77.8
TD - TE 2.2 1.2 2.3

DRAW-1K

TE 52.0 48.0 48.0
TD 55.0 48.0 53.0
TD - TE 3.0 0 5.0

DOLPHIN

TE 55.1 50.1 44.2
TD 57.5 36.8 54.9
TD - TE 2.4 -13.3 10.7

Table 3: TE and TD compared using different evaluation met-
rics. Note that while TD is clearly superior to TE due to extra
supervision using the annotations, only derivation accuracy is
able to correctly reflect the differences.

and scored. The equation system ŷ identified by
highest scoring derivation ẑ is output as the pre-
diction. Following (Zhou et al., 2015), we do not
model the alignment of nouns phrases to variables,
allowing for tractable inference when scoring the
generated derivations. The solver is trained using a
structured perceptron (Collins, 2002). We extract
the following features for a (x, z) pair,

Template Features. Unigrams and bigrams of
lemmas and POS tags from the word problem x,
conjoined with |Q(x)| and |C(T )|.

Alignment Tuple Features. For two alignment
tuples, (q1, c1), (q2, c2), we add features indicat-
ing whether c1 and c2 belong to the same equation
in the template or share the same variable. If they
belong to the same sentence, we also add lemmas
of the nouns and verbs between q1 and q2 in x.

Solution Features. Features indicating if the so-
lution of the system identified by the derivation are
integer, negative, non-negative or fractional.

5 Experiments

Are solution and equation accuracy equally ca-
pable as derivation accuracy at distinguishing be-
tween good and bad models? To answer this ques-
tion, we train the solver under two settings such
that one of the settings has clear advantage over
the other, and see if the evaluation metrics reflect
this advantage. The two settings are,

Setting Soln. Acc. Eqn. Acc. Deriv. Acc.

DRAW-1K + Alg-514

TE 32.5 31.5 29.5
TE∗ 60.5 56.0 54.0
TD 62.0 53.0 59.5

TD - TE∗ 1.5 -3.0 5.5

DRAW-1K + Dolphin

TE 41.0 37.5 37.5
TE∗ 58.5 55.5 51.5
TD 60.0 53.0 58.0

TD - TE∗ 1.5 -2.5 6.5

Table 4: When combining two datasets, it is essential to rec-
oncile templates across datasets. Here TE∗ denotes training
on equations after reconciling the templates, while TE simply
combines datasets naively. As TE∗ represents a more appro-
priate setting, we compare TE∗ and TD in this experiment.

TE (TRAIN ON EQUATION) Only the (x,y)
pairs are provided as supervision. Similar to
(Kushman et al., 2014; Zhou et al., 2015), the
solver finds a derivation which agrees with the
equation system and the solution, and trains on it.
Note that the derivation found by the solver may
be incorrect.

TD (TRAIN ON DERIVATION) (x, z) pairs ob-
tained by the derivation annotation are used as su-
pervision. This setting trains the solver on human-
labeled derivations. Clearly, the TD setting is a
more informative supervision strategy than the TE
setting. TD provides the correct template and cor-
rect alignment (i.e. labeled derivation) as super-
vision and is expected to perform better than TE,
which only provides the question-equation pair.

We first present the main results comparing dif-
ferent evaluation metrics on solvers trained using
the two settings.

5.1 Main Results

We compare the evaluation metrics in Table 3. We
want to determine to what degree each evaluation
metric reflects the superiority of TD over TE.

We note that solution accuracy always exceeds
derivation accuracy, as a solver can sometimes get
the right solutions even with the wrong deriva-
tion. Also, solution accuracy is not as sensi-
tive as derivation accuracy to improvements in
the solver. For instance, solution accuracy only
changes by 2.4 on Dolphin-L when comparing
TE and TD, whereas derivation accuracy changes
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by 10.7 points. We found that the large gap on
Dolphin-L was due to several alignment errors in
the predicted derivations, which were detected by
derivation accuracy. Recall that over 35% of the
problems in Dolphin-L have alignment ambigui-
ties (Table 2). In the TD setting, many of these
errors made by our solver were corrected as the
gold alignment was part of supervision.

Equation accuracy too has several limitations.
For DRAW-1K, it cannot determine which solver
is better and assigns them the same score. Fur-
thermore, it often (incorrectly) considers TD to
be a worse setting than TE, as evident from de-
crease in the scores (for instance, on DOLPHIN-
L). Recall that equation accuracy attempts to ap-
proximate derivation accuracy by choosing a ran-
dom derivation agreeing with the equations, which
might be incorrect.

Study with Combining Datasets With several
ongoing annotation efforts, it is a natural ques-
tion to ask is whether we can leverage multiple
datasets in training to generalize better. In Ta-
ble 4, we combine DRAW-1K’s train split with
other datasets, and test on DRAW-1K’s test split.
DRAW-1K’s test split was chosen as it is the largest
test split with general algebra problems (recall
Dolphin-L contains only number word problems).

We found that in this setting, it was important
to reconcile the templates across datasets. Indeed,
when we simply combine the two datasets in the
TE setting, we notice a sharp drop in performance
(compared to Table 3). However, if we reconciled
all templates and then used the new equations for
training (called TE∗ setting in Table 4), we were
able to see improvements from training on more
data. We suspect difference in annotation style led
to several equivalent templates in the combined
dataset, which got resolved in TE∗. Therefore, in
Table 4, we compare TE∗ and TD settings.7

In Table 4, a trend similar to Table 3 can be
observed – solution accuracy assigns a small im-
provement to TD over TE∗. Derivation accuracy
clearly reflects the fact that TD is superior to TE∗,
with a larger improvement compared to solution
accuracy (eg., 5.5 vs 1.5). Equation accuracy, as
before, considers TD to be worse than TE∗.

Note that this experiment also shows that dif-
ferences in annotation styles across different alge-
bra problem datasets can lead to poor performance

7In TE∗, the model still trains only using equations, with-
out access to derivations. So TD is still better than TE∗.

Dataset Ours KAZB Best Result

ALG-514 76.2 68.7 79.7 (ZDC)
DOLPHIN-L 55.1 37.5 46.3‡ (SWLLR)
DRAW-1K 52.0 43.2 –

Table 5: Comparison of our solver and other state-of-the-art
systems, when trained under TE setting. All numbers are
solution accuracy. See footnote for details on the comparison
to SWLLR.

when combining these datasets naively. Our find-
ings suggest that derivation annotation and tem-
plate reconciliation are crucial for such multi-data
supervision scenarios.

5.2 Comparing Solvers

To ensure that the results in the previous sec-
tion were not an artifact of any limitations of our
solver, we show here that our solver is competi-
tive to other state-of-the-art solvers, and therefore
it is reasonable to assume that similar results can
be obtained with other automatic solvers.

In Table 5, we compare our solver to KAZB, the
system of Kushman et al. (2014), when trained
under the existing supervision paradigm, TE (i.e.,
training on equations) and evaluated using solu-
tion accuracy. We also report the best scores on
each dataset, using ZDC and SWLLR to denote the
systems of Zhou et al. (2015) and Shi et al. (2015)
respectively. Note that our system and KAZB are
the only systems that can process all three datasets
without significant modification, with our solver
being clearly superior to KAZB.

5.3 Case Study

We discuss some interesting examples from the
datasets, to show the limitations of existing met-
rics, which derivation accuracy overcomes.

Correct Solution, Incorrect Equation In the
following example from the DOLPHIN-L dataset,
by choosing the correct template and the wrong
alignments, the solver arrived at the correct solu-
tions, and gets rewarded by solution accuracy.

The sum of 2(q1) numbers is 25(q2). 12(q3)

less than 4(q4) times one(q5) of the numbers is

16(q6) more than twice(q7) the other number.

Find the numbers.

‡SWLLR also had a solver which achieves 68.0, using over
9000 semi-automatically generated rules tailored to number
word problems. We compare to their similarity based solver
instead, which does not use any such rules, given that the rule-
based system cannot be applied to general word problems.
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Note that there are seven textual numbers
(q1, . . . , q7) in the word problem. We can arrive at
the correct equations ({m + n = 25, 4m − 2n =
16 + 12}), by the correct derivation,

m+ n = q2 q4m− q7n = q6 + q3.

However, the solver found the following deriva-
tion, which produces the incorrect equations
({m+ n = 25, 2m− n = 2 + 12}),

m+ n = q2 q1m− q5n = q7 + q3.

Both the equations have the same solutions (m =
13, n = 12), but the second derivation is clearly
using incorrect reasoning.

Correct Equation, Incorrect Alignment In
such cases, the solver gets the right equation sys-
tem, but derived it using wrong alignment. Solu-
tion accuracy still rewards the solver. Consider the
problem from the DOLPHIN-L dataset,

The larger of two(q1) numbers is 2(q2) more

than 4(q3) times the smaller. Their sum is 67(q4).

Find the numbers.

The correct derivation for this problem is,

m− q3n = q2 m+ n = q4.

However, our system generated the following
derivation, which although results in the exact
same equation system (and thus same solutions),
is clearly incorrect due incorrect choice of ”two”,

m− q3n = q1 m+ n = q4.

Note that derivation accuracy will penalize the
solver, as the alignment is not equivalent to the ref-
erence alignment (q1 and q2 are not semantically
equivalent textual numbers).

Bad Approx. in Equation Accuracy The fol-
lowing word problem is from the ALG-514
dataset:

Mrs. Martin bought 3(q1) cups of coffee

and 2(q2) bagels and spent 12.75(q3) dollars.

Mr. Martin bought 2(q4) cups of coffee and

5(q5) bagels and spent 14.00(q6) dollars. Find

the cost of one(q7) cup of coffee and that of

one(q8) bagel.

The correct derivation is,

q1m+ q2n = q3 q4m+ q5n = q6.

However, we found that equation accuracy used
the following incorrect derivation for evaluation,

q1m+ q2n = q3 q2m+ q5n = q6.

Note while this derivation does generate the cor-
rect equation system and solutions, the derivation
utilizes the wrong numbers and misunderstood the
word problem. This example demonstrates the
needs to evaluate the quality of the word problem
solvers using the annotated derivations.

6 Related Work

We discuss several aspects of previous work in the
literature, and how it relates to our study.

Existing Solvers Current solvers for this task
can be divided into two broad categories based
on their inference approach – template-first and
bottom-up. Template-first approaches like (Kush-
man et al., 2014; Zhou et al., 2015) infer the
derivation z = (T,A) sequentially. They first pre-
dict the template T and then predict alignments
A from textual numbers to coefficients. In con-
trast, bottom-up approaches (Hosseini et al., 2014;
Shi et al., 2015; Koncel-Kedziorski et al., 2015)
jointly infer the derivation z = (T,A). Inference
proceeds by identifying parts of the template (eg.
Am + Bn) and aligning numbers to it ({2 → A,
3 → B}). At any intermediate state during in-
ference, we have a partial derivation, describing
a fragment of the final equation system (2m + 3n).
While our experiments used a solver employing
the template-first approach, it is evident that per-
forming inference in all such solvers requires con-
structing a derivation z = (T,A). Therefore, an-
notated derivations will be useful for evaluating all
such solvers, and may also aid in debugging errors.

Other reconciliation procedures are also dis-
cussed (though briefly) in earlier work. Kush-
man et al. (2014) reconciled templates by using
a symbolic solver and removing pairs with the
same canonicalized form. Zhou et al. (2015) also
reconciled templates, but do not describe how it
was performed. We showed that reconciliation
is important for correct evaluation, for reporting
dataset complexity, and also when combining mul-
tiple datasets.
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Labeling Semantic Parses Similar to our work,
efforts have been made to annotate semantic
parses for other tasks, although primarily for pro-
viding supervision. Prior to the works of Liang
et al. (2009) and Clarke et al. (2010), seman-
tic parsers were trained using annotated logical
forms (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Wong and Mooney, 2007, inter
alia), which were expensive to annotate. Re-
cently, Yih et al. (2016) showed that labeled se-
mantic parses for the knowledge based question
answering task can be obtained at a cost compa-
rable to obtaining answers. They showed signifi-
cant improvements in performance of a question-
answering system using the labeled parses instead
of answers for training. More recently, by treating
word problems as a semantic parsing task, Upad-
hyay et al. (2016) found that joint learning us-
ing both explicit (derivation as labeled semantic
parses) and implicit supervision signals (solution
as responses) can significantly outperform models
trained using only one type of supervision signal.

Other Semantic Parsing Tasks We demon-
strated that response-based evaluation, which is
quite popular for most semantic parsing prob-
lems (Zelle and Mooney, 1996; Berant et al., 2013;
Liang et al., 2011, inter alia) can overlook rea-
soning errors for algebra problems. A reason for
this is that in algebra word problems there can be
several semantic parses (i.e., derivations, both cor-
rect and incorrect) that can lead to the correct so-
lution using the input (i.e., textual number in word
problem). This is not the case for semantic pars-
ing problems like knowledge based question an-
swering, as correct semantic parse can often be
identified given the question and the answer. For
instance, paths in the knowledge base (KB), that
connect the answer and the entities in the question
can be interpreted as legitimate semantic parses.
The KB therefore acts as a constraint which helps
prune out possible semantic parses, given only the
problem and the answer. However, such KB-based
constraints are unavailable for algebra word prob-
lems.

7 Conclusion and Discussion

We proposed an algorithm for evaluating deriva-
tions for word problems. We also showed how
derivation annotations can be easily obtained by
only involving annotators for ambiguous cases.
We augmented several existing benchmarks with

derivation annotations to facilitate future compar-
isons. Our experiments with multiple datasets
also provided insights into the right approach to
combine datasets – a natural step in future work.
Our main finding indicates that derivation accu-
racy leads to a more accurate assessment of al-
gebra word problem solvers, finding errors which
other metrics overlook. While we should strive
to build such solvers using as little supervision
as possible for training, having high quality anno-
tated data is essential for correct evaluation.

The value of such annotations for evaluation be-
comes more immediate for online education sce-
narios, where such word solvers are likely to be
used. Indeed, in these cases, merely arriving at the
correct solution, by using incorrect reasoning may
prove detrimental for teaching purposes. We be-
lieve derivation based evaluation closely mirrors
how humans are evaluated in schools (by forcing
solvers to show “their work”).

Our datasets with the derivation annotations
have applications beyond accurate evaluation. For
instance, certain solvers, like the one in (Roy and
Roth, 2015), train a relevance classifier to identify
which textual numbers are relevant to solving the
word problem. As we only annotate relevant num-
bers in our annotations, our datasets can provide
high quality supervision for such classifiers. The
datasets can also be used in evaluation test-beds,
like the one proposed in (Koncel-Kedziorski et al.,
2016).

We hope our datasets will open new possibili-
ties for the community to simulate new ideas and
applications for automatic problem solvers.
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A Creating DRAW-1K

We crawl over 100k problems from http://
algebra.com. The 100k word problems in-
clude some problems which require solving non-
linear equations (e.g. finding roots of quadratic
equations). We filter out these problems using
keyword matching. We also filter problems whose
explanation do not contain a variable named “x”.
This leaves us with 12k word problems.

Extracting Equations A word problem on
algebra.com is accompanied by a detailed ex-
planation provided by instructors. In our crawler,
we use simple pattern matching rules to extract all
the equations in the explanation. The problems
often have sentences which are irrelevant to solv-
ing the word problem (e.g. “Please help me, I am
stuck.”). During cleaning, the annotator removes
such sentences from the final word problem and
performs some minor editing if necessary.8

1000 problems were randomly chosen from
these pool of 12k problems, which were then
shown to annotators as described earlier to get the
derivation annotations.

B Proof of Correctness (Sketch)

For simplicity, we will assume that EquivTNum is
empty. The proof can easily be extended to handle
the more general situation.

8In some cases, some of the numbers in the text are
rephrased (“10ml” to “10 ml”) in order to allow NLP pipeline
work properly.

Lemma 1. The procedure TEMPLEQUIV returns
Γ 6= ∅ iff templates T1, T2 are equivalent (w.h.p.).

Proof First we prove that with high probability
we are correct in claiming that a γ found by the
algorithm leads to equivalence. Let probability of
getting the same solution even when the template
are not equivalent be ε(T1, T2, γ) < 1. The proba-
bility that solution is same for R rounds for T1, T2
which are not equivalent is ≤ εR, which can be
made arbitrarily small by choosing large R. There-
fore, with a large enough R, obtaining Γ 6= ∅ from
TEMPLEQUIV implies there is a γ under which
templates generate equations with the same solu-
tion, and by definition, are equivalent.

Conversely, if templates are equivalent, it im-
plies ∃γ∗ such that under that mapping for any as-
signment, the generated equations have the same
solution. As we iterate over all possible 1-1 map-
pings γ between the two templates, we will find
γ∗ eventually.

Proposition Algorithm 1 returning 1 implies
derivations (Tp, Ap) and (Tg, Ag) are equivalent.

Proof Algorithm returns 1 only if TEMPLEQUIV

found a Γ 6= ∅, and ∃γ ∈ Γ, following holds

(q, c) ∈ Ag ⇐⇒ (q, γ(c)) ∈ Ap

i.e., the corresponding slots aligned to the same
textual number. TEMPLEQUIV found a Γ 6= ∅ im-
plies templates are equivalent (w.h.p). Therefore,
∃γ ∈ Γ such that the corresponding slots aligned
to the same textual number implies the alignments
are equivalent under mapping γ. Together they im-
ply that the derivation was equivalent (w.h.p.).
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Abstract

This paper investigates neural character-
based morphological tagging for lan-
guages with complex morphology and
large tag sets. Character-based approaches
are attractive as they can handle rarely-
and unseen words gracefully. We eval-
uate on 14 languages and observe con-
sistent gains over a state-of-the-art mor-
phological tagger across all languages ex-
cept for English and French, where we
match the state-of-the-art. We compare
two architectures for computing character-
based word vectors using recurrent (RNN)
and convolutional (CNN) nets. We show
that the CNN based approach performs
slightly worse and less consistently than
the RNN based approach. Small but sys-
tematic gains are observed when combin-
ing the two architectures by ensembling.

1 Introduction

Character-based approaches have been studied
for many applications in natural language pro-
cessing, including part-of-speech (POS) tagging
(dos Santos and Zadrozny, 2014; Ling et al.,
2015; Gillick et al., 2016; Plank et al., 2016; Ma
and Hovy, 2016), morphological tagging (Labeau
et al., 2015), parsing (Ballesteros et al., 2015),
named entity recognition (Gillick et al., 2016),
language modeling (Ling et al., 2015; Kim et
al., 2016), and neural machine translation (Costa-
jussà and Fonollosa, 2016). Character-based rep-
resentations have the advantage of gracefully han-
dling rare or unseen words and tend to produce
more compact models as the number of atomic
units, i.e., characters, is smaller compared to the
number of words in word-level approaches. The
issue of rare or unseen words is particularly pro-

nounced when working on morphologically-rich
languages, small amounts of training data or noisy
user input.

Morphological tagging is the task of assigning
a morphological analysis to a token in context.
The morphological analysis for a word consists of
a sequence of feature:value pairs describing, for
example, case, gender, person and tense. A par-
ticular concatenation of such feature:value pairs
is referred to as a single tag (Oflazer and İlker
Kuroz, 1994; Hajic and Hladka, 1998; Mueller et
al., 2013).

Following (Müller and Schuetze, 2015), we also
add the part-of-speech to this morphological tag
and refer to it as POS-MORPH:

I see four words
|

POS=noun:CASE=acc:· · ·
· · · :NUMBER=plural

Given a word in context, we predict a POS-
MORPH tag as a complete unit, rather than as
the individual component parts. This approach al-
lows us to share large parts of the model but can
only produce POS-MORPH analyses attested in
the training data (cf. Table 2). This is still the stan-
dard approach to morphological tagging and dis-
ambiguation as, given sufficient amounts of train-
ing data, the number of POS-MORPH descrip-
tions that cannot be produced usually is small.

Character-based POS tagging (rather than full
POS-MORPH tagging) has been extensively eval-
uated in the literature (dos Santos and Zadrozny,
2014; Ling et al., 2015; Gillick et al., 2016; Plank
et al., 2016). The results are competitive but do
not systematically outperform the state of the art.
Only Plank et al. (2016) report consistent gains
by using shallow neural network architectures in
combination with multitask learning, multilingual
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learning, and pre-trained word embeddings.
State-of-the-art results for morphological tag-

ging (full POS-MORPH tagging) can be found in
(Mueller et al., 2013; Müller and Schuetze, 2015).
To the best of our knowledge, there has not been
much research on character-based morphological
tagging so far. Labeau et al. (2015) is an excep-
tion but report results for German only. Their
best results are on a par with state-of-the-art re-
sults. Heigold et al. (2016) show clear gains of
character-based over state-of-the-art morphologi-
cal taggers. However, the evaluation is limited to
German and Czech.

Research on character-based approaches in gen-
eral NLP clearly divides into papers that use CNN-
based architectures (dos Santos and Zadrozny,
2014; Kim et al., 2016; Costa-jussà and Fonol-
losa, 2016) and papers that use LSTM-based ar-
chitectures (Labeau et al., 2015; Ling et al., 2015;
Gillick et al., 2016; Ballesteros et al., 2015; Plank
et al., 2016; Ma and Hovy, 2016). There are a
number of examples where an LSTM paper re-
ports results of a CNN paper for comparison, such
as (Ling et al., 2015) (POS tagging for English)
and (Gillick et al., 2016) (named entity recognition
for English). However, there is no direct compari-
son between CNN and LSTM based architectures
in morphological tagging.

In this paper, we investigate character-based
morphological tagging in more depth. More
specifically, the contributions of this paper in-
clude:

• the evaluation of character-based morpholog-
ical tagging on 14 different languages of dif-
ferent morphological complexity;

• the empirical comparison of long-short term
memory (LSTM) and convolutional neural
network (CNN) based architectures;

• the demonstration of systematic gains of our
character-based, language-agnostic morpho-
logical tagger over a state-of-the-art morpho-
logical tagger across morphologically rich
languages; moreover, and perhaps as ex-
pected, we show that the relative gains are
clearly correlated with the amount of the
training data;

• the evaluation of the complementarity of
LSTM- and CNN-based architectures by en-
semble experiments.

The remainder of the paper is organized as fol-
lows. Section 2 summarizes the character-based
neural network approaches used in this paper. The
data sets and model configurations are described in
Section 3 and in Section 4, respectively. The em-
pirical evaluation is presented in Section 5. Sec-
tion 6 concludes the paper. The Appendix contains
a listing of all experimental results obtained in this
paper.

2 Character-based Tagging

We assume an input sentence wN1 with (complex
POS-MORPH morphological) output tags tN1 and
a zeroth-order Markov model

p(tN1 |wN1 ) =
N∏

n=1

p(tn|wN1 ) (1)

whose factors are modeled by a suitable neural
network. For character-based tagging, we use the
character representation of the word, w = cM1 .
This assumes that the segmentation of the sentence
into words is known, which is straightforward for
the languages under consideration.

At the top level, each input word maps to one
complex POS-MORPH morphological output tag.
Hence, we can model the position-wise probabili-
ties p(t|wN1 ) with recurrent neural networks, such
as long short-term memory recurrent neural net-
works (LSTMs) (Graves, 2012). Fig. 1 (a) shows
such a network architecture where the inputs are
the word vectors vN1 . At the lower level, we use
a CNN-based (Fig. 1 (b)) or an LSTM-based
(Fig. 1 (c)) architecture to compute the character-
based word vectors. As we are using bidirectional
LSTMs (BLSTMs) at the top level, we shall re-
fer to the complete architectures as CNNHighway-
BLSTM and LSTM-BLSTM. The two architec-
tures are fairly similar. In our opinion, however,
there is an important difference between the two.
CNNHighway is more constructive in the sense
that it explicitly specifies the possible character
context widths with a hard upper bound and de-
fines an embedding size for each context width.
LSTMs are more generic as they are claimed to
implicitly learn these details (Schmidhuber, 1992).

The weights of the network, θ, are jointly esti-
mated using conditional log-likelihood

F (θ) = −
N∑

n=1

log pθ(tn|wN1 ). (2)
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Figure 1: Character-based neural tagging architecture: (a) sub-network mapping word vectors vN1 to tags
tN1 , dashed arrows indicate optional skip connections, (b) CNNs with different filter widths followed
by fully-connected layers with highway connections (CNNHighway), and (c) deep LSTM using the last
output to map the character string to a word vector. The networks in (b) and (c) are cloned to produce
the input word vectors vN1 in (a). LUT stands for lookup table.

Learning in recurrent or very deep neural networks
is non-trivial and skip/shortcut connections have
been proposed to improve the learning of such net-
works (Pascanu et al., 2014; He et al., 2016). We
use such connections (dashed arrows in Fig. 1) for
LSTM-BLSTM to alleviate potential learning is-
sues.

At test time, the predicted tag sequence is the
tag sequence that maximizes the conditional prob-
ability p(tN1 |wN1 ). For the factorization in Eq. (1),
the search can be done position-wise. This signif-
icantly reduces the computational and implemen-
tation complexity compared to first-order Markov
models as used in (Collobert et al., 2011; dos San-
tos and Zadrozny, 2014; Labeau et al., 2015).

3 Data

Most of the data sets are taken from the UD tree-
banks1. We also use a number of older data sets
in order to compare our results with existing re-
sults in the literature, including Czech/PDT2, Ger-
man/TIGER3, and Korean/SPMRL4. The corpus
statistics for the different languages can be found
in Table 1. The chosen languages are from dif-
ferent language families: Balto-Slavic (Bulgar-

1http://dependencies.org/
2https://ufal.mff.cuni.cz/pdt3.0
3http://www.ims.uni-stuttgart.de/

forschung/ressourcen/korpora/tiger.html
4http://dokufarm.phil.hhu.de/

spmrl2013/?animal=spmrl2013

ian, Czech, Russian), Finnic (Estonian, Finnish),
Finno-Ugric (Hungarian), Germanic (German),
Indo-Iranian (Hindi), Koreanic (Korean), Ro-
mance (Romanian, Semitic (Arabic), and Turkic
(Turkish). They include several examples for
both agglutinative and fusional languages. The
amount of training data ranges from 33k training
tokens (Hungarian/UD) to 1,174k training tokens
(Czech/UD).

Table 2 summarizes the tag statistics for the dif-
ferent languages. The number of tags is the num-
ber of POS-MORPH tags occurring in the training
data. We give the test entropy based on a unigram
tag model estimated on the training data as a sim-
ple measure for the difficulty of the associated se-
quence classification problem. The type/token ra-
tio (TTR), also known as vocabulary size divided
by text length, is computed on 1M words from ran-
domly selected sentences from a different data set5

and is a simple measure to quantify the morpho-
logical complexity of a language (Bane, 2008). A
higher TTR value indicates higher morphological
complexity.

5The sentences are all taken from the Wiki dumps
on http://linguatools.org/tools/corpora/
wikipedia-monolingual-corpora/ and https:
//archive.org/details/wikipediadumps?
&sort=-downloads&page=2.
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Table 1: Corpus statistics, OOV≥5 denotes the percentage of test word tokens with five or more occur-
rences in the training data

Language Train sentences (k) Train tokens (k) Test tokens (k) OOV≥5 (%)
Arabic/UD 6 256 32 20.7
Bulgarian/UD 9 124 16 27.3
Czech/PDT 39 691 93 17.5

UD 68 1174 174 15.7
English/UD 13 205 25 16.7
Estonian/UD 15 188 24 32.2
Finnish/UD 12 163 9 38.9
French/UD 15 367 7 12.7
German/TIGER 40 760 92 17.2
Hindi/UD 13 281 35 10.1
Hungarian/UD 1 33 4 48.0
Korean/SPMRL 23 296 28 42.7
Romanian/UD 5 109 18 27.6
Russian/UD 47 815 108 19.5
Turkish/UD 4 42 9 46.5

Table 2: Tag statistics, TTR stands for Type/Token
Ratio

Language #Tags Entropy TTR (%)
Arabic/UD 320 32.5 12
Bulgarian/UD 448 49.5 12
Czech/PDT 878 77.7 11

UD 1418 97.7 11
English/UD 119 27.9 7
Estonian/UD 787 57.3 13
Finnish/UD 1593 76.1 17
French/UD 197 34.1 8
German/TIGER 681 97.7 13
Hindi/UD 922 56.9 7
Hungarian/UD 652 64.5 14
Korean/SPMRL 1976 119.4 20
Romanian/UD 444 65.8 7
Russian/UD 434 54.6 16
Turkish/UD 987 73.0 10

4 Setups

We use the same model setups for LSTM-BLSTM
and CNNHighway-BLSTM as in (Heigold et al.,
2016). The hyper-parameters are set to

• CNNHighway: the large setup from (Kim et
al., 2016), i.e., character vector size = 15, fil-
ter widths ranging from one to seven, num-
ber of filters as a function of the filter width
min{200, 50 ·filter width}, two highway lay-
ers

• LSTM: character vector size = 128, two lay-
ers with 1024 and 256 nodes

The BLSTM modeling the context of words in a
sentence (Fig. 1 (a)) consists of two hidden layers,
each with 256 hidden nodes.

These hyper-parameters were tuned on the Ger-
man TIGER development data and are optimal on
a ”best effort basis.” German is good for the hyper-
parameter tuning as it is a relatively hard task (see
Table 2) and shows morphological effects both
within and across words. Furthermore, the TIGER
corpus is relatively large, which reduces statisti-
cal fluctuations in training and testing. Apart from
these considerations, the choice was random. Fur-
thermore, we tested language-specific tuning for a
few languages, but it does not seem to give further
gains. Moreover, the network hyper-parameters
were tuned to give best accuracy rather than most
compact models or even comparable numbers of
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parameters as our application is not constrained by
memory or runtime. The hyper-parameters were
then used for all languages. We ran the external
tools MarMoT6 and JNN7 (see Appendix) with the
suggested default values.

The networks are optimized as described in
(Heigold et al., 2016). In particular, the optimiza-
tion is done with RMSProp (Tieleman and Hin-
ton, 2012), with a fixed initial learning rate and a
learning rate decay of two every tenth epoch for
German, TIGER, and is adjusted for the other lan-
guages according to the amount of training data.
The batch size is always 16. Furthermore, we use
dropout. The dropout probability is empirically set
to 0.4 for Hungarian and Turkish, which only have
a very limited amount of training data (Table 1),
and to 0.2 for all other languages.

5 Empirical Evaluation

We empirically evaluate an LSTM-based and a
CNN-based architecture for character-based mor-
phological tagging (Section 2) and compare them
against MarMoT, a state-of-the-art morphological
tagger (Mueller et al., 2013). For the evalua-
tion we use twelve different morphologically-rich
languages with different characteristics, plus two
morphologically-poor languages for contrastive
results (Section 3). The configurations are de-
scribed in Section 4.

Fig. 2 plots the relative gain over MarMoT (see
Appendix A for more details) against the amount
of training data. The horizontal dotted line at 0%
indicates the MarMoT baseline. The blue squares
are for LSTM-BLSTM results. Connecting them
for the morphologically-rich languages shows a
clear, nearly-linear dependency of the relative gain
on the amount of training data. Only the data
point for Turkish at 40% is an outlier (should be
around 20%). This result suggests that compared
to MarMoT, LSTM-BLSTM is very data efficient.
Even for very small amounts of training data (e.g.,
33k tokens for Hungarian), the relative gain is still
15%. On the other hand, more data helps. In case
of Czech, increasing the amount of training data
from 691k (Czech/PDT) to 1174k (Czech/UD) to-
kens leads to some additional gain and yields al-
most a 50% relative gain. It should be noted, how-
ever, that the two data sets use different tag sets,
with the Czech/UD one being more complex than

6http://cistern.cis.lmu.de/marmot/
7https://github.com/wlin12/JNN

the Czech/PDT (Table 2).
We use an LSTM-BLSTM of the same size for

all languages, although the amount of training data
varies by roughly two orders of magnitude. There-
fore, it is a valid question if a larger model specifi-
cally designed for Czech/UD or a smaller model
for Turkish/UD would improve the results. We
have developed locally tuned and tested larger and
smaller models in terms of number of nodes or lay-
ers but with similar or worse performance: -0.1%
with more nodes (Czech) or approx. -1% with
fewer nodes or fewer layers (Turkish). This obser-
vation suggests that the configuration optimized
for German is fairly robust across many different
languages, which is an attractive property from a
practical perspective.

In contrast, we do not observe a gain of LSTM-
BLSTM over MarMoT for English and French.
Both languages are considered to be morpholog-
ically poor, as supported by the tag statistics in
Table 2. This may be because of the low mor-
phological complexity, i.e., a character represen-
tation does not add much information to a word
representation. Another explanation might be that
the linguistic experts have focused on English and
French in the last decades and found a good set
of features, which however does not well general-
ize to other, morphologically more complex lan-
guages.

It is tempting to analyze these results in more
detail by splitting languages into sub-categories.
Here, we refrain from doing so as it is delicate to
draw conclusions from very small sample sizes (3-
4 languages, say).

The green circles (in Fig. 2) are for
CNNHighway-BLSTM results, a neural net-
work architecture that has been developed
for character-based language modeling (Kim
et al., 2016). Overall, LSTM-BLSTM and
CNNHighway-BLSTM perform similarly, see
Fig. 2. Looking at the details, however,
CNNHighway-BLSTM tends to perform slightly
worse and less consistently than LSTM-BLSTM.

While LSTM-BLSTM and CNNHighway-
BLSTM perform similarly they may capture com-
plementary effects. To measure the complemen-
tarity of the two architectures, we build an en-
semble consisting of the LSTM-BLSTM and the
CNNHighway-BLSTM by taking the geometric
mean of the scores. The accuracies are shown
in Fig. 2 as LSTM+CNNHighway-BLSTM. Ex-
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Figure 2: Relative gains (%) over MarMoT
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cept maybe for English and French, we observe
marginal but consistent gains over LSTM-BLSTM
or CNNHighway-BLSTM.

For additional comparison, we add a few addi-
tional points in the plot. The red cross indicates
the result from (Labeau et al., 2015), which is a
combination of a CNN, a bidirectional RNN, and a
Markov model. The purple triangles are generated
with the external tool JNN8, which implements a
shallow BLSTM-BLSTM (i.e., only one bidirec-
tional LSTM layer in each BLSTM). One might
expect that this model performs better on smaller
data sets. But actually, it is clearly worse both for
large (Czech/PDT and German/TIGER) and small
data sets (Romanian/UD).

6 Summary & Future Work

In this paper, we demonstrated that a character-
based neural approach can achieve consistent im-
provements over a state-of-the-art morphologi-
cal tagger (MarMoT). The evaluation included
a dozen of languages of different morphological
complexity and with different characteristics. The
relative gains for the morphologically-rich lan-
guages range from 15% to almost 50%, with a
clear dependency on the amount of training data.
Several aspects are remarkable about this result.

First, these results use the same model architec-
ture with the same number of layers and nodes,
without any language-specific modifications. Fur-
ther local language and training data setting spe-
cific tuning does not seem to help much.

Second, the neural approach seems to be more
data efficient than the baseline tagger with manu-
ally designed features, also when only 30k training
tokens are available.

Third, a fairly generic deep and hierarchical re-
current neural network architecture seems to per-
form as well or better than a more specialized con-
volutional neural network based architecture.

Fourth, to keep the setup as simple as possi-
ble, we have not used advanced techniques which
are reported to lead to improvements, including
a non-trivial structured prediction model (e.g., a
first-order Markov model) (Collobert et al., 2011;
dos Santos and Zadrozny, 2014; Labeau et al.,
2015; Ma and Hovy, 2016), additional unsu-
pervised data (e.g., via word2vec) (Müller and
Schuetze, 2015; Ling et al., 2015; Plank et al.,
2016; Ma and Hovy, 2016), combination of dif-

8https://github.com/wlin12/JNN

ferent word representations (Labeau et al., 2015;
Ma and Hovy, 2016; Plank et al., 2016), multi-
lingual learning (Gillick et al., 2016; Plank et al.,
2016), and auxiliary tasks (Plank et al., 2016). Fu-
ture work will include the investigation of these
more advanced techniques. From this perspective,
our paper provides a baseline for future research
in multilingual character-based neural morpholog-
ical tagging.

Last but not least, we do not observe any gains
for English and French (except when using en-
sembles). This may be due to the low morpho-
logical complexity of these languages or because
manual feature engineering has focused on these
languages over the last decades with good results.
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A Raw Results

This appendix contains Table 3 with the raw re-
sults used in this paper. When available, the best
comparable error rates from the literature are used.
Otherwise, we produced the error rates with the
publicly available tools and the suggested default
values. More specifically, we used the state-of-
the-art tagger MarMoT9 for the baselines and the
LSTM-based POS tagger JNN10 for some con-
trastive results.

9http://cistern.cis.lmu.de/marmot/
10https://github.com/wlin12/JNN
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Table 3: Tag error rates (%) on test sets, some of which are taken from the literature: (a) (Mueller et al.,
2013), (b) (Labeau et al., 2015)

Language MarMoT9 CNN BLSTM LSTM CNNHighway
-biRNN-CRF -BLSTM10 -BLSTM -BLSTM

Arabic/UD 9.13 6.46 6.22
Bulgarian/UD 5.73 4.86 5.12
Czech/PDT 7.46a 6.30 4.36 4.87

UD 6.97 3.68
English/UD 7.00 6.83 6.68
Estonian/UD 8.11 5.75 6.32
Finnish/UD 7.79 6.48 7.61
French/UD 5.08 5.09 5.19
German/TIGER 11.42a 10.97b 10.04 6.77 7.37
Hindi/UD 11.44 9.16 9.21
Hungarian/UD 26.49 22.41 23.40
Korean/SPMRL 18.60 13.49 14.43
Romanian/UD 7.64 9.02 5.88 5.97
Russian/UD 6.08 3.55 4.21
Turkish/UD 17.28 10.88 12.41
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Abstract

We explore the task of multi-source mor-
phological reinflection, which generalizes
the standard, single-source version. The
input consists of (i) a target tag and (ii)
multiple pairs of source form and source
tag for a lemma. The motivation is that it is
beneficial to have access to more than one
source form since different source forms
can provide complementary information,
e.g., different stems. We further present
a novel extension to the encoder-decoder
recurrent neural architecture, consisting of
multiple encoders, to better solve the task.
We show that our new architecture out-
performs single-source reinflection models
and publish our dataset for multi-source
morphological reinflection to facilitate fu-
ture research.

1 Introduction

Morphologically rich languages still constitute a
challenge for natural language processing (NLP).
The increased data sparsity caused by highly in-
flected word forms in certain languages causes oth-
erwise state-of-the-art systems to perform worse
in standard tasks, e.g., parsing (Ballesteros et al.,
2015) and machine translation (Bojar et al., 2016).
To create systems whose performance is not de-
terred by complex morphology, the development
of NLP tools for the generation and analysis of
morphological forms is crucial. Indeed, these con-
siderations have motivated a great deal of recent
work on the topic (Ahlberg et al., 2015; Dreyer,
2011; Nicolai et al., 2015).

In the area of generation, the most natural task
is morphological inflection—finding an inflected
form for a given target tag and lemma. An example
for English is as follows: (trg:3rdSgPres, bring)

Present Ind Past Ind Past Sbj
Sg Pl Sg Pl Sg Pl

1 treffe treffen traf trafen träfe träfen
2 triffst trefft trafst traft träfest träfet
3 trifft treffen traf trafen träfe träfen

Table 1: The paradigm of the strong German verb TREFFEN,
which exhibits an irregular ablaut pattern. Different parts of
the paradigm make use of one of four bolded theme vowels:
e, i, a or ä. In a sense, the verbal paradigm is partitioned into
subparadigms. To see why multi-source models could help
in this case, starting only from the infinitive treffen makes it
difficult to predict subjunctive form träfest, but the additional
information of the fellow subjunctive form träfe makes the
task easier.

7→ brings. In this case, the 3rd person singular
present tense of bring is generated. One general-
ization of inflection is morphological reinflection
(MRI) (Cotterell et al., 2016a), where we must pro-
duce an inflected form from a triple of target tag,
source form and source tag. The inflection task
is the special case where the source form is the
lemma. As an example, we may again consider
generating the English past tense form from the 3rd
person singular present: (trg:3rdSgPres, brought,
src:Past) 7→ brings (where trg = “target tag” and
src = “source tag”). As the starting point varies,
MRI is more difficult than morphological inflection
and exhibits more data sparsity. However, it is also
more widely applicable since lexical resources are
not always complete and, thus, the lemma is not al-
ways available. A more complex German example
is given in Table 1.

In this work, we generalize the MRI task to a
multi-source setup. Instead of using a single source
form-tag pair, we use multiple source form-tag
pairs. Our motivation is that (i) it is often bene-
ficial to have access to more than one source form
since different source forms can provide comple-
mentary information, e.g., different stems; and (ii)
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in many application scenarios, we will have en-
countered more than one form of a paradigm at the
point when we want to generate a new form.

We will make the intuition that multiple source
forms provide complementary information pre-
cise in the next section, but first return to the En-
glish verb bring. Generating the form brings from
brought may be tricky—there is an irregular vowel
shift. However, if we had a second form with the
same theme vowel, e.g., bringing, the task would be
much easier, i.e., (trg:3rdSgPres, form1:brought,
src1:Past, form2:bringing, src2:Gerund). A
multi-source approach clearly is advantageous for
this case since mapping bringing to brings is regu-
lar even though the verb itself is irregular.

The contributions of the paper are as follows. (i)
We define the task of multi-source MRI, a general-
ization of single-source MRI. (ii) We show that a
multi-source MRI system, implemented as a novel
encoder-decoder, outperforms the top-performing
system in the SIGMORPHON 2016 Shared Task on
Morphological Reinflection on seven out of eight
languages, when given additional source forms.
(iii) We release our data to support the develop-
ment of new systems for MRI.

2 The Task: Multi-Source Reinflection

Previous work on morphological reinflection has
assumed a single source form, i.e., an input consist-
ing of exactly one inflected source form (potentially
the lemma) and the corresponding morphological
tag. The output is generated from this input. In con-
trast, multi-source morphological reinflection, the
task we introduce, is a generalization in which the
model receives multiple form-tag pairs. In effect,
this gives the model a partially annotated paradigm
from which it predicts the rest.

The multi-source variant is a more natural prob-
lem than single-source morphological reinflection
since we often have access to more than just one
form.1 For example, corpora such as the universal
dependency corpus (McDonald et al., 2013) that
are annotated on the token level with inflectional
features often contain several different inflected
forms of a lemma. Such corpora would provide an
ideal source of data for the multi-source MRI task.

1Scenarios where a single form is available and that form
is the lemma are perhaps not infrequent. In high-resource
languages, an electronic dictionary may have near-complete
coverage of the lemmata of the language. However, paradigm
completion is especially crucial for neologisms and low-
resource languages.

Formally, we can think of a morphological
paradigm as follows. Let Σ be a discrete alphabet
for a given language and T be the set of morpho-
logical tags in the language. The inflectional table
or morphological paradigm π of a lemma w can be
formalized as a set of pairs:

π(w) = {(f1, t1), (f2, t2), . . . , (fN , tN )}, (1)

where fi ∈ Σ+ is an inflected form of w, and
ti ∈ T is the morphological tag of the form fi. The
integer N is the number of slots in the paradigm
that have the syntactic category (POS) of w.

Using this notation, single-source morpholog-
ical reinflection (MRI) can be described as fol-
lows. Given a target tag and a pair of source
form and source tag (ttrg, (fsrc, tsrc)) as input, pre-
dict the target form ftrg. There has been a substan-
tial amount of prior work on this task, including
systems that participated in Task 2 of the SIGMOR-
PHON 2016 shared task (Cotterell et al., 2016a).
Thus, we may define the task of multi-source
morphological reinflection as follows: Given a
target tag and a set of k form-tag source pairs
(ttrg, {(f1src, t

1
src), . . . , (f

k
src, t

k
src)}) as input, predict

the target form ftrg. Note that single-source MRI is
a special case of multi-source MRI for k = 1.

2.1 Motivating Examples

Figure 1 gives examples for four different config-
urations that can occur in multi-source MRI.2 We
have colored the source forms green and drawn a
dotted line to the target if they contain sufficient
information for correct generation. If two source
forms together are needed, the dotted line encloses
both of them. Source forms that provide no infor-
mation in the configuration are colored red (no ar-
row); note these forms could provide (and in most
cases will provide) useful information for other
combinations of source and target forms.

2Figure 1 is not intended as a complete taxonomy of possi-
ble MRI configurations, e.g., there are hybrids of ANYFORM
and NOFORM (some forms are informative, others are sup-
pletive) and fuzzy variants (a single form gives pretty good
evidence for how to generate the target form, but another single
form gives better evidence). All of our examples make addi-
tional assumptions, e.g., that we have not seen other similar
forms in training either of the same lemma (e.g., poner) or of
a similar lemma (e.g., reponer). Hopefully, the examples are
illustrative of the main conceptual distinction: several single
forms each are sufficient by themselves (ANYFORM), a single,
but carefully selected form is sufficient (SINGLEFORM), mul-
tiple forms are needed to generate the target (MULTIFORM)
and the target form cannot be predicted (irregular) from the
source forms (NOFORM).
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lift
1stSgPres

lifts
3rdSgPres

lifted
PstPart

lifting
PresPart

(a) ANYFORM

treffe
1SgIndPres

traf
1stSgIndPst

triff
2ndSgImp

trafen
1stPlIndPst

(b) SINGLEFORM

pondré
1stSgFt

pongo
1stSgIndPres

poner
Inf

ponga
3rdSgSubPres

(c) MULTIFORM

go
1stSgPres

goes
3rdSgPres

gone
PstPart

went
1stSgPst

(d) NOFORM

Figure 1: Four possible input configurations in multi-source morphological reinflection (MRI). In each subfigure, the target
form on the right is purple. The source forms are on the left and are green if they can be used to predict the target form (also
connected with a dotted line) and red if they cannot. There are four possible configurations: (i) ANYFORM is the case where one
can predict the target form from any of the source forms. (ii) SINGLEFORM is the case where only one form can be used to
regularly predict the target form. (iii) MULTIFORM is the case where multiple forms are necessary to predict the target form.
(iv) NOFORM is the case where the target form cannot be regularly derived from any of the source forms. Multi-source MRI
is expected to perform better than single-source MRI for the configurations SINGLEFORM and MULTIFORM, but not for the
configurations ANYFORM and NOFORM.

The first type of configuration is ANYFORM:
each of the available source forms in the subset
of the English paradigm (lift, lifts, lifted) contains
enough information for a correct generation of the
target form lifting. The second configuration is
SINGLEFORM: there is a single form that contains
enough information for correct generation, but it
has to be carefully selected. Inflected forms of the
German verb treffen ‘to meet’ have different stem
vowels (see Table 1). In single-source reinflection,
producing a target form with one stem vowel (a in
trafe in the figure) from a source form with another
stem vowel (e.g., e in treffe) is difficult.3

In contrast, the learning problem for the SINGLE-
FORM configuration is much easier in multi-source
MRI. The multi-source model does not have to
learn the possible vowel changes of this irregular
verb; instead, it just needs to pick the correct vowel
change from the alternatives offered in the input.
This is a relatively easy task since the theme vowel
is identical. So we only need to learn one general
fact about German morphology (which suffix to
add) and will then be able to produce the correct
form with high accuracy. This type of regularity is
typical of complex morphology: there are groups of
forms in a paradigm that are similar and it is highly
predictable which of these groups a particular target
form for a new word will be a member of. As long
as one representative of each group is part of the
multi-source input, we can select it to generate the
correct form.

3It is not impossible to learn, but treffen is an irregular
verb, so we cannot easily leverage the morphology we have
learned about other verbs.

In the MULTISOURCE configuration, we are able
to use information from multiple forms if no single
form is sufficient by itself. For example, to generate
ponga, 3rdSgSubPres of poner ‘to put’ in Spanish,
we need to know what the stem is (ponga, not
pona) and which conjugation class (-ir, -er or -
ar) it is part of (ponga, not pongue). The single-
source input pongo, 1stSgIndPres, does not reveal
the conjugation class: it is compatible with both
ponga and pongue. The single-source input poner,
Inf, does not reveal the stem for the subjunctive:
it is compatible with both ponga and pona—we
need both source forms to generate the correct form
ponga.

Again, such configurations are frequent cross-
linguistically, either in this “discrete” variant or
in more fuzzy variants where taking several forms
together increases our chances of producing the
correct target form. Finally, we call configurations
NOFORM if the target form is completely irregular
and not related to any of the source forms. The
suppletive form went is our example for this case.

2.2 Principle Parts
The intuition behind the MRI task draws inspiration
from the theoretical linguistic notion of principle
parts (Finkel and Stump, 2007; Stump and Finkel,
2013). The notion is that a paradigm has a subset
that allows for maximum predictability. In terms of
language pedagogy, the principle parts would be a
minimial set of forms a student has to learn in order
to be able to generate any form in the paradigm.
For instance for the partial German paradigm in
Table 1, the forms treffen, trifft, trafen, and träfen
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could form one potential set of principle parts.
From a computational learning point of view,

maximizing predictability is always a boon—we
want to make it as easy as possible for the system
to learn the morphological regularities and subreg-
ularities of the language. Giving the system the
principle parts as input is one way to achieve this.

3 Model Description

Our model is a multi-source extension of MED,
Kann and Schütze (2016b)’s encoder-decoder net-
work for MRI. In MED, a single bidirectional re-
current neural network (RNN) encodes the input.
In contrast, we use multiple encoders to be able to
handle multiple source form-tag pairs. In MED, a
decoder RNN produces the output from the hidden
representation. We do not change this part of the
architecture, so there is still a single decoder.4

3.1 Input and Output Format

For k source forms, our model takes k different
inputs of parallel structure. Each of the 1 ≤ i ≤ k
inputs consists of the target tag ttrg and the source
form fi and its corresponding source tag ti. The
output is the target form. Each source form is repre-
sented as a sequence of characters; each character
is represented as an embedding. Each tag—both
the target tag and the source tags—is represented as
a sequence of subtags; each subtag is represented
as an embedding.

More formally, we define the alphabet Σlang as
the set of characters in the language and Σsubtag as
the set of subtags that occur as part of the set of
morphological tags T of the language, e.g., if 1st-
SgPres ∈ T , then 1st, Sg and Pres ∈ Σsubtag. Each
of the k inputs to our system is of the following
format: SstartΣ

+
subtagΣ

+
langΣ

+
subtagSend where the first

subtag sequence is the source tag ti and the second
subtag sequence is the target tag. The output format
is: SstartΣ

+
langSend, where the symbols Sstart and Send

are predefined start and end symbols.

3.2 Multi-Source Encoder-Decoder

The encoder-decoder is based on the machine trans-
lation model of Bahdanau et al. (2015) and all
specifics of our model are identical to the origi-
nal presentation unless stated otherwise.5 Whereas

4The edit tree (Chrupała, 2008; Müller et al., 2015) aug-
mentation discussed in Kann and Schütze (2016b) was not
employed here.

5We modify the implementation of the model freely avail-
able at https://github.com/mila-udem.

Bahdanau et al. (2015)’s model has only one en-
coder, our model consists of k ≥ 1 encoders
and processes k sources simultaneously. The k
sources have the form Xm = (ttrg, f

m
src , t

m
src), rep-

resented as SstartΣ
+
subtagΣ

+
langΣ

+
subtagSend as described

above. Characters and subtags are embedded.
The input to encoder m is Xm. Each encoder

consists of a bidirectional RNN that computes a hid-
den state hmi for each position, the concatenation
of forward and backward hidden states. Decoding
proceeds as follows:

p(y | X1, . . . , Xk) =

|Y |∏

t=1

p(yt | {y1, ..., yt−1}, ct)

=

|Y |∏

t=1

g(yt−1, st, ct), (2)

where y = (y1, ..., y|Y |) is the output sequence
(a sequence of |Y | characters), g is a nonlinear
function, st is the hidden state of the decoder and
ct is the sum of the encoder states hmi, weighted
by attention weights αmi(st−1) that depend on the
decoder state:

ct =

k∑

m=1

|Xm|∑

i=1

αmi(st−1)hmi. (3)

A visual depiction of this model may be found
in Figure 2. A more complex hierarchical atten-
tion structure would be an alternative, but this sim-
ple model in which all hidden states contribute
on the same level in a single attention layer (i.e.,∑k

m=1

∑|Xm|
i=1 αmi = 1) works well as our experi-

ments show. The k encoders share their weights.

4 Multi-Source Reinflection Experiment

We evaluate the performance of our model in an
experiment based on Task 2 of the SIGMORPHON
Shared Task on Morphological Reinflection (Cot-
terell et al., 2016a). This is a single-source MRI
task as outlined in Section 1.

4.1 Experimental Settings

Datasets. Our datasets are based on the data from
the SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection (Cotterell et al., 2016a).
Our experiments cover eight languages: Arabic,
Finnish, Georgian, German, Hungarian, Russian,
Spanish and Turkish. The languages were chosen
to represent different types of morphology. Finnish,
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t r e n t r a n
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s1 s2 s3 sN

y1= y2= y3= M

s4

… …
Figure 2: Visual depiction of our multi-source encoder-decoder RNN. We sketch a two encoder model, where the left encoder
reads in the present form treffen and the right encoder reads in the past tense form trafen. They work together to predict the
subjunctive form träfen. The shadowed red arcs indicate the strength of the attention weights—we see the network is focusing
more on a because it helps the decoder better predict ä than e. We omit the source and target tags as input for conciseness.

German, Hungarian, Russian, Turkish and Span-
ish are all suffixing. In addition to being suffixing,
three of these languages employ vocalic (German,
Spanish) and consonantal (Russian) stem changes
for many inflections. The members of the remain-
ing sub-group are agglutinative. Georgian makes
use of prefixation as well as suffixation. Arabic
morphology contains both concatenative and tem-
platic elements. We build multi-source versions
of the dataset for Task 2 of the SIGMORPHON
shared task in the following way. We use data
from the UNIMORPH project,6 containing com-
plete paradigms for all languages of the shared task.
The shared task data was sampled from the same
set of paradigms; our new dataset is a superset of
the SIGMORPHON data.

We create our new dataset by uniformly sam-
pling three additional word forms from the
paradigm of each source form in the original data.
In combination with the source and target forms
of the original dataset, this means that our dataset
is a set of 5-tuples consisting each of four source
forms and one target form.7 Ideally, we would
like to keep the experimental variable k, the num-
ber of sources we use in multi-source MRI, con-

6http://unimorph.org
7One thing to note is that the original shared task data was

sampled depending on word frequency in unlabeled corpora.
We do not impose a similar condition, so the frequency dis-
tributions of our data and the shared task data are different.
Also, we excluded Maltese and Navajo due to a lack of data
to create the additional multi-source datasets.

1 2 3 ≥ 4
ar 0 0 0 12,800
fi 0 0 0 12,800
ka 1015 84 2 11,699
de 0 0 0 12,800
hu 0 0 0 19,200
ru 0 0 5 12,794
es 1575 25 877 10,323
tu 0 0 0 12,800

Table 2: Number of target forms in the training set for which
1, 2, 3 or ≥ 4 source forms (in the training set) are available
for prediction. The tables for the development and test splits
show the same pattern and are omitted.

stant for a particular experiment or vary it sys-
tematically across other experimental conditions.
Table 2 gives an overview of the number of dif-
ferent source forms per language in our dataset.
Our dataset is available for download at http:
//cistern.cis.lmu.de.

Hyperparameters. We use embeddings of size
300. Our encoder and decoder GRUs have 100
hidden units each. Following Le et al. (2015), we
initialize all encoder and decoder weights as well
as the embeddings with an identity matrix. All
biases are initialized with zero. We use stochas-
tic gradient descent, Adadelta (Zeiler, 2012) and a
minibatch size of 20 for training. Training is done
for a maximum number of 90 epochs. If no im-
provement occurs for 20 epochs, we stop training
early. The final model we run on test is the model
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source form(s) used
1 2 3 4 1–2 1–4

ar .871 .813 .796 .830 .905 .944
fi .956 .929 .941 .934 .965 .978
ka .967 .943 .942 .934 .969 .979
de .954 .922 .931 .912 .959 .980
hu .992 .962 .963 .963 .988 .989
ru .876 .795 .824 .817 .888 .911
es .975 .961 .963 .968 .977 .984
tu .967 .928 .947 .944 .970 .983

Table 3: Accuracy on MRI for single-source (1, 2, 3, 4) and
multi-source (1–2, 1–4) models. Best result in bold.

that performs best on the development data.

Baselines. For the single-source case, we apply
MED, the top-scoring system in the SIGMOR-
PHON 2016 Shared Task on Morphological Rein-
flection (Cotterell et al., 2016a; Kann and Schütze,
2016b). At the time of writing, MED constitutes
the state of the art on the dataset. For Arabic, Ger-
man and Turkish, we run an additional set of ex-
periments to test two additional architectural con-
figurations of multi-source encoder-decoders: (i)
In addition to the default configuration in which
all encoders share parameters, we also test the op-
tion of each encoder learning its own set of pa-
rameters (shared par’s: yes vs. no in Table 4). (ii)
Another way of realizing a multi-source system
is to concatenate all sources and give this to an
encoder-decoder with a single encoder as one input
(encoders: k = 1 vs. k > 1 in Table 4).

Evaluation Metric. We evaluate on 1-best accu-
racy (exact match) against the gold form. We devi-
ate from the shared task, which also evaluates under
mean reciprocal rank and edit distance. We omit
the later two since all these metrics were highly
correlated (Cotterell et al., 2016a).

4.2 Results
Table 3 shows the results of the MRI experiment
on test data. We compare using a single source,
the first two sources and all four sources. The first
source (in column “1”) is the original source from
the SIGMORPHON shared task. Recall that we
used uniform sampling to identify additional forms
whereas the sampling procedure of the shared task
took into account frequency. We suspect that this
is the reason for the worse performance of the new
sources compared to the original source; e.g., in
German there are rarely used subjunctive forms like

encoders: k = 1 k = 4
par’s shared: yes no

ar .944 .944 .920
de .980 .980 .975
tu .985 .983 .969

Table 4: Accuracy of different architectures for the dataset
with 4 source forms being available for prediction. The best
result for each row is in bold.

befähle that are unlikely to help generate related
forms that are more frequent.

The main result of the experiment is that multi-
source MRI performs better than single-source
MRI for all languages except for Hungarian and
that, clearly, the more sources the better: using four
sources is always better than using two sources.
This result confirms our hypothesis, illustrated in
Figure 1, that for most languages, different source
forms provide complementary information when
generating a target form and thus performance of
the multi-source model is better than of the single-
source model. Table 3 demonstrates that the two
configurations we identified as promising for multi-
source MRI, SINGLEFORM and MULTIFORM, oc-
cur frequently enough to boost the performance for
seven of the eight languages, with the largest gains
observed for Arabic (7.3%) and Russian (3.5%)
and the smallest for Spanish (0.9%) and Georgian
(1.3%) (comparing using source form 1 with using
source forms 1–4).

Hungarian is the only language for which per-
formance decreases, by a small amount (0.3%).
We attribute this to overfitting: the multi-source
model has a larger number of parameters, so it is
more prone to overfitting. We would expect the
performance to be the same in a comparison of two
models that have the same size.

Error Analysis. We compare errors of single-
source and multi-source models for German on de-
velopment data. Most mistakes of the multi-source
model are stem-related: versterbst for verstirbst, er-
werben for erwürben, Apfelsinenbaume for Apfelsi-
nenbäume, lungenkränkes for lungenkrankes and
übernehmte for übernähme. In most of these cases,
the stem of the lemma was used, which is correct
for some forms, but not for the form that had to
be generated. In one case, the multi-source model
did not use the correct inflection rule: braucht for
gebraucht—the inflectional rule that the past par-
ticiple is formed by ge- was not applied.
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Figure 3: Learning curves for single-source and multi-source models for Arabic, German and Turkish. We observe that the
multi-source model generalizes faster than the single soure case—this is to be expected since the multi-source model often faces
an easier transduction problem.

Errors of the single-source model that were “cor-
rected” by the multi-source model include emp-
fahlt for empfiehl, Throne for Thron and befielen
for befallen. These are all SINGLEFORM cases:
the multi-source model will generate the correct
form if it succeeds in selecting the most predictive
source form. The single-source model is at a disad-
vantage if this most predictive source form is not
part of its input.

4.3 Comparison of Different Architectures
Table 4 compares different architectural configura-
tions. All experiments use 4 sources. We see that
sharing parameters is superior as expected. Using
a single encoder on 4 sources performs as well as 4
encoders (and very slightly better on Turkish). Ap-
parently, it has no difficulty learning to understand
an unstructured (or rather lightly structured) con-
catenation of form-tag pairs; on the other hand, this
parsing task, i.e., learning to parse the sequence of
form-tag pairs, is easy, so this is not a surprising
result.

4.4 Learning Curves
Figure 3 shows learning curves for Arabic, Ger-
man and Turkish. We iteratively halve the train-
ing set and train models for each subset. In this
analysis, we train all models for 90 epochs, but
use the numbers from the main experiment for the
full training set. For the single-source model, we
use the SIGMORPHON source. The figure shows
that the single-source model needs more individ-
ual paradigms in the training data to achieve the
same performance as the multi-source model. The
largest difference between single-source and multi-
source is > 20% for Arabic when only 1/8 of the
training set is used. This suggests that multi-source
MRI is an attractive option for low-resource lan-
guages since it exploits available data better than
single-source.

4.5 Attention Visualization

Figure 4 shows for one example, the generation of
the German form wögen, 3rdPlSubPst, the attention
weights of the multi-source model at each time
step of the decoder, i.e., for each character as it
is being produced by the decoder. For characters
that simply need to be copied, the main attention
lies on the corresponding characters of the input
sources. For example, the character g is produced
when attention is on the characters g in wögest,
wöge and wogen. This aspect of the multi-source
model is not different from the single-source model,
offering no advantage.

However, even for g, the source form that is least
relevant for generating wögen receives almost no
weight: wägst is an indicative singular form that
does not provide helpful information for generating
a plural form in the subjunctive; the model seems to
have learned that this is the case. In contrast, wogen
does receive some weight; this makes sense as it
is a past indicative form and the past subjunctive
is systematically related to the past indicative for
many German verbs. These observations suggest
that the network has learned to correctly predict (at
least in this case) which forms provide potentially
useful information. For the last two time steps
(i.e., characters to be generated), attention is mainly
focused on the tags. Again, this indicates that the
model has learned the regularity in generating this
part of the word form: the suffix, consisting of en,
is predictable from the tag.

5 Related Work

Recently, variants of the RNN encoder-decoder
have seen widespread adoption in many areas of
NLP due to their strong performance. Encoder-
decoders with and without attention have been ap-
plied to tasks such as machine translation (Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et
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Figure 4: Attention heatmap for the multi-source model. The example is for the German verb wiegen ‘to weigh’. The model
learns to focus most of its attention on forms that share the irregular subjunctive stem wög in addition to the target subtags 3 and
P that encode that the target form is 3rd person plural. We omit the tags from the diagram to which the model hardly attends.

al., 2015), parsing (Vinyals et al., 2014) and auto-
matic speech recognition (Graves and Schmidhu-
ber, 2005; Graves et al., 2013).

The first work on multi-source models was pre-
sented for machine translation. Zoph and Knight
(2016) made simultaneous use of source sentences
in multiple languages in order to find the best match
possible in the target language. Unlike our model,
they apply transformations to the hidden states of
the encoders that are input to the decoder. Firat et
al. (2016)’s neural architecture for MT translates
from any ofN source languages to any ofM target
languages, using language specific encoders and de-
coders, but sharing one single attention-mechanism.
In contrast to our work, they obtain a single output
for each input.

Much ink has been spilled on morphological re-
inflection over recent years. Dreyer et al. (2008)
develop a high-performing weighted finite-state
transducer for the task, which was later hybridized
with an LSTM (Rastogi et al., 2016). Durrett and
DeNero (2013) apply a semi-CRF to heuristically
extracted rules to generate inflected forms from
lemmata using data scraped from Wiktionary. Im-
proved systems for the Wiktionary data were sub-
sequently developed by Hulden et al. (2014), who
used a semi-supervised approach, and Faruqui et
al. (2016), who used a character-level LSTM. All
of the above work has focused on the single input
case. Two important exceptions, however, have
considered the multi-input case. Both Dreyer and
Eisner (2009) and Cotterell et al. (2015b) define a
string-valued graphical model over the paradigm
and apply the missing values.

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection (Cotterell et al., 2016a),
based on the UNIMORPH (Sylak-Glassman et al.,
2015) data, resulted in the development of numer-
ous methods. RNN encoder-decoder models (Aha-
roni et al., 2016; Kann and Schütze, 2016a; Östling,
2016) obtained the strongest performance and are
the current state of the art on the task. The best-

performing model made use of an attention mecha-
nism (Kann and Schütze, 2016a), first popularized
in machine translation (Bahdanau et al., 2015). We
generalize this architecture to the multi-source case
in this paper for the reinflection task.

Besides generation, computational work on mor-
phology has also focused on analysis. In this area,
a common task—morphological segmentation—is
to break up a word into its sequence of constituent
morphs. The unsupervised MORFESSOR model
(Creutz and Lagus, 2002) has achieved widespread
adoption. Bayesian methods have also proven
themselves successful in unsupervised morpholog-
ical segmentation (Johnson et al., 2006; Goldwa-
ter et al., 2009). When labeled training data for
segmentation is available, supervised methods sig-
nificantly outperform the unsupervised techniques
(Ruokolainen et al., 2013; Cotterell et al., 2015a;
Cotterell et al., 2016b).

As we pointed out in Section 2, morphologically
annotated corpora provide an ideal source of data
for the multi-source MRI task: they are annotated
on the token level with inflectional features and
often contain several different inflected forms of
a lemma. Eskander et al. (2013) develop an algo-
rithm for automatic learning of inflectional classes
and associated lemmas from morphologically an-
notated corpora, an approach that could be usefully
combined with our multi-source MRI framework.

6 Conclusion

Generation of unknown inflections in morpholog-
ically rich languages is an important task that re-
mains unsolved. We provide a new angle on the
problem by considering systems that are allowed
to have multiple inflected forms as input. To this
end, we define the task of multi-source morpho-
logical reinflection as a generalization of single-
source MRI (Cotterell et al., 2016a) and present a
model that solves the task. We extend an attention-
based RNN encoder-decoder architecture from the
single-source case to the multi-source case. Our
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new model consists of multiple encoders, each re-
ceiving one of the inputs. Our model improves over
the state of the art for seven out of eight languages,
demonstrating the promise of multi-source MRI.
Additionally, we publically release our implemen-
tation.8

7 Future Work

The new dataset for multi-source morphological re-
inflection that we release is a superset of the dataset
of the SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection to facilitate research on
morphological generation. One focus of future
work should be the construction of more complex
datasets, e.g., datasets that have better coverage
of irregular words and datasets in which there is
no overlap in lemmata between training and test
sets. Further, for difficult inflections, it might be
interesting to find an effective way to include un-
supervised data into the setup. For example, we
could define one of our k inputs to be a form mined
from a corpus that is not guaranteed to have been
correctly tagged morphologically, but likely to be
helpful.

We show in this paper that multi-source MRI
outperforms single-source MRI. This is an impor-
tant contribution because—as we discussed in Sec-
tion 2.1—multi-source MRI is only promising for
paradigms with specific properties, which we re-
ferred to as SINGLEFORM and MULTIFORM con-
figurations. Whether such configurations occur
and whether these configurations have a strong ef-
fect on MRI performance was an open empirical
question. Indeed, we found that for one of the
languages we investigated, for Hungarian, single-
source MRI works at least as well as multi-source
MRI—presumably because its paradigms almost
exclusively contain SINGLEFORM configurations.
Thus, single-source MRI is probably preferable
for Hungarain since single-source is simpler than
multi-source.

There is another important question that we have
not answered in this paper: in an experimental
setting in which the amount of training information
available is exactly the same for single-source and
multi-source, does multi-source still outperform
single-source and by how much? For example,
the numbers we compare in Table 3 are matched
with respect to the number of target forms, but not
with respect to the number of source forms: multi-

8http://cistern.cis.lmu.de

source has more source forms available for training
than single-source. We leave investigation of this
important issue for future work.
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Abstract

Automatic post-editing (APE) for machine
translation (MT) aims to fix recurrent er-
rors made by the MT decoder by learn-
ing from correction examples. In con-
trolled evaluation scenarios, the represen-
tativeness of the training set with respect
to the test data is a key factor to achieve
good performance. Real-life scenarios,
however, do not guarantee such favorable
learning conditions. Ideally, to be inte-
grated in a real professional translation
workflow (e.g. to play a role in computer-
assisted translation framework), APE tools
should be flexible enough to cope with
continuous streams of diverse data coming
from different domains/genres. To cope
with this problem, we propose an online
APE framework that is: i) robust to data
diversity (i.e. capable to learn and apply
correction rules in the right contexts) and
ii) able to evolve over time (by contin-
uously extending and refining its knowl-
edge). In a comparative evaluation, with
English-German test data coming in ran-
dom order from two different domains, we
show the effectiveness of our approach,
which outperforms a strong batch system
and the state of the art in online APE.

1 Introduction

Automatic post-editing (APE) systems for ma-
chine translation (MT) aim to correct the errors
present in a machine-translated text before show-
ing it to the user, thereby reducing human work-
load and eventually increase translation produc-
tivity. The choice of having such post-processing
systems is well motivated in (Bojar et al., 2015)
and becomes a must when the MT engine used

to translate is not directly accessible for retrain-
ing or for more radical internal modifications (e.g.
when working with a third party MT system). As
pointed out by (Parton et al., 2012; Chatterjee et
al., 2015b), from the application point of view an
APE system can help to: i) Improve MT output
by exploiting information unavailable to the de-
coder, or by performing deeper text analysis that
is too expensive at the decoding stage; ii) Pro-
vide professional translators with improved MT
output quality to reduce (human) post-editing ef-
fort and iii) Adapt the output of a general-purpose
MT system to the lexicon/style requested in a spe-
cific application domain. Similar to what is usu-
ally done in MT, APE components learn post-
editing rules from “parallel” corpora consisting
of machine-translated text (mt, optionally with its
corresponding source text – src) and its post-edits
(pe) provided by human post-editors. The effec-
tiveness of learning from relatively small amounts
of post-edited data is evident from the impressive
outcomes of the recently held APE shared task at
WMT 2016 (Bojar et al., 2016). Different APE
paradigms, like neural (Junczys-Dowmunt and
Grundkiewicz, 2016), hybrid (Chatterjee et al.,
2016), and phrase-based (Pal et al., 2016) were all
able to significantly improve MT output quality in
the IT domain, with gains ranging from 2.0 to 5.5
BLEU points. Nevertheless, this success and the
positive outcomes of previous work on automatic
MT error correction build on a problem formu-
lation that assumes to operate in a controlled lab
environment, where the systems are trained and
evaluated across a coherent/homogeneous data set.
Moving from this controlled scenario to real-world
translation workflows, where training and test data
can be produced by different MT systems, post-
edited by various translators and belong to several
text genres, makes the task inherently more chal-
lenging, because the APE systems have to adapt to
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all these diversities in real-time. In addition to the
problem that training data provide a fraction of the
possible error correction examples (a normal is-
sue when learning from finite, often small training
data), the additional complexity derives from two
concurrent factors. First, not all the learned er-
ror correction rules are universally applicable: ap-
plying them in the wrong context can damage the
MT output instead of improving it. Second, once
in production, the APE system should be able to
process streams of diverse input data presented in
random order: promptly reacting to such variabil-
ity is hence crucial. We define this more complex
and realistic scenario as a multi-domain translation
environment (MDTE), where a domain is made of
segments belonging to the same text genre and the
MT outputs are generated by the same MT system.

To our knowledge, the evaluation of APE sys-
tems on MDTE data in real-time/online translation
scenarios is still unexplored. This paper represents
a first step along this direction: although a full-
fledged evaluation centered on human translation
in a computer-assisted translation (CAT) frame-
work is out of our reach, we provide a proof of
concept in which we simulate the MDTE scenario
by running different APE solutions on a stream
of data coming from two different domains. By
analysing alternative solutions, we discuss the lim-
itations not only of batch APE methods (insensi-
tive to domain shifts), but also of state-of-the-art
online translation systems evaluated in the APE
task in MDTE conditions. Thot (Ortiz-Martınez
and Casacuberta, 2014), the online system used
as term of comparison, shows in fact the inabil-
ity to discern which of the learned correction rules
is suitable for a specific context. In practice, all
rules are created equal, for any given domain.

To overcome this limitation, we proceed incre-
mentally. First, we propose an approach based
on an instance selection strategy, which learns
local, sentence-specific APE models from small
amounts of relevant data for each translation to
be post-edited. Then, on top of it, we add an
improved way to estimate the parameters of the
sentence-specific APE models. To this aim, we ex-
ploit a dynamic knowledge base that keeps track of
global statistics computed over all the previously
seen data (i.e. it does not rely only on those com-
puted from the selected instances). Finally, the dy-
namic knowledge base gives us the possibility to
experiment with new features in addition to those

used by current APE systems based on the phrase-
based MT paradigm. Such features incorporate
in the translation models also the negative feed-
back collected from human post-editors. Instead
of continuously expanding our knowledge base of
correction rules (i.e. only considering the positive
feedback about how to correct a given error), we
also stepwise refine it by weighing the acquired
correction rules according to their reliability (e.g.
demoting those that led to corrections eventually
modified by the human). Positive evaluation re-
sults reflect this incremental approach. To sum-
marize, our contribution is a fully automated on-
line APE system that does not rely on pre-trained
models or tuned weights (unlike Thot that needs to
be pre-trained and tuned) and incorporates for the
first time both positive and negative post-editors’
feedback to set the state-of-the-art in the difficult
task of APE in the MDTE scenario.

2 Related work

Most of the previous works on APE cast the prob-
lem as a phrase-based statistical MT task1 and op-
erate in a batch framework where systems are eval-
uated on static test sets that are homogeneous with
the training data (Simard et al., 2007; Dugast et
al., 2007; Terumasa, 2007; Pilevar, 2011; Béchara
et al., 2011; Chatterjee et al., 2016). These sys-
tems, however, are not able to leverage the feed-
back of the post-editors in an online translation
scenario. The capability to evolve by learning
from human feedback has been addressed by sev-
eral online translation systems but mainly focusing
on the MT task (Hardt and Elming, 2010; Bertoldi
et al., 2013; Mathur et al., 2013; Simard and Fos-
ter, 2013; Ortiz-Martınez and Casacuberta, 2014;
Denkowski et al., 2014; Wuebker et al., 2015).
From these several online MT systems, we discuss
the two that have been used also for the APE task.

PEPr: Post-Edit Propagation. (Simard and
Foster, 2013) proposed a method for post-edit
propagation (PEPr), which learns post-editors’
corrections and applies them on-the-fly to an MT
output sequence. To perform post-edit propa-
gation, the system is trained incrementally us-

1Only recently, the wave of neural models has also
reached the APE task (Junczys-Dowmunt and Grundkiewicz,
2016), setting the new state of the art at WMT (Bojar et al.,
2016). The problem addressed in this paper (dealing with
MDTE data), as well as the proposed online solution are still
too computationally intensive to experiment with neural mod-
els. We hence leave this aspect as a future work direction.
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ing pairs of machine-translated (mt) and human
post-edited (pe) segments as they were produced.
When receiving a new (mt, pe) pair, word align-
ments are obtained using Damerau-Levenshtein
distance. In the next step, the phrase pairs are
extracted and appended to the existing phrase ta-
ble. The whole process is assumed to take place
within the context of a single document and, for
every new document, the APE system is initialised
with an “empty” model. This represents a possible
limitation of the approach: although document-
specific correction rules show a relatively high
precision, some of them might in fact be useful
also in other contexts and should be retained. Our
approach avoids this limitation by maintaining a
global knowledge base to store all the processed
documents, still being able to retrieve post-editing
rules specific to a document to be translated.2

Thot. The Thot toolkit (Ortiz-Martınez and
Casacuberta, 2014) is developed to support auto-
matic and interactive statistical machine transla-
tion.3 It was also successfully used by Lagarda
et al. (2015) to experiment in an online APE set-
ting with several data sets for multiple language
pairs, with base MT systems built using differ-
ent technologies (rule-based MT, statistical MT).
In order to incorporate user feedback in the un-
derlying translation and language models, the sys-
tems maintains and incrementally updates all the
required statistics. For the language model, it sim-
ply updates n-gram counts. In the case of the
translation model, the process exploits an incre-
mental version of expectation maximization algo-
rithm to obtain word alignments and extract the
phrase pairs whose counts are continuously up-
dated. Other features, like source/target phrase-
length models or the distortion model, are ex-
tracted considering geometric distributions with
fixed parameters. The feature weights of the log-
linear model are static throughout the online learn-
ing process, as opposed to our method that updates
the weights on-the-fly. This makes our online APE
approach independent from any pre-trained model
or pre-tuned feature weights. Moreover, while in
Thot the correction rules are learned in real-time
from all the data processed, our system only learns
from the most relevant data samples. Neverthe-

2In our experiments we do not compare against PEPr
since, being designed for document-level translation it is un-
able to operate in the MDTE scenario.

3https://github.com/daormar/thot

less, considering Thot as the state-of-the-art in on-
line APE, we will use it as a term of comparison
in our experiments.

3 Online APE system

The backbone of our online APE system is sim-
ilar to the state-of-the-art statistical batch APE
approach proposed in (Chatterjee et al., 2015b).
The system is trained on (src, mt, pe) triplets, and
learns correction rules in the form of (mt#src, pe)
pairs. The first element of each pair consists of
MT phrases (single or multiple words) that are as-
sociated to their corresponding source words by
using a word alignment model. This “joint repre-
sentation” helps to restrict the applicability of each
rule to the appropriate context, and was shown
to perform better than using only the mt words
as the left-hand side of the rules (Béchara et al.,
2011). Our migration to the online scenario builds
on incrementally extending this backbone with an
instance selection mechanism (§3.1), a dynamic
knowledge base (§3.2) and new features (§3.3).

3.1 Instance selection

Current batch and online APE methods estimate
parameters of the models over all the available
training data. This strategy may not be effective
in the MDTE scenario, since the model will tend
to become more and more generic by incorporat-
ing knowledge from several domains. In the long-
run, this can complicate the selection of domain-
specific correction rules suitable for a particular
MT segment. One of the possible solutions is to
constrain the system to work at document level as
proposed by Simard and Foster (2013). In their
approach, however, the models are reset back to
their original state once the entire document is pro-
cessed, due to which knowledge gained from the
current document is lost. Our instance selection
technique aims to overcome this issue, allowing
the system to preserve all the knowledge acquired
during the online learning process, still being able
to apply specific post-editing rules when needed.

The instance selection mechanism consists in
retrieving ad-hoc training sentence pairs for each
MT output to be post-edited. In practice, the cre-
ation of the APE model and the estimation of its
parameters are performed on-the-fly by process-
ing relevant instances retrieved from the previ-
ously processed data. In the MDTE scenario, this
will come from heterogeneous domains. The rele-

527



vance of a training sample is measured in terms of
a similarity score based on term frequency-inverse
document frequency (tf-idf4) computed using the
Lucene software library.5 Indexing and retrieving
training triplets (src, mt, and pe) in this mechanism
is fast, which makes it perfectly suitable to use
in an online learning scenario. The cut-off simi-
larity score is empirically estimated over a held-
out development set. Input segments not having
training samples above the threshold are left un-
touched to avoid any possible damage resulting
from the application of unreliable correction rules
learned from unrelated contexts. This is in contrast
with the strategy adopted by current APE systems,
which tend to always “translate” the given input
segment, independently from the reliability of the
applicable correction rules.

Once the training samples are selected for an
input segment, several models are built on-the-
fly. A tri-gram local language model (LM) is
built over the target side of the training corpus
with the IRSTLM toolkit (Federico et al., 2008).
Along with the local LM a tri-gram global LM
is also used, which is updated whenever a hu-
man post-edition (pe) is received. Local trans-
lation and reordering models are built with the
Moses toolkit (Koehn et al., 2007), computing
word alignment for each sentence pair using the
incremental GIZA++ software.6

The feature weights of the log-linear model are
optimized over a subset of the selected instances.
The size of this development set is critical: if
it is too large, then parameter optimization will
be expensive. On the other hand, if it is too
small, the tuned weights might not be reliable.
To achieve fast optimization with reliably-tuned
weights, multiple instances of MIRA (Crammer
and Singer, 2003) are run in parallel on mul-
tiple development sets (Tange, 2011). For this
purpose, the retrieved samples are randomly split
three times into training and development. The
tuned weights resulting from the three develop-
ment runs are then averaged and used to decode
the input MT segment.

To summarize, our training/tuning scheme re-
quires a minimum number of retrieved sentence

4In MT, tf-idf was previously used by Hildebrand et al.
(2005) to create a pseudo in-domain corpus from a large out-
of-domain corpus. Our work is the first to investigate it for
the APE task in an online learning scenario.

5https://lucene.apache.org/
6https://code.google.com/archive/p/

inc-giza-pp/

pairs. Following an 80%-20% distribution over
training and development data, and setting to 5 the
minimum number of samples needed for tuning,
the complete process requires the retrieval of at
least 25 samples. If this number is not reached, all
the retrieved samples are used for training, the op-
timization step is skipped and the previously com-
puted weights are used. If no sample is selected,
then the MT output will be left untouched.

3.2 Dynamic knowledge base

The APE system described so far is built by con-
sidering only the most similar retrieved sentences,
which we hypothesize to be the most useful to
learn reliable corrections for a given MT output.
On one hand, this strategy avoids to end up with
correction options that are not appropriate to post-
edit the MT output. On the other hand, it computes
the statistics of the models (i.e. translation and lex-
icalized reordering probabilities) using only few
parallel sentences, resulting in potentially unreli-
able values that can penalise the work of the de-
coder. To address this issue, we complement in-
stance selection with a dynamic knowledge base
able to keep track of all the previous observations
relevant for post-editing. Such a component pro-
vides the decoder with all the translation options
extracted from the retrieved sentences but, instead
of computing the probabilities only on these seg-
ments, it takes advantage of all the occurrences
of a translation option in the previously processed
sentences. This allows our online APE system to
use only the most useful translation options, asso-
ciated with more reliable statistics.

The dynamic knowledge base is implemented
by a distributed, scalable and real-time inverted
index that, after insertion, makes all data imme-
diately available for search and update. The Elas-
ticSearch7 engine is used for this purpose. Once
the post-edit is made available to our system, the
word alignment between the mt and the pe is com-
puted, the sentence pair is split in phrases and then
added to the dynamic model. If a translation op-
tion is already present, then the phrase translation
and the orientation counts are updated, otherwise
it is inserted for the first time. This is run in multi-
threading, by also managing possible conflicts (i.e.
the access to the same translation option by differ-
ent threads). Word lexical information and phrase

7http://www.elastic.co/products/
elasticsearch
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counts are stored apart. At decoding time, the IDs
of the samples retrieved by instance selection and
the mt sentences are used to query the dynamic
knowledge base. The translation options that sat-
isfy the query are retrieved and supplied to the
decoder in the form of translation and reordering
model information. All the feature scores (four
for the translation model and six for the reorder-
ing model) are computed on-the-fly.

Compared to the suffix arrays used to im-
plement MT dynamic models (Germann, 2014;
Denkowski et al., 2014), in which the whole sen-
tence pairs are stored, our technique needs to save
more information (all the translation options) but:
i) the amount of data in APE is much less that in
MT so it can be easily managed by ad hoc solu-
tions, and ii) it allows us to collect global infor-
mation at translation option level that can result in
useful additional features for the model. This last
aspect is explored in the next section, in which the
reliability of the translation options is measured by
looking at the behavior of the post-editors.

3.3 Negative feedback in-the-loop

Similar to the APE systems mentioned in Sec-
tion 2, the one described so far stores only post-
editors’ positive feedback. Its knowledge base of
correction rules and the statistics to estimate the
model parameters are in fact continuously updated
only based on alignment information between (mt,
pe) pairs. Post-edits, however, can also be used to
infer negative feedback and use it to penalize un-
reliable correction options (i.e. those resulting in
post-edits eventually modified by the human). The
dynamic knowledge base allows us to easily inte-
grate this kind of information, in the form of two
additional “negative feedback” features:

• F1. This feature penalizes the correction
rules that are selected by the decoder but
eventually modified by the post-editor. This
can be due to the application of a rule in
the wrong context (e.g. in case of domain
changes in the input stream of data) but, most
likely, to the fact that the learned rule is
wrong (e.g. as the result of ambiguous/wrong
word alignment). It is computed as the ra-
tio of the number of times the post-editors
modified a correction made by the APE de-
coder to the total number of times the de-
coder has made the correction. The informa-
tion about which correction rules have been

applied by the APE system is obtained from
the Moses decoder trace option. The infor-
mation about which of them has been modi-
fied is derived by string matching the target
side of the rule in the final human post-edit.

• F2. This rule penalizes the correction rules
that, even if not used, were available to the
decoder (i.e. translation options discarded
during decoding). Assuming that the applica-
tion of these options would have been eventu-
ally corrected by the post-editor, all the rules
in the phrase table are scanned to check if
their target side (i.e. the correction) is present
in the final human post-edit (again by string
matching). If not, then the corresponding rule
is penalised. This feature is computed as the
ratio of the number of times the correction
in the phrase table is (assumed to be) modi-
fied by the post-editor to the total number of
time the correction rule has been seen in the
local phrase table for all the segments pro-
cessed so far. Since the decoder operates with
a segment-specific local phrase table contain-
ing only the options relevant to the segment
to be post-edited, computing this feature is
not expensive.

We also evaluate system performance by using the
two features together. As we will see in Section 5,
although our use of negative feedback is still at
a preliminary stage, its integration in our online
APE framework yields some improvements.

4 Evaluation setting

Data. We experiment with two English-German
data sets: i) the data released for the APE shared
task organised within the first Conference on Ma-
chine Translation (WMT16) (Bojar et al., 2016),
and ii) the data used in (Chatterjee et al., 2015b),
which is a subset of the Autodesk Post-Editing
Data corpus.8 Although they come from the
same category (IT), they feature variability in
terms of vocabulary, MT engines used for trans-
lation, MT errors and post-editing style. Accord-
ing to our broad notion of “domain”, these vari-
ations contribute to make the two data sets dif-
ferent enough to emulate an MDTE scenario for
testing online APE capabilities. The data are
pre-processed to obtain a joint representation that

8https://autodesk.app.box.com/v/
autodesk-postediting
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Tokens Types Avg. segment length RR
(mt#src)

TER
mt#src pe mt#src pe mt#src pe

Autodesk 153,943 160,801 31,939 15,023 12.57 13.13 4.938 45.35
WMT16 210,573 214,720 32211 16,388 17.54 17.89 4.907 26.22

Table 1: Data statistics

links each MT word with its corresponding source
word/s (mt#src). This representation, proposed
by Béchara et al. (2011), leverages the source in-
formation to disambiguate post-editing rules and
foster their application only in appropriate con-
texts (the matching condition is defined both on
the source and on the target language). The joint
representation is used as a source corpus to train
all the APE systems compared in this paper and it
is obtained by concatenating words in the source
(src) and in the MT (mt) segments after aligning
them with MGIZA++ (Gao and Vogel, 2008).

The Autodesk training and development sets
consist of 12,238, and 1,948 segments respec-
tively, while the WMT16 data contains 12,000,
and 1,000 segments. Table 1 provides additional
statistics of the source (mt#src) and target (pe)
training sets, the repetition rate (RR) to measure
the repetitiveness inside a text (Bertoldi et al.,
2013), and the average TER score for both the data
sets (computed between MT and PE), as an indi-
cator of the original translation quality. Looking
at these statistics, there are several indicators that
suggest that the WMT16 corpus provides a more
difficult scenario for APE than the Autodesk one.
First, the WMT16 corpus has on average longer
sentences, which generally increases the complex-
ity of the rule extraction and decoding processes.
Second, although the two data sets have a similar
repetition rate, the WMT16 has more tokens in-
dicating the higher sparsity of the data. Finally,
the lower TER of WMT16 suggests that there are
less corrections to perform and, in turn, a higher
chance to deteriorate the original MT output if the
learned rules are applied in the wrong context.

To conclude, we measure the diversity of the
two data sets by computing the vocabulary over-
lap between the two joint representations. This is
performed internally to each data set (splitting the
training data in two halves) and across them. As
expected, in the first case the vocabulary overlap
is much larger (> 40%) than in the second case
(∼15%) indicating that the information to share
between the two data sets is minimal.

In our MDTE experiments, the training data is
first merged, then shuffled and then split in two
halves of 12,119 segments. The same procedure is
applied to the development sets.

Evaluation metrics. The performance of the
different systems is evaluated in terms of Transla-
tion Error rate (TER) (Snover et al., 2006), BLEU
(Papineni et al., 2002), and precision (Chatterjee et
al., 2015a). TER and BLEU measure the similar-
ity between the MT output and the corresponding
references (in this case human post-edits) by look-
ing at the word/n-gram overlaps. Precision is the
ratio of the number of sentences an APE system
improves (with respect to the MT output) over all
the sentences it modifies.9 Higher precision indi-
cates that the APE system is able to improve the
quality of most of the sentences it changed. The
statistical significance of BLEU results is com-
puted using paired bootstrap resampling (Koehn,
2004). For TER, we use stratified approximate
randomization (Clark et al., 2011).

Terms of comparison. We evaluate our online
learning approach against: i) the MT baseline (i.e.
the MT output left untouched), ii) the batch APE
system described in Section 3, on top of which we
incrementally add our online learning extensions,
and iii) the Thot toolkit.

5 Experiments and results

The batch APE system is trained on the first half
of the shuffled training set, tuned with the devel-
opment set (2,948 segments), and evaluated over
the second half of the training data. Since the
batch APE only learns from the training set, we
expect its performance to give us a lower bound
estimate, which should be outperformed by the
online APE systems that can learn from the test
data too. To run the online experiments with
Thot, the system first needs to estimate the fea-
ture weights of the log-linear model on a develop-

9For each sentence in the test set, if the TER score of the
APE system is different from the baseline then it is consid-
ered as a modified sentence.
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ment set. For this purpose, it is trained and tuned
off-line like a batch APE system. Three online
extensions of the batch backbone architecture de-
scribed in Section 3 are evaluated. These are: i)
the instance selection system (IS); ii) the dynamic
knowledge base system (IS+DynKB) and iii) the
dynamic knowledge base system enhanced with
the negative feedback features, both alone and in
combination (IS+DynKB+F1, IS+DynKB+F2 and
IS+DynKB+F1+F2). For all of them, the cut-off
similarity score is obtained by grid search and is
set to 0.8. The results achieved by each system are
reported in Table 2.

BLEU↑ TER↓ Prec. (%)

MT 52.31 34.52 N/A
Batch APE 52.52 34.45 42.67
Thot 52.51 34.37 42.22
IS 53.35† 33.36† 58.47
IS+DynKB 53.60† 33.23† 59.69
IS+DynKB+F1 53.56† 33.29† 58.97
IS+DynKB+F2 53.21† 33.48† 54.64
IS+DynKB+F1+F2 53.77† 33.20† 60.93

Table 2: Results on the mixed data. (“†” indi-
cates statistically significant difference wrt. the
MT baseline with p<0.05).

As can be seen from the table, the batch APE
system is able to slightly improve over the base-
line even if it damages most of the translations it
changes (its precision is in fact lower than 45%).
Although it learns also from the test data, Thot
achieves similar results. This is probably due to
its inability to identify domain-specific correction
rules needed to improve the translations, thus end-
ing up with damaging the majority of the modified
MT segments. A significant gain in performance
(+1.04 BLEU, -1.16 TER points) is obtained by
our online IS system that, by using the instance se-
lection technique, is able to isolate only the most
useful training samples. This mechanism also im-
proves precision up to 58.4% (∼16% above Thot),
indicating that the applied post-editing rules are
correct in the majority of the cases. The analy-
sis of the performance of the two online systems
reveals that our approach modifies less segments
compared to Thot, due to the fact that it builds
sentence-specific models only if it finds relevant
data, leaving the MT segment untouched other-
wise. In several cases, when modified by the Thot
system, these untouched segments result in deteri-

orated sentences.
Further performance improvements are yield

by the dynamic knowledge base (IS+DynKB),
which provides the decoder with a better esti-
mation of the APE model parameters. Although
the BLEU and TER gains are minimal, the dy-
namic knowledge base helps to significantly in-
crease the precision of the APE system avoiding
unnecessary changes, thus confirming the effec-
tiveness of keeping track of the whole past his-
tory of each translation option. Our implementa-
tion of the dynamic knowledge base also allows us
to add the two “negative feedback” features that
model the reliability of the translation options by
looking at the changes made by the post-editors.
When used in combination, the two negative feed-
back features (IS+DynKB+F1+F2) yield visible
gains in performance over (IS+DynKB) with small
but statistically significant improvement in BLEU
score, along with a precision gain of 1.24%. This
suggests their possible complementarity with the
translation and reordering features and the need
of further investigation in future work. Overall
our full-fledged system achieves state-of-the-art
results with significant improvement over Thot by
1.26 BLEU, 1.17 TER, and 18.71% Precision.

BLEU↑ TER↓ Prec. (%)

Autodesk

MT 40.01 45.42 N/A
Batch APE 43.13† 43.19† 58.86
Thot 43.40† 42.96† 59.04
IS+DynKB+F1+F2 44.56† 41.86† 73.37

WMT16

MT 61.04 26.24 N/A
Batch APE 59.24† 27.81† 22.18
Thot 59.05† 27.84† 20.06
IS+DynKB+F1+F2 60.39† 26.62† 36.67

Table 3: Performance analysis of each domain.

6 Analysis

To understand and compare the behavior of the
batch APE, Thot and our best online system in the
long-run, the plot in Figure 1 shows the TER mov-
ing average (window of 750 data points) at each
segment of the test set (second half of the shuffled
training data). As can be seen, our approach suc-
cessfully maintains the best performance across
the entire test set. Moreover, looking at the first
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Figure 1: Performance comparison of different online APE systems (TER moving average).

SRC Specifies the value to define the mid-ordinate distance by which to tessellate baseline align-
ment curves .

MT Gibt den Wert für den krzesten Abstand vom Sekantenmittelpunkt zu Kreisbogen für die
Tessellation Basislinienachse Kurven .

MT-Top1 Gibt den Wert für den krzesten Abstand vom Sekantenmittelpunkt zu Kreisbogen für die
Tessellation Basislinienachse Kurven .

PE-Top1 Gibt den Wert zum Definieren des krzesten Abstands vom Sekantenmittelpunkt zum Kreis-
bogen an , um den Basislinienachsen-Bogen ausgerundet werden sollen .

THOT Gibt den Wert für den Versatzzielbogen Abstand vom Sekantenmittelpunkt zu Kreisbogen
für die Tessellation Basislinienachse Kurven .

IS+DynKB
+F1+F2

Gibt den Wert zum Definieren des krzesten Abstands vom Sekantenmittelpunkt zum Kreis-
bogen an , um den Basislinienachse Versatzzielbogen ausgerundet werden sollen .

REF Gibt den Wert zum Definieren des krzesten Abstands vom Sekantenmittelpunkt zum Kreis-
bogen an , um den Basislinienachsen-Bogen ausgerundet werden sollen .

Table 4: Sample outputs where our approach outperform THOT (erroneous words are in bold)

and the last 250 points in the test set, we notice
that the performance gap between our best system
and Thot increases on average from 0.8 to 1.6 TER
points. This shows that, during processing, our ap-
proach is able to self-adapt in real-time towards
the domain-shifts in the input stream of data. To
better understand their behavior with respect to
data coming from the two domains, systems’ out-
put has been separately evaluated per domain. The
results of this evaluation are reported in Table 3.

For the Autodesk and the APE shared task do-
main there are 6,166 and 5,953 segments respec-
tively. It is interesting to see that all the APE
systems improve the translations belonging to the
Autodesk domain by a large margin, with our ap-
proach being the best. The same does not hold
for the other domain, which, as discussed in Sec-

tion 5, is more challenging due to several factors
like longer sentence length, higher data sparsity
and, most of all, lower translation quality. For this
challenging domain, however, our approach has
the least degradation compared to the other APE
methods that severely damage the translations.
Overall, compared to other APE approaches, our
best system has the best performance in both the
domains when evaluated in isolation.

To evaluate the efficiency of our approach, we
computed the average time in seconds to per-
form a full online cycle over the test set (i.e.
the time needed for post-editing the MT out-
put and updating the models) for Thot, IS and
IS+DynKB+F1+F2. Thot spends on average 4.75
seconds per cycle. The IS system, which builds its
models on-the-fly by leveraging only the selected
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SRC Drag to the left and then click to place .
MT Ziehen Sie nach links , und klicken Sie dann , um sie zu platzieren .
MT-Top1 Ziehen Sie nach links , und klicken Sie dann , um sie zu platzieren .
PE-Top1 Ziehen Sie sie nach links , und klicken Sie dann , um sie zu platzieren .
MT-Top4 Ziehen Sie den Cursor nach unten und nach rechts , und klicken Sie dann , um sie zu

platzieren .
PE-Top4 Ziehen Sie nach unten und nach rechts , und klicken Sie dann zum Platzieren .
THOT Ziehen Sie nach links , und klicken Sie dann , um sie zu platzieren .
IS+DynKB
+F1+F2

Ziehen Sie nach links , und klicken Sie dann zum Platzieren .

REF Ziehen Sie sie nach links , und klicken Sie dann , um sie zu platzieren .

Table 5: Sample output where our approach performs poor than THOT (erroneous words are in bold)

data and optimises the weights before post-editing,
is faster than Thot, with a gain of 1.03 seconds
(3.62” on average). The use of the dynamic model,
that is faster in updating and dumping the tables,
allows our best system to perform a full online cy-
cle in 3.05”, showing that our approach is not only
better in terms of performance but also in compu-
tation time.

Tables 4 and 5 respectively show examples
where our approach performs better/worse than
Thot. Both tables report the source sentence
(SRC), the MT output to be post-edited (MT),
the MT and the PE segment of the top training
samples retrieved based on cosine similarity (MT-
TopX/PE-TopX, where X is the rank of the train-
ing sample), the output of Thot, the output of our
best system (IS+DynKB+F1+F2) and the refer-
ence (REF). Table 4 seems to confirm our intu-
ition that learning from the most similar exam-
ples yields better translation quality. An interest-
ing counter example is shown in Table 5, where
despite having access to a training sample (MT-
Top1 and PE-Top1) that is exactly the same as
the MT segment to be post-edited, our system
deteriorates the translation by selecting a transla-
tion option (“zu platzieren”→ “zum Platzieren”)
learned from a lower ranked training sample (MT-
Top4 and PE-Top4), which probably received a
higher weight from the local models. In future
work, we will try to extend our system to address
this issue by prioritizing the translation rules ac-
cording to the rank of the training samples.

7 Conclusion

In recent years, APE systems achieved impres-
sive results in fixing recurrent errors in machine-
translated texts. Such gains, however, were mostly

observed in controlled lab environments, where
systems are trained, tuned, and evaluated with
repetitive and homogeneous training/test data.
These favorable learning conditions may not hold
in real-world professional translation workflow, in
which streams of data to be processed in real-time
may feature a high diversity in terms of domain,
post-editing style and MT systems that generated
the translations. In this paper, we investigated for
the first time the challenges posed to APE tech-
nology by such multi-domain translation environ-
ments. Our study revealed that the existing online
and batch solutions are not robust enough for this
scenario due to their inability to discern which of
the learned rules is suitable for a specific context
(in fact, a correction rule learned from one domain
may not be valid for other domains). We addressed
this problem incrementally, first by proposing an
instance selection technique that learns rules from
contexts that are similar to the MT segment to be
post-edited. The gains achieved by this solution
over the existing batch APE methods were fur-
ther increased by the addition of a dynamic knowl-
edge base that stores more reliable statistics about
the learned translation options, also improving the
computation time. The adoption of this dynamic
knowledge base allowed us to further extend our
online approach by including features that capture
negative human feedback, giving to the system the
capability to learn from the mistakes it made in
the past. Our evaluation results indicate that our
approach improves state of the art performance on
an English-German MDTE data set.
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Rajen Chatterjee, José G. C. de Souza, Matteo Negri,
and Marco Turchi. 2016. The FBK Participation in
the WMT 2016 Automatic Post-editing Shared Task.
In Proceedings of the First Conference on Machine
Translation, pages 745–750, Berlin, Germany, Au-
gust. Association for Computational Linguistics.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better Hypothesis Testing for
Statistical Machine Translation: Controlling for Op-
timizer Instability. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics, pages 176–181.

Koby Crammer and Yoram Singer. 2003. Ultraconser-
vative Online Algorithms for Multiclass Problems.

The Journal of Machine Learning Research, 3:951–
991.

Michael Denkowski, Chris Dyer, and Alon Lavie.
2014. Learning from Post-Editing: Online Model
Adaptation for Statistical Machine Translation. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 395–404, April.

Loı̈c Dugast, Jean Senellart, and Philipp Koehn. 2007.
Statistical Post-Editing on SYSTRAN’s Rule-Based
Translation System. In Proceedings of the Second
Workshop on Statistical Machine Translation, pages
220–223.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an Open Source Toolkit for
Handling Large Scale Language Models. In Pro-
ceedings of the Interspeech, pages 1618–1621.

Qin Gao and Stephan Vogel. 2008. Parallel Imple-
mentations of Word Alignment Tool. In Proceed-
ings of Software Engineering, Testing, and Quality
Assurance for Natural Language Processing, pages
49–57.

Ulrich Germann. 2014. Dynamic Phrase Tables for
Machine Translation in an Interactive Post-editing
Scenario. In Proceedings of the Workshop on inter-
active and adaptive machine translation, pages 20–
31.

Daniel Hardt and Jakob Elming. 2010. Incremental
Re-training for Post-editing SMT. In Proceedings of
the Ninth Conference of the Association for Machine
Translation in the Americas.

Almut Silja Hildebrand, Matthias Eck, Stephan Vogel,
and Alex Waibel. 2005. Adaptation of the Transla-
tion Model for Statistical Machine Translation based
on Information Retrieval. In Proceedings of the 10th
Annual Conference of the European Association for
Machine Translation, pages 133–142.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear Combinations of Monolingual
and Bilingual Neural Machine Translation Models
for Automatic Post-Editing. In Proceedings of the
First Conference on Machine Translation, pages
751–758, Berlin, Germany, August. Association for
Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics. System Demon-
strations, pages 177–180.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
the Empirical Methods on Natural Language Pro-
cessing, pages 388–395.

534



Antonio L Lagarda, Daniel Ortiz-Martı́nez, Vicent Al-
abau, and Francisco Casacuberta. 2015. Translat-
ing without In-domain Corpus: Machine Transla-
tion Post-Editing with Online Learning Techniques.
Computer Speech & Language, 32(1):109–134.

Prashant Mathur, Mauro Cettolo, Marcello Federico,
and FBK-Fondazione Bruno Kessler. 2013. Online
Learning Approaches in Computer Assisted Trans-
lation. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 301–308.

Daniel Ortiz-Martınez and Francisco Casacuberta.
2014. The New THOT Toolkit for Fully-Automatic
and Interactive Statistical Machine Translation. In
14th Annual Meeting of the European Association
for Computational Linguistics, pages 45–48.

Santanu Pal, Marcos Zampieri, and Josef van Genabith.
2016. USAAR: An Operation Sequential Model
for Automatic Statistical Post-Editing. In Proceed-
ings of the First Conference on Machine Translation,
pages 759–763, Berlin, Germany, August. Associa-
tion for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311–318.

Kristen Parton, Nizar Habash, Kathleen McKeown,
Gonzalo Iglesias, and Adrià de Gispert. 2012. Can
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Abstract

Abstract Meaning Representation (AMR)
is a semantic representation for natural
language that embeds annotations related
to traditional tasks such as named entity
recognition, semantic role labeling, word
sense disambiguation and co-reference
resolution. We describe a transition-based
parser for AMR that parses sentences left-
to-right, in linear time. We further pro-
pose a test-suite that assesses specific sub-
tasks that are helpful in comparing AMR
parsers, and show that our parser is com-
petitive with the state of the art on the
LDC2015E86 dataset and that it outper-
forms state-of-the-art parsers for recover-
ing named entities and handling polarity.

1 Introduction

Semantic parsing aims to solve the problem
of canonicalizing language and representing its
meaning: given an input sentence, it aims to ex-
tract a semantic representation of that sentence.
Abstract meaning representation (Banarescu et al.,
2013), or AMR for short, allows us to do that
with the inclusion of most of the shallow-semantic
natural language processing (NLP) tasks that are
usually addressed separately, such as named en-
tity recognition, semantic role labeling and co-
reference resolution. AMR is partially motivated
by the need to provide the NLP community with
a single dataset that includes basic disambiguation
information, instead of having to rely on differ-
ent datasets for each disambiguation problem. The
annotation process is straightforward, enabling the
development of large datasets. Alternative seman-
tic representations have been developed and stud-

ied, such as CCG (Steedman, 1996; Steedman,
2000) and UCCA (Abend and Rappoport, 2013).

Several parsers for AMR have been recently de-
veloped (Flanigan et al., 2014; Wang et al., 2015a;
Peng et al., 2015; Pust et al., 2015; Goodman et
al., 2016; Rao et al., 2015; Vanderwende et al.,
2015; Artzi et al., 2015; Zhou et al., 2016). This
line of research is new and current results suggest
a large room for improvement. Greedy transition-
based methods (Nivre, 2008) are one of the most
popular choices for dependency parsing, because
of their good balance between efficiency and ac-
curacy. These methods seem promising also for
AMR, due to the similarity between dependency
trees and AMR structures, i.e., both representa-
tions use graphs with nodes that have lexical con-
tent and edges that represent linguistic relations.

A transition system is an abstract machine char-
acterized by a set of configurations and transitions
between them. The basic components of a con-
figuration are a stack of partially processed words
and a buffer of unseen input words. Starting from
an initial configuration, the system applies tran-
sitions until a terminal configuration is reached.
The sentence is scanned left to right, with linear
time complexity for dependency parsing. This is
made possible by the use of a greedy classifier that
chooses the transition to be applied at each step.

In this paper we introduce a parser for AMR that
is inspired by the ARCEAGER dependency tran-
sition system of Nivre (2004). The main differ-
ence between our system and ARCEAGER is that
we need to account for the mapping from word
tokens to AMR nodes, non-projectivity of AMR
structures and reentrant nodes (multiple incom-
ing edges). Our AMR parser brings closer depen-
dency parsing and AMR parsing by showing that
dependency parsing algorithms, with some mod-
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ifications, can be used for AMR. Key properties
such as working left-to-right, incrementality1 and
linear complexity further strengthen its relevance.

The AMR parser of Wang et al. (2015a), called
CAMR, also defines a transition system. It differs
from ours because we process the sentence left-to-
right while they first acquire the entire dependency
tree and then process it bottom-up. More recently
Zhou et al. (2016) presented a non-greedy tran-
sition system for AMR parsing, based on ARC-
STANDARD (Nivre, 2004). Our transition sys-
tem is also related to an adaptation of ARCEAGER

for directed acyclic graphs (DAGs), introduced by
Sagae and Tsujii (2008). This is also the basis
for Ribeyre et al. (2015), a transition system used
to parse dependency graphs. Similarly, Du et al.
(2014) also address dependency graph parsing by
means of transition systems. Analogously to de-
pendency trees, dependency graphs have the prop-
erty that their nodes consist of the word tokens,
which is not true for AMR. As such, these transi-
tion systems are more closely related to traditional
transition systems for dependency parsing.

Our contributions in this paper are as follows:

• In §3 we develop a left-to-right, linear-time
transition system for AMR parsing, inspired
by the ARCEAGER transition system for de-
pendency tree parsing;

• In §5 we claim that the Smatch score (Cai
and Knight, 2013) is not sufficient to evalu-
ate AMR parsers and propose a set of metrics
to alleviate this problem and better compare
alternative parsers;

• In §6 we show that our algorithm is compet-
itive with publicly available state-of-the-art
parsers on several metrics.

2 Background and Notation

AMR Structures AMRs are rooted and directed
graphs with node and edge labels. An annotation
example for the sentence I beg you to excuse me is
shown in Figure 1, with the AMR graph reported
in Figure 2.

Concepts are represented as labeled nodes in
the graph and can be either English words (e.g. I
and you) or Propbank framesets (e.g. beg-01 and

1Strictly speaking, transition-based parsing cannot
achieve full incrementality, which requires to have a single
connected component at all times (Nivre, 2004).

( b / beg-01
:ARG0 ( i / i
:ARG1 ( y / you)
:ARG2 ( e / excuse-01

:ARG0 y
:ARG1 i ) )

Figure 1: Annotation for the sentence “I beg you to
excuse me.” Variables are in boldface and concepts
and edge labels are in italics.

beg-01

i you excuse-01

:ARG0 :ARG1 :ARG2

:ARG0

:ARG1

:top

Figure 2: AMR graph representation for Figure 1.

excuse-01). Each node in the graph is assigned to
a variable in the AMR annotation so that a variable
re-used in the annotation corresponds to reentran-
cies (multiple incoming edges) in the graph. Rela-
tions are represented as labeled and directed edges
in the graph.

Notation For most sentences in our dataset, the
AMR graph is a directed acyclic graph (DAG),
with a few specific cases where cycles are permit-
ted. These cases are rare, and for the purpose of
this paper, we consider AMR as DAGs.

We denote by [n] the set {1, . . . , n}. We define
an AMR structure as a tuple (G, x, π), where x =
x1 · · ·xn is a sentence, with each xi, i ∈ [n], a
word token, and G is a directed graph G = (V,E)
with V and E the set of nodes and edges, respec-
tively.2 We assume G comes along with a node
labeling function and an edge labeling function.
Finally, π : V → [n] is a total alignment function
that maps every node of the graph to an index i
for the sentence x, with the meaning that node v
represents (part of) the concept expressed by the
word xπ(v).3

We note that the function π is not invertible,
2We collapse all multi-word named entities in a single to-

ken (e.g., United Kingdom becomes United Kingdom) both
in training and parsing.

3π is a function because we do not consider co-references,
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◦ I beg you excuse

Figure 3: AMR’s edges for the sentence “I beg
you to excuse me.” mapped back to the sentence,
according to the alignment. ◦ is a special token
representing the root.

since it is neither injective nor surjective. For each
i ∈ [n], we let

π−1(i) = {v | v ∈ V, π(v) = i}

be the pre-image of i under π (this set can be
empty for some i), which means that we map a to-
ken in the sentence to a set of nodes in the AMR.
In this way we can align each index i for x to the
induced subgraph of G. More formally, we define

←−π (i) = (π−1(i), E ∩ (π−1(i)× π−1(i))), (1)

with the node and edge labeling functions of←−π (i)
inherited from G. Hence, ←−π (i) returns the AMR
subgraph aligned with a particular token in the
sentence.

2.1 Transition-Based AMR Parsing
Similarly to dependency parsing, AMR parsing is
partially based on the identification of predicate-
argument structures. Much of the dependency
parsing literature focuses on transition-based de-
pendency parsing—an approach to parsing that
scans the sentence from left to right in linear time
and updates an intermediate structure that eventu-
ally ends up being a dependency tree.

Because of the similarity of AMR structures
to dependency structures, transition systems are
also helpful for AMR parsing. Starting from the
ARCEAGER system, we develop here a novel tran-
sition system, called AMREAGER that parses sen-
tences into AMR structures. There are three key
differences between AMRs and dependency trees
that require further adjustments for dependency
parsers to be used with AMRs.

Non-Projectivity A key difference between En-
glish dependency trees and AMR structures is pro-
jectivity. Dependency trees in English are usu-
ally projective, roughly meaning that there are no

which would otherwise cause a node to map to multiple in-
dices. This is in line with current work on AMR parsing.

Non-projective edges 6%
Non-projective AMRs 51%
Reentrant edges 41%
AMRs with at least one reentrancy 93%

Table 1: Statistics for non-projectivity and reen-
trancies in 200 AMR manually aligned with the
associated sentences.5

crossing arcs if the edges are drawn in the semi-
plane above the words. While this restriction is
empirically motivated in syntactic theories for En-
glish, it is no longer motivated for AMR struc-
tures.

The notion of projectivity can be generalized to
AMR graphs as follows. The intuition is that we
can use the alignment π to map AMR edges back
to the sentence x, and test whether there exist pairs
of crossing edges. Figure 3 shows this mapping
for the AMR of Figure 2, where the edge connect-
ing excuse to I crosses another edge. More for-
mally, consider an AMR edge e = (u, `, v). Let
π(u) = i and π(v) = j, so that u is aligned with
xi and v is aligned with xj . The spanning set for
e, written S(e), is the set of all nodes w such that
π(w) = k and i < k < j if i < j or j < k < i
if j < i. We say that e is projective if, for every
node w ∈ S(e), all of its parent and child nodes
are in S(e) ∪ {u, v}; otherwise, we say that e is
non-projective. An AMR is projective if all of its
edges are projective, and is non-projective other-
wise. This corresponds to the intuitive definition
of projectivity for DAGs introduced in Sagae and
Tsujii (2008) and is closely related to the defini-
tion of non-crossing graphs of Kuhlmann and Jon-
sson (2015).

Table 1 demonstrates that a relatively small per-
centage of all AMR edges are non-projective. Yet,
a large fraction of the sentences contain at least
one non-projective edge. Our parser is able to con-
struct non-projective edges, as described in §3.

Reentrancy AMRs are graphs rather than trees
because they can have nodes with multiple par-
ents, called reentrant nodes, as in the node you for
the AMR of Figure 2. There are two phenomena
that cause reentrancies in AMR: control, where a
reentrant edge appears between siblings of a con-
trol verb, and co-reference, where multiple men-

5https://github.com/jflanigan/jamr/
blob/master/docs/Hand_Alignments.md
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tions correspond to the same concept.6

In contrast, dependency trees do not have nodes
with multiple parents. Therefore, when creating
a new arc, transition systems for dependency pars-
ing check that the dependent does not already have
a head node, preventing the node from having ad-
ditional parents. To handle reentrancy, which is
not uncommon in AMR structures as shown in Ta-
ble 1, we drop this constraint.

Alignment Another main difference with de-
pendency parsing is that in AMR there is no
straightforward mapping between a word in the
sentence and a node in the graph: words may gen-
erate no nodes, one node or multiple nodes. In
addition, the labels at the nodes are often not eas-
ily determined by the word in the sentence. For
instance expectation translates to expect-01 and
teacher translates to the two nodes teach-01 and
person, connected through an :ARG0 edge, ex-
pressing that a teacher is a person who teaches. A
mechanism of concept identification is therefore
required to map each token xi to a subgraph with
the correct labels at its nodes and edges: if π is the
gold alignment, this should be the subgraph←−π (i)
defined in Equation (1). To obtain alignments be-
tween the tokens in the sentence and the nodes in
the AMR graph of our training data, we run the
JAMR aligner.7

3 Transition system for AMR Parsing

A stack σ = σn| · · · |σ1|σ0 is a list of nodes
of the partially constructed AMR graph, with the
top element σ0 at the right. We use the sym-
bol ‘|’ as the concatenation operator. A buffer
β = β0|β1| · · · |βn is a list of indices from x, with
the first element β0 at the left, representing the
word tokens from the input still to be processed.
A configuration of our parser is a triple (σ, β,A),
where A is the set of AMR edges that have been
constructed up to this point.

In order to introduce the transition actions of
our parser we need some additional notation. We
use a function a that maps indices from x to AMR
graph fragments. For each i ∈ [n], a(i) is a graph
Ga = (Va, Ea), with single root root(Ga), repre-
senting the semantic contribution of word xi to the

6A valid criticism of AMR is that these two reentrancies
are of a completely different type, and should not be col-
lapsed together. Co-reference is a discourse feature, work-
ing by extra-semantic mechanisms and able to cross sentence
boundaries, which are not crossed in AMR annotation.

7https://github.com/jflanigan/jamr

AMR for x. As already mentioned, Ga can have
a single node representing the concept associated
with xi, or it can have several nodes in case xi de-
notes a complex concept, or it can be empty.

The transition Shift is used to decide if and
what to push on the stack after consuming a to-
ken from the buffer. Intuitively, the graph frag-
ment a(β0) obtained from the token β0, if not
empty, is “merged” with the graph we have con-
structed so far. We then push onto the stack the
node root(a(β0)) for further processing. LArc(`)
creates an edge with label ` between the top-most
node and the second top-most node in the stack,
and pops the latter. RArc(`) is the symmetric op-
eration, but does not pop any node from the stack.

Finally, Reduce pops the top-most node from
the stack, and it also recovers reentrant edges be-
tween its sibling nodes, capturing for instance sev-
eral control verb patterns. To accomplish this, Re-
duce decides whether to create an additional edge
between the node being removed and the previ-
ously created sibling in the partial graph. With
this operation the transition system is able to cap-
ture non-projective patterns,8 according to the def-
inition given in §2.1, when formed by arcs be-
tween nodes that share the same parent. This way
of handling control verbs is similar to the REEN-
TRANCE transition of Wang et al. (2015a).

The choice of popping the dependent in the
LArc transition is inspired by ARCEAGER, where
left-arcs are constructed bottom-up to increase
the incrementality of the transition system (Nivre,
2004). This affects our ability to recover some
reentrant edges: consider a node u with two par-
ents v and v′, where the arc v → u is a left-arc and
v′ → u is any arc. If the first arc to be processed is
v → u, we use LArc that pops u, hence making it
impossible to create the second arc v′ → u. Nev-
ertheless, we discovered that this approach works
better than a completely unrestricted allowance of
reentrancy. The reason is that if we do not remove
dependents at all when first attached to a node, the
stack becomes larger, and nodes which should be
connected end up being distant from each other,
and as such, are never connected.

The initial configuration of the system has a ◦
node (representing the root) in the stack and the
entire sentence in the buffer. The terminal con-
figuration consists of an empty buffer and a stack

8In an earlier version of this paper this mechanism was
not used, yielding a strictly projective parser.
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with only the ◦ node. The transitions required to
parse the sentence The boy and the girl are shown
in Table 2, where the first line shows the initial
configuration and the last line shows the terminal
configuration.

Similarly to the transitions of the ARCEAGER,
the above transitions construct edges as soon as the
head and the dependent are available in the stack,
with the aim of maximizing the parser incremen-
tality. We now show that our greedy transition-
based AMR parser is linear-time in n, the length of
the input sentence x. We first claim that the output
graph has sizeO(n). Each token in x is mapped to
a constant number of nodes in the graph by Shift.
Thus the number of nodes is O(n). Furthermore,
each node can have at most three parent nodes,
created by transitions RArc, LArc and Reduce,
respectively. Thus the number of edges is also
O(n). It is possible to bound the maximum num-
ber of transitions required to parse x: the number
of Shift is bounded by n, and the number of Re-
duce, LArc and RArc is bounded by the size of
the graph, which is O(n). Since each transition
can be carried out in constant time, we conclude
that our parser runs in linear time.

4 Training the System

Several components have to be learned: (1) a tran-
sition classifier that predicts the next transition
given the current configuration, (2) a binary clas-
sifier that decides whether or not to create a reen-
trancy after a Reduce, (3) a concept identification
step for each Shift to compute a(β0), and 3) an-
other classifier to label edges after each LArc or
RArc.

4.1 Oracle

Training our system from data requires an
oracle—an algorithm that given a gold-standard
AMR graph and a sentence returns transition se-
quences that maximize the overlap between the
gold-standard graph and the graph dictated by the
sequence of transitions.

We adopt a shortest stack, static oracle similar
to Chen and Manning (2014). Informally, static
means that if the actual configuration of the parser
has no mistakes, the oracle provides a transition
that does not introduce any mistake. Shortest stack
means that the oracle prefers transitions where the
number of items in the stack is minimized. Given
the current configuration (σ, β,A) and the gold-

standard graphG = (Vg, Ag), the oracle is defined
as follows, where we test the conditions in the
given order and apply the action associated with
the first match:

1. if ∃`[(σ0, `, σ1) ∈ Ag] then LArc(`);

2. if ∃`[(σ1, `, σ0) ∈ Ag] then RArc(`);

3. if ¬∃i, `[(σ0, `, βi) ∈ Ag ∨ (βi, `, σ0) ∈ Ag]
then Reduce;

4. Shift otherwise.

The oracle first checks whether some gold-
standard edge can be constructed from the two el-
ements at the top of the stack (conditions 1 and 2).
If LArc or RArc are not possible, the oracle checks
whether all possible edges in the gold graph in-
volving σ0 have already been processed, in which
case it chooses Reduce (conditions 3). To this
end, it suffices to check the buffer, since LArc and
RArc have already been excluded and elements in
the stack deeper than position two can no longer
be accessed by the parser. If Reduce is not possi-
ble, Shift is chosen.

Besides deciding on the next transition, the ora-
cle also needs the alignments, which we generate
with JAMR, in order to know how to map the next
token in the sentence to its AMR subgraph ←−π (i)
defined in (1).

4.2 Transition Classifier

Like all other transition systems of this kind, our
transition system has a “controller” that predicts a
transition given the current configuration (among
Shift, LArc, RArc and Reduce). The examples
from which we learn this controller are based on
features extracted from the oracle transition se-
quences, where the oracle is applied on the train-
ing data.

As a classifier, we use a feed-forward neural
network with two hidden layers of 200 tanh units
and learning rate set to 0.1, with linear decay-
ing. The input to the network consists of the
concatenation of embeddings for words, POS tags
and Stanford parser dependencies, one-hot vec-
tors for named entities and additional sparse fea-
tures, extracted from the current configuration of
the transition system; this is reported in more de-
tails in Table 3. The embeddings for words and
POS tags were pre-trained on a large unanno-
tated corpus consisting of the first 1 billion char-
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action stack buffer edges
- [◦] [the,boy,and,the,girl] {}
Shift [◦] [boy,and,the,girl] {}
Shift [◦, boy] [and,the,girl] {}
Shift [◦, boy, and ] [the,girl] {}
LArc [◦, and ] [the,girl] {〈and,:op1,boy〉} = A1

RArc [◦, and ] [the,girl] A1 ∪ {〈◦,:top,and〉} = A2

Shift [◦, and ] [girl] A2

Shift [◦, and, girl ] [] A2

RArc [◦, and, girl ] [] A2 ∪ {〈and,:op2,girl〉} = A3

Reduce [◦, and ] [] A3

Reduce [◦] [] A3

Table 2: Parsing steps for the sentence “The boy and the girl.”

acters from Wikipedia.9 For lexical information,
we also extract the leftmost (in the order of the
aligned words) child (c), leftmost parent (p) and
leftmost grandchild (cc). Leftmost and rightmost
items are common features for transition-based
parsers (Zhang and Nivre, 2011; Chen and Man-
ning, 2014) but we found only leftmost to be
helpful in our case. All POS tags, dependencies
and named entities are generated using Stanford
CoreNLP (Manning et al., 2014). The accuracy of
this classifier on the development set is 84%.

Similarly, we train a binary classifier for decid-
ing whether or not to create a reentrant edge after
a Reduce: in this case we use word and POS em-
beddings for the two nodes being connected and
their parent as well as dependency label embed-
dings for the arcs between them.

4.3 Concept Identification
This routine is called every time the transition
classifier decides to do a Shift; it is denoted by a(·)
in §3. This component could be learned in a super-
vised manner, but we were not able to improve on
a simple heuristic, which works as follows: during
training, for each Shift decided by the oracle, we
store the pair (β0,←−π (i)) in a phrase-table. Dur-
ing parsing, the most frequent graph H for the
given token is then chosen. In other words, a(i)
approximates ←−π (i) by means of the graph most
frequently seen among all occurrences of token xi
in the training set.

An obvious problem with the phrase-table ap-
proach is that it does not generalize to unseen
words. In addition, our heuristic relies on the fact
that the mappings observed in the data are correct,

9http://mattmahoney.net/dc/enwik9.zip

country

name New York

New York

:name :wiki

:op1 :op2

:top

Figure 4: Subgraph for “New York.”

which is not the case when the JAMR-generated
alignments contain a mistake. In order to alleviate
this problem we observe that there are classes of
words such as named entities and numeric quan-
tities that can be disambiguated in a deterministic
manner. We therefore implement a set of “hooks”
that are triggered by the named entity tag of the
next token in the sentence. These hooks override
the normal Shift mechanism and apply a fixed rule
instead. For instance, when we see the token New
York (the two tokens are collapsed in a single one
at preprocessing) we generate the subgraph of Fig-
ure 4 and push its root onto the stack. Similar sub-
graphs are generated for all states, cities, countries
and people. We also use hooks for ordinal num-
bers, percentages, money and dates.

4.4 Edge Labeling
Edge labeling determines the labels for the edges
being created. Every time the transition classifier
decides to take an LArc or RArc operation, the
edge labeler needs to decide on a label for it. There
are more than 100 possible labels such as :ARG0,
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depth d(σ0), d(σ1)
children #c(σ0),#c(σ1)
parents #p(σ0),#p(σ1)
lexical w(σ0), w(σ1), w(β0), w(β1),

w(p(σ0)), w(c(σ0)), w(cc(σ0)),
w(p(σ1)), w(c(σ1)), w(cc(σ1))

POS s(σ0), s(σ1), s(β0), s(β1)
entities e(σ0), e(σ1), e(β0), e(β1)
dependency `(σ0, σ1), `(σ1, σ0),

∀i ∈ {0, 1}: `(σi, β0), `(β0, σi)
∀i ∈ {1, 2, 3}: `(β0, βi), `(βi, β0)
∀i ∈ {1, 2, 3}: `(σ0, βi), `(βi, σ0)

Table 3: Features used in transition classifier. The
function d maps a stack element to the depth of
the associated graph fragment. The functions #c
and #p count the number of children and par-
ents, respectively, of a stack element. The function
w maps a stack/buffer element to the word em-
bedding for the associated word in the sentence.
The function p gives the leftmost (according to the
alignment) parent of a stack element, the function
c the leftmost child and the function cc the leftmost
grandchild. The function s maps a stack/buffer el-
ement to the part-of-speech embedding for the as-
sociated word. The function e maps a stack/buffer
element to its entity. Finally, the function ` maps
a pair of symbols to the dependency label embed-
ding, according to the edge (or lack of) in the de-
pendency tree for the two words these symbols are
mapped to.

:ARG0-of, :ARG1, :location, :time and :polarity.
We use a feed-forward neural network similar to
the one we trained for the transition classier, with
features shown in Table 4. The accuracy of this
classifier on the development set is 77%.

We constrain the labels predicted by the neural
network in order to satisfy requirements of AMR.
For instance, the label :top can only be applied
when the node from which the edge starts is the
special ◦ node. Other constraints are used for the
:polarity label and for edges attaching to numeric
quantities.

5 Fine-grained Evaluation

Until now, AMR parsers were evaluated using the
Smatch score.10 Given the candidate graphs and

10Since Smatch is an approximate randomized algorithm,
decimal points in the results vary between different runs and
are not reported. This approach was also taken by Wang et al.

name feature template
depth d(σ0), d(σ1)
children #c(σ0), #c(σ1)
parents #p(σ0), #p(σ1)
lexical w(σ0), w(σ1),

w(p(σ0)), w(c(σ0)), w(cc(σ0)),
w(p(σ1)), w(c(σ1)), w(cc(σ1))

POS s(σ0), s(σ1)
entities e(σ0), e(σ1)
dependency `(σ0, β0), `(β0, σ0)

Table 4: Features used in edge labeling. See Ta-
ble 3 for a legend of symbols.

the gold graphs in the form of AMR annotations,
Smatch first tries to find the best alignments be-
tween the variable names for each pair of graphs
and it then computes precision, recall and F1 of the
concepts and relations. We note that the Smatch
score has two flaws: (1) while AMR parsing in-
volves a large number of subtasks, the Smatch
score consists of a single number that does not as-
sess the quality of each subtasks separately; (2) the
Smatch score weighs different types of errors in
a way which is not necessarily useful for solving
a specific NLP problem. For example, for a spe-
cific problem concept detection might be deemed
more important than edge detection, or guessing
the wrong sense for a concept might be consid-
ered less severe than guessing the wrong verb al-
together.

Consider the two parses for the sentence Silvio
Berlusconi gave Lucio Stanca his current role of
modernizing Italy’s bureaucracy in Figure 5. At
the top, we show the output of a parser (Parse 1)
that is not able to deal with named entities. At
the bottom, we show the output of a parser (Parse
2) which, except for :name, :op and :wiki, always
uses the edge label :ARG0. The Smatch scores for
the two parses are 56 and 78 respectively. Both
parses make obvious mistakes but the three named
entity errors in Parse 1 are considered more impor-
tant than the six wrong labels in Parse 2. However,
without further analysis, it is not advisable to con-
clude that Parse 2 is better than Parse 1. In order
to better understand the limitations of the differ-
ent parsers, find their strengths and gain insight in
which downstream tasks they may be helpful, we
compute a set of metrics on the test set.

Unlabeled is the Smatch score computed on

(2015b) and others.
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( g / give-01
:ARG0 ( p3 / silvio :mod ( n4 / berlusconi ) )
:ARG1 ( r / role

:time ( c2 / current )
:mod ( m / modernize-01

:ARG0 p4
:ARG1 ( b / bureaucracy :part-of ( c3 / italy ) ) )

:poss p4 )
:ARG2 ( p4 / person lucio :mod stanca ) )

( g / give-01
:ARG0 ( p3 / person :wiki ” S i l v i o B e r l u s c o n i ”

:name ( n4 / name :op1 ” S i l v i o ” :op2 ” B e r l u s c o n i ” ) )
:ARG0 ( r / role

:ARG0 ( c2 / current )
:ARG0 ( m / modernize-01

:ARG0 p4
:ARG0 ( b / bureaucracy

:ARG0 ( c3 / country :wiki ” I t a l y ”
:name ( n6 / name :op1 ” I t a l y ” ) ) ) )

:ARG0 p4 )
:ARG0 ( p4 / person :wiki −

:name ( n5 / name :op1 ” Lucio ” :op2 ” S t a n c a ” ) ) )

Figure 5: Two parses for the sentence “Silvio
Berlusconi gave Lucio Stanca his current role of
modernizing Italy’s bureaucracy.”

the predicted graphs after removing all edge la-
bels. In this way, we only assess the node labels
and the graph topology, which may be enough to
benefit several NLP tasks because it identifies ba-
sic predicate-argument structure. For instance, we
may be interested in knowing whether two events
or entities are related to each other, while not being
concerned with the precise type of relation holding
between them.

No WSD gives a score that does not take into
account word sense disambiguation errors. By ig-
noring the sense specified by the Propbank frame
used (e.g., duck-01 vs duck-02) we have a score
that does not take into account this additional com-
plexity in the parsing procedure. To compute this
score, we simply strip off the suffixes from all
Propbank frames and calculate the Smatch score.

Following Sawai et al. (2015), we also evalu-
ate the parsers using the Smatch score on noun
phrases only (NP-only), by extracting from the
AMR dataset all noun phrases that do not include
further NPs.

As we previously discussed, reentrancy is a very
important characteristic of AMR graphs and it is
not trivial to handle. We therefore implement a
test for it (Reentrancy), where we compute the
Smatch score only on reentrant edges.

Concept identification is another critical com-
ponent of the parsing process and we therefore
compute the F-score on the list of predicted con-
cepts (Concepts) too. Identifying the correct con-
cepts is fundamental: if a concept is not identi-
fied, it will not be possible to retrieve any edge

Metric First parse Second parse
Smatch 56 78
Unlabeled 65 100
No WSD 56 78
NP-only 39 86
Reentrancy 69 46
Concepts 56 100
Named Ent. 0 100
Wikification 0 100
Negations 0 0
SRL 69 54

Table 5: Evaluation of the two parses in Figure 5
with the proposed evaluation suite.

involving that concept, with likely significant con-
sequences on accuracy. This metric is therefore
quite important to score highly on.

Similarly to our score for concepts, we fur-
ther compute an F-score on the named entities
(Named Ent.) and wiki roles for named entities
(Wikification) that consider edges labeled with
:name and :wiki respectively. These two metrics
are strictly related to the concept score. How-
ever, since named entity recognition is the fo-
cus of dedicated research, we believe it is impor-
tant to define a metric that specifically assesses
this problem. Negation detection is another task
which has received some attention. An F-score
for this (Negations) is also defined, where we find
all negated concepts by looking for the :polarity
role. The reason we can compute a simple F-score
instead of using Smatch for these metrics is that
there are no variable names involved.

Finally we compute the Smatch score on :ARG
edges only, in order to have a score for semantic
role labeling (SRL), which is another extremely
important subtask of AMR, as it is based on the
identification of predicate-argument structures.

Using this evaluation suite we can evaluate
AMRs on a wide range of metrics that can help us
find strengths and weakness of each parser, hence
speeding up the research in this area. Table 5 re-
ports the scores for the two parses of Figure 5,
where we see that Parse 1 gets a good score for
semantic role labeling while Parse 2 is optimal
for named entity recognition. Moreover, we can
make additional observations such as that Parse 2
is optimal with respect to unlabeled score and that
Parse 1 recovers more reentrancies.
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Metric J’14 C’15 J’16 Ours
Smatch 58 63 67 64
Unlabeled 61 69 69 69
No WSD 58 64 68 65
NP-only 47 54 58 55
Reentrancy 38 41 42 41
Concepts 79 80 83 83
Named Ent. 75 75 79 83
Wikification 0 0 75 64
Negations 16 18 45 48
SRL 55 60 60 56

Table 6: Results on test split of LDC2015E86 for
JAMR, CAMR and our AMREAGER. J stands for
JAMR and C for CAMR (followed by the year of
publication). Best systems are in bold.

6 Experiments

We compare our parser11 against two available
parsers: JAMR (Flanigan et al., 2014) and CAMR
(Wang et al., 2015b; Wang et al., 2015a), using the
LDC2015E86 dataset for evaluation. Both parsers
are available online12 and were recently updated
for SemEval-2016 Task 8 (Flanigan et al., 2016;
Wang et al., 2016). However, CAMR’s SemEval
system, which reports a Smatch score of 67, is
not publicly available. CAMR has a quadratic
worst-case complexity (although linear in prac-
tice). In JAMR, the concept identification step
is quadratic and the relation identification step is
O(|V |2 log |V |), with |V | being the set of nodes in
the AMR graph.

Table 6 shows the results obtained by the
parsers on all metrics previously introduced. On
Smatch, our system does not give state-of-the-art
results. However, we do obtain the best results
for Unlabeled and Concept and outperform the
other parses for Named Ent. and Negations. Our
score of Reentrancy is also close the best scor-
ing system, which is particularly relevant given
the importance of reentrancies in AMR. The use
of the Reduce transition, which targets reentran-
cies caused by control verbs, is critical in order to
achieve this result.

The relatively high results we obtain for the un-

11Our parser is available at https://github.com/
mdtux89/amr-eager, the evaluation suite at https:
//github.com/mdtux89/amr-evaluation
and a demo at http://cohort.inf.ed.ac.uk/
amreager.html

12JAMR: https://github.com/jflanigan/
jamr, CAMR: https://github.com/c-amr/camr.

labeled case suggests that our parser has difficulty
in labeling the arcs. Our score for concept identi-
fication, which is on par with the best result from
the other parsers, demonstrates that there is a rel-
atively low level of token ambiguity. State-of-the-
art results for this problem can be obtained by
choosing the most frequent subgraph for a given
token based on a phrase-table constructed from
JAMR alignments on the training data. The scores
for named entities and wikification are heavily de-
pendent on the hooks mentioned in §4.3, which
in turn relies on the named entity recognizer to
make the correct predictions. In order to alleviate
the problem of wrong automatic alignments with
respect to polarity and better detect negation, we
performed a post-processing step on the aligner
output where we align the AMR constant - (mi-
nus) with words bearing negative polarity such as
not, illegitimate and asymmetry.

Our experiments demonstrate that there is no
parser for AMR yet that conclusively does better
than all other parsers on all metrics. Advantages
of our parser are the worst-case linear complexity
and the fact that is possible to perform incremen-
tal AMR parsing, which is both helpful for real-
time applications and to investigate how meaning
of English sentences can be built incrementally
left-to-right.

7 Conclusion

We presented a transition system that builds AMR
graphs in linear time by processing the sentences
left-to-right. The system is trained with feed-
forward neural networks. The parser demonstrates
that it is possible to perform AMR parsing us-
ing techniques inspired by techniques from depen-
dency parsing.

We also noted that it is less informative to eval-
uate the entire parsing process with Smatch than
to use a collection of metrics aimed at evaluat-
ing the various subproblems in the parsing pro-
cess. We further showed that our left-to-right tran-
sition system is competitive with publicly avail-
able state-of-the-art parsers. Although we do not
outperform the best baseline in terms of Smatch
score, we show on par or better results for sev-
eral of the metrics proposed. We hope that moving
away from a single-metric evaluation will further
speed up progress in AMR parsing.
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Abstract

Natural language understanding and dia-
log management are two integral compo-
nents of interactive dialog systems. Pre-
vious research has used machine learning
techniques to individually optimize these
components, with different forms of direct
and indirect supervision. We present an
approach to integrate the learning of both a
dialog strategy using reinforcement learn-
ing, and a semantic parser for robust nat-
ural language understanding, using only
natural dialog interaction for supervision.
Experimental results on a simulated task
of robot instruction demonstrate that joint
learning of both components improves di-
alog performance over learning either of
these components alone.

1 Introduction

Natural language understanding and dialog man-
agement are two integral components of a dialog
system. Current research typically deals with opti-
mizing only one of these components. We present
an approach to integrate the learning of both a di-
alog strategy using reinforcement learning, and a
semantic parser for robust natural language under-
standing, using only natural dialog interaction for
supervision.

Research in dialog systems has primarily been
focused on the problems of accurate dialog state
tracking and learning a policy for the dialog sys-
tem to respond appropriately in various scenarios.
Dialogs are typically modeled using Partially Ob-
servable Markov Decision Processes (POMDPs),
and various reinforcement learning algorithms
have been proposed and evaluated for the task of
learning optimal policies over these representa-
tions to accomplish user goals using as short and

natural a dialog as possible (Gašić and Young,
2014; Pietquin et al., 2011; Young et al., 2013).
However, such systems typically assume a fixed
language understanding component that is avail-
able a priori.

Semantic parsing is the task of mapping natural
language to a formal meaning representation. It
has the potential to allow for more robust mapping
of free-form natural language to a representation
that can be used to interpret user intentions and
track dialog state. This is done by leveraging the
compositionality of meaning inherent in language.
Prior work has shown that a semantic parser, incre-
mentally updated from conversations, is helpful in
dialogs for communicating commands to a mobile
robot (Thomason et al., 2015). We show that in-
cremental learning of a POMDP-based dialog pol-
icy allows for further improvement in dialog suc-
cess.

A major challenge with combining the above
parser and dialog policy learning techniques is
that reinforcement learning (RL) algorithms as-
sume that the dialog agent is operating in a sta-
tionary environment. This assumption is violated
when the parser is updated between conversations.
For example, the improved semantic parser may
be able to extract more information from a re-
sponse to a question, which the old parser could
not parse. So the RL algorithm may have earlier
assumed that asking such a question is not use-
ful, but this is not the case with the updated parser.
Our results show that this effect can be mitigated
if we break the allowed budget of training dialogs
into batches, updating both parser and policy after
each batch. As the next training batch gets col-
lected using the updated parser, the policy can be
updated using this experience to adapt better to it.
We demonstrate, using crowd-sourced results with
a simulated robot, that by integrating learning of
both a dialog manager and a semantic parser in
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this manner, task success is improved over cases
where the components are trained individually.

2 Related Work

Prior work has used dialog to facilitate robot task
learning, e.g. She et al. (2014), but does not ac-
count for uncertainty or dynamic changes to the
language understanding module when developing
a system policy. Some works use a POMDP model
and common-sense knowledge (Zhang and Stone,
2015) or generate clarification questions in a prob-
abilistic manner (Tellex et al., 2014), but these
too assume that a fixed and well-trained natural
language understanding component is available a-
priori. Kollar et al. (2013) use a probabilistic pars-
ing and grounding model to understand natural
language instructions and extend their knowledge
base by asking questions. However, unlike this
work, they do not use semantic parsing to lever-
age the compositionality of language, and also use
a fixed hand-coded policy for dialog.

There has been considerable work in seman-
tic parsing using both direct supervision in the
form of annotated meaning representations (Wong
and Mooney, 2007; Kwiatkowski et al., 2013; Be-
rant et al., 2013) and indirect signals from down-
stream tasks (Artzi and Zettlemoyer, 2011; Artzi
and Zettlemoyer, 2013; Thomason et al., 2015).
Artzi and Zettlemoyer (2011) use clarification di-
alogs to train semantic parsers for an airline reser-
vation system without explicit annotation of mean-
ing representations. More related to our work is
that of Thomason et al. (2015), who incorporated
this general approach into a system for instructing
a mobile robot; however, they use a simple model
of dialog state and a fixed, hand-coded dialog pol-
icy. We show that learning a dialog policy in ad-
dition to this, is more beneficial than only parser
learning. We also use a richer state representation
that incorporates multiple hypotheses from the se-
mantic parser.

There has also been considerable work in goal-
directed dialog systems in domains such as infor-
mation provision (Young et al., 2013). These sys-
tems model dialog as a POMDP and focus on ei-
ther the problem of tracking belief state accurately
over large state spaces (Young et al., 2010; Thom-
son and Young, 2010; Mrkšić et al., 2015; El Asri
et al., 2016) or efficiently learning a dialog pol-
icy over this state space (Gašić and Young, 2014;
Pietquin et al., 2011; Png et al., 2012). However,

these systems typically assume a fixed natural lan-
guage understanding component. In this work, we
combine language learning with principled dialog
strategy learning.

More recently, there has been work on model-
ing various components of a dialog system using
neural networks (Mrkšić et al., 2015; Wen et al.,
2015). There have also been some end-to-end neu-
ral network systems that simultaneously learn di-
alog policy and language comprehension for goal
directed dialog (Wen et al., 2016; Williams and
Zweig, 2016; Bordes and Weston, 2016), but they
do not use a fully compositional semantic parser.
Williams and Zweig (2016) use a very simple
keyword-spotting based technique for processing
input user utterances, which is unlikely to be able
to handle out-of-vocabulary expressions for enti-
ties. Bordes and Weston (2016) explicitly attempt
to handle out-of-vocabulary utterances in a neu-
ral dialog system but do not demonstrate much
success. We expect that in a domain such as
ours where out-of-vocabulary utterances are fairly
likely, for example, in different forms of address
for a person, a semantic parser that can be incre-
mentally updated from a small number of interac-
tions is likely to perform better. However, an em-
pirical comparison of the two in domains where
compositional language understanding is expected
to be beneficial, is an interesting direction of future
work.

3 Background - Partially Observable
Markov Decision Process (POMDP)

A Partially Observable Markov Decision Pro-
cess (POMDP) is a tuple (S,A,T,R,O,Z, γ, b0),
where S is a set of states, A is a set of actions, T
is a transition function, R is a reward function, O
is a set of observations, Z is an observation func-
tion, γ is a discount factor and b0 is an initial belief
state (Kaelbling et al., 1998). These are defined as
follows.

At any instant of time t, the agent is in a state
st ∈ S. This state is hidden from the agent and
only a noisy observation ot ∈ O of st is provided
to it. The agent maintains a belief state bt which is
a distribution over all possible states it could be in
at time t, where bt(si) gives the probability of be-
ing in state si at time t. Based on bt, the agent
chooses to take an action at ∈ A according to
a policy π, commonly represented as a probabil-
ity distribution over actions where π(at|bt) is the
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probability of taking action at when the agent is
in belief state bt. On taking action at, the agent
is given a real-valued reward rt, transitions to a
state st+1, and receives a noisy observation ot+1

of st+1.
State transitions occur according to the

probability distribution P (st+1|st, at) =
T(st, at, st+1), observations are related
to the states by the probability distribu-
tion P (ot|st, at−1) = Z(ot, st, at−1) and
rewards obtained follow the distribution
P (rt|st, at) = R(st, at, st+1).

The objective is to identify a policy π that is
optimal in the sense that it maximizes the expected
long term discounted reward, called return, given
by

g = Eπ

[ ∞∑

t=1

γtrt

]

While there exist both exact and approximate
methods for solving POMDPs, these do not usu-
ally scale well to the state spaces commonly used
in dialog domains. This has led to the develop-
ment of approximate representations that exploit
domain-specific properties of dialog tasks to allow
tractable estimation of the belief state and policy
optimization (Young et al., 2013).

4 Background - Q-Learning using
Kalman Temporal Differences

The quality of a policy π can be estimated using
the action value function

Qπ(s, a) = Eπ

[ ∞∑

t=1

γtrt | s0 = s, a0 = a

]

The optimal policy satisfies the Bellman equation,

Q∗(s, a) = Es′
[
R(s, a, s′) + γmaxa′∈AQ

∗(s′, a′)
]

When the state space is very large or con-
tinuous, Qπ cannot be computed for each state
(or belief state) individually and is hence as-
sumed to be a function with parameters θ over
some features that represent the state. When the
transition or reward dynamics are not constant
(non-stationary problem), a suitable approxima-
tion is the Kalman Temporal Differences frame-
work (Geist and Pietquin, 2010). This casts the
function approximation as a filtering problem and
solves it using Kalman filtering. The specializa-
tion for learning the optimal action value function
is called the KTD-Q algorithm.

Filtering problems estimate hidden quantities
X from related observations Y, modeling X and
Y as random variables. When estimating action
values, X corresponds to the function parameters,
θ and the observations, Y, are the estimated re-
turns, rt + γmaxa Q̂θt(st+1, a). Random noise
is added to both of these to allow for parameters
to change over time. The update rules are derived
from Kalman Filtering Theory and not included
here for the sake of brevity.

5 Dialog System

Our system initiates the dialog by requesting the
user for a command. The user can command the
system to perform two actions: navigation and de-
livery. Navigation has a single parameter for the
destination. For example “go to Alice’s office”
would be a possible way to command the robot
to perform a navigation command, whose location
is a room that is the office of a person alice.
Delivery has two parameters: the item to be de-
livered and the person to receive it. For example,
“bring Alice a hamburger” would be a possible
way to specify a delivery command whose patient
is an item hamburger and recipient is a person
alice.

The robot makes an initial guess of the desired
action from the user’s response, and then may ask
clarification questions in case of insufficient un-
derstanding. At each step, it can respond with one
of four dialog acts: asking the user to repeat their
command, confirming a command or an argument
value, requesting a specific argument of a com-
mand, and executing an action (thereby ending the
dialog). A sample dialog is shown in Table 1.

Table 1: An sample clarification dialog

ROBOT How can I help?
USER bring the coffee to dr morgan
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER take the coffee to dr morgan
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER give the coffee cup to dr morgan
ROBOT You want me to bring coffee for George?
USER no mallory morgan
ROBOT Whom would you like me to bring something

to?
USER mallory morgan
ROBOT What would you like me to bring?
USER coffee
ROBOT I brought coffee to Mallory. Was this the correct

action?
USER yes
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Given a user response, a semantic parser is used
to convert utterances to logical forms which are
then grounded using world knowledge (e.g. re-
solving the representation of “Alice’s office” to a
particular room). These grounded logical forms
are then used to update the belief state maintained
by the system. The next step to be taken by the
system, given the belief state, is then chosen based
on the current dialog policy. Once the conversa-
tion is complete, the parser and policy can be up-
dated appropriately. These steps are outlined in
greater detail in sections 5.1 and 5.2.

The dialog is considered a success if the final
action taken is correct and a failure otherwise. The
user also has the ability to prematurely end the di-
alog, and any conversation terminated in this man-
ner is also considered a failure.

5.1 Semantic Parser Learning
Semantic parsing maps a natural language sen-
tence such as “Go to Alice’s office” to a logical
form expressed in λ-calculus such as:

walk(the(λx.office(x) ∧
possess(alice, x) ∧
person(alice))) (1)

Grounding against real-world knowledge, this will
identify a room, say room 3512, which is an office
that is owned by alice.

This formalism reduces the number of lexical
entries the system needs to learn by exploiting
compositional reasoning over language. For ex-
ample, if the system learns that “Alice Ashcraft”
and “Alice” both refer to the entity alice, no fur-
ther lexical entries are required to resolve “Go to
Alice Ashcraft’s office” to the same semantic form
(1).

In our system, semantic parsing is performed
using probabilistic CKY-parsing with a Combi-
natory Categorial Grammar (CCG) and meanings
associated with lexical entries. Perceptron-style
updates to parameter values, that minimize the
log-likelihood of the training data, are used dur-
ing training to weight parses to speed search and
give confidence scores in parse hypotheses (Zettle-
moyer and Collins, 2005).

The parser is trained using paired sentences and
logical forms. A small supervised training set is
used to initialize the parser. Training continues us-
ing pairs obtained through weak supervision col-
lected from user dialogs (Thomason et al., 2015).

We use two such types of training pairs. The first
consist of responses that are likely to correspond
to the complete action, and the logical form in-
duced by the action executed by the robot at the
end of the dialog. Such responses are expected
from the initial prompt to the user and questions
that ask the user to repeat the command. We obtain
multiple semantic parses for these responses, and
parses that correspond to a complete command,
and ground to the action finally taken by the robot,
are paired with the response to form one set of
training pairs. For example, from the conversa-
tion in Table 1, such training examples would be
generated by pairing the responses “bring the cof-
fee to dr morgan”, “take the coffee to dr morgan”
and “give the coffee cup to dr morgan” with the
semantic form bring(mallory,coffee).

The second set of training pairs is obtained from
the arguments of the action, such as the patient or
location involved. This consists of responses to re-
quests for specific arguments. Again, we consider
multiple semantic parses for these responses, and
select those that are of the correct syntactic form
for a single argument value, and which ground to
the corresponding argument value in the final ac-
tion, to be paired with the response. For exam-
ple, from the conversation in Table 1, such training
examples would be generated by pairing the re-
sponse “mallory morgan” with the semantic form
mallory, and the response “coffee” with the se-
mantic form coffee. These paired responses
and semantic forms can then be used to retrain the
parser between conversations.

This weak supervision may be somewhat noisy
because it assumes that the form of the user’s re-
sponse matches the expected response type for
the question. However, this is unlikely to gener-
ate spurious training examples, because we addi-
tionally place constraints on the syntax of the re-
sponse. For example, if we receive “Go to Bob’s
office” as a response when we expect an argument
value, since the response is an imperative sen-
tence, not a noun phrase such as “Bob’s office”,
no training example would be generated from it.
Prior experimental results (Artzi and Zettlemoyer,
2011; Thomason et al., 2015) suggest that learn-
ing using such weak (potentially noisy) supervi-
sion from clarification dialogs is effective at im-
proving semantic parsers.
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5.2 Dialog Strategy Learning

We use a POMDP to model dialog and learn a pol-
icy (Young et al., 2013), adapting the Hidden In-
formation State model (HIS) (Young et al., 2010)
to track the belief state as the dialog progresses.
The key idea behind this approach is to group
states into equivalence classes called partitions,
and maintain a probability for each partition in-
stead of each state. States within a partition are
those that are indistinguishable to the system given
the current dialog.

More concretely, our belief state can be fac-
tored into two main components. The first is the
action (such as navigation and delivery) and ar-
gument values of the goal (such as the patient
or location) which the user is trying to convey,
g = {ga, gPAT , gRCP , gLOC}. Goal parameters
are represented in terms of semantic roles - patient
(gPAT ), recipient (gRCP ) and location (gLOC),
to allow them to generalize across different ac-
tions. The second component contains informa-
tion from the most recent user utterance, u =
{ut, ua, uPAT , uRCP , uLOC}. Here, ut is the type
of the utterance – affirmation, denial, providing in-
formation about a complete action, or providing
information about a specific argument. The com-
ponents ua, uPAT , uRCP and uLOC respectively
refer to the action, patient, recipient and location
mentioned in the most recent user utterance, any
of which can be null. This representation allows
the method to be applicable to any action that can
be expressed using up to 3 arguments.

After every user response, a beam of possi-
ble choices for u can be obtained by grounding
the beam of top-ranked parses from the semantic
parser. Semantic type-checking is used to disal-
low violations such as alice serving as the lo-
cation argument of a navigation. However, there
are a large number of possible values for g and
we use the idea of partitions (Young et al., 2010)
to track their probabilities in a tractable manner.
A partition is a set of possible goals g(i) which
are equally probable given the conversation so far.
The probability of a partition is the sum of prob-
abilities of all goals in the partition. Initially, all
goals are in a single partition of probability 1.

When an utterance hypothesis u is obtained, ev-
ery partition currently maintained is split if needed
into partitions that are either completely consistent
or inconsistent with u. For example, if a partition
p has goals containing both navigation and deliv-

ery actions, and u specifies a delivery action, p
will have to be split into one partition p1 with all
the navigation goals and another partition p2 with
all the delivery goals. The probability mass of p
is divided between p1 and p2 in proportion to their
sizes, to maintain the invariant that the probabil-
ity of a partition is the sum of the probabilities of
the goals contained in it. Then, given the previous
system action m, The belief b(p,u) is calculated
as in the HIS model as follows

b(p,u) = k ∗P (u)∗T (m,u)∗M(u,m, p)∗ b(p)
Here, P (u) is the probability of the utterance hy-
pothesis u given the user response, which is ob-
tained from the semantic parser. T (m,u) is the
probability that the type of the utterance hypothe-
sis ut is compatible with the previous system ac-
tion m, for example, if the system asks for the con-
firmation of a goal, the expected type of response
is either affirmation or denial. This is determined
by system parameters. M(u,m, p) is a 0-1 value
indicating whether the action and argument values
mentioned in the utterance, system action, and par-
tition agree with each other (an example of where
they do not is an utterance mentioning an action
not present in any goal in the partition) and b(p)
is the belief of partition p before the update, ob-
tained by marginalizing out u from b(p,u). k is a
normalization constant that allows the expression
to become a valid probability distribution. We also
track the number of dialog turns so far.

The belief state is a distribution over all possi-
ble hypotheses given the conversation so far. The
HIS model allows tracking probabilities of the po-
tentially large number of hypotheses. However, it
is difficult to learn a policy over this large a state
space in a reasonable number of dialogs. Thus,
we learn a dialog policy over a summary state as
in previous work (Young et al., 2010; Gašić and
Young, 2014). Table 2 contains the features used
to learn the policy. Also, the policy is learned over
abstract dialog acts (ask user to rephrase the en-
tire goal, ask for a specific parameter, confirm a
full/partial goal, execute a goal), which are con-
verted to a system response by using parameters
from the most likely hypothesis.

It is important to note that while only the top
two hypotheses are used by the policy to choose
the next action, it is useful to maintain the belief of
all hypotheses because a hypothesis that is initially
of low probability may become the most probable
after additional turns of dialog.
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Probability of top hypothesis
Probability of second hypothesis
Number of goals allowed by the partition in the top hy-
pothesis
Number of parameters of the partition in the top hypoth-
esis, required by its action, that are uncertain (set to the
maximum value if there is more than one possible ac-
tion)
Number of dialog turns used so far
Do the top and second hypothesis use the same partition
(0-1)
Type of last user utterance
Action of the partition in the top hypothesis, or null if
this is not unique

Table 2: Features used in summary space

The choice of policy learning algorithm is im-
portant because learning POMDP policies is chal-
lenging and dialog applications exhibit proper-
ties not often encountered in other reinforcement
learning applications (Daubigney et al., 2012).
We use KTD-Q (Kalman Temporal Difference Q-
learning (Geist and Pietquin, 2010)) to learn the
dialog policy as it was designed to satisfy some of
these properties and tested in a dialog system with
simulated users (Pietquin et al., 2011). The prop-
erties we wished to be satisfied by the algorithm
were the following:

• Low sample complexity in order to learn
from limited user interaction.

• An off-policy algorithm to enable the use
of existing dialog corpora to bootstrap the
system, and crowdsourcing platforms such
as Amazon Mechanical Turk during training
and evaluation.

• A model-free rather than a model-based al-
gorithm because it is difficult to design a
good transition and observation model for
this problem (Daubigney et al., 2012).

• Robustness to non-stationarity because the
underlying language understanding compo-
nent changes with time (Section 5.1), which
is likely to change state transitions.

To learn the policy, we provided a high positive re-
ward for correct completion of the task and a high
negative reward when the robot chose to execute
an incorrect action, or if the user terminated the
dialog before the robot was confident about taking
an action. The system was also given a per-turn
reward of −1 to encourage shorter dialogs.

6 Experimental Evaluation

The learning methods described above were ap-
plied to improve an initial dialog system using
weak supervision from dialog interaction with real
users. The dialog system was initialized using
data from the conversation logs of Thomason et
al. (2015), which also consist of interactions be-
tween a human user and a robot to which a high-
level command must be communicated, and which
asks clarifying questions when attempting to un-
derstand the dialog.

6.1 Initialization

The semantic parser was initialized using a small
seed lexicon and trained on a small set of super-
vised examples constructed using templates for
commands gathered from the conversation logs.
While the parser can be used even if initialized us-
ing only a handful of hand-coded training exam-
ples, the increased robustness obtained by training
on templated sentences results in less frustrating
interaction during initial dialogs.

The RL component was first initialized with a
Q-function approximation of the hand-coded pol-
icy of Thomason et al. (2015). The hand-coded
policy was encoded in the form of if-then rules
and had to be mapped to a Q-function appropriate
for the KTD-Q algorithm, which assumes the Q-
function is a probability distribution with a mean
that is a linear function of the feature space. We
obtain a set of “training points” for these linear
weights by densely sampling the feature space.
The hand coded policy is then used to identify
the correct action for each of these feature vectors.
The target for a training point is a high positive Q
value when combined with the correct action and
a 0 value when combined with any incorrect ac-
tion. The weights were then initialized using lin-
ear regression over these examples. Finally, we
trained the system on the above mentioned con-
versation logs, improving both the initial POMDP
dialog policy and the semantic parser.

The simplest alternative to such an initialization
would be to initialize the policy at random, but this
would lead to a large number of frustrating dialogs
before the system learns a reasonable policy. This
can be avoided by training with a simulated user
agent. However, such agents are not always real-
istic and their design requires parameters to be set
ideally from existing conversation logs. However,
since we use an off-policy algorithm, it is easier to
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train it directly from conversation logs, rather than
develop a sufficiently realistic simulated agent.

Since the KTD-Q algorithm is off-policy, it can
be trained using tuples containing the belief state,
action taken, next belief state, and reward obtained
from these logs. We update the policy using such
tuples both in the initial training phase from exist-
ing conversation logs, and when updating the pol-
icy after collecting batches of conversations in our
experiments.

6.2 Platform and setup
Our experiments were done through Mechanical
Turk as in previous work (Thomason et al., 2015;
Wen et al., 2016). During the training phase, each
user interacted with one of four dialog agents (de-
scribed in section 6.3), selected uniformly at ran-
dom. Users were not told of the presence of mul-
tiple agents and were not aware of which agent
they were interacting with. They were given a
prompt for either a navigation or delivery task and
were asked to have a conversation with the agent
to accomplish the given task. No restrictions were
placed on the language they could employ. We
use visual prompts for the tasks to avoid linguistic
priming (e.g. a picture of a hamburger instead of
the word “hamburger”). Before users could begin
the task, we used a validation step to ensure they
were sufficiently fluent in English and understood
the objectives of the task. Training dialogs were
acquired in 4 batches of 50 dialogs each across all
agents. After each batch, agents were updated as
described in section 6.3.

A final set of 100 test conversations were then
conducted between Mechanical Turk users and the
trained agents. These test tasks were novel in
comparison to the training data in that although
they used the same set of possible actions and ar-
gument values, the same combination of action
and argument values had not been seen at train-
ing time. For example, if one of the test tasks in-
volved delivery of a hamburger to alice, then
there may have been tasks in the training set to de-
liver a hamburger to other people and there may
have been tasks to deliver other items to alice,
but there was no task that involved delivery of a
hamburger to alice specifically.

6.3 Dialog agents
We compared four dialog agents. The first agent
performed only parser learning (described in Sec-
tion 5.1). Its dialog policy was always kept to be a

hand coded dialog policy similar to that of Thoma-
son et al. (2015). This was the same hand-coded
policy used to initialize the weights of the KTD-
Q algorithm. Its parser was incrementally updated
after each training batch. This agent is similar to
the system used by Thomason et al. (2015) ex-
cept that it uses the same state space as our other
agents, to ensure that any differences in perfor-
mance are not due to access to less information.
Further, while Thomason et al. (2015) use only the
top hypothesis from the parser to update the belief
state, our agent uses a beam of parses, again to be
more comparable to our other agents. In supple-
mentary material, we also include an experiment
which demonstrates that using multiple hypothe-
ses from the semantic parser is more beneficial
than using only a single one.

The second agent performed only dialog strat-
egy learning. Its parser was always kept to be the
initial parser that all agents started out with. Its
policy was incrementally updated after each train-
ing batch using the KTD-Q algorithm. The third
agent performed both parser and dialog learning;
but instead of incrementally updating the parser
and policy after each batch, they were trained at
the end of the training phase using dialogs across
all batches. This would not allow the dialog
manager to see updated versions of the parser in
batches after the first and adapt the policy towards
the improving parser. We refer to this as full learn-
ing of parser and dialog policy. The fourth agent
also performed both parser and dialog learning. Its
parser and policy were updated incrementally af-
ter each training batch. Thus for the next training
batch, the changes due to the improvement in the
parser from the previous batch could, in theory, be
demonstrated in the dialogs and hence contribute
towards updating the policy in a manner consistent
with it. We refer to this as batchwise learning of
parser and dialog policy.

We did not include a system that performs no
learning on either the parser or policy because it
was shown by Thomason et al. (2015) that parser
learning combined with a simple hand-coded pol-
icy outperforms this. We also did not attempt to
update both parser and policy after each dialog
because this forces all dialogs to be conducted in
sequence, which does not allow us to fully lever-
age crowdsourcing platforms such as Mechanical
Turk.
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6.4 Experiment hypothesis

We hypothesized that the agent performing batch-
wise parser and policy learning would outperform
the agents performing only parser or only dialog
learning as we expect that improving both com-
ponents is more beneficial. However, we did not
necessarily expect the same result from full parser
and dialog learning because it did not provide any
chance to allow updates to propagate even indi-
rectly from one component to another, exposing
the RL algorithm to a more non-stationary en-
vironment. Hence, we also expected batchwise
learning to outperform full learning.

6.5 Results and Discussion

The agents were evaluated on the test set using the
following objective performance metrics: the frac-
tion of successful dialogs (see 5) and the length of
successful dialogs. We also included a survey at
the end of the task asking users to rate on a 1–
5 scale whether the robot understood them, and
whether they felt the robot asked sensible ques-
tions.

Learning
involved

% suc-
cessful
dialogs

Avg
dialog
length

Robot
under-
stood

Sensible
ques-
tions

Parser 75 12.43 2.93 2.79
Dialog 59 11.73 2.55 2.91
Parser & Dia-
log - full

72 12.76 2.79 3.28

Parser & Di-
alog - batch-
wise

78 10.61 3.30 3.17

Table 3: Performance metrics for dialog agents
tested. Differences in dialog success and subjec-
tive metrics are statistically significant according
to an unpaired t-test with p < 0.05.

Table 3 gives the agents’ performance on these
metrics. All differences in dialog success and the
subjective metrics are statistically significant ac-
cording to an unpaired t-test with p < 0.05. In
dialog length, the improvement of the batchwise
learning agent over the agents performing only
parser or only dialog learning are statistically sig-
nificant.

As expected, the agent performing batchwise
parser and dialog learning outperforms the agents
performing only parser or only dialog learning, in
the latter case by a large margin. We believe the
agent performing only parser learning performs
much better than the agent performing only dialog

learning due to the relatively high sample com-
plexity of reinforcement learning algorithms in
general, especially in the partially observable set-
ting. In contrast, the parser changes considerably
even from a small number of examples. Also, we
observe that full learning of both components does
not in fact outperform only parser learning. We
believe this is because the distribution of hypothe-
ses obtained using the initial parser at training time
is substantially different from that obtained using
the updated parser at test time. We believe that
batchwise training mitigates this problem because
the distribution of hypotheses changes after each
batch of training and the policy when updated at
these points can adapt to some of these changes.
The optimal size of the batch is a question for fur-
ther experimentation. Using a larger batch is less
likely to overfit updates to a single example but
breaking the total budget of training dialogs into
more batches allows the RL algorithm to see less
drastic changes in the distribution of hypotheses
from the parser.

We include an experiment in the supplementary
material that quantifies the accuracy improvement
of the parsers after training from dialogs. It is
more difficult to quantitatively compare the poli-
cies before and after learning. Qualitatively, one of
the noticeable differences is that the system tends
to confirm or act upon lower probability hypothe-
ses than is recommended by the initial hand-coded
policy. This is possibly because as the parser im-
proves, its top hypotheses are more likely to be
correct, even if they are associated with a lower
confidence score from the parser. A demonstration
of this can be seen in tables 4 and 5. The learned
policy results in a shorter dialog in the same sit-
uation because it allows the agent to act upon a
hypothesis of lower probability. Also, the learned
policy is stochastic, which is very helpful when
the agent is not able to understand the user at all.
For example, if the agent is unable to parse any of
the initial instructions from the user, under a hand-
coded policy, as its state has not changed, it would
continue to repeat the question it had asked ear-
lier, which prevents it from making any progress.
However, in a stochastic policy, other more spe-
cific questions are likely to be substituted in be-
tween, and responses to these may allow the agent
to make progress, which increases dialog success
(table 6).
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7 Conclusions

In this work, we have demonstrated that continu-
ous dialog strategy learning and semantic parser
learning can be successfully combined in a dia-
log system to enable an agent to better understand
commands provided in natural language. Both the
semantic parser and the dialog strategy can be au-
tomatically improved simultaneously using weak
feedback provided during interaction with users
rather than manually-labeled or artificially con-
structed training data. Ongoing parser learning
could have confused the RL dialog learner by al-
tering the underlying language understanding sys-
tem while it was searching for an effective dialog
policy. However, our results show that by using an
appropriate RL algorithm and batchwise training
regimen, this potential difficulty can be avoided,
and both language understanding and dialog man-
agement can be improved simultaneously.
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Table 4: The robot following the learned policy
takes the action despite the lower confidence, lead-
ing to a shorter dialog.

ROBOT How can I help?
USER bring the hamburger to peggy
ROBOT What would you like me to bring?
USER the hamburger

The robot brought a hamburger to Peggy.
ROBOT Was this the correct action?
USER yes

Table 5: The robot following the hand-coded pol-
icy confirms the action before taking it, leading to
a longer dialog.

ROBOT How can I help?
USER bring the hamburger to peggy
ROBOT What would you like me to bring?
USER the hamburger
ROBOT You want me to bring hamburger for Peggy?
USER yes

The robot brought a hamburger to Peggy.
ROBOT Was this the correct action?
USER yes

Table 6: An example where a stochastic policy
helps when the robot is unable to understand a full
command.

ROBOT How can I help?
USER bring evelyn a coffee
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER bring evelyn a cup of coffee
ROBOT You want me to bring coffee for someone?
USER yes
ROBOT Whom would you like me to bring coffee to?
USER evelyn
ROBOT Whom would you like me to bring coffee to?
USER eve
ROBOT I brought coffee to Eve. Was this the correct

action?
USER yes
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Supplementary Material

A Improvement in parser accuracy

The following experiment is an attempt to quan-
tify the accuracy of the parsers after training from
dialog. This was done by hand-annotating the se-
mantic forms for commands from the test set used
for the first experiment. The results can be seen
in table 7. The parsers are evaluated in terms of
Recall@1, which is the fraction of times the cor-
rect parse is the top parse predicted by the parser,
and Recall@10, which is the fraction of times the
correct parse occurs in the top 10 parses predicted
by the parser.

Learning involved Recall@1 Recall@10

None 0.564 0.611
Only parser 0.588 0.671*
Only dialog 0.564 0.623
Parser & dialog - full 0.588 0.647 ˆ
Parser & dialog -
batchwise

0.576 0.670*

Table 7: Comparison of performance of initial
parser and parsers after updating various compo-
nents, on paired commands and semantic forms.
∗ indicates that the difference in performance be-
tween this and the Initial parser on the same met-
ric is statistically significant according to a paired
t-test with p < 0.05 and ˆ indicates that the differ-
ence is trending significance (p < 0.1)

.

As expected, we observe that the initial parser
(no learning) and the parser from the system per-
forming only dialog learning, perform worse than
the others, as the other systems update the parser
used by these. The parser of the system perform-
ing only dialog learning is in fact a copy of the
initial parser and was included only for complete-
ness. Any difference in their performance is due
to randomness. The parsers updated from dialogs
improve in accuracy but the differences are found
to be statistically significant only on Recall@10.
The modest improvement is unsurprising given
that the supervision provided is both noisy and
weak. However, as seen in the main paper, even
this modest improvement is sufficient to improve
overall dialog success.

B Importance of multiple parse
hypotheses

Many NLP systems typically return a list of top-
n hypotheses, including semantic parsers. We use

the entire beam of top-n parses when updating the
state. This is expected to be beneficial in cases
where that the correct hypothesis is not the top
ranked but present in this beam. The following ex-
periment demonstrates that using multiple parses
when updating the state improves overall dialog
success. We compared an agent that used the same
parser and policy as in the batchwise training but
only the top ranked parse from the parser to update
its state, as opposed to a beam of parses when up-
dating its state. These two systems differed in no
other components.

Number of parses
considered

% successful
dialogs

Dialog
length

1 0.59 9.17
10 0.64 12.18

Table 8: Comparison of an agent using only the
top hypothesis from the semantic parser and an-
other using the top 10 parses. All differences are
statistically significant according to an unpaired t-
test with p < 0.05.

Table 8 shows the usefulness of considering
multiple hypotheses from the semantic parser. As
expected, the agent using multiple parses performs
the correct action a significantly higher fraction
of times. The system using a single hypothesis
has a shorter average length among its successful
dialogs because it rarely succeeds in more com-
plicated dialogs where the system needs repeated
clarification or answers to multiple specific ques-
tions.

557



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 558–567,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Unsupervised AMR-Dependency Parse Alignment

Wei-Te Chen
Department of Computer Science
University of Colorado Boulder
weite.chen@colorado.edu

Martha Palmer
Department of Linguistics

University of Colorado Boulder
martha.palmer@colorado.edu

Abstract

In this paper, we introduce an Abstract
Meaning Representation (AMR) to De-
pendency Parse aligner. Alignment is a
preliminary step for AMR parsing, and
our aligner improves current AMR parser
performance. Our aligner involves sev-
eral different features, including named
entity tags and semantic role labels, and
uses Expectation-Maximization training.
Results show that our aligner reaches an
87.1% F-Score score with the experimen-
tal data, and enhances AMR parsing.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic representation
that expresses the logical meaning of English sen-
tences with rooted, directed, acylic graphs. AMR
associates semantic concepts with the nodes on
a graph, while the relations are the label edges
between concept nodes. Meanwhile, AMR re-
lies heavily on predicate-argument relations from
PropBank (Palmer et al., 2005), which share
several edge labels. The representation also en-
codes rich information, like semantic roles (all
the “ARGN” tags from PropBank), named enti-
ties (NE) (“person”, “location”, etc., concepts),
wiki-links (“:wiki” tags), and co-reference (reuse
of variables, e.g., p). An example AMR in PEN-
MAN format (Matthiessen and Bateman, 1991) is
shown in Figure 1.

The design of an AMR to English sentence
aligner is the first step for implementation of an
AMR parser, since AMR annotation does not
contain links between each AMR concept and
the original span of words. The basic alignment
strategy is to link the AMR tokens (either con-
cepts or edge labels) with their corresponding

(j / join-01
:ARG0 (p / person :wiki -

:name (p2 / name
:op1 "Pierre" :op2 "Vinken")

:age (t / temporal-quantity :quant 61
:unit (y / year)))

:ARG1 (b / board
:ARG1-of (h / have-org-role-91

:ARG0 p
:ARG2 (d2 / director

:mod (e / executive :polarity -))))
:time (d / date-entity :month 11 :day 29))

Figure 1: The AMR annotation of sentence “Pierre
Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29.” in PENMAN for-
mat

span of words. Another strategy is to find the
alignment from an AMR concept to a word node
in a dependency parse tree, the goal of this paper.
A dependency parse tree is a good structure for
attaching more information, e.g. named entity
tags, lemma, and semantic role labels, etc., and
provides richer syntactic information than the
span of words. An alignment between an AMR
concept and a dependency node represents a cor-
respondence between the meaning of this concept
and its child concepts and the phrase governed by
the dependency node (i.e., head word). An exam-
ple alignment is shown in Figure 2. For example,
the word node “Vinken” on the dependency parse
side in Figure 2 links to the lexical concept of
“Vinken” and, furthermore, links to the “p2/name”
and the “p/person” concepts since “Vinken” is
the head of the named entity “Pierre Vinken”
and the head of the whole noun phrase
“Pierre Vinken, 61 years old.”. In our work, we
use Expectation-Maximization(EM) (Dempster et
al., 1977) to train different feature probabilities,
including rule-based features, lexical forms,
relation labels, named entity tags, semantic role
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Pierre Vinken , 61 years old , will join

nn punct

amod

advmodnum

punct

nsubj

aux

root

“Pierre” “Vinken” 61 year

name temporal-quantity

person

join-01

op1 op2 quant unit

name age

Arg0 Arg1

Arg0

Figure 2: The alignment between a subgraph of an
AMR (top) and a dependency parse (bottom) for
the “Pierre Vinken” sentence. Dashed lines link
dependency parse nodes and corresponding con-
cepts.

labels, and global features, etc. Then EM process-
ing incorporates all the individual probabilities
and estimates the final alignments.

We will describe AMR-English sentence align-
ment in general, and review related work, in
Section 2. Then the descriptions of our AMR-
dependency parse features and alignment model
are in Section 3. Our beam-search docoder is de-
scribed in Section 4. Our experimental results are
presented in Section 5, followed by our conclusion
and discussion of future work (Section 6).

2 AMR-English Sentence Aligner

A preliminary step for an AMR parser is aligning
AMR concepts and the original spans of words.
JAMR (Flanigan et al., 2014) includes a heuris-
tic alignment algorithm between AMR concepts
and words or phrases from the original sentence.
They use a set of alignment rules, like named en-
tity, fuzzy named entity, data entity, etc., with a
greedy strategy to match the alignments. This
aligner achieves a 90% F1 score on hand aligned
AMR-sentence pairs. On the other hand, the ISI
Aligner (Pourdamghani et al., 2014) presents a

generative model to align AMR graphs to sen-
tence strings. They propose a string-to-string
alignment model which transfers the AMR ex-
pression to a linearized string representation as
the initial step. Their training method is based
on the IBM word alignment model (Brown et
al., 1993) but they modify the objective function
of the alignment model. IBM Model-4 with a
symmetric method reaches the highest F1 score,
83.1%. When separating the alignments into roles
(edge labels) and non-roles (concepts), F1 scores
are 49.3% and 89.8%, respectively. In Werling’s
AMR parser (Werling et al., 2015), they con-
ceive of the alignment task as a linear program-
ming relaxation of a boolean problem. The ob-
jective function is to maximize the sum of ac-
tion reliability. Each concept is constrained to
align to exactly one token in a sentence. This
ensures that only adjacent nodes or nodes that
share the same title refer to the same token. They
hand-annotate 100 AMR parses, and their aligner
achieves an accuracy of 83.2%. By providing al-
ternative alignments to their graph-based AMR
parser, their aligner achieves a better Smatch score
than JAMR’s aligner.

However, two transition-based parsers which
parse dependency parse tree structures into AMRs,
e.g., the CAMR system (Wang et al., 2015; Wang
et al., 2016) and the RIGA system (Barzdins and
Gosko, 2016), tie for the best results in SemEval-
2016 task 8 (May, 2016). It is important to
note that the JAMR aligner was not designed to
align between a dependency word node and an
AMR concept where its alignment F1 score is only
69.8% (see Section 5.2). In order to deal with
this problem, (Chen, 2015) proposed a preliminary
aligner which estimates alignments by learning the
feature probabilities of lexical (surface) forms, re-
lations, named entities and semantic roles jointly.
Besides the objective to obtain alignment between
AMR concepts and original word spans, the esti-
mation of these feature probabilities is also useful
for further development of the AMR parser with
these initial models. In our paper, we extend their
previous work by adding rule-based and global
features, and adding a beam-search algorithm at
decoding time.

3 AMR-Dependency Parse Aligner

Our approach is an AMR-to-Dependency parse
aligner, which represents one AMR as a list of
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Concepts C = 〈c1, c2, . . . , c|C|〉, and the corre-
sponding dependency parse as a list of dependency
word nodes D = 〈d1, d2, . . . , d|D|〉. An align-
ment function a is designed to produce exactly one
alignment to a dependency node dcj for each con-
cept cj , within a single sentence. Alternatively,
we can view a as a mapping function that accepts
one input variable concept cj and outputs a de-
pendency node dcj with which cj is aligned. A
is the alignment set that contains all different al
that cover possible alignments within C and D.
Our model adopts an asymmetric alignment direc-
tion, where one concept maps to exactly one de-
pendency parse node, and each dependency parse
node can be aligned by zero to multiple concepts.
We denote dependency node dc linked by concept
c as dc = a(c). cp is the parent concept of concept
c, while cs1 , cs2 , ..., csk are the k child concepts of
concept c.

3.1 Features

3.1.1 Basic Features
Several of the AMR concepts use the word form
directly. For example, the concept “join-01” in
Figure 1 would align to the dependency node
“join” naturally. Similarly, the leaf concepts usu-
ally align to identical terms in the dependency
parse. In Figure 1, the names “Pierre” and
”Vinken” are aligned to their word forms on the
dependency parse leaves. Therefore, we design
a straightforward rule-based probability, Prule,
which catches the appearance of the surface form.
Prule(c, dc) is defined as the probability that the
matching type for a given concept c and depen-
dency node dc are linked. The different types of
rules, e.g., word, lemma, numbers, and date, etc.,
and their proportional applicability to both AMR
concepts and leaves are listed in Table 1. For ex-
ample, the rule “Date” type aligns concept “11”
with word node “November” in Figure 1, while
“Numbers” aligns concept “5” with word node
“five”. Prule decides which match type to apply
by following a greedy matching strategy.

3.1.2 External Features
To capture alignments for concepts which do not
match any of the above basic rules, we design the
following four external feature probabilities:

PLemma(c, dc) = P (c|Word(dc))
Lemma Probability represents the likelihood that
a concept c aligns to a dependency word di. For

Match Type at Concept at Leaf
(1) Word 45.2% 73.4%

(2)
Word

- 0.9%
(case insensitive)

(3)
Lemma 10.8% 0.3%
(case insensitive)

(4)
Partial match 6.1% 8.2%
with word

(5)
Partial match 0.2% 0.3%
with lemma

(6) Numbers - 3.1%
(7) Ordinal Numbers - 2.8%
(8) Date - 4.3%
(9) Others 37.7% 6.5%

Table 1: The rules and distribution of basic match
types

example, in Figure 3a, the concept c =“temporal-
quantity” is highly likely to align to the word node
dc = “old” since “old” is usually the head word
of a phrase expressing age (“61 years old” here).
Also, have-org-role-91 can align to the word node
“director” since “director” appears quite often
with have-org-role-91 (defined as roles in orga-
nizations). Besides, some special leaf concepts,
like “:polarity -” (negative), and “:mode expres-
sive” (which is used to mark exclamational word),
also rely on this feature rather than the basic rules.

Prel(c, dc, dcp) = P (AMRLabel(c)|Path(dc, dcp))
Relation Probability is the conditional probabil-
ity of the AMR relation label of c, given the parse
tree path between dc and dcp , where dc and dcp

represent the dependency nodes that are aligned
by c and cp, respectively. Parse tree path is the
concatenation of all dependency tree and direc-
tion labels through the tree path between dc and
dcp . For example, the relation probability of c =
61, dc = 61, and dcp = old in Figure 3b is
P (quant|advmod ↓ num ↓). A parse tree path
is a useful feature for extracting relations between
any two tree nodes, e.g., Semantic Role Labeling
(SRL) (Gildea and Jurafsky, 2002) and relation ex-
traction (Bunescu and Mooney, 2005; Kambhatla,
2004; Xu et al., 2015), so we add relation proba-
bility to our model.

PNE(c, dc) = P (c|NamedEntity(dc))
Named Entity Probability is the probability of
the concept c conditioned on different named en-
tity types (e.g., PERSON, DATE, ORGANIZA-
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61 years old

advmodnum

temporal-
quantity

61 year

quant unit

(a) Lemma Feature Probability
Plemma(c = temporal-quantity, dc = old)

61 years old

advmodnum

temporal-
quantity

61 year

quant unit

(b) Relation Feature Probability
Prel(c = 61, dc = 61, dcp = old)

Pierre Vinken , 61 years old

nn punct

amod

advmodnum

nsubj

PERSON

person

name
temporal-
quantity

name age

(c) Named Entity Probability
PNE(c = person, dc = V inken)

Pierre Vinken , 61 years old , will join
nsubj

Arg0

root

join-01

person board

ARG0 ARG1

(d) Semantic Roles Probability
PSR(c = person, dc = V inken, dcp = join)

Figure 3: The sample of feature probabilities that are used in our aligner. Dashed lines link AMR
concepts (top) and corresponding dependency parse nodes (bottom), while dense dashed lines link the
parent AMR concepts and its corresponding dependency parse nodes.

TION, etc.). NamedEntity(d) indicates the
named entity type of the phrase with d as the head
word. For example, after named entity recogni-
tion (NER) tagging, the label assigned to “PER-
SON” is the dependency parse tree node “Vinken”.
So the named entity probability of PNE(c =
person, dc = V inken) in Figure 3c is P (person
| PERSON). Since AMR contains a large amount
of named entity information, we assume that a fea-
ture based on an external named entity module
should improve the alignment accuracy.

PSR(c, dc, dcp)

= P (AMRLabel(c)|SemanticRole(dcp , dc))
Semantic Role Probability is the conditional
probability of the AMR relation label of c, given
the semantic role dc if dcp is a predicate and dc
is dcp’s argument. If a predicate-argument struc-
ture does not exist between dcp and dc, the se-
mantic role probability is omitted. For exam-
ple, in Figure 3d, the semantic role probability of
PSR(c = person, dc = V inken, dcp = join) is
equal to P (ARG0|Arg0). Since AMR depends
heavily on predicate-argument relations, external

predicate-argument information from an external
SRL system should enhance the overall alignment
accuracy.

The above four feature probabilities are learned
by the EM algorithm (Section 3.2).

3.1.3 Global Feature

The above basic and external features capture lo-
cal alignment information. However, to make sure
that a concept is aligned to the correct phrase head
word which represents the same sub-meaning, we
need a global feature to calculate coverage. The
design of our concept coverage feature is as fol-
lows:

RCC(c) Overlapping Ratio of the child concept
aligned phrases to their parent concept aligned
phrases plus the non-covered penalty. This ratio
is defined as:
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61 years old

advmodnum

temporal-
quantity

61 year

quant unit

Figure 4: A sample of incorrect alignment. We use
this sample to calculate its overlapping ratio (Rcc)
let c = temporal-quantity
W (c) = {61, year}
Wchild(c) = {61} ∪ {61, year, old}
= {61, year, old}
Wchild(c) ∩W (c) = {61, year}
pen(c) = exp(−|{old}|) = 0.37
Rcc(c) = (22)× pen(c) = 0.37

RCC(c) =
|Wchild(c) ∩W (c)|

|W (c)| × pen(c)

W (c) = dc

Wchild(c) =
⋃

csi∈child(c)
dcsi

pen(c) = exp(−|Wchild(c) \ (Wchild(c) ∩W (c))|)

where W refers to the set of words that the
aligned dependency word node contains. The first
term of RCC ensures the child concepts contain
the largest possible subspans of the parent con-
cept span. The non-covered penalty term (pen)
is to prevent a child concept from aligning to a
word node that contains a larger word span than
the child’s parent concept. The pen term will in-
crease exponentially if child concepts align to a
larger word span. The back slash term “\” refers to
set subtraction. We take Figure 4 as an example of
an incorrect alignment example where the concept
“temporal-quantity” aligns to “year” and the con-
cept “year” aligns to “old”, the overlapping ratio
of this alignment is 0.37 since it suffers a penalty.
As we compare it with the correct alignment in
Figure 3b, the overlapping ratio of this alignment
is 0.67, which is much higher than the incorrect
one.

3.2 Training with EM Algorithm
The objective function of our AMR-to-
Dependency Parse aligner is listed as follows:
Since our long term goal is to design a de-
pendency parse to AMR parser, we define the
objective function Lθ as the probability that
dependency parses transfer to AMR graphs for
the AMR-to-Dependency Parse aligner:

θ = argmaxLθ(AMR|DEP) (1)

Lθ(AMR|DEP) =
∏

(C,D,A)
∈S

P (C|D)

=
∏

(C,D,A)
∈S

∑

a∈A
P (C, a|D) (2)

P (C, a|D) =

|C|∏

j=1

P (cj |dcj = a(cj), dcpj = a(cpj ))

(3)
where θ = (Plemma, Prel, PNE , PSR) is the set of
feature probabilities (parameters) we want to es-
timate, alignment set A is the latent variable we
want to observe, and S is the training sample that
contains a set of tuples (C,D,A), where C and
D are a 〈AMR, dependency parse〉 pair and A is
their alignment combination set. In equation (3),
the probability that dependency tree D translates
to AMR C with an alignment combination a is
equal to the product of all probabilities that con-
cept cj in C aligns to dependency node dcj and cpj
aligns to dependency node dcpj .

3.2.1 Expectation-Step
The E-Step estimates all the different alignment
probabilities of an input AMR and dependency
parse pair by giving the product of feature prob-
abilities. The alignment probability can be calcu-
lated using:

P (a|C,D) =

|C|∏

j=1

P (cj |dcj , dcpj )∑|D|
l=1

∑|D|
i=1 P (cj |di, dl)

(4)

P (cj |di, dl) = Prule(cj , di)× Plemma(cj , di)
× Prel(cj , di, dl)× PNE(cj , di)× PSR(cj , di, dl)

(5)

The alignment probability is equal to the prod-
uct of all tuple (c, dc, dcp)’s aligning probabilities.
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Prule is obtained by a simple calculation from the
development set, while Plemma, Prel, PNE , and
PSR are initialized uniformly before the first round
of E-step. And these feature probabilities will be
updated during the M-step.

3.2.2 Maximization-Step
In the M-Step, feature probabilities are re-
estimated by collecting the count of all AMR-
dependency parse pairs. The count of lemma
(cntlemma), relation (cntrel), named entity
(cntNE), and semantic role (cntSR) features
are the normalized counts that are collected
from the accumulating probability of all pos-
sible alignments from the E-step. Here we
take the derivation of cntlemma as an example.
cntrel, cntNE , and cntSR can be obtained with
similar equations:

cntlemma(c|Word(dc);C,D) =

∑

a∈A

P (c|dc, dcp)∑|D|
i=0

∑|D|
l=0 P (c|di, dl)

After we collect all counts for differ-
ent features, the four feature probabilities,
Plemma, Prel, PNE , and PSR, are updated with
their feature counts. Here we show the update
of Plemma as an example. The rest of feature
probability updates can be derived in the same
way:

P lemma(c, d)

←
∑

C∈AMR,
D∈DEP

cntlemma(c|Word(d);C,D)
∑|C|

j=1 cntlemma(cj |Word(d);C,D)

After this, we apply the newer feature probabilities
to recalculate alignment probabilities in the E-step
again. EM iterates the E and M-steps until conver-
gence or certain criteria are met.

4 Decoding

At decoding time, we want to find the most likely
alignment a for the given 〈C,D〉. By applying
Equations (4) and (5), we define the search for
alignments as follows:

argmax
a

P (a|C,D) = argmax
a

|C|∏

j=1

RCC(cj)

∗ P (cj |di = a(cj), dl = a(cpj ))

This decoding problem finds the alignment a that
maximizes the likelihood, which we define in

Sent. Token # of
NE

# of
Arg.

G
ol

d train 8,276 176,422 3,750 58,520
dev. 409 8,695 415 2,574
test 415 8,786 401 3,107

A
ll

train 39,260 649,219 43,715 260,979
dev. 409 8,695 580 2,574
test 415 8,786 401 3,107

Table 2: The data split of the LDC DEFT AMR
corpus. Gold refers to the sentences also appear-
ing in OntoNotes 5.0 with gold annotations, while
All refers to all sentences in DEFT AMR corpus
with dependency parses, named entities, and se-
mantic roles generated by ClearNLP. Number of
tokens, named entities, and arguments(Arg.) in
each data set are also presented

Equation (5). The overlapping ratio(RCC) is in-
troduced to the likelihood function to ensure that
a parent concept covers a wider word span range
than its child concepts. A beam search algorithm
is designed to extract the target alignment without
exhaustively searching all of the candidate align-
ments (which has a complexity of O(|D||C|).)
The beam search starts from leaf concepts and
then walks through parent concepts after their
child concepts have been traversed. When we go
through concept cj , we need to consider all the
following likelihoods: 1) the accumulated likeli-
hood for aligning to any dependency word node
dcj from all the child concepts of cj , and 2) the
product of Plemma, PNE , Prel, PSR, and RCC
for cj . Instead of using during training, RCC is
only applied during decoding time. The probabili-
ties are obtained simply from the product of all the
above likelihoods. We keep the top-|b| alignment
probabilities and their aligned dependency node
dcj for each cj until we reach the root concept,
where |b| is the beam size. Finally we can trace
back and find the most likely alignment.

The running time for the beam search algorithm
is O(|b| ∗ |C| ∗ |D|2).

5 Experiments and Results

5.1 Experimental Data

The LDC DEFT Phase 2 AMR Annotation Re-
lease 2.01 consists of AMRs with English sentence

1LDC DEFT Phase 2 AMR Annotation Release 2.0, Re-
lease date: March 10th, 2016. https://catalog.ldc.upenn.edu
/LDC2016E25
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pairs. Annotated selections from various gen-
res (including newswire, discussion forum, other
web logs, and television transcripts) are avail-
able, for a total of 39,260 sentences. This release
uses the PropBank Unification frame files (Bo-
nial et al., 2014; Bonial et al., 2016). To gen-
erate automatic dependency parses for all DEFT
AMR Release data, we use ClearNLP (Choi and
Mccallum, 2013) to produce dependency parses.
ClearNLP also labels semantic roles and named
entity tags automatically on the generated de-
pendency parses. This data set is named “All”.
To compare the effect of applying automatic de-
pendency parses to our aligner with gold depen-
dency parses, we select the sentences which ap-
pear in the OntoNotes 5.02 release as well. The
OntoNotes data contains TreeBanking, PropBank-
ing, and Named Entity annotations. OntoNotes
5.0 also uses PropBank Unification frame files
for PropBanking. This data set, containing a to-
tal of 8,276 of selected AMRs and their depen-
dency parses from OntoNotes, is named “Gold”.
To generate the development and test set, we man-
ually align the AMR concepts and dependency
word nodes. Since the manual alignment is time-
consuming, “Gold” and “All” data share the same
development/test set. Table 2 presents the statis-
tics for the experimental data.3

5.2 Experiment Results

We run EM for 50 iterations and ensure the EM
model converges. Afterwards, we use our decod-
ing algorithm to find the alignments that maximize
the likelihood. The test set data is used to evaluate
performance.

We first evaluate the performance of our system
with the external features added incrementally. Ta-
ble 3 indicates the results. By running with the
“Gold”‘ data, the only feature that improves sig-
nificantly over the baseline (rule-based and lexi-
con features only) is the semantic role feature. The
named entity feature actually hurts performance.
On the other hand, all the features contribute to
the F-Score incrementally for “All”. Again, the se-
mantic role feature still has the most positive im-
pact against other features, and a significant im-
provement over the baseline.

As we compare the F1 score on training with

2LDC OntoNotes Release 5.0, Release date: October
16th, 2013 https://catalog.ldc.upenn.edu/LDC2013T19

3The manually aligned data and our aligner will be avail-
able after this paper gets accepted

Data Feature P R F-Score

Gold

L 84.0 85.0 84.5
L + S 85.2 86.3 85.7
L + S + R 82.8 83.8 83.3
L + S + R + N 80.9 81.9 81.4

All

L 84.9 85.4 85.1
L + S 85.7 87.4 86.5
L + S + R 85.8 87.7 86.7
L + S + R + N 86.3 88.0 87.1

Table 3: Incremental Feature Contributions for
different features: L: lemma; R: relation; N : NE;
S: semantic role.

“All” and “Gold” data set, training with “All” out-
performs training with “Gold” data in all differ-
ent feature combinations. We believe there are
two reasons for this. First, the “All” data contains
richer information than the “Gold” data. “All” has
double the sentence size of “Gold”, and propor-
tionally more named entity labels. Second, the
automatic dependency parses do not hurt the per-
formance of our aligner very much. We believe
that our unsupervised alignment model works bet-
ter with more data, even without access to gold
standard dependency parses.

We then compare our aligner with three other
aligners: JAMR, another version of unsupervised
alignment (Chen, 2015), and ISI. To make them fit
our test data, we design a heuristic method to force
every unaligned concept (e.g., named entity and
“‘:polarity -”’ concepts) to align to a dependency
word node according to rule-based and global fea-
tures (see Section 3.1). The alignment is counted
as a correct match when the concept aligns to ei-
ther the head word or the partial word span of a
phrase. The alignments from concept relation to
word span (apply in ISI) are discarded in our task.
The results of the experiment are shown in Table 4.
Our aligner achieves the best F1 score in both the
“All” and “Gold” data sets, as it should, since it is
designed to align AMRs to dependency parses, as
was the Chen aligner. Our aligner performs better
than the Chen aligner by around 28% in F1 score.
We can conclude that the addition of rule-based
feature, global features, and beam-search in de-
coding time helps the alignment task substantially.

5.3 Apply to AMR Parsing

To evaluate how alignment can enhance AMR
parsing, we compare the parsing performance of
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Data Aligner P R F-Score

Gold

Chen 2015 61.1 53.4 57.0
JAMR 78.5 62.8 69.8
ISI 78.6 71.4 74.9
Ours 85.2 86.3 85.7

All

Chen 2015 62.4 55.5 58.7
JAMR 80.2 65.9 72.4
ISI 80.4 74.9 77.6
Ours 86.3 88.0 87.1

Table 4: Results of different alignment models

the CAMR parser with different alignments pro-
duced by JAMR, ISI, and our aligner. To make
the alignments fit the CAMR parser, we convert
both ISI and our alignments to the original JAMR
alignment format, word span to AMR concept. We
get rid of the “:wiki” tag, which links the named
entity to its Wikipedia page, to simplify the pars-
ing task since we think the Wikify task (Mihalcea
and Csomai, 2007) is basically different from the
AMR parsing task. Smatch v2.0.2 is used to eval-
uate AMR parsing performance (Cai and Knight,
2012). The evaluation script is obtained from the
SemEval 2016 Task 8 website4.

A comparison of parsing results is given in Ta-
ble 5. We first train the parser with “Gold” Stan-
dard dependency parses and alignments from the
different aligners. Results show that our aligner
improves by a 2% F1 score over the two other
aligners. Then we train the AMR Parser system
with the “All” data set. The dependency parses at-
tached with semantic roles and named entities gen-
erated by ClearNLP are also provided to CAMR
as training data. CAMR use dependency parsing
results from Stanford dependency parser (Klein
and Manning, 2003) by default. Our aligner still
achieves slightly better performance than the other
two. Modifying the AMR parser to take advantage
of parse node-concept alignments could poten-
tially result in greater improvement, since CAMR
takes the input alignments as word span to AMR
concept.

5.4 Error Analysis

To further understand the advantages and the dis-
advantages of our model, we go through all incor-
rect alignments and manually categorize 40% of
them into different error types, with their propor-

4http://alt.qcri.org/semeval2016/task8/index.php?id=data-
and-tools

Data Aligner P R F-Score

Gold
JAMR 62.2 61.0 61.1
ISI 65.3 63.9 64.5
Ours 68.6 64.2 66.4

All
JAMR 64.2 63.0 63.1
ISI 66.1 65.1 65.6
Ours 68.1 64.7 66.7

Table 5: Comparison of using different alignments
with CAMR Parser.

tion:

Automatic Parsing Errors - 3.8%: ClearNLP has
a 92.96% unlabeled attachment score on the Penn
English Treebank evaluation set (Marcus et al.,
1993), Section 23, for dependency parsing. There-
fore, when training our aligner on the “All” data
set with dependency parses, named entities, and
semantic roles generated by ClearNLP, incorrect
parses occasionally show up. Since NE and se-
mantic roles are attached to dependency parses,
incorrect dependency parses cause additional NE
and semantic roles alignment errors, on top of the
dependency parse alignment errors.

Long Distance Dependencies - 14.2%: Long sen-
tences with long distance dependencies always
bring difficulty to NLP parsing tasks. Experimen-
tal results show that our model runs into troubles
when nearby concepts align to dependency nodes
which are far from each other. Co-reference is an
example that is highly likely to align to long dis-
tance dependencies, and our model can not deal
with it well.

Duplicate Words - 17.4%: When two identical
concepts align to different word nodes, our model
is confused by duplicate words. In Figure 5, there
are two “first”s in the sentence. One refers to
“first 6 rounds”, and the other refers to “first po-
sition”. However, our model faultily aligns both
ordinal-entity concepts to the same “first” word
node. Our model did not distinguish these two
ordinal-entities since the lexicon and named entity
tags of the two “first”s are identical.

Meaning Coverage Errors - 40.4%: We define a
good alignment as a concept that aligns to the cor-
rect phrase head word which represents the same
sub-meaning. So instead of aligning to a concept’s
word lexicon, sometimes a concept aligns to its
parent node (head word). However, the lexicon
features dominate the alignment probability in our
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(a / and
:op1 (o / occupy-01

:ARG0 (p3 / person
:name (n / name

:op1 "Mingxia" :op2 "Fu"))
:ARG1 (p4 / position
:ord (o3 / ordinal-entity :value 1))

:op2 (o2 / occupy-01
:ARG0 (p / person
:name (n2 / name

:op1 "Bin" :op2 "Chi"))
:ARG1 (p2 / position
:ord (o4 / ordinal-entity :value 3))

:mod (r / respective)
:time (r3 / round-05 :quant 6

:ARG1 (c / compete-01)
:ord (o5 / ordinal-entity :value 1)))

Figure 5: The AMR annotation of sentence “In
the first 6 rounds of competition, Mingxia Fu and
Bin Chi are occupying the first and third positions
respectively”

E-M calculation. That causes our model to tend to
align a concept with its word form instead of its
head word. For example, English light verb con-
structions (LVCs), e.g., take a bath, are thought to
consist of a semantically general verb and a noun
that denotes an event or state. AMR representation
always drops light verb and uses eventive noun as
concept. Our model sometimes aligns this even-
tive noun concept to its nominal word node, which
is incorrect since the light verb on dependency
parse covers the same sub-meaning and should be
aligned.

6 Conclusion and Future Work

In this paper, we present an AMR-Dependency
Parse aligner, which estimates the feature proba-
bilities by running the EM algorithm. It can be
used directly by AMR parser. Results show that
our aligner performs better than other aligners, and
improves AMR parser performance. The latent
probabilities that we obtain during training, i.e.,
all the external feature sets, could also potentially
benefit a parser. We plan to develop our own AMR
parser, which will apply these external feature sets
as the basic model. We also plan to continue to
perfect our aligner via tuning the feature weights
and learning techniques, and adding new features,
like word embeddings and WordNet features.
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Abstract

This paper presents a method for improv-
ing semantic role labeling (SRL) using
a large amount of automatically acquired
knowledge. We acquire two varieties of
knowledge, which we call surface case
frames and deep case frames. Although
the surface case frames are compiled from
syntactic parses and can be used as rich
syntactic knowledge, they have limited ca-
pability for resolving semantic ambiguity.
To compensate the deficiency of the sur-
face case frames, we compile deep case
frames from automatic semantic roles. We
also consider quality management for both
types of knowledge in order to get rid of
the noise brought from the automatic anal-
yses. The experimental results show that
Chinese SRL can be improved using au-
tomatically acquired knowledge and the
quality management shows a positive ef-
fect on this task.

1 Introduction

Semantic role labeling (SRL) is regarded as a task
that is intermediate between syntactic analysis and
semantic analysis in natural language processing
(NLP). The main goal of SRL is to extract a propo-
sition from a sentence about who does what to
whom, when, where and why. By using semantic
roles, the complex expression of a sentence is then
interpreted as an event and its participants (i.e.,
a predicate and arguments such as agent, patient,
locative, temporal and manner). Unlike syntactic
level surface cases (i.e., dependency labels such as
subject and object), semantic roles can be regarded

∗The first author is now affiliated with Canon IT Solu-
tions Inc.

as a deep case representation for predicates. Be-
cause of its ability to abstract the meaning of a sen-
tence, SRL has been applied to many NLP appli-
cations, including information extraction (Chris-
tensen et al., 2010), question answering (Pizzato
and Mollá, 2008) and machine translation (Liu and
Gildea, 2010).

Semantically annotated corpora, such as
FrameNet (Fillmore et al., 2001) and PropBank
(Kingsbury and Palmer, 2002), make this type
of automatic semantic structure analysis feasible
by using supervised machine learning methods.
However, supervised SRL methods have the
following two major issues. Firstly, as a common
issue in almost all the supervised approaches,
it is expensive to enlarge manually annotated
corpora to learn a more accurate model. Secondly,
experiments show that automatic SRL systems
strongly depend on syntactic information. In
practice, these SRL systems suffer from errors
propagated from the lower-level syntactic anal-
yses, such as word segmentation, POS tagging,
and dependency parsing. Although some studies
use automatic analyses of unlabeled corpora to
enrich the training data to solve the first problem
(Fürstenau and Lapata, 2009), accumulated errors
in such automatic analysis inevitably cause nega-
tive effects. Especially, for some hard-to-analyze
languages, such as Chinese, which is still difficult
to precisely analyze word segmentations, the
performance of SRL is always limited due to the
above two problems.

In this paper, we focus on Chinese SRL and
address the problems mentioned above by using
high-quality knowledge automatically acquired
from a large-scale raw corpus. We utilize two
types of additional knowledge. The first type
is compiled using automatic syntactic analysis
(specifically, dependency parsing) and is named
surface case frames which are not expressive in
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Figure 1: Overview of the framework

semantic level. In order to compensate the draw-
back of surface case frames, we also compile an-
other type of knowledge using automatic seman-
tic roles. We call this type of knowledge deep
case frames. We illustrate the whole framework
in Figure 1. The additional knowledge can provide
not only syntactic information but also semantic
information, both of which play crucial roles in
SRL. Considering the inevitable noises from au-
tomatic analyses, we utilize an automatic selec-
tion method to select dependencies and semantic
roles of high quality. In order to show that au-
tomatically extracted knowledge is beneficial and
the quality management is indispensable, we com-
pile both types of knowledge in different quality in
our experiments and apply them to Chinese SRL.

2 Related work

The CoNLL-2009 shared task (Hajič et al., 2009)
features a substantial number of studies on SRL
that used Propbank as one of the resources. The
participating systems can be categorized into two
types: joint learning of syntactic parsing and SRL
(Tang et al., 2009; Morante et al., 2009), which
learns a unique model for syntactic parsing and
SRL jointly. This type of framework has the abil-
ity to use SRL information in syntactic parsing
for improvement, but needs a much larger search
space for decoding. The other type is called SRL-
only task (Zhao et al., 2009; Björkelund et al.,
2009), which uses automatic morphological and
syntactic information as the input in order to judge
which token plays what kind of semantic role. Our
work focuses on the second category of SRL. Our
framework is based on those used by Björkelund
et al. (2009) and Yang and Zong (2014).

There were several studies using additional
knowledge to improve syntactic and semantic
tasks. McClosky et al. (2006) used an addi-

tional unlabeled corpus to reduce data sparsity. In
syntactic level of NLP, rich knowledge, such as
predicate-argument structures and case frames, is
strong backups for various kinds of tasks. Case
frames, which clarify relations between a pred-
icate and its arguments, can support tasks rang-
ing from fundamental analysis, such as depen-
dency parsing and word similarity calculation, to
multilingual applications, such as machine transla-
tion. Japanese case frames have been successfully
compiled (Kawahara and Kurohashi, 2006), where
each case slot is represented as its case marker in
Japanese such as ‘ga’, ‘wo’, and ‘ni’. For the case
frames of other languages such as English and
Chinese, because there are no such case markers
that can help clarify syntactic structures, instead
of using case markers like in Japanese, syntactic
surface cases (i.e., subject, object, prepositional
phrase, etc.) are used for argument representation
(Jin et al., 2014). Case frames can be automat-
ically acquired using a different method such as
Chinese Restaurant Process (CRP) (Kawahara et
al., 2014) for different languages. In our work,
we employ such syntactic level knowledge, which
uses surface cases as argument representation, to
help SRL.

One basic idea of semi-supervised SRL is to au-
tomatically annotate unlabeled data using a sim-
ple classifier trained on original training data
(Fürstenau and Lapata, 2009). Since there is a sub-
stantial amount of error propagation in the SRL
pipeline, the additional automatic semantic roles
are not guaranteed to be of good quality. Also,
some studies assume that sentences that are syn-
tactically and lexically similar are likely to share
the same frame-semantic structure (Fürstenau and
Lapata, 2009). This allows them to project seman-
tic role information to unlabeled sentences using
alignments. However, the computation of these
alignments requires additional information such as
word similarity, whose quality is language depen-
dent. Less sparse features capturing lexical in-
formation of words can be also used for semi-
supervised learning of SRL. Such lexical represen-
tation can be learned from unlabeled data (Ben-
gio et al., 2003). Deschacht and Moens (2009)
used word similarity learned from unlabeled data
as additional features for SRL. Word embeddings
have also been used in several NLP tasks includ-
ing SRL (Collobert et al., 2011). Instead of using
word-level lexical knowledge, our work uses syn-
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tactic and semantic knowledge, i.e., case frames.
Word embeddings can also be incorporated into
our method but we leave this to our future work.
Zapirain et al. (2009) used selectional preferences
to improve SRL. This study is similar to our ap-
proaches but the quality of selectional preferences
was not concerned at all.

3 SRL task description

In previous studies, SRL pipeline1 can be divided
into three main steps: predicate disambiguation
(PD), argument identification (AI), and argument
classification (AC). In the PD step, the main goal
is to identify the “sense id” of each given pred-
icate. The AI step mainly focuses on judging
whether each argument is semantically related to
each predicate in a sentence. Based on the results
of the AI step, the AC step assigns a semantic role
to each semantically related argument. Basically,
the PD step and the AC step are regarded as multi-
class classification problems while the AI step is a
binary classification problem.

In the PD step, because the sense id for a cer-
tain predicate is meaningless for other predicates,
classifiers for PD are trained separately for each
predicate. We basically use the feature set pro-
posed by Björkelund et al. (2009). During the pre-
diction, there are some predicates which have not
been seen in the training data. We label the sense
of those unseen predicates using the default sense,
which is ‘01’ in our work.

4 Applying high-quality surface case
frames to SRL

4.1 High-quality dependency selection

Dependency parsing has been widely employed
for knowledge acquisition related to predicate-
argument structures. The dependency parsing
performance determines the quality of acquired
knowledge, regardless of target languages. Reduc-
ing dependency parsing errors and selecting high-
quality dependencies are of primary importance.
Jin et al. (2013) used a single set of dependency
labeled corpus (a treebank), a part of which was
used to train a base dependency parser. Another
part of the labeled corpus was used to apply au-
tomatic dependency parsing. By comparing the

1Predicate identification (PI) was not concerned in the ex-
periments because we use the data from CoNLL-2009 shared
task, in which the target predicates are given.

gold standard data and the automatic parses, cor-
rect dependencies were collected as positive ex-
amples and incorrect dependencies were collected
as negative examples. Then selecting high-quality
dependencies was regarded as a binary classifica-
tion problem. To conduct such binary classifica-
tion, they employed a set of basic features from
Yu et al. (2008). In addition to these basic fea-
tures, Jin et al. (2013) considered context features
that are thought to affect parsing performance.
Since the input for high-quality dependency selec-
tion method is a dependency tree, tree features are
used to identify dependency quality. Also, some
dependency parsers output the score of each de-
pendency (i.e., edge confidence value) during the
parsing process. They used the real value of the
score as an additional feature. We first apply this
approach to select high-quality dependencies from
automatic parses.

4.2 High-quality surface case frame
construction

After applying dependency parsing on a large-
scale raw corpus, predicate-argument structures
(PASs) are extracted using the high-quality depen-
dencies. Arguments are represented by their de-
pendency labels (i.e., subject, object, etc.) For
each predicate, all the PASs are clustered into dif-
ferent case frames to reflect different semantic us-
ages. We show an example of case frames for the
verb ‘谢’ in Table 1, which has multiple mean-
ings. ‘谢(1)’ is the case frame used to represent the
sense of ‘withering of flower’. Similarly, the sense
of ‘谢’ which means ‘to thank’ is represented by
case frame ‘谢(2)’. ‘谢(3)’ is the case frame for
the sense of ‘curtain call’. In other words, case
frames are knowledge that solves word sense dis-
ambiguation (WSD) by clustering the PASs. We
applied the CRP method described by (Kawahara
et al., 2014) for clustering the high-quality PASs
to compile high-quality case frames.

4.3 Surface case features for SRL
From the surface case PASs, we extract four types
of additional features, for both AI and AC step.
These features are described in the upper part of
Table 2. We use binned values (i.e., high, mid-
dle and low) for all of the feature values calcu-
lated from the knowledge. More specifically, for
each type of feature, we define the first, second
and third tertile of all the feature values as low,
middle and high correspondingly. Surface case
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verb surface case instance with frequency in original corpus
谢(1) nsubj 花儿(flower):14,花(flower):22

ad 都(all):16,也(also):6
谢(2) nsubj 你们(you):1

dobj 您(you):8,我(me):6
ad 怎么(how):8,多(very):1

谢(3) nsubj 大战(battle):1
dobj 幕(curtain):6
ad 圆满(successfully):2,也(also):1,正式(officially):1

...

Table 1: Examples of Chinese surface case frames

frames are clustered PASs according to each pred-
icate’s semantic usage. Therefore, instead of uti-
lizing all the predicate-argument structures, it is
intuitive to use the predicate-argument structures
only from the corresponding case frames. So we
also create four types of features extracted from
case frames. These features are listed in the lower
part of Table 2.

Note that a case frame ID and a PropBank sense
ID do not correspond to each other. In practice, the
number of case frames is always larger than the
number of sense in PropBank for each verb. As
a result, a mapping process that aligns case frame
id(s) to PropBank verb sense is applied. Fisrt, we
assign automatic dependency labels to the Prop-
Bank corpus using the Stanford parser. We then
calculate the similarity between a PropBank sense
and a case frame by measuring the PAS similar-
ity. As shown in the left part of Figure 2, for a
certain predicate with a sense ID in PropBank, we
represent the predicate in each sense by using the
collection of all the instances in each syntactic role
slot. Each predicate with a sense ID is then trans-
formed into a vector space, which we name PAS
vector. The same transformation is applied to case
frames. Then the cosine similarity between vec-
tors transformed from a PropBank sense and case
frames is calculated. A PAS vector is the con-
catenation of each syntactic role vector. To form
a syntactic role vector, we simply take the aver-
age of weighted summation of the word vectors
within the case slot. Word vectors are acquired us-
ing word2vec2 from the same raw corpus that we
use for knowledge acquisition (see Section 7.1).
In our experiments, we only used syntactic role
“subj” (subject) and “dobj” (direct object) because

2https://code.google.com/archive/p/
word2vec/source/default/source

these two syntactic roles are considered to be rel-
atively more informative.

5 Main problem of surface case frames

In previous work (Kawahara and Kurohashi,
2006), case frames for Japanese are composed
of all the instances and their corresponding case
marker. For example, all the instances in “ga” case
are basically the “subject” of the given predicate.
Instances in “wo” case are basically the “direct
object” of the given predicate. Other cases like
“ni” can indicate “location”, “time” or “direction”.
During the automatic PAS extraction for Japanese,
there are also ambiguous case makers that can rep-
resent multiple cases. The most common one,
for example, is “wa” case in Japanese. This case
marker always functions as a topic marker. The
argument in “wa” case is normally emphasized as
the topic of the sentence. It can be equal to either
“ga” case or “wo” case, and sometimes “ni” case.
To avoid such ambiguous cases, one can simply
discard all the instances in “wa” case to make case
frames more precise.

For languages that lack such case markers
(e.g., English and Chinese), case frames are com-
posed of automatic syntactic roles (Jin et al.,
2014). Such syntactic roles include “subject”, “di-
rect object”, “indirect object” and “prepositional
phrases”. Such surface cases have limitations on
case representation especially for Chinese. Take
the following sentences as examples.

(1) 苹果 (apples) /我 (I) /吃了 (eaten) /很多 (a
lot).

(2) 我 (I) /苹果 (apples) /吃了 (eaten) /很多 (a
lot).

(3) 我 (I) /吃了 (eaten) /很多(a lot) /苹果 (ap-
ples).

(4) 我 (I) /吃了 (eaten) /很多(a lot).
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feature description

Freq the co-occurrence frequency of a predicate-argument pair without considering the
syntactic role of the argument

Pmi the point-wise mutual information (PMI) value for each predicate-argument pair
without considering the syntactic role of the argument

PAfreq the frequency of a argument being a certain syntactic role of a predicate

PApmi the PMI value of an argument with its syntactic role and the predicate

CFFreq Freq value calculated only from within the corresponding case frames

CFPmi Pmi value calculated only from within the corresponding case frames

CFPAfreq PAFreq value calculated only from within the corresponding case frames

CFPApmi PApmi value calculated only from within the corresponding case frames

Table 2: Surface case features for SRL
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Figure 2: Overview of mapping case frames to PropBank sense

(5) 苹果 (apples) /吃了 (eaten) /很多 (a lot).

The first three sentences have the same meaning:
“I have eaten a lot of apples.” However, as we
can see from the sentences, the word “苹果 (ap-
ple)” which is a direct object of “吃了 (eaten)”,
and the word “我 (I)” can be filled in various word
orders. Also, because omissions occur frequently
in Chinese, sentence 4 and 5 are also commonly
used, which mean “I have eaten a lot” and “(I)
have eaten a lot of apples”, respectively. With-
out considering the actual meaning of “我 (I)”
and “苹果 (apples)”, both of them in sentence
4 and 5 are labeled as “subject” in the surface
case representation following the syntactic gram-
mar. If one tries to figure out which “subject” is
actually in Nominative Case (which stands for the
person/thing who provides the action) and which
“subject” is in Accusative Case (which stands for
the thing/person who receives/suffers from the ac-
tion), it is always problematic because of the flex-
ible word order and omission.

Although some studies found that applying sim-
ple mapping rules for Nominative Case and Ac-
cusative Case can achieve an overall high base-
line for English, we found that this simple map-
ping cannot work well for Chinese. Here is an
example which Chinese people are using for self-
deprecating.

(6) 中国 (Chinese) / 乒乓球 (table tennis) / 谁
(who) /也 (ever) /赢 (win) /不了 (not): No-
body can win Chinese table tennis.

(7) 中国 (Chinese) / 足球 (soccer) / 谁 (who)
/ 也 (ever) / 赢 (win) / 不了 (not): Chinese
soccer cannot win anybody.

“Table tennis” and “soccer” should be labeled as
Accusative Case and Nominative Case differently
even though the predicate and the syntactic struc-
ture for both the sentences are identical.

Similar phenomena also occur in Japanese and
make it difficult to analyze as well. However, in
case of Japanese, it is possible to make use of the

572



morphemes attached to the predicate. For exam-
ple, the following sentences are the Japanese trans-
lations for sentence 4 and 5.
(8) 私が (I) /たくさん (a lot) /食べた (eaten).
(9) りんごが (apples) /たくさん (a lot) /食べ
られた (eaten).

There is always an additional morpheme (e.g., “ら
れた”) attached to the predicate in order to indi-
cate its voice. In the above example, sentence 8
can be regarded as active voice and sentence 9 is
in passive voice. Unfortunately, Chinese is a lan-
guage that lacks morpheme information. There are
very few such markers that indicate the transitiv-
ity, voice and tense. This makes it almost impos-
sible for a system to automatically recognize the
ambiguous syntactic roles. To solve this problem,
based on the syntactic analysis, we apply an SRL
process to discover a deeper level case representa-
tion.

6 Applying high-quality deep case
frames to SRL

6.1 High-quality semantic role selection
Similar to the previous work described in Jin et al.
(2013), instead of using all the SRL outputs, we
propose to use only automatically generated se-
mantic roles of high quality.

In particular, the standard training section of the
human-annotated data is used to train a base SRL
model (which include three sub-models for pred-
icate sense disambiguation (PD), argument iden-
tification (AI) and argument classification (AC)).
Then, another part of the human-annotated data is
used to apply SRL using the base model. From
these results, we acquire training data for seman-
tic role selection by collecting each semantic role.
We then judge the correctness of each semantic
role according to the gold standard annotations.
All correct semantic roles are used as positive ex-
amples and the incorrect ones are used as nega-
tive examples for semantic role selection. Judging
whether an automatic semantic role is reliable can
be regarded as a binary classification problem. We
use SVMs to solve this problem. We use the fea-
ture set for SRL described in Jin et al. (2015) as
basic features. It contains predicate features that
are extracted from the target predicate; argument
features which are extracted from each candidate
argument. We also use surface case frames, which
have a positive effect on SRL, as additional knowl-
edge.

6.2 High-quality deep case frame
construction

Due to the major issues described in Section 5,
case frames constructed using surface cases may
be problematic. For example, for the predicate “吃
(eat)”, both the argument “苹果 (apple)” and “我
(I)” are assigned to the same surface case “sub-
ject”. If one tries to use this kind of surface case
knowledge for tasks that require semantic infor-
mation, such as machine translation (MT), it may
lead to a performance drop. So we propose to con-
struct deep case frames that are relatively more
representative than the surface case frames. By
the deep case, we mean using the semantic roles
for case frame construction.

Compared to syntactic analysis, SRL is mainly
used to clarify deeper-level semantic relations
(e.g., [who] do [what kind of] thing to [whom]
in [what time]) in the sentence, which has a
better representation for predicate-argument rela-
tions. On the other hand, this task is always based
on the tasks in preceding levels, such as morpho-
logical analysis and syntactic parsing. Especially,
the information provided by syntactic parsing is
crucial to achieve a good performance in SRL. An
SRL system also suffers from the training data size
issue as most of the machine learning approaches
do. Extensive human efforts are required in order
to construct such training data. Sometimes, the re-
quirements for annotators can be higher than those
for syntactic analysis. These factors along with
the automatic analysis errors propagated from the
lower-level analyses make it almost impossible for
an SRL system to achieve a high performance.

For predicate identification (PI), we regard ev-
ery word with a POS tag begining with “V” as a
predicate. The PD step in the SRL pipeline assigns
a sense ID (frame ID) to each predicate. This is
equivalent to the unsupervised clustering for sur-
face case frames and thus no additional clustering
process is required. After argument identification
and argument classification, we only use these se-
mantic roles with high reliability. For each pred-
icate with different frame IDs, we collect all the
high-quality semantic roles to compose the deep
case frames.

6.3 Using high-quality deep case frames for
SRL

Syntactic information such as dependencies is es-
sential for SRL. In Section 4, we used surface

573



feature description

SRFreq the co-occurrence frequency of a predicate-argument pair without considering the
semantic role of the argument

SRPmi the PMI value for each predicate-argument pair without considering the semantic
role of the argument

SRPAfreq the frequency of a argument being a certain semantic role of a predicate

SRPApmi the PMI value of an argument with its semantic role and the predicate

DCFFreq SRFreq value calculated only from within the corresponding deep case frame

DCFPmi SRPmi value calculated only from within the corresponding deep case frame

DCFPAfreq SRPAfreq value calculated only from within the corresponding deep case frame

DCFPApmi SRPApmi value calculated only from within the corresponding deep case frame

Table 3: Deep case features for SRL

case frames to provide additional knowledge espe-
cially syntactic-level knowledge, for an SRL sys-
tem and gained a slight improvement as shown in
Section 7. Deep case frames are compiled using
automatic semantic roles that use semantic-level
representation. Thus, we consider that using deep
case frames as additional knowledge has a more
direct impact on the performance on SRL. Simi-
lar to the method described in Section 4, we also
propose a set of features extracted from deep case
frames which are listed in Table 3. The first four
features do not concern the predicate sense. These
features are similar to the predicate-argument pair
features described in Section 4. The rest four fea-
tures are similar to the case frame features de-
scribed in Section 4. However, because the deep
case frame ID is identical to the PropBank ID, no
mapping processes are needed.

7 Experiments

7.1 Experimental settings

For large-scale knowledge acquisition, 40 mil-
lion sentences from Chinese Gigaword 5.0
(LDC2011T13)3 were used.

For the high-quality dependency selection ap-
proach in the knowledge construction pipeline, the
Stanford parser was used to apply dependency
parsing. The training section of Chinese Treebank
7.0 was used to train the dependency parser and
the official development section was used to train
a classifier for high-quality dependency selection.
Using the official evaluation section of CTB 7.0,

3We only used sentences written in simplified characters
in Chinese Gigaword.

we evaluated the quality of those selected depen-
dencies using unlabeled attachment score (UAS),
which calculates the percentage of correctly iden-
tified dependency heads.

For SRL, we used the Chinese section of
CoNLL-2009 shared task data (we substituted
the syntactic dependencies and dependency labels
produced by the Stanford parser). Automatically
obtained morphological and syntactic information
(the columns begin with “P”) was used. PD and
AI, AC step are regarded as multi-class classifi-
cation problems. We employed OPAL4 to solve
these problems. We set the options as follows:
polynomial kernel with degree 2; passive aggres-
sive I learner; 20 iterations. The base SRL system
without using additional knowledge was used as a
baseline. To examine the effect of different qual-
ity of knowledge, we used different set of PASs
which were extracted under different dependency
selection thresholds (20%, 50%, and 100%). The
official script provided on the CoNLL-2009 shared
task website was used for evaluation.

For semantic role selection, similar to depen-
dency selection, the training section of CoNLL-
2009 shared task data was used to train the base
SRL model. The development section in CoNLL-
2009 shared task data was used to apply automatic
SRL and obtain training data for the semantic role
selector. We evaluated the semantic role selec-
tion approach by calculating the percentage of cor-
rectly judged semantic roles (predicate senses are
not counted). For deep case frame construction,
we used the Stanford parser for syntactic analysis.

4http://www.tkl.iis.u-tokyo.ac.jp/
˜ynaga/opal/
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Figure 3: Precision-recall curve of dependency selection & semantic role selection

method precision recall F1
baseline 80.66% 72.98% 76.63
baseline + surface case frames (100%) 79.86% 72.72% 76.12
baseline + surface case frames (50%) 80.40% 73.04% 76.54
baseline + surface case frames (20%) 80.73% 73.32% **76.85
baseline + deep case frames (100%) 81.22% 73.55% **77.19
baseline + deep case frames (50%) 81.30% 73.70% **77.31
baseline + deep case frames (20%) 81.57% 73.68% **77.42

Table 4: Evaluation results of Chinese SRL using surface and deep case frames. The ** mark and * mark
mean that the result is regarded as significant (with a p value < 0.01 and a p value < 0.05, respectively)
using McNemar’s test.

The base SRL system was used to assign seman-
tic roles. We applied the proposed framework to
40 million sentences from Chinese Gigaword 5.0.
We constructed deep case frames of different qual-
ity (20%, 50%, and 100%) to extract extra features
to support the base SRL system.

7.2 Experimental results
Figure 3 shows the precision-recall curves of de-
pendency selection and semantic role selection.
For dependency selection, we achieved a preci-
sion over 90% when lowering the recall to around
20%. For semantic role selection, using additional
surface case frame features gains a slight improve-
ment compared to the basic features.

Table 4 shows the experimental results of SRL
using surface and deep case frames as additional
features. Knowledge (n%) indicates that the top
n% (according to the classifier) of the automat-
ically extracted knowledge was used. ‘100%’
means that the selection step was not applied. It
is worth pointing out that when using the baseline
method, we achieved an F-value of around 79.4 on
CoNLL-2009 shared task original data set (where
the dependency labels follow the MaltParser style,
which is different from the Stanford dependen-
cies). This result has outperformed the best sys-

tem for Chinese SRL in CoNLL-2009 shared task,
which was 78.60. When applying the baseline
system on the substituted version of dataset for
dependency label consistency with the additional
knowledge, the baseline F-value drops to 76.63.
As we can see from the results, using deep case
frames gained more improvements than using sur-
face case frames. This is because deep case frames
are able to directly provide semantic-level infor-
mation that is insufficient in the training data of
the base SRL system. Furthermore, the results
show that the high-quality semantic role selection
approach has a positive effect on SRL.

8 Conclusion & future work

We proposed a method for using additional knowl-
edge to improve Chinese SRL. To address the case
ambiguity problem in the surface case represen-
tation, especially for Chinese, we utilized auto-
matic semantic roles produced by an SRL system
for a better representation. The experimental re-
sults showed a promising result for high-quality
semantic role selection. Also, using high-quality
deep case frames that are composed of semantic
roles can significantly improve the baseline SRL
system.
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We plan to make use of other low-level knowl-
edge such as word embeddings (Collobert et al.,
2011) and word clusters (Koo et al., 2008) to
improve dependency parsing and SRL. The re-
cent SRL approaches are mostly point-wise. Fea-
tures are extracted from only pairs of the predi-
cate and an argument candidate. We plan to de-
sign a higher-order system to capture more global
features following the idea of higher-order depen-
dency parsing. Also, reranking is widely utilized
in many SRL systems and we plan to combine our
surface/deep case knowledge with a reranker in or-
der to further improve Chinese SRL.
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Abstract

Entities are essential elements of natu-
ral language. In this paper, we present
methods for learning multi-level represen-
tations of entities on three complemen-
tary levels: character (character patterns
in entity names extracted, e.g., by neural
networks), word (embeddings of words
in entity names) and entity (entity em-
beddings). We investigate state-of-the-
art learning methods on each level and
find large differences, e.g., for deep learn-
ing models, traditional ngram features and
the subword model of fasttext (Bo-
janowski et al., 2016) on the character
level; for word2vec (Mikolov et al.,
2013) on the word level; and for the
order-aware model wang2vec (Ling et
al., 2015a) on the entity level.

We confirm experimentally that each level
of representation contributes complemen-
tary information and a joint representation
of all three levels improves the existing
embedding based baseline for fine-grained
entity typing by a large margin. Addi-
tionally, we show that adding information
from entity descriptions further improves
multi-level representations of entities.

1 Introduction

Knowledge about entities is essential for under-
standing human language. This knowledge can
be attributional (e.g., canFly, isEdible), type-based
(e.g., isFood, isPolitician, isDisease) or relational
(e.g, marriedTo, bornIn). Knowledge bases (KBs)
are designed to store this information in a struc-
tured way, so that it can be queried easily. Exam-
ples of such KBs are Freebase (Bollacker et al.,
2008), Wikipedia, Google knowledge graph and

YAGO (Suchanek et al., 2007). For automatic up-
dating and completing the entity knowledge, text
resources such as news, user forums, textbooks or
any other data in the form of text are important
sources. Therefore, information extraction meth-
ods have been introduced to extract knowledge
about entities from text. In this paper, we focus on
the extraction of entity types, i.e., assigning types
to – or typing – entities. Type information can help
extraction of relations by applying constraints on
relation arguments.

We address a problem setting in which the fol-
lowing are given: a KB with a set of entities
E, a set of types T and a membership function
m : E × T 7→ {0, 1} such that m(e, t) = 1 iff
entity e has type t; and a large corpus C in which
mentions of E are annotated. In this setting, we
address the task of fine-grained entity typing: we
want to learn a probability function S(e, t) for a
pair of entity e and type t and based on S(e, t) in-
fer whether m(e, t) = 1 holds, i.e., whether entity
e is a member of type t.

We address this problem by learning a multi-
level representation for an entity that contains the
information necessary for typing it. One important
source is the contexts in which the entity is used.
We can take the standard method of learning em-
beddings for words and extend it to learning em-
beddings for entities. This requires the use of an
entity linker and can be implemented by replac-
ing all occurrences of the entity by a unique to-
ken. We refer to entity embeddings as entity-level
representations. Previously, entity embeddings
have been learned mostly using bag-of-word mod-
els like word2vec (e.g., by Wang et al. (2014)
and Yaghoobzadeh and Schütze (2015)). We show
below that order information is critical for high-
quality entity embeddings.

Entity-level representations are often uninfor-
mative for rare entities, so that using only entity
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embeddings is likely to produce poor results. In
this paper, we use entity names as a source of in-
formation that is complementary to entity embed-
dings. We define an entity name as a noun phrase
that is used to refer to an entity. We learn character
and word level representations of entity names.

For the character-level representation, we adopt
different character-level neural network architec-
tures. Our intuition is that there is sub/cross word
information, e.g., orthographic patterns, that is
helpful to get better entity representations, espe-
cially for rare entities. A simple example is that
a three-token sequence containing an initial like
“P.” surrounded by two capitalized words (“Rolph
P. Kugl”) is likely to refer to a person.

We compute the word-level representation as
the sum of the embeddings of the words that make
up the entity name. The sum of the embeddings
accumulates evidence for a type/property over all
constituents, e.g., a name containing “stadium”,
“lake” or “cemetery” is likely to refer to a location.
In this paper, we compute our word level repre-
sentation with two types of word embeddings: (i)
using only contextual information of words in the
corpus, e.g., by word2vec (Mikolov et al., 2013)
and (ii) using subword as well as contextual in-
formation of words, e.g., by Facebook’s recently
released fasttext (Bojanowski et al., 2016).

In this paper, we integrate character-level and
word-level with entity-level representations to im-
prove the results of previous work on fine-grained
typing of KB entities. We also show how descrip-
tions of entities in a KB can be a complementary
source of information to our multi-level represen-
tation to improve the results of entity typing, espe-
cially for rare entities.

Our main contributions in this paper are:

• We propose new methods for learning en-
tity representations on three levels: character-
level, word-level and entity-level.

• We show that these levels are complementary
and a joint model that uses all three levels im-
proves the state of the art on the task of fine-
grained entity typing by a large margin.

• We experimentally show that an order depen-
dent embedding is more informative than its
bag-of-word counterpart for entity represen-
tation.

We release our dataset and source codes:
cistern.cis.lmu.de/figment2/.

2 Related Work

Entity representation. Two main sources of in-
formation used for learning entity representation
are: (i) links and descriptions in KB, (ii) name and
contexts in corpora. We focus on name and con-
texts in corpora, but we also include (Wikipedia)
descriptions. We represent entities on three levels:
entity, word and character. Our entity-level repre-
sentation is similar to work on relation extraction
(Wang et al., 2014; Wang and Li, 2016), entity
linking (Yamada et al., 2016; Fang et al., 2016),
and entity typing (Yaghoobzadeh and Schütze,
2015). Our word-level representation with distri-
butional word embeddings is similarly used to rep-
resent entities for entity linking (Sun et al., 2015)
and relation extraction (Socher et al., 2013; Wang
et al., 2014). Novel entity representation methods
we introduce in this paper are representation based
on fasttext (Bojanowski et al., 2016) sub-
word embeddings, several character-level repre-
sentations, “order-aware” entity-level embeddings
and the combination of several different represen-
tations into one multi-level representation.

Character-subword level neural networks.
Character-level convolutional neural networks
(CNNs) are applied by dos Santos and Zadrozny
(2014) to part of speech (POS) tagging, by dos
Santos and Guimarães (2015), Ma and Hovy
(2016), and Chiu and Nichols (2016) to named
entity recognition (NER), by Zhang et al. (2015)
and Zhang and LeCun (2015) to sentiment anal-
ysis and text categorization, and by Kim et al.
(2016) to language modeling (LM). Character-
level LSTM is applied by Ling et al. (2015b) to
LM and POS tagging, by Lample et al. (2016) to
NER, by Ballesteros et al. (2015) to parsing mor-
phologically rich languages, and by Cao and Rei
(2016) to learning word embeddings. Bojanowski
et al. (2016) learn word embeddings by repre-
senting words with the average of their character
ngrams (subwords) embeddings. Similarly, Chen
et al. (2015) extends word2vec for Chinese with
joint modeling with characters.

Fine-grained entity typing. Our task is to in-
fer fine-grained types of KB entities. KB comple-
tion is an application of this task. Yaghoobzadeh
and Schütze (2015)’s FIGMENT system addresses
this task with only contextual information; they
do not use character-level and word-level features
of entity names. Neelakantan and Chang (2015)
and Xie et al. (2016) also address a similar task,
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Entity Representation

Hidden Layer

Output Layer (type probabilities)

Figure 1: Schematic diagram of our architecture
for entity classification. “Entity Representation”
(~v(e)) is the (one-level or multi-level) vector rep-
resentation of entity. Size of output layer is |T |.

but they rely on entity descriptions in KBs, which
in many settings are not available. The problem
of Fine-grained mention typing (FGMT) (Yosef
et al., 2012; Ling and Weld, 2012; Yogatama et
al., 2015; Del Corro et al., 2015; Shimaoka et
al., 2016; Ren et al., 2016) is related to our task.
FGMT classifies single mentions of named enti-
ties to their context dependent types whereas we
attempt to identify all types of a KB entity from
the aggregation of all its mentions. FGMT can
still be evaluated in our task by aggregating the
mention level decisions but as we will show in our
experiments for one system, i.e., FIGER (Ling and
Weld, 2012), our entity embedding based models
are better in entity typing.

3 Fine-grained entity typing

Given (i) a KB with a set of entities E, (ii) a set of
types T , and (iii) a large corpus C in which men-
tions of E are linked, we address the task of fine-
grained entity typing (Yaghoobzadeh and Schütze,
2015): predict whether entity e is a member of
type t or not. To do so, we use a set of training
examples to learn P (t|e): the probability that en-
tity e has type t. These probabilities can be used
to assign new types to entities covered in the KB
as well as typing unknown entities.

We learn P (t|e) with a general architecture; see
Figure 1. The output layer has size |T |. Unit t of
this layer outputs the probability for type t. “En-
tity Representation” (~v(e)) is the vector represen-
tation of entity e – we will describe in detail in
the rest of this section what forms ~v(e) takes. We
model P (t|e) as a multi-label classification, and
train a multilayer perceptron (MLP) with one hid-
den layer:

[
P (t1|e) . . . P (tT |e)

]
= σ

(
Woutf

(
Win~v(e)

))

(1)
where Win ∈ Rh×d is the weight matrix from

~v(e) ∈ Rd to the hidden layer with size h. f is
the rectifier function. Wout ∈ R|T |×h is the weight
matrix from hidden layer to output layer of size
|T |. σ is the sigmoid function. Our objective is
binary cross entropy summed over types:

∑

t

−
(
mt log pt + (1−mt) log (1− pt)

)

where mt is the truth and pt the prediction.
The key difficulty when trying to compute

P (t|e) is in learning a good representation for en-
tity e. We make use of contexts and name of e to
represent its feature vector on the three levels of
entity, word and character.

3.1 Entity-level representation

Distributional representations or embeddings are
commonly used for words. The underlying hy-
pothesis is that words with similar meanings tend
to occur in similar contexts (Harris, 1954) and
therefore cooccur with similar context words. We
can extend the distributional hypothesis to enti-
ties (cf. Wang et al. (2014), Yaghoobzadeh and
Schütze (2015)): entities with similar meanings
tend to have similar contexts. Thus, we can learn
a d dimensional embedding ~v(e) of entity e from
a corpus in which all mentions of the entity have
been replaced by a special identifier. We refer to
these entity vectors as the entity level representa-
tion (ELR).

In previous work, order information of context
words (relative position of words in the contexts)
was generally ignored and objectives similar to the
SkipGram (henceforth: SKIP) model were used
to learn ~v(e). However, the bag-of-word context
is difficult to distinguish for pairs of types like
(restaurant,food) and (author,book). This suggests
that using order aware embedding models is im-
portant for entities. Therefore, we apply Ling et
al. (2015a)’s extended version of SKIP, Structured
SKIP (SSKIP). It incorporates the order of context
words into the objective. We compare it with SKIP
embeddings in our experiments.

3.2 Word-level representation

Words inside entity names are important sources
of information for typing entities. We define the
word-level representation (WLR) as the average of
the embeddings of the words that the entity name
contains ~v(e) = 1/n

∑n
i=1 ~v(wi) where ~v(wi) is

the embedding of the ith word of an entity name
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of length n. We opt for simple averaging since
entity names often consist of a small number of
words with clear semantics. Thus, averaging is a
promising way of combining the information that
each word contributes.

The word embedding, ~w, itself can be learned
from models with different granularity levels. Em-
bedding models that consider words as atomic
units in the corpus, e.g., SKIP and SSKIP, are
word-level. On the other hand, embedding
models that represent words with their charac-
ter ngrams, e.g., fasttext (Bojanowski et al.,
2016), are subword-level. Based on this, we con-
sider and evaluate word-level WLR (WWLR)
and subword-level WLR (SWLR) in this paper.1

Lipofen

Convolution 
layer

Max Pooling

Lookup table 
layer

Character-level Representation

Figure 2: Example architecture for the character-
level CNN with max pooling. The input is
“Lipofen”. Character embedding size is three.
There are three filters of width 2 and four filters
of width 4.

3.3 Character-level representation
For computing the character level representation
(CLR), we design models that try to type an entity
based on the sequence of characters of its name.
Our hypothesis is that names of entities of a spe-
cific type often have similar character patterns.
Entities of type ETHNICITY often end in “ish”
and “ian”, e.g., “Spanish” and “Russian”. Entities
of type MEDICINE often end in “en”: “Lipofen”,
“acetaminophen”. Also, some types tend to have
specific cross-word shapes in their entities, e.g.,

1Subword models have properties of both character-level
models (subwords are character ngrams) and of word-level
models (they do not cross boundaries between words). They
probably could be put in either category, but in our context fit
the word-level category better because we see the granularity
level with respect to the entities and not words.

PERSON names usually consist of two words, or
MUSIC names are usually long, containing several
words.

The first layer of the character-level models is a
lookup table that maps each character to an em-
bedding of size dc. These embeddings capture
similarities between characters, e.g., similarity in
type of phoneme encoded (consonant/vowel) or
similarity in case (lower/upper). The output of
the lookup layer for an entity name is a matrix
C ∈ Rl×dc where l is the maximum length of a
name and all names are padded to length l. This
length l includes special start/end characters that
bracket the entity name.

We experiment with four architectures to pro-
duce character-level representations in this paper:
FORWARD (direct forwarding of character em-
beddings), CNNs, LSTMs and BiLSTMs. The
output of each architecture then takes the place of
the entity representation ~v(e) in Figure 1.

FORWARD simply concatenates all rows of
matrix C; thus, ~v(e) ∈ Rdc∗l.

The CNN uses k filters of different window
widths w to narrowly convolve C. For each fil-
ter H ∈ Rdc×w, the result of the convolution of H
over matrix C is feature map f ∈ Rl−w+1:
f [i] = rectifier(C[:,i:i+w−1] �H + b)

where rectifier is the activation function, b is the
bias, C[:,i:i+w−1] are the columns i to i+w− 1 of
C, 1 ≤ w ≤ 10 are the window widths we con-
sider and � is the sum of element-wise multipli-
cation. Max pooling then gives us one feature for
each filter. The concatenation of all these features
is our representation: ~v(e) ∈ Rk. An example
CNN architecture is show in Figure 2.

The input to the LSTM is the character se-
quence in matrix C, i.e., x1, . . . , xl ∈ Rdc . It
generates the state sequence h1, ..., hl+1 and the
output is the last state ~v(e) ∈ Rdh .2

The BiLSTM consists of two LSTMs, one go-
ing forward, one going backward. The first state of
the backward LSTM is initialized as hl+1, the last
state of the forward LSTM. The BiLSTM entity
representation is the concatenation of last states of
forward and backward LSTMs, i.e., ~v(e) ∈ R2∗dh .

3.4 Multi-level representations

Our different levels of representations can give
complementary information about entities.

2We use Blocks (van Merriënboer et al., 2015).
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Character-level 
Representation

Word-level 
Representation

Entity-level 
Representation

Entity Representation

Figure 3: Multi-level representation

WLR and CLR. Both WLR models, SWLR
and WWLR, do not have access to the cross-word
character ngrams of entity names while CLR mod-
els do. Also, CLR is task specific by training on
the entity typing dataset while WLR is generic. On
the other hand, WWLR and SWLR models have
access to information that CLR ignores: the tok-
enization of entity names into words and embed-
dings of these words. It is clear that words are par-
ticularly important character sequences since they
often correspond to linguistic units with clearly
identifiable semantics – which is not true for most
character sequences. For many entities, the words
they contain are a better basis for typing than
the character sequence. For example, even if
“nectarine” and “compote” did not occur in any
names in the training corpus, we can still learn
good word embeddings from their non-entity oc-
currences. This then allows us to correctly type the
entity “Aunt Mary’s Nectarine Compote” as FOOD

based on the sum of the word embeddings.
WLR/CLR and ELR. Representations from

entity names, i.e., WLR and CLR, by themselves
are limited because many classes of names can be
used for different types of entities; e.g., person
names do not contain hints as to whether they are
referring to a politician or athlete. In contrast, the
ELR embedding is based on an entity’s contexts,
which are often informative for each entity and
can distinguish politicians from athletes. On the
other hand, not all entities have sufficiently many
informative contexts in the corpus. For these en-
tities, their name can be a complementary source
of information and character/word level represen-
tations can increase typing accuracy.

Thus, we introduce joint models that use com-
binations of the three levels. Each multi-level
model concatenates several levels. We train the
constituent embeddings as follows. WLR and
ELR are computed as described above and are not
changed during training. CLR – produced by one
of the character-level networks described above
– is initialized randomly and then tuned during

training. Thus, it can focus on complementary in-
formation related to the task that is not already
present in other levels. The schematic diagram
of our multi-level representation is shown in Fig-
ure 3.

4 Experimental setup and results

4.1 Setup
Entity datasets and corpus. We address
the task of fine-grained entity typing and use
Yaghoobzadeh and Schütze (2015)’s FIGMENT
dataset3 for evaluation. The FIGMENT corpus
is part of a version of ClueWeb in which Free-
base entities are annotated using FACC1 (URL,
2016b; Gabrilovich et al., 2013). The FIGMENT
entity datasets contain 200,000 Freebase entities
that were mapped to 102 FIGER types (Ling and
Weld, 2012). We use the same train (50%), dev
(20%) and test (30%) partitions as Yaghoobzadeh
and Schütze (2015) and extract the names from
mentions of dataset entities in the corpus. We take
the most frequent name for dev and test entities
and three most frequent names for train (each one
tagged with entity types).

Adding parent types to refine entity dataset.
FIGMENT ignores that FIGER is a proper hierar-
chy of types; e.g., while HOSPITAL is a subtype of
BUILDING according to FIGER, there are entities
in FIGMENT that are hospitals, but not buildings.4

Therefore, we modified the FIGMENT dataset by
adding for each assigned type (e.g., HOSPITAL) its
parents (e.g., BUILDING). This makes FIGMENT
more consistent and eliminates spurious false neg-
atives (BUILDING in the example).

We now describe our baselines: (i) BOW
& NSL: hand-crafted features, (ii) FIGMENT
(Yaghoobzadeh and Schütze, 2015) and (iii)
adapted version of FIGER (Ling and Weld, 2012).

We implement the following two feature sets
from the literature as a hand-crafted baseline for
our character and word level models. (i) BOW: in-
dividual words of entity name (both as-is and low-
ercased); (ii) NSL (ngram-shape-length): shape
and length of the entity name (cf. Ling and Weld
(2012)), character n-grams, 1 ≤ n ≤ nmax, nmax =
5 (we also tried nmax = 7, but results were worse
on dev) and normalized character n-grams: lower-
cased, digits replaced by “7”, punctuation replaced
by “.”. These features are represented as a sparse

3cistern.cis.lmu.de/figment/
4See github.com/xiaoling/figer for FIGER
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binary vector ~v(e) that is input to the architecture
in Figure 1.

FIGMENT is the model for entity typing pre-
sented by Yaghoobzadeh and Schütze (2015).
The authors only use entity-level representations
for entities trained by SkipGram, so the FIG-
MENT baseline corresponds to the entity-level re-
sult shown as ELR(SKIP) in the tables.

The third baseline is using an existing mention-
level entity typing system, FIGER (Ling and Weld,
2012). FIGER uses a wide variety of features
on different levels (including parsing-based fea-
tures) from contexts of entity mentions as well as
the mentions themselves and returns a score for
each mention-type instance in the corpus. We pro-
vide the ClueWeb/FACC1 segmentation of enti-
ties, so FIGER does not need to recognize enti-
ties.5 We use the trained model provided by the
authors and normalize FIGER scores using soft-
max to make them comparable for aggregation.
We experimented with different aggregation func-
tions (including maximum and k-largest-scores for
a type), but we use the average of scores since it
gave us the best result on dev. We call this baseline
AGG-FIGER.

Distributional embeddings. For WWLR and
ELR, we use SkipGram model in word2vec and
SSkip model in wang2vec (Ling et al., 2015a) to
learn embeddings for words, entities and types. To
obtain embeddings for all three in the same space,
we process ClueWeb/FACC1 as follows. For each
sentence s, we add three copies: s itself, a copy
of s in which each entity is replaced with its Free-
base identifier (MID) and a copy in which each
entity (not test entities though) is replaced with an
ID indicating its notable type. The resulting cor-
pus contains around 4 billion tokens and 1.5 bil-
lion types.

We run SKIP and SSkip with the same setup
(200 dimensions, 10 negative samples, window
size 5, word frequency threshold of 100)6 on this
corpus to learn embeddings for words, entities and
FIGER types. Having entities and types in the
same vector space, we can add another feature
vector ~v(e) ∈ R|T | (referred to as TC below): for
each entity, we compute cosine similarity of its en-
tity vector with all type vectors.

For SWLR, we use fasttext7 to learn word
5Mention typing is separated from recognition in FIGER

model. So it can use our segmentation of entities.
6The threshold does not apply for MIDs.
7github.com/facebookresearch/fastText

embeddings from the ClueWeb/FACC1 corpus.
We use similar settings as our WWLR SKIP and
SSkip embeddings and keep the defaults of other
hyperparameters. Since the trained model of
fasttext is applicable for new words, we ap-
ply the model to get embeddings for the filtered
rare words as well.

model hyperparameters
CLR(FF) dc = 15, hmlp = 600
CLR(LSTM) dc = 70, dh = 70, hmlp = 300
CLR(BiLSTM) dc = 50, dh = 50, hmlp = 200
CLR(CNN) dc = 10, w = [1, .., 8]

n = 100, hmlp = 800
CLR(NSL) hmlp = 800
BOW hmlp = 200
BOW+CLR(NSL) hmlp = 300
WWLR hmlp = 400
SWLR hmlp = 400
WWLR+CLR(CNN) w = [1, ..., 7]

dc = 10, n = 50, hmlp = 700
SWLR+CLR(CNN) w = [1, ..., 7]

dc = 10, n = 50, hmlp = 700
ELR(SKIP) hmlp = 400
ELR(SSKIP) hmlp = 400
ELR+CLR dc = 10, w = [1, ..., 7]

n = 100, hmlp = 700
ELR+WWLR hmlp = 600
ELR+SWLR hmlp = 600
ELR+WWLR+CLR dc = 10, w = [1, ..., 7]

n = 50, hmlp = 700
ELR+SWLR+CLR dc = 10, w = [1, ..., 7]

n = 50, hmlp = 700
ELR+WWLR+CNN+TC dc = 10, w = [1, ..., 7]

n = 50, hmlp = 900
ELR+SWLR+CNN+TC(MuLR) dc = 10, w = [1, ..., 7]

n = 50, hmlp = 900
AVG-DES hmlp = 400
MuLR+AVG-DES dc = 10, w = [1, ..., 7]

n = 50, hmlp = 1000

Table 1: Hyperparameters of different models. w
is the filter size. n is the number of CNN feature
maps for each filter size. dc is the character em-
bedding size. dh is the LSTM hidden state size.
hmlp is the number of hidden units in the MLP.

Our hyperparameter values are given in Ta-
ble 1. The values are optimized on dev. We use
AdaGrad and minibatch training. For each experi-
ment, we select the best model on dev.

We use these evaluation measures: (i) accu-
racy: an entity is correct if all its types and no
incorrect types are assigned to it; (ii) micro aver-
age F1: F1 of all type-entity assignment decisions;
(iii) entity macro average F1: F1 of types assigned
to an entity, averaged over entities; (iv) type macro
average F1: F1 of entities assigned to a type, aver-
aged over types.

The assignment decision is based on thresh-
olding the probability function P (t|e). For each
model and type, we select the threshold that max-
imizes F1 of entities assigned to the type on dev.
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all entities head entities tail entities
acc mic mac acc mic mac acc mic mac

1 MFT .000 .041 .041 .000 .044 .044 .000 .038 .038
2 CLR(FORWARD) .066 .379 .352 .067 .342 .369 .061 .374 .350
3 CLR(LSTM) .121 .425 .396 .122 .433 .390 .116 .408 .391
4 CLR(BiLSTM) .133 .440 .404 .129 .443 .394 .135 .428 .404
5 CLR(NSL) .164 .484 .464 .157 .470 .443 .173 .483 .472
6 CLR(CNN) .177 .494 .468 .171 .484 .450 .187 .489 .474
7 BOW .113 .346 .379 .109 .323 .353 .120 .356 .396
8 WWLR(SKIP) .214 .581 .531 .293 .660 .634 .173 .528 .478
9 WWLR(SSKIP) .223 .584 .543 .306 .667 .642 .183 .533 .494

10 SWLR .236 .590 .554 .301 .665 .632 .209 .551 .522
11 BOW+CLR(NSL) .156 .487 .464 .157 .480 .452 .159 .485 .469
12 WWLR+CLR(CNN) .257 .603 .568 .317 .668 .637 .235 .567 .538
13 SWLR+CLR(CNN) .241 .594 .561 .295 .659 .628 .227 .560 .536
14 ELR(SKIP) .488 .774 .741 .551 .834 .815 .337 .621 .560
15 ELR(SSKIP) .515 .796 .763 .560 .839 .819 .394 .677 .619
16 AGG-FIGER .320 .694 .660 .396 .762 .724 .220 .593 .568
17 ELR+CLR .554 .816 .788 .580 .844 .825 .467 .733 .690
18 ELR+WWLR .557 .819 .793 .582 .846 .827 .480 .749 .708
19 ELR+SWLR .558 .820 .796 .584 .846 .829 .480 .751 .714
20 ELR+WWLR+CLR .568 .823 .798 .590 .847 .829 .491 .755 .716
21 ELR+SWLR+CLR .569 .824 .801 .590 .849 .831 .497 .760 .724
22 ELR+WWLR+CLR+TC .572 .824 .801 .594 .849 .831 .499 .759 .722
23 ELR+SWLR+CLR+TC .575 .826 .802 .597 .851 .831 .508 .762 .727

Table 2: Accuracy (acc), micro (mic) and macro (mac) F1

on test for all, head and tail entities.

types: all head tail
AGG-FIGER .566 .702 .438
ELR .621 .784 .480
MuLR .669 .811 .541

Table 3: Type macro aver-
age F1 on test for all, head
and tail types. MuLR =
ELR+SWLR+CLR+TC

all known?
yes no

CLR(NSL) .484 .521 .341
CLR(CNN) .494 .524 .374
BOW .346 .435 .065
SWLR .590 .612 .499
BOW+NSL .497 .535 .358
SWLR+CLR(CNN) .594 .616 .508

Table 4: Micro F1 on test of
character, word level models
for all, known (“known? yes”)
and unknown (“known? no”)
entities.

4.2 Results
Table 2 gives results on the test entities for all
(about 60,000 entities), head (frequency > 100;
about 12,200) and tail (frequency < 5; about
10,000). MFT (line 1) is the most frequent type
baseline that ranks types according to their fre-
quency in the train entities. Each level of represen-
tation is separated with dashed lines, and – unless
noted otherwise – the best of each level is joined
in multi level representations.8

Character-level models are on lines 2-6. The
order of systems is: CNN > NSL > BiLSTM
> LSTM > FORWARD. The results show that
complex neural networks are more effective than
simple forwarding. BiLSTM works better than
LSTM, confirming other related work. CNNs
probably work better than LSTMs because there
are few complex non-local dependencies in the se-
quence, but many important local features. CNNs
with maxpooling can more straightforwardly cap-
ture local and position-independent features. CNN
also beats NSL baseline; a possible reason is that
CNN – an automatic method of feature learning

8For accuracy measure: in the following ordered lists of
sets, A<B means that all members (row numbers in Table 2)
of A are significantly worse than all members of B: {1} <
{2}< {3, . . . , 11}< {12,13}< {14,15,16}<{17, . . . , 23}.
Test of equal proportions, α < 0.05. See Table 6 in the ap-
pendix for more details.

– is more robust than hand engineered feature
based NSL. We show more detailed results in Sec-
tion 4.3.

Word-level models are on lines 7-10. BOW
performs worse than WWLR because it cannot
deal well with sparseness. SSKIP uses word order
information in WWLR and performs better than
SKIP. SWLR uses subword information and per-
forms better than WWLR, especially for tail en-
tities. Integrating subword information improves
the quality of embeddings for rare words and mit-
igates the problem of unknown words.

Joint word-character level models are
on lines 11-13. WWLR+CLR(CNN) and
SWLR+CLR(CNN) beat the component models.
This confirms our underlying assumption in
designing the complementary multi-level models.
BOW problem with rare words does not allow
its joint model with NSL to work better than
NSL. WWLR+CLR(CNN) works better than
BOW+CLR(NSL) by 10% micro F1, again due
to the limits of BOW compared to WWLR.
Interestingly WWLR+CLR works better than
SWLR+CLR and this suggests that WWLR is
indeed richer than SWLR when CLR mitigates its
problem with rare/unknown words

Entity-level models are on lines 14–15 and
they are better than all previous models on lines
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Figure 4: t-SNE result of entity-level representa-
tions

1–13. This shows the power of entity-level embed-
dings. In Figure 4, a t-SNE (Van der Maaten and
Hinton, 2008) visualization of ELR(SKIP) embed-
dings using different colors for entity types shows
that entities of the same type are clustered to-
gether. SSKIP works marginally better than SKIP
for ELR, especially for tail entities, confirming our
hypothesis that order information is important for
a good distributional entity representation. This
is also confirming the results of Yaghoobzadeh
and Schütze (2016), where they also get better en-
tity typing results with SSKIP compared to SKIP.
They propose to use entity typing as an extrinsic
evaluation for embedding models.

Joint entity, word, and character level mod-
els are on lines 16-23. The AGG-FIGER baseline
works better than the systems on lines 1-13, but
worse than ELRs. This is probably due to the fact
that AGG-FIGER is optimized for mention typing
and it is trained using distant supervision assump-
tion. Parallel to our work, Yaghoobzadeh et al.
(2017) optimize a mention typing model for our
entity typing task by introducing multi instance
learning algorithms, resulting comparable perfor-
mance to ELR(SKIP). We will investigate their
method in future.

Joining CLR with ELR (line 17) results in
large improvements, especially for tail entities
(5% micro F1). This demonstrates that for rare
entities, contextual information is often not suf-
ficient for an informative representation, hence
name features are important. This is also true
for the joint models of WWLR/SWLR and ELR
(lines 18-19). Joining WWLR works better than

CLR, and SWLR is slightly better than WWLR.
Joint models of WWLR/SWLR with ELR+CLR
gives more improvements, and SWLR is again
slightly better than WWLR. ELR+WWLR+CLR
and ELR+SWLR+CLR, are better than their two-
level counterparts, again confirming that these lev-
els are complementary.

We get a further boost, especially for tail en-
tities, by also including TC (type cosine) in the
combinations (lines 22-23). This demonstrates the
potential advantage of having a common represen-
tation space for entities and types. Our best model,
ELR+SWLR+CLR+TC (line 22), which we refer
to as MuLR in the other tables, beats our initial
baselines (ELR and AGG-FIGER) by large mar-
gins, e.g., in tail entities improvements are more
than 8% in micro F1.

Table 3 shows type macro F1 for MuLR
(ELR+SWLR+CLR+TC) and two baselines.
There are 11 head types (those with ≥3000 train
entities) and 36 tail types (those with <200 train
entities). These results again confirm the superi-
ority of our multi-level models over the baselines:
AGG-FIGER and ELR, the best single-level
model baseline.

4.3 Analysis

Unknown vs. known entities. To analyze the
complementarity of character and word level rep-
resentations, as well as more fine-grained com-
parison of our models and the baselines, we di-
vide test entities into known entities – at least one
word of the entity’s name appears in a train entity
– and unknown entities (the complement). There
are 45,000 (resp. 15,000) known (resp. unknown)
test entities.

Table 4 shows that the CNN works only slightly
better (by 0.3%) than NSL on known entities, but
works much better on unknown entities (by 3.3%),
justifying our preference for deep learning CLR
models. As expected, BOW works relatively well
for known entities and really poorly for unknown
entities. SWLR beats CLR models as well as
BOW. The reason is that in our setup, word em-
beddings are induced on the entire corpus using
an unsupervised algorithm. Thus, even for many
words that did not occur in train, SWLR has ac-
cess to informative representations of words. The
joint model, SWLR+CLR(CNN), is significantly
better than BOW+CLR(NSL) again due to limits
of BOW. SWLR+CLR(CNN) is better than SWLR
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in unknown entities.
Case study of LIVING-THING. To understand

the interplay of different levels better, we perform
a case study of the type LIVING-THING. Living
beings that are not humans belong to this type.

WLRs incorrectly assign “Walter Leaf”
(PERSON) and “Along Came A Spider” (MUSIC)
to LIVING-THING because these names contain a
word referring to a LIVING-THING (“leaf”, “spi-
der”), but the entity itself is not a LIVING-THING.
In these cases, the averaging of embeddings that
WLR performs is misleading. The CLR(CNN)
types these two entities correctly because their
names contain character ngram/shape patterns
that are indicative of PERSON and MUSIC.

ELR incorrectly assigns “Zumpango” (CITY)
and “Lake Kasumigaura” (LOCATION) to LIVING-
THING because these entities are rare and words
associated with living things (e.g., “wildlife”)
dominate in their contexts. However, CLR(CNN)
and WLR enable the joint model to type the two
entites correctly: “Zumpango” because of the in-
formative suffix “-go” and “Lake Kasumigaura”
because of the informative word “Lake”.

While some of the remaining errors of our best
system MuLR are due to the inherent difficulty of
entity typing (e.g., it is difficult to correctly type a
one-word entity that occurs once and whose name
is not informative), many other errors are due to
artifacts of our setup. First, ClueWeb/FACC1 is
the result of an automatic entity linking system
and any entity linking errors propagate to our mod-
els. Second, due to the incompleteness of Freebase
(Yaghoobzadeh and Schütze, 2015), many entities
in the FIGMENT dataset are incompletely anno-
tated, resulting in correctly typed entities being
evaluated as incorrect.

Adding another source: description-based
embeddings. While in this paper, we focus on the
contexts and names of entities, there is a textual
source of information about entities in KBs which
we can also make use of: descriptions of entities.
We extract Wikipedia descriptions of FIGMENT
entities filtering out the entities (∼ 40,000 out of
∼ 200,000) without description.

We then build a simple entity representation by
averaging the embeddings of the top k words (wrt
tf-idf) of the description (henceforth, AVG-DES).9

This representation is used as input in Figure 1
to train the MLP. We also train our best multi-

9k = 20 gives the best results on dev.

entities: all head tail
AVG-DES .773 .791 .745
MuLR .825 .846 .757
MuLR+AVG-DES .873 .877 .852

Table 5: Micro average F1 results of MuLR and
description based model and their joint.

level model as well as the joint of the two on this
smaller dataset. Since the descriptions are coming
from Wikipedia, we use 300-dimensional Glove
(URL, 2016a) embeddings pretrained on Wikip-
dia+Gigaword to get more coverage of words. For
MuLR, we still use the embeddings we trained be-
fore.

Results are shown in Table 5. While for head
entities, MuLR works marginally better, the differ-
ence is very small in tail entities. The joint model
of the two (by concatenation of vectors) improves
the micro F1, with clear boost for tail entities. This
suggests that for tail entities, the contextual and
name information is not enough by itself and some
keywords from descriptions can be really helpful.
Integrating more complex description-based em-
beddings, e.g., by using CNN (Xie et al., 2016),
may improve the results further. We leave it for
future work.

5 Conclusion

In this paper, we have introduced representations
of entities on different levels: character, word
and entity. The character level representation is
learned from the entity name. The word level rep-
resentation is computed from the embeddings of
the words wi in the entity name where the embed-
ding of wi is derived from the corpus contexts of
wi. The entity level representation of entity ei is
derived from the corpus contexts of ei. Our exper-
iments show that each of these levels contributes
complementary information for the task of fine-
grained typing of entities. The joint model of all
three levels beats the state-of-the-art baseline by
large margins. We further showed that extracting
some keywords from Wikipedia descriptions of
entities, when available, can considerably improve
entity representations, especially for rare entities.
We believe that our findings can be transferred to
other tasks where entity representation matters.
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All entities
Models 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 MFT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 CLR(FORWARD) * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 CLR(LSTM) * * 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 CLR(BiLSTM) * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 CLR(CNN) * * * * 0 * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
06 CLR(NSL) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
07 BOW * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 WWLR(SkipG) * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
09 WWLR(SSkipG) * * * * * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
10 SWLR * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0
11 BOW+CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 WWLR+CLR(CNN) * * * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0
13 SWLR+CLR(CNN) * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0
14 ELR(SkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
15 ELR(SSkipG) * * * * * * * * * * * * * * 0 * 0 0 0 0 0 0 0
16 AGG-FIGER * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0
17 ELR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
18 ELR+WWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
19 ELR+SWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
20 ELR+WWLR+CLR * * * * * * * * * * * * * * * * * * * 0 0 0 0
21 ELR+SWLR+CLR * * * * * * * * * * * * * * * * * * * 0 0 0 0
22 ELR+WWLR+CLR+TC * * * * * * * * * * * * * * * * * * * 0 0 0 0
23 ELR+SWLR+CLR+TC * * * * * * * * * * * * * * * * * * * * * 0 0

Head entities
Models 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 MFT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 CLR(FORWARD) * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 CLR(LSTM) * * 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 CLR(BiLSTM) * * 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 CLR(CNN) * * * * 0 * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
06 CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
07 BOW * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 WWLR(SkipG) * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
09 WWLR(SSkipG) * * * * * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
10 SWLR * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
11 BOW+CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 WWLR+CLR(CNN) * * * * * * * * 0 * * 0 * 0 0 0 0 0 0 0 0 0 0
13 SWLR+CLR(CNN) * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
14 ELR(SkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
15 ELR(SSkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
16 AGG-FIGER * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0
17 ELR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
18 ELR+WWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
19 ELR+SWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
20 ELR+WWLR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
21 ELR+SWLR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
22 ELR+WWLR+CLR+TC * * * * * * * * * * * * * * * * * 0 0 0 0 0 0
23 ELR+SWLR+CLR+TC * * * * * * * * * * * * * * * * * * * 0 0 0 0

Tail entities
Models 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 MFT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 CLR(FORWARD) * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 CLR(LSTM) * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 CLR(BiLSTM) * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 CLR(CNN) * * * * 0 * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
06 CLR(NSL) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
07 BOW * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 WWLR(SkipG) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
09 WWLR(SSkipG) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
10 SWLR * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0
11 BOW+CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 WWLR+CLR(CNN) * * * * * * * * * * * 0 0 0 0 * 0 0 0 0 0 0 0
13 SWLR+CLR(CNN) * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0
14 ELR(SkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
15 ELR(SSkipG) * * * * * * * * * * * * * * 0 * 0 0 0 0 0 0 0
16 AGG-FIGER * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0
17 ELR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
18 ELR+WWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
19 ELR+SWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
20 ELR+WWLR+CLR * * * * * * * * * * * * * * * * * 0 0 0 0 0 0
21 ELR+SWLR+CLR * * * * * * * * * * * * * * * * * * * 0 0 0 0
22 ELR+WWLR+CLR+TC * * * * * * * * * * * * * * * * * * * 0 0 0 0
23 ELR+SWLR+CLR+TC * * * * * * * * * * * * * * * * * * * * 0 0 0

Table 6: Significance-test results for accuracy measure for all, head and tail entities. If the result for the
model in a row is significantly larger than the result for the model in a column, then the value in the
corresponding (row,column) is * and otherwise is 0.
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Abstract

In this paper, we present ContrastMedium,
an algorithm that transforms noisy se-
mantic networks into full-fledged, clean
taxonomies. ContrastMedium is able to
identify the embedded taxonomy structure
from a noisy knowledge graph without ex-
plicit human supervision such as, for in-
stance, a set of manually selected input
root and leaf concepts. This is achieved by
leveraging structural information from a
companion reference taxonomy, to which
the input knowledge graph is linked (either
automatically or manually). When used
in conjunction with methods for hypernym
acquisition and knowledge base linking,
our methodology provides a complete so-
lution for end-to-end taxonomy induction.
We conduct experiments using automati-
cally acquired knowledge graphs, as well
as a SemEval benchmark, and show that
our method is able to achieve high perfor-
mance on the task of taxonomy induction.

1 Introduction

Recent years have witnessed an impressive
amount of work on automatic construction of
wide-coverage knowledge resources. Web-scale
open information extraction systems like NELL
(Carlson et al., 2010) or ReVerb (Fader et al.,
2011) have been successful in acquiring massive
amounts of machine-readable knowledge by ef-
fectively tapping large amounts of text from Web
pages. However, the output of these systems does
not consist of a clean, fully-semantified output.
Such output, on the other hand, could be pro-
vided by the vocabulary of large-scale ontologies
like DBpedia (Bizer et al., 2009) or YAGO (Hof-
fart et al., 2013) and the integration of open and

closed information extraction approaches (Dutta
et al., 2014). The use of an encyclopedia-centric
(e.g., Wikipedia-based) dictionary of entities leads
to poor coverage of domain-specific terminologies
(Faralli and Navigli, 2013). This can be allevi-
ated by constructing knowledge bases of ever in-
creasing coverage and complexity from the Web
(Wu et al., 2012; Gupta et al., 2014; Dong et al.,
2014) or by community efforts (Bollacker et al.,
2008). However, the focus on large size and wide
coverage at entity level has led all these resources
to avoid the complementary problem of curat-
ing and maintaining a clean taxonomic backbone
with as minimal supervision as possible. That is,
no resource, to date, integrates structured infor-
mation from existing wide-coverage knowledge
graphs with empirical evidence from text for the
explicit goal of building full-fledged taxonomies
consisting of a clean and fully-connected directed
acyclic graph (DAG). This is despite the fact that
taxonomies have been known for a long time to
provide valid tools to represent domain-specific
knowledge with dozens of scientific, industrial and
social applications (Glass and Vessey, 1995).

In taxonomy induction, the required domain
knowledge can be acquired with many differ-
ent methods for hypernym extraction, ranging
from simple lexical patterns (Hearst, 1992; Oakes,
2005; Kozareva and Hovy, 2010) to statistical and
machine learning techniques (Caraballo, 1999;
Agirre et al., 2000; Ritter et al., 2009; Velardi
et al., 2013). Recent efforts, such as Microsoft’s
Probase (Wu et al., 2012) or the WebIsaDB (Seit-
ner et al., 2016) similarly focus on ‘local’ extrac-
tion of single hypernym relations, and do not ad-
dress the problem of how to combine these sin-
gle relations into a coherent taxonomy. When tax-
onomies are automatically acquired, their cleaning
(also called “pruning”) becomes a mandatory step
(Velardi et al., 2013).
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The contributions of this paper are two-fold:

1. We introduce a new algorithm, named Con-
trastMedium, which, given a noisy knowledge
graph and its (possibly automatically gener-
ated) links to a companion taxonomy, is able
to output a full-fledged taxonomy. Information
from the reference taxonomy is projected onto
the input noisy graph to automatically acquire
topological clues, which are then used to drive
the cleaning process. The reference taxonomy
provides us with ground-truth taxonomic rela-
tions that make our knowledge-based method
not truly unsupervised sensu stricto. However,
the availability of resources like, for instance,
WordNet (Fellbaum, 1998) or BabelNet (Nav-
igli and Ponzetto, 2012) implies that these re-
quirements are trivially satisfied;

2. We combine our approach with an unsupervised
framework for knowledge acquisition from text
(Faralli et al., 2016) to provide a full end-to-end
pipeline for taxonomy induction from scratch.

2 Related Work

Knowledge Bases (KBs) can be created in many
different ways depending on the availability of
external resources and specific application needs.
Recently, much work in Natural Language Pro-
cessing focused on Knowledge Base Completion
(Nickel et al., 2016a, KBC), the task of enrich-
ing and refining existing KBs. Many different
methods have been explored for KBC, includ-
ing exploitation of resources such as text corpora
(Snow et al., 2006; Mintz et al., 2009; Aprosio et
al., 2013) or other KBs (Wang et al., 2012; Bryl
and Bizer, 2014) for acquiring additional knowl-
edge. Alternative approaches, in contrast, primar-
ily rely on existing information from the KB it-
self (Socher et al., 2013; Nickel et al., 2016b)
used as ground-truth to simultaneously learn con-
tinuous representations of KB concepts and rela-
tions, which are used to infer additional KB rela-
tions. Finally, Open Information Extraction meth-
ods looked at ways to extract large amounts of
facts from Web-scale corpora in order to acquire
open-domain KBs (Etzioni et al., 2011; Faruqui
and Kumar, 2015, inter alia);

In this paper, we focus on a different, yet
complementary task, which is a necessary step
when inducing novel KBs from scratch, namely
extracting clean taxonomies from noisy knowl-

edge graphs. State-of-the-art algorithms differ by
the amount of human supervision required and
their ability to respect some topological properties
while pruning. Approaches like those of Kozareva
and Hovy (2010), Velardi et al. (2013) and Kapa-
nipathi et al. (2014), for instance, apply different
topological pruning strategies that require to spec-
ify the root and leaf concept nodes of the KB in
advance – i.e., a predefined set of abstract top-
level concepts and lower terminological nodes, re-
spectively. The approach of Faralli et al. (2015)
avoids such supervision on the basis of an itera-
tive method that uses an efficient variant of topo-
logical sorting (Tarjan, 1972) for cycle pruning.
Such lack of supervision, however, comes at the
cost of not being able to preserve the original con-
nectivity between the top (abstract) and the bottom
(instance) concepts. Random edge removal (Far-
alli et al., 2015), in fact, can lead to disconnected
components, a problem shared with the OntoLearn
Reloaded approach (Velardi et al., 2013), which
cannot ensure such property when used to approx-
imate the solution for a large noisy graph.

Our work goes one step beyond the previous
contributions by presenting a new efficient algo-
rithm that is able to extract a clean taxonomy from
a noisy knowledge graph without needing to know
in advance – that is, having to manually specify –
the top-level and leaf concepts of the taxonomy,
while preserving the overall connectivity of the
graph. We achieve this by projecting the infor-
mation from a reference KB such as, for instance,
WordNet (Fellbaum, 1998), onto the input noisy
KB on the basis of pre-existing KB links – which
in turn can be automatically generated with high
precision using any of the existing solutions for
KB mapping (Navigli and Ponzetto, 2012; Faralli
et al., 2016, inter alia) or by relying on ground
truth information from the Linguistic Linked Open
Data cloud (Chiarcos et al., 2012).

Some aspects of the proposed approach –
namely, the propagation of the nodes’ weights
through the graph, which we metaphorically repre-
sent as the flow of a contrast medium across nodes
(Section 3.3) – are somewhat similar in spirit to
spreading activation (Collins and Loftus, 1975)
and random walks on graphs (Lovász, 1993) ap-
proaches. However, in contrast to spreading ac-
tivation approaches we leverage the graph direc-
tionality in order to reach all the possible nodes
within the same connected components. More-
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over, in contrast to random walks on graphs our
method is deterministic in nature. Here, we ar-
gue for the choice of a deterministic approach, like
ours, that does not require tuning of parameters:
its termination is guaranteed by the number of it-
erations, which we bind by the maximal diameter
|E| for a graph G = (V,E). Generally, random
walk algorithms would provide an approximation
that may lead to a less precise estimation of the
order induced by the contrast medium level.

3 The ContrastMedium Algorithm

3.1 Problem Statement

Our work builds upon the notion of a noisy knowl-
edge graph (NKG), which consists of a directed
graph G = (V,E) where V is a set of concepts
and E the set of labelled binary semantic relations
– e.g., those found between synsets like, for in-
stance, hypernymy or meronymy within a seman-
tic network like WordNet. In a NKG we assume
both V andE to have been acquired automatically,
e.g., in order to induce a domain-aware or a gen-
eral purpose knowledge base. Additionally, we
consider for our purposes the hypernymy graph
T = (TV , TE) of G, the subgraph made up of the
hypernymy (i.e., isa-labeled) edges of E. Since T
is a subgraph of G, we can expect that the former
inherits a certain amount of noise from the latter.

Noise within hypernymy graphs can be further
classified into: i) noisy nodes, the concepts that
do not belong to a specific target vocabulary, e.g.,
domain concepts for domain-specific KBs, such
as Jaguar Cars within a zoological taxonomy;
ii) noisy edges, the wrongly-acquired relations be-
tween unrelated concepts or out-of-domain rela-
tions, e.g., Jaguar Cars isa Feline; iii) cy-
cles of hypernymy relations, such as those derived
from counts over very large corpora (Seitner et
al., 2016), e.g., jaguar (Panthera onca)→
feline → animal → jaguar (Panthera
onca). We accordingly define the task of ex-
tracting a clean taxonomy from a NKG as that of
pruning the cycles, as well as the noisy edges and
nodes, from the hypernymy subgraph T of G.

3.2 Resources Used

In order to enable end-to-end taxonomy induc-
tion from scratch, we combine our general ap-
proach with existing KBs that have been automat-
ically induced from text and linked to reference
lexical knowledge bases on the basis of unsuper-

vised methods. To this end, we use the linked dis-
ambiguated distributional KBs from Faralli et al.
(2016)1, which are built in three steps:

1) Learning a JoBimText model. Initially, a
sense inventory is created from a large text
collection using the pipeline of the JoBimText
project (Biemann and Riedl, 2013).2 The re-
sulting structure contains disambiguated proto-
concepts (i.e., senses), their similar and related
terms, as well as aggregated contextual clues
per proto-concept.

2) Disambiguation of related terms. Similar
terms and hypernyms associated with a proto-
concept are fully disambiguated based on the
partial disambiguation from step (1). The re-
sult is a proto-conceptualization (PCZ), where
all terms have a sense identifier.

3) Linking to a lexical resource. The PCZ is
automatically aligned with an existing lexical
resource (LR) such as WordNet or BabelNet.
For example, bridge:NN:3 is linked to the
Babel synset bn:00013077n (the ‘infrastruc-
ture’ sense). That is, a mapping between the
two sense inventories is created to combine
them into a new extended sense inventory, a hy-
brid aligned resource.

Table 1 shows the proto-conceptualization entries
for the polysemous terms bridge and link, namely
their figurative (“bridge:NN:2” and “link:NN:1”)
and concrete ‘infrastructure’ (“bridge:NN:3” and
“link:NN:0”) senses, respectively. JoBimText
models provide sense distinctions that are only
partially disambiguated: the list of similar and hy-
pernyms terms of each sense, in fact, does not
carry sense information. Consequently, a seman-
tic closure procedure is applied in order to obtain
a PCZ and arrive at sense representation in which
all terms get assigned a unique, best-fitting sense
identifier (see Faralli et al. (2016) for details).

PCZs consist of a rich, yet noisy, disam-
biguated semantic network automatically induced
from large amounts of text: links to existing lex-
ical resources provide us a source of external su-
pervision that can be leveraged to clean them and
turn them into full-fledged taxonomies. Steps 1–3
are unsupervised by nature. Consequently, when

1
https://madata.bib.uni-mannheim.de/171/

2
http://www.jobimtext.org
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entry similar terms hypernyms
bridge:NN:2 gap:NN:2, divide:NN:2, link:NN:1, ... issue:NN:2, topic:NN:3, ...
bridge:NN:3 road:NN:0, highway:NN:1, overpass:NN:3 ... infrastructure:NN:1, project:NN:1, ...
link:NN:0 connection:NN:3, correlation:NN:1, linkage:NN:1 ... service:NN:6, feature:NN:0, ...
link:NN:1 relationship:NN:1, interaction:NN:1, divide:NN:0 ... problem:NN:1, topic:NN:3 ...

Table 1: Excerpt of a proto-conceptualization (PCZ) for the words “bridge:NN” and “link:NN”.

combined with our algorithm they provide a com-
plete framework for fully unsupervised taxonomy
induction from scratch. Note, however, that our
approach offers a general solution to the problem
of taxonomy cleaning. In an additional set of ex-
periments, we apply it to different automatically
generated taxonomies from a SemEval task in a
more controlled setting where we rely on a few
manually created KB links only.

3.3 The ContrastMedium Algorithm
At its core, our algorithm relies on the notion of
a linked noisy knowledge graph (LNKG). This
consists of a quintuple (G, KB, KBroot, λ, M )
where: i) G = (VG, EG) is a noisy knowledge
graph; ii) KB = (VKB, EKB) is a companion
knowledge base providing a ground-truth taxon-
omy; iii) KBroot is the root node of the reference
knowledge base KB (if several top-level nodes
exist, an artificial root can be created by con-
necting them all); iv) λ is a conventional sym-
bol to represent the “undefined concept”, i.e., a
place-holder for empty mappings; v) M : VG →
VKB ∪ {λ} is the function, which maps nodes of
VG into nodes of VKB or into the undefined con-
cept λ. The key ideas behind ContrastMedium are:

• Identification of important topological clues
from the companion knowledge baseKB in or-
der to hierarchically sort the concepts in G. For
our purposes, KB is expected to be able to pro-
vide ground-truth taxonomic relations that can
be safely projected onto G to guide the clean-
ing process: that is, we assume it to be rea-
sonably clean. In contrast, we do not make
any assumption on how KB has been created:
our approach can be used with either manu-
ally created taxonomies like WordNet or (semi-
)automatically induced ones, provided they are
of sufficient quality. Hence, our method is
knowledge-based without the need of further
supervision other than that contained in KB;

• Projection of topological clues from KB back
onto the LNKG G on the basis of the links

Pruning of T

clean taxonomy 
T’

(G, KB, KBroot, λ, M)

A contrast medium drop enters 
the KB through the root node 
KBroot

CKB

The drop flows through the 
common/linked node of T 

2

initial CT

final CT

Shaking T by turning it up, 
down and up.

3

4

1
KB

KB

T

T

T’

M

Figure 1: ContrastMedium: algorithm workflow.

found in the mapping M . Similarly to the case
of the reference knowledge base, we do not
make any assumption on how the links between
G andKB have been created: while there exists
different methods to automatically link (lexical)
knowledge bases (Navigli and Ponzetto, 2012;
Faralli et al., 2016), we later show that it is also
possible to achieve state-of-the-art performance
with a few manually given links;

• Propagation of the topological clues across the
entire NKG G. That is, to cope with the partial
coverage of automatic mappings, as well as the
need to reduce the number of manually created
KB links, we apply a signal propagation tech-
nique that solely relies on the structure of G;

• To make use of the resulting topological clues
to drive the taxonomy pruning process. That
is, propagated topological clues from KB are
additionally leveraged to ensure that the output
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ALGORITHM 1: The ContrastMedium algorithm.
Input: (G = (V,E),KB = (VKB , EKB),KBroot, λ,M)
Output: hypernymy graph T ′ of G, s.t. T ′ has no cycles.
// Estimating clues from KB (Fig. 1, step 1)

1 ∀x ∈ VKB : CKB(x) = 0;
2 injectContrastMedium(KB, KBroot);

// Transferring clues from KB to G (Fig. 1, step 2)
3 T = (VT , ET )←− hypernymyGraph(G);
4 ∀x ∈ VT : CT (x) = 0;
5 transferClues(M , KB, T , CKB , CT );

// Shaking the graph T (Fig. 1, step 3)
6 shake(UP, T , CT ); // propagate through in-edges
7 shake(DOWN, T , CT ); // propagate through out-edges
8 shake(UP, T , CT ); // propagate through in-edges

// Pruning the graph T (Fig. 1, step 4)
9 T ′ = prune(T , CT );

10 return T ′;

results in a proper taxonomic structure.

We rely on the metaphor of a contrast medium
(CM) to describe our approach, which is summa-
rized in Figure 1. In the context of clinical analy-
sis, a CM is injected into the human body to high-
light specific complex internal body structures (in
general, the venuous system). In a similar fash-
ion, we detect the topological structure of a graph
by propagating a certain amount of CM that we
initially inject through the node KBroot of the
companion knowledge base KB. The highlighted
structure indicates the distance of a node with re-
spect to the node KBroot. Then the lowest values
of contrast medium indicate the leaf terminologi-
cal nodes. The observed quantities are then trans-
ferred to corresponding nodes of the noisy graph
by the mapping M . Next, the medium is prop-
agated by ’shaking’ the noisy graph. We let the
fluid reach all the components G by alternating
two phases of propagation: letting the CM to flow
through both incoming (‘shake up’); and outgoing
(‘shake down’) edges. At the end, we use the par-
tial order induced by the observed node level of
CM to drive the pruning phase, and ‘stretch’ the
original NKG G into a proper DAG.

Our approach is presented in Algorithms 1 and
2.3 It consists of the following main steps:

1) CM injection Cf. Figure 1, block 1 and Al-
gorithm 1, lines 1-2. We initially define the func-
tion CKB : VKB → [0.0 − 1.0] and assign a zero
contrast medium level to all the nodes of the KB
graph CKB(x) = 0, x ∈ VKB (line 1). Next,

3A demo is available at http://web.informatik.

uni-mannheim.de/faralli/cm.html with examples of the
application of ContrastMedium to a few simple LNKGs.

ALGORITHM 2: The Shake routine.
Input: direction may be UP or DOWN,

graph = (Vgraph, Egraph), Cgraph

Output: the updated Cgraph

1 foreach x ∈ Vgraph do
2 Currentgraph(x) = Cgraph(x);Flowngraph = 0.0;

// iteratively propagates the CM
3 for i = 0 to |Egraph| − 1 do
4 foreach x ∈ Vgraph do
5 InOutgraph(x) = 0.0;
6 foreach x s.t. Currentgraph(x) > 0.0 do
7 CMlevel = Currentgraph(x);
8 if direction == DOWN then
9 O = outgoingEdges(x, graph);

10 foreach (x, y) ∈ I do
11 InOutgraph(y)+ = CMlevel

max(|O|,1) ;
12 else
13 I = incomingEdges(x, graph);
14 foreach (y, x) ∈ I do
15 InOutgraph(y)+ = CMlevel

max(|I|,1) ;
16 Flowngraph(x)+ = CMlevel;
17 foreach x ∈ Vgraph do
18 Currentgraph(x) = InOutgraph(x);
19 foreach x ∈ Vgraph do
20 Cgraph(x) = Flowngraph(x);

we call the routine ‘injectContrastMedium’ which:
1) assigns an initial contrast level equals to 1.0
to the node KBroot of the KB graph; ii) uses
the routine “Shake” with the direction parameter
equals to “DOWN” (see Algorithm 2 and Step 3
“Graph shaking” for more details) to let the CM
drop through KB. In practice, the shaking routine
implements a node contrast medium level propa-
gation algorithm following the outgoing (‘down’)
or the incoming (‘up’) edges of the graph.

2) CM transfer Cf. Figure 1, block 2 and Al-
gorithm 1, lines 3-5. In the next phase, we first
extract the hypernymy subgraph T = (VT , ET )
of G (see Section 3.1) and then follow the links
in the mapping M to transfer the contrast medium
levels, i.e., CT (y) = CKB(x) (s.t. x ∈ VKB, y ∈
VT , (y → x) ∈M ).

3) Graph shaking Cf. Figure 1, block 3 and
Algorithm 1, lines 6-8. After having transferred
the CM to the target hypernym graph T of G,
we shake T to let the CM flow by traversing the
incoming, the outgoing, and finally the incom-
ing edges again – see Algorithm 2 for details on
the ‘Shake’ routine. Note that these two kinds of
propagation are needed since the CM needs to be
propagated through all the nodes of the graph to
highlight the topological clues we are searching
for. In particular, in Algorithm 2 at each itera-
tion t for each node x ∈ Vgraph, depending on
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the value of the parameter direction (line 8 and
line 12): i) we observe a CM level for the node x
(line 7); ii) if direction == DOWN (lines 9-11)
we traverse all the outgoing edges (x, y) of x and
propagate the observed CM level of x, otherwise
(direction == UP, lines 13-15) we traverse the
incoming edges (y, x) and propagate the CM level
to the nodes y; iii) the value of Flowngraph(x) is
incremented by the observed CM level (line 16);
iv) for each node x we reset the current observed
value of the CM level with the portion of the liquid
which has flown from the incoming or the outgo-
ing edges during the propagation (lines 17-18).

Depending on the propagation direction, we
have two different behaviours for the CM. When
exiting a node x through out the outgoing edges
(direction == DOWN) we increment the level
of contrast medium of the reached nodes by the
observed value of x divided by number of out-
going edges of x. By converse, when we climb
(direction == UP) across the incoming edges of
a node xwe increment the CM level of the reached
node by the observed CM quantity of x divided by
the number of incoming edges of x.

Note that the sequence UP/DOWN/UP and the
specular DOWN/UP/DOWN are the only ones
from the 8 possible combinations which can guar-
antee the contrast medium to flow on the entire
graph. We simply selected the first sequence since
the final rank places candidate root nodes on the
top (and candidate leaf nodes on the bottom).

4) Pruning Cf. Figure 1, block 4 and Algorithm
1, lines 9. Finally, we create a clean taxonomy T ′

by pruning the graph T on the basis of the con-
trast levels found in CT . CM levels in CT can be
used to induce a order of the nodes that, intuitively,
captures the level of conceptual abstraction for the
nodes in T . We use them to produce a clean tax-
onomy as follows. We first sort the nodes v ∈ VT
in a list S = s0, s1, . . . , s|VT |−1 by the decreasing
resulting CM level value in CT . The nodes with
a higher level of contrast medium are candidates
to be at the top level while the ones at the end
of the list are candidates to be leaf nodes of the
output taxonomy. Next, the pruning routine starts
from a graph T ′ = (VT ′ = VT , ET ′ = ∅) and for
each node s ∈ S (from the last node to the first)
add to ET ′ all the edges of the kind e = (y, s)
where a path from y to s does not exists in T and
with y belonging to one of the following: i) the
set of peers {x ∈ S s.t. CT (x) = CT (s)}; ii) the

ascending ordered list of preceding (x ∈ S s.t.
CT (x) > CT (s)); iii) the ascending ordered list
of following (x ∈ S s.t. CT (x) < CT (s))

Complexity analysis. The propagation step
(Figure 1, blocks 1 and 3; Algorithm 2) costs
O(|E| ∗ |V |) since we iteratively analyze all the
nodes of V for a number |E| of iterations. The
final step of pruning (Figure 1, block 4), instead,
can have a time cost O(|V |2 ∗ (|E|+ |V |)), since,
in the worst case, the algorithm must analyse all
the possible pairs of vertices, and then test the ex-
istence of a directed path between the candidate
pairs of nodes.

4 Experiments

We perform two sets of experiments. We first eval-
uate our approach when applied to large, automat-
ically induced noisy knowledge graphs (Section
4.1) and then quantify the impact it can have to fur-
ther improve the quality of the output of state-of-
the-art taxonomy induction systems (Section 4.2).

4.1 Experiment 1: Pruning existing LNKG
We first apply ContrastMedium to a variety of
knowledge graphs that have been automatically
acquired and linked to reference KBs like Word-
Net and BabelNet using unsupervised methods
(Section 3.2). Our research questions (RQs) are:

RQ1 Can we use ContrastMedium as component
of a complete framework for fully unsuper-
vised taxonomy induction from scratch?

RQ2 What is the quality of the resulting tax-
onomies?

4.1.1 Experimental Setting
We apply our pruning algorithm to the automat-
ically acquired KBs presented by Faralli et al.
(2016). These noisy knowledge graphs have been
induced from large text corpora and include both
taxonomic and other (i.e., related, topically asso-
ciative) semantic relations (cf. Table 1), as well as
automatically induced mappings to lexical knowl-
edge bases like WordNet and BabelNet. These
NKGs have been induced from a 100 million sen-
tence news corpus (news) and from a 35 million
sentence Wikipedia corpus (wiki), using different
parameter values to generate sense inventories of
different granularities (e.g., 1.8 vs. 6.0 average
senses per term for the wiki-p1.8 and wiki-p6.0
datasets, respectively). Table 2 shows some of
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senses polysemy hypernyms links hypernymy graph
dataset # avg. max # avg. # |VT | |ET |

news-p1.6 332k 1.6 18 15k 6.9 60k 170k 1.538k
news-p2.3 461k 2.3 17 15k 5.8 95k 225k 1.871k
wiki-p1.8 368k 1.8 15 15k 4.4 67k 185k 1.167k
wiki-p6.0 1.5M 6.0 36 52k 1.7 279k 394k 1.901k

Table 2: Dimensions of the four datasets adopted as linked noisy knowledge graphs (Faralli et al., 2016).

the dimensions for each of the four NKGs – num-
ber of senses, average and maximum sense poly-
semy, number and average hypernyms per sense,
the number of linked senses to WordNet con-
cepts (i.e., “links”), and the number of nodes and
edges for the corresponding hypernymy graph.
Since our algorithm primarily focuses on concep-
tual hierarchical (taxonomic) structures – referred
to as the TBox in Knowledge Representation –
we use the WordNet mappings only, since the
manual inspection of the BabelNet mappings re-
vealed that they are focused primarily on instances
(that is, ABox statements). In order to have a
complete quintuple for each NKG, we selected,
for the companion KB, the top KBroot concept
entity of the WordNet taxonomy (SynsetID
SID-00001740-N).

4.1.2 Measures
We benchmark ContrastMedium using a variety of
metrics that are meant to capture structural proper-
ties of the output taxonomies (to describe the im-
pact of pruning on the original NKGs), as well as
an estimation of their overall quality.

Edge compression: the ratio of the number of
pruned edges over the total number of edges:

CEG,G′ =
|EG| − |EG′ |
|EG|

where EG and EG′ represent the number of edges
found within the input (G) and pruned (G′) taxon-
omy, respectively.

Pruning accuracy: the performance on a 3-way
classification task to automatically detect the level
of granularity of a concept as a proxy to quan-
tify the overall quality of the output taxonomies.
Pruning accuracy is estimated using gold-standard
annotations that are created from a random sam-
ple of 1,000 nodes for each NKG. Two annotators
with previous experience in knowledge acquisition
and engineering were asked to provide for each

concept whether it can be classified as: i) a root,
top-level abstract concept – i.e., any of entity,
object, etc. and more in general nodes that cor-
respond to abstract concepts that we can expect to
be part of a core ontology such as, for instance,
DOLCE (Gangemi et al., 2002); ii) a leaf termino-
logical node (i.e., instances such as Lady Gaga
or Porsche 911); iii) or a middle-level concept
(e.g., celebrity or cars, concepts not fitting
into any of the previous classes). An adjudication
procedure was used to resolve any discrepancy
between the two annotators: the inter-annotator
agreement after adjudication is κ = 0.657 (Fleiss,
1971), with most disagreement occurring on the
identification of abstract, core ontology concepts.

A local 3-way classification task provides a
rather crude way to estimate the performance on
inducing hierarchical structures like taxonomies.
Here, we use it primarily to benchmark how
well ContrastMedium compares against other,
structure-agnostic algorithms used within state-of-
the-art solutions such as, for instance, Tarjan’s
topological sorting (Section 2), which only break
cycles in a random fashion.

Given ground-truth concept granularity judge-
ments, we compute standard accuracy for each of
the three classes. That is, we compare the system
outputs against the gold standards and obtain three
accuracy measures: one for the root nodes (AR),
one for the nodes ‘in the middle’ (AM ) and finally
one for the leaf nodes (AL). For example a true
positive root node is a node annotated as a root
node in the gold standard and having no incoming
edges in the pruned graph.

Error Reduction (ER): finally, we compute
the relative error reduction of ContrastMedium
against other, baseline approaches as:

Baselineerrors/|sample| − CMerrors/|sample|
Baselineerrors/|sample|

As baseline we use the approach of Faralli et al.
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Pruned Knowledge Graph Pruning accuracy ER
ContrastMedium Tarjan (baseline) ContrastMedium Tarjan (baseline)

dataset |VG′ | |EG′ | CEG,G′ |VG′ | |EG′ | CEG,G′ AR AM AL AR AM AL

news-p1.6 170k 1.536k 0.15% 170k 1.535k 0.18% 98.9 98.3 99.3 93.3 94.6 95.3 0.62
news-p2.3 225k 1.867k 0.19% 225k 1.866k 0.23% 98.7 98.7 99.9 95.7 94.7 95.6 0.50
wiki-p1.8 183k 1.165k 0.18% 183k 1.164k 0.22% 97.6 94.7 97.3 93.1 87.3 94.1 0.41
wiki-p6.0 394k 1.897k 0.18% 394k 1.896k 0.21% 95.9 94.3 98.3 89.5 90.1 92.8 0.50

Table 3: Structural analysis, pruning accuracies and error reduction (ER) for the four LNKGs.

animal

great 
apes feline

lion

animal

great 
apes feline

lion

animal

great 
apes feline

lion

1

2

3

animal

great 
apes feline

lion

X X

X X

Baseline
ContrastMedium

Figure 2: An example noisy graph and the differ-
ent solutions provided by ContrastMedium and the
baseline.

(2015) based on Tarjan’s topological sorting (Sec-
tion 2), which iteratively searches for a cycle (until
no cycle can be found) and randomly removes an
edge from it. To the best of our knowledge, this
is the only algorithm that we can fairly compare
with, since alternative solutions all need to know
the sets of root and leaf nodes in advance.

4.1.3 Results and discussion
Table 3 summarizes the performance of Con-
trastMedium on the four automatically acquired
NKGs. The results show that the pruning impact
of our approach is lower than that of the baseline
(an average of 1K edges of difference, cf. columns
3 and 6), which also determines higher edge com-
pression CEG,G′ values for the baseline method.
Despite being less aggressive in terms of the
number of edges pruned, ContrastMedium outper-
forms the Tarjan-based algorithm on all datasets
in terms of accuracy. Thanks to our method, in
fact, we are able to achieve, even despite the base-
line already reaching very high performance lev-
els (well above 90% accuracy), improvements of
up to 6 points, with an overall error reduction
between around 40% and 60%. To provide an

intuition of why ContrastMedium clearly outper-
forms the baseline approach, we provide in Fig-
ure 2 an exemplified depiction of a typical case on
which the baseline fails (based on a manually in-
spected random sample). In our example, the Tar-
jan baseline first detects the cycle C1 = (lion→
animal→ feline→ lion) and randomly de-
cides to break it by removing the edge (animal
→ feline). Next, it detects the cycle C2 =
(animal → great apes → animal) and
randomly decides to break it by removing the edge
(animal → great apes). ContrastMedium,
instead, after the shaking of the graph can leverage
the partial ordering of the nodes (based on the con-
cept granularity of the corresponding concepts) to
select the edges (animal, feline), (feline,
lion) and (animal, great apes), while re-
moving all remaining wrong and redundant edges.

4.2 Experiment 2: SemEval-15 task 17

We next evaluate the overall impact of our ap-
proach within an existing benchmark for the tax-
onomy induction task. Intuitively, most of the ben-
efits from our method derive from the “gold stan-
dard” information of the companion KB, and its
linking to the NKG, which act as a source of su-
pervision. Consequently, we address the research
question of how much (pseudo-)supervision our
method needs in terms of KB links, and whether
it can be used to improve the state-of-the-art on
the task of taxonomy induction.

4.2.1 Experimental Setting
We use the benchmark data from the SemEval-15
task 17 “Taxonomy Extraction Evaluation: TExE-
val” (Bordea et al., 2015), since it provides us with
gold-standard datasets and system outputs within
a standard, easy-to-reproduce setting. Initially,
we select from the participating systems4 the two
best performing taxonomies based on the Cumula-

4Cf. Table “Comparative Evaluation” at http://alt.

qcri.org/semeval2015/task17/index.php?id=evaluation
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Figure 3: Performance on the SemEval-15 TExEval dataset (Cumulative Fowlkes&Mallows measure).

tive Fowlkes&Mallows (CF&M) measure (Velardi
et al., 2012), the Equipments and Sciences tax-
onomies from the INRIASAC and the LT3 teams
respectively. We next apply our approach to these
taxonomies, in order to clean them in a post-
processing fashion. By selecting the top-systems
we can see how far we can advance the state-of-
the-art overall. Besides, these two taxonomies are
also the ones containing the highest number of cy-
cles, giving the application of our cleaning algo-
rithm a more challenging (and meaningful) set-
ting. To remove the effects of automatic linking
and quantify the amount of manual efforts needed
by our approach, 10 random concepts from each
of these resources are manually linked to Word-
Net, and the taxonomies subsequently pruned us-
ing ContrastMedium and the baseline. We then
evaluate performance following the task’s exper-
imental setting and compute the CF&M measure
for different levels of manually-created KB links.

4.2.2 Results and discussion

In Table 3, we report the performance on the Sem-
Eval task for the two selected input taxonomies.
Results on the structural similarities of the pruned
taxonomies with the gold standard ones, computed
using the CF&M measure, indicate that, thanks to
ContrastMedium and with a minimal human ef-
fort – the creation of just a few KB links (up to
10), which are needed only when automatic link-
ing is not available – it is possible to boost the
quality of taxonomies using state-of-art methods
by a large margin. For instance, in the case of the
Equipments taxonomy, we improve up to 7 points.
The baseline, which only breaks cycles, is not able
to reassess the graph structure and only provides
very small improvements to the submitted NKGs.

Overall, the results show that ContrastMedium
leads to competitive performance on a hard, real-
istic benchmark such as TExEval, achieving the
best overall results for both taxonomies. That is,
our algorithm is able to improve the state-of-the-
art on taxonomy induction by additionally boost-
ing the quality of existing top-performing systems
for this task: this is achieved on the basis of a min-
imally supervised approach that only requires a
few links to a reference KB, which is used to pro-
vide ground-truth taxonomic relations and guide
the cleaning process.

5 Conclusions

In this paper, we presented ContrastMedium, a
novel algorithm that can be applied to automat-
ically linked noisy knowledge graphs to provide
an end-to-end solution for fully unsupervised tax-
onomy induction from scratch, i.e., without any
human effort. Our results indicate that Con-
trastMedium can be successfully applied to a wide
range of automatically acquired KBs, ranging
from large linked noisy knowledge graphs all the
way to small-scale induced taxonomies to produce
high-quality isa hierarchies that achieve state-of-
the-art results on SemEval benchmarks. As fu-
ture work, we plan to improve the scalability of
the algorithm, in particular its time complexity or-
der, and apply it to Web-scale resources like the
WebIsaDB (Seitner et al., 2016) or state-of-the-art
approaches like TAXI (Panchenko et al., 2016), as
well as to publicly release the created resources.
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Abstract

Building knowledge bases (KB) automat-
ically from text corpora is crucial for
many applications such as question an-
swering and web search. The problem
is very challenging and has been divided
into sub-problems such as mention and
named entity recognition, entity linking
and relation extraction. However, com-
bining these components has shown to be
under-constrained and often produces KBs
with supersize entities and common-sense
errors in relations (a person has multi-
ple birthdates). The errors are difficult
to resolve solely with IE tools but be-
come obvious with world knowledge at
the corpus level. By analyzing Freebase
and a large text collection, we found that
per-relation cardinality and the popular-
ity of entities follow the power-law dis-
tribution favoring flat long tails with low-
frequency instances. We present a proba-
bilistic joint inference algorithm to incor-
porate this world knowledge during KB
construction. Our approach yields state-
of-the-art performance on the TAC Cold
Start task, and 42% and 19.4% relative
improvements in F1 over our baseline on
Cold Start hop-1 and all-hop queries re-
spectively.
∗The third author is currently with The Affinity project.
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1 Introduction

Automatically transforming a large corpus into a
structured knowledge base (KB) has long been a
goal of information extraction (IE) research. KB
population incorporates many IE tasks including
named entity recognition, entity linking and rela-
tion extraction, each of which rely on deeper lin-
guistic analysis, e.g., syntactic parsing or anaphora
resolution. Since 2012, NIST 1 has run an open
shared task in KB population (KBP) under TAC 2.
Most participating systems (Mayfield et al., 2014;
Min et al., 2015; Roth et al., 2015; Angeli et al.,
2014; Nguyen et al., 2014; Monahan and Carpen-
ter, 2012) combine many independent components
to perform the full task.

As will be familiar to most IE researchers, the
individual components are not perfect. When
combined into a pipeline, errors compound. We
found that a KB produced with a simple combina-
tion of state-of-the-art IE components (Ramshaw
et al., 2011) is very sensitive to component-level
errors (Grishman, 2013).

Table 1 illustrates a real entity coreference mis-
take. Barack Obama and Ehud Barak were incor-
rectly linked because of ambiguous context and
high lexical overlap. The mistake leads to er-
rorful facts about employment, familial relations,
etc. We see additional mistakes when we review
the names in those entities with the most men-
tions: the U.S. entity contains more than 20,000
mentions. 85% are correct (e.g., United States,
U.S.), but there is a long tail of incorrect yet infre-
quent(each accounting for < 1%) mentions linked
to the entity e.g., North America, Latin American.
We also see counter-intuitive errors in relation ex-
traction: 5% of person entities have multiple birth-
dates; the KB asserts 8 spouses for an infrequently

1U.S. National Institute of Standards and Technology
2Text Analysis Conference: www.nist.gov/tac/
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mentioned entity. Similar errors have been re-
ported in (McNamee et al., 2013) and (Singh et
al., 2013b).

Named mentions of PER:Barack Obama:
Barack, Barack Obama, Ehud Barak, Barak
Text: Barak endorses Barack, ... Defense Min-
ister Ehud Barak said Barack Obama has been
the most supportive president on Israeli security

Table 1: Example of entity linking errors.

Analyzing these errors suggests a limitation of
performing KB population solely with IE tools.
These mistakes only become obvious in the con-
text of external world knowledge with the full
set of facts extracted from many documents, e.g.
when applying our expectations about the cardi-
nality of a relation. With just a single document,
resolving these mistakes requires challenging in-
ference (Ji et al., 2005).

In this paper, we present a probabilistic frame-
work to incorporate real-world knowledge into
Cold Start KB population. Our contributions in-
clude:
• Identifying from real world datasets that en-

tity popularity and each relation’s cardinality
follow the power-law distribution with long
tails of low-frequency instances.
• Defining a corpus-level joint objective for

KBP that incorporates multiple IE compo-
nents and prior world knowledge on entity
popularity and per-relation cardinalities, and
showing the prior knowledge helps to reduce
errors.
• Outperforming the top-ranked entry in Cold

Start 2015.
The paper is organized as follows: we first in-

troduce the Cold Start KBP task, then present the
joint probabilistic framework, followed by anal-
ysis of the world knowledge and how to incor-
porate it. We then describe our inference algo-
rithm. Lastly, we present experimental results, re-
lated work, and conclude with suggestions for fu-
ture research.

2 Cold Start KBP

The schema consists of 3 entity types (person,
organization, and GPE) and 42 slots (relation
classes) 3. Systems start with an empty KB (cold
start) and populate it according to the schema with

3We will use slot and relation interchangeably in this pa-
per.

information extracted from the corpus. All facts in
the KB must be grounded with justifying text from
the corpus.

A KB entity is defined as a cluster of mentions
that refer to the same real-world entity, e.g., Smith,
John Smith, and John H Smith are 3 mentions for
the entity John H Smith. Every named mention of
an entity is recorded. A relation is a triplet (sub-
ject, slot, object), where subject and object are en-
tities, 4 and slot is the relation between them. For
example, (Bart Simpson, per:siblings, Lisa Simp-
son) is the relation Bart Simpson is a sibling of
Lisa Simpson. A relation’s provenance points to
up to 4 snippets in the corpus that justify the re-
lation. The evaluation process is described in the
Experiments Section.

3 A Probabilistic Framework

Following most Cold Start KBP systems (May-
field et al., 2014; Min et al., 2015; Roth et al.,
2015; Angeli et al., 2014; Nguyen et al., 2014;
Monahan and Carpenter, 2012), our baseline uses
a cascade of NLP components from document-
level analysis to corpus-level aggregation. We run
BBN’s SERIF (Ramshaw et al., 2011) for men-
tion, value and name tagging, coreference resolu-
tion, sentence-level relation extraction, alongside
other analysis such as syntactic parses. Then we
aggregate entities with entity discovery and link-
ing and relations with relation extraction.

Given a set of pre-trained NLP components, the
process is essentially an inference task. We intro-
duce the following notation:
• M is the list of mentions
• E is the set of entities to populate the KB
• R is the set of relation types.
• xi is the observed text for mention i, xi ∈M
• ui is entity ID from the KB assigned to men-

tion i, i ∈ {1, 2, ..., |M |}, ui ∈ {1, 2, ..., |E|}
• zi,j = r indicates the relation r between

a pair of mentions xi, xj ∈ M and r ∈
R
⋃{Other}

• yri,j is an indicator variable: yri,j = 1 if
a relation r ∈ R exist between entity pair
< ei, ej >, i, j ∈ {1, 2, ..., |E|}, and 0 other-
wise.

The key steps in the pipeline are the following:
Mention extraction: We use a structured per-

ceptron model (Ramshaw et al., 2011) to extract
named mentions M .

4A small number of the relations take values not entities.
We do not differentiate in this work.
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Figure 1: A simplified plate model of the probabilistic model(left), and an example (right) illustrates
the KB construction process with aligned variables. The plate model only shows RE and EDL factors,
and factors incorporating world knowledge. The example(right) compensates by showing the process
without priors.

Entity Discovery & Linking (EDL): This step
creates a candidate entity set E for the KB and
infers which document entity (represented by its
named mentions) is associated with which KB en-
tity , i.e. assigning values for {ui}. We use a
sieve-like (Raghunathan et al., 2010) algorithm for
in-document coreference. For simplicity, we only
model EDL of names 5.

We define potential functions over variables
{ui} for each pair of mention xi and the jth en-
tity ej :

ΨEDL
i (ui = j|xi) = exp(Σkθkφk(ui = j|xi))

The baseline system solves the EDL problem by
inferring u∗i = arg max ΨEDL

i (ui). It uses a name
database collected from Freebase (Bollacker et al.,
2008) and GeoNames 6. First, it clusters novel
names to create new candidate entities in addition
to entries in the name database. A novel name is
defined as a name that could not be resolved to
a database entry. It then rescans the corpus and
links each document-level entity to a corpus-level
entity (an entry in the name database or a novel
name). The EDL model ΨEDL uses features such
as string edit distance and indicators representing
whether appearing in the same name variant set.
{θk} and {φk} are the weights and feature func-
tions respectively.

Mention-level Relation Extraction (MRE):
This step infers which relation zi,j = r(r ∈
R
⋃{Other}) exists between each pair of men-

tions < xi, xj >, we define potential functions:

ΨMRE
i,j (zi,j = r|xi, xj) = exp(Σkθ

′
kφ
′
k(zi,j = r|xi, xj))

We run several relation finding algorithms (Min
et al., 2015) , including statistical models trained

5Decisions made for named mentions will be applied to
the corresponding document-level entities.

6www.geonames.org

from ACE 7 relation annotation and distant super-
vision (Mintz et al., 2009) in which we align Free-
base pairs into Gigaword (Parker et al., 2011) to
generate training examples, and a pattern matcher
with a few hand-written patterns that capture local
contexts.

To train a log-linear model ΨMRE for combin-
ing these algorithms and to tune the confidences
of their extractions, we follow (Viswanathan et
al., 2015) and train a stacked classifier using out-
put and confidences of the extractors. We use as-
sessment datasets from TAC Cold Start KBP 2013
and 2014, and Slot Filling evaluations in 2013 and
2014. The features we used are: source algorithm
name, slot, confidence score (if exists), argument
mention level (pronoun, name, or nominal), lexi-
cal sequence between pair of arguments, proposi-
tional path between the pair of arguments. {θ′k}
and {φ′k} are the weights and feature functions re-
spectively.

Relation Extraction (RE): This aggregation
step infers which relations exist between each pair
of entities at the KB level, i.e. assigning values for
{yri,j}. We define the potential functions over the
indicator variables {yri,j}, by looking at all pairs
of mentions xm, xn ∈ M , their potential to have
a relation r and likelihood to be associated with
entities ei, ej ∈ E:

ΨRE
i,j,r(y

r
i,j = 1|x) =

max
<m,n>

(ΨEDL
m (um = i|xm)ΨEDL

n (un = j|xn)

ΨMRE
m,n (zm,n = r|xm, xn))

and ΨRE
i,j,r(y

r
i,j = 0|x) = ΨRE

0 where ΨRE
0 is a

parameter learned from previously seen data. The
aggregation from a set of zm,n to a set of yi,j
is similar to noisy-or relation aggregation (Hoff-
mann et al., 2011; Riedel et al., 2010; Sur-

7itl.nist.gov/iad/mig/tests/ace/2005/
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deanu et al., 2012) and supports overlapping re-
lations (Hoffmann et al., 2011; Surdeanu et al.,
2012).

The joint distribution defined over the full set
of variables u, y is:

Pr(u, y|x) ∝
∏

m

ΨEDL
m (um|xm) ·

∏

i,j,r

ΨRE
i,j,r(y

r
ij |x)

The Cold Start KBP problem can be seen as
finding the maximum a posteriori (MAP) config-
uration:

(u∗, y∗) = arg max
(u,y)

Pr(u, y|x)

The baseline system approximates the solu-
tion by solving in 2 separate stages: solve EDL
by fixing u∗m = arg max1≤i≤|E|ΨEDL

m (um =
i|xm) for all xm, then solve RE by fixing y∗ri,j =

arg maxδ∈{0,1}ΨRE
i,j,r(y

r
i,j = δ|x, u∗) for all i, j, r.

The potential ΨRE
i,j,r(y

r
i,j = 1|x, u∗) is a relaxed

form for ΨRE
i,j,r(y

r
i,j = 1|x):

ΨRE
i,j,r(y

r
i,j = 1|x, u∗) =

max
m,n:

(u∗m,u∗n)=(i,j)

(ΨEDL
m (u∗m = i|xm)ΨEDL

n (u∗n = j|xn)

ΨMRE
m,n (zm,n = r|xm, xn))

In the relaxed form, the optimization problem
required for estimating the potential of y∗ri,j is lim-
ited to search only over pairs of mentions xm, xn
which are now associated with the entities ei, ej ,
i.e. um = i and un = j, instead of enumerat-
ing over all pairs of mentions. This can be done
efficiently.

4 Incorporating World Knowledge

We incorporate world knowledge related to entity
popularity and a set of per-relation cardinalities as
additional factors in the objective. To learn these
factors’ form, we analyze real-world datasets and
find that both factors follow the power-law distri-
bution with long tails of low-frequency instances.

4.1 Entity Popularity
We define entity popularity (EP) as the number
of mentions of an entity in a corpus. Entities
vary in popularity– famous people (e.g. politi-
cians, athletes), countries, and large organizations
will be mentioned frequently in news, while other
entities– a small city, the local valedictorian may
only be mentioned a few times. Ideally, we would

model the EP distribution with counts from a large
corpus annotated for names and cross-document
entity coreference. As we are not aware of any
such resource, we look at two approximations:

Name variants (NV): We collect name variants
(e.g., UN and United Nations) for PER and ORG
from Freebase and for GPE from GeoNames.

Name Mentions (NM): From a 50K document
sample of Gigaword, for each entity, we search for
exact matches to its name variants, and count these
matches to estimate the number of entity men-
tions.

Figure 2 (left) plots the per-entity relationship
between the count of NM and NV with rank. Both
follow the power-law distribution (i.e. the plots
are close to straight lines in a log-log scale). In
other words, most entities have only a small num-
ber of variants and are mentioned only a few times.
A handful of popular entities are mentioned fre-
quently and have many variants 8. The size of
entities in the Kripke (Finin et al., 2014) system
follows power-law distribution, further supporting
our findings.

Formally, we define for ith entity the popularity
variable qi(u) = ΣmI(um = i) and the potential
for EP factor ΨEP

i (u) as follows:

ΨEP
i (u) ∝ exp(θEP (qi(u)))

in which θEP (qi(u)) = α ln(qi).
The parameter α > 0 is initially fit from Free-

base entities and then finetuned with TAC 2014
dataset to reflect real-world distributions. The EP
term favors EDL solutions u with a popularity dis-
tribution that follows a power-law with a long tail
of low-frequency entities.

4.2 Relation Cardinality
We define relation r’s cardinality regarding ei as
the number of entities or values associated with ei
through r. For example, if John Smith has 3 chil-
dren, the cardinality of r=per:children regarding
ei=John Smith is 3. Formally, we notate the set
of variables {yrij} as yri , and the cardinality of a
relation r of entity ei as dri = Σjy

r
ij .

Per-relation cardinalities (RC) often reflect real
world constraints– people have at most one birth-
date and typically no more than 5 siblings. To
understand the cardinality constraints for the Cold
Start relations, we use Freebase, a large, manually

8We confirm that a few entities have many variants e.g.
for Elizabeth II, 364 variants including Elizabeth II of the UK,
Her Majesty the Queen, Queen of Australia, etc.
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Figure 2: Real-world entity popularity (left) and per-relation cardinality (right) both follow the power-
law distribution. x-axis shows ranks and y-axis shows counts (both are in log scale). The Left figure
plots both numbers of name variants and numbers of mentions to ranks for PER, ORG and GPE.

curated KB. We align Freebase to the TAC schema
following (Chen et al., 2010) and then generate a
cardinality for each relation for all entities. The
relationship between RC and RC-rank for the the
6 most frequent relations is plotted in Figure 2
(right). For these relations, RC closely resembles
a power-law distribution. To favor both power-
law and a soft size-limit on cardinality, we define
the following potentials for RC factors for each
relation-entity pair:

ΨRC
i,r (yr) ∝ exp(θRC(dri ))

in which θRC(dri )) = β ln(dri ) − γ(max(dri −
µr, 0))2 with parameters β, γ > 0, and µr as the
mean of the cardinalities of a relation r (estimated
from Freebase). The first term in the potential has
the power-law assumption, while the second term
penalizes large cardinalities for going beyond the
mean µr.

4.3 Incorporating Prior World Knowledge
Incorporating the EP and per-relation RC terms
into the joint distribution, we obtain the joint ob-
jective:

Pr∗(u, y|x) ∝ Pr(u, y|x)·
∏

1≤i≤|E|
ΨEP
i (u) ·

∏

1≤i≤|E|
r∈R

ΨRC
i,r (yri )

with Pr(u, y|x) as the baseline objective. A sim-
plified plate diagram is shown in Figure 1.

Learning constraints for real-world corpora:
As we’re not aware of any large corpus anno-
tated exhaustively with entities and relations, we
fit the parameters of the constraints initially from

Freebase entities and relations, and then fine-tune
them using empirical utility maximization (Jan-
sche, 2005; Ye et al., 2012) for TAC Cold Start
all-hop F1 with grid search in the parameter space,
using previous years’ TAC assessment. Freebase
is used in initialization because of its scale while
finetuning with TAC assessment ensures the fac-
tors to more appropriately represent the underly-
ing distribution of entity popularity and relation
cardinality in a real-world corpus.

5 Jointly Inferring Entities and Relations

The problem of Cold Start KBP becomes finding
a MAP assignment of u and y for Pr∗(u, y|x).
Finding the exact solution is hard, as many terms
in the objective involve large groups of vari-
ables. We propose Algorithm 1 as an approximate
heuristic. Line 1 generates an initial KB by ap-
proximating a solution for the baseline objective
Pr(u, y|x) (Section 3), but tends to overlink enti-
ties and over-aggregate relations. Lines 2-8 itera-
tively refine the KB by searching over the (u, y)-
space using operation o ∈ {SplitE, PruneR}. At
t-th iteration, it performs the operation o with the
highest potential gain ∆ lnPr∗(o(ut, yt)|x). The
process is repeated until the gain is smaller than a
very small value ε.

SplitE: splits an entity ei into two entities.
Since there are an exponential number of pos-
sible SplitE actions, we uses the following two
heuristics: 1) cluster name mentions by their string
forms, and find an “outlier” cluster of mentions,
2) rank ei’s mentions {xm : u∗m = i} by their
local EDL potential ΨEDL

m (u∗m|xm) and find the
lowest-ranked mention as an “outlier”. After find-
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Input : x, α, β, γ, µr for r ∈ R
Output: u, y

1 (u0, y0) = arg max(u,y) Pr(u, y|x)

2 t← 0
3 repeat
4 o = arg maxo ∆ lnPr∗(o(ut, yt)|x)
5 if o! = null then
6 (ut+1, yt+1)← Execute(o(ut, yt))
7 t← t+ 1

8 until ∆ lnPr∗(o(ut, yt)|x) < ε;
Algorithm 1: The MAP inference algorithm

ing an “outlier” mention cluster of ei, we divide
it into two entities: eg with the “core” mentions,
and eh with the “outlier” mention cluster. We re-
peat the process to find all outlier entities and sepa-
rate them from the entity. Relation arguments will
be reattached to the new entities accordingly. We
only consider a short list of most popular entities
and split each using the heuristics described above.

PruneR: removes a batch of relations (Y =
{yri,j}) by setting 0: yri,j ← 0 for each yri,j ∈ Y .
The batch is generated with the following steps:
first select a set of entity-relation pairs (ei, r) with
the highest cardinality dri =

∑
j y

r
i,j , then repeat-

edly select the associated relation with the low-
est potential j∗ = arg minj:yri,j=1 ΨRE(yri,j |x).
Each yri,j will be added into the batch until its size
reaches 50.

We define the gain for SplitE and PruneR as:

∆ lnPr∗(SplitE(eg, eh ← ei)|x)) =

Σm(ln ΨEDL
m (g) + ln ΨEDL

m (h)− ln ΨEDL
m (i))

+ Σr∈R(ln ΨRE
g + ln ΨRE

h − ln ΨRE
i

+ ln ΨRC
r (y′r)− ln ΨRC

r (yr))

+ ln ΨEP
g (u′) + ln ΨEP

h (u′)− ln ΨEP
i (u)

∆ lnPr∗(PruneR(Y )|x) =

Σr∈R(ln ΨRC
r (y′r)− ln ΨRC

r (yr))

+ Σyri,j∈Y (ln ΨRE
0 − ln(ΨRE

i,j,r(y
r
ij = 1|x)))

in which ΨEDL
m (i) is short for ΨEDL

m (um = i|xm)
with m ranges over IDs of mentions in ei, and
ΨRE
i is the sum of the RE factors which are re-

lated to entity ei. y′, u′ are the assignment to y, u
if a SplitE or a PruneR operation is executed. We
also use the short form ΨRC

r (y′r) as the sum of
the RC factors which have changed because of a
SplitE or a PruneR operation.

Since the gain is only computed for the short-
listed entities and relations, and we only calcu-

late the subset of factors (EDL, RE, RC, and
EP) related to the operation, ∆ lnPr∗(SplitE|x)
and ∆ lnPr∗(PruneR|x) can be calculated effi-
ciently.

6 Experiments

We evaluate our system with resources provided
to TAC 2015 participants, including 1) a source
corpus of 50,000 documents from newswire and
discussion forums, 2) a query set consisting of
317 hop-0 entities (expanded to 1,148 hop-0 entry-
point mentions and 8,191 hop-1 queries), 3) LDC 9

assessment of participant responses from auto-
matic submissions 10 and a manually created sub-
mission 11, and 4) software that retrieves answers
from a KB and measure performance with the as-
sessment. Additionally, we use TAC 2013 and
2014 datasets for tuning parameters and training
stacked classifiers. α = 10, β = 5, γ = 0.1 are set
empirically following Section 4.3. We run each
experiment 20 times and average the scores.

6.1 Queries, Assessment, and Scoring
We briefly describe the evaluation process and
scoring metrics. More details appear in (May-
field, 2014). The Cold Start evaluation mea-
sures KB-quality by probing the KB with two
types of queries. The queries are either at hop-
0 (e.g., which organization(s) is(are) founded by
Bill Gates?) or hop-1 (e.g., in which city(-ies)
the organization(s) founded by Bill Gates is(are)
headquartered?). More formally, the evaluation
software tries to find an entity e0 in the submitted
KB that covers the entry-point mention of a hop-0
query q0, then finds all relational triples matching
(e0, r1, ?). X , the set of entities matching the open
variable, is reviewed by annotators for: (a) assess-
ment of correctness and (b) the identification of
non-redundant subset X ′. The software generates
an hop-1 query q1 = x′ for each x′ ∈ X ′, finds the
entity e1 that aligns with q1, and then finds triples
matching (e1, r2, ?). This results in response set
Y , the set of entities matching the second open
variable. Set Y is assessed by LDC in the same
manner as Set X . The process is performed over
all submitted KBs 12. The answers in X (hop-0)

9https://www.ldc.upenn.edu/
1020 teams participants in the task with >50 KBs submit-

ted.
11created by time-limited LDC annotators
12LDC generates the time-limited manual run directly

from text queries, but treats the responses identically for as-
sessment
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Systems
CS-SF CS-LDC-MAX

Hop-0 Hop-1 Hop-0 Hop-1
P R F1 Ign P R F1 Ign P R F1 Ign P R F1 Ign

TAC rank1 48 30 37 0 31 17 22 0 50 35 40 0 28 20 23 0
offset-based 50 31 38 64 31 18 23 23 52 35 42 19 30 21 24 6
string-match 49 31 38 13 32 19 24 11 52 36 42 6 29 21 25 3

assess 50 31 39 0 32 19 23 0 53 37 43 0 29 21 24 0

Table 2: CS-SF and CS-LDC-Max micro-averaged precision, recall and F1 of hop-0 and hop-1 queries
for the TAC 2015 top-ranked KB submission (Min et al., 2015) and our KBC+E+R system (3 bottom
rows) using various post-hoc scoring techniques (offset-based, string-match and assess). Ign is the num-
ber of unassessed answers.

are correct when when sufficiently justified in the
source corpus. The answers in Y (hop-1) are cor-
rect only if both the element of X that generated
the response is correct and the response in Y is
justified in the text.

NIST reports two metrics, CS-SF and CS-
LDC-MAX, which differ in the treatment of mul-
tiple entry-point mentions for a single real-world
entity. CS-SF treats each distinct mention as an
independent query. CS-LDC-MAX takes only the
entry-point mention which maximizes system per-
formance for a given query-entity (i.e. either the
responses for Bill Gates or William Gates). For
both metrics, NIST calculates micro-averaged pre-
cision, recall, and F1 over all queries. As men-
tioned above, the official evaluation is a human
post-hoc assessment of KB output. A system de-
veloped outside of the evaluation window, e.g.,
our proposed algorithm, will likely include re-
sponses for which truth is not known, which are
ignored by the scoring software. Table 2 compares
the TAC top-ranked system to our full configura-
tion using three post-hoc scoring strategies: strict
offset-based match, string-match match, and as-
sess in which we apply the offset-based metric us-
ing additional internally performed assessments.
For the ablation study in Table 3, we use the of-
ficial scorer’s string-match mode. A small num-
ber of responses are ignored (Ign) even in string-
match mode. We further account for these re-
sponses by re-estimating precision for hop-0 and
hop-1 assuming that the precision of the ignored
responses at hop-1 is the same as the hop-0 preci-
sion 13. When this optimistic estimate differs from
reported precision, we report it in parentheses.

13This overestimates the hop-1 precision which is lower
than hop-0 precision because of error compounding.

6.2 Results and Discussion

Table 2 compares our full system (KBC+E+R)
to the top performing system in TAC Cold Start
2015 using three different approaches to post-hoc
scoring. Without manual effort, our joint model-
ing approach exceeds the performance of the top-
ranked system, which uses a cascade of manually-
specified rules (Min et al., 2015). Our system ob-
tains 5.4% and 4.8% relative improvement in hop-
0 and hop-1 CS-SF F1 over the top-ranked system.
Improvement is observed in both hop-0 and hop-1
and with both CS-SF and CS-LDC-MAX show-
ing that the improvement is robust. A sign test
shows that the improvements are significant with
p < 0.01.

Systems Hop-0 Hop-1
P R F1 P R F1

KBC 45 33 37.9 14(16) 21 17
KBC+E 45 32 37.9 18(21) 21 19
KBC+R 49 32 38.2 27 19 23

KBC+E+R 49 31 38.4 32 19 24

Table 3: CS-SF scores (string-match) for differ-
ent priors: KBC (baseline: no world knowledge),
KBC+E (only entity-based factors), KBC+R(only
relation-based factors), KBC+E+R(both sets of
factors). Numbers in parentheses indicate the op-
timistic estimate when it differs from the number
reported by the scoring software.

Table 3 ablates each type of world knowledge
to show the impact of entity and relation-based
factors independently when compared to a version
of our system without world knowledge. As ex-
pected, the impact of world knowledge is seen in
improvements in precision at minor costs to re-
call. Both types of world knowledge have higher
impact on hop-1 than hop-0 as hop-1 measures
the formation of the KB with multiple hops in re-
lations. Adding the relation factors has a larger
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impact than adding the entity factors because our
splitting of entities is conservative (only affects
< 0.1% entities) while relations’ factors removes
7.3% relations. The two classes of factors ap-
pear to have largely independent impacts– com-
bining them yields a large improvement. In to-
tal, adding prior world knowledge yields relative
improvements of 9% in hop-0 precision, 131% on
hop-1 precision, 42% on hop-1 F1, and 19.4% on
all-hop F1 over the baseline. A sign test shows the
improvements are significant with p < 0.01.

Reduction of errors: With relation factors
added (KBC+R and KBC+E+R), 7.3% relations
(out of 243K) are removed by PruneR with min-
imal recall loss. The median number of fillers
for relations for the top 1% entities drops, e.g.
per:title from 7 to 5, per:employee or member of
from 5 to 2, and per:city of birth from 3 to 1. In-
spection shows that our approach addresses many
obvious mistakes: U.K. is removed as a response
to (Securities and Exchange Commission(SEC),
org:country of headquarters, ?) while U.S. re-
mains. The error, caused by UK’s SEC which
means UK’s analog to the SEC of US, is very
hard to resolve without world knowledge. With
cardinality constraints that favor only one coun-
try of headquarters for an ORG and U.K has a
lower confidence than U.S. as a filler, the model
identifies U.K. as an incorrect answer.

With entity factors added (KBC+E+R and
KBC+E), the model favors a larger amount of
smaller but more precise entities. It generates 4%
new entities (out of 212K) by splitting the largest
< 0.1% entities with the SplitE heuristics de-
scribed in section 5. For example, the entity Aus-
tralia is splitted into 3 entities, Australia and two
outliers West Aussie and Australian Capital Ter-
ritory. It also singles out entities such as South
America, Idaho, Colorado from the giant U.S. en-
tity with > 20, 000 mentions. When querying the
KB facts related to U.S., erroneous answers that
would otherwise be reported through relations as-
sociated with South America or the U.S. states will
be removed.

7 Related Work
Cold Start KBP The TAC Cold Start KBP work-
shop has attracted many text-based KBP sys-
tems (McNamee et al., 2012; McNamee et al.,
2013; Mayfield et al., 2014; Min et al., 2015;
Roth et al., 2015; Angeli et al., 2014; Nguyen
et al., 2014; Monahan and Carpenter, 2012).

KELVIN (Mayfield et al., 2014) and BBN sys-
tem (Min et al., 2015) both use hand-crafted rules
to limit the number of fillers, e.g., remove less pre-
cise relations if a person has more than 8 (current
and ex-) spouses. (Wolfe et al., 2015) and (He
and Grishman, 2015) proposed interactive tools
for KB construction with human guidance.

Knowledge Base Completion With the re-
cent popularity of structured KBs such as Free-
base (Bollacker et al., 2008), YAGO (Suchanek
et al., 2007) and above-mentioned KBP tech-
niques, there is a growing interest in complet-
ing a partially-complete KB with tensor decom-
position (Chang et al., 2014), matrix factoriza-
tion (Riedel et al., 2013), graph random walk (Lao
et al., 2011; Lao et al., 2012; Gardner et al., 2014),
neural networks (Socher et al., 2013; Neelakantan
et al., 2015; Dong et al., 2014) and others (Guu et
al., 2015; Gardner et al., 2013; Das et al., 2016).
Knowledge Vault (Dong et al., 2014) pushes it fur-
ther by combining many extraction components
while estimating the confidence of their extrac-
tions and scales it to the Web. Model combi-
nation (Viswanathan et al., 2015) and confidence
estimation (Wick et al., 2013; Li and Grishman,
2013) is related to our model for combining ex-
traction components. The work described here dif-
fers from KB completion tasks in its requirement
that the initial KB is empty and that all informa-
tion in the KB be grounded in a text corpus.

Joint Modeling and Inference for IE To ad-
dress the problem of compounding errors with
multiple NLP components for IE, several pa-
pers (Finkel and Manning, 2009; Mccallum and
Jensen, 2003; Finkel et al., 2006; Yao et al., 2010;
Singh et al., 2009; Poon and Domingos, 2007;
Wellner et al., 2004; Poon and Vanderwende,
2010; Riedel and McCallum, 2011; Chen et al.,
2014; Kate and Mooney, 2010; Miwa and Sasaki,
2014) propose joint modeling and inference for
IE. (Roth and Yih, 2007) use the ILP framework
to enforce manually-specified constraints between
entity and relation identification, while (Yu and
Lam, 2010) models these two tasks in encyclo-
pedia articles using a discriminative probabilistic
model. (Li and Ji, 2014) jointly extracts entity
mentions and relations with a structured percep-
tion with beam search. (Singh et al., 2013a) per-
forms joint inference for entity, relation and coref-
erence with an extension of the belief propagation
algorithm. The work described here differs in its
use of world knowledge. The joint modeling and
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inference for IE is not comparable but comple-
mentary to our method, therefore can be incorpo-
rated into our system for further gain.

8 Conclusion and Future Work

We present a joint probabilistic framework for
end-to-end Cold Start KBP with prior world
knowledge. Experiments show it surpassing the
best-performing system at the NIST TAC 2015
Cold Start evaluation. We plan to investigate addi-
tional world knowledge in the near future.
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Abstract
Universal schema predicts the types of enti-
ties and relations in a knowledge base (KB)
by jointly embedding the union of all avail-
able schema types—not only types from mul-
tiple structured databases (such as Freebase
or Wikipedia infoboxes), but also types ex-
pressed as textual patterns from raw text. This
prediction is typically modeled as a matrix
completion problem, with one type per col-
umn, and either one or two entities per row
(in the case of entity types or binary relation
types, respectively). Factorizing this sparsely
observed matrix yields a learned vector em-
bedding for each row and each column. In this
paper we explore the problem of making pre-
dictions for entities or entity-pairs unseen at
training time (and hence without a pre-learned
row embedding). We propose an approach
having no per-row parameters at all; rather
we produce a row vector on the fly using a
learned aggregation function of the vectors of
the observed columns for that row. We exper-
iment with various aggregation functions, in-
cluding neural network attention models. Our
approach can be understood as a natural lan-
guage database, in that questions about KB
entities are answered by attending to textual
or database evidence. In experiments predict-
ing both relations and entity types, we demon-
strate that despite having an order of magni-
tude fewer parameters than traditional univer-
sal schema, we can match the accuracy of the
traditional model, and more importantly, we
can now make predictions about unseen rows
with nearly the same accuracy as rows avail-
able at training time.

1 Introduction
Automatic knowledge base construction (AKBC) is the
task of building a structured knowledge base (KB) of
facts using raw text evidence, and often an initial seed
KB to be augmented (Carlson et al., 2010; Suchanek et
al., 2007; Bollacker et al., 2008). KBs generally con-
tain entity type facts such as Sundar Pichai IsA Per-
son and relation facts such as CEO Of(Sundar Pichai,

Google). Extracted facts about entities, and their types
and relations are useful for many downstream tasks
such as question answering (Bordes et al., 2014) and
semantic parsing (Berant et al., 2013; Kwiatkowski et
al., 2013).

An effective approach to AKBC is universal schema,
which predicts the types of entities and relations in a
knowledge base (KB) by jointly embedding the union
of all available schema types—not only types from
multiple structured databases (such as Freebase or
Wikipedia infoboxes), but also types expressed as tex-
tual patterns from raw text. This prediction is typically
modeled as a matrix completion problem. In the stan-
dard formulation for relation extraction (Riedel et al.,
2013), entity pairs and relations occupy the rows and
columns of the matrix respectively (Figure 1a). Analo-
gously in entity type prediction (Yao et al., 2013), en-
tities and types occupy the rows and columns of the
matrix respectively (Figure 1b). The row and column
entries are represented as learned vectors with compat-
ibility determined by a scoring function.

In its original form, universal schema can reason
only about row entries and column entries explicitly
seen during training. Unseen rows and columns ob-
served at test time do not have a learned embedding.
This problem is referred to as the cold-start problem in
recommendation systems (Schein et al., 2002).

Recently Toutanova et al. (2015) and Verga et al.
(2016) proposed ‘column-less’ versions of universal
schema models that generalize to unseen column en-
tries. They learn compositional pattern encoders to pa-
rameterize the column matrix in place of individual col-
umn embeddings. However, these models still do not
generalize to unseen row entries.

In this work, we present a ‘row-less’ extension of
universal schema that generalizes to unseen entities and
entity pairs. Rather than representing each row entry
with an explicit dense vector, we encode each entity or
entity pair as aggregate functions over their observed
column entries. This is beneficial because when new
entities are mentioned in text documents and subse-
quently added to the KB, we can directly reason on
the observed text evidence to infer new binary relations
and entity types for the new entities. This avoids the
cumbersome effort of re-training the whole model from
scratch to learn embeddings for the new entities.
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To construct the row representation, we compare var-
ious aggregation functions in our experiments. We
consider query independent and dependent aggregation
functions. We find that query dependent attentional
models that selectively focus on relevant evidence out-
perform the query independent alternatives. The query
dependent attention mechanism also helps in provid-
ing a direct connection between the prediction and its
provenance. Additionally, our models have a much
smaller memory footprint since they do not store ex-
plicit row representations.

It is important to note that our approach is different
from sentence level classifiers that predict KB relations
and entity types using a single sentence as evidence.
First, we pool information from multiple pieces of ev-
idence coming from both text and annotated KB facts,
rather than considering a single sentence at test time.
Second, our methods are not limited to a fixed schema
but instead predict a richer set of labels (KB types and
textual), enabling easier downstream processing closer
to natural language interaction with the KB. Finally,
our model gains additional training signal from multi-
task learning of textual and KB types. Since universal
schema leverages large amounts of unlabeled text we
desire the benefits of entity pair modeling, and row-less
universal schema facilitates learning entity pair repre-
sentations without the drawbacks of the traditional one-
embedding-per-pair approach.

The majority of current embedding methods for KB
entity type prediction operate with explicit entity rep-
resentations (Yao et al., 2013; Neelakantan and Chang,
2015) and hence, cannot generalize to unseen entities.
In relation extraction, entity-level models (Nickel et
al., 2011; Garcı́a-Durán et al., 2016; Yang et al., 2015;
Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015;
Socher et al., 2013) can handle unseen entity pairs at
test time. These models learn representations for the
entities instead of entity pairs. Hence, these methods
still cannot generalize to predict relations between an
entity pair if even one of the entities is unseen. More-
over, Toutanova et al. (2015) and Riedel et al. (2013)
observe that the entity pair model outperforms entity
models in cases where the entity pair was seen at train-
ing time.

Most similar to this work, Neelakantan et al. (2015)
classify KB relations by finding the maximum scoring
path between two entities. This model is also ‘row-
less’ and does not directly model entities or entity pairs.
There are several important differences in this work.
Neelakantan et al. (2015) learn per-relation classifiers
to predict only a small set of KB relations, while we in-
stead predict all relations, including textual relations.
We also explore aggregation functions that pool ev-
idence from multiple paths while Neelakantan et al.
(2015) only chose the maximum scoring path. Ad-
ditionally, we demonstrate that our models can per-
form on par with those with explicit row representa-
tions while Neelakantan et al. (2015) did not perform

this comparison.
In this paper we investigate universal schema mod-

els without explicit row representations on two tasks:
entity type prediction and relation extraction. We use
entity type and relation facts from Freebase (Bollacker
et al., 2008) augmented with textual relations and types
from Clueweb text (Orr et al., 2013; Gabrilovich et
al., 2013). We explore multiple aggregation functions
and find that an attention-based aggregation function
outperforms several simpler functions and matches a
model using explicit row representations with an order
of magnitude fewer parameters. More importantly, we
then demonstrate that our ‘row-less’ models accurately
predict relations on unseen entity pairs and types on
unseen entities.

2 Background: Universal Schema
Universal schema (Riedel et al., 2013; Yao et al., 2013)
relation extraction and entity type prediction is typi-
cally modeled as a matrix completion task. In relation
extraction, entity pairs and relations occupy the rows
and columns of the matrix (Figure 1-a), while in en-
tity type prediction, entities and types occupy the rows
and columns of the matrix (Figure 1-b). During train-
ing, we observe some positive entries in the matrix and
at test time, we predict the missing cells in the matrix.
This is achieved by decomposing the observed matrix
into two low-rank matrices resulting in embeddings for
each column entry and each row entry. Test time pre-
diction is performed using the learned low-rank column
and row representations.

Let T be the training set consisting of examples of
the form (r, c), where row r ∈ U and column c ∈ V ,
denote an entity pair and relation type in the relation
extraction task, or entity and entity type in the entity
type prediction task. Let v(r) ∈ Rd and v(c) ∈ Rd be
the vector representations or embeddings of row r ∈
U and column c ∈ V that are learned during training.
Given a positive example, (r, c) ∈ T in training, the
probability of observing the fact is given by,

P (yr,c = 1) = σ(v(r).v(c)) (1)

where yr,c is a binary random variable that is equal to
1 when (r, c) is a fact and 0 otherwise, and σ is the
sigmoid function. The embeddings are learned using
Bayesian Personalized Ranking (BPR) (Rendle et al.,
2009) in which the probability of the observed triples
are ranked above unobserved triples.

3 Model
In this section, we describe the model, discuss the dif-
ferent aggregation functions and give details on the
training objective.

3.1 ‘Row-less’ Universal Schema
While column-less universal schema addresses reason-
ing over arbitrary textual patterns, it is still limited to
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Figure 1: Universal schema matrix. a: Relation extrac-
tion. Relation types are represented as columns and
entity pairs as rows of a matrix. Both KB relation types
and textual patterns from raw text are jointly embed-
ded in the same space. b: Entity type prediction. Entity
types are represented as columns and entities as rows
of a matrix.

reasoning over row entries seen at training time. Verga
et al. (2016) use column-less universal schema for rela-
tion extraction. They address the problem of unseen
row entries by using universal schema as a sentence
classifier – directly comparing a textual relation to a
KB relation to perform relation extraction. However,
this approach is unsatisfactory for two reasons. The
first is that this creates an inconsistency between train-
ing and testing. The model is trained to predict com-
patibility between rows and columns, but at test time it
predicts compatibility between relations directly. Sec-
ond, it considers only a single piece of evidence in
making its prediction.

We address both of these concerns in our ‘row-less’
universal schema. Rather than explicitly encoding each
row, we encode the row as a learned aggregation over
their observed columns (Figure 2). A row contains an

entity for type prediction and an entity pair for rela-
tion extraction while a column contains a relation type
for relation extraction and an entity type for type pre-
diction. A learned row embedding can be seen as a
summarization of all columns observed with that par-
ticular row. Instead of modeling this summarization as
a single embedding, we reconstruct a row representa-
tion from an aggregate of its column embeddings, es-
sentially learning a mixture model rather than a single
centroid.
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Figure 2: Row-less universal schema for relation ex-
traction encodes an entity pair as an aggregation of its
observed relation types.

3.2 Aggregation Functions
In this work we examine four aggregation functions to
construct the representations for the row. Let v(.) de-
note a function that returns the vector representation
for rows and columns. To model the probability be-
tween row r and column c, we consider the set ¯V (r)
which contains the set of column entries that are ob-
served with row r at training time, i.e.,

∀c̄ ∈ ¯V (r), (r, c̄) ∈ T
The first two aggregation functions create a single

representation for each row independent of the query.
Mean Pool creates a single centroid for the row by av-
eraging all of its column vectors,

v(r) =
∑

c̄∈ ¯V (r) v(c̄)

While this formulation intuitively makes sense as an
approximation for the explicit row representation, aver-
aging large numbers of embeddings can lead to a noisy
representation.

Max Pool also creates a single representation for the
row by taking a dimension-wise max over the observed
column vectors:

v(r)i = maxc̄∈ ¯V (r) v(c̄)i,∀i ∈ 1, 2, . . . , d
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where ai denotes the ith dimension of vector a. Both
mean pool and max pool are query-independent and
form the same representation for the row regardless of
the query relation.

We also examine two query-specific aggregation
functions. These models are more expressive than a
single vector forced to to act as a centroid to all possible
columns observed with that particular row. For exam-
ple, the entity pair Bill and Melinda Gates could hold
the relation ‘per:spouse’ or ‘per:co-worker’. A query-
specific aggregation mechanism can produce separate
representations for this entity pair dependent on the
query.

The Max Relation aggregation function represents
the row as its most similar column to the query vector
of interest. Given a query relation c,

cmax = argmaxc̄∈ ¯V (r)v(c̄).v(c)

v(r) = v(cmax)

A similar strategy has been successfully applied in pre-
vious work (Weston et al., 2013; Neelakantan et al.,
2014; Neelakantan et al., 2015) for different tasks. This
model has the advantage of creating a query-specific
entity pair representation, but is more susceptible to
noisy training data as a single incorrect piece of evi-
dence could be used to form a prediction.

Finally, we look at an Attention aggregation func-
tion over columns (Figure 3) which is similar to a
single-layer memory network (Sukhbaatar et al., 2015).
The soft attention mechanism has been used to selec-
tively focus on relevant parts in many different mod-
els (Bahdanau et al., 2015; Graves et al., 2014; Nee-
lakantan et al., 2016).

In this model the query is scored with an input rep-
resentation of each column embedding followed by a
softmax, giving a weighting over each relation type.
This output is then used to get a weighted sum over
a set of output representations for each column result-
ing in a query-specific vector representation of the row.
Given a query relation c,

scorec̄ = v(c).v(c̄),∀c̄ ∈ ¯V (r)

pc̄ = exp(scorec̄)∑
ĉ∈ ¯V (r) exp(scoreĉ) ,∀c̄ ∈ ¯V (r)

v(r) =
∑

c̄∈ ¯V (r) pc̄ × v(c̄)

The model pools relevant information over the entire
set of observed columns and selects the most salient
aspects to the query.

Model Parameters
Entity Embeddings 3.7 e6
Attention 3.1 e5
Mean Pool/Max Pool/Max Relation 1.5 e5

Table 1: Number of parameters for the different models
on the entity type dataset.

3.3 Training
The vector representation of the rows and the columns
are the parameters of the model. Riedel et al. (2013)

use Bayesian Personalized Ranking (BPR) (Rendle et
al., 2009) to train their universal schema models. BPR
ranks the probability of observed triples above unob-
served triples rather than explicitly modeling unob-
served edges as negative. Each training example is an
(entity pair, relation type) or (entity, entity type) pair
observed in the training text corpora or KB.

Rather than BPR, Toutanova et al. (2015) use 200
negative samples to approximate the negative log like-
lihood1. In our experiments, we use the sampled ap-
proximate negative log likelihood which outperformed
BPR in early experiments.

Each example in the training procedure consists of
a row-column pair observed in the training set. For a
positive example (r, c) ∈ T , we construct the set ¯V (r)
containing all the other column entries apart from c that
are observed with row r.

To make training faster and more robust, we add
‘pattern dropout’ for entity pairs with many mentions.
We set ¯V (r) to be m randomly sampled mentions for
entity pairs with greater than m total mentions. In our
experiments we set m = 10 and at test time we use all
mentions. We then use ¯V (r) to obtain the aggregated
row representation as discussed above.

We randomly sample 200 columns unobserved with
row r to act as the negative samples. All models are
implemented in Torch2 and are trained using Adam
(Kingma and Ba, 2015) with default momentum related
hyperparameters.

4 Related Work
Relation extraction for KB completion has a long his-
tory. Mintz et al. (2009) train per relation linear classi-
fiers using features derived from the sentences in which
the entity pair is mentioned. Most of the embedding-
based methods learn representations for entities (Nickel
et al., 2011; Socher et al., 2013; Bordes et al., 2013)
whereas Riedel et al. (2013) use entity pair representa-
tions.

‘Column-less’ versions of Universal Schema have
been proposed (Toutanova et al., 2015; Verga et al.,
2016). These models can generalize to column entries
unseen at training by learning compositional pattern
encoders to parameterize the column matrix in place
of embeddings. Most of these models do not general-
ize to unseen entity pairs and none of them generalize
to unseen entities. Recently, Neelakantan et al. (2015)
introduced a multi-hop relation extraction model that is
‘row-less’ having no explicit parameters for entity pairs
and entities.

Entity type prediction at the individual sentence level
has been studied extensively (Pantel et al., 2012; Ling

1Many past papers restrict negative samples to be of the
same type as the positive example. We simply sample uni-
formly from the entire set of row entries

2data and code available at https://github.com/
patverga/torch-relation-extraction/tree/
rowless-updates

616



(Bill Gates/Melinda Gates)
Output 

Encoder

per:spouse

Attention 
Encoder

Inner 
Product + 
Softmax

Weighted 
Avg

- arg1 married arg2
- arg1 ‘s wife arg2
- arg1 co-founded the 
foundation  with arg 2{ }

Input Output

Query 
Encoder
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query-specific vector representation of the entity pair. The Max Relation model takes the most similar observed
relation’s representation.

and Weld, 2012; Shimaoka et al., 2016). More recently,
embedding-based methods for knowledge base entity
type prediction have been proposed (Yao et al., 2013;
Neelakantan and Chang, 2015). These methods have
explicit entity representations, hence cannot generalize
to unseen entities.

The task of generalizing to unseen row and column
entries is referred to as the cold-start problem in recom-
mendation systems. Methods proposed to tackle this
problem commonly use user and item content and at-
tributes (Schein et al., 2002; Park and Chu, 2009).

Multi-instance learning can be viewed as the rela-
tion classifier analogy of rowless universal schema.
Riedel et al. (2010) used a relaxation of distant super-
vision training where all sentences for an entity pair
(bag) are considered jointly and only the most relevant
sentence is treated as the single training example for
the bag’s label. Surdeanu et al. (2012) extended this
idea with multi-instance multi-label learning (MIML)
where each entity pair / bag can hold multiple relations
/ labels. Recently Lin et al. (2016) used a selective at-
tention over sentences in MIML.

Concurrent to our work, Weissenborn (2016) pro-
poses a row-less method for relation extraction consid-
ering both a uniform and weighted average aggregation
function over columns. However, Weissenborn (2016)
did not experiment with max and max-pool aggregation
functions or evaluate on entity-type prediction. They
also did not combine the rowless model with an LSTM
column-less parameterization and did not compare to a
model with explicit entity-pair representations.

5 Experimental Results
In this section, we compare our models that have ag-
gregate row representations with models that have ex-
plicit row representations on entity type prediction and
relation extraction tasks. Finally, we perform experi-
ments on a column-less universal schema model. Ta-
ble 1 shows that the row-less models require far fewer
parameters since they do not explicitly store the row
representations.

5.1 Entity Type Prediction
We first evaluate our models on an entity type predic-
tion task. We collect all entities along with their types
from a dump of Freebase3. We then filter all enti-
ties with less than five Freebase types leaving a set of
844780 (entity, type) pairs. Additionally, we collect
712072 textual (entity, type) pairs from Clueweb. The
textual types are the 5000 most common appositives
extracted from sentences mentioning entities. This re-
sults in 140513 unique entities, 1120 Freebase types,
and 5000 free text types.

All embeddings are 25 dimensions, randomly initial-
ized. We tune learning rates from {.01, .001}, `2 from
{1e-8, 0}, batch size {512, 1024, 2048} and negative
samples from {2, 200}.

For evaluation, we split the Freebase (entity, type)
pairs into 60% train, 20% validation, and 20% test. We
randomly generate 100 negative (entity, type) pairs for
each positive pair in our test set by selecting random
entity and type combinations. We filter out false nega-
tives that were observed true (entity, type) pairs in our
complete data set. Each model produces a score for
each positive and negative (entity, type) pair where the

3Downloaded March 1, 2015.
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Model MAP
Entity Embeddings 54.81
Mean Pool 39.47
Max Pool 32.59
Attention 55.66
Max Relation 55.37

(a)

Model MAP
Entity Embeddings 3.14
Mean columns 34.77
Max column 43.20
Mean Pool 35.53
Max Pool 30.98
Attention 54.52
Max Relation 54.72

(b)

Table 2: Entity type prediction. Entity embeddings
refers to the model with explicit row representations.
Mean Columns and Max Column are equivalent to
Mean Pool and Max Relation respectively (Section 3.2)
but use the column embeddings learned during training
of the Entity Embeddings model. b: Positive entities
are unseen at train time.

type is the query. We then rank these predictions, cal-
culate average precision for each of the types in our test
set, and then use those scores to calculate mean average
precision (MAP).

Table 2a shows the results of this experiment. We
can see that the query dependent aggregation func-
tions (Attention and Max Relation) performs better
than the query independent functions (Mean Pool and
Max Pool). The performance of models with query de-
pendent aggregation functions which have far fewer pa-
rameters match the performance of the model with ex-
plicit entity representations.

We additionally evaluate our model’s ability to pre-
dict types for entities unseen during training. For this
experiment, we randomly select 14000 entities and take
all (entity, type) pairs containing those entities. We re-
move these pairs from our training set and use them
as positive samples in our test set. We then select 100
negatives (entity, type) pairs per positive as above.

Table 2b shows the results of the experiment with
unseen entities. There is very little performance drop
for models trained with query dependent aggregation
functions. The performance of the model with explicit
entity representations is close to random.

5.1.1 Qualitative Results
A query specific aggregation function is able to pick
out relevant columns to form a prediction. This is par-
ticularly important for rows that are not described eas-
ily by a single centroid such as an entity with several
very different careers or an entity pair with multiple

highly varied relations. For example, in the first row
in Table 3, for the query /baseball/baseball player
the model needs to correctly focus on aspects like
/sports/pro athlete and ignore evidence information
like /tv/tv actor. A model that creates a single query-
independent centroid will be forced to try and merge
these disparate pieces of information together.

5.2 Relation Extraction

We evaluate our models on a relation extraction task
using the FB15k-237 dataset from Toutanova et al.
(2015). The data is composed of a small set of 237
Freebase relations and approximately 4 million textual
patterns from Clueweb with entities linked to Freebase
(Gabrilovich et al., 2013). In past studies, for each
(subject, relation, object) test triple, negative examples
are generated by replacing the object with all other enti-
ties, filtering out triples that are positive in the data set.
The positive triple is then ranked among the negatives.
In our experiments we limit the possible generated neg-
atives to those entity pairs that have textual mentions in
our training set. This way we can evaluate how well
the model classifies textual mentions as Freebase rela-
tions. We also filter textual patterns with length greater
than 35. Our filtered data set contains 2740237 relation
types, 2014429 entity pairs, and 176476 tokens. We re-
port the percentage of positive triples ranked in the top
10 amongst their negatives as well as the MRR scaled
by 100.

Models are tuned to maximize mean reciprocal rank
(MRR) on the validation set with early stopping. The
entity pair model used a batch size 1024, `2 = 1e-
8, ε = 1e-4, and learning rate 0.01. The aggregation
models all used batch size 4096, `2 = 0, ε = 1e-8,
and learning rate 0.01. Each use 200 negative sam-
ples except for max pool which performed better with
two negative samples. The column vectors are initial-
ized with the columns learned by the entity pair model.
Randomly initializing the query encoders and tying the
output and attention encoders performed better and all
results use this method. All models are trained with
embedding dimension 25.

Our results are shown in Table 4a. We can see that
the models with query specific aggregation functions
give the same results as models with explicit entity pair
representations. The Max Relation model performs
competitively with the Attention model which is not
entirely surprising as it is a simplified version of the
Attention model. Further, the Attention model reduces
to the Max Relation model for entity pairs with only a
single observed relation type. In our data, 64.8% of en-
tity pairs have only a single observed relation type and
80.9% have 1 or 2 observed relation types.

We also explore the models’ abilities to predict on
unseen entity pairs (Table 4b). We remove all training
examples that contain a positive entity pair in either our
validation or test set. We use the same validation and
test set as in Table 4a. The entity pair model predicts
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Query Observed Columns
/baseball/baseball player /sports/pro athlete, /sports/sports award winner, /tv/tv actor, /people/measured person,

/award/award winner, /people/person
/architecture/engineer engineer, /book/author, /projects/project focus , /people/person , sir
/baseball/baseball player baseman, /sports/pro athlete, /people/measured person, /people/person, dodgers, coach
/computer/computer scientist /education/academic, /music/group member, /music/artist, /people/person
/business/board member /organization/organization founder, /award/award winner, /computer/computer scientist,

/people/person, president, scientist
/education/academic /astronomy/astronomer, /book/author

Table 3: Each row corresponds to a true query entity type (left column) and the observed entity types (right column)
for a particular entity. The maximum scoring observed entity type for each query entity type is indicated in bold.
The other types are in no particular order. It can be seen that the maximum scoring entity types are interpretable.

Model MRR Hits@10
Entity-pair Embeddings 31.85 51.72
Mean Pool 25.89 45.94
Max Pool 29.61 49.93
Attention 31.92 51.67
Max Relation 31.71 51.94

(a)

Model MRR Hits@10
Entity-pair Embeddings 5.23 11.94
Mean Pool 18.10 35.76
Max Pool 20.80 40.25
Attention 29.75 49.69
Max Relation 28.46 48.15

(b)

Table 4: The percentage of positive triples ranked in
the top 10 amongst their negatives as well as the mean
reciprocal rank (MRR) scaled by 100 on a subset of
the FB15K-237 dataset. All positive entity pairs in the
evaluation set are unseen at train time. Entity-pair em-
beddings refers to the model with explicit row repre-
sentations. b: Predicting entity pairs that are not seen
at train time.

random relations as it is unable to make predictions on
unseen entity pairs. The query-independent aggrega-
tion functions, mean pool and max pool, perform bet-
ter than models with explicit entity pair representations.
Again, query specific aggregation functions get the best
results, with the Attention model performing slightly
better than the Max Relation model.

The two experiments indicate that we can train rela-
tion extraction models without explicit entity pair rep-
resentations that perform as well as models with ex-
plicit representations. We also find that models with
query specific aggregation functions accurately predict
relations for unseen entity pairs.

5.3 ‘Column-less’ universal schema

The original universal schema approach has two main
drawbacks: similar textual patterns do not share statis-
tics, and the model is unable to make predictions about

entities and textual patterns not explicitly seen at train
time.

Recently, ‘column-less’ versions of universal
schema to address some of these issues (Toutanova et
al., 2015; Verga et al., 2016). These models learn com-
positional pattern encoders to parameterize the column
matrix in place of direct embeddings. Compositional
universal schema facilitates more compact sharing of
statistics by composing similar patterns from the same
sequence of word embeddings – the text patterns ‘lives
in the city’ and ‘lives in the city of’ no longer exist as
distinct atomic units. More importantly, compositional
universal schema can thus generalize to all possible
textual patterns, facilitating reasoning over arbitrary
text at test time.

The column-less universal schema model general-
izes to all possible input textual relations and the row-
less model generalizes to all entities and entity pairs,
whether seen at train time or not. We can combine these
two approaches together to make an universal schema
model that generalizes to unseen rows and columns.

The parse path between the two entities in the sen-
tence is encoded with an LSTM model. We use a single
layer model with 100 dimensional token embeddings
initialized randomly. To prevent exploding gradients,
we clip them to norm 10 while all the other hyperpa-
rameters are tuned the same way as before. We follow
the same evaluation protocol from 5.2.

The results of this experiment with observed rows
are shown in Table 5a. While both the MRR and
Hits@10 metrics increase for models with explicit row
representations, the row-less models show an improve-
ment only on the Hits@10 metric. The MRR of the
query dependent row-less models is still competitive
with the model with explicit row representation even
though they have far fewer parameters to fit the data.

6 Conclusion
In this paper we explore a row-less extension of uni-
versal schema that forgoes explicit row representations
for an aggregation function over its observed columns.
This extension allows prediction between all rows in
new textual mentions – whether seen at train time or not
– and also provides a natural connection to the prove-
nance supporting the prediction. Our models also have
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Model MRR Hits@10
Entity-pair Embeddings 31.85 51.72
Entity-pair Embeddings-LSTM 33.37 54.39
Attention 31.92 51.67
Attention-LSTM 30.00 53.35
Max Relation 31.71 51.94
Max Relation-LSTM 30.77 54.80

(a)

Model MRR Hits@10
Entity-pair Embeddings 5.23 11.94
Attention 29.75 49.69
Attention-LSTM 27.95 51.05
Max Relation 28.46 48.15
Max Relation-LSTM 29.61 54.19

(b)

Table 5: The percentage of positive triples ranked in
the top 10 amongst their negatives as well as the mean
reciprocal rank (MRR) scaled by 100 on a subset of the
FB15K-237 dataset. Negative examples are restricted
to entity pairs that occurred in the KB or text portion
of the training set. Models with the suffix “-LSTM”
are column-less. Entity-pair embeddings refers to the
model with explicit row representations. b: Predicting
entity pairs that are not seen at train time.

a smaller memory footprint.
In this work we show that an aggregation function

based on query-specific attention over relation types
outperforms query independent aggregations. We show
that aggregation models are able to predict on par with
models with explicit row representations on seen row
entries with far fewer parameters. More importantly,
aggregation models predict on unseen row entries with-
out much loss in accuracy. Finally, we show that
in relation extraction, we can combine row-less and
column-less models to train models that generalize to
both unseen rows and columns.
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Abstract

Automatically generating product reviews
is a meaningful, yet not well-studied task
in sentiment analysis. Traditional natu-
ral language generation methods rely ex-
tensively on hand-crafted rules and prede-
fined templates. This paper presents an
attention-enhanced attribute-to-sequence
model to generate product reviews for
given attribute information, such as user,
product, and rating. The attribute en-
coder learns to represent input attributes
as vectors. Then, the sequence decoder
generates reviews by conditioning its out-
put on these vectors. We also introduce
an attention mechanism to jointly gener-
ate reviews and align words with input at-
tributes. The proposed model is trained
end-to-end to maximize the likelihood of
target product reviews given the attributes.
We build a publicly available dataset for
the review generation task by leveraging
the Amazon book reviews and their meta-
data. Experiments on the dataset show that
our approach outperforms baseline meth-
ods and the attention mechanism signif-
icantly improves the performance of our
model.

1 Introduction

Nowadays, there are many popular online review
sites (such as Amazon, and Yelp) that allow users
to read and post reviews about books, electronics,
restaurants, etc. The reviews are used to express
opinions for different aspects of products, and
have a wide variety of writing styles and differ-
ent polarity strengths. As a result, much previous
work has focused on how opinions are expressed
in review data. For example, previous studies on

User

Product

Rating

Attribute 
Encoder

Sequence 
Decoder

LSTM

I loved this 
family story , 

it was 
touching .

Attention Layer

Figure 1: Our model learns to encode attributes
into vectors, and then uses recurrent neural net-
works based on long short-term memory (LSTM)
units to generate reviews by conditioning on the
encoding vectors. An attention layer is used to
learn soft alignments between attributes and gen-
erated words.

sentiment analysis identify and extract subjective
content in review data (Liu, 2015). However, few
studies have explored building data-driven mod-
els that can generate product reviews for the given
products and ratings, which is helpful to under-
stand how a specific user comments for products.
As shown in Figure 1, the input to our model is
a set of attributes (such as user, product, and rat-
ing information), and our goal is to generate user-
and product-specific reviews that agree with the
input rating. These automatically generated re-
views are useful for companies. For example, we
could promote a product to users who have not
bought it, by generating novel and personalized
recommendations. We could also build a review
writing assistant for E-commerce websites. Af-
ter the website generates some candidate reviews
according to the user’s rating score, users could
select one and refine it, which makes the proce-
dure more user-friendly. Moreover, we can gener-
ate novel and personalized recommendations for
every user, which makes the recommendation sys-
tem more interpretable.

This attribute-conditioned review generation
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problem is very challenging due to the variety of
candidate reviews that satisfy the input attributes.
In other words, apart from the given attributes,
there are other unknown or latent factors that in-
fluence the generated reviews, which renders the
generation process non-deterministic. Moreover,
although some attributes (such as rating) explicitly
determine the usage of sentiment words, others
(e.g., user information) implicitly influence word
usage. So the model needs to handle both explicit
and implicit clues. Additionally, the interactions
between attributes are important to obtain the hid-
den factors used for generation. For example, dif-
ferent users tend to describe different aspects of a
product and use different sentiment words to ex-
press a rating score.

In this paper, we propose a neural network
based attribute-to-sequence model. As shown in
Figure 1, our model contains three parts: attribute
encoder, sequence decoder, and an attention mech-
anism. Specifically, we first use multilayer percep-
trons to encode input attributes into vector repre-
sentations that are used as latent factors for gener-
ating reviews. Next, the encoding vectors are fed
into a coarse-to-fine sequence decoder. The de-
coder is built by stacking multiple layers of recur-
rent neural networks, which can generate words
one by one conditioning on the encoding vec-
tors. Besides, we introduce an attention layer into
the proposed attribute-to-sequence model. The
attention mechanism learns soft alignments be-
tween generated words and attributes, and adap-
tively computes encoder-side context vectors used
to predict the next tokens. In order to evaluate our
method, we build a dataset based on Amazon re-
views and performed experiments on it. The ex-
perimental results show that the proposed model
achieves superior performance against baseline
methods. Moreover, we demonstrate that the at-
tention mechanism significantly improves the per-
formance of our model.

The contributions of this work are three-fold:

• We introduce the task of attribute-
conditioned review generation, which is
valuable for sentiment analysis, but not well
studied previously.

• We propose an attention-enhanced attribute-
to-sequence model in order to generate re-
views conditioned on input attributes.

• We create a dataset based on Amazon book

reviews and present empirical studies to
show the proposed model outperforms sev-
eral baseline methods.

2 Related Work

Sentiment analysis and opinion mining aim to
identify and extract subjective content in text (Liu,
2015). Most previous work focuses on using rule-
based methods or machine learning techniques for
sentiment classification, which classifies reviews
into different sentiment categories. Recently, deep
learning has achieved promising results on sen-
timent analysis (Socher et al., 2011; Dong et
al., 2014; Kim, 2014). Lipton et al. (2015) use
character-level concatenated input recurrent neu-
ral networks as a generative model to predict rat-
ing and category for reviews. In contrast, our
model is mainly evaluated on the review gener-
ation task rather than classification. Moreover,
we use an attention mechanism in our encoder-
decoder model, which has been proved very help-
ful in various tasks (Bahdanau et al., 2015; Xu et
al., 2015), to generate user- and product-specific
reviews. Maqsud (2015) compare latent Dirich-
let allocation, Markov chains, and hidden Markov
models for text generation on review data. How-
ever, we focus on generating product reviews con-
ditioned on input attributes. Park et al. (2015) pro-
pose to retrieve relevant opinion sentences using
product specifications as queries, while we work
on generation instead of retrieval.

Our task definition is also related to concept-to-
text generation (Konstas and Lapata, 2012; Kon-
stas and Lapata, 2013), such as generating weather
forecast or sportscasting from database records. A
typical system contains three main stages: content
planning, sentence planning, and surface realiza-
tion. Mei et al. (2016) treat database records and
output texts as sequences, and use recurrent neu-
ral networks to encode and decode them. In con-
trast, our input is a set of discrete attributes instead
of database records or sequences. In addition, the
contents of database records are strong constraints
on results in concept-to-text generation. However,
in our setting, user and product information im-
plicitly indicates the style of generated reviews,
which makes the results extremely diverse.

Another line of related work is the encoder-
decoder model with neural networks. Specifically,
an encoder is employed to encode input informa-
tion into vectors, and then a decoder learns to
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predict results by conditioning outputs on the en-
coding vectors. This general framework is flexi-
ble because different neural networks can be used
for encoders and decoders depending on the na-
ture of inputs and outputs, which has been used
to address various tasks. For example, recur-
rent neural networks are used to model sequences,
such as machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014), syntac-
tic parsing (Vinyals et al., 2015b), and seman-
tic parsing (Dong and Lapata, 2016). Addition-
ally, convolutional neural networks are employed
for image data, such as image caption genera-
tion (Vinyals et al., 2015a), and video description
generation (Donahue et al., 2015; Venugopalan et
al., 2015). Our model employs multilayer per-
ceptron to encode attribute information, and uses
recurrent neural networks to decode product re-
views. In order to better handle alignments be-
tween inputs and outputs, the attention mechanism
is introduced for the encoder-decoder model. The
attention model boosts performance for various
tasks (Bahdanau et al., 2015; Luong et al., 2015;
Xu et al., 2015). In our work, we use the atten-
tion mechanism to learn soft alignments between
input attributes and output sequences, which has
not, to our knowledge, been studied in previous
work. Dosovitskiy et al. (2015) propose to use
generative convolutional neural networks to gen-
erate images of chairs given chair type, viewpoint
and color. Similarly, Yan et al. (2016) use varia-
tional auto-encoders to generate face images con-
ditioned on visual attributes. However, our goal is
to generate texts instead of images. Moreover, we
learn a neural attention model to attend over input
attributes during generation.

3 Modelling Approach

To begin with, we state the product review gener-
ation problem as follows. Given input attributes
a =

(
a1, · · · , a|a|

)
, our goal is to generate a prod-

uct review r =
(
y1, · · · , y|r|

)
maximizing the con-

ditional probability p (r|a). Notice that number of
attributes |a| is fixed, while the review r is consid-
ered a word sequence of variable length. We use
the user ID, product ID, and rating as attributes,
so |a| is set to 3 in our task. The training data are
attributes paired with corresponding reviews. The
model learns to compute the likelihood of gener-
ated reviews given input attributes. This condi-
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Figure 2: Attribute-to-sequence model without at-
tention mechanism.

tional probability p (r|a) is decomposed to:

p (r|a) =
|r|∏

t=1

p (yt|y<t, a) (1)

where y<t = (y1, · · · , yt−1).
Our method consists of three parts, i.e., an at-

tribute encoder, a sequence decoder, and an atten-
tion layer. The attribute encoder employs multi-
layer perceptrons to encode attributes a to vectors.
To be specific, we represent the attributes as vec-
tors. Next, the concatenation of these vectors is
fed into a hidden layer to obtain the encoding vec-
tors. After we obtain the encoding vectors, the
sequence decoder stacks L-layer recurrent neural
networks (RNNs) to generate reviews condition-
ing on these vectors. During decoding, RNNs re-
currently compute n-dimensional hidden vectors
which are used to predict output words for differ-
ent time steps. In order to better utilize encoder-
side information, an attention layer is introduced
to learn soft alignments between attributes and
output words. For every decoding time step, we
use the current hidden vector to compute attention
scores over attribute vectors. Then, a weighted
sum of attribute vectors is used as the context vec-
tor to predict output words.

We first describe the attribute-to-sequence
model without using neural attention in Sec-
tion 3.1 and Section 3.2. Next, we introduce the
attention mechanism in Section 3.3.

3.1 Attribute Encoder
We use multilayer perceptrons with one hidden
layer to encode attribute information into a vector
as shown in Figure 2. At first, input attributes a =(
a1, · · · , a|a|

)
are represented by low-dimensional

vectors. The attribute ai’s vector g (ai) is com-
puted via:

g (ai) =W a
i e (ai) (2)
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where W a
i ∈ Rm×|ai| is a parameter matrix,

m is the dimension of embedding, and e (ai) ∈
{0, 1}|ai| is a one-hot vector representing the pres-
ence or absence of ai. Then, these attribute vec-
tors are concatenated and fed into a hidden layer
which outputs the encoding vector. The output of
the hidden layer is computed as:

a = tanh
(
H[g (a1), · · · ,g

(
a|a|
)
] + ba

)
(3)

where [g (a1), · · · ,g
(
a|a|
)
] are concatenated at-

tribute vectors, tanh is a nonlinearity function,
H ∈ RLn×|a|m is a weight matrix, and ba ∈ RLn

is the bias. Next, the vector a is used to initialize
the n-dimensional hidden vectors of the L-layer
recurrent neural networks in the decoder.

3.2 Sequence Decoder
As shown in Figure 2, the decoder is built upon
multilayer recurrent neural networks (RNNs) with
long short-term memory (LSTM) units. RNNs
use vectors to represent information for the cur-
rent time step and recurrently compute the next
hidden states. In our work, we stack multiple lay-
ers of RNNs in our architecture. Additionally, a
long short-term memory (Hochreiter and Schmid-
huber, 1997) unit is employed to better handle long
sequences. The LSTM introduces several gates
and explicit memory cells to memorize or forget
information, which enables networks learn more
complicated patterns. Let hl

t ∈ Rn denote an
n-dimensional hidden vector in layer l and time
step t. hl

t is computed via:

hl
t = f

(
hl
t−1,h

l−1
t

)
(4)

where h0
t = W re (yt−1) is the word embedding

of the previous predicted word, W r ∈ Rn×|Vr|

is a parameter matrix, |Vr| is the vocabulary size,
and e (yt−1) is a one-hot vector used to extract
word vector for yt−1. We follow the architecture
of LSTM unit described in Zaremba et al. (2015).
To be specific, the unit is given by:




i
f
o
g


 =




sigm
sigm
sigm
tanh


W l

(
hl−1
t

hl
t−1

)

pl
t = f � pl

t−1 + i� g

hl
t = o� tanh

(
pl
t

)

(5)

where tanh, sigm, and � are element-wise oper-
ators, and W l ∈ R4n×2n is a weight matrix for
the l-th layer.

Once the input attributes are encoded to the vec-
tor a ∈ RLn by Equation (3), the encoding vector
is split into L vectors to initialize the hidden vec-
tors of the first time step in decoder. Then, RNNs
compute hidden vectors recurrently and predict
output words using the hidden vectors of the top-
most layer hL

t . For the vanilla model without us-
ing an attention mechanism, the predicted distri-
bution of the t-th output word is:

p (yt|y<t, a) = softmaxyt
(
W phL

t

)
(6)

where W p ∈ R|Vr|×n is a parameter matrix.

3.3 Attention Mechanism

The attention mechanism is introduced to better
utilize encoder-side information. As indicated in
Equation (6), the vanilla model does not directly
use attribute vectors to generate sequences. In-
tuitively, the model can concentrate on different
parts of encoding information to predict the next
word. Previous work has proved this idea signif-
icantly improves performance especially for long
sequences (Bahdanau et al., 2015; Vinyals et al.,
2015b; Luong et al., 2015).

Figure 3 demonstrates how to compute the
encoder-side context vector and use it to predict
output words. For the t-th time step of the decoder,
we compute the attention score of attribute ai via:

sti = exp
(
tanh

(
W s
[
hL
t ,g (ai)

]))
/Z (7)

where the brackets [·, ·] denote concatenation, Z
is a normalization term that ensures

∑|a|
i=1 s

t
i = 1,

and W s ∈ R1×(n+m) is a parameter matrix. Next,
the attention context vector ct is obtained by:

ct =

|a|∑

i=1

sti g (ai) (8)

which is a weighted sum of attribute vectors. We
further employ the vector ct to predict the t-th out-
put token as:

hatt
t = tanh

(
W1c

t +W2h
L
t

)
(9)

p (yt|y<t, a) = softmaxyt
(
W phatt

t

)
(10)

where W p ∈ R|Vr|×n, W1 ∈ Rn×m and W2 ∈
Rn×n are three parameter matrices.
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Figure 3: Attention scores are computed by at-
tribute vectors and the current hidden vector of the
decoder. Then, the encoder-side context vector is
obtained in the form of a weighted sum, which is
further used to predict the word distribution.

3.4 Model Training
We aim at maximizing the likelihood of generated
reviews given input attributes for the training data.
So we define the optimization problem as:

maximize
∑

(a,r)∈D
log p (r|a) (11)

whereD is the dataset of all attribute-review train-
ing pairs, and p (r|a) is defined as shown in Equa-
tion (1). In order to avoid overfitting, we insert
dropout layers between different LSTM layers as
suggested in Zaremba et al. (2015). The mini-
batched RMSProp (Tieleman and Hinton, 2012)
algorithm is used to optimize the objective func-
tion.

3.5 Inference
At test time, we first use the encoder to encode in-
put attributes into vectors, and use them to initial-
ize the LSTM units of the decoder. Then, the de-
coder predicts a review r̂ that maximizes the con-
ditional probability defined in Equation (1):

r̂ = argmax
r′

p
(
r′|a
)

(12)

where r′ is a candidate review. Because we de-
compose this probability as shown in Equation (1),
we can use beam search or greedy search to gen-
erate words, which avoids iterating over all candi-
date reviews. In order to determine the termination
of the generation process, we add a special token
</s> to the end of every output review. The gen-
eration terminates once this token is emitted.

4 Experiments

We first introduce a new dataset for this task and
compare our method with several baseline ap-

proaches. Then we conduct some ablation exper-
iments and present model analysis to help us un-
derstand what the model learns.

4.1 Dataset Description

Our dataset is built upon Amazon product
data (McAuley et al., 2015) that includes reviews
and metadata spanning from May 1996 to July
2014 with duplicates removed. The products of
the book domain are used in our experiments.
Every review is paired with three attributes, i.e.,
user ID, product ID and rating. We filter books
and users which do not occur at least 6 and 15
times, respectively. The reviews whose lengths
are greater than 60 words are filtered. Because
we observe that long reviews mainly describe the
plots of books, while our goal is to generate re-
views expressing opinions. The average review
length is about 35 words, and the average number
of sentences is 3. The dataset contains 937, 033
reviews paired with attributes. Specifically, we
have 80, 256 books, 19, 675 users, and 5 rating
levels. The word vocabulary size is 161K. Then,
the whole dataset is randomly split into TRAIN,
DEV, and TEST (70%/10%/20%). The dataset is
available at https://goo.gl/TFjEH4.

4.2 Settings

We used NLTK (Bird et al., 2009) to tokenize the
reviews, and employed the Wikipedia list of com-
mon misspellings to correct misspelled words. We
kept words that appeared more than 10 times in
our vocabulary. The training hyperparameters are
selected based on the results of the DEV set. The
dimension of attribute vectors is set to 64. The
dimensions of word embeddings and hidden vec-
tors are set to 512 in the sequence decoder. More-
over, we stack two layers of recurrent neural net-
works with LSTM units to generate reviews. All
the parameters are randomly initialized by sam-
pling from a uniform distribution [−0.08, 0.08].
The batch size, smoothing constant and base learn-
ing rate of RMSProp are set to 50, 0.95 and 0.002,
respectively. After 10 epochs, the learning rate is
decreased by a factor of 0.97 at the end of every
epoch as suggested in Karpathy et al. (2016). The
dropout rate is set to 0.2 for regularization. We
also clamp gradient values into the range [−5, 5]
to avoid the exploding gradient problem (Pascanu
et al., 2013). The number of epochs is determined
by early stopping on the DEV set. At test time,
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Method BLEU-4 (%) BLEU-1 (%)
Rand 0.86 20.36
MELM 1.28 21.59
NN-pr 1.53 22.44
NN-ur 3.61 26.37

Att2Seq 4.51 30.24
Att2Seq+A 5.03∗ 30.48∗

Table 1: Evaluation results on the TEST set of
Amazon data. ∗: significantly better than the sec-
ond best score (p < 0.05).

we use the greedy search algorithm to generate re-
views.

4.3 Evaluation Results
The BLEU (Papineni et al., 2002) score is used
for automatic evaluation, which has been shown
to correlate well with human judgment on many
generation tasks. The BLEU score measures the
precision of n-gram matching by comparing the
generated results with references, and penalizes
length using a brevity penalty term. We compute
BLEU-1 (unigram) and BLEU-4 (up to 4 grams)
in experiments.

4.3.1 Comparison with Baseline Methods
We describe the comparison methods as follows:

Rand. The predicted results are randomly
sampled from all the reviews in the TRAIN set.
This baseline method suggests the expected lower
bound for this task.

MELM. Maximum Entropy Language Model
uses n-gram (up to trigram) features, and the fea-
ture template attribute&n-gram (up to bigram).
The feature hashing technique is employed to re-
duce memory usage in each feature group. Noise
contrastive estimation (Gutmann and Hyvrinen,
2010) is used to accelerate the training by drop-
ping the normalization term, with 20 contrastive
samples in training.

NN-pr. This Nearest Neighbor based method
retrieves the reviews that have the same product ID
and rating as the input attributes in the TRAIN set.
Then we randomly choose a review from them,
and use it as the prediction.

NN-ur. The same method as NN-pr but uses
both user ID and rating to retrieve candidate re-
views.

Att2Seq. Our attribute-to-sequence method de-
scribed in Section 3. Notice that the attention
model is not used.

Method MELM Att2Seq Att2Seq+A
Accuracy (%) 59.00 88.67 93.33∗

Table 2: We manually annotate some polarity la-
bels (positive or negative) for generated reviews
and compute accuracy by comparing them with
the input ratings. ∗: significantly better than the
second best accuracy (p < 0.05).

Att2Seq+A. Our method with an attention
mechanism.

As shown in Table 1, we compute BLEU scores
for these methods. The results of random guess in-
dicate that this task is non-trivial to obtain reason-
able performance. MELM performs worse than
nearest neighbor search due to the sparsity of lex-
icalized features, while our model employs dis-
tributed representations to avoid using sparse in-
dicator features. Then, we evaluate the NN meth-
ods that use different attributes to retrieve reviews,
which is a strong baseline for the generation task.
The results show that our method outperforms the
baseline methods. Moreover, the improvements
of the attention mechanism are significant with
p < 0.05 according to the bootstrap resampling
test (Koehn, 2004). We further show some exam-
ples to analyze the attention model in Section 4.4.

4.3.2 Polarity of Generated Reviews
In order to evaluate whether the polarities of gen-
erated reviews correspond to their input ratings,
we randomly sample some generated reviews and
manually annotate their polarity labels. Specifi-
cally, we regard the rating 1-2 as negative and 4-
5 as positive, and then evaluate performance by
computing their classification accuracy. We ran-
domly sample 150 negative examples and 150 pos-
itive examples for each method. Next, we ask two
graduate students to classify the generated reviews
to positive, negative, and indeterminable/neutral.
About 93% of examples are annotated with the
same labels by two annotators. Table 2 shows
our method significantly outperforms others (p <
0.05). For Att2Seq+A, some generated reviews
are classified to indeterminable/neutral because
they contain mixed opinions towards different as-
pects of books.

4.3.3 Ablation Experiments
In order to evaluate the contributions of model
components in our method, we compare to the
variants of our model. These models are described
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Method BLEU-4 (%) BLEU-1 (%)
Att2Seq+A 5.01 30.23

AvgEnc 4.07 28.13
NoStack 4.73 29.58
w/o user 4.10 26.87
w/o product 4.13 27.15
w/o rating 4.12 27.98

Table 3: Model ablation results on the DEV set.

as follows:
AvgEnc. This model uses the average of at-

tribute vectors as the encoding vector, rather than
multilayer perceptrons.

NoStack. The method only uses one-layer re-
current neural networks for the sequence decoder.

w/o user/product/rating. This variant does not
use the corresponding attribute as input. These re-
sults indicate the importance of different informa-
tion for our model.

As shown in Table 3, we compute BLEU-4 and
BLEU-1 scores for our full model and the differ-
ent variants on the DEV set. The ablation model
AvgEnc performs worse than Att2Seq+A. This in-
dicates that multilayer perceptrons can better han-
dle interactions between attributes, outperforming
simple averaging of input vectors. Next, we com-
pare to the model without stacking multiple layers
of recurrent neural networks as described in Sec-
tion 3.2. The results demonstrate that deep archi-
tectures can improve generation performance. For
the next group of variants, we find that removing
user, product and rating information harms per-
formance, which indicates that all three attributes
contribute to generating relevant reviews.

4.4 The Attention Mechanism
As described in Section 3.3, the attention mecha-
nism learns soft alignment scores between gener-
ated words and input attributes. These scores are
used to obtain encoder-side context vectors that
can better utilize attribute information to predict
the next word.

Figure 4 shows three generated examples with
different input ratings. The attention scores are
represented by gray scales and are column-wisely
normalized as described in Equation (7). Firstly,
we explain the attention scores over rating infor-
mation. The input rating of the first example is
1. We find that the phrases “n’t expecting much”,
“n’t like” and “a little too much” have larger at-
tention scores on the rating attribute. This demon-
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Figure 4: Examples of attention scores (Equa-
tion (7)) over three attributes. Darker color indi-
cates higher attention score.

strates rating information has more effect on gen-
erating these sentiment words. Next, we increase
the rating score to 3 in the second example. The
generated review expresses a mixed opinion for
different aspects of the book. As indicated by
the attention scores, we know that the sentiment
words “loved”, “little slow”, and “not like” attend
more to rating information. The last example is a
positive review with a rating of 5. The attention
scores demonstrate the phrases “loved”, “ca n’t
wait”, and “hope * writes another book” are used
to express polarity. Similarly, the attention scores
over user and product information indicate how
the generated words are aligned with these two
input attributes. For instance, the word “charac-
ters” has higher attention scores over the product
attribute in the first and second example. This in-
dicates that users tend to comment about the char-
acters in this book’s reviews.

4.5 Generated Examples

As shown in Table 4, we sample products and
users to generate some examples with different rat-
ings. The special unknown token is removed from
the vocabulary of the decoder in the generation
process. We keep two attributes fixed and change
the other one in every group to show the effects of
input.

In the first group, we change the rating from
1 to 5 and keep the others unchanged. The re-
sults show that the polarity of generated reviews
changes with the rating. For instance, the words
“nice” and “liked” are used for the rating of 3,
while the words “very good” and “enjoyed” are
employed for the rating of 5. Moreover, both ex-
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U P R Generated Review

A V 1
i’m sorry to say this was a very boring book. i didn’t finish it. i’m not a new fan of the series,
but this was a disappointment.

A V 3
this was a nice story. i liked the characters and the story line. i’m not sure i’d read another
by this author.

A V 5
this was a very good book. i enjoyed the characters and the story line. i’m looking forward to
reading more in this series.

B W 5 i couldn’t put it down. it was a great love story. i can’t wait to read the next one.

C W 5
enjoyable story that keeps you turning the pages. the characters are well developed and the
plot is excellent. i would recommend this book to anyone who enjoys a good love story.

D W 5
i loved this book. i could not put it down. i loved this story and the characters. i will be
reading the next book.

E X 1
i read this book because i was looking for something to read. this book was just too much like
the others. i thought the author was going to be a good writer, but i was disappointed.

E Y 1
i was disappointed. i read the first chapter and then i was bored. i read the whole thing, but i
just couldn’t get into it.

E Z 1
this book was just too much. i read the whole thing, but i didn’t like the way the author
ended it. i was hoping for a different ending.

Table 4: U: User. P: Product. R: Rating. This table shows some generated examples of the Att2Seq+A
model. In every group, two attributes are kept unchanged, while the other attribute has different values.
For instance, in the first group, we use different ratings ranging from 1 (the lowest score) to 5 (the highest
score) with the same user and product to generate reviews. The users and products are anonymized by
A-E and V-Z.

amples describe “characters” and “story line”, and
are written in the similar styles. This indicates
that user and product information determines the
content and style of generated reviews, while rat-
ing affects the choice of sentiment words. In the
next group, we use different user IDs as input at-
tributes. This book is one of the Fatal Series writ-
ten by Marie Force, which tells a romantic love
story. The first and third examples mention “next
one/book”, and both the first two reviews contain
the phrase “love story”. This demonstrates the
generated reviews agree with the input product in-
formation. In the third group, the attributes, ex-
cept product ID, are kept unchanged. The exam-
ples show our model generates varied reviews for
different products.

5 Conclusion

In this paper, we proposed a novel product re-
view generation task, in which generated reviews
are conditioned on input attributes. For this task,
we formulated a neural network based attribute-to-
sequence model that uses multilayer perceptrons
to encode input attributes and employs recurrent
neural networks to generate reviews. Moreover,
we introduced an attention mechanism to better

utilize input attribute information. Additionally,
we built a dataset of Amazon product reviews to
conduct evaluations. The proposed model consis-
tently outperforms the nearest neighbor search and
maximum entropy language model baselines. Be-
sides, the attention mechanism significantly im-
proves the vanilla attribute-to-sequence model.
This work suggests several interesting directions
for future research. We could use more fine-
grained attributes as the input of our model. For
example, the generated reviews could be condi-
tioned on device specification, brand, user’s gen-
der, product description, or ratings of a product’s
various aspects. Moreover, we could leverage re-
view texts without attributes to improve the se-
quence decoder.
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Abstract

We investigate the generation of one-
sentence Wikipedia biographies from facts
derived from Wikidata slot-value pairs.
We train a recurrent neural network
sequence-to-sequence model with atten-
tion to select facts and generate textual
summaries. Our model incorporates a
novel secondary objective that helps en-
sure it generates sentences that contain the
input facts. The model achieves a BLEU

score of 41, improving significantly upon
the vanilla sequence-to-sequence model
and scoring roughly twice that of a sim-
ple template baseline. Human preference
evaluation suggests the model is nearly as
good as the Wikipedia reference. Manual
analysis explores content selection, sug-
gesting the model can trade the ability to
infer knowledge against the risk of hallu-
cinating incorrect information.

1 Introduction

Despite massive effort, Wikipedia and other col-
laborative knowledge bases (KBs) have coverage
and quality problems. Popular topics are covered
in great detail, but there is a long tail of special-
ist topics with little or no text. Other text can
be incorrect, whether by accident or vandalism.
We report on the task of generating textual sum-
maries for people, mapping slot-value facts to one-
sentence encyclopaedic biographies. In addition to
initialising stub articles with only structured data,
the resulting model could be used to improve con-
sistency and accuracy of existing articles. Figure
1 shows a Wikidata entry for Mathias Tuomi,
with fact keys and values flattened into a sequence,
and the first sentence from his Wikipedia article.
Some values are in the text, others are missing

TITLE mathias tuomi SEX OR GENDER
male DATE OF BIRTH 1985-09-03
OCCUPATION squash player
CITIZENSHIP finland

Figure 1: Example Wikidata facts encoded as a flat
input string. The first sentence of the Wikipedia
article reads: Mathias Tuomi, (born September
30, 1985 in Espoo) is a professional squash
player who represents Finland.

(e.g. male) or expressed differently (e.g. dates).

We treat this knowlege-to-text task like trans-
lation, using a recurrent neural network (RNN)
sequence-to-sequence model (Sutskever et al.,
2014) that learns to select and realise the most
salient facts as text. This includes an attention
mechanism to focus generation on specific facts,
a shared vocabulary over input and output, and
a multi-task autoencoding objective for the com-
plementary extraction task. We create a reference
dataset comprising more than 400,000 knowledge-
text pairs, handling the 15 most frequent slots. We
also describe a simple template baseline for com-
parison on BLEU and crowd-sourced human pref-
erence judgements over a heldout TEST set.

Our model obtains a BLEU score of 41.0, com-
pared to 33.1 without the autoencoder and 21.1
for the template baseline. In a crowdsourced
preference evaluation, the model outperforms the
baseline and is preferred 40% of the time to the
Wikipedia reference. Manual analysis of content
selection suggests that the model can infer knowl-
edge but also makes mistakes, and that the au-
toencoding objective encourages the model to se-
lect more facts without increasing sentence length.
The task formulation and models are a foundation
for text completion and consistency in KBs.
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2 Background

RNN sequence-to-sequence models (Sutskever et
al., 2014) have driven various recent advances
in natural language understanding. While initial
work focused on problems that were sequences of
the same units, such as translating a sequence of
words from one language to another, other work
been able to use these models by coercing dif-
ferent structures into sequences, e.g., flattening
trees for parsing (Vinyals et al., 2015), predicting
span types and lengths over byte input (Gillick et
al., 2016) or flattening logical forms for semantic
parsing (Xiao et al., 2016).

RNNs have also been used successfully in
knowledge-to-text tasks for human-facing sys-
tems, e.g., generating conversational responses
(Vinyals and Le, 2015), abstractive summarisa-
tion (Rush et al., 2015). Recurrent LSTM models
have been used with some success to generate text
that completely expresses a set of facts: restau-
rant recommendation text from dialogue acts (Wen
et al., 2015), weather reports from sensor data
and sports commentary from on-field events (Mei
et al., 2015). Similarly, we learn an end-to-end
model trained over key-value facts by flattening
them into a sequence.

Choosing the salient and consistent set of facts
to include in generated output is also difficult.
Recent work explores unsupervised autoencoding
objectives in sequence-to-sequence models, im-
proving both text classification as a pretraining
step (Dai and Le, 2015) and translation as a multi-
task objective (Luong et al., 2016). Our work
explores an autoencoding objective which selects
content as it generates by constraining the text out-
put sequence to be predictive of the input.

Biographic summarisation has been extensively
researched and is often approached as a sequence
of subtasks (Schiffman et al., 2001). A version
of the task was featured in the Document Under-
standing Conference in 2004 (Blair-Goldensohn et
al., 2004) and other work learns policies for con-
tent selection without generating text (Duboue and
McKeown, 2003; Zhang et al., 2012; Cheng et al.,
2015). While pipeline components can be indi-
vidually useful, integrating selection and genera-
tion allows the model to exploit the interaction be-
tween them.

KBs have been used to investigate the inter-
action between structured facts and unstructured
text. Generating textual templates that are filled

by structured data is a common approach and has
been used for conversational text (Han et al., 2015)
and biographical text generation (Duma and Klein,
2013). Wikipedia has also been a popular re-
source for studying biography, including sentence
harvesting and ordering (Biadsy et al., 2008), un-
supervised discovery of distinct sequences of life
events (Bamman and Smith, 2014) and fact ex-
traction from text (Garera and Yarowsky, 2009).
There has also been substantial work in generat-
ing from other structured KBs using template in-
duction (Kondadadi et al., 2013), semantic web
techniques (Power and Third, 2010), tree adjoin-
ing grammars (Gyawali and Gardent, 2014), prob-
abilistic context free grammars (Konstas and La-
pata, 2012) and probabilistic models that jointly
select and realise content (Angeli et al., 2010).

Lebret et al. (2016) present the closest work to
ours with a similar task using Wikipedia infoboxes
in place of Wikidata. They condition an atten-
tional neural language model (NLM) on local and
global properties of infobox tables, including copy
actions that allow wholesale insertion of values
into generated text. They use 723k sentences from
Wikipedia articles with 403k lower-cased words
mapping to 1,740 distinct facts. They compare to
a 5-gram language-model with copy actions, and
find that the NLM has higher BLEU and lower per-
plexity than their baseline. In contrast, we utilise
a deep recurrent model for input encoding, min-
imal slot value templating and greedy output de-
coding. We also explore a novel autoencoding ob-
jective that measures whether input facts can be
re-created from the generated sentence.

Evaluating generated text is challenging and no
one metric seems appropriate to measure overall
performance. Lebret et al. (2016) report BLEU

scores (Papineni et al., 2002) which calculate the
n-gram overlap between text produced by the sys-
tem with respect to a human-written reference.
Summarisation evaluations have concentrated on
the content that is included in the summary, with
semantic content typically extracted manually for
comparison (Lin and Hovy, 2003; Nenkova and
Passonneau, 2004). We draw from summarisa-
tion and generation to formulate a comprehensive
evaluation based on automated metrics and human
validation. Our final system comparison follows
Kondadadi et al. (2013) in running a crowd task
to collect pairwise preferences for evaluating and
comparing both systems and references.
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Fact Count %
TITLE (name) 1,011,682 98
SEX OR GENDER 1,007,575 0
DATE OF BIRTH 817,942 88
OCCUPATION 720,080 67
CITIZENSHIP 663,707 52
DATE OF DEATH 346,168 86
PLACE OF BIRTH 298,374 25
EDUCATED AT 141,334 32
SPORTS TEAM 108,222 29
PLACE OF DEATH 107,188 17
POSITION HELD 87,656 75
PARICIPANT OF 77,795 23
POLITICAL PARTY 74,371 49
AWARD RECEIVED 67,930 44
SPORT 36,950 72

Table 1: The top fifteen slots across entities used
for input, and the % of time the value is a substring
in the entity’s first sentence.

3 Task and Data

We formulate the one-sentence biography genera-
tion task as shown in Figure 1. Input is a flat string
representation of the structured data from the KB,
comprising slot-value pairs (the subject being the
topic of the KB record, e.g., Mathias Tuomi), or-
dered by slot frequency from most to least com-
mon. Output is a biography string describing the
salient information in one sentence.

We validate the task and evaluation using a
closely-aligned set of resources: Wikipedia and
Wikidata. In addition to the KB maintenance
issues discussed in the introduction, Wikipedia
first sentences are of particular interest because
they are clear and concise biographical sum-
maries. These could be applied to entities out-
side Wikipedia for which one can obtain compa-
rable parallel structured/textual data, e.g., movie
summaries from IMDb, resume overviews from
LinkedIn, product descriptions from Amazon.

We use snapshots of Wikidata (2015/07/13) and
Wikipedia (2015/10/02) and batch process them to
extract instances for learning. We select all enti-
ties that are INSTANCE OF human in Wikidata.
We then use sitelinks to identify each entity’s
Wikipedia article text and NLTK (Bird et al., 2009)
to tokenize and extract the lower-cased first sen-
tence. This results in 1,268,515 raw knowledge-
text pairs. The summary sentences can be long and
the most frequent length is 21 tokens. We filter to

only include those between the 10th and 90th per-
centiles: 10 and 37 tokens. We split this collection
into TRAIN, DEV and TEST collections with 80%,
10% and 10% of instances allocated respectively.
Given the large variety of slots which may exist
for an entity, we restrict the set of slots used to
the top-15 by occurrence frequency. This criteria
covers 72.8% of all facts. Table 1 shows the dis-
tribution of fact slots in the structured data and the
percentage of time tokens from a fact value occur
in the corresponding Wikipedia summary.

Additionally, some Wikidata entities remain un-
derpopulated and do not contain sufficient facts to
reconstruct a text summary. We control for this
information mismatch by limiting our dataset to
include only instances with at least 6 facts present.
The final dataset includes 401,742 TRAIN, 50,017
DEV and 50,030 TEST instances. Of these in-
stances, 95% contain 6 to 8 slot values while 0.1%
contain the maximum of 10 slots. 51% of unique
slot-value pairs expressed in TEST and DEV are not
observed in TRAIN so generalisation of slot usage
is required for the task. The KB facts give us an
opportunity to measure the correctness of the gen-
erated text in a more precise way than text-to-text
tasks. We use this for analysis in Section 7.3, driv-
ing insight into system characteristics and impli-
cations for use.

3.1 Task complexity

Wikipedia first sentences exhibit a relatively nar-
row domain of language in comparison to other
generation tasks such as translation. As such, it is
not clear how complex the generation task is, and
we first try to use perplexity to describe this.

We train both RNN models until DEV perplexity
stops improving. Our basic sequence-to-sequence
model (S2S) reaches perplexity of 2.82 on TRAIN

and 2.92 on DEV after 15,000 batches of stochastic
gradient descent. The autoencoding sequence-to-
sequence model (S2S+AE) takes longer to fit, but
reaches a lower minimum perplexity of 2.39 on
TRAIN and 2.51 on DEV after 25,000 batches.

To help ground perplexity numbers and under-
stand the complexity of sentence biographies we
train a benchmark language model and evaluate
perplexity on DEV. Following Lebret et al. (2016),
we build Kneser-Ney smoothed 5-gram language
models using the KenLM toolkit (Heafield, 2011).

Table 2 lists perplexity numbers for the
benchmark LM models with different templating
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Templates DEV

None 29.8
Title 14.5
Full 10.1

Table 2: Language model perplexity across tem-
plated datasets.

schemes on DEV. We observe decreasing per-
plexity for data with greater fact value templating.
TITLE indicates templating of entity names only,
while FULL indicates templating of all fact values
by token index as described in Lebret et al. (2016).
This shows that templating is an effective way to
reduce the sparsity of a task, and that titles account
for a large component of this.

Although Lebret et al. (2016) evaluate on a dif-
ferent dataset, we are able to draw some compar-
isons given the similarity of our task. On their
data, the benchmark LM baseline achieves a simi-
lar perplexity of 10.5 to ours when following their
templating scheme on our dataset - suggesting
both samples are of comparable complexity.

4 Model

We model the task as a sequence-to-sequence
learning problem. In this setting, a variable length
input sequence of entity facts is encoded by a
multi-layer RNN into a fixed-length distributed
representation. This input representation is then
fed into a separate decoder network which esti-
mates a distribution over tokens as output. Dur-
ing training, parameters for both the encoder and
decoder networks are optimized to maximize the
likelihood of a summary sequence given an ob-
served fact sequence.

Our setting differs from the translation task in
that the input is a sequence representation of struc-
tured data rather than natural human language. As
described above in Section 3, we map Wikidata
facts to a sequence of tokens that serves as input
to the model as illustrated at the top of Figure 2.
Experiments below demonstrate that this is suffi-
cient for end-to-end learning in the generation task
addressed here. To generate summaries, our model
must both select relevant content and transform it
into a well formed sentence. The decoder network
includes an attention mechanism (Vinyals et al.,
2015) to help facilitate accurate content selection.
This allows the network to focus on different parts
of the input sequence during inference.

Figure 2: Sequence-to-sequence translation from
linearized facts to text.

4.1 Sequence-to-sequence model (S2S)

To generate language, we seed the decoder net-
work with the output of the encoder and a desig-
nated GO token. We then generate symbols greed-
ily, taking the most likely output token from the
decoder at each step given the preceding sequence
until an EOS token is produced. This approach fol-
lows (Sutskever et al., 2014) who demonstrate a
larger model with greedy sequence inference per-
forms comparably to beam search. In contrast to
translation, we might expect good performance on
the summarization task where output summary se-
quences tend to be well structured and often for-
mulaic. Additionally, we expect a partially-shared
language across input and output. To exploit this,
we use a tied embedding space, which allows both
the encoder and decoder networks to share infor-
mation about word meaning between fact values
and output tokens.

Our model uses a 3-layer stacked Gated Re-
current Unit RNN for both encoding and decod-
ing, implemented using TensorFlow.1 We limit
the shared vocabulary to 100,000 tokens with 256
dimensions for each token embedding and hid-
den layer. Less common tokens are marked as
UNK, or unknown. To account for the long tail
of entity names, we replace matches of title to-
kens with templated copy actions (e.g. TITLE0
TITLE1. . . ). These template are then filled after
generation, as well as any initial unknown tokens
in the output, which we fill with the first title to-
ken. We learn using minibatch Stochastic Gradient
Descent with a batch size of 64 and a fixed learn-
ing rate of 0.5.

1https://www.tensorflow.org, v0.8.
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Figure 3: Sequence-to-sequence autoencoder.

4.2 S2S with autoencoding (S2S+AE)

One challenge for vanilla sequence-to-sequence
models in this setting is the lack of a mechanism
for constraining output sequences to only express
those facts present in the data. Given a fact ex-
traction oracle, we might compare facts expressed
in the output sequence with those of the input
and appropriately adjust the loss for each instance.
While a forward-only model is only constrained
to generate text sequences predicted by the facts,
an autoencoding model is additionally constrained
to generate text predictive of the input facts. In
place of this ideal setting, we introduce a sec-
ond sequence-to-sequence model which runs in re-
verse - re-encoding the text output sequence of the
forward model into facts.

This closed-loop model is detailed in Figure
3. The resulting network is trained end-to-end
to minimize both the input-to-output sequence
loss L(x, y) and output-to-input reconstruction
loss L(x, x′). While gradients cannot propagate
through the greedy forward decode step, shared
parameters between the forward and backward
network are fit to both tasks. To generate language
at test time, the backward network does not need
to be evaluated.

5 Experimental methodology

The evaluation suite here includes standard base-
lines for comparison, automated metrics for learn-
ing, human judgement for evaluation and detailed
analysis for diagnostics. While each are individu-
ally useful, their combination gives a comprehen-
sive analysis of a complex problem space.

5.1 Benchmarks

WIKI We use the first sentence from Wikipedia
both as a gold standard reference for evaluating
generated sentences, and as an upper bound in hu-
man preference evaluation.

BASE Template-based systems are strong base-
lines, especially in human evaluation. While
output may be stilted, the corresponding consis-
tency can be an asset when consistency is im-
portant. We induce common patterns from the
TRAIN set, replacing full matches of values with
their slot and choosing randomly on ties. Multi-
ple non-fact tokens are collapsed to a single sym-
bol. A small sample of the most frequent pat-
terns were manually examined to produce tem-
plates, roughly expressed as: TITLE, known
as GIVEN NAME, (born DATE OF BIRTH in
PLACE OF BIRTH; died DATE OF DEATH in
PLACE OF DEATH) is an POSITION HELD
and OCCUPATION from CITIZENSHIP, with
some sensible back-offs where slots are not
present, and rules for determiner agreement and
is versus was where a death date is present. For
example, ollie freckingham (born 12 november
1988) is a cricketer from the united kingdom.
In total, there are 48 possible template variations.

5.2 Metrics

BLEU We also report BLEU n-gram overlap with
respect to the reference Wikipedia summary. With
a large dev/test sets (10,000 sentences here), BLEU

is a reasonable evaluation of generated content.
However, it does not give an indication of well-
formedness or readability. Thus we complement
BLEU with a human preference evaluation.

Human preference We use crowd-sourced
judgements to evaluate the relative quality of
generated sentences and the reference Wikipedia
first sentence. We obtain pairwise judgements,
showing output from two different systems to
crowd workers and asking each to give their bi-
nary preference. The system name mappings are
anonymized and ordered pseudo-randomly. We
request 3 judgements and dynamically increase
this until we reach at least 70% agreement or
a maximum of 5 judgements. We use Crowd-
Flower2 to collect judgements at the cost of 31
USD for all 6 pairwise combinations over 82

2http://www.crowdflower.com
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DEV TEST

Base 21.3 21.1
S2S 32.5 33.1
S2S+AE 40.5 41.0

Table 3: BLEU scores for each hypothesis against
the Wikipedia reference

randomly selected entities. 67 workers con-
tributed judgements to the test data task, each
providing no more than 50 responses. We use the
majority preference for each comparison. The
CrowdFlower agreement is 80.7%, indicating that
roughly 4 of 5 votes agree on average.

5.3 Analysis of content selection
Finally, no system is perfect, and it can be chal-
lenging to understand the inherent difficulty of the
problem space and the limitations of a system.
Due to the limitations of the evaluation metrics
mentioned above, we propose that manual anno-
tation is important and still required for qualitative
analysis to guide system improvement. The struc-
tured data in knowledge-to-text tasks allows us, if
we can identify expressions of facts in text, cases
where facts have been omitted, incorrectly men-
tioned, or expressed differently.

6 Results

6.1 Comparison against Wikipedia reference
Table 3 shows BLEU scores calculated over 10,000
entities sampled from DEV and TEST using the
Wikipedia sentence as a single reference, using
uniform weights for 1- to 4-grams, and padding
sentences with fewer than 4 tokens. Scores are
similar across DEV and TEST, indicating that the
samples are of comparable difficulty. We evaluate
significance using bootstrapped resampling with
1,000 samples. Each system result lies outside the
95% confidence intervals of other systems. BASE

has reasonable scores at 21, with S2S higher at
around 32, indicating that the model is at least able
to generate closer text than the baseline. S2S+AE

scores higher still at around 41, roughly double the
baseline scores, indicating that the autoencoder is
indeed able to constrain the model to generate bet-
ter text.

6.2 Human preference evaluation
Table 4 shows the results of our human evalua-
tion over 82 entities sampled from TEST. For each

S2S+AE BASE S2S

60% 61%* 87%** WIKI

62%* 77%** S2S+AE

65%** BASE

Table 4: Percentage of entities for which human
judges preferred the row system to the column sys-
tem. E.g., S2S+AE summaries are preferred to
BASE for 62% of sample entities.

pair of systems, we show the percentage of enti-
ties where the crowd preferred A over B. Signifi-
cant differences are annotated with ∗ and ∗∗ for p
values < 0.05 and 0.01 using a one-way χ2 test.
WIKI is uniformly preferred to any system, as is
appropriate for an upper bound. The S2S model
is the least-preferred with respect to WIKI. The
S2S+AE model is more-preferred than the BASE

and S2S models, by a larger margin for the latter.
These results show that without autoencoding, the
sequence-to-sequence model is less effective than
a template-based system. Finally, although WIKI

is more preferred than S2S+AE, the distributions
are not significantly different, which we interpret
as evidence that the model is able to generate good
text from the human point-of-view, but autoencod-
ing is required to do so.

7 Analysis

While results presented above are encouraging and
suggest that the model is performing well, they
are not diagnostic in the sense that they can drive
deeper insights into model strengths and weak-
nesses. While inspection and manual analysis is
still required, we also leverage the structured fac-
tual data inherent to our task to perform quantita-
tive as well as qualitative analysis.

7.1 Fact Count

Figure 4 shows the effects of input fact count on
generation performance. While more input facts
give more information for the model to work with,
longer inputs are also both rarer and more complex
to encode. Interestingly, we observe the S2S+AE

model maintains performance for more complex
inputs while S2S performance declines.

7.2 Example generated text

Table 5 shows some DEV entities and their sum-
maries. The model learns interesting mappings:
between numeric and string dates, and country de-
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Data COUNTRY OF CITIZENSHIP united states of america DATE OF BIRTH
16/04/1927 DATE OF DEATH 19/05/1959 OCCUPATION formula one
driver PLACE OF BIRTH redlands PLACE OF DEATH indianapolis
SEX OR GENDER male TITLE bob cortner

WIKI n/a robert charles cortner ( april 16 , 1927 may 19 , 1959 ) was an american
automobile racing driver from redlands , california .

BASE 47.7 bob cortner ( born 16 april 1927 in redlands ; died 19 may 1959 in indi-
anapolis ) was a formula one driver from the united states of america

S2S 45.7 bob cortner ( april 16 , 1927 may 19 , 2005 ) was an american
professional boxer .

S2S+AE 58.8 robert cortner ( april 16 , 1927 may 19 , 1959 ) was an american race-
car driver .

Data COUNTRY OF CITIZENSHIP united kingdom DATE OF BIRTH 08/01/1906
DATE OF DEATH 12/12/1985 OCCUPATION actor PLACE OF BIRTH london
PLACE OF DEATH chelsea SEX OR GENDER male TITLE barry mackay (ac-
tor)

WIKI n/a barry mackay ( 8 january 1906 12 december 1985 ) was a british actor.
BASE 34.3 barry mackay ( actor ) ( born 8 january 1906 in london ; died 12 decem-

ber 1985 in chelsea ) was an actor from the united kingdom .
S2S 84.8 barry mackay ( 8 january 1906 12 december 1985 ) was a british film

actor .
S2S+AE 76.7 barry mackay ( 8 january 1906 12 december 1985 ) was an english

actor .
Data COUNTRY OF CITIZENSHIP united states of america DATE OF BIRTH

27/08/1931 DATE OF DEATH 03/11/1995 OCCUPATION jazz musician
SEX OR GENDER male TITLE joseph ”flip” nuñez

WIKI n/a joseph “ flip ’ nuñez was an american jazz pianist , composer , and
vocalist of filipino descent .

BASE 15.0 joseph “ flip ’ nuñez ( born 27 august 1931 ; died 3 november 1995 )
was a jazz musician from the united states of america .

S2S 29.1 joseph “ flip ’ nuñez ( august 27 , 1931 november 3 , 1995 ) was an
american jazz trumpeter .

S2S+AE 29.1 joseph “ flip ’ nuñez ( august 27 , 1931 november 3 , 1995 ) was an
american jazz drummer .

Table 5: Examples of entities from DEV, showing facts, WIKI, BASE, S2S and S2S+AE. We mark correct,
incorrect and extra fact values in the text with respect to the Wikidata input.

Figure 4: BLEU vs Fact Count on instances from
DEV. Error bars indicate the 95% confidence in-
terval for BLEU.

monyms. The model also demonstrates the abil-
ity to work around edge cases where templates
fail, i.e. stripping parenthetical disambiguations
(e.g. (actor)) and emitting the name Robert when
the input is Bob. Output also suggests the model
may perform inference across multiple facts to im-
prove generation precision, e.g. describing an en-
tity as english rather than british given informa-
tion about both citizenship and place of birth. Un-
fortunately, the model can also infer unsubstanti-
ated facts into the text (i.e. jazz drummer).
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7.3 Content selection and hallucination
We randomly sample 50 entities from DEV and
manually annotate the Wikipedia and system text.
We note which fact slots are expressed as well as
whether the expressed values are correct with re-
spect to Wikidata. Given two sets of correctly ex-
tracted facts, we can consider one gold, one system
and calculate set-based precision, recall and F1.

What percentage of facts are used in the ref-
erence summaries? Firstly, to understand how
Wikipedia editors select content for the first sen-
tence of articles, we measure recall with the real
facts as gold, and Wikipedia as system. Over-
all, the recall is 0.61 indicating that 61% of in-
put facts are expressed in the reference sum-
mary from Wikipedia. The entity name (TI-
TLE) is always expressed. Four slots are nearly
always expressed when available: OCCUPA-
TION (90%), DATE OF BIRTH (84%), CITI-
ZENSHIP (81%), DATE OF DEATH (80%). Six
slots are infrequently expressed in the analy-
sis sample: PLACE OF BIRTH (33%), POSI-
TION HELD (25%), PARTICIPANT OF (20%),
POLITICAL PARTY (20%), EDUCATED AT
(14%), SPORTS TEAM (9%). Two are never
expressed explicitly: PLACE OF DEATH (0%),
SEX OR GENDER (0%). AWARD RECEIVED
and SPORT are not in the analysis sample.

Do systems select the same facts found in the
reference summaries? Table 6 shows content
selection scores for systems with respect to the
Wikipedia text as reference. This suggests that
the autoencoding in S2S+AE helps increase fact
recall without sacrificing precision. The tem-
plate baseline also attains this higher recall, but
at the cost of precision. For commonly expressed
facts found in most person biographies, recall
is over 0.95 (e.g., CITIZENSHIP, BIRTH DATE,
DEATH DATE and OCCUPATION). Facts that
are infrequently expressed are more difficult to
select, with system F1 ranging from 0.00 to
0.50. Interestingly, macro-averaged F1 across in-
frequently expressed facts mirror human prefer-
ence rather than BLEU results, with S2S+AE (0.26)
> BASE (0.17) > S2S (0.07). However, all sys-
tems perform poorly on these facts and no reliable
differences are observed.

How does autoencoding effect fact density?
Interestingly, we observe that the autoencoding
objective encourages the model to select more

P R F
BASE 0.80 0.79 0.79
S2S 0.89 0.67 0.77
S2S+AE 0.89 0.78 0.83

Table 6: Fact-set content selection results phrased
as precision, recall and F1 of systems with respect
to the Wikipedia reference on DEV.

P R F
BASE 1.00 0.74 0.85
S2S 0.96 0.55 0.70
S2S+AE 0.93 0.62 0.74
WIKI 0.81 0.61 0.69

Table 7: Hallucination results phrased as preci-
sion, recall and F1 of systems with respect to the
Wikidata input on DEV.

facts (5.2 for S2S+AE vs. 4.5 for S2S), with-
out increasing sentence length (19.1 vs. 19.7 to-
kens). BASE is similarly productive (5.1 facts) but
wordier (21.2 tokens), while the WIKI reference
produces both more facts (6.1) and longer sen-
tences (23.7).

Do systems hallucinate facts? To quantify the
effect of hallucinated facts, we asses content se-
lection scores of systems with respect to the in-
put Wikidata relations (Table 7). Our best model
achieves a precision of 0.93 with respect to Wiki-
data input. Notably, the template-driven baseline
maintains a precision of 1.0 as it is constrained to
emit Wikidata facts verbatim.

8 Discussion and future work

Our experiments show that RNNs can generate bi-
ographic summaries from structured data, and that
a secondary autoencoding objective is able to ac-
count for some of the information mismatch be-
tween input facts and target output sentences. In
the future, we will explore whether results im-
prove with explicit modelling of facts and condi-
tioning of generation and autoencoding losses on
slots. We expect this could benefit generation for
diverse and noisy slot schemas like Wikipedia In-
foboxes.

Another natural extension is to investigate the
performance of the network running in reverse,
from summary text back to facts. We plan to
isolate the performance of the S2S+AE backward
model when inferring facts and compare it to stan-
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dard relation extraction systems. Finally, simi-
lar RNN models have been applied extensively to
language translation tasks. We plan to explore
whether a joint model of machine translation and
fact-driven generation can help populate KB en-
tries for low-coverage languages by leveraging a
shared set of facts.

9 Conclusion

We present a neural model for mapping between
structured and unstructured data, focusing on cre-
ating Wikipedia biographic summary sentences
from Wikidata slot-value pairs. We introduce a
sequence-to-sequence autoencoding RNN which
improves upon base models by jointly learning to
generate text and reconstruct facts. Our analysis
of the task suggests evaluation in this domain is
challenging. In place of a single score, we anal-
yse statistical measures, human preference judge-
ments and manual annotation to help characterise
the task and understand system performance. In
the human preference evaluation, our best model
outperforms template baselines and is preferred
40% of the time to the gold standard Wikipedia
reference.

Code and data is available at https://
github.com/andychisholm/mimo.
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Abstract

Traditional methods for deep NLG adopt
pipeline approaches comprising stages
such as constructing syntactic input, pre-
dicting function words, linearizing the
syntactic input and generating the sur-
face forms. Though easier to visual-
ize, pipeline approaches suffer from er-
ror propagation. In addition, informa-
tion available across modules cannot be
leveraged by all modules. We construct
a transition-based model to jointly per-
form linearization, function word predic-
tion and morphological generation, which
considerably improves upon the accuracy
compared to a pipelined baseline system.
On a standard deep input linearization
shared task, our system achieves the best
results reported so far.

1 Introduction

Natural language generation (NLG) (Reiter and
Dale, 1997; White, 2004) aims to synthesize nat-
ural language text given input syntactic, seman-
tic or logical representations. It has been shown
useful in various tasks in NLP, including machine
translation (Chang and Toutanova, 2007; Zhang
et al., 2014), abstractive summarization (Barzilay
and McKeown, 2005) and grammatical error cor-
rection (Lee and Seneff, 2006).

A line of traditional methods treat the problem
as a pipeline of several independent steps (Bohnet
et al., 2010; Wan et al., 2009; Bangalore et al.,
2000; H. Oh and I. Rudnicky, 2000; Langkilde
and Knight, 1998). For example, shown in Fig-
ure 1b, a pipeline based on the meaning text the-
ory (MTT) (Melčuk, 1988) splits NLG into three

∗Part of the work was done when the author was a vis-
iting student at Singapore University of Technology and De-
sign.

Deep
graph

Shallow
graph String Morph

(a)

Sem
graph

Synt
tree

String Morph

(b)

Deep
graph Morphological String with Syntactic tree

(c)

Figure 1: Linearization pipelines (a) NLG pipeline
with deep input graph, (b) pipeline based on the
meaning text theory, (c) this paper.

be

meanwhile

.

price

think

have increase

ADV PSBJ

VC

C-A1

VC

A1

A1
AM-TMP

Figure 2: Sample deep graph for the sentence:
meanwhile, prices are thought to have increased.
Note that words are replaced by their lemmas. The
function word to and comma are absent in graph.

independent steps 1. syntactic generation: gen-
erating an unordered and lemma-formed syntactic
tree from a semantic graph, introducing function
words; 2. syntactic linearization: linearizing the
unordered syntactic tree; 3. morphological gener-
ation: generating the inflection for each lemma in
the string.

In this paper we focus on deep graph as input.
Exemplified in Figure 2, the deep input type is
intended to be an abstract representation of the
meaning of a sentence. Unlike semantic input,
where the nodes are semantic representations of
input, deep input is more surface centric, with lem-
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mas for each word being connected by semantic
labels (Banarescu et al., 2013; Melčuk, 2015). In
contrast to shallow syntactic trees, function words
in surface forms are not included in deep graphs
(Belz et al., 2011). Deep inputs can more com-
monly occur as input of NLG systems where enti-
ties and content words are available, and one has to
generate a grammatical sentence using them with
only provision for inflections of words and intro-
duction of function words. Such usecases include
summarization, dialog generation etc.

A pipeline of deep input linearization is shown
in Figure 1a. Generation involves predicting the
correct word order, deciding inflections and also
filling in function words at the appropriate posi-
tions. The worst-case complexity is n! for per-
muting n words, 2n for function word prediction
(assuming that a function word can be inserted af-
ter each content word), and 2n for inflection gen-
eration (assuming two morphological forms for
each lemma). On the dataset from the First Sur-
face Realisation Shared Task, Bohnet et al. (2011)
achieved the best reported results on linearizing
deep input representation, following the pipeline
of Figure 1b (with input as deep graph instead of
semantic graph). They construct a syntactic tree
from deep input graph followed by function word
prediction, linearization and morphological gener-
ation. A rich set of features are used at each stage
of the pipeline and for each adjacent pair of stages,
an SVM decoder is defined.

Pipelined systems suffer from the problem of er-
ror propagation. In addition, because the steps are
independent of each other, information available
in a later stage is not made use of in the earlier
stages. We introduce a transition-based (Nivre,
2008) method for joint deep input surface realisa-
tion integrating linearization, function word pre-
diction and morphological generation. The model
is shown in Fig 1c, as compared with the pipelined
baseline in Fig 1a. For a directly comparable base-
line, we construct a pipeline system of function
words prediction, linearization and morphologi-
cal generation similar to the pipeline of Bohnet et
al. (2011), but with the following difference. Our
baseline pipeline system makes function word pre-
diction for a deep input graph, whereas Bohnet et
al. (2011) have a preprocessing step to construct
a syntactic tree from the deep input graph, which
is given as input to the function word prediction
module. Our pipeline is directly comparable to the

joint system with regard to the use of information.
Standard evaluations show that: 1. Our joint

model for deep input surface realisation achieves
significantly better scores over its pipeline coun-
terpart. 2. We achieve the best results reported on
the task. Our system scores 1 BLEU point better
over Bohnet et al. (2011) without using any ex-
ternal resources. We make the source code avail-
able at https://github.com/SUTDNLP/
ZGen/releases/tag/v0.3.

2 Related Work

Related work can be broadly summarized into
three areas: abstract word ordering, applications
of meaning-text theory and joint modelling of
NLP tasks. In abstract word ordering (Wan et
al., 2009; Zhang, 2013; Zhang and Clark, 2015),
De Gispert et al. (2014) compose phrases over in-
dividual words and permute the phrases to achieve
linearization. Schmaltz et al. (2016) show that
strong surface-level language models are more ef-
fective than models trained with syntactic infor-
mation for the task of linearization. Transition-
based techniques have also been explored (Liu et
al., 2015; Liu and Zhang, 2015; Puduppully et
al., 2016). To our knowledge, we are the first to
use transition-based techniques for deep input lin-
earization.

There has been work done in the area of
sentence linearization using meaning-text theory
(Melčuk, 1988). Belz et al. (2011) organized a
shared task on both shallow and deep lineariza-
tion according to meaning-text theory, which pro-
vides a standard benchmark for system compari-
son. Song et al. (2014) achieved the best results
for the task of shallow-syntactic linearization. Us-
ing SVM models with rich features, Bohnet et al.
(2011) achieved state-of-art results on the task of
deep realization. While they built a pipeline sys-
tem, we show that joint models can be used to
overcome limitations of the pipeline approach giv-
ing the best results.

Joint models for NLP have shown effective-
ness in recent years. Though having to tackle in-
creased search space, they overcome issues with
error propagation in pipelined models. Joint mod-
els have been explored for grammar-based ap-
proaches to surface realisation using HPSG and
CCG (Carroll and Oepen, 2005; Velldal and
Oepen, 2006; Espinosa et al., 2008; White and Ra-
jkumar, 2009; White, 2006; Carroll et al., 1999).
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Figure 3: Equivalent shallow graph for Figure 2.

Joint models have been proposed for word seg-
mentation and POS-tagging (Zhang and Clark,
2010), POS-tagging and syntactic chunking (Sut-
ton et al., 2007), segmentation and normaliza-
tion (Qian et al., 2015), syntactic linearization and
morphologization (Song et al., 2014), parsing and
NER (Finkel and Manning, 2009), entity and rela-
tion extraction (Li and Ji, 2014) and so on. We
propose a first joint model for deep realization,
integrating linearization, function word prediction
and morphological generation.

3 Baseline

We build a baseline following the pipeline in Fig-
ure 1a. Three stages are involved: 1. prediction
of function words, inserting the predicted function
words in the deep graph, resulting in a shallow
graph; 2. linearizing the shallow graph; 3. gen-
erating the inflection for each lemma in the string.

3.1 Function Word Prediction

In the First Surface Realisation Shared Task
dataset (Belz et al., 2011), there are three classes
of function words to predict: to infinitive, that
complementizer and comma. We implement clas-
sifiers to predict these classes of function words
locally at respective positions in the deep graph
resulting in a shallow graph (Figure 3). At each
location the input is a node and output is a class
indicating if to or that need to inserted under the
node or the count of comma to be introduced under
the node.

Table 1 shows the feature templates for classi-
fication of to infinitives and that complementizers
and Table 2 shows the feature templates for pre-
dicting the count of comma child nodes for each
non-leaf node in the graph. These feature tem-
plates are a subset of features used in the joint
model (Section 4) with the exceptions being word
order features, which are not available here for the
pipeline system, since earlier stages cannot lever-
age features in subsequent outcomes. We use av-

Features for predicting function words including
to infinitive, that complementizer
WORD(n); POS(n); WORD(c)

Table 1: Feature templates for the prediction of
function words- to infinitive and that complemen-
tizer. Indices on the surface string: n – word index;
c – child of n; Functions: WORD – word at index;
POS – part-of-speech at index.

Features for predicting count of comma
WORD(n); POS(n)
BAG(WORD-MOD(n))
BAG(LABEL-MOD(n))

Table 2: Feature templates for the comma predic-
tion system. Indices on the surface string: n –
word index; Functions: WORD – word at index;
POS – part-of-speech at index; WORD-MOD –
modifiers of index; LABEL-MOD – dependency
labels of modifiers; BAG – set.

eraged perceptron classifier (Collins, 2002) to pre-
dict function words, which is consistent with the
joint model.

3.2 Linearization

The next step is linearizing the graph, which we
solve using a novel transition-based algorithm.

3.2.1 Transition-Based Tree Linearization

Liu et al. (2015) introduce a transition-based
model for tree linearization. The approach extends
from transition-based parsers (Nivre and Scholz,
2004; Chen and Manning, 2014), where state con-
sists of stack to hold partially built outputs and a
queue to hold input sequence of words. In case of
linearization, the input is a set of words. Liu et
al. therefore use a set to hold the input instead of
a queue. State is represented by a tuple (σ, ρ, A),
where σ is stack to store partial derivations, ρ is
set of input words and A is the set of dependency
relations that have been built. There are three tran-
sition actions:
• SHIFT-Word-POS – shifts Word from ρ, as-

signs POS to it and pushes it to top of stack
as S0;
• LEFTARC-LABEL – constructs dependency

arc S1
LABEL←−−−−− S0 and pops out second ele-

ment from top of stack S1;
• RIGHTARC-LABEL – constructs depen-

dency arc S1
LABEL−−−−−→ S0 and pops out top

of stack S0.
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Input lemmas: {think1, price2, .3, increase4, be5, have6, meanwhile7,
,8, to9}

Transition σ ρ A
0 [] {1...7} ∅
1 SH-meanwhile [7] {1...6,8,9}
2 SH-, [7 8] {1...6,9}
3 SH-price [7 8 2] {1,3,4,5,6,9}
4 SH-be [7 8 2 5] {1,3,4,6,9}
5 SH-think [7 8 2 5 1] {3,4,6,9}
6 SH-to [7 8 2 5 1 9] {3,4,6}
7 SH-have [7 8 2 5 1 9 6] {3,4}
8 SH-increase [7 8 2 5 1 9 6 4] {3}
9 RA [7 8 2 5 1 9 6] {3} A ∪ {6→ 4}
10 RA [7 8 2 5 1 9] {3} A ∪ {9→ 6}
11 RA [7 8 2 5 1] {3} A ∪ {1→ 9}
12 RA [7 8 2 5] {3} A ∪ {5→ 1}
13 SH-. [7 8 2 5 3] {}
14 RA [7 8 2 5] {} A ∪ {5→ 3}
15 LA [7 8 5] {} A ∪ {2← 5}
16 LA [7 5] {} A ∪ {8← 5}
17 LA [5] {} A ∪ {7← 5}

Table 3: Transition action sequence for lineariz-
ing the graph in Figure 3. SH - SHIFT, RA -
RIGHTARC, LA - LEFTARC. POS is not shown
in SHIFT actions.

The sequence of actions to linearize the set {he,
goes, home} is SHIFT-he, SHIFT-goes, SHIFT-
home, RIGHTARC-OBJ, LEFTARC-SBJ.

The full set of feature templates are shown in
Table 2 of Liu et al. (2015), partly shown in Table
4. The features include word(w), POS(p) and de-
pendency label (l) of elements on stack and their
descendants S0, S1, S0,l, S0,r etc. For example,
word on top of stack is S0w and word on first left
child of S0 is S0,lw. These are called configuration
features. They are combined with all possible ac-
tions to score the action. Puduppully et al. (2016)
extend Liu et al. (2015) by redefining features to
address feature sparsity and introduce lookahead
features, thereby achieving highest accuracies on
task of abstract word ordering.

3.2.2 Shallow Graph Linearization
Our transition based graph linearization system
extends from Puduppully et al. (2016). In our case,
the input is a shallow graph instead of a syntac-
tic tree, and hence the search space is larger. On
the other hand, the same set of actions can still
be applied, with additional constraints on valid ac-
tions given each configuration (Section 3.2.3). Ta-
ble 3 shows the sequence of transition actions to
linearize shallow graph in Figure 3.

3.2.3 Obtaining Possible Transition Actions
Given a Configuration

The purpose of a GETPOSSIBLEACTIONS func-
tion is to find out the set of transition actions that
can lead to a valid output given a certain state.

Algorithm 1: GETPOSSIBLEACTIONS for
shallow graph linearization

Input: A state s = ([σ|j i], ρ, A) and input graph C
Output: A set of possible transition actions T

1 T ← ∅
2 if s.σ == ∅ then
3 for k ∈ s.ρ do
4 T ← T ∪ (SHIFT, POS, k)

5 else
6 if ∃k, k ∈ (DIRECTCHILDREN(i) ∩ s.ρ) then
7 SHIFTSUBTREE(i, ρ)

8 else
9 if A.LEFTCHILD(i) is NIL then

10 SHIFTSUBTREE(i, ρ)

11 if {j → i} ∈ C∧ A.LEFTCHILD(j) is NIL
then

12 T ← T ∪ (RIGHTARC)
13 if i ∈ DESCENDANT(j) then
14 PROCESSDESCENDANT(i, j)

15 if i ∈ SIBLING(j) then
16 PROCESSSIBLING(i, j)

17 else if {j ← i} ∈ C then
18 T ← T ∪ (LEFTARC)
19 if i ∈ SIBLING(j) then
20 PROCESSSIBLING(i, j)

21 else
22 if size(s.σ) == 1 then
23 SHIFTPARENTANDSIBLINGS(i)

24 else
25 if i ∈ DESCENDANT(j) then
26 PROCESSDESCENDANT(i, j)

27 if i ∈ SIBLING(j) then
28 PROCESSSIBLING(i, j)

29 return T

Algorithm 2: DIRECTCHILDREN

Input: A state s=([σ|j i], ρ, A), input node and graph
C.

Output: DC direct child nodes of input node
1 DC← ∅
2 for k ∈ (C.CHILDREN(input node)) do
3 Parents← C.PARENTS(k)
4 if Parents.size == 1 then
5 DC← DC ∪ k

6 else
7 for m ∈ Parents do
8 if A.LEFTCHILD(m) is not NIL ∨ m ==

input node then
9 continue

10 if m ∩ s.ρ then
11 goto OutsideLoop

12 if m ∈ σ∧ σ.ISANCESTOR(m,C) then
13 goto OutsideLoop

14 DC← DC ∪ k

15 OutsideLoop:

16 return DC
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be

meanwhile , price think .

to have increase

ADV

P
SBJ VC

P

INF

C-A1 VC

Figure 4: Equivalent syntactic tree for Figure 2.

Algorithm 3: SHIFTSUBTREE

Input: A state s = ([σ|j i], ρ, A), graph C, head k
Output: a set of possible Transition actions T

1 T← ∅
2 T← T ∪ (SHIFT, POS, k)
3 queue q
4 q.push(k)
5 while q is not empty do
6 front = q.pop()
7 for m ∈ (C.CHILDREN(front) ∩ s.ρ) do
8 q.push(m)
9 T← T ∪ (SHIFT, POS, m)

This is because not all sequences of actions corre-
spond to a well-formed output. Essentially, given
a state s = ([σ|j i], ρ, A) and an input graph C,
the Decoder extracts syntactic tree from the graph
(cf. Figure 4 extracted from Figure 3), outputting
RIGHTARC, LEFTARC only if the corresponding
arc exists in C. The corresponding pseudocode is
shown in Algorithm 1.

In particular, if node i has direct child nodes in
C, the descendants of i are shifted (line 6-7) (see
Algorithm 3). Here direct child nodes (see Algo-
rithm 2) include those child nodes of i for which
i is the only parent or if there is more than one
parent then every other parent is shifted on to the
stack without possibility to reduce the child node.
If no direct child node is in the buffer, then all
graph descendants of i are shifted. Now, there are
three configurations possible between i and j: 1.
i and j are directly connected in C. This results in
RIGHTARC or LEFTARC action; 2. i is descendant
of j. In this case the parents of i (such that they are
descendants of j) and siblings of i through such
parents are shifted. 3. i is sibling of j. In this case,
parents of i and their descendants are shifted such
that A remains consistent. Because the input is a
graph, more than one of the above configuration
can occur simultaneously. More detailed discus-
sion related to GETPOSSIBLEACTIONS is given in
Appendix A.

Unigrams
S0w; S0p; S0,lw; S0,lp; S0,ll; S0,rw; S0,rp; S0,rl;
Bigram
S0wS0,lw; S0wS0,lp; S0wS0,ll; S0pS0,lw;
Linearization
w0; p0; w−1w0; p−1p0; w−2w−1w0; p−2p−1p0

Table 4: Baseline linearization feature templates.
A subset is shown here. For the full feature set,
refer to Table 2 of Liu et al. (2015).

3.2.4 Feature Templates
There are three sets of features. The first is the
set of baseline linearization feature templates from
Table 2 in Liu et al. (2015), partly shown in Table
4. The second is a set of lookahead features simi-
lar to that of Puduppully et al. (2016), shown in Ta-
ble 5.1 Parent lookahead feature in Puduppully et
al. (2016) is defined for the only parent. For graph
linearization, however, the parent lookahead fea-
ture need to be defined for set of parents. The third
set of features in Table 6 are newly introduced for
Graph Linearization. Arcleft is a binary feature
indicating if there is left arc between S0 and S1,
whereas Arcright indicates if there is a right arc.
Lis descendant is a binary feature indicating if L is
descendant of S0, and Lis parent or sibling indicates
if it is a parent or sibling of S0. S0descendants shifted

is binary feature indicating if all the descendants
of S0 are shifted.

Not having POS in the input dataset, we com-
pute the feature templates for POS making use of
the most frequent POS of the lemma in the gold
training data. For the features with dependency la-
bels, we use the input graph labels.

3.2.5 Search and Learning
We follow Puduppully et al. (2016) and Liu et al.
(2015), applying the learning and search frame-
work of Zhang and Clark (2011). Pseudocode is
shown in Algorithm 4. It performs beam search
holding k best states in an agenda at each incre-
mental step. At the start of decoding, agenda holds
the initial state. At a step, for each state in the

1Here Lcls represents set of arc labels of child nodes (of
word to shift L) shifted on the stack, Lclns represents set of
arc labels of child nodes not shifted on the stack, Lcps the
POS set of shifted child nodes, Lcpns the POS set of un-
shifted child nodes, Lsls the set of arc labels of shifted sib-
lings, Lslns the set of arc labels of unshifted siblings, Lsps

the POS set of shifted siblings, Lcpns the POS set of un-
shifted siblings, Lpls the set of arc labels of shifted parents,
Lplns the set of arc labels of unshifted parents, Lpps the POS
set of shifted parents, Lppns the POS set of unshifted parents.

647



set of label and POS of child nodes of L
Lcls;Lclns;Lcps;Lcpns;
S0wLcls;S0pLcls;S1wLcls;S1pLcls;

set of label and POS of first-level siblings of L
Lsls;Lslns;Lsps;Lspns;
S0wLsls;S0pLsls;S1wLsls;S1pLsls;

set of label and POS of parents of L
Lpls;Lplns;Lpps;Lppns;
S0wLpls;S0pLpls;S1wLpls;S1pLpls;

Table 5: Lookahead linearization feature tem-
plates for the word L to shift. A subset is shown
here. For the full feature set, refer to Table 2 of
Puduppully et al. (2016). An identical set of fea-
ture templates are defined for S0.

arc features between S0 and S1

Arcleft ; Arcright ;
lookahead features for L
Lis descendant ; Lis parent or sibling ;
are all descendants of S0 shifted
S0descendants shifted ;
feature combination
S0descendants shiftedArcleft ;
S0descendants shiftedArcright ;
S0descendants shifted Lis descendant ;
S0descendants shifted Lis parent or sibling ;

Table 6: Graph linearization feature templates

agenda, each of transition actions in GETPOSSI-
BLEACTIONS is applied. The top-k states are up-
dated in the agenda for the next step. The pro-
cess repeats for 2n steps as each word needs to be
shifted once on to the stack and reduced once. Af-
ter 2n steps, the highest scoring state in agenda is
taken as the output. The complexity of algorithm
is n2, as it takes 2n steps to complete and during
each step, the number of transition actions is pro-
portional to ρ. Given a configuration C, the score
of a possible action a is calculated as:

Score(a) = ~θ · ~Φ(C, a),

where ~θ is the model parameter vector and ~Φ(C, a)
denotes a feature vector consisting of configura-
tion and action components. Given a set of labeled
training examples, the averaged perceptron with
early update (Collins and Roark, 2004) is used.

3.3 Morphological Generation
The last step is to inflate the lemmas in the sen-
tence. There are three POS categories, includ-
ing nouns, verbs and articles, for which we need
to generate morphological forms. We use Wik-
tionary2 as a basis and write a small set of rules

2https://en.wiktionary.org/

Algorithm 4: transition-based linearization
Input: C, a set of input syntactic constraints
Output: The highest-scored final state

1 candidates← ([ ], set(1..n), ∅)
2 agenda← ∅
3 for i← 1..2n do
4 for s in candidates do
5 for action in GETPOSSIBLEACTIONS(s, C)

do
6 agenda← APPLY(s, action)

7 candidates← TOP-K(agenda)
8 agenda← ∅
9 best← BEST(candidates)

10 return best

Rules for be
attr[‘partic’] == ‘pres’→ being
attr[‘partic’] == ‘past’→ been
attr[‘tense’] == ‘past’
sbj.attr[‘num’] == ‘sg’→ was
sbj.attr[‘num’] == ‘pl’→ were
other→ [was,were]

attr[‘tense’] == ‘pres’
sbj.attr[‘num’] == ‘sg’→ is
sbj.attr[‘num’] == ‘pl’→ are
other→ [am,is,are]

Rules for other verbs
attr[‘partic’] == ‘pres’→ wik.get(lemma, VBG)
attr[‘partic’] == ‘past’→ wik.get(lemma, VBN )
attr[‘tense’] == ‘past’→ wik.get(lemma, VBD)
attr[‘tense’] == ‘pres’
sbj.attr[‘num’] == ‘sg’→ wik.get(lemma, VBZ )
other→ wik.getall(lemma)

Rules for other types
lemma==a→ [a,an]
lemma==not→ [not,n’t]
attr[‘num’] == ‘sg’→ wik.get(lemma,NNP/NN)
attr[‘num’] == ‘pl’→ wik.get(lemma,NNPS/NNS)

Table 7: Lemma rules. All rules are in the format:
conditions→ candidate inflections. Nested condi-
tions are listed in multi-lines with indentation. wik
denotes english wiktionary.

similar to that used in Song et al. (2014), listed in
Table 7, to generate a candidate set of inflections.
An averaged perceptron classifier (Collins, 2002)
is trained for each lemma. For distinguishing be-
tween singular and plural candidate verb forms,
the feature templates in Table 8 are used.

4 Joint Method

We design a joint method for function word pre-
diction (Section 3.1), linearization (Section 3.2)
and morphological generation (Section 3.3) by
further extending the transition-based system of
Section 3.2, integrating actions for function word
prediction and morphological generation.
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Features for predicting singular/ plural verb forms
WORD(n-1)WORD(n-2)WORD(n-3); COUNT SUBJ(n);
COUNT(n-1)COUNT(n-2)COUNT(n-3); SUBJ(n);
WORD(n-1)WORD(n-2); COUNT(n-1)COUNT(n-2);
WORD(n-1); COUNT(n-1); WORD(n+1); COUNT(n+1);

Table 8: Feature templates for predicting singular/
plural verb forms. Indices on the surface string:
n – word index; Functions: WORD – word at in-
dex n; COUNT – word at n is singular or plural
form; SUBJ – word at subject of n; COUNT SUBJ
– word at subject of n is singular or plural form.

think to have
C-A1

think have
C-A1 INF

Figure 5: Example for SPLITARC-to.

4.1 Transition Actions

In addition to SHIFT, LEFTARC and RIGHTARC

in Section 3.2.1, we use the following new transi-
tion actions for inserting function words:
• INSERT, inserts comma at the present posi-

tion;
• SPLITARC-Word, splits an arc in the input

graph C, inserting a function word between
the words connected by the arc. Here Word
specifies the function word being inserted
(Figure 5).

We generate a candidate set of inflections for
each lemma following the approach in Section 3.3.
For each candidate inflection, we generate a cor-
responding SHIFT transition action. The rules in
Table 7 are used to prune impossible inflections.3

Table 9 shows the transition actions to linearize
the graph in Figure 2. These newly introduced
transition actions result in variability in the num-
ber of transition actions. With function word
prediction, the number of transition actions for
a bag of n words is not necessarily 2n-1. For
example, considering an INSERT, SPLITARC-to
or SPLITARC-that action post each SHIFT action,
the maximum number of possible actions is 5n-1.
This variance in the number of actions can impact
the linear separability of state items. Following
Zhu et al. (2013), we use IDLE actions as a form of
padding method, which results in completed state
items being further expanded up to 5n-1 steps. The
joint model uses the same perceptron training al-

3For example in Figure 2, price is the subject of be and
if be is in present tense and price is in plural form, the in-
flections {am, is, was, were} are impossible and are is the
correct inflection for be. We therefore generate transition ac-
tion as SHIFT-are.

Input lemmas: {think1, price2, .3, increase4, be5, have6, meanwhile7}
Transition σ ρ A

0 [] {1...7} ∅
1 SH-meanwhile [7] {1...6}
2 IN [7] {1...6}
3 SH-prices [7 2] {1,3,4,5,6}
4 SH-are [7 2 5] {1,3,4,6}
5 SH-thought [7 2 5 1] {3,4,6}
6 SP-to [7 2 5 1] {3,4,6}
7 SH-have [7 2 5 1 6] {3,4}
8 SH-increased [7 2 5 1 6 4] {3}
9 RA [7 2 5 1 6] {3} A ∪ {6→ 4}
10 RA [7 2 5 1] {3} A ∪ {1→ 6}
11 RA [7 2 5] {3} A ∪ {5→ 1}
12 SH-. [7 2 5 3] {}
13 RA [7 2 5] {} A ∪ {5→ 3}
14 LA [7 5] {} A ∪ {2← 5}
15 LA [5] {} A ∪ {7← 5}

Table 9: Transition action sequence for lineariz-
ing the sentence in Figure 2. SH - SHIFT, SP -
SPLITARC, RA - RIGHTARC, LA - LEFTARC, IN
- INSERT. POS is not shown in SHIFT actions.

gorithm and similar features compared to the base-
line model.

4.2 Obtaining Possible Transition Actions
Given a Configuration

Given a state s = ([σ|j i], ρ, A) and an input
graph C, the possible transition actions include as
a subset the transition actions in Algorithm 1 for
shallow graph linearization. In addition, for each
lemma being shifted, we enumerate its inflections
and create SHIFT transition actions for each inflec-
tion. Further, we predict SPLITARC, INSERT and
IDLE actions to handle function words. If node
i has a child node in C, which is not shifted, we
predict SPLITARC and INSERT. If i is sibling to
j, we predict INSERT. If both the stack and buffer
are empty, we predict IDLE. Pseudocode for GET-
POSSIBLEACTIONS for the joint method is shown
in Algorithm 5.

5 Experiments

5.1 Dataset
We work on the deep dataset from the Sur-
face Realisation Shared Task (Belz et al., 2011)4.
Sentences are represented as sets of unordered
nodes with labeled semantic edges between them.
Semantic representation is obtained by merging
Nombank (Meyers et al., 2004), Propbank (Palmer
et al., 2005) and syntactic dependencies. Edge la-
beling follows PropBank annotation scheme such
as {A0, A1, ... An}. The nodes are annotated
with lemma and where appropriate number, tense
and participle features. Function words including

4http://www.nltg.brighton.ac.uk/research/sr-task/
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Algorithm 5: GETPOSSIBLEACTIONS for
deep graph linearization, where C is a input
graph

Input: A state s = ([σ|j i], ρ, A) and graph C
Output: A set of possible transition actions T

1 T ← ∅
2 if s.σ == ∅ then
3 for k ∈ s.ρ do
4 T ← T ∪ (SHIFT, POS, k)

5 else
6 if ∃k, k ∈ (DIRECTCHILDREN(i) ∩ s.ρ) then
7 SHIFTSUBTREE(i, ρ)

8 else
9 if A.LEFTCHILD(i) is NIL then

10 SHIFTSUBTREE(i, ρ)

11 if {j → i} ∈ C∧ A.LEFTCHILD(j) is NIL
then

12 T ← T ∪ (RIGHTARC)
13 if i ∈ DESCENDANT(j) then
14 PROCESSDESCENDANT(i, j)

15 if i ∈ SIBLING(j) then
16 PROCESSSIBLING(i, j)

17 else if {j ← i} ∈ C then
18 T ← T ∪ (LEFTARC)
19 if i ∈ SIBLING(j) then
20 PROCESSSIBLING(i, j)

21 else
22 if size(s.σ) == 1 then
23 SHIFTPARENTANDSIBLINGS(i)

24 else
25 if i ∈ DESCENDANT(j) then
26 PROCESSDESCENDANT(i, j)

27 if i ∈ SIBLING(j) then
28 PROCESSSIBLING(i, j)

29 if C.Children(i) ∧s.ρ 6= ∅ then
30 T ← T ∪ (SPLITARC − to)
31 T ← T ∪ (SPLITARC − that)
32 if C.Children(i) ∧s.ρ 6= ∅ ∨ i ∈ SIBLING(j) then
33 T ← T ∪ (INSERT)

34 if s.σ == ∅ ∧ s.ρ == ∅ then
35 T ← T ∪ (IDLE)

36 return T

that complementizer, to infinitive and commas are
omitted from the input. There are two punctua-
tion features for information about brackets and
quotes. Table 10 shows a sample training instance.

Out of 39k total training instances, 2.8k are
non-projective, which we discard. We exclude in-
stances which result in non-projective dependen-
cies mainly because our transition actions predict
only projective dependencies. It has been derived
from the arc-standard system (Nivre, 2008). There
are 1.8k training instances with a mismatch be-

Input (unordered lemma-formed graph):
Sem ID PID Lemma Attr Lexeme
SROOT 1 0 be tense=pres are
ADV 2 1 meanwhile meanwhile
P 3 1 . .
SBJ 4 1 start.02 num=pl starts
A1 5 4 housing num=sg housing
AM-TMP 6 4 september num=sg september
VC 9 1 think.01 partic=past thought
A1 4 9
C-A1 10 9 have have
VC 11 10 inch.01 partic=past inched
A1 4 11
A5 12 11 upward upward

Table 10: Deep type training instance from Sur-
face Realisation Shared Task 2011. Sem – seman-
tic label, ID – unique ID of node within graph, PID
– the ID of the parent, Attr – Attributes such as
partic (participle), tense or number, Lexeme – lex-
eme which is resolved using wiktionary and rules
in Table 7.

tween edges in the input deep graph and gold out-
put tree. The gold output tree is the correspond-
ing shallow tree from the shared task. We ap-
proach the task of linearization as extracting a lin-
earized tree from the input semantic graph. So we
exclude those instances which do not have edges
corresponding to gold tree i.e mismatch between
edges of gold tree and input graph. After exclud-
ing these instances, we have 34.3k training in-
stances. We also exclude 800 training instances
where the function words to and that have more
than one child, and around 100 training instances
where function words’ parent and child nodes are
not connected by an arc in the deep graph. The
above cases are deemed annotation mistakes. We
thus train on a final subset of 33.4k training in-
stances. The development set comprises 1034 in-
stances and the test set comprises 2398 instances.
Evaluation is done using the BLEU metric (Pap-
ineni et al., 2002).

6 Development Results

6.1 Influence of Beam Size

We study the effect of beam size on the accura-
cies of joint model in Figure 6, by varying the
beam size and comparing the accuracies on de-
velopment dataset over training iterations. Beam
sizes of 64 and 128 perform the best. However,
beam size 128 does not improve the performance
significantly, yet is twice as slow compared to a
beam size 64. So we retain a 64 beam for further
experiments.
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Figure 6: Influence of beam sizes.

Pipeline Joint
to infinitive 92.7 94.1
that complementizer 70.6 76.5
count of comma 60.2 63.3

Table 11: Average F-measure for function word
prediction for development set.

6.2 Pipeline vs Joint Model
We compare the results of the joint model with the
pipeline baseline system. Table 11 shows the de-
velopment results of function word prediction, and
Table 12 shows the overall development results.
Our joint model of Transition-Based Deep Input
Linearization (TBDIL) achieves an improvement
of 5 BLEU points over the pipeline using the same
feature source and training algorithm. Thanks to
the sharing of word order information, the joint
model improves function word prediction com-
pared to the pipeline, which forbids such feature
integration because function word prediction is the
first step, taken before order becomes available.

7 Final Results

Table 13 shows the final results. The best perform-
ing system for the Shared Task was STUMABA-D
by Bohnet et al. (2011), which leverages a large-
scale n-gram language model. The joint model
TBDIL significantly outperforms the pipeline sys-
tem and achieves an improvement of 1 BLEU
point over STUMABA-D, obtaining 80.49 BLEU
without making use of external resources.

8 Analysis

Table 14 shows sample outputs from the Pipeline
system and the corresponding output from TBDIL.
In the first instance, the function word to is incor-
rectly predicted in the arc between nodes does and
yield in the pipeline system. In case of TBDIL,
the n-gram feature helps avoid incorrect insertion
of to which demonstrates the advantage of inte-
grating information across stages. In the second

System BLEU Score
Pipeline 75.86
TBDIL 80.77

Table 12: Development results.

System BLEU Score
STUMABA-D 79.43

Pipeline 70.99
TBDIL 80.49

Table 13: Test results.

output
ref. if it does n’t yield on these matters and even-

tually begin talking directly to the anc
Pipeline if it does not to yield on these matters and

eventually begin talking directly to the anc
TBDIL if it does n’t yield on these matters and even-

tually begin talking directly to the anc
ref. economists who read september ’s low level

of factory job growth as a sign of a slowdown
Pipeline september ’s low level of factory job growth

who as a sign of a slowdown reads economists
TBDIL economists who read september ’s low level

of factory job growth as a sign of a slowdown

Table 14: Example outputs.

instance, because of incorrect linearization, there
is error propagation to morphological generation
in the pipeline system. In particular, economists is
linearized to the object part of the sentence and the
subject is singular. This, in turn, results in the in-
correct prediction of morphological form of verb
read as its singular variant. In TBDIL, in contrast,
the joint modelling of linearization and morphol-
ogy helps ordering the sentence correctly.

9 Conclusion

We showed the usefulness of a joint model for the
task of Deep Linearization, by taking (Puduppully
et al., 2016) as the baseline and extending it to
perform joint graph linearization, function word
prediction and morphological generation. To our
knowledge, this is the first work to use Transition-
Based method for joint NLG from semantic struc-
ture. Our system gave the highest scores reported
for the NLG 2011 shared task on Deep Input Lin-
earization (Belz et al., 2011).
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A Obtaining possible transition actions
given a configuration for Shallow
Graph

During shallow linearization, a state is represented
by s = ([σ|j i], ρ, A) and C is the input graph.
Given C, the Decoder outputs actions which ex-
tract syntactic tree from the graph. Thus the De-
coder outputs RIGHTARC or LEFTARC only if
corresponding arc exists in C. The detailed pseu-
docode is given in Algorithm 1. If i has direct child
nodes in C, the descendants of i are shifted (line
6-7) (see Algorithm 3). Here, direct child nodes
(see Algorithm 2) include those child nodes of i
for which i is the only parent or if there is more
than one parent then every other parent is shifted
on to the stack without possibility to reduce the
child node. If no direct child node is in buffer, then
descendants of i are shifted (line 9-10). Now, there
are three configurations possible between i and j:
1. i and j are connected by arc in C. This results
in RIGHTARC or LEFTARC action; 2. i is descen-
dant of j. In this case the parents of i (such that
they are descendants of j) and siblings of i through
such parents are shifted. 3. i is sibling of j. In
this case, the parents of i and their descendants are
shifted such that A remains consistent. Addition-
ally, because the input is a graph structure, more
than one of the above configuration can occur si-
multaneously. We analyse the three configurations
in detail below.

Since the direct child nodes of i are shifted,
{j ← i} results in a LEFTARC action (line 18).
Also because the input is a graph, i can be a sib-
ling node of j. In this case, the valid parents and
siblings of i are shifted. We iterate through the
other elements in stack to identify the valid par-
ents and siblings. These conditions are encapsu-
lated in PROCESSSIBLING (line 20). Conditions
for RIGHTARC are similar to that of LEFTARC

with the following differences. We ensure that
there is no left arc relationship for j in A (line 11).
If there is a left arc relationship for j in A, it means
that in an arc-standard setting, the RIGHTARC ac-
tions for j have already been made. If i is a descen-
dant of j, valid parents and siblings of i are shifted.
We iterate through the parents of i and those par-
ents which are in turn descendants of j and not
shifted on to the stack are valid parents. We shift
the parent and the subtree through each such par-
ent. These conditions are denoted by PROCESS-
DESCENDANT (line 14).

C

B

X11 X12 X13

A

X21 X22 X23

D

X31 X32 X33

Figure 7: Sample graph to illustrate PROCESSSI-
BLING

If there is no arc between j and i and there is
only one element on the stack, then the parents
and siblings of i are shifted (line 22-23). If there
is more than one element on the stack, and if i is
descendant of j, then we use PROCESSDESCEN-
DANT (line 25-26). If i is sibling to j we use PRO-
CESSSIBLING (line 27-28).

Consider an example to see the working of
PROCESSSIBLING in detail. In PROCESSSIB-
LING, we need to ensure that i is in stack because
of sibling relation with j and we need to shift the
valid parent nodes of i and their descendants. We
call these valid nodes inflection points. Consider
the following stack entries [D, A, B, C] with C as
stack top. Assume that the input graph is as in
Figure 7. C is sibling of B through B’s parents
X11, X12, X13. Out of these, only X11 and X12 are
valid parents. X13 is sibling to A through A’s par-
ent X23. But X23 is in turn neither descendant of D
nor sibling of D. Thus X13 is not a valid inflection
point for C. Now, X12 is sibling of A through A’s
parent X22. X22 is in turn sibling of D through X32.
Thus there is a path to the stack bottom through a
path of siblings/ descendant. In case of X11, X11

is descendant of stack element A and is thus valid.
X11 and X12 are called valid inflection points. If
inflection point is a common parent to both S0 and
S1 then inflection point and its descendants are
shifted. Instead, if inflection point is ancestor to
S0, then parents of S0 (say P0) which are descen-
dants of inflection point are shifted. Additionally,
descendants of P0 are shifted.
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Abstract

This study introduces a statistical model
able to generate variations of a proper
name by taking into account the person
to be mentioned, the discourse context
and variation. The model relies on the
REGnames corpus, a dataset with 53,102
proper name references to 1,000 people
in different discourse contexts. We eval-
uate the versions of our model from the
perspective of how human writers produce
proper names, and also how human read-
ers process them. The corpus1 and the
model2 are publicly available.

1 Introduction

In automatic text generation, Referring Expression
Generation (REG) is the task responsible for gen-
erating references to discourse entities, address-
ing, for example, the question whether the text
should refer to an entity using a definite descrip-
tion (the West Coast poet and patron saint of
drinking writers), a pronoun (he) or a proper name
(Henry Charles Bukowski). REG is among the
tasks which have received most attention in text
generation (see Krahmer and van Deemter (2012),
for a survey), but the vast majority of the research
has concentrated on the generation of descriptions,
while proper name generation has received virtu-
ally no attention, albeit with notable exceptions
(Siddharthan et al., 2011; van Deemter, 2016) to
which we return below.

Still, proper names occur frequently in texts.
For instance, Ferreira et al. (2016a) showed that
human writers use proper names in 91% of the
cases to initially refer to persons. Indeed, some

1http://ilk.uvt.nl/˜tcastrof/regnames/
2http://github.com/ThiagoCF05/

ProperName

earlier research on text generation has stated that
discourse-new references should be generated by
using the strategy to “simply give the name of
the object (if it has a name)” (Reiter and Dale,
2000). However, the Bukowski example already
indicates that this is not as straightforward as Re-
iter and Dale suggest - the poet’s full name is
Henry Charles Bukowski and his birth name is
Heinrich Karl Bukowski, but he is more commonly
known as simply Charles Bukowski; see also van
Deemter (2016), for a discussion of this and other
complicating factors in proper name generation.
In addition, Reiter and Dale (2000) do not ad-
dress how repeated references using a name in a
text should be generated. For instance, should
our discourse-old example-writer be referred to as
Charles, Bukowski or some combination of these
and other attributes (e.g., using a modifier like the
poet Bukowski)?

Imagine, for the sake of argument, that we
would generate proper name references in a text
by initially generating the full name, after which
repeated references only consist of the last name
(a.k.a. the family or surname). Intuitively, it
is not difficult to come up with counterexam-
ples to this “rule”. Above we already discussed
the difficulties of deciding what the most appro-
priate full name reference is for Henry Charles
Bukowski, which (like Keith Rupert Murdoch and
Walter Bruce Willis) seems to be the combination
of middle and last names (as opposed to Oprah
Gail Winfrey and Serena Jameka Williams, for who
it is more common the combination of first and
last names). Moreover, using the last name for re-
peated references may work well for the likes of
Winston Churchill and Angela Merkel, but seems
less suitable for Napoleon Bonaparte or Madonna
Ciccone, to mention just two. Moreover, our ex-
ample rule cannot account for the occurrence of
modifiers. And, finally, it seems highly unlikely
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that human writers would adhere to such a strict
rule. Rather, one might expect writers to vary in
their choices of which name to use, depending
on stylistic and discourse factors, much like the
choice of referential form varies as a function of
such factors (Ferreira et al., 2016a; Ferreira et al.,
2016b).

In general, we know very little about how
proper names should be generated in text – as
far as we know, there have been hardly any sys-
tematic corpus studies and only very little con-
crete proposals on how to automatically generate
proper name references. In this paper, we there-
fore present a large scale corpus analysis, and,
based on this, two versions of a new probabilis-
tic model of proper name generation: one that al-
ways chooses the most likely proper name form
and one that relies on a ‘roulettewheel’ selection
model and hence will generate more varied refer-
ences. These models rely both on the nature of
the entity referred to (what is the likelihood that
a given person will be referred to using, say, the
first or last name?) and on the discourse con-
text for generating proper name references in text.
In an intrinsic evaluation experiment, we compare
the performance of the two versions of this model
with our implementations of the two proposals that
have been made before (Siddharthan et al., 2011;
van Deemter, 2016). We also describe a human
evaluation experiment where we compare original
texts with alternative versions that include proper
names generated by our model.

2 Related work

Even though proper name references occur fre-
quently in written text, their generation remains
seriously understudied. A recent survey of REG
models (Krahmer and van Deemter, 2012) has es-
sentially nothing to say about the topic, and gen-
eral surveys of automatic text generation such as
Reiter and Dale (2000) only briefly mention a very
basic rule (use a proper name, if available, for first
references), without further specifying or evaluat-
ing it.

Recently, van Deemter (2016) has highlighted
the importance of proper name generation. After
discussing why a simple rule like the one proposed
by Reiter and Dale cannot account for the com-
plexities of proper name references in text, he ar-
gues that names could just be treated like other at-
tributes in the generation of descriptions. Put dif-

ferently, the name of an object can be modelled
just like its color or size (typical attributes used
in REG examples) – just as a description like the
tall man rules out men that are not tall, so does
a proper name like Charles rule out other people
not named Charles. A standard REG algorithm,
such as, for example, the Incremental Algorithm
(Dale and Reiter, 1995) can then be used to com-
pute when a name should be used and in which
form. Van Deemter’s work is of a theoretical na-
ture; he has not implemented or tested this idea, so
we cannot tell how well it can account for proper
name references in text. In addition, in this form,
his proposal cannot account for possible variations
in proper name form throughout a text.

The most detailed study of proper name gen-
eration, as far as we know, is the seminal study
by Siddharthan et al. (2011), which (re-)generates
references to people in news summaries. For their
algorithm(s), the authors present two manually
constructed rules, based on earlier theories of ref-
erence, one for discourse-new references (includ-
ing the full name) and one for discourse-old ref-
erences (which in full says: “Use surname only,
remove all pre- and post-modifiers.”). They dis-
cuss, based on corpus analyses, how notions like
discourse-new and discourse-old can be learned
without manual annotation, and how they co-
determine whether additional attributes such as
role and affiliation should be included. Finally,
they show that their model leads to improved
(more coherent) summaries. While the approach
offers a very interesting solution for the genera-
tion of discourse-new proper name references with
modifiers for major characters in a news story
(Former East German leader Erich Honecker), the
proper name generation rule itself is very simi-
lar to the example rule discussed in the introduc-
tion (use the full name for discourse-new refer-
ences and only the surname for discourse-old ref-
erences). It is not specified how the full name
should be realised (remember the Henry Charles
Bukowski-example), and neither can the approach
deal with exceptions to the surname-only rule (re-
member the Madonna Ciccone-example) or with
intratext variation.

3 REGnames

For our explorations, we relied on the REGnames
corpus (Ferreira et al., 2016c). REGnames is a
corpus of 53,102 proper names referring to 1,000
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people in 15,241 texts. The corpus consists of
webpages extracted from the Wikilinks corpus
(Singh et al., 2012), which was initially collected
for the study of cross-document coreference and
consists of more than 40 million references to al-
most 3 million entities in around 11 million web-
pages. All the references annotated in Wikilinks
were grouped according to the Wikipedia page of
the entity. This procedure enables easy identifi-
cation of the mentioned entity and facilitates the
extraction of more information about it.

To build the REGnames corpus, Ferreira et al.
(2016c) selected the 1,000 most frequently men-
tioned people in the Wikilinks corpus. Then for
each person, they selected random webpages from
Wikilinks which mention the person at least once.
On all selected webpages, part-of-speech tagging,
lemmatization, named entity recognition, depen-
dency parsing, syntactic parsing, sentiment anal-
ysis and coreference resolution was performed by
using the Stanford CoreNLP software (Manning et
al., 2014).

All extracted proper names were automatically
annotated with their syntactic position (subject,
object or genitive noun phrase in a sentence) and
referential statuses in the text (discourse-new or
discourse-old) and in the sentence (sentence-new
or sentence-old). The extracted proper names
were also annotated according to their form, i.e.
which kind(s) of name (first, middle and/or last
names), and modifier(s) (title and/or appositive)
were part of the proper name. To check for the
presence of first, middle and last names, a Proper
Name Knowledge Base was extracted from DB-
pedia (Bizer et al., 2009) with all the names of
the people in the corpus. Then, to check for the
presence of a title or an appositive, named entity
recognition information and the dependency tree
were used respectively.

In the corpus analysis, Ferreira et al. (2016c)
noticed that proper name references generally de-
crease in lengths across the text. They also con-
cluded that a discourse-old or sentence-new proper
name reference in the object position of a sen-
tence tends to be shorter than a discourse-new or
sentence-old proper name reference in the subject
position of a sentence. In general, the corpus is a
valuable resource which can be used to train a sta-
tistical model for proper name generation, as we
show in the next section.

4 A model for proper name generation

Similarly to the generation of definite descriptions,
our model produces a proper name reference in
two sequential steps: content selection and lin-
guistic realization.

4.1 Content Selection

The content selection discussed here is analogous
to the selection of semantic attributes (type, color,
size, etc) when generating a description of an en-
tity (Dale and Haddock, 1991; Dale and Reiter,
1995). However, instead of attributes, the con-
tent selection step in our model aims to choose the
form of a proper name reference (which kind(s) of
name and modifier(s) are part of the proper name
reference).

Features By analysing the REGnames corpus,
Ferreira et al. (2016c) observed that proper names
vary in their forms throughout a text. Moreover, as
discussed in the Introduction (Section 1), a proper
name form can also be influenced by the person to
be mentioned. Thus, we conditioned the choice of
a specific proper name form by a set of discourse
features that describe the reference as well as to
the person to be mentioned.

Table 1 depicts the discourse features used to
describe the proper name references. We choose
them based on the analysis of the REGnames cor-
pus (Section 3).

Forms Our model selects a proper name form
over all forms annotated on the REGnames cor-
pus, i.e. a total of 28 possible ones. Table 2 de-
picts the most frequent ones. The complete list can
be found at the webpage that describes the REG-
names corpus3.

Notation Given a person p to be referred to by
his/her proper name and the set of discourse fea-
tures D that describe the reference, we aim to pre-
dict the form f ∈ F of a proper name as Equation
1 shows.

P (f | D, p) =
P (f | p) ∏

d∈D
P (d | f, p)

∑
f ′∈F

P (f ′ | p) ∏
d∈D

P (d | f ′, p)

(1)
To account for unseen data, the conditional

probabilities are computed using the additive

3http://ilk.uvt.nl/˜tcastrof/regnames/
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Feature Description
Syntactic Position Subject, object or a genitive noun phrase in the sentence.
Referential Status First mention of the referent (new) or not (old) at the level of text and sentence.

Table 1: Discourse features that describe the references.

smoothing technique with α = 1. Equations 2 and
3 summarize the procedure.

P (f | p) = count(f ∩ p) + α

count(p) + α|F | (2)

P (d | f, p) = count(d ∩ f ∩ p) + α

count(f ∩ p) + α|D| (3)

Variation Besides the fact that proper name ref-
erences may vary in their forms throughout a text
and according to the person to be referred to,
they may also vary in similar situations of a text.
In an extrinsic evaluation comparing human- and
machine-generated summaries, for instance, Sid-
dharthan et al. (2011) reported that the lack of vari-
ation in the form of discourse-old proper names
references was one of the disadvantages of their
summarization system in the cases where human
summaries were chosen. Our model fills this gap
by performing Equation 1 over all the proper name
forms given a set of similar references. That is
proper name references to the same person and de-
scribed by the same set of discourse feature values.
This procedure results in a frequency distribution
over all relevant proper name forms. Then, simi-
lar to the rouletewheel selection of Ferreira et al.
(2016b) for the choice of referential forms, we can
randomly apply the frequencies into a group of
similar references in such a way that their forms
will be representative of the distribution predicted
by the model. For instance, given a group of 5
references and a frequency distribution of 0.8 for
the first+last form and 0.2 for the last form, 4 ref-
erences would assume the first form, whereas 1
reference would assume the other one.

4.2 Linguistic Realization
Once we select the form of a proper name refer-
ence to a person in a particular discourse context,
we linguistically realize this reference by choosing
the most likely words - including titles and proper
nouns - to be part of it. The process is analogous
to the linguistic realization of a set of attribute-
values into a description (Bohnet, 2008; Zarriess
and Kuhn, 2013). Equation 4 summarizes it.

Form Frequency
First+Last 46.2%
Last 34.9%
First 8.5%
Middle+Last 2.8%
First+Middle+Last 2.3%
Middle 1.5%
Others 3.5%

Table 2: Most popular proper name forms in REG-
names corpus and their frequencies.

P (n1 ... nt | f, p) =
∏

t

P (nt | nt−1, {ei}|f |i=1, p)

(4)
The vocabulary used in the linguistic realization

step consists of all the titles found in REGnames,
all the possible names of the given person present
in the corpus’ proper name knowledge base, and
an end token, present at the end of all proper name
references in the training set. The process fin-
ishes when this token is predicted (nt = END).
The choice of a word nt is conditioned to the
previous generated word in the proper name ref-
erence (nt−1), the elements present in the given
form ({ei}|f |i=1: constrained to first, middle and last
name; plus title and appositive) and the person to
be referred to (p). If P (nt | nt−1, {ei}|f |i=1, p) =
0, we drop the less frequent element from the
given proper name form. If all the elements were
dropped and the probability would still be 0, we
conditioned the choice only to the person (P (nt |
p)). Regarding the cases in which the original
proper name form indicates the presence of an
appositive, we add a description - obtained from
Wikidata (Vrandečić and Krötzsch, 2014) - at the
end of the generated proper name reference.

5 Baselines

In order to evaluate the performance of our model,
we developed three baseline models. All the mod-
els have their outputs constrained to three choices:
given name, surname and full name of a person.
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Given name and surname are determined by the
values of the following attributes in the person’s
DBpedia page: foaf:givenName and foaf:surname.
Full name was defined as the combination of both
values. If these attributes are missing, we use the
birth name of the person, also extracted from DB-
pedia (dbp:birthName). In this situation, the full
name of a person will be the proper birth name,
whereas given and surnames will be the first and
last tokens from the birth name, respectively.

The first baseline, called Random, is a baseline
that randomly chooses one of the three options to
generate a proper name.

The second baseline is an adaptation of the
model proposed by van Deemter (2016) and will
be called Deemter. Among the full name, given
name and surname of a person, our adaptation
chooses the shortest name that distinguishes the
mentioned person from all other entities in the cur-
rent and previous 3 sentences in the text. It is im-
portant to stress that this model is our adaptation,
since the proposal of van Deemter (2016) only ap-
plies for initial references, not for repeated ones in
a text.

Finally, the third system we compare against
is based on Siddharthan et al. (2011) and will be
called Siddharthan. This baseline chooses the full
name of a person for discourse-new references;
and his/her surname otherwise.

6 Automatic Evaluation

We intrinsically evaluate the models by training
and testing them on a subset of the REGnames cor-
pus. This evaluation aims to investigate how close
our model can produce proper name references to
the ones generated by human writers.

6.1 Data

We considered a subset of the REGnames cor-
pus as our evaluation data. From the 1,000 peo-
ple in the corpus, we first filtered the ones whose
birth names were not mentioned, or for whom
the values of the DBpedia’s attributes foaf:name,
foaf:givenName and foaf:surname were missing.
This measure was taken in order to have a consis-
tent vocabulary to linguistically realize the proper
name references, as well as to make sure that our
baselines would always have a consistent output.
Then, from the remaining people, we only selected
the ones with at least 50 proper name references in
the REGnames corpus such that we could train and

test our model properly. In total, we used 43,655
proper names references to 432 people as our eval-
uation data.

In order to investigate the influence of the text
domain in the generation of proper names, we
classified the webpages from where our evaluation
data were extracted according to 3 domains: Blog,
News and Wiki. All the webpages whose the url
contained the substrings blog, tumblr or wordpress
were classified as part of the blog domain. If the
substrings were new or article, the webpage was
classified as a news. Finally, we classified as Wiki
all the webpages whose the url contained the sub-
string wiki. All the other webpages were grouped
into a Other domains category.

6.2 Method
10-fold-cross-validation was performed to evalu-
ate the models. We made sure that the number
of references per person was uniform among the
folds. To measure the models performance in the
choice of the proper name form, accuracy was
used. To check the similarity among the realized
proper name reference and the gold standard one,
we used the string edit distance.

6.3 Models
We evaluated the three proposed baselines (Ran-
dom, Deemter and Siddharthan) and two versions
of our model: PN-Variation and PN+Variation.

PN-Variation does not take the variation into ac-
count in the content selection. In other words, this
model always chooses the most likely proper name
form for the references in the test set which refer
to the same person and are described by the same
combination of discourse feature values. On the
other hand, PN+Variation takes variation into ac-
count by applying the distribution of proper name
forms obtained from the training set to the similar
references in the test set, as explained in Section
4.1.

6.4 Results
Table 3 summarizes the accuracy-scores of the
models in the prediction of the proper name forms.
Both versions of our model outperform the base-
lines for all the domains. PN-Variation is the
model with the highest accuracy.

Figure 1 depicts the string edit distance among
the gold standard proper names and the ones gen-
erated by the proposed models. A Repeated Mea-
sures ANOVA determined that the string edit dis-
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Model Blog News Wiki Other domains Overall
Random 0.25 0.22 0.22 0.25 0.25
Deemter 0.33 0.30 0.28 0.33 0.33
Siddharthan 0.52 0.48 0.42 0.45 0.48
PN-Variation 0.66 0.63 0.66 0.70 0.68
PN+Variation 0.58 0.55 0.59 0.63 0.60

Table 3: Proper name form accuracies of our two models (PN-Variation and PN+Variation) as a function
of text genre and compared to three baseline models (Random, Deemter, Siddharthan).
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Figure 1: String edit distance in the overall corpus.
Error bars represent 95% confidence intervals.

tances of the models were significantly different
(F (4, 36) = 1630, p < .001). We performed
a post hoc analysis with paired t-test using Bon-
ferroni adjusted alpha levels of 0.005 per test
(0.05/10). Both versions of our model signifi-
cantly outperform the baselines with all pairwise
comparisons significant at p < .001. Regard-
ing the comparison of our models, PN-Variation
is significantly better than PN+Variation (t(9) =
−38.14, p < .001).

Figure 2 shows the evaluation of our mod-
els by domain. A Repeated Measures ANOVA
shows that the string edit distances of the mod-
els are significantly different in all domains (Blog:
F (4, 36) = 718.8, p < .001; News: F (4, 36) =
308.2, p < .001; Wiki: F (4, 36) = 118.5, p <
.001; Other domains: F (4, 36) = 2213, p <
.001).

We also performed a post hoc analysis for the
results by domain in the same style we did for
the general results. In the blog and news do-

mains, both versions of our model significantly
outperform all the baselines with all pairwise com-
parisons significant at p < .005. Among our
models, PN-Variation is significantly better than
PN+Variation (Blog: t(9) = −26.33, p < .001;
News: t(9) = −7.45, p < .001).

In the wiki domain and in texts which are not
part of the blog, news and wiki domain, both ver-
sions of our model also significantly outperform
all the baselines with all pairwise comparisons sig-
nificant at p < .001. The difference in the results
of PN-Variation and PN+Variation is also signif-
icant (Wiki: t(9) = −4.91, p < .001; Other do-
mains: t(9) = −27.14, p < .001)

7 Human Evaluation

We also performed a human evaluation aiming to
compare original texts with alternative versions
whose proper name references were generated by
our model. This evaluation aims to investigate the
quality of the proper name references from the per-
spective of the human reader.

7.1 Materials

We used 9 abstracts from English Wikipedia pages
whose topic is one of the people studied in the
REGnames corpus. They were extracted from
DBpedia and have at least 10 proper name refer-
ences to the topic.

Although our model did not yield its best re-
sults for this domain, it was chosen based on
the relatively short length of the texts and the
large amount of proper name references they
have. Moreover, the proper name references in
Wikipedia abstracts are similar to the ones gen-
erated by our Siddharthan baseline, i.e. a full
name to discourse-new people, and surname to
discourse-old people.
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Figure 2: String edit distances of the models in the (2a) blog, (2b) news, (2c) wiki and (2d) in other
domains which are not the previous ones. Error bars represent 95% confidence intervals.

7.2 Method

For each abstract, we designed 3 trials. In the
first, we presented participants with the original
text next to the version with the proper name refer-
ences generated by the PN-Variation model (Orig-
inal vs. No Variation). In the second, we presented
the original text next to the version with the proper
name references generated by the PN+Variation
(Original vs. Variation). Finally, the third trial
consists of the text versions with the proper name
references produced by both versions of our model
(No Variation vs. Variation). The trials of a text
were distributed in different lists such that we ob-
tained 3 lists with 9 texts - 3 trials of each type
in a list. In all the texts, the proper name refer-
ences were highlighted in yellow. For each trial,
we asked participants to choose which text they
preferred, taking into account the highlighted ref-
erences. The experiment is publicly available4.

We recruited 60 participants through Crowd-
flower – 20 per list. Of the participants, 44 were
female and their average age was 36 years. All
participants reported to be proficient in the English
language (58 were native speakers).

4http://ilk.uvt.nl/˜tcastrof/eacl2017

7.3 Results

The texts of the “Original” version were the
favourite of 69% of the participants in compari-
son with texts of the “No Variation” version (Chi-
square χ2(2, 180) = 25.69, p < .001), and 75%
participants with the “Variation” version (Chi-
square χ2(2, 180) = 45; p < .001). Regarding
the “No Variation vs. Variation” trials, texts of
the “No Variation” version were the favourite of
the participants in 59% of the cases (Chi-square
χ2(2, 180) = 6.42; p < .05).

8 General Discussion

Proper name generation is a seriously under-
studied phenomenon in automatic text genera-
tion. There are many different ways in which
a person can be referred to in a text using their
name (Barack Hussein Obama II, Barack Obama,
Obama, President Obama, etc.) and arguably a
text that uses different naming formats in different
conditions is more human-like than one that relies
on a fixed strategy (e.g., always use the full name).

This paper introduced a new statistical model
for the generation of proper names in text, tak-
ing into account three different factors: (1) who
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the person is, (2) in which discourse context the
proper name reference should be generated and (3)
the different forms that a proper name can assume
in similar situations (variation). The model was
developed based on the REGnames corpus (Fer-
reira et al., 2016c), which contains a large number
of proper name references in various discourse sit-
uations. We also implemented two other systems
for the sake of comparison: one based on the Sid-
dharthan et al. (2011) model and one based on the
ideas for proper name reference proposed by van
Deemter (2016).

We developed two versions of our model: one
that deterministically generated the best proper
name form in a given setting (PN-variation), and
one that relied on a probabilistic distribution over
different forms, allowing for more variation in the
output (PN+Variation). Both models were sys-
tematically compared to a random baseline and the
two alternative models due to Siddharthan et al.
(2011) and van Deemter (2016).

Automatic Evaluation We first conducted an
automatic evaluation investigating to what extent
the evaluated models produced proper name refer-
ences similar to the ones generated by human writ-
ers, using a held-out subset of the REGnames cor-
pus. In general, we found that both versions of our
model were able to outperform a random baseline
and the two reference systems, where the version
without variation (PN-Variation) yielded the best
results. Across text domains, there was variation
in the performance of both versions of our model.
The worst results were registered in the Wiki do-
main, suggesting that text domain is a factor that
may be taken into account in the task of generating
proper names.

Human Evaluation In the automatic evaluation
experiment, the differences between the system
with and without variation were small, so in a
second study we asked whether human readers
preferred the output from one of these systems
over the other. For this purpose, we conducted
an experiment consisting of pairwise comparisons
based on texts taken from the Wikipedia domain,
where we compared the output produced by the
PN-variation and the PN+variation system with
the original text and also among them. Interest-
ingly, we found that people had a general prefer-
ence for the no-variation model over the one that
non-deterministally generated varied texts. This

suggests that readers prefer consistency in proper
name references to the same topic in similar situ-
ations, which is different from the choice of refer-
ential form (Ferreira et al., 2016b).

Additionally, we found that participants pre-
ferred the original over the regenerated texts. We
suspect that this preference was due to the ini-
tial discourse-new proper name reference, which
in the Wikipedia texts has a special status. Usu-
ally, the initial reference to the topic is not the most
common proper name reference in other domains,
but a specific Wikipedia format which our system
does not produce. For example, the original text
about Magic Johnson starts with Earvin “Magic”
Johnson Jr. in the discourse-new proper name ref-
erence, while our system simply produced Magic
Johnson.

Semantic web Earlier work on REG models has
concentrated on the generation of descriptions,
typically assuming the existence of a knowledge
base of entities (Dale and Haddock, 1991; Dale
and Reiter, 1995) or introducing one to small do-
mains (Gatt and Belz, 2010). Our REG models
for proper names, however, strongly rely on the
semantic web as an information resource of the
entities to be referred to. Databases like DBpedia
(Bizer et al., 2009) and Wikidata (Vrandečić and
Krötzsch, 2014) provide information about thou-
sands of entities and can be used in different do-
mains.

Baselines We developed two powerful baselines
based on proposals that have been made before.
Deemter (van Deemter, 2016) relies on the criteria
of the first developed REG models (Dale and Had-
dock, 1991; Dale and Reiter, 1995): given a tar-
get, produce a reference that distinguishes it from
the distractors in the context. Our model as pre-
sented does not make this assumption (it does not
always produce a proper name reference that dis-
tinguishes the target from the distractors). How-
ever, this could be incorporated into our model as
well. For instance, given a list of the most likely
proper name references produced by our model in
a situation, we can choose the one with the high-
est likelihood that distinguishes the target from all
other entities in the current and previous 3 sen-
tences in the text (as in the Deemter model).

Regarding performance, Siddharthan is the
baseline that performed best. The original ver-
sion, proposed in Siddharthan et al. (2011), is
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even able to decide whether to include a modifier
in a discourse-new reference based on the global
salience of the entity mentioned. However, the
model is arguably more limited in the production
of a proper name itself. By always generating a
surname in discourse-old references for instance,
the Siddharthan model is not able to generate at
least 10% of the references in the REGnames cor-
pus (8.5% consist of first name references, and
1.5% of middle name ones).

Conclusion In sum, we conclude that our model
is able to generate proper name references simi-
lar to the ones produced by human writers. In
future research, it would be interesting to further
investigate the role of text genre in proper name
references as well as the influence of variation on
proper name forms.
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Abstract

Conventional graph-based dependency
parsers guarantee a tree structure both
during training and inference. Instead, we
formalize dependency parsing as the prob-
lem of independently selecting the head
of each word in a sentence. Our model
which we call DENSE (as shorthand for
Dependency Neural Selection) produces
a distribution over possible heads for
each word using features obtained from
a bidirectional recurrent neural network.
Without enforcing structural constraints
during training, DENSE generates (at
inference time) trees for the overwhelm-
ing majority of sentences, while non-tree
outputs can be adjusted with a maximum
spanning tree algorithm. We evaluate
DENSE on four languages (English, Chi-
nese, Czech, and German) with varying
degrees of non-projectivity. Despite the
simplicity of the approach, our parsers are
on par with the state of the art.1

1 Introduction

Dependency parsing plays an important role in
many natural language applications, such as re-
lation extraction (Fundel et al., 2007), machine
translation (Carreras and Collins, 2009), language
modeling (Chelba et al., 1997; Zhang et al., 2016)
and ontology construction (Snow et al., 2005). De-
pendency parsers represent syntactic information
as a set of head-dependent relational arcs, typi-
cally constrained to form a tree. Practically all
models proposed for dependency parsing in recent
years can be described as graph-based (McDon-

1Our code is available at http://github.com/

XingxingZhang/dense_parser.

ald et al., 2005a) or transition-based (Yamada and
Matsumoto, 2003; Nivre et al., 2006b).

Graph-based dependency parsers are typically
arc-factored, where the score of a tree is defined
as the sum of the scores of all its arcs. An arc
is scored with a set of local features and a lin-
ear model, the parameters of which can be effec-
tively learned with online algorithms (Crammer
and Singer, 2001; Crammer and Singer, 2003; Fre-
und and Schapire, 1999; Collins, 2002). In or-
der to efficiently find the best scoring tree during
training and decoding, various maximization algo-
rithms have been developed (Eisner, 1996; Eisner,
2000; McDonald et al., 2005b). In general, graph-
based methods are optimized globally, using fea-
tures of single arcs in order to make the learn-
ing and inference tractable. Transition-based algo-
rithms factorize a tree into a set of parsing actions.
At each transition state, the parser scores a candi-
date action conditioned on the state of the transi-
tion system and the parsing history, and greedily
selects the highest-scoring action to execute. This
score is typically obtained with a classifier based
on non-local features defined over a rich history of
parsing decisions (Yamada and Matsumoto, 2003;
Zhang and Nivre, 2011).

Regardless of the algorithm used, most
well-known dependency parsers, such as the
MST-Parser (McDonald et al., 2005b) and the
MaltPaser (Nivre et al., 2006a), rely on exten-
sive feature engineering. Feature templates are
typically manually designed and aim at captur-
ing head-dependent relationships which are no-
toriously sparse and difficult to estimate. More
recently, a few approaches (Chen and Manning,
2014; Lei et al., 2014a; Kiperwasser and Gold-
berg, 2016) apply neural networks for learning
dense feature representations. The learned fea-
tures are subsequently used in a conventional
graph- or transition-based parser, or better de-
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signed variants (Dyer et al., 2015).
In this work, we propose a simple neural

network-based model which learns to select the
head for each word in a sentence without enforc-
ing tree structured output. Our model which we
call DENSE (as shorthand for Dependency Neural
Selection) employs bidirectional recurrent neural
networks to learn feature representations for words
in a sentence. These features are subsequently
used to predict the head of each word. Although
there is nothing inherent in the model to enforce
tree-structured output, when tested on an English
dataset, it is able to generate trees for 95% of the
sentences, 87% of which are projective. The re-
maining non-tree (or non-projective) outputs are
post-processed with the Chu-Liu-Edmond (or Eis-
ner) algorithm. DENSE uses the head selection
procedure to estimate arc weights during training.
During testing, it essentially reduces to a standard
graph-based parser when it fails to produce tree (or
projective) output.

We evaluate our model on benchmark depen-
dency parsing corpora, representing four lan-
guages (English, Chinese, Czech, and German)
with varying degrees of non-projectivity. Despite
the simplicity of our approach, experiments show
that the resulting parsers are on par with the state
of the art.

2 Related Work

Graph-based Parsing Graph-based depen-
dency parsers employ a model for scoring
possible dependency graphs for a given sen-
tence. The graphs are typically factored into
their component arcs and the score of a tree is
defined as the sum of its arcs. This factorization
enables tractable search for the highest scoring
graph structure which is commonly formulated
as the search for the maximum spanning tree
(MST). The Chu-Liu-Edmonds algorithm (Chu
and Liu, 1965; Edmonds, 1967; McDonald et
al., 2005b) is often used to extract the MST in
the case of non-projective trees, and the Eisner
algorithm (Eisner, 1996; Eisner, 2000) in the
case of projective trees. During training, weight
parameters of the scoring function can be learned
with margin-based algorithms (Crammer and
Singer, 2001; Crammer and Singer, 2003) or
the structured perceptron (Freund and Schapire,
1999; Collins, 2002). Beyond basic first-order
models, the literature offers a few examples of

higher-order models involving sibling and grand
parent relations (Carreras, 2007; Koo et al., 2010;
Zhang and McDonald, 2012). Although more
expressive, such models render both training and
inference more challenging.

Transition-based Parsing As the term implies,
transition-based parsers conceptualize the process
of transforming a sentence into a dependency tree
as a sequence of transitions. A transition sys-
tem typically includes a stack for storing partially
processed tokens, a buffer containing the remain-
ing input, and a set of arcs containing all depen-
dencies between tokens that have been added so
far (Nivre, 2003; Nivre et al., 2006b). A de-
pendency tree is constructed by manipulating the
stack and buffer, and appending arcs with prede-
termined operations. Most popular parsers em-
ploy an arc-standard (Yamada and Matsumoto,
2003; Nivre, 2004) or arc-eager transition system
(Nivre, 2008). Extensions of the latter include the
use of non-local training methods to avoid greedy
error propagation (Zhang and Clark, 2008; Huang
and Sagae, 2010; Zhang and Nivre, 2011; Gold-
berg and Nivre, 2012).

Neural Network-based Features Neural net-
work representations have a long history in syn-
tactic parsing (Mayberry and Miikkulainen, 1999;
Henderson, 2004; Titov and Henderson, 2007).
Recent work uses neural networks in lieu of
the linear classifiers typically employed in con-
ventional transition- or graph-based dependency
parsers. For example, Chen and Manning (2014)
use a feed forward neural network to learn fea-
tures for a transition-based parser, whereas Lei
et al. (2014a) do the same for a graph-based
parser. Lei et al. (2014b) apply tensor decompo-
sition to obtain word embeddings in their syntac-
tic roles, which they subsequently use in a graph-
based parser. Dyer et al. (2015) redesign com-
ponents of a transition-based system where the
buffer, stack, and action sequences are modeled
separately with stack long short-term memory net-
works. The hidden states of these LSTMs are con-
catenated and used as features to a final transi-
tion classifier. Kiperwasser and Goldberg (2016)
use bidirectional LSTMs to extract features for a
transition- and graph-based parser, whereas Cross
and Huang (2016) build a greedy arc-standard
parser using similar features.

In our work, we formalize dependency parsing
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as the task of finding for each word in a sentence
its most probable head. Both head selection and
the features it is based on are learned using neu-
ral networks. The idea of modeling child-parent
relations independently dates back to Hall (2007)
who use an edge-factored model to generate k-best
parse trees which are subsequently reranked us-
ing a model based on rich global features. Later
Smith (2010) show that a head selection variant
of their loopy belief propagation parser performs
worse than a model which incorporates tree struc-
ture constraints. Our parser is conceptually sim-
pler: we rely on head selection to do most of
the work and decode the best tree directly with-
out using a reranker. In common with recent neu-
ral network-based dependency parsers, we aim to
alleviate the need for hand-crafting feature com-
binations. Beyond feature learning, we further
show that it is possible to simplify the training of
a graph-based dependency parser in the context of
bidirectional recurrent neural networks.

3 Dependency Parsing as Head Selection

In this section we present our parsing model,
DENSE, which tries to predict the head of each
word in a sentence. Specifically, the model takes
as input a sentence of length N and outputs N
〈head, dependent〉 arcs. We describe the model
focusing on unlabeled dependencies and then dis-
cuss how it can be straightforwardly extended to
the labeled setting. We begin by explaining how
words are represented in our model and then give
details on how DENSE makes predictions based
on these learned representations. Since there is
no guarantee that the outputs of DENSE are trees
(although they mostly are), we also discuss how
to extend DENSE in order to enforce projective
and non-projective tree outputs. Throughout this
paper, lowercase boldface letters denote vectors
(e.g., v or vi), uppercase boldface letters denote
matrices (e.g., M or Mb), and lowercase letters
denote scalars (e.g., w or wi).

3.1 Word Representation

Let S = (w0, w1, . . . , wN ) denote a sentence of
length N ; following common practice in the de-
pendency parsing literature (Kübler et al., 2009),
we add an artificial ROOT token represented byw0.
Analogously, let A = (a0,a1, . . . ,aN ) denote the
representation of sentence S, with ai representing
word wi (0 ≤ i ≤ N). Besides encoding infor-

ROOT kids love candy

Phead(ROOT|love, S)

Phead(kids|love, S)
Phead(candy|love, S)

Figure 1: DENSE estimates the probability a word
being the head of another word based on bidirec-
tional LSTM representations for the two words.
Phead(ROOT|love, S) is the probability of ROOT

being the head of love (dotted arcs denote candi-
date heads; the solid arc is the goldstandard).

mation about each wi in isolation (e.g., its lexical
meaning or POS tag), ai must also encode wi’s
positional information within the sentence. Such
information has been shown to be important in de-
pendency parsing (McDonald et al., 2005a). For
example, in the following sentence:

ROOT a dog is chasing a cat

the head of the first a is dog, whereas the head of
the second a is cat. Without considering positional
information, a model cannot easily decide which a
(nearer or farther) to assign to dog.

Long short-term memory networks (Hochreiter
and Schmidhuber, 1997; LSTMs), a type of re-
current neural network with a more complex com-
putational unit, have proven effective at capturing
long-term dependencies. In our case LSTMs al-
low to represent each word on its own and within
a sequence leveraging long-range contextual infor-
mation. As shown in Figure 1, we first use a for-
ward LSTM (LSTMF ) to read the sentence from
left to right and then a backward LSTM (LSTMB)
to read the sentence from right to left, so that the
entire sentence serves as context for each word:2

hF
i , c

F
i = LSTMF (xi,h

F
i−1, c

F
i−1) (1)

hB
i , c

B
i = LSTMB(xi,h

B
i+1, c

B
i+1) (2)

where xi is the feature vector of word wi, hF
i ∈

Rd and cFi ∈ Rd are the hidden states and mem-
ory cells for the ith word wi in LSTMF and d is

2For more detail on LSTM networks, see e.g., Graves
(2012) or Goldberg (2016).
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the hidden unit size. hF
i is also the representa-

tion for w0:i (wi and its left neighboring words)
and cFi is an internal state maintained by LSTMF .
hB
i ∈ Rd and cBi ∈ Rd are the hidden states and

memory cells for the backward LSTMB . Each to-
ken wi is represented by xi, the concatenation of
two vectors corresponding to wi’s lexical and POS
tag embeddings:

xi = [We · e(wi);Wt · e(ti)] (3)

where e(wi) and e(ti) are one-hot vector repre-
sentations of token wi and its POS tag ti; We ∈
Rs×|V | and Wt ∈ Rq×|T | are the word and POS
tag embedding matrices, where |V | is the vocab-
ulary size, s is the word embedding size, |T | is
the POS tag set size, and q the tag embedding
size. The hidden states of the forward and back-
ward LSTMs are concatenated to obtain ai, the fi-
nal representation of wi:

ai = [hF
i ;h

B
i ] i ∈ [0, N ] (4)

Note that bidirectional LSTMs are one of many
possible ways of representing word wi. Alterna-
tive representations include embeddings obtained
from feed-forward neural networks (Chen and
Manning, 2014; Lei et al., 2014a), character-based
embeddings (Ballesteros et al., 2015), and more
conventional features such as those introduced in
McDonald et al. (2005a).

3.2 Head Selection
We now move on to discuss our formalization of
dependency parsing as head selection. We begin
with unlabeled dependencies and then explain how
the model can be extended to predict labeled ones.

In a dependency tree, a head can have multiple
dependents, whereas a dependent can have only
one head. Based on this fact, dependency pars-
ing can be formalized as follows. Given a sen-
tence S = (w0, w1, . . . , wN ), we aim to find for
each word wi ∈ {w1, w2, . . . , wn} the most prob-
able head wj ∈ {w0, w1, . . . , wN}. For example,
in Figure 1, to find the head for the token love,
we calculate probabilities Phead(ROOT|love, S),
Phead(kids|love, S), and Phead(candy|love, S),
and select the highest. More formally, we estimate
the probability of token wj being the head of to-
ken wi in sentence S as:

Phead(wj |wi, S) =
exp(g(aj ,ai))∑N
k=0 exp(g(ak,ai))

(5)

where ai and aj are vector-based representations
of wi and wj , respectively (described in Sec-
tion 3.1); g(aj ,ai) is a neural network with a
single hidden layer that computes the associative
score between representations ai and aj :

g(aj ,ai) = v>a · tanh(Ua · aj +Wa · ai) (6)

where va ∈ R2d, Ua ∈ R2d×2d, and Wa ∈
R2d×2d are weight matrices of g. Note that the
candidate head wj can be the ROOT, while the de-
pendent wi cannot. Equations (5) and (6) com-
pute the probability of adding an arc between two
words, in a fashion similar to the neural atten-
tion mechanism in sequence-to-sequence models
(Bahdanau et al., 2015).

We train our model by minimizing the neg-
ative log likelihood of the gold standard 〈head,
dependent〉 arcs in all training sentences:

J(θ) = − 1

|T |
∑

S∈T

NS∑

i=1

logPhead(h(wi)|wi, S) (7)

where T is the training set, h(wi) is wi’s gold
standard head3 within sentence S, and NS the
number of words in S (excluding ROOT). Dur-
ing inference, for each word wi (i ∈ [1, NS ])
in S, we greedily choose the most likely head
wj (j ∈ [0, NS ]):

wj = argmax
wj :j∈[0,NS ]

Phead(wj |wi, S) (8)

Note that the prediction for each word wi is made
independently of the other words in the sentence.

Given our greedy inference method, there is no
guarantee that predicted 〈head, dependent〉 arcs
form a tree (maybe there are cycles). However,
we empirically observed that most outputs during
inference are indeed trees. For instance, on an En-
glish dataset, 95% of the arcs predicted on the de-
velopment set are trees, and 87% of them are pro-
jective, whereas on a Chinese dataset, 87% of the
arcs form trees, 73% of which are projective. This
indicates that although the model does not explic-
itly model tree structure during training, it is able
to figure out from the data (which consists of trees)
that it should predict them.

So far we have focused on unlabeled depen-
dencies, however it is relatively straightforward
to extend DENSE to produce labeled dependen-
cies. We basically train an additional classifier

3Note that h(wi) can be ROOT.
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to predict labels for the arcs which have been
already identified. The classifier takes as input
features [ai;aj ;xi;xj ] representing properties of
the arc 〈wj , wi〉. These consist of ai and aj ,
the LSTM-based representations for wi and wj

(see Equation (4)), and their word and part-of-
speech embeddings, xi and xj (see Equation (3)).
Specifically, we use a trained DENSE model to go
through the training corpus and generate features
and corresponding dependency labels as training
data. We employ a two-layer rectifier network
(Glorot et al., 2011) for the classification task.

3.3 Maximum Spanning Tree Algorithms

As mentioned earlier, greedy inference may not
produce well-formed trees. In this case, the out-
put of DENSE can be adjusted with a maximum
spanning tree algorithm. We use the Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967) for building non-projective trees and
the Eisner (1996) algorithm for projective ones.

Following McDonald et al. (2005b), we view
a sentence S = (w0 = ROOT, w1, . . . , wN ) as a
graph GS = 〈VS , ES〉 with the sentence words
and the dummy root symbol as vertices and a di-
rected edge between every pair of distinct words
and from the root symbol to every word. The di-
rected graph GS is defined as:

VS = {w0 = ROOT, w1, . . . , wN}
ES = {〈i, j〉 : i 6= j, 〈i, j〉 ∈ [0, N ]× [1, N ]}

s(i, j) = Phead(wi|wj , S) 〈i, j〉 ∈ ES

where s(i, j) is the weight of edge 〈i, j〉
and Phead(wi|wj , S) is known. The problem of
dependency parsing now boils down to finding the
tree with the highest score which is equivalent to
finding a MST in GS (McDonald et al., 2005b).

Non-projective Parsing To build a non-
projective parser, we solve the MST problem with
the Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967). The algorithm selects for
each vertex (excluding ROOT) the in-coming edge
with the highest weight. If a tree results, it must
be the maximum spanning tree and the algorithm
terminates. Otherwise, there must be a cycle
which the algorithm identifies, contracts into a
single vertex and recalculates edge weights going
into and out of the cycle. The greedy inference
strategy described in Equation (8)) is essentially a
sub-procedure in the Chu-Liu-Edmonds algorithm

with the algorithm terminating after the first
iteration. In implementation, we only run the
Chu-Liu-Edmonds algorithm through graphs with
cycles, i.e., non-tree outputs.

Projective Parsing For projective parsing, we
solve the MST problem with the Eisner (1996) al-
gorithm. The time complexity of the Eisner al-
gorithm is O(N3), while checking if a tree is
projective can be done reasonably faster, with a
O(N logN) algorithm. Therefore, we only apply
the Eisner algorithm to the non-projective output
of our greedy inference strategy. Finally, it should
be noted that the training of our model does not
rely on the Chu-Liu-Edmonds or Eisner algorithm,
or any other graph-based algorithm. MST algo-
rithms are only used at test time to correct non-tree
outputs which are a minority; DENSE acquires
underlying tree structure constraints from the data
without an explicit learning algorithm.

4 Experiments

We evaluated our parser in a projective and non-
projective setting. In the following, we describe
the datasets we used and provide training details
for our models. We also present comparisons
against multiple previous systems and analyze the
parser’s output.

4.1 Datasets

In the projective setting, we assessed the perfor-
mance of our parser on the English Penn Treebank
(PTB) and the Chinese Treebank 5.1 (CTB). Our
experimental setup closely follows Chen and Man-
ning (2014) and Dyer et al. (2015).

For English, we adopted the Stanford basic de-
pendencies (SD) representation (De Marneffe et
al., 2006).4 We follow the standard splits of
PTB, sections 2–21 were used for training, sec-
tion 22 for development, and section 23 for test-
ing. POS tags were assigned using the Stanford
tagger (Toutanova et al., 2003) with an accuracy
of 97.3%. For Chinese, we follow the same split
of CTB5 introduced in Zhang and Clark (2008). In
particular, we used sections 001–815, 1001–1136
for training, sections 886–931, 1148–1151 for
development, and sections 816–885, 1137–1147
for testing. The original constituency trees in
CTB were converted to dependency trees with the

4We obtained SD representations using the Stanford
parser v.3.3.0.
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Dataset # Sentences (%) Projective
English 39,832 99.9
Chinese 16,091 100.0
Czech 72,319 76.9
German 38,845 72.2

Table 1: Projective statistics on four datasets.
Number of sentences and percentage of projective
trees are calculated on the training set.

Penn2Malt tool.5 We used gold segmentation and
gold POS tags as in Chen and Manning (2014) and
Dyer et al. (2015).

In the non-projective setting, we assessed the
performance of our parser on Czech and German,
the largest non-projective datasets released as part
of the CoNLL 2006 multilingual dependency pars-
ing shared task. Since there is no official develop-
ment set in either dataset, we used the last 374/367
sentences in the Czech/German training set as de-
velopment data.6 Projective statistics of the four
datasets are summarized in Table 1.

4.2 Training Details

We trained our models on an Nvidia GPU card;
training takes one to two hours. Model parameters
were uniformly initialized to [−0.1, 0.1]. We used
Adam (Kingma and Ba, 2014) to optimize our
models with hyper-parameters recommended by
the authors (i.e., learning rate 0.001, first momen-
tum coefficient 0.9, and second momentum coef-
ficient 0.999). To alleviate the gradient exploding
problem, we rescaled the gradient when its norm
exceeded 5 (Pascanu et al., 2013). Dropout (Sri-
vastava et al., 2014) was applied to our model
with the strategy recommended in the literature
(Zaremba et al., 2014; Semeniuta et al., 2016).
On all datasets, we used two-layer LSTMs and set
d = s = 300, where d is the hidden unit size and
s is the word embedding size.

As in previous neural dependency parsing work
(Chen and Manning, 2014; Dyer et al., 2015),
we used pre-trained word vectors to initialize our
word embedding matrix We. For the PTB ex-
periments, we used 300 dimensional pre-trained
GloVe7 vectors (Pennington et al., 2014). For
the CTB experiments, we trained 300 dimensional

5http://stp.lingfil.uu.se/˜nivre/research/

Penn2Malt.html
6We make the number of sentences in the development

and test sets comparable.
7http://nlp.stanford.edu/projects/glove/

Dev Test
Parser UAS LAS UAS LAS

Bohnet10 — — 92.88 90.71
Martins13 — — 92.89 90.55
Z&M14 — — 93.22 91.02
Z&N11 — — 93.00 90.95
C&M14 92.00 89.70 91.80 89.60
Dyer15 93.20 90.90 93.10 90.90
Weiss15 — — 93.99 92.05
Andor16 — — 94.61 92.79
K&G16 graph — — 93.10 91.00
K&G16 trans — — 93.90 91.90
DENSE-Pei 90.77 88.35 90.39 88.05
DENSE-Pei+E 91.39 88.94 91.00 88.61
DENSE 94.17 91.82 94.02 91.84
DENSE+E 94.30 91.95 94.10 91.90

Table 2: Results on English dataset (PTB with
Stanford Dependencies). +E: we post-process
non-projective output with the Eisner algorithm.

GloVe vectors on the Chinese Gigaword corpus
which we segmented with the Stanford Chinese
Segmenter (Tseng et al., 2005). For Czech and
German, we did not use pre-trained word vectors.
The POS tag embedding size was set to q = 30
in the English experiments, q = 50 in the Chinese
experiments and q = 40 in both Czech and Ger-
man experiments.

4.3 Results

For both English and Chinese experiments, we
report unlabeled (UAS) and labeled attachment
scores (LAS) on the development and test sets; fol-
lowing Chen and Manning (2014) punctuation is
excluded from the evaluation.

Experimental results on PTB are shown in Ta-
ble 2. We compared our model with several recent
papers following the same evaluation protocol and
experimental settings. The first block in the table
contains mostly graph-based parsers which do not
use neural networks: Bohnet10 (Bohnet, 2010),
Martins13 (Martins et al., 2013), and Z&M14
(Zhang and McDonald, 2014). Z&N11 (Zhang
and Nivre, 2011) is a transition-based parser with
non-local features. Accuracy results for all four
parsers are reported in Weiss et al. (2015).

The second block in Table 2 presents re-
sults obtained from neural network-based parsers.
C&M14 (Chen and Manning, 2014) is a transition-
based parser using features learned with a feed
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Dev Test
Parser UAS LAS UAS LAS

Z&N11 — — 86.00 84.40
Z&M14 — — 87.96 86.34
C&M14 84.00 82.40 83.90 82.40
Dyer15 87.20 85.90 87.20 85.70
K&G16 graph — — 86.60 85.10
K&G16 trans — — 87.60 86.10
DENSE-Pei 82.50 80.74 82.38 80.55
DENSE-Pei+E 83.40 81.63 83.46 81.65
DENSE 87.27 85.73 87.63 85.94
DENSE+E 87.35 85.85 87.84 86.15

Table 3: Results on Chinese dataset (CTB).
+E: we post-process non-projective outputs with
the Eisner algorithm.

PTB CTB
Parser Dev Test Dev Test
C&M14 43.35 40.93 32.75 32.20
Dyer15 51.94 50.70 39.72 37.23
DENSE 51.24 49.34 34.74 33.66
DENSE+E 52.47 50.79 36.49 35.13

Table 4: UEM results on PTB and CTB.

forward neural network. Although very fast,
its performance is inferior compared to graph-
based parsers or strong non-neural transition based
parsers (e.g., Z&N11). Dyer15 (Dyer et al., 2015)
uses (stack) LSTMs to model the states of the
buffer, the stack, and the action sequence of a tran-
sition system. Weiss15 (Weiss et al., 2015) is an-
other transition-based parser, with a more elabo-
rate training procedure. Features are learned with
a neural network model similar to C&M14, but
much larger with two layers. The hidden states of
the neural network are then used to train a struc-
tured perceptron for better beam search decod-
ing. Andor16 (Andor et al., 2016) is similar to
Weiss15, but uses a globally normalized training
algorithm instead.

Unlike all models above, DENSE does not use
any kind of transition- or graph-based algorithm
during training and inference. Nonetheless, it ob-
tains a UAS of 94.02%. Around 95% of the
model’s outputs after inference are trees, 87% of
which are projective. When we post-process the
remaining 13% of non-projective outputs with the
Eisner algorithm (DENSE+E), we obtain a slight
improvement on UAS (94.10%).

Kiperwasser and Goldberg (2016) extract fea-

Czech German
Parser UAS LAS UAS LAS

MST-1st 86.18 — 89.54 —
MST-2nd 87.30 — 90.14 —
Turbo-1st 87.66 — 90.52 —
Turbo-3rd 90.32 — 92.41 —
RBG-1st 87.90 — 90.24 —
RBG-3rd 90.50 — 91.97 —
DENSE-Pei 86.00 77.92 89.42 86.48
DENSE-Pei+CLE 86.52 78.42 89.52 86.58
DENSE 89.60 81.70 92.15 89.58
DENSE+CLE 89.68 81.72 92.19 89.60

Table 5: Non-projective results on the CoNLL
2006 dataset. +CLE: we post-process non-tree
outputs with the Chu-Liu-Edmonds algorithm.

tures from bidirectional LSTMs and feed them
to a graph- (K&G16 graph) and transition-based
parser (K&G16 trans). Their LSTMs are jointly
trained with the parser objective. DENSE yields
very similar performance to their transition-based
parser while it outperforms K&G16 graph. A key
difference between DENSE and K&G16 lies in the
training objective. The objective of DENSE is log-
likelihood based without tree structure constraints
(the model is trained to produce a distribution over
possible heads for each word, where each head
selection is independent), while K&G16 employ
a max-margin objective with tree structure con-
straints. Although our probabilistic objective is
non-structured, it is perhaps easier to train com-
pared to a margin-based one.

We also assessed the importance of the bidi-
rectional LSTM on its own by replacing our
LSTM-based features with those obtained from
a feed-forward network. Specifically, we used
the 1-order-atomic features introduced in Lei et
al. (2014a) which represent POS-tags, modifiers,
heads, and their relative positions. As can be seen
in Table 2 (DENSE-Pei), these features are less
effective compared to LSTM-based ones and the
contribution of the MST algorithm (Eisner) during
decoding is more pronounced (DENSE-Pei+E).
We observe similar trends in the Chinese, German,
and Czech datasets (see Tables 3 and 5).

Results on CTB follow a similar pattern. As
shown in Table 3, DENSE outperforms all previ-
ous neural models (see the test set columns) on
UAS and LAS. DENSE performs competitively
with Z&M14, a non-neural model with a com-
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Figure 2: UAS against sentence length on PTB and CTB (development set). Sentences are sorted by
length in ascending order and divided equally into 10 bins. The horizontal axis is the length of the last
sentence in each bin.

plex high order decoding algorithm involving cube
pruning and strategies for encouraging diversity.
Post-processing the output of the parser with the
Eisner algorithm generally improves performance
(by 0.21%; see last row in Table 3). Again we
observe that 1-order-atomic features (Lei et al.,
2014a) are inferior compared to the LSTM. Ta-
ble 4 reports unlabeled sentence level exact match
(UEM) in Table 4 for English and Chinese. In-
terestingly, even when using the greedy inference
strategy, DENSE yields a UEM comparable to
Dyer15 on PTB. Finally, in Figure 2 we analyze
the performance of our parser on sentences of dif-
ferent length. On both PTB and CTB, DENSE

has an advantage on long sentences compared to
C&M14 and Dyer15.

For Czech and German, we closely follow the
evaluation setup of CoNLL 2006. We report
both UAS and LAS, although most previous work
has focused on UAS. Our results are summarized
in Table 5. We compare DENSE against three
non-projective graph-based dependency parsers:
the MST parser (McDonald et al., 2005b), the
Turbo parser (Martins et al., 2013), and the RBG
parser (Lei et al., 2014b). We show the per-
formance of these parsers in the first order set-
ting (e.g., MST-1st) and in higher order settings
(e.g., Turbo-3rd). The results of MST-1st, MST-
2nd, RBG-1st and RBG-3rd are reported in Lei et
al. (2014b) and the results of Turbo-1st and Turbo-
3rd are reported in Martins et al. (2013). We show
results for our parser with greedy inference (see
DENSE in the table) and when we use the Chu-

Before MST After MST
Dataset #Sent Tree Proj Tree Proj

PTB 1,700 95.1 86.6 100.0 100.0
CTB 803 87.0 73.1 100.0 100.0
Czech 374 87.7 65.5 100.0 72.7
German 367 96.7 67.3 100.0 68.1

Table 6: Percentage of trees and projective trees
on the development set before and after DENSE

uses a MST algorithm. On PTB and CTB, we use
the Eisner algorithm and on Czech and German,
we use the Chu-Liu-Edmonds algorithm.

Liu-Edmonds algorithm to post-process non-tree
outputs (DENSE+CLE).

As can been seen, DENSE outperforms all other
first (and second) order parsers on both German
and Czech. As in the projective experiments, we
observe slight a improvement (on both UAS and
LAS) when using a MST algorithm. On German,
DENSE is comparable with the best third-order
parser (Turbo-3rd), while on Czech it lags behind
Turbo-3rd and RBG-3rd. This is not surprising
considering that DENSE is a first-order parser and
only uses words and POS tags as features. Com-
parison systems use a plethora of hand-crafted fea-
tures and more sophisticated high-order decoding
algorithms. Finally, note that a version of DENSE

with features in (Lei et al., 2014a) is consistently
worse (see the second block in Table 5).

Our experimental results demonstrate that us-
ing a MST algorithm during inference can slightly
improve the model’s performance. We further ex-
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amined the extent to which the MST algorithm is
necessary for producing dependency trees. Table 6
shows the percentage of trees before and after the
application of the MST algorithm across the four
languages. In the majority of cases DENSE out-
puts trees (ranging from 87.0% to 96.7%) and a
significant proportion of them are projective (rang-
ing from 65.5% to 86.6%). Therefore, only a small
proportion of outputs (14.0% on average) need
to be post-processed with the Eisner or Chu-Liu-
Edmonds algorithm.

5 Conclusions

In this work we presented DENSE, a neural de-
pendency parser which we train without a tran-
sition system or graph-based algorithm. Experi-
mental results show that DENSE achieves compet-
itive performance across four different languages
and can seamlessly transfer from a projective to a
non-projective parser simply by changing the post-
processing MST algorithm during inference. In
the future, we plan to increase the coverage of our
parser by using tri-training techniques (Li et al.,
2014) and multi-task learning (Luong et al., 2015).
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Eryiǧit, and Svetoslav Marinov. 2006b. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL-X), pages 221–225, New York City.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technolo-
gies, pages 149–160, Nancy, France.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether, pages 50–57, Barcelona, Spain.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning, pages
1310–1318, Atlanta, Georgia.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2016. Recurrent dropout without memory
loss. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, pages 1757–1766, Osaka,
Japan.

David Arthur Smith. 2010. Efficient inference for trees
and alignments: modeling monolingual and bilin-
gual syntax with hard and soft constraints and latent
variables. Johns Hopkins University.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems 17, pages 1297–1304, Vancouver,
British Columbia.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ivan Titov and James Henderson. 2007. Constituent
parsing with incremental sigmoid belief networks.
In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 632–
639, Prague, Czech Republic.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of HLT-NAACL 2003, pages 173–
180, Edmonton, Canada.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A condi-
tional random field word segmenter for Sighan bake-
off 2005. In Proceedings of the 4th SIGHAN work-
shop on Chinese language Processing, pages 168–
171, Jeju Island, Korea.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing,
China.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Sta-
tistical dependency analysis with support vector ma-
chines. In Proceedings of the 8th Workshop on Pars-
ing Technologies, pages 195–206, Nancy, France.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–
571, Honolulu, Hawaii.

Hao Zhang and Ryan McDonald. 2012. Generalized
higher-order dependency parsing with cube prun-
ing. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 320–331, Jeju Island, Korea.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 656–661, Baltimore,
Maryland.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA.

675



Xingxing Zhang, Liang Lu, and Mirella Lapata. 2016.
Top-down tree long short-term memory networks.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 310–320, San Diego, California.

676



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 677–687,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Tackling Error Propagation through Reinforcement Learning:
A Case of Greedy Dependency Parsing

Minh Lê
CLTL

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

m.n.le@vu.nl

Antske Fokkens
CLTL

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
antske.fokkens@vu.nl

Abstract

Error propagation is a common problem
in NLP. Reinforcement learning explores
erroneous states during training and can
therefore be more robust when mistakes
are made early in a process. In this paper,
we apply reinforcement learning to greedy
dependency parsing which is known to
suffer from error propagation. Reinforce-
ment learning improves accuracy of both
labeled and unlabeled dependencies of
the Stanford Neural Dependency Parser,
a high performance greedy parser, while
maintaining its efficiency. We investigate
the portion of errors which are the result
of error propagation and confirm that rein-
forcement learning reduces the occurrence
of error propagation.

1 Introduction

Error propagation is a common problem for many
NLP tasks (Song et al., 2012; Quirk and Corston-
Oliver, 2006; Han et al., 2013; Gildea and Palmer,
2002; Yang and Cardie, 2013). It can occur when
NLP tools applied early on in a pipeline make
mistakes that have negative impact on higher-level
tasks further down the pipeline. It can also occur
within the application of a specific task, when se-
quential decisions are taken and errors made early
in the process affect decisions made later on.

When reinforcement learning is applied, a sys-
tem actively tries out different sequences of ac-
tions. Most of these sequences will contain some
errors. We hypothesize that a system trained in this
manner will be more robust and less susceptible to
error propagation.

We test our hypothesis by applying reinforce-
ment learning to greedy transition-based parsers
(Yamada and Matsumoto, 2003; Nivre, 2004),

which have been popular because of superior effi-
ciency and accuracy nearing state-of-the-art. They
are also known to suffer from error propagation.
Because they work by carrying out a sequence of
actions without reconsideration, an erroneous ac-
tion can exert a negative effect on all subsequent
decisions. By rendering correct parses unreach-
able or promoting incorrect features, the first error
induces the second error and so on. McDonald
and Nivre (2007) argue that the observed negative
correlation between parsing accuracy and sentence
length indicates error propagation is at work.

We compare reinforcement learning to super-
vised learning on Chen and Manning (2014)’s
parser. This high performance parser is available
as open source. It does not make use of alterna-
tive strategies for tackling error propagation and
thus provides a clean experimental setup to test
our hypothesis. Reinforcement learning increased
both unlabeled and labeled accuracy on the Penn
TreeBank and German part of SPMRL (Seddah
et al., 2014). This outcome shows that reinforce-
ment learning has a positive effect, but does not yet
prove that this is indeed the result of reduced er-
ror propagation. We therefore designed an exper-
iment which identified which errors are the result
of error propagation. We found that around 50%
of avoided errors were cases of error propagation
in our best arc-standard system. Considering that
27% of the original errors were caused by error
propagation, this result confirms our hypothesis.

This paper provides the following contributions:

1. We introduce Approximate Policy Gradient
(APG), a new algorithm that is suited for de-
pendency parsing and other structured pre-
diction problems.

2. We show that this algorithm improves the ac-
curacy of a high-performance greedy parser.
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3. We design an experiment for analyzing error
propagation in parsing.

4. We confirm our hypothesis that reinforce-
ment learning reduces error propagation.

To our knowledge, this paper is the first to ex-
perimentally show that reinforcement learning can
reduce error propagation in NLP.

The rest of this paper is structured as follows.
We discuss related work in Section 2. This is fol-
lowed by a description of the parsers used in our
experiments in Section 3. Section 4 outlines our
experimental setup and presents our results. The
error propagation experiment and its outcome are
described in Section 5. Finally, we conclude and
discuss future research in Section 6.

2 Related Work

In this section, we address related work on depen-
dency parsing, including alternative approaches
for reducing error propagation, and reinforcement
learning.

2.1 Dependency Parsing

We use Chen and Manning (2014)’s parser as a
basis for our experiments. Their parser is open-
source and has served as a reference point for
many recent publications (Dyer et al., 2015; Weiss
et al., 2015; Alberti et al., 2015; Honnibal and
Johnson, 2015, among others). They provide an
efficient neural network that learns dense vec-
tor representations of words, PoS-tags and depen-
dency labels. This small set of features makes their
parser significantly more efficient than other popu-
lar parsers, such as the Malt (Nivre et al., 2007) or
MST (McDonald et al., 2005) parser while obtain-
ing higher accuracy. They acknowledge the error
propagation problem of greedy parsers, but leave
addressing this through (e.g.) beam search for fu-
ture work.

Dyer et al. (2015) introduce an approach that
uses Long Short-Term Memory (LSTM). Their
parser still works incrementally and the number of
required operations grows linearly with the length
of the sentence, but it uses the complete buffer,
stack and history of parsing decisions, giving the
model access to global information. Weiss et al.
(2015) introduce several improvements on Chen
and Manning (2014)’s parser. Most importantly,
they put a globally-trained perceptron layer in-
stead of a softmax output layer. Their model uses

smaller embeddings, rectified linear instead of cu-
bic activation function, and two hidden layers in-
stead of one. They furthermore apply an aver-
aged stochastic gradient descent (ASGD) learn-
ing scheme. In addition, they apply beam search
and increase training data by using unlabeled data
through the tri-training approach introduced by Li
et al. (2014), which leads to further improvements.

Kiperwasser and Goldberg (2016) introduce a
new way to represent features using a bidirectional
LSTM and improve the results of a greedy parser.
Andor et al. (2016) present a mathematical proof
that globally normalized models are more expres-
sive than locally normalized counterparts and pro-
pose to use global normalization with beam search
at both training and testing.

Our approach differs from all of the work men-
tioned above, in that it manages to improve results
of Chen and Manning (2014) without changing the
architecture of the model nor the input represen-
tation. The only substantial difference lies in the
way the model is trained. In this respect, our re-
search is most similar to training approaches us-
ing dynamic oracles (Goldberg and Nivre, 2012).
Traditional static oracles can generate only one se-
quence of actions per sentence. A dynamic ora-
cle gives all trajectories leading to the best pos-
sible result from every valid parse configuration.
They can therefore be used to generate more train-
ing sequences including those containing errors.
A drawback of this approach is that dynamic or-
acles have to be developed specifically for indi-
vidual transition systems (e.g. arc-standard, arc-
eager). Therefore, a large number of dynamic or-
acles have been developed in recent years (Gold-
berg and Nivre, 2012; Goldberg and Nivre, 2013;
Goldberg et al., 2014; Gomez-Rodriguez et al.,
2014; Björkelund and Nivre, 2015). In contrast,
the reinforcement learning approach proposed in
this paper is more general and can be applied to a
variety of systems.

Zhang and Chan (2009) present the only study
we are aware of that also uses reinforcement learn-
ing for dependency parsing. They compare their
results to Nivre et al. (2006b) using the same fea-
tures, but they also change the model and apply
beam search. It is thus unclear to what extend their
improvements are due to reinforcement learning.

Even though most approaches mentioned above
improve the results reported by Chen and Man-
ning (2014) and even more impressive results on
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dependency parsing have been achieved since (no-
tably, Andor et al. (2016)), Chen and Manning’s
parser provides a better baseline for our purposes.
We aim at investigating the influence of reinforce-
ment learning on error propagation and want to
test this in a clean environment, where reinforce-
ment learning does not interfere with other meth-
ods that address the same problem.

2.2 Reinforcement Learning

Reinforcement learning has been applied to sev-
eral NLP tasks with success, e.g. agenda-based
parsing (Jiang et al., 2012), semantic parsing (Be-
rant and Liang, 2015) and simultaneous machine
translation (Grissom II et al., 2014). To our knowl-
edge, however, none of these studies investigated
the influence of reinforcement learning on error
propagation.

Learning to Search (L2S) is probably the most
prominent line of research that applies reinforce-
ment learning (more precisely, imitation learn-
ing) to NLP. Various algorithms, e.g. SEARN
(Daumé III et al., 2009) and DAgger (Ross et
al., 2011), have been developed sharing common
high-level steps: a roll-in policy is executed to
generate training states from which a roll-out pol-
icy is used to estimate the loss of certain actions.
The concrete instantiation differs from one algo-
rithm to another with choices including a referent
policy (static or dynamic oracle), learned policy,
or a mixture of the two. Early work in L2S fo-
cused on reducing reinforcement learning into bi-
nary classification (Daumé III et al., 2009), but
newer systems favored regressors for efficiency
(Chang et al., 2015, Supplementary material, Sec-
tion B). Our algorithm APG is simpler than L2S in
that it uses only one policy (pre-trained with stan-
dard supervised learning) and applies the existing
classifier directly without reduction (the only re-
quirement is that it is probabilistic). Nevertheless,
our results demonstrate its effectiveness.

APG belongs to the family of policy gradient al-
gorithms (Sutton et al., 1999), i.e. it maximizes the
expected reward directly by following its gradient
w.r.t. the parameters. The advantage of using a
policy gradient algorithm in NLP is that gradient-
based optimization is already widely used. REIN-
FORCE (Williams, 1992; Ranzato et al., 2016) is
a widely-used policy gradient algorithm but it is
also well-known for suffering from high variance
(Sutton et al., 1999).

We directly compare our approach to REIN-
FORCE, whereas we leave a direct comparison
to L2S for future work. Our experiments show
that our algorithm results in lower variance and
achieves better performance than REINFORCE.

Recent work addresses the approximation of re-
inforcement learning gradient in the context of
machine translation. Shen et al. (2016)’s algo-
rithm is roughly equivalent to the combination
of an oracle and random sampling. Their ap-
proach differs from ours, because it does not retain
memory across iteration as in our best-performing
model (see Section 3.4).

2.3 Reinforcement and error propagation

As mentioned above, previous work that applied
reinforcement learning to NLP has, to our knowl-
edge, not shown that it improved results by reduc-
ing error propagation.

Work on identifying the impact of error prop-
agation in parsing is rare, Ng and Curran (2015)
being a notable exception. They provide a detailed
error analysis for parsing and classify which kind
of parsing errors are involved with error propa-
gation. There are four main differences between
their approaches and ours. First, Ng and Curran
correct arcs in the tree and our algorithm corrects
decisions of the parsing algorithm. Second, our
approach distinguishes between cases where one
erroneous action deterministically leads to multi-
ple erroneous arcs and cases where an erroneous
action leads to conditions that indirectly result in
further errors (see Section 5.1 for a detailed expla-
nation). Third, Ng and Curran’s algorithm corrects
all erroneous arcs that are the same type of pars-
ing error and point out that they cannot examine
the interaction between multiple errors of the same
type in a sentence. Our algorithm corrects errors
incrementally and therefore avoids this issue. Fi-
nally, the classification and analysis presented in
Ng and Curran (2015) are more extensive and de-
tailed than ours. Our algorithm can, however, eas-
ily be extended to perform similar analysis. Over-
all, Ng and Curran’s approach for error analysis
and ours are complementary. Combining them and
applying them to various systems would form an
interesting direction for future work.

3 A Reinforced Greedy Parser

This section describes the systems used in our ex-
periments. We first describe the arc-standard al-
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Step Transition Stack Buffer Arcs
0 <ROOT> waves hit ... Big Board ∅
1 SHIFT <ROOT> waves hit stocks ... Big Board ∅
2 SHIFT <ROOT> waves hit stocks themselves ... Big Board ∅
3 LEFTnsubj <ROOT> hit stocks themselves ... Big Board A1 = { hit

nsubj−−−→ waves}
4 SHIFT <ROOT> hit stocks themselves on the Big Board A1

5 SHIFT <ROOT> hit stocks themselves on the Big Board A1

6 RIGHTdep <ROOT> hit stocks on the Big Board A2 = A1∪
{ stock

dep−−→ themselves}

7 RIGHTdobj <ROOT> hit on the Big Board A3 = A2∪ { hit
dobj−−−→ stock}

Table 1: Parsing oracle walk-through

gorithm, because familiarity with it helps to un-
derstand our error propagation analysis. Next, we
briefly point out the main differences between the
arc-standard algorithm and the alternative algo-
rithms we experimented with (arc-eager and swap-
standard). We then outline the traditional and our
novel machine learning approaches. The features
we used are identical to those described in Chen
and Manning (2014). We are not aware of research
identifying the best feature for a neural parser with
arc-eager or swap-standard so we use the same
features for all transition systems.

3.1 Transition-Based Dependency Parsing

In an arc-standard system (Nivre, 2004), a parsing
configuration consists of a triple 〈Σ, β, A〉, where
Σ is a stack, β is a buffer containing the remain-
ing input tokens and A are the dependency arcs
that are created during parsing process. At initi-
ation, the stack contains only the root symbol (Σ
= [ROOT]), the buffer contains the tokens of the
sentence (β = [w1, ..., wn]) and the set of arcs is
empty (A = ∅).

The arc-standard system supports three transi-
tions. When σ1 is the top element and σ2 the sec-
ond element on the stack, and β1 the first element
of the buffer:1

LEFTl adds an arc σ1
l−→ σ2 toA and removes σ2

from the stack.
RIGHTl adds an arc σ2

l−→ σ1 to A and removes
σ1 from the stack.

SHIFT moves β1 to the stack.

When the buffer is empty, the stack contains
only the root symbol and A contains a parse tree,
the configuration is completed. For a sentence of

1Naturally, the transitions LEFTl and RIGHTl can only
take place if the stack contains at least two elements and
SHIFT can only occur when there is at least one element on
the buffer.

<ROOT> waves hit stocks themselves on the Big Board

Figure 1: Correct dependencies for a simplified
example from Penn TreeBank

Nw tokens, a full parse takes 2Nw + 1 transitions
to complete (including the initiation). Figure 1
provides the gold parse tree for a (simplified) ex-
ample from the Penn Treebank. The steps taken
to create the dependencies between the sentence’s
head word hit and its subject and direct object are
provided in Table 1.

To demonstrate that reinforcement learning can
train different systems, we also carried out ex-
periments with arc-eager (Nivre, 2003) and swap-
standard (Nivre, 2009). Arc-eager is designed for
incremental parsing and included in the popular
MaltParser (Nivre et al., 2006a). Swap-standard is
a simple and effective solution to unprojective de-
pendency trees. Because arc-eager does not guar-
antee complete parse trees, we used a variation
that employs an action called UNSHIFT to re-
sume processing of tokens that would otherwise
not be attached to a head (Nivre and Fernández-
González, 2014).

3.2 Training with a Static Oracle

In transition-based dependency parsing, it is com-
mon to convert a dependency treebank D 3 (x, y)
into a collection of input features s ∈ S and cor-
responding gold-standard actions a ∈ A for train-
ing, using a static oracle O. In Chen and Man-
ning (2014), a neural network works as a function
mapping input features to probabilities of actions:
fNN : S × A → [0, 1]. The neural network is
trained to minimize negative log-likelihood loss
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on the converted treebank:

L =
∑

(x,y)∈D

∑

(s,a)∈O(x,y)
− log fNN (s, a; θ) (1)

3.3 Reinforcement Learning

Following Maes et al. (2009), we view transition-
based dependency parsing as a deterministic
Markov Decision Process. The problem is sum-
marized by a tuple 〈S,A, T , r〉 where S is the set
of all possible states, A contains all possible ac-
tions, T is a mapping S×A → S called transition
function and r : S ×A → R is a reward function.

A state corresponds to a configuration and is
summarized into input features. Possible actions
are defined for each transition system described in
Section 3.1. We keep the training approach simple
by using only one reward r(ȳ) at the end of each
parse.

Given this framework, a stochastic policy
guides our parser by mapping each state to a prob-
abilistic distribution of actions. During training,
we use function fNN described in Section 3.2 as a
stochastic policy. At test time, actions are chosen
in a greedy fashion following existing literature.
We aim at finding the policy that maximizes the
expected reward (or, equivalently, minimizes the
expected loss) on the training dataset:

maximize η =
∑

(x,y)∈D

∑

a1:m∼f
r(ȳ)

m∏

i=1

fNN (si, ai; θ)

(2)
where a1:m is a sequence of actions obtained by
following policy fNN until termination and s1:m
are corresponding states (with sm+1 being the ter-
mination state).

3.4 Approximate Policy Gradient

Gradient ascent can be used to maximize the ex-
pected reward in Equation 2. The gradient of ex-
pected reward w.r.t. parameters is (note that dz =
zd(log z)):

∂η

∂θ
=

∑

(x,y)∈D

∑

a1:m∼fNN

r(ȳ)
m∏

i=1

fNN (si, ai)

m∑

i=1

∂

∂θ
log fNN (si, ai; θ)

(3)

Because of the exponential number of possible
trajectories, calculating the gradient exactly is not

possible. We propose to replace it by an approxi-
mation (hence the name Approximate Policy Gra-
dient) by summing over a small subset U of trajec-
tories. Following common practice, we also use a
baseline b(y) that only depends on the correct de-
pendency tree. The parameter is then updated by
following the approximate gradient:

∆θ ∝
∑

(x,y)∈D

∑

a1:m∈U
(r(ȳ)− b(y))

m∏

i=1

fNN (si, ai)

m∑

i=1

∂

∂θ
log fNN (si, ai; θ)

(4)

Instead of sampling one trajectory at a time as in
REINFORCE, Equation 4 has the advantage that
sampling over multiple trajectories could lead to
more stable training and higher performance. To
achieve that goal, the choice of U is critical. We
empirically evaluate three strategies:

RL-ORACLE: only includes the oracle transition
sequence.

RL-RANDOM: randomly samples k distinct tra-
jectories at each iteration. Every action is
sampled according to fNN , i.e. preferring tra-
jectories for which the current policy assigns
higher probability.

RL-MEMORY: samples randomly as the previ-
ous method but retains k trajectories with
highest rewards across iterations in a sepa-
rate memory. Trajectories are “forgotten” (re-
moved) randomly with probability ρ before
each iteration.2

Intuitively, trajectories that are more likely and
produce higher rewards are better training exam-
ples. It follows from Equation 3 that they also
bear bigger weight on the true gradient. This is the
rationale behind RL-RANDOM and RL-ORACLE.
For a suboptimal parser, however, these objec-
tives sometimes work against each other. RL-
MEMORY was designed to find the right balance
between them. It is furthermore important that the
parser is pretrained to ensure good samples. Algo-
rithm 1 illustrates the procedure of training a de-
pendency parser using the proposed algorithms.

2We assign a random number (drawn uniformly from
[0, 1]) to each trajectory in memory and remove those as-
signed a number less than ρ.
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MemorySeqs← ∅;
foreach training batch b do

foreach sentence s ∈ b do
OracleSeq ← Oracle(s);
SystemSeqs← (sample k parsing
transition sequences for s);

if RL-Oracle then
ComputeGradients(OracleSeq);

else if RL-Random then
ComputeGradients(SystemSeqs);

else if RL-Memory then
m←MemorySeqs[s];
foreach q ∈ m do

if RandomNumber() < ρ then
Remove q from m;

end
end
foreach q ∈ SystemSeqs do

if |m| < k then
Insert q into m;

else
p← (sequence with
smallest reward in m);

if reward(q) > reward(p)
then

Replace p by q in m;
end

end
ComputeGradients(m);

end
Perform one gradient descent step;

end
Algorithm 1: Training a dependency parser with
approximate policy gradient.

4 Reinforcement Learning Experiments

We first train a parser using a supervised learning
procedure and then improve its performance using
APG. We empirically tested that training a second
time with supervised learning has little to no effect
on performance.

4.1 Experimental Setup

We use PENN Treebank 3 with standard split
(training, development and test set) for our exper-
iments with arg-standard and arg-eager. Because
the swap-standard parser is mainly suited for non-
projective structures, which are rare in the PENN
Treebank, we evaluate this parser on the German

Arc- Arc- Swap-
standard eager standard

UAS LAS UAS LAS UAS LAS
SL 91.3 89.4 88.3 85.8 84.3 81.3
RE 91.9 90.2 89.7 87.2 87.5 84.4
RL-O 91.8 90.2 88.9 86.5 86.8 83.9
RL-R 92.2 90.6 89.4 87.0 87.5 84.5
RL-M 92.2 90.6 89.8 87.4 87.6 84.6

Table 2: Comparing training methods on PENN
Treebank (arc-standard and arc-eager) and Ger-
man part of SPMRL-2014 (swap-standard).

section of the SPMRL dataset. For PENN Tree-
bank, we follow Chen and Manning’s preprocess-
ing steps. We also use their pretrained model3 for
arc-standard and train our own models in similar
settings for other transition systems.

For reinforcement learning, we use AdaGrad for
optimization. We do not use dropout because we
observed that it destablized the training process.
The reward r(ȳ) is the number of correct labeled
arcs (i.e. LAS multiplied by number of tokens).4

The baseline is fixed to half the number of tokens
(corresponding to a 0.5 LAS score). As train-
ing takes a lot of time, we tried only few values
of hyperparameters on the development set and
picked k = 8 and ρ = 0.01. 1,000 updates were
performed (except for REINFORCE which was
trained for 8,000 updates) with each training batch
contains 512 randomly selected sentences. The
Stanford dependency scorer5 was used for evalu-
ation.

4.2 Effectiveness of Reinforcement Learning
Table 2 displays the performance of different ap-
proaches to training dependency parsers. Al-
though we used Chen and Manning (2014)’s pre-
trained model and Stanford open-source software,
the results of our baseline are slightly worse than
what is reported in their paper. This could be due
to minor differences in settings and does not affect
our conclusions.

Across transition systems and two languages,
APG outperforms supervised learning, verifying
our hypothesis. Moreover, it is not simply be-
cause the learners are exposed to more examples
than their supervised counterparts. RL-ORACLE

3We use PTB_Stanford_params.txt.gz down-
loaded from http://nlp.stanford.edu/software/
nndep.shtml on December 30th, 2015.

4Punctuation is not taken into account, following Chen
and Manning (2014).

5Downloaded from http://nlp.stanford.edu/
software/lex-parser.shtml.
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is trained on exactly the same examples as the
standard supervised learning system (SL), yet it
is consistently superior. This can only be ex-
plained by the superiority of the reinforcement
learning objective function compared to negative
log-likelihood.

The results support our hypothesis that APG is
better than REINFORCE (abbreviated as RE in
Table 2) as RL-MEMORY always outperforms the
classical algorithm and the other two heuristics do
in two out of three cases. The usefulness of train-
ing examples that contain errors is evident through
the better performance of RL-RANDOM and RL-
MEMORY in comparison to RL-ORACLE.

Table 3 shows the importance of samples for
RL-RANDOM. The algorithm hurts performance
when only one sample is used whereas training
with two or more samples improves the results.
The difference cannot be explained by the total
number of observed samples because one-sample
training is still worse after 8,000 iterations com-
pared to a sample size of 8 after 1,000 itera-
tions. The benefit of added samples is twofold: in-
creased performance and decreased variance. Be-
cause these benefits saturate quickly, we did not
test sample sizes beyond 32.

Dev Test Test std.
UAS LAS UAS LAS UAS LAS

SL 91.5 89.6 91.3 89.4 - -
RE 92.1∗ 90.4∗ 91.9∗ 90.2∗ 0.04 0.05
1 91.2∗ 89.1∗ 91.0∗ 88.9∗ 0.12 0.15
2 91.8∗ 90.0∗ 91.6∗ 89.9∗ 0.09 0.09
4 92.2∗ 90.5∗ 92.0∗ 90.4∗ 0.09 0.08
8 92.4∗ 90.8∗ 92.2∗ 90.6∗ 0.03 0.05

16 92.4 90.8 92.2 90.6 - -
32 92.4 90.8 92.3 90.6 - -

Table 3: Parsing accuracy of RL-RANDOM (arc-
standard) with different sample sizes compared to
supervised learning (SL) and REINFORCE (RE).
∗: significantly different from SL with p < 0.001

5 Error Propagation Experiment

We hypothesized that reinforcement learning
avoids error propagation. In this section, we de-
scribe our algorithm and the experiment that iden-
tifies error propagation in the arc-standard parsers.

5.1 Error Propagation

Section 3.1 explained that a transition-based
parser goes through the sentence incrementally
and must select a transition from [SHIFT, LEFTl,

<ROOT> waves hit stocks themselves on the Big Board

<ROOT> waves hit stocks themselves on the Big Board

(A)

(B)
<ROOT> waves hit stocks themselves on the Big Board

(C)

Figure 2: Three dependency graphs: gold (A), arc
errors caused by one decision error (B) and arc er-
rors caused by multiple decision errors (C).

RIGHTl] at each step. We use the term arc error
to refer to an erroneous arc in the resulting tree.
The term decision error refers to a transition that
leads to a loss in parsing accuracy. Decision er-
rors in the parsing process lead to one or more arc
errors in the resulting tree. There are two ways
in which a single decision error may lead to mul-
tiple arc errors. First, the decision can determin-
istically lead to more than one arc error, because
(e.g.) an erroneously formed arc also blocks other
correct arcs. Second, an erroneous parse decision
changes some of the features that the model uses
for future decisions and these changes can lead to
further (decision) errors down the road.

We illustrate both cases using two incorrect
derivations presented in Figure 2. The original
gold tree is repeated in (A). The dependency graph
in Figure 2 (B) contains three erroneous depen-
dency arcs (indicated by dashed arrows). The first
error must have occurred when the parser executed
RIGHTamod creating the arc Big → Board. After
this error, it is impossible to create the correct re-
lations on→ Board and Board→ the. The wrong
arcs Big→ the and on→ Big are thus all the result
of a single decision error.

Figure 2 (C) represents the dependency graph
that is actually produced by our parser.6 It contains
two erroneous arcs: hit → themselves and them-
selves→ on. Table 4 provides a possible sequence
of steps that led to this derivation, starting from
the moment stocks was added to the stack (Step
4). The first error is introduced in Step 5’, where
hit combines with stocks before stocks has picked
up its dependent themselves. At that point, them-
selves can no longer be combined with the right
head. The proposition on, on the other hand, can

6The example is a fragment of a more complex sentence
consisting of 33 tokens. The parser does provide the correct
output when is analyzes this sequence in isolation.
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Step Transition Stack Buffer Arcs
4 SHIFT <ROOT> hit stocks themselves on the Big Board A1

5’ RIGHTdobj <ROOT> hit themselves on the Big Board A2 = A1∪
{hit

dobj−−−→ stock}
6’ SHIFT <ROOT> hit themselves on the Big Board A2

7’ SHIFT <ROOT> hit themselves on the Big Board A2

...
10’ SHIFT <ROOT> hit themselves on the Big Board A2

11’ LEFTnn <ROOT> hit themselves on the Board A3 = A2∪
{Board nn−→ Big}

12’ LEFTdet <ROOT> hit themselves on Board A4 = A3∪
{Board det−−→ the}

13’ RIGHTpobj <ROOT> hit themselves on A5 = A4∪
{on

pobj−−−→ Board}
14’ RIGHTdep <ROOT> hit themselves A6 = A5∪

{themselves
dep−−→on}

Table 4: Possible parsing walk-through with error

still be combined with the correct head. This error
is introduced in Step 7’, where the parser moves
on to the stack rather than creating an arc from hit
to themselves.7 There are thus two decision er-
rors that lead to the arc errors in Figure 2 (C). The
second decision error can, however, be caused in-
directly by the first error. If a decision error causes
additional decision errors later in the parsing pro-
cess, we talk of error propagation. This cannot be
known just by looking at the derivation.

5.2 Examining the impact of decision errors
We examine the impact of individual decision er-
rors on the overall parse results in our test set by
combining a dynamic oracle and a recursive func-
tion. We use a dynamic oracle based on Goldberg
et al. (2014) which gives us the overall loss at any
point during the derivation. The loss is equal to
the minimal number of arc errors that will have
been made once the parse is complete. We can
thus deduce how many arc errors are deterministi-
cally caused by a given decision error.

The propagation of decision errors cannot be
determined by simply examining the increase in
loss during the parsing process. We use a recur-
sive function to identify whether a particular parse
suffered from this. While parsing the sentence, we
register which decisions lead to an increase in loss.
We then recursively reparse the sentence correct-
ing one additional decision error during each run
until the parser produces the gold. If each erro-
neous decision has to be corrected in order to ar-
rive at the gold, we assume the decision errors are

7Note that technically, on can still become a dependent
of hit, but this can only happen if on becomes the head of
themselves which would also be an error.

SL RL-O RL-R RL-M
Total Loss 7069 6227 6042 6144
Dec. Errors 5177 4410 4345 4476
Err. Prop. 1399 1124 992 1035
New errors 411 432 403 400
Loss/error 1.37 1.41 1.39 1.37
Err. Prop. (%) 27.0 25.5 22.8 23.1

Table 5: Overview of average impact of decision
errors

independent of each other. If, on the other hand,
the correction of a specific decision also fixes other
decisions down the road, the original parse suffers
from error propagation.

The results are presented in Table 5. Total Loss
indicates the number of arc errors in the corpus,
Dec. Errors the number of decision errors and Err.
Prop. the number of decision errors that were the
result of error propagation. This number was ob-
tained by comparing the number of decision er-
rors in the original parse to the number of decision
errors that needed to be fixed to obtain the gold
parse. If less errors had to be fixed than originally
present, we counted the difference as error prop-
agation. Note that fixing errors sometimes leads
to new decision errors during the derivation. We
also counted the cases where more decision errors
needed to be fixed than were originally present and
report them in Table 5.8

8We ran an alternative analysis where we counted all cases
where fixing one decision error in the derivation reduced the
overall number of decision errors in the parse by more than
one. Under this alternative analysis, similar reductions in the
proportion of error propagation were observed for reinforce-
ment learning.
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On average, decision errors deterministically
lead to more than one arc error in the resulting
parse tree. This remains stable across systems
(around 1.4 arc errors per decision error). We
furthermore observe that the proportion of deci-
sion errors that are the result of error propagation
has indeed reduced for all reinforcement learn-
ing models. Among the errors avoided by APG,
35.9% were propagated errors for RL-ORACLE,
48.9% for RL-RANDOM, and 51.9% for RL-
MEMORY. These percentages are all higher than
the proportion of propagated errors occurring in
the corpus parsed by SL (27%). This outcome
confirms our hypothesis that reinforcement learn-
ing is indeed more robust for making decisions in
imperfect environments and therefore reduces er-
ror propagation.

6 Conclusion

This paper introduced Approximate Policy Gra-
dient (APG), an efficient reinforcement learning
algorithm for NLP, and applied it to a high-
performance greedy dependency parser. We hy-
pothesized that reinforcement learning would be
more robust against error propagation and would
hence improve parsing accuracy.

To verify our hypothesis, we ran experiments
applying APG to three transition systems and two
languages. We furthermore introduced an exper-
iment to investigate which portion of errors were
the result of error propagation and compared the
output of standard supervised machine learning to
reinforcement learning. Our results showed that:
(a) reinforcement learning indeed improved pars-
ing accuracy and (b) propagated errors were over-
represented in the set of avoided errors, confirming
our hypothesis.

To our knowledge, this paper is the first to show
experimentally that reinforcement learning can re-
duce error propagation in an NLP task. This re-
sult was obtained by a straight-forward implemen-
tation of reinforcement learning. Furthermore, we
only applied reinforcement learning in the training
phase, leaving the original efficiency of the model
intact. Overall, we see the outcome of our exper-
iments as an important first step in exploring the
possibilities of reinforcement learning for tackling
error propagation.

Recent research on parsing has seen impressive
improvement during the last year achieving UAS
around 94% (Andor et al., 2016). This improve-

ment is partially due to other approaches that, at
least in theory, address error propagation, such as
beam search. Both the reinforcement learning al-
gorithm and the error propagation study we devel-
oped can be applied to other parsing approaches.
There are two (related) main questions to be ad-
dressed in future work in the domain of parsing.
The first addresses whether our method is comple-
mentary to alternative approaches and could also
improve the current state-of-the-art. The second
question would address the impact of various ap-
proaches on error propagation and the kind of er-
rors they manage to avoid (following Ng and Cur-
ran (2015)).

APG is general enough for other structured pre-
diction problems. We therefore plan to investigate
whether we can apply our approach to other NLP
tasks such as coreference resolution or semantic
role labeling and investigate if it can also reduce
error propagation for these tasks.

The source code of all experiments is pub-
licly available at https://bitbucket.org/
cltl/redep-java.
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Abstract

We use the noisy-channel theory of hu-
man sentence comprehension to develop
an incremental processing cost model
that unifies and extends key features
of expectation-based and memory-based
models. In this model, which we call
noisy-context surprisal, the processing
cost of a word is the surprisal of the
word given a noisy representation of
the preceding context. We show that
this model accounts for an outstand-
ing puzzle in sentence comprehension,
language-dependent structural forgetting
effects (Gibson and Thomas, 1999; Va-
sishth et al., 2010; Frank et al., 2016),
which are previously not well modeled by
either expectation-based or memory-based
approaches. Additionally, we show that
this model derives and generalizes local-
ity effects (Gibson, 1998; Demberg and
Keller, 2008), a signature prediction of
memory-based models. We give corpus-
based evidence for a key assumption in
this derivation.

1 Introduction

Models of human sentence processing difficulty
can be divided into two kinds, expectation-based
and memory-based. Expectation-based models
predict the processing difficulty of a word from
the word’s surprisal given previous material in the
sentence (Hale, 2001; Levy, 2008a). These models
have good coverage: they can account for effects
of syntactic construction frequency and resolution
of ambiguity on incremental processing difficulty.
Memory-based models, on the other hand, explain
difficulty resulting from working memory limita-
tions during incremental parsing (Gibson, 1998;

Lewis and Vasishth, 2005); a major prediction of
these models is locality effects, where process-
ing a word is difficult when it is far from other
words with which it must be syntactically inte-
grated. Expectation-based models do not intrin-
sically capture this difficulty.

Integrating these two approaches at a high level
has proven challenging. A major hurdle is that
the theories are typically stated at different lev-
els of analysis: expectation-based theories are
computational-level theories (Marr, 1982) specify-
ing what computational problem the human sen-
tence processing system is solving—the problem
of how update one’s belief about a sentence given
a new word—without specifying implementation
details. Memory-based theories such as Lewis
and Vasishth (2005) are for the most part based in
mechanistic algorithmic-level theories describing
the actions of a specific incremental parser.

Previous theories that capture both surprisal and
locality effects have typically done so by aug-
menting parsing models with a special prediction-
verification operation to capture surprisal effects
(Demberg and Keller, 2009; Demberg et al.,
2013), or by combining surprisal and memory-
based cost derived from a parsing model as sep-
arate factors in a linear model (Shain et al., 2016).
These models capture surprisal and locality effects
at the same time, but they do not clearly capture
phenomena involving the interaction of memory
and probabilistic expectations such as language-
dependent structural forgetting (see Section 3).

Here we develop a computational-level model
capturing both memory and expectation effects
from a single set of principles, without reference
to a specific parsing algorithm. In our model,
the processing cost of a word is a function of its
surprisal given a noisy representation of previous
context (Section 2). We show that the model can
reproduce structural forgetting effects, including
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the difference between English and German (Sec-
tion 3), a phenomenon not previously captured
by memory-based or expectation-based models in
isolation. We also give a derivation of the exis-
tence of locality effects in the model; these effects
were previously accounted for only in mechanistic
memory-based models (Section 4). The derivation
yields a generalization of classic locality effects
which we call information locality: sentences
are predicted to be easier to process when words
with high mutual information are close. We give
corpus-based evidence that words in syntactic de-
pendencies have high mutual information, mean-
ing that classical dependency locality effects can
be seen as a subset of information locality effects.

2 Noisy-Context Surprisal

In surprisal theory, the processing cost of a word is
asserted to be proportional to extent to which one
must change one’s beliefs given that word (Hale,
2001; Smith and Levy, 2013). So the cost of a
word is (up to proportionality):

Csurprisal(wi|w1:i−1) = − log pL(wi|w1:i−1), (1)

where pL(·|·) is the conditional probability of a
word in context in a probabilistic language L.

Standard surprisal assumes that the compre-
hender has perfect access to a representation of
wi’s full context, including the words preceding it
in the sentence (w1:i−1) and also extra-sentential
context (which we leave implicit). But given that
human working memory is limited, the assump-
tion of perfect access is unrealistic. We propose
that processing cost at a word is better modeled
as the cost of belief updates given a noisy rep-
resentation of the previous input. The probabil-
ity of a word given a noisy context is modeled as
the noisy channel probability of the word, assum-
ing that people do noisy channel inference on their
context representation (Levy, 2008b; Gibson et al.,
2013). Given this model, the expected processing
cost of a word is its expected surprisal over the
possible noisy representations of its context.

The noisy-context surprisal processing cost
function is thus:1

C(wi|w1:i−1) = E
V |w1:i−1

[− log pNC
L (wi|V )] (2)

= −
∑

V

pN (V |w1:i−1) log pNC
L (wi|V ) (3)

1Neglecting the implicit proportionality term in Equa-
tion 1.

where V is the noisy representation of the previous
materialw1:i−1, the noise distribution pN charac-
terizes how memory of previous material may be
corrupted, and pNC

L (·|·) is the noisy-channel prob-
ability of a word given a noisy context, computed
via marginalization:

pNC
L (wi|V ) =

∑

w1:i−1

pL(wi|w1:i−1)pNC(w1:i−1|V )

with pNC(w1:i−1|V ) computed via Bayes Rule:

pNC(w1:i−1|V ) ∝ pN (V |w1:i−1)pL(w1:i−1).

Note here that wi’s cost is computed using its true
identity but a noisy representation of the context:
from the incremental perspective, wi is observed
now, but context is stored and retrieved in a po-
tentially noisy storage medium. This asymmetry
between noise levels for proximal versus distal in-
put differs from the noisy-channel surprisal model
of Levy (2011), and is crucial to the derivation of
information locality we present in Section 4.

Here we use two types of noise distributions for
pN : erasure noise and deletion noise. In erasure
noise, a symbol in the context is probabilistically
erased and replaced with a special symbol E with
probability e. In deletion noise, a symbol is erased
from the sequence completely, leaving no trace.
Given deletion noise, a comprehender does not
know how many symbols were in the original con-
text; with erasure noise, the comprehender knows
exactly which symbols were affected by noise. In
both cases, we assume that the application or non-
application of noise is probabilistically indepen-
dent among elements in the context. We use these
concrete noise distributions for convenience, but
we believe our results should generalize to larger
classes of noise distributions.

3 Structural Forgetting Effects

Here we show that noisy-context surprisal as
a processing cost model can reproduce effects
that were not previously well-explained by either
expectation-based or memory-based theories. In
particular, we take up the puzzle of structural
forgetting effects, where comprehenders seem
to forget structural elements of a sentence prefix
when predicting the rest of the sentence. The re-
sult is that some ungrammatical sentences have
lower processing cost and higher acceptability
than some complex grammatical sentences: with
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doubly nested relative clauses, for instance, sub-
jects rate ungrammatical sentence (1) as more ac-
ceptable than sentence (2), forgetting about the
VP predicted by the second noun (Gibson and
Thomas, 1999).

(1) *The apartment1 that the maid2 who the
cleaning service3 had3 sent over was1 well-
decorated.

(2) The apartment1 that the maid2 who the
cleaning service3 had3 sent over was2 cleaning ev-
ery week was1 well-decorated.
Vasishth et al. (2010) show this same effect in
reading times at the last verb: in English native
speakers are more surprised to encounter a third
VP than not to. However, this effect is language-
specific: the same authors find that in German, na-
tive speakers are more surprised when a third VP is
missing than when it is present. Frank et al. (2016)
show further that native speakers do not show the
effect in Dutch, but Dutch-native L2 speakers of
English do show the effect in English. The result
shows that the memory resources taxed by these
structures are themselves meaningfully shaped by
the distributional statistics of the language.

The verb forgetting effect is a challenge for
both expectation-based and memory-based mod-
els. Pure expectation-based models cannot repro-
duce the effect: they have no mechanism for for-
getting an established VP prediction and thus they
assign small or zero probability to ungrammati-
cal sentences. On the other hand, memory-based
models will have to account for why the same
structures are forgotten in English but not in Ger-
man. Here we show that noisy-context surprisal
provides the first purely computational-level ac-
count for the language-dependent verb forgetting
effect. The essential mechanism is that when verb-
final nested structures are more probable in a lan-
guage, then they will be better preserved in a noisy
memory representation.

3.1 Model of Verb Forgetting

Table 1 presents a toy probabilistic context-free
grammar for the constructions involved in verb
forgetting. The grammar generates strings over the
alphabet of N (noun), V (verb), C (complemen-
tizer), P (preposition). We apply deletion noise
with by-symbol deletion probability d. So for ex-
ample, given a prefix NCNCNVV, the prefix can
be corrupted to NCNNVV with probability pro-
portional to d, representing one deletion. In that

Rule Probability
S→ NP V 1
NP→ N 1−m
NP→ N RC mr
NP→ N PP m(1− r)
PP→ P NP 1
RC→ C V NP s
RC→ C NP V 1− s

Table 1: Toy grammar used to demonstrate verb
forgetting. Nouns are postmodified with proba-
bility m; a postmodifier is a relative clause with
probability r, and a relative clause is V-initial with
probability s. For practical reasons we bound non-
terminal rewrites of NP at 2.

case a noisy-channel comprehender might incor-
rectly infer that the original prefix was in fact NC-
NPNVV, and thus fail to predict a third verb.

To illustrate that noisy surprisal can account
for language-dependent verb forgetting, we show
in Figure 1 the differences between noisy sur-
prisal values for grammatical (V) and ungrammat-
ical (end-of-sentence) continuations of prefixes
NCNCNVV under parameter settings reflecting
the difference between English and German, and
compare these differences with self-paced read-
ing times observed after the final verb by Vasishth
et al. (2010). Noisy surprisal qualitatively re-
produces language-dependent verb forgetting: in
English the ungrammatical continuation is higher
surprisal, but in German the grammatical contin-
uation is higher surprisal. The English–German
difference in the model is entirely accounted for
by the parameter s, which determines the propor-
tion of relative clauses that are verb-initial. In En-
glish, most relative clauses are subject-extracted
and those are verb-initial, so for English s ≈ .8
(Roland et al., 2007). German, in contrast, has
s ≈ 0, since its relative clauses are obligatorily
verb-final. When verb-final relative clauses have
higher prior probability, a doubly-nested RC pre-
fix NCNCVV is more likely to be preserved by a
rational noisy-channel comprehender.

The results of Figure 1 do not speak, how-
ever, to the generality of the model’s predictions
regarding verb forgetting. To explore this mat-
ter, we partition the model’s four-dimensional pa-
rameter space into regions distinguishing whether
noisy-context surprisal is lower for (G) grammat-
ical continuations or (U) ungrammatical contin-
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Figure 1: Differences in reaction times for
ungrammatical continuations minus grammatical
continuations, compared to noisy surprisal differ-
ences. RT data comes from self-paced reading ex-
periments in Vasishth et al. (2010) in the post-VP
region. The noisy surprisal predictions are pro-
duced with d = .2, m = .5, r = .5 fixed, and
s = .8 for English and s = 0 for German.

uations for (1) singly-embedded NCNV and (2)
doubly-embedded NCNCNVV contexts. Figure 2
shows this partition for a range of r, s, m, and
d. In the blue region, grammatical continuations
are lower-cost than ungrammatical continuations
for both singly and doubly embedded contexts, as
in German (G1G2); in the red region, the ungram-
matical continuation is lower-cost for both con-
texts (U1U2). In the green region, the grammatical
continuation is lower cost for single embedding,
but higher cost for double embedding, as in En-
glish (G1U2). No combination of parameter values
instantiates U1G2 (for either the depicted or other
possible values ofm and d). Thus both the English
and German behavioral patterns are quite gener-
ally predicted by the model. Furthermore, each
language’s statistics place it in a region of parame-
ter space plausibly corresponding to its behavioral
pattern: the English-type forgetting effect is pre-
dicted mostly for high s, the German-type for low
s.

The only previous formalized account of
language-specific verb forgetting, Frank et al.
(2016), showed that Simple Recurrent Networks
(SRNs) trained on English and Dutch data partly
reproduce the verb forgetting effect in the sur-
prisals they assign to the final verb. Our model
provides an explanation of the SRN’s behavior.
When an SRN predicts words, it effectively uses
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Figure 2: Regions of different model behavior
with respect to parameters r, s, m, and d (see Ta-
ble 1). Blue: G1G2; red: U1U2; green: G1U2 (see
text).

a lossily compressed representation of the previ-
ous words. This lossy compression is analogous
to the noisy representation posited here.

4 Information Locality

Here we show how, given an appropriate noise dis-
tribution, noisy surprisal gives rise to locality ef-
fects. Standard locality effects are related to syn-
tactic dependencies: the claim is that processing
is difficult when the parser must make a syntac-
tic connection with an element that has been in
memory for a long time. In Section 4.1, we de-
rive a more general prediction: that processing is
difficult when any elements with high mutual in-
formation are far from one another. The effect
arises under noisy surprisal because context ele-
ments that would have been helpful for predicting
a word might have been forgotten. We call this
principle information locality. In Section 4.3, we
argue that words in syntactic dependencies have
higher mutual information than other word pairs,
which leads to a view of dependency locality ef-
fects as a special case of information locality ef-
fects.

4.1 Derivation of Information Locality

Viewing processing cost as a function of word or-
der, noisy surprisal gives rise to the generalization
that cost is minimized when elements with high
mutual information are close. We show this by
decomposing the noisy surprisal cost of a word
into many terms of higher-order mutual informa-
tion with the context, then showing that applying a
certain kind of erasure noise to the context causes

691



these terms to be downweighted based on their dis-
tance to the word. Thus the best word order puts
the words that have high mutual information with
a word close to that word.

4.1.1 Noise Distribution
Noisy surprisal gives rise to information local-
ity under a family of noise distributions which
we call progressive erasure noise, which is any
noise function that erases discrete elements of a
sequence with increasing probability the earlier
those elements are in the sequence. Formally, in
progressive erasure noise, the ith element in a se-
quence X with length |X| is erased with probabil-
ity proportional to some monotonically increasing
function of how far left that element is in the se-
quence: f(|X| − i). As a concrete example of
progressive erasure noise, consider an exponential
decay function, such that the probability that an el-
ement i in X remains unerased is (1− e)|X|−i for
some probability e. The exponential decay func-
tion corresponds to a noise model where the con-
text sequence is hit with erasure noise successively
as each word is processed. Any progressive era-
sure noise distribution suffices for the derivation
here to go through.

4.1.2 Decomposing Surprisal Cost
In noisy surprisal theory, the cost of a word wi in
context w1:i−1 is:

C(wi|w1:i−1) = E
V |w1:i−1

[− log p(wi|V )]

= E
V |w1:i−1

[h(wi)− pmi(wi;V )]

= h(wi)− E
V |w1:i−1

[pmi(wi;V )], (4)

where h(·) is surprisal (here unconditional, equiv-
alent to log inverse-frequency) and pmi(·; ·) is
pointwise mutual information between two val-
ues under a joint distribution:

pmi(x; y) = h(x) + h(y)− h(x, y). (5)

Essentially, each word has an inherent cost de-
termined by its log inverse probability, mitigated
to the extent that it is predictable from context
(pmi(wi;w1:i−1)).

Now define the interaction information be-
tween a sequence of m values {a} drawn from
a sequence of m random variables {α} (McGill,

1955; Bell, 2003) as:2

i(a1; ...; am) =

m∑

n=1

∑

I∈(1:mn )

(−1)m−n−1h(aI1 , ..., aIn),

where the notation
(
1:m
n

)
means all cardinality-n

subsets of the set of integers 1 through m. The
equation amounts to alternately adding and sub-
tracting the joint surprisals of all subsets of values.
For m = 2, expanding the equation reveals that
mutual information is a special case of interaction
information.

Supposing that the noisy representation of con-
text V is the result of running the veridical context
w1:i−1 through progressive erasure noise, we can
see V as a sequence of values v1:i−1, where each
vi is equal to either wi or the erasure symbol E.
Rewriting pmi(wi;V ) as pmi(wi; v1:i−1), we can
decompose it into interaction informations as fol-
lows:

pmi(wi; v1:i−1) =

i−1∑

n=1

∑

I∈(1:i−1
n )

i(wi; vI1 ; ...; vIn). (6)

The equation expresses a sum of interaction infor-
mations between the current word wi and all sub-
sets of the context values.3

2Higher-order information terms are typically defined us-
ing a different sign convention and referred to as coinforma-
tion or multivariate mutual information (Bell, 2003). For
even orders, interaction information is equal to coinforma-
tion. For odd orders, interaction information is equal to neg-
ative coinformation. We adopt our particular sign convention
to make the generalization of information locality easier to
express.

3To see that this is true, first note that we can express joint
surprisal in terms of interaction information:

h(a1, ..., am) = −
m∑

n=1

∑

I∈(1:mn )

i(aI1 ; ...; aIn).

Now consider the pmi of a value ai with a sequence a1:i−1.
Using the decomposition of joint surprisal to expand the def-
inition of pmi in Equation 5, we get:

pmi(ai; a1:i−1) = h(ai) + h(a1:i−1)− h(ai, a1:i−1)

= h(ai) + h(a1:i−1)− h(a1:i)

= h(ai)−
i−1∑

n=1

∑

I∈(1:i−1
n )

i(aI1 ; ...; aIn)

+

i∑

n=1

∑

I∈(1:in )

i(aI1 ; ...; aIn)

In the final expression, all the terms that do not contain ai
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Now combining Equations 4 and 6, we get:

C(wi|w1:i−1) = h(wi)−

E
v|w1:i−1




i−1∑

n=1

∑

I∈(1:i−1
n )

i(wi; vI1 ; ...; vIn)




= h(wi)−
i−1∑

n=1

∑

I∈(1:i−1
n )

∑

v

pN (v|wi:i−1)i(wi; vI1 ; ...; vIn).

Now if any element of an interaction information
term is E, then that whole interaction informa-
tion term is equal to 0. This happens because
the probability that an element is erased is inde-
pendent of the identity of other elements in the
sequence, and thus E has no interaction informa-
tion with any subset of those elements. That is,
i(wi; vI1 ; ...; vIn) = 0 unless vIj = wIj for all j.
This allows us to write:

C(wi|w1:i−1) = h(wi)−
i−1∑

n=1

∑

I∈(1:i−1
n )

i(wi;wI1 ; ...;wIn)
∑

m∈{0,1}i−1

pN (m)mI

where the variable m ranges over bit-masks of
length i − 1, and mI is equal to 1 when all in-
dices I in m are equal to 1, and 0 otherwise.
Now

∑
m∈{0,1}i−1 pN (m)mI is the total probabil-

ity that all of a set of indices I survives erasure.
Thus, informally:

C(wi|w1:i−1) = h(wi)−
i−1∑

n=1

∑

I∈(1:i−1
n )

pN (I survives)i(wi;wI1 ; ...;wIn).

(7)

That is, the cost of a word is its inherent cost minus
its interaction informations with context, which
are weighted by the probability that all elements
of those interactions survive erasure.
cancel out, leaving:

pmi(ai; a1:i−1) = h(ai) +

i−1∑

n=0

∑

I∈(1:i−1
n )

i(ai; aI1 ; ...; aIn)

= h(ai) +

i−1∑

n=1

∑

I∈(1:i−1
n )

i(ai; aI1 ; ...; aIn)− h(ai)

=

i−1∑

n=1

∑

I∈(1:i−1
n )

i(ai; aI1 ; ...; aIn),

which gives Equation 6 when applied to wi and v1:i−1.

Under progressive erasure noise, the probabil-
ity that a subset of variables is erased increases
the farther left those variables are in the context.
Therefore, Equation 7 expresses information lo-
cality: context elements which are predictive of
wi will only get to mitigate the cost of processing
wi if they are close to it. The surprisal-mitigating
effect of a context element on a word wi decreases
as that element gets farther from wi.

4.2 Noisy Surprisal and Dependency Locality
Memory-based models of sentence processing ac-
count for apparent dependency locality effects,
which is processing cost apparently arising from
two words linked in a syntactic dependency ap-
pearing far from one another (Gibson, 1998). De-
pendency length has been proposed as a rough
measure of comprehension and production diffi-
culty, and studied as a predictor of reaction times
(Grodner and Gibson, 2005; Demberg and Keller,
2008; Mitchell et al., 2010; Shain et al., 2016), and
also as a theory of production preferences and lin-
guistic typology, under the assumption that people
prefer to produce sentences with short dependen-
cies (dependency length minimization) (Hawkins,
1994; Gildea and Temperley, 2010; Futrell et al.,
2015; Rajkumar et al., 2016).

Dependency locality follows from information
locality if words linked in a syntactic dependency
have particularly high mutual information. To see
this, consider only the lowest-order interaction in-
formation terms in Equation 7, truncating the sum-
mation over n at 1. We can write

C(wi|w1:i−1) = h(wi)−
i−1∑

j=1

f(i− j)pmi(wi;wj) +R,

where R collects all the interaction information
terms of order greater than 2, and f(d) is the
monotonically decreasing survival probability of
a d-back word, described in Section 4.1.1. The ef-
fects of R are bounded because higher-order mu-
tual information terms are more penalized by era-
sure noise than lower-order terms, simply because
large sets of context items are more likely to expe-
rience at least one erasure.

If the effects ofR are negligible, then the cost of
a whole utterance w as a function of word order is
determined only by pairwise information locality:

C(w) ≈
|w|∑

i=1

h(wi)−
|w|∑

i=2

i−1∑

j=1

f(i− j)pmi(wi;wj).
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If words linked in a dependency have higher
mutual information than words that are not, then
the processing cost as a function of word order is a
monotonically increasing function of dependency
length. Under this assumption, for which we pro-
vide evidence below, dependency locality effects
can be seen as a special case of information local-
ity effects. As a theory of production preferences
or typology, processing cost as a monotonically in-
creasing function of dependency length suffices to
derive the predictions of dependency length mini-
mization (Ferrer i Cancho, 2015).

4.3 Mutual Information and Syntactic
Dependency

We have shown that noisy-context surprisal de-
rives information locality, and argued that depen-
dency locality can be seen as a special case of in-
formation locality. However, deriving dependency
locality requires a crucial assumption that words
linked in a dependency have higher mutual infor-
mation than those words that are not.

To test this assumption, we calculated mutual
information between wordforms in various depen-
dency relations in the Google Syntactic n-gram
corpus (Goldberg and Orwant, 2013). We com-
pared the mutual information of content words in
a direct dependency relationship to content words
in grandparent–grandchild and sister–sister depen-
dency relationships. Mutual information was esti-
mated using maximum likelihood estimation from
frequencies, treating the corpus as samples from a
distribution over (head, dependent) pairs. In order
to exclude nonlinguistic forms, we only included
wordforms if they were among the top 10000 most
frequent wordforms in the corpus. The direct
head–dependent frequencies were calculated from
the same corpus as the grandparent-grandchild fre-
quencies, so that all mutual information estimates
are affected by the same frequency cutoff. The re-
sults are shown in Table 2: direct head–dependent
pairs indeed have the highest mutual information.

To test the crosslinguistic validity of this gen-
eralization about syntactic dependency and mu-
tual information, we calculated mutual informa-
tion between the distributions over POS tags for
dependency pairs of 43 languages in the Univer-
sal Dependencies corpus (Nivre et al., 2016). For
this calculation, we used mutual information over
POS tags rather than wordforms to avoid data spar-
sity issues. The results are shown in Figure 3.

Relation MI (bits)
Head–dependent 1.79

Grandparent–dependent 1.34
Sister–sister 1.19

Table 2: Mutual information over wordforms in
different dependency relations in the Syntactic n-
gram corpus. The pairwise comparison of head–
dependent and grandparent–dependent MI is sig-
nificant at p < 0.005 by Monte Carlo permutation
tests over n-grams with 500 samples. The com-
parison of head–dependent and sister–sister MI is
not significant.

Again, we find that mutual information is high-
est for direct head–dependency pairs, and falls off
for more distant relations. These results show that
two words in a syntactic dependency relationship
are more predictive of each other than two words
in some other kinds of relationship.

We also compared the mutual information of
word pairs in and out of dependency relationships
while controlling for distance. This test has a dual
purpose. First, it allows us to control for distance
when claiming that words in dependency relation-
ships have high mutual information. Second, it
allows us to test a simple prediction of informa-
tion locality as applied to language production:
that words with high mutual information should
be close together. For pairs of words (wi, wi+k),
we calculated the pmi values among POS tags of
the words. Figure 4 shows the average pmi of
all words at each distance compared with the av-
erage pmi of the subset of words in a direct de-
pendency relationship at that distance. In all lan-
guages, we find that words in a dependency rela-
tionship have higher pmi than the baseline, espe-
cially at close distances. Furthermore, we find that
words at close distances tend to have higher pmi,
regardless of whether they are in a dependency re-
lationship.

4.4 Discussion

Information locality can be seen as a decay in
the effectiveness of contextual cues for predicting
words. Precisely such a decay in cue effectiveness
was found to be effective for predicting entropy
distributions across sentences in Qian and Jaeger
(2012), although that work did not distinguish be-
tween an inherent, noise-based decay in cue effec-
tiveness or optimized placement of cues.
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Figure 3: Mutual information over POS tags for dependency relations in the Universal Dependencies 1.4
corpus, for languages with over 500 sentences. All pairwise MI comparisons are significant at p < 0.005
by Monte Carlo permutation tests over dependency observations with 500 samples.
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The result of Gildea and Jaeger (2015), which
shows that word orders in languages are optimized
to minimize trigram surprisal of words, can be
taken to show maximization of information local-
ity under the noise distribution where context is
truncated deterministically at length 2. Whereas
Gildea and Jaeger (2015) treat dependency length
minimization and trigram surprisal minimization
as separate factors, under the view in this paper
these two phenomena emerge as two aspects of in-
formation locality. In general, the mutual informa-
tion of linguistic elements has been found to de-
crease with distance (Li, 1989; Lin and Tegmark,
2016), although this claim has only been tested for
letters, not for larger linguistic units such as mor-
phemes. The fact that linguistic units that are close
typically have high mutual information could re-
sult from optimization of word order for informa-
tion locality.

The idea that syntactically dependent words
have high mutual information is also ubiquitously
implicit in probabilistic models of language and in
practical NLP models. For example, it is implied
by head-outward generative models (Eisner, 1996;
Eisner, 1997; Klein and Manning, 2004), the first
successful models for grammar induction. Mutual
information has been used directly for unsuper-
vised discovery of syntactic dependencies (Yuret,
1998) and evaluation of dependency parses (de
Paiva Alves, 1996), as well as commonly for col-
location detection (Church and Hanks, 1990). In
addition to providing evidence for a crucial as-
sumption in the derivation of information locality,
our results also give evidence backing up the the-
oretical validity of such models and methods.

The derivation of information locality given
here assumed progressive erasure noise for con-
creteness, but we believe it should be possible
to derive this generalization for a large family of
noise distributions.

5 Conclusion

We have introduced a computational-level model
of incremental sentence processing difficulty
based on the principle that comprehenders have
uncertainty about the previous input and act ratio-
nally on that uncertainty. Noisy-context surprisal
accounts for key effects predicted by expectation-
based and memory-based models, in addition
to providing the first computational-level expla-
nation of language-specific structural forgetting,

which involves subtle interactions between mem-
ory and probabilistic expectations. Noisy-context
surprisal also leads to a general principle of in-
formation locality offering a new interpretation of
syntactic locality effects, and leading to broader
and potentially different predictions than purely
memory-based models.

Here we have used qualitative arguments and
have used different specific noise distributions to
make different points. Our aim has been to ar-
gue for the theoretical viability of noisy-context
surprisal, without committing the theory to a par-
ticular noise distribution. We believe our predic-
tions will be derivable under very general classes
of noise distributions, and we plan to pursue these
more general derivations in future work.

A more psychologically accurate model will
likely use a more nuanced noise distribution than
the simple decay functions in this paper, which
do not capture the subtleties of human memory.
In particular, simple decay functions to not cap-
ture memory retrieval effects of the kind described
in Anderson and Schooler (1991), where different
items in a sequence have different propensities to
be forgotten, in accordance with rational alloca-
tion of resources for retrieval. Seen as a noise
distribution, this memory model implies that the
erasure probability of a word is a function of the
word’s identity, and not only the word’s position in
the sequence as in Section 4.1.1. Including such
noise distributions in the noisy-context surprisal
model could provide a rich set of predictions to
test the model more extensively.
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Huyn Nguyn Th Minh, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Robert Östling, Lilja Øvre-
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Abstract

This work studies comparatively two typ-
ical sentence matching tasks: textual en-
tailment (TE) and answer selection (AS),
observing that weaker phrase alignments
are more critical in TE, while stronger
phrase alignments deserve more attention
in AS. The key to reach this observation
lies in phrase detection, phrase represen-
tation, phrase alignment, and more im-
portantly how to connect those aligned
phrases of different matching degrees with
the final classifier.

Prior work (i) has limitations in phrase
generation and representation, or (ii) con-
ducts alignment at word and phrase lev-
els by handcrafted features or (iii) utilizes
a single framework of alignment without
considering the characteristics of specific
tasks, which limits the framework’s effec-
tiveness across tasks.

We propose an architecture based on
Gated Recurrent Unit that supports (i) rep-
resentation learning of phrases of arbi-
trary granularity and (ii) task-specific at-
tentive pooling of phrase alignments be-
tween two sentences. Experimental results
on TE and AS match our observation and
show the effectiveness of our approach.

1 Introduction

How to model a pair of sentences is a critical is-
sue in many NLP tasks, including textual entail-
ment (Marelli et al., 2014a; Bowman et al., 2015a;
Yin et al., 2016a) and answer selection (Yu et al.,
2014; Yang et al., 2015; Santos et al., 2016). A
key challenge common to these tasks is the lack
of explicit alignment annotation between the sen-
tences of the pair. Thus, inferring and assessing
the semantic relations between words and phrases
in the two sentences is a core issue.

Figure 1: Alignment examples in TE (top) and AS
(bottom). Green color: identical (subset) align-
ment; blue color: relatedness alignment; red color:
unrelated alignment. Q: the first sentence in TE or
the question in AS; C+, C−: the correct or incor-
rect counterpart in the sentence pair (Q, C).

Figure 1 shows examples of human annotated
phrase alignments. In the TE example, we try to
figure out Q entails C+ (positive) or C− (nega-
tive). As human beings, we discover the relation-
ship of two sentences by studying the alignments
between linguistic units. We see that some phrases
are kept: “are playing outdoors” (between Q and
C+), “are playing ” (between Q and C−). Some
phrases are changed into related semantics on pur-
pose: “the young boys” (Q)→ “the kids” (C+ &
C−), “the man is smiling nearby” (Q) → “near
a man with a smile” (C+) or → “an old man is
standing in the background” (C−) . We can see
that the kept parts have stronger alignments (green
color), and changed parts have weaker alignments
(blue color). Here, by “strong” / “weak” we mean
how semantically close the two aligned phrases
are. To successfully identify the relationships of
(Q, C+) or (Q, C−), studying the changed parts is
crucial. Hence, we argue that TE should pay more
attention to weaker alignments.

699



In AS, we try to figure out: does sentence C+

or sentence C− answer question Q? Roughly, the
content in candidatesC+ andC− can be classified
into aligned part (e.g., repeated or relevant parts)
and negligible part. This differs from TE, in which
it is hard to claim that some parts are negligible or
play a minor role, as TE requires to make clear
that each part can entail or be entailed. Hence, TE
is considerably sensitive to those “unseen” parts.
In contrast, AS is more tolerant of negligible parts
and less related parts. From the AS example in
Figure 1, we see that “Auburndale Florida” (Q)
can find related part “the city” (C+), and “Auburn-
dale”, “a city” (C−) ; “how big” (Q) also matches
“had a population of 12,381” (C+) very well. And
some unaligned parts exist, denoted by red color.
Hence, we argue that stronger alignments in AS
deserve more attention.

The above analysis suggests that: (i) alignments
connecting two sentences can happen between
phrases of arbitrary granularity; (ii) phrase align-
ments can have different intensities; (iii) tasks of
different properties require paying different atten-
tion to alignments of different intensities.

Alignments at word level (Yih et al., 2013) or
phrase level (Yao et al., 2013) both have been stud-
ied before. For example, Yih et al. (2013) make
use of WordNet (Miller, 1995) and Probase (Wu
et al., 2012) for identifying hyper- and hyponymy.
Yao et al. (2013) use POS tags, WordNet and para-
phrase database for alignment identification. Their
approaches rely on manual feature design and lin-
guistic resources. We develop a deep neural net-
work (DNN) to learn representations of phrases of
arbitrary lengths. As a result, alignments can be
searched in a more automatic and exhaustive way.

DNNs have been intensively investigated in
sentence pair classifications (Blacoe and Lapata,
2012; Socher et al., 2011; Yin and Schütze,
2015b), and attention mechanisms are also ap-
plied to individual tasks (Santos et al., 2016;
Rocktäschel et al., 2016; Wang and Jiang, 2016);
however, most attention-based DNNs have im-
plicit assumption that stronger alignments deserve
more attention (Yin et al., 2016a; Santos et al.,
2016; Yin et al., 2016b). Our examples in Fig-
ure 1, instead, show that this assumption does
not hold invariably. Weaker alignments in certain
tasks such as TE can be the indicator of the final
decision. Our inspiration comes from the analy-
sis of some prior work. For TE, Yin et al. (2016a)

show that considering the pairs in which overlap-
ping tokens are removed can give a boost. This
simple trick matches our motivation that weaker
alignment should be given more attention in TE.
However, Yin et al. (2016a) remove overlapping
tokens completely, potentially obscuring complex
alignment configurations. In addition, Yin et al.
(2016a) use the same attention mechanism for TE
and AS, which is less optimal based on our obser-
vations.

This motivates us in this work to introduce
DNNs with a flexible attention mechanism that
is adaptable for specific tasks. For TE, it can
make our system pay more attention to weaker
alignments; for AS, it enables our system to fo-
cus on stronger alignments. We can treat the
pre-processing in (Yin et al., 2016a) as a hard
way, and ours as a soft way, as our phrases have
more flexible lengths and the existence of overlap-
ping phrases decreases the risk of losing impor-
tant alignments. In experiments, we will show that
this attention scheme is very effective for different
tasks.

We make the following contributions. (i) We
use GRU (Gated Recurrent Unit (Cho et al., 2014))
to learn representations for phrases of arbitrary
granularity. Based on phrase representations, we
can detect phrase alignments of different intensi-
ties. (ii) We propose attentive pooling to achieve
flexible choice among alignments, depending on
the characteristics of the task. (iii) We achieve
state-of-the-art on TE task.

2 Related Work

Non-DNN for sentence pair modeling. Heil-
man and Smith (2010) describe tree edit mod-
els that generalize tree edit distance by allow-
ing operations that better account for complex re-
ordering phenomena and by learning from data
how different edits should affect the model’s de-
cisions about sentence relations. Wang and Man-
ning (2010) cope with the alignment between a
sentence pair by using a probabilistic model that
models tree-edit operations on dependency parse
trees. Their model treats alignments as structured
latent variables, and offers a principled framework
for incorporating complex linguistic features. Guo
and Diab (2012) identify the degree of sentence
similarity by modeling the missing words (words
that are not in the sentence) so as to relieve the
sparseness issue of sentence modeling. Yih et
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al. (2013) try to improve the shallow semantic
component, lexical semantics, by formulating sen-
tence pair as a semantic matching problem with
a latent word-alignment structure as in (Chang et
al., 2010). More fine-grained word overlap and
alignment between two sentences are explored in
(Lai and Hockenmaier, 2014), in which negation,
hypernym/hyponym, synonym and antonym rela-
tions are used. Yao et al. (2013) extend word-to-
word alignment to phrase-to-phrase alignment by
a semi-Markov CRF. Such approaches often re-
quire more computational resources. In addition,
using syntactic/semantic parsing during run-time
to find the best matching between structured rep-
resentation of sentences is not trivial.

DNN for sentence pair classification. There
recently has been great interest in using DNNs for
classifying sentence pairs as they can reduce the
burden of feature engineering.

For TE, Bowman et al. (2015b) employ recur-
sive DNN to encode entailment on SICK (Marelli
et al., 2014b). Rocktäschel et al. (2016) present an
attention-based LSTM (long short-term memory,
Hochreiter and Schmidhuber (1997)) for the SNLI
corpus (Bowman et al., 2015a).

For AS, Yu et al. (2014) present a bigram
CNN (convolutional neural network (LeCun et
al., 1998)) to model question and answer candi-
dates. Yang et al. (2015) extend this method and
get state-of-the-art performance on the WikiQA
dataset. Feng et al. (2015) test various setups of a
bi-CNN architecture on an insurance domain QA
dataset. Tan et al. (2015) explore bidirectional
LSTM on the same dataset. Other sentence match-
ing tasks such as paraphrase identification (Socher
et al., 2011; Yin and Schütze, 2015a), question –
Freebase fact matching (Yin et al., 2016b) etc. are
also investigated.

Some prior work aims to solve a general sen-
tence matching problem. Hu et al. (2014) present
two CNN architectures for paraphrasing, sen-
tence completion (SC), tweet-response matching
tasks. Yin and Schütze (2015b) propose the Multi-
GranCNN architecture to model general sentence
matching based on phrase matching on multiple
levels of granularity. Wan et al. (2016) try to
match two sentences in AS and SC by multiple
sentence representations, each coming from the lo-
cal representations of two LSTMs.

Attention-based DNN for alignment. DNNs
have been successfully developed to detect align-

Figure 2: Gated Recurrent Unit

ments, e.g., in machine translation (Bahdanau et
al., 2015; Luong et al., 2015) and text reconstruc-
tion (Li et al., 2015; Rush et al., 2015). In addi-
tion, attention-based alignment is also applied in
natural language inference (e.g., Rocktäschel et al.
(2016),Wang and Jiang (2016)). However, most
of this work aligns word-by-word. As Figure 1
shows, many sentence relations can be better iden-
tified through phrase level alignments. This is one
motivation of our work.

3 Model

This section first gives a brief introduction of GRU
and how it performs phrase representation learn-
ing, then describes the different attentive poolings
for phrase alignments w.r.t TE and AS tasks.

3.1 GRU Introduction
GRU is a simplified version of LSTM. Both are
found effective in sequence modeling, as they are
order-sensitive and can capture long-range con-
text. The tradeoffs between GRU and its com-
petitor LSTM have not been fully explored yet.
According to empirical evaluations in (Chung et
al., 2014; Jozefowicz et al., 2015), there is not
a clear winner. In many tasks both architectures
yield comparable performance and tuning hyper-
parameters like layer size is probably more impor-
tant than picking the ideal architecture. GRU have
fewer parameters and thus may train a bit faster or
need less data to generalize. Hence, we use GRU,
as shown in Figure 2, to model text:

z = σ(xtU
z + st−1Wz) (1)

r = σ(xtU
r + st−1Wr) (2)

ht = tanh(xtU
h + (st−1 ◦ r)Wh) (3)

st = (1− z) ◦ ht + z ◦ st−1 (4)

x is the input sentence with token xt ∈ Rd at posi-
tion t, st ∈ Rh is the hidden state at t, supposed to
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Figure 3: Phrase representation learning by GRU
(left), sentence reformatting (right)

encode the history x1, · · · , xt−1. z and r are two
gates. All U ∈ Rd×h,W ∈ Rh×h are parameters
in GRU.

3.2 Representation Learning for Phrases

For a general sentence s with five consecutive
words: ABCDE, with each word represented by
a word embedding of dimensionality d, we first
create four fake sentences, s1: “BCDEA”, s2:
“CDEAB”, s3: “DEABC” and s4: “EABCD”,
then put them in a matrix (Figure 3, left).

We run GRUs on each row of this matrix in
parallel. As GRU is able to encode the whole
sequence up to current position, this step gener-
ates representations for any consecutive phrases in
original sentence s. For example, the GRU hid-
den state at position “E” at coordinates (1,5) (i.e.,
1st row, 5th column) denotes the representation of
the phrase “ABCDE” which in fact is s itself, the
hidden state at “E” (2,4) denotes the representa-
tion of phrase “BCDE”, . . . , the hidden state of
“E” (5,1) denotes phrase representation of “E” it-
self. Hence, for each token, we can learn the rep-
resentations for all phrases ending with this token.
Finally, all phrases of any lengths in s can get a
representation vector. GRUs in those rows are set
to share weights so that all phrase representations
are comparable in the same space.

Now, we reformat sentence “ABCDE” into s∗ =
“(A) (B) (AB) (C) (BC) (ABC) (D) (CD) (BCD)
(ABCD) (E) (DE) (CDE) (BCDE) (ABCDE)”, as
shown by arrows in Figure 3 (right), the arrow
direction means phrase order. Each sequence in
parentheses is a phrase (we use parentheses just
for making the phrase boundaries clear). Ran-
domly taking a phrase “CDE” as an example, its
representation comes from the hidden state at “E”
(3,3) in Figure 3 (left). Shaded parts are dis-
carded. The main advantage of reformatting sen-
tence “ABCDE” into the new sentence s∗ is to cre-

ate phrase-level semantic units, but at the same
time we maintain the order information.

Hence, the sentence “how big is Auburndale
Florida” in Figure 1 will be reformatted into
“(how) (big) (how big) (is) (big is) (how big is)
(Auburndale) (is Auburndale) (big is Auburndale)
(how big is Auburndale) (Florida) (Auburndale
Florida) (is Auburndale Florida) (big is Auburn-
dale Florida) (how big is Auburndale Florida)”.
We can see that phrases are exhaustively detected
and represented.

In the experiments of this work, we explore the
phrases of maximal length 7 instead of arbitrary
lengths.

3.3 Attentive Pooling

As each sentence s∗ consists of a sequence of
phrases, and each phrase is denoted by a represen-
tation vector generated by GRU, we can compute
an alignment matrix A between two sentences s∗1
and s∗2, by comparing each two phrases, one from
s∗1 and one from s∗2. Let s∗1 and s∗2 also denote
lengths respectively, thus A ∈ Rs∗1×s∗2 . While
there are many ways of computing the entries of
A, we found that cosine works well in our setting.

The first step then is to detect the best alignment
for each phrase by leveraging A. To be concrete,
for sentence s∗1, we do row-wise max-pooling over
A as attention vector a1:

a1,i = max(A[i, :]) (5)

In a1, the entry a1,i denotes the best alignment
for ith phrase in sentence s∗1. Similarly, we can
do column-wise max-pooling to generate attention
vector a2 for sentence s∗2.

Now, the problem is that we need to pay
most attention to the phrases aligned very well or
phrases aligned badly. According to the analysis
of the two examples in Figure 1, we need to pay
more attention to weaker (resp. stronger) align-
ments in TE (resp. AS). To this end, we adopt dif-
ferent second step over attention vector ai (i =
1, 2) for TE and AS.

For TE, in which weaker alignments are sup-
posed to contribute more, we do k-min-pooling
over ai, i.e., we only keep the k phrases which
are aligned worst. For the (Q, C+) pair in TE ex-
ample of Figure 1, we expect this step is able to
put most of our attention to the phrases “the kids”,
“the young boys”, “near a man with a smile” and
“and the man is smiling nearby” as they have rela-
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Figure 4: The whole architecture

tively weaker alignments while their relations are
the indicator of the final decision.

For AS, in which stronger alignments are sup-
posed to contribute more, we do k-max-pooling
over ai, i.e., we only keep the k phrases which are
aligned best. For the (Q, C+) pair in AS example
of Figure 1, we expect this k-max-pooling is able
to put most of our attention to the phrases “how
big” “Auburndale Florida”, “the city” and “had
a population of 12,381” as they have relatively
stronger alignments and their relations are the in-
dicator of the final decision. We keep the orig-
inal order of extracted phrases after k-min/max-
pooling.

In summary, for TE, we first do row-wise max-
pooling over alignment matrix, then do k-min-
pooling over generated alignment vector; we use
k-min-max-pooling to denote the whole process.
In contrast, we use k-max-max-pooling for AS.
We refer to this method of using two successive
min or max pooling steps as attentive pooling.

3.4 The Whole Architecture

Now, we present the whole system in Figure 4.
We take sentences s1 “ABC” and s2 “DEFG” as
illustration. Each token, i.e., A to F, in the fig-
ure is denoted by an embedding vector, hence each
sentence is represented as an order-3 tensor as in-
put (they are depicted as rectangles just for sim-
plicity). Based on tensor-style sentence input, we
have described the phrase representation learning
by GRU1 in Section 3.2 and attentive pooling in
Section 3.3.

Attentive pooling generates a new feature map
for each sentence, as shown in Figure 4 (the third
layer from the bottom), and each column repre-
sentation in the feature map denotes a key phrase
in this sentence that, based on our modeling as-
sumptions, should be a good basis for the correct
final decision. For instance, we expect such a fea-
ture map to contain representations of “the young
boys”, “outdoors” and “and the man is smiling
nearby” for the sentence Q in the TE example of
Figure 1.

Now, we do another GRU2 step for: 1) the new
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d lr bs L2 div k

TE [256,256] .0001 1 .0006 .06 5
AS [50,50] .0001 1 .0006 .06 6

Table 1: Hyperparameters. d: dimensionality of
hidden states in GRU layers; lr: learning rate; bs:
mini-batch size; L2: L2 normalization; div: diver-
sity regularizer; k: k-min/max-pooling.

feature map of each sentence mentioned above, to
encode all the key phrases as the sentence repre-
sentation; 2) a concatenated feature map of the two
new sentence feature maps, to encode all the key
phrases in the two sentences sequentially as the
representation of the sentence pair. As GRU gen-
erates a hidden state at each position, we always
choose the last hidden state as the representation
of the sentence or sentence pair. In Figure 4 (the
fourth layer), these final GRU-generated represen-
tations for sentence s1, s2 and the sentence pair
are depicted as green columns: s1, s2 and sp re-
spectively.

As for the input of the final classifier, it can be
flexible, such as representation vectors (rep), sim-
ilarity scores between s1 and s2 (simi), and extra
linguistic features (extra). This can vary based on
the specific tasks. We give details in Section 4.

4 Experiments

We test the proposed architectures on TE and AS
benchmark datasets.

4.1 Common Setup

For both TE and AS, words are initialized by 300-
dimensional GloVe embeddings1 (Pennington et
al., 2014) and not changed during training. A
single randomly initialized embedding is created
for all unknown words by uniform sampling from
[−.01, .01]. We use ADAM (Kingma and Ba,
2015), with a first momentum coefficient of 0.9
and a second momentum coefficient of 0.999,2 L2

regularization and Diversity Regularization (Xie et
al., 2015). Table 1 shows the values of the hyper-
parameters, tuned on dev.

Classifier. Following Yin et al. (2016a), we use
three classifiers – logistic regression in DNN, lo-
gistic regression and linear SVM with default pa-
rameters3 directly on the feature vector – and re-
port performance of the best.

1nlp.stanford.edu/projects/glove/
2Standard configuration recommended by Kingma and Ba
3http://scikit-learn.org/stable/ for both.

Common Baselines. (i) Addition. We sum up
word embeddings element-wise to form sentence
representation, then concatenate two sentence rep-
resentation vectors (s01, s02) as classifier input. (ii)
A-LSTM. The pioneering attention based LSTM
system for a specific sentence pair classification
task “natural language inference” (Rocktäschel et
al., 2016). A-LSTM has the same dimension-
ality as our GRU system in terms of initialized
word representations and the hidden states. (iii)
ABCNN (Yin et al., 2016a). The state-of-the-art
system in both TE and AS.

Based on the motivation in Section 1, the main
hypothesis to be tested in experiments is: k-min-
max-pooling is superior for TE and k-max-max-
pooling is superior for AS. In addition, we would
like to determine whether the second pooling step
in attention pooling, i.e., the k-min/max-pooling,
is more effective than a “full-pooling” in which all
the generated phrases are forwarded into the next
layer.

4.2 Textual Entailment

SemEval 2014 Task 1 (Marelli et al., 2014a) evalu-
ates system predictions of textual entailment (TE)
relations on sentence pairs from the SICK dataset
(Marelli et al., 2014b). The three classes are en-
tailment, contradiction and neutral. The sizes of
SICK train, dev and test sets are 4439, 495 and
4906 pairs, respectively. We choose SICK bench-
mark dataset so that our result is directly compa-
rable with that of (Yin et al., 2016a), in which non-
overlapping text are utilized explicitly to boost the
performance. That trick inspires this work.

Following Lai and Hockenmaier (2014), we
train our final system (after fixing of hyperparame-
ters) on train and dev (4,934 pairs). Our evaluation
measure is accuracy.

4.2.1 Feature Vector

The final feature vector as input of classifier con-
tains three parts: rep, simi, extra.

Rep. Totally five vectors, three are the top sen-
tence representation s1, s2 and the top sentence
pair representation sp (shown in green in Fig-
ure 4), two are s01, s02 from Addition baseline.

Simi. Four similarity scores, cosine similarity
and euclidean distance between s1 and s2, cosine
similarity and euclidean distance between s01 and
s02. Euclidean distance ‖ · ‖ is transformed into
1/(1+ ‖ · ‖).

704



method acc
Se

m
E

va
l

To
p3

(Jimenez et al., 2014) 83.1
(Zhao et al., 2014) 83.6
(Lai and Hockenmaier, 2014) 84.6

TrRNTN (Bowman et al., 2015b) 76.9

Addition
no features 73.1
plus features 79.4

A-LSTM
no features 78.0
plus features 81.7

ABCNN (Yin et al., 2016a) 86.2

GRU
k-min-max
ablation

– rep 86.4
– simi 85.1
– extra 85.5

GRU
k-max-max-pooling 84.9
full-pooling 85.2
k-min-max-pooling 87.1∗

Table 2: Results on SICK. Significant improve-
ment over both k-max-max-pooling and full-
pooling is marked with ∗ (test of equal propor-
tions, p < .05).

Extra. We include the same 22 linguistic fea-
tures as Yin et al. (2016a). They cover 15 machine
translation metrics between the two sentences;
whether or not the two sentences contain negation
tokens like “no”, “not” etc; whether or not they
contain synonyms, hypernyms or antonyms; two
sentence lengths. See Yin et al. (2016a) for de-
tails.

4.2.2 Results
Table 2 shows that GRU with k-min-max-pooling
gets state-of-the-art performance on SICK and
significantly outperforms k-max-max-pooling and
full-pooling. Full-pooling has more phrase input
than the combination of k-max-max-pooling and
k-min-max-pooling, this might bring two prob-
lems: (i) noisy alignments increase; (ii) sentence
pair representation sp is no longer discriminative
– sp does not know its semantics comes from
phrases of s1 or s2: as different sentences have
different lengths, the boundary location separating
two sentences varies across pairs. However, this is
crucial to determine whether s1 entails s2.

ABCNN (Yin et al., 2016a) is based on
assumptions similar to k-max-max-pooling:
words/phrases with higher matching values
should contribute more in this task. However,
ABCNN gets the optimal performance by com-
bining a reformatted SICK version in which

method MAP MRR

B
as

el
in

es

CNN-Cnt 0.6520 0.6652
Addition 0.5021 0.5069
Addition-Cnt 0.5888 0.5929
A-LSTM 0.5321 0.5469
A-LSTM-Cnt 0.6388 0.6529
AP-CNN 0.6886 0.6957
ABCNN 0.6921 0.7127

G
R

U
k

-m
ax

-m
ax

ab
la

tio
n – rep 0.6913 0.6994

– simi 0.6764 0.6875
– extra 0.6802 0.6899

GRU
k-min-max-pooling 0.6674 0.6791
full-pooling 0.6693 0.6785
k-max-max-pooling 0.7124∗ 0.7237∗

Table 3: Results on WikiQA. Significant im-
provement over both k-min-max-pooling and full-
pooling is marked with ∗ (t-test, p < .05). STOA:
74.17 (MAP)/75.88 (MRR) in (Tymoshenko et al.,
2016)

overlapping tokens in two sentences are removed.
This instead hints that non-overlapping units can
do a big favor for this task, which is indeed the
superiority of our “k-min-max-pooling”.

4.3 Answer Selection

We use WikiQA4 subtask that assumes there
is at least one correct answer for a question.
This dataset consists of 20,360, 1130 and 2352
question-candidate pairs in train, dev and test, re-
spectively. Following Yang et al. (2015), we trun-
cate answers to 40 tokens and report mean av-
erage precision (MAP) and mean reciprocal rank
(MRR).

Apart from the common baselines Addition, A-
LSTM and ABCNN, we compare further with: (i)
CNN-Cnt (Yang et al., 2015): combine CNN with
two linguistic features “WordCnt” (the number
of non-stopwords in the question that also occur
in the answer) and “WgtWordCnt” (reweight the
counts by the IDF values of the question words);
(ii) AP-CNN (Santos et al., 2016).

4.3.1 Feature Vector
The final feature vector in AS has the same (rep,
simi, extra) structure as TE, except that simi con-
sists of only two cosine similarity scores, and ex-
tra consists of four entries: two sentence lengths,
WordCnt and WgtWordCnt.

4http://aka.ms/WikiQA (Yang et al., 2015)
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(a) Attention distribution for phrases in “Q” of TE example in Figure 1
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(b) Attention distribution for phrases in “C+” of TE example in Figure 1

Figure 5: Attention Visualization

4.3.2 Results
Table 3 shows that GRU with k-max-max-pooling
is significantly better than its k-min-max-pooling
and full-pooling versions. GRU with k-max-max-
pooling has similar assumption with ABCNN (Yin
et al., 2016a) and AP-CNN (Santos et al., 2016):
units with higher matching scores are supposed to
contribute more in this task. Our improvement

can be due to that: i) our linguistic units cover
more exhaustive phrases, it enables alignments in
a wider range; ii) we have two max-pooling steps
in our attention pooling, especially the second one
is able to remove some noisily aligned phrases.
Both ABCNN and AP-CNN are based on convo-
lutional layers, the phrase detection is constrained
by filter sizes. Even though ABCNN tries a second
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CNN layer to detect bigger-granular phrases, their
phrases in different CNN layers cannot be aligned
directly as they are in different spaces. GRU in
this work uses the same weights to learn repre-
sentations of arbitrary-granular phrases, hence, all
phrases can share the representations in the same
space and can be compared directly.

4.4 Visual Analysis

In this subsection, we visualize the attention dis-
tributions over phrases, i.e., ai in Equation 5, of
example sentences in Figure 1 (for space limit,
we only show this for TE example). Figures 5(a)-
5(b) respectively show the attention values of each
phrase in (Q, C+) pair in TE example in Figure 1.
We can find that k-min-pooling over this distribu-
tions can indeed detect some key phrases that are
supposed to determine the pair relations. Taking
Figure 5(a) as an example, phrases “young boys”,
phrases ending with “and”, phrases “smiling”, “is
smiling”, “nearby” and a couple of phrases ending
with “nearby” have lowest attention values. Ac-
cording to our k-min-pooling step, these phrases
will be detected as key phrases. Considering fur-
ther the Figure 5(b), phrases “kids”, phrases end-
ing with “near”, and a couple of phrases ending
with “smile” are detected as key phrases.

If we look at the key phrases in both sen-
tences, we can find that the discovering of those
key phrases matches our analysis in Section 1 for
TE example: “kids” corresponds to “young boys”,
“smiling nearby” corresponds to “near...smile”.

Another interesting phenomenon is that, taking
Figure 5(b) as example, even though “are play-
ing outdoors” can be well aligned as it appears in
both sentences, nevertheless the visualization fig-
ures show that the attention values of “are play-
ing outdoors and” in Q and “are playing outdoors
near” drop dramatically. This hints that our model
can get rid of some surface matching, as the key
token “and” or “near” makes the semantics of “are
playing outdoors and” and “are playing outdoors
near” be pretty different with their sub-phrase “are
playing outdoors”. This is important as “and” or
“near” is crucial unit to connect the following key
phrases “smiling nearby” in Q or “a smile” in C+.
If we connect those key phrases sequentially as a
new fake sentence, as we did in attentive pooling
layer of Figure 4, we can see that the fake sentence
roughly “reconstructs” the meaning of the original
sentence while it is composed of phrase-level se-
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Figure 6: Effects of pooling size k (cf. Table Ta-
ble 1)

mantic units now.

4.5 Effects of Pooling Size k

The key idea of the proposed method is achieved
by the k-min/max pooling. We show how the hy-
perparameter k influences the results by tuning on
the dev sets.

In Figure 6, we can see the performance trends
of changing k value between 1 and 10 in the two
tasks. Roughly k > 4 can give competitive results,
but larger values bring performance drop.

5 Conclusion

In this work, we investigate the contribution of dif-
ferent intensities of phrase alignments for differ-
ent tasks. We argue that it is not true that stronger
alignments always matter more. We found TE task
prefers weaker alignments while AS task prefers
stronger alignments. We proposed flexible atten-
tive poolings in GRU system to satisfy the differ-
ent requirements of different tasks. Experimental
results show the soundness of our argument and
the effectiveness of our attention pooling based
GRU systems.

As future work, we plan to investigate phrase
representation learning in context and how to con-
duct the attentive pooling automatically regardless
of the categories of the tasks.
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Abstract

We approach the recognition of textual en-
tailment using logical semantic represen-
tations and a theorem prover. In this setup,
lexical divergences that preserve semantic
entailment between the source and target
texts need to be explicitly stated. However,
recognising subsentential semantic rela-
tions is not trivial. We address this prob-
lem by monitoring the proof of the the-
orem and detecting unprovable sub-goals
that share predicate arguments with logi-
cal premises. If a linguistic relation exists,
then an appropriate axiom is constructed
on-demand and the theorem proving con-
tinues. Experiments show that this ap-
proach is effective and precise, produc-
ing a system that outperforms other logic-
based systems and is competitive with
state-of-the-art statistical methods.

1 Introduction

Recognising Textual Entailment (RTE) is a chal-
lenging NLP application where the objective is
to judge whether a text fragment H logically fol-
lows from another text fragment T (Dagan et al.,
2013). Advances in RTE have potentially positive
implications in other areas such as fact checking,
question-answering or information retrieval. So-
lutions to the RTE problem span a wide array of
methods. Some methods are purely statistical (Lai
and Hockenmaier, 2014; Zhao et al., 2014), where
a classifying function is estimated using lexical or
syntactic features. Other methods are purely se-

mantic (Bos et al., 2004), where logical formulas
that represent the text fragments are constructed
and used in a formal proof system. And yet others
are hybrid systems (Beltagy et al., 2013), where a
combination of statistical features and logical for-
mulas are used to judge entailment relations.

In this paper, we adopt a strategy based on
logics, encouraged by the high-performance that
these systems achieve in linguistically challeng-
ing datasets (Abzianidze, 2015; Mineshima et al.,
2015). An important advantage of these systems
(including ours) is that they are unsupervised, thus
no training data is necessary and no parameters
need to be adjusted.

Under the perspective of these logic-based sys-
tems, there are mainly two associated challenges
when solving RTE problems. The first challenge
is to model the logics of the language with the pur-
pose to represent the semantics of text fragments
accurately. To this end, we follow the standard
practice in formal semantics where the meaning
of sentences is represented using logical formulas.
The second challenge is to account for lexical re-
lations between text fragments, typically between
words or non-compositional phrases. We dedicate
our efforts to the latter challenge, and assume that
wide coverage linguistic resources are available to
signal potential relations between lexical items in
text fragments. The question is then how to make
the best use of these linguistic resources to close
the lexical gap between source and target text frag-
ments.

Our contribution is a precise mechanism that al-
lows to construct and use linguistic axioms on-
demand. This mechanism monitors the progress
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of a logical proof, detects unprovable sub-goals,
and inserts axioms when necessary if a lexical re-
lation is found in an external linguistic resource.
These linguistic axioms encode lexical relations
between specific segments of the source and tar-
get text fragments, thus accounting for lexical di-
vergences that preserve semantic inclusion. To the
best of our knowledge, this is the first attempt to
integrate on-demand axiom injection into a purely
logical natural deduction proof to recognise tex-
tual entailment. In the SICK dataset, our system
obtains the highest accuracy among the logic sys-
tems, and competitive results with respect to ma-
chine learning approaches. We believe that our
formulation is general enough to be extended to
other semantic systems and to introduce lexical
knowledge from ontological resources or statisti-
cal classifiers efficiently and effectively.

2 Related Work

Our work on recognising textual entailment is pri-
marily inspired by Bos and Markert (2005), where
first-order logic interpretations of sentences are
used to prove entailment relations with theorem
provers and model builders. These semantic inter-
pretations were composed using Boxer (Bos et al.,
2004) from derivations of a Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000) automat-
ically obtained by C&C, a wide-coverage CCG
parser (Clark and Curran, 2007). This system
was later extended into Nutcracker (Bjerva et al.,
2014), where WordNet (Miller, 1995) and rela-
tions from Paraphrase Database (PPDB) (Ganitke-
vitch et al., 2013) are used to introduce external
linguistic resources to account for lexical diver-
gences (Pavlick et al., 2015). Pavlick et al. (2015)
study the characteristics of linguistic relations that
may signal entailment or contradiction at subsen-
tential level. However, they ignore the logical con-
text in which these linguistic relations occur in
the entailment problem. Moreover, Nutcracker is
not a purely logical system in that it uses a proof-
approximation method with model-builders.

By contrast, our system is purely logic-based,
in that it solely relies on proof constructions based
on natural deduction system to make entailment
judgements. In addition, as we will see below, a
goal-directed proof construction procedure in our
system is naturally combined with on-demand ax-
iom injection, as opposed to simply selecting any
two arbitrary phrases from T and H that display

any linguistic relation.

Beltagy et al. (2013) also use Boxer for their
logical semantic representations but assign distri-
butional similarity scores to any two phrases from
T and H on-the-fly. Their approach is different
from ours in that they use probabilistic logic as
an underlying logic. Furthermore, the method to
create relevant axioms in Beltagy et al. (2013) is
based on a naı̈ve enumeration, and they ignore the
logical clues on when two phrases are candidates
to be related, which we argue against.

Abzianidze (2015) presents a purely logic-
based RTE system that uses CCG parsers and
a natural-logic-based tableuax prover. However,
his logical representations are based on a non-
standard natural logic, which requires the defini-
tion of new inference rules for each logical word
(e.g. every, some, no) and for which generic the-
orem provers are not reusable. Regarding the
introduction of linguistic knowledge, the author
uses only WordNet. However, during the learning
phase, he adds missing knowledge manually (e.g.
note is a hyponym of paper), whereas we restrict
our results to those automatically generated.

Perhaps the most similar strategies to ours
are those of Tian et al. (2014) and Beltagy et
al. (2016), where the authors produce on-the-
fly knowledge when the hypothesis H cannot be
proved. In the work of Tian et al. (2014), propo-
sitions between T and H are aligned using log-
ical clues; then, dependency paths are extracted
between these propositions and WordNet or word
vectors are used to assess the similarity between
paths. However, the expressive power of their
underlying representation system in Dependency-
based Compositional Semantics (DCS) is rather
limited and much weaker than the full first-order
logic (Liang et al., 2013). Several extensions have
been proposed (Tian et al., 2014; Dong et al.,
2014), yet these DCS-based inference systems are
a non-standard axiomatic system with many ax-
ioms and tend to be ad hoc. Whereas their seman-
tic representations are specific to their logic frame-
work, ours are well-understood, logically transpar-
ent representations that are generic to most state-
of-the-art theorem provers using first-order logic.

Beltagy et al. (2016) use a Modified Robin-
son Resolution strategy to align clauses and lit-
erals between T and H . These alignments also
constrain how the unaligned fragments of T and
H may correspond to each other, reducing the
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problem to a word or phrasal entailment recog-
nition using a statistical classifier. However, that
work only considers one possible set of align-
ments between T -H fragments, which has a de-
caying coverage when there is repetitions of con-
tent words and meta-predicates (typically occur-
ring in medium and long sentences). Instead, we
consider multiple alignments by backtracking the
decisions on variable and predicate unifications,
which is a more powerful strategy. Beltagy et
al. (2016) use Markov Logic Networks (MLNs),
which is an elegant framework that combines log-
ics and probabilistic reasoning. However, the con-
struction of their Markov Networks is limited by
first-order logic, which may pose problems to rep-
resent modality or generalised quantifiers. Instead,
our logical representations can also be used in
a more expressive, higher-order inference system
such as the one in Martı́nez-Gómez et al. (2016),
as it was shown by Mineshima et al. (2015) and
Mineshima et al. (2016) in a practical application
for RTE.

3 Background

This section provides some basic background on
our logic-based approach to Recognising Textual
Entailment (RTE). RTE is a task of determining
whether or not a given text (T ) entails a given hy-
pothesis (H). In logic-based approaches, T and
H are mapped onto logical formulas; whether T
entails H is then determined by checking whether
T → H is a theorem in a logical system, possibly
with the help of a knowledge base.

To obtain logical formulas for input sentences,
we use the framework of Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000), a lexical-
ized grammar formalism that provides a transpar-
ent interface between syntax and semantics. We
follow the standard method of building compo-
sitional semantics in CCG-based systems (Black-
burn and Bos, 2005; Bos, 2008), where each syn-
tactic category is schematically assigned a mean-
ing representation formally specified as a λ-term.
By combining the meanings of constituent words
that appear in a CCG derivation tree, we can obtain
a logical formula that serves as a semantic repre-
sentation of an input sentence.

For semantic representations, we adopt Neo-
Davidsonian Event Semantics (Parsons, 1990;
Bos, 2008; Jurafsky and Martin, 2009). For in-
stance, the sentence in (1) is mapped not to a sim-

ple formula (2) but to a formula (3) that involves
an event variable.

(1) John greets Mary.
(2) greet(john,mary)
(3) ∃v(greet(v)∧ (Subj(v) = john)∧ (Obj(v) = mary))

The sentence (3) expresses that there is an event
of greeting such that its subject is John and its ob-
ject is Mary. In our Neo-Davidsonian approach,
every verb is decomposed into a one-place predi-
cate over events and a set of functional expressions
such as Subj(v) = john, which relates an event to
its participant.

VP-modifiers such as adverbs and prepositional
phrases are also analysed as event predicates. For
instance, (4) and (5) are analysed as having the se-
mantic representations in (6) and (7), respectively.

(4) John greets Mary warmly.
(5) John walks to a station.
(6) ∃v(greet(v)∧(Subj(v) = john)∧(Obj(v) = mary)∧

warmly(v))

(7) ∃v(walk(v) ∧ (Subj(v) = john) ∧ ∃x(station(x) ∧
(Goal(v) = x)))

There are several advantages of using event se-
mantic formulas as representations for natural lan-
guage inferences. First, it logically derives an en-
tailment pattern to drop adverbial modifiers, such
as the one from (4) to (1) and the one from (5)
to John walks. Another advantage over simple
representations like (2) is that it provides a uni-
form way of capturing the lexical relationship be-
tween verbs. For instance, the hypernym relation
between the transitive verb greet and the intran-
sitive verb move is represented as a simple axiom
∀v(greet(v)→move(v)). This is possible because
both verbs are analysed as one-place predicates
over events, rather than as predicates with differ-
ent arities such as greet(x, y) and move(x). All
these inferences are derivable using the standard
first-order logic. For these reasons, event semantic
formulas are suitable for the purpose of perform-
ing logical inferences with lexical knowledge in
our setting.

4 Methodology

4.1 Preliminaries: proving strategy
We adopt natural deduction (Prawitz, 1965) as a
proof calculus. Here, a typical proving strategy
is to decompose the logical formulas of T into
atoms (subformulas with no logical connectives)
and add them into a pool P of logical premises,
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Figure 1: Trace of a proof in natural deduction. In step 0, T and H are decomposed into a pool of logical
premises P and a list of sub-goals G. In step 1, g1, g2 and g3 are proved using p1, p2 and p3 and the
variable unification x2 := x1. In step 2, g4 is proved with p4 and variable unification v2 := v1. Finally,
g5 can be proved from p4 and the external axiom ∀v.nap(v)→ sleep(v), resulting in a proved theorem.

P = {p0(θ0), . . . , pn(θn)}, where pi are predi-
cates (function names) and θi are lists of (possibly
structured) arguments of predicates pi. The logi-
cal formula of H is similarly decomposed and its
atoms are added either to the pool P or to a list of
sub-goals G = {p′0(θ′0), . . . , p′m(θ′m)}.

As a running example, consider the T -H pair in
(8) and (9), analysed as in (10) and (11):
(8) A black and white dog naps.
(9) A black and white dog sleeps.

(10) ∃x1v1(dog(x1)∧white(x1)∧ black(x1)∧ nap(v1)∧
Subj(v1) = x1)

(11) ∃x2v2(dog(x2)∧white(x2)∧black(x2)∧sleep(v2)∧
Subj(v2) = x2)

As we can observe in Figure 1, T would be de-
composed into the pool of logical premises

P = {dog(x1),white(x1),
black(x1), nap(v1),Subj(v1) = x1}

and H into the list of sub-goals

G = {dog(x2),white(x2),
black(x2), sleep(v2),Subj(v2) = x2}.

In general, existentially quantified formulas whose
subformulas are connected only with logical con-
junctions (e.g. ∃θ.A(θ) ∧ B(θ)) are decomposed
into subformulas A(θ) and B(θ), and added to P
or G if they originate from T and H , respectively.
Universally quantified formulas with logical im-
plications (e.g. ∀θ.A(θ) → B(θ)) are not decom-
posed if such constructions appear in T ; if they

appear in H , B(θ) is added as a sub-goal in G and
A(θ) is added as a logical premise in P . Decom-
posing higher-order constructions is possible, but
we do not treat it here.

The proving then proceeds by selecting a sub-
goal p′j(θ

′
j), searching P for a logical premise

pi(θi) for which p′j and pi and their arguments θ′j
and θi are equal (or they unify). If such a logical
premise is found, then the sub-goal is proved and
removed from G. That is the case of the sub-goals
g1 to g4 in steps 1 and 2 of Figure 1, where pred-
icates match those of p1 to p4 and variables unify
as x2 := x1 and v2 := v1. If all sub-goals are
proved, then the theorem is proved and the entail-
ment judgement can be produced.

4.2 Detecting candidate sub-goals

However, there are theorems for which not all sub-
goals can be proved. These cases occur when the
source text fragment T does not entail the hypoth-
esis H , or when there is a sub-goal for which no
premise predicate matches. That is the case of sub-
goal g5 : sleep(v1) in Figure 1, which does not
match any logical premise pi. Due to the sym-
bolic nature of logic provers, two different predi-
cates with entailing semantics (e.g. nap and sleep)
are considered unrelated, unless stated otherwise.
For that reason, such a semantic relation, if it ex-
ists, needs to be made explicit in our framework.

In our natural deduction system, this opera-
tion is modeled as an on-line axiom injection,
where candidate sub-goals are detected at proof-
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Figure 2: Pipeline for recognising textual entailment. Text and the Hypothesis are syntactically parsed
with a CCG parser, and their logical meaning representations (MRs) are composed. A theorem T → H
is constructed and a prover attempts to test it. If an unprovable sub-goal p′j(θ

′
j) is found, the axiom

construction module attempts to build an axiom ∀θ.pi(θi)→ p′j(θ
′
j) that is fed back into the theorem.

time, and their semantic relations (if any) with the
premises are introduced in the form of axioms.

A sub-goal p′j(θ
′
j) is detected as a candidate

to form an axiom if there is any logical premise
pi(θi) in P such that they share at least one argu-
ment, that is, |θ′j ∩ θi| > 0. Instead of requir-
ing the set of arguments θ′j and θi to be equal,
we only require them to share at least one argu-
ment, to allow sub-goal predicates to underspecify
arguments (e.g. drop the object or the subject of
the sentence). The set Rj of possible relations be-
tween premise predicates pi and a sub-goal predi-
cate p′j can then be defined as:

Rj = {pi | pi(θi) ∈ T ∧ |θ′j ∩ θi| > 0} (1)

In the example above, the sub-goal sleep(v1) is a
candidate sub-goal to form an axiom, and its list
of possible relations is Rsleep = {nap}.

4.3 On-demand axiom construction

Given a candidate sub-goal p′j(θ
′
j), Rj is a list

of possible predicates that may semantically sub-
sume or exclude the meaning of p′j . At this point,
we only need to classify each pi ∈ Rj as subsum-
ing (entailing) p′j , excluding (contradicting) it, or
unrelated. In this work, we choose to use WordNet
and VerbOcean (Chklovski and Pantel, 2004) as
sources of external linguistic knowledge for their
high precision. However, one could use other
databases, ontologies or statistical classifiers, but
we leave those considerations out of the scope of
this paper.

There are two possible types of axioms that can
be created: either entailing axioms ∀θ.pi(θi) →
p′j(θ

′
j), or contradiction axioms ∀θ.pi(θi) →

¬p′j(θ′j), where θ = θ′j∪θi is the union of variable
names occurring in θ′j and θi. Entailing axioms are
created when synonymy (e.g. house → home),

hypernymy (e.g. sea → water), adjectival sim-
ilarity (e.g. huge → big), derivationally related
forms (e.g. accommodating→ accommodation),
or inflection relations (e.g. wooded → wood)
are found in WordNet1. Contradiction axioms
are created solely when antonymy relations (e.g.
big → ¬small) are found. Once these axioms are
created, they are inserted in the theorem and the
proof continues.

Note that in Figure 1, if axioms were created a
priori before the proof takes place, an axiom of the
form ∀x.black(x) → ¬white(x) would have been
created and a contradiction would be found in step
1 when proving the sub-goal g2 : white(x1). We
believe that the frequency of those cases increases
with the length of sentences (or paragraphs) and
the coverage of the external lexical resources.

Figure 2 shows our pipeline. Our software and
Neo-Davidsonian semantic templates are open-
sourced and publicly available at https://
github.com/mynlp/ccg2lambda.

5 Experiments

5.1 Dataset
We use the SemEval-2014 version of the SICK
dataset (Marelli et al., 2014), which is a dataset
of English single-premise textual entailment prob-
lems annotated with three relations: entailing
(yes), contradicting (no) or unrelated (unknown).
The SICK dataset was originally developed to test
approaches of compositional distributional seman-
tics and it includes a variety of lexical, syntactic
and semantic phenomena at the sentential level.
With respect to FraCaS (Cooper et al., 1994), it
contains less linguistically challenging problems
but there is a higher need of lexical knowledge,

1To maximise coverage, we consider all possible senses
for a given predicate (word).

714



Problem ID T-H pairs Entailment

1412
T: Men are sawing logs .

Yes
H: Men are cutting wood .

4114
T: There is no man eating food .

No
H: A man is eating a pizza .

718
T: A few men in a competition are running outside .

Unknown
H: A few men are running competitions outside .

Table 1: Examples of entailment problems from the SICK dataset. Some problems require a mix of
logical reasoning and external lexical knowledge.

making it suitable to test our mechanism. With re-
spect to the RTE datasets from the PASCAL RTE
challenges, SICK problems are much shorter (and
easier to syntactically parse), thus making them af-
fordable for our current semantic parser.

Note that, although the SICK dataset only con-
tains single-premise problems, our method also
applies to multi-premise problems out-of-the-box.
The dataset contains 4, 500 problems for training,
500 for trial and 4, 927 for testing, with a ratio of
yes/no/unk problems of .29/.15/.56 in all splits.
There are almost 212, 000 running words, an av-
erage premise and conclusion length of 10.6 and a
vocabulary of 2, 409 words. Typically, there were
about 3.6 words in the conclusion that did not ap-
pear in the premise, and 3.8 vice versa. Corpus
statistics were collected after sentences were tok-
enized with the Penn Treebank Project tokenizer2.
Some examples of entailment problems for the
SICK dataset are in Table 1.

5.2 Experimental setup

We parsed the tokenized sentences of the
premises and hypotheses using the wide-coverage
CCG parsers C&C (Clark and Curran, 2007)
and EasyCCG (Lewis and Steedman, 2014).
CCG derivation trees (parses) were converted
into logical semantic representations using
ccg2lambda (Martı́nez-Gómez et al., 2016) and
our first-order Neo-Davidsonian event semantics.
The validation of our version of semantic tem-
plates was carried out exclusively on the trial split
of the SICK dataset.

We used Coq (Castéran and Bertot, 2004), an
interactive natural deduction (Coquand and Huet,
1988) theorem prover that we run fully automat-
ically with a number of built-in theorem-proving
routines called tactics, which include first-order

2https://www.cis.upenn.edu/˜treebank/
tokenization.html

logic, arithmetic and equational reasoning. The
axiom injection mechanism presented here could
also have been implemented as a tactic to achieve a
higher proving efficiency. However, this enhance-
ment was left out from this work as it is both tech-
nically involved and makes our system bound to
this specific prover. Instead, we monitor the prov-
ing progress and detect unprovable sub-goals; if
our module produces an axiom, then it is intro-
duced in the theorem and the proof is restarted.
We call this method SPSA, the selector of predi-
cates with shared arguments.

We use two in-house baselines: No axioms is
our system without axiom injection, where only
the logic of the language is used to prove sentence-
level entailment relations. Naı̈ve is a naı̈ve method
where we search for a WordNet linguistic relation
between any two words of the premise and con-
clusion. If such a relation is found, then an ax-
iom is constructed. All axioms found in this way
are introduced in the theorem at once, and then
the proving is performed. In this naı̈ve method
and in SPSA, if two words have more than one
WordNet linguistic relation, then we only consider
one, in this order: inflections, derivationally re-
lated forms, synonyms, antonyms, hypernyms, ad-
jectival similarity and hyponyms. Moreover, al-
though WordNet also contains linguistic relations
between phrases, we only consider word-to-word
relations. Our plain-logic system, the naı̈ve and
the SPSA methods were all timed-out after 100
seconds, at which the entailment judgement “un-
known” was produced. When a syntactic parse er-
ror occurs, our systems tend to judge the entail-
ment relation as “unknown”. To gain robustness
and following Abzianidze (2015), we use a multi-
parsing strategy (unless stated otherwise), that is,
we use both C&C and EasyCCG parsers, and out-
put any of their judgements if they are different

715



from “unknown”3.
Out of more than 20 participating teams

in SemEval 2014, we compare our system to
the following representative state-of-the-art sys-
tems: Illinois-LH (Lai and Hockenmaier, 2014),
ECNU (Zhao et al., 2014), UNAL-NLP (Jiménez
et al., 2014), SemantiKLUE (Proisl et al., 2014)
are systems that build statistical classifiers on
shallow features such as word alignments, syn-
tactic structures and distributional similarities.
These systems are the top performing systems in
SemEval-2014. The Meaning Factory (Bjerva
et al., 2014) is a hybrid system that combines
logic semantic representations derived from CCG
trees, with model builders and a statistical clas-
sifier, whereas LangPro (Abzianidze, 2015) is a
purely logic system that composes Lambda Log-
ical Forms of Natural Logic from CCG deriva-
tions. Nutcracker is a first-order logic system,
where the effectiveness of introducing WordNet
(and PPDB) using conventional methods is eval-
uated in (Pavlick et al., 2015).

We also include Markov Logic Networks
(MLN) as described by Beltagy et al. (2016),
where MLN denotes their system with closed-
world assumptions and coreferences; MLN-WN-
PPDB is their system augmented with Word-
Net and PPDB lexical relations, some handcoded
rules, and C&C/EasyCCG multi-parsing; MLN-
eclassif denotes Beltagy et al. (2016)’s system
augmented with a statistical classifier to recognise
phrasal entailment relations (hence, we add this
system in the list of statistical systems).

As it is common in RTE for SICK, we use pre-
cision and recall, where a successful prediction is
one where the gold entailment label is either “yes”
or “no”, and the system correctly predicts it. The
accuracy, instead, is computed as a 3-way classi-
fication task, where a successful prediction counts
on any of the three labels.

5.3 Results

Table 2 shows the results of our experimentation.
Our plain first-order logic system No axioms has
the highest precision 98.90%, but the lowest recall
(46.48%). However, its accuracy (76.65%) is well
beyond the baseline accuracy (56.69%) based on
the majority class.

3If the system using C&C parser judges “yes” and the
other judges “no”, or vice versa, then the final output is “un-
known”.

System Prec. Rec. Acc.
MLN-eclassif − − 85.10
Illinois-LH 81.56 81.87 84.57
ECNU 84.37 74.37 83.64
UNAL-NLP 81.99 76.80 83.05
SemantiKLUE 85.40 69.63 82.32

The Meaning Factory 93.63 60.64 81.60
LangPro Hybrid-800 97.95 58.11 81.35
MLN-WN-PPDB − − 80.40
Nutcracker-WN-PPDB − − 78.60
Nutcracker-WN − − 77.50
Nutcracker − − 74.30
MLN − − 73.40

Baseline (majority) − − 56.69

SPSA-VerbOcean 97.04 63.64 83.13
SPSA 97.07 62.13 82.97
SPSA, only C&C 97.27 58.48 81.44
SPSA, only EasyCCG 97.73 58.71 81.59
Naı̈ve 92.99 59.70 80.98
No axioms 98.90 46.48 76.65

Table 2: Results on the test split of SICK dataset,
using precision, recall and accuracy.

The Naı̈ve method produced an increase of
4.33% points in accuracy with respect to the pure
logic system. As a comparison, Pavlick et al.
(2015) reported that a naı̈ve introduction of ax-
ioms from WordNet on Nutcracker (Bjerva et al.,
2014) for SICK dataset leads to an increase of
3.2% points of accuracy (from 74.3% to 77.5%),
whereas using WordNet and sophisticated classi-
fiers on the Paraphrase Database (Ganitkevitch et
al., 2013) lead to an increase of 4.3% points in ac-
curacy.

When the SPSA component substitutes the
Naı̈ve method, there is a 6.32% increase in the
accuracy (from 76.63% to 82.97%), the recall
increases by 15.65% and the precision only de-
creases by 1.83% with respect to the No axioms
baseline. This system had higher performance
than the other two best logic systems The Mean-
ing Factory and LangPro (82.97% vs. 81.60%
and 81.35%), and makes the use of external lin-
guistic knowledge more effective than that in
Pavlick et al. (2015), even without the use of a
larger paraphrase database such as PPDB. If we
add VerbOcean, which is an “unrefined” list of
22, 306 verb relations, the accuracy further im-
proves up to 83.13%, ranking our system on the
fourth position among the statistical methods, af-
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Prob. ID T-H pairs Gold System Axioms needed

1412 T: Men are sawing logs . Yes Yes ∀v.saw(v)→ cut(v)
H: Men are cutting wood . ∀x.log(x)→ wood(x)

2404 T: The lady is slicing a tomato . No No ∀v.slice(v)→ cut(v)H: There is no one cutting a tomato .

530 T: A biker is wearing gear which is black . Unk YesH: A biker wearing black is breaking the gears .

1495 T: A man is playing a guitar . Yes Unk ∀v.play(v)→ strum(v)H: A man is strumming a guitar .

1266 T: A band is playing on a stage . Yes Unk “on a stage”→ “onstage”H: A band is playing onstage .

2166 T: A woman is sewing with a machine . Yes Unk “sewing with a machine”→
H: A woman is using a machine made for sewing . “using a machine made for sewing”

384 T: A white and tan dog is running through Yes Unk “tall and green grass”→ “field”the tall and green grass .
H: A white and tan dog is running through a field .

Table 3: Examples of successful and erroneous entailment predictions of our system, collected on the
trial split of the SICK dataset.

ter MLN-eclassif, Illinois-LH and ECNU.
When limiting our semantic logical representa-

tions to those obtained only from the C&C parser
(SPSA, only C&C), the recall was reduced by
3.65% and the accuracy by 1.53%, while the pre-
cision remained almost equal. Similar results were
obtained with the EasyCCG parser. Although no
single parser gives clearly a higher performance
(in terms of recognising textual entailment), there
are clear advantages to using both parsers, which
is consistent with findings in Abzianidze (2015).

Regarding the proving time of the SPSA and the
naı̈ve methods, there were surprisingly no big dif-
ferences. The proving time average, median and
standard deviation per call to the theorem prover
was 10 milliseconds, which was negligible when
compared to the python overhead (the main lan-
guage of our software). The SPSA method did
an average of 10.7 calls to the theorem prover per
RTE problem, whereas the naı̈ve method did an
average of 3.7. Note that these calls include the
forward entailment and the contradiction proof at-
tempts, both for C&C and EasyCCG parse trees. If
lexical relations were found between the premise
and conclusion, the naı̈ve method would only do
one more call (for each parser), whereas the SPSA
method would do as many calls as axioms are po-
tentially necessary. For that reason, the number of
calls of the SPSA method is much larger.

5.4 Positive Examples and Error analysis

Table 3 shows some positive and negative exam-
ples of performance of our system on the trial
split of the SICK dataset. For the first two ex-
amples, our plain logic system (without axioms)

produces incorrect entailment judgements (“un-
known”), while our system produces the correct
label, due to the introduction of two and one
axioms in their corresponding theorems, respec-
tively. The first axiom ∀v.saw(v)→ cut(v) states
that any event v of sawing is an event of cutting.
Note that those predicates only have one argu-
ment event variable v, following Neo-Davidsonian
event semantics. The second axiom ∀x.log(x) →
wood(x) states that any entity x that is a log is
wood.

In the third example, the label of the gold
and plain logic system is “unknown”. However,
our axiom injection system produces the axiom
∀v.wear(v) → break(v), where the meaning of
wear is that of “impairment resulting from long
use” (taken from WordNet). These two predi-
cates apply over the object gear, thus sharing the
same variable instantiation and producing the er-
ror. However, these cases are rare.

In the rest of the examples, our mechanism dis-
plays a lack of coverage to create axioms. In the
fourth example, play and strum are not direct syn-
onyms, but sister terms (according to WordNet).
Many sister terms have an entailment relation, but
many others do not (e.g. stand and run). In
the rest of the examples, an ideal axiom injection
mechanism would need access to string similarity
methods (i.e. “on a stage” → “onstage”) and to
a knowledge base to understand that a machine is
something that can be used, or that “tall and green
grass” is a “field”.
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6 Discussion and Future Work

The axiom injection method presented in this pa-
per is more sophisticated and precise than sim-
ply assessing the linguistic relation between any
two words from T and H and substituting those
words conveniently (or equivalently in our frame-
work, to introduce an axiom). Moreover, the naı̈ve
method is bound to show gradually lower preci-
sion when the size of sentences or the coverage of
lexical resources increases, since there are more
chances to obtain out-of-context lexical relations.
Our axiom injection methods showed larger num-
bers of calls to the theorem prover, but each call
took an average of only 10 milliseconds to com-
plete. The reason for these larger numbers of calls
reside in the implementation of the mechanism,
since a proof needs to be re-run every time a new
axiom is found. A possible enhancement would be
to implement our axiom construction and injection
as a Coq tactic that proves a sub-goal if its pred-
icate has an entailing linguistic relation with any
subset of the predicates in the logical premises at
a specific stage of a proof.

In order to assess the precision of our SPSA
method, we used WordNet and VerbOcean as our
databases of external linguistic knowledge, which
are databases of high-precision relations. In this
setup, we found that our method solves effec-
tively the lack of linguistic knowledge while keep-
ing the precision high. However, other databases
such as the Paraphrase Database (Ganitkevitch et
al., 2013) or statistical classifiers could further in-
crease the coverage of our method.

On one hand, the SPSA method requires access
to the currently active sub-goals (and pool of logi-
cal premises) during a proof. Although such infor-
mation is typically available in logic system, our
method might not be directly applicable to systems
that rely on statistical classifiers to judge composi-
tional entailment relations. On the other hand, our
system is characterised by its very high precision,
which is a desirable characteristic when consider-
ing system combinations. In such setup, our sys-
tem could run first, and if no conclusive sentential
entailment relation is found, a statistical system
could judge the relation, possibly using our logi-
cal representations and axioms as features.

Our method cannot be applied yet to larger
texts, because CCG derivations accumulate errors
when parsing larger sentences, and our logic com-
position is sensitive to those errors. Thus, making

our method more robust against CCG errors is a
natural step. One possible solutions is to use N-
best CCG trees, collect features from those trees
and possibly their semantic logical interpretations,
and perform reranking.

7 Conclusion

We have presented a simple and effective method
that introduces linguistic axioms on-demand to
recognise textual entailments. The strategy is to
build logical semantic representation of T and H ,
monitor the proof of the theorem T → H , find un-
provable sub-goals that share arguments (variable
instantiations) with logical predicates, retrieve lin-
guistic knowledge from an external resource, and
insert the corresponding axioms on-demand. This
system proved more effective and precise than
simply enumerating all possible relations between
words in T and H .

As it is common in logic systems, our method
does not need parameter tuning. Moreover, the se-
mantic representations and axioms are highly in-
terpretable, which makes our system predictable,
easy to understand, and easily extensible to use
other linguistic resources or classifiers.

Finally, our logics and axiom construc-
tion/injection system have a high precision, mak-
ing it a good candidate either as a standalone sys-
tem, or as part of larger systems that use our logi-
cal semantic interpretations and axioms.
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Abstract

We propose a framework that captures the
denotational probabilities of words and
phrases by embedding them in a vector
space, and present a method to induce such
an embedding from a dataset of denota-
tional probabilities. We show that our
model successfully predicts denotational
probabilities for unseen phrases, and that
its predictions are useful for textual entail-
ment datasets such as SICK and SNLI.

1 Introduction

In order to bridge the gap between vector-based
distributional approaches to lexical semantics that
are intended to capture which words occur in sim-
ilar contexts, and logic-based approaches to com-
positional semantics that are intended to capture
the truth conditions under which statements hold,
Young et al. (2014) introduced the concept of
“denotational similarity.” Denotational similarity
is intended to measure the similarity of simple,
declarative statements in terms of the similarity of
their truth conditions.

From classical truth-conditional semantics,
Young et al. borrowed the notion of the deno-
tation of a declarative sentence s, JsK, as the set
of possible worlds in which the sentence is true.
Young et al. apply this concept to the domain of
image descriptions by defining the visual denota-
tion of a sentence s as the set of images that s de-
scribes. The denotational probability of s, PJK(s),
is the number of images in the visual denotation
of s over the size of the corpus. Two sentences are
denotationally similar if the sets of images (possi-
ble worlds) they describe have a large overlap. For
example, “A woman is jogging on a beach” and
“A woman is running on a sandy shore” can of-
ten be used to describe the same scenario, so they

will have a large image overlap that corresponds
to high denotational similarity.

Given the above definitions, Young et al. es-
timate the denotational probabilities of phrases
from FLICKR30K, a corpus of 30,000 images,
each paired with five descriptive captions. Young
et al. (2014) and Lai and Hockenmaier (2014)
showed that these similarities are complementary
to standard distributional similarities, and poten-
tially more useful for semantic tasks that involve
entailment. However, the systems presented in
these papers were restricted to looking up the de-
notational similarities of frequent phrases in the
training data. In this paper, we go beyond this
prior work and define a model that can predict
the denotational probabilities of novel phrases and
sentences. Our experimental results indicate that
these predicted denotational probabilities are use-
ful for several textual entailment datasets.

2 Textual entailment in SICK and SNLI

The goal of textual entailment is to predict whether
a hypothesis sentence is true, false, or neither
based on the premise text (Dagan et al., 2013).
Due in part to the Recognizing Textual Entailment
(RTE) challenges (Dagan et al., 2006), the task of
textual entailment recognition has received a lot
of attention in recent years. Although full entail-
ment recognition systems typically require a com-
plete NLP pipeline, including coreference resolu-
tion, etc., this paper considers a simplified variant
of this task in which the premise and hypothesis
are each a single sentence. This simplified task
allows us to ignore the complexities that arise in
longer texts, and instead focus on the purely se-
mantic problem of how to represent the meaning
of sentences. This version of the textual entail-
ment task has been popularized by two datasets,
the Sentences Involving Compositional Knowl-
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edge (SICK) dataset (Marelli et al., 2014) and the
Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015), both of which involve
a 3-way classification for textual entailment.

SICK was created for SemEval 2014 based on
image caption data and video descriptions. The
premises and hypotheses are automatically gen-
erated from the original captions and so contain
some unintentional systematic patterns. Most ap-
proaches to SICK involve hand-engineered fea-
tures (Lai and Hockenmaier, 2014) or large col-
lections of entailment rules (Beltagy et al., 2015).

SNLI is the largest textual entailment dataset by
several orders of magnitude. It was created with
the goal of training neural network models for tex-
tual entailment. The premises in SNLI are cap-
tions from the FLICKR30K corpus (Young et al.,
2014). The hypotheses (entailed, contradictory, or
neutral in relation to the premise) were solicited
from workers on Mechanical Turk. Bowman et
al. (2015) initially illustrated the effectiveness of
LSTMs (Hochreiter and Schmidhuber, 1997) on
SNLI, and recent approaches have focused on im-
provements in neural network architectures. These
include sentence embedding models (Liu et al.,
2016; Munkhdalai and Yu, 2017a), neural atten-
tion models (Rocktäschel et al., 2016; Parikh et al.,
2016), and neural tree-based models (Munkhdalai
and Yu, 2017b; Chen et al., 2016). In contrast,
in this paper we focus on using a different input
representation, and demonstrate its effectiveness
when added to a standard neural network model
for textual entailment. We demonstrate that the re-
sults of the LSTM model of Bowman et al. (2015)
can be improved by adding a single feature based
on our predicted denotational probabilities. We
expect to see similar improvements when our pre-
dicted probabilities are added to more complex
neural network entailment models, but we leave
those experiments for future work.

3 Vector space representations

Several related works have explored different ap-
proaches to learning vector space representations
that express entailment more directly. Kruszewski
et al. (2015) learn a mapping from an existing
distributional vector representation to a structured
Boolean vector representation that expresses en-
tailment as feature inclusion. They evaluate the
resulting representation on lexical entailment tasks
and on sentence entailment in SICK, but they re-

strict SICK to a binary task and their sentence
vectors result from simple composition functions
(e.g. addition) over their word representations.
Henderson and Popa (2016) learn a mapping
from an existing distributional vector representa-
tion to an entailment-based vector representation
that expresses whether information is known or
unknown. However, they only evaluate on lexical
semantic tasks such as hyponymy detection.

Other approaches explore the idea that it may
be more appropriate to represent a word as a re-
gion in space instead of a single point. Erk (2009)
presents a word vector representation in which the
hyponyms of a word are mapped to vectors that
exist within the boundaries of that word vector’s
region. Vilnis and McCallum (2015) use Gaussian
functions to map a word to a density over a latent
space. Both papers evaluate their models only on
lexical relationships.

4 Denotational similarities

In contrast to traditional distributional similarities,
Young et al. (2014) introduced the concept of “de-
notational similarities” to capture which expres-
sions can be used to describe similar situations.
Young et al. first define the visual denotation of
a sentence (or phrase) s, JsK, as the (sub)set of
images that s can describe. They estimate the
denotation of a phrase and the resulting similar-
ities from FLICKR30K, a corpus of 30,000 im-
ages, each paired with five descriptive captions.
In order to compute visual denotations from the
corpus, they define a set of normalization and re-
duction rules (e.g. lemmatization, dropping modi-
fiers, replacing nouns with their hypernyms, drop-
ping PPs, extracting NPs) that augment the origi-
nal FLICKR30K captions with a large number of
shorter, more generic phrases that are each associ-
ated with a subset of the FLICKR30K images.

The result is a large subsumption hierarchy over
phrases, which Young et al. call a denotation
graph (see Figure 1). The structure of the deno-
tation graph is similar to the idea of an entailment
graph (Berant et al., 2012). Each node in the de-
notation graph corresponds to a phrase s, associ-
ated with its denotation JsK, i.e. the set of im-
ages that correspond to the original captions from
which this phrase could be derived. For example,
the denotation of a phrase “woman jog on beach”
is the set of images in the corpus that depict a
woman jogging on a beach. Note that the deno-
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child play  
soccerchild play guitar      

child in red play  
on beach

girl play  
on beach

child play  
on beachgirl play  

girl play  
on playground

child play

Figure 1: The denotation graph is a subsumption
hierarchy over phrases associated with images.

tation of a node (e.g. “woman jog on beach”) is
always a subset of the denotations of any of its an-
cestors (e.g. “woman jog”, “person jog”, “jog on
beach”, or “beach”).

The denotational probability of a phrase s,
PJK(s), is a Bernoulli random variable that corre-
sponds to the probability that a randomly drawn
image can be described by s. Given a denotation
graph over N images, PJK(s) = |JsK|

N . The joint
denotational probability of two phrases x and y,
PJK(x, y) = |JxK∩JyK|

N , indicates how likely it is
that a situation can be described by both x and
y. Young et al. propose to use pointwise mu-
tual information scores (akin to traditional distri-
butional similarities) and conditional probabilities
PJK(x|y) = |JxK∩JyK|

|JyK| as so-called denotational sim-
ilarities. In this paper, we will work with de-
notational conditional probabilities, as they are
intended to capture entailment-like relations that
hold due to commonsense knowledge, hyponymy,
etc. (what is the probability that x is true, given
that y can be said about this situation?). In an ideal
scenario, if the premise p entails the hypothesis
h, then the conditional probability P (h|p) is 1 (or
close to 1). Conversely, if h contradicts p, then the
conditional probability P (h|p) is close to 0. We
therefore stipulate that learning to predict the con-
ditional probability of one phrase h given another
phrase p would be helpful in predicting textual en-
tailment. We also note that by the definition of the
denotation graph, if x is an ancestor of y in the
graph, then y entails x and PJK(x|y) = 1.

Young et al. (2014) and Lai and Hockenmaier
(2014) show that denotational probabilities can be
at least as useful as traditional distributional sim-
ilarities for tasks that require semantic inference
such as entailment or textual similarity recogni-
tion. However, their systems can only use deno-
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Figure 2: An embedding space that expresses the
individual probability of events X and Y and the
joint probability P (X,Y ).

tational probabilities between phrases that already
exist in the denotation graph (i.e. phrases that
can be derived from the original FLICKR30K cap-
tions).

Here, we present a model that learns to pre-
dict denotational probabilities PJK(x) and PJK(x|y)
even for phrases it has not seen during training.
Our model is inspired by Vendrov et al. (2016),
who observed that a partial ordering � over the
vector representations of phrases can be used to
express an entailment relationship. They induce a
so-called order embedding for words and phrases
such that the vector x corresponding to phrase x
is smaller than the vector y, i.e. x � y, for
phrases y that are entailed by x, where � cor-
responds to the reversed product order on RN

+ (
x � y ⇔ xi ≥ yi∀i). They use their model
to predict entailment labels between pairs of sen-
tences, but it is only capable of making a binary
entailment decision.

5 An order embedding for probabilities

We generalize this idea to learn an embedding
space that expresses not only the binary relation
that phrase x is entailed by phrase y, but also the
probability that phrase x is true given phrase y.
Specifically, we learn a mapping from a phrase x
to an N -dimensional vector x ∈ RN

+ such that the
vector x = (x1, ..., xN ) defines the denotational
probability of x as PJK(x) = exp(−∑i xi). The
origin (the zero vector) therefore has probability
exp(0) = 1. Any other vector x that does not
lie on the origin (i.e. ∃ixi > 0) has probability
less than 1, and a vector x that is farther from the
origin than a vector y represents a phrase x that
has a smaller denotational probability than phrase
y. We can visualize this as each phrase vector oc-
cupying a region in the embedding space that is
proportional to the denotational probability of the
phrase. Figure 2 illustrates this in two dimensions.
The zero vector at the origin has a probability pro-
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portional to the entire region of the positive or-
thant, while other points in the space correspond
to smaller regions and thus probabilities less than
1.

The joint probability PJK(x, y) in this embed-
ding space should be proportional to the size of
the intersection of the regions of x and y. There-
fore, we define the joint probability of two phrases
x and y to correspond to the vector z that is
the element-wise maximum of x and y: zi =
max(xi, yi). This allows us to compute the con-
ditional probability PJK(x|y) as follows:

PJK(x|y) =
PJK(x, y)
PJK(y)

=
exp(−∑i zi)

exp(−∑i yi)

= exp(
∑

i

yi −
∑

i

zi)

Shortcomings We note that this embedding
does not allow us to represent the negation of x as
a vector. We also cannot represent two phrases that
have completely disjoint denotations: in Figure 2,
the P (X) and P (Y ) regions will always intersect
and therefore the P (X,Y ) region will always have
an area greater than 0. In fact, in our embedding
space, the joint probability represented by the vec-
tor z will always be greater than or equal to the
product of the probabilities represented by the vec-
tors x and y. For any pair x = (x1, ..., xN ) and
y = (y1, ..., yN ), PJK(X,Y ) ≥ PJK(X)PJK(Y ):

PJK(X,Y ) = exp
(
−
∑

i

max(xi, yi)
)

≥ exp
(
−
∑

i

xi −
∑

i

yi
)

= PJK(X)PJK(Y )

(Equality holds when x and y are orthogo-
nal, and thus

∑
i xi +

∑
i yi =

∑
imax(xi, yi)).

Therefore, the best we can do for disjoint phrases
is learn an embedding that assumes the phrases are
independent. In other words, we can map the dis-
joint phrases to two vectors whose computed joint
probability is the product of the individual phrase
probabilities.

Although our model cannot represent two
events with completely disjoint denotations, we
will see below that it is able to learn that some
phrase pairs have very low denotational condi-
tional probabilities. We note also that our model
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Predictions trained  
with Cross Entropy

Figure 3: Our probability model architecture.
Each phrase is a sequence of word embeddings
that is passed through an LSTM to produce a 512d
vector representation for the premise and the hy-
pothesis. Both vectors are used to compute the
predicted conditional probability and calculate the
loss.

cannot express P (X) = 0 exactly, but can get ar-
bitrarily close in order to represent the probability
of a phrase that is extremely unlikely.

6 Our model for PJK(x) and PJK(x, y)

We train a neural network model to predict PJK(x),
PJK(y), and PJK(x|y) for phrases x and y. This
model consists of an LSTM that outputs a 512d
vector which is passed through an additional 512d
layer. We use 300d GloVe vectors (Pennington
et al., 2014) trained on 840B tokens as the word
embedding input to the LSTM. We use the same
model to represent both x and y regardless of
which phrase is the premise or the hypothesis.
Thus, we pass the sequence of word embeddings
for phrase x through the model to get x, and we
do the same for phrase y to get y. As previously
described, we sum the elements of x and y to get
the predicted denotational probabilities PJK(x) and
PJK(y). From x and y, we find the joint vector
z, which we use to compute the predicted denota-
tional conditional probability PJK(x|y) according
to the equation in Section 5. Figure 3 illustrates
the structure of our model.

Our training data consists of ordered phrase
pairs 〈x, y〉. We train our model to predict the
denotational probabilities of each phrase (PJK(x)
and PJK(y)) as well as the conditional probability
PJK(x|y). Typically the pair 〈y, x〉 will also appear
in the training data.

Our per-example loss is the sum of the cross en-
tropy losses for PJK(x), PJK(y), and PJK(x|y):
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L = −
[
PJK(x) logQ(x) + (1−PJK(x)) log

(
1−Q(x)

)]

−
[
PJK(y) logQ(y) + (1−PJK(y)) log

(
1−Q(y)

)]

−
[
PJK(x|y) logQ(x|y) + (1−PJK(x|y)) log

(
1−Q(x|y)

)]

We use the Adam optimizer with a learning rate
of 0.001, and a dropout rate of 0.5. These param-
eters were tuned on the development data.

Numerical issues In Section 5, we described the
probability vectors x as being in the positive or-
thant. However, in our implementation, we use
unnormalized log probabilities. This puts all of
our vectors in the negative orthant instead, but it
prevents the gradients from becoming too small
during training. To ensure that the vectors are
in RN

− , we clip the values of the elements of x
so that xi ≤ 0. To compute logPJK(x), we
sum the elements of x and clip the sum to the
range (log(10−10),−0.0001) in order to avoid er-
rors caused by passing log(0) values to the loss
function. The conditional log probability is simply
logPJK(x|y) = logPJK(x, y) − logPJK(y), where
logPJK(x, y) is now the element-wise minimum:

logPJK(x, y) =
∑

i

min(xi, yi)

This element-wise minimum is a standard pool-
ing operation (we take the minimum instead of the
more common max pooling). Note that if xi > yi,
neither element xi nor yi is updated with respect
to the PJK(x|y) loss. Both xi and yi will always
be updated with respect to the PJK(x) and PJK(y)
components of the loss.

6.1 Training regime
To train our model, we use phrase pairs 〈x, y〉 from
the denotation graph generated on the training split
of the FLICKR30K corpus (Young et al., 2014).
We consider all 271,062 phrases that occur with at
least 10 images in the training split of the graph,
to ensure that the phrases are frequent enough that
their computed denotational probabilities are reli-
able. Since the FLICKR30K captions are lemma-
tized in order to construct the denotation graph, all
the phrases in the dataset described in this section
are lemmatized as well.

We include all phrase pairs where the two
phrases have at least one image in common. These
constitute 45 million phrase pairs 〈x, y〉 with
PJK(x|y) > 0. To train our model to predict

PJK(x|y) = 0, we include phrase pairs 〈x, y〉 that
have no images in common ifN×PJK(x)PJK(y) ≥
N−1 (N is the total number of images), mean-
ing that x and y occur frequently enough that we
would expect them to co-occur at least once in the
data. This yields 2 million pairs where PJK(x|y) =
0. For additional examples of PJK(x|y) = 1,
we include phrase pairs that have an ancestor-
descendant relationship in the denotation graph.
We include all ancestor-descendant pairs where
each phrase occurs with at least 2 images, for an
additional 3 million phrase pairs.

For evaluation purposes, we first assign 5% of
the phrases to the development pool and 5% to the
test pool. The actual test data then consists of all
phrase pairs where at least one of the two phrases
comes from the test pool. The resulting test data
contains 10.6% unseen phrases by type and 51.2%
unseen phrases by token. All phrase pairs in the
test data contain at least one phrase that was un-
seen in the training or development data. The de-
velopment data was created the same way.

This dataset is available to download
at http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html.

We train our model on the training data (42
million phrase pairs) with batch size 512 for 10
epochs, and use the mean KL divergence on the
conditional probabilities in the development data
to select the best model. Since PJK(x|y) is a
Bernoulli distribution, we compute the KL diver-
gence for each phrase pair 〈x, y〉 as

DKL(P ||Q) = PJK(x|y) log
PJK(x|y)
Q(x|y)

+
(
1− PJK(x|y)

)
log

1− PJK(x|y)
1−Q(x|y)

where Q(x|y) is the conditional probability pre-
dicted by our model.

7 Predicting denotational probabilities

7.1 Prediction on new phrase pairs
We evaluate our model using 1) the KL di-
vergences DKL(P ||Q) of the gold individual
and conditional probabilities PJK(x) and PJK(x|y)
against the corresponding predicted probabilities
Q, and 2) the Pearson correlation r, which ex-
presses the correlation between two variables (the
per-item gold and predicted probabilities) as a
value between −1 (total negative correlation) and
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P (x) P (x|y)
KL r KL r

Training data 0.0003 0.998 0.017 0.974
Full test data 0.001 0.979 0.031 0.949
Unseen pairs 0.002 0.837 0.048 0.920
Unseen words 0.016 0.906 0.127 0.696

Table 1: Our model predicts the probability of un-
seen phrase pairs with high correlation to the gold
probabilities.
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(b) Predicted probability when PJK(x|y) = 0

Figure 4: Predicted probabilities on denotational
phrase test data when PJK(x|y) = 0 is 0 or 1.
Black is the full test data and gray is the subset of
pairs where both phrases are unseen. Frequency is
represented as a percentage of the size of the data.

1 (total positive correlation). As described above,
we compute the KL divergence on a per-item ba-
sis, and report the mean over all items in the test
set.

Table 1 shows the performance of our trained
model on unseen test data. The full test data
consists of 4.6 million phrase pairs, all of which
contain at least one phrase that was not observed
in either the training or development data. Our
model does reasonably well at predicting these
conditional probabilities, reaching a correlation of
r = 0.949 with PJK(x|y) on the complete test data.
On the subset of 123,000 test phrase pairs where
both phrases are previously unseen, the model’s
predictions are almost as good at r = 0.920.

On the subset of 3,100 test phrase pairs where at

0
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0.2

0.3

1 2 3 4 5 6 7 8 9 10 11

Figure 5: Distribution of phrase lengths as a frac-
tion of the data size on the denotation graph phrase
training data.

least one word was unseen in training, the model’s
predictions are worse, predicting PJK(x|y) with a
correlation of r = 0.696. On the remaining test
pairs, the model predicts PJK(x|y) with a correla-
tion of r = 0.949.

We also analyze our model’s accuracy on phrase
pairs where the gold PJK(x|y) is either 0 or 1. The
latter case reflects an important property of the de-
notation graph, since PJK(x|y) = 1 when x is an
ancestor of y. More generally, we can interpret
PJK(h|p) = 1 as a confident prediction of entail-
ment, and PJK(h|p) = 0 as a confident prediction
of contradiction. Figure 4 shows the distribution
of predicted conditional probabilities for phrase
pairs where gold PJK(h|p) = 0 (top) and gold
PJK(h|p) = 1 (bottom). Our model’s predictions
on unseen phrase pairs (gray bars) are nearly as ac-
curate as its predictions on the full test data (black
bars).

7.2 Prediction on longer sentences

Our model up to this point has only been trained
on short phrases, since conditional probabilities in
the denotation graph are only reliable for phrases
that occur with multiple images (see Figure 5
for the distribution of phrase lengths in the train-
ing data). To improve our model’s performance
on longer sentences, we add the SNLI training
data (which has a mean sentence length of 11
words) to our training data. We train a new model
from scratch on a corpus consisting of the previ-
ously described 42 million phrase pairs and the
550,000 SNLI training sentence pairs (lemmatized
to match our phrase pairs). We do not train on
SICK because the corpus is much smaller and has
a different distribution of phenomena, including
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explicit negation. We augment the SNLI data with
approximate gold denotational probabilities by as-
signing a probability PJK(S) = s/N to a sentence
S that occurs s times in the N training sentences.
We assign approximate gold conditional probabil-
ities for each sentence pair 〈p, h〉 according to the
entailment label: if p entails h, then P (h|p) = 0.9.
If p contradicts h, then P (h|p) = 0.001. Other-
wise, P (h|p) = 0.5.

Figure 6 shows the predicted probabilities on
the SNLI test data when our model is trained on
different distributions of data. The top row shows
the predictions of our model when trained only on
short phrases from the denotation graph. We ob-
serve that the median probabilities increase from
contradiction to neutral to entailment, even though
this model was only trained on short phrases with a
limited vocabulary. Given the training data, we did
not expect these probabilities to align cleanly with
the entailment labels, but even so, there is already
some information here to distinguish between en-
tailment classes.

The bottom row shows that when our model
is trained on both denotational phrases and SNLI
sentence pairs with approximate conditional prob-
abilities, its probability predictions for longer sen-
tences improve. This model’s predicted condi-
tional probabilities align much more closely with
the entailment class labels. Entailing sentence
pairs have high conditional probabilities (median
0.72), neutral sentence pairs have mid-range con-
ditional probabilities (median 0.46), and contra-
dictory sentence pairs have conditional probabil-
ities approaching 0 (median 0.19).

8 Predicting textual entailment

In Section 7.2, we trained our probability model
on both short phrase pairs for which we had gold
probabilities and longer SNLI sentence pairs for
which we estimated probabilities. We now eval-
uate the effectiveness of this model for textual
entailment, and demonstrate that these predicted
probabilities are informative features for predict-
ing entailment on both SICK and SNLI.

Model We first train an LSTM similar to the
100d LSTM that achieved the best accuracy of
the neural models in Bowman et al. (2015). It
takes GloVe word vectors as input and produces
100d sentence vectors for the premise and hypoth-
esis. The concatenated 200d sentence pair rep-
resentation from the LSTM passes through three

Model Test Acc.

Our LSTM 77.2
Our LSTM + CPR 78.2

Bowman et al. (2015) LSTM 77.2

Table 2: Entailment accuracy on SNLI (test).

Model Test Acc.

Our LSTM 81.5
Our LSTM + CPR 82.7

Bowman et al. (2015) transfer 80.8

Table 3: Entailment accuracy on SICK (test).

200d tanh layers and a softmax layer for 3-class
entailment classification. We train the LSTM on
the SNLI training data with batch size 512 for 10
epochs. We use the Adam optimizer with a learn-
ing rate of 0.001 and a dropout rate of 0.85, and
use the development data to select the best model.

Next, we take the output vector produced by
the LSTM for each sentence pair and append our
predicted PJK(h|p) value (the probability of the
hypothesis given the premise). We train another
classifier that passes this 201d vector through two
tanh layers with a dropout rate of 0.5 and a final
3-class softmax classification layer. Holding the
parameters of the LSTM fixed, we train this model
for 10 epochs on the SNLI training data with batch
size 512.

Results Table 2 contains our results on SNLI.
Our baseline LSTM achieves the same 77.2% ac-
curacy reported by Bowman et al. (2015), whereas
a classifier that combines the output of this LSTM
with only a single feature from the output of our
probability model improves to 78.2% accuracy.

We use the same approach to evaluate the ef-
fectiveness of our predictions on SICK (Table 3).
SICK does not have enough data to train an
LSTM, so we combine the SICK and SNLI train-
ing data to train both the LSTM and the final
model. When we add the predicted conditional
probability as a single feature for each SICK
sentence pair, performance increases from 81.5%
to 82.7% accuracy. This approach outperforms
the transfer learning approach of Bowman et al.
(2015), which was also trained on both SICK and
SNLI.
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entail1 neutral1 contradict1 entail2 neutral2 contradict2

0 183 0.0543349168646081 301 0.0935073004038521 403 0.124497991967871 40 0.0118764845605701 52 0.016618728028124 762 0.235403151065802

0.1 753 0.223574821852732 993 0.308480894687791 1163 0.35928328699413 31 0.0092042755344418 202 0.0645573665707894 916 0.282978066110596

0.2 839 0.249109263657957 916 0.284560422491457 861 0.26598702502317 88 0.0261282660332542 357 0.114093959731544 586 0.181031819586036

0.3 638 0.189429928741093 530 0.164647406026716 405 0.125115848007414 169 0.0501781472684086 573 0.183125599232982 331 0.102255174544331

0.4 391 0.116092636579572 260 0.0807704255980118 194 0.0599320358356503 278 0.082541567695962 699 0.223394055608821 273 0.0843373493975904

0.5 262 0.077790973871734 127 0.0394532463497981 119 0.0367624343527958 387 0.114904988123515 613 0.195909236177693 158 0.0488106271238801

0.6 167 0.04958432304038 49 0.0152221186703945 45 0.0139017608897127 532 0.157957244655582 406 0.129753914988814 115 0.0355267222737102

0.7 62 0.0184085510688836 25 0.0077663870767319 24 0.00741427247451344 711 0.211104513064133 200 0.0639181847235538 56 0.017299969107198

0.8 43 0.0127672209026128 17 0.00528114321217769 10 0.00308928019771393 888 0.263657957244656 92 0.0294023649728348 21 0.00648748841519926

0.9 30 0.00890736342042755 1 0.000310655483069276 13 0.00401606425702811 244 0.0724465558194774 25 0.00798977309044423 19 0.00586963237565647
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Figure 6: Predicted conditional probabilities P (h|p) for SNLI sentence pairs (test) by entailment label, as
a percentage of pairs with that label. Top: predictions from the model trained only on short denotational
phrases. Bottom: predictions from the model trained on both short denotational phrases and SNLI.

Premise Hypothesis G P

1 person walk on trail in
woods

in forest 1.0 1.0

2 group of person bike group of person ride 0.9 0.8
3 adult sing while play in-

strument
adult play guitar 0.8 0.8

4 person sit on bench out-
side

on park bench 0.4 0.4

5 tennis player hit ball person swing 0.2 0.2
6 girl sleep on pillow 0.1 0.2
7 man practice martial art person kick person 0.1 0.3
8 person skateboard on

ramp
man ride skateboard 0.2 0.2

9 busy intersection city street 0.3 0.2
10person dive into swim

pool
person fly through air 0.1 0.1

11sit at bench adult read book 0.1 0.1
12person leap into air jump over obstacle 0.0 0.0
13person talk on phone man ride skateboard 0.0 0.0

Table 4: Gold and predicted conditional proba-
bilities from the denotational phrase development
data.

9 Discussion

Section 7 has demonstrated that we can success-
fully learn to predict denotational probabilities for
phrases that we have not encountered during train-
ing and for longer sentences. Section 8 has illus-
trated the utility of these probabilities by showing
that a single feature based on our model’s pre-
dicted conditional denotational probabilities im-
proves the accuracy of an LSTM on SICK and
SNLI by 1 percentage point or more. Although we
were not able to evaluate the impact on more com-
plex, recently proposed neural network models,

Premise Hypothesis Gold Pred

skier on snowy hill athlete 1.00 0.99
pitcher throw ball mound 0.53 0.84
golf ball athlete 0.53 0.66
person point man point 0.48 0.41
in front of computer person look 0.36 0.21

Table 5: Gold and predicted conditional probabil-
ities from unseen pairs in the denotational phrase
development data.

this improvement is quite encouraging. We note in
particular that we only have accurate denotational
probabilities for the short phrases from the denota-
tion graph (mostly 6 words or fewer), which have a
limited vocabulary compared to the full SNLI data
(there are 5263 word types in the denotation graph
training data, while the lemmatized SNLI training
data has a vocabulary of 31,739 word types).

We examine examples of predicted conditional
probabilities for phrase and sentence pairs to an-
alyze our model’s strengths and weaknesses. Ta-
ble 4 has example predictions from the denotation
phrase development data. Our model correctly
predicts high conditional probability for entailed
phrase pairs even when there is no direct hyper-
nym involved, as in example 2, and for closely re-
lated phrases that are not strictly entailing, as in
example 3. Our model also predicts reasonable
probabilities for events that frequently co-occur
but are not required to do so, such as example 7.
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Premise Hypothesis CPR
E

nt
ai

lm
en

t
1 A person rides his bicycle in the sand beside the ocean. A person is on a beach. 0.88
2 Two women having drinks and smoking cigarettes at the bar. Two women are at a bar. 0.86
3 A senior is waiting at the window of a restaurant that serves

sandwiches.
A person waits to be served his food. 0.61

4 A man with a shopping cart is studying the shelves in a super-
market aisle.

There is a man inside a supermarket. 0.47

5 The two farmers are working on a piece of John Deere equip-
ment.

John Deere equipment is being worked on by two
farmers.

0.16

N
eu

tr
al

6 A group of young people with instruments are on stage. People are playing music. 0.86
7 Two doctors perform surgery on patient. Two doctors are performing surgery on a man. 0.56
8 Two young boys of opposing teams play football, while wear-

ing full protection uniforms and helmets.
Boys scoring a touchdown. 0.30

9 Two men on bicycles competing in a race. Men are riding bicycles on the street. 0.24

C
on

tr
ad

ic
tio

n 10 Two women having drinks and smoking cigarettes at the bar. Three women are at a bar. 0.79
11 A man in a black shirt is playing a guitar. The man is wearing a blue shirt. 0.47
12 An Asian woman sitting outside an outdoor market stall. A woman sitting in an indoor market. 0.22
13 A white dog with long hair jumps to catch a red and green toy. A white dog with long hair is swimming underwater. 0.09
14 Two women are embracing while holding to go packages. The men are fighting outside a deli. 0.06

Table 6: Predicted conditional probabilities for sentence pairs from the SNLI development data.

In examples 10 and 11, our model predicts low
probabilities for occasionally co-occurring events,
which are still more likely than the improbable co-
occurrence in example 13. Table 5 demonstrates
similar patterns for pairs where both phrases were
unseen.

Table 6 has examples of predicted conditional
probabilities for sentence pairs from the SNLI de-
velopment data. Some cases of entailment are
straightforward, so predicting high conditional
probability is relatively easy. This is the case
with example 2, which simply involves dropping
words from the premise to reach the hypothesis.
In other cases, our model correctly predicts high
conditional probability for an entailed hypothe-
sis that does not have such obvious word-to-word
correspondence with the premise, such as exam-
ple 1. Our model’s predictions are less accu-
rate when the sentence structure differs substan-
tially between premise and hypothesis, or when
there are many unknown words, as in example 5.
For neutral pairs, our model usually predicts mid-
range probabilities, but there are some exceptions.
In example 6, it is not certain that the people are
playing music, but it is a reasonable assumption
from the premise. It makes sense that in this case,
our model assigns this hypothesis a higher condi-
tional probability given the premise than for most
neutral sentence pairs. In example 7, we might
guess that the patient is a man with 50% proba-
bility, so the predicted conditional probability of
our model seems reasonable. Our model cannot
reason about numbers and quantities, as example

10 shows. It also fails to predict in example 11
that a man wearing a black shirt is probably not
wearing a blue shirt as well. However, our model
does correctly predict low probabilities for some
contradictory examples that have reasonably high
word overlap, as in example 13. Finally, exam-
ple 14 shows that our model can correctly predict
very low conditional probability for sentences that
share no common subject matter.

10 Conclusion

We have presented a framework for represent-
ing denotational probabilities in a vector space,
and demonstrated that we can successfully train a
neural network model to predict these probabili-
ties for new phrases. We have shown that when
also trained on longer sentences with approximate
probabilities, our model can learn reasonable rep-
resentations for these longer sentences. We have
also shown that our model’s predicted probabil-
ities are useful for textual entailment, and pro-
vide additional gains in performance when added
to existing competitive textual entailment classi-
fiers. Future work will examine whether the em-
beddings our model learns can be used directly by
these classifiers, and explore how to incorporate
negation into our model.
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Abstract

To find out how users’ social media be-
haviour and language are related to their
ethical practices, the paper investigates ap-
plying Schwartz’ psycholinguistic model
of societal sentiment to social media text.
The analysis is based on corpora collected
from user essays as well as social media
(Facebook and Twitter). Several experi-
ments were carried out on the corpora to
classify the ethical values of users, incor-
porating Linguistic Inquiry Word Count
analysis, n-grams, topic models, psycho-
linguistic lexica, speech-acts, and non-
linguistic information, while applying a
range of machine learners (Support Vector
Machines, Logistic Regression, and Ran-
dom Forests) to identify the best linguistic
and non-linguistic features for automatic
classification of values and ethics.

1 Introduction

In the recent years, there have been sig-
nificant efforts on determining the opin-
ion/sentiment/emotion about a specific topic
held by the author of a piece of text, and on
automatic sentiment strength analysis of text,
classifying it into either one of the classes posi-
tive, negative or neutral, or into Ekman’s classes
of happy, sad, anger, fear, surprise, and disgust.
However, the intrinsic value of the lives we lead
reflects the strength of our values and ethics
which guide our social practices, attitude and be-
haviour. This paper reports work on investigating

∗∗ The two first authors contributed equally.

a psycholinguistic model, the Schwartz model
(Schwartz and Bilsky, 1990; Schwartz, 2012), and
applying it to social media text. It will here be
referred to as a societal sentiment model, since
societal values grow from the interactions, and
the views and sentiment of the society are key to
ethical practices. No computational model for
Schwartz’ Values has been tested or examined
before as such, but there has been a growing
interest in the scientific community on doing
automatic personality recognition, commonly
using the Big 5 factor model (Goldberg, 1990)
that defines personality traits such as openness,
conscientiousness, extraversion, agreeableness,
and neuroticism.

The Schwartz values model defines ten dis-
tinct ethical values (henceforth only values), that
respectively are: Achievement sets goals and
achieves them; Benevolence seeks to help others
and provide general welfare; Conformity obeys
clear rules, laws and structures; Hedonism seeks
pleasure and enjoyment; Power controls and dom-
inates others, controls resources; Security seeks
health and safety; Self-direction wants to be free
and independent; Stimulation seeks excitement
and thrills; Tradition does things blindly because
they are customary; Universalism seeks peace, so-
cial justice and tolerance for all.

Deeper understanding of human beliefs, atti-
tudes, ethics, and values has been a key research
agenda in Psychology and Social Science research
for several decades. One of the most accepted and
widely used frameworks is Schwartz 10-Values
model, has seen great success in psychological
research as well as in other fields. The ten ba-
sic values are related to various outcomes and ef-
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fects of a person’s role in a society (Argandoña,
2003; Agle and Caldwell, 1999; Hofstede et al.,
1991; Rokeach, 1973). Schwartz values have also
proved to provide an important and powerful ex-
planation of consumer behaviour and how they in-
fluence it (Kahle et al., 1986; Clawson and Vin-
son, 1978). Moreover, there are results that indi-
cate how values of workforce and ethical practice
in organisations are directly related to transforma-
tional and transactional leadership (Hood, 2003).

We believe that these kind of models may be-
come extremely useful in the future for vari-
ous purposes like Internet advertising (specifically
social media advertising), community detection,
computational psychology, recommendation sys-
tems, sociological analysis (for example East vs
West cultural analysis) over social media.

In order to experiment with this, three corpora
have been collected and annotated with Schwartz
values. Two of the corpora come from popu-
lar social media platforms, Facebook and Twit-
ter, while the third corpus consists of essays. A
range of machine learning techniques has then
been utilized to classify an individual’s ethical
practices into Schwartz’ classes by analyzing the
user’s language usage and behaviour in social me-
dia. In addition to identifying the ten basic values,
Schwartz’ theory also explains how the values are
interconnected and influence each other, since the
pursuit of any of the values results in either an ac-
cordance with one another (e.g., Conformity and
Security) or a conflict with at least one other value
(e.g., Benevolence and Power). The borders be-
tween the motivators are artificial and one value
flows into another. Such overlapping and fuzzy
borders between values make the computational
classification problem more challenging.

The paper is organized as follows. Section 2
introduces related work in the area. Details of
the corpora collection and annotation are given in
Section 3. Section 4 reports various experiments
on automatic value detection, while Section 5 dis-
cusses the performance of the psycholinguistic ex-
periments and mentions possible future directions.

2 Related Work

State-of-the-art sentiment analysis (SA) systems
look at a fragment of text in isolation. However,
in order to design a Schwartz model classifier,
we require a psycholinguistic analysis. Therefore,
textual features and techniques proposed and dis-

cussed for SA are quite different from our current
research needs. Hence, we will here focus only on
previous research efforts in automatic personality
analysis that closely relate to our research work.
Personality models can be seen as an augmenta-
tion to the basic definition of SA, where the aim
is to understand sentiment/personality at person
level rather than only at message level.

In recent years, there has been a lot of research
on automated identification of various personality
traits of an individual from their language usage
and behaviour in social media. A milestone in
this area was the 2013 Workshop and Shared Task
on Computational Personality Recognition (Celli
et al., 2013), repeated in 2014 (Celli et al., 2014).
Two corpora were released for the 2013 task. One
was a Facebook corpus, consisting of about 10,000
Facebook status updates of 250 users, plus their
Facebook network properties, labelled with per-
sonality traits. The other corpus comprised 2,400
essays written by several participants labelled with
the personalities. Eight teams participated in the
shared task. The highest result was achieved by
Markovikj et al. (2013) with an F-score of 0.73
(average for all the traits). The main methods and
features (linguistic as well as non-linguistic) used
by the participant groups were as follows.

Linguistic Features: The participating teams
tested several linguistic features. Since n-grams
are known to be useful for any kind of textual
classification, all the teams tested various lengths
of n-grams (uni, bi, and tri-grams). Categorical
features like part-of-speech (POS), word level fea-
tures like capital letters, repeated words were also
used. Linguistic Inquiry Word Count (LIWC) fea-
tures were used by all the teams as their base-
lines. LIWC (Pennebaker et al., 2015) is a hand-
crafted lexicon specifically designed for psycho-
linguistic experiments. Another psycholinguistic
lexicon called MRC (Wilson, 1988) was also used
by a few teams, as well as lexica such as Sen-
tiWordNet (Baccianella et al., 2010) and Word-
Net Affect (Strapparava and Valitutti, 2004). Two
more important textual features were discussed by
the participating teams. Linguistic nuances, in-
troduced by Tomlinson et al. (2013), is the depth
of the verbs in the Wordnet troponymy hierarchy.
Speech act features were utilized by Appling et al.
(2013): the authors manually annotated the given
Facebook corpus with speech acts and reported
their correlation with the personality traits.
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Here we briefly describe some people. Please read each description and think about how much each person is or is not like you.
Tick the box to the right that shows how much the person in the description is like you.

HOW MUCH LIKE YOU IS THIS PERSON?
Very
much
like
me

Like
me

Some-
what
like
me

A
little
like
me

Not
like
me

Not
like
me

at all
1. Thinking up new ideas and being creative is important to her.
She likes to do things in her original way. SD 6 5 4 3 2 1

2. It is important to her to be rich.
She wants to have a lot of money and expensive things. PO 6 5 4 3 2 1

3. She thinks it is important that every person in the world be treated equally.
She believes everyone should have equal opportunities in life. UN 6 5 4 3 2 1

4. Its important to her to show her abilities.
She wants people to admire what she does. AC 6 5 4 3 2 1

5. It is important to her to live in secure surroundings.
She avoids anything that might endanger her safety. SE 6 5 4 3 2 1

Table 1: Instructions and format of the Portrait Values Questionnaire. For each statement, the respondents
should answer the question ”How much like you is this person?” by checking one of the six boxes.

Non-Linguistic Features: All teams used Face-
book network properties including network size,
betweenness centrality, density and transitivity,
provided as a part of the released dataset.

3 Corpus Acquisition

To start with, we ask a very fundamental question:
whether social media is a good proxy of the orig-
inal (real life) society or not. Back et al. (2010)
and Golbeck et al. (2011) provide empirical an-
swers to this question. Their results respectively
indicate that, in general, people do not use virtual
desired/bluffed social media profiles to promote
an idealized-virtual-identity and that a user’s per-
sonality can be predicted from his/her social me-
dia profile. This does not mean that there are no
outliers, but our corpus collection was grounded
on the assumption that it is true for a major por-
tion of the population that social media behaviour
to a large extent mirror that of the actual human
society. Two of the most popular social media
platforms, Twitter and Facebook, were chosen as
sources for the corpora to validate this assumption.
In addition, an essay corpus was collected. These
three diverse corpora were then used for training
and testing Schwartz values analysis methods.

3.1 Questionnaire for Self-Assessment

A standard method of psychological data collec-
tion is through self-assessment tests, popularly
known as psychometric tests. In our experiments,
self-assessments were obtained using male/female
versions of PVQ, the Portrait Values Question-
naire (Schwartz et al., 2001). The participants

were asked to answer each question on a 1–6 Lik-
ert rating scale.1. A rating of 1 means “not like
me at all” and 6 means “very much like me”. An
example question is “He likes to take risks. He
is always looking for adventures.” where the user
should answer while putting himself in the shoes
of “He” in the question. A few exemplary items as
well as the instructions and format of the written
form of the PVQ are presented in Table 1.

The standard practice is to ask a fixed number
of questions per psychological dimension. Here
there are five questions for each of the ten Val-
ues classes, resulting in a 50 item questionnaire.
Once all the questions in the PVQ have been an-
swered, for each user and for each Values class, a
score is generated by averaging all the scores (i.e.,
user responses) corresponding to the questions in
that class, as described by Schwartz (2012). Fur-
ther, the rescaling strategy proposed by Schwartz
(2012) was used to eliminate randomness from
each response given by a user as follows: For each
user, the mean response score was first calculated
considering all the responses s/he provided, and
then the mean score from each response was sub-
tracted. See Schwartz (2012) for more details on
PVQ and the score computation mechanism.

The ranges of scores obtained from the pre-
vious rescaling method may vary across differ-
ent Values classes. For instance, the ranges of
the rescaled scores for the Essay corpus are as
follows: Achievement [−4.12, 3.36], Benevolence
[−1.56, 3.39], Conformity [−3.35, 3.01], Hedo-

1http://www.simplypsychology.org/
likert-scale.html
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nism [−5.18, 4.35], Power [−6.0, 2.27], Security
[−2.60, 2.40], Self-Direction [−1.61, 3.40], Stim-
ulation [−5.0, 2.63], Tradition [−4.49, 3.35], and
Universalism [−3.33, 3.30].2

Hence the standard normalisation formula was
applied to move the ranges of the different Values
classes to the [−1, 1] interval:

xscaled =
2 ∗ (x− xmin)

xmax − xmin
− 1

A ‘Yes’ or ‘No’ binary value was assigned to
each Values class: if the score was less than 0, the
class was considered to be negative, indicating ab-
sence of that Values trait for the particular user;
while scores ≥ 0 were considered to be positive,
indicating the presence of that trait for the user.
We will use the real scores ranging [−1, 1] for the
regression experiments mentioned in Section 4.

Reports of psychological analysis always de-
pend on how the target population is chosen.
Therefore while we are hypothesising that a few
people are more Power oriented, an open ques-
tion that remains unanswered is whom they are
more Power oriented than. For example, if we
(hypothetically) choose parliamentarians / politi-
cians as participants in an experiment, then the
entire examined population will likely turn out
to be Power oriented. Therefore, it makes sense
to normalise the obtained data into two groups
[−1, 0) and [0, 1] and proclaim that people with
[0, 1] range scores are relatively more Power (or
any other Value) oriented than the people having
score ranging [−1, 0).

The same normalisation mechanism was ap-
plied to all the corpora, but also after normalisa-
tion the different Values distributions were imbal-
anced (with the Facebook data being the most im-
balanced). One possible reason behind such im-
balanced distributions is that the portion of the
real population using social media is slightly bi-
ased towards some Values types due to several
societal reasons such as educational/family back-
ground, age group, occupation, etc. Another rea-
son could be that the divisions between different
value types simply never are balanced in any pop-
ulation. However, analysing such societal traits is
a separate research direction altogether and out of
the scope of the current study.

2The distribution of value types over a corpus was anal-
ysed using the Bienaymé-Chebyshev Inequality (Bienaymé,
1853; Tchébichef, 1867), showing that, e.g, most Achieve-
ment instances (89%) were in the range [−2.96, 2.84].

The PVQ questionnaire setting described above
was used to separately collect textual user data
separately for the Essay, Facebook, and Twitter
corpora, as discussed in the rest of this section.

3.2 Essay Corpus

The Essay corpus was collected using the Amazon
Mechanical Turk (AMT)3 crowd-sourcing service.
The turkers (users providing responses on AMT)
were asked to compose an essay on the most im-
portant values and ethics guiding their lives, and
to answer the PVQ questionnaire. A total of 981
users participated in the essay writing. However,
not all the responses were useful for the analy-
sis, since some participants did not answer all the
questions and some did not write the essay care-
fully. For example, one user wrote: “I don’t really
have a guide in life. I go by what sounds and feels
good. that means what makes me happy rather
that effects others or not.” Filtering out such users,
data from 767 respondents was retained.

3.3 Twitter Corpus

In the first quarter of 2016, the micro blogging ser-
vice Twitter averaged 310 million monthly active
users,4 with around 6,000 tweets being posted ev-
ery second. Therefore, Twitter came as the sec-
ond natural choice as data source. The data collec-
tion was crowd-sourced using Amazon Mechani-
cal Turk, while ensuring that the participants came
from various cultures and ethnic backgrounds: the
participants were equally distributed, and con-
sisted of Americans (Caucasian, Latino, African-
American), Indians (East, West, North, South),
and a few East-Asians (Singaporeans, Malaysian,
Japanese, Chinese). The selected Asians were
checked to be mostly English speaking.

The participants were requested to answer the
PVQ questionnaire and to provide their Twitter
IDs, so that their tweets could be crawled. How-
ever, several challenges have to be addressed when
working with Twitter, and a number of iterations,
human interventions and personal communica-
tions were necessary. For example, several users
had protected Twitter accounts, so that their tweets
were not accessible when using the Twitter API.
In addition, many users had to be discarded since
they had published less than 100 tweets, making

3https://www.mturk.com/
4statista.com/statistics/282087/

number-of-monthly-active-twitter-users
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Corpus AC BE CO HE PO SE SD ST TR UN Avg

Essay 65.70 52.41 63.10 54.40 40.40 52.50 54.00 52.50 43.20 54.43 66.10
Twitter 81.00 78.70 73.30 77.10 50.10 76.30 83.40 73.60 52.60 82.00 72.80
Facebook 88.13 93.22 91.52 86.44 46.67 98.30 89.83 86.44 71.18 94.91 84.67

Table 2: Flat distribution of Schwartz’ value types in the corpora: Achievement (AC), Benevolence (BE),
Conformity (CO), Hedonism (H), Power (PO), Security (SE), Self-Direction (SD), Stimulation (ST),
Tradition (TR), Universalism (UN). The last column gives the Average Majority Baselines.

Personality AC BE CO HE PO SE SD ST TR UN

Achievement (AC) — 28.31 19.49 29.41 41.54 15.81 11.77 19.85 41.91 17.28
Benevolence (BE) 24.12 — 19.84 31.12 52.92 18.68 10.51 22.18 42.80 7.00
Conformity (CO) 18.59 23.42 — 35.32 47.58 12.64 17.47 24.91 35.32 15.99
Hedonism (HE) 17.60 24.04 25.32 — 43.35 21.03 9.01 14.60 45.92 12.88
Power (PO) 12.64 33.52 22.53 27.47 — 17.58 13.74 17.03 41.21 20.33
Security (SE) 17.63 24.82 15.47 33.81 46.04 — 13.31 21.94 38.49 14.39
Self-Direction (SD) 21.05 24.34 26.97 30.26 48.35 20.72 — 20.72 47.04 12.50
Stimulation (ST) 18.66 25.37 24.63 25.75 43.66 19.03 10.08 — 42.91 16.04
Tradition (TR) 18.13 23.83 9.84 34.72 44.56 11.40 16.58 20.73 — 17.10
Universalism (UN) 24.75 20.07 24.41 32.11 51.51 20.40 11.04 24.75 46.49 —

Table 3: Fuzzy distributions of Schwartz’ ten personality value types in the Twitter corpus.

them uninteresting for statistical analysis. In ad-
dition, some extreme cases when users mentioned
someone else’s (some celebrity’s) Twitter account,
had to be discarded. The open source free Twitter
API: Twitter4J5 also has a limit of accessing only
the current 3,200 tweets from any user. To resolve
this issue, an open source Java application (Hen-
rique, 2015) was used.

At the end of the data collection process, data
from 367 unique users had been gathered. The
highest number of tweets for one user was 15K,
while the lowest number of tweets for a user was
a mere 100; the average number of messages per
user in the Twitter corpus was found to be 1,608.

3.4 Facebook Corpus

Facebook (FB) is the most popular social network-
ing site in the world, with 1.65 billion monthly ac-
tive users during the first quarter of 2016.6 There-
fore, Facebook was a natural first choice for cor-
pus collection, but since the privacy policy of
Facebook is very stringent, accessing Facebook
data is challenging. To collect the corpus, a Face-
book Canvas web-application was developed us-
ing Facebook Graph API and Facebook SDK v5
for PHP library. Undergraduate students of two In-
dian institutes (NIT, Agartala, Tripura and IIIT, Sri
City, Andhra Pradesh) were contacted for the data

5http://twitter4j.org/
6http://www.statista.com/statistics/264810/number-of-

monthly-active-facebook-users-worldwide/

collection. The application was circulated among
the students and they were requested to take part
in the PVQ survey and to donate their FB Timeline
data and friend list data. Timeline data includes
their own posts and all the posts they are tagged
in, and posts other people made on their Timeline.

So far, data from 114 unique users has been
collected, but the data is highly imbalanced (for
some value types the distributions of ‘Yes’ and
‘No’ classes were in 90:10 ratio). Crowd-sourcing
is a cheap and fast way to collect data, but un-
fortunately some annotators chose random labels
to minimize their cognitive thinking load. These
annotators can be considered as spammers and
make aggregation of crowd-sourced data a chal-
lenging problem, as discussed in detail by Hovy
et al. (2013). To filter out spammers, the MACE
(Hovy et al., 2013) tool was used and data from 54
users discarded, so the final dataset includes only
60 participants. The average number of messages
per user in the Facebook corpus is 681.

3.5 Corpus Statistics

Categorical flat distributions are reported in Ta-
ble 2. Schwartz’ model defines fuzzy member-
ship, which means that anyone having a Power ori-
entation can have the Achievement orientation as
well. To understand this notion vividly, we have
reported the fuzzy membership statistics from the
Twitter data in Table 3 (due to space limitations,
statistics for the other corpora are not reported).
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Feature Ablation AC BE CO HE PO SE SD ST TR UN

Before Ablation 65.84 56.06 64.02 58.02 58.80 53.06 60.89 56.58 64.28 65.58
After Ablation 65.84 58.54 64.80 58.93 59.58 55.80 61.53 56.84 65.06 66.10
Number of features 52 37 65 38 54 47 65 53 39 48

Table 4: Best LIWC feature selection (by accuracy) for each of Schwartz’ ten personality value types.
The values in the ‘Before Feature Ablation’ row are based on the full feature set (69 features).

The statistics in Table 3 show how the ten val-
ues are interconnected and influence each other,
supporting the basic assumption of the Schwartz
model that the borders between value classes are
artificial and that one value flows into the next.

4 Automatic Identification Experiments

Several experiments were performed to get a bet-
ter understanding of the most appropriate linguis-
tic and non-linguistic features for the problem do-
main. The experiments were designed as a single
label classification task (each input corresponds
to one target label) with 20 classes, with ‘Yes’
and ‘No’ classes for each of the ten Schwartz val-
ues. Ten different classifiers were trained, each
for a particular value type. Each classifier predicts
whether the person concerned is positively or neg-
atively inclined towards the given Schwartz value.

The versions implemented in WEKA (Witten
and Frank, 2005) of three different machine learn-
ing algorithms were used in the experiments: Se-
quential Minimal Optimization (SMO; a version
of Support Vector Machines, SVM), Simple Lo-
gistic Regression (LR), and Random Forests (RF).
In all the mentioned experiments the corpora were
pre-processed, i.e., tokenized by the CMU tok-
enizer (Gimpel et al., 2011) and stemmed by the
Porter Stemmer (Porter, 1980). All the lexica were
also stemmed in the same way before usage and all
results reported below were obtained using 10-fold
cross validation on each of the corpora.

4.1 Linguistic Features

LIWC Analysis: LIWC (Pennebaker et al.,
2015) is a well developed hand-crafted lexicon.
It has 69 different categories (emotions, psychol-
ogy, affection, social processes, etc.) and almost
6,000 distinct words. The 69 categorical features
were extracted as user-wise categorical word fre-
quencies. As the text length (for the Essay cor-
pus) or number of messages (Twitter and FB cor-
pora) varies from person to person, Z-score nor-
malization (or standardization) was applied using

the equation: x̂ = (x − µ)/σ, where x is the ‘raw
frequency count’, µ and σ are respectively the
mean and standard deviation of a particular fea-
ture. After normalizing, each feature vector value
is centered around σ = (0, 1). This normalization
led to an increase in the accuracy figures in many
of the cases.

To investigate how each LIWC feature con-
tributes, feature ablation was performed and the
Pearson correlations of LIWC features vs value
types were analysed. The final classifiers were
trained using only the features that were contribut-
ing for a particular value type. This resulted
in a performance boost and also gave reduced
time complexity (both model training and testing
times). Table 4 contains detailed categorical fea-
tures for each value type for the SMO model, and,
e.g., shows that the same accuracy (65.84%) for
the Achievement class as obtained by using the
full 69 feature set also can be obtained by using
only 52 LIWC features. Moreover, the lowest ob-
tained accuracy 53.06% for the Security class in-
creased to 55.80% when considering only 47 fea-
tures. Clearly, the details of which features ac-
tually contribute to each class cannot be included
here (for space reasons), but the important lesson
is that it is possible to reduce the feature set and
increase performance in this way.

n-grams: In line with the systems discussed in
Section 2, n-gram features were added to the
LIWC baseline. In a first run, the top 20% of
the most frequent uni-grams from the Essay cor-
pus were included as new features, resulting in a
1452+69 feature set. Unexpectedly, SMO’s ac-
curacy dropped by an average of 8.60%. The
Achievement and Conformity values suffered the
maximum performance drop, whereas Security
and Hedonism had a slight increase in accuracy.
Random Forests performed well in many of cases,
except for the Security and Benevolence classes.

In a second iteration, categorical (value wise)
n-grams features were selected and used. The re-
sulting feature set sizes differ for each of the ten
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values, ranging from the lowest number 886+69
for Power to the highest 1176+69 for Universal-
ism. Marginally better performance was recorded.

n-grams (word grams) with various sizes of n,
ranging from 2, 3, 4, 5, and so on, have differ-
ent impact on performance on different kinds of
applications. Commonly, bi-grams are better fea-
tures for many text classification tasks. So, in a
third iteration we tested system performance us-
ing bi-grams as added features with LIWC. As the
total possible combinations of bi-grams are quite
high, only the top 2,000 frequent bi-grams were
included, resulting in 2000+69 features. There
was no significant performance gain in this exper-
iment on the Essay corpus, so this feature was not
tested for the other two corpora.

Topic Modeling: In order to find out the bag-
of-words features for each value type, i.e., the
vocabulary that a person uses more frequently,
the MALLET (McCallum, 2002)7 topic modelling
toolkit was used to extract a number of top-
ics. MALLET uses Gibbs Sampling and Latent
Dirichlet Allocation (LDA). In a pre-processing
stage, stop words were removed and case was pre-
served. For the Essay corpus, we tested with dif-
ferent number of topic clusters of sizes 10, 20, 50,
75, and 100, and observed that 50 was the most
suitable number. Each of the 50 topics contained
an average of 19 words (the topic key words inden-
tified by MALLET), each with a specific weight
attached. The top 5 topics were chosen for each
value type, according to these weights, and the
words of these topics were added as a new feature
set along with the LIWC baseline features.

It was also observed that the rankings of the
top 5 topics were almost similar for each Schwartz
value. The accuracies obtained were almost sim-
ilar to the accuracies obtained in the previous ex-
periments; however, this time, since the dimension
of the feature set is much smaller, the time com-
plexity decreased by almost a factor of 10. Hence
the topic modelling was repeated for the social me-
dia corpora from Facebook and Twitter, but result-
ing in a different number of topic clusters, namely
89. Added to the 69 LIWC features this thus re-
sulted in a total of 158 features.

Psycholinguistic Lexica: In addition to the base
feature set from LIWC, two other psycholinguistic
lexica were added: the Harvard General Inquirer

7http://mallet.cs.umass.edu

(Stone et al., 1966) and the MRC psycholinguistic
database (Wilson, 1988). The Harvard General In-
quirer lexicon contains 182 categories, including
two large valence categories positive and negative;
other psycholinguistic categories such as words of
pleasure, pain, virtue and vice; words indicating
overstatement and understatement, often reflect-
ing presence or lack of emotional expressiveness,
etc. 14 features from the MRC Psycholinguistic
lexicon were included, namely, number of let-
ters, phonemes and syllables; Kucera-Francis fre-
quency, number of categories, and number of sam-
ples; Thorndike-Lorge frequency; Brown verbal
frequency; ratings of Familiarity, Concreteness,
Imagability and Age of acquisition; and meaning-
fulness measures using Colorado Norms and Pavio
Norms. In order to get these MRC features a ma-
chine readable version of it has been used.8 Fea-
ture ranking was done by evaluating the contribu-
tion of each feature in an SMO classifier.

In addition, the sensorial lexicon Sensicon
(Tekiroğlu et al., 2014) was used. It contains
words with sense association scores for the five
basic senses: Sight, Hearing, Taste, Smell, and
Touch. For example, when the word ‘apple’ is ut-
tered, the average human mind will visualize the
appearance of an apple, stimulating the eye-sight,
feel the smell and taste of the apple, making use of
the nose and tongue as senses, respectively. Sensi-
con provides a numerical mapping which indicates
the extent to which each of the five senses is used
to perceive a word in the lexicon. Again, feature
ablation was performed and the (Pearson) corre-
lations of lexicon features vs values analysed. Fi-
nally, classifiers were trained using only contribut-
ing features for a particular value.

Speech Act Features: The way people com-
municate, whether it is verbally, visually, or via
text, is indicative of Personality/Values traits. In
social media, profile status updates are used by
individuals to broadcast their mood and news to
their peers. In doing so, individuals utilize var-
ious kinds of speech acts that, while primarily
communicating their content, also leave traces of
their values/ethical dimensions behind. Follow-
ing the hypothesis of Appling et al. (2013), speech
act features were applied in order to classify per-
sonalities/values. However, for this experiment
the speech act classes were restricted to 11 major
categories: Statement Non-Opinion (SNO), Wh

8http://ota.oucs.ox.ac.uk/headers/1054.xml
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Speech Act SNO Wh YN SO AD YA T AP RA A O Avg.

Distribution 33.37 11.45 15.45 5.16 6.88 15.08 0.41 3.26 0.71 0.07 14.59
F1-score 0.45 0.88 0.88 0.72 0.45 0.60 0.72 0.60 0.12 0.77 0.12 0.69

Table 5: Speech act class distributions in the corpus (in %) and speech act classifier performance

Question (Wh), Yes-No Question (YN), Statement
Opinion (SO), Action Directive (AD), Yes An-
swers (YA), Thanking (T), Appreciation (AP), Re-
sponse Acknowledgement (RA), Apology (A) and
others (O), hence avoiding having 43 fine-grained
speech act classes.9

A corpus containing 7K utterances was col-
lected from Facebook and Quora pages, and anno-
tated manually. Motivated by the work by Li et al.
(2014), this corpus was used to develop an SVM-
based speech act classifier using the following fea-
tures: bag-of-words (top 20% bigrams), presence
of “wh” words, presence of question marks, occur-
rence of “thanks/thanking” words, POS tags dis-
tributions, and sentiment lexica such as the NRC
lexicon (Mohammad et al., 2013), SentiWordNet
(Baccianella et al., 2010), and WordNet Affect
(Strapparava and Valitutti, 2004).

The categorical corpus distribution and the per-
formance of the final classifier are reported in Ta-
ble 5, showing an average F1-score of 0.69 in 10-
fold cross validation. Automatic speech act clas-
sification of social media conversations is a sepa-
rate research problem, which is out of the scope of
the current study. However, although the speech
act classifier was not highly accurate in itself, the
user specific speech act distributions (in %) could
be used as features for the psycholinguistic classi-
fiers (resulting in 11 additional features). Experi-
ment on the Essay and Facebook corpora showed
only 1.15% and 1% performance gain, respec-
tively, whereas on the Twitter Corpus, a noticeable
performance improvement of 6.12% (F-measure)
was obtained. This indicates that speech acts
are important signals of psychological behaviour,
so even though the speech act classifier performs
poorly, the extracted information is relevant.

4.2 Non-Linguistic Features

Social network structure is very useful to predict
any person’s intrinsic value. For each user in the
Twitter corpus, the total number of tweets or mes-
sages, total number of likes, average time differ-

9See for Fine-Gained Speech-Act classes http://
compprag.christopherpotts.net/swda.html.

ence between two tweets/messages, total number
of favourites and re-tweets, and their in-degree and
out-degree centrality scores on network of friends
and followers were used as features adding to a
total of 7 features along with the feature set used
in the Topic Modelling experiment (69 LIWC +
89 Topic Modeling words from the Essay Corpus)
after observation of the structure of tweets and
the previously done linguistic feature experiments.
The degree centrality was calculated as of a vertex
v, for a given graph G(V,E) with |V | vertices and
|E| edges, is defined as: {CD = deg(v)}.

The results of all the experiments after 10-fold
cross-validation are summarized in Table 6 below.

5 Discussion and Conclusion

The main contributions of this paper are the in-
troduction of a computational Schwartz values
model, development of three different corpora an-
notated with Schwartz’ value, and experiments
with features for automatic value classification.
Table 6 reports that our models outperformed the
majority baselines by significant margins of +5.05,
+7.20, +9.83 respectively on the Essay, Twitter
and Facebook corpora. From the results it could
be inferred that a few Schwartz values such as
Self-Direction and Security are relatively difficult
to identify, while on the other hand the accuracies
for certain value types such as Power and Tradi-
tion are persistent and seem to be more salient.

The results also indicate that social media text is
difficult for automatic classification, which is ob-
vious from its terse nature. However, it is strik-
ing that the social media postings correlate far
stronger than the essays with the psychometric
data. This is probably since the size of the Twit-
ter data is much larger than someones essay, and
since when asked to write something, people be-
come cautious; however, users behave more natu-
rally when communicating in social media, mak-
ing the data more insightful.

Another major implication from the experi-
ments is that popular text classification features
such as n-grams and topic-modelling were not per-
forming well in this domain, indicating that this
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Values Achievement Benevolence Conformity Hedonism Power
Classifier SMO LR RF SMO LR RF SMO LR RF SMO LR RF SMO LR RF

LIWC

E
ss

ay

65.84 65.06 64.93 56.06 55.67 59.58 64.01 61.40 63.49 58.02 59.20 54.11 58.80 59.32 57.50
+n-grams 57.50 62.71 65.84 55.54 53.19 58.80 56.45 61.54 64.80 58.28 58.41 58.02 53.46 59.71 58.41
+Topic 58.54 64.15 65.32 54.37 53.46 59.06 60.63 62.32 63.75 58.80 58.41 58.28 58.15 57.76 56.71
+Lexica 68.00 68.00 60.00 67.00 65.00 59.00 75.00 71.00 63.00 69.00 65.00 54.00 69.00 67.00 60.00
+Speech-Act 68.00 66.80 60.30 69.00 67.00 59.00 71.00 67.00 59.00 68.00 67.00 60.00 70.00 67.00 58.00

LIWC
TWT 80.93 80.93 80.10 78.75 78.75 77.38 73.02 72.48 77.93 77.11 76.84 76.02 54.77 50.68 52.59
FB 85.60 82.90 81.60 89.10 88.20 89.90 87.50 86.60 87.50 85.70 80.20 80.20 67.40 59.20 59.30

+Topic
TWT 74.66 80.65 80.65 69.21 78.20 77.93 66.76 72.48 73.02 71.66 76.84 76.57 52.32 54.77 51.77
FB 79.66 88.14 88.14 91.53 93.22 93.22 88.14 89.13 91.53 83.05 84.75 86.44 50.85 52.54 50.85

+Lexica
TWT 71.10 73.70 69.70 71.90 69.90 65.00 67.20 71.60 68.00 68.00 68.60 60.60 72.80 69.80 59.20
FB 98.20 86.30 82.60 93.50 89.90 89.90 93.90 96.20 91.10 96.80 81.60 83.90 91.50 64.40 56.50

+Non-Linguistic TWT 74.11 80.38 80.93 68.40 78.47 77.38 66.49 72.48 74.11 70.30 76.30 76.57 54.22 55.59 54.22

+Speech-Act
TWT 81.10 76.40 68.00 81.00 73.00 66.00 75.00 66.00 66.00 74.00 64.00 63.00 82.00 75.00 63.00
FB 98.20 84.50 84.50 95.90 89.60 89.60 93.70 93.70 90.80 98.20 86.60 83.40 91.20 66.70 70.30

Values Security Self-Direction Stimulation Tradition Universalism Average
Classifier SMO LR RF SMO LR RF SMO LR RF SMO LR RF SMO LR RF

LIWC

E
ss

ay

53.06 55.02 56.06 60.89 59.84 58.54 56.58 56.98 56.45 64.28 65.97 64.02 65.58 65.71 65.32 61.36
+n-grams 56.84 56.45 56.71 56.06 58.54 58.41 56.06 56.67 56.71 58.67 65.06 64.28 58.28 65.45 65.84 61.05
+Topic 56.45 55.41 54.11 58.67 58.41 60.76 56.45 59.58 53.59 61.15 66.10 66.10 62.45 65.97 65.32 61.40
+Lexica 68.00 66.00 58.00 73.00 68.00 62.00 71.00 69.00 56.00 69.00 65.00 56.00 71.00 67.00 62.00 70.00
Speech-Act 73.00 69.00 58.00 69.00 66.00 55.00 75.00 71.00 63.00 74.00 70.00 62.00 72.80 68.30 61.50 71.15(+5.05)

LIWC
TWT 76.29 75.75 74.11 83.38 83.38 75.20 73.57 72.48 70.84 58.04 55.31 55.86 82.02 81.47 80.65 74.28
FB 97.50 97.50 97.50 85.00 84.20 83.00 83.90 82.80 80.20 68.60 59.20 62.00 89.30 91.00 88.20 84.21

+Topic
TWT 70.57 74.93 75.48 76.84 83.38 83.38 64.12 72.47 71.66 52.04 53.95 59.67 74.93 81.47 81.20 73.70
FB 93.22 98.30 98.30 86.44 84.75 89.83 81.36 84.75 86.44 62.71 74.58 71.19 89.83 94.91 93.22 85.71

+Lexica
TWT 70.60 74.30 69.50 75.60 74.40 76.60 68.80 68.60 68.30 73.90 69.50 62.30 78.00 82.20 76.30 73.38
FB 97.50 97.50 97.50 91.60 82.40 85.00 92.80 83.90 83.90 84.60 75.10 78.90 90.70 92.40 91.60 93.51

+Non-Linguistic TWT 71.18 74.66 75.20 76.57 83.38 83.38 65.58 73.57 71.66 52.59 53.41 55.86 74.39 81.74 82.02 73.57

+Speech-Act
TWT 78.00 80.00 69.00 78.00 76.00 75.00 73.00 66.00 68.00 80.00 71.00 63.00 89.00 81.10 77.00 80.00(+7.20)
FB 97.90 97.40 97.40 93.90 83.60 84.50 96.30 85.20 83.94 91.10 71.30 78.20 89.50 91.30 92.20 94.50(+9.83)

Table 6: Automatic Schwartz value classification (accuracy) on the Essay, Twitter and Facebook corpora.
Details of feature ablation and class wise performance.

is not yet another text classification problem, but
that rather further deeper psycholinguistic analysis
is required to find out hidden clues and the nature
of language vs ethical practices. Here, it is worth
noting the research by Pennebaker (2011), which
indicates that, surprisingly, non-content words like
pronoun, prepositions, particles, and even symbols
are more salient indicators of our personality.

For the machine learners, closer analysis re-
vealed that SMO’s performance was somehow ir-
regular and random, which might be an indica-
tion of over-fitting. For example, the perfor-
mance for some Schwartz values greatly decreased
when adding n-grams as new features with LIWC,
whereas some values showed the opposite be-
haviour, implying that each value type has its own
set of distinct clues, but also high overlap. On
the other hand, the performance of the Random
Forests classifier increased when the number of
features was increased, resulting in a larger forest
and hence for most value types it performed better
than the other two classifiers with less over-fitting.

A major limitation of the work is that the col-
lected social network corpus is skewed. Reports of

psychological analysis on any community always
depend on how the target population is chosen. It
is absolutely impossible to get precisely balanced
data from any real community. For example, it
is rather impossible to have 150+ absolute power
oriented people in a corpus of size 367 users data.
The only solution to this problem is having more
data, which we currently are collecting.

The data will be publicly released to the re-
search community soon. We are also very keen on
the applied side of this kind of models. Presently
we are analysing the community detection prob-
lem in social media in relation to values. Another
interesting application could be comparative soci-
etal analysis between the Eastern and Western re-
gions of the world. Relations among personality
and ethics could also be explored.
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Abstract

Americans spend about a third of their
time online, with many participating in on-
line conversations on social and political
issues. We hypothesize that social media
arguments on such issues may be more en-
gaging and persuasive than traditional me-
dia summaries, and that particular types of
people may be more or less convinced by
particular styles of argument, e.g. emo-
tional arguments may resonate with some
personalities while factual arguments res-
onate with others. We report a set of exper-
iments testing at large scale how audience
variables interact with argument style to
affect the persuasiveness of an argument,
an under-researched topic within natural
language processing. We show that be-
lief change is affected by personality fac-
tors, with conscientious, open and agree-
able people being more convinced by emo-
tional arguments.

1 Introduction

Americans spend a third of their online time on
social media, with many participating in online
conversations about education, public policy, or
other social and political issues. Our hypothe-
sis is that online dialogs have important proper-
ties that may make them a useful resource for ed-
ucating the public about such issues. For exam-
ple, user-generated content might be more engag-
ing and persuasive than traditional media, due to
the prevalence of emotional language, social affil-
iation, conversational argument structure and au-
dience involvement. Moreover, particular types of
people may be more or less convinced by partic-
ular styles of argument, e.g. emotional arguments

may resonate with some personalities while fac-
tual arguments resonate with others.

Factual: Death Penalty

Q1: I’m sure there have been more repeat murder-
ers than innocent people put to death. As far as
the cost goes, is that really an issue? Execution
Room = $10,000. Stainless Steel Table = $2,000.
Leather Straps = $200. Lethal Injection Chemicals
= $5,000. Knowing this person will never possibly
be able to kill again = PRICELESS

R1: Actually the room, straps, and table are all multi-
use. And the drugs only cost Texas $86.08 per ex-
ecution as of 2002.

Emotional: Death Penalty

Q2: You mean, the perpetrator is convicted and the
defender acquitted? Yes, that’s the rule and not
the exception. Notice here how no-one ended up
dead, or even particularly seriously injured. Addi-
tionally the circumstances described are incredibly
rare, that’s why it makes the news.

R2: The defender shouldn’t even have been brought to
trial in the first place. That doesn’t make it any bet-
ter. Somebody breaks into your home and threat-
ens your family with rape and murder, they de-
serve serious injury at the very least.

Table 1: Factual vs. Emotional dialog exchanges
4forums.com. Q = Quote, R = Response.

For example, contrast the two informal dialogic
exchanges about the death penalty in Table 1 with
the traditional media professional summary in Ta-
ble 2. We might expect the argument in Table 2 to
be more convincing, because it is carefully written
to be balanced and exhaustive (Reed and Rowe,
2004). On the other hand, it seems possible that
people find dialogic arguments such as those in
Table 1 more engaging and learn more from them.
And indeed, about 90% of the people in online fo-
rums are so-called lurkers (Whittaker, 1996; Non-
necke and Preece, 2000; Preece et al., 2004), and
do not post, suggesting that they are in fact read-
ing opinionated dialogs such as those in Table 1
for interest or entertainment.

Research in social psychology identifies three

742



Curated Summary: Death Penalty

PRO: Proponents of the death penalty say it is an im-
portant tool for preserving law and order, deters
crime, and costs less than life imprisonment. They
argue that retribution or ”an eye for an eye” honors
the victim, helps console grieving families, and en-
sures that the perpetrators of heinous crimes never
have an opportunity to cause future tragedy.

CON: Opponents of capital punishment say it has no
deterrent effect on crime, wrongly gives govern-
ments the power to take human life, and perpetu-
ates social injustices by disproportionately target-
ing people of color (racist) and people who cannot
afford good attorneys (classist). They say lifetime
jail sentences are a more severe and less expensive
punishment than death.

Table 2: Traditional balanced summary of the
death penalty issue from ProCon.org.

factors that affect argument persuasiveness (Petty
and Cacioppo, 1986; Petty and Cacioppo, 1988).

• the ARGUMENT itself
• the AUDIENCE

• the SOURCE of the argument

The ARGUMENT includes the content and its
presentation, e.g. whether it is a monolog or a
dialog, or whether it is factual or emotional as il-
lustrated in Table 1 and Table 2. The AUDIENCE

factor models people’s prior beliefs and social af-
filiations as well as innate individual differences
that affect their susceptibility to particular argu-
ments or types of arguments (Anderson, 1971;
Davies, 1998; Devine et al., 2000; Petty et al.,
1981). Behavioral economics research shows that
the cognitive style of the audience interacts with
the argument’s emotional appeal: emphasizing
personal losses is more persuasive for neurotics,
whereas gains are effective for extraverts (Carver
et al., 2000; Mann et al., 2004). The SOURCE is
the speaker, whose influence may depend on fac-
tors such as attractiveness, expertise, trustworthi-
ness or group identification or homophily (Eagly
and Chaiken, 1975; Kelman, 1961; Bender et al.,
2011; Luchok and McCroskey, 1978; Ludford et
al., 2004; McPherson et al., 2001).

We present experiments evaluating how prop-
erties of social media arguments interact with au-
dience factors to affect belief change. We com-
pare the effects of two aspects of the ARGUMENT:
whether it is monologic or dialogic, and whether
it is factual or emotional. We also examine how
these factors interact with properties of the AUDI-
ENCE. We profile audience prior beliefs to test if

more neutral people are swayed by different types
of arguments than people with entrenched beliefs.
We also profile the audience for Big Five person-
ality traits to see whether different personality
types are more open to different types of argu-
ments, e.g., we hypothesize that people who are
highly agreeable (A) might be more affected by
the combative style of emotional arguments. We
provide a new corpus for the research community
of audience personality profiles, arguments, and
belief change measurements.1

Audience factors have been explored in so-
cial psychological work on persuasion, but have
been neglected in computational work, which has
largely drawn from sentiment, rhetorical, or argu-
ment structure models (Habernal and Gurevych,
2016b; Conrad et al., 2012; Boltuzic and Šnajder,
2014; Choi and Cardie, 2008). We demonstrate
that, indeed, undecided people respond differently
to arguments than entrenched people, and that the
responses of undecided people correlate with per-
sonality. We show that this holds across an array of
different arguments. Our research questions are:

• Can we mine social media to find arguments
that change people’s beliefs?
• Do different argument types have different

effects on belief change?
• Do personality and prior beliefs affect belief

change?
• Are different personality types differently af-

fected by factual vs. emotional arguments?

Our results show a small but highly reliable ef-
fect that short arguments derived from online di-
alogs do lead people to change their minds about
topics such as abortion, gun control, gay marriage,
evolution, the death penalty and climate change.
As expected, opinion change is greater for peo-
ple who are initially more neutral about a topic,
than those who are entrenched. However person-
ality variables also have a clear effect on opin-
ion change: neutral, balanced arguments are more
successful with all personality types, but conscien-
tious people are more convinced by dialogic emo-
tional arguments, and agreeable people are more
persuaded by dialogic factual arguments. We de-
scribe how we use plan these findings to select and
repurpose social media arguments to adapt them to
people’s individual differences and thus maximize
their educational impact.

1nlds.soe.ucsc.edu/persuasion persona.
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2 Related Work

Previous work on belief change has primarily fo-
cused on single, experimentally crafted, persua-
sive messages, rather than exploring whether user-
generated dialogic arguments can be repurposed
to persuade. Recently however several papers
have begun to investigate two challenges in ar-
gument mining: (1) understanding the structure
of an argument and extracting argument compo-
nents (Lippi and Torroni, 2015; Nguyen and Lit-
man, 2015; Stab and Gurevych, 2014; Lippi and
Torroni, 2015; Biran and Rambow, 2011); and (2)
understanding what predicts the persuasiveness of
web-sourced argumentative content (Habernal and
Gurevych, 2016b; Fang et al., 2016; Wachsmuth et
al., 2016; Habernal and Gurevych, 2016a; Tan et
al., 2016).

Tan et al. (2016) study belief change in the
Reddit /r/ChangeMyView subreddit (CMV), in
which an original poster (OP) challenges others to
change his/her opinion. They build logistic regres-
sion models to predict argument success, identify-
ing two conversational dynamic factors: a) early
potential persuaders are more successful and b) af-
ter 4 exchanges, the chance of persuasion drops
virtually to zero. Linguistic factors of persuasive
posts include: a) dissimilar content words to the
OP, b) similar stop words, c) being lengthy (in
words, sentences, and paragraphs), d) italics and
bullets. Finally, susceptibility to persuasion is cor-
related with singular vs. plural first person pro-
nouns, which the authors relate to the personality
trait of Openness to Experience. The CMV red-
dit offers a unique window into how persuasion of
self-declared open-minded people occurs online.
However, while Tan et al. find potential proxies
for personality traits, they cannot examine traits
directly because they do not have personality pro-
files as we do here. They also do not examine the
effect of argument style as we do.

Recent work (Habernal and Gurevych, 2016b;
Habernal and Gurevych, 2016a) also examines
what makes an informal social media argument
convincing. They have created a new dataset
of pairs of arguments annotated for which argu-
ment is more convincing, along with the reasons
given by annotators for its convincingness. They
test several models for predicting convincingness
comparing an SVM with engineered linguistic fea-
tures to a BLSTM, with both models performing
similarly. In contrast to our experiments, they do

not explore factors of the audience or explicitly
vary the style of the argument.

Previous work also tests the hypothesis that di-
alogic exchanges might be more engaging, in the
context of expository or car sales dialog (André
et al., 2000; Lee, 2010; Craig et al., 2006; Stoy-
anchev and Piwek, 2010). Work comparing mono-
logic vs. dialogic modes of providing information
suggest that dialogs: (1) are more memorable and
engaging, (2) stimulate the audience to formulate
their own questions, and (3) allow audiences to be
more successful at following communication (Lee
et al., 1998; Fox Tree, 1999; Suzuki and Yamada,
2004; Driscoll et al., 2003; Fox Tree and Mayer,
2008; Fox Tree, 1999; Liu and Fox Tree, 2011).

Other work (Vydiswaran et al., 2012) explores
how user-interface factors (e.g., number and or-
der of argument presentation, whether and how
arguments are rated) affect how readers process
arguments. Several factors increased the number
of passages read, including explicitly presenting
contrasting viewpoints simultaneously. This exer-
cise caused people with strong beliefs (about the
healthiness of milk) to moderate their views after
20-30 minutes of concentrated study. We do not
concentrate on interface factors, instead exploring
how persuasiveness relates to audience factors and
argumentative style. Also our experiments are run
online with hundreds of users, rather than as a con-
trolled study in the lab.

3 Experimental Method

Our experimental method consists of the following
steps:

• Select user-generated dialogs with persuasive
argument features from an online corpus of
socio-political debates, exploring the role of
affect (Sec. 3.1).
• Profile subjects for personality traits and

prior beliefs about socio-political issues
(Sec. 3.2).
• Expose subjects to user-generated, factual vs.

emotional dialogic exchanges and compare
the effects on belief change to balanced, cu-
rated arguments (Sec. 3.3).
• Conduct experiments to predict the degree of

belief change as a function of prior belief,
personality and type of argument.

The participants were pre-qualified using a
reading comprehension task that checked their re-
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sponses against a gold standard to ensure that they
read the arguments carefully. Because we make
many comparisons, and our experiments are con-
ducted at large scale, all of our results incorporate
Bonferroni corrections.

3.1 Dialog Selection: Identifying
Socio-Emotional Arguments

Our work requires a new experimental corpus
that is sensitive to readers’ prior beliefs and
personalities. We utilize online dialogs from
4forums.com downloaded from The Internet
Argument Corpus (IAC) (Walker et al., 2012c).
The IAC contains quote/response pairs of targeted
arguments between two people (Table 1) on top-
ics such as: death penalty, gay marriage, climate
change, abortion, evolution and gun control. Each
argument is annotated to distinguish arguments
making strong appeals to emotional factors versus
straightforwardly factual arguments.

We selected a subset of extreme exemplars of
factual (FACT) versus emotional (EMOT) argu-
ments, defined as Q/R pairs reliably annotated to
be at the extreme ends of the fact/emotion scale,
i.e. responses with an average ≥ 4 annotation
were considered factual, and those whose anno-
tation averaged ≤ −4 were considered emotional
on a scale of -5 to 5. Table 1 illustrates both fac-
tual (R1) and emotional (R2) arguments, with ad-
ditional examples for other topics in Table 3.

In the IAC, 95% of the Q-R pairs are disagree-
ments, the FACT and EMOT datasets were selected
to contain a similar proportion. There was no
correlation between agreement/disagreement and
emotionality (r = 0.07, ns).

3.2 Personality
Personality is usually measured with a standard-
ized survey that calculates a scalar value for the
five OCEAN traits: opennness to experience O,
conscientiousness C, extraversion E, agreeable-
ness A, and neuroticism N (Goldberg, 1990; Nor-
man, 1963) We first conducted an experiment
to profile the Big Five personality traits of 637
Turkers using the Ten Item Personality Inventory
(TIPI) (Gosling et al., 2003). The TIPI instrument
defines each person on a scale from 1 to 7 with
0.5 precision. In order to guarantee reliablity of
our results, we then verified that our pre-qualified
Turkers are representative of the population as a
whole, by comparing the means and standard de-
viations of our sample of 637 Turkers with the na-

Factual: Abortion

Q3: Not only that, to suggest that untold numbers of
women would seek illegal abortions is a question-
begging claim that has no grounding in history,
logic, or reason. It is an unfounded, unproven
claim. It is a betrayal to sound judgment to make
decisions based upon unfounded predictions into
the future.

R3: But it is based on history. There is plenty of history
showing that women had illegal abortions.

Factual: Climate Change

Q4: This is where the looney left gets lost. Their
mantra is atmospheric CO2 levels are escalating
and this is unquestionably causing earth’s temper-
ature rise. But ask yourself – if global tempera-
tures are experiencing the biggest sustained drop
in decades, while CO2 levels continue to rise –
how can it be true?

R4: Because internal variability from the likes of
ENSO, which can cause short term swings of a full
degree C, easily swamp the smaller increase we’d
expect from CO2 forcing. Easy.

Emotional: Abortion

Q5: Undesired first pregnancy is an acute problem for
many girls who choose to go under the surgical
knife, even though that often ends up with infer-
tility, broken life etc. Dry fasting is an alternative
to first pregnancy abortion. If applied, up to 2-3
months old embryo gets dissolved after 15-16 days
of the fast. Plus, there is no ’christian’ sin.

R5: No Christian sin??? Other then the intent to kill
and then doing so:p

Emotional: Gay Marriage

Q6: Did anyone else expect anything less? These evil
fundie christianists can have affairs, 2, 3, 4, or even
5 marriages yet gay people are a threat to marriage
by wanting to get married.

R6: You hear that cry...allowing gays to marry will
cause the downfall of civilization...but you never
hear ’how’ or ’why’? More Chicken Little ####.

Table 3: Factual vs. Emotional dialog exchanges.
Q = Quote, R = Response.

tional standards given in Gosling et. al (2003). Ta-
ble 4 shows that our survey means and standard
deviations are very close to the national norms,
suggesting our sample is representative of the pub-
lic in general, and hence can be used to validate
whether social media arguments could fruitfully
be be used to educate the public.

E A C N O
Our survey 4.30 5.19 5.50 4.82 5.53

Norms 4.44 5.23 5.4 4.83 5.38
Our survey σ 1.45 1.11 1.32 1.42 1.07

Norms σ 1.44 1.24 1.24 1.41 1.14

Table 4: TIPI σ and mean from our personality
survey compared to the normal distribution
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3.3 Prior Beliefs and Belief Change

Previous research suggests that people who are
entrenched about an issue are unlikely to change
their mind (Anderson, 1971; Davies, 1998; Devine
et al., 2000), so we wanted to establish the base-
line beliefs of our pre-qualified Turkers before
they had been exposed to any arguments about a
topic. We therefore collected each Turker’s ini-
tial stance on a topic, by asking them to answer a
simple stance question with no context, for exam-
ple: Should the death penalty be allowed?. Likert
responses were recorded on a -5 to 5 slider scale
with 0.01 degrees of precision, with labels on the
slider of “Yes”, “No”, or “Neutral”.

Curated Summary: Abortion

PRO: Proponents, identifying themselves as pro-choice,
contend that abortion is a right that should not be
limited by governmental or religious authority, and
which outweighs any right claimed for an embryo
or fetus. They argue that pregnant women will re-
sort to unsafe illegal abortions if there is no legal
option.

CON: Opponents, identifying themselves as pro-life, as-
sert that personhood begins at conception, and
therefore abortion is the immoral killing of an in-
nocent human being. They say abortion inflicts
suffering on the unborn child, and that it is unfair
to allow abortion when couples who cannot bio-
logically conceive are waiting to adopt.

Table 5: Traditional balanced summary of
“Should abortion be legal?” from ProCon.org.

Our goal is to compare the belief change that
results from social-media dialogs with the be-
lief change from professionally-curated monologs.
We selected the balanced, monologic, argument
summaries from the website ProCon.org (in
Table 2 with an additional example in Table 5).
The arguments from ProCon.org are very high
quality, and produced by domain experts.

After probing initial beliefs, we presented par-
ticipants with one of the three different argument
types to test their affect on belief change: a Cu-
rated Monolog (MONO) (Table 2), an emotional
argument (EMOT) (R2 in Table 1), or a factual ar-
gument (FACT) (R1 in Table 1). After each per-
son read one of these three types of arguments,
we retested their reactions to the original stance
question, while viewing the argument. Responses
were again recorded on a -5 to 5 slider scale with
0.01 degrees of precision, with labels on the slider
of ”Yes”, ”No”, or ”Neutral”. We computed be-
lief change by measuring differences in stance be-

N Mean change σ change
MONO entrenched 1826 0.50 1.09

MONO neutral 1359 0.62 0.71
FACT entrenched 258 0.27 0.79

FACT neutral 202 0.39 0.55
EMOT entrenched 213 0.35 0.87

EMOT neutral 187 0.37 0.54
ALL entrenched 2951 0.43 1.00

ALL neutral 2234 0.51 0.65

Table 6: Means and σ for belief change for neutral
and entrenched participants presented with MONO,
FACT, or EMOT argument types. Neutrals show
more belief change, and all argument types signif-
icantly affect beliefs

fore and after reading each argument. We created
20 HITs on Mechanical Turk for this task, with 5
items per hit.

4 Experimental Corpus Results

4.1 Entrenchment and Belief Change

Our first question is whether our method changed
participant’s beliefs. Table 6 shows belief
change as a function of argument type: monologs
(MONO), factual (FACT) and emotional (EMOT).
Belief change occurred for all argument types:
and the change was statistically significant as
measured by paired t-tests (t(5184) = 38.31, p
<0.0001). This confirms our hypothesis that so-
cial media can be mined for persuasive materials.
In addition, all three types of arguments indepen-
dently led to significant changes in belief.2

One of the strongest theoretical predictions is
that people with entrenched beliefs about an issue
are less likely to change their mind when provided
new information about that issue. Table 6 shows
the relationship between initial beliefs and extent
of belief change. We defined people as having
more entrenched initial beliefs if their response to
the initial stance question was within 0.5 points of
the two ends of the scale, i.e. (1.0-1.5) or (4.5-5.0),
indicating an extreme initial view.

We tested whether people who were more en-
trenched initially showed less change than those
who were initially more neutral. We conducted
a 2 Initial Belief (Entrenched/Neutral) X 3 Ar-
gument Type (MONO/EMOT/FACT) ANOVA, with
Belief Change as the dependent variable, and Ini-
tial Belief and Argument Type as between subjects
factors. Again, as expected, initially Entrenched

2(For MONO, t(3184) = 32.65, p <0.0001, for FACT,
t(1019) = 14.81, p <0.0001, For EMOT, t(979) = 14.35, p
<0.0001).
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people showed less change (M = 0.43) than those
who began with Neutral views (M = 0.51), ANOVA

(F(1,5179)=5.97, p = 0.015).

4.2 Argument Type and Belief Change

We wanted to test whether the engaging, so-
cially interesting, dialogic materials of EMOT and
FACT might promote more belief change than bal-
anced curated monologic summaries. We tested
the differences between argument types, finding
a main effect for argument type (F(2,5179)=31.59,
p <0.0001), with Tukey post-hoc tests showing
MONO led to more belief change than both EMOT

and FACT (both p <0.0001), but no differences
between EMOT and FACT overall across all sub-
jects (See Table 6). Finally there was no inter-
action between Initial Belief and Argument Type
(F(2,5179)=1.25, p >0.05): so although neutrals
show more belief change overall, this susceptibil-
ity does not vary by argument type.

5 Predicting Belief Change

Our results so far show that our arguments
changed people’s beliefs as a function of their
prior beliefs and argument type. However we aim
to automatically predict belief change, and hy-
pothesize that knowing a person’s personality in
combination with their prior beliefs will allow
us to select social-media arguments that are more
persuasive for a particular individual.

Thus, we vary whether providing a learner with
features about a person’s personality improves
performance for predicting belief change, when
compared with providing information about de-
gree of entrenchment alone. We use different rep-
resentations for personality and prior beliefs as
features, the raw score from the Likert slider for
belief change and the TIPI score, as well as nor-
malizations of the raw scores according to the dis-
tributions per topic, and finally categorical binning
of the transformed scores.

5.1 Feature Development and Selection
New features were created by computing the z-
transformation score from the raw prior beliefs
and personality traits scores. Applying Equation 1
to the raw data creates a normal distribution where
the new mean is 0 and the standard deviation is 1.
For prior beliefs, xi is an individual prior belief
for a particular topic, x̄i is the mean, and σi is the
standard deviation for the particular topic.

xi − x̄i
σxi

(1)

Categorical bins are derived from the trans-
formed scores to describe the direction of the be-
lief change by comparing prior and final recorded
beliefs. The belief change is positive or nega-
tive depending upon where the Turkers rate them-
selves on the belief scale, moving more towards
one side (1) or the other (5). Next, to control for
variance, we apply a z-transformation on change
scores to create a normal distribution. We clas-
sify the resulting distribution into three bins: Low,
Medium, and High. The interpretation of what
stance the Low and High bins represent is strictly
topic dependent. The Medium bin consists of z-
transformation values between -1 and 1. These are
the people whose belief change is less than one
standard deviation from the transformed mean.
The Low bin contains z-transform scores of less
than -1 and translates to belief changes of a large
magnitude (more than a standard deviation from
the mean) in a negative direction, where again, the
meaning of “negative” is dependent upon how the
question was framed. The High bin contains z-
transformation scores of greater than 1 and trans-
lates to belief changes of a large magnitude in a
positive direction. For example, the stance ques-
tion Should the death penalty be allowed?’ has
“no” at the -5 end and “yes” at the +5 end of the
likert scale. A Low bin is indicative as moving in
the direction of the “no” stance and High towards
the “yes” stance.

Bins were also derived for the personality traits,
e.g. for Openness, the High bin indicates someone
who is very open, the Medium bin is average, and
the Low bin is not open at all.

Finally, a binary feature was created to repre-
sent how entrenched an individual is in a particular
topic. This feature is based on the raw prior belief
score and is True if the prior belief score is within
0.5 points of either end point on the stance scale.
This feature is different from the prior belief bins
because this entrenchment feature groups together
people who are in the extremes on both sides of
the stance scale, while the prior belief bins distin-
guishes between the two ends.

We created a development set using data from a
prior Mechanical Turk experiment which had 20
HITs, 5 questions per HIT, and 20 people who
completed each HIT. In the same manner as the
FACT and EMOT HITs, these Turkers (whose per-
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sonality was already profiled) were asked about
their prior beliefs about a topic, then presented
with a factual or emotional argument. But in this
case they were asked to rate the strength of the ar-
gument rather than to report their belief about the
topic. We then identified the combination of fea-
tures that best predicted argument strength in this
development data, and then used this feature set
for the belief change experiments below. Turkers
who participated in this initial study did not par-
ticipate in the belief change study and vice versa.

Results on the development set showed that the
z-transformation scores for prior belief and per-
sonality performed better than the raw scores and
bins. On the other hand, the belief change feature
was most effective when represented as a categor-
ical variable via binning and directionality. We
also found that it is better to have both the z-
transformed prior belief feature and the entrench-
ment feature. Thus our experiments below use
these feature representations.

We test on three different datasets: MONO,
FACT and EMOT, to elicit responses from read-
ing the monologic summaries, and the factual and
emotional dialogic arguments. The FACT and
EMOT datasets have specific information in terms
of scalar values about their degree of factuality or
emotionality, on a scale of -5,+5 and a feature with
this value is created for these datasets derived from
the crowdsourced Turker judgments about the de-
gree of Fact/Emotion in a Q/R pair, as described
earlier. The monologic summaries (MONO) are as-
sumed to be neutral and are not assigned a value
for degree of factuality or emotionality.

5.2 Belief Change Experimental Results

Our dataset consists of 5185 items, with 3185 re-
sponses to the balanced MONO summaries, 1020
responses to FACT, and 980 responses to EMOT.
We first applied 10-fold cross-validation with
Naive Bayes, Nearest Neighbor, AdaBoost, and
JRIP, from the Weka toolkit (Hall et al., 2005).
Overall, Naive Bayes had the most consistent
scores with our feature sets, thus we only report
Naive Bayes experimental results below.

Seven feature sets were created for each of the
three {MONO, FACT, EMOT} datasets. None fea-
ture sets are the no-personality baseline within
each dataset. The baseline features contain no
information about the personality of the unseen
human subjects. We use the {MONO, FACT,

EMOT}+None feature sets for testing our hypoth-
esis that personality affects belief change, and our
ability to predict belief change using personality
features. All feature sets have information about
all of the human subjects’ personality traits as 5
distinct features. The remaining five {O,C,E,A,N}
feature sets examine the effect of providing infor-
mation to the learner about personality using only
one personality trait at a time, in order to de-
termine if any personality trait is having a larger
impact for belief change prediction.

Table 7 summarizes our key results, reporting
accuracy, precision, recall, and F1 for predicting
belief change as a discrete bin, Low, Medium, and
High. We balanced each dataset to contain the
same number of instances in bins, thus the accu-
racy for majority classification is 33% (Row 1).

After running Naive Bayes over all feature sets
in the three datasets, we compared the experimen-
tal classifier performance of All and {O,C,E,A,N}
against the None baselines using a Bonferroni cor-
rected t-test for F1 measure. Using statistical
ANOVA tests that control for pre and post test sam-
ple variance, we found small but highly reliable ef-
fects. We show all of our results, but focus our dis-
cussion below on statistically significance differ-
ences in F1. We boldface personality feature sets
in Table 7 that are statistically significant when
comparing {MONO, FACT, EMOT}+None with the
other feature sets in the group.

The effect of argument alone (without personal-
ity information) can be seen by the no-personality
baseline for each argument type, where we ex-
clude personality information ({MONO, FACT,
EMOT}+None). All these feature sets perform
above the baseline of 33% (Row 1). This sup-
ports the results of our prior ANOVA testing over
all subjects for belief change, and shows that the
argument itself partially predicts belief change.

However, more interestingly, Table 7 also shows
that providing the learner with information about
personality consistently improves the ability of the
learner to predict belief change. For all types of
arguments, ie. the neutral, monologic summaries
and the factual and emotional dialogs, the feature
sets without any information about the personality
traits of the unseen human subjects perform sig-
nificantly worse than the feature sets that contain
all five personality traits. MONO+None compared
to MONO+All (rows 2 and 8 respectively) show a
slight but significant increase in F1 from 0.51 to
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row # Dataset TIPI Accuracy Precision Recall F1
1 Baseline 33%
2 MONO None 57% 0.50 0.58 0.51
3 Open 58% 0.52 0.59 0.52
4 Conscientious 58% 0.51 0.58 0.51
5 Extrovert 58% 0.49 0.57 0.49
6 Agreeable 58% 0.52 0.57 0.50
7 Neurotic 57% 0.49 0.55 0.47
8 All 58% 0.52 0.58 0.52
9 FACT None 49% 0.47 0.47 0.46

10 Open 46% 0.45 0.47 0.46
11 Conscientious 48% 0.48 0.45 0.46
12 Extrovert 48% 0.46 0.45 0.44
13 Agreeable 51% 0.52 0.49 0.49
14 Neurotic 47% 0.45 0.44 0.43
15 All 50% 0.49 0.50 0.49
16 EMOT None 53% 0.42 0.52 0.44
17 Open 56% 0.54 0.53 0.51
18 Conscientious 53% 0.49 0.51 0.48
19 Extrovert 49% 0.43 0.47 0.44
20 Agreeable 52% 0.48 0.50 0.48
21 Neurotic 53% 0.43 0.51 0.44
22 All 56% 0.55 0.57 0.56

Table 7: Predicting Belief Change with Naive Bayes for Three Data Sets: Statistics are based on 10-fold
cross validation. Row numbers provided to reference particular results in the text.

0.52 (using a paired t-test on 10 fold cross vali-
dation scores, (p = .001)). Similarly, FACT+None
versus FACT+All (rows 9 and 15) shows a signifi-
cantly greater increase in F1: from 0.46 to 0.49 (p
= .0002), as does EMOT+None versus EMOT+All
(rows 16 and 22) with F1 increasing from 0.44 to
0.56 (p = .00001). This confirms that the personal-
ity traits improves a model’s ability to predict be-
lief change in unseen human subjects.

Next we compared the effects of providing
the learner with information about each individ-
ual personality feature in isolation by comparing
{MONO, FACT, EMOT}+None with individual per-
sonality factors. For MONO, we found that adding
personality information about Openness to Expe-
rience (MONO+O, row 3) improved F1 from 0.51
to 0.52 compared with a no-personality baseline (p
= .0006). This suggests that open people are more
persuaded by balanced monologic arguments.

A more interesting result is that Openness to
Experience (EMOT+O, row 17) was also impor-
tant for Emotional arguments, increasing F1 from
0.44 to 0.51 (p = .00001). In contrast, Openness
had no effect for Factual arguments (Row 10) (p
> 0.05). Models for predicting belief change for
Emotional arguments also benefit from informa-
tion about Conscientiousness and Agreeableness.
Row 17 (EMOT+O), Row 18 (EMOT+C) and Row
20 (EMOT+A) all show significant differences in

F1, with EMOT+O better than EMOT+None (p =
.00001), EMOT+C better than EMOT+None (p =
.00001) and EMOT+A better than EMOT+None (p
= .0001).

Information about Agreeableness also improves
the quality of the belief change models for the fac-
tual dialogs (FACT+A, row 5) with an increase in
F1 from 0.46 baseline to 0.49 (p = .004), suggest-
ing that people who are more Agreeable are more
influenced by factual arguments. This confirms
one of our initial hypotheses that Agreeable peo-
ple would be more sensitive to the fact/emotional
dimension of arguments because of their desire to
either avoid conflict (highly Agreeable people) or
to seek conflict (Disagreeable people).

6 Conclusions

To the best of our knowledge we are the first to
examine the interaction of social media argument
types with audience factors. Our contributions are:

• A new corpus of personality information and
belief change in socio-political arguments;
• A new method for identifying and deploying

social media content to inform and engage
the public about important social and politi-
cal topics;
• Results showing at scale (hundreds of users)

that we can mine arguments from online dis-
cussions to change people’s beliefs;
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• Results showing that different types of ar-
guments have different effects: while bal-
anced monologic summaries led to the great-
est belief change, socio-emotional online ex-
changes also caused changes in belief.

Although our short question/response pairs did
not induce as much belief change as the curated
balanced monologs, we believe that these are strik-
ing results given that the materials we extracted
from online discussions are not balanced or pro-
fessionally produced, but instead are simple frag-
ments extracted from online discussions.

Further, confirming prior work on persuasion
(Eagly and Chaiken, 1975; Kelman, 1961; Petty
et al., 1981), we found that these effects depend
on audience characteristics. As expected, belief
depended on the strength of prior beliefs so that
initially neutral people were more likely to be per-
suaded than entrenched individuals, regardless of
the type of argument. Again supporting our pre-
dictions, argument effectiveness depended on per-
sonality type. People who are Open to Experience
were influenced by balanced and emotional mate-
rials. In contrast, Agreeable people are most af-
fected by factual materials. Emotional arguments
had very different effects from factual and bal-
anced monologs: Openness is important but so too
are Conscientiousness and Agreeableness.

How can we explain this? People who are more
Open are typically receptive to new ideas. But
our results for emotional arguments also show that
Conscientious people change their views when
presented with emotional arguments, possibly be-
cause they are careful to process the arguments
however expressed. And Agreeable people may
also be motivated to change belief by emotional
arguments because they are less likely to be influ-
enced by personal feelings.

Our results have numerous implications that
suggest further technical experimentation. The
fact that we can induce belief change by extract-
ing simple discussion fragments suggests that be-
lief change can be induced without the application
of sophisticated text processing tools. While our
results for balanced monologs suggest that sum-
maries increase belief change, summary tools for
such arguments are still under development (Misra
et al., 2015). However, perhaps high quality sum-
maries may not be needed if compelling argument
fragments can be automatically extracted (Misra et
al., 2016b; Subba and Di Eugenio, 2007; Nguyen

and Litman, 2015; Swanson et al., 2015).

Our work also suggests the importance of per-
sonalization for persuasion: with different person-
ality types being open to different styles of ar-
gument. Future work might be based on meth-
ods for profiling participant personality from sim-
ple online behaviors (Di Eugenio et al., 2013;
Liu et al., 2016; Pan and Zhou, 2014; Yee et
al., 2011), or from user-generated content such as
first-person narratives or conversations (Mairesse
and Walker, 2006a; Mairesse and Walker, 2006b;
Rahimtoroghi et al., 2016; Rahimtoroghi et al.,
2014). We could then select personalized argu-
ments to meet a participant’s processing style.

While here we used crowdsourced judgments to
select arguments of particular types. Elsewhere,
we present algorithms for automatically identify-
ing and bootstrapping arguments with different
properties. We have methods to extract arguments
that represent different stances on an issue (Misra
et al., 2016a; Anand et al., 2011; Sridhar et al.,
2015; Walker et al., 2012a; Walker et al., 2012b),
as well as argument exchanges that are agreements
vs. disagreements (Misra and Walker, 2015), fac-
tual vs. emotional arguments (Oraby et al., 2015),
sarcastic and not-sarcastic arguments, and nasty
vs. nice arguments (Oraby et al., 2016; Lukin and
Walker, 2013; Justo et al., 2014).

An open question is to whether these effects are
long term. Our approach limits us to examining
belief change during a single session for practical
reasons; long-term cross-session comparisons lead
to significant participant retention issues.

Our results also suggest new empirical and the-
oretical methods for studying persuasion at scale.
Only recently have studies of persuasion moved
beyond small scale lab studies involving simple
single arguments (Habernal and Gurevych, 2016b;
Habernal and Gurevych, 2016a; Tan et al., 2016).
Our research also suggests new methods and tools
for larger scale studies of persuasion. While care
must be taken in deploying these results, studies
of juries and other decision making bodies suggest
that exposure to a diversity of opinions and minor-
ity views are very important to countering extrem-
ism and understanding the issues at stake (Devine
et al., 2000; Ludford et al., 2004). The ability
to repurpose the huge number of varied opinions
available in social media sites for educational pur-
poses could provide a novel way to expose people
to a diversity of views.
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Abstract

There have been many attempts at au-
tomatically recognising author personal-
ity traits from text, typically incorporating
linguistic features with conventional ma-
chine learning models, e.g. linear regres-
sion or Support Vector Machines. In this
work, we propose to use deep-learning-
based models with atomic features of text
– the characters – to build hierarchical,
vectorial word and sentence representa-
tions for the task of trait inference. On a
corpus of tweets, this method shows state-
of-the-art performance across five traits
and three languages (English, Spanish and
Italian) compared with prior work in au-
thor profiling. The results, supported by
preliminary visualisation work, are en-
couraging for the ability to detect complex
human traits.

1 Introduction

Deep-learning methods are becoming increasingly
applied to problems in the area of Natural Lan-
guage Processing (NLP) (Manning, 2016). Such
techniques can be applied to tasks such as part-
of-speech-tagging (Ling et al., 2015; Huang et al.,
2015) and sentiment analysis (Socher et al., 2013;
Kalchbrenner et al., 2014; Kim, 2014). At their
core, these tasks can be seen as learning represen-
tations of language at different levels. Our work
reported here is no different, though we choose a
less commonplace level of representation – rather
than the text itself, we focus on the author be-
hind the text. Automatically modelling individu-
als from their language use is a task founded on
the long-standing understanding that language use
is influenced by sociodemographic characteristics

∗Work carried out at Xerox Research Centre Europe

such as gender and personality (Tannen, 1990;
Pennebaker et al., 2003). The study of personal-
ity traits in particular is considered reliable as such
traits are generally temporally stable (Matthews et
al., 2003). As such, our ability to model our tar-
get – the author – is enriched by the acquisition of
more data over time.

The volume of literature on computational per-
sonality recognition, and its broader applications,
has grown steadily over the last decade. There
have also been a number of dedicated workshops
(Celli et al., 2014; Tkalčič et al., 2014) and shared
tasks (Rangel et al., 2015) on the topic occur-
ring in recent years. A significant portion of this
prior literature has used some variation of en-
riched bag-of-words; e.g. the Open vocabulary
approach (Schwartz et al., 2013). This is, theoret-
ically speaking, entirely understandable as study
of the relationship between word use and traits
has delivered significant insight into human be-
haviour (Pennebaker et al., 2003). Language has
been represented at a number of different levels
in this work such as syntactic, semantic, and cate-
gorical - for example the psychologically-derived
lexica of the Linguistic Inquiry and Word Count
(LIWC) tool (Pennebaker et al., 2015).

These bag-of-linguistic-features approaches,
however, require considerable feature engineering
effort. In addition, many linguistic techniques
and features are language-dependent, e.g. LIWC
(Pennebaker et al., 2015), making the adaptation
of models to multi-lingual scenarios more chal-
lenging. Another concern is a common assump-
tion that these features, like the traits with which
their use correlates, are similarly stable: the same
language features always indicate the same traits.
However, this is not the case: the relationship be-
tween language and personality is not consistent
across all forms of communication, it is more com-
plex (Nowson and Gill, 2014).
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In order to address these challenges we propose
a novel feature-engineering-free, deep-learning-
based approach to the problem of personality trait
recognition, enabling the model to work in vari-
ous languages without the need to create language-
specific linguistic features. We frame the problem
as a supervised sequence regression task, taking
only the joint atomic representation of the text: hi-
erarchically on the character and word level. In
this work, we focus on short texts. As pointed out
by Han and Baldwin (2011), classification of such
texts can often be challenging for even state-of-
the-art BoW based approaches, which is, in part,
caused by the noisy nature of such data. In this
work, we address this by proposing a novel hierar-
chical neural network architecture, free of feature
engineering and, once trained, capable of inferring
personality across five traits and three languages.

The paper is structured as follows: we consider
previous approaches to computational personal-
ity recognition, including those few which have
a deep-learning component, and subsequently de-
scribe our model. We report two sets of experi-
ments, the first to demonstrate the effectiveness of
the model in inferring personality compared to the
current state-of-the-art models, while the second
reports analysis against other feature-engineering-
free models. In both settings, the proposed model
achieves state-of-the-art performance across five
personality traits and three languages.

2 Related Work

Early work in computational personality recogni-
tion (Argamon et al., 2005; Nowson and Oberlan-
der, 2006) were mainly SVM-based approaches,
relying on syntactic and lexical features. A decade
later, still “most” participants of the PAN 2015
Author Profiling task use SVM with feature en-
gineering, according to the organisers (Rangel et
al., 2015). Ensemble methods have been pro-
posed (Verhoeven et al., 2013), but the base model
was still SVM – the ensemble came from the com-
bination of data from different sources as opposed
to models. Data – not just text – labelled with per-
sonality traits is sparse (Nowson and Gill, 2014)
and most work has focused on reporting novel fea-
ture sets rather than techniques. In the PAN task
alone1, there were features, in the form of sur-
face forms of text, present on multiple levels of

1Due to space consideration we are unable to cite the in-
dividual works.

language representation, ranging from lexical fea-
tures (e.g., word, lemma and character n-grams)
to syntactic ones (e.g., POS tags and dependency
relations). Some, on the other hand, focused on
feature curation, analysing the correlation between
personality and the use of punctuation and emoti-
con, along with the use of the topic modelling
method: latent semantic analysis. In addition, ex-
ternal resources, such as LIWC (Pennebaker et al.,
2015), constructed over 20 years of psychology-
based feature engineering, are another often-used
set of features. When applied to tweets, how-
ever, LIWC requires further cleaning of the data
(Kreindler, 2016).

Approaches to personality trait recognition
based on deep-learning are few, which is not sur-
prising given the relatively small scale of the data
sets used. Kalghatgi et al. (2015) employed a neu-
ral network based approach. In this model, a Mul-
tilayer Perceptron (MLP) takes as input a number
of carefully hand-crafted syntactic and social be-
havioural features from each user and attempts to
predict a label for each of the 5 personality traits.
However, the authors reported neither evaluation
of this work, nor details of the dataset. The work
of Su et al. (2016), on the other hand, employs a
Recurrent Neural Network (RNN), exploiting the
turn-taking nature of conversation for personality
trait prediction. In their work, the RNN processes
the evolution of a dialogue over time, taking as
input LIWC-based and grammatical features, the
output of which is then fed into the classifier for
the prediction of personality trait scores of each
participant of the conversations. It should be noted
that both works take manually-designed features,
heavily relying on domain expertise. Also, the fo-
cus is on the prediction of trait scores on the author
level based on modelling all available text from a
user. In contrast, not only does our approach in-
fer the personality of a user given a collection of
short texts, it is also flexible enough to predict trait
scores from a single short text, arguably a more
challenging task considering the limited amount of
information.

In Section 3.2, we propose a model inspired by
the work of Ling et al. (2015) where represen-
tations are hierarchically constructed from char-
acters to words. This is based on the assump-
tion that character sequences are syntactically and
semantically informative of the words they com-
pose. Their model – a widely used RNN vari-
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ant Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) – learns how to con-
struct word embeddings via its constituent char-
acters. When applied to the tasks of language
modelling and part-of-speech tagging, the model
successfully improves the accuracy upon tradi-
tional baselines, performing particularly well in
morphologically rich languages. Not only does
the model achieve better performance on both
tasks, it also has significantly fewer parameters
to learn compared to a word look-up table based
approach as the number of different characters is
much fewer than the number of different words
in a vocabulary. Moreover, the model is able
to generate a sensible representation for previ-
ously unseen words. Following this, Yang et al.
(2016) took it further to the document level, in-
troducing Hierarchical Attention Networks where
two bi-directional Gated Recurrent Units (GRUs)
are used to process the sequence of words and
then sentences respectively with the sentence-level
GRU taking as input the output of the word-level
GRU and returning the representation of the doc-
ument. While Yang et al. (2016) describe a means
to hierarchically build representations of docu-
ments from words to sentences and eventually
to documents (Word to Sentence to Document,
W2S2D), the work of (Ling et al., 2015) is po-
sitioned at a more fine-grained level, incorporat-
ing information from the sequence of characters
(Character to Word, C2W). In this paper, the model
we propose is situated between C2W and W2S2D –
connecting characters, words and sentences, and
ultimately personality traits (Character to Word to
Sentence for Personality Trait, C2W2S4PT).

3 Model

In this section, we first identify some current is-
sues and limitations associated with a commonly-
used approach to representing text to motivate
our methodology. Then, we detail the elements
of the proposed language-independent, composi-
tional model to address the problems.

3.1 Issues with the Current Approach

When applying deep learning models to NLP
problems, a commonly used approach is to map
words to dense real-valued vectors in a low-
dimensional space with word lookup tables. Typi-
cally, for this approach to work well, one needs to
train on a large corpus in an unsupervised fash-

ion, e.g. word2vec (Mikolov et al., 2013a;
Mikolov et al., 2013b) and GloVe (Pennington et
al., 2014), in order to obtain a sensible set of em-
beddings. While this approach has demonstrated
its strong capabilities of capturing syntactic and
semantic information and been successfully ap-
plied to a number of NLP tasks (Socher et al.,
2013; Kalchbrenner et al., 2014; Kim, 2014), as
identified by Ling et al. (2015), there are two prac-
tical problems with it. First, given that language
is flexible, previously unseen words are bound to
occur regardless of the size of the unsupervised
training corpus. This problem is even more pro-
nounced when dealing with user-generated text,
such as from social media (e.g. Twitter and Face-
book) due to the noisy nature of such platforms
– e.g. typos, ad hoc acronyms and abbrevia-
tions, phonetic substitutions, and even meaning-
less strings (Han and Baldwin, 2011). One simple
solution is to represent all unknown words with a
special UNK vector. However, this sacrifices the
meaning of the unknown word which may be crit-
ical. Moreover, it is unable to generalise to made
up words, for instance, beautification, despite the
constituent words beautiful and -ification having
been observed. Second, the large number of pa-
rameters for a model to learn tends to cause over-
fitting. Suppose a vector of d dimensions is used
to represent each word and the word lookup table
is therefore of size d × |V | where |V | is the vo-
cabulary size, which normally scales to the order
of hundreds and thousands. Again, this problem is
particularly serious in noisier domain.

In author profiling, a large array of character-
based features have been explored and shown to
be effective for trait inference, such as charac-
ter flooding (Nowson et al., 2015; Giménez et
al., 2015), character n-grams(González-Gallardo
et al., 2015; Sulea and Dichiu, 2015), and emoti-
cons (Nowson et al., 2015; Palomino-Garibay et
al., 2015). This motivates our proposed model, de-
scribed in the next section, where character, word
and sentence representations are hierarchically
constructed, independent of a specific language
and capable of harnessing personality-sensitive
signals buried as deep as the character level.

3.2 Character to Word to Sentence for
Personality Traits

We address the identified problems in Section 3.1
by extending the compositional character to word
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Figure 1: Illustration of the C2W2S4PT model.
Dotted boxes indicate concatenation.

model (C2W) (Ling et al., 2015) wherein the con-
stituent characters of each word is taken as input
to a character-level bi-directional RNN (Char-Bi-
RNN) to construct the representation of the word.
A sentence is in turn represented, via another
bi-directional RNN operating at the word level
(Word-Bi-RNN), by the concatenation of the last
and first hidden states of the forward and backward
Word-RNNs respectively. Ultimately, a feedfor-
ward neural network predicts a scalar for a specific
personality trait based on the input of the repre-
sentation of a sentence. Given the hierarchical na-
ture of the model, we name it C2W2S4PT (Char-
acter to Word to Sentence for Personality Traits)

depicted in Figure 1. The formal definition is pro-
vided as follows where we illustrate C2W2S4PT
with an example in which a sentence s is seen as a
sequence of words {w1, w2, . . . , wi, . . . , wm} and
a word wi is in turn a sequence of characters ci,j
whose embedding is denoted: ci,j . Next, the Char-
Bi-RNN takes as input the sequence of character
embeddings {ci,1, . . . , ci,n} (assuming wi is com-
prised of n characters) to construct the represen-
tation of word wi, resulting in the word embed-
ding ewi

. Here, the recurrent unit we employ in
the Bi-RNNs is GRU as suggested by recent stud-
ies that GRUs achieve comparable, if not better,
results to LSTM but are less demanding computa-
tionally (Chung et al., 2014; Kumar et al., 2015;
Jozefowicz et al., 2015).2 Concretely, the char-
acter embeddings are processed by the Char-Bi-
RNN using the following:
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where � is the element-wise product, σ the sig-
moid function, f the hyperbolic tangent function
tanh,
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hh are the pa-
rameter matrices to learn, and

−→
b c

z,
−→
b c

r,
−→
b c

h the
bias terms. In addition to the forward pass,
the Char-Bi-RNN also processes the character
sequence backwards (symbolised by

←−
h c

i,j) with
another set of GRU weight matrices and bias
terms. Note that the same character embeddings
are shared across the forward and backward pass.
Eventually, we represent wi as the concatenation
of the last and first hidden states of the forward
and backward Char-RNNs:

ewi
=

[−→
h c

i,n←−
h c

i,1

]
(5)

Sentence representations are built in a similar
fashion to word representations with another Bi-
RNN operating at the word level (Word-Bi-RNN)
where ewi

(for i ∈ [1, n] once all the word repre-

2We performed additional experiments which confirmed
this finding. Therefore due to space considerations, we do
not report results using LSTMs here.
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sentations have been constructed from their con-
stituent characters) are processed:
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the bias terms. The representation of the sentence
is constructed, in a similar manner to how words
are represented, by taking the concatenation of the
last and first hidden states of the forward and back-
ward Word-RNN:

es =

[−→
hw

m←−
hw

1

]
(10)

Lastly, the score for a particular personality trait
is estimated with an MLP, taking as input the sen-
tence embedding es and returning the estimated
score ŷs:

hs = ReLu(W ehes + bh) (11)

ŷs = W hyhs + by (12)

where ReLU (REctified Linear Unit) is defined as
ReLU(x) = max(0, x), W eh,W hy the param-
eter matrices to learn, bh, by the bias terms, and
hs the hidden representation of the MLP. All the
trainable parameter/embedding matrices and bias
terms are jointly optimised using mean square er-
ror as the objective function:

L(θ) =
1

n

n∑

i=1

(ysi − ŷsi)2 (13)

where ysi is the gold standard personality score
of sentence si and θ the collection of all param-
eter/embedding matrices and bias terms for the
model to learn. Note that no language-dependent
component is present in the proposed model.

4 Experiments and Results

We evaluate our model in two settings, against
models with or without feature engineering, to
fully study the effectiveness of the proposed
method. In the former, we compare – at the user

level – our feature-engineering-free and language-
independent model with current state-of-the-art
models which make much use of linguistic fea-
tures. In the latter, on the other hand, we in-
vestigate the performance against other feature-
engineering-free models on individual short texts.
In both settings, we show that our model achieves
better results across two language (English and
Spanish) and is equally competitive in Italian.

4.1 Dataset and Preprocessing
The dataset we adopt in this paper is the English,
Spanish and Italian data from the PAN 2015 Au-
thor Profiling task dataset (Rangel et al., 2015),
collected from Twitter and consisting of 14, 166
English (EN), 9, 879 Spanish (ES) and 3, 687 Ital-
ian (IT) tweets (from 152, 110 and 38 users re-
spectively). Due to space constraints and the lim-
ited size of the data, the Dutch dataset is not in-
cluded. Each user encompasses a set of tweets
(average n = 100) with gold standard personality
labels, the five trait labels (essentially scores be-
tween -0.5 and 0.5), calculated following the au-
thor’s self-assessment responses to the short Big
5 test, BFI-10 (Rammstedt and John, 2007) which
has the most solid grounding in language and is
considered to be the most widely accepted and ex-
ploited scheme for personality recognition (Poria
et al., 2013).

In our experiments, we tokenise each tweet with
Twokenizer (Owoputi et al., 2013) to preserve
user mentions and hashtag-preceeded topics. User
mentions and URLs, unlike the majority of the lan-
guage used in tweets, are intended for their targets,
whose surface forms are deemed hardly informa-
tive. We therefore further normalise these fea-
tures to single characters (e.g., @username→@,
http://t.co/ → ˆ), limiting the risk of modelling un-
necessary character usage not directly influenced
by nor reflecting the personality of the author.

4.2 Evaluation Metric
As the test corpus is unavailable, withheld by the
PAN 2015 organisers, k-fold cross-validation is
used instead to compare the performance (k =
5 or 10) on the available dataset. To eval-
uate the performance, we measure the Root
Mean Square Error (RMSE) at either the tweet
or user level depending on the granularity of

the task: RMSEtweet =

√∑T
i=1(ysi−ŷsi )2

T and

RMSEuser =

√∑U
i=1(yuseri−ŷuseri )2

U where ysi
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and ŷsi are the gold standard and predicted per-
sonality trait score of the ith tweet whereas yuseri
and ŷuseri are their user-level counterparts, T and
U the total numbers of tweets and users in the
corpus. Note that in the dataset utilised in this
work, each user is assigned a single score for a par-
ticular personality trait and every tweet collected
from the same account inherits the same five per-
sonality trait assignments as its author. The pre-
dicted user level trait score is calculated: ŷuseri =
1
Ti

∑Ti
j=1 ŷsj where Ti is the total number of tweets

of useri. In Section 4.3 and 4.4, the results,
measured with RMSEuser and RMSEtweet, in
the two settings, i.e. against models with and
without feature-engineering, are presented respec-
tively. Consistent with prior work in author profil-
ing (Sulea and Dichiu, 2015; Mirkin et al., 2015;
Nowson et al., 2015), we employ exactly the same
evaluation metric on the same dataset to enable di-
rect comparison.

4.3 Evaluation against State-of-the-art
Models

We present the results obtained by the proposed
model tested on the dataset described in Sec-
tion 4.1. Note that our model is trained to predict
personality trait scores, relying only on the text
without any additional features. To enable direct
comparison, we evaluate C2W2S4PT on the user
level against current state-of-the-art models which
incorporate linguistic features based on psycho-
logical studies.

For 5-fold cross-validation, we select the tied-
highest ranked (in EN under evaluation condi-
tions) amongst the PAN 2015 participants (Sulea
and Dichiu, 2015) (also ranked 7th and 4th in ES
and IT).3 Similarly, we choose baselines by rank-
ing and metric reporting for 10-fold cross valida-
tion (Nowson et al., 2015) (ranked 9th, 6th and 8th

in EN, ES and IT). In addition to the above works
which predicted scores on text level and then av-
eraged for each user, we also include subsequent
work by (Mirkin et al., 2015) who reported re-
sults on concatenated tweets (a single document
per author). Also, there is the most straightfor-
ward baseline Average Baseline assigning
the average of all the scores to each user. We train
C2W2S4PT with Adam (Kingma and Ba, 2014)
over 100 epochs with a batch size of 32 and the fol-

3Cross-validation RMSEuser performance is not re-
ported for the other top system (Álvarez-Carmona et al.,
2015).

lowing hyper-parameters:
−→
h c

i,j and
←−
h c

i,j ∈ R256,
Ec ∈ R50×|C|, dropout rate to the embedding out-
put: 0.5,

−→
hw

i and
←−
hw

i ∈ R256, W hy ∈ R256×1,
by ∈ R, W eh ∈ R512×256, bh ∈ R256. The
RMSEuser results are presented in Table 1 where
EXT, STA, AGR, CON and OPN are abbrevia-
tions for Extroversion, Emotional Stability (the in-
verse of Neuroticism), Agreeableness, Conscien-
tiousness and Openness respectively.

C2W2S4PT outperforms the current state of
the art in EN and ES. In the 5-fold cross-
validation group, C2W2S4PT demonstrates its ad-
vantages, attaining superior performance to the
baselines except for CON in ES. In terms of 10-
fold cross validation, the superiority of our model
is even more evident, supported by the dominat-
ing performance over the two selected baselines
across all personality traits and two languages. In
both groups, 5 or 10-fold cross validation, not
only does C2W2S4PT outperform the baseline
systems, particularly significantly in the 10-fold
group, it also does so without the aid of any hand-
crafted features, stressing the technical soundness
of C2W2S4PT.

On CON in ES, 5-fold cross-validation. We
suspect that the surprisingly good performance of
Sulea and Dichiu (2015) may likely be attributed
to overfitting. Indeed, the performance on the test
set on CON in ES is even inferior to Nowson et al.
(2015), further confirming our speculation.

The superiority of C2W2S4PT is less clear in
IT. This can possibly be caused by the inade-
quate amount of Italian data, less than 4k tweets as
compared to 14k and 10k in the English and Span-
ish datasets, limiting the capability of C2W2S4PT
to learn a reasonable model.

4.4 Evaluation against Other
Feature-engineering-free Methods

While it is common practice in personality trait
inference to evaluate at the user level, we
also look into tweet-level performance to further
study the models’ capabilities at a more fine-
grained level. A number of baselines, incor-
porating only the surface form of the text for
the purpose of fair comparison, have been cre-
ated to support our evaluation. First, we in-
herit the same Average Baseline as in Sec-
tion 4.3. Next, we select two BoW-based system,
Random Forest and SVM Regression, and
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Lang. k Model EXT STA AGR CON OPN

EN

— Average Baseline 0.166 0.223 0.158 0.151 0.146

5
Sulea and Dichiu (2015) 0.136 0.183 0.141 0.131 0.119
C2W2S4PT 0.131 0.171 0.140 0.124 0.109

10
Mirkin et al. (2015) 0.171 0.223 0.173 0.144 0.146
Nowson et al. (2015) 0.153 0.197 0.154 0.144 0.132
C2W2S4PT 0.130 0.167 0.137 0.122 0.109

ES

— Average Baseline 0.171 0.203 0.163 0.187 0.166

5
Sulea and Dichiu (2015) 0.152 0.181 0.148 0.114 0.142
C2W2S4PT 0.148 0.177 0.143 0.157 0.136

10
Mirkin et al. (2015) 0.153 0.188 0.155 0.156 0.160
Nowson et al. (2015) 0.154 0.188 0.155 0.168 0.160
C2W2S4PT 0.145 0.177 0.142 0.153 0.137

IT

— Average Baseline 0.162 0.172 0.162 0.123 0.151

5
Sulea and Dichiu (2015) 0.119 0.150 0.122 0.101 0.130
C2W2S4PT 0.124 0.144 0.130 0.095 0.131

10
Mirkin et al. (2015) 0.095 0.168 0.142 0.098 0.137
Nowson et al. (2015) 0.137 0.168 0.142 0.098 0.141
C2W2S4PT 0.118 0.147 0.128 0.095 0.127

Table 1: RMSEuser across five traits. Bold highlights best performance.

perform grid search for the best hyper-parameter
setup ranging: kernel ∈ {linear, rbf} and
C ∈ {0.01, 0.1, 1.0, 10.0} whereas for Random
Forest, the number of trees is chosen from the
set {10, 50, 100, 500, 1000}.

In addition to the above conventional machine-
learning-based models, we further implement two
simpler RNN-based models, Bi-GRU-Char and
Bi-GRU-Word, which work only on the char-
acter and word level respectively. On top of the
GRUs, both Bi-GRU-Char and Bi-GRU-Word
share the same MLP classifier, hs and ŷs, as in
C2W2S4PT. For training, we use the same set
of hyper-parameters as described in Section 4.3
for C2W2S4PT. Similarly, we set the charac-
ter and word embedding size to 50 and 256
for Bi-GRU-Char and Bi-GRU-Word respec-
tively. Hyper-parameter fine-tuning was not per-
formed mainly due to time constraints. We present
the RMSEtweet of each effort, measured by 10-
fold stratified cross-validation, in Table 2.

C2W2S4PT is comparable with, if not superior
to, the strong baselines SVM Regression and
Random Forest in EN and ES. C2W2S4PT
achieves state-of-the-art results in almost ev-
ery trait except for two, AGR in EN and
STA in ES. It is worth noting that C2W2S4PT

generates this competitive performance, in the
feature-engineering-free setting, against SVM
Regression and Random Forest without
exhaustive hyper-parameter fine-tuning.

C2W2S4PT achieves better performance than
the RNN-based baselines in EN and ES. Com-
pared with Bi-GRU-Word, C2W2S4PT is less
prone to overfitting because of the relatively
fewer parameters for the model to learn whereas
Bi-GRU-Word needs to maintain a large vocab-
ulary embedding matrix (Ling et al., 2015). In re-
gards to Bi-GRU-Char, the success can be at-
tributed to C2W2S4PT’s capability of coping with
arbitrary words while not forgetting information
due to excessive lengths as can arise from repre-
senting a text as a sequence of characters.

The performance of C2W2S4PT is inferior
to Bi-GRU-Word in IT. Bi-GRU-Word
achieves the best performance across all per-
sonality traits with C2W2S4PT coming in as a
close second and tying in 3 traits. Apart from
the inadequate amount of Italian data causing the
fluctuation in performance as explained in Sec-
tion 4.3, further investigation is needed to analyse
the strong performance of Bi-GRU-Word.
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Lang. Model EXT STA AGR CON OPN

EN

Average Baseline 0.163 0.222 0.157 0.150 0.147

SVM Regression 0.148 0.196 0.148 0.140 0.131
Random Forest 0.144 0.192 0.146 0.138 0.132

Bi-GRU-Char 0.150 0.202 0.152 0.143 0.137
Bi-GRU-Word 0.147 0.200 0.146 0.138 0.130

C2W2S4PT 0.142 0.188 0.147 0.136 0.127

ES

Average Baseline 0.171 0.204 0.163 0.187 0.165

SVM Regression 0.158 0.190 0.157 0.171 0.152
Random Forest 0.159 0.195 0.157 0.177 0.158

Bi-GRU-Char 0.163 0.195 0.158 0.178 0.155
Bi-GRU-Word 0.159 0.192 0.154 0.173 0.154

C2W2S4PT 0.158 0.191 0.153 0.168 0.150

IT

Average Baseline 0.164 0.171 0.164 0.125 0.153

SVM Regression 0.141 0.159 0.145 0.113 0.141
Random Forest 0.140 0.161 0.140 0.111 0.147

Bi-GRU-Char 0.149 0.163 0.153 0.117 0.146
Bi-GRU-Word 0.135 0.156 0.140 0.109 0.141

C2W2S4PT 0.139 0.156 0.143 0.109 0.141

Table 2: RMSEtweet across five traits level. Bold highlights best performance.

4.5 Visualisation
In order to investigate the features automatically
learned by the models, we select C2W2S4PT
trained on a single personality trait (EXT) and vi-
sualise the 2D PCA (Tipping and Bishop, 1999)
scatter plot of the representations of the sen-
tences.4 As examples, we randomly select 100
tweets, 50 each from either extreme of the EXT
spectrum - Extraversion being selected for this ex-
ercise as it is the most commonly studied and well
understood trait. The text representations are au-
tomatically constructed by C2W2S4PT, with the
resultant plot presented in Figure 2. Here, two
clusters are easily identifiable, representing posi-
tive and negative Extraversion, with the former in-
tersecting the latter. We consider three examples,
highlighted in Figure 2, for discussion.
• POS7: “@username: Feeling like you’re not

good enough is probably the worst thing to
feel.”
• NEG3: “Being good ain’t enough lately.”
• POS20: “o.O Lovely.”

The first two examples, POS7 and NEG3, al-
though essentially similar in terms of semantics,

4We also experimented with t-SNE (Van der Maaten and
Hinton, 2008) but it did not produce an interpretable plot.
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EXT Positive
EXT Negative

Figure 2: Scatter plot of sentence representations
processed by PCA.

are placed distantly from each other at the far ends
of the distribution. Despite the semantic simi-
larities, the linguistic attributes they possess are
commonly understood to be associated with Ex-
traversion differently (Gill and Oberlander, 2002):
the longer tweet, POS7, together with its use of
the second person pronoun, suggests that the au-
thor is more inclusive of others while NEG3, on
the other hand, is self-focused and shorter, ele-
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ments signifying Introversion. The third example,
POS20, while appearing to be mapped to an In-
trovert space, is a tweet from an Extravert. Apart
from being short, POS20 incorporates the use of
non-rotated, “Eastern” style emoticons (o.O), as-
pects shown to be linked to Introversion on so-
cial media (Schwartz et al., 2013). This is perhaps
not the venue to consider the implications of this
further, although one explanation might be that
the model has uncovered a flexibility often asso-
ciated with Ambiverts (Grant, 2013). However, it
is worth noting that the model is capable of captur-
ing, without feature engineering, well-understood
dimensions of language.

5 Conclusion and Future Work

Overall, the results in this paper demonstrate
the validity of our methodology: not only
does C2W2S4PT provide state-of-the-art results
compared to previous feature-engineering-heavy
works, but it also performs well when compared
with other widely used strong baselines in the
feature-engineering-free setting. More impor-
tantly, the lack of feature engineering enables us
to adapt the same model, with zero alteration to
the model itself, to other languages. To further
examine this property of the proposed model, we
plan to explore the TwiSty dataset (Verhoeven et
al., 2016), a recently introduced corpus consisting
of 6 languages and labelled with MBTI type indi-
cators (Myers and Myers, 2010).
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Abstract

While cross-lingual word embeddings
have been studied extensively in recent
years, the qualitative differences between
the different algorithms remain vague. We
observe that whether or not an algorithm
uses a particular feature set (sentence IDs)
accounts for a significant performance gap
among these algorithms. This feature set
is also used by traditional alignment al-
gorithms, such as IBM Model-1, which
demonstrate similar performance to state-
of-the-art embedding algorithms on a va-
riety of benchmarks. Overall, we observe
that different algorithmic approaches for
utilizing the sentence ID feature space re-
sult in similar performance. This paper
draws both empirical and theoretical par-
allels between the embedding and align-
ment literature, and suggests that adding
additional sources of information, which
go beyond the traditional signal of bilin-
gual sentence-aligned corpora, may sub-
stantially improve cross-lingual word em-
beddings, and that future baselines should
at least take such features into account.

1 Introduction

Cross-lingual word embedding algorithms try to
represent the vocabularies of two or more lan-
guages in one common continuous vector space.
These vectors can be used to improve monolingual
word similarity (Faruqui and Dyer, 2014) or sup-
port cross-lingual transfer (Gouws and Søgaard,
2015). In this work, we focus on the sec-
ond (cross-lingual) aspect of these embeddings,
and try to determine what makes some embed-
ding approaches better than others on a set of

∗These authors contributed equally to this work.

translation-oriented benchmarks. While cross-
lingual word embeddings have been used for a va-
riety of cross-lingual transfer tasks, we prefer eval-
uating on translation-oriented benchmarks, rather
than across specific NLP tasks, since the transla-
tion setting allows for a cleaner examination of
cross-lingual similarity. Another important de-
lineation of this work is that we focus on algo-
rithms that rely on sentence-aligned data; in part,
because these algorithms are particularly interest-
ing for low-resource languages, but also to make
our analysis and comparison with alignment algo-
rithms more focused.

We observe that the top performing embed-
ding algorithms share the same underlying fea-
ture space – sentence IDs – while their different
algorithmic approaches seem to have a negligi-
ble impact on performance. We also notice that
several statistical alignment algorithms, such as
IBM Model-1 (Brown et al., 1993), operate un-
der the same data assumptions. Specifically, we
find that using the translation probabilities learnt
by Model-1 as the cross-lingual similarity func-
tion (in place of the commonly-used cosine simi-
larity between word embeddings) performs on-par
with state-of-the-art cross-lingual embeddings on
word alignment and bilingual dictionary induction
tasks. In other words, as long as the similarity
function is based on the sentence ID feature space
and the embedding/alignment algorithm itself is
not too naı̈ve, the actual difference in performance
between different approaches is marginal.

This leads us to revisit another statistical align-
ment algorithm from the literature that uses the
same sentence-based signal – the Dice aligner
(Och and Ney, 2003). We first observe that the
vanilla Dice aligner is significantly outperformed
by the Model-1 aligner. We then recast Dice as the
dot-product between two word vectors (based on
the sentence ID feature space), which allows us to
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generalize it, resulting in an embedding model that
is as effective as Model-1 and other sophisticated
state-of-the-art embedding methods, but takes a
fraction of the time to train.

Existing approaches for creating cross-lingual
word embeddings are typically restricted to train-
ing bilingual embeddings, mapping exactly two
languages onto a common space. We show that
our generalization of the Dice coefficient can be
augmented to jointly train multi-lingual embed-
dings for any number of languages. We do this
by leveraging the fact that the space of sentence
IDs is shared among all languages in the paral-
lel corpus; the verses of the Bible, for example,
are identical across all translations. Introducing
this multi-lingual signal shows a significant per-
formance boost, which eclipses the variance in
performance among pre-existing embedding algo-
rithms.

Contributions We first establish the importance
of the sentence ID feature space for cross-lingual
word embedding algorithms through experiments
across several translation-oriented benchmarks.
We then compare cross-lingual word embedding
algorithms to traditional word alignment algo-
rithms that also rely on sentence ID signals. We
show that a generalization of one of these, the
Dice aligner, is a very strong baseline for cross-
lingual word embedding algorithms, performing
better than several state-of-the-art algorithms, es-
pecially when exploiting a multi-lingual signal.
Our code and data are publicly available.1

2 Background: Cross-lingual
Embeddings

Previous approaches to cross-lingual word embed-
dings can be divided into three categories, ac-
cording to assumptions on the training data. The
first category assumes word-level alignments, in
the form of bilingual dictionaries (Mikolov et al.,
2013a; Xiao and Guo, 2014) or automatically pro-
duced word alignments (Klementiev et al., 2012;
Zou et al., 2013; Faruqui and Dyer, 2014). Sizable
bilingual dictionaries are not available for many
language pairs, and the quality of automatic word
alignment greatly affects the quality of the embed-
dings. It is also unclear whether the embedding
process provides significant added value beyond
the initial word alignments (Zou et al., 2013). We

1bitbucket.org/omerlevy/xling_
embeddings

therefore exclude these algorithms for this study,
also in order to focus our analysis and make the
comparison with traditional word alignment algo-
rithms more straightforward.

The second category makes a much weaker as-
sumption, document-level alignments, and uses
comparable texts in different languages (not nec-
essarily translations) such as Wikipedia articles or
news reports of the same event. Algorithms in this
category try to leverage massive amounts of data
to make up for the lack of lower-level alignments
(Søgaard et al., 2015; Vulić and Moens, 2016).

Algorithms in the third category take the middle
ground; they use sentence-level alignments, com-
mon in legal translations and religious texts. Also
known as “parallel corpora”, sentence-aligned
data maps each sentence (as a whole) to its trans-
lation. We focus on this third category, because
it does not require the strict assumption of word-
aligned data (which is difficult to obtain), while
still providing a cleaner and more accurate signal
than document-level alignments (which have been
shown, in monolingual data, to capture mainly
syntagmatic relations (Sahlgren, 2006)). In §6, we
provide evidence to the hypothesis that sentence-
aligned data is indeed far more informative than
document-aligned data.

Algorithms that rely on sentence-aligned data
typically create intermediate sentence representa-
tions from each sentence’s constituent words. Her-
mann and Blunsom (2014) proposed a deep neural
model, BiCVM, which compared the two sentence
representations at the final layer, while Chandar
et al. (2014) proposed a shallower autoencoder-
based model, representing both source and tar-
get language sentences as the same intermedi-
ate sentence vector. Recently, a simpler model,
BilBOWA (Gouws et al., 2015), showed simi-
lar performance without using a hidden sentence-
representation layer, giving it a dramatic speed ad-
vantage over its predecessors. BilBOWA is es-
sentially an extension of skip-grams with negative
sampling (SGNS) (Mikolov et al., 2013b), which
simultaneously optimizes each word’s similarity
to its inter-lingual context (words that appeared
in the aligned target language sentence) and its
intra-lingual context (as in the original monolin-
gual model). Luong et al. (2015) proposed a simi-
lar SGNS-based model over the same features.

We study which factors determine the suc-
cess of cross-lingual word embedding algorithms
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that use sentence-aligned data, and evaluate them
against baselines from the statistical machine
translation literature that incorporate the same data
assumptions. We go on to generalize one of these,
the Dice aligner, showing that one variant is a
much stronger baseline for cross-lingual word em-
bedding algorithms than standard baselines.

Finally, we would like to point out the work of
Upadhyay et al. (2016), who studied how different
data assumptions affect embedding quality in both
monolingual and cross-lingual tasks. Our work fo-
cuses on one specific data assumption (sentence-
level alignments) and only on cross-lingual usage.
This more restricted setting allows us to: (a) com-
pare embeddings to alignment algorithms, (b) de-
couple the feature space from the algorithm, and
make a more specific observation about the contri-
bution of each component to the end result. In that
sense, our findings complement those of Upad-
hyay et al. (2016).

3 Which Features Make Better
Cross-lingual Embeddings?

We group state-of-the-art cross-lingual embedding
algorithms according to their feature sets, and
compare their performance on two cross-lingual
benchmarks: word alignment and bilingual dic-
tionary induction. In doing so, we hope to learn
which features are more informative.

3.1 Features of Sentence-aligned Data
We observe that cross-lingual embeddings typi-
cally use parallel corpora in one of two ways:

Source + Target Language Words Each word
w is represented using all the other words that ap-
peared with it in the same sentence (source lan-
guage words) and all the words that appeared in
target language sentences that were aligned to sen-
tences in which the word w appeared (target lan-
guage words). This representation also stores the
number of times each pair of word w and feature
(context) word f co-occurred.

These features are analogous to the ones used
by Vulić and Moens (2016) for document-aligned
data, and can be built in a similar manner: create a
pseudo-bilingual sentence from each aligned sen-
tence, and for each word in question, consider all
the other words in this sentence as its features. Bil-
BOWA (Gouws et al., 2015) also uses a similar set
of features, but restricts the source language words
to those that appeared within a certain distance

from the word in question, and defines a slightly
different interaction with target language words.

Sentence IDs Here, each word is represented by
the set of sentences in which it appeared, indiffer-
ent to the number of times it appeared in each one.
This feature set is also indifferent to the word or-
dering within each sentence. This approach is im-
plicitly used by Chandar et al. (2014), who encode
the bag-of-words representations of parallel sen-
tences into the same vector. Thus, each word is not
matched directly to another word, but rather used
to create the sentence’s language-independent rep-
resentation. Søgaard et al. (2015) use similar fea-
tures, document IDs, for leveraging comparable
Wikipedia articles in different languages. In §6 we
show that when using sentence IDs, even a small
amount of sentence-aligned data is more powerful
than a huge amount of comparable documents.

3.2 Experiment Setup

Algorithms We use the four algorithms men-
tioned in §3.1: BilBOWA (Gouws et al., 2015),
BWE-SkipGram (Vulić and Moens, 2016), Bilin-
gual Autoencoders (Chandar et al., 2014), and In-
verted Index (Søgaard et al., 2015). While both
BWE-SkipGram and Inverted Index were origi-
nally trained on document-aligned data, in this
work, we apply them to sentence-aligned data.

Data Christodouloupoulos and Steedman
(2015) collected translations of the Bible (or parts
of it) in over 100 languages, naturally aligned by
book, chapter, and verse (31,102 verses in total).2

This corpus allows us to evaluate methods across
many different languages, while controlling for
the training set’s size. The corpus was decapi-
talized and tokenized using white spaces after
splitting at punctuation.

Benchmarks We measure the quality of each
embedding using both manually annotated word
alignment datasets and bilingual dictionaries.
We use 16 manually annotated word alignment
datasets – Hansards3 and data from four other
sources (Graca et al., 2008; Lambert et al., 2005;
Mihalcea and Pedersen, 2003; Holmqvist and
Ahrenberg, 2011; Cakmak et al., 2012) – as well
as 16 bilingual dictionaries from Wiktionary.

2homepages.inf.ed.ac.uk/s0787820/
bible/

3www.isi.edu/natural-language/
download/hansard/
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In the word alignment benchmark, each word in
a given source language sentence is aligned with
the most similar target language word from the tar-
get language sentence – this is exactly the same
greedy decoding algorithm that is implemented in
IBM Model-1 (Brown et al., 1993). If a source lan-
guage word is out of vocabulary, it is not aligned
with anything, whereas target language out-of-
vocabulary words are given a default minimal sim-
ilarity score, and never aligned to any candidate
source language word in practice. We use the in-
verse of alignment error rate (1-AER) as described
in Koehn (2010) to measure performance, where
higher scores mean better alignments.

High quality, freely available, manually anno-
tated word alignment datasets are rare, especially
for non-European languages. We therefore include
experiments on bilingual dictionary induction. We
obtain bilingual dictionaries from Wiktionary for
five non-Indo-European languages, namely: Ara-
bic, Finnish, Hebrew, Hungarian, and Turkish (all
represented in the Edinburgh Bible Corpus). We
emphasize that unlike most previous work, we ex-
periment with finding translation equivalents of
all words and do not filter the source and tar-
get language words by part of speech. We use
precision-at-one (P@1), essentially selecting the
closest target-language word to the given source-
language word as the translation of choice. This
often means that 100% precision is unattainable,
since many words have multiple translations.

Hyperparameters Levy et al. (2015) exposed a
collection of hyperparameters that affect the per-
formance of monolingual embeddings. We as-
sume that the same is true for cross-lingual embed-
dings, and use their recommended settings across
all algorithms (where applicable). Specifically, we
used 500 dimensions for every algorithm, context
distribution smoothing with α = 0.75 (applica-
ble to BilBOWA and BWE-SkipGram), the sym-
metric version of SVD (applicable to Inverted In-
dex), and run iterative algorithms for 100 epochs
to ensure convergence (applicable to all algorithms
except Inverted Index). For BilBOWA’s monolin-
gual context window, we used the default of 5.
Similarity is always measured by the vectors’ co-
sine. Most importantly, we use a shared vocab-
ulary, consisting of every word that appeared at
least twice in the corpus (tagged with language
ID). While hyperparameter tuning could admit-
tedly affect results, we rarely have data for reliably

tuning hyperparameters for truly low-resource lan-
guages.

3.3 Results

Table 1 shows that the two algorithms based on
the sentence-ID feature space perform consistently
better than those using source+target words. We
suspect that the source+target feature set might
be capturing more information than is actually
needed for translation, such as syntagmatic or top-
ical similarity between words (e.g. “dog” ∼ “ken-
nel”). This might be distracting for cross-lingual
tasks such as word alignment and bilingual dictio-
nary induction. Sentence ID features, on the other
hand, are simpler, and might therefore contain a
cleaner translation-oriented signal.

It is important to state that, in absolute terms,
these results are quite poor. The fact that the best
inverse AER is around 50% calls into question the
ability to actually utilize these embeddings in a
real-life scenario. While one may suggest that this
is a result of the small training dataset (Edinburgh
Bible Corpus), previous work (e.g. (Chandar et al.,
2014)) used an even smaller dataset (the first 10K
sentences in Europarl (Koehn, 2005)). To ensure
that our results are not an artifact of the Edinburgh
Bible Corpus, we repeated our experiments on the
full Europarl corpus (180K sentences) for a subset
of languages (English, French, and Spanish), and
observed similar trends. As this is a comparative
study focused on analyzing the qualitative differ-
ences between algorithms, we place the issue of
low absolute performance aside for the moment,
and reopen it in §5.4.

4 Comparing Cross-lingual Embeddings
with Traditional Alignment Methods

Sentence IDs are not unique to modern embedding
methods, and have been used by statistical ma-
chine translation from the very beginning. In par-
ticular, the Dice coefficient (Och and Ney, 2003),
which is often used as a baseline for more sophis-
ticated alignment methods, measures the cross-
lingual similarity of words according to the num-
ber of aligned sentences in which they appeared.
IBM Model-1 (Brown et al., 1993) also makes ex-
actly the same data assumptions as other sentence-
ID methods. It therefore makes sense to use Dice
similarity and the translation probabilities derived
from IBM Model-1 as baselines for cross-lingual
embeddings that use sentence IDs.
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Source+Target Words Sentence IDs

BilBOWA
BWE Bilingual Inverted

SkipGram Autoencoders Index

W
or

d
A

lig
nm

en
t(

1-
A

E
R

) GRAÇA

en fr .3653 .3538 .4376 .3499
fr en .3264 .3676 .4488 .3995
en es .2723 .3156 .5000 .3443
es en .2953 .3740 .5076 .4545
en pt .3716 .3983 .4449 .3263
pt en .3949 .4272 .4474 .3902

HANSARDS
en fr .3189 .3109 .4083 .3336
fr en .3206 .3314 .4218 .3749

LAMBERT
en es .1576 .1897 .2960 .2268
es en .1617 .2073 .2905 .2696

MIHALCEA
en ro .1621 .1848 .2366 .1951
ro en .1598 .2042 .2545 .2133

HOLMQVIST
en sv .2092 .2373 .2746 .2357
sv en .2121 .2853 .2994 .2881

CAKMAK
en tr .1302 .1547 .2256 .1731
tr en .1479 .1571 .2661 .2665

D
ic

tio
na

ry
In

du
ct

io
n

(P
@

1)

WIKTIONARY

en fr .1096 .2176 .2475 .3125
fr en .1305 .2358 .2762 .3466
en es .0630 .1246 .2738 .3135
es en .0650 .1399 .3012 .3574
en pt .1384 .3869 .3281 .3866
pt en .1573 .4119 .3661 .4190
en ar .0385 .1364 .0995 .1364
ar en .0722 .2408 .1958 .2825
en fi .0213 .1280 .0887 .1367
fi en .0527 .1877 .1597 .2477
en he .0418 .1403 .0985 .1284
he en .0761 .1791 .1701 .2179
en hu .0533 .2299 .1679 .2182
hu en .0810 .2759 .2234 .3204
en tr .0567 .2207 .1770 .2245
tr en .0851 .2598 .2069 .2835

Average* .1640 .2505 .2856 .2867
Top 1 0 3.5 15 13.5

Table 1: The performance of four state-of-the-art cross-lingual embedding methods. * Averages across two different metrics.

From Table 2 we learn that the existing em-
bedding methods are not really better than IBM
Model-1. In fact, their average performance
is even slightly lower than Model-1’s. Al-
though Bilingual Autoencoders, Inverted Index,
and Model-1 reflect entirely different algorithmic
approaches (respectively: neural networks, matrix
factorization, and EM), the overall difference in
performance seems to be rather marginal. This
suggests that the main performance factor is not
the algorithm, but the feature space: sentence IDs.

However, Dice also relies on sentence IDs, yet
its performance is significantly worse. We suggest
that Dice uses the sentence-ID feature set naı̈vely,
resulting in degenerate performance with respect
to the other methods. In the following section, we
analyze this shortcoming and show that general-
izations of Dice actually do yield similar perfor-

mance Model-1 and other sentence-ID methods.

5 Generalized Dice

In this section, we show that the Dice coeffi-
cient (Och and Ney, 2003) can be seen as the
dot-product between two word vectors represented
over the sentence-ID feature set. After providing
some background, we demonstrate the mathemat-
ical connection between Dice and word-feature
matrices. We then introduce a new variant of Dice,
SID-SGNS, which performs on-par with Model-1
and the other embedding algorithms. This vari-
ant is able to seamlessly leverage the multi-lingual
nature of sentence IDs, giving it a small but signif-
icant edge over Model-1.
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Embeddings Alignment
Algorithms

Bilingual Inverted
Dice

IBM
Autoencoders Index Model-1

W
or

d
A

lig
nm

en
t(

1-
A

E
R

) GRAÇA

en fr .4376 .3499 .3355 .4263
fr en .4488 .3995 .3470 .4248
en es .5000 .3443 .3919 .4251
es en .5076 .4545 .3120 .4243
en pt .4449 .3263 .3569 .4729
pt en .4474 .3902 .3598 .4712

HANSARDS
en fr .4083 .3336 .3614 .4360
fr en .4218 .3749 .3663 .4499

LAMBERT
en es .2960 .2268 .2057 .2400
es en .2905 .2696 .1947 .2443

MIHALCEA
en ro .2366 .1951 .2030 .2335
ro en .2545 .2133 .1720 .2214

HOLMQVIST
en sv .2746 .2357 .2435 .3405
sv en .2994 .2881 .2541 .3559

CAKMAK
en tr .2256 .1731 .2285 .3154
tr en .2661 .2665 .2458 .3494

D
ic

tio
na

ry
In

du
ct

io
n

(P
@

1)

WIKTIONARY

en fr .2475 .3125 .1104 .1791
fr en .2762 .3466 .1330 .1816
en es .2738 .3135 .1072 .0903
es en .3012 .3574 .1417 .1131
en pt .3281 .3866 .1384 .3779
pt en .3661 .4190 .1719 .4358
en ar .0995 .1364 .0449 .1316
ar en .1958 .2825 .0610 .2873
en fi .0887 .1367 .0423 .1340
fi en .1597 .2477 .0463 .2394
en he .0985 .1284 .0358 .1224
he en .1701 .2179 .0328 .2000
en hu .1679 .2182 .0569 .2219
hu en .2234 .3204 .0737 .2985
en tr .1770 .2245 .0406 .1985
tr en .2069 .2835 .0820 .3073

Average 0.2856 0.2867 0.1843 0.2922
Top 1 8 12 0 12

Table 2: The performance of embedding and alignment methods based on the sentence ID feature set.

5.1 Word-Feature Matrices

In the word similarity literature, it is common to
represent words as real-valued vectors and com-
pute their “semantic” similarity with vector sim-
ilarity metrics, such as the cosine of two vec-
tors. These word vectors are traditionally de-
rived from sparse word-feature matrices, either
by using the matrix’s rows as-is (also known as
“explicit” representation) or by inducing a lower-
dimensional representation via matrix factoriza-
tion (Turney and Pantel, 2010). Many modern
methods, such as those in word2vec (Mikolov
et al., 2013b), also create vectors by factorizing
word-feature matrices, only without representing
these matrices explicitly.

Formally, we are given a vocabulary of words
VW and a feature space (“vocabulary of features”)

VF . These features can be, for instance, the set of
sentences comprising the corpus. We then define
a matrix M of |VW | rows and |VF | columns. Each
entry in M represents some statistic pertaining to
that combination of word and feature. For exam-
ple, Mw,f could be the number of times the word
w appeared in the document f .

The matrix M is typically processed into a
“smarter” matrix that reflects the strength of as-
sociation between each given word w and feature
f . We present three common association met-
rics: L1 row normalization (Equation (1)), In-
verse Document Frequency (IDF, Equation (2)),
and Pointwise Mutual Information (PMI, Equa-
tion (3)). The following equations show how to
compute their respective matrices:

ML1
w,f = I(w,f)

I(w,∗) (1)
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M IDF
w,f = log |VF |

I(w,∗) (2)

MPMI
w,f = log #(w,f)·#(∗,∗)

#(w,∗)·#(∗,f) (3)

where #(·, ·) is the co-occurrence count function,
I(·, ·) is the co-occurrence indicator function, and
∗ is a wildcard.4

To obtain word vectors of lower dimensionality
(VF may be huge), the processed matrix is then
decomposed, typically with SVD. An alternative
way to create low-dimensional word vectors with-
out explicitly constructing M is to use the nega-
tive sampling algorithm (SGNS) (Mikolov et al.,
2013b).5 This algorithm factorizes MPMI using
a weighted non-linear objective (Levy and Gold-
berg, 2014).

5.2 Reinterpreting the Dice Coefficient
In statistical machine translation, the Dice coef-
ficient is commonly used as a baseline for word
alignment (Och and Ney, 2003). Given sentence-
aligned data, it provides a numerical measure of
how likely two words – a source-language word
ws and a target-language word wt – are each
other’s translation:

Dice(ws, wt) =
2·S(ws,wt)

S(ws,∗)·S(∗,wt)
(4)

where S(·, ·) is the number of aligned sentences in
the data where both arguments occurred.

We claim that this metric is mathemati-
cally equivalent to the dot-product of two L1-
normalized sentence-ID word-vectors, multiplied
by 2. In other words, if we use the combination of
sentence-ID features and L1-normalization to cre-
ate our word vectors, then for any ws and wt:

ws · wt =
Dice(ws,wt)

2 (5)

To demonstrate this claim, let us look at the dot-
product of ws and wt:

ws · wt =
∑

i

(
I(ws,i)
I(ws,∗) ·

I(wt,i)
I(wt,∗)

)
(6)

where i is the index of an aligned sentence. Since
I(ws, ∗) = S(ws, ∗) and I(wt, ∗) = S(∗, wt), and
both are independent of i, we can rewrite the equa-
tion as follows:

ws · wt =
∑

i I(ws,i)·I(wt,i)
S(ws,∗)·S(∗,wt)

(7)

4A function with a wildcard should be interpreted as
the sum of all possible instantiations, e.g. I(w, ∗) =∑

x I(w, x).
5For consistency with prior art, we refer to this algorithm

as SGNS (skip-grams with negative sampling), even when it
is applied without the skip-gram feature model.

Since I(w, i) is an indicator function of whether
the word w appeared in sentence i, it stands to rea-
son that the product I(ws, i) · I(wt, i) is an indica-
tor of whether both ws and wt appeared in i. Ergo,
the numerator of Equation (7) is exactly the num-
ber of aligned sentences in which both ws and wt

occurred: S(ws, wt). Therefore:

ws · wt =
S(ws,wt)

S(ws,∗)·S(∗,wt)
= Dice(ws,wt)

2 (8)

This theoretical result implies that the cross-
lingual similarity function derived from embed-
dings based on sentence IDs is essentially a gener-
alization of the Dice coefficient.

5.3 SGNS with Sentence IDs
The Dice coefficient appears to be a particu-
larly naı̈ve variant of matrix-based methods that
use sentence IDs. For example, Inverted In-
dex (Søgaard et al., 2015)), which uses SVD
over IDF followed by L2 normalization (instead
of L1 normalization), shows significantly better
performance. We propose using a third vari-
ant, sentence-ID SGNS (SID-SGNS), which sim-
ply applies SGNS (Mikolov et al., 2013b) to the
word/sentence-ID matrix (see §5.1).

Table 3 compares its performance (Bilingual
SID-SGNS) to the other methods, and shows that
indeed, this algorithm behaves similarly to other
sentence-ID-based methods. We observe similar
results for other variants as well, such as SVD over
positive PMI (not shown).

5.4 Embedding Multiple Languages
Up until now, we used bilingual data to train cross-
lingual embeddings, even though our parallel cor-
pus (the Bible) is in fact multi-lingual. Can we
make better use of this fact?

An elegant property of the sentence-ID feature
set is that it is a truly inter-lingual representation.
This means that multiple languages can be repre-
sented together in the same matrix before factor-
izing it. This raises a question: does dimensional-
ity reduction over a multi-lingual matrix produce
better cross-lingual vectors than doing so over a
bilingual matrix?

We test our hypothesis by comparing the per-
formance of embeddings trained with SID-SGNS
over all 57 languages of the Bible corpus to that
of the bilingual embeddings we used earlier. This
consistently improves performance across all the
development benchmarks, providing a 4.69% av-
erage increase in performance (Table 3). With this
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Prior Art This Work

Bilingual Inverted IBM Bilingual Multilingual
Autoencoders Index Model-1 SID-SGNS SID-SGNS

W
or

d
A

lig
nm

en
t(

1-
A

E
R

) GRAÇA

en fr .4376 .3499 .4263 .4167 .4433
fr en .4488 .3995 .4248 .4300 .4632
en es .5000 .3443 .4251 .4200 .4893
es en .5076 .4545 .4243 .3610 .5015
en pt .4449 .3263 .4729 .3983 .4047
pt en .4474 .3902 .4712 .4272 .4151

HANSARDS
en fr .4083 .3336 .4360 .3810 .4091
fr en .4218 .3749 .4499 .3806 .4302

LAMBERT
en es .2960 .2268 .2400 .2471 .2989
es en .2905 .2696 .2443 .2415 .3049

MIHALCEA
en ro .2366 .1951 .2335 .1986 .2514
ro en .2545 .2133 .2214 .1914 .2753

HOLMQVIST
en sv .2746 .2357 .3405 .2373 .2737
sv en .2994 .2881 .3559 .2853 .3195

CAKMAK
en tr .2256 .1731 .3154 .1547 .2404
tr en .2661 .2665 .3494 .1571 .2945

D
ic

tio
na

ry
In

du
ct

io
n

(P
@

1)

WIKTIONARY

en fr .2475 .3125 .1791 .3182 .3304
fr en .2762 .3466 .1816 .3379 .3893
en es .2738 .3135 .0903 .3268 .3509
es en .3012 .3574 .1131 .3483 .3868
en pt .3281 .3866 .3779 .3869 .4058
pt en .3661 .4190 .4358 .4119 .4376
en ar .0995 .1364 .1316 .1364 .1605
ar en .1958 .2825 .2873 .2408 .3082
en fi .0887 .1367 .1340 .1280 .1591
fi en .1597 .2477 .2394 .1877 .2584
en he .0985 .1284 .1224 .1403 .1448
he en .1701 .2179 .2000 .1791 .2403
en hu .1679 .2182 .2219 .2299 .2482
hu en .2234 .3204 .2985 .2759 .3372
en tr .1770 .2245 .1985 .2207 .2437
tr en .2069 .2835 .3073 .2598 .3080

Average 0.2856 0.2867 0.2922 0.2830 0.3289
Top 1 2 0 8 0 22

Table 3: The performance of SID-SGNS compared to state-of-the-art cross-lingual embedding methods and traditional align-
ment methods.

advantage, SID-SGNS performs significantly bet-
ter than the other methods combined.6 This result
is similar in vein to recent findings in the pars-
ing literature (Ammar et al., 2016; Guo et al.,
2016), where multi-lingual transfer was shown to
improve upon bilingual transfer.

In absolute terms, Multilingual SID-SGNS’s
performance is still very low. However, this exper-
iment demonstrates that one way of making sig-
nificant improvement in cross-lingual embeddings
is by considering additional sources of informa-
tion, such as the multi-lingual signal demonstrated
here. We hypothesize that, regardless of the algo-
rithmic approach, relying solely on sentence IDs

6We observed a similar increase in performance when ap-
plying the multi-lingual signal to Søgaard et al.’s (2015) IDF-
based method and to SVD over positive PMI.

from bilingual parallel corpora will probably not
be able to improve much beyond IBM Model-1.

6 Data Paradigms

In §2, we assumed that using sentence-aligned
data is a better approach than utilizing document-
aligned data. Is this the case?

To compare the data paradigms, we run the
same algorithm, SID-SGNS, also on document
IDs from Wikipedia.7 We use the bilingual (not
multilingual) version for both data types to con-
trol for external effects. During evaluation, we use
a common vocabulary for both sentence-aligned
and document-aligned embeddings.

7We use the word-document matrix mined by Søgaard et
al. (2015), which contains only a subset of our target lan-
guages: English, French, and Spanish.
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The Bible Wikipedia

GRAÇA

en fr .3169 .2602
fr en .3089 .2440
en es .3225 .2429
es en .3207 .2504

HANSARDS
en fr .3661 .2365
fr en .3345 .1723

LAMBERT
en es .2161 .1215
es en .2123 .1027

WIKTIONARY

en fr .3232 .3889
fr en .3418 .4135
en es .3307 .3262
es en .3509 .3310

Average .3121 .2575
Top 1 10 2

Table 4: The performance of SID-SGNS with sentence-
aligned data from the Bible (31,102 verses) vs document-
aligned data from Wikipedia (195,000 documents).

Table 4 shows that using sentence IDs from the
Bible usually outperforms Wikipedia. This re-
markable result, where a small amount of paral-
lel sentences is enough to outperform one of the
largest collections of multi-lingual texts in exis-
tence, indicates that document-aligned data is an
inferior paradigm for translation-related tasks such
as word alignment and dictionary induction.

7 Conclusions

In this paper, we draw both empirical and the-
oretical parallels between modern cross-lingual
word embeddings based on sentence alignments
and traditional word alignment algorithms. We
show the importance of sentence ID features and
present a new, strong baseline for cross-lingual
word embeddings, inspired by the Dice aligner.
Our results suggest that apart from faster algo-
rithms and more compact representations, recent
cross-lingual word embedding algorithms are still
unable to outperform the traditional methods by a
significant margin. However, introducing our new
multi-lingual signal considerably improves perfor-
mance. Therefore, we hypothesize that the infor-
mation in bilingual sentence-aligned data has been
thoroughly mined by existing methods, and sug-
gest that future work explore additional sources of
information in order to make substantial progress.
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Abstract

This paper presents a new, efficient
method for learning task-specific word
vectors using a variant of the Passive-
Aggressive algorithm. Specifically, this
algorithm learns a word embedding ma-
trix in tandem with the classifier param-
eters in an online fashion, solving a bi-
convex constrained optimization at each it-
eration. We provide a theoretical analysis
of this new algorithm in terms of regret
bounds, and evaluate it on both synthetic
data and NLP classification problems, in-
cluding text classification and sentiment
analysis. In the latter case, we compare
various pre-trained word vectors to initial-
ize our word embedding matrix, and show
that the matrix learned by our algorithm
vastly outperforms the initial matrix, with
performance results comparable or above
the state-of-the-art on these tasks.

1 Introduction

Recently, distributed word representations have
become a crucial component of many natural
language processing systems (Koo et al., 2008;
Turian et al., 2010; Collobert et al., 2011). The
main appeal of these word embeddings is two-
fold: they can be derived directly from raw text
data in an unsupervised or weakly-supervised
manner, and their latent dimensions condense
interesting distributional information about the
words, thus allowing for better generalization
while also mitigating the presence of rare and un-
seen terms. While there are now many different
spectral, probabilistic, and deep neural approaches
for building vectorial word representations, there
is still no clear understanding as to which syn-
tactic and semantic information they really cap-

ture and whether or how these representations re-
ally differ (Chen et al., 2013; Levy and Goldberg,
2014b; Schnabel et al., 2015). Also poorly under-
stood is the relation between the word represen-
tations and the particular learning algorithm (e.g.,
whether linear or non-linear) that uses them as in-
put (Wang and Manning, 2013).

What seems clear, however, is that there is no
single best embedding and that their impact is very
much task-dependent. This in turn raises the ques-
tion of how to learn word representations that are
adapted to a particular task and learning objective.
Three different research routes have been explored
towards learning task-specific word embeddings.
A first approach (Collobert et al., 2011; Maas
et al., 2011) is to learn the embeddings for the
target problem jointly with additional unlabeled
or (weakly-)labeled data in a semi-supervised or
multi-task approach. While very effective, this
joint training typically requires large amounts of
data and often prohibitive processing times in the
case of multi-layer neural networks (not to men-
tion their lack of theoretical learning guarantees
in part due to their strong non-convexity). An-
other approach consists in training word vectors
using some existing algorithm as in like word2vec
(Mikolov et al., 2013) in a way that exploits prior
domain knowledge (e.g., by defining more in-
formative, task-specific contexts) (Bansal et al.,
2014; Levy and Goldberg, 2014a). In this case,
there is still a need for additional weakly- or hand-
labeled data, and there is no guarantee that the
newly learned embeddings will indeed benefit the
performance, as they are trained independently of
the task objective. A third approach is to start
with some existing pre-trained embeddings and
fine-tune them to the task by integrating them in
a joint learning objective either using backpropa-
gation (Lebret et al., 2013) or regularized logis-
tic regression (Labutov and Lipson, 2013). These
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approaches in effect hit a sweet spot by leverag-
ing pre-trained embeddings and requiring no ad-
ditional data or domain knowledge, while directly
tying them to task learning objective.

Inspired by these latter approaches, we propose
a new, online soft-margin classification algorithm,
called Re-embedding Passive-Agressive (or RPA),
that jointly learns an embedding matrix in tandem
with the model parameters. As its name suggests,
this algorithm generalizes the Passive-Aggressive
(PA) algorithm of Crammer and Singer (2006) by
allowing the data samples to be projected into the
lower dimension space defined by the original em-
bedding matrix. Our approach may be seen as ex-
tending the work of (Grandvalet and Canu, 2003)
which addresses the problem of simultaneously
learning the features and the weight vector of an
SVM classifier. An important departure, beyond
the online nature of RPA, is that it learns a projec-
tion matrix and not just a diagonal one (which is
essentially what this earlier work does). Our ap-
proach and analysis are also related to (Blondel et
al., 2014), which tackles non-negative matrix fac-
torization with the PA philosophy.

The main contributions of this paper are as fol-
lows. First, we derive a new variant of the Passive-
Aggressive algorithm able to jointly learn an em-
bedding matrix along with the weight vector of the
model (section 2). Second, we provide theoretical
insights as to bound the cumulative squared loss of
our learning procedure over any given sequence of
examples—the results we give are actually related
to a learning procedure that slighlty differs from
the algorithm we introduce but that is more eas-
ily and compactly amenable to a theoretical study.
Third, we further study the behavior of this algo-
rithm on synthetic data (section 4) and we finally
show that it performs well on five real-world NLP
classification problems (section 5).

2 Algorithm

We consider the problem of learning a binary lin-
ear classification function fΦ,w, parametrized by
both a weight vector w ∈ Rk and an embedding
matrix Φ ∈ Rk×p (typically, with k � p), which
is defined as:

fΦ,w : X ⊂ Rp → {−1,+1}
x 7→ sign(〈w,Φx〉)

We aim at an online learning scenario, wherein
both w and Φ will be updated in a sequen-
tial fashion. Given a labeled data steam S =

{(xt, yt)}Tt=1, it seems relevant at each step to
solve the following soft-margin constrained opti-
mization problem:

argmin
w∈Rk

Φ∈Rk×p

1

2
‖w −wt‖22 +

λ

2
‖Φ−Φt‖2F + Cξ2 (1a)

s.t. `t(w;Φ;xt) ≤ ξ (1b)

where ‖·‖2, ‖·‖F stand for the l2 and Frobenius
norms, respectively, and C controls the “aggres-
siveness” of the update (as larger C values im-
ply updates that are directly proportional to the in-
curred loss). We define `t(w; Φ;xt) as the hinge
loss, that is:

`t(w; Φ;xt)
.
= max(0, 1− yt 〈w,Φxt〉). (2)

The optimization problem in (1) is reminiscent of
the soft-margin Passive-Aggressive algorithm pro-
posed in (Crammer et al., 2006) (specifically, PA-
II), but both the objective and the constraint now
include a term based on the embedding matrix Φ.
The λ regularization parameter in the objective
controls the allowed divergence in the embedding
parameters between iterations.

Interestingly, the new objective remains convex,
but the margin constraint doesn’t as it involves a
multiplicative term between the weight vector and
the embedding matrix, making the overall prob-
lem bi-convex (Gorski et al., 2007). That is, the
problem is convex in w for fixed values of Φ and
convex in Φ for fixed values of w. Incidentally,
the formulation presented by (Labutov and Lip-
son, 2013) is also bi-convex (as it also involves a
similar multiplicative term), although the authors
proceed as if it were jointly convex (i.e., convex
in both w and Φ). In order to solve this prob-
lem, we resort to an alternating update procedure
which updates each set of parameters (i.e., either
the weight vector or the embedding matrix) while
holding the other fixed until some stopping crite-
rion is met (in our case, the value of the objective
doesn’t change). As shown in Algorithm 1, this
procedure allows us to compute closed-form up-
dates similar to those of PA, and to make use of
the same theoretical apparatus for analyzing RPA.

2.1 Unified Formalization

Suppose from now on that C and λ are fixed and
so are wt and Φt: this will allow us to drop the
explicit dependence on these values and to keep
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Algorithm 1 Re-embedding Passive-Aggressive

Require:
• S = {(xt, yt)}Tt=1, a stream of data
• a base embedding Φ0

Ensure:
• a classification vector w
• a re-embedding matrix Φ

Initialize w0

t← 0
repeat

w0
t+1 ← wt, Φ0

t+1 ← Φt,
n← 1
repeat

wn+1
t+1 ← wn

t+1 +
`t(w

n
t+1;Φn

t+1)

‖Φn
t+1xt‖22 + 1

2C

ytxt

Φn+1
t+1 ← Φn

t+1 +
`t(w

n+1
t+1 ;Φn

t+1)
∥∥wn+1

t+1

∥∥2
2
‖xt‖22 + λ

2C

ytw
n+1
t+1 x

>
t .

with

`t(w;Φ) = max(0, 1− yt 〈w,Φxt〉).

until wn
t+1 → w∞t+1 and Φn

t+1 → Φ∞t+1

Update wt+1 and Φt+1:

wt+1 ← w∞t+1 Φt+1 ← Φ∞t+1

until some stopping criterion is met
return wt,Φt

the notation light. Let Qt be defined as:

Qt(w,Φ, ξ)
.
=

1

2
‖w −wt‖22 +

λ

2
‖Φ−Φt‖2F + Cξ2.

(3)

and margin qt be defined as:

qt(w,Φ)
.
= 1− 〈w, ytΦxt〉 (4a)

= 1−
〈
Φ, ytwx>t

〉
F
. (4b)

Here 〈·, ·〉F denote the Frobenius inner product.
We have purposely provided the two equivalent
forms (4a) and (4b) to emphasize the (syntactic)
exchangeability of w and Φ. As we shall see, this
is going to be essential to derive an alternating up-
date procedure—which alternates the updates with
respect to w and Φ—in a compact way.

Given Qt and qt, we are now interested in solv-
ing the following optimization problem:

wt+1,Φt+1, ξt+1 = argmin
w,Φ,ξ

Qt(w,Φ, ξ) (5a)

s.t. qt(w,Φ) ≤ ξ. (5b)

2.2 Bi-convexity

It turns out that problem (5) is a bi-convex op-
timization problem: it is indeed straightforward
to observe that if Φ is fixed then the problem
is convex in (w, ξ)—it is the classical passive-
aggressive II optimization problem—and if w is
fixed then the problem is convex in (Φ, ξ). If
there exist theoretical results on the solving of bi-
convex optimization problems, the machinery to
use pertains to combinatorial optimization, which
might be too expensive. In addition, computing
the solution of (5) would drive us away from the
spirit of passive-aggressive learning which rely
on cheap and statistically meaningful (from the
mistake-bound perspective) updates. This is the
reason why we propose to resort to an alternate
online procedure to solve a proxy of (5).

2.3 An Alternating Online Procedure

Instead of tackling problem (5) directly we pro-
pose to solve, at each time t, either of:

wt+1, ξt+1 = argmin
w,ξ

Qt(w,Φt, ξ) s.t. qt(w,Φt) ≤ ξ,

(6)

Φt+1, ξt+1 = argmin
Φ,ξ

Qt(wt,Φ, ξ) s.t. qt(wt,Φ) ≤ ξ.

(7)

This means that the optimization is performed
with either Φ fixed to Φt or w fixed to wt.

Informally, the iterative Algorithm 1, result-
ing from this alternate scheme, will solve at each
round a simple constrained optimization problem,
in which the objective is to minimize the squared
Euclidean distances between the new weight vec-
tor (resp. the new embedding matrix) and the cur-
rent one, while making sure that both sets of pa-
rameters achieve a correct prediction with a suffi-
ciently high margin. Note that one may recover the
standard passive-aggressive algorithm by simply
fixing the embedding matrix to the identity matrix.
Also note that if the right stopping criteria are re-
tained, Algorithm 1 is guaranteed to converge to a
local optimum of (5) (see (Gorski et al., 2007)).

When fully developed, problems (6)-(7) respec-
tively write as:

wt+1, ξt+1 = argmin
w,ξ

1

2
‖w −wt‖22 + Cξ2

s.t. 1− 〈w, ytΦtxt〉 ≤ ξ,
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or

Φt+1, ξt+1 = argmin
Φ,ξ

λ

2
‖Φ−Φt‖2F + Cξ2

s.t. 1−
〈
Φ, ytwtx

>
t

〉
F
≤ ξ.

Using the equivalence in (4), both problems can be
seen as special instances of the generic problem:

u∗, ξ∗ = argmin
u,ξ

λ

2
‖u− ut‖2? + Cξ2 (8a)

s.t. 1− 〈u,vt〉? ≤ ξ. (8b)

where ‖·‖? and 〈·, ·〉? are generalized versions of
the l2 norm and the inner product, respectively.

This is a convex optimization problem that can
be readily solved using classical tools from convex
optimization to give:

u∗ = ut + τuvt, with τu =
max(0, 1− 〈ut,vt〉?)

‖vt‖2? + λ
2C

, (9)

which comes from the following proposition.

Proposition 1. The solution of (8) is (9).

Proof. The Lagrangian associated with the prob-
lem is given by:

L(u, ξ, τ) =
λ

2
‖u− ut‖2? + Cξ2 + τ

(
1− ξ − 〈u,vt〉?

)

(10)

with τ > 0.

Necessary conditions for optimality are∇uL =
0, and∇ξL = 0, which imply u = ut + τ

λvt, and
ξ = τ

2C . Using this in (10) gives the function:

g(τ) =
τ2 ‖vt‖2?

2λ
+
τ2

4C
+τ− τ2

2C
−τ 〈ut,vt〉?−

τ2 ‖vt‖2?
λ

,

which is maximized with respect to τ when
g′(τ) = 0, i.e.:

(
‖vt‖2?
λ
− 1

2C
− 2 ‖vt‖2?

λ

)
τ + 1− 〈ut,vt〉? = 0.

Taking into account the constraint τ ≥ 0, the max-
imum of g is attained at τ̃ with:

τ̃ =
λmax(0, 1− 〈ut,vt〉?)

‖vt‖2? + λ
2C

,

which, setting τu = τ̃ /λ gives (9).

The previous proposition allows us to readily
have the solutions of (6) and (7) as follows.

Proposition 2. The updates induced by the solu-
tions of (6) and (7) are respectively given by:

w∗ = wt + τwytxt, with τw =
`t(wt;Φt)

‖Φtxt‖22 + 1
2C

(11)

Φ∗ = Φt + τΦytwtx
>
t , with τΦ =

`t(wt;Φt)

‖wt‖22 ‖xt‖
2
2 + λ

2C

,

(12)

where `t(w; Φ) = max(0, qt(w,Φ)).

Proof. Just instantiate the results of Proposi-
tion 1 with (u,vt) = (w, ytΦtxt) for (11) and
(u,vt) = (Φ, ytxtw

>
t ) for (12).

Remark 1 (Hard-margin case). Note that the
hard-margin version of the previous problem:

argmin
w∈Rk

Φ∈Rk×p

1

2
‖w −wt‖22 +

λ

2
‖Φ−Φt‖2F (13)

s.t. 1− yt 〈w,Φxt〉 ≤ 0 (14)

is degenerate from the alternated optimization
point of view. It suffices to observe that the updates
entailed by the hard-margin problem correspond
to (9) with C set to ∞; if it happens that either
Φ0 = 0 or w0 = 0, then one of the optimization
problems (wrt to w or Φ) has no solution.

3 Analysis

Using the same technical tools as in (Crammer et
al., 2006), and the unified formalization of sec-
tion 2, we have the following result.
Proposition 3. Suppose that problem (8) is itera-
tively solved for a sequence of vectors v1, . . . ,vT
to give u2, . . . ,uT+1, u1 being given. Suppose
that, at each time step, ‖vt‖? ≤ R, for some
R > 0. Let u∗ be an arbitrary vector living in
the same space as u1. The following result holds
T∑

t=1

`2t ≤
(
R2 +

λ

2C

)(
‖u∗ − u1‖2? +

2C

λ

T∑

t=1

(`∗t )
2

)

(15)

where

`t = max(0, 1−〈ut,vt〉?), and `∗t = max(0, 1−〈u∗,vt〉?).
(16)

This proposition and the accompanying lemmas
are simply a variation of the results of (Crammer
et al., 2006), with the addition that they are based
on the generic problem (8). The loss bound ap-
plies for a version of Algorithm 1 where one of
the parameters, either the weight vector or the re-
embedding matrix, is kept fixed for some time.

Proposition 3 makes use of the following lemma
(see Lemma 1 in (Crammer et al., 2006)):
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Lemma 1. Suppose that problem (8) is iteratively
solved for a sequence of vectors v1, . . . ,vT to
give u2, . . . ,uT+1, u1 being given. The follow-
ing holds:

T∑

t=1

τu(2`t − τu ‖vt‖2? − 2`∗t ) ≤ ‖u∗ − u1‖2? . (17)

Proof. As in (Crammer et al., 2006), simply
set ∆t = ‖ut − u∗‖2? − ‖ut+1 − u∗‖2? and
bound

∑T
τ=1 ∆t from above and below. For

the upper bound:
∑T

τ=1 ∆t = ‖u1 − u∗‖2? −
‖uT+1 − u∗‖2? ≤ ‖u1 − u∗‖2? .

For the lower bound, we focus on the nontrivial
situation where `t > 0, otherwise ∆t = 0 (i.e. no
update is made) and the bounding is straightfor-
ward. Making use of the value of τu:

∆t = ‖ut − u∗‖2? − ‖ut+1 − u∗‖2?
= ‖ut − u∗‖2? − ‖ut + τuvt − u∗‖2? (see (8))

= −2τu 〈ut − u∗,vt〉? − τ
2
u ‖vt‖2?

= −2τu 〈ut,vt〉? + 2τu 〈u∗,vt〉? − τ
2
u ‖vt‖2? .

Since `t > 0, then 〈ut,vt〉? = 1− `t; also, by the
definition of `∗t (see (16)), `∗t ≥ 1 − 〈u∗,vt〉?, or
〈u∗,vt〉? ≥ 1− `∗t . This readily gives

∆t ≥ −2τu(1− `t) + 2τu(1− `∗t )− τ2u ‖vt‖2?
= 2τu`t − 2τu`

∗
t − τ2u ‖vt‖2? ,

hence the targetted lower bound and, in turn, (17).

Proof of Proposition 3. As for the proof of Propo-
sition 3, it suffices, again, to follow the steps given
in (Crammer et al., 2006), but this time, for the
proof of Theorem 5.

Note that for any β 6= 0, (βτu− `∗t /β)2 is well-
defined and nonnegative and thus:

‖u∗ − u1‖2?

≥
T∑

t=1

[
τu(2`t − τu ‖vt‖2? − 2`∗t )− (βτu − `∗t /β)2

]

=
T∑

t=1

(2τu`t − τ2u(‖vt‖2? + β2)− 2τu`
2
t

+ 2τu`
2
t − (`∗t )

2/β2)

=

T∑

t=1

(2τu`t − τ2u(‖vt‖2? + β2)− (`∗t )
2/β2).

Setting β =
√
λ/2C and using τu = `t/(‖v‖2? +

Figure 1: Accuracy rates for PA and RPA as a
function of the variance of the Gaussian noise
added to the “true” embedding Φ. The observed
X matrix is n = 500× p = 1000.

λ
2C ) (see (9)) gives

‖u∗ − u1‖2?

≥
T∑

t=1

(
2τu`t − τ2u

(
‖vt‖2? +

λ

2C

)
− 2C

λ
(`∗t )

2

)
,

=

T∑

t=1

(
`2t

‖vt‖2? + λ
2C

− 2C

λ
(`∗t )

2

)
.

Using the assumption that ‖vt‖? ≤ R fo all t and
rearranging terms concludes the proof.

The result given in Proposition 3 bounds the cu-
mulative loss of the learning procedure when one
of the parameters, either Φ or w, is fixed and the
other is the optimization variable. Therefore, it
does not directly capture the behavior of Algo-
rithm 1, which alternates between the updates of
Φ and w. A proper analysis of Algorithm 1 would
require a refinement of Lemma 1 which, to our
understanding, would be the core of a new result.
This is a problem we intend to put our energy on
in the near future, as an extension to this work.

4 Experiments on Synthetic Data

In order to better understand and validate the RPA
algorithm, we first conducted some synthetic ex-
periments. Specifically, we simulated a high-
dimensional matrix X ∈ Rn×p, with n data sam-
ples realizing p “words” and p � n, using the
following generative model:

X = ZΦ̃,where Φ̃ = Φ + E

That is, each p-dimensional data point xi was gen-
erated from a hidden lower k-dimensional zi and
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Figure 2: Hyper-plane learned by PA on XΦ̃> (left pane) compared to hyper-plane and data representa-
tions learned by RPA (right pane). X is n = 200 × p = 500, and noise σ = 2. Training and test points
appear as circles or plus marks, respectively. RPA’s hyper-parameters are set to C = 100 and λ = .5.

an embedding matrix Φ ∈ Rk×p, mapping k latent
concepts to the p observed words. For simplic-
ity, we assume that: (i) there are only two con-
cepts (i.e., k = 2), (ii) each data point realizes
a single concept (i.e., each xi is a p-dimensional
indicator vector), (iii) each concept is equally rep-
resented in the data (with n/2 data points), and
(iv) each concept deterministically signals a class
label, either −1 or +1. Recovering Z and pre-
dicting the zi’s labels is trivial if one is given X
and the true embedding Φ, so we added Gaussian
noise εi ∼ N (0, σ2Ip) to each φi. The resulting,
observed noisy matrix is denoted Φ̃.

Given this setting, the goal of the RPA is to learn
a set of classification parameters w ∈ Rk in the la-
tent space and to “de-noise” the observed embed-
ding matrix Φ̃ by exploiting the labeled data. We
are interested in comparing the RPA with a regular
PA that directly learns from the noisy data XΦ̃>.
The outcome of this comparison is plotted in Fig-
ure 1. For this experiment, we randomly splitted
theX data according to 80/10/10 for train/dev/test
and considered increasing noise variance from 0 to
10 by increment of 0.1. Each dot in Figure 1 cor-
responds to the average accuracy over 10 seperate,
random initializations of the embedding matrix at
a particular noise level. Hyper-parameters were
optimized using a grid search on the dev set for
both the PA and RPA.1

As shown in Figure 1, the PA’s accuracy quickly
drops to levels that are only slightly above chance,
while the RPA manages to maintain an accuracy
close to .7 even with large noise. This indicates

1We use {1, 5, 10, 50} for the number iterations, C’s val-
ues were {.1, .5, 1.0, 2.0, 10.0}, and λ was set to 10k, with
k ∈ {−2,−1, 0, 1, 2}.

that the RPA is able to recover some of the struc-
ture in the embedding matrix. This behavior is
also illustrated in Figure 2, wherein the two hidden
concepts appear in yellow and green. While the
standard PA learns a very bad hyper-plane, which
fails to separate the two concepts, the RPA learns
a much better hyper-plane. Interestingly, most of
the data points appear to have been projected on
the margins of the hyper-plane.

5 Experiments on NLP tasks

This section assesses the effectiveness of RPA on
several text classification tasks.

5.1 Evaluation Datasets

We consider five different classification tasks
which are concisely summarized in Table 1.

20 Newsgroups Our first three text classification
tasks from this dataset2 consists in categorizing
documents into two related sub-topics: (i) Comp.:
IBM vs. Mac, (ii) Religion: atheism vs. christian,
and (iii) Sports: baseball vs. hockey.

IMDB Movie Review This movie dataset3 was
introduced by (Maas et al., 2011) for sentiment
analysis, and contains 50, 000 reviews, divided
into a balanced set of highly positive (7 stars out
of 10 or more) and negative scores (4 stars or less).

TREC Question Classification This dataset4

(Li and Roth, 2002) involves six question types:
abbreviation, description, entity, human, location,
and number.

2qwone.com/˜jason/20Newsgroups
3ai.stanford.edu/˜amaas/data/sentiment
4cogcomp.cs.illinois.edu/Data/QA/QC
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Name lab. examples Voc. size
Train Test All fr > 1

comp 2 1 168 777 30 292 15 768
rel. 2 1 079 717 32 361 18 594
sports 2 1 197 796 33 932 19 812

IMDB 2 25k 25k 172 001 86 361

TREC 6 5 452 500 9 775 3 771

Table 1: Number of labels, samples, vocabu-
lary sizes (incl. non-hapax words) per dataset.

Word Embedding
CnW GV6 GV840 HPCA HLBL SkGr

40.41 27.18 20.26 32.20 40.44 32.19
25.45 13.07 8.95 16.90 25.39 17.33
35.29 19.01 13.96 29.97 35.21 30.66

39.79 12.67 4.93 22.15 39.63 16.79

3.42 0.61 0.40 1.38 3.63 4.51

Table 2: Out-of-vocabulary rates for non-hapax
words in each dataset-embedding pair.

5.2 Preprocessing and Document Vectors
All datasets were pre-preprocessed with the Stan-
ford tokenizer5, except for the TREC corpus
which comes pre-tokenized. Case was left intact
unless used in conjunction with word embeddings
that assume down-casing (see below).

For constructing document or sentence vectors,
we used a simple 0-1 bag-of-word model, sim-
ply summing over the word vectors of occurring
tokens, followed by L2-normalization of the re-
sulting vector in order to avoid document/sentence
length effects. For each dataset, we restricted the
vocabulary to non-hapax words (i.e., words occur-
ring more than once). Words unknown to the em-
bedding were mapped to zero vectors.

5.3 Initial Word Vector Representations
Five publicly available word vectors were used
to define initial embedding matrices in the RPA.
The coverage of the different embeddings wrt each
dataset vocabulary is reported in Table 2.

CnW These word vectors were induced using
the neural language model of (Collobert and We-
ston, 2008) re-implemented by (Turian et al.,
2010).6 They were trained on 63M word news cor-
pus, covering 268, 810 word forms (intact case),
with 50, 100 or 200 dimensions for each word.

HLBL These were obtained using the prob-
abilistic Hierarchical log-bilinear language
model of (Mnih and Hinton, 2009), again re-
implemented by (Turian et al., 2010) with 50 or
100 dimensions. They cover 246, 122 word forms.

HPCA (Lebret and Collobert, 2014) present
a variant of Principal Component Analysis,
Hellinger PCA, for learning spectral word vec-
tors. These were trained over 1.62B words from

5nlp.stanford.edu/software/tokenizer.
shtml

6metaoptimize.com/projects/wordreprs

Wikipedia, RCV1, and WSJ with all words lower-
cased, and digits mapped to a special symbol. Vo-
cabulary is restricted to words occurring 100 times
or more (hence, a total of 178, 080 words). These
come in 50, 100 and 200 dimensions.7

GloVe These global word vectors are trained us-
ing a log-bilinear regression model on aggregated
global word co-occurrence statistics (Pennington
et al., 2014). We use two different releases:8 (i)
GV6B trained on Wikipedia 2014 and Gigaword 5
(amounting to 6B down-cased words and a vocab-
ulary of 400k) with vectors in 50, 100, 200, or 300
dimensions, and (ii) GV840B trained over 840B
uncased words (a 2.2M vocabulary) with vectors
of length 300.

SkGr Finally, we use word vectors pre-trained
with the skip-gram neural network model of
(Mikolov et al., 2013): each word’s Huffman code
is fed to a log-linear classifier with a continuous
projection layer that predicts context words within
a specified window. The embeddings were trained
on a 100B word corpus of Google news data (a
3M vocabulary) and are of length 300.9

rand In addition to these pre-trained word repre-
sentations, we also use random vectors of lengths
50, 100, and 200 as a baseline embedding. Specif-
ically, each component of these word vector is uni-
formly distributed on the unit interval (−1, 1).

5.4 Settings

The hyperparameters of the model, C, λ, and
the number it of iterations over the training set,
were estimated using a grid search over C =
10k∈{−6,−4,−2,0,2,4,6}, λ = 10l∈{−3,−2,−1,0,1,2,3},
and it ∈ {1, 5, 10} in a 10-fold cross-validation

7lebret.ch/words
8nlp.stanford.edu/projects/glove
9code.google.com/archive/p/word2vec
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Emb/Task comp religion sports trec imdb Average
Method Size PA RPA PA RPA PA RPA PA RPA PA RPA PA RPA

rand 50 54.57 87.13 60.67 91.91 63.07 92.34 56.80 88.40 61.47 86.47 59.32 89.25
100 62.03 87.39 66.95 92.19 65.58 93.22 68.00 88.20 65.07 86.56 65.53 89.51
200 65.51 87.64 73.22 92.19 71.11 92.96 70.00 88.20 69.10 86.58 69.79 89.51

CnW 50 50.32 85.97 55.09 91.91 56.91 93.72 69.40 87.20 58.68 86.54 58.08 89.07
100 49.29 87.13 47.56 91.63 58.54 93.72 69.20 87.80 65.04 86.51 57.93 89.36
200 50.32 87.00 53.14 91.77 63.94 93.72 75.80 87.60 68.21 86.64 62.28 89.35

HLBL 50 51.99 87.13 68.62 91.35 61.31 93.72 66.80 88.80 67.30 86.70 63.20 89.54
100 53.54 86.74 65.83 91.77 63.07 93.72 75.60 88.20 72.41 86.68 66.09 89.42

HPCA 50 50.45 86.87 50.77 91.63 64.20 93.34 66.00 88.60 62.78 80.56 58.84 88.20
100 50.45 86.87 47.98 91.63 64.57 93.72 72.00 88.40 64.25 85.33 59.85 89.19
200 50.45 86.87 48.12 91.91 62.56 93.59 78.40 88.00 64.75 85.84 60.86 89.24

GV6B 50 55.21 86.87 75.59 91.91 86.68 95.23 65.80 89.00 75.12 86.41 71.68 89.88
100 58.17 86.87 76.43 91.63 90.33 96.48 70.40 89.00 78.72 86.50 74.81 90.10
200 70.40 86.87 73.22 91.63 93.34 97.11 76.60 89.00 81.55 86.57 79.02 90.24
300 76.58 87.13 79.92 91.77 94.97 97.74 78.60 88.60 82.41 86.41 82.50 90.33

GV840B 300 75.80 87.13 88.15 92.05 88.69 96.23 77.20 89.20 84.17 86.46 82.80 90.21

SkGr 300 70.79 87.39 88.01 92.05 91.96 97.61 84.00 90.60 83.39 88.52 83.63 91.23

one-hot 87.26 91.91 93.47 88.00 88.29 89.786

Table 3: Accuracy results on our five datasets for the Re-embedding Passive-Aggressive (RPA) against
standard PA-II (PA). For each task, the best results for each embedding method (across different dimen-
sions) has been greyed out, while the overall highest accuracy score has been underlined.

over the training data. For the alternating on-
line procedure, we used the difference between
the objective values from one iteration to the next
for defining the stopping criterion, with maximum
number of iterations of 50. In practice, we found
that the search often converged much few itera-
tions. The multi-class classifier used for the TREC
dataset was obtained by training the RPA in sim-
ple One-versus-All fashion, thus learning one em-
bedding matrix per class.10 For datasets with label
imbalance, we set a different C parameter for each
class, re-weighting it in proportion to the inverse
frequency of the class.

5.5 Results

Table 3 summarizes accuracy results for the RPA
against those obtained by a PA trained with fixed
pre-trained embeddings. The first thing to notice is
that the RPA delivers massive accuracy improve-
ments over the vanilla PA across datasets and em-
bedding types and sizes, thus showing that the
RPA is able to learn word representations that are
better tailored to each problem. On average, ac-
curacy gains are between 22% and 31% for CnW,
HLBL, and HPCA. Sizable improvements, rang-
ing from 8% and 18%, are also found for the better

10More interesting configurations (e.g., a single embed-
ding matrix shared across classes), are left for future work.

performing GV6B, GV840B, and SkGr. Second,
RPA is able to outperform on all five datasets the
strong baseline provided by the one-hot version of
PA trained on the original high-dimensional space,
with some substantial gains on sports and trec.

Overall, the best scores are obtained with the re-
embedded SkGr vectors, which yield the best av-
erage accuracy, and outperform all the other con-
figurations on two of the five datasets (trec and
imdb). GV6B (dimension 300) has the second best
average scores, outperforming all the other con-
figurations on sports. Interestingly, embeddings
learned from random vectors achieve performance
that are often on a par or higher than those given by
HLBL, HPCA or CnW initializations. They actu-
ally yield the best performance for the two remain-
ing datasets: comp and religion. On these tasks,
RPA does not seem to benefit from the informa-
tion contained in the pre-trained embeddings, or
their coverage is not just good enough.

For both PA and RPA, performance appear to
be positively correlated with embedding coverage:
embeddings with lower OOV rates generally per-
form better those with more missing words. The
correlation is only partial, since GV840B do not
yield gains compared to GV6B and SkGr despite
its better word coverage. Also, SkGr largely out-
performs HPCA although they have similar OOV
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Emb/Task comp religion sports trec imdb Average
Method Size PA RPA PA RPA PA RPA PA RPA PA RPA PA RPA

rand 50 56.76 84.04 59.55 90.24 64.20 90.08 53.20 83.60 60.97 85.74 58.94 86.74
100 63.06 84.17 67.50 91.35 65.58 90.95 61.20 83.00 64.12 85.90 64.29 87.07
200 64.86 85.07 71.27 91.07 68.59 90.95 59.60 83.40 67.84 85.75 66.43 87.25

cnw 50 50.32 84.81 55.51 90.93 50.63 91.08 61.20 84.20 50.86 84.82 53.70 87.17
100 50.71 84.81 55.51 91.35 54.15 91.08 66.40 83.60 50.98 85.40 55.55 87.25
200 50.45 84.04 55.51 90.93 54.77 91.08 65.80 82.60 52.36 85.50 55.78 86.83

HLBL 50 53.15 85.07 59.97 89.82 56.41 90.95 56.60 83.40 62.38 85.66 57.70 86.98
100 53.80 84.68 61.09 91.21 56.91 90.95 67.60 84.00 67.88 85.64 61.46 87.30

HPCA 50 50.45 85.20 55.51 91.35 52.39 89.95 62.20 83.00 51.02 83.50 54.31 86.60
100 50.45 85.20 55.51 91.07 49.87 90.08 66.20 83.60 50.51 84.86 54.51 86.96
200 50.45 85.20 55.51 90.10 49.87 89.82 68.00 82.80 50.38 85.72 54.84 86.73

GV6B 50 50.97 85.07 64.16 91.49 55.28 91.08 57.00 85.00 69.48 85.48 59.38 87.62
100 50.58 84.94 60.53 89.68 63.82 91.08 58.00 84.60 70.22 85.51 60.63 87.16
200 51.22 85.20 64.99 91.49 85.05 90.08 58.00 84.80 73.64 85.59 66.58 87.43
300 56.24 85.33 70.15 89.68 89.07 91.21 72.40 85.20 75.48 85.79 72.67 87.44

GV840B 300 66.02 84.81 77.96 89.68 89.82 91.08 77.80 86.40 77.57 85.73 77.83 87.54

SkGr 300 67.95 82.50 81.59 89.40 95.10 94.60 80.80 88.40 80.93 85.92 81.27 88.16

one-hot 84.56 89.96 90.58 85.80 87.40 87.66

Table 4: Accuracy results for RPA against standard PA both run for a single iteration.

rates. As for dimensions, embeddings of length
100 and more perform the best, although they
involve estimating larger number of parameters,
which is a priori difficult given the small sizes of
the datasets.

By comparison with previous work on imdb,
the RPA performance are substantially better than
those reported by (Labutov and Lipson, 2013),
whose best re-embedding score is 81.15 with
CnW. By comparison, our best score with CnW
is 86.64, and 88.52 with SkGr, thus closing the
gap on (Maas et al., 2011) who report an accu-
racy of 88.89 using a much more computationally
intensive approach specifically tailored to senti-
ment analysis. Interestingly, (Labutov and Lipson,
2013) show that accuracy can be further improved
by concatenating re-embedded and 1-hot represen-
tations. This option is also available to us, but we
leave it to future work.

Finally, Table 4 report accuracy results for RPA
against PA when both algorithms are trained in a
genuine online mode, that is with a single pass
over the data. As expected, performance drop for
the RPA and the PA, but the decreases are compar-
atively much smaller for the RPA (from 2% to 3%)
compared to the PA (from 0.4% to 14%).

6 Conclusion and Future Work

In this paper, we have proposed a new scalable
algorithm for learning word representations that

are specifically tailored to a classification objec-
tive. This algorithm generalizes the well-known
Passive-Aggressive algorithm, and we showed
how to extend the regret bounds results of the
PA to the RPA when either the weight vector
or the embedding matrix is fixed. In addition,
we have also provided synthetic and NLP exper-
iments, demonstrating that the good classification
performance of RPA.

In future work, we first would like to achieve
a more complete analysis of the RPA algorithm
when both w and Φ both get updated. Also,
we intend to investigate potential exact meth-
ods for solving biconvex minimization (Floudas
and Viswewaran, 1990), as well as to develop
a stochastic version of RPA, thus foregoing run-
ning the inner alternate search to convergence.
More empirical perspectives include extending the
RPA to linguistic structured prediction tasks, bet-
ter handling of unknown words, and a deeper in-
trinsic and statistical evaluation of the embeddings
learned by the RPA.
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Abstract

We introduce the first generic text repre-
sentation model that is completely non-
symbolic, i.e., it does not require the avail-
ability of a segmentation or tokenization
method that attempts to identify words or
other symbolic units in text. This applies
to training the representations as well as to
using them in an application. We demon-
strate better performance than prior work
on entity typing and text denoising.

1 Introduction

Character-level models can be grouped into three
classes. (i) End-to-end models learn a separate
model on the raw character (or byte) input for
each task; these models estimate task-specific pa-
rameters, but no representation of text that would
be usable across tasks is computed. Throughout
this paper, we refer to r(x) as the “representa-
tion” of x only if r(x) is a generic rendering of
x that can be used in a general way, e.g., across
tasks and domains. The activation pattern of a
hidden layer for a given input sentence in a mul-
tilayer perceptron (MLP) is not a representation
according to this definition if it is not used out-
side of the MLP. (ii) Character-level models of
words derive a representation of a word w from
the character string of w, but they are symbolic
in that they need text segmented into tokens as
input. (iii) Bag-of-character-ngram models, bag-
of-ngram models for short, use character ngrams
to encode sequence-of-character information, but
sequence-of-ngram information is lost in the rep-
resentations they produce.

Our premise is that text representations are
needed in NLP. A large body of work on word
embeddings demonstrates that a generic text rep-
resentation, trained in an unsupervised fashion on

large corpora, is useful. Thus, we take the view
that group (i) models, end-to-end learning with-
out any representation learning, is not a good gen-
eral approach for NLP.

We distinguish training and utilization of the
text representation model. We use “training” to
refer to the method by which the model is learned
and “utilization” to refer to the application of the
model to a piece of text to compute a representa-
tion of the text. In many text representation mod-
els, utilization is trivial. For example, for word
embedding models, utilization amounts to a sim-
ple lookup of a word to get its precomputed em-
bedding. However, for the models we consider,
utilization is not trivial and we will discuss differ-
ent approaches.

Both training and utilization can be either sym-
bolic or nonsymbolic. We define a symbolic ap-
proach as one that is based on tokenization, i.e., a
segmentation of the text into tokens. Symbol iden-
tifiers (i.e., tokens) can have internal structure – a
tokenizer may recognize tokens like “to and fro”
and “London-based” that contain delimiters – and
may be morphologically analyzed downstream.1

We define a nonsymbolic approach as one that
is tokenization-free, i.e., no assumption is made
that there are segmentation boundaries and that
each segment (e.g., a word) should be represented
(e.g., by a word embedding) in a way that is in-
dependent of the representations (e.g., word em-
beddings) of neighboring segments. Methods for
training text representation models that require to-
kenized text include word embedding models like
word2vec (Mikolov et al., 2013) and most group

1The position-embedding representation of a text intro-
duced below is a sequence of position embeddings. An em-
bedding that represents a single character must be viewed as
symbolic since a character is a symbol – just like a represen-
tation of text as a sequence of word embeddings is symbolic
since each word corresponds to a symbol. But position em-
beddings do not represent single characters. See §4.
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(ii) methods, i.e., character-level models like fast-
Text skipgram (Bojanowski et al., 2016).

Bag-of-ngram models, group (iii) models, are
text representation utilization models that typ-
ically compute the representation of a text as
the sum of the embeddings of all character
ngrams occurring in it, e.g., WordSpace (Schütze,
1992) and CHARAGRAM (Wieting et al., 2016).
WordSpace and CHARAGRAM are examples of
mixed training-utilization models: training is per-
formed on tokenized text (words and phrases), uti-
lization is nonsymbolic.

We make two contributions in this paper. (i) We
propose the first generic method for training text
representation models without the need for tok-
enization and address the challenging sparseness
issues that make this difficult. (ii) We propose the
first nonsymbolic utilization method that fully rep-
resents sequence information – in contrast to uti-
lization methods like bag-of-ngrams that discard
sequence information that is not directly encoded
in the character ngrams themselves.

2 Motivation

Chung et al. (2016) give two motivations for their
work on character-level models. First, tokeniza-
tion (or, equivalently, segmentation) algorithms
make many mistakes and are brittle: “we do not
have a perfect word segmentation algorithm for
any one language”. Tokenization errors then prop-
agate throughout the NLP pipeline.

Second, there is currently no general solu-
tion for morphology in statistical NLP. For many
languages, high-coverage and high-quality mor-
phological resources are not available. Even for
well resourced languages, problems like ambigu-
ity make morphological processing difficult; e.g.,
“rung” is either the singular of a noun meaning
“part of a ladder” or the past participle of “to ring”.
In many languages, e.g., in German, syncretism, a
particular type of systematic morphological ambi-
guity, is pervasive. Thus, there is no simple mor-
phological processing method that would produce
a representation in which all inflected forms of
“to ring” are marked as having a common lemma;
and no such method in which an unseen form like
“aromatizing” is reliably analyzed as a form of
“aromatize” whereas an unseen form like “anti-
trafficking” is reliably analyzed as the compound
“anti+trafficking”.

Of course, it is an open question whether non-

symbolic methods can perform better than mor-
phological analysis, but the foregoing discussion
motivates us to investigate them.

Chung et al. (2016) focus on problems with
the tokens produced by segmentation algorithms.
Equally important is the problem that tokeniza-
tion fails to capture structure across multiple
tokens. The job of dealing with cross-token struc-
ture is often given to downstream components of
the pipeline, e.g., components that recognize mul-
tiwords and named entitites in English or in fact
any word in a language like Chinese that uses no
overt delimiters. However, there is no linguistic or
computational reason in principle why we should
treat the recognition of a unit like “electromechan-
ical” (containing no space) as fundamentally dif-
ferent from the recognition of a unit like “electrical
engineering” (containing a space). Character-level
models offer the potential of uniform treatment of
such linguistic units.

3 Text representation model: Training

3.1 Methodology

Many text representation learning algorithms can
be understood as estimating the parameters of the
model from a unit-context matrix C where each
row corresponds to a unit ui, each column to a
context cj and each cell Cij measures the degree
of association between ui and cj . For example, the
skipgram model is closely related to an SVD fac-
torization of a pointwise mutual information ma-
trix (Levy and Goldberg, 2014). Many text rep-
resentation learning algorithms are formalized as
matrix factorization (e.g., (Deerwester et al., 1990;
Hofmann, 1999; Stratos et al., 2015)), but there
may be no big difference between implicit (e.g.,
(Pennington et al., 2014)) and explicit factoriza-
tion methods; see also (Mohamed, 2011; Rastogi
et al., 2015).

Our goal in this paper is not to develop new ma-
trix factorization methods. Instead, we will focus
on defining the unit-context matrix in such a way
that no symbolic assumption has to be made. This
unit-context matrix can then be processed by any
existing or still to be invented algorithm.

Definition of units and contexts. How to de-
fine units and contexts without relying on segmen-
tation boundaries? In initial experiments, we sim-
ply generated all character ngrams of length up to
kmax (where kmax is a parameter), including char-
acter ngrams that cross token boundaries; i.e., no
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segmentation is needed. We then used a skipgram-
type objective for learning embeddings that at-
tempts to predict, from ngram g1, an ngram g2
in g1’s context. Results were poor because many
training instances consist of pairs (g1, g2) in which
g1 and g2 overlap, e.g., one is a subsequence of
the other. So the objective encourages trivial pre-
dictions of ngrams that have high string similarity
with the input and nothing interesting is learned.

In this paper, we propose an alternative way
of defining units and contexts that supports well-
performing nonsymbolic text representation learn-
ing: multiple random segmentation. A pointer
moves through the training corpus. The current
position i of the pointer defines the left boundary
of the next segment. The length l of the next move
is uniformly sampled from [kmin, kmax] where kmin

and kmax are the minimum and maximum segment
lengths. The right boundary of the segment is then
i+l. Thus, the segment just generated is ci,i+l, the
subsequence of the corpus between (and includ-
ing) positions i and i+ l. The pointer is positioned
at i+ l+1, the next segment is sampled and so on.
An example of a random segmentation from our
experiments is “@he@had@b egu n@to@show
@his@cap acity@f” where space was replaced
with “@” and the next segment starts with “or@”.

The corpus is segmented this way m times
(where m is a parameter) and the m random seg-
mentations are concatenated. The unit-context
matrix is derived from this concatenated corpus.

Multiple random segmentation has two advan-
tages. First, there is no redundancy since, in any
given random segmentation, two ngrams do not
overlap and are not subsequences of each other.
Second, a single random segmentation would only
cover a small part of the space of possible ngrams.
For example, a random segmentation of “a rose
is a rose is a rose” might be “[a ros][e is a ros][e
is][a rose]”. This segmentation does not contain
the segment “rose” and this part of the corpus can
then not be exploited to learn a good embedding
for the fourgram “rose”. However, with multiple
random segmentation, it is likely that this part of
the corpus does give rise to the segment “rose” in
one of the segmentations and can contribute infor-
mation to learning a good embedding for “rose”.

We took the idea of random segmentation from
work on biological sequences (Asgari and Mofrad,
2015; Asgari and Mofrad, 2016). Such sequences
have no delimiters, so they are a good model if

one believes that delimiter-based segmentation is
problematic for text.

3.2 Ngram equivalence classes/Permutation

Form-meaning homomorphism premise. Non-
symbolic representation learning does not prepro-
cess the training corpus by means of tokenization
and considers many ngrams that would be ignored
in tokenized approaches because they span token
boundaries. As a result, the number of ngrams
that occur in a corpus is an order of magnitude
larger for tokenization-free approaches than for
tokenization-based approaches. See supplemen-
tary for details.

We will see below that this sparseness impacts
performance of nonsymbolic text representation
negatively. We address sparseness by defining
ngram equivalence classes. All ngrams in an
equivalence class receive the same embedding.

The relationship between form and meaning is
mostly arbitrary, but there are substructures of the
ngram space and the embedding space that are
systematically related by homomorphism. In this
paper, we will assume the following homomor-
phism:

g1 ∼τ g2 ⇔ ~v(g1) ∼= ~v(g2)

where g1 ∼τ g2 iff τ(g1) = τ(g2) for string
transduction τ and ~v(g1) ∼= ~v(g2) iff |~v(g1) −
~v(g2)|2 < ε.

As a simple example consider a transduction
τ that deletes spaces at the beginning of ngrams,
e.g., τ(@Mercedes) = τ(Mercedes). This is an
example of a meaning-preserving τ since for, say,
English, τ will not change meaning. We will pro-
pose a procedure for learning τ below.

We define ∼= as “closeness” – not as identity
– because of estimation noise when embeddings
are learned. We assume that there are no true syn-
onyms and therefore the direction g1 ∼τ g2 ⇐
~v(g1) ∼= ~v(g2) also holds. For example, “car”
and “automobile” are considered synonyms, but
we assume that their embeddings are different be-
cause only “car” has the literary sense “chariot”.
If they were identical, then the homomorphism
would not hold since “car” and “automobile” can-
not be converted into each other by any plausible
meaning-preserving τ .

Learning procedure. To learn τ , we define
three templates that transform one ngram into an-
other: (i) replace character a1 with character a2,
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(ii) delete character a1 if its immediate predeces-
sor is character a2, (iii) delete character a1 if its
immediate successor is character a2. The learning
procedure takes a set of ngrams and their embed-
dings as input. It then exhaustively searches for all
pairs of ngrams, for all pairs of characters a1/a2,
for each of the three templates. When two match-
ing embeddings exist, we compute their cosine.
For example, for the operation “delete space be-
fore M”, an ngram pair from our embeddings that
matches is “@Mercedes” / “Mercedes” and we
compute its cosine. As the characteristic statistic
of an operation we take the average of all cosines;
e.g., for “delete space before M” the average co-
sine is .7435. We then rank operations according
to average cosine and take the first No as the defi-
nition of τ whereNo is a parameter. For characters
that are replaced by each other (e.g., 1, 2, 3 in Ta-
ble 1), we compute the equivalence class and then
replace the learned operations with ones that re-
place a character by the canonical member of its
equivalence class (e.g., 2→ 1, 3→ 1).

Permutation premise. Tokenization algo-
rithms can be thought of as assigning a particular
function or semantics to each character and mak-
ing tokenization decisions accordingly; e.g., they
may disallow that a semicolon, the character “;”,
occurs inside a token. If we want to learn represen-
tations from the data without imposing such hard
constraints, then characters should not have any
particular function or semantics. A consequence
of this desideratum is that if any two characters
are exchanged for each other, this should not af-
fect the representations that are learned. For ex-
ample, if we interchange space and “A” throughout
a corpus, then this should have no effect on learn-
ing: what was the representation of “NATO” be-
fore, should now be the representation of “N TO”.
We can also think of this type of permutation as
a sanity check: it ensures we do not inadvertantly
make use of text preprocessing heuristics that are
pervasive in NLP.2

Let A be the alphabet of a language, i.e., its set
of characters, π a permutation on A, C a corpus
and π(C) the corpus permuted by π. For example,
if π(a) = e, then all “a” inC are replaced with “e”
in π(C). The learning procedure should learn

2An example of such an inadvertant use of text prepro-
cessing heuristics is that fastText seems to default to low-
ercase ngrams if embeddings of uppercase ngrams are not
available: when fastText is trained on lowercased text and
then applied to uppercased text, it still produces embeddings.

identical equivalence classes on C and π(C).
So, if g1 ∼τ g2 after running the learning proce-
dure on C, then π(g1) ∼τ π(g2) after running the
learning procedure on π(C).

This premise is motivated by our desire to come
up with a general method that does not rely on spe-
cific properties of a language or genre; e.g., the
premise rules out exploiting the fact through fea-
ture engineering that in many languages and gen-
res, “c” and “C” are related. Such a relationship
has to be learned from the data.

3.3 Experiments

We run experiments on C, a 3 gigabyte English
Wikipedia corpus, and train word2vec skipgram
(W2V, (Mikolov et al., 2013)) and fastText skip-
gram (FTX, (Bojanowski et al., 2016)) models on
C and its derivatives. We randomly generate a
permutation π on the alphabet and learn a trans-
duction τ (details below). In Table 2 (left), the
columns “method”, π and τ indicate the method
used (W2V or FTX) and whether experiments in
a row were run on C, π(C) or τ(π(C)). The val-
ues of “whitespace” are: (i) ORIGINAL (white-
space as in the original), (ii) SUBSTITUTE (what
π outputs as whitespace is used as whitespace, i.e.,
π−1(“ ”) becomes the new whitespace) and (iii)
RANDOM (random segmentation with parame-
ters m = 50, kmin = 3, kmax = 9). Before random
segmentation, whitespace is replaced with “@” –
this character occurs rarely in C, so that the ef-
fect of conflating two characters (original “@” and
whitespace) can be neglected. The random seg-
menter then indicates boundaries by whitespace –
unambiguously since it is applied to text that con-
tains no whitespace.

We learn τ on the embeddings learned by W2V
on the random segmentation version of π(C)
(C-RANDOM in the table) as described in §3.2
for No = 200. Since the number of equiva-
lence classes is much smaller than the number of
ngrams, τ reduces the number of distinct char-
acter ngrams from 758M in the random segmen-
tation version of π(C) (C/D-RANDOM) to 96M
in the random segmentation version of τ(π(C))
(E/F-RANDOM).

Table 1 shows a selection of the No operations.
Throughout the paper, if we give examples from
π(C) or τ(π(C)) as we do here, we convert char-
acters back to the original for better readability.
The two uppercase/lowercase conversions shown
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su
bs

tit
ut

io
n

2→1

pr
ed

el
et

io
n

/r →r

po
st

de
le

tio
n ‡@ →‡

3→1 @‡ →‡ e@ →e
: →. @‡ →‡ l@ →l
; →. @H→H m@→m
E→e @I →I ml →m
C→c

Table 1: String operations that on average do not
change meaning. “@” stands for space. ‡ is the
left or right boundary of the ngram.

in the table (E→e, C→c) were the only ones that
were learned (we had hoped for more). The post-
deletion rule ml→m usefully rewrites “html” as
“htm”, but is likely to do more harm than good.
We inspected all 200 rules and, with a few excep-
tions like ml→m, they looked good to us.

Evaluation. We evaluate the three models on
an entity typing task, similar to (Yaghoobzadeh
and Schütze, 2015), but based on an entity dataset
released by Xie et al. (2016) in which each en-
tity has been assigned one or more types from a
set of 50 types. For example, the entity “Harri-
son Ford” has the types “actor”, “celebrity” and
“award winner” among others. We extract men-
tions from FACC (http://lemurproject.
org/clueweb12/FACC1) if an entity has a
mention there or we use the Freebase name as
the mention otherwise. This gives us a data set
of 54,334, 6085 and 6747 mentions in train, dev
and test, respectively. Each mention is annotated
with the types that its entity has been assigned by
Xie et al. (2016). The evaluation has a strong
cross-domain aspect because of differences be-
tween FACC and Wikipedia, the training corpus
for our representations. For example, of the 525
mentions in dev that have a length of at least 5 and
do not contain lowercase characters, more than
half have 0 or 1 occurrences in the Wikipedia cor-
pus, including many like “JOHNNY CARSON”
that are frequent in other case variants.

Since our goal in this experiment is to eval-
uate tokenization-free learning, not tokenization-
free utilization, we use a simple utilization base-
line, the bag-of-ngram model (see §1). A mention
is represented as the sum of all character ngrams
that embeddings were learned for. Linear SVMs
(Chang and Lin, 2011) are then trained, one for
each of the 50 types, on train and applied to dev
and test. Our evaluation measure is micro F1 on
all typing decisions; e.g., one typing decision is:

“Harrison Ford” is a mention of type “actor”. We
tune thresholds on dev to optimize F1 and then use
these thresholds on test.

3.4 Results

Results are presented in Table 2 (left). Overall
performance of FTX is higher than W2V in all
cases. For ORIGINAL, FTX’s recall is a lot higher
than W2V’s whereas precision decreases slightly.
This indicates that FTX is stronger in both learn-
ing and application: in learning it can generalize
better from sparse training data and in application
it can produce representations for OOVs and better
representations for rare words. For English, pre-
fixes, suffixes and stems are of particular impor-
tance, but there often is not a neat correspondence
between these traditional linguistic concepts and
internal FTX representations; e.g., Bojanowski et
al. (2016) show that “asphal”, “sphalt” and “phalt”
are informative character ngrams of “asphaltic”.

Running W2V on random segmentations can be
viewed as an alternative to the learning mecha-
nism of FTX, which is based on character ngram
cooccurrence; so it is not surprising that for RAN-
DOM, FTX has only a small advantage over W2V.

For C/D-SUBSTITUTE, we see a dramatic loss
in performance if tokenization heuristics are not
used. This is not surprising, but shows how pow-
erful tokenization can be.

C/D-ORIGINAL is like C/D-SUBSTITUTE ex-
cept that we artificially restored the space – so
the permutation π is applied to all characters ex-
cept for space. By comparing C/D-ORIGINAL
and C/D-SUBSTITUTE, we see that the space is
the most important text preprocessing feature em-
ployed by W2V and FTX. If space is restored,
there is only a small loss of performance compared
to A/B-ORIGINAL. So text preprocessing heuris-
tics other than whitespace tokenization in a nar-
row definition of the term (e.g., downcasing) do
not seem to play a big role, at least not for our en-
tity typing task.

For tokenization-free embedding learning on
random segmentation, there is almost no differ-
ence between original data (A/B-RANDOM) and
permuted data (C/D-RANDOM). This confirms
that our proposed learning method is insensitive
to permutations and makes no use of text prepro-
cessing heuristics.

We achieve an additional improvement by ap-
plying the transduction τ . In fact, FTX perfor-
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whitespace ORIGINAL SUBSTITUTE RANDOM
measure P R F1 P R F1 P R F1

method π τ

A W2V − − .538 .566 .552 .525 .596 .558
B FTX − − .530 .628 .575 .528 .608 .565
C W2V + − .535 .560 .547 .191 .296 .233 .514 .605 .556
D FTX + − .530 .623 .573 .335 .510 .405 .531 .608 .567
E W2V + + .503 .603 .548
F FTX + + .551 .618 .582

query neighbor r
1 Abdulaziz Abdul Azi 2
2 codenamed code name 1
3 Quarterfi uarter-Fi 1
4 worldreco orld-reco 1
5 antibodie stem cell 1
6 eflectors ear wheel 1
7 ommandeer rash land 1
8 reenplays ripts for 1
9 roughfare ugh downt 1

10 ilitating e-to-face 1

Table 2: Left: Evaluation results for named entity typing. Right: Neighbors of character ngrams. Rank
r = 1/r = 2: nearest / second-nearest neighbor.

mance for F-RANDOM (F1 of .582) is better than
tokenization-based W2V and FTX performance.
Thus, our proposed method seems to be an effec-
tive tokenization-free alternative to tokenization-
based embedding learning.

3.5 Analysis of ngram embeddings
Table 2 (right) shows nearest neighbors of ten
character ngrams, for the A-RANDOM space.
Queries were chosen to contain only alphanumeric
characters. To highlight the difference to symbol-
based representation models, we restricted the
search to 9-grams that contained a delimiter at po-
sitions 3, 4, 5, 6 or 7.

Lines 1–4 show that “delimiter variation”, i.e.,
cases where a word has two forms, one with a de-
limiter, one without a delimiter, is handled well:
“Abdulaziz” / “Abdul Azi”, “codenamed” / “code
name”, “Quarterfinal” / “Quarter-Final”, “world-
record” / “world-record”.

Lines 5–9 are cases of ambiguous or polyse-
mous words that are disambiguated through “char-
acter context”. “stem”, “cell”, “rear”, “wheel”,
“crash”, “land”, “scripts”, “through”, “downtown”
all have several meanings. In contrast, the mean-
ings of “stem cell”, “rear wheel”, “crash land”,
“(write) scripts for” and “through downtown” are
less ambiguous. A multiword recognizer may find
the phrases “stem cell” and “crash land” auto-
matically. But the examples of “scripts for” and
“through downtown” show that what is accom-
plished here is not multiword detection, but a more
general use of character context for disambigua-
tion.

Line 10 shows that a 9-gram of “face-to-face” is
the closest neighbor to a 9-gram of “facilitating”.
This demonstrates that form and meaning some-
times interact in surprising ways. Facilitating a
meeting is most commonly done face-to-face. It
is not inconceivable that form – the shared trigram
“fac” or the shared fourgram “faci” in “facilitate”

/ “facing” – is influencing meaning here in a way
that also occurs historically in cases like “ear” ‘or-
gan of hearing’ / “ear” ‘head of cereal plant’, orig-
inally unrelated words that many English speakers
today intuit as one word.

4 Utilization: Tokenization-free
representation of text

4.1 Methodology

The main text representation model that is based
on ngram embeddings similar to ours is the bag-
of-ngram model. A sequence of characters is rep-
resented by a single vector that is computed as
the sum of the embeddings of all ngrams that oc-
cur in the sequence. In fact, this is what we did
in the entity typing experiment. In most work
on bag-of-ngram models, the sequences consid-
ered are words or phrases (see (Schuetze, 2016)
for citations). In a few cases, the model is ap-
plied to longer sequences, including sentences and
documents; e.g., (Schütze, 1992), (Wieting et al.,
2016).

The basic assumption of the bag-of-ngram
model is that sequence information is encoded in
the character ngrams and therefore a “bag-of” ap-
proach (which usually throws away all sequence
information) is sufficient. The assumption is not
implausible: for most bags of character sequences,
there is only a single way of stitching them to-
gether to one coherent sequence, so in that case
information is not necessarily lost (although this
is likely when embeddings are added). But the as-
sumption has not been tested experimentally.

Here, we propose position embeddings,
character-ngram-based embeddings that more
fully preserve sequence information.3 The simple
idea is to represent each position as the sum of all
ngrams that contain that position. When we set

3Position embeddings were independently proposed by
Kalchbrenner et al. (2016), see Section 3.6 of their paper.
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POS r = 1 r = 2 r = 3 r = 4 r = 5
2 e wealthies accolades bestselle bestselli Billboard
3 s estseller wealthies bestselli accolades bestselle

15 o fortnight afternoon overnight allowance Saturdays
16 n fortnight afternoon Saturdays Wednesday magazines
23 o superhero ntagraphi adventure Astonishi bestselli
24 m superhero ntagraphi anthology Daredevil Astonishi
29 o anthology paperback superhero Lovecraft tagraphic
30 o anthology paperback tagraphic Lovecraft agraphics
34 u antagraph agraphics paperback hardcover ersweekly
35 b ublishing ublishers ublicatio antagraph aperbacks

Table 3: Nearest ngram embeddings (rank r ∈ [1, 5]) of the position embeddings for “POS”, the posi-
tions 2/3 (best), 15/16 (monthly), 23/24 (comic), 29/30 (book) and 34/35 (publications) in the Wikipedia
excerpt “best-selling monthly comic book publications sold in North America”

kmin = 3, kmax = 9, this means that the position
is the sum of (

∑
3≤k≤9 k) ngram embeddings (if

all of these ngrams have embeddings, which gen-
erally will be true for some, but not for most po-
sitions). A sequence of n characters is then rep-
resented as a sequence of n such position embed-
dings.

4.2 Experiments

We again use the embeddings corresponding to
A-RANDOM in Table 2. We randomly selected
2,000,000 contexts of size 40 characters from
Wikipedia. We then created a noise context for
each of the 2,000,000 contexts by replacing one
character at position i (15 ≤ i ≤ 25, uniformly
sampled) with space (probability p = .5) or a
random character otherwise. Finally, we selected
1000 noise contexts randomly and computed their
nearest neighbors among the 4,000,000 contexts
(excluding the noise query). We did this in two
different conditions: for a bag-of-ngram represen-
tation of the context (sum of all character ngrams)
and for the concatenation of 11 position embed-
dings, those between 15 and 25. Our evaluation
measure is mean reciprocal rank of the clean con-
text corresponding to the noise context. This simu-
lates a text denoising experiment: if the clean con-
text has rank 1, then the noisy context can be cor-
rected.

Table 4 shows that sequence-preserving po-
sition embeddings perform better than bag-of-

bag-of-ngram position embeddings
MRR .64 .76

Table 4: Mean reciprocal rank of text denoising
experiment for bag-of-ngram text representation
and position embedding text representation

exchange@f ic@exchang ing@exchan
(in exchange for) (many contexts) (many contexts)

exchange@f 1.000 0.008 -0.056
ic@exchang 0.008 1.000 0.108
ing@exchan -0.056 0.108 1.000

xchange@ra ival@rates rime@rates
(exchange rates) (survival rates) (crime rates)

xchange@ra 1.000 0.036 0.050
ival@rates 0.036 1.000 0.331
rime@rates 0.050 0.331 1.000

Table 6: Cosine similarity of ngrams that cross
word boundaries and disambiguate polysemous
words. The tables show three disambiguating
ngrams for “exchange” and “rates” that have dif-
ferent meanings as indicated by low cosine sim-
ilarity. In phrases like “floating exchange rates”
and “historic exchange rates”, disambiguating
ngrams overlap. Parts of the word “exchange” are
disambiguated by preceding context (ic@exchang,
ing@exchan) and parts of “exchange” provide
context for disambiguating “rates” (xchange@ra).

ngram representations.
Table 5 shows an example of a context in

which position embeddings did better than bag-
of-ngrams, demonstrating that sequence informa-
tion is lost by bag-of-ngram representations, in
this case the exact position of “Seahawks”.

Table 3 gives further intuition about the type of
information position embeddings contain, show-
ing the ngram embeddings closest to selected posi-
tion embeddings; e.g., “estseller” (the first 9-gram
on the line numbered 3 in the table) is closest to
the embedding of position 3 (corresponding to the
first “s” of “best-selling”). The kNN search space
is restricted to alphanumeric ngrams.

5 Discussion

Single vs. multiple segmentation. The motiva-
tion for multiple segmentation is exhaustive cov-
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rep. space similarity r left context center right context
1 correct ‖s and Seattle S‖eahawks th‖at led to publi‖
2 noise (query) ‖s and Seattle S‖eahawks t ‖at led to publi‖
3 position-emb .761 1 ‖s and Seattle S‖eahawks th‖at led to publi‖
4 bag-of-ngram .904 1 ‖arted 15 games ‖fsr the Se‖ahawks, leading‖
5 bag-of-ngram .864 6 ‖s and Seattle S‖eahawks th‖at led to publi‖

Table 5: Illustration of the result in Table 4. “rep. space” = “representation space”. We want to correct
the error in the corrupted “noise” context (line 2) and produce “correct” (line 1). The nearest neighbor to
line 2 in position-embedding space is the correct context (line 3, r = 1). The nearest neighbor to line 2 in
bag-of-ngram space is incorrect (line 4, r = 1) because the precise position of “Seahawks” in the query
is not encoded. The correct context in bag-of-ngram space is instead at rank r = 6 (line 5). “similarity”
is average cosine (over eleven position embeddings) for position embeddings.

erage of the space of possible segmentations. An
alternative approach would be to attempt to find a
single optimal segmentation.

Our intuition is that in many cases overlap-
ping segments contain complementary informa-
tion. Table 6 gives an example. Historic exchange
rates are different from floating exchange rates
and this is captured by the low similarity of the
ngrams ic@exchang and ing@exchan. Also,
the meaning of “historic” and “floating” is non-
compositional: these two words take on a special-
ized meaning in the context of exchange rates. The
same is true for “rates”: its meaning is not its gen-
eral meaning in the compound “exchange rates”.
Thus, we need a representation that contains over-
lapping segments, so that “historic” / “floating”
and “exchange” can disambiguate each other in
the first part of the compound and “exchange” and
“rates” can disambiguate each other in the second
part of the compound. A single segmentation can-
not capture these overlapping ngrams.

What text-type are tokenization-free ap-
proaches most promising for? The reviewers
thought that language and text-type were badly
chosen for this paper. Indeed, a morphologically
complex language like Turkish and a noisy text-
type like Twitter would seem to be better choices
for a paper on robust text representation.

However, robust word representation methods
like FTX are effective for within-token general-
ization, in particular, effective for both complex
morphology and OOVs. If linguistic variability
and noise only occur on the token level, then a
tokenization-free approach has fewer advantages.

On the other hand, the foregoing discussion
of cross-token regularities and disambiguation ap-
plies to well-edited English text as much as it
does to other languages and other text-types as
the example of “exchange” shows (which is dis-

ambiguated by prior context and provides disam-
biguating context to following words) and as is
also exemplified by lines 5–9 in Table 2 (right).

Still, this paper does not directly evaluate the
different contributions that within-token charac-
ter ngram embeddings vs. cross-token character
ngram embeddings make, so this is an open ques-
tion. One difficulty is that few corpora are avail-
able that allow the separate evaluation of white-
space tokenization errors; e.g., OCR corpora gen-
erally do not distinguish a separate class of white-
space tokenization errors.

Position embeddings vs. phrase/sentence em-
beddings. Position embeddings may seem to
stand in opposition to phrase/sentence embed-
dings. For many tasks, we need a fixed length rep-
resentation of a longer sequence; e.g., sentiment
analysis models compute a fixed-length represen-
tation to classify a sentence as positive / negative.

To see that position embeddings are compatible
with fixed-length embeddings, observe first that,
in principle, there is no difference between word
embeddings and position embeddings in this re-
spect. Take a sequence that consists of, say, 6
words and 29 characters. The initial representation
of the sentence has length 6 for word embeddings
and length 29 for position embeddings. In both
cases, we need a model that reduces the variable
length sequence into a fixed length vector at some
intermediate stage and then classifies this vector as
positive or negative. For example, both word and
position embeddings can be used as the input to
an LSTM whose final hidden unit activations are a
fixed length vector of this type.

So assessing position embeddings is not a ques-
tion of variable-length vs. fixed-length represen-
tations. Word embeddings give rise to variable-
length representations too. The question is solely
whether the position-embedding representation is
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a more effective representation.

A more specific form of this argument con-
cerns architectures that compute fixed-length rep-
resentations of subsequences on intermediate lev-
els, e.g., CNNs. The difference between position-
embedding-based CNNs and word-embedding-
based CNNs is that the former have access to a
vastly increased range of subsequences, includ-
ing substrings of words (making it easier to learn
that “exchange” and “exchanges” are related) and
cross-token character strings (making it easier to
learn that “exchange rate” is noncompositional).
Here, the questions are: (i) how useful are sub-
sequences made available by position embeddings
and (ii) is the increased level of noise and de-
creased efficiency caused by many useless subse-
quences worth the information gained by adding
useful subsequences.

Independence of training and utilization.
We note that our proposed training and utiliza-
tion methods are completely independent. Posi-
tion embeddings can be computed from any set
of character-ngram-embeddings (including FTX)
and our character ngram learning algorithm could
be used for applications other than position em-
beddings, e.g., for computing word embeddings.

Context-free vs. context-sensitive embed-
dings. Word embeddings are context-free: a given
word w like “king” is represented by the same em-
bedding independent of the context in which w
occurs. Position embeddings are context-free as
well: if the maximum size of a character ngram is
kmax, then the position embedding of the center of
a string s of length 2kmax − 1 is the same indepen-
dent of the context in which s occurs.

It is conceivable that text representations could
be context-sensitive. For example, the hidden
states of a character language model have been
used as a kind of nonsymbolic text representation
(Chrupala, 2013; Evang et al., 2013; Chrupala,
2014) and these states are context-sensitive. How-
ever, such models will in general be a second level
of representation; e.g., the hidden states of a char-
acter language model generally use character em-
beddings as the first level of representation. Con-
versely, position embeddings can also be the basis
for a context-sensitive second-level text represen-
tation. We have to start somewhere when we rep-
resent text. Position embeddings are motivated by
the desire to provide a representation that can be
computed easily and quickly (i.e., without taking

context into account), but that on the other hand is
much richer than the symbolic alphabet.

Processing text vs. speech vs. images. Gillick
et al. (2016) write: “It is worth noting that noise is
often added . . . to images . . . and speech where the
added noise does not fundamentally alter the in-
put, but rather blurs it. [bytes allow us to achieve]
something like blurring with text.” It is not clear
to what extent blurring on the byte level is useful;
e.g., if we blur the bytes of the word “university”
individually, then it is unlikely that the noise gen-
erated is helpful in, say, providing good training
examples in parts of the space that would other-
wise be unexplored. In contrast, the text repre-
sentation we have introduced in this paper can be
blurred in a way that is analogous to images and
speech. Each embedding of a position is a vector
that can be smoothly changed in every direction.
We have showed that the similarity in this space
gives rise to natural variation.

Prospects for completely tokenization-free
processing. We have focused on white-
space tokenization and proposed a whitespace-
tokenization-free method that computes embed-
dings of higher quality than tokenization-based
methods. However, there are many properties of
edited text beyond whitespace tokenization that
a complex rule-based tokenizer exploits. In a
small explorative experiment, we replaced all non-
alphanumeric characters with whitespace and re-
peated experiment A-ORIGINAL for this setting.
This results in an F1 of .593, better by .01 than the
best tokenization-free method. This illustrates that
there is still a lot of work to be done before we can
obviate the need for tokenization.

6 Conclusion

We introduced the first generic text representa-
tion model that is completely nonsymbolic, i.e.,
it does not require the availability of a segmen-
tation or tokenization method that identifies words
or other symbolic units in text. This is true for
the training of the model as well as for apply-
ing it when computing the representation of a
new text. In contrast to prior work that has as-
sumed that the sequence-of-character information
captured by character ngrams is sufficient, posi-
tion embeddings also capture sequence-of-ngram
information. We showed that our model performs
better than prior work on entity typing and text de-
noising.
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Figure 1: The graph shows how many different
character ngrams (kmin = 3, kmax = 10) oc-
cur in the first n bytes of the English Wikipedia
for symbolic (tokenization-based) vs. nonsym-
bolic (tokenization-free) processing. The number
of ngrams is an order of magnitude larger in the
nonsymbolic approach. We counted all segments,
corresponding to m = ∞. For the experiments in
the paper (m = 50), the number of nonsymbolic
character ngrams is smaller.

A Supplementary material

A.1 Related work
The related work section appears in the long ver-
sion of this paper (Schuetze, 2016).
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A.3 Sparseness in tokenization-free
approaches

Nonsymbolic representation learning does not pre-
process the training corpus by means of tokeniza-
tion and considers many ngrams that would be ig-
nored in tokenized approaches because they span
token boundaries. As a result, the number of
ngrams that occur in a corpus is an order of mag-
nitude larger for tokenization-free approaches than
for tokenization-based approaches. See Figure 1.

A.4 Experimental settings
W2V hyperparameter settings. size of word
vectors: 200, max skip length between words: 5,
threshold for occurrence of words: 0, hierarchi-
cal softmax: 0, number of negative examples: 5,

threads: 50, training iterations: 1, min-count: 5,
starting learning rate: .025, classes: 0

FTX hyperparameter settings. learning rate:
.05, lrUpdateRate: 100, size of word vectors: 200,
size of context window: 5, number of epochs: 1,
minimal number of word occurrences: 5, num-
ber of negatives sampled: 5, max length of word
ngram: 1, loss function: ns, number of buck-
ets: 2,000,000, min length of char ngram: 3, max
length of char ngram: 6, number of threads: 50,
sampling threshold: .0001

We ran some experiments with more epochs,
but this did not improve the results.

A.5 Other hyperparameters
We did not tune No = 200, but results are highly
sensitive to the value of this parameter. IfNo is too
small, then beneficial conflations (collapse punc-
tuation marks, replace all digits with one symbol)
are not found. If No is too large, then precision
suffers – in the extreme case all characters are col-
lapsed into one.

We also did not tune m = 50, but we do not
consider results to be very sensitive to the value of
m if it is reasonably large. Of course, if a larger
range of character ngram lengths is chosen, i.e.,
a larger interval [kmin, kmax], then at some point
m = 50 will not be sufficient and possible seg-
mentations would not be covered well enough in
sampling.

The type of segmentation used in multiple seg-
mentation can also be viewed as a hyperparameter.
An alternative to random segmentation would be
exhaustive segementation, but a naive implemen-
tation of that strategy would increase the size of
the training corpus by several orders of magnitude.
Another alternative is to choose one fixed size,
e.g., 4 or 5 (similar to (Schütze, 1992)). Many
of the nice disambiguation effects we see in Ta-
ble 2 (right) and in Table 6 would not be possi-
ble with short ngrams. On the other hand, a fixed
ngram size that is larger, e.g., 10, would make it
difficult to get 100% coverage: there would be po-
sitions for which no position embedding can be
computed.
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Abstract

Fine-grained entity type classification
(FETC) is the task of classifying an entity
mention to a broad set of types. Distant su-
pervision paradigm is extensively used to
generate training data for this task. How-
ever, generated training data assigns same
set of labels to every mention of an en-
tity without considering its local context.
Existing FETC systems have two major
drawbacks: assuming training data to be
noise free and use of hand crafted fea-
tures. Our work overcomes both draw-
backs. We propose a neural network
model that jointly learns entity mentions
and their context representation to elim-
inate use of hand crafted features. Our
model treats training data as noisy and
uses non-parametric variant of hinge loss
function. Experiments show that the pro-
posed model outperforms previous state-
of-the-art methods on two publicly avail-
able datasets, namely FIGER(GOLD) and
BBN with an average relative improvement
of 2.69% in micro-F1 score. Knowledge
learnt by our model on one dataset can
be transferred to other datasets while us-
ing same model or other FETC systems.
These approaches of transferring knowl-
edge further improve the performance of
respective models.

1 Introduction

Entity type classification is the task for assigning
types or labels such as organization, location to
entity mentions in a document. This classifica-
tion is useful for many natural language process-
ing (NLP) tasks such as relation extraction (Mintz
et al., 2009), machine translation (Koehn et al.,

2007), question answering (Lin et al., 2012) and
knowledge base construction (Dong et al., 2014).

There has been considerable amount of work
on Named Entity Recognition (NER) (Collins and
Singer, 1999; Tjong Kim Sang and De Meul-
der, 2003; Ratinov and Roth, 2009; Manning et
al., 2014), which classifies entity mentions into
a small set of mutually exclusive types, such as
Person, Location, Organization and Misc. How-
ever, these types are not enough for some NLP
applications such as relation extraction, knowl-
edge base construction (KBC) and question an-
swering. In relation extraction and KBC, know-
ing fine-grained types for entities can significantly
increase the performance of the relation extrac-
tor (Ling and Weld, 2012; Koch et al., 2014;
Mitchell et al., 2015) since this helps in filtering
out candidate relation types that do not follow the
type constrain. Fine-grained entity types provide
additional information while matching questions
to its potential answers and significantly improves
performance (Dong et al., 2015). For example, Li
and Roth (2002) rank questions based on their ex-
pected answer types (will the answer be food, ve-
hicle or disease).

Typically, FETC systems use over hundred la-
bels, arranged in a hierarchical structure. An im-
portant aspect of FETC is that based on local con-
text, two different mentions of same entity can
have different labels. We illustrate this through an
example in Figure 1. All three sentences S1, S2,
and S3 mention same entity Barack Obama. How-
ever, looking at the context, we can infer that S1
mentions Obama as a person/author, S2 mentions
Obama only as a person, and S3 mentions Obama
as a person/politician.

Available training data for FETC has noisy la-
bels. Creating manually annotated training data
for FETC is time consuming, expensive, and er-
ror prone. Note that, a human annotator will
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Figure 1: Noise introduced via distant supervision
process. S1-S3 indicates sentences where only a
subset of labels for entity mention (bold typeface)
are relevant given context, highlighted in T1-T3.

have to assign a subset of correct labels from a
set of around hundred labels for each entity men-
tion in the corpus. Existing FETC systems use
distant supervision paradigm (Craven and Kum-
lien, 1999) to automatically generate training data.
Distant supervision maps each entity in the cor-
pus to knowledge bases such as Freebase (Bol-
lacker et al., 2008), DBpedia (Auer et al., 2007),
YAGO (Suchanek et al., 2007). This method as-
signs same set of labels to all mentions of an
entity across the corpus. For example, Barack
Obama is a person, politician, lawyer, and author.
If a knowledge base has these four matching la-
bels for Barack Obama, then distant supervision
assigns all of them to every mention of Barack
Obama. Training data generated with distant su-
pervision will fail to distinguish between mentions
of Barack Obama in sentences S1, S2, and S3.

Existing FETC systems have one or both of fol-
lowing drawbacks:

1. Assuming training data to be noise free (Ling
and Weld, 2012; Yosef et al., 2012; Yogatama
et al., 2015; Shimaoka et al., 2016)

2. Use of hand crafted features (Ling and Weld,
2012; Yosef et al., 2012; Yogatama et al.,
2015; Ren et al., 2016)

We have observed that for real world datasets,
more than twenty five percent of training data has
noisy labels. First drawback propagates this noise
in training data to the FETC model. To extract
hand crafted features various NLP tools are used.
Since errors inevitably exist in such tools, the sec-
ond drawback propagates errors of these tools to
FETC model.

We propose a neural network based model to
overcome the two drawbacks of existing FETC
systems. First, we separate training data into clean
and noisy partitions using the same method as in
AFET system (Ren et al., 2016). For these parti-

tions, we use simple yet effective non-parametric
variant of hinge loss function while training. To
avoid use of hand crafted features, we learn repre-
sentations for given entity mention and its context.

Additionally, we investigate effectiveness of us-
ing transfer learning (Pratt, 1993) for FETC task
both at feature and model level. We show that
feature level transfer learning can be used to im-
prove performance of other FETC system such as
AFET, by up to 4.5% in micro-F1 score. Simi-
larly, model level transfer learning can be used to
improve performance of the same model using dif-
ferent dataset by up to 3.8% in micro-F1 score.

Our contributions can be summarized as fol-
lows:

1. We propose a simple neural network model
that learns representations for entity mention
and its context, and incorporate noisy label
information using a variant of non-parametric
hinge loss function. Experimental results on
two publicly available datasets demonstrate
the effectiveness of proposed model, with an
average relative improvement of 2.69% in
micro-F1 score.

2. We investigate the use of feature level and
model level transfer-learning strategies in the
domain of the FETC task. The proposed
transfer learning strategies further improve
the state-of-the-art on BBN dataset by 3.8%
in micro-F1 score.

2 Related Work

Ling et al. (2012) proposed the first system for
FETC task, which used 112 overlapping labels.
They used linear classifier perceptron for multi-
label classification. Yosef et al. (2012) used multi-
ple binary SVM classifiers in a hierarchy, to clas-
sify an entity mention to a set of 505 types. While
the initial work assumed that all labels present in a
training dataset for an entity mention are correct,
Gillick et al. (2014) introduced context dependent
FETC and proposed a set of heuristics for pruning
labels that might not be relevant given the entity
mention’s local context. Yogatama et al. (2015)
proposed an embedding based model where user-
defined features and labels were embedded into a
low dimensional feature space to facilitate infor-
mation sharing among labels.

Shimaoka et al. (2016) proposed an attentive
neural network model that used LSTMs to en-
code entity mention’s context and used an atten-
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(a) α models label-label cor-
relation. Higher the α, lower
is the margin between non-
correlation labels.

(b) During inference, labels
above this threshold are pre-
dicted as positive.

Figure 2: Effect of change of parameters on
AFET’s performance.

tion mechanism to allow the model to focus on rel-
evant expressions in the entity mention’s context.
However, the model assumed that all labels ob-
tained via distant supervision are correct. In con-
trast, our model does not assume that all labels are
correct. To learn entity representation, we propose
a scheme which is simpler yet more effective.

Most recently, Ren et al. (2016) have proposed
AFET, an FETC system. AFET separates the
loss function for clean and noisy entity mentions.
AFET uses label-label correlation information ob-
tained by given data in its parametric loss function
(model parameter α). During inference, AFET
uses a threshold to separate positive types from
negative types (similarity threshold parameter d).
However, AFET’s loss function is sensitive to
change in parameters, which are data dependent.
Figure 2 shows the effect of parameter α and
d, on AFET performance evaluated on different
datasets. In contrast, our model uses a simple yet
effective variant of hinge loss function. This func-
tion does not need to tune the similarity threshold.

Transfer learning is well applied to many NLP
applications, such as cross-domain document clas-
sification (Shi et al., 2010), multi-lingual word
clustering (Täckström et al., 2012) and sentiment
classification (Mou et al., 2016). Initialization of
word vectors with pre-trained word vectors in neu-
ral network models can be considered as one of the
best example of transfer learning in NLP. Wang
et al. (2015) provide a broad overview of transfer
learning techniques used for language processing.

3 The Proposed Model

3.1 Problem description

Our task is to automatically classify type informa-
tion of entity mentions present in natural language

Figure 3: The system overview.

sentences. Figure 3 shows a general overview of
our proposed approach.
Input: The input to the model is a training and
testing corpus consisting of a set of sentences on
which entity mentions have been identified. In
training corpus, every entity mention will have
corresponding labels according to a given hierar-
chy. Formally, a training corpus Dtrain consists
of a set of sentences, S = {si}Ni=1. Each sen-
tence si will have one or more entity mentions de-
noted by mi

j,k, where j and k denotes indices of
start and end tokens, respectively. SetM consists
of all the entity mentions mi

j,k. For every entity
mention mi

j,k, there will be a corresponding label
vector lij,k ∈ {0, 1}K , which is a binary vector,
where lij,kt = 1 if tth type is true otherwise it will
be zero. K denotes the total number of labels in a
given hierarchy Ψ. Testing corpus Dtest will only
contain sentences and entity mentions.
Output: For entity mentions in testing corpus
Dtest, predict their corresponding labels.

3.2 Training set partition

Similar to AFET, we partition the mention setM
of training corpus Dtrain into two parts, a setMc,
consisting only of clean entity mentions and a set
Mn, consisting only of noisy entity mentions. An
entity mention mi

j,k is said to be clean if its labels
lij,k belong to only a single path (not necessary to
be leaf) in the hierarchy Ψ, that is its labels are
not ambiguous; otherwise, it is noisy. For exam-
ple, as per hierarchy given in figure 1, an entity
mention with labels person, artist and politician
will be considered as noisy, whereas entity men-
tion with labels person, artist and actor will be
considered as clean.
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Figure 4: The architecture of the proposed model.

3.3 Feature representations

Mention representation: This representation
captures information about entity mention’s mor-
phology and orthography. We decompose an en-
tity mention into character sequence, and use a
vanilla LSTM encoder (Hochreiter and Schmidhu-
ber, 1997) to encode character sequences to a fixed
dimensional vector. Formally, for entity mention
mi
j,k, we decompose it into a sequence of charac-

ter tokens cij,k1 , cij,k2 , . . . ,cij,k|mi
j,k
|
, where |mi

j,k|
denotes the total number of characters present in
the entity mention. For entity mention containing
multiple tokens, we join these tokens with a space
in between tokens. Every character will have cor-
responding vector representation in a lookup table
for characters. The character sequence is then fed
one by one to a LSTM encoder, and the final out-
put is used as a feature representation for entity
mention mi

j,k. We denote this process by a func-
tion Fm : M → RDm , where Dm is the num-
ber of dimensions for mention representation. The
whole process is illustrated in figure 4 (Mention
representation).
Context representation: This representation cap-
tures information about the context surrounding
the entity mention. Context representation is fur-
ther divided into two parts, left and right context
representation. The left context consists of a se-
quence of tokens within a sentence from the start
of a sentence till the last token of entity men-
tion. The right context consists of a sequence

of tokens from the start of entity mention till the
end of a sentence. We use bi-directional LSTM
encoders (Graves et al., 2013) to encode token
level sequences of both context to a fixed dimen-
sional vector. Formally, for an entity mentionmi

j,k

present in a sentence si, decompose si into a se-
quence of tokens si1, si2, . . . , sik for the left context,
and sij , s

i
j+1, . . . , si|si| for the right context, where

|si| denotes the number of tokens in the sentence.
Every token will have a corresponding vector rep-
resentation in a lookup tables for token. The token
sequence is then fed one by one to a bi-directional
LSTM encoder, and the final output will be used as
feature representation. We denote this whole pro-
cess by function Flc : (M,S) → RDlc for com-
puting left context and Frc : (M,S) → RDrc for
computing right context. Dlc andDrc are the num-
ber of dimensions for the left context and the right
context representation, respectively. The whole
process is illustrated in figure 4 (Left and right
context representation).

The context representation described above is
slightly different from what was proposed in (Shi-
maoka et al., 2016), here we include entity men-
tion tokens within both left and right context, to
explicitly encode context relative to an entity men-
tion.

In the end, we concatenate entity mention and
its context representation into a single Df dimen-
sional vector, where Df = Dm + Dlc + Drc.
This complete process is denoted by a function
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F : (M,S)→ RDf given by:

F (mi
j,k, s

i) = Fm(mi
j,k)⊕ Flc(mi

j,k, s
i)⊕ Frc(mi

j,k, s
i)

(1)
where ⊕ denotes vector concatenation. For
brevity, we will now omit the use of subscript j, k
from mi

j,k and lij,k, and will use f i to denote fea-
ture representation for entity mention and its con-
text obtained via equation 1.

3.4 Feature and label embeddings
Similar to Yogatama et al. (2015) and Ren et
al. (2016), we embed feature representations and
labels in a same dimensional space such that an
object is embedded closer to the objects that share
similar types than the objects that do not. For-
mally, we are trying to learn linear mapping func-
tions φM : RDf → RDe and φL : RDK → RDe ,
where De is the size of embedding space. These
mappings are given by:

φM(f i) = f i
T
U ; φL(lit) = li

T

t V (2)

where, U ∈ RDf×De and V ∈ RDK×De are pro-
jection matrices for features representations and
type labels respectively and lit is one-hot vector
representation for label t.
We assign a score to each label type t and feature
vector as a dot product of their embeddings. For-
mally, we denote a score as:

s(f i, lit) = φM(f i) · φL(lit) (3)

3.5 Optimization
We use two different loss functions to model clean
and noisy entity mentions. For clean entity men-
tions, we use a hinge loss function. The intuition
is simple: maintain a margin, centered at zero,
between positive and negative type scores. The
scores are computed by similarity between an en-
tity mention and label types (eq. 3). Hinge loss
function has two advantages. First, it intuitively
seprates positive and negative labels during infer-
ence. Second, it is independent of data dependent
parameter. Formally, for a given entity mention
mi and its label li we compute the associated loss
as given by:

Lc(m
i, li) =

∑

t∈γ
max(0, 1− s(mi, lit))

+
∑

t∈γ̄
max(0, 1 + s(mi, lit)) (4)

where γ and γ̄ are set of indices that have positive
and negative labels respectively.

For noisy entity mentions, we propose a variant
of a hinge loss where, like Lc, score for all neg-
ative labels should go below −1. However, for
positive labels, as we don’t know which labels are
relevant to entity mention’s local context, we pro-
pose that the maximum score from the set of given
positive labels should be greater than one. This
maintains a margin between all negative types and
the most relevant positive type. Formally, noisy
label loss, Ln is defined as:

Ln(mi, li) =
∑

t∈γ̄
max(0, 1 + s(mi, lit))

+ max(0, 1− s(mi, lit∗));

t∗ = arg max
t∈γ

s(mi, lit) (5)

Again, using this loss function makes it intuitive
to set a threshold of zero during inference.

These loss functions are different from the loss
functions used in (Yogatama et al., 2015; Ren et
al., 2016) in a way that, we make strict absolute
criteria to distinguish between positive and neg-
ative labels. Whereas in (Yogatama et al., 2015;
Ren et al., 2016) positive labels should have a
higher score than negative labels. As their scoring
is relative, the final result varies on the threshold
used to separate positive and negative labels.

To train the partitioned dataset together, we for-
mulate the joint objective problem as:

min
θ
O =

∑

m∈Mc

Lc(m, l) +
∑

m∈Mn

Ln(m, l) (6)

where θ is the collection of all model parame-
ters that needs to be learned. To jointly optimize
the objective O, we use Adam (Kingma and Ba,
2014), a stochastic gradient-based optimization al-
gorithm.

3.6 Inference
For every entity mention in setM from Dtest, we
perform a top-down search in the given type hi-
erarchy Ψ, and estimate the correct type path Ψ∗.
Starting from the tree root, we recursively com-
pute the best type among node’s children by com-
puting its score with obtained feature representa-
tions. We select the node that has maximum score
among other nodes. We continue this process till
a leaf node is encountered or the score associated
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with a node falls below an absolute threshold zero.
The thresold is fixed across all datasets used.

3.7 Transfer learning

We want to investigate, whether the feature repre-
sentations learnt for an entity mention are useful.
We study what contribution these feature repre-
sentations make to an existing feature engineering
based method such as AFET. We learn the pro-
posed model on one training dataset, namely Wiki
dataset, which has the highest number of entity
mentions among other datasets and use this model
to generate representations that is F (mi

j,k, s
i) for

another training and testing data. These rep-
resentations, which are Df dimensional vectors,
are used as feature for an existing state-of-the-art
model, AFET, in place of the hand-crafted features
that were originally used. AFET model is then
trained using these feature representations. We
call this as feature level transfer learning. On the
other hand, we also evaluate model level transfer
learning, where we initialize weights of LSTM en-
coders for a new dataset with the weights learnt
from the model trained on another dataset, namely
Wiki dataset.

4 Experiments

4.1 Datasets used

We evaluate the proposed model on three publicly
available datasets, provided in a pre-processed to-
kenized format by Ren et al. (2016). Statistics of
the datasets used in this work are shown in Table 1.
The details of the datasets are as follows:
Wiki/FIGER(GOLD): The training data consists
of Wikipedia sentences and was automatically
generated in distant supervision paradigm, by
mapping hyperlinks in Wikipedia articles to Free-
base. The test data, mainly consisting of sentences
from news reports, was manually annotated as de-
scribed in (Ling and Weld, 2012).
OntoNotes: OntoNotes dataset consists of sen-
tences from newswire documents present in
OntoNotes text corpus (Weischedel et al., 2013).
DBpedia spotlight (Daiber et al., 2013) was used
to automatically link entity mention in sentences
to Freebase. For this corpus, manually annotated
test data was shared by Gillick et al. (2014).
BBN: BBN dataset consists of sentences from
Wall Street Journal articles and is completely man-
ually annotated (Weischedel and Brunstein, 2005).
Please refer to (Ren et al., 2016) for more details

Datasets Wiki/FIGER(GOLD) OntoNotes BBN
# types 128 89 47
# training mentions 2690286 220398 86078
# testing mentions 563 9603 13187
% clean training mentions 64.58 72.61 75.92
% clean testing mentions 88.28 94.00 100
% pronominal testing mentions1 0.00 6.78 0.00
Max hierarchy depth 2 3 2

Table 1: Statistics of the datasets used in this work.

of the datasets.

4.2 Evaluation settings
4.2.1 Baselines
We compared the proposed model with
state-of-the-art entity classification meth-
ods2: (1) FIGER (Ling and Weld, 2012);
(2) HYENA (Yosef et al., 2012); (3) AFET-
NoCo (Ren et al., 2016): AFET without data
based label-label correlation modeled in loss
function; (4) AFET-CoH (Ren et al., 2016):
AFET with hierarchy based label-label correlation
modeled in loss function; (5) AFET (Ren et al.,
2016); (6) Attentive (Shimaoka et al., 2016): An
attentive neural network based model.

We compare these baselines with variants of
our proposed model: (1) our: complete model;
(2) our-AllC assuming all mentions are clean; (3)
our-NoM without mention representation.

4.2.2 Experimental setup
We use Accuracy or Strict-F1 score, Macro-
averaged F1 score, and Micro-averaged F1 score
as metrics for evaluation. Existing methods for
FETC use same measures (Ling and Weld, 2012;
Yogatama et al., 2015; Shimaoka et al., 2016; Ren
et al., 2016). We removed entity mentions that do
not have any label in training as well as test set.
We also remove entity mentions that have spuri-
ous indices (i.e entity mention length of 0).3 For
all the three datasets, we randomly sampled 10%
of the test set, and use it as a development set, on
which we tune model parameters. The remaining
90% is used for final evaluation. For all our exper-
iments, we train each model using same hyperpa-
rameters five times and report their performance in
terms of micro-F1 score on the development set as

1We considered an entity mention as pronominal, if all of
its tokens have POS tag as pronoun.

2Whenever possible, the baselines result are reported
from (Ren et al., 2016), otherwise we re-implemented base-
line methods based on description available in corresponding
papers.

3The code to replicate the work is available at https:
//github.com/abhipec/fnet
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Figure 5: These box-plots show the performance of different baselines on validation set. The red line,
boxes and whiskers indicate the median, quartiles and range.

shown in Figure 5. On Wiki dataset, we observed
a large variance in performance as compared to
other two datasets. This might be because of the
fact that Wiki dataset has a very small develop-
ment set. From each of these five runs, we pick
the best performing model based on the develop-
ment set and report its result on the test set.
Hyperparameter setting: All the neural network
based models in this paper used 300 dimensional
pre-trained word embeddings distributed by Pen-
nington et al. (2014). The hidden-layer size of
word level bi-directional LSTM was 100, and that
of character level LSTM was 200. Vectors for
character embeddings were randomly initialized
and were of size 200. We use dropout with the
probability of 0.5 on the output of LSTM en-
coders. The embedding dimension used was 500.
We use Adam (Kingma and Ba, 2014) as optimiza-
tion method with learning rate of 0.0005-0.001
and mini-batch size in the range of 800 to 1500.
The proposed model and some of the baselines
were implemented using TensorFlow4 framework.

4.3 Transfer learning

In feature level transfer learning, we use the
best performing proposed model trained on Wiki
dataset to generate representations that is Df di-
mensional vector for every entity mention present
in the train, development, and test set of the BBN
and the OntoNotes dataset. Figure 4 illustrates an
example for the encoding process. Then we use
these representations as a feature vector in place
of the user-defined features and train the AFET

4http://tensorflow.org/

model. Its hyper-parameters were tuned on the de-
velopment set. These results are shown in table 2
as feature level transfer-learning.

In model level transfer learning, we use the
learnt weights of LSTM encoders from the best
performing proposed model trained on Wiki
dataset and initialize the LSTM encoders of the
same model with these weights while training on
BBN and OntoNotes datasets. These results are
shown in table 2 as model level transfer learn-
ing.

4.4 Performance comparison and analysis
Table 2 shows the results of the proposed method,
its variants and the baseline methods.
Comparison with other feature learning meth-
ods: The proposed model and its variants (our-
AllC, our-NoM) perform better than the existing
feature learning method by Shimaoka et al. (2016)
(Attentive), consistently on all datasets. This
indicates benefits of the proposed representation
scheme and joint learning of representation and la-
bel embedding.
Comparison with feature engineering meth-
ods: The proposed model performs better than
the existing feature engineered methods (FIGER,
HYENA, AFET-NoCo, AFET-CoH) consis-
tently across all datasets on Micro-F1 and Macro-
F1 evaluation metrics. These methods do not
model label-label correlation based on data. In
comparison with AFET, the proposed model out-
performs AFET on Wiki and BBN dataset in terms
of Micro-F1 evaluation metric. This indicates ben-
efits of feature learning as well as data driven
label-label correlation. We do a type-wise perfor-
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Typing methods
Wiki/FIGER(GOLD) OntoNotes BBN

Acc. Ma-F1 Mi-F1 Acc. Ma-F1 Mi-F1 Acc. Ma-F1 Mi-F1
FIGER* (Ling and Weld, 2012) 0.474 0.692 0.655 0.369 0.578 0.516 0.467 0.672 0.612
HYENA* (Yosef et al., 2012) 0.288 0.528 0.506 0.249 0.497 0.446 0.523 0.576 0.587
AFET-NoCo* (Ren et al., 2016) 0.526 0.693 0.654 0.486 0.652 0.594 0.655 0.711 0.716
AFET-CoH* (Ren et al., 2016) 0.433 0.583 0.551 0.521 0.680 0.609 0.657 0.703 0.712
AFET* (Ren et al., 2016) 0.533 0.693 0.664 0.551 0.711 0.647 0.670 0.727 0.735
AFET†‡ (Ren et al., 2016) 0.509 0.689 0.653 0.553 0.712 0.646 0.683 0.744 0.747
Attentive† (Shimaoka et al., 2016) 0.581 0.780 0.744 0.473 0.655 0.586 0.484 0.732 0.724
our-AllC† 0.662 0.805 0.770 0.514 0.672 0.626 0.655 0.736 0.752
our-NoM† 0.646 0.808 0.768 0.521 0.683 0.626 0.615 0.742 0.755
our† 0.658 0.812 0.774 0.522 0.685 0.633 0.604 0.741 0.757
model level transfer-learning† - - - 0.531 0.684 0.637 0.645 0.784 0.795
feature level transfer-learning† - - - 0.471 0.689 0.635 0.733 0.791 0.792

Table 2: Performance analysis of entity classification methods on the three datasets.

mance comparison on OntoNotes dataset in sub-
section 4.5.
Comparison with variants of our model: The
proposed model performs better on all dataset as
compared to our-AllC in terms of micro-F1 score.
However, we find the performance difference on
Wiki and OntoNotes dataset is not statistically sig-
nificant. We investigated it further and found that
across all three datasets, there exist only few entity
types for which more than 85% of entity mentions
are noisy. These types consist of approximately 3-
4% of test set, and our model fails on these types
(zero micro-F1 score). However, our-AllC per-
forms relatively well on these types. Examples of
such types are: /building, /person/political figure,
/GPE/STATE PROVINCE. This indicates two lim-
itations of the proposed model. First, the separat-
ing of clean and noisy mentions based on the hier-
archy has its own inherent limitation of assuming
labels within a path are correct. Second, our model
learns better if more clean examples are available
at the cost of not learning very noisy types. We
will try to address these limitations in our future
work. Compared with our-NoM, the proposed
model performs slightly better across all datasets
in terms of micro-F1 score.
Feature level transfer learning analysis: We
observed 4.5% performance increase in micro-
F1 score of AFET on BBN dataset, after replac-
ing hand-crafted features with feature representa-
tions generated by the proposed model. This in-
dicates usefulness of the learnt feature representa-
tions. However, if we repeat the same process with
OntoNotes dataset, there is only a subtle change in
performance. This is majorly because of the data
distribution of OntoNotes dataset is different from

that of Wiki dataset. This issue is discussed in the
next subsection.
Model level transfer learning analysis: In model
level transfer learning, sharing knowledge from
similar dataset (Wiki to BBN) increases the perfor-
mance by 3.8% in terms of micro-F1 score. How-
ever, sharing knowledge from Wiki to OntoNotes
dataset slightly increases the performance by 0.4%
in terms of micro-F1 score.

4.5 Case analysis: OntoNotes dataset

We observed three things; (i) all models perform
relatively poor on OntoNotes dataset compared
to their performance on other two datasets; (ii)
the proposed model outperforms other models in-
cluding AFET on the other two datasets, but gave
worse performance on OntoNotes dataset; (iii) the
two variants of transfer learning significantly im-
prove performance of the proposed model on the
BBN dataset but resulted in only a subtle perfor-
mance change on OntoNotes dataset.

Statistics of the dataset (Table 1) indicates that
presence of pronominal or other kinds of men-
tions are relatively higher in OntoNotes (6.78%
in test set) than the other two datasets (0% in
test set). Examples of such mentions are 100
people, It, the director, etc. Table 3 shows 20
randomly sampled entity mentions from test set
of OntoNotes datasets. Some of these mentions
are very generic and likely to be dependent on

*These results are from (Ren et al., 2016) that also uses
10% of the test set as development set and the remaining for
evaluation.

‡We used the publicly available code distributed by Ren
et al. (2016).

†All of these results are on exact same train, development
and test set.
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previous sentences. As all the methods use fea-
tures solely based on the current sentence, they
fail to transfer cross-sentence boundary knowl-
edge. Removing pronominal mentions from test
set increases the performance of all feature learn-
ing methods by around 3%.

his thousands of angry people
A reporter export competitiveness
Freddie Mac Messrs. Malson and Seelenfreund
the numbers Hollywood and New York
his explanation April
volatility This institution
their hands the 1987 crash
it January 4th
Macau investment enterprises
France any means

Table 3: 20 randomly sampled entity mentions
present in the test set of OntoNotes dataset.

Next we analyse where the proposed model is
failing as compared to AFET. For this, we look
at type-wise performance for the top-10 most fre-
quent types in the OntoNotes test dataset. Results
are shown in Table 4. Compared to AFET, the
proposed model performs better in all types ex-
cept other in the top-10 frequent types. The other
type, which is dominant in test set (42.6% of en-
tity mentions are of type other) and is a collection
of multiple broad subtypes such as product, event,
art, living thing, food. Performance of AFET sig-
nificantly drops (AFET-NoCo) when data-driven
label-label correlation is ignored, which indicates
that modeling data-driven correlation helps. How-
ever, as shown in Figure 2a, the use of label-label
correlation depends on appropriate values of pa-
rameters which vary from one dataset to another.

Label type
Support our AFET

Prec. Rec. F-1 Prec. Rec. F-1
/other 42.6% 0.838 0.809 0.823 0.774 0.962 0.858
/organization 11.0% 0.588 0.490 0.534 0.903 0.273 0.419
/person 9.9% 0.559 0.467 0.508 0.669 0.352 0.461
/organization/company 7.8% 0.932 0.166 0.282 1.0 0.127 0.225
/location 7.5% 0.687 0.796 0.737 0.787 0.609 0.687
/organization/government 2.1% 0 0 0 0 0 0
/location/country 2.0% 0.783 0.614 0.688 0.838 0.498 0.625
/other/legal 1.8% 0 0 0 0 0 0
/location/city 1.8% 0.919 0.610 0.733 0.816 0.637 0.715
/person/political figure 1.6% 0 0 0 0 0 0

Table 4: Performance analysis of the proposed
model and AFET on top 10 (in terms of type fre-
quency) types present in OntoNotes dataset.

5 Conclusion and Future Work

In this paper, we propose a neural network based
model for the task of fine-grained entity classi-
fication. The proposed model learns represen-
tations for entity mention, its context and in-
corporate label noise information in a variant of
non-parametric hinge loss function. Experiments
show that the proposed model outperforms exist-
ing state-of-the-art models on two publicly avail-
able datasets without explicitly tuning data depen-
dent parameters.

Our analysis indicates the following observa-
tions. First, OntoNotes dataset has a different dis-
tribution of entity mentions compared with other
two datasets. Second, if data distribution is simi-
lar, then transfer learning is very helpful. Third,
incorporating data-driven label-label correlation
helps in the case of labels of mixed types. Fourth,
there is an inherent limitation in assuming all la-
bels to be clean if they belong to the same path of
the hierarchy. Fifth, the proposed model fails to
learn label types that are very noisy.

Future work could analyse the effect of label
noise reduction techniques on the proposed model,
revisiting the definition of clean and noisy labels
and modeling label-label correlation in a princi-
pled way that is not dependent on dataset specific
parameters.
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Abstract

To extract structured representations of
newsworthy events from Twitter, unsuper-
vised models typically assume that tweets
involving the same named entities and ex-
pressed using similar words are likely to
belong to the same event. Hence, they
group tweets into clusters based on the co-
occurrence patterns of named entities and
topical keywords. However, there are two
main limitations. First, they require the
number of events to be known beforehand,
which is not realistic in practical applica-
tions. Second, they don’t recognise that
the same named entity might be referred
to by multiple mentions and tweets us-
ing different mentions would be wrongly
assigned to different events. To over-
come these limitations, we propose a non-
parametric Bayesian mixture model with
word embeddings for event extraction, in
which the number of events can be in-
ferred automatically and the issue of lex-
ical variations for the same named entity
can be dealt with properly. Our model has
been evaluated on three datasets with sizes
ranging between 2,499 and over 60 million
tweets. Experimental results show that our
model outperforms the baseline approach
on all datasets by 5-8% in F-measure.

1 Introduction

Event extraction from texts is to automatically ex-
tract key information of events such as what hap-
pened to whom, when and where. Previous re-
search mainly focused on news articles, the best
and abundant source of newsworthy events. With
the increasing popularity of social media plat-
forms, events are also reported and discussed in

Table 1: An example of several tweets describ-
ing the same event about “Space shuttle Atlantis
landed at Kennedy Space Center in Florida on
2011/07/08’’.

Boom! #shuttle #Atlantis is back!
The shuttle is down, welcome back Atlantis,
goodbye shuttle program.
Atlantis lands safely in Florida, marking
the end of NASA’s 30-yr space shuttle pro-
gramme.
Space shuttle Atlantis lands at Kennedy space
center, ending NASA’s 30-year shuttle pro-
gram.

social media apart from news articles. It was re-
ported in (Petrovic et al., 2013) that even 1% of
public Twitter stream covers 95% of all events
on newswire. Extracting events from social me-
dia makes it possible to quickly understand what
is being discussed. It can be further integrated
into downstream applications such as tracking the
public’s viewpoints towards a certain event. How-
ever, due to the difficulty in acquiring annotated
data for training and the short and informal text
commonly appeared in social media, traditional
approaches (Grishman et al., 2005; Tanev et al.,
2008; Piskorski et al., 2008) to event extraction
from new articles are no longer applicable in social
media data. Nevertheless, one important charac-
teristic of social media data is that for most news-
worthy events, there might be a high volume of re-
dundant messages referring to the same event. An
example of several tweets describing one event is
given in Table 1.

Approaches to event extraction from social me-
dia have largely explored the redundancy charac-
teristic (Xia et al., 2015; Popescu et al., 2011; Ab-
delhaq et al., 2013). Most of the pervious meth-
ods aim to discover new or previously unidenti-
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fied events without extracting structured represen-
tations of events. Ritter et al. (2012) presented
a system called TwiCal to extract and categorize
events from Twitter. The strength of association
between each named entity y and date d is mea-
sured based on the number of co-occurring tweets
in order to form a binary tuple 〈y, d〉 to repre-
sent an event. However, TwiCal relies on a super-
vised sequence labeler trained on tweets annotated
with event mentions for the identification of event-
related phrases.

Assuming that each tweet message m ∈
{1..M} is assigned to one event instance e, while
e is modeled as a joint distribution over the named
entities y, the date/time d when the event oc-
curred, the location l where the event occurred and
the event-related keywords k, Zhou et al. (2014;
2015) proposed an unsupervised Bayesian model
called latent event model (LEM) for event extrac-
tion from Twitter. However, LEM requires the
number of events to be known beforehand, which
is not realistic in practical applications. To address
this limitation, in this paper, a non-parametric
mixture model for event extraction is proposed, in
which the number of events is inferred automat-
ically from data. Moreover, the lexical variation
of the same named entity, for example, “Charles”
and “The Prince of Wales”, if identified properly,
could be exploited to help in detecting the same
event described in tweets with different mentions.
To this end, we further extend the non-parametric
mixture model to incorporate word embeddings
generated using neural language modelling.

The main contributions of the paper are summa-
rized below:

• We propose a non-parametric approach
called the Dirichlet Process Event Mixture
Model (DPEMM) to extract structured events
information. It avoids the problem of pre-
setting the number of events, a common issue
in latent Dirichlet allocation (LDA) based ap-
proaches.

• We extend DPEMM by incorporating word
embeddings to deal with the issue of using
multiple mentions to refer to the same named
entity.

• The proposed approaches have been evalu-
ated on three datasets and a significant im-
provement on F-measure compared to the
baseline approach is observed.

2 Related Work

Research on event extraction of tweets can be di-
vided into domain-specific and open domain ap-
proaches. Domain-specific approaches typically
focus on one particular type of events. For ex-
ample, Panem et al. (2014) proposed an algo-
rithm to extract attribute-value pairs and map such
pairs to manually generated schemas for natural
disaster events. Evaluation was carried out on
58,000 tweets for 20 events and the system can
fill such event schemas with an F-measure of 60%.
TSum4act (Nguyen et al., 2015) was designed for
disaster responses based on tweets and has been
evaluated on a dataset containing 230,535 tweets.
Anantharam et al. (Anantharam et al., 2014) fo-
cused on extracting city events by solving a se-
quence labeling problem. Evaluation was carried
out on a real-world dataset consisting of event re-
ports and tweets collected over four months from
San Francisco Bay Area.

Open domain event extraction approaches are
not limited to a specific event type or topic. Ben-
son et al. (2011) proposed a structured graphi-
cal model which simultaneously analyzed individ-
ual messages, clustered, and induced a canonical
value for each event. Popescu et al. (2011) fo-
cused on detecting events involving known enti-
ties from Twitter. Experimental results showed
that events centered on specific entities can be ex-
tracted with 70% precision and 64% recall. Liu
et al. (2012) worked on social events extrac-
tion for social network construction using a fac-
tor graph by harvesting the redundancy in tweets.
Experiments were conducted on manually anno-
tated data set and results showed that it achieved
a gain of 21% in F-measure. In (Abdelhaq et
al., 2013), a system called EvenTweet was con-
structed to extract localized events from a stream
of tweets in real-time. The extracted events are
described by start time, location and a number of
related keywords. Armengo et al. (2015) pro-
posed a model named Tweet-SCAN based on hi-
erarchical Dirichlet process to detect events from
geo-located tweets. To extract more information,
a system called SEEFT (Wang et al., 2015) used
links in tweets and combined tweets and linked
articles to identify events. Xia et al. (2015) pro-
posed a framework combining text, image and
geo-location information to detect events with low
spatial and temporal deviation.

Our proposed method belongs to the open do-
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main category. Different from the previous meth-
ods, our model can automatically identify the
number of events in the corpus and deal with lex-
ical variations of named entities using word em-
beddings generating from neural language mod-
elling.

3 Methodology

Our proposed model for event extraction is
based on a typical non-parametric mixture model,
Dirichlet Process Mixture Model (DPMM) (Green
and Richardson, 2001; Ishwaran and Zarepour,
2002) in which the number of active clusters is au-
tomatically learned from the data. We first give a
brief introduction to DPMM. In DPMM, observa-
tion xi is assumed to be derived from the following
model:

π|α ∼ Dirichlet(α/K, ..., α/K)

ci|π ∼ Multinomial(π)

φk|G0 ∼ G0

xi|ci, {φk}Kk=1 ∼ F (φci)

where K denoting the number of components in
the mixture model and can go to infinity, π is the
mixture weights of each component, φk is the pa-
rameter of the kth component, ci denotes the index
of components, F (φci) denotes the distribution of
xi with parameter φci . In this model, π can be
generated by stick-breaking model (Pitman, 2002)
and Chinese restaurant process (Aldous, 1985).

Suppose that all the observations are generated
by DPMM and the variable of observation xi is θi,
which has the following conditional distribution:

θi|θ1, ..., θi−1 ∼
K∑

k=1

nk
i− 1 + α

δφk +
α

i− 1 + α
G0

where φ1, ..., φk are the distinct values of θ, nk
is the number of observations that belong to com-
ponent k, δφk is a probability measure concen-
trated on φk, which returns 1 when θi = φk, G0 is
the base probability measure and generates new φ
with probability α

i−1+α .

3.1 Dirichlet Process Event Mixture Model
(DPEMM)

We propose a Dirichlet Process Event Mixture
Model (DPEMM) in which each event is repre-
sented as a 4-tuple 〈y, l, k, d〉, where y stands for
non-location named entity, l for location, k for

event-related keyword and d for date. It is worth
noting that y, l, k is not atomic and could be a set
by itself. One event can have multiple named en-
tities, locations or keywords. Also, some elements
of the 4-tuple might be absent if no associated in-
formation can be found in tweets. Assuming that
the data contains an infinite number of events and
each event is modeled as a joint distribution over y,
l, k and d, the model can be viewed as a Bayesian
mixture model.

The generative process of the proposed model
is given below.

• Draw event distribution π ∼
Dirichlet( αK , ...,

α
K ).

• For each event e, draw multinomial distribu-
tion θe ∼ Dirichlet(β), ψe ∼ Dirichlet(η),
ωe ∼ Dirichlet(λ), φe ∼ Dirichlet(γ).

• For each tweet t:

– Draw an event from event distribution
e ∼ Multinomial(π).

– For each non-location named entity oc-
curred in t, choose a named entity y ∼
Multinomial(θe).

– For each location occurred in t, choose
a location l ∼ Multinomial(ψe).

– For each keyword occurred in t, choose
a keyword k ∼ Multinomial(ωe).

– For each date occurred in t, choose a
date d ∼ Multinomial(φe).

Here, K is the number of events and can go
to infinity. To estimate the parameters of the
model, we employ Markov chain sampling meth-
ods (Neal, 2000). AsK goes to infinity, we cannot
represent the infinite number of θe, ψe, ωe and φe
explicitly. Therefore, we perform Gibbs sampling
for only those parameters that are currently associ-
ated with some observations. Gibbs sampling for
the event label ei of tweet i is based on the follow-
ing conditional probabilities:
If ei is assigned with a previously seen event e,

P (ei = e|e−i, si, t−i) = b
n−ie

n− 1 + α
∏

y∈yi

∫
Fy(θe)dHy(θe)

∏

l∈li

∫
Fl(ψe)dHl(ψe)

∏

k∈ki

∫
Fk(ωe)dHk(ωe)

∏

d∈di

∫
Fd(φe)dHd(φe)
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If ei is assigned with a new event,

P (ei = enew|e−i, si di, t−i) = b
α

n− 1 + α
∏

y∈yi

∫
Fy(θ)dG0(θ)

∏

l∈li

∫
Fl(ψ)dG0(ψ)

∏

k∈ki

∫
Fk(ω)dG0(ω)

∏

d∈di

∫
Fd(φ)dG0(φ)

, where b is the normalizing constant that makes
the probabilities sum to 1, e−i is the event assign-
ment of all the other tweets excluding the data
from ith tweet, si is the four-tuple 〈yi, li, ki, di〉,
n is the total number of tweets, n−ie is the num-
ber of tweets assigned with event label e excluding
the current assignment, Fy(θe) is the multinomial
distribution over non-location named entities with
prior θe, Fl(ψe) over locations with ψe, Fk(ωe)
over keywords with ωe, and Fd(φe) over dates
with φe. Hy(θe) is the posterior distribution of pa-
rameters based on the priorG0(θe) ∼ Dirichlet(β)
and all observations yj for which j 6= i and ej = e,
and similarly for Hl(ψe), Hk(ωe) and Hd(φe).

We then derive the following formulae:
If ei is assigned with a previously seen event e,

P (ei = e|e−i, si, t−i) = b
n−ie

n− 1 + α

∏

y∈yi

n−ie,y + β

ΣY
t=1(n−ie,y,t + β)

∏

l∈li

n−ie,l + η

ΣL
t=1(n−ie,l,t + η)

∏

k∈ki

n−ie,k + λ

ΣK
t=1(n−ie,k,t + λ)

∏

d∈di

n−ie,d + γ

ΣD
t=1(n−ie,d,t + γ)

If ei is assigned with a new event e′,

P (ei = e′|e−i, si, t−i)

= b
α

n− 1 + α

∏

y∈yi

1

Y

∏

l∈li

1

L

∏

k∈ki

1

K

∏

d∈di

1

D

, where the superscript −i denotes a count exclud-
ing data from ith tweet, n−ie,y, n−ie,l , n

−i
e,k, and n−ie,d

denotes the occurrence count of non-location y, lo-
cation l, keyword k and date d in event e, respec-
tively. t−i denotes all other tweets. β, η, λ, γ are
the hyperparameters and are set to the same value
1 in the experiments in the paper.

3.2 DPEMM With Word Embeddings
In the proposed model described above, each dis-
tinct word is treated separately without consider-

ing their semantic relations. However, the knowl-
edge of semantic relations of words might be use-
ful for event extraction. For example, “Putin”
and “The President of Russia” are two
different mentions referring to the same person.
Knowing such knowledge would help to clus-
ter the following two tweets together, “President
of Russia attended the opening ceremony of the
119th session of the International Olympic Com-
mittee.” and “Putin took part in the presentation
of Sochi, at the 119th of the IOC.”, and hence
identify a single event. Moreover, there might ex-
ist partitive relations between two location names.
For example, Croydon is a part of London. The
information will help to identify the same event
described as happened in Croydon and London
and subsequently improve the accuracy of event
extraction.

To incorporate such information about seman-
tic relations between words, we propose another
model by employing word embeddings to describe
the semantic relations among y or l, which is
called DPEMM-WE. Word embedding for each
word is often represented in a vector form. In
the embedded hyperspace, words that are more se-
mantically or syntactically similar to each other
are located closer. We use neural language mod-
eling (Collobert et al., 2011) to learn word repre-
sentations by discriminating the legitimate phrase
from incorrect phrases. Given a sequence of words
p = (w1, w2, ..., wd) with window size d, the goal
of the model is to discriminate the sequence of
words p (the correct phrase) from a random se-
quence of words pr. Thus, the objective function
of the model is to minimize the ranking loss with
respect to parameters θ:

∑

p∈p

∑

r∈R
max(0, 1− fθ(p) + fθ(p

r)) (1)

, where p is the set of all possible text sequences
with d words coming from the corpus U , R is
the dictionary of words, pr denotes the window
of words obtained by replacing the central word
of p by the word r and fθ(p) is the score of p.
The dataset for learning the language model can be
constructed by considering all the word sequences
in the corpus. Positive examples are the word se-
quences from the corpus, while negative examples
are the same word sequence with the central word
replaced by a random one.

Different from DPEMM, in DPEMM-WE, non-
location named entities y and locations l are as-
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sumed to follow Gaussian distribution to incor-
porate word embeddings and their prior distri-
butions are assumed to follow Normal-Inverse-
Wishart (NIW) distribution, which is conjugated
with Gaussian distribution. The probability den-
sity function is

NIW (µ,Σ|µ0, λ,Ψ, ν)

= N (µ|µ0,
1

λ
Σ)W −1(Σ|Ψ, ν)

N (µ|µ0,
1

λ
Σ) =

e−
1
2

(µ−µ0)T (Σ/λ)−1(µ−µ0)

√
|2πΣ/λ|

W −1(Σ|Ψ, ν) =
|Σ| ν2

2
νp
2

Γp( ν
2

)
|Σ|− ν+p+1

2 e−
1
2
tr(ΨΣ−1)

where Σ and Ψ are p × p positive definite matri-
ces and Γp(·) is the multivariate gamma function.
The graphical model of DPEMM-WE is shown in
Figure 1.

e

y lk d

y y

y0 Sy0 y0y0

l l

l0 Sl0 l0l0

K

Figure 1: Plate notation of the graphical model
DPEMM-WE.

The generative process of DPEMM-WE is
given below.

• Draw event distribution π ∼
Dirichlet( αK , ...,

α
K ).

• For each event, draw Graussian distribu-
tion θe ∼ NIW(β), ψe ∼ NIW(η); draw
Multinomial distribution ωe ∼ Dirichlet(λ),
φe ∼ Dirichlet(γ).

• For each tweet t:

– Draw an event from event distribution
e ∼ Multinomial(π).

– For each named entity occurred in
t, choose a named entity y ∼
Gaussian(θe).

– For each location occurred in t, choose
a location l ∼ Gaussian(ψe).

– For each keyword occurred in t, choose
a keyword k ∼ Multinomial(ωe).

– For each date occurred in t, choose a
date d ∼ Multinomial(φe).

, where β = (κy0, µy0, νy0, Sy0), θe = (µy,Σy),
η = (κl0, µl0, νl0, Sl0), ψe = (µl,Σl).

Similar to DPEMM, parameters of the model
can be estimated by Gibbs sampling. The sam-
pling equation is given as below:
If ei is assigned with a previously seen event e,

P (ei = e|e−i, si, t−i) = b
n−ie

n− 1 + α
∏

y∈yi

∫
p(y|θ)p(θ|νe,y0, κe,y0, µe,y0, Se,y0, t−i)dθ

∏

l∈li

∫
p(l|ψ)p(ψ|νe,l0, κe,l0, µe,l0, Se,l0, t−i)dψ

∏

k∈ki

∫
p(k|ω)p(ω|λ, t−i)dω

∏

d∈di

∫
p(d|φ)p(φ|γ, t−i)dφ

If ei is assigned with a new event e′,

P (ei = e′|e−i, si, t−i) = b
α

n− 1 + α
∏

y∈yi

∫
p(y|θ)p(θ|νe′,y0, κe′,y0, µe′,y0, Se′,y0)dθ

∏

l∈li

∫
p(l|ψ)p(ψ|νe′,l0, κe′,l0, µe′,l0, Se′,l0)dψ

∏

k∈ki

∫
p(k|ω)p(ω|λ)dω

∏

d∈di

∫
p(d|φ)p(φ|γ)dφ

, where θ and ψ denote parameter (µ,Σ).
As

∫
N (x|θ)NIW (θ|ν, κ, µ, S)dθ =

T (ν −D + 1, µ,
S(κ+ 1)

κ(ν −D + 1)
)

the parameters of entities’ T distribution are

812



given as:

κe,y = κy0 +Ne

νe,y = νy0 +Ne

µe,y =
κy0µy0 +Neve,y

κe,y
Se,y = Se0 + Ce,y

+
κe0Ne

κe, y
(ve,y − µe0)(ve,y − µe0)T

ve,y =

∑
y∈e vy
Ne

Ce,y =
∑

y∈e
(vy − ve,y)(vy − ve,y)T

, where vy means the word embedding of entity y.
The parameters of locations’ T distribution can
be calculated similarly.

3.3 Post-Processing

DPEMM or DPEMM-WE essentially outputs
tweet clusters where each cluster represents one
event. To further extract structured representa-
tion of an event, such as named entities, loca-
tions, dates and keywords, from each cluster, we
simultaneously look into the probabilities of each
event element returned by our models and their
co-occurrence frequencies. We assumed that non-
location named entities were the most important
since an event is usually operated by somebody
or something. If an event happened in some-
place like “A bomb attack was happened in Lon-
don”, the location is the most important. There-
fore, we first select the top 3 non-location named
entities ranked by the probability θe. For each
non-location named entity y, its occurrence fre-
quency needs to exceed Ty. If no such entities
exist, the top 3 locations ranked by the proba-
bility ψe are chosen; otherwise, the location l is
chosen based on its co-occurrences with the se-
lected non-location named entities. After that,
keywords k are chosen among the top 10 ωe. Only
those keywords with correlation coefficients with
the chosen named entities and locations exceeding
Tc are selected. Then date d is chosen in a sim-
ilar way. Here, we define the correlation coeffi-
cient between a and b as Corr(a, b) = log #(a,b)

#(b) ,
where #(a, b) denotes the co-occurrence count of
a and b in the same tweet within a tweet cluster
and #(b) denotes the occurrence count of b in all
tweets within a tweet cluster. In our experiments,
we set the thresholds Ty = 0.2, Tc = 0.4.

If the entity or location is in the form of word
embeddings, its occurrence frequency is calcu-
lated as the occurrence frequencies of all the
neighboring words which have cosine similarity
values greater than 0.85. The rationale behind our
post-processing step is that although tweets have
been filtered in the pre-processing step, tweet clus-
ters generated by the proposed models still con-
tain noisy event elements. As such, we select
event elements from tweet clusters not only based
on their probability distributions given by the pro-
posed models but also taking into account their co-
occurrences in each tweet cluster.

4 Experiments

We evaluate the proposed models on three
datasets. Dataset I is the First Story Detection
(FSD) dataset (Petrovic et al., 2013) containing
2,499 tweets manually annotated with 27 events.
These tweets were published between 7th July and
12th September 2011, covering a range of cate-
gories such as accidents and science discoveries.
Considering that events mentioned in a very few
tweets are less likely to be significant, we remove
events mentioned in less than 15 tweets and are
left with 2,453 tweets annotated with 20 events.
Dataset II and III were collected from tweets pub-
lished in the month of December in 2010 using
the Twitter streaming API. Dataset II consists of
6,297 tweets manually annotated with 73 events.
All the annotated events in Dataset II are men-
tioned in at least 15 tweets. Dataset III contains 60
millions unlabelled tweets. We chose LEM (Zhou
et al., 2014), the state-of-art approach based on
Bayesian modelling for event extraction, as the
baseline to compare with the proposed model. For
all datasets, pre-processing is done as described in
baseline (Zhou et al., 2014). A named entity tag-
ger1 specifically built for Twitter is used for ex-
tracting named entities including locations from
tweets. A Twitter Part-of-Speech tagger (Gimpel
et al., 2011) is used for POS tagging and only
words tagged with nouns, verbs or adjectives are
kept as candidate keywords. Word embeddings
are trained on Dataset III (60 million tweets) us-
ing Word2Vec2. In this model, a word is used as
an input to a log-linear classifier with continuous
projection layer and the objective is to predict its
neighboring words.

1http://github.com/aritter/twitter-nlp
2http://code.google.com/p/word2vec/
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We train DPEMM, DPEMM-WE and LEM on
an IBM 3850 X5 Linux server equipped with 1.86
Ghz processor and 8 GB DDR3 RAM. The num-
ber of Gibbs sampling iterations is set to 1,000 for
LEM for all the datasets. For DPEMM, it con-
verges in 16 iterations on Dataset I and 20 itera-
tions on Dataset II and III. While for DPEMM-
WE, it converges in 20 iterations on both Dataset
II and III.

4.1 Experimental Results

To evaluate the performance of the proposed ap-
proaches, we calculate precision, recall, and F-
measure on Dataset I and II and only precision on
Dataset III since it is hard to know exactly how
many events are mentioned in such a large dataset.
The precision is defined based on the following
criteria: 1) Do the entity y, location l and the date
d refer to the same event? 2) Are the keywords k in
accord with the event that other extracted elements
y, l, d refer to and are they informative enough to
tell us what happened? If the extracted events does
not have any keyword, such events are considered
as incorrect.

The performance comparison of event extrac-
tion results is presented in Table 2. It can be ob-
served that the proposed DPEMM achieves better
performance on all the three datasets compared to
the baseline approach, with the improvement in F-
measure being 6.1% and 7.7% on Dataset I and
II, respectively. After incorporating word embed-
dings into DPEMM, the proposed DPEMM-WE
further improves upon DPEMM slightly by 1.45%
in F-measure on Dataset II, but more significantly
by 4.16% in precision on Dataset III. It verifies our
hypothesis that the knowledge about the semantic
relations of entities and locations could potentially
improve the performance of event extraction. We
also compared the proposed models with K-means
on Dataset I to justify whether these proposed gen-
erative models are better than traditional clustering
methods based on co-occurrence. The feature set
was constructed by organizing the words in four
categories such as y, l, k, d and concatenating the
four one-hot feature sets together.

It is worth noting that we did not apply
DPEMM-WE on Dataset I because this dataset is
very small, consisting of less than 2500 tweets. It
is thus unreliable to learn word embeddings from
such a small dataset. It is also hard to pre-train
word embedding from extra dataset like Wikipedia

Table 2: Comparison of the performance of event
extraction on the three datasets.

Dataset I
Method Precision(%) Recall(%) F-measure(%)
K-means 91.23 55.40 68.93
LEM 79.17 85.00 81.98
DPEMM 86.21 90.00 88.06

Dataset II
Method Precision(%) Recall(%) F-measure(%)
LEM 62.35 68.49 65.28
DPEMM 70.80 75.34 73.00
DPEMM-WE 71.15 78.08 74.45

Dataset III
Method Precision(%) Number of correctly Events
LEM 68.25 215
DPEMM 68.60 342
DPEMM-WE 72.76 353

corpus for Dataset I because some words in so-
cial media are informal and some words were
only mentioned in some specific time slots such
as “Dream Act”. Also, word embeddings learned
from Dataset III are not beneficial for event ex-
traction in Dataset I since tweets collected in these
two datasets were in different periods and a large
number of words in Dataset I cannot be found in
Dataset III. For example, more than 20% named
entities in Dataset I can not be found in the word
vocabulary constructed based on Dataset III.

Examples of events extracted by DPEMM and
DPEMM-WE are shown in Table 3. It can be ob-
served that the extracted results from DPEMM-
WE contain more detailed and accurate infor-
mation describing the events. For example, for
the first event, DPEMM-WE is able to extraction
the location information while DPEMM failed to
do so. For the third event, DPEMM-WE gives
more accurate location information compared to
DPEMM. It might attribute to the advantage of in-
corporating word embeddings which are able to
map semantically similar words into nearby loca-
tions in the embedding hyperspace. As such, al-
though two tweets might contain different men-
tions of named entities and locations, they might
still be clustered together if these named entities
or locations have similar word embeddings.

We observed that the precision achieved by
DPEMM on Dataset I is signifcantly better than
LEM on Dataset I and II while similar on Dataset
III. We found that DPEMM tended to generate
many but smaller clusters compared to LEM. As
dataset III is huge, DPEMM might generate some
small clusters which do not contain enough infor-
mation to describe a correct event.
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Table 3: Examples of extracted events based on DPEMM and DPEMM-WE.
Event Method Entities Locations Keywords Date

1
DPEMM Biden - inevit marriage gay say 2010-12-24

DPEMM-WE Biden, Obama WhiteHouse marrige gay inevit say 2010-12-24

2
DPEMM Charles London car protest attack contain 2010-12-09

DPEMM-WE Charles, Camilla London, UK protest car demonstrators attack 2010-12-09

3
DPEMM - London snow close airport ice 2010-12-18

DPEMM-WE - Europ, London, Gatwick snow delay runaway airport 2010-12-18

4
DPEMM DreamAct, Reid - pass bill vote will 2010-12-09

DPEMM-WE DreamAct, Harry, Reid Senate vote pass debate bill 2010-12-09

5
DPEMM WorldCup Russia announce will host chose 2010-12-03

DPEMM-WE WorldCup, FIFA Russia, Qatar news host win will 2010-12-03
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Figure 2: Purities of the clusters on Dataset I.

4.2 Quality of Clusters

As the proposed approaches essentially group
tweets into different clusters with each cluster cor-
responding to an event, we conduct experiments
to explore the quality of clusters by a measure of
purity, which is defined as Pe = ne

n , where ne de-
notes the number of tweets describing the event
e extracted from a cluster and n denotes the total
number of tweets in the cluster. Since it is diffi-
cult to calculate the purity on Dataset III, we only
report the results on Dataset I and Dataset II as
shown in Figure 2 and 3 respectively.

Each point (x, y) in the figures denotes the per-
centage y of the clusters whose purity is less than
x. Obviously, if the curve is steeper, it means that
the percentage of the clusters with low purity is
smaller and the quality of the clusters is better. It
can be observed that DPEMM achieves the best
quality of cluster on both Dataset I and Dataset
II, whose precision is lower than DPEMM-WE.
Specifically, on Dataset I, more than 80% of clus-
ters generated by DPEMM has the purity value
greater than 0.9, compared to only 70% in LEM.
It might be attributed to the property of DPEMM
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Figure 3: Purities of the clusters on Dataset II.

that the cluster is generated dynamically without
a preset number of clusters. On Dataset II, both
DPEMM and DPEMM-WE achieve better cluster-
ing results compared to LEM. However, the pu-
rity of clusters generated by DPEMM is slightly
higher than that generated by DPEMM-WE. This
is somewhat contrary to our prior belief. By fur-
ther analyzing the results, we found that as more
tweets are clustered together using DPEMM-WE,
more noisy information such as some named enti-
ties with similar word embeddings which are not
related to the events is introduced. We present an
example of the tweet clusters describing the same
event generated by DPEMM and DPEMM-WE in
Figure 4. For each method, we use a histogram
to indicate the number of tweets which share the
same event elements. Regions highlighted in dark
or light red colors indicate that the correspond-
ing tweets are event-related. Regions highlighted
in blue denote the corresponding tweets are not
event-related. It can be observed that the purity
of the cluster generated by DPEMM is 91% which
is better than DPEMM-WE’s 63%. However, the
size of the cluster returned by DPEMM is smaller
and it failed to extract the location information.
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Figure 4: Example tweet clustering results gener-
ated by DPEMM and DPEMM-WE.

On the contrary, DPEMM-WE generated a larger
cluster and for some tweets, it successfully ex-
tracted the location “Senate”. However, more spu-
rious tweets are included because “Harry Reid”
is close to both “DreamAct” and “Obama”, and
“White House” is close to “Senate” in the word
embedding space. Therefore, although DPEMM-
WE gives better extraction results overall com-
pared to DPEMM as shown in Table 2, it returns
lower purity results because of some noisy infor-
mation introduced through word embeddings.

5 Conclusions and Future Work

In this paper, we have proposed a model based
on the Dirichlet Process mixture model to ex-
tract structured event information from social me-
dia data. Different from previous approaches for
event extraction which require setting the number
of events beforehand, it can infer the number of
events automatically from data. It is specifically
appealing for processing large-scale social media
data. Moreover, considering different mentions of
names could refer to the same person (and simi-
larly for other named entities such as location), we
have proposed to incorporate word embeddings
into DPEMM so as to more effectively capture se-
mantically similar words. Experiments have been
conducted on three datasets and the proposed ap-
proaches achieve better performance on all the
datasets in comparison with the baseline approach.
In the future, we plan to investigate more effec-
tive way in reducing the noise introduced by word
embeddings and incorporate emotion information
into the proposed models to simultaneously ex-

tract public opinions of the extracted event.
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Abstract

End-to-end relation extraction refers to
identifying boundaries of entity mentions,
entity types of these mentions and appro-
priate semantic relation for each pair of
mentions. Traditionally, separate predic-
tive models were trained for each of these
tasks and were used in a “pipeline” fash-
ion where output of one model is fed as
input to another. But it was observed that
addressing some of these tasks jointly re-
sults in better performance. We propose a
single, joint neural network based model
to carry out all the three tasks of bound-
ary identification, entity type classifica-
tion and relation type classification. This
model is referred to as “All Word Pairs”
model (AWP-NN) as it assigns an appro-
priate label to each word pair in a given
sentence for performing end-to-end rela-
tion extraction. We also propose to re-
fine output of the AWP-NN model by us-
ing inference in Markov Logic Networks
(MLN) so that additional domain knowl-
edge can be effectively incorporated. We
demonstrate effectiveness of our approach
by achieving better end-to-end relation ex-
traction performance than all 4 previous
joint modelling approaches, on the stan-
dard dataset of ACE 2004.

1 Introduction

The task of relation extraction (RE) deals with
identifying whether any pre-defined semantic re-
lation holds between a pair of entity mentions in
the given sentence. Pure relation extraction tech-
niques (Zhou et al., 2005; Jiang and Zhai, 2007;
Bunescu and Mooney, 2005; Qian et al., 2008)
assume that for a sentence, gold-standard entity

mentions (i.e. boundaries as well as types) in it are
known. In contrast, end-to-end relation extraction
deals with plain sentences without assuming any
knowledge of entity mentions in them. The task
of end-to-end relation extraction consists of three
sub-tasks: i) identifying boundaries of entity men-
tions, ii) identifying entity types of these mentions
and iii) identifying appropriate semantic relation
for each pair of mentions. First two sub-tasks
correspond to the Entity Detection and Tracking
task defined by the the Automatic Content Extrac-
tion (ACE) program (Doddington et al., 2004) and
the third sub-task corresponds to the Relation De-
tection and Characterization (RDC) task. ACE
standard defined 7 entity types1: PER (person),
ORG (organization), LOC (location), GPE (geo-
political entity), FAC (facility), VEH (vehicle) and
WEA (weapon). It also defined 7 coarse level
relation types2: EMP-ORG (employment), PER-
SOC (personal/social), PHYS (physical), GPE-
AFF (GPE affiliation), OTHER-AFF (PER/ORG
affiliation), ART (agent-artifact) and DISC (dis-
course).

Traditionally, the three sub-tasks of end-to-end
relation extraction are carried out serially in a
“pipeline” fashion. In this case, the errors in any
sub-task affect subsequent sub-tasks. Another dis-
advantage of this “pipeline” approach is that it
allows only one-way information flow, i.e. the
knowledge about entities is used for identifying re-
lations but not vice versa. Hence to overcome this
problem, several approaches (Roth and Yih, 2004;
Roth and Yih, 2002; Singh et al., 2013; Li and Ji,
2014) were proposed which carried out these sub-
tasks jointly rather than in “pipeline” manner.

We propose a new approach which combines

1www.ldc.upenn.edu/sites/www.ldc.
upenn.edu/files/english-edt-v4.2.6.pdf

2www.ldc.upenn.edu/sites/www.ldc.
upenn.edu/files/english-rdc-v4.3.2.PDF
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Entity Mention Boundaries Entity Type
His (0, 0) PER
sister (1, 1) PER
Mary Jones (2, 3) PER
United Kingdom (7, 8) GPE

Table 1: Expected output of end-to-end relation
extraction system for entity mentions

the powers of Neural Networks and Markov Logic
Networks to jointly address all the three sub-tasks
of end-to-end relation extraction. We design the
“All Word Pairs” neural network model (AWP-
NN) which reduces solution of these three sub-
tasks to predicting an appropriate label for each
word pair in a given sentence. End-to-end rela-
tion extraction output can then be constructed eas-
ily from these labels of word pairs. Moreover,
as a separate prediction is made for each word
pair, there may be some inconsistencies among
the labels. We address this problem by refining
the predictions of AWP-NN by using inference in
Markov Logic Networks so that some of the in-
consistencies in word pair labels can be removed
at the sentence level.

The specific contributions of this work are : i)
modelling boundary detection problem by intro-
ducing a special relation type WEM and ii) a sin-
gle, joint neural network model for all three sub-
tasks of end-to-end relation extraction. The paper
is organized as follows. Section 2 provides a de-
tailed problem definition. Section 3 describes our
AWP-NN model in detail, followed by Section 4
which describes how the predictions of AWP-NN
model are revised using inference in MLNs. Sec-
tion 5 provides experimental results and analysis.
Finally, we conclude in Section 6 with a short note
on future work.

2 Problem Definition

Given a sentence as an input, an end-to-end rela-
tion extraction system should produce a list of en-
tity mentions within it. For each entity mention,
its boundaries and entity type should be identi-
fied. Also, for each pair of valid entity mentions,
it should decide whether any pre-defined semantic
relation holds between them.

Consider the sentence : His0 sister1
Mary2 Jones3 went4 to5 the6 United7
Kingdom8 .9 Here, end-to-end relation extrac-
tion should produce the output as shown in the
tables 1 and 2.

Entity Mention Pair Relation Type
His, sister PER-SOC
His, Mary Jones PER-SOC
sister, United Kingdom PHYS
Mary Jones, United Kingdom PHYS

Table 2: Expected output of end-to-end relation
extraction system for relations

3 All Word Pairs Model (AWP-NN)

We propose a single, joint model for addressing
all three sub-tasks of end-to-end relation extrac-
tion : i) identifying boundaries of entity mentions,
ii) identifying entity types of these mentions and
iii) identifying appropriate semantic relation for
each pair of mentions. We refer to this model as
AWP-NN, i.e. All Word Pairs model using Neu-
ral Networks. Here, annotations of all these three
sub-tasks can be represented by assigning an ap-
propriate label to each pair of words. It is not nec-
essary to assign label to all possible word pairs;
rather ith word is paired with jth word only when
j ≥ i. AWP-NN model is motivated from the
table representation idea proposed by Miwa and
Sasaki (2014) but differs significantly from it in
following ways:

1. boundary identification is modelled with the
help of a special relation type (WEM) instead
of BIO (Begin, Inside, Other) encoding or
BILOU (Begin, Inside, Last, Unit, Other) en-
coding

2. neural network model for prediction of ap-
propriate label for each word pair instead of
structured prediction

Labels predicted by the AWP-NN model for
each word pair can then be used to construct the
end-to-end relation extraction output as described
in tables 1 and 2.

Consider the example sentence from Section 2.
Table 3 shows true annotations of all word pairs in
this sentence as required for training the AWP-NN
model. Labels used for these annotations can be
grouped into the following 5 logical clusters:

1. PER, ORG, GPE, LOC, FAC, VEH and
WEA : Represent entity type of head word
of an entity mention when both the words in
a word pair are the same

2. OTH : Represents words which are not head
words of any entity mention and both the
words in a word pair are the same
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His sister Mary Jones went to the United Kingdom .
His PER PER-SOC NULL PER-SOC NULL NULL NULL NULL NULL NULL

sister PER NULL NULL NULL NULL NULL NULL PHYS NULL
Mary OTH WEM NULL NULL NULL NULL NULL NULL
Jones PER NULL NULL NULL NULL PHYS NULL
went OTH NULL NULL NULL NULL NULL
to OTH NULL NULL NULL NULL
the OTH NULL NULL NULL

United OTH WEM NULL
Kingdom GPE NULL

. OTH

Table 3: Annotation of all word pairs as per the AWP-NN model

3. EMP-ORG, PHYS, OTHER-AFF, EMP-
ORG-R, PHYS-R, OTHER-AFF-R3, PER-
SOC, GPE-AFF and ART : Represent rela-
tion type between head words of any two en-
tity mentions

4. NULL : Indicates that no pre-defined seman-
tic relation exists between the words in the
word pair

5. WEM (Within Entity Mention) : Indicates
that the words in the word pair belong to the
same entity mention and one of the word is
the head word of that mention

3.1 Features for the AWP-NN model
Previous work (Zhou et al., 2005; Jiang and Zhai,
2007; Bunescu and Mooney, 2005; Qian et al.,
2008) in relation extraction establishes the im-
portance of both lexical and syntactic features.
Hence, we designed features to capture informa-
tion about word sequences, POS tags and depen-
dency structure. As each word pair constitutes
a separate instance for classification, features are
of three types: i) features characterizing individ-
ual word in a word pair, ii) features characterizing
properties of both the words at a time and iii) fea-
tures based on feedback, i.e. predictions of pre-
ceding instances.

3.1.1 Individual word features
These features are generated separately for both
the words in a word pair.
1. Word itself and its POS tag
2. Previous word and previous POS tag
3. Next word and next POS tag
4. Parent / Governor of the word in the depen-
dency tree, the corresponding dependency relation
type and POS tag of the parent

3EMP-ORG-R, PHYS-R and OTHER-AFF-R correspond
to relation types EMP-ORG, PHYS and OTHER-AFF in the
reverse direction, respectively.

3.1.2 Word pair features
These features are generated for a word pair (say
〈Wi,Wj〉) as a whole.
1. Words distance (WD): Number of words in the
sentence between the words Wi and Wj

2. Tree distance (TD): Number of words on the
path leading from Wi to Wj in the sentence’s de-
pendency tree
3. Common Ancestor (CA): Lowest common an-
cestor of the two words in the dependency tree
4. Ancestor Position (AP): It indicates the posi-
tion of the common ancestor with respect to the
two words of a word pair. Different possible po-
sitions of the ancestor are - left of Wi, Wi itself,
between Wi and Wj , Wj itself and right of Wj .
5. Dependency Path (DP1, DP2, · · · , DPK) : Se-
quence of dependency relation types (ignoring di-
rections) on the dependency path leading from Wi

to Wj in the sentence’s dependency tree.

3.1.3 Feedback features
These features are based on predictions of the
preceding instances. Unlike other sequence la-
belling problems such as Named Entity Recog-
nition where each word gets a label and there is
natural order / sequence of instances (i.e. words),
there is no natural order / sequence of instances
(i.e. word pairs) for AWP-NN model. Hence,
for each instance we identify its two preceding
instances and define two corresponding feedback
features (FB1 and FB2). Let 〈Wi,Wj〉 be an in-
stance representing a word pair in a sentence hav-
ing N words such that 1 ≤ i, j ≤ N and i ≤ j.
There are following two cases for identifying two
preceding instances of 〈Wi,Wj〉:

• If i = j then both the preceding instances are
same i.e. 〈Wi−1,Wi−1〉. Feedback features:
FB1 = FB2 = LabelOf(〈Wi−1,Wi−1〉)

• If i < j then the preceding instances are
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〈Wi,Wi〉 and 〈Wj ,Wj〉. Feedback features:
FB1 = LabelOf(〈Wi,Wi〉) and FB2 =
LabelOf(〈Wj ,Wj〉)

Label predictions of the preceding instances are
then represented using one-hot encoding and used
as features. During training, true labels of the pre-
ceding instances are used but while decoding, the
predicted labels of these instances are used. Hence
during decoding, predictions for word pairs of the
form 〈Wi,Wi〉 (diagonal word pairs in the table 3)
are obtained first, starting from i = 1 to N . Pre-
dictions of other word pairs can be obtained later,
as predictions of their preceding instances would
then be available.

3.2 Architecture of the AWP-NN model

Figure 1 shows various major components in the
architecture of the AWP-NN model.

3.2.1 Embedding Layers
Most of the features used by the model are discrete
in nature such as words, POS tags, dependency re-
lation types and ancestor position. These discrete
features have to be mapped to some numerical rep-
resentation and embedding layers are used for this
purpose. We have employed following embedding
layers to represent various types of features:
Word embedding layer: It maps each word
to a real-valued vector of some fixed dimen-
sions. We initialize this layer with the pre-trained
100 dimensional GloVe word vectors4 learned on
Wikipedia corpus. All the different features which
are expressed in the form of words (W1, W2,
NW1, PW1, NW2, PW2, Pa1, Pa2 and CA in
the figure 1) share the same word embedding layer.
During training, the initial embeddings get fine-
tuned for our supervised classification task.
POS embedding layer: It maps each distinct POS
tag to some real-valued vector representation. All
the different features which are expressed in the
form of POS tags (T1, T2, NT1, PT1, NT2, PT2,
PaT1 and PaT2 in the figure 1) share the same
embedding layer.
Dependency relation type embedding layer:
It maps each distinct dependency relation type
to some real-valued vector representation.
Both the features based on dependency types
(DR1, DR2, DP1, · · · , DPK in the figure 1) also
share the same embedding layer.

4http://nlp.stanford.edu/projects/glove/

AP embedding layer: It maps each distinct an-
cestor position to some real-valued vector repre-
sentation.
WD/TD embedding layer: Even though word
distance (WD) and tree distance (TD) are numer-
ical features, we used embeddings to represent
each distinct value for them as range of values of
these features is large. It was observed to be better
than directly providing them as inputs to the neural
network.

In our experiments, we used 20 dimensions for
POS embeddings, 40 for dependency relation type
embeddings and 5 dimensions for AP, WD and TD
embeddings. Unlike word embeddings these were
initialized randomly during training.

3.2.2 Hidden Layers
First hidden layer is divided in 3 parts. First
two parts of 60 nodes each are connected to only
the features capturing first and second word, re-
spectively. These nodes are expected to capture
higher level abstract features of both the words
separately. In order to force these two parts to
learn similar abstract features, the weights matrix
is shared among them. The third part of the first
hidden layer consisting of 500 nodes is connected
to all the input features except dependency path,
i.e. individual word features of two words, word
pair features and feedback features. Output of this
part is further given as input to the second hidden
layer of 250 units. Output of the second hidden
layer is fed to the final softmax layer. Also, out-
puts of the first two parts of the first hidden layer
are directly connected to the final softmax layer.
As the dependency path is represented as a se-
quence of dependency relation types, it is fed to a
separate LSTM layer. Output of the LSTM layer is
directly connected to the final softmax layer. Soft-
max layer consists of 19 nodes, each representing
one of the possible prediction label described ear-
lier.

4 Inference using Markov Logic
Networks

Pawar et al. (2016) presented an approach for
end-to-end relation extraction which uses Markov
Logic Networks (MLN) (Richardson and Domin-
gos, 2006) to obtain globally consistent output by
combining local outputs of individual classifiers.
They developed separate classifiers for identifying
mention boundaries, predicting entity types and

821



Figure 1: AWP-NN model architecture for predicting appropriate label for the given word pair. (W1,W2:
words in the word pair; NW1, PW1, NW2, PW2, NT1, PT1, NT2, PT2: next and previous words/POS
tags of W1 and W2; Pa1, DR1, Pa2, DR2: parents and corresponding dependency relation types of W1

and W2 in the dependency tree; PaT1, PaT2: POS tags of the parents of W1 and W2; FB1, FB2: Pre-
dictions of the preceding instances; CA: Lowest common ancestor ofW1 andW2 in the dependency tree;
TD: Tree distance; WD: Words distance; AP : Ancestor position; DP1, DP2, · · · , DPK : Sequence of
dependency relation types on the dependency path leading from W1 to W2; Embedding layers for words,
POS and dependency relations are shown separately for clarity, but are shared throughout the network.

predicting relation types. Outputs of these classi-
fiers may be inconsistent. E.g., if PER-SOC rela-
tion is predicted by the local relation classifier for
an entity pair and the local entity classifier predicts
entity type as ORG for one of the entity mentions,
then there is an inconsistency. Because PER-SOC
relation can only exist between two PER entity
mentions. Such domain knowledge can be easily
incorporated in the form of first-order logic rules
in MLN. For each sentence, predictions of individ-
ual classifiers are represented in an MLN as first-
order logic rules where weights of these rules are
proportional to the prediction probabilities. The
consistency constraints among the relation types
and entity types can be represented in the form of
first-order logic rules with infinite weights. Now,

the inference in such an MLN generates a globally
consistent output with maximum weighted satisfi-
ability of the rules.

AWP-NN is a single joint model which cap-
tures boundaries of mentions, their types and re-
lations among them. As the same parameters are
shared for all entity as well as relation type pre-
dictions, we expect the model to learn dependen-
cies among relation and entity types. However, as
it makes separate predictions for each word pair,
there might be some inconsistencies among the la-
bels as described above. We adopt the MLN-based
approach of Pawar et al. (2016) for handling these
inconsistencies and generate a globally consistent
output. For this adoption, we consider the AWP-
NN predictions for the words pairs where a word
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Domains:
Let N be the number of words in the sentence in consideration.

word = {1, 2, · · · , N}, etype = {PER,ORG,LOC,GPE,WEA,FAC, V EH,OTH}
rtype = {EMPORG,GPEAFF,OTHERAFF,PERSOC,PHY S,ART,NULL,WEM}

Evidence Predicates:
ET (word, etype) : AWP-NN predictions for word pairs 〈Wi,Wj〉 where i = j
RT (word,word, rtype) : AWP-NN predictions for word pairs 〈Wi,Wj〉 where i < j

Query Predicates:
ETFinal(word, etype) : Global predictions for word pairs 〈Wi,Wj〉 where i = j
RTFinal(word,word, rtype) : Global predictions for word pairs 〈Wi,Wj〉 where i < j

Some examples of generic rules:

RTFinal(x, y, EMPORG) ∧ ETFinal(x, PER)⇒ (ETFinal(y,ORG) ∨ ETFinal(y,GPE)).

RTFinal(x, y, PERSOC)⇒ (ETFinal(x, PER) ∧ ETFinal(y, PER)).

Table 4: Domains and Predicates used for constructing MLN for any given sentence

is paired with itself (diagonal entries in table 3),
as entity type predictions. Whereas all other word
pairs where a word is paired with any subsequent
word in the sentence, are considered as relation
type predictions. Table 4 describes the domains
and predicates required for generating an MLN for
any given sentence. Unlike Pawar et al. (2016)
which considers all predicted mentions in their
entity domain, we consider all words in our word
domain. But to keep the size of the MLN in check,
we keep only those words in the word domain
which are part of interesting word pairs. A word
pair is an interesting word pair, if it can potentially
represent a relation i.e. if AWP-NN model assigns
a probability more than some threshold (say 0.01)
for any non-NULL relation type. All the generic
rules (with infinite weights) described in (Pawar et
al., 2016) are used for imposing constraints among
the relation and entity types. Also, we added fol-
lowing additional generic rules for specifying con-
straints for our WEM relation type, which cap-
tures information about mention boundaries.

RTFinal(x, y,WEM)⇒
(ETFinal(x,OTH) ∨ ETFinal(y,OTH)).

RTFinal(x, y,WEM)⇒
(!ETFinal(x,OTH)∨!ETFinal(y,OTH)).

By definition, the WEM relation holds between a
head word of an entity mention and other words of
that entity mention. Additionally, head word of an
entity mention is labelled with appropriate entity

label and other words are labelled with entity type
OTH. The above rules state that if there is WEM
relation between two words x and y then at least
one of them should have label OTH and at least
one of them should have entity type label, i.e. a
label from domain etype other than OTH.

Similarly, all the sentence-specific rules (with
finite weights proportional to AWP-NN predic-
tion probabilities) described in (Pawar et al., 2016)
are also generated for representing predictions of
the AWP-NN model. We use Constant Multiplier
(CM) as the weights assignment strategy. Follow-
ing rule would be generated for each entity type E
(from etypes) for each word pair 〈Wi,Wi〉, with
the weight 10 · PrAWP−NN (E|〈Wi,Wi〉) where
Emax is the predicted entity type with the highest
probability:

ET (i, Emax)⇔ ETFinal(i, E)

Similarly, following rule would be generated
for each relation type R (from rtypes) for
each word pair 〈Wi,Wj〉, with the weight 10 ·
PrAWP−NN (R|〈Wi,Wj〉) where Rmax is the
predicted relation type with the highest probabil-
ity:

RT (i, Rmax)⇔ RTFinal(i, R)

Using these generic and sentence-specific rules,
an MLN is constructed for each sentence. The best
values of ETFinal and RTFinal (query predi-
cates) for each word pair are obtained by using the
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inference in this MLN with ET and RT as evi-
dence predicates based on AWP-NN’s predictions.

5 Experimental Analysis

5.1 Dataset

ACE 2004 dataset (Doddington et al., 2004) is the
most widely used dataset5 for reporting relation
extraction performance. We use this dataset to
demonstrate effectiveness of our approach for end-
to-end relation extraction using AWP-NN model
and MLN inference. We perform 5-fold cross-
validation on this dataset where the folds are
formed at the document level. We follow the same
assumptions made by (Chan and Roth, 2011;
Li and Ji, 2014; Pawar et al., 2016), which are
- ignore the DISC relation, do not consider im-
plicit relations (resulting due to intra-sentence co-
references) as false positives and use coarse-level
entity and relation types.
Direction of Relations: Out of 6 coarse-level
relation types that we are considering, we need
not model direction for relation types PER-SOC,
GPE-AFF and ART. Because in case of these rela-
tions, given the entity types of their arguments, the
direction of relation is not necessary or becomes
implicit. As PER-SOC is a social relation between
two PER entity mentions, the direction is not nec-
essary. For GPE-AFF, as entity type of one of the
arguments is always GPE, the direction becomes
implicit. Also, the relation type ART always holds
between an agent (PER, ORG or GPE) and an ar-
tifact (FAC, WEA or VEH), hence the direction
is implicit. Whereas for relation like EMP-ORG
which also represents subsidiary relationship be-
tween two ORG entity mentions, it is important to
model the relation direction explicitly. Consider
following sentence fragments:

• ..the fisheries section of the Gulf
Coast Research Laboratory..

• ..company that owned Road & Track..

Here, EMP-ORG relation exists between ORG
entity mentions fisheries section and Gulf

Coast Research Laboratory. Whereas, EMP-
ORG-R relation holds between that and Road &

Track.
Hence, we consider 9 distinct relation types:

EMP-ORG, EMP-ORG-R, PHYS, PHYS-R,
OTHER-AFF, OTHER-AFF-R, PER-SOC,

5We haven’t yet acquired a more recent ACE 2005 dataset

GPE-AFF and ART. Hence, the overall dataset
contained 4074 instances6 of valid relation types.

5.2 Implementation details

We used Keras (Chollet, 2015) for implementing
our AWP-NN model. The model was trained for
40 epochs using batch size of 64 instances. We
used Dropout (Srivastava et al., 2014) for regu-
larization with probability 0.5 for hidden layers
and 0.1 for embedding layers. We used the tool
Alchemy7 for MLN inference. The value of K
(maximum length of dependency path, see Figure
1) was set to be 4, hence all word pairs having
length of dependency path more than 4 were as-
sumed to have NULL label.

5.3 Results

Table 5 shows the comparative performances
(in terms of micro-F1 measure) for various ap-
proaches. The results are divided in three different
sections:
1. only entity extraction: It includes boundary
identification as well as entity type classification.
2. only relation extraction: It includes relation
type classification for each pair of predicted en-
tity mentions. It is a relaxed version of end-to-
end relation extraction problem where correct re-
lation label for an entity mention pair is counted as
a true positive even if entity types of one or both
the mentions are identified incorrectly.
3. entity+relation extraction: It is end-to-end re-
lation extraction which includes boundary identifi-
cation, entity type classification and relation type
classification. Here, correct relation label for an
entity mention pair is counted as a true positive
only if boundaries and entity types of both the
mentions are identified correctly.

It can be observed in the table 5 that end-to-
end relation extraction performance of our AWP-
NN model is better than all the 4 previous ap-
proaches (Chan and Roth, 2011; Li and Ji, 2014;
Pawar et al., 2016; Miwa and Bansal, 2016) on the
ACE 2004 dataset. However, the AWP-NN+MLN
approach which uses MLN inference to revise
AWP-NN predictions during decoding, achieves
the best performance.

6279 instances of type DISC were not considered. Addi-
tionally, 21 relation instances were not contained in a single
sentence as per our sentence detection algorithm.

7https://alchemy.cs.washington.edu/
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Approach Entity Extraction Relation Extraction Entity+Relation
P R F P R F P R F

(Chan and Roth, 2011) 42.9 38.9 40.8
(Li and Ji, 2014) 83.5 76.2 79.7 64.7 38.5 48.3 60.8 36.1 45.3
(Pawar et al., 2016) 79.0 80.1 79.5 57.9 45.6 51.0 52.4 41.3 46.2
(Miwa and Bansal, 2016) 80.8 82.9 81.8 48.7 48.1 48.4
AWP-NN 81.1 79.7 80.4 60.3 48.1 53.5 55.6 44.4 49.3
AWP-NN + MLN 81.2 79.7 80.5 61.1 47.9 53.7 56.7 44.5 49.9

Table 5: Performance of various approaches on the ACE 2004 dataset. The numbers are micro-averaged
and obtained after 5-fold cross-validation. Actual folds used by each algorithm may differ.

5.3.1 Statistical Significance
As neural networks are initialized randomly, if we
train a neural network model multiple times, dif-
ferent predictions are obtained each time. Hence,
it is important to establish the statistical signifi-
cance of the performance. We train our AWP-NN
model 30 times independently and obtain 30 dif-
ferent values for precision, recall and F1 score.
The numbers shown in table 5 are average val-
ues over these 30 runs. Also, in order to estab-
lish that the F1 score of AWP-NN model is signif-
icantly higher than the best previous F1 score of
48.4% (by Miwa and Bansal (2016)), we conduct
one tailed one sample t-test. Here, mean and stan-
dard deviation of sample of 30 F1 scores by AWP-
NN are 49.3 and 0.44, respectively. This leads to
p-value of 1.23×10−12, hence establishing the sta-
tistical significance of AWP-NN’s performance.

5.4 Analysis of results

5.4.1 Effect of using MLN
We analyzed the effect of using MLN by ob-
serving the individual sentences where errors of
AWP-NN were being corrected by MLN. As an
example, consider the following sentence:
Lemieux0 rescued1 his2 team3 from4
bankruptcy5 last6 season7 by8
exchanging9 deferred10 salary11
for12 an13 ownership14 stake15 .16

End-to-end relation extraction output produced
by the AWP-NN model for this sentence is shown
in the tables 6 and 7. Only error in this output
is that entity type of the mention team should be
ORG instead of PER as it refers to some profes-
sional team. After MLN inference, the entity type
of team is corrected to ORG. This happens be-
cause of high-confidence EMP-ORG relations be-
tween Lemieux and team and between his and
team. As both Lemieux and his are of type

PER with high confidence, global inference using
MLN8 forces type of team to be ORG to ensure
compatibility of relation and entity types.

Entity Mention Boundaries Entity Type
Lemieux (0, 0) PER
his (2, 2) PER
team (3, 3) PER

Table 6: End-to-end relation extraction output (en-
tity mentions) produced by the AWP-NN model

Entity Mention Pair Relation Type
Lemieux, team EMP-ORG
his, team EMP-ORG

Table 7: End-to-end relation extraction output (re-
lations) produced by the AWP-NN model

The AWP-NN model was able to outperform
(see table 5) all 4 previous approaches without
the help of MLN. One reason behind this may
be that the AWP-NN model itself was sufficient
to learn most of the dependencies among the en-
tity and relation types. However, MLN helped to
improve the performance of AWP-NN by 0.6 F1.
Though considerable improvement was observed
in the precision value, the recall improvement was
not significant. In other words, MLN was ob-
served to be more effective for reducing false pos-
itives than false negatives.

5.4.2 Difficult to identify entities
We observed that for some entity mentions, it
is very difficult to identify their entity types as
the key information required for identification
lies outside the current sentence. Currently, our
approach does not use any information outside the
sentences, such as document level co-reference

8Detailed MLN rules & inference results for this
sentence can be found at: www.cse.iitb.ac.in/
˜sachinpawar/MLN/sentence.html
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information. Usually these difficult to classify
entity mentions are pronoun mentions. Some
examples are as follows:
1. Though, I think that if they
could stifle the entire peace
process at the moment, then that
is what they’d like to do.
2. It is a partially victory for
both sides.
Here, in the first sentence, it is difficult to iden-
tify (even for humans) whether entity type of
they is PER (e.g. set of leaders) or GPE (e.g.
countries). Also, in the second sentence, entity
type of sides can be any of PER, ORG or GPE
depending on the context. In future, we plan to
capture document level information for correctly
predicting types of such mentions.

6 Related Work

There have been multiple lines of research for
jointly modelling and extracting entities and re-
lations. Integer Linear Programming (ILP) based
approaches (Roth and Yih, 2004; Roth and Yih,
2007) were the earliest ones. Here, various lo-
cal decisions are associated with suitable “cost”
values and they are represented using an integer
linear program. The optimal solution to this inte-
ger linear program provides the best global output.
Another significant lines of research were Prob-
abilistic Graphical Models (Roth and Yih, 2002;
Singh et al., 2013), Card-pyramid parsing (Kate
and Mooney, 2010) and Structured Prediction (Li
and Ji, 2014; Li et al., 2014; Miwa and Sasaki,
2014).

Four previous approaches (Miwa and Sasaki,
2014; Li and Ji, 2014; Pawar et al., 2016; Miwa
and Bansal, 2016) are the most similar to our ap-
proach in the sense that they all address the prob-
lem of end-to-end relation extraction without as-
suming gold-standard entity mention boundaries
like the earlier approaches. Our idea of labelling
“all word pairs” is similar to the table representa-
tion idea of Miwa and Sasaki (2014). The major
difference is that they identify boundaries of men-
tions through BIO encoding of labels whereas we
try to capture boundaries by treating them as an
additional relation type WEM. Also, they perform
structured prediction with beam search to find op-
timal label assignment to the table, whereas we
opt for neural network based classification. The
idea of using MLNs to incorporate domain knowl-

edge and perform joint inference to obtain glob-
ally consistent output was proposed by Pawar et
al. (2016). The current state-of-the-art approach
for end-to-end relation extraction is by Miwa and
Bansal (2016), who employ LSTM-RNN based
model for addressing this problem.

7 Conclusion and Future Work

We proposed a novel approach for end-to-end re-
lation extraction which carries out its all three sub-
tasks (identifying entity mention boundaries, their
entity types and relations among them) jointly by
using a neural network based model. We proposed
a “All Word Pairs” neural network model (AWP-
NN) which reduces solution of these three sub-
tasks to predicting an appropriate label for each
word pair in a given sentence. End-to-end relation
extraction output is then constructed from these la-
bels of word pairs. We further improved output of
the AWP-NN model by using inference in Markov
Logic Networks so that some of the inconsisten-
cies in word pair labels can be removed at the sen-
tence level.

We demonstrated effectiveness of our ap-
proaches (AWP-NN and AWP-NN+MLN) on the
standard dataset of ACE 2004. They outper-
formed all 4 previously reported joint modelling
approaches (Chan and Roth, 2011; Li and Ji, 2014;
Pawar et al., 2016; Miwa and Bansal, 2016) for
end-to-end relation extraction. Since all three sub-
tasks share the same AWP-NN model parameters,
many inter-task dependencies are captured effec-
tively by the AWP-NN itself (without MLN) and
this can be validated by the fact that AWP-NN it-
self performs better than all other joint models.
However, MLN certainly helps to further improve
the end-to-end relation extraction performance by
correcting some errors in predictions of the AWP-
NN model.

In future, we plan to incorporate some addi-
tional features (e.g. document level co-reference
information) in the AWP-NN model for improving
its performance further. Also, deeper analysis of
the errors is required to have a better understand-
ing about which characteristics are better captured
by the AWP-NN model as compared to the MLN
and vice versa. This will help these two to com-
plement each other in a better way.
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Abstract

We introduce automatic verification as
a post-processing step for entity linking
(EL). The proposed method trusts EL sys-
tem results collectively, by assuming en-
tity mentions are mostly linked correctly,
in order to create a semantic profile of the
given text using geospatial and temporal
information, as well as fine-grained entity
types. This profile is then used to auto-
matically verify each linked mention indi-
vidually, i.e., to predict whether it has been
linked correctly or not. Verification allows
leveraging a rich set of global and pairwise
features that would be prohibitively expen-
sive for EL systems employing global in-
ference. Evaluation shows consistent im-
provements across datasets and systems.
In particular, when applied to state-of-the-
art systems, our method yields an abso-
lute improvement in linking performance
of up to 1.7F1 on AIDA/CoNLL’03 and
up to 2.4F1 on the English TAC KBP
2015 TEDL dataset.

1 Introduction

Entity linking (EL) is the task of automatically
linking mentions of entities such as persons, loca-
tions, or organizations to their corresponding entry
in a knowledge base (KB). The task is generally
approached by generating a set of candidate enti-
ties1 for a given mention and then ranking those
candidates. Approaches differ in whether they
rank a mention’s candidates independently of the
candidates of other mentions (“local inference”) or
∗The majority of this work was done during an internship

at Microsoft Research Asia.
1We use entity to refer to both real-word entities and to

their corresponding entries in the KB.

whether they rank all candidates of all mentions si-
multaneously by incorporating a global coherence
measure into the optimization goal (“global infer-
ence”).

While linguistically well-founded in the con-
cept of lexical cohesion (Halliday and Hasan,
1976), global inference approaches (Kulkarni et
al., 2009; Hoffart et al., 2011a) do not scale
well with number of mentions and number of
candidate entities. In contrast, local approaches
do not suffer from scalability issues, since they
only optimize the similarity between mention con-
text and candidate KB entry text (Bunescu and
Paşca, 2006; Cucerzan, 2007), usually also includ-
ing a popularity prior2 (Milne and Witten, 2008;
Spitkovsky and Chang, 2012). Recent local ap-
proaches achieve state-of-the-art results by using
convolutional neural networks to capture similar-
ity at multiple context sizes (Francis-Landau et al.,
2016), but, by definition, fail to take global coher-
ence into account.

To avoid the trade-off between the efficiency of
local inference on the one hand and the coherence
benefits of global inference on the other, we pro-
pose a two-stage approach: In the first stage, can-
didate entities are ranked by a fast, local inference-
based EL system. In the second stage these results
are used to create a semantic profile of the given
text, derived from rich data the KB contains about
the top-ranked candidates. Since the linking pre-
cision of current EL systems is relatively high, we
trust that this profile is reasonably accurate and
leverage it to measure the cohesive strength be-
tween a given candidate entity and the other linked
entities mentioned in the text. We then automati-
cally verify the first stage results by classifying en-
tity links as correct if they display high coherence,
and as wrong if there are only weak or no cohesive

2Also referred to as commonness prior by some authors.
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ties to the semantic profile. Verification results can
be used in at least three ways:

1. To increase linking precision by filtering out
all entity links classified as wrong;

2. To rerank candidate entities by the class prob-
ability estimated by the verifier, i.e., prefer
candidates that were predicted as correct with
higher probability; or

3. To employ a more sophisticated EL system
to re-link all entity links classified as wrong,
using the entity links deemed correct as addi-
tional context.

In this work we investigate options 1. and 2., and
make the following contributions:

• We propose automatic verification as a post-
processing step for EL systems;

• We propose global coherence features based
on notions of entity type coherence, geo-
graphic coherence, and temporal coherence;

• We show how these novel features, as well as
features developed in prior work, can be used
to verify EL results; and

• We show that automatic verification consis-
tently improves linking performance in an
evaluation across two datasets and seven dif-
ferent EL systems.

2 Method

We cast entity linking verification as a supervised
classification task. Given EL system output on a
training set with gold standard linked entity an-
notations, we extract global, pairwise, and local
features and train a classifier to predict whether a
given mention has been linked correctly by the EL
system.

In the standard EL setting, global inference is
an NP-hard problem, since all combinations of
all candidate entities of all mentions are consid-
ered simultaneously. In our proposed automatic
verification setting, however, taking only the top
candidate entities into account allows us to em-
ploy knowledge-rich, global coherence features
that would be prohibitively expensive otherwise.

Figure 1: Example showing a geographical out-
lier: Breeder’ Stakes (red, in Canada) and contex-
tual entities located in Ireland and the UK (green).

2.1 Aspects of Global Coherence
Global coherence captures how well a candidate
entity fits into the overall semantic profile of a text.
Current global inference approaches optimize a
single coherence measure, most commonly a mea-
sure of general semantic relatedness such as the
Milne-Witten distance (Milne and Witten, 2008),
or keyphrase overlap relatedness (KORE) (Hoffart
et al., 2012).

In contrast, verification allows employing many
global coherence features, which we categorize
according to four aspects of coherence: geograph-
ical coherence and temporal coherence, which to
our knowledge have not been used before in EL,
as well as entity type coherence and the general
semantic relatedness mentioned above.

2.1.1 Geographic Coherence
Entities mentioned in a text tend to be geographi-
cally close or clustered around very few locations.
We use this observation to identify geographic out-
liers as potential entity linking mistakes.

For example, consider the mention Breed-
ers Stakes in the following excerpt (CoNLL
1112testa):

DUBLIN 1996-08-31 Result of the Tat-
tersalls Breeders Stakes , a race for two-
year-olds run over six furlongs at The
Curragh ...

DUBLIN, Tattersalls (a company doing business
in the UK and Ireland), and The Curragh (a
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Predicate

:location.location.geolocation
:organization.organization.geographic_scope
:time.event.locations
:sports.sports_team.location
:organization.organization.headquarters

Table 1: Freebase predicates for querying geo-
coordinates of locations, geo-political entities, and
organizations.

Predicate

:people.person.date_of_birth
:organization.organization.date_founded
:sports.sports_team.founded
:location.dated_location.date_founded
:time.event.start_date
:film.film.initial_release_date
:music.album.release_date
:music.release.release_date
:architecture.structure.construction_started
:architecture.structure.opened

:people.deceased_person.date_of_death
:location.dated_location.date_dissolved
:time.event.end_date
:business.defunct_company.ceased_operations
:architecture.structure.closed

Table 2: Freebase predicates for querying the be-
gin (top) and end (bottom) of an entity’s temporal
range.

horse race track in Ireland) clearly situate the
text in Ireland (cf. Figure 1). However, some
current EL systems link Breeder Stakes to the
Wikipedia article about the Canadian horse race of
the same name, since the Irish race does not have
a Wikipedia article and other evidence3 suggests a
strong match.

We aim to identify these kinds of errors by first
querying locations (Table 1) of all linked mentions
in the document, and then performing geographic
outlier detection4. This yields a binary feature in-
dicating whether a candidate entity is a geographic
outlier or not.

Since outliers are rare and hence the resulting
features sparse, we also also add a feature for the
average geographic distance d̄(d,E) of a candi-
date entity e to all other entities in document D:

d̄(e,D) =

∑
e′∈D\e d(e, e′)

|D| − 1

where d(e, e′) is the geographic distance between
entities e and e′, and |D| is the number of entities

3Specifically, high context-similarity due to the appositive
race, and an almost perfect string match between mention and
Wikipedia title.

4We use an ensemble of standard outlier detection algo-
rithms provided by the ELKI clustering toolkit (Achtert et
al., 2011).

mentioned in D. This feature is based on the in-
tuition that a candidate entity which is geograph-
ically closer to other entities is more likely to be
correct than a distant one.

Geographic scope varies across documents. For
example, entities mentioned in a text about world
politics will be geographically more distant than
entities in a text about a local business). As a
scale-invariant distance measure s(e,D), we di-
vide the average distance d̄(e,D) by the average
distance between all other entities:

s(e,D) = d̄(e,D)/

∑
e′,e′′∈D\e d(e′, e′′)

|e′, e′′ ∈ D \ e|

2.1.2 Temporal Coherence
Applying the notion of coherence to the tempo-
ral dimension, we observe that entities mentioned
in a text tend to be temporally close or clustered
around a few points in time.

Entities are associated with temporal ranges
with a begin, i.e. the point in time at which the en-
tity comes into existence, and an end, i.e. the point
in time at which the entity ceases to exists. Using
the same approach as in geographical outlier de-
tection, we perform temporal outlier detection on
all begin and end times associated with linked en-
tities in the given text, and declare a candidate en-
tity as an temporal outlier if both its begin and end
were detected as outliers.

Since temporal outliers are rare, we also add a
feature aiming to capture temporal proximity and
distance in a softer fashion with higher coverage;
by calculating the total overlap T (e,D) between
the temporal range t(e) of a candidate entity e, and
the known temporal ranges of all other linked en-
tities in the document D:

T (e,D) =
∑

e′∈D\e

∣∣t(e) ∩ t(e′)
∣∣

where |t(e) ∩ t(e′)| is the length of the overlap be-
tween the temporal ranges of entities e and e′.5

Analogously to the geographic distance feature,
we take temporal proximity, i.e. a large over-
lap with other temporal ranges, as evidence for
a correctly linked entity, and temporal distance,
i.e. only small or no overlap with other temporal

5We also extract this feature normalized by the number of
entity mentions in the document, but did not see any effect.
This is likely due to little variation in the number of entities
per document for which the KB contains temporal informa-
tion.
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ranges, as evidence for a linking mistake. Tem-
poral ranges are queried from the KB using the
predicates shown in Table 2.

The final feature using temporal information
checks whether an entity’s temporal ranges con-
tains the document’s creation date. This feature is
based on the intuition that, especially in the news
genre, an existing entity is more likely to be men-
tioned than an entity that has already ceased to ex-
ist or did not exists at the time of writing. The
document creation date is either trivially obtained
if metadata is present, or heuristically by using the
first date found in the document text by the Heidel-
Time temporal tagger (Strötgen and Gertz, 2010).

2.1.3 Entity Type Coherence
Frequency statistics of the types of entities men-
tioned in a text are an indicator of what the text is
about. For example, looking at the entity type dis-
tribution shown in Table 3, we can tell that the cor-
responding text appears to be about rugby teams.
Unlike other methods for representing the “about-
ness” of a text, such as topic models, entity type
statistics are grounded in the KB, thus offering a
simple method of measuring the relatedness be-
tween entities in terms of their types via the simi-
larity of their type distributions.

Specifically, we model entity type coherence
between a given candidate entity e and all other
linked entities in document D as the cosine sim-
ilarity of the respective type distributions. Type
frequencies are TF-IDF weighted, in order to
discount frequent types (e.g. :base:tagit.
concept) and give more importance to salient
types occurring in the document (e.g. :base.
rugby.rugby_club):

cohtype(e,D) = sim(types(e), tfidf(types(D)))

where sim is the cosine similarity, types(e) a bi-
nary vector indicating the types of entity e, and
types(D) a vector whose entries are occurrence
counts of entity types in document D, which are
weighted by tfidf .

2.1.4 Semantic Relatedness
Measures of generic semantic relatedness are a
standard feature in global inference systems. We
add features for the average and maximum seman-
tic relatedness SemRel(e,D) of a candidate en-
tity ewith respect to all other entities e′ mentioned
in document D, using two semantic relatedness
measures:

SemRelmax(e,D) = maxe′∈D\eSemDist(e, e
′)

SemRelavg(e,D) = avge′∈D\eSemDist(e, e
′)

where max and avg are the maximum and aver-
age operators. SemDist denotes either the Milne-
Witten Distance (Milne and Witten, 2008), which
defines relatedness of Wikipedia entries in terms
of shared incoming article links, or the Normal-
ized Freebase Distance (Godin et al., 2014), an
adaptation of the Milne-Witten Distance to Free-
base entities.

2.2 Pairwise Features

Semantic relation: Given a pair consisting of
a candidate entities and an entity mention in its
context, we add a feature encoding whether a (and
if yes which) semantic relation exists between the
two entities. We add different features depend-
ing on the type of context in which the entity pair
occurs: in the same sentence, within a fixed to-
ken window, and within the same noun phrase.
For example, in the noun phrase German Chan-
cellor Angela Merkel, we find a wasBornIn
and a isLeaderOf relation between YAGO en-
tities ANGELA MERKEL6 and GERMANY. We
expect this feature to be sparse, but strong evi-
dence for both arguments of the identified rela-
tion being linked correctly. We record the rela-
tion type, as some relations tend to be more infor-
mative than others, e.g., the playsFor relation,
which holds between players and sports teams,

6In this work, SMALL CAPS denote both real-world enti-
ties and their corresponding entries in the knowledge base.

TF-IDF Count Type

1115.67 2 :base.rugby.rugby_club
243.62 3 :organization.organization
231.76 2 :base.schemastaging.sports_team_extra
183.49 2 :sports.sports_team

56.34 2 :base.tagit.concept

Table 3: Entity type distribution in a document about rugby, sorted by type TF-IDF.
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should provide stronger evidence than the less spe-
cific isCitizenOf relation, which holds be-
tween citizens and countries.
Person name consistency: Having observed that
some local inference systems tend to make the
mistake of linking a full name mention (e.g. “John
Smith”) to one entity, and a coreferent surname-
only mention (“Smith”) to a different one, we add
a binary feature that indicates whether a candidate
entity assigned to a partial person name mention
agrees with its unambiguous full name antecedent.

2.3 Local Features

Since the global and pairwise features do not have
high enough coverage to provide evidence for all
linked candidate entities, we employ local features
that are devised to capture similarity between a
candidate entity and its textual context. As these
features are commonly used in EL systems, we
only give brief descriptions for completeness.
Popularity prior: The prior probability of the
candidate entity given its mention, obtained from
the CrossWikis dictionary (Spitkovsky and Chang,
2012). This feature aims to cover unambiguous
and almost unambiguous mentions.
Entity type agreement: A binary feature indicat-
ing whether the candidate entity type, as found in
the KB agrees with the named entity type, as deter-
mined by the NER system during preprocessing.
Keyphrase match: Knowledge bases contain
various sources of key phrases, such as labels and
aliases of semantic types, or salient noun phrases
in description texts, e.g., noun phrases occurring
in the first, defining sentence of a Wikipedia arti-
cle. We add a binary feature indicating whether a
known keyphrase occurs in the context of a given
candidate entity.
Demonym match: This binary feature indicates
whether a mention is a demonym of its linked en-
tity, e.g., the mention text French is a demonym
match for the entity FRANCE.
Mention-entity string match: Finally, we ex-
tract features from the string similarity between
a mention and the known labels and aliases of
a candidate entity. The similarity measures in-
clude exact match, case-insensitive match, head
match, match with stop words filtered, fuzzy
string match, Levenshtein distance, and abbrevi-
ation pattern matches, as well as different combi-
nations of these.

Dataset CoNLL TAC15

Entity Type 99.2 98.5
Geographic 62.9 41.5
Temporal 87.6 79.4

Table 4: KB coverage of our proposed global co-
herence features. Shown are the percentages of
in-KB mentions in each dataset for which the KB
(YAGO or Freebase) contains the required infor-
mation for each coherence feature set.

3 Experiments

We evaluate our automatic verification method
by applying it to the entity linking results pro-
duced by seven systems on two standard datasets:
CoNLL, which consists of 1393 Reuters news ar-
ticles annotated with Wikipedia links by Hoffart
et al. (2011a) and TAC15, which comprises 315
news articles and discussion forum texts annotated
with Freebase links for the TAC KBP 2015 TEDL
shared task (Ji et al., 2015).

The KB coverage for each of our proposed
global coherence features on these two datasets is
shown in Table 4. YAGO and Freebase contain en-
tity type information for almost all in-KB entities
mentioned in the two datasets. Geographic data
is available for 62.9 percent on CoNLL, but only
for 41.5 percent of entities mentioned in TAC15.
This difference is likely due to the large fraction of
documents from the sports genre in CoNLL. These
documents include match result tables mentioning
a large number of sports teams, which can be eas-
ily located via their cities and stadiums. Temporal
information is present for most entities.

Our evaluation uses results of the following EL
systems:
AIDA (Hoffart et al., 2011a): This system glob-
ally optimizes a graph-based model incorporating
three factors: a popularity prior, the context sim-
ilarity of mention and candidate entity, and co-
herence modeled via general semantic relatedness
measures. We use the AIDA system output on
the CoNLL dataset as provided by the Wikilinks
project.7

SPOTL (Daiber et al., 2013): DBpedia Spotlight
is a local inference system. We use results ob-
tained from the Spotlight webservice.8

7https://github.com/wikilinks/conll03_
nel_eval

8https://github.com/dbpedia-spotlight/
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FL (Francis-Landau et al., 2016): This local in-
ference system models mention and entity context
with a convolutional neural network (CNN). The
CNN captures semantic similarity of a given men-
tion’s context at different granularities (small con-
text window, paragraph, document) and the entity
context derived from the entity’s Wikipedia page.
PH (Pershina et al., 2015): This global in-
ference system applies Personal PageRank to a
graph whose nodes represent candidate entities
and whose edges indicate if a link between the cor-
responding Wikipedia articles exists. PH achieves
the best CoNLL performance among the systems
in our evaluation.
TAC-1 (Heinzerling and Strube, 2015): This sys-
tem uses local and pairwise inference in an easy-
first, incremental rule-based approach. Features
are based on popularity priors, contextual occur-
rence of keywords, entity type, and relational evi-
dence.
TAC-2 (Sil et al., 2015): This system employs a
global inference approach which partitions a doc-
ument into sets of mentions that appear near each
other. The partitioning is motivated by the in-
tuition that a given mention’s immediate context
provides the most salient information for disam-
biguation, and drastically reduces the search space
during global optimization.
TAC-3 (Dai et al., 2015): This local inference sys-
tem models mentions and entity context with a
CNN and word embeddings.

The systems were chosen for their popularity
(AIDA, SL), performance on CoNLL (FL, PH),
and performance on TAC15 (TAC systems). Un-
less stated otherwise, we use system output pro-
vided by authors for CoNLL systems, and pro-
vided by the workshop organizers for TAC15 sys-
tems.9 Our evaluation does not include (Glober-
son et al., 2016) and (Yamada et al., 2016), who
report better performance on CoNLL than PH, but
were unable to make system output available.

3.1 Setup and Implementation Details
Feature extraction is implemented as a UIMA
pipeline (Ferrucci and Lally, 2004); using the
Stanford CoreNLP (Manning et al., 2014) UIMA
components provided by DKPro (Eckart de
Castilho and Gurevych, 2014) for text segmen-
tation, POS tagging, and named entity recogni-

dbpedia-spotlight/wiki/Web-service
9http://www.nist.gov/tac/2015/KBP/

data.html

tion; DKPro WSD (Miller et al., 2013) for model-
ing entity mentions and links, and using Freebase
(Bollacker et al., 2008) and YAGO (Hoffart et al.,
2011a) as knowledge bases.

After feature extraction, we train a random for-
est classifier10 for each dataset, one using FL sys-
tem results for the CoNLL development set (216
documents) and one using TAC-1 results for the
TAC15 training set (168 documents).

For evaluation, we apply the verifier trained on
FL CoNLL development results to the test set re-
sults of the FL and AIDA systems, and a verifier
trained on PH training data to the PH test set re-
sults. For the test set output of TAC systems 1-3
we apply the verifier trained on the TAC15 train-
ing set output of TAC-1.

As metric we use strong link match as
implemented by the Wikilinks project for the
CoNLL dataset, and the official NIST scorer
(Hachey et al., 2014) for TAC15. This metric mea-
sures precision, recall, and F1 of matching entity
links and mention spans.

3.2 Results and Discussion

Evaluation results are shown in Table 5. Our
method improves the linking performance of all
evaluated EL systems. The impact is most no-
ticeable for the systems that only use local and
pairwise inference, namely FL (+1.9 F1), TAC-
1 (+2.4 F1), TAC-3 (+1.1 F1). The improved
TAC-1 result (68.1F1) is the best published link-
ing score on the TAC15 dataset.

Improvements are smaller for the global infer-
ence systems, AIDA, HP, and TAC-2. In contrast
to Ratinov et al. (2011), who report only a very
small increase in linking performance when in-
corporating global features into a local inference-
based system, our results indicate that global fea-
tures are useful and lead to considerable improve-
ments.

As expected, improvements are caused by in-
creased precision, due to filtering out likely link-
ing mistakes. The fact that this increase is not ac-
companied by a commensurate decrease in recall,
shows that our method predicts wrong linking de-
cisions with high accuracy.

On TAC15, we observe considerable improve-
ments in linking precision of up to 10.4 percent.

10Various other classifiers we tried, e.g. neural networks,
showed no better performance during cross-validation on de-
velopment sets.
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Baseline After verification ∆
Dataset System Prec Rec F1 Prec Rec F1 Prec Rec F1

CoNLL

AIDA 83.2 83.6 83.4 86.0 82.3 84.1 +2.8 -1.3 +0.7
SPOTL 85.5 80.5 82.9 93.0 77.6 84.6 +7.5 -2.9 +1.7
FL 85.3 85.2 85.2 89.2 84.7 86.9 +4.0 -0.5 +1.7
PH 90.5 90.5 90.5 93.2 89.1 91.1 +2.7 -1.4 +0.6

TAC15
TAC-1 71.2 61.1 65.8 81.6 58.6 68.2 +10.4 -2.5 +2.4
TAC-2 71.4 57.9 63.9 81.2 53.3 64.4 +9.8 -4.6 +0.5
TAC-3 68.0 55.6 61.1 77.6 52.0 62.2 +9.6 -3.2 +1.1

Table 5: Results on CoNLL and TAC15 test sets. Baseline shows performance of the original systems,
After verification shows performance after application of our automatic verification method, and ∆ shows
the corresponding change. Bold font indicates best results for each metric and system.

On CoNLL, the precision increase is less pro-
nounced, arguably owing to the already higher
baseline precision, which leaves less room for im-
provement. Since EL is usually performed as part
of a larger task, such as knowledge base comple-
tion, search, or as part of a more comprehensive
entity analysis system (Durrett and Klein, 2014),
good precision is highly desirable in order to min-
imize error propagation to other system compo-
nents and downstream applications.

3.3 Candidate Reranking

We resort to the binary decision of either retain-
ing or removing an entity linked by an EL system
if no candidate entities and no meaningful confi-
dence scores are available. This is the case for the
output of many EL systems, such as the systems
participating in the TAC KBP TEDL 2015 chal-
lenge.

In case the EL system outputs not only the
top-ranked candidate entity, but also lower-ranked
ones, we can apply our verification method to
all candidates and rerank them according to their
probability of being correct. For example, if the
EL system linked a mention to candidate entity e1
over candidate e2, but verification assigns a higher
probability of being correct to e2, we rerank e2
over e1. Since we assume that the document’s
semantic profile derived from EL results is suffi-
ciently accurate, we do not recreate it after rerank-
ing a candidate.

Reranking the candidate entities produced by
the FL system on the CoNLL test set, this achieves
a similar increase in F1, but with a different
precision-recall trade-off (Table 6): We observe
highest precision at the cost of a lower recall for

System Prec Rec F1

FL baseline 85.3 85.2 85.2
FL filter 89.2 84.7 86.9
FL rerank 87.9 85.6 86.7

Table 6: Comparison of filtering and candidate en-
tity reranking performance on the CoNLL test set.

filtering, while reranking increases both precision
and recall.

3.4 Ablation Study

We conduct an ablation study to assess the impact
of the proposed global coherence features on pre-
diction performance. Applying backward elimina-
tion (John et al., 1994), we iteratively remove one
feature set and successively eliminate the feature
set with the largest impact (Figure 2).

Surprisingly, the string similarity features have
a large effect across all three systems. This sug-
gests that current systems do not optimally utilize
string similarity when selecting and ranking can-
didate entities for a given mention.

Our proposed global coherence features are
among the top features for all systems. This con-
tradicts prior findings by Ratinov et al. (2011) and
shows that global coherence has a considerable
impact on EL performance. We believe that this
is due to our proposed coherence features being
more informative than the generic semantic relat-
edness measures used in prior work. While abla-
tion indeed shows a relatively low importance of
semantic relatedness features (cf. SemRel in Fig-
ure 2), further research is required to test this hy-
pothesis.
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Figure 2: Feature set ablations for the FL, TAC-1, and PH systems. The solid blue lines show the
performance impact in terms of strong link match F1 incurred from eliminating feature sets. The
red dashed line indicates baseline performance without verification.

3.5 Automatic Verification on Noisy Text

The TAC15 dataset consists of different text gen-
res: clean newswire articles, and noisy discussion
forum threads. Analysis of verification perfor-
mance on these two genres reveals that verifica-
tion has the biggest impact on noisy text (Table 7,
bottom), while the improvement is smaller for two
systems on clean text, and even slightly negative
for one system, namely the global inference sys-
tem TAC-2 (Table 7, top).

4 Related Work

Global coherence has been successfully employed
for EL in a number of seminal works (Kulkarni et
al., 2009; Hoffart et al., 2011b; Han et al., 2011),
and more recently by Moro et al. (2014), Pershina
et al. (2015), and Globerson et al. (2016), among
others. These approaches maximize global coher-
ence based on a general notion of semantic relat-
edness, while considering a fixed number of candi-
date entities for each mentions. Our approach dif-
fers from these in in two regards. Firstly, we intro-
duce specific aspects of coherence, namely entity
type coherence, geographic coherence, and tem-

poral coherence. While these aspects are limited
to certain entities, such as entities with a clearly
defined location and temporal range, our experi-
ments showed that features based on these notions
of coherence are useful on the types of texts found
in common datasets. Secondly, in our verification
setting, these rich coherence measures can be effi-
ciently incorporated since their computation is lin-
ear in the number of entities mentioned in a docu-
ment, while they would be prohibitively expensive
in the global inference EL setting.

Entity types have been used in prior work.
Cucerzan (2007) maximizes the agreement of
Wikipedia categories associated with candidate
entities. Due to intractability of the resulting
global optimization problem, the agreement of the
candidate entities for a given mention is maxi-
mized with respect to all categories of all candi-
date entites of all other mentions, and hence in-
cludes many wrong categories. Our approach is
more precise, since verification allows using only
the types of the top-ranked candidate entities. Sil
and Yates (2013) also employ entity types, but
only maximize type agreement of entity mentions
in a small context window. In contrast, our ap-
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Baseline After verification ∆
Genre System Prec Rec F1 Prec Rec F1 Prec Rec F1

News
TAC-1 66.5 60.3 63.2 75.8 57.0 65.0 9.3 -3.3 1.8
TAC-2 69.7 59.9 64.4 79.3 53.9 64.2 9.6 -6.0 -0.2
TAC-3 63.0 59.1 61.0 71.3 54.3 61.7 8.3 -4.8 0.7

Forum
TAC-1 76.0 61.8 68.1 87.4 60.0 71.2 11.4 -1.8 3.1
TAC-2 73.1 56.1 63.5 83.0 52.8 64.6 9.9 -3.3 1.1
TAC-3 73.8 52.4 61.3 84.7 49.9 62.8 10.9 -2.5 1.5

Table 7: Verification on different text genres. See caption of Table 5 for details.

proach uses global context and hence allows cap-
turing long-distance relations.

Post-processing of EL system output has been
approached as an ensembling task (Rajani and
Mooney, 2016). In this setting, a meta-classifier
combines the output of different EL systems on
a given dataset, taking into account features such
as system confidence scores, past system perfor-
mance, and number of systems agreeing with a
given decision. Our approach differs from en-
sembling, since we post-process the output of a
single system, using rich semantic features. In
contrast, ensembling requires multiple system out-
puts and relies on meta-information about system
performance and decision confidence. Combining
these two post-processing methods is an interest-
ing problem for future work and could lead to fur-
ther improvements, since the two methods rely on
different types of information.

5 Conclusions and Future Work

We have introduced automatic verification as a
post-processing step for entity linking (EL). Our
method uses the output of an existing EL system
to create a semantic profile of the given text using
entity types, as well as geographic and temporal
information. Due to the high precision achieved
by state-of-the-art EL systems, this profile is a suf-
ficiently accurate representation of the text’s main
topic, and further situates the text temporally and
geographically This profile is then used to auto-
matically verify each linked mention individually,
i.e., to predict whether it has been linked cor-
rectly or not. Verification allows leveraging a rich
set of global and pairwise features that would be
prohibitively expensive for EL systems employing
global inference. Evaluation showed consistent
improvements when applying our method to seven
different EL systems on two different datasets.

Our main goal in future work is the better inte-
gration of our approach with existing EL systems.
Most notably, some EL systems produce meaning-
ful confidence scores, which we currently disre-
gard. We expect further improvements from in-
corporating various confidence measures into the
verification process. Automatic verification could
also be used in an easy-first setting to identify
likely correct decisions made by a fast and simple
EL system, and then perform the remaining de-
cisions with a more sophisticated system. Since
our features make use of coreference information
in the form of person name agreement, as well
as entity types, another line of future research is
expanding our proposed entity linking verifica-
tion method to entity analysis (Durrett and Klein,
2014), which models entity linking, coreference,
and entity typing as a joint task.
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Léa A. Deleris
IBM Research - Ireland

Dublin, Ireland
lea.deleris@ie.ibm.com

Abstract

This paper investigates how to improve
performance on information extraction
tasks by constraining and sequencing
CRF-based approaches. We consider two
different relation extraction tasks, both
from the medical literature: dependence
relations and probability statements. We
explore whether adding constraints can
lead to an improvement over standard CRF
decoding. Results on our relation extrac-
tion tasks are promising, showing signif-
icant increases in performance from both
(i) adding constraints to post-process the
output of a baseline CRF, which cap-
tures “domain knowledge”, and (ii) fur-
ther allowing flexibility in the application
of those constraints by leveraging a binary
classifier as a pre-processing step.

1 Introduction

With the number of articles indexed by MED-
LINE/PubMed exceeding one million articles per
year1, manual consumption of published medical
literature is no longer practical and researchers
are increasingly turning to automated techniques
to quickly identify and process relevant medical
knowledge (e.g., literature-based discovery (Hris-
tovski et al., 2006)). Our overall project’s objec-
tive is to semi-automate the construction of de-
cision support models by generating probabilistic
graphical models of medical conditions and their
associated risks based on the academic literature
(Deleris et al., 2013). An essential task in this
project consists of extracting from medical papers
any relations mentioning (i) dependence or inde-
pendence between variables and (ii) probability

1https://mbr.nlm.nih.gov/Background.
shtml

statements indicating the strength of a relation-
ship. For both types of relations, we have ap-
proached the entity extraction step as a sequence
labeling problem. We then rely on a set of rules
to construct relations from the entities extracted.
This paper focuses specifically on the entity ex-
traction step which we describe in more detail in
the following section. We then proceed in Sec-
tion 3 with details about our suggested constraint
enforcement procedures. Section 4 reports details
about the experiments, with numerical results re-
ported and discussed in Section 5.

2 Dependence Relation and Probability
Statement Extraction

2.1 Dependence Relation Extraction

The first task concerns identifying dependence re-
lations between pairs of potential variables men-
tioned in text. Dependence and independence here
are to be understood as defined by probability the-
ory whereA depends onB iff Pr(A) 6= Pr(A|B).
As independence statements seldom occur in the
literature, we focus predominantly on dependence
in this paper and define independence as the nega-
tion of dependence. Our choice to use the term
“dependence” to describe the task may lead to
some ambiguity in the NLP world yet from a prob-
ability perspective, it is a precise characterization.
Thus we caution the reader that our use of the word
“dependence” is exclusively related to its meaning
in probability theory. We structure dependence re-
lations as being composed of two variables (vari-
ableA and variableB) which are interchangeable,
one influence term I and an optional negation.2

As an example, from the sentence “For endome-
trial cancer, body mass index represents a major
modifiable risk factor; about half of all cases in

2Negation enables us to capture independence though we
ignore that last element for the remainder of the paper.
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Figure 1: Dependence relation example in brat (Stenetorp et al., 2012)

postmenopausal women are attributable to over-
weight or obesity,” we extract two structured re-
lations. The first involves variable A, body mass
index, variable B, endometrial cancer, and an in-
fluence term, risk factor, and the second has a vari-
able A, overweight or obesity, variable B, cases
and influence term, attributable (see Figure 1).

2.2 Probability Statement Extraction

The second task focuses on extracting proba-
bility statements composed of probability terms
(numbers) along with variables A (the condi-
tioned variable) and B (the conditioning vari-
able). Together they form a conditional proba-
bility statement, i.e., Pr(A|B) = x. For in-
stance, from the sentence “Malaysian women have
a one in 20 chance of developing breast cancer in
their lifetime,” we want to extract the probabil-
ity number, one in 20; the variable A, develop-
ing breast cancer in their lifetime; and the vari-
able B, Malaysian women, which could be rep-
resented as Pr(developing breast cancer in their
lifetime|Malaysian women) = 0.05.

2.3 Insights into the Extraction Task

Probability terms, and to a lesser extent influence
terms, are fairly regular and therefore more easily
classified, while risk variables A and B are het-
erogeneous and exhibit a broad semantic variety.
“1977-1990”, “breast cancer”, “homozygous car-
riers”, “> or = 10 years”, and “younger than age
35” are some examples of different variables taken
from our corpus.

Risk variable identification presents multiple
challenges. Consider the example “Carriers of the
AC haplotype, which represents the variant alle-
les of both SNPs, were at an increased risk (OR =
1.41, 95% CI 1.09-1.82).” We have an odds ratio
probability term “OR = 1.41” and two variables.
However, determining the boundaries of the vari-
ables is not straightforward. Should the condition-

ing variable be the whole subject including the rel-
ative clause, only “Carriers of the AC haplotype,”
or even simply “AC haplotype”? We sidestep this
issue in our current work because these variables
will later be clustered and aggregated into vari-
able groups, e.g., a variable group “breast cancer”
could include mentions of “breast cancer”, “ER+”,
“breast carcinoma” and others.

Finally, the distinction between variables A and
B is essential when constructing a probabilistic
statement (while not significant for dependence
extraction) but it can be problematic to distinguish
the two when extracting them from text. Over-
all, the variable identification task has proved quite
challenging. In fact, our interest in exploring con-
straints is motivated by preliminary results which
hinted, as we will explain in more details in the
next section, that, provided a probability number
or an influence term is detected, we should further
encourage the algorithm to search for the other as-
sociated variables.

3 Methodology

We approach the entity extraction (probability
term and variables on one side, influence terms
and variables on the other side) as a sequence la-
beling problem. We want to identify the best se-
quence of labels y for a sequence of tokens x com-
prising a sentence. The labels in our vocabulary
are O (“outside”), A (variable A), B (variable B)
and, depending on the specific task, P (probability
term) or I (influence term). We initially propose
using conditional random fields (CRF) (Lafferty et
al., 2001) for this task as they have been success-
ful for other related NLP sequence labeling tasks
(Sha and Pereira, 2003; Settles, 2004). We start
with a linear-chain CRF:

Pr(y|x) = 1

Zx
exp(

T∑

t=1

∑

k

λkfk(yt−1, yt, xt))
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Algorithm 1 Dependence Extraction Constraints
if influence term > 0 then

ensure at least one A and one B label
else if A > 0 then

ensure at least one B label
else if B > 0 then

ensure at least one A label
end if

where T is the number of observations indexed by
t, k indexes the feature function fk and weight λk,
and Zx normalizes over the entire input sequence,
Zx =

∑
y exp(

∑T
t=1

∑
k θkfk(yt−1, yt, xt)).

The CRF performs satisfactorily leading to
higher precision classification of the labels than
recall. However, it is not able to capture some
information that we know to be true. For in-
stance, for these corpora, if there is a labeled in-
fluence or probability term, 92% and 99% of the
time, respectively, there are co-occurring variables
in the same sentence. Thus for probability state-
ment extraction, if we have a sentence with a de-
tected probability term, which can be reliably clas-
sified (with F1 scores around 74), then we want
to enforce the presence of both variables A and
B. B is theoretically optional, as it is possible to
find marginal probability, i.e., statements with an
empty conditioning set. In practice, given our do-
main, we choose to impose the presence of at least
one B label for each sentence with a P label. By
contrast, for a sentence without a probability term,
we want to discard such output altogether. In the
case of dependence statement extraction, the sit-
uation is similar, if we detect an influence term
or a variable, we want to force the system to find
the other relevant pieces of the relations. The con-
straints we apply to each of our two tasks are sum-
marized in structured language in Algorithm 1 and
Algorithm 2.

While it is straightforward to discard sentences
that do not contain a given label, constraining the
output with statements to enforce the presence of
at least one type of label given the presence of
another label, is less obvious. We address it by
complementing the initial classification with fur-
ther steps to enforce the constraints. We have
previously explored different approaches, vary-
ing in complexity, for finding the most likely se-
quence while applying these constraints (Deleris
and Jochim, 2016). Here we settle on the con-
strained approach inspired by Culotta and McCal-

Algorithm 2 Probability Extraction Constraints
if probability term = 0 then

ensure no labeled entities
else

ensure at least one A and one B label
end if

lum (2004) that uses posterior conditional proba-
bility in the CRF decoding.

3.1 Notation

We denote by y a vector of labels associated with
observations x (tokens). Let T be the number of
observations (x1, ..., xT ) then y also contains T
elements (y1, ..., yT ) which we index by t and yt ∈
{A,B, P, I,O} ∀t = 1 : T .

Let y∗ = argmaxy Pr(y|x) denote the output
of applying Viterbi decoding to our observations
x. To describe the proposed extensions, we then
introduce the following variables : tP = {t ∈ [1 :
T ] : y∗t = P}, the indexes in the initial output
corresponding to the label P . tI = {t ∈ [1 :
T ] : y∗t = I}, the indexes in the initial output
corresponding to the label I . tA = {t ∈ [1 :
T ] : y∗t = A}, indexes corresponding to the la-
bel A. tB = {t ∈ [1 : T ] : y∗t = B}, in-
dexes corresponding to the label B. Finally we
denote by tO the set of unspecified indexes, i.e.,
tO = {t ∈ [1 : T ] : y∗t = O}.

Our baseline method is simply to evaluate the
classifier performance based on y∗. As we men-
tioned above, our specific context for probability
statement extraction leads us to discard all labels
in a sentence that does not contain any P label. We
thus implement this constraint in our baseline as a
simple post-processing filter on the CRF output.
Specifically, for probability statement extraction,
for a sentence such that |tP | = 0, then we define
a modified output yB (B standing here for Base-
line) where yBt = O ∀t = 1 : T , else we keep the
original output so that yBt = y∗t ∀t = 1 : T .

3.2 CRF-Driven Constraints

Our chosen method to enforce constraints takes
into account current knowledge (i.e., initial decod-
ing from CRF) when estimating probabilities of
labels by conditioning posterior probabilities on
the presence of label A and B based on current
observations. Specifically, if only A missing, i.e.,
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|tA| = 0 then we search

t∗A = argmax
t∈tO

ϕt(s) (1)

and we define yCt = A ∀t ∈ t∗A and yCt = yBt ∀t /∈
t∗A.

In this method, ϕ represents the the posterior
conditional probability given the observed loca-
tions of the required labels. In the case of prob-
ability statement extraction, we have: ϕt(s) =
Pr(yt = s|x, ytP = P, ytA = A, ytB = B) for s ∈
{A,B, P,O}. In the case of dependence relation
extraction, we have: ϕt(s) = Pr(yt = s|x, ytI =
I, ytA = A, ytB = B) for s ∈ {A,B, I,O}.

Similar procedures are applied when B is miss-
ing and when both labels are missing where we
search jointly on the best locations for A and B.

One difficulty with this approach is the need
to compute ϕ. For this purpose, we borrow
from Culotta and McCallum (2004) who provide
a method to compute the forward values αt(s) =
Pr(x1, . . . , xt, yt = s) of the forward-backward
algorithm when forced to conform to a subpath of
constraints C = 〈st, st+1, . . .〉. These constraints
specify for a subset of locations which states they
must be in or not be in (negative constraints).

The original recursive approach to compute
αt(s) is

αt+1(s) =
∑

s′
αt(s

′) exp

(∑

k

λkfk(s
′, s, xt+1)

)

(2)
The updated recursion equation proposed by

Culotta and McCallum (2004) so as to compute
α′t(s) = Pr(x1, . . . , xt, yt = s|C) is simply to
apply Equation 2 when yt+1 = s conforms with
C (including locations that are not constrained in
any way in C) and set α′t+1(s) = 0 otherwise.
Note that in (Culotta and McCallum, 2004), the
indexes of the constraints included in C are as-
sumed to be contiguous although the method also
applies when they are not. In our case, for prob-
ability statement extraction, we will simply set
C = {ytP = P, ytA = A, ytB = B}, again where
at least one of the sets tA or tB is empty.

We similarly extend this method to com-
pute constrained backward values β′t(s) =
Pr(xt+1, . . . , xT |yt = s, C) by proposing the
modified backward recursion

β′t(s) =
∑

s′
β′t+1(s

′) exp

(∑

k

λkfk(s, s
′, xt+1)

)

(3)

when yt = s conforms with C and set β′t+1(s) =
0 otherwise. Overall, this means that ϕt(s) =
Pr(yt = s|x, ytP = P, ytA = A, ytB = B) can
be expressed as follows:

ϕt(s) =
Pr(yt = s, x|ytP = P, ytA = A, ytB = B)

Pr(x|ytP = P, ytA = A, ytB = B)
(4)

This is the result of an application of Bayes rule
along with the conditional independence assump-
tions of the CRF. In turn, we have that :

ϕt(s) =
α′t(s)β

′
t(s)∑

s′ α
′
T (s
′)

(5)

The output yC is guaranteed to contain at least
one labelA and one labelB. t∗A in Equation 1 will
contain only one token while variables A and B,
in reality, often span multiple tokens. Therefore,
as an additional post-processing step, we run the
Viterbi algorithm once more using the identified
labels A,B and P as constraints. This may reveal
longer spans with such labels.

3.3 Classifier-driven Constraints
As we report in Section 5, imposing constraints
based on the initial CRF decoding improves recall
more than it degrades precision and thus proves
useful. We further explore whether adding flexi-
bility to the process can help reduce the precision
degradation. Indeed in the case of dependence re-
lations, we observed that several influence terms
are quite common in dependence relations but are
still not found exclusively in these relations. In
our dataset for instance, the most common influ-
ence term words are associated (142 occurrences
in the training set), association (42), risk (36), and
increased (22). Our one-step CRF-based approach
may thus be misled by those common words into
forcing the presence of a dependence relation.

Therefore, we introduce two separate binary
classifiers to predict whether or not the sentence
contains either a dependence relation or a proba-
bility statement. Our intuition is that the classifier
will be a more reliable indicator of the presence of
a relation than the entity extraction of either prob-
ability number or influence term. We make use of
that prediction to determine if and how to apply
the constraints. In fact, we apply a threshold on
the confidence of the classifier in order to decide
whether to enforce the constraints.

To coordinate the classification, the entity de-
tection (baseline CRF) and the constraint enforce-
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Figure 2: Description of Constraint Enforcement Flows

ment steps, we explore two kinds of flows as de-
picted in Figure 2 for dependence relation extrac-
tion. Both flows start with the binary classifier but
evolve differently:

• In the sequential flow, if the confidence of the
classifier is below a threshold p we simply
discard the sentence. If it is above the thresh-
old, then we process the sentence through
the baseline CRF trained only on sentences
containing relations in the ground truth. We
then enforce our constraints, i.e., for the de-
pendence case, discarding the sentence if no
variable or influence term has been found but
forcing the presence of variables if we detect
an influence term or at least one variable.

• In the parallel flow, we implement the base-
line CRF in parallel with the binary classifier.
This implies that the baseline CRF is trained
on the full set of sentences. Afterwards, if the
confidence of the classifier is below p2, we
discard the sentence, if it is above p1 we en-
force our constraints regardless of the Base-
line CRF output. For intermediate cases, we
only enforce constraints if we detect either an
influence term or a variable.

4 Experiments

In this section we first describe the data used in
our experiments and then cover the configuration

of the baseline CRF classifier along with the con-
strained configurations we test.

Data for Dependence Statements. The depen-
dence dataset comes from 210 abstracts selected
from PubMed based on a query about breast can-
cer. These 210 abstracts are split into 2144 sen-
tences, of which 785 have a dependence relation.
The dependence relations include 830 variables la-
beled A and 837 labeled B. The annotation also
includes labels for influence terms, modifiers and
negation (as mentioned in Section 2.1). The lat-
ter two are not considered here as they do not
contribute to the dependence relations, but we do
show results for influence terms as they are useful
in constructing the dependence relations (although
that is not covered in this paper).

Data for Probability Statements. The proba-
bility dataset is similarly constructed with 194 ab-
stracts from PubMed that are related to breast can-
cer. The whole dataset has 2078 sentences, 376 of
which, contain probabilistic statements, for exam-
ple, “81%P of stage III/IV breast cancersB were
positive for SNCG expressionA.” These sentences
contain 652 probability terms, 446 variables A,
and 467 variables B.

We split both datasets into train (70%) and test
(30%) sets. Parameter tuning can be done by split-
ting the training set, however experiments shown
in this paper do not require parameter tuning.
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Baseline CRF We initially evaluate a baseline
CRF model without constraints, implemented with
Mallet (McCallum, 2002). The same feature set
used in the baseline is used throughout our exper-
iments. It is composed of standard features for se-
quence tagging: surface form, lemma, POS tag,
word shape (i.e., is capitalized, has digit, etc.), and
the arc label from a dependency parse. The CRF
also extracts features from the previous position
(t−1) and the following position (t+1) as well as
bigram features combining the previous two posi-
tions (t − 2, t − 1). We do not tune the features
or regularization parameters in our experiments,
but instead focus on the differences from applying
constraints in decoding. The CRF training is the
same for nearly all experiments and the important
changes are in decoding and in how the constraints
are applied, so tuning these parameters should not
affect our results. The one exception to this is the
sequential flow where the CRF classifier is trained
only on sentences with relations. We use the de-
fault value for the Gaussian variance prior (10) and
keep the same features across our experiments.

In addition to the baseline CRF we test three
constraint settings: (i) Default refers to the de-
coding with the CRF driven enforcement of con-
straints described in Section 3.2; (ii) Parallel
refers to the application of the Parallel flow which
feeds the sentences into the CRF to identify en-
tities and a binary classifier to determine if the
sentence has a relation. The output of the bi-
nary classifier determines if and how the decoding
constraints should be applied; and (iii) Sequen-
tial refers to the application of the sequential flow
where the binary classifier first filters out noisy
sentences followed by the use of a CRF trained
on relation sentence data.

For the binary classifier, we make use of IBM’s
Natural Language Classifier service3 which is re-
lies on a Convolutional Neural Network combined
with word embeddings (Feng et al., 2015). To
clarify, the classifiers that we use, while using pre-
trained word embedding (on general domain), are
then only trained with our own training data.

Evaluation criteria. We evaluate our approach
using standard metrics: precision, recall, and
F1. In addition, we consider different criteria for
matching entities, i.e., token matches, exact en-
tity matches, and “sloppy” matches (Olsson et al.,

3https://www.ibm.com/watson/
developercloud/nl-classifier.html

2002). In Section 5 we report only our results for
token matching since the trends are consistent for
different matching criteria. Exact entity match-
ing is unnecessarily strict for our application (e.g.,
in the context of our work “AC haplotype” is just
as good as “Carriers of the AC haplotype”) and
measuring performance by token makes the results
easily interpretable.

5 Results

5.1 Binary Classifier

As mentioned in Section 3.3, we introduce a
binary classifier to decide whether constraints
should be applied or not (instead of relying only
on the entity annotation of variables A, B, and
Influence or Probability terms). We need an ac-
curate classifier to ensure that constraints are only
applied when necessary. Our experiments show
that the classifier achieves good results with ac-
curacy for classifying dependence sentences of
82.2% and for probability statements, 95.3%.

5.2 Entity Extraction for Dependence
Relations

We first look at the entity extraction results for de-
pendence relations in Table 1. There is consistent
improvement in F1 scores for variables A and B
as we refine the application of constraints. The
baseline CRF classifier has modest precision but
much weaker recall and misses a number of vari-
able A and B entities entirely. We are not partic-
ularly concerned about boundary errors with the
CRF and they are relatively infrequent. On the
other hand, the missed entities, i.e., the entity false
negatives, are more detrimental to the results. In
fact, of the 606 sentences in the test set, 253 should
have some dependence relation annotation but 143
of these are missing a variable A, 143 are missing
a variable B, and 84 are missing both. This result
motivates our use of domain constraints.

Adding Default constraints leads to an increase
in F1 as recall improves while precision drops.
When the baseline CRF assigns any A, B, or in-
fluence term, we force it to have both variables
A and B, and essentially by forcing it we re-
cover enough new variables (higher recall) to off-
set making some less confident prediction (lower
precision). The application of these constraints de-
pends on the quality of the Baseline predictions for
A, B, and Influence Term, and we note that that
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Precision Recall Fβ=1

VarA
Baseline 60.27% 34.26% 43.69
Default 55.34% 45.68% 50.05
Parallel 64.16% 44.95% 52.87
Sequential 56.86% 62.19% 59.41

VarB
Baseline 41.53% 24.54% 30.85
Default 43.19% 40.44% 41.77
Parallel 52.15% 40.11% 45.35
Sequential 46.78% 48.67% 47.71

Influence Term
Baseline 68.45% 42.95% 52.78
Default 67.18% 43.96% 53.14
Parallel 65.10% 55.70% 60.04
Sequential 64.86% 56.38% 60.32

Table 1: Entity extraction results for dependence
relations.

even for influence terms our performance is mod-
erate and inferior to that of the binary classifier.

The Parallel results display improvements to
both precision and recall over the baseline. While
Parallel recall for A and B is slightly below the
numbers reached in Default, the 9% absolute in-
crease in precision for both variables A and B
leads to F1 improvements for both. By apply-
ing the binary classifier prediction before apply-
ing constraints, we remove some noisy sentences
that contain spuriously labeled entities, which are
not in a dependence relation; in the Parallel results
there are 56 such sentences. For example, in the
baseline experiment a lone variable B, subsequent
cancer occurrence, is extracted from the sentence
“It allowed for a correct estimation of the risk, and
for investigating the time trend of the subsequent
cancer occurrence.” The classifier correctly filters
out this sentence and prevents the CRF from clas-
sifying what might be a valid variable B had there
actually been a dependence relation.

Naturally, by filtering out sentences we also risk
discarding some with dependence relations and
thus affecting recall. In one example of this neg-
ative case, the baseline experiment labels only an
influence term without variables A or B. The con-
straints applied for the Default constraint experi-
ment assign the (correct) variable B and (incor-
rect) variableA. However, the classifier in the Par-

allel experiment mistakenly leads us not to label
any entities in this sentence, thereby missing the
relation.

We observe similar patterns for the Sequential
results. The overall best F1 scores for variables A
and B are due to the significant increases in re-
call. The main difference between Parallel and
Sequential is the fact that the CRF is trained on
a filtered set of sentences for Sequential compared
to the full set for Parallel. The Sequential CRF,
using filtered data, has a higher ratio of variables
labeledA andB per word seen in training and this
makes it more confident in predicting labelsA and
B in testing. This helps the Sequential flow re-
cover several new entities which are missed by the
baseline CRF. This also explains the higher recall
but lower precision with respect to Parallel.

Although only variables A and B are necessary
for dependence relations, we also report perfor-
mance on influence terms, which contribute to the
identification of dependence relations. For the in-
fluence terms, we observe that precision decreases
with each experiment as recall increases. The bi-
nary classifier has a strong and positive effect on
influence term extraction as we see an increase in
recall and F1. Recall for Parallel and Sequential
increases by about 11% and 15% (absolute).

Table 1 shows Parallel results with p1 = 0.5
and p2 = 0.5 and Sequential results with p = 0.5
(see Figure 2). We chose those parameter values
as they correspond to the default for a binary clas-
sifier. In Section 5.4 we look more closely at the
effects of p, p1 and p2.

5.3 Entity Extraction for Probability
Statement

The probability results reported in Table 2 display
similar trends as those for dependence relations,
though we note a few differences as well. First the
Baseline results are lower for variables A and B.
This is due mainly to the heterogeneity of these
variables (even with respect to the dependence re-
lations) and to the smaller dataset. To illustrate
how much more heterogeneous the variables are,
the type-token ratio for variable A is 0.188 in the
dependence training set and 0.392 in the probabil-
ity training set, and the difference for variable B
is similar, 0.224 vs. 0.448. The number of sen-
tences in the dependence and probability corpora
are similar but probability statements are less fre-
quent than dependence relations and for the 620
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Precision Recall Fβ=1

VarA
Baseline 33.98% 8.93% 14.14
Default 52.81% 31.12% 39.17
Parallel 53.41% 33.93% 41.50
Sequential 57.41% 46.43% 51.34

VarB
Baseline 38.61% 11.40% 17.61
Default 43.27% 26.32% 32.73
Parallel 39.01% 25.44% 30.80
Sequential 47.73% 42.98% 45.23

Probability Term
Baseline 79.43% 69.24% 73.99
Default 79.65% 70.17% 74.61
Parallel 81.56% 69.71% 75.17
Sequential 80.36% 75.89% 78.06

Table 2: Entity extraction results for probability
statements.

sentences in the test set we only have 127 with
probability annotation. Like with dependence re-
lations, for probability statements we can motivate
our constraints by looking at the large number of
missed (i.e., false negative) entities. The baseline
CRF misses variable A in 94 sentences with prob-
ability statements (i.e., about 74% of probability
statements are missing variable A). There are 78
probability sentences with a missed variable B,
and 57 missing both.

By applying constraints to these missing vari-
ables we observe the largest increase in perfor-
mance occurs from the Baseline to the Default set-
ting, with improvements in precision, recall, and
F1. The Default constraints approach hinges on
the CRF prediction of the probability term, which
performs well. Because this prediction is already
reliable, by contrast with the dependence relation
extraction, there is less potential for improvement
by applying the binary classifier. In fact, for Par-
allel, performance increases for variable A but de-
creases for variable B.

Training the CRF solely on probability state-
ments, as is the case in Sequential, appears to
have a greater impact than with dependence. As
the proportion of sentences with no-relation in the
probability dataset is higher than in the depen-
dence dataset, filtering out the no-relations sen-
tences removes more noise in the case of prob-

Dependence Probability
p VarA VarB VarA VarB
0.00 48.94 36.23 51.10 44.70
0.05 57.01 46.69 52.40 47.22
0.25 59.77 47.05 51.25 46.90
0.50 59.41 47.71 51.34 45.23
0.75 59.41 49.42 51.28 45.55
0.95 58.72 49.52 46.37 39.79
1.00 0.00 0.00 0.00 0.00

Table 3: F1 scores across p threshold values for
Sequential flow.

ability statement extraction. In turn, removing
this noise improves the CRF performance, lead-
ing in particular to the improved performance for
the probability term and consequently to improve-
ments in the variable extraction with constraints.

5.4 Improving Performance through
Threshold Values

Performance was earlier reported for the Parallel
and Sequential flow for p = p1 = p2 = 0.5, which
represents the default threshold for binary classi-
fiers. In this section, we look closer at the effect of
these threshold values on performance.

There are no values for p that consistently lead
to maximum F1 scores (Tables 3–7) and there is
not space to show precision and recall results as
well. However, as would be expected, the preci-
sion goes up as p1 and p2 increase, i.e., as we be-
come more conservative in constraining the CRF
output. On the other hand, recall drops with higher
values of the p threshold as the CRF is not pushed
to find previously missed variables A or B.

We do find lower p2 thresholds perform better
for probability than dependence. This is likely be-
cause the probability constraints based on the CRF
are still quite reliable. The classifier for depen-
dence statements must be more strict in filtering
sentences, using higher p2 thresholds, because the
dependence constraints are less reliable.

The Sequential flow results are similar. The
maximum F1 scores on the probability dataset
come with p = 0.05, like p2 values for Paral-
lel. The p threshold for variables A and B varies,
also similar to p2 for Parallel, with betterA results
coming from a lower threshold and better B re-
sults with a higher threshold. However, more work
needs to be done to see how we can best leverage
classification in the Sequential and Parallel flows.
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p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 46.48 – – – – –
0.05 50.81 52.64 – – – –
0.25 50.87 52.34 53.88 – – –
0.50 51.26 52.77 53.93 52.87 – –
0.75 51.18 52.69 53.85 52.34 52.30 –
0.95 51.17 52.66 53.83 52.32 51.82 51.33
1.00 50.05 51.53 52.70 51.10 50.55 49.67

Table 4: Var. A F1 for Dependence Parallel flow.

p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 36.98 – – – – –
0.05 42.42 44.93 – – – –
0.25 43.38 44.81 45.34 – – –
0.50 43.36 44.80 44.61 45.35 – –
0.75 43.10 44.53 44.33 44.67 45.45 –
0.95 43.18 44.61 44.41 44.50 44.79 44.78
1.00 41.77 43.13 42.86 42.91 43.18 42.66

Table 5: Var. B F1 for Dependence Parallel flow.

6 Related Work

Our work touches on several areas from con-
strained conditional models (Goldwasser et al.,
2012) to biomedical entity extraction. The work
most related to our approach for applying con-
straints with CRF decoding is (Culotta and McCal-
lum, 2004; Roth and Yih, 2005; Kristjansson et al.,
2004). Our solution for constraining CRF decod-
ing borrows from Culotta and McCallum (2004)
(which is also used by Kristjansson et al. (2004)).
They use constraints for calculating the ‘forward’
values in the forward-backward algorithm and use
this for estimating confidence at given states in
the sequence. Our work applies constraints both
forward and backward and uses these global con-
straints to force specific entities to be extracted.
Roth and Yih (2005) also apply constraints to the
CRF but instead of using Viterbi decoding as is
done here they use Integer Linear Programming
(ILP) to add constraints in decoding for semantic
role labeling.

With respect to our overall objective of entity
and relation extraction from the medical literature,
a large proportion of the related work originates
from BioNLP event extraction (Kim et al., 2009;
Nédellec et al., 2013; Chaix et al., 2016; Deléger
et al., 2016). These tasks are similar in that they

p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 18.88 – – – – –
0.05 42.50 42.75 – – – –
0.25 41.01 41.22 41.35 – – –
0.50 41.38 41.60 41.73 41.50 – –
0.75 40.90 41.11 41.24 41.00 41.01 –
0.95 40.74 40.94 41.07 40.83 40.84 34.49
1.00 39.17 39.34 39.47 39.20 39.19 32.35

Table 6: Var. A F1 for Probability Parallel flow.

p2 0.00 0.05 0.25 0.50 0.75 0.95
p1

0.00 13.90 – – – – –
0.05 31.39 31.58 – – – –
0.25 31.31 31.51 31.27 – – –
0.50 31.85 32.06 31.82 30.80 – –
0.75 31.96 32.17 31.93 30.91 30.88 –
0.95 31.87 32.09 31.84 30.80 30.77 21.78
1.00 32.73 32.96 32.71 31.64 31.62 22.31

Table 7: Var. B F1 for Probability Parallel flow.

extract biomedical entities, analogous to our vari-
ables A and B, and the relations between entities
(e.g., bio-molecular events).

The most similar entity extraction task to ours is
from Fiszman et al. (2007). They are interested in
extracting mentions of diseases and medical risk
factors4 from medical literature. They take a less
statistical and more semantic approach to convert
the biomedical text into a semantic representation
using the UMLS Semantic Network.

7 Conclusions

In this paper we investigate how we can improve
performance on information extraction tasks by
constraining CRF-based approaches. We investi-
gate two relation extraction tasks from the medi-
cal literature – dependence relations and probabil-
ity statements – and show that by using our con-
strained CRF models we can get significant im-
provements over a CRF baseline. In future work
we plan to build on these improvements and test
constraints jointly applied to entity and relation
extraction to improve our project’s construction of
decision support models.

4Their risks and disorders appear to be subsets of vari-
ables A and B.
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Abstract

Enabling machines to read and compre-
hend unstructured text remains an unful-
filled goal for NLP research. Recent re-
search efforts on the “machine compre-
hension” task have managed to achieve
close to ideal performance on simulated
data. However, achieving similar lev-
els of performance on small real world
datasets has proved difficult; major chal-
lenges stem from the large vocabulary
size, complex grammar, and the frequent
ambiguities in linguistic structure. On the
other hand, the requirement of human gen-
erated annotations for training, in order to
ensure a sufficiently diverse set of ques-
tions is prohibitively expensive. Moti-
vated by these practical issues, we propose
a novel curriculum inspired training pro-
cedure for Memory Networks to improve
the performance for machine comprehen-
sion with relatively small volumes of train-
ing data. Additionally, we explore various
training regimes for Memory Networks to
allow knowledge transfer from a closely
related domain having larger volumes of
labelled data. We also suggest the use of a
loss function to incorporate the asymmet-
ric nature of knowledge transfer. Our ex-
periments demonstrate improvements on
Dailymail, CNN, and MCTest datasets.

1 Introduction

A long-standing goal of NLP is to imbue machines
with the ability to comprehend text and answer
natural language questions. The goal is still dis-
tant and yet generates tremendous amount of in-
terest due to the large number of potential NLP
applications that are currently stymied because of

their inability to deal with unstructured text. Also,
the next generation of search engines are aiming
to provide precise and semantically relevant an-
swers in response to questions-as-queries; similar
to the functionality of digital assistants like Cor-
tana and Siri. This will require text understanding
at a non-superficial level, in addition to reasoning,
and, making complex inferences about the text.

As pointed out by Weston et al. (2016), the
Question Answering (QA) task on unstructured
text is a sound benchmark on which to evaluate
machine comprehension. The authors also intro-
duced bAbI: a simulation dataset for QA with mul-
tiple toy tasks. These toy tasks require a machine
to perform simple induction, deduction, multi-
ple chaining of facts, and, complex reasoning;
which make them a sound benchmark to measure
progress towards AI-complete QA (Weston et al.,
2016). The recently proposed Memory Network
architecture and its variants have achieved close to
ideal performance, i.e., more than 95% accuracy
on 16 out of a total of 20 QA tasks (Sukhbaatar et
al., 2015; Weston et al., 2016).

While this performance is impressive, and is
indicative of the memory network having suf-
ficient capacity for the machine comprehension
task, the performance does not translate to real
world text (Hill et al., 2016). Challenges in real-
world datasets stem from the much larger vocab-
ulary, the complex grammar, and the often am-
biguous linguistic structure; all of which further
impede high levels of generalization performance,
especially with small datasets. For instance, the
empirical results reported by Hill et al. (2016)
show that an end-to-end memory network with a
single hop surpasses the performance achieved us-
ing multiple hops (i.e, higher capacity), when the
model is trained with a simple heuristic. Similarly,
Tapaswi et al. (2015) show that a memory net-
work heavily overfits on the MovieQA dataset and
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yields near random performance. These results
suggest that achieving good performance may not
always be merely a matter of training high capac-
ity models with large volumes of data. In addition
to exploring new models there is a pressing need
for innovative training methods, especially when
dealing with real world sparsely labelled datasets.

With the advent of deep learning, the state of
art performance for various semantic NLP tasks
has seen a significant boost (Collobert and We-
ston, 2008). However, most of these techniques
are data-hungry, and require a large number of
sufficiently diverse labeled training samples, e.g.,
for QA, training samples should not only encom-
pass an entire range of possible questions but also
have them in sufficient quantity (Bordes et al.,
2015). Generating annotations for training deep
models requires a tremendous amount of manual
effort and is often too expensive. Hence, it is nec-
essary to develop effective techniques to exploit
data from a related domain in order to reduce de-
pendence on annotations. Recently, Memory Net-
works have been successfully applied to QA and
dialogue-systems to work with a variety of dis-
parate data sources such as movies, images, struc-
tured, and, unstructured text (Weston et al., 2016;
Weston, 2016; Tapaswi et al., 2015; Bordes et al.,
2015). Inspired from the recent success of Mem-
ory Networks, we study methods to train mem-
ory networks with small datasets by allowing for
knowledge transfer from related domains where
labelled data is more abundantly available.

The focus of this paper is to improve general-
ization performance of memory networks via an
improved learning procedure for small real-world
datasets and knowledge transfer from a related do-
main. In the process, this paper makes the follow-
ing major contributions:

(i) A curriculum inspired training procedure for
memory network is introduced, which yields
superior performance with smaller datasets.

(ii) The exploration of knowledge transfer meth-
ods such as pre-training, joint-training and
the proposed curriculum joint-training with a
related domain having abundant labeled data.

(iii) A modified loss function for joint-training to
incorporate the asymmetric nature of knowl-
edge transfer, and also investigate the appli-
cation of a pre-trained memory network on
very small datasets such as MCTest dataset.

The remainder of the paper is organized as fol-
lows: Firstly, we provide a summary of related
work in Section 2. Next in Section 3, we describe
the machine comprehension task and the datasets
utilized in our experiments. An introduction to
memory networks for machine comprehension is
presented in Section 4. Section 5 outlines the pro-
posed methods for learning and knowledge trans-
fer. Experimental details are provided in Section
6. We summarize our conclusions in Section 7.

2 Related Work

Memory Networks have been successfully ap-
plied to a broad range of NLP and machine learn-
ing tasks. These tasks include but are not lim-
ited to: performing reasoning over a simulated en-
vironment for QA (Weston et al., 2016), factoid
and non-factoid based QA using both knowledge
bases and unstructured text (Kumar et al., 2015;
Hill et al., 2016; Chandar et al., 2016; Bordes
et al., 2015), goal driven dialog(Bordes and We-
ston, 2016; Dodge et al., 2016; Weston, 2016),
automatic story comprehension from both video
and text (Tapaswi et al., 2015), and, transferring
knowledge from one knowledge-base while learn-
ing to answer questions on a different knowledge
base (Bordes et al., 2015). Recently, various other
attention based neural models (similar to Memory
Networks) have been proposed to tackle the ma-
chine comprehension task by QA from unstruc-
tured text (Kadlec et al., 2016; Sordoni et al.,
2016; Chen et al., 2016). To the best of our knowl-
edge, knowledge transfer from an unstructured
text dataset to another unstructured text dataset for
machine comprehension is not explored yet.
Training deep networks is known to be a notori-
ously hard problem and often the success of these
techniques hinges upon achieving higher gener-
alization performance with high capacity models
(Blundell et al., 2015; Larochelle et al., 2009; Glo-
rot and Bengio, 2010). To address this issue, Cur-
riculum learning was firstly introduced by Ben-
gio et al. (2009), which showed that training with
gradually increasing difficulty leads to a better lo-
cal minima, specially when working with non-
convex loss functions. Although devising a uni-
versal curriculum strategy is hard, as even humans
do not converge to one particular order in which
concepts should be introduced (Rohde and Plaut,
1999) some notion of concept difficulty is nor-
mally utilized. With similar motivations, this pa-

851



per makes an attempt to exploit curriculum learn-
ing for machine comprehension with a memory
network. Recently, curriculum learning has also
been utilized to avoid negative transfer and make
use of task relatedness for multi-task learning (Lee
et al., 2016). Concurrently, Sachan and Xing
(2016) have also studied curriculum learning for
QA and unlike this paper, they do not consider
learning and knowledge transfer on small real-
world machine comprehension dataset in the set-
ting of memory networks.

Pre-training & word2vec: Pre-training can of-
ten mitigate the issue that comes with random ini-
tialization used for network weights, by guiding
the optimization process towards the basins of bet-
ter local minima (Mishkin and Matas, 2016; Kra-
henbuhl et al., 2016; Erhan et al., 2010). An in-
spiration from the ripples created by the success
of pre-training and as well as word2vec, this pa-
per explores pre-training to utilize data from a
related domain and also pre-trained vectors from
word2vec tool (Mikolov et al., 2013). However,
finding an optimal dimension for these pre-trained
vectors and other involved hyper-parameters re-
quires computationally extensive experiments.

Joint-training / Co-training / Multi-task learn-
ing / Domain adaptation: Previously, the utiliza-
tion of common structures and similarities across
different tasks / domains has been instrumental for
various closely related learning tasks refereed as
joint-training, co-training, multi-task learning and
domain adaptation (Collobert and Weston, 2008;
Liu et al., 2015; Chen et al., 2011; Maurer et al.,
2016). To mitigate this ambiguity, in this paper,
we limit ourselves to using “joint-training” and
refrain from co-training, as unlike this work, co-
training was initially introduced to exploit unla-
belled data in the presence of small labelled data
and two different and complementary views about
the instances (Blum and Mitchell, 1998).

While this work looks conceptually similar, the
proposed method tries to exploit information from
a related domain and aims to achieve an asym-
metric transfer only towards the specified do-
main, without any interest in the source domain,
and hence should not be confused with the long-
standing pioneering work on multi-task learning
(Caruana, 1997). Another field of work that is re-
lated to this paper is on domain adaptation which
appears to have two major related branches. The
first branch is the recent work that has primar-

ily focused on unsupervised domain adaptation
(Nguyen and Grishman, 2015; Zhang et al., 2015),
and the other is the traditional work on domain
adaptation which has focussed on problems like
entity recognition and not on machine comprehen-
sion and modern neural architectures (Ben-David
et al., 2010; Daume III, 2007).

3 Machine Comprehension : Datasets
and Tasks Description

Machine comprehension is the ability to read and
comprehend text, i.e., understand its meaning, and
can be evaluated by tasks involving the answer-
ing of questions posed on a context document.
Formally, a set of tuples (q, C, S, s) is provided,
where q is the question,C is the context document,
S is a list of possible answers, and, s indicates
the correct answer. Each of q, C, and S are se-
quence or words from a vocabulary V . Our aim is
to train a memory network model to perform QA
with small training datasets. We propose two pri-
mary ways to achieve this: 1) Improve the learning
procedure to obtain better models, and 2) Demon-
strate knowledge transfer from a related domain.

3.1 Data Description

Several corpora have been introduced for the
machine comprehension task such as MCTest-
160, MCTest-500, CNN, Dailymail, and, Children
Boot Test (CBT) (Richardson et al., 2013; Her-
mann et al., 2015; Hill et al., 2016). The MCTest-
160 and MCTest-500 have multiple-choice ques-
tions with associated narrative stories. Answers in
these datasets can be one of these forms: a word,
a phrase, or, a full sentence.

The remaining datasets are generated using
Cloze-style questions; which are created by delet-
ing a word from a sentence and asking the model
to predict the deleted word. A place-holder token
is substituted in place of the deleted word which is
also the correct answer (Hermann et al., 2015). We
have created three subsets of CNN namely, CNN-
11K, CNN-22K and CNN-55K from the entire
CNN dataset, and Dailymail-55K from the Daily-
mail dataset. Statistics on the number of samples
comprising these datasets is presented in Table 1.

3.2 Improve Learning Procedure

It has been shown in the context of language
modelling that presenting the training samples
in an easy to hard ordering allows for shielding
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MCTest-160 MCTest-500 CNN-11K CNN-22K CNN-55K Dailymail-55K
# Train 280 1400 11,000 22,000 55,000 55,000
# Validation 120 200 3,924 3,924 3,924 2,500
# Test 200 400 3,198 3,198 3,198 2,000
# Vocabulary 2856 4279 26,550 31,932 40,833 42,311
# Words /∈ Dailymail-55K — — 1,981 2,734 6,468 —

Table 1: Number of samples in training, valdiation, and, test samples in the MCTest-160, MCTest-500,
CNN-11K, CNN-22K, CNN-55K, and, Dailymail-55K datasets; along with the size of vocabulary.

the model from very hard samples during train-
ing, yielding faster convergence and better models
(Bengio et al., 2009). We investigate a curricu-
lum learning inspired training procedure for mem-
ory networks to improve performance on the three
subsets of the CNN dataset described below.

3.3 Demonstrate Knowledge Transfer

We plan to demonstrate knowledge transfer from
Dailymail-55K to three subsets of CNN of varying
sizes utilizing the proposed join-training method.
For learning, we make use of smaller subsets of
the CNN dataset. The smaller size of these subsets
enables us to assess the performance boost due
to knowledge transfer: As our aim is to demon-
strate transfer when less labelled data is available,
choosing the complete dataset would render gains
from knowledge transfer as insignificant. We also
demonstrate knowledge transfer for the case of
MCTest dataset using embeddings obtained after
training the memory network with CNN datasets.

4 End-to-end Memory Network for
Machine Comprehension

End-to-end Memory Network is a recently intro-
duced neural network model that can be trained
in an end-to-end fashion; directly on the tu-
ples (q, C, S, s) using standard back-propagation
(Sukhbaatar et al., 2015). The complete train-
ing procedure can be described in the three steps:
i) encoding the training tuples into the contex-
tual memory, ii) attending context in memory
to retrieve relevant information with respect to
a question, and, iii) predicting the answer us-
ing the retrieved information. To accomplish the
first step, an embedding matrix A ∈ Rp×d is
used to map both question and context into a p-
dimensional embedding space; by applying the
following transformations: −→q = AΦ(q) and
{−→mi = AΦ(ci)}i=1,2,...,n. Where n is the num-
ber of items in context C and Φ is a bag-of-words
representation in d-dimensional space, where d is
typically the size of the vocabulary V . In the

second step, the network senses relevant informa-
tion present in the memory −→mi for query −→q , by
computing the attention distribution {αi}i=1,2,...,n,
where αi = softmax(−→mi

T−→q ). Thereafter, αi is
used to aggregate the retrieved information into
a vector representation −→ro by utilizing another
memory −→ri ; as stated in Equation 1. The mem-
ory representation −→ri is also defined as {−→ri =
BΦ(ci)}i=1,2,...,n in a manner similar to −→mi using
another embedding matrix B ∈ Rp×d.

−→ro =
n∑

i=1

αi
−→ri (1)

âi = softmax((−→ro +−→q )TUΦ(si)) (2)

In the last step, prediction distribution âi is
computed as in Equation 2, where U ∈ Rp×d is
an embedding matrix similar to A and can poten-
tially be tied with A, and si is one of the answers
in S. Using the prediction step, a probability dis-
tribution âi over all si can be obtained and the fi-
nal answer is selected as the one with the highest
probability âi corresponding to the option si.

L(P,D) =
1

ND

ND∑

n=1

an × log(ân(P,D))

+(1− an)× log(1− ân(P,D))

(3)

To train a memory network, the cross-entropy
loss function L between the true label distribution
ai ∈ {0, 1}s (which is a one hot vector to indi-
cate the correct label s in the training tuples) and
the predicted distribution âi is used, as in Equa-
tion 3. Where P , D and ND represent the set of
model parameters to learn, training dataset, and
the number of tuples in the training set respec-
tively. Such an objective can be easily optimized
using stochastic gradient descent (SGD). A mem-
ory network can easily be extended to perform
several hops over the memory before predicting
the answer. For details, we refer to Hill et al.
(2016). However, we constrain this study to use
a single-hop network in order to reduce number of
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parameters to learn and also the chances of over-
fitting; as we are dealing with small scale datasets.

Self-Supervision is a heuristic introduced to
provide memory supervision and the rationale be-
hind is that if the memory supporting the cor-
rect answer is retrieved than the model is more
likely to predict the correct answer (Hill et al.,
2016). More precisely, this is achieved by keep-
ing a hard attention over memory while training,
i.e., m

′
o = argmax αi. At each step of SGD, the

model computes m
′
o and updates only using those

examples which do not select the memorym
′
o hav-

ing the correct answer in the corresponding ci.

5 Proposed Methods

We attempt to improve the training procedure for
Memory Networks in order to increase the perfor-
mance for machine comprehension by QA with
small scale datasets. Firstly, we introduce an im-
proved training procedure for memory networks
using curriculum learning which is termed as Cur-
riculum Inspired Training (CIT) and offer details
about this in Section 5.1. Thereafter, Section
5.2 explains joint-training method for knowledge
transfer from an abundantly labelled dataset to an-
other dataset with limited label information .

5.1 CIT: Curriculum Inspired Training
Curriculum learning makes use of the fact that
model performance can be significantly improved
if the training samples are not presented randomly
but in such a way so as to make the learning task
gradually more difficult by presenting examples
in an easy to hard ordering (Bengio et al., 2009).
Such a training procedure allows the learner to
waste less time with noisy or hard to predict data
when the model is not ready to incorporate such
samples. However, what remains unanswered and
is left as a matter of further exploration is how to
devise an effective strategy for a given task?

SF (q, S, C, s) =

∑
word∈{q∪S∪C}

log(Freq.(word))

#{q ∪ S ∪ C} (4)

In this work, we formulate a curriculum strat-
egy to train a memory network for machine com-
prehension. Formally, we rank training tuples
(q, S, C, s) from easy to hard based on the nor-
malized word frequency for passage, question, and
context initially; using the score function (SF)
mentioned in Equation 4 (i.e. easier passages have

more frequent words). The training data is then
divided into a fixed number of chapters, with each
successive chapter resulting in addition of more
difficult tuples. The model is then trained sequen-
tially on each chapter with the final chapter con-
taining the complete training data. The presence
of both the number of chapters and the fixed num-
ber of epochs per chapter makes such a strategy
flexible and allows to be tailored to different data
after optimizing the like other hyper-parameters.

L(P,D, en) =
1

ND

ND∑

n=1

(an × log(ân(P,D))+

(1− an)× log(1− ân(P,D))× 1(en, c(n)× epc)
(5)

The loss function used for curriculum inspired
training varies with epoch number; as mentioned
in Equation 5. Note, in Equation 5, en and c(n)
represents the current epoch number and chapter
number for nth tuple assigned using rank allocated
based on SF mentioned in Equation 4 respectively.
epc, P ,D, and 1 is the number of epochs per chap-
ter, model parameters, training set, and an indica-
tor function which is one if first argument is >=
the second argument or else zero; respectively.

5.2 Joint-Training for Knowledge Transfer
While joint-training methods offer knowledge
transfer by exploiting similarities and regularities
across different tasks or datasets, the asymmet-
ric nature of transfer and skewed proportion of
datasets is usually not handled in a sound way.
Here, we devise a training loss function L̂ to re-
lieve both of these involved issues while doing
joint-training with a target dataset (TD) with fewer
training samples and a source dataset (SD) having
label information for higher number of examples;
as mentioned in Equation 6.

L̂(P, TD, SD) = 2× γ × L(P, TD) + 2× (1− γ)

×L(P, SD)× F (NTD, NSD)
(6)

Where L̂ represents the devised loss function
for joint-training for transfer, L the cross-entropy
loss function also mentioned earlier in Equation 3,
γ is a weighting factor which varies between zero
and one, F (NTD, NSD) is an another weighting
factor which is a function of number of samples
in the target domain NTD and in the source do-
main NSD. The rationale behind γ factor is to
control the relative update in the network due to
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samples from source and target datasets; which
permits biasing of the model performance towards
one dataset. F (NTD, NSD) factor can be inde-
pendently utilized to mitigate the effect of skewed
proportion in the number of samples present in
both target and source domains. Note, maintain-
ing both γ and F (NTD, NSD) as separate param-
eters allows for restricting γ within (0,1) without
any extra computation as described below.

5.3 Improved Loss Functions
This paper explores the following variants of the
introduced loss function L̂ for knowledge transfer
via joint-training:

1. Joint-training (Jo-Train):- γ = 1/2 and
F (NTD, NSD) = 1.

2. Weighted joint-training (W+Jo-Train):- γ =
(0, 1) and F (NTD, NSD) = NTD/NSD.

3. Curriculum joint-training (CIT+Jo-Train):-
L(P, TD) & L(P, SD) of Equation 6
are replaced by their analogous terms
L(P, TD, en) & L(P, SD, en) generated us-
ing Equation 5; γ = 1/2 and F (NTD, NSD)
= 1.

4. Weighted curriculum joint-training
(W+CIT+Jo-Train):- L(P, TD) & L(P, SD)
of Equation 6 are replaced by analogous
L(P, TD, en) & L(P, SD, en) generated us-
ing Equation 5; γ = (0,1) and F (NTD, NSD)
= NTD/NSD.

5. Source only (SrcOnly) :- γ = 0.

The F (NTD, NSD) factor does not increase
computation as it is not optimized for any of the
cases. Jo-Train (Liu et al., 2015), SrcOnly and a
method similar to W+Jo-Train (Daume III, 2007)
have also been explored previously for other NLP
tasks and models.

6 Experiments

We evaluate the performance on datasets intro-
duced earlier in Section 3. We first present
baseline methods, pre-processing and training de-
tails. In Section 6.3, we present results on CNN-
11/22/55K, MCTest-160 and MCTest-50 to vali-
date our claims mentioned in Section 1. All of
the methods presented here are implemented in
Theano (Bastien et al., 2012) and Lasagne (Diele-
man et al., 2015) and are run on a single GPU
(Tesla K40c) server with 500GB of memory.

6.1 Baseline Methods

We implemented Sliding Window (SW) and Slid-
ing Window + Distance (SW+D)(Richardson et
al., 2013) as baselines to compare against our ex-
periments. Further, we augment SW (or SW+D)
to incorporate distances between word vectors
of the question and the context over the slid-
ing window; in a manner similar to the way
SW+D is augmented from SW by Richardson et
al. (2013). These approaches are named based
upon the source of pre-trained word vectors,
e.g., SW+D+CNN-11K+W2V utilizes vectors es-
timated from both CNN-11K and word2vec pre-
trained vectors1. In case of more than one source,
individual distances are summed and utilized for
final scoring. Results on MCTest for SW, SW+D,
and their augmented approaches are reported us-
ing online available scores for all answers 2.

Meaningful Comparisons: To ascertain that
the improvement is due to the proposed training
methods, and not merely because of addition of
more data, we built multiple baselines, namely,
initialization using word vectors from word2vec,
pre-training, Jo-train, and SrcOnly. For pre-
training and word2vec, words ∈ target dataset and
/∈ source dataset are initialized, by a uniform ran-
dom sampling with the limits set to the extremes
spanned by the word vectors in the source domain.
It is worth to note that the pre-training and Jo-
train utilizes as much label information and data
as other proposed variants of joint-training. Also,
SrcOnly method is an indicative of how much di-
rect knowledge transfer from source domain to tar-
get domain can be achieved without any learning.

6.2 Pre-processing & Training Details

While processing data, we replace words occur-
ring less than 5 times by <unk> token except
for MCTest datasets. Additionally, all entities are
included in vocabulary. All models are trained
by carrying out the optimization using SGD with
learning rate in {10−4, 10−3}, momentum value
set to 0.9, weight decay in {10−5, 10−4}, and, max
norm in {1, 10, 40}. We kept length of window
equal to 5 for CNN / Dailymail datasets(Hill et
al., 2016) and for MCTest datasets is chosen from
{3, 5, 8, 10, 12}. For embedding size, we look for
the optimal value in {50, 100, 150, 200, 300} for

1http://code.google.com/p/word2vec
2http://research.microsoft.com/en-us/um/redmond/

projects/mctest/results.htm
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CNN-11 K CNN-22 K CNN-55 K
Model + Training Methods Train Valid Test Train Valid Test Train Valid Test
SW § 21.33 20.35 21.48 21.80 20.61 20.76 21.54 19.87 20.66
SW+D § 25.45 25.40 25.90 25.61 25.25 26.47 25.85 25.74 26.94
SW+W2V § 43.90 43.01 42.60 45.70 44.10 42.23 45.06 44.50 43.50
MemNN § 98.98 45.96 46.08 98.07 49.28 51.42 97.31 54.98 56.69
MemNN+CIT § 96.44 47.17 49.04 98.36 52.43 52.73 91.14 57.26 57.68
SW+Dailymail ‡ 30.19 31.21 30.60 31.70 30.87 32.01 31.56 33.07 31.08
MemNN+W2V ‡ 86.57 43.78 45.99 94.1 49.98 51.06 95.2 51.47 53.66
MemNN+SrcOnly ‡ 25.12 26.78 27.08 25.43 26.78 27.08 24.79 26.78 27.08
MemNN+Pre-train ‡ 92.82 52.87 52.06 95.12 53.59 55.35 96.33 56.64 59.19
MemNN+Jo-train ‡ 65.78 53.85 55.06 64.85 55.94 55.69 77.32 57.76 57.99
MemNN+CIT+Jo-train ‡ 77.74 55.93 55.74 78.96 55.98 56.85 71.89 56.83 59.07
MemNN+W+Jo-train‡ 71.72 54.30 55.70 79.64 55.91 56.73 71.15 57.62 58.34
MemNN+W+CIT+Jo-train ‡ 80.14 56.91 57.02 79.04 57.90 57.71 76.91 58.14 59.88

Table 2: Train, validation and test percentage accuracy on CNN-11/22/55K datasets. § and ‡ indicate
that the data used comes from either of CNN-11/22/55K and also from Dailymail-55K along with either
of CNN-11/22/55K respectively. Random test accuracy on these datasets is 3.96% approximately.

CNN / Dailymail datasets. For CNN / Dailymail,
we have trained memory network using a single
batch with self-supervision heuristic (Hill et al.,
2016). In case of curriculum learning, the num-
ber of chapters are optimized out of {3, 5, 8, 10}
and number of epochs per chapter is set equal to
2M
M+1 ×

edncl
edcl
× EN which is estimated by equat-

ing to the number of network update found for the
optimal case of non-curriculum learning. Here M
and edcl represents the number of chapter and em-
bedding size for curriculum learning, and edncl &
EN represents the optimal value found for em-
bedding size and number of epochs without cur-
riculum learning. We use early stopping with a
validation set while training the network.

6.3 Results & Discussion

In this section, we present results to validate con-
tributions mentioned in Section 1. Table 2 presents
the results of our approaches along with results
from baseline methods SW, SW+D, SW+W2V,
and a standard memory network (MemNN). Re-
sults for CIT on CNN-11/22/55K (MemNN+CIT)
show an absolute improvement of 2.96%, 1.31%,
and, 1.00% respectively, when compared with
the memory network (MemNN) (contribution (i)).
Figure 1 shows that the CIT leads to better conver-
gence when compared without CIT on CNN-11K.

As baselines for knowledge transfer
from the Dailymail-55K dataset to CNN-
11/22/55K datasets, Table 2 presents results
for SW+Dailymail, memory network initialized
with word2vec (MemNN+W2V), memory net-
work trained on Dailymail (MemNN+SrcOnly),
memory network initialized with pre-trained

embeddings from Dailymail (MemNN+Pre-
train) and memory network jointly-trained
with both Dailymail and CNN (MemNN+Jo-
train) (contribution (ii)). Further, results
show the knowledge transfer observed when
MemNN+CIT+Jo-train and MemNN+W+Jo-
Train are utilized to train Dailymail-55K
with CNN-11/22/55K. On combining the
MemNN+CIT+Jo-train with MemNN+W+Jo-
Train (which is MemNN+W+CIT+Jo-Train),
a significant and consistent improvement can
be observed; as the performance goes up by
1.96%, 2.03%, and, 1.89% on CNN-11/22/55K
respectively; when compared against the other
competitive baselines (contribution (ii) & (iii)).

Results empirically support the major premise
of this study, i.e., CIT and knowledge transfer
from a related dataset with memory network can
significantly improve the performance; improve-
ments of 10.94%, 6.28%, and, 3.19% are ob-
served with CNN-11/22/55K respectively when
compared with the standard memory network. The
improvement in knowledge transfer decreases as
the amount of data in the target domain starts in-
creasing from 11K to 55K, as the volume of data
in the target domain starts becoming comparable
to source domain, and is enough to achieve similar
level of performance without knowledge transfer.

Previously, Chen et al. (2016) annotated a sam-
ple of 100 questions on CNN stories based on the
type of capabilities required to answer the ques-
tion. We report results for all 6 specific categories
in Table 3. Even with CNN-11K and Dailymail-
55K which is roughly 20% of the complete CNN
dataset, the proposed methods achieve similar per-
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Model + Training Methods Exact Para. Part.Clue Multi.Sent. Co-ref. Ambi./Hard
SW § 3(23.1%) 12(29.2%) 2(10.5%) 0(0.0%) 0(0.0%) 2(11.7%)
SW+D § 6(46.1%) 14(34.1%) 2(10.5%) 0(0.0%) 0(0.0%) 3(17.6%)
SW+W2V § 10(76.9%) 20(48.7%) 5(26.3%) 0(0.0%) 0(0.0%) 7(41.1%)
MemNN § 8(61.5%) 20(48.7%) 12(63.1%) 1(50.0%) 0(0.0%) 2(11.7%)
MemNN+CIT § 10(76.9%) 19(46.3%) 12(63.1%) 1(50.0%) 3(37.5%) 2(11.7%)

SW+Dailymail ‡ 6(46.1%) 19(46.3%) 5(26.3%) 0(0.0%) 0(0.0%) 2(11.7%)
MemNN+W2V ‡ 6(46.1%) 27(65.8%) 5(26.3%) 0(0.0%) 0(0.0%) 7(41.1%)
MemNN+SrcOnly § 6(46.1%) 12(29.2%) 2(10.5%) 0(0.0%) 0(0.0%) 2(11.7%)
MemNN+Pre-train ‡ 11(84.6%) 25(60.9%) 12(63.1%) 0(0.0%) 0(0.0%) 1(5.9%)
MemNN+Jo-train ‡ 8(61.5%) 29(70.7%) 10(52.6%) 2(100%) 0(0.0%) 5(29.4%)
MemNN+CIT+Jo-train ‡ 10(76.9%) 27(65.8%) 10(52.6%) 0(0.0%) 3(37.5%) 5(29.4%)
MemNN+W+Jo-train ‡ 11(84.6%) 29(70.7%) 10(52.6%) 2(100%) 0(0.0%) 5(29.4%)
MemNN+W+CIT+Jo-train ‡ 11(84.6%) 27(65.8%) 10(52.6%) 2(100%) 3(37.5%) 5(29.4%)

Chen et al. (2016) $ 13(100%) 39(95.1%) 17(89.5%) 1(50.0%) 3(37.5%) 1(5.9%)
Sordoni et al. (2016) $ 13(100%) 39(95.1%) 16(84.2%) 1(50.0%) 3(37.5%) 5(29.4%)

Total Number Of Samples 13 41 19 2 8 17

Table 3: Question-specific category analysis of percentage test accuracy with only learning and knowl-
edge transfer methods on CNN-11K dataset. § and ‡ indicates that the data used comes from CNN-11K
and from Dailymail-55K along with CNN-11K respectively. $ indicate results from Sordoni et al. (2016).

Figure 1: Percentage training error v/s
number of million updates while train-
ing on CNN-11K with or without cur-
riculum inspired training.

MCTest-160 MCTest-500
Training Methods One Multi. All One Multi. All
SW 66.07 53.12 59.16 54.77 53.04 53.83
SW+D 75.89 60.15 67.50 63.23 57.01 59.83
SW+D+W2V 79.46 59.37 68.75 65.07 58.84 61.67
SW+D+CNN-11K 79.78 59.37 67.67 64.33 57.92 60.83
SW+D+CNN-22K 76.78 60.93 68.33 64.70 59.45 61.83
SW+D+CNN-55K 78.57 59.37 68.33 65.07 59.75 62.16
SW+D+CNN-11K+W2V 77.67 59.41 68.69 65.07 61.28 63.00
SW+D+CNN-22K+W2V 78.57 60.16 69.51 66.91 60.00 63.13
SW+D+CNN-55K+W2V 79.78 60.93 70.51 66.91 60.67 63.50

Table 4: Knowledge transfer results on MCTest-160 and
MCTest-500 datasets. One and Multi. indicates the ques-
tions that require one and multiple supporting facts. Random
test accuracy is 25% here, as number of options are 4.

formance on 4 out of 6 categories, when compared
to latest models (2nd & 3rd last rows of Table 3).

On very small datasets such as MCTest-160 and
MCTest-500, it is not feasible to train memory
network (Smith et al., 2015), therefore, we ex-
plore the use of word vectors from the embedding
matrix of a model pre-trained on CNN datasets.
Here, the embedding matrix refers to the encod-
ing matrix A used in the first step of memory net-
work as mentioned in Section 4. SW+D+CNN-
11/22/55K are the results when the similarity mea-
sures comes from SW+D as mentioned in Sec-
tion 6.1 and also using the word vectors from en-
coding matrix A obtained after training on CNN-
11/22/55K. From table 4, it is evident that perfor-
mance improves as the amount of data increases in
CNN domain (contribution(iii)). Further, on com-
bining with word2vec distance (SW+D+CNN-
11/22/55K+W2V), an improvement is observed.

7 Conclusion

Looking at the widespread applications of Mem-
ory Networks and the prohibitive data require-
ments for training them, this paper seeks to im-
prove the performance of memory networks on
small datasets in two different ways. Firstly,
this paper introduces an effective CIT procedure
for machine comprehension. Secondly, this pa-
per explores various methods to exploit labelled
data from closely related domains; in order to
perform knowledge transfer and improve perfor-
mance. Additionally, this paper suggests the use of
a modified loss function to further incorporate the
asymmetric nature of knowledge transfer. Beyond
machine comprehension, we believe that the pro-
posed methods are likely to achieve higher gener-
alization for other tasks utilizing memory network
style architectures, by virtue of the proposed CIT
method and joint-training for knowledge transfer.
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Abstract

This paper presents a framework to under-
stand negation in positive terms. Specif-
ically, we extract positive meaning from
negation when the negation cue syntacti-
cally modifies a noun or adjective. Our
approach is grounded on generating poten-
tial positive interpretations automatically,
and then scoring them. Experimental re-
sults show that interpretations scored high
can be reliably identified.

1 Introduction

Negation is a complex phenomenon present in all
human languages, allowing for the uniquely hu-
man capacities of denial, contradiction, misrep-
resentation, lying, and irony (Horn and Wans-
ing, 2015). Acquiring and understanding negation
poses unique challenges. For example, children
acquire negation after learning to communicate in
positive terms (Nordmeyer and Frank, 2013), and
adults take longer to process sentences containing
negation (Clark and Chase, 1972).

In any given language, humans communicate
in positive terms most of the time, and use
negation to express something unusual or an ex-
ception (Horn, 1989). But negation is ubiqui-
tous (Morante and Sporleder, 2012): In scien-
tific papers, 13.76% of sentences contain a nega-
tion (Szarvas et al., 2008); in product reviews,
19% (Councill et al., 2010); and in Conan Doyle
stories, 22.23% (Morante and Daelemans, 2012).

From a theoretical perspective, it is accepted
that negation has scope and focus, and that hu-
mans intuitively understand positive meanings
from negation (Rooth, 1992; Huddleston and Pul-
lum, 2002). For example, from (1) John didn’t
earn a steady paycheck until he was 40 years old,
humans understand that (1a) John earned unsteady
paychecks before he was 40 years old, and that

(1b) John earned steady paychecks when he was
40 years old. This kind of positive interpretations
would benefit language understanding in general.
For example, a question answering system would
benefit from interpretation (1b) when answering
question Did John ever earn a steady paycheck?

Within computational linguistics, automated
approaches to extract positive meanings from
negation target verbal negation (Section 3), i.e.,
when the negation cue is grammatically associ-
ated with a verb, as in (1). Verbal negation ac-
counts only for a portion of all negations, e.g., out
of all syntactic dependencies indicating a negation
modifier (neg dependency) in OntoNotes (Hovy
et al., 2006), 64.4% modify verbs, 19.6% nouns,
10.3% adjectives, and 5.7% other part-of-speech
tags. Non-verbal negation also conveys positive
meanings, e.g., from (2) No media were allowed
inside the venue (No modifies noun media), hu-
mans understand that (2a) Somebody (e.g., invited
guests) were allowed inside the venue and that
(2b) Media where allowed somewhere outside the
venue (presumably in a designated press area).
Similarly, from (3) She was not alive when she
got to the Lafayette area (not modifies adjective
alive), humans understand that (3a) She was dead
when she got to the Lafayette area and that (3b)
She was alive before she got to the Lafayette area.

This paper presents new corpora and experi-
mental results to extract positive interpretations
from negation when the negation cue modifies a
noun or adjective. The main contributions are:
(1) analysis of negation in OntoNotes beyond ver-
bal negation; (2) procedure to automatically gen-
erate potential positive interpretations from non-
verbal negation, specifically, when the negation
cue modifies a noun or adjective; (3) annotations
validating and scoring potential interpretations ac-
cording to their likelihood;1 and (4) experimental
results showing that the task can be automated.

1Available at http://www.cse.unt.edu/˜blanco/
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2 Terminology and Background

Negation can be expressed by verbs (e.g., avoid
the highway), nouns (e.g. lack of knowledge),
adjectives (e.g., it is useless), adverbs (e.g., John
never drives on the highway), and others (van der
Wouden, 1997). The primary negative prefixes in
English are in-, il-, im-, ir-, un-, non-, anti- and a-
(Garner, 2009, p. 563). We refer to the token, pre-
fix or suffix that indicates negation (emphasized in
the examples above) as negation cue. As we shall
see, in this paper we target negations whose cue
syntactically modifies a noun or adjective.

In philosophy and linguistics, it is generally ac-
cepted that negation conveys positive meanings
(Horn, 1989). We use the term positive interpreta-
tion to refer to the positive meaning intuitively un-
derstood by humans when reading sentences that
contain negation. Positive interpretations range
from implicatures (Blackburn, 2008), to entail-
ments. Potential positive interpretations are pos-
itive interpretations whose validity is unknown.
Scope and Focus. Negation is generally under-
stood in terms of scope and focus. Scope is “the
part of the meaning that is negated” and focus is
“the part of the scope that is most prominently
or explicitly negated” (Huddleston and Pullum,
2002). Scope and focus are not exclusive of nega-
tion. Among many others, there has been work
on detecting the scope of uncertainty cues (Farkas
et al., 2010), and other focus-sensitive phenomena
include adverbs and conditionals (Rooth, 1985).

Consider statement (2) again, No media were al-
lowed inside the venue. By definition, scope refers
to “all elements whose individual falsity would
make the negated statement strictly true”, and fo-
cus is “the element of the scope that is intended
to be interpreted as false to make the overall neg-
ative true” (Huddleston and Pullum, 2002). If any
of the truth conditions below were false, statement
(2) would be true, thus the scope of the negation
marked with No is (2a-2c):
2a. Some people were allowed somewhere.
2b. Media were allowed somewhere.
2c. Some people were allowed inside the venue.

Choosing the element of the scope which is
the focus is more challenging than identifying the
scope. A natural reading of statement (2) indi-
cates that there were people (e.g., invited guests)
allowed inside the venue, and that media were
(probably) allowed in a press area outside (but not
far from) the venue. The former positive inter-

pretation corresponds to choosing Media as focus,
and the latter corresponds to choosing inside as fo-
cus. Statement (2) exemplifies two core properties
of the work presented here: We choose several foci
for a single negation, and as a result, reveal several
positive interpretations per negation. Further, we
see positive interpretations as probabilistic knowl-
edge, i.e., knowledge that may be likely but not
necessarily certain.

In general, the task of identifying foci and re-
vealing positive interpretations is natural to hu-
mans, but hard to automate. Consider modified
statement (2’) No media were allowed inside the
venue to record the presentation. The scope is
conditions (2a-2c) and (2d) Somebody was al-
lowed to record the presentation. The positive in-
terpretations from (2’) are different than from (2),
e.g., Media were allowed inside the venue, but
they weren’t allowed to record the presentation
can only be extracted from (2’).

3 Previous Work

Within computational linguistics, most ap-
proaches to process negation target scope or focus
detection. Generally speaking, there are corpora
with scope annotations for all types of negations,
but corpora with focus annotations are restricted
to verbal negation, i.e., when the negation cue is
grammatically associated with a verb.
Scope of Negation. There are two main cor-
pora with scope of negation annotations: Bio-
Scope in the medical domain (Szarvas et al., 2008)
and CD-SCO (Morante and Daelemans, 2012).
The annotations schemas differ substantially; CD-
SCO annotates negation cues, their scopes, and the
negated events or properties. There have been sev-
eral supervised proposals to detect the scope of
negation using BioScope and CD-SCO (Morante
and Daelemans, 2009; Velldal et al., 2012; Basile
et al., 2012). Fancellu et al. (2016) present the
best results to date with CD-SCO using neural net-
works. They also perform out-of-domain evalua-
tion with new annotations on Wikipedia, and ana-
lyze the main sources of errors.

Outside BioScope and CD-SCO, Reitan et al.
(2015) present a scope detector for negation in
tweets, and use it for sentiment analysis.

As the examples throughout this paper show
(e.g., Section 2), detecting the scope of negation
is insufficient to reveal the positive interpretations
we target in this work.
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Figure 1: Most frequent nouns (left) and adjectives (right) tokens that are negated (neg dependency) in
OntoNotes. Total number of noun and adjective tokens modified by a negation cue is 1,866 and 979.

Focus of Negation and Positive Interpretations.
Identifying the focus of negation is equivalent to
revealing positive interpretations—everything but
the focus is actually positive. The definition of
focus does not specify annotation guidelines, and
most existing efforts are grounded on semantic
roles. Blanco and Moldovan (2011) annotate fo-
cus on the negations marked with ARGM-NEG role
in PropBank (Palmer et al., 2005). They select
a single focus per negation, specifically, they se-
lect the role that reveals the “most useful [positive]
information.” Anand and Martell (2012) refine
these annotations and differentiate positive inter-
pretations arising from focus identification, scalar
implicature and neg-raising predicates. Blanco
and Sarabi (2016) propose a similar approach that
scores the likelihood of several potential foci per
negation. The main limitations of all these previ-
ous works is that selecting as focus a semantic role
is only suitable when the negation cue modifies
a predicate, and roles often yield coarse-grained
interpretations. Sarabi and Blanco (2016) bypass
these drawbacks by working with syntactic depen-
dencies to refine coarse-grained interpretations.

All these previous efforts to reveal positive in-
terpretations from negation target exclusively ver-
bal negation, i.e., when the negation cue modifies
a verb. While verbal negation is more frequent
(64.4% of neg dependencies in OntoNotes, Sec-
tion 4), in this paper we target two understudied
yet important negations: when the negation cue
modifies a noun or adjective (19.6% and 10.3% of
neg dependencies). Our approach is not grounded
on semantic roles but syntactic dependencies. Do-
ing so allows us to tackle negation when the nega-
tion cue modifies nouns or adjectives.

4 Corpus Creation

We create a corpus of negations and their posi-
tive interpretations following three steps. First,
we select negations whose negation cue syntac-
tically modifies either a noun or adjective. Sec-
ond, we automatically generate potential positive
from those negations by manipulating syntactic
dependencies and part-of-speech tags. Third, we
gather manual annotations to validate and score
potential interpretations. While asking annotators
to suggest positive interpretations would poten-
tially yield more natural interpretations, we found
experimentally that a generate-and-rank approach
yields higher quality annotations.
Negation in OntoNotes. Instead of building our
corpus from plain text, we decided to work on
top of OntoNotes (Hovy et al., 2006), a publicly
available corpus including texts in several genres
(news, transcripts, magazines, etc.).2 OntoNotes
includes, among other gold linguistic annotations,
part-of-speech tags and parse trees. We trans-
formed the parse trees into syntactic dependencies
using Stanford CoreNLP (Manning et al., 2014).

We reduce the problem of finding negations
to retrieving syntactic dependencies neg, which
stands for negation modifier. Doing so ignores
negation cues that are prefixes or suffixes (e.g.,
unlimited, motionless), but also simplifies the
process. There are 9,507 neg syntactic depen-
dencies in OntoNotes; 6,120 of them modify
verbs (64.4%), 1,866 nouns (19.6%), 979 adjec-
tives (10.3%), and 543 other part-of-speech tags
(5.7%). Since verbal negation has been tackled

2We use the CoNLL-2011 Shared Task distribution (Prad-
han et al., 2011), http://conll.cemantix.org/2011/
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N
ou

n

No condemned murderer has been granted clemency in California since nineteen sixty - seven .

neg
amod

nsubjpass
aux

auxpass

root

dobj
prep

pobj

prep
num

num
punct

pobj

punct

Negated statement No condemned murderer has been granted clemency in California since nineteen sixty-seven.
Positive counterpart [A] condemned murderer has been granted clemency in California since nineteen sixty-seven.
Relevant tokens [A] condemned murderer has been granted clemency in California since nineteen sixty-seven.

Potential positive
interpretations

Intpn. 1, root [A] condemned murderer has been {some verb} clemency in California
since nineteen sixty-seven, but not granted.

Intpn. 2, nsubjpass {Someone} has been granted clemency in California since nineteen
sixty-seven, but not [a] condemned murderer.

Intpn. 3, dobj [A] condemned murderer has been granted {something} in California
since nineteen sixty-seven, but not clemency.

Intpn. 4, prep [A] condemned murderer has been granted clemency {somewhere} since
nineteen sixty-seven, but not in California.

Intpn. 5, prep [A] condemned murderer has been granted clemency in California {at
some point of time}, but not since nineteen sixty-seven.

A
dj

ec
tiv

e But she was not alive when she got to the Lafayette area .

cc
nsubj

cop
neg

root

advmod
nsubj

advcl

prep
det

nn

pobj

punct

Negated statement But she was not alive when she got to the Lafayette area.
Positive counterpart But she was alive when she got to the Lafayette area.
Relevant tokens She was alive when she got to the Lafayette area.

Potential positive
interpretations

Intpn. 1, root She was {some adjective} when she got to the Lafayette area but not
alive.

Intpn. 2, nsubj {Somebody} was alive when she got to the Lafayette area but not she.
Intpn. 3, advcl She was alive {at some point of time} but not when she got to the

Lafayette area.

Table 1: Examples of negations and the steps to generate potential positive interpretations (the negated
token is either a noun (top) or adjective (bottom)). We also indicate the dependency between a token in
the potential focus and a token outside the potential focus.

before (Section 3), we focus on negation cues
that modify nouns or adjectives. We use the term
negated token to refer to the token that is syntacti-
cally modified by the negation cue. The most fre-
quent negated tokens that are nouns or adjectives
are plotted in Figure 1.

4.1 Selecting Negations

Annotating all negations that modify a noun or ad-
jective is outside the scope of this paper. To alle-
viate the annotation effort, we discard negations
that belong to sentences that do not have at least
one verb and one subject (nsubj or nsubjpass de-
pendencies), and sentences that contain more than
two negations, conditionals, questions or commas.
Additionally, we skip negations if the negated to-
ken is the noun one, as scoring their potential pos-
itive interpretations is straightforward. Out of the

1,866 and 979 negation modifying nouns and ad-
jectives, 635 and 320 pass the above filters. Out
of these, we randomly select 309 and 75 respec-
tively (approximately 50% and 25%).

4.2 Generating Potential Positive
Interpretations

We generate potential positive interpretations au-
tomatically using a deterministic procedure that
manipulates part-of-speech tags and syntactic de-
pendencies. The first step is to remove the nega-
tion cue to obtain the positive counterpart. Then,
we use dependencies to select the tokens relevant
to the negation—the main motivation is to select
the eventuality to which the negation belongs. Fi-
nally, we generate potential interpretations using a
battery of deterministic rules. Table 1 shows the
output of each step with two sample negations.
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Selecting Relevant Tokens. Negation may occur
in sentences with multiple clauses. We simplify
the original sentence and identify the eventuality
to which the negation belongs by using the rules
below. We defined these rules after analyzing sev-
eral examples and the Stanford dependencies man-
ual (de Marneffe and Manning, 2008).

When the negated token is a noun, we have two
scenarios. Scenario (1) occurs when the negated
token is the root or it has a cop dependency (cop-
ula) with the verb to be. In this case, we select
all the dependents of the negated token.3 Scenario
(2) occurs when neither of the two rules above ap-
ply. In that case, we select all the dependents of
the closest verb, where the closest verb is the first
verb found when traversing the dependency tree
from the negated token to the root. For example,
we simplify Article three says that no law shall
prohibit any religious belief to No law shall pro-
hibit any religious belief.

When the negated token is an adjective, we se-
lect all the dependents of the negated token. For
example, from His estimate of 3.3% for third-
quarter GNP is higher than the consensus because
he believes current inventories aren’t as low as of-
ficial figures indicate, we select Current invento-
ries aren’t as low as official figures indicate.
Manipulating Dependencies to Generate Poten-
tial Positive Interpretations. After removing the
negation cue and selecting relevant tokens, we
use syntactic dependencies to select potential foci.
Once potential foci are identified, generating pos-
itive interpretations is straightforward: each focus
yields one interpretation, where everything but the
focus is positive. The main idea is to select as po-
tential foci subtrees rooted at selected tokens.

When the negated token is a noun, we select
as potential foci the subtrees rooted in all the di-
rect dependents of the negated token in Scenario
(1), and the subtrees rooted in all the direct depen-
dents of the closest verb in Scenario (2). When
the negated token is an adjective, we select as po-
tential foci the subtrees rooted in all the direct de-
pendents of the negated token. This strategy to
select potential foci has a few exceptions to avoid
foci that yield meaningless interpretations. Specif-
ically, we discard potential foci:
• whose root has dependency aux, auxpass,

cop, poss, dep, prt or punct ;

3If the negated token is a noun and the root, this scenario
is equivalent to selecting the whole sentence

• that consist of
– the determiner the, a, an, it and there;
– the adverbs so, too, though, even,

still, as, quite, either, however, any-
more, moreover, therefore, furthermore,
hence, thus, further, apparently, clearly,
specifically, actually, fortunately, and
unfortunately;

– a single token with part-of-speech tag
TO, CC, UH, POS or IN.

These exceptions were defined after manual ex-
amination of several examples. For example, con-
sider sentence It’s not just women and girls who
are affected. We avoid generating interpretations
It’s just women and girls who {X} affected (focus
would be are, with dependency aux), and It’s just
women {X} girls who are affected (focus would be
and, with part-of-speech tag CC).

After potential foci are selected, we generate
potential positive interpretations by rewriting each
focus with “someone / some people / something /
etc.”, and appending “but not text of focus” at the
end. Table 1 details the steps to generate potential
positive interpretations.

4.3 Scoring Potential Interpretations

Once potential interpretations are generated auto-
matically, we manually annotate them. The anno-
tation interface shows the sentence containing the
negation, the previous and next sentences as con-
text, and one potential positive interpretation at a
time. Annotators are asked Given the text snip-
pet below [previous sentence, sentence containing
the negation and next sentence], do you think the
statement [positive interpretation] is true?, and
must answer with a score ranging from 0 to 5,
where 0 means certainly no and 5 means certainly
yes. During pilot annotations, we found that cer-
tainty must be taken into account as forcing anno-
tators to answer yes or no proved too restrictive.
Note that some negations do not have any positive
interpretation scored high, e.g., all interpretations
from Utter no words receive a low score.

5 Corpus Analysis

Table 2 shows basic counts and statistics of the
annotated potential positive interpretations. De-
pendency indicates the syntactic dependency be-
tween a token within the potential focus and a to-
ken outside the potential focus. The total number
of potential positive interpretations is 777 when
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Negation, context (previous and next sentences) and all potential positive interpretations Score

N
ou

n
Context, previous sentence: Here’s what that judge said.
Negation: The victim in this case is not a young child.
Context, next sentence: He’s now sixteen years old.
- Interpreation 1: The victim in this case is a young {something}, but not a child. 2
- Interpreation 2: {Something} is a young child, but not The victim in this case. 4
- Interpreation 3: The victim in this case is a {some adjective} child, but not young. 5

A
dj

ec
tiv

e

Context, previous sentence: She was alive when she left that nursing home.
Negation: But she was not alive when she got to the Lafayette area.
Context, next sentence: CNN made repeated attempts to contact administrators or representatives of Huntingdon Place.
- Interpreation 1: She was {some adjective} when she got to the Lafayette area, but not alive. 5
- Interpreation 2: {Somebody} was alive when she got to the Lafayette area, but not she. 2
- Interpreation 3: She was alive {at some point of time}, but not when she got to the Lafayette area. 5

Table 3: Annotation examples. We show the original sentence containing a negation (the negated token
is either a noun or an adjective), its context, and all potential interpretations with their scores.

Dependency # % Score
Mean SD

N
ou

ns

nsubj 231 30.0 4.45 0.88
root 169 21.7 2.96 1.41
pobj 70 9.0 3.99 1.31
amod 50 6.4 4.72 0.8
ccomp 45 5.7 3.62 1.34
other 212 27.3 3.73 1.49
total 777 100.0 3.86 1.38

A
dj

ec
tiv

es

nsubj 57 28.5 4.12 0.80
root 50 25.0 4.82 0.48
ccomp 22 11.0 4.91 0.29
pobj 21 10.5 4.19 1.05
xcomp 12 6.0 4.42 1.32
other 38 19.0 4.08 1.46
total 200 100.0 4.40 0.99

All 977 100.0 3.97 1.33

Table 2: Corpus analysis. For each dependency,
we show the total number and percentage of inter-
pretations, mean score and standard deviation.

the negated token is a noun, and 200 when it is
an adjective. On average, we generate 2.5 poten-
tial interpretation per negation when the negated
token is a noun, and 2.7 when it is an adjective
(we selected 309 and 75 negations respectively).

When the negated token is a noun, scores are
overall lower (3.86 vs. 4.40), and scores are higher
when the dependency is either nsubj (nominal sub-
ject, 4.45) or amod (adjectival modifier, 4.72). Re-
gardless of dependency, mean scores are always
over 4 when the negated token is an adjective.

Annotation Quality. The procedure to generate
potential interpretations (Section 4.2) was tuned
iteratively until we achieved considerable anno-
tation agreement in pilot annotations. To ensure
quality, we calculated Pearson correlations with
20% of annotations, and stopped the refinement
process when we achieved 0.76 Pearson correla-
tion. Note that Pearson is better suited than agree-

ment measures designed for categorical labels, as
not all disagreements are equally bad, e.g., 4 vs. 1
is worse than 4 vs. 5.

5.1 Annotation Examples

Table 3 presents two complete annotation exam-
ples when the negated token is a noun and adjec-
tive. We show all potential interpretations gener-
ated and the manually assigned scores.

We generate three potential positive interpreta-
tions from the first example, The victim in this case
is not a young child, and two of them received
high scores (4 and 5). When reading the statement
in context, it is clear that the judge implied that
Something (a younger human) would be a younger
child (Interpretation 2), and that The victim of this
case is an older (not young) child (Interpretation
3). Interpretation (1), The victim in this case is
a young something, receives a low score (2 out of
5). One could argue that this interpretations should
receive a higher score because The victim in this
case is a young adult, we simply provide real an-
notations drawn from our corpus.

The procedure to generate potential positive in-
terpretations also generates three interpretations
from the second example, But she was alive when
she got to the Lafayette area, and two of them
receive the highest score (5 out of 5). Interpre-
tation (1) encodes the intuitive meaning that She
was dead when she got to the Lafayette area, and
Interpretation (3) captures that She was alive be-
fore she got to the Lafayette area. Interpretation
(2) receives a low score (2 out of 5), as there is no
evidence suggesting which individuals were alive
when they got to the Lafayette area.
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Type Name Description

Basic neg cue word form of the negation cue
neg token word form and part-of-speech tag of negated token

Path

syn path dep path of dependencies from focus to negated token (or verb)
syn path pos path of POS tags from focus to negated token (or verb)
last syn path dep last syntactic dependency in syn path dep
last syn path pos last part-of-speech tag in syn path pos

Focus

focus length number of tokens in potential focus
focus first word word form and part-of-speech tag of first word in focus
focus last word word form and part-of-speech tag of last word in focus
focus direction flag indicating whether focus occurs before or after neg token
focus head word word form of the head of focus
focus head pos part-of-speech tag of the head of focus
focus head rel syntactic dependency of the head of focus

Table 4: Features used to assign scores to automatically generated potential interpretations.

Feature set Gold Predicted
Nouns Adjectives All Nouns Adjectives All

neg cue -0.10 -0.24 0.06 0.02 -0.26 -0.02
basic 0.12 -0.10 0.11 0.05 -0.39 0.01
basic + path 0.36 0.59 0.40 0.17 0.58 0.24
basic + path + focus 0.36 0.52 0.42 0.33 0.39 0.34

Table 5: Pearson correlations obtained with the test split and several combination of features. We detail
results by the part-of-speech tag of the negated token (noun or adjective).

6 Learning to Score Potential
Interpretations

We solve the task of scoring potential positive in-
terpretations using standard supervised machine
learning. We divide negations and their corre-
sponding interpretations into training (80%) and
test (20%), and use SVM with RBF kernel as im-
plemented in scikit-learn (Pedregosa et al., 2011).
We tune parameters C and γ using 10-fold cross-
validation using the training set.

6.1 Feature Selection

Table 4 lists the full feature set. We extract fea-
tures from the negated token (noun or adjective),
part-of-speech tags and dependency tree.

Basic features are straightforward. They in-
clude the negation cue, and the word form and
part-of-speech tag of the negated token.

Path features are derived from the syntactic path
between the subgraph selected as focus and the
negated token or closest verb. If the negated to-
ken is a noun, we extract the path between the
subgraph and the negated token in Scenario (1),
and between the subgraph and the closest verb in
Scenario (2) (Section 4.2). If the negated token
is an adjective, we extract the path between the
subgraph and the negated token. We include two
paths (dependencies and part-of-speech tags), and
the last dependency and part-of-speech tag.

Focus features characterize the dependency sub-
graph chosen as focus to generate the potential in-
terpretation. We include the number of tokens,
word form and part-of-speech tags of the first and
last tokens, and whether the focus occurs before or
after the negated token. Additionally, we extract
the word form, part-of-speech-tag and dependency
of the head of the focus, which we define as the to-
ken whose syntactic head is outside the focus.

7 Experimental Results

We perform two kinds of experiments. First, we
score all potential positive interpretations auto-
matically generated (Section 7.1). Second, we
identify interpretations scored with the highest
score, 5 out 5 (Section 7.2). We always build sep-
arate models for nouns and adjectives, and train
with gold linguistic information (POS tags and de-
pendencies). We report results on the test set us-
ing both gold and predicted linguistic information.
For gold, we use the annotations provided with the
CoNLL-2011 release, and for auto, we use the out-
put of SyntaxNet (Andor et al., 2016).

7.1 Scoring all Potential Interpretations

We score all potential interpretations using SVM
for regression, and calculate Pearson correlation
for evaluation purposes. Table 5 shows results ob-
tained with several combinations of features.

When extracting features form gold linguistic
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Gold Predicted
Nouns Adjectives Nouns Adjectives

P R F P R F P R F P R F
majority baseline 0.00 0.00 0.00 0.47 1.0 0.64 0.00 0.00 0.00 0.31 1.00 0.48
neg mark 0.66 0.33 0.44 0.47 1.00 0.64 0.00 0.00 0.00 0.31 1.00 0.48
basic 0.66 0.37 0.47 0.47 1.00 0.64 0.62 0.12 0.21 0.31 1.00 0.48
basic + path 0.78 0.64 0.70 0.60 0.95 0.73 0.73 0.60 0.66 0.37 1.00 0.54
basic + path + focus 0.71 0.63 0.67 0.64 0.94 0.76 0.64 0.50 0.56 0.50 0.83 0.62

Table 6: Precision, Recall and F-measure obtained with the test split for instances with the highest
score (5 out of 5). Predicting these interpretations correctly allows our models to identify which of the
automatically generated potential interpretations are valid given the negation.

information (part-of-speech tags and syntactic de-
pendencies), using only the negation cue as feature
or basic features (negation cue and negated token)
is rather useless (Pearson correlations range from
-0.24 to -0.10). Using basic + path features yields
0.36 and 0.59 Pearson correlations for nouns and
adjectives respectively, and including focus fea-
tures is detrimental (0.36 and 0.52).

When extracting features from predicted lin-
guistic information, we observe a similar trend
in Pearson correlations. Results using predicted
linguistic information are not directly comparable
with those using gold linguistic information. Our
methodology to generate potential interpretations
relies heavily on syntactic dependencies, and us-
ing predicted interpretations implies that some in-
terpretations present in our corpus cannot be auto-
matically generated because of mistakes made by
the parser. Out of the 196 potential interpretations
in the original test set (20% of 977 annotated inter-
pretations), we evaluate with the 94 interpretation
generated with predicted dependencies (48%).

7.2 Identifying Valid Potential
Interpretations

While scoring all potential positive interpretation
generated is interesting, determining which of
those interpretations are certain (scored 5 out of
5) is arguably more useful in a real system. In-
deed, an inference tool would ideally extract cer-
tain interpretations from negation, and identify
other potential interpretations as a byproduct of
our generate-and-rank approach.

To estimate performance under this scenario,
we approach the task as a standard binary classi-
fication task. Interpretations scored 5 receive the
positive label, and other interpretations receive the
negative label. Table 6 presents results in the test
set (Precision, Recall and F-score) for the positive
label using the majority baseline and several com-

binations of features, and gold and predicted lin-
guistic information.

The majority baseline fails to detect any inter-
pretation scored with 5 when the negated token
is a noun (in this case, the majority of interpre-
tations are not scored 5), and obtains a modest
0.64 F-score when the negated token is an adjec-
tive. Using gold linguistic information, neg mark
as the only feature or basic features improve per-
formance when the negated token is a noun (F-
score: 0.44 and 0.47), but does not improve results
when the negated token is an adjective. Adding
path features brings performance up (nouns: 0.70,
adjectives: 0.73), and adding focus features yields
similar results (nouns: 0.67, adjectives: 0.76).

Using predicted linguistic information, we ob-
serve the same general trends, but adding focus
features brings a substantial improvement over ba-
sic + path for adjectives: 0.54 vs. 0.62.

8 Conclusions
This paper presents a framework to extract pos-
itive meaning from negation when the negation
cue modifies a noun or adjective. First, we gen-
erate potential positive interpretations determinis-
tically. Second, we rank them according to their
likelihood. On average, we generate 2.5 potential
interpretations when the negated token is a noun,
and 2.7 when the negated token is an adjective.

Experimental results show that scoring all po-
tential positive interpretations is challenging, we
obtain overall Pearson correlation of 0.42 using
features extracted from gold linguistic informa-
tion (0.36 for nouns and 0.52 for adjectives). But
when identifying interpretations annotated with
the highest score (5 out of 5), F-scores are rela-
tively high: 0.67 for nouns and 0.76 for adjectives.
The latter evaluation is more suitable, as the ul-
timate goal is to identify valid positive interpre-
tations and discard other potential interpretations
generated with our generate-and-rank approach.
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301–309, Montréal, Canada, 7-8 June. Association
for Computational Linguistics.

Simon Blackburn. 2008. The Oxford Dictionary of
Philosophy. Oxford University Press.

Eduardo Blanco and Dan Moldovan. 2011. Semantic
representation of negation using focus detection. In
Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics, pages 581–
589, Portland, Oregon, USA, June. Association for
Computational Linguistics.

Eduardo Blanco and Zahra Sarabi. 2016. Automatic
generation and scoring of positive interpretations
from negated statements. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1431–1441, San
Diego, California, June. Association for Computa-
tional Linguistics.

H. H. Clark and W. G. Chase. 1972. On the process
of comparing sentences against pictures. Cognitive
Psychology, 3(3):472–517, July.

Isaac Councill, Ryan McDonald, and Leonid Ve-
likovich. 2010. What’s great and what’s not: learn-
ing to classify the scope of negation for improved
sentiment analysis. In Proceedings of the Workshop
on Negation and Speculation in Natural Language
Processing, pages 51–59, Uppsala, Sweden, July.
University of Antwerp.

Marie-Catherine de Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural networks for negation scope detection.
In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume
1: Long Papers), pages 495–504, Berlin, Germany,
August. Association for Computational Linguistics.
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János Csirik. 2008. The BioScope corpus: an-
notation for negation, uncertainty and their scopein
biomedical texts. In Proceedings of BioNLP 2008,
pages 38–45, Columbus, Ohio, USA. ACL.

Ton van der Wouden. 1997. Negative contexts: collo-
cation, polarity, and multiple negation. Routledge,
London.

Erik Velldal, Lilja Ovrelid, Jonathon Read, and
Stephan Oepen. 2012. Speculation and negation:
Rules, rankers, and the role of syntax. Comput. Lin-
guist., 38(2):369–410, June.

869



Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 870–880,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Metaheuristic Approaches to Lexical Substitution and Simplification
Sallam Abualhaija

Institute of Computer Technology
Hamburg University of Technology

sallam.abualhaija@tu-harburg.de

Tristan Miller and Judith Eckle-Kohler and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA/UKP-DIPF/AIPHES)

Department of Computer Science
Technische Universität Darmstadt

https://www.ukp.tu-darmstadt.de/

Karl-Heinz Zimmermann
Institute of Computer Technology

Hamburg University of Technology
K.Zimmermann@tu-harburg.de

Abstract

In this paper, we propose using metaheuris-
tics—in particular, simulated annealing and
the new D-Bees algorithm—to solve word
sense disambiguation as an optimization
problem within a knowledge-based lexical
substitution system. We are the first to per-
form such an extrinsic evaluation of meta-
heuristics, for which we use two standard
lexical substitution datasets, one English
and one German. We find that D-Bees has
robust performance for both languages, and
performs better than simulated annealing,
though both achieve good results. More-
over, the D-Bees–based lexical substitu-
tion system outperforms state-of-the-art
systems on several evaluation metrics. We
also show that D-Bees achieves competi-
tive performance in lexical simplification,
a variant of lexical substitution.

1 Introduction

Lexical substitution is a special case of automatic
paraphrasing in which the goal is to provide contex-
tually appropriate replacements for a given word,
such that the overall meaning of the context is main-
tained. The task has applications in question an-
swering, text summarization, sentence compres-
sion, information extraction, machine translation,
and natural language generation (Androutsopou-
los and Malakasiotis, 2010). It is also frequently
employed as an in vivo evaluation of word sense
disambiguation (WSD) systems (McCarthy and

Navigli, 2009; Toral, 2009; Miller et al., 2015),
because while lexical substitution requires words
to be sense-disambiguated, it does not impose use
of a predefined sense inventory.

Past work in WSD, whether or not it forms part
of a lexical substitution system, has employed a
wide range of approaches (Agirre and Edmonds,
2007). Supervised methods usually achieve the
best results, but at the tremendous cost of produc-
ing manually annotated training data specific to
the language and domain. Knowledge-based and
unsupervised methods rely only on pre-existing
resources such as machine-readable dictionaries
and raw corpora. Though generally less accurate,
they have the advantage of being more flexible and
more adaptable to new languages and domains. For
knowledge-based methods, this has been especially
true since the advent of large, multilingual, collab-
oratively constructed resources such as Wikipedia
and Wiktionary (Zesch et al., 2008).

In this paper, we present two novel approaches
to lexical substitution which are knowledge-based,
generally language-independent, and use a com-
bination of traditional wordnets and Wiktionary.
The first approach uses simulated annealing (Kirk-
patrick et al., 1983), which was first proposed for
use in WSD by Cowie et al. (1992) but has attracted
relatively little attention since then. The second ap-
proach uses D-Bees (Abualhaija and Zimmermann,
2016), a relatively new, biologically inspired dis-
ambiguation algorithm that models swarm intelli-
gence. Both algorithms are metaheuristic (Talbi,
2009) in that they treat WSD as an optimization
problem and modify heuristic (approximate) solu-
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tions to avoid entrapment in local optima. Ours is
the first extrinsic evaluation of any metaheuristic
approaches to WSD in a lexical substitution setting.

We evaluate and compare both approaches on
two lexical substitution datasets, one English and
one German. We find that both approaches perform
well, with D-Bees in particular exceeding state-of-
the-art performance in many tasks. We also apply
the systems to lexical simplification, a variant of
lexical substitution in which the goal is to provide
substitutes which are easier to understand. Here,
too, we find that D-Bees performs near or above
the state of the art.

2 Background

2.1 Lexical Substitution and Simplification

In lexical substitution, a system is given a word in
context and tasked with producing a list of words
that could be substituted for the word without al-
tering the overall meaning. For example, given the
word “bright” in the sentence “Einstein was a bright
man,” valid substitutes would include “sharp” and
“intelligent”, but not “shiny” or “luminous”, even
though the latter two are synonymous with “bright”
in other contexts. It is generally expected that the
list of substitutes be ordered by acceptability. Most
lexical substitution systems therefore comprise two
distinct phases: generation, in which the system
assembles a set of suitable substitutes for the tar-
get word, and ranking, in which the system orders
them according to how well they fit the context.

There have been a number of organized evalu-
ation campaigns for lexical substitution systems,
including the English-language task at SemEval-
2007 (McCarthy and Navigli, 2009) and the Ger-
man task at GermEval 2015 (Miller et al., 2015).
These campaigns provide standardized datasets
where a large number of word–context combina-
tions have been manually annotated with accept-
able substitutes. Systems are evaluated by compar-
ing their output to this gold standard, using any or
all of three scoring methodologies:

• In the best methodology (McCarthy and Nav-
igli, 2009), systems are allowed to suggest as
many substitutes as they wish. However, the
credit for each guess is normalized by the to-
tal number of guesses. The best guess should
be placed first in the list. Across the entire
dataset, four metrics are calculated: recall (R),
mode recall (Rm), precision (P), and mode

precision (Pm).1

• In out of ten (OOT) (McCarthy and Navigli,
2009), systems suggest up to ten substitutes,
though neither the exact number nor the order
of these is important. This methodology uses
minor variations of best’s R, Rm, P, and Pm.

• Generalized average precision (GAP)
(Kishida, 2005) uses a single metric to score
a fully ranked list of substitutes. Unlike OOT,
GAP is sensitive to the relative positions of
the correct and incorrect substitutes in the list.

For reasons of space, we do not provide detailed
explanations and formulas for the nine metrics, but
refer readers to the cited papers.

Lexical simplification is a variant of lexical sub-
stitution in which the correct ranking is determined
not just by the substitutes’ contextual fitness but
also by their simplicity. (For example, rare words
are generally considered to be more complex, as
readers are less likely to be familiar with their
meanings.) As with other types of text simplifi-
cation, lexical simplification can be used to make
complex texts understandable by a wider range of
readers, such as children or second language learn-
ers.

To date there has been one shared task in lexical
simplification (Specia et al., 2012). Its main eval-
uation metric is based on Cohen’s (1960) κ . Two
post-hoc evaluation metrics are also used. The first,
top-ranked (TRnk), evaluates the simplest set of
substitutes that is ranked first by the system, com-
pared with the top-ranked set of substitutes in the
gold standard. This represents the intersection be-
tween the first substitute set found by the system
with the first set in the gold standard. The inter-
section should include at least one substitute. The
second metric, recall at n (R@n) is the ratio of can-
didates from the top n sets of substitutes to those
in the gold standard, where 1≤ n≤ 3. For a given
n, the contexts with at least n+1 substitutes in the
gold standard are considered.

2.2 Word Sense Disambiguation,
Optimization, and Metaheuristics

Word sense disambiguation, the task of determin-
ing which of a word’s meanings is the one intended
in a given context, is a prerequisite for generating
substitutes in knowledge-based lexical substitution.

1These metrics are inspired by, but distinct from, the tradi-
tional recall and precision metrics from information retrieval.
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Figure 1: Our approach to lexical substitution and simplification of a target word in context.

There are many different approaches to WSD; for
our purposes it is convenient to define it as an opti-
mization problem where the aim is to disambiguate
a sequence of words simultaneously (Abualhaija
and Zimmermann, 2016): Let W =(w1,w2, . . . ,wn)
be a sequence of n words to be disambiguated, and
σ = (s1,s2, . . . ,sn) the corresponding sequence of
senses for each word. Let S = {σ1, . . . ,σm} be the
set of all sequences of senses that represent sense
combinations of the words in W . Then the objec-
tive function is argmaxσ∈S `(σ), where ` is the
score assigned to a sequence of senses according to
some measure of semantic similarity, such as those
surveyed by Zesch and Gurevych (2010).

WSD as an optimization problem is NP-hard.
This can be worked around by using metaheuris-
tics, which are approximate, tractable algorithms
that find near-optimal solutions. Metaheuristics
can be single-solution and population-based search
methods. The former manipulate and transform a
single solution, giving more focus to the promising
regions. Population-based methods work on multi-
ple solutions, distributing their focus and exploring
several regions of the search space simultaneously.

3 Approach

We investigate two knowledge-based, language-
independent approaches to lexical substitution,
whose main difference lies in the metaheuristic
WSD component preceding the generation phase.
Both approaches use a top-down generation pro-
cess, in which the target word is first disambiguated
in context with respect to a particular sense inven-
tory, and then used to suggest a list of substitutes.2

In the following subsections, we describe the two
disambiguation components and the common sub-
stitute generation and ranking components. (See
overview in Figure 1.)

2This contrasts with a bottom-up approach, where a list of
all possible substitutes for the target word is first generated
and then filtered to suit the context.

3.1 Disambiguation with Simulated
Annealing

Simulated annealing (Kirkpatrick et al., 1983) is
a single-solution algorithm in which a randomly
created solution is iteratively modified until a
“good-enough” solution is found. To apply it to
WSD, we use essentially the same setup as Cowie
et al. (1992). We start with a randomly initial-
ized sense combination σ0 = (s1,s2, . . . ,sn) from
a given sense inventory, for each word in the con-
text. We then retrieve the glosses for each sense,
preprocess them via lemmatization and stop word
removal, and give each remaining term a score
of n− 1 if it appears n times. We calculate the
configuration’s redundancy, R0, by summing up
all the scores. In other words, R0 is the lexical
overlap between sense definitions. The aim of sim-
ulated annealing is to maximize this overlap, or
more precisely to minimize the energy function
Ei = 1/(1+Ri) in each iteration i.

In this iterative process, each iteration makes a
random change on the configuration σi to produce
σi+1, on which the corresponding Ei is computed.
If Ei+1 < Ei (i.e., ∆E < 0), then the new configura-
tion replaces the old configuration for the next iter-
ation. Otherwise, the new configuration might still
be accepted with probability Pr = exp(−∆E/T ),
where T is initially set to 1 but replaced with 0.9T
for each subsequent iteration. This way, the al-
gorithm risks exploring poor-looking paths that
might nonetheless yield better results in the long
run, and the earlier the iterations are, the greater
the probability that a poor path is followed. In our
experiments we iterate up to 30 times.

3.2 Disambiguation with D-Bees

D-Bees (Abualhaija and Zimmermann, 2016) is a
population-based algorithm inspired by bee colony
optimization (BCO) (Teodorović, 2009). BCO
models the foraging behaviour of honey bees,
where thousands of individuals with limited knowl-
edge collaborate to maximize their collective bene-
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fit. In nature, bees fly around their hive to look for
nectar and pollen. When they find it, they return to
the hive and perform a dance to advertise its loca-
tion and quality to the others. The observers then
decide whether to remain committed to their own
path or to abandon it in favour of one of the adver-
tised paths. BCO simulates this method through a
multi-agent decentralized system.

D-Bees starts by choosing one of the target
words as the hive, which spawns bee agents and
sends them to other words in the context. The num-
ber of bee agents equals the number of candidate
senses of the hive; each bee agent starts off with
one of these senses in its memory. For each word it
visits, the bee disambiguates it by randomly select-
ing a candidate sense, building up a path of senses
and maintaining a running total similarity score.
This forward pass continues until a set number of
moves is reached.

The bee then makes a backward pass to the hive
and exchanges its partial solution with the other
agents on the virtual dancing floor. Each bee then
determines whether it should stick to its path or
adopt that of another bee; this is accomplished
through loyalty and recruiting probability functions
that depend mainly on the quality of the partial so-
lutions. On the next forward pass, the bees resume
their searches from the ends of their chosen paths.
The forward and backward passes are alternated
until there are no more words to be disambiguated.
The bee agent with the best solution determines the
final sense labelling of all words in the context.

In experiments on separate tuning datasets, we
determined the number of moves in the forward
pass to be one-third the number of context words.
For the calculation of semantic similarity, we use
a variant of the adapted Lesk algorithm (Banerjee
and Pedersen, 2002). For each sense, we build a
textual representation by concatenating its gloss
with those of its hyper- and hyponyms. We then
calculate the lexical overlap between the two texts.

3.3 Substitute Generation

Once the target word is disambiguated with respect
to a particular sense inventory, we generate an un-
ordered list of substitutes (to be subsequently or-
dered by the ranking module). The sense inventory
we use for disambiguation is WordNet 3.1 (Fell-
baum, 1998) for our English tasks, and Germa-
Net 10.0 (Hamp and Feldweg, 1997; Henrich and
Hinrichs, 2010) for the German one. These are

expert-built resources in which words representing
the same concept are grouped together into synsets;
synsets are in turn linked into a network by seman-
tic relations such as hypernymy and meronymy.

In preliminary experiments on generating sub-
stitutes, we varied two independent parameters:
which lexical-semantic resources to use as the
source of substitutes, and which semantic relations
to follow from the disambiguated synset.

With respect to the first parameter, we tried
drawing substitutes from the disambiguation inven-
tory (WordNet or GermaNet) alone, and also draw-
ing additional substitutes from Wiktionary. Our
use of Wiktionary as a complementary resource is
motivated by Meyer and Gurevych (2012), who
found its coverage to be complementary to those of
expert-built resources, and by Henrich and Hinrichs
(2012), who found that using information from
both GermaNet and Wiktionary improved WSD
performance. We used a relatively simple, Lesk-
like method for mapping senses from WordNet/
GermaNet to Wiktionary.

For the second parameter, we tried one setup in
which we took all synonyms found in the disam-
biguated synset and in its hypernyms, and one in
which we additionally pulled in synonyms from
the hyponyms and all other related synsets (except
antonyms). The first setup was informed by the
annotation guidelines of the lexical substitution
datasets, which indicate that it is permissible to
suggest substitute terms that are more generic but
not more specific. The second setup was informed
by the analyses of Kremer et al. (2014) and Miller
et al. (2016), which found, contrarily, that other
semantic relations, including hyponyms, were a
fruitful source of substitutes.

We obtained the best overall results when us-
ing both WordNet/GermaNet and Wiktionary, and
when following semantic relations of all types
(other than antonymy), to build the substitute list.
We therefore used this setup for all our lexical sub-
stitution and simplification experiments.

3.4 Ranking

The final step of lexical substitution is to rank the
substitutes. Our method, like those employed in
previous lexical substitution tasks, assumes that a
substitute’s suitability depends on the type of its
semantic relation to the target word. We there-
fore order the substitutes as follows: synonyms,
hypernyms, hyponyms, other relations. Within
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each semantic relation type, we sort the substitutes
first by source (first WordNet/GermaNet, then Wik-
tionary), and then secondarily by reverse frequency
in a large corpus. In preliminary experiments, we
found that this method was generally better than
simply sorting the entire substitute list by reverse
frequency. To determine lemma frequency, we use
the same frequency lists used to construct the origi-
nal datasets: WaCky (Baroni et al., 2009) for Ger-
man, and BNC (Burnard, 2007) for English.

4 Lexical Substitution for German

4.1 Dataset and Baselines

In our experiments, we use the data from Germ-
Eval 2015 (Miller et al., 2015), a shared task for
German-language lexical substitution. It is split
into a training and a test set of 1040 and 1000 sen-
tences from the German edition of Wikipedia. Each
sentence in the dataset contains one of 75 unique
target words (25 nouns, 25 verbs, and 25 adjec-
tives); in the test set, ten sentences are provided for
each of the nouns and adjectives, and twenty for
each verb.

Miller et al. (2015) report results of several
naı̈ve baselines, the best-performing of which are
weighted sense (Toral, 2009) and top-ranked syn-
onym (McCarthy and Navigli, 2009). Neither base-
line makes any attempt to disambiguate the target
word; rather, they build a substitute list by gather-
ing synonyms of all possible senses of the target, as
well as synonyms of closely related senses such as
hypernyms, and then ranking these words by their
frequency (either within the list itself or in a large
corpus). We consider these two naı̈ve baselines as
reasonable lower bounds.

The more challenging baseline performance
comes from the best-performing participating sys-
tems at GermEval 2015, which represent the state
of the art in German-language lexical substitution.
One of these systems (Hintz and Biemann, 2015)
is a supervised, bottom-up approach inspired by
previous English-language work by Szarvas et al.
(2013a). It first retrieves a list of substitutes from
various lexicons, then applies a maxent classifier
to determine whether each substitute fits the con-
text. The second system (Jackov, 2015) is based on
techniques from machine translation. It first disam-
biguates the input text by mapping German words
to concepts represented by WordNet synsets. It
then produces and scores various parsing hypothe-
ses, and selects the synonyms and hypernyms of

the target in the best-scoring hypothesis.

4.2 Results and Analysis
Table 1 shows the results of the baselines described
above, along with those of our basic D-Bees- and
simulated annealing–based systems, and an en-
hanced version of the D-Bees system that we de-
scribe below.3 Both our basic systems outperform
the prior state of the art for the four OOT metrics,
with the D-Bees–based system performing slightly
better than the one using simulated annealing. How-
ever, neither system was able to beat Hintz and
Biemann (2015) for the GAP and best metrics.

In light of this gap, we modified the D-Bees–
based system to account for some idiosyncrasies of
our German-language resources:

• Where GermaNet provided additional
spellings of a synonym (e.g., “wacklig” for
“wackelig”), we placed the variant spellings at
the end of the substitute list. This prevented
the top ranks of the list from being overloaded
with nearly identical terms.

• Where our resources provided gender-specific
variants of a synonym, we filtered out those
that did not match the gender of the target.
For example, when building the substitute
list for “Meisterin” (female champion), we
exclude “Meister” (male champion), even
though GermaNet lists it as a synonym.

• To control for Wiktionary’s lack of consis-
tency, we filtered out Wiktionary-derived syn-
onyms where the synonymy relation was not
symmetric. For example, the Wiktionary entry
for “Likör” gives “Crème” as a synonym, but
the entry for “Crème” does not give “Likör”,
so when building a substitute list for “Likör”,
we do not include “Crème”.

With these resource-specific enhancements, the
D-Bees system achieves state-of-the-art perfor-
mance not only for OOT but also for GAP, and
performs only slightly worse than Hintz and Bie-
mann (2015) for best. (This is an impressive result
considering that Hintz and Biemann (2015) is a
supervised system while ours is based solely on
external knowledge bases and does not require any
training data.) We also examined its performance
by part of speech. We found that it remains the

3Here, as well as in §5, we report results on the test split
and used the training split for tuning our algorithms.
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Table 1: System performance on the GermEval 2015 lexical substitution dataset.

System
Best OOT

GAP
P R Pm Rm P R Pm Rm

D-Bees 7.66 7.66 14.85 14.85 20.68 20.68 37.73 37.73 12.94
D-Bees (enhanced) 10.39 10.39 22.39 22.39 21.88 21.88 39.64 39.64 16.40
simulated annealing 9.40 9.40 19.67 19.67 19.95 19.95 36.16 36.16 14.34

Hintz and Biemann (2015) 11.20 11.10 24.28 24.21 19.49 19.31 33.99 33.89 15.96
Jackov (2015) 6.73 6.45 13.36 12.86 20.14 19.32 33.18 31.92 11.26
top-ranked synonyms 10.04 10.04 19.82 19.82 15.21 15.21 27.99 27.99 12.25
weighted sense 7.50 7.50 13.46 13.46 20.54 20.54 35.55 35.55 14.28

best-performing system for GAP across all parts of
speech, and for nouns and verbs is able to match
or exceed Hintz and Biemann (2015) on some best
metrics.

5 Lexical Substitution for English

5.1 Dataset and Baselines
Our English-language data is taken from the
SemEval-2007 shared task (McCarthy and Nav-
igli, 2009). That task uses a sample of 201 target
words (nouns, verbs, adjectives and adverbs); for
each word, ten context sentences are selected from
the English Internet Corpus (Sharoff, 2006). Five
human annotators provided up to three substitutes
for each target. The dataset is split into a training
set (300 sentences) and a test set (1710 sentences).

McCarthy and Navigli (2009) provide results for
the aforementioned “top-ranked synonyms” algo-
rithm as a lower bound on performance. State-of-
the-art performance across the nine evaluation met-
rics is represented by the top-performing systems
at SemEval-2007 (Giuliano et al., 2007; Hassan et
al., 2007; Yuret, 2007; Zhao et al., 2007) and by
several later systems (Biemann and Riedl, 2013;
Melamud et al., 2015).4 Of these systems, only
Yuret (2007) is supervised.

5.2 Results and Analysis
Table 2 shows the results for the state-of-the-art
and naı̈ve baselines, along with results of our two
basic systems and, as before, an enhanced version

4We are aware of several further lexical substitution sys-
tems (Moon and Erk (2013), Ó Séaghdha and Korhonen
(2014), Roller and Erk (2016), Sinha and Mihalcea (2011),
Szarvas et al. (2013b), and Thater et al. (2010) as reimple-
mented by Kremer et al. (2014)), though they do not report
results on the full SemEval-2007 test set, or else do not report
any of the same metrics we do, or else are concerned only
with ranking but not generating substitutes.

of the D-Bees system. Our systems’ performance
is generally much lower here than on the German-
language data, with D-Bees failing to exceed the
state of the art.

As with our German experiments, we tried modi-
fying the D-Bees–based system to work around the
language-specific problems we observed. The most
significant of these adaptations are as follows:

• Our analysis suggested that WordNet’s noto-
riously fine sense granularity was adversely
affecting the WSD process. We therefore mod-
ified D-Bees to perform “soft” WSD (Ramakr-
ishnan et al., 2004), meaning that we allow it
to select several different senses as the correct
ones—in our case, up to five. To compensate
for the larger number of substitution candi-
dates, we limit the ranked list of substitutes
to 20. (This hearkens back to the bottom-up
approaches defined in §3.) Substitutes gener-
ated from the best disambiguation solution are
ranked highest.

• In contrast to German, English lexical sub-
stitutes are often drawn from indirect hyper-
nyms (Kremer et al., 2014; Miller et al., 2016).
(This too may be an artifact of WordNet’s fine
granularity.) We therefore extended our sub-
stitute search to two levels of hypernyms.

• The glosses provided by WordNet sometimes
consist of a list of equivalent terms which do
not appear in the list of synonyms. For exam-
ple, WordNet defines one sense of the adverb
“right” as “precisely, exactly”, though it does
not actually list those words as synonyms. We
therefore include as the lowest-ranked substi-
tutes those words from the target’s gloss that
match its part of speech.
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Table 2: System performance on the SemEval-2007 lexical substitution dataset.

System
Best OOT

GAP
P R Pm Rm P R Pm Rm

D-Bees 8.73 8.73 14.88 14.88 24.88 24.88 35.53 35.53 13.25
D-Bees (enhanced) 11.77 11.77 19.35 19.35 34.68 34.68 47.80 47.80 17.93
simulated annealing 5.87 5.87 9.84 9.84 18.44 18.44 25.53 25.53 9.19

Zhao et al. (2007) 11.35 11.35 18.86 18.86 33.88 33.88 46.91 46.91 —
Giuliano et al. (2007) 6.95 6.94 20.33 20.33 69.03 68.90 58.54 58.54 —
Yuret (2007) 12.90 12.90 20.65 20.65 46.15 46.15 61.30 61.30 —
Hassan et al. (2007) 12.77 12.77 20.73 20.73 49.19 49.19 66.26 66.26 —
Melamud et al. (2015) 8.09 8.09 13.41 13.41 27.65 27.65 39.19 39.19 —
Biemann and Riedl (2013) — — — — 27.48 27.48 37.19 37.19 —
top-ranked synonyms 9.95 9.95 15.28 15.28 29.70 29.35 40.57 40.57 —

• As WordNet contains no hypernymy relations
for adjectives, for our purposes we use its
“similar-to” relation instead.

• For word frequency, we generally prefer the
counts provided by WordNet, since they are
sense-disambiguated. (This use of manu-
ally sense-annotated data makes our approach
weakly supervised.) In other cases, such as
when ranking substitutes from Wiktionary,
we use Web 1T (Brants and Franz, 2006) in-
stead of BNC. Web 1T is a much larger, more
modern, Web-derived corpus that may better
reflect the lemma distributions in the Web-
derived SemEval-2007 dataset.

The enhanced D-Bees–based system performs
significantly better than the base system, though in
common with the two post–SemEval-2007 systems,
it still fails to surpass the state of the art for best and
OOT. The two knowledge-based systems that out-
perform our system by a large margin, Giuliano et
al. (2007) and Hassan et al. (2007), employ particu-
larly strong substitute generation components that
use a combination of WordNet with a rich thesaurus
resource—the Oxford American Writer Thesaurus
and the Microsoft Encarta encyclopedia, respec-
tively. Both resources outperform Wiktionary in
terms of coverage of synonyms and semantically
related words. However, as these resources are
proprietary, they were not available to us.

Our system’s performance is roughly on par with
Zhao et al. (2007), another bottom-up approach.
Our enhanced system does achieve the highest
known GAP score, though this is largely because
most prior work does not use this metric, or else

applies it only to the ranking of gold-standard sub-
stitutes.

6 Lexical Simplification

6.1 Experimental Setup

Our experiments use the dataset from the SemEval-
2012 English lexical simplification task (Specia et
al., 2012). It uses the same contexts and target
words as the SemEval-2007 dataset, but the gold-
standard substitutes, which include the original tar-
get words, have been manually re-ranked accord-
ing to their perceived simplicity. Unlike SemEval-
2007, the SemEval-2012 task is concerned exclu-
sively with ranking substitutes; all the original par-
ticipating systems were given the gold-standard
substitutes and simply asked to put them in the
correct order. However, to score our own systems
we use their own substitute lists, removing only
those substitutes that do not also appear in the gold-
standard list. This puts us at somewhat of a dis-
advantage, since our substitute lists often contain
only a subset of the gold-standard substitutes. It
also makes use of the κ metric problematic, since
κ expects the system and gold-standard lists to con-
tain the same set of substitutes. We therefore report
only TRnk and R@n scores.

Specia et al. (2012) report scores for two lower-
bound baselines: one puts the substitute lists in
random order, and the other orders them by inverse
frequency of occurrence in Web 1T.5 The state of
the art is represented by Jauhar and Specia (2012),

5A third baseline leaves the lists in their original order (i.e.,
by inverse number of annotators who chose them). We ignore
it here as it relies entirely on manual labelling.
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Table 3: System performance on the SemEval-2012 lexical simplification dataset.

System TRnk R@1 R@2 R@3

D-Bees (enhanced) (original ordering) 37.5 71.6 75.5 76.4
D-Bees (enhanced) (unigram ordering) 50.9 72.8 75.2 76.3
D-Bees (enhanced) (n-gram ordering) 47.1 71.3 74.5 75.7
Jauhar and Specia (2012) 60.2 57.5 68.9 76.9

unigram ordering baseline 58.5 55.9 68.1 76.0
random ordering baseline 34.0 32.1 61.2 82.5

a supervised system that classifies substitutes using
a context-sensitive n-gram frequency model, a bag-
of-words model, and psycholinguistic features. At
SemEval-2012 it achieved the best performance for
every metric except R@3, where it was beaten only
by the random baseline.

We first calculated the proportion of instances
for which our systems suggested at least one sub-
stitute appearing in the gold standard (other than
the target word itself). For the simulated annealing
system, the percentage was 45.7%, for the D-Bees
system it was 58.7%, and for the enhanced D-Bees
system, it was 81.6%. We tentatively conclude that
the soft WSD of enhanced D-Bees is necessary to
generate sufficient numbers of substitutes in com-
mon with the gold standard, and exclude our other
two systems from further consideration.

Since the SemEval-2012 lexical simplification
task is concerned only with ranking, we test three
different rankings of the enhanced D-Bees substi-
tute list. First, we preserve the original order of the
system. Second, we order by unigram frequency
in Web 1T, as in the SemEval-2012 baseline. Our
third ranking is an n-gram ordering approach that
we found to work well (κ = 0.461) on the full
gold-standard substitute lists. Here the substitutes
are sorted according to the summation of the com-
bined frequency of the substitute and context words.
More formally, let W be the set of all unique words
in the context window, excluding the target wt , and
let S be the set of substitutes for wt . Then each
substitute s ∈ S is given a score

F(s) = ∑
w∈W

f (s,w),

where f (s,w) is the Web 1T co-occurrence fre-
quency for s and w. The list of substitutes is then
sorted by descending score.

6.2 Results and Analysis
Table 3 shows the published results for our base-
lines, along with the results from the enhanced
D-Bees–based system from §5.2 using various
ranking methods. While none of our configura-
tions scored particularly well on TRnk, all of them
surpassed the state of the art for R@1 and R@2,
and performed about as well as Jauhar and Specia
(2012) for R@3. These results are particularly im-
pressive in light of the fact that the SemEval-2012
systems had access to the gold-standard substitutes,
whereas our systems did not.

The good R@n scores when using the original
ordering indicate that the D-Bees–based system
is (quite serendipitously) predisposed to select-
ing simple substitutes and ranking them relatively
highly. We note that there is relatively little dif-
ference between our three system configurations,
suggesting that all three ranking methods are doing
more or less the same thing, at least for the first
few substitutes. This result is somewhat surprising
in light of Specia et al.’s (2012) assumption that
the notion of simplicity is context-dependent. (It is
this notion that our n-gram–based ranking model
was attempting to capture.) It could be that, for our
systems, the context (including text complexity) is
already sufficiently accounted for during WSD.

7 Conclusion

In this paper, we have presented the first extrinsic
evaluations of simulated annealing and D-Bees in a
lexical substitution setting. We used each algorithm
as the WSD component in the same knowledge-
based, language-independent lexical substitution
system. The systems were tested on German and
English datasets, and surpassed state-of-the-art per-
formance on the former. The D-Bees system gener-
ally had better results, so we applied some resource-
specific adaptations based on our own observations
of GermaNet and WordNet, as well as on previ-
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ously published studies on German and English lex-
ical substitution. These adaptations led to dramatic
improvements in performance on both datasets. We
also tested the adapted D-Bees system in a lexical
simplification setting, where (in spite of some hand-
icaps) it exceeded state-of-the-art performance on
two evaluation metrics. Our findings would seem
to validate the utility of metaheuristic approaches
for lexical substitution and simplification, with the
caveat that optimal performance is achieved only
when the systems are adapted to the language or lin-
guistic resources used. This adaptation effort may
nonetheless be lower than that required to source
annotated training data for supervised approaches.

Regarding future work, there are several issues
of interest. The first concerns our use of collab-
oratively constructed language resources. While
our WSD components used only expert-built re-
sources, we found it beneficial to draw additional
substitution candidates from Wiktionary. For this
we used a very basic sense alignment technique,
though a more profound sense mapping between
WordNet/GermaNet and Wikitionary, such as those
surveyed by Gurevych et al. (2016), might lead to
better downstream results. The approach D-Bees
uses for calculating sense similarity is also quite
basic; though it seemed to work well in practice,
we are keen to investigate other methods, such as
taking the WordNet/GermaNet graph structure into
account, or using other measures of text similarity
to compare glosses.
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Abstract

Recognizing and generating paraphrases is
an important component in many natural
language processing applications. A well-
established technique for automatically
extracting paraphrases leverages bilin-
gual corpora to find meaning-equivalent
phrases in a single language by “pivot-
ing” over a shared translation in another
language. In this paper we revisit bilin-
gual pivoting in the context of neural ma-
chine translation and present a paraphras-
ing model based purely on neural net-
works. Our model represents paraphrases
in a continuous space, estimates the de-
gree of semantic relatedness between text
segments of arbitrary length, or generates
candidate paraphrases for any source in-
put. Experimental results across tasks and
datasets show that neural paraphrases out-
perform those obtained with conventional
phrase-based pivoting approaches.

1 Introduction

Paraphrasing can be broadly described as the task
of using an alternative surface form to express
the same semantic content (Madnani and Dorr,
2010). Much of the appeal of paraphrasing stems
from its potential application to a wider range of
NLP problems. Examples include query and pat-
tern expansion (Riezler et al., 2007), summariza-
tion (Barzilay, 2003), question answering (Lin and
Pantel, 2001), semantic parsing (Berant and Liang,
2014), semantic role labeling (Woodsend and La-
pata, 2014), and machine translation (Callison-
Burch et al., 2006).

Most of the recent literature has focused on the
automatic extraction of paraphrases from various
different types of corpora consisting of parallel,
non-parallel, and comparable texts. One of the
most successful proposals uses bilingual parallel
corpora to induce paraphrases based on techniques
from phrase-based statistical machine translation
(SMT, Koehn et al. (2003)). The intuition behind

Bannard and Callison-Burch’s (2005) bilingual
pivoting method is that two English strings e1 and
e2 that translate to the same foreign string f can be
assumed to have the same meaning. The method
then pivots over f to extract 〈e1,e2〉 as a pair of
paraphrases. Drawing inspiration from syntax-
based SMT, several subsequent efforts (Callison-
Burch, 2008; Ganitkevitch et al., 2011) extended
this technique to syntactic paraphrases leading to
the creation of PPDB (Ganitkevitch et al., 2013;
Ganitkevitch and Callison-Burch, 2014), a large-
scale paraphrase database containing over a billion
of paraphrase pairs in 23 different languages.

In this paper we revisit the bilingual pivoting
approach from the perspective of neural machine
translation, a new approach to machine transla-
tion based purely on neural networks (Kalchbren-
ner and Blunsom, 2013; Bahdanau et al., 2014;
Sutskever et al., 2014; Luong et al., 2015). At
its core, NMT uses a deep neural network trained
end-to-end to maximize the conditional probabil-
ity of a correct translation given a source sen-
tence, using a bilingual corpus. NMT models
have obtained state-of-the art performance for sev-
eral language pairs (Jean et al., 2015b; Luong et
al., 2015), using only parallel data for training,
and minimal linguistic information. In this pa-
per we show how the bilingual pivoting method
can be ported to NMT and argue that it offers at
least three advantages over conventional methods.
Firstly, our neural paraphrasing model learns con-
tinuous space representations for phrases and sen-
tences (aka embeddings) that can be usefully in-
corporated in downstream tasks such as recogniz-
ing textual similarity and entailment. Secondly,
the proposed model is able to either score a pair
of paraphrase candidates (of arbitrary length) and
generate target paraphrases for a given source in-
put. Due to the architecture of NMT, genera-
tion takes advantage of wider context compared to
phrase-based approaches: target paraphrases are
predicted based on the meaning of the source input
and all previously generated target words.

In the remainder of the paper, we introduce our
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paraphrase model and experimentally compare it
to the phrase-based pivoting approach. We eval-
uate the model’s paraphrasing capability both in-
trinsically in a paraphrase detection task (i.e., de-
cide the degree of semantic similarity between
two sentences) and extrinsically in a generation
task. Across tasks and datasets our results show
that neural paraphrases yield superior performance
when assessed automatically and by humans.

2 Related Work

The literature on paraphrasing is vast with meth-
ods varying according to the type of paraphrase
being induced (lexical or structural), the type of
data used (e.g., monolingual or parallel corpus),
the underlying representation (surface form or
syntax trees), and the acquisition method itself.
For an overview of these issues we refer the in-
terested reader to Madnani and Dorr (2010). We
focus on bilingual pivoting methods and aspects
of neural machine translation pertaining to our
model. We also discuss related work on paraphras-
tic embeddings.

Bilingual Pivoting Paraphrase extraction using
bilingual parallel corpora was proposed by Ban-
nard and Callison-Burch (2005). Their method
first extracts a bilingual phrase table and then ob-
tains English paraphrases by pivoting through for-
eign language phrases. Paraphrases for a given
phrase are ranked using a paraphrase probability
defined in terms of the translation model proba-
bilities P( f |e) and P(e| f ) where f and e are the
foreign and English strings, respectively.

Motivated by the wish to model sentential
paraphrases, follow-up work focused on syntax-
driven techniques again within the bilingual piv-
oting framework. Extensions include represent-
ing paraphrases via rules obtained from a syn-
chronous context free grammar (Ganitkevitch et
al., 2011; Madnani et al., 2007) as well as label-
ing paraphrases with linguistic annotations such as
CCG categories (Callison-Burch, 2008) and part-
of-speech tags (Zhao et al., 2008).

In contrast, our model is syntax-agnostic, para-
phrases are represented on the surface level with-
out knowledge of any underlying grammar. We
capture paraphrases at varying levels of granular-
ity, words, phrases or sentences without having to
explicitly create a phrase table.

Neural Machine Translation There has been a
surge of interest recently in repurposing sequence
transduction neural network models for machine

translation (Sutskever et al., 2014). Central to
this approach is an encoder-decoder architecture
implemented by recurrent neural networks. The
encoder reads the source sequence into a list of
continuous-space representations from which the
decoder generates the target sequence. An atten-
tion mechanism (Bahdanau et al., 2014) is used to
generate the region of focus during decoding.

We employ NMT as the backbone of our para-
phrasing model. In its simplest form our model ex-
ploits a one-to-one NMT architecture: the source
English sentence is translated into k candidate
foreign sentences and then back-translated into
English. Inspired by multi-way machine trans-
lation which has shown performance gains over
single-pair models (Zoph and Knight, 2016; Dong
et al., 2015; Firat et al., 2016a), we also explore an
alternative pivoting technique which uses multiple
languages rather than a single one. Our model in-
herits advantages from NMT such as a small mem-
ory footprint and conceptually easy decoding (im-
plemented as beam search). Beyond paraphrase
generation, we experimentally show that the rep-
resentations learned by our model are useful in se-
mantic relatedness tasks.

Paraphrastic Embeddings The successful use
of word embeddings in various NLP tasks has pro-
vided further impetus to use paraphrases. Wiet-
ing et al. (2015) take the paraphrases contained
in PPDB and embed them into a low-dimensional
space using a recursive neural network similar to
Socher et al. (2013). In follow-up work (Wiet-
ing et al., 2016), they learn sentence embeddings
based on supervision provided by PPDB. In our
approach, embeddings are learned as part of the
model and are available for any-length segments
making use of no additional machinery beyond
NMT itself.

3 Neural Paraphrasing

In this section we present PARANET, our
Paraphrasing model based on Neural Machine
Translation. PARANET uses neural machine trans-
lation to first translate from English to a foreign
pivot, which is then back-translated to English,
producing a paraphrase. In the following, we
briefly overview the basic encoder-decoder NMT
framework and then discuss how it can be ex-
tended to paraphrasing.
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3.1 NMT Background
In the neural encoder-decoder framework for MT
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015), the encoder, a recurrent neural
network (RNN), is used to compress the mean-
ing of the source sentence into a sequence of vec-
tors. The decoder, a conditional RNN language
model, generates a target sentence word-by-word.
For the language pair, an encoder takes in a source
sentence X = {x1, ...,xTX}, as a sequence of lin-
guistic symbols and produces a sequence of con-
text vectors C = {h1, ...hTX}. PARANET uses a bi-
directional RNN, where each context vector ht is
the concatenation of the forward and the backward
RNN’s hidden states at time t.

The decoder is a conditional RNN language
model that produces, given the source sentence,
a probability distribution over the translation. At
each time step t ′, the decoder’s hidden state is up-
dated:

zt ′ = RNN(zt ′−1,yt ′−1,ct ′) (1)

The update uses the previous hidden state zt ′−1, the
previous target symbol yt ′−1 and the time depen-
dent context ct ′ , which is computed by an attention
mechanism αt,t ′ over the source sentences’ context
vectors:

ct ′ =
Tx

∑
t=1

αt ′,tht (2)

αt ′,t ∝ e f (zt′−1,ht) (3)

g is a feedforward neural network with a softmax
activation function in the output layer which re-
turns the probability of the next target symbol. The
probability of the target sentence Y = {y1, ...,yTX},
is the product of the probabilities of the symbols
within the sentence:

P(Y |X) =
TY

∏
t ′=1

P(yt ′ |y<t ′ ,X) (4)

3.2 Pivoting
Pivoting is often used in machine translation to
overcome the shortage of parallel data, i,e., when
there is not a translation path from the source lan-
guage to the target. Instead, pivoting takes advan-
tage of paths through an intermediate language.
The idea dates back at least to Kay (1997), who
observed that ambiguities in translating from one
language onto another may be resolved if a transla-
tion into some third language is available, and has
met with success in traditional phrase-based SMT
(Wu and Wang, 2007; Utiyama and Isahara, 2007)

and more recently in neural MT systems (Firat et
al., 2016b).

In the case of paraphrasing, there is not a path
from English to English. Instead, a path from En-
glish to French to English can be used. In other
words, we translate a source sentence into a pivot
language and then translate the pivot back into the
source language. Pivoting using NMT ensures that
the entire sentence is considered when choosing a
pivot. The fact that contextual information is con-
sidered when translating, allows for a more accu-
rate pivoted sentence. It also places greater em-
phasis on capturing the meaning of the sentence,
which is a key part of paraphrasing.

A naive approach to pivoting is one-to-one
back-translation. The source English sentence E1,
is translated into a single French sentence F . Next,
F is translated back into English, giving a proba-
bility distribution over English sentences, E2. This
translation distribution acts as the paraphrase dis-
tribution P(E2|E1,F):

P(E2|E1,F) = P(E2|F) (5)

One-to-one back-translating offers an easy way to
paraphrase, because existing NMT systems can be
used with no additional training or changes. How-
ever, there are several disadvantages; for example
the French sentence F must fully capture the ex-
act meaning of E1, as E1 and E2 are conditionally
independent given F . Since there is rarely a clear
one-to-one mapping between sentences in differ-
ent languages, information about the source sen-
tence can be lost, leading to inaccuracies in the
paraphrase probabilities. To avoid this, we pro-
pose back-translating through multiple sentences
within one and multiple foreign languages.

Multi-pivoting PARANET pivots through the
set of K-best translations F = {F1, ...FK} of E1.
This ensures that multiple aspects (semantic
and syntactic) of the source sentence are cap-
tured. Moreover, multiple pivots provide re-
silience against a single bad translation, which
would prevent one-to-one back-translation from
producing accurate paraphrase probabilities.

Translating from multiple pivot sentences into
one target sentence requires that the decoder be re-
defined. Firat et al. (2016b) propose several ways
in which multiple pivot sentences can be incorpo-
rated into a NMT decoder. We extended their late
averaging approach to incorporate weights. Con-
sider the case of two pivot sentences from the same
language, F1 and F2. Each translation path individ-
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Figure 1: Late-weighted combination: two pivot sentences are simultaneously translated to one target
sentence. Blue circles indicate the encoders, which individually encode the two source sentences. After
the EOL token is seen, decoding starts (red circles). At each time step the two decoders produce a prob-
ability distribution over all words, which are then combined (in the yellow square) using Equation (6).
From this combined distribution a word is chosen, which is then given as input to each decoder.

ually computes the distribution over the target vo-
cabulary P(yt ′ =w|y<t ′ ,F1) and P(yt ′ =w|y<t ′ ,F2).
Our late-weighted combination approach defines
the path with respect to both translations as:

P(yt ′ = w|y<t ′ ,F1,F2) = λ1P(yt ′ = w|y<t ′ ,F1)

+λ2P(yt ′ = w|y<t ′ ,F2)

While Firat et al. (2016b) train a new model to
capture these joint translations, we leave the model
unchanged, instead treating PARANET as a meta
encoder-decoder model (see Figure 1).

Unlike late averaging, PARANET assigns
weights λ to each pivot sentence. These weights
are set to the initial translation probabilities
P(Fi|E1), thus capturing the model’s confidence in
the accuracy of the translation:

P(yt ′=w|y<t ′ ,F1,F2) = P(F1|E1)P(yt ′=w|y<t ′ ,F1)
+P(F2|E1)P(yt ′=w|y<t ′ ,F2)

Which can be trivially extended to include all
translations from the K-best list:

(6)P(yt ′ = w|y<t ′ ,F ) =

∑K
i=1 P(Fi|E1) ·P(yt ′ = w|y<t ′ ,Fi)

To ensure a probability distribution, we normalize
the K-best list F , such that the translation proba-
bilities sum to one.

Multi-lingual Pivoting PARANET further ex-
pands on the multi pivot approach by pivoting
not only over multiple sentences from one lan-
guage, but also over multiple sentences from mul-
tiple languages. Multi-lingual pivoting has been
recently shown to improve translation quality (Fi-
rat et al., 2016b), especially for low-resource lan-
guage pairs. Here, we hypothesize that it will also
lead to more accurate paraphrases.

Multi-lingual pivoting requires a small exten-
sion to late-weighted combination. We illus-
trate with German as a second language. First,

the source sentence is translated into a K-best
list of French F Fr, and a K-best list of Ger-
man F De. Late-weighted combination is then ap-
plied, producing P(yt ′ = w|y<t ′ ,F Fr) and P(yt ′ =
w|y<t ′ ,F De). These two output distributions
are averaged, producing a multi-sentence, multi-
lingual paraphrase probability:

P(yt ′ = w|y<t ′ ,F Fr,F De) =

1
2
(
P(yt ′ = w|y<t ′ ,F Fr)+P(yt ′ = w|y<t ′ ,F De)

)

which is used to obtain probability distributions
over sentences:

P(E2|E1) =

TE2

∏
t ′=1

P(yt ′ |y<t ′ ,F Fr,F De) (7)

This can be trivially generalized to multiple lan-
guages. In this paper we use up to three.

3.3 PARANET Applications

The applications of PARANET are many and
varied. We discuss some of these here and
present detailed experimental evidence in Sec-
tion 4. PARANET can be readily used for para-
phrase detection (the task of analyzing two text
segments and determining if they have the same
meaning), by computing Equation (7). In
addition, it can identify which linguistic units
are considered paraphrases and to what extent.
PARANET’s explanatory power stems from the at-
tention mechanism inherent in the NMT systems.

In encoder-decoder models, attention is used
during each step of decoding to indicate which
are the relevant source words. In our case, each
word of the paraphrase attends to words within
the pivot sentence and each word in the pivot sen-
tence attends to words within the source sentence.
By summing out the weighted pivot sentence, it
is possible to see the attention from paraphrase to
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Two men sailing in a small boat

couple sailing in a tiny sail boat

Figure 2: Attention between two sentences. Line
thickness indicates the strength of the attention.

source:
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i,m ·α
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m, j )

)
(8)

An example shown in Figure 2 where attention
has successfully identified the semantically equiv-
alent parts of two sentences. Beyond providing
interpretable paraphrasing, attention scores can be
used as features in both generation and classifica-
tion tasks.

Furthermore, PARANET can be readily used to
perform text generation (via the NMT decoder)
without additional resources or parameter estima-
tion. It also learns phrase and sentence embed-
dings for free without any model adjustments or
recourse to resources like PPDB.

4 Experiments

We evaluated PARANET in several ways: (a) we
examined whether the paraphrases learned by our
model correlate with human judgments of para-
phrase quality; (b) we assessed PARANET in para-
phrase and similarity detection tasks; and (c) in a
sentence-level paraphrase generation task. We first
present details on how PARANET and comparison
models were trained and then discuss our results.

4.1 Neural Machine Translation Training
We used Groundhog1 as the implementation of the
NMT system for all experiments. We generally
followed the settings and training procedure from
previous work (Bahdanau et al., 2014; Sennrich et
al., 2016a). As such, all networks have a hidden
layer size of 1000, and an embedding layer size
of 620. During training, we used Adadelta (Zeiler,
2012), a minibatch size of 80, and the training set
was reshuffled between epochs. We trained a net-
work for approximately 7 days on a single GPU,
then the embedding layer was fixed and training
continued, as suggested in Jean et al. (2015a), for
12 hours. Additionally, the softmax was calcu-
lated over a filtered list of candidate translations.
Following Jean et al. (2015a), we set the common

1github.com/sebastien-j/LV groundhog

vocabulary size as 10000 and 25 uni-gram trans-
lations, using a bilingual dictionary based on fast-
align (Dyer et al., 2013).

In our experiments, we used up to
six encoder-decoder NMT models (three
pairs); English→French, French→English,
English→Czech, Czech→English, English→Ger-
man, German→English. All systems were
trained on the available training data from the
WMT15 shared translation task (4.2 million,
15.7 million, and 39 million sentence pairs for
EN↔DE, EN↔CS, and EN↔FR, respectively).
For EN↔DE and EN→CS, we also had access
to back-translated monolingual training data
(Sennrich et al., 2016a), which we also used
in training. The data was pre-processed using
standard pre-processing scripts found in MOSES
(Koehn et al., 2007). Rare words were split into
sub-word units, following Sennrich et al. (2016b).
BLEU scores for each NMT system can be seen
in Table 1.

4.2 Statistical Machine Translation Training
Throughout our experiments we compare
PARANET against a paraphrase model trained
with a commonly used Statistical Machine Trans-
lation system (SMT), which we henceforth refer to
as PARASTAT. Specifically, for each language pair
used, an equivalent IBM Model 4 phrase-based
translation model was trained. Additionally, an
Operation Sequence Model (OSM) was included,
which has been shown to improve the perfor-
mance of SMT systems (Durrani et al., 2011).
SMT translation models were implemented using
both GIZA++ (Och and Ney, 2003) and MOSES
(Koehn et al., 2007) and were trained using the
same pre-processed bilingual data provided to the
NMT systems. The SMT systems used a KenLM
5-gram language model (Heafield, 2011), trained
on the mono-lingual data from WMT 2015. For
all languages pairs, both KenLM and MOSES
were trained using the standard settings. BLEU
scores for the SMT systems are given in Table 1.

Under the SMT models, paraphrase probabili-
ties were calculated analogously to Equation (7):

P(E2|E1,F ) =
F

∑
F

P(E2|F)P(F |E1) (9)

where P(E2|F) and (F |E1), are defined by the
phrase based translation model, and F denotes the
K-best translations of E1, whose probabilities are
normalized. Unlike PARANET these pivot sen-
tences have to be combined outside of the decoder.
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Direction F→E E→F
System SMT NMT SMT NMT
French 0.241 0.201 0.233 0.271
German 0.207 0.282 0.208 0.248
Czech 0.216 0.197 0.145 0.176

Table 1: BLEU scores (WMT 2015 test set) for
SMT and NMT models (foreign to English (F→E)
and English to foreign (E→F) directions).

4.3 Correlation with Human Judgments
The PPDB 2.0 Human Evaluation data set is
a sample of paraphrase pairs taken from PPDB
which have been human annotated for semantic
similarity (Pavlick et al., 2015). 26,455 samples
were taken from range of syntactic categories, re-
sulting in paraphrase candidates varying from sin-
gle words to multi-word expressions. Each para-
phrase pair was judged by five people on a 5-point
scale. Ratings were then averaged giving each
paraphrase pair a score between 1 and 5.

Using this dataset we measure the correla-
tion (Spearman ρ) between (length normalized)
PARANET probabilities (Equation (7)) assigned
to paraphrase pairs and human judgments. Fig-
ure 3 shows correlation coefficients for all lan-
guage pairs using a single foreign pivot and 200
pivots. Across all language combinations multiple
pivots2 achieve better correlations, with the Ger-
man, Czech pair performing best with ρ = 0.53.
For comparison, Pavlick et al. (2015) report a cor-
relation of ρ = 0.41 using Equation (9) and PPDB
(Ganitkevitch et al., 2013). The latter contains
over 100 million paraphrases and was constructed
over several English-to-foreign parallel corpora
including Europarl v7 (Koehn, 2005) which con-
tains bitexts for the 19 European languages.

Following Pavlick et al. (2015), we next de-
veloped a supervised scoring model. Specif-
ically, we fit a decision tree regressor on the
PPDB 2.0 dataset using the implementation pro-
vided in scikit-learn (Pedregosa et al., 2011). To
improve accuracy and control over-fitting we built
an ensemble of regression trees using the Extra-
Trees algorithm (Geurts et al., 2006) which fits a
number of randomized decision trees (a.k.a. extra-
trees) on various sub-samples of the dataset. In
our experiments 1,000 trees were trained to mini-
mize mean square error. The regressor was trained
with the following basic features: sentence length,

2Across tasks and datasets we find that multiple pivots
outperform single pivots. We omit these comparisons from
subsequent experiments for the sake of brevity.
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Figure 3: Correlation of PARANET predictions
against human ratings for paraphrase pairs. Com-
parison using single and multiple pivots, across
language combinations.

1-4 gram string similarity, the paraphrase proba-
bility P(E2|E1), the language model score P(E1),
cosine distance of the sentence vectors, as calcu-
lated by the encoder. To address the problem of
rare sentences receiving low probabilities regard-
less of the source sentence, we create an inverse
weighting by P(E2|E2), which approximates how
difficult it is to recover E2:

pscore(E2,E1) =
P(E2|E1)

P(E2|E1)+P(E2|E2)
(10)

Two features reflect the alignment between can-
didate paraphrases. We built an alignment matrix
according to Equation (8), and used the mean of
the diagonal as feature. This acts as a proxy of
how much movement there is between two para-
phrases. The second feature is the number of un-
aligned words which we compute by calculating
hard alignments between the two paraphrases.

Regressors varied with respect to how P(E2|E1)
was computed, keeping the string based features
the same. Equations (7) and (9) were used to cal-
culate paraphrase probability for PARANET and
PARASTAT, respectively. For both models beam
search (with width set to 100) was used to gener-
ate the K-best list. For each language, the K-best
list is the union of the 100-best list of E1 and the
100-best list of E2, giving a maximum of 200 pivot
sentences. As set out in Pavlick et al. (2015) eval-
uation is done using cross validation: in each fold,
we hold out 200 phrases. Table 2 presents results
for PARANET and PARASTAT using different lan-
guages as pivots. PARANET outperforms PARA-
STAT across the board. Furthermore, despite us-
ing fewer features and pivot languages, it obtains
a closer correspondence to human data compared
to PPDB 2.0 (Pavlick et al., 2015).
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Model PARASTAT PARANET

fr 0.574 0.700
de 0.638 0.710
cz 0.564 0.713
de,fr 0.566 0.722
de,cz 0.640 0.731
fr,cz 0.569 0.724
fr, cz, de 0.633 0.735
PPDB 2.0 0.713

Table 2: Correlation (Spearman ρ) of supervised
models against human ratings for paraphrase pairs.
Boldface indicates the best performing model.

4.4 Paraphrase Identification and Similarity

The SemEval-2015 shared task on Paraphrase and
Semantic Similarity In Twitter (PIT) uses a train-
ing and development set of 17,790 sentence pairs
and a test set of 972 sentence pairs. By design, the
dataset contains colloquial sentences representing
informal language usage and sentence pairs which
are lexically similar but semantically dissimilar.
Sentence pairs were crawled from Twitter’s trend-
ing topics and associated tweets (see Xu et al.
(2014) for details). The shared task consists of a
(binary) paraphrase identification subtask (i.e., de-
termine whether two sentences are paraphrases)
and an optional semantic similarity task (i.e., de-
termine the similarity between two sentences on a
scale of 1–5, where 5 means completely equivalent
and 1 not equivalent).

We trained a decision tree regressor on the
PIT-2015 similarity dataset using the features de-
scribed above. Once trained, the decision tree re-
gressor can be readily applied to the semantic sim-
ilarity subtask. For the paraphrase detection sub-
task, we use the same model and apply a threshold
(optimized on the validation set) such that those
pairs that are over this threshold are deemed para-
phrases.

Tables 3 and 4 present our results on the two
subtasks together with previously published re-
sults. We evaluate system performance on the de-
tection task using F1 (the harmonic mean of pre-
cision and recall). For semantic similarity, sys-
tem outputs are compared by Pearson correlation
against human scores. The first block in the ta-
bles summarize results for PARANET and PARA-
STAT using different languages as pivots. The
second block includes three baselines provided by
the organizers of the shared task: a random base-
line, a logistic regression baseline with minimal

Model PARASTAT PARANET

fr 0.613 0.624
de 0.616 0.620
cz 0.620 0.622
de, fr 0.602 0.622
de, cz 0.606 0.615
fr, cz 0.600 0.634
fr, cz, de 0.596 0.620
random 0.266
WTMF 0.536
logistic reg 0.589
ASOBEK 0.674
MITRE 0.667

Table 3: Paraphrase detection results (F1) on the
PIT-2015 data set. Boldface indicates the best per-
forming paraphrasing model.

Model PARASTAT PARANET

fr 0.540 0.569
de 0.543 0.571
cz 0.547 0.569
de, fr 0.543 0.569
de, cz 0.540 0.570
fr, cz 0.546 0.568
fr, cz, de 0.539 0.568
random 0.017
WTMF 0.350
logistic reg 0.511
ASOBEK 0.475
MITRE 0.619

Table 4: Semantic similarity results (Pearson) on
the PIT-2015 data set. Boldface indicates the best
performing paraphrasing model.

n-gram word overlap features; and a model which
uses weighted matrix factorization (WTMF) and
has access to dictionary definitions provided in
WordNet, OntoNotes, and Wiktionary (Guo and
Diab, 2012). The last two rows show the highest
scoring systems: ASOBEK (Eyecioglu and Keller,
2015) ranked 1st in the identification subtask and
MITRE (Zarrella et al., 2015) in the similarity
subtask. Whereas ASOBEK uses knowledge-lean
features based on word and character n-gram over-
lap, MITRE is a combination of multiple sys-
tems including mixtures of string matching met-
rics, alignments using tweet-specific word repre-
sentations, and recurrent neural networks.

As can be seen, PARANET achieves better
similarity and detection score than all baselines
and PARASTAT, for any combinations of lan-
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Model PARASTAT PARANET

fr 0.657 0.682
de 0.666 0.678
cz 0.649 0.688
de, fr 0.665 0.684
de, cz 0.662 0.687
fr, cz 0.654 0.690
fr, cz, de 0.658 0.689
Tokencos 0.587
DLS@CU 0.801

Table 5: Results on the Semeval-2015 semantic
similarity dataset. Boldface indicates the best per-
forming paraphrasing model.

guages. This is particularly impressive as the
translation models were trained on very dissimilar
data. Compared to the state of the art, PARANET

fares worse, however our model was not partic-
ularly optimized on the PIT-2015 dataset which
was merely used as a testbed for a fair compar-
ison. It is thus reasonable to assume that taking
into account more elaborate features (e.g., based
on character embeddings) would improve perfor-
mance. The highest semantic similarity score
is obtained with PARANET trained using Ger-
man data. The highest scoring paraphrase detec-
tion model was PARANET trained on French and
Czech data. Interestingly, using multiple pivot lan-
guages seems to offer small improvements in most
cases. The languages selected as pivots in our ex-
periments were somewhat ad-hoc. We expect to
get more mileage if these are selected from the
same language family or with more linguistic in-
sight (e.g., morphologically rich vs. poor).

4.5 Semantic Textual Similarity

In semantic textual similarity (STS), systems
rate the degree of semantic equivalence between
two text snippets. We present results on the
Semeval-2015 English subtask which contains
sentences from a wide range of domains, including
newswire headlines, image descriptions, and an-
swers from Q&A websites. The training/test sets
consist of 11,250 and 3,000 sentence pairs, respec-
tively. Sentence pairs are rated on a 1–5 scale, with
5 indicating they are completely equivalent.

We used the decision tree regressor with the
same features described in the previous section.
Again, we experimented with one, two, and three
languages as pivots, and compared PARANET and
PARASTAT directly. Our results are summarized
in Table 5. The third block in the table presents a

simple cosine-based baseline provided by the or-
ganizers (Tokencos) and the top-performing sys-
tem (DLS@CU) which uses PPDB paraphrases to
identify semantically similar words and word2vec
embeddings trained on approximately 2.8 billion
tokens (Sultan et al., 2014).

PARANET outperforms PARASTAT on all lan-
guages and language combinations. Both systems
outperform the Semeval baseline but are worse
compared to the top scoring system. We see for
PARANET Czech achieves the highest scores, this
could be in part due to Czech non-strict word or-
der, which allows paraphrases that are simple re-
arrangements not be penalized.

4.6 Paraphrase Generation

Finally, we evaluated PARANET (and PARAS-
TAT) in a paraphrase generation task. We created
sentential paraphrases for three (parallel mono-
lingual) datasets representative of different do-
mains and genres: (a) the Multiple-Translation
Chinese (MTC) corpus (Huang et al., 2002) con-
tains news stories from three sources of journalis-
tic Mandarin Chinese text translated into English
by 4 translation agencies; we sampled 1,000 sen-
tences for training and testing, respectively (each
source sentence had an average of 4 paraphrases);
(b) the Jules Vernes Twenty Thousand Leagues
Under the Sea novel (Leagues) corpus (Pang et
al., 2003) contains two English translations of the
French novel; we sampled 500 sentences for train-
ing/testing (each source sentence had one para-
phrase); and (c) the Wikianswers corpus (Fader et
al., 2013) which contains questions taken from the
website3 wiki answers; we sampled 1,000 ques-
tions for training/testing (each question has on av-
erage 21 paraphrases).

In order to select the best paraphrase candidate
for a given input sentence, PARASTAT was opti-
mized on the training set using Minimum Error
Training (MERT, Och and Ney (2003)). MERT
integrates automatic evaluation metrics such as
BLEU into the training process to achieve opti-
mal end-to-end performance. Naively optimizing
for BLEU, however, will result in a trivial para-
phrasing system heavily biased towards producing
identity “paraphrases”. Sun and Zhou (2012) in-
troduce iBLEU which we also adopt. iBLEU pe-
nalizes paraphrases which are similar to the source

3http://wiki.answers.com/
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Model PARASTAT PARANET

fr 0.280 0.299
de 0.282 0.295
cz 0.280 0.291

Gold 0.599

Table 6: Mean iBLEU across three datasets.

sentence and rewards those close to the target:

iBLEU(s,rs,c) = αBLEU(c,rs)

− (1−α)BLEU(c,s)

where s, is the source sentence, rs, is the target and
c is the candidate paraphrase. (1−α)BLEU(c,s),
measures the originality of the candidate para-
phrase, BLEU(c,rs) measures semantic adequacy,
and α is a tuning parameter which balances the
two. Sentence level BLEU is calculated using plus
one smoothing (Lin and Och, 2004).

PARANET relies on a relatively simple archi-
tecture which is trained end-to-end with the ob-
jective of maximizing the likelihood of the train-
ing data. Since evaluation metrics cannot be
straightforwardly integrated into this training pro-
cedure, we reranked the k-best paraphrases ob-
tained from PARANET using a simple classifier
which favors sentences which are dissimilar to the
source. Specifically, we trained a decision tree re-
gression model with iBLEU as the target variable
using the same features described in Section 4.4.
Examples of paraphrases generated by PARANET

are shown in the Appendix.
System output was assessed automatically using

iBLEU with human-written paraphrases as refer-
ence. In addition, we evaluated the generated text
by eliciting human judgments via Amazon Me-
chanical Turk. We randomly selected 100 source
sentences from each data set and generated output
with PARANET and PARASTAT (using German as
a pivot). We also included a randomly selected
human paraphrase as a goldstandard. Workers
(self-reported native English speakers) were asked
to rank the three paraphrases from best to worst
(ties were allowed) in order of semantic equiva-
lence (does the paraphrase convey the same mean-
ing as the source?) and fluency (is the descrip-
tion written in well-formed English?). Participants
were explicitly told to give high ranks to output
demonstrating a fair amount of paraphrasing and
low ranks to trivial paraphrases (e.g., deletion of
articles or punctuation). We collected 5 responses
per input sentence.

Table 6 summarizes our results across the three

Model Wikianswers Leagues MTC All
PARASTAT 2.09 2.38 2.23 2.26
PARANET 1.86 1.94 1.70 1.83
Humans 2.17 1.81 2.0 2.0

Table 7: Mean Rankings given to paraphrases by
human participants (a lower score is better).

datasets. For the sake of brevity, we only show
results with one pivot language since combina-
tions performed slightly worse for both models.
We set α = 0.8 for iBLEU as we experimentally
found it offers the best trade-off between seman-
tic equivalence and dissimilarity. As an upper-
bound we also measure iBLEU amongst the gold
paraphrases provided by humans. Again, we ob-
serve that PARANET has a slight advantage over
PARASTAT in terms of iBLEU, however both sys-
tems tend to paraphrase less compared to the gold-
standard. Table 7 shows the mean ranks given
to these systems by human subjects. An Analy-
sis of Variance (ANOVA) revealed a reliable effect
of system type. Post-hoc Tukey tests showed that
PARANET is significantly (p< 0.01) better than
PARASTAT across datasets; PARANET is also sig-
nificantly (p< 0.01) better than the the gold stan-
dard on both MTC and the Wikianswers dataset.
We attribute this to the noisy nature of these two
datasets which contain a wealth of paraphrases,
a few of which are ungrammatical, contain typos
or abbreviations leading to low scores among hu-
mans.

5 Conclusions

In this work we presented PARANET, a neural
paraphrasing model based on bilingual pivoting.
Experimental results across several tasks (similar-
ity prediction, paraphrase identification, and para-
phrase generation) show that PARANET outper-
forms conventional paraphrasing methods. In the
future, we plan to exploit the attention scores more
directly for extracting paraphrase pairs (in anal-
ogy to PPDB) and as features for classification
tasks (e.g., textual entailment). We would also like
to investigate how PARANET can be adapted us-
ing reinforcement learning (Ranzato et al., 2016)
to text generation tasks such as simplification and
sentence compression.
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Appendix

Tables 8–10 show examples of PARANET output
on the Wikianswers, Leagues, and MTC datasets.

Wikianswers
a. How many calories in a handful of strawberries?
b. The number of calories in a handful of strawberries.
a. Beauty is not in the eye of the beholder.
b. Beauty is not in the mind of the viewer.
a. What is the importance of employee satisfaction in an or-

ganization?
b. What is the significance of staff satisfaction at an organisa-

tion?
a. What is the difference between electrical power and elec-

trical energy?
b. What is the difference between electrical energy and elec-

trical power?
a. How many high tides happen at a given coast in any 24 hour

period?
b. How many high tides occur on a certain coast in 24 hours?
a. What is a beverage that starts with the letter p?
b. What is a drink that begins with the letter p?
a. What Swiss mathematician and teacher was responsible for

instituting the use of the symbol for π in mathematical no-
tation?

b. What Swiss mathematicians and teachers were responsible
for the introduction of the symbol for π in math notation?

a. How do you make a pina colada?
b. How do you do a Pina colada?
a. What is the difference between a captain and a skipper?
b. What is the difference between being a captain and skipper?

Table 8: Sentences marked (a) are the input and
(b) are PARANET paraphrases.

Leagues
a. “Faith i should never have believed it,” said Conseil.
b. “Faith, I never would have believed”, Conseil said.
a. “I owed myself this revenge!” Said the Captain to the Cana-

dian.
b. “I am indebted to this revenge!” the captain told the Cana-

dian.
a. “Well, sir, you will only get your deserts.”
b. “Well, sir, you are only getting your deserts.”
a. “That’s what I’ve been telling you Ned.”
b. “That’s what I said, Ned.”
a. Very much embarrassed, after having vainly exhausted our

speaking resources, I knew not what part to take, when
Conseil said: “if master will permit me I will relate it in
German.”

b. It was very embarrassing that I had used up our speaking
time, and I did not know what to do, as Conseil said: “If
the Masters allow me, I shall refer to German.”

a. Almost every day the panels in the lounge were open for
some hours, and our eyes never tired of probing the mys-
teries of the underwater world.

b. Almost every day, the panels opened in the lounge for a few
hours, and our eyes never tired, the secrets of the underwa-
ter world.

a. I bowed, and desired to be conducted to the cabin destined
for me.

b. I bow to and wish I headed to the cabin for me.
a. I had one question left to address to Captain Nemo.
b. I had a question left to Captain Nemo.
a. “I have not the foggiest notion, Professor Aronnax.”
b. I have no idea, Professor Aronnax.

Table 9: Sentences marked (a) are the input and
(b) are PARANET paraphrases.

MTC
a. China expresses strong dissatisfaction over the Japanese

leader’s move this time.
b. China expresses a strong dissatisfaction over Japanese

leader’s move.
a. We will accelerate the drafting of telecommunications le-

galization, amend the law of post and the regulations gov-
erning wireless telecommunications.

b. We will speed up the design of telecommunications,
change the law and regulations governing wireless
telecommunication.

a. Liu said: the poverty-stricken areas are badly hit in the
first stage of this year’s floods and many counties and
cities are listed as the poorest ones in the country.

b. Liu said: poverty-stricken areas are hit hard in the first
phase of this year’s flooding and many counties and towns
are listed as the poorest in the country.

a. (London, AP) The British government is working on re-
solving the increasingly serious problems of street crimes
and will strengthen patrolling police.

b. London, AP The British government is working to re-
solve the increasingly serious problems of street crime
and will strengthen patrols.

a. Kida said that the dead killed by the heat wave were
mostly old people with heart diseases.

b. Kida said the dead by heatwave were mostly old people
with heart disease.

a. Growth of Mobile Phone users in Mainland China to
Slow Down.

b. Growth of Mobile Phone users in Mainland China on
Slow Down.

a. The survey report said that in the first six months of last
year 18 sandstorms struck Beijing and they all originated
from Inner Mongolia where 60% of the land is desert.

b. The report said that 18 sandstorms struck Beijing in the
first six months of last year, and they were all from Inner
Mongolia, where 60% of the desert is desert.

a. The World Cup co-host by Japan and South Korea, will
inaugurate on May 31.

b. The World Cup, co-host Japan and South Korea, will
open on May 31.

a. Two days ago, President Bush seemed opposed to this
idea when he held talks with Sharon.

b. Two days ago President Bush opposed this idea when he
talks to Sharon.

a. Russia Faces Population Crisis.
b. Russia’s demographics problem.
a. Computer Crimes Cost US billions of Dollars Last Year.
b. Computer Crimes Cost American Billions of Dollars.
a. However, many sports associations in Chile hope to co-

operate with China not just for the table tennis alone.
b. However, many sports federations in Chile are hoping to

collaborate with China, not only for the table tennis play-
ers.

Table 10: Sentences marked (a) are the input and
(b) are PARANET paraphrases.
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Abstract

Crosslingual word embeddings represent
lexical items from different languages
using the same vector space, enabling
crosslingual transfer. Most prior work
constructs embeddings for a pair of lan-
guages, with English on one side. We in-
vestigate methods for building high qual-
ity crosslingual word embeddings for
many languages in a unified vector space.
In this way, we can exploit and combine
information from many languages. We re-
port competitive performance on bilingual
lexicon induction, monolingual similarity
and crosslingual document classification
tasks.

1 Introduction

Monolingual word embeddings have facilitated
advances in many natural language process-
ing tasks, such as natural language understand-
ing (Collobert and Weston, 2008), sentiment anal-
ysis (Socher et al., 2013), and dependency pars-
ing (Dyer et al., 2015). Crosslingual word embed-
dings represent words from several languages in
the same low dimensional space. They are help-
ful for multilingual tasks such as machine trans-
lation (Brown et al., 1993) and bilingual named
entity recognition (Wang et al., 2013). Crosslin-
gual word embeddings can also be used in trans-
fer learning, where the source model is trained on
one language and applied directly to another lan-
guage; this is suitable for the low-resource sce-
nario (Yarowsky and Ngai, 2001; Duong et al.,
2015b; Das and Petrov, 2011; Täckström et al.,
2012).

Most prior work on building crosslingual word
embeddings focuses on a pair of languages. En-
glish is usually on one side, thanks to the wealth

of available English resources. However, it is
highly desirable to have a crosslingual word em-
beddings for many languages so that different rela-
tions can be exploited.1 For example, since Italian
and Spanish are similar, they are excellent candi-
dates for transfer learning. However, few parallel
resources exist between Italian and Spanish for di-
rectly building bilingual word embeddings. Our
multilingual word embeddings, on the other hand,
map both Italian and Spanish to the same space
without using any direct bilingual signal between
them. In addition, multilingual word embeddings
allow multiple source language transfer learning,
producing a more general model and overcoming
data sparseness (McDonald et al., 2011; Guo et
al., 2016; Agić et al., 2016). Moreover, multilin-
gual word embeddings are also crucial for multi-
lingual applications such as multi-source machine
translation (Zoph and Knight, 2016), and multi-
source transfer dependency parsing (McDonald et
al., 2011; Duong et al., 2015a).

We propose several algorithms to map bilingual
word embeddings to the same vector space, ei-
ther during training or during post-processing. We
apply a linear transformation to map the English
side of each pretrained crosslingual word embed-
ding to the same space. We also extend Duong et
al. (2016), which used a lexicon to learn bilingual
word embeddings. We modify the objective func-
tion to jointly build multilingual word embeddings
during training. Unlike most prior work which fo-
cuses on downstream applications, we measure the
quality of our multilingual word embeddings in
three ways: bilingual lexicon induction, monolin-
gual word similarity, and crosslingual document
classification tasks. Relative to a benchmark of

1From here on we refer to crosslingual word embeddings
for a pair of languages and multiple languages as bilingual
word embeddings and multilingual word embeddings respec-
tively.
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training on each language pair separately and to
various published multilingual word embeddings,
we achieved high performance for all the tasks.

In this paper we make the following contribu-
tions: (a) novel algorithms for post hoc combina-
tion of multiple bilingual word embeddings, ap-
plicable to any pretrained bilingual model; (b) a
method for jointly learning multilingual word em-
beddings, extending Duong et al. (2016), to jointly
train over monolingual corpora in several lan-
guages; (c) achieving competitive results in bilin-
gual, monolingual and crosslingual transfer set-
tings.

2 Related work

Crosslingual word embeddings are typically based
on co-occurrence statistics from parallel text (Lu-
ong et al., 2015; Gouws et al., 2015; Chandar A P
et al., 2014; Klementiev et al., 2012; Kočiský et
al., 2014; Huang et al., 2015). Other work uses
more widely available resources such as compa-
rable data (Vulić and Moens, 2015) and shared
Wikipedia entries (Søgaard et al., 2015). However,
those approaches rely on data from Wikipedia, and
it is non-trivial to extend them to languages that
are not covered by Wikipedia. Lexicons are an-
other source of bilingual signal, with the advan-
tage of high coverage. Multilingual lexical re-
sources such as PanLex (Kamholz et al., 2014)
and Wiktionary2 cover thousands of languages,
and have been used to construct high performance
crosslingual word embeddings (Mikolov et al.,
2013a; Xiao and Guo, 2014; Faruqui and Dyer,
2014).

Previous work mainly focuses on building word
embeddings for a pair of languages, typically with
English on one side, with the exception of Coul-
mance et al. (2015), Søgaard et al. (2015) and Am-
mar et al. (2016). Coulmance et al. (2015) extend
the bilingual skipgram model from Luong et al.
(2015), training jointly over many languages us-
ing the Europarl corpora. We also compare our
models with an extension of Huang et al. (2015)
adapted for multiple languages also using bilin-
gual corpora. However, parallel data is an ex-
pensive resource and using parallel data seems to
under-perform on the bilingual lexicon induction
task (Vulić and Moens, 2015). While Coulmance
et al. (2015) use English as the pivot language,
Søgaard et al. (2015) learn multilingual word em-

2wiktionary.org

beddings for many languages using Wikipedia en-
tries which are the same for many languages.
However, their approach is limited to languages
covered in Wikipedia and seems to under-perform
other methods. Ammar et al. (2016) propose two
algorithms, MultiCluster and MultiCCA, for mul-
tilingual word embeddings using set of bilingual
lexicons. MultiCluster first builds the graph where
nodes are lexical items and edges are translations.
Each cluster in this graph is an anchor point for
building multilingual word embeddings. Multi-
CCA is an extension of Faruqui and Dyer (2014),
performing canonical correlation analysis (CCA)
for multiple languages using English as the pivot.
A shortcoming of MultiCCA is that it ignores pol-
ysemous translations by retaining only one-to-one
dictionary pairs (Gouws et al., 2015), disregard-
ing much information. As a simple solution, we
propose a simple post hoc method by mapping the
English parts of each bilingual word embedding
to each other. In this way, the mapping is always
exact and one-to-one.

Duong et al. (2016) constructed bilingual word
embeddings based on monolingual data and Pan-
Lex. In this way, their approach can be ap-
plied to more languages as PanLex covers more
than a thousand languages. They solve the pol-
ysemy problem by integrating an EM algorithm
for selecting a lexicon. Relative to many previous
crosslingual word embeddings, their joint training
algorithm achieved state-of-the-art performance
for the bilingual lexicon induction task, perform-
ing significantly better on monolingual similarity
and achieving a competitive result on cross lin-
gual document classification. Here we also adopt
their approach, and extend it to multilingual em-
beddings.

2.1 Base model for bilingual embeddings
We briefly describe the base model (Duong et al.,
2016), an extension of the continuous bag-of-word
(CBOW) model (Mikolov et al., 2013a) with neg-
ative sampling. The original objective function is

∑

i∈D

(
log σ(u>wi

hi)+

p∑

j=1

log σ(−u>wij
hi)

)
, (1)

where D is the training data, hi =
1
2k

∑k
j=−k;j 6=0 vwi+j is a vector encoding the

context over a window of size k centred around
position i, V and U ∈ R|Ve|×d are learned
matrices referred to as the context and centre word
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embeddings, where Ve is the vocabulary and p is
the number of negative examples randomly drawn
from a noise distribution, wij ∼ Pn(w).

Duong et al. (2016) extend the CBOW model
for application to two languages, using monolin-
gual text in both languages and a bilingual lexicon.
Their approach augments CBOW by generating
not only the middle word, but also its translation
in the other language. This is done by first select-
ing a translation w̄i from the lexicon for the mid-
dle word wi, based on the cosine distance between
the context hi and the context embeddings V for
each candidate foreign translation. In this way
source monolingual training contexts must gen-
erate both source and target words, and similarly
target monolingual training contexts also generate
source and target words. Overall this results in
compatible word embeddings across the two lan-
guages, and highly informative nearest neighbours
across the two languages. This leads to the new
objective function

∑

i∈Ds∪Dt

(
log σ(u>wi

hi) + log σ(u>w̄i
hi)

+

p∑

j=1

log σ(−u>wij
hi)

)
+δ

∑

w∈Vs∪Vt

‖uw−vw‖22 ,

(2)

where Ds and Dt are source and target monolin-
gual data, Vs and Vt are source and target vocab-
ulary. Comparing with the CBOW objective func-
tion in Equation (1), this represents two additions:
the translation cross entropy log σ(u>w̄i

hi), and a
regularisation term

∑
w∈Vs∪Vt

‖uw − vw‖22 which
penalises divergence between context and cen-
ter word embedding vectors for each word type,
which was shown to improve the embedding qual-
ity (Duong et al., 2016).

3 Post hoc Unification of Embeddings

Our goal is to learn multilingual word embeddings
over more than two languages. One simple way to
do this is to take several learned bilingual word
embeddings which share a common target lan-
guage (here, English), and map these into a shared
space (Mikolov et al., 2013a; Faruqui and Dyer,
2014). In this section we propose post hoc meth-
ods, however in §4 we develop an integrated mul-
tilingual method using joint inference.

Formally, the input to the post hoc combination
methods are a set of n pre-trained bilingual word

de

en

it

en

es

en

nlen

Wde Wes

Wnl

Figure 1: Examples of unifying four bilingual
word embeddings between en and it, de,
es, nl to the same space using post hoc linear
transformation.

embedding matrices, i.e., Ci = {(Ei, Fi)} with
i ∈ F is the set of foreign languages (not English),
Ei ∈ R|Vei |×d are the English word embeddings
and Fi ∈ R|Vfi

|×d are foreign language word em-
beddings for language i, with Vei and Vfi being
the English and foreign language vocabularies and
d is the embedding dimension. These bilingual
embeddings can be produced by any method, e.g.,
those discussed in §2.

Linear Transformation. The simplest method
is to learn a linear transformation which maps
the English part of each bilingual word embed-
ding into the same space (inspired by Mikolov
et al. (2013a)), as illustrated in Figure 1. One
language pair is chosen as the pivot, en-it in
this example, and the English side of the other
language pairs, en-de, en-es, en-nl, are
mapped to closely match the English side of the
pivot, en-it. This is achieved through learn-
ing linear transformation matrices for each lan-
guage, Wde,Wes and Wnl, respectively, where
each Wi ∈ Rd×d is learned to minimize the objec-
tive function ‖Ei×Wi−Epivot‖22 where Epivot is
the English embedding of the pivot pair, en-it.

Each foreign language fi is then mapped to the
same space using the learned matrixWi, i.e., F ′i =
Fi × Wi. These projected foreign embeddings
are then used in evaluation, along with the En-
glish side of the language pair with largest English
vocabulary coverage, i.e., biggest |Vei |. Together
these embeddings allow for querying of monolin-
gual and cross-lingual word similarity, and multi-
lingual transfer of trained models.

The advantage of this approach is that it is very
fast and simple to train, since the objective func-
tion is strictly convex and has a closed form so-
lution. Moreover, unlike Mikolov et al. (2013a)
who learn the projection from a source to a target
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Figure 2: Examples of our multilingual joint train-
ing model without mapping for learning multilin-
gual embeddings for three languages en, it,
de using joint inference.

language, we learn the projection from English to
English, thus do not require a lexicon, sidestep-
ping the polysemy problem.3

4 Multilingual Joint Training

Instead of combining bilingual word embeddings
in the post-processing step, it might be more bene-
ficial to do it during training, so that languages can
interact with each other more freely. We extend
the method in §2.1 to jointly learn the multilin-
gual word embeddings during training. The input
to the model is the combined monolingual data for
each language and the set of lexicons between any
language pair.

We modify the base model (Duong et al., 2016)
to accommodate more languages. For the first
step, instead of just predicting the translation for
a single target language, we predict the translation
for all languages in the lexicon. That is, we com-
pute wf

i = argmax
w∈dictfe (we

i )
cos(vw, context),

which is the best translation in language f of
source word we

i in language e, given the bilin-
gual lexicon dictfe and the context. For the sec-
ond step, we jointly predict word we

i and all trans-
lations wf

i in all foreign languages f ∈ T that
we have dictionary dictfe as illustrated in Figure 2.

3A possible criticism of this approach is that a linear trans-
formation is not powerful enough for the required mapping.
We experimented with non-linear transformations but did not
observe any improvements. Faruqui and Dyer (2014) ex-
tended Mikolov et al. (2013a) as they projected both source
and target languages to the same space using canonical cor-
relation analysis (CCA). We also adopted this approach for
multilingual environment by applying multi-view CCA to
map the English part of each pre-trained bilingual word em-
bedding to the same space. However, we only observe minor
improvements.

The English word cat might have several transla-
tions in German {Katze, Raupe, Typ} and Italian
{gatto, gatta}. In the first step, we select the clos-
est translation given the context for each language,
i.e. Katze and gatto for German and Italian respec-
tively. In the second step, we jointly predict the
English word cat together with selected transla-
tions Katze and gatto using the following modified
objective function:

O =
∑

i∈Dall

(
log σ(u>we

i
hi) +

∑

f∈T
log σ(u>

wf
i

hi)

+

p∑

j=1

log σ(−u>wij
hi)

)
+δ

∑

w∈Vall

‖uw−vw‖22 ,

(3)

whereDall and Vall are the combined monolingual
data and vocabulary for all languages. Each of the
p negative samples, wij , are sampled from a uni-
gram model over the combined vocabulary Vall.

Explicit mapping. As we keep adding more lan-
guages to the model, the hidden layer in our model
– shared between all languages – might not be
enough to accommodate all languages. However,
we can combine the strength of the linear trans-
formation proposed in §3 to our joint model as
described in Equation (3). We explicitly learn
the linear transformation jointly during training by
adding the following regularization term to the ob-
jective function:

O′ = O + α
∑

i∈De

∑

f∈F
‖u

wf
i
Wf − uwe

i
‖22 , (4)

where De is the English monolingual data (since
we use English as the pivot language), F is the set
of foreign languages (not English), Wf ∈ Rd×d

is the linear transformation matrix, and α controls
the contribution of the regularization term and will
be tuned in §6.4 Thus, the set of learned parame-
ters for the model are the word and context em-
beddings U,V and |F| linear transformation ma-
trices, {Wf}f∈F. After training is finished, we lin-
early transform the foreign language embeddings
with the corresponding learned matrix Wf , such
that all embeddings are in the same space.

5 Experiment Setup

Our experimental setup is based on that of Duong
et al. (2016). We use the first 5 million sen-

4For an efficient implementation, we apply this constraint
to only 10% of English monolingual data.
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Model
it-en es-en nl-en nl-es Average

rec1 rec5 rec1 rec5 rec1 rec5 rec1 rec5 rec1 rec5

B
as

el
in

es
MultiCluster 35.6 64.3 34.9 62.5 - - - - - -
MultiCCA 63.4 77.3 58.5 72.7 - - - - - -
MultiSkip 57.6 68.5 49.3 58.9 - - - - - -
MultiTrans 72.1 83.1 71.5 82.2 - - - - - -

O
ur

s

Linear 78.5 88.2 69.3 81.8 74.9 87.0 66.3 79.7 72.2 84.2
Joint 79.4 89.7 73.6 84.6 76.6 89.6 69.4 82.0 74.7 86.5
+ Mapping 81.6 90.5 74.6 87.4 77.9 91.4 71.6 83.5 76.4 88.2

BiWE 80.8 90.4 74.7 85.4 79.1 90.5 71.7 80.7 76.6 86.7

Table 1: Bilingual lexicon induction performance for four pairs. Bilingual word embeddings (BiWE) is
the state-of-the-art result from Duong et al. (2016) where each pair is trained separately. Our proposed
methods including linear transformation (Linear), joint prediction as in Equation (3) (Joint) and joint
prediction with explicit mapping as in Equation (4) (+mapping). We report recall at 1 and 5 with respect
to four baseline multilingual word embeddings. The best scores for are shown in bold.

tences from the tokenized monolingual data from
the Wikipedia dump from Al-Rfou et al. (2013).5

The dictionary is from PanLex which covers more
than 1,000 language varieties. We build multilin-
gual word embeddings for 5 languages (en, it,
es, nl, de) jointly using the same parameters
as Duong et al. (2016).6 During training, for a
fairer comparison, we only use lexicons between
English and each target language. However, it is
straightforward to incorporate a lexicon between
any pair of languages into our model. The pre-
trained bilingual word embeddings for the post-
processing experiment in §3 are also from Duong
et al. (2016).

In the following sections, we evaluate the per-
formance of our multilingual word embeddings in
comparison with bilingual word embeddings and
previous published multilingual word embeddings
(MultiCluster, MultiCCA, MultiSkip and Multi-
Trans) for three tasks: bilingual lexicon induction
(§6), monolingual similarity (§7) and crosslingual
document classification (§8). MultiCluster and
MultiCCA are the models proposed from Am-
mar et al. (2016) trained on monolingual data us-
ing bilingual lexicons extracted from aligning Eu-
roparl corpus. MultiSkip is the reimplementation
of the multilingual skipgram model from Coul-

5We will use the whole data if there are less than 5 million
sentences.

6Default learning rate of 0.025, negative sampling with
25 samples, subsampling rate of value 1e−4, embedding di-
mension d = 200, window size 48, run for 15 epochs and
δ = 0.01 for combining word and context embeddings.

mance et al. (2015). MultiTrans is the multilin-
gual version of the translation invariance model
from Huang et al. (2015). Both MultiSkip and
MultiTrans are trained directly on parallel data
from Europarl. All the previous work is trained
with 512 dimensions on 12 languages acquired di-
rectly from Ammar et al. (2016).

6 Bilingual Lexicon Induction

In this section we evaluate our multilingual mod-
els on the bilingual lexicon induction (BLI) task,
which tests the bilingual quality of the model.
Given a word in the source language, the model
must predict the translation in the target language.
We report recall at 1 and 5 for the various mod-
els listed in Table 1. The evaluation data for
it-en, es-en, and nl-en pairs was manually
constructed (Vulić and Moens, 2015). We extend
the evaluation for nl-es pair which do not in-
volve English.7

The BiWE results for pairs involving English in
Table 1 are from Duong et al. (2016), the current
state of the art in this task. For the nl-es pair,
we cannot build bilingual word embeddings, since
we do not have a corresponding bilingual lexicon.
Instead, we use English as the pivot language. To
get the nl-es translation, we use two bilingual
embeddings of nl-en and es-en from Duong
et al. (2016). We get the best English transla-
tion for the Dutch word, and get the top 5 Spanish

7We build 1,000 translation pairs for nl-es pair with the
source word from Vulić and Moens (2015) and ground truth
candidates from Google Translate but manually verified.
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translations with respect to the English word. This
simple trick performs surprisingly well, probably
because bilingual word embeddings involving En-
glish such as nl-en and es-en from Duong et
al. (2016) are very accurate.

For the linear transformation, we use the first
pair it-en as the pivot and learn to project
es-en, de-en, nl-en pairs to this space
as illustrated in Figure 1. We use English part
(E′biggest) from transformed de-en pair as the En-
glish output. Despite simplicity, linear transforma-
tion performs surprisingly well.

Our joint model to predict all target languages
simultaneously, as described in Equation (3), per-
forms consistently better in contrast with linear
transformation at all language pairs. The joint
model with explicit mapping as described in Equa-
tion (4) can be understood as the combination
of joint model and linear transformation. For
this model, we need to tune α in Equation (4).
We tested α with value in range {10−i}5i=0 us-
ing es-en pair on BLI task. α = 0.1 gives the
best performance. To avoid over-fitting, we use the
same value of α for all experiments and all other
pairs. With this tuned value α, our joint model
with mapping clearly outperforms other proposed
methods on all pairs. More importantly, this re-
sult is substantially better than all the baselines
across four language pairs and two evaluation met-
rics. Comparing with the state of the art (BiWE),
our final model (joint + mapping) are more general
and more widely applicable, however achieves rel-
atively better result, especially for recall at 5.

7 Monolingual similarity

The multilingual word embeddings should pre-
serve the monolingual property of the languages.
We evaluate using the monolingual similarity task
proposed in Luong et al. (2015). In this task, the
model is asked to give the similarity score for a
pair of words in the same language. This score
is then measured against human judgment. Fol-
lowing Duong et al. (2016), we evaluate on three
datasets, WordSim353 (WS-en), RareWord (RW-
en), and the German version of WordSim353
(WS-de) (Finkelstein et al., 2001; Luong et al.,
2013; Luong et al., 2015).

Table 2 shows the result of our multilingual
word embeddings with respect to several base-
lines. The trend is similar to the bilingual lex-
icon induction task. Linear transformation per-

Model WS-de WS-en RW-en

B
as

el
in

es MultiCluster 51.0 [98.3] 53.9 [100] 38.1 [57.6]

MultiCCA 60.2 [99.7] 66.3 [100] 43.1 [71.1]

MultiSkip 48.4 [96.6] 51.2 [99.7] 33.9 [55.4]

MultiTrans 56.4 [92.6] 61.1 [97.2] 51.1 [23.1]

O
ur

s Linear 67.5 [99.4] 74.7 [100] 45.4 [75.5]

Joint 68.5 [99.4] 74.6 [100] 43.8 [75.5]

Joint + Mapping 70.4 [99.4] 74.4 [100] 45.1 [75.5]

BiWE 71.1 [99.4] 76.2 [100] 44.0 [75.5]

Table 2: Spearman’s rank correlation for monolin-
gual similarity measurement for various models on
3 datasets WS-de (353 pairs), WS-en (353 pairs)
and RW-en (2034 pairs). We compare against 4
baseline multilingual word embeddings. BiWE is
the result from Duong et al. (2016) where each
pair is trained separately which serves as the refer-
ence for the best bilingual word embeddings. The
best results for multilingual word embeddings are
shown in bold. Numbers in square brackets are the
coverage percentage.

forms surprisingly well. Our joint model achieves
a similar result, with linear transformation (better
on WS-de but worse on WS-en and RW-en). Our
joint model with explicit mapping regains the drop
and performs slightly better than linear transfor-
mation. More importantly, this model is substan-
tially better than all baselines, except for Multi-
Trans on RW-en dataset. This can probably be
explained by the low coverage of MultiTrans on
this dataset. Our final model (Joint + Mapping)
is also close to the best bilingual word embed-
dings (BiWE) performance reported by Duong et
al. (2016).

8 Crosslingual Document Classification

In the previous sections, we have shown that our
methods for building multilingual word embed-
dings, either in the post-processing step or dur-
ing training, preserved high quality bilingual and
monolingual relations. In this section, we demon-
strate the usefulness of multi-language crosslin-
gual word embeddings through the crosslingual
document classification (CLDC) task.

This task exploits transfer learning, where the
document classifier is trained on the source lan-
guage and tested on the target language. The
source language classifier is transferred to the tar-
get language using crosslingual word embeddings
as the document is represented as the sum of bag-
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en→de de→en it→de it→es en→es Avg

B
as

el
in

es
MultiCluster 92.9 69.1 79.1 81.0 63.1 77.0
MultiCCA 69.2 50.7 83.1 79.0 45.3 65.5
MultiSkip 79.9 63.5 71.8 76.3 60.4 70.4
MultiTrans 87.7 75.2 70.4 64.4 56.1 70.8

O
ur

s

Linear 83.8 75.7 74.8 67.3 57.4 71.8
Joint 86.2 75.7 82.3 70.7 56.0 74.2
Joint + Mapping 89.5 81.6 84.3 74.1 53.9 76.7

B
ili

ng
ua

l Luong et al. (2015) 88.4 80.3 - - - -
Chandar A P et al. (2014) 91.8 74.2 - - - -
Duong et al. (2016) 86.3 76.8 - - 53.8 -

Table 3: Crosslingual document classification accuracy for various model. Chandar A P et al. (2014) and
Luong et al. (2015) achieved a state-of-the-art result for en→de and de→en respectively, served as the
reference. The best results for bilingual and multilingual word embeddings are bold.

of-word embeddings weighted by tf.idf. This set-
ting is useful for target low-resource languages
where the annotated data is insufficient.

The train and test data are from multilin-
gual RCV1/RCV2 corpus (Lewis et al., 2004)
where each document is annotated with labels
from 4 categories: CCAT (Corporate/Industrial),
ECAT (Economics), GCAT (Government/Social)
and MCAT (Markets). We extend the evaluation
from Klementiev et al. (2012) to cover more lan-
guage pairs. We use the same data split for
en→de and de→en pairs but additionally con-
struct the train and test data for it→de, it→es
and en→es. For each pair, we use 1,000 docu-
ments in the source language as the training data
and 5,000 documents in the target language as the
test data. The training data is randomly sampled,
but the test data (for es) is evenly balanced among
labels.

Table 3 shows the accuracy for the CLDC task
for many pairs and models with respect to the
baselines. For all bilingual models (Duong et al.,
2016; Luong et al., 2015; Chandar A P et al.,
2014), the bilingual word embeddings are con-
structed for each pair separately. In this way, they
can only get the pairs involving English since there
are many bilingual resources involving English on
one side. For all our models, including Linear,
Joint and Joint + Mapping, the embedding space
is available for multiple languages; this is why we
can exploit different relations, such as it→es.
This is the motivation for the work reported in this
paper. Suppose we want to build a document clas-

sifier for es but lack any annotations. It is com-
mon to build en-es crosslingual word embed-
dings for transfer learning, but this only achieves
53.8 % accuracy. Yet when we use it as the
source, we get 81.0% accuracy. This is motivated
by the fact that it and es are very similar.

The trend observed in Table 3 is consistent
with previous observations. Linear transforma-
tion performs well. Joint training performs bet-
ter especially for the it→de pair. The joint
model with explicit mapping is generally our best
model, even better than the base bilingual model
from Duong et al. (2016). The de→en result
improves on the existing state of the art reported
in Luong et al. (2015). Our final model (Joint +
Mapping) achieved competitive results compared
with four strong baseline multilingual word em-
beddings, achieving best results for two out of five
pairs. Moreover, the best scores for each language
pairs are all from multilingual training, emphasiz-
ing the advantages over bilingual training.

9 Analysis

Mikolov et al. (2013b) showed that monolingual
word embeddings capture some analogy relations
such as ~Paris − ~France + ~Italy ≈ ~Rome. It seems
that in our multilingual embeddings, these rela-
tions still hold. Table 4 shows some examples
of such relations where each word in the analogy
query is in different languages.

All our baselines (MultiCluster, MultiCCA,
MultiSkip, MultiTrans) are trained using differ-
ent datasets. While MultiSkip and MultiTrans
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chicoes - bruderde + sorellait
(boy - brother + sister)

ehemannde - padrees + madreit
(husband - father + mother)

principeit - jungede + meisjenl
(prince - boy + girl)

chicaes (girl) echtgenotenl (wife) principessait (princess)
ragazzait (girl) moglieit (wife) princessen
meisjenl (girl) heren princesaes (princess)
girlen maritoit (husband) prı́ncipees (prince)
mädchende (girl) haarnl (her) prinzessinde (princess)

Table 4: Top five closest words in our embeddings for multilingual word analogy. The transliteration is
provided in parentheses. The correct output is bold.

Tasks MultiCluster MultiCCA Our model

Extrinsic
multilingual Dependency Parsing 61.0 58.7 61.2
multilingual Document Classification 92.1 92.1 90.8

Intrinsic

monolingual word similarity 38.0 43.0 40.9
multilingual word similarity 58.1 66.6 69.8
word translation 43.7 35.7 45.7
monolingual QVEC 10.3 10.7 11.9
multilingual QVEC 9.3 8.7 8.6
monolingual QVEC-CCA 62.4 63.4 46.4
multilingual QVEC-CCA 43.3 41.5 31.0

Table 5: Performance of our model compared with MultiCluster and MultiCCA using extrinsic and
intrinsic evaluation tasks on 12 languages proposed in Ammar et al. (2016), all models are trained on the
same dataset. The best score for each task is bold.

are trained on parallel corpora, MultiCluster and
MultiCCA use monolingual corpora and bilingual
lexicons which are similar to our proposed meth-
ods. Therefore, for a strict comparison8, we train
our best model (Joint + Mapping) using the same
monolingual data and set of bilingual lexicons on
the same 12 languages with MultiCluster and Mul-
tiCCA. Table 5 shows the performance on intrin-
sic and extrinsic tasks proposed in Ammar et al.
(2016). Multilingual dependency parsing and doc-
ument classification are trained on a set of source
languages and test on a target language in the
transfer learning setting. Monolingual word simi-
larity task is similar with our monolingual similar-
ity task described in §7, multilingual word similar-
ity is an extension of monolingual word similarity
task but tested for pair of words in different lan-
guages. Monolingual QVEC, multilingual QVEC
test the linguistic content of word embeddings in
monolingal and multilingual setting. Monolingual
QVEC-CCA and multilingual QVEC-CCA are the

8also with respect to the word coverage since MultiSkip
and MultiTrans usually have much lower word coverage, bi-
asing the intrinsic evaluations.

extended versions of monolingual QVEC and mul-
tilingual QVEC also proposed in Ammar et al.
(2016). Table 5 shows that our model achieved
competitive results, best at 4 out of 9 evaluation
tasks.

10 Conclusion

In this paper, we introduced several methods for
building unified multilingual word embeddings.
These represent an improvement because they
exploit more relations and combine information
from many languages. The input to our model is
just a set of monolingual data and a set of bilingual
lexicons between any language pairs. We induce
the bilingual relationship for all language pairs
while keeping high quality monolingual relations.
Our multilingual joint training model with explicit
mapping consistently achieves better performance
compared with linear transformation. We achieve
new state-of-the-art performance on bilingual lex-
icon induction task for recall at 5, similar excellent
results with the state-of-the-art bilingual word em-
beddings on monolingual similarity task (Duong
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et al., 2016). Moreover, our model is competitive
at the crosslingual document classification task,
achieving a new state of the art for de→en and
it→de pair.
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Abstract

The use of distributional language repre-
sentations have opened new paths in solv-
ing a variety of NLP problems. However,
alternative approaches can take advantage
of information unavailable through pure
statistical means. This paper presents a
method for building vector representations
from meaning unit blocks called concept
definitions, which are obtained by extract-
ing information from a curated linguistic
resource (Wiktionary). The representa-
tions obtained in this way can be compared
through conventional cosine similarity and
are also interpretable by humans. Eval-
uation was conducted in semantic simi-
larity and relatedness test sets, with re-
sults indicating a performance compara-
ble to other methods based on single lin-
guistic resource extraction. The results
also indicate noticeable performance gains
when combining distributional similarity
scores with the ones obtained using this
approach. Additionally, a discussion on
the proposed method’s shortcomings is
provided in the analysis of error cases.

1 Introduction

Vector-based language representation schemes
have gained large popularity in Natural Language
Processing (NLP) research in the recent years.
Their success comes from both the asserted ben-
efits in several NLP tasks and from the ability to
built them from unannotated textual data, widely
available in the World Wide Web. The tasks bene-
fiting from vector representations include Part-of-
Speech (POS) tagging (dos Santos and Zadrozny,
2014), dependency parsing (Bansal et al., 2014),
Named Entity Recognition (NER) (Seok et al.,

2016), Machine Translation (Sutskever et al.,
2014), among others.

Such representation schemes are, however, not
an all-in-one solution for the many NLP appli-
cation scenarios. Thus, different representation
methods were developed, each one focusing in a
limited set of concerns, e.g., semantic relatedness
measurement (Mikolov et al., 2013; Pennington
et al., 2014) and grammatical dependencies (Levy
and Goldberg, 2014). Most of the popular meth-
ods are based on a distributional approach: the
meaning of a word is defined by the context of
its use, i.e., the neighboring words. However,
distributional representations carry no explicit lin-
guistic information and cannot easily represent
some important semantic relationships, such as
synonymy and antonymy (Nguyen et al., 2016).
Further problems include the difficulty in obtain-
ing representations for out-of-vocabulary (OOV)
words and complex constructs (collocations, id-
iomatic expressions), the lack of interpretable rep-
resentations (Faruqui and Dyer, 2015), and the ne-
cessity of specific model construction for cross-
language representation.

This paper presents a linguistically motivated
language representation method, aimed at captur-
ing and providing information unavailable on dis-
tributional approaches. Our contributions are: (i)
a technique for building conceptual representa-
tions of linguistic elements (morphemes, words,
collocations, idiomatic expressions) from a single
collaborative language resource (Wiktionary 1);
(ii) a method of combining said representations
and comparing them to obtain a semantic sim-
ilarity measurement. The conceptual represen-
tations, called Term Definition Vectors, address
more specifically the issues of semantic relation-
ship analysis, out-of-vocabulary word interpreta-

1www.wiktionary.org
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tion and cross-language conceptual mapping. Ad-
ditionally, they have the advantages of being in-
terpretable by humans and easy to operate, due to
their sparsity. Experiments were conducted with
the SimLex-999 (Hill et al., 2015) test collection
for word similarity, indicating a good performance
in this task and exceeding the performance of other
single information source studies, when combined
with a distributional representation and Machine
Learning. Error analysis was also conducted to un-
derstand the strengths and weaknesses of the pro-
posed method.

The remainder of this paper is organized as fol-
lows: Section 2 presents relevant related works
and highlights their similarities and differences to
this research. Section 3 explains our approach in
detail, covering its linguistic motivation and the
characteristics of both representation model and
comparison method. Section 4 describes the ex-
perimental evaluation and discusses the evaluation
results and error analysis. Finally, Section 5 offers
a summary of the findings and some concluding
remarks.

2 Related Work

In order to address the limitations of the most
popular representation schemes, approaches for
all-in-one representation models were also devel-
oped (Pilehvar and Navigli, 2015; Derrac and
Schockaert, 2015). They comprise a combination
of techniques applied over different data sources
for different tasks. Pilehvar and Navigli (2015)
presented a method for combining Wiktionary and
Wordnet (Fellbaum and others, 1998) sense in-
formation into a semantic network and a corre-
sponding relatedness similarity measurement. The
method is called ADW (Align, Disambiguate,
Walk), and works by first using a Personalized
PageRank (PPR) (Haveliwala, 2002) algorithm for
performing a random walk on the semantic net-
work and compute a semantic signature of a lin-
guistic item (sense, word or text): a probability
distribution over all entities in the network where
the weights are estimated on the basis of the net-
work’s structural properties. Two linguistic items
are then aligned and disambiguated by finding
their two closest senses, comparing their seman-
tic signatures under a set of vector and rank-based
similarity measures (JensenShannon divergence,
cosine, Rank-Biased Overlap, and Weighted Over-
lap). ADW achieved state-of-the-art performance

in several semantic relatedness test sets, covering
words, senses and entire texts.

Recski et al. (2016) presented a hybrid sys-
tem for measuring the semantic similarity of word
pairs, using a combination of four distributional
representations (SENNA (Collobert and Weston,
2008), (Huang et al., 2012), word2vec (Mikolov
et al., 2013), and GloVe (Pennington et al., 2014)),
WordNet-based features and 4lang (Kornai, 2010)
graph-based features to train a RBF kernel Sup-
port Vector Regression on the SimLex-999 (Hill et
al., 2015) data set. This system achieved state-of-
the-art performance in SimLex-999.

The work presented in this paper takes a similar
approach to Pilehvar and Navigli (2015), but stops
short on obtaining a far reaching concept graph.
Instead, it focuses on exploring the details of each
sense definition. This includes term etymolo-
gies, morphological decomposition and transla-
tion links, available in Wiktionary. Another differ-
ence is that the translation links are used to map
senses between languages in this work, whereas
they are used for bridging gaps between sense
sets on monolingual text in Pilehvar and Navigli
(2015).

Another concern regarding distributional repre-
sentations is their lack of interpretability from a
linguistic standpoint. Faruqui and Dyer (2015)
addresses this point, relying on linguistic infor-
mation from Wordnet, Framenet (F. Baker et
al., 1998), among other sources (excluding Wik-
tionary), to build interpretable word vectors. Such
vectors accommodate several types of informa-
tion, ranging from Part-of-Speech (POS) tags to
sentiment classification and polarity. The obtained
linguistic vectors achieved very good performance
in a semantic similarity test. Those vectors, how-
ever, do not include morphological and translation
information, offering discrete, binary features.

Regarding the extraction of definition data from
Wiktionary, an effective approach is presented
by Zesch et al. (2008a), which is also used for
building a semantic representation (Zesch et al.,
2008b). However, the level of detail and structure
format obtained by such method was not deemed
adequate for this work and an alternative extrac-
tion method was developed (Sections 3.2 and 3.3).

3 Term Definition Vectors

The basic motivation for the representation model
here described is both linguistic and epistemic:
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trying to represent knowledge as a set of individual
concepts that relate to one another and are related
to a set of terms. This idea is closely related to
the Ogden/Richards triangle of reference (Ogden
et al., 1923) (Figure 1), which describes a relation-
ship between linguistic symbols and the objects
they represent. The following notions are then de-
fined:
• Concept: The unit of knowledge. Represents

an individual meaning, e.g., rain (as in the
natural phenomenon), and can be encoded
into a term (symbol). It corresponds to the
“thought or reference” from the triangle of
reference.

• Term: A unit of perception. In text, it can
be mapped to fragments ranging from mor-
phemes to phrases. Each one can be decoded
into one or more concepts. Stands for the
“symbol” in the triangle of reference.

• Definition: A minimal, but complete explic-
itation of a concept. It comprises the tex-
tual explanation of the concept (sense) and its
links to other concepts in a knowledge base,
corresponding to the “symbolizes” relation-
ship in the triangle of reference. The sim-
plest case is a dictionary definition, consist-
ing solely of a short explanation (typically
a single sentence), with optional term high-
lights, linking to other dictionary entries. The
information used for building definitions in
this work is described in Section 3.3.

Figure 1: Ogden/Richards triangle of reference,
also known as semiotic triangle. Describes a re-
lationship between linguistic symbols and the ob-
jects they represent. (Ogden et al., 1923)

3.1 Distributional & Definitional Semantics

Distributional approaches for language represen-
tation, also known as latent or statistical seman-
tics, are rooted in what is called the distributional
hypothesis (Sahlgren, 2008). This concept stems
from the notion that words are always used in
a context, and it is the context that defines their
meaning. Thus, the meaning of a term is con-
cealed, i.e. latent, and can be revealed by look-
ing at its context. In this sense, it is possible to
define the meaning of a term to be a function of
its neighboring term frequencies (co-occurrence).
Using different definitions for “neighbor”, e.g.,
adjacent words in word2vec (Mikolov et al., 2013)
and “modifiers in a dependency tree” (Levy and
Goldberg, 2014), it is possible to produce a va-
riety of vector spaces, called embeddings. Good
embeddings enable the use of vector operations
on words, such as comparison by cosine similar-
ity. They also solve the data sparsity problem of
large vocabularies, working as a dimensionality
reduction method. There are, however, semantic
elements that are not directly related to context,
and thus are not well represented by distributional
methods, e.g., the antonymy and hypernymy re-
lations. Furthermore, polysemy can bring poten-
tial ambiguity problems in cases where the vectors
are only indexed by surface form (word→ embed-
ding).

An alternative line of thinking is to define the
meanings first and then associate the correspond-
ing terms (reference → symbol). In this notion,
meanings are explicit and need only to be resolved,
i.e., disambiguated, for any given term. Concepts
are thus represented by prior definitions instead of
distributions over corpora, hence the name “defini-
tional semantics” is used in this work to generalize
such approaches.

To illustrate the difference between both ap-
proaches, a simple analogy can be made, where a
person reads a book with difficult or new vocabu-
lary. The distributional approach would be akin to
reading the book while trying to guess the mean-
ing of the unknown words by context. If the book
is long, as the reading progresses, the guesses tend
to become more accurate, as a human will try to
piece together the information patterns surround-
ing the new words. On the other hand, the defi-
nitional approach would be equivalent to reading
the entire contents of a dictionary before reading
the book. The main advantage of the former is in-
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dependence from any previously compiled knowl-
edge base, e.g, a dictionary, which are subject to
completeness and correctness concerns. The latter
offers answers for the rarer words that are difficult
to guess and the possibility to explain exactly how
a certain meaning was inferred (interpretability).

The proposed definitional representation is then
obtained through the following strategy:

1. Formalization of the basic unit of knowledge:
the concept.

2. Information extraction from a linguistic re-
source into a set of concepts.

3. Lexical association: term↔ concept.

4. Definition of a term as a composition (mix-
ture) of concepts, allowing partial or com-
plete disambiguation.

Figure 2 illustrates the process. A term is said
ambiguous if it is composed by more than one con-
cept. Therefore in this context, disambiguation is
the action of reducing the number of concepts in
a term’s composition. This can be done by col-
lecting additional information about the term, such
as Part-of-Speech. A complete disambiguation re-
duces the composition to a single concept.

Figure 2: Process of definitional representation.
Given a set of concepts obtained from a linguis-
tic resource, a term can be defined as a composi-
tion of concepts. A term is said ambiguous if it is
composed by more than one concept.

3.2 Linguistic Information Extraction

Wiktionary 2 was used as the single linguistic re-
source. Wiktionary is a collaborative lexical re-
source, comprising millions of vocabulary entries
from several languages. It includes contextual in-
formation, etymology, semantic relations, transla-
tions, inflections, among other types of informa-
tion for each entry. Its contents are actively cu-
rated by a large, global community. This choice
was motivated by a several reasons, more impor-
tantly:

• It is the largest lexical resource openly avail-
able for the public, covering more than 10
million lexical entries from 172 languages.

• It is constantly updated. Daily changes are
consolidated in monthly releases.

• Entries are organized in a way that separates
each meaning of a term, simplifying defini-
tion extraction.

• Entries include range from morphemes, e.g.,
“pre-”, to idiomatic expressions, e.g., “take
matters into one’s own hands”.

The data available from Wiktionary is semi-
structured, composed of a set of markup docu-
ments, one for each entry, following a reasonably
consistent standard of annotations for each lan-
guage covered. In order to extract the linguistic
information, an application was developed to con-
vert the markup into a structured (JSON + schema)
representation. The structured data was optimized
for the retrieval of Wiktionary senses and link
types were categorized to produce concept defini-
tions.

3.3 Concept Definitions

Formalization of the knowledge unit used in this
work was done by firstly mapping each concept to
a single Wiktionary sense. The concept is repre-
sented as a lexical/semantic graph, where a main
addressing term, the root node, is connected to
other terms through a set of edges. Each edge de-
notes a different type of lexical/semantic relation-
ship, e.g. prefixation, synonymy/antonymy. The
edges are also weighted, denoting the intensity of
a relationship. Figure 3 shows a simplified visu-
alization of a pair of different concept graphs for

2www.wiktionary.org
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Figure 3: A simplified visualization of two concept graphs for the term “mouse”. The leftmost one
denotes the concept of the small rodent and the other denotes the computer input device. The edge labels
represent the relationship type and the thickness represent the its intensity.

Table 1: Link types used for the construction of concept graphs. They comprise both lexical (morphol-
ogy, etymology) and semantic relationships between the root term, i.e., the Wiktionary entry title, and
the terms used to describe the meaning.

Type Description
weak A term included in the description of the meaning on the Wiktionary entry.
strong A term linked to another entry, i.e. a {highlight}, included in the description of the meaning.
context A Wiktionary context link, explaining a specific situation in which the meaning described occurs.
synonym A synonym relation. If it is an antonym, the sign of the link is reversed.
hypernym A hypernym relation.
homonym A homonym relation.
abbreviation If the meaning described is given by interpreting the root term as an abbreviation.
etymology Used to describe the origin of the root term of this meaning.
prefix Denotes a prefixation (morphological) relationship of the root term.
suffix Denotes a suffixation relationship. Same as above.
confix Denotes a confixing relationship. Same as above.
affix Denotes an affixation relationship. Same as above.
stem Denotes a morphological stem relationship of the root term.
inflection Denotes an inflectional relationship of the root term.

Figure 4: Representation of one Wiktionary sense definition for ”mouse” as an encoded matrix: the
concept definition. Each Wiktionary link is categorized and mapped to a vector space.

a single lexical entry of Wiktionary. The differ-
ent link types are used to create a vector space, in
which the edges of the definition graph are repre-
sented. Table 1 describes the link types used in
this work.

Each concept graph is represented by a ML×T

matrix called concept definition, where L is the

number of link types and T is the vocabulary
size. The link intensities are defined for each
type, by multiplying a manually defined constant
link base (a model parameter) by the TF-IDF
score calculated for the vocabulary with respect to
the type. Figure 4 illustrates the process.

Wiktionary entries also cover foreign terms,
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listing senses in the source language, e.g., English
meanings of the French word “avec” in the English
language section. Definitions for these terms are
also included into the concept definition set. Ad-
ditionally, translation links are provided for many
sense definitions. Such links, as well as term redi-
rections, i.e., distinct terms pointing to the same
Wiktionary entry, are mapped to a single concept.
This allows foreign terms to take advantage of the
same concept graphs as the source language equiv-
alents.

3.4 Definition Vectors

Finally, association between the concept defini-
tions and terms is established by composition.
This is done by simple element-wise sum and av-
erage of all concept definition matrices mapped to
a Wiktionary entry. The resulting matrix is flat-
tened in its row axis, i.e, rows are concatenated
in order, producing a L × T -dimensional sparse
vector called term definition vector. If the term is
not a Wiktionary entry, i.e., is out-of-vocabulary
(OOV), a character n-gram-based attempt of mor-
phological decomposition is done and if a com-
plete morpheme match is found in the concept def-
inition set, the matched concepts are composed
for the OOV term. This decomposition attempt is
done as follows:

1. For each character ci, i ∈ [0, n] in a OOV
term of length n:

i Create empty list morph cand of mor-
pheme candidates.

ii Set index j = i.
iii Find Wiktionary entries that match c and

add them to morph cand. For the first
and last characters, include prefixes and
suffixes in the search, respectively.

iv Concatenate cj+1 to c.
v Increment j.

vi Repeat from iii.

This will produce a sequence of n morpheme
candidate lists. If a sequence produced by taking a
single morpheme candidate from each list matches
the entire OOV term, it is considered a candidate
decomposition. If there are multiple candidate de-
compositions, the one with the shortest stem is se-
lected.

Figure 5 illustrates an OOV composition for
the nonexistent term “unlockability”, which has

a complete morpheme match in the concept def-
inition set. If a complete morpheme match is not
found, the term is considered a proper noun (if no
POS is provided), and given a null (zero) vector.

Figure 5: Morpheme match in concept definitions
for the OOV term “unlockability”.

Similarity comparison between two terms is
done by measuring the cosine similarity between
their definition vectors. A value closer to 1 in-
dicates high similarity, a value closer to −1 in-
dicates opposition and a value closer to 0 indi-
cates unrelatedness. Table 2 shows a compari-
son table between semantic matches obtained us-
ing this method, word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014).

Table 2: Top closest and farthest to the term
“happy” by Term Definition Vector, and clos-
est Word2Vec (GoogleNews corpus), and GloVe
(Wikipedia2014 + Gigaword) cosine similarities.

Def.Vec Def.Vec (-) Word2Vec GloVe
joyous sad glad glad
dexterous unhappy pleased good
content joyless ecstatic sure
felicitous somber overjoyed proud
lucky depressed thrilled excited

The definition vectors obtained in this way
are also human interpretable to a certain extent.
Each dimension corresponds to a link from the
concept graphs used to compose a term definition.
The values correspond to the strengths of such
links. A human readable representation of the
definition vector for the word “sunny”, containing
a maximum of two values per link type, can be
written in the form: weak@(a:0.0006, lot:0.003);
strong@(cheerful:0.032, radiant:0.032); syn-
onym@(bright:1.11, sunlit:1.11); suffix@(-y:1);
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stem@(sun:1); pos@(adjective:0.11, noun:0.11).
In this example, strong@radiant is a single vec-
tor dimension and the term is not disambiguated
(multiple POS).

4 Experiments

4.1 Experimental setup

The definition vector representations obtained in
this work were evaluated in the SimLex-999 test
collection for semantic similarity benchmark (Hill
et al., 2015). This test collection contains a set
of 999 English word pairs, associated to a sim-
ilarity score given by a group of human annota-
tors. The set is divided in 666 nouns pairs, 222
verb pairs and 111 adjective pairs. The Part-of-
Speech (POS) information allows partial or com-
plete disambiguation of the definition vectors. The
choice of SimLex-999 was due to the type of sim-
ilarity measured by this set, which excludes re-
latedness and is closer to the type of information
captured by the concept definitions. Addition-
ally, the WordSim-353 (Finkelstein et al., 2001),
RG-65 (Rubenstein and Goodenough, 1965) and
MEN (Bruni et al., 2014) test collections for se-
mantic relatedness were also included in the eval-
uation, to verify the representation performance in
measuring relatedness. While the MEN test col-
lection also includes POS information, WordSim-
353 and RG-65 do not include it, so sense dis-
tinction was not applied for the latter. Unfortu-
nately, the test collections used in this work did
not contain foreign words, so the translation-link
features presented in Section 3.3 are solely pre-
sented as part of the method’s description, and are
not evaluated. This is due to the method being de-
veloped without focus on a specific test. The se-
mantic similarity measurement was consequence
of the method’s design, but not its main target.

Evaluation is done by computing the Spear-
man’s rank correlation coefficient (ρ) between the
human annotators’ similarity or relatedness scores
and the scores given by the automated methods.
A coefficient of value 1 means a perfect match
between the relative positions of the pairs, when
ranked by their similarity scores.

For the SimLex-999 test, the cosine similarity
between the term definition vectors was set as the
similarity score. For the WordSim-353, RG-65
and MEN tests, the absolute value of the cosine
similarity was used instead, since opposite words
are related. An additional test was performed to

explore the possibility of combining distributional
and definitional approaches. In this test, a small
set of features was created to train a Learning-
to-Rank model, in order to improve the similarity
scores. The features were as follows:

• Presence of synonym, hypernym, strong and
weak links 3 between the pair of words. Each
link type is a separate feature.

• Term definition vector similarity.

• Word2vec similarity.

The features were computed for each pair and
passed to SVMrank (Joachims, 2006) for training
and validation. A 10-fold cross-validation test us-
ing random pairs without replacement was run for
the entire sets (5-fold for RG-65), except MEN.
The MEN test collection is separated into train-
ing and testing sets, with 2K and 1K word pairs
respectively, so these were used in place of the
cross-validation. For each fold, the ranking scores
provided by the trained ranker were used as simi-
larity scores for calculating ρ. The average of all
folds was considered the final result.

Experimental data and model parameters were
set as follows:

• Linguistic information source: Wiktionary
English database dump (XML + Wiki
markup), 2015-12-26, containing more than
4 million entries. A reduced set, with only
English, French, Greek, Japanese, Latin and
Vietnamese language entries was used in the
experiments. This set had about 734K en-
tries, from which approx. 1 million concepts
where extracted.

• link base constants were set as: weak =
0.2, strong = 2.0, context = 0.5,
synonym = 10.0, hypernym = 5.0,
homonym = 7.0, etymology = 1.0 (also
applied to morphological links) and pos =
1.0. The constants were adjusted by increas-
ing or decreasing their values individually in
intervals of 0.2, and observing the effect in ρ
for SimLex-999 in the first fold of the cross-
validation. The optimal values were selected
and kept constant for the remaining folds and
for the other tests. This was done because

3See Table 1
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Table 3: Performance of different methods for the SimLex-999, WordSim-353, RG-65, and MEN test
sets, reported as Spearman’s rank correlation coefficient rho. The methods marked with � use a single
information source. Fields marked with “-” indicate that the results were not available for assessment.

Method ρ@SimLex-999 ρ@WordSim-353 ρ@RG-65 ρ@MEN-1K
Word2Vec (W2V) � 0.38 0.78 0.84 0.73
GloVe � 0.40 0.76 0.83 -
Term Def. Vectors (TDV) � 0.56 0.36 0.68 0.42
Ling Dense 0.58 0.45 0.67 -
dLCE � 0.59 - - -
TDV + W2V + SVMrank 0.62 0.75 0.72 0.78
Recski et al. (2016) 0.76 - - -
ADW - 0.75 0.92 -

changing link base for each fold would cre-
ate an unrealistic use scenario for our sys-
tem, which cannot change link base online.
The cross-validation was repeated two times,
with very minor differences between both test
runs. The constant values reported here are
from the last run.

• SVMrank was set with a default linear ker-
nel and C parameter (training error trade-off)
was set to 8 for MEN and 5 for the other test
collections. The value was increased in unit
intervals, until convergence was longer than a
time threshold (10 minutes). This parameter
was adjusted using the training set for MEN,
or inside each CV fold for the rest.

• Both Word2Vec and GloVe were used with
pre-trained, 300-dimensional models: 100
billion words GoogleNews corpus and Com-
mon Crawl 42 billion token corpus respec-
tively.

dLCE (Nguyen et al., 2016) was chosen as base-
line, for being the best single information source
method in the SimLex-999 test collection. Fur-
ther results include Recski et al. (2016) (state-of-
the-art), Ling Dense (Faruqui and Dyer, 2015),
Word2Vec (Mikolov et al., 2013), and GloVe (Pen-
nington et al., 2014). For WordSim-353, GloVe,
Word2Vec, Ling Dense, and ADW (Pilehvar and
Navigli, 2015) were included. For RG-65, Ling
Dense, GloVe, and ADW (state-of-the-art), were
included.

4.2 Results

The experimental results are presented in Table 3,
where they are compared to other methods.

The results indicate that in the semantic similar-
ity test, the term definition vectors perform closely
to other representation models taking advantage
of curated data, such as WordNet. It also outper-
forms the most popular distributional representa-
tions. However, they are clearly outclassed in the
semantic relatedness test, for which the distribu-
tional approaches show superior performance.

An interesting observation can be made when
combining word2vec similarity with term defini-
tion features through the use of Machine Learning.
A performance trade-off seems to exist at the se-
mantic relatedness tests, but the same is not true
for the similarity test. This allowed the combined
model to improve considerably at little cost. Fur-
ther analysis helped in understanding the reason
for this particularity (Section 4.3).

Lastly, the experiments have also shown that
the method for extracting concept definitions is
not computationally expensive. The developed
implementation took about 6 minutes to extract
all concept definitions from the structured Wik-
tionary data used in the tests, using a modern desk-
top computer (3GHz processor and at least 8GB
RAM). Structuring Wiktionary data took less than
20 minutes with the same equipment, and was
done a single time.

4.3 Error analysis

Identifying the flaws in a method is a fundamental
step in improving it and also in understanding the
problem it tries to solve. With this in mind, the
error cases identified in measuring similarity from
the SimLex-999 set were observed in detail. In
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this analysis we considered as error any word pair
that was put among the top 15% similarity scores
by the human annotators, but was ranked in the
lower 50% using the definition vectors. The same
applies for the bottom 15% scored by humans, that
are ranked in the upper half by our approach.

The errors found were classified in four cate-
gories:

• Insufficient links in Wiktionary: this type of
error occurs when the wiktionary sense cor-
responding to a concept lacks annotations.
Typical cases contain only a short descrip-
tion, with no links. The concept graph is
then left with only weak links, which have lit-
tle impact on similarity calculation. The pair
drizzle–rain (noun) is one example of this.

• Undeclared hypernymy: certain cases of hy-
pernymy are not solved in the concept extrac-
tion, since they require multiple hops in the
definition links to be found. The pairs cop–
sheriff and alcohol–gin (noun) are instances
of such problem.

• Casual vs. formal language semantics: not a
flaw in the method per se, but an error caused
by the differences in formal description of a
language (in a dictionary), when compared to
casual use. The pair noticeable–obvious (ad-
jective) illustrates this.

• Other: flaws in the extraction process or an-
notation problems in Wiktionary.

Those errors affect the pairs in the top 15% hu-
man similarity scores 7 times more than the lower
15%. They are distributed as shown in Table 4.

Table 4: Distribution of definition vector error
types in SimLex-999.

Type of error Proportion
Insufficient links 21.4%
Undeclared hypernymy 38.1%
Casual semantics 14.3%
Other 26.2%

Having about one quarter of the errors in the
“other” category shows that there is some space
for improvement in the concept extraction pro-
cess. The insufficient links and undeclared hyper-
nymy categories are cases in which distributional
approaches may do better if similarity is high, due
to the words intrinsic relatedness.

Analysis of SVMrank scores showed that the in-
sufficient links category benefited the most from
the combination with word2vec. The reason is that
the features chosen for use with the ranker made
such cases distinguishable and more likely to re-
ceive a larger weight from the word2vec similarity
score after training. The undeclared hypernymy
cases, on the other hand, are not so evident and
would require a more complex approach on the
concept extraction process.

5 Conclusion

Alternative approaches to distributional language
representations can take advantage of information
unavailable through pure statistical means. Taking
advantage of large curated linguistic resources is a
popular way of obtaining such information and of-
fers large room for exploration. With this in mind,
we propose a novel method for obtaining vector
representations of lexical items using Wiktionary
sense definitions. The lexical item representations
are composed from basic meaning units called
concept definitions, which are extracted from the
linguistic resource. Results obtained from a se-
mantic similarity evaluation test indicate perfor-
mance comparable to other methods based on lin-
guistic resource extraction. Furthermore, a notice-
able performance gain was obtained by applying a
Machine Learning approach to combine word2vec
similarity scores with the ones obtained using this
approach, exceeding both methods’ results.

Planned improvements include the use of a
graph traversal approach to capture deeper se-
mantic links and also the inclusion of translation
links as separate dimensions in the concept vec-
tor space, in order to facilitate the use of obtained
representations as a machine translation resource.
The inclusion of distributional similarity measures
as separate dimensions is also under study and
provides an alternative way of combining the dis-
tributional and definitional approaches.
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Abstract

In this paper, we present a novel unsu-
pervised algorithm for word sense disam-
biguation (WSD) at the document level.
Our algorithm is inspired by a widely-used
approach in the field of genetics for whole
genome sequencing, known as the Shot-
gun sequencing technique. The proposed
WSD algorithm is based on three main
steps. First, a brute-force WSD algorithm
is applied to short context windows (up
to 10 words) selected from the document
in order to generate a short list of likely
sense configurations for each window. In
the second step, these local sense config-
urations are assembled into longer com-
posite configurations based on suffix and
prefix matching. The resulted configura-
tions are ranked by their length, and the
sense of each word is chosen based on a
voting scheme that considers only the top
k configurations in which the word ap-
pears. We compare our algorithm with
other state-of-the-art unsupervised WSD
algorithms and demonstrate better perfor-
mance, sometimes by a very large margin.
We also show that our algorithm can yield
better performance than the Most Com-
mon Sense (MCS) baseline on one data
set. Moreover, our algorithm has a very
small number of parameters, is robust to
parameter tuning, and, unlike other bio-
inspired methods, it gives a determinis-
tic solution (it does not involve random
choices).

1 Introduction

Word Sense Disambiguation (WSD), the task of
identifying which sense of a word is used in a

given context, is a core NLP problem, having
the potential to improve many applications such
as machine translation (Carpuat and Wu, 2007),
text summarization (Plaza et al., 2011), informa-
tion retrieval (Chifu and Ionescu, 2012; Chifu
et al., 2014) or sentiment analysis (Sumanth and
Inkpen, 2015). Most of the existing WSD algo-
rithms (Agirre and Edmonds, 2006; Navigli, 2009)
are commonly classified into supervised, unsuper-
vised, and knowledge-based techniques, but hy-
brid approaches have also been proposed in the
literature (Hristea et al., 2008). The main disad-
vantage of supervised methods (that have led to
the best disambiguation results) is that they re-
quire a large amount of annotated data which is
difficult to obtain. Hence, over the last few years,
many researchers have concentrated on develop-
ping unsupervised learning approaches (Schwab
et al., 2012; Schwab et al., 2013a; Schwab et
al., 2013b; Chen et al., 2014; Bhingardive et al.,
2015). In this paper, we introduce a novel WSD
algorithm, termed ShotgunWSD1, that stems from
the Shotgun genome sequencing technique (An-
derson, 1981; Istrail et al., 2004). Our WSD algo-
rithm is also unsupervised, but it requires knowl-
edge in the form of WordNet (Miller, 1995; Fell-
baum, 1998) synsets and relations as well. Thus,
our algorithm can be regarded as a hybrid ap-
proach.

WSD algorithms can perform WSD at the lo-
cal or at the global level. A local WSD algorithm,
such as the extended Lesk measure (Lesk, 1986;
Banerjee and Pedersen, 2002; Banerjee and Ped-
ersen, 2003), is designed to assign the appropri-
ate sense, from an existing sense inventory, for a
target word in a given context window of a few
words. For instance, for the word “sense” in the
context “You have a good sense of humor.”, the

1Our open source Java implementation of ShotgunWSD
is freely available at http://ai.fmi.unibuc.ro/Home/Software.
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sense that corresponds to the natural ability rather
than the meaning of a word or the sensation should
be chosen by a WSD algorithm. Rather more gen-
erally, a global WSD approach aims to choose the
appropriate sense for each ambiguous word in a
text document. The straightforward solution is
the exhaustive evaluation of all sense combina-
tions (configurations) (Patwardhan et al., 2003),
but the time complexity is exponential with respect
to the number of words in the text, as also noted
by Schwab et al. (2012), Schwab et al. (2013a).
Indeed, the brute-force (BF) solution quickly be-
comes impractical for windows of more than a
few words. Hence, several approximation meth-
ods have been proposed for the global WSD task
in order to overcome the exponentional growth of
the search space (Schwab et al., 2012; Schwab et
al., 2013a). Our algorithm is designed to perform
global WSD by combining multiple local sense
configurations that are obtained using BF search,
thus avoiding BF search on the whole text. A lo-
cal WSD algorithm is employed to build the lo-
cal sense configurations. We alternatively use two
methods at this step, namely the extended Lesk
measure (Banerjee and Pedersen, 2002; Baner-
jee and Pedersen, 2003) and an approach based
on deriving sense embeddings from word embed-
dings (Bengio et al., 2003; Collobert and Weston,
2008; Mikolov et al., 2013). Both local WSD ap-
proaches are based on WordNet synsets and rela-
tions.

Our global WSD algorithm can be briefly de-
scribed in a few steps. In the first step, context
windows of a fixed length n are selected from the
document, and for each context window the top
scoring sense configurations constructed by BF
search are kept for the second step. The retained
sense configurations are merged based on suffix
and prefix matching. The configurations obtained
so far are ranked by their length (the longer, the
better), and the sense of each word is given by
a majority vote on the top k configurations that
cover the respective word. Compared to other
state-of-the-art bio-inspired methods (Schwab et
al., 2012; Schwab et al., 2013a), our algorithm has
less parameters. Different from the other methods,
these parameters (n and k) can be intuitively tuned
with respect to the WSD task. As we select a sin-
gle context window at every possible location in a
text, our algorithm becomes deterministic, obtain-
ing the same global configuration for a given set

of parameters and input document. Thus, our al-
gorithm is not affected by random chance, unlike
stochastic algorithms such as Ant Colony Opti-
mization (Lafourcade and Guinand, 2010; Schwab
et al., 2012; Schwab et al., 2013a).

We have conducted experiments on SemEval
2007 (Navigli et al., 2007), Senseval-2 (Edmonds
and Cotton, 2001) and Senseval-3 (Mihalcea et al.,
2004) data sets in order to compare ShotgunWSD
with three state-of-the-art approaches (Schwab et
al., 2013a; Chen et al., 2014; Bhingardive et al.,
2015) along with the Most Common Sense (MCS)
baseline2, which is considered as the strongest
baseline in WSD (Agirre and Edmonds, 2006).
The empirical results show that our algorithm
compares favorably to these approaches.

The rest of this paper is organized as follows.
Related work on unsupervised WSD algorithms is
presented in Section 2. The ShotgunWSD algo-
rithm is described in Section 3. The experiments
are given in Section 4. Finally, we draw our con-
clusions in Section 5.

2 Related Work

There is a broad range of methods designed to per-
form WSD (Agirre and Edmonds, 2006; Navigli,
2009; Vidhu Bhala and Abirami, 2014). The most
accurate techniques are supervised (Iacobacci et
al., 2016), but they require annotated training data
which is not always available. In order to over-
come this limitation, some researchers have pro-
posed various unsupervised or knowledgde-based
WSD methods (Banerjee and Pedersen, 2002;
Banerjee and Pedersen, 2003; Schwab et al., 2012;
Nguyen and Ock, 2013; Schwab et al., 2013a;
Schwab et al., 2013b; Chen et al., 2014; Agirre
et al., 2014; Bhingardive et al., 2015). Since
our approach is unsupervised and based on Word-
Net (Miller, 1995; Fellbaum, 1998), our focus is to
present related work in the same direction. Baner-
jee and Pedersen (2002) extend the gloss overlap
algorithm of Lesk (1986) by using WordNet rela-
tions. Patwardhan et al. (2003) proposed a brute-
force algorithm for global WSD by employing
the extended Lesk measure (Banerjee and Peder-
sen, 2002; Banerjee and Pedersen, 2003) to com-
pute the semantic relatedness among senses in a
given text. However, their BF approach is not
suitable for whole text documents, because of the
high computational time. More recently, Schwab

2Also known as the Most Frequent Sense baseline.
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et al. (2012) have proposed and compared three
stochastic algorithms for global WSD as alterna-
tives to BF search, namely a Genetic Algorithm,
Simulated Annealing, and Ant Colony Optimiza-
tion. Among these, the authors (Schwab et al.,
2012; Schwab et al., 2013a) have found that the
Ant Colony Algorithm yields better results than
the other two.

Recently, word embeddings have been used for
WSD (Chen et al., 2014; Bhingardive et al., 2015;
Iacobacci et al., 2016). Word embeddings are
well known in the NLP community (Bengio et
al., 2003; Collobert and Weston, 2008), but they
have recenlty become more popular due to the
work of Mikolov et al. (2013) which introduced
the word2vec framework that allows to efficiently
build vector representations from words. Chen et
al. (2014) present a unified model for joint word
sense representation and disambiguation. They
use the Skip-gram model to learn word vectors.
On the other hand, Bhingardive et al. (2015) use
pre-trained word vectors to build sense embed-
dings by averaging the word vectors produced for
each sense of a target word. As their goal is to
find an approximation for the MCS baseline, they
try to find the sense embedding that is closest to
the embedding of the target word. Iacobacci et al.
(2016) propose different methods through which
word embeddings can be leveraged in a super-
vised WSD system architecture. Remarkably, they
find that a WSD approach based on word embed-
dings alone can provide significant performance
improvements over a state-of-the-art WSD system
that uses standard WSD features.

3 ShotgunWSD

As also noted by Schwab et al. (2012), brute-
force WSD algorithms based on semantic relat-
edness (Patwardhan et al., 2003) are not practical
for whole text disambiguation due to their expo-
nential time complexity. In this section, we de-
scribe a novel WSD algorithm that aims to avoid
this computational issue. Our algorithm is in-
spired by the Shotgun genome sequencing tech-
nique (Anderson, 1981) which is used in genet-
ics research to obtain long DNA strands. For ex-
ample, Istrail et al. (2004) have used this tech-
nique to assemble the human genome. Before a
long DNA strand can be read, Shotgun sequenc-
ing needs to create multiple copies of the re-
spective strand. Next, DNA is randomly broken

down into many small segments called reads (usu-
ally between 30 and 400 nucleotides long), by
adding a restriction enzyme into the chemical so-
lution containing the DNA. The reads can then
be sequenced using Next-Generation Sequencing
techonlogy (Voelkerding et al., 2009), for example
by using an Illumina (Solexa) machine (Bennett,
2004). In genome assembly, the low quality reads
are usually eliminated (Patel and Jain, 2012) and
the whole genome is reconstructed by assembling
the remaining reads. One strategy is to merge two
or more reads in order to obtain longer DNA seg-
ments, if they have a significant overlap of match-
ing nucleotides. Because of reading errors or mu-
tations, the overlap is usually measured using a
distance measure, e.g. edit distance (Levenshtein,
1966). If a backbone DNA sequence is available,
the reads are aligned to the backbone DNA before
assembly, in order to find their approximate posi-
tion in the DNA that needs to be reconstructed.

We next present how we adapt the Shotgun se-
quencing technique for the task of global WSD.
We will make a few observations along the way
that will lead to a simplified method, namely Shot-
gunWSD, which is formally presented in Algo-
rithm 1. We use the following notations in Algo-
rithm 1. An array (or an ordered set of elements)
is denoted byX = (x1, x2, ...., xm) and the length
of X is denoted by |X| = m. Arrays are consid-
ered to be indexed starting from position 1, thus
X[i] = xi,∀i ∈ {1, 2, ...m}.

Our goal is to find a configuration of senses
G for the whole document D, that matches the
ground-truth configuration produced by human
annotators. A configuration of senses is simply
obtained by assigning a sense to each word in a
text. In this work, the senses are selected from
WordNet (Miller, 1995; Fellbaum, 1998), accord-
ing to steps 7-8 of Algorithm 1. Naturally, we will
consider that the sense configuration of the whole
document corresponds to the long DNA strand that
needs to be sequenced. In this context, sense con-
figurations of short context windows (less than 10
words) will correspond to the short DNA reads.
A crucial difference here is that we know the lo-
cation of the context windows in the whole doc-
ument from the very beginning, so our task will
be much easier compared to Shotgun sequencing
(we do not need to use a backbone solution for
the alignment of short sense configurations). At
every possible location in the text document (step
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Algorithm 1: ShotgunWSD Algorithm
1 Input:
2 D = (w1, w2, ..., wm) – a document of m words denoted by wi, i ∈ {1, 2, ...,m};
3 n – the length of the context windows (1 < n < m);
4 k – the number of sense configurations considered for the voting scheme (k > 0);

5 Initialization:
6 c← 20;
7 for i ∈ {1, 2, ...,m} do
8 Swi ← the set of WordNet synsets of wi;

9 S ← ∅;
10 G← (0, 0, ...., 0), such that |G| = m;

11 Computation:
12 for i ∈ {1, 2, ...,m− n+ 1} do
13 Ci ← ∅;
14 while did not generate all sense configurations do
15 C ← a new configuration (swi , swi+1 , ..., swi+n−1), swj ∈ Swj , ∀j ∈ {i, ..., i+ n− 1}, such that C /∈ Ci;
16 r ← 0;
17 for p ∈ {1, 2, ..., n− 1} do
18 for q ∈ {p+ 1, 2, ..., n} do
19 r ← r + relatedness(C[p], C[q]);

20 Ci ← Ci ∪ {(C, i, n, r)};
21 Ci ← the top c configurations obtained by sorting the configurations in Ci by their relatedness score (descending);
22 S ← S ∪ Ci;
23 for l ∈ {min{4, n− 1}, ..., 1} do
24 for p ∈ {1, 2, ..., |S|} do
25 (Cp, ip, np, rp)← the p-th component of S;
26 for q ∈ {1, 2, ..., |S|} do
27 (Cq, iq, nq, rq)← the q-th component of S;
28 if iq − ip < np and ip 6= iq then
29 t← true;
30 for x ∈ {1, ..., l} do
31 if Cp[np − l + x] 6= Cq[x] then
32 t← false;

33 if t = true then
34 Cp⊕q ← (Cp[1], Cp[2], ..., Cp[np], Cq[l + 1], Cq[l + 2], ..., Cq[nq]);
35 rp⊕q ← rp;
36 for i ∈ {1, 2, ..., np + nq − l} do
37 for j ∈ {l + 1, l + 2, ..., nq} do
38 rp⊕q ← rp⊕q + relatedness(Cp⊕q[i], Cq[j]);

39 S ← S ∪ {(Cp⊕q, ip, np + nq − l, rp⊕q)};

40 for j ∈ {1, 2, ...,m} do
41 Qj ← {(C, i, d, r) | (C, i, d, r) ∈ S, j ∈ {i, i+ 1, ..., i+ d− 1}};
42 Qj ← the top k configurations obtained by sorting the configurations inQj by their length (descending);
43 pswj ← the predominant sense obtained by using a majority voting scheme onQj ;
44 G[j]← pswj ;

45 Output:
46 G = (psw1 , psw2 , ..., pswm), pswi ∈ Swi , ∀i ∈ {1, 2, ...,m} – the global configuration of senses returned by the

algorithm.

12), we select a window of n words. The win-
dow length n is an external parameter of our al-
gorithm that can be tuned for optimal results. For
each context window we will compute all possi-
ble sense configurations (steps 14-15). A score is
assigned to each sense configuration by using the
semantic relatedness between word senses (steps
16-19), as described by Patwardhan et al. (2003).

We alternatively employ two measures to compute
the semantic relatedness, one is the extended Lesk
measure (Banerjee and Pedersen, 2002; Banerjee
and Pedersen, 2003) and the other is a simple ap-
proach based on deriving sense embeddings from
word embeddings (Mikolov et al., 2013). Both
methods are described in Section 3.1. We will
keep the top scoring sense configurations (step 21)
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for the assembly phase (steps 23-39). In step 21,
we use an internal parameter c in order to deter-
mine exactly how many sense configurations are
kept per context window. Another important re-
mark is that we assume that the BF algorithm used
to obtain sense configurations for short windows
does not produce output errors, so it is not nec-
essary to use a distance measure in order to find
overlaps for merging configurations. We simply
check if the suffix of a former configuration coin-
cides with the prefix of a latter configuration in
order to join them together (steps 29-33). The
length l of the suffix and the prefix that get over-
lapped needs to be greater then zero, so at least
one sense choice needs to coincide. We gradu-
ally consider shorter and shorter suffix and pre-
fix lengths starting with l = min{4, n − 1} (step
23). Sense configurations are assembled in or-
der to obtain longer configurations (step 34), un-
til none of the resulted configurations can be fur-
ther merged together. When merging, the relat-
edness score of the resulting configuration needs
to be recomputed (steps 36-38), but we can take
advantage of some of the previously computed
scores (step 35). Longer configurations indicate
that there is an agreement (regarding the chosen
senses) that spans across a longer piece of text. In
other words, longer configurations are more likely
to provide correct sense choices, since they inher-
ently embed a higher degree of agreement among
senses. After the configuration assembly phase,
we start assigning the sense to each word in the
document (step 40). Based on the assumption that
longer configurations provide better information,
we build a ranked list of sense configurations for
each word in the document (step 42). Naturally,
for a given word, we only consider the configu-
rations that contain the respective word (step 41).
Finally, the sense of each word is given by a major-
ity vote on the top k configurations from its ranked
list (steps 43-44). The number of sense configura-
tions k is an external parameter of our approach,
and it can be tuned for optimal results.

3.1 Semantic Relatedness

For a sense configuration of n words, we compute
the semantic relatedness between each pair of se-
lected senses. We use two different approaches for
computing the relatedness score and both of them
are based on WordNet semantic relations. In this
context, we essentially need to compute the se-

mantic relatedness of two WordNet synsets. For
each synset we build a disambiguation vocabu-
lary by extracting words from the WordNet lex-
ical knowledge base, as follows. Starting from
the synset itself, we first include all the synonyms
that form the respective synset along with the con-
tent words of the gloss (examples included). We
also include into the disambiguation vocabulary
words indicated by specific WordNet semantic re-
lations that depend on the part-of-speech of the
word. More precisely, we have considered hy-
ponyms and meronyms for nouns. For adjectives,
we have considered similar synsets, antonyms, at-
tributes, pertainyms and related (see also) synsets.
For verbs, we have considered troponyms, hyper-
nyms, entailments and outcomes. Finally, for ad-
verbs, we have considered antonyms, pertainyms
and topics. These choices have been made be-
cause previous studies (Banerjee and Pedersen,
2003; Hristea et al., 2008) have come to the con-
clusion that using these specific relations for each
part-of-speech seems to provide useful informa-
tion in the WSD process. The disambiguation
vocabulary generated by the WordNet feature se-
lection described so far needs to be further pro-
cessed in order to obtain the final vocabulary.
The first processing step is to eliminate the stop-
words. The remaining words are stemmed using
the Porter stemmer algorithm (Porter, 1980). The
resulted stems represent the final set of features
that we use to compute the relatedness score be-
tween two synsets. The two measures that we em-
ploy for computing the relatedness score are de-
scribed next.

3.1.1 Extended Lesk Measure
The original Lesk algorithm (Lesk, 1986) only
considers one word overlaps among the glosses of
a target word and those that surround it in a given
context. Banerjee and Pedersen (2002) note that
this is a significant limitation because dictionary
glosses tend to be fairly short and they fail to pro-
vide sufficient information to make fine grained
distinctions required for WSD. Therefore, Baner-
jee and Pedersen (2003) introduce a measure that
takes as input two WordNet synsets and returns a
numeric value that quantifies their degree of se-
mantic relatedness by taking into consideration the
glosses of related WordNet synsets as well. More-
over, when comparing two glosses, the extended
Lesk measure considers overlaps of multiple con-
secutive words, based on the assumption that the
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longer the phrase, the more representative it is for
the relatedness of the two synsets. Given two input
glosses, the longest overlap between them is de-
tected and then replaced with a unique marker in
each of the two glosses. The resulted glosses are
then again checked for overlaps, and this process
continues until there are no more overlaps. The
lengths of the detected overlaps are squared and
added together to obtain the score for the given
pair of glosses. Depeding on the WordNet rela-
tions used for each part-of-speech, several pairs
of glosses are compared and summed up together
to obtain the final relatedness score. However, if
the two words do not belong to the same part-of-
speech, we only use their WordNet glosses and
examples. Further details regarding this approach
are provided by Banerjee and Pedersen (2003).

3.1.2 Sense Embeddings
A simple approach based on word embeddings
is employed to measure the semantic relatedness
of two synsets. Word embeddings (Bengio et al.,
2003; Collobert and Weston, 2008; Mikolov et al.,
2013) represent each word as a low-dimensional
real valued vector, such that related words re-
side in close vicinity in the generated space. We
have used the pre-trained word embeddings com-
puted by the word2vec toolkit (Mikolov et al.,
2013) on the Google News data set using the
Skip-gram model. The pre-trained model contains
300-dimensional vectors for 3 million words and
phrases.

The relatedness score between two synsets is
computed as follows. For each word in the disam-
biguation vocabulary that represents a synset, we
compute its word embedding vector. Thus, we ob-
tain a cluster of word embedding vectors for each
given synset. Sense embeddings are then obtained
by computing the centroid of each cluster as the
median of all the word embeddings in the respec-
tive cluster. We can naturally assume that some of
the words in the cluster may actually be outliers.
Thus, we believe that using the (geometric) me-
dian instead of the mean is more appropriate, as
the mean is largely influenced by outliers. Finally,
the semantic relatedness of two synsets is simply
given by the cosine similarity between their cluster
centroids.

It is important to note that an approach based on
the mean of word vectors to construct sense em-
beddings is used by Bhingardive et al. (2015), but
with a slightly different purpose than ours, namely

to determine which synset better fits a target word,
assuming that this synset should correspond to the
most common sense of the respective word. As
such, they completely disregard the context of the
target word. Different from their approach, we are
trying to find how related two synsets of distinct
words that appear in the same context window
are. Furthermore, the empirical results presented
in Section 4 show that our approach yields better
performance than the MCS estimation method of
Bhingardive et al. (2015), thus putting a greater
gap between the two methods.

4 Experiments and Results

4.1 Data Sets
We compare our global WSD algorithm with sev-
eral state-of-the-art unsupervised WSD methods
using the same test data as in the works present-
ing them.

We first compare ShotgunWSD with two state-
of-the-art approaches (Schwab et al., 2013a; Chen
et al., 2014) and the MCS baseline, on the
SemEval 2007 coarse-grained English all-words
task (Navigli et al., 2007). The SemEval 2007
coarse-grained English all-words data set3 is com-
posed of 5 documents that contain 2269 ambigu-
ous words (1108 nouns, 591 verbs, 362 adjec-
tives, 208 adverbs) altogether. We also compare
our approach with the MCS estimation method of
Bhingardive et al. (2015), the MCS baseline and
the extended Lesk algorithm (Torres and Gelbukh,
2009) on the Senseval-2 English all-words (Ed-
monds and Cotton, 2001) and the Senseval-3 En-
glish all-words (Mihalcea et al., 2004) data sets.
The Senseval-2 data set4 is composed of 3 docu-
ments that contain 2473 ambiguous words (1136
nouns, 581 verbs, 457 adjectives, 299 adverbs),
while the Senseval-3 data set4 is composed of 3
documents that contain 2081 ambiguous words
(951 nouns, 751 verbs, 364 adjectives, 15 ad-
verbs).

4.2 Parameter Tuning
As Schwab et al. (2013a), we tune our parame-
ters on the first document of SemEval 2007. We
first set the value of the internal parameter c to 20
without specifically tuning it. Using this value for
c gives us a reasonable amount of configuration
choices for the subsequent steps, without using too

3http://nlp.cs.swarthmore.edu/semeval/tasks/index.php
4http://web.eecs.umich.edu/∼mihalcea/downloads.html

921



3 4 5 6 7 8 9 10
0

500

1000

1500

2000

Length of context window

Ti
m

e 
(s

ec
on

ds
)

Figure 1: The running times (in seconds) of Shot-
gunWSD based on sense embeddings, on the first
document of SemEval 2007, using various con-
text window lengths n ∈ {4, 5, 6, 7, 8, 9}. The re-
ported times were measured on a computer with
Intel Core i7 3.4 GHz processor and 16 GB of
RAM using a single Core.

much space and time. For tuning the parameters n
and k, we employ sense embeddings for comput-
ing the semantic relatedness score. We begin by
tuning the length of the context windows n. It is
important to note that the upper bound accuracy
of ShotgunWSD is given by the brute-force algo-
rithm that explores every possible configuration of
senses. Intuitively, we will get closer and closer
to this upper bound as we use longer and longer
context windows. However, the main decision fac-
tor is the time, which grows exponentially with re-
spect to the length of the windows. Figure 1 illus-
trates the time required by our algorithm to disam-
biguate the first document in SemEval 2007, for
increasing window lengths in the range 4-9. The
algorithm runs in about 15 seconds for n = 4 and
in about 1892 seconds for n = 9, so it becomes
nearly 120 times slower from using context win-
dows of length 4 to context windows of length 9.
As the algorithm runs in a reasonable amount of
time for n = 8 (187 seconds), we choose to use
context windows of 8 words throughout the rest of
the experiments.

The parameter k has almost no influence on the
running time of the algorithm, so we tune this pa-
rameter with respect to the F1 score obtained on
the first document of SemEval 2007. We try out
several values of k in the set {1, 3, 5, 10, 15, 20}
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Figure 2: The F1 scores of ShotgunWSD based
on sense embeddings on the first document of Se-
mEval 2007, using different values for the param-
eter k ∈ {1, 3, 5, 10, 15, 20}.

and the results are shown in Figure 2. The best F1

score (83.42%) is obtained for k = 15. Hence,
we choose to assign the final sense for each word
using a majority vote based on the top 15 configu-
rations.

To summarize, all the results of ShotgunWSD
on SemEval 2007, Senseval-2 and Senseval-3 are
reported using n = 8 and k = 15. We hereby note
that better results in terms of accuracy can proba-
bly be obtained by trying out other values for these
parameters on each data set. However, tuning the
parameters on a single document from SemEval
2007 ensures that we avoid overfitting to a partic-
ular data set.

4.3 Results on SemEval 2007

We first conduct a comparative study on the Se-
mEval 2007 coarse-grained English all-words task
in order to evaluate our ShotgunWSD algorithm.
As described in Section 3.1, we use two differ-
ent approaches for computing the semantic relat-
edness scores, namely extended Lesk and sense
embeddings. We compare our two variants of
ShotgunWSD with several algorithms presented
in (Schwab et al., 2012; Schwab et al., 2013a),
namely a Genetic Algorithm, Simulated Anneal-
ing, and Ant Colony Optimization. We also in-
clude in the comparison an approach based on
sense embeddings (Chen et al., 2014). All the ap-
proaches comprised in the evaluation are unsuper-
vised. We compare them with the MCS baseline
which is based on human annotations. The F1
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Method F1 Score
Most Common Sense 78.89%
Genetic Algorithms (Schwab et al., 2013a) 74.53%
Simulated Annealing (Schwab et al., 2013a) 75.18%
Ant Colony (Schwab et al., 2013a) 79.03%
S2C Unsupervised (Chen et al., 2014) 75.80%
ShotgunWSD + Extended Lesk 79.15%
ShotgunWSD + Sense Embeddings 79.68%

Table 1: The F1 scores of various unsupervised
state-of-the-art WSD approaches, compared to the
F1 scores of ShotgunWSD based on the extended
Lesk measue and ShotgunWSD based on sense
embeddings, on the SemEval 2007 coarse-grained
English all-words task. The results reported for
both ShotgunWSD variants are obtained for win-
dows of n = 8 words and a majority vote on the
top k = 15 configurations.

scores on SemEval 2007 are presented in Table 1.
Among the state-of-the-art methods, it seems that
the Ant Colony Optimization algorithm, based on
a weighted voting scheme (Schwab et al., 2013a),
is the only method able to surpass the MCS base-
line. The unsupervised S2C approach gives lower
results than the MCS baseline, but Chen et al.
(2014) report better results in a semi-supervised
setting. Both variants of ShotgunWSD yield bet-
ter results than the MCS baseline (78.89%) and
the Ant Colony Optimization algorithm (79.03%).
Indeed, we obtain an F1 score of 79.15% when
using the extended Lesk measure and an F1 score
of 79.68% when using sense embeddings. We can
also point out that ShotgunWSD gives slightly bet-
ter results when sense embeddings are used in-
stead of the extended Lesk method.

An important remark is that we have tuned the
parameter k on the first document included in the
test set, following the same evaluation procedure
as Schwab et al. (2013a). Although this brings us
to a fair comparison with Schwab et al. (2013a),
it might also raise suspicions of overfitting the pa-
rameter k to the test set. Hence, we have tested
all values of k in {1, 3, 5, 10, 15, 20} for Shotgun-
WSD based on word embeddings, and we have
always obtained results above 79%, with the top
score of 79.77% for k = 10.

4.4 Results on Senseval-2

We compare the two alternative forms of Shot-
gunWSD with the MCS baseline, the MCS esti-
mation method of Bhingardive et al. (2015) and
the extended Lesk measure (Torres and Gelbukh,

Method F1 Score
Most Common Sense 60.10%
MCS Estimation (Bhingardive et al., 2015) 52.34%
Extended Lesk (Torres and Gelbukh, 2009) 54.60%
ShotgunWSD + Extended Lesk 55.78%
ShotgunWSD + Sense Embeddings 57.55%

Table 2: The F1 scores of an unsupervised WSD
approach and the extended Lesk mesure, com-
pared to the F1 scores of ShotgunWSD based
on the extended Lesk measue and ShotgunWSD
based on sense embeddings, on the Senseval-2 En-
glish all-words data set. The results reported for
both ShotgunWSD approaches are obtained for
windows of n = 8 words and a majority vote on
the top k = 15 configurations.

2009) on the Senseval-2 English all-words data
set. As shown in Table 2, the ShotgunWSD based
on sense embeddings obtains an F1 score that is
almost 5% better than the F1 score of Bhingar-
dive et al. (2015), while the ShotgunWSD based
on extended Lesk gives an F1 score that is around
1% better than the F1 score reported by Torres and
Gelbukh (2009). It is important to note that Torres
and Gelbukh (2009) apply the extended Lesk mea-
sure by performing the brute-force search at the
sentence level, hence it is not surprising that we
are able obtain better results. However, our best
ShotgunWSD approach (57.55%) is still under the
MCS baseline (60.10%).

4.5 Results on Senseval-3

Method F1 Score
Most Common Sense 62.30%
MCS Estimation (Bhingardive et al., 2015) 43.28%
Extended Lesk (Torres and Gelbukh, 2009) 49.60%
ShotgunWSD + Extended Lesk 57.89%
ShotgunWSD + Sense Embeddings 59.82%

Table 3: The F1 scores of an unsupervised WSD
approach and the extended Lesk mesure, com-
pared to the F1 scores of ShotgunWSD based
on the extended Lesk measue and ShotgunWSD
based on sense embeddings, on the Senseval-3 En-
glish all-words data set. The results reported for
both ShotgunWSD approaches are obtained for
windows of n = 8 words and a majority vote on
the top k = 15 configurations.

We also compare the two variants of Shotgun-
WSD with the MCS baseline, the MCS estimation
method of Bhingardive et al. (2015) and the ex-
tended Lesk measure (Torres and Gelbukh, 2009)
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on the Senseval-3 English all-words data set. The
F1 scores are presented in Table 3. The empirical
results show that both ShotgunWSD variants give
considerably better results compared to the MCS
estimation method of Bhingardive et al. (2015).
By using sense embeddings in a completely differ-
ent way than Bhingardive et al. (2015), we are able
to report an F1 score of 59.82%, which is much
closer to the MCS baseline (62.30%). With an
F1 score of 57.89%, the ShotgunWSD based on
the extend Lesk measure brings an improvement
of 8% over the extended Lesk algorithm applied at
the sentence level (Torres and Gelbukh, 2009).

4.6 Discussion

Considering all the experiments, we can conclude
that ShotgunWSD gives better results (around 1%)
when sense embeddings are used instead of the
extended Lesk method. On one of the data sets,
ShotgunWSD yields better performance than the
MCS baseline. It is important to underline that the
strong MCS baseline cannot be used in practice,
since human input is required to indicate which
sense of a word is the most frequent in a given text
(a word’s dominant sense will vary across domains
and text genres). Corpora used for the evaluation
of WSD methods usually contain this kind of an-
notations, but the MCS baseline will not work out-
side the annotated data. Therefore, we consider
important even slightly outperforming the MCS
baseline. Overall, our algorithm compares favor-
ably to other state-of-the-art unsupervised WSD
methods (Schwab et al., 2013a; Chen et al., 2014;
Bhingardive et al., 2015) and to the extended Lesk
measure (Banerjee and Pedersen, 2002; Torres and
Gelbukh, 2009).

Regarding the performance of our algorithm, an
interesting question that arises is how much does
the assembly phase help. We look to investigate
this further in future work, but we can carry out
a small experiment to provide a quick answer to
this question. We consider the ShotgunWSD vari-
ant based on sense embeddings without chang-
ing its parameters, and we remove the assembly
phase completely. Therefore, the algorithm will
no longer produce configurations of length greater
than 8, as the parameter n is set to 8. We have eval-
uated this stub algorithm on SemEval 2007 and we
have obtained a lower F1 score (77.61%). This
indicates that the assembly phase in Algorithm 1
boosts the performance by nearly 2%. More ex-

periments are required to make sure that the per-
formance boost is consistent across data sets.

5 Conclusions and Future Work

In this paper, we have introduced a novel unsu-
pervised global WSD algorithm inspired by the
Shotgun genome sequencing technique (Ander-
son, 1981). Compared to other bio-inspired WSD
methods (Schwab et al., 2012; Schwab et al.,
2013a), our algorithm has only two parameters.
Furthermore, our algorithm is deterministic, ob-
taining the same result for a given set of param-
eters and input document. The empirical results
indicate that our algorithm can obtain better per-
formance than other state-of-the-art unsupervised
WSD methods (Schwab et al., 2013a; Chen et al.,
2014; Bhingardive et al., 2015). Although the fact
that ShotgunWSD is deterministic brings several
advantages, it is also a key difference from our
source of inspiration, Shotgun sequencing, which
is a non-deterministic technique.

In future work, we aim to investigate if training
sense embeddings instead of deriving them from
pre-trained word embeddings could yield better
accuracy. Another promising direction is to com-
pute the semantic relatedness of sense configura-
tions based on the sum of sense tuples instead of
sense pairs. An approach to combine the two se-
mantic relatedness approaches independently used
by ShotgunWSD, namely the extended Lesk mea-
sure and sense embeddings, is also worth explor-
ing in the future.
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Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.
2014. Random Walks for Knowledge-based Word
Sense Disambiguation. Computational Linguistics,
40(1):57–84, March.

Stephen Anderson. 1981. Shotgun DNA sequencing
using cloned DNase I-generated fragments. Nucleic
Acids Research, 9(13):3015–3027.

924



Satanjeev Banerjee and Ted Pedersen. 2002. An
Adapted Lesk Algorithm for Word Sense Disam-
biguation Using WordNet. Proceedings of CICLing,
pages 136–145.

Satanjeev Banerjee and Ted Pedersen. 2003. Extended
Gloss Overlaps As a Measure of Semantic Related-
ness. Proceedings of IJCAI, pages 805–810.
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Abstract

In language identification, a common first
step in natural language processing, we
want to automatically determine the lan-
guage of some input text. Monolingual
language identification assumes that the
given document is written in one language.
In multilingual language identification, the
document is usually in two or three lan-
guages and we just want their names. We
aim one step further and propose a method
for textual language identification where
languages can change arbitrarily and the
goal is to identify the spans of each of the
languages.

Our method is based on Bidirectional Re-
current Neural Networks and it performs
well in monolingual and multilingual lan-
guage identification tasks on six datasets
covering 131 languages. The method
keeps the accuracy also for short docu-
ments and across domains, so it is ideal
for off-the-shelf use without preparation of
training data.

1 Introduction

The World Wide Web is an ever growing source
of textual data, especially data generated by web
users. As more people get access to the web,
more languages and dialects start to appear and
need to be processed. In order to be able to use
such data for further natural language processing
(NLP) tasks, we need to know in which languages
they were written. Language identification is thus
a key component for both building various NLP
resources from the web and also for running many
web services.

Techniques of language identification can rely
on handcrafted rules, usually of high precision but

low coverage, or data-driven methods that learn to
identify languages based on sample texts of suffi-
cient quantity.

In this paper, we present a data-driven method
for language identification based on bidirectional
recurrent neural networks called LanideNN (lan-
guage identification by neural networks, NN). The
model is trained on character sliding window of
input texts with the goal of assigning a language
to each character. We show that the method is
applicable for a large number of languages and
across text domains without any adaptation and
that it performs well in monolingual (one lan-
guage per document) as well as multilingual (a few
languages per document) language identification
tasks. Also, the performance does not drop with
shorter texts.

The paper is structured as follows. In Section 2,
we briefly review current approaches to language
identification. Section 3 introduces our method,
including the technical details of the neural net-
work architecture. For the training of our model,
we collect and manually clean a new dataset, as
described in Section 4. The model is evaluated on
standard test sets for monolingual (Section 5) as
well as multilingual (Section 6) language identi-
fication. Section 7 illustrates the behavior of our
method in the motivating setting: identifying lan-
guages in short texts. We conclude and summarize
our plans in Section 8.

2 Related Work

Of the many possible approaches to language
identification Hughes et al. (2006), character n-
gram statistics are among the most popular ones.
Cavnar et al. (1994) were probably the first; they
used the 300 most frequent character n-grams
(with n ranging from 1 to 5, as is also typically
used in other works). All the n-gram-based ap-
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proaches differ primarily in the calculation of the
distance between the n-gram profile of the train-
ing and test text (Selamat, 2011; Yang and Liang,
2010), or by using additional features on top of the
n-gram profiles (Padma et al., 2009; Carter et al.,
2013). One of the fairly robust definitions of the
distance (or similarity) was proposed by Choong
et al. (2009) who simply check the proportion of
n-gram types seen in the tested document of the
most frequent n-gram types extracted from train-
ing documents for each language. The highest-
scoring language is then returned.

Hughes et al. (2006) mention a number of freely
available tools at that time. Since then, one aspect
of the tools became also important: the number of
languages covered.

The language identification tool CLD21 by
Google detects 80 languages and uses a Naive
Bayes classifier, treating specifically unambiguous
scripts such as Greek and using either character
unigrams (Han and similar scripts) or fourgrams.

Another popular tool is Langid.py by Lui and
Baldwin (2012), covering 97 languages out of the
box. Langid.py relies on Naive Bayes classifier
with a multinominal event model and mixture of
byte n-grams for training. The tool includes to-
kenization and fast feature extraction using Aho-
Corasick string matching.

To our knowledge, and also according to the
survey by Garg et al. (2014), neural networks have
not been used often for language identification so
far. One exception is Al-Dubaee et al. (2010), who
combine a feed-forward network classifier with
wavelet transforms of feature vectors to identify
English and Arabic from the Unicode represen-
tation of words, sentences or whole documents.
The benefit of NN in this setting is not very clear
to us because English and Arabic can be distin-
guished by the script. During writing of this pa-
per, we have found a new pre-print paper (Jaech
et al., 2016) which handles language identifica-
tion with NN. Specifically, they employ Convo-
lutional Neural Networks followed by Recurrent
Neural Networks. Their approach labels text on
the word level, which is problematic in languages
without clear word delimiters. In comparison with
our model, they need to pre-process the data and
break long words into smaller chunks, whereas we
simply use text without any preprocessing.

In practice, several tools are often used at once,

1https://github.com/CLD2Owners/cld2

with some form of majority voting. For example,
Twitter internal language detector uses their in-
house tool along with CLD2 and Langid.py, and
this triple agreement is reported to make less than
1 % of errors.2

Multilingual language identification, i.e. iden-
tification of the set of languages used in a docu-
ment, is a less common task, explored e.g. by Lui
et al. (2014) who use a generative mixture model
on multilingual documents and establish the rel-
ative proportion of languages used. Character n-
grams again serve as features, selected by infor-
mation gain.

Solorio et al. (2014) organized a shared task
in language identification at the word level. This
matches our aim, but the task included only four
language pairs and more importantly, the dataset
was collected from Twitter and for copyright rea-
sons it is not available any more.

3 Proposed Method

The method we propose is designed for short text
without relying on document boundaries. Obvi-
ously, if documents are known and if they can be
assumed to be monolingual, this additional knowl-
edge should not be neglected. For the long term,
we however aim at a streamlined processing of
noisy data genuinely appearing in multilingual en-
vironments. For instance, our method could sup-
port the study of switching of languages (“code
switching”) in e-mails or other forms of conver-
sation, or to analyse various online media such as
Twitter, see e.g. Montes-Alcalá (2007) or Solorio
et al. (2014).

Our model takes source letters as input and pro-
vides a language label for each of them. Whenever
we need to recognize the language of a document,
we take the language assigned by our model to the
majority of letters.

The goal of attributing a language tag to the
smallest text units is one of the reasons why we
decided to use neural networks and designed the
model to provide a prediction at every time step
without much overhead.

In the rest of this section, we explain the archi-
tecture and training methods of the model.

2https://blog.twitter.com/2015/
evaluating-language-identification-
performance
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Figure 1: Illustration of our model LanideNN.

3.1 Bidirectional Recurrent Neural Networks
A recurrent neural network RNN (Elman, 1990) is
a variant of neural networks with recurrent con-
nections in time. In principle, the history infor-
mation available to an RNN is not limited (subject
to a processing window, if used), so the network
can condition its output on features from a long
distance. The LSTM, one of the variants of RNN,
makes it particularly suitable for sequential pre-
diction tasks with arbitrary time dependencies, as
shown by Hochreiter and Schmidhuber (1997).

In this work, we use the Elman-type network,
where the hidden layer ht at a time step t is com-
puted based on the current input layer xt and the
previous state of the hidden layer ht−1. The out-
put yt is then derived from the ht by applying the
softmax function f . More formally:

ht = tanh (Wxt + V ht−1 + b1) (1)

yt = f (Uht + b2) (2)

where U , V and W are connection weights to be
computed in training time and bias vectors b1 and
b2.

With the above definition, the RNN has access
only to information preceding the current position
in the text. In our setting, the rest of the text (in a
fixed-size window) is available, so we want to al-
low the model to use also future information, i.e.

letters following the currently examined one. We
therefore define a second RNN which reads the in-
put from the end to the beginning, changing the
definition to:

−→
h t = tanh

(−→
Wxt +

−→
V
−→
h t−1 +

−→
b 1

)
(3)

←−
h t = tanh

(←−
Wxt +

←−
V
←−
h t+1 +

←−
b 1

)
(4)

yt = f
(−→
U
−→
h t +

←−
U
←−
h t + b2

)
(5)

where the left and right arrows indicate the direc-
tion of network.

The simple unit with only tanh non-linearity is
difficult to train and therefore we have selected
the Gated Recurrent Unit (GRU), recently pro-
posed by Cho et al. (2014), as a replacement. We
also considered Long Short-Term Memory cells
(LSTM) but they achieved slightly worse results
in our setting. This changes equations (1), (3) and
(4). The proper equations for the GRU can be
found in Cho et al. (2014).

The model outputs a probability distribution
over all language tags. In order to determine the
language of a character, we take the tag with the
maximum value.

The complete model is sketched in Figure 1.
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3.2 Training, Embeddings and Dropout

We train the model using the first-order stochastic
gradient descent method Adam (Kingma and Ba,
2015). Our training criterion is the cross-entropy
loss function3.

We represent each Unicode character using an
e-dimensional real valued vector, analogously to
word embeddings of Collobert et al. (2011). The
character embeddings are initialized randomly and
are trained together with the rest of the network.

To prevent overfitting, we use dropout (Srivas-
tava et al., 2014) during model training on the
character embedding layer4. The key idea is to
randomly drop (avoid updating of) connections.
This prevents neurons from co-adapting too much,
i.e. starting to depend on outputs of other neurons
too much, which is a typical symptom of overfit-
ting to training data.

3.3 Model Design

Our model operates on a window of 200 charac-
ters of input text, i.e. individual letters, encoded in
Unicode. Each character corresponds to one time
step of the BiRNN in the respective direction, see
Figure 1. The model classifies each character sep-
arately, but quickly learns to classify neighbouring
characters with the same label.

For documents longer than the window size, we
simply move to the next window without any over-
lap. The last window (or the only window if the
document were too short) is filled with a padding
character, so the network always works on win-
dows of the same size.

We set e, the size of the embedding layer, to
200. The BiRNN uses a single hidden layer of 500
GRU cells for each direction.

The main model was trained for over 530,000
steps (each step is the processing of one batch of
inputs) on a single core of the GeForce GTX Ti-
tan Z GPU. The training took around 5 days. The
stopping criterion for the training was the error on
a development set.

4 Training Data

Our goal is to develop an off-the-shelf language
recognizer, with no need for retraining by the user
and covering as many languages as possible. Find-
ing suitable training data is thus an important part

3We set the learning rate to 0.0001 and train with the batch
size of 64 windows.

4We set the dropout to the probability of 0.5 as customary.

afr, amh, ara, arg, asm, ast, aze, bak, bcl, bel, ben, ber,
bpy, bre, bul, cat, ceb, ces, che, chv, cos, cym, dan, deu,
div, ekk, ell, eng, est, eus, fas, fin, fra, fry, gla, gle, glg,
gom, gsw, guj, hat, heb, hif, hin, hrv, hsb, hun, hye, ido,
ilo, ina, ind, isl, ita, jav, jpn, kal, kan, kas, kat, kaz, kir,
kor, kur, lat, lav, lim, lit, ltz, lug, lus, mal, mar, min, mkd,
mlg, mlt, mon, mri, msa, nds, nep, new, nld, nno, nor, nso,
oci, ori, oss, pam, pan, pms, pnb, pol, por, pus, roh, ron,
rus, sah, scn, sin, slk, slv, sna, som, spa, sqi, srp, sun, swa,
swe, tam, tat, tel, tgk, tgl, tha, tur, uig, ukr, urd, uzb, vec,
vie, vol, wln, yid, zho, zul

Figure 2: The 131 languages (and HTML) recog-
nized by our system.

of the endeavour.
We start from Wikipedia, as crawled and con-

verted to a large multilingual corpus W2C by Ma-
jliš and Žabokrtský (2012). W2C contains 106
languages but we had to exclude a few of them5

because they contained too little non-repeating
text.

We then focussed on finding corpora with at
least some languages not covered by the already
collected data. Those corpora were added whole,
including languages that we already had, to im-
prove the variety of our collection. We made use
of the following ones:

Tatoeba6 is a collection of simple sentences for
language learners. Tatoeba contains sen-
tences in 307 languages, but for most lan-
guages it has only a few hundred sentences.

Leipzig corpora collection (Quasthoff et al.,
2006) covers 220 languages with newspaper
text and other various texts collected from
the web.

EMILLE (Baker et al., 2002) contains texts in 14
Indian languages and English.

Haitian Creole training data (Callison-Burch et
al., 2011) were prepared by the organizers
of WMT11 shared task on machine transla-
tion of SMS messages sent to an emergency
hotline in the aftermath of the 2010 Haitian
earthquake. We used only the official docu-
ments from the training data, not the actual
SMS messages because they contained a lot
of noise.

5Specifically, HAT, IDO, MGL, MRI, VOL, as identified
by ISO language codes.

6http://tatoeba.org/
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Test Set Documents Languages Encoding Document Length (bytes) Avg. # characters
EuroGov 1500 10 1 17460.5 ± 39353.4 17037.3

TCL 3174 60 12 2623.2 ± 3751.9 1686.1
Wikipedia 4963 67 1 1480.8 ± 4063.9 1314.2

Table 1: Summary of testsets for monolingual language identification.

Additionally, we wanted our tool to distinguish
HTML tags in the data, since they are the most
frequent markup that needs to be separated from
the processed data. Therefore, we have down-
loaded several Github projects in HTML and col-
lected all strings enclosed with angle brackets, as
a rather permissive approximation of HTML tags.
We have dropped tags which were too long and
we put each tag on a separate line. We have not
deduplicated them for the training set.

The cleanup of the collected data was mostly
manual. We deduplicated each of the sources by
dropping identical lines, regardless of what lines
correspond to in the individual sources (words,
phrases, sentences or even paragraphs). We in-
spected data files for individual languages and re-
moved lines containing English for languages not
using Latin script. We also removed Cyrilic char-
acters from a few languages that should not con-
tain them. This was done mostly in W2C corpora.

For the final dataset, we mixed all sources for
a given language at the line level, keeping only
languages with more than 500k characters in to-
tal. Since the resources for some languages were
huge, we decided to set an upper bound on the
number of characters per language. In order to
roughly reflect the distribution of languages in
the world, we divided languages into three groups
based on the number speakers of the language ac-
cording to Wikipedia. The first group were lan-
guages with more than 75M speakers, the second
with more than 10M speakers and the third group
contained the rest. For the first group, we allowed
at most 10M characters in the training set, the sec-
ond group was capped at 5M characters and the
third group was allowed only 1M characters per
language at most.7

In total, our final training set includes 131 + 1
(HTML) languages, see Figure 2.

We divide the corpus into non-overlapping
training, development and test sections. We re-

7Higher-quality sources such as Tatoeba are generally
smaller and since we mixed the sources by interleaving their
lines, these smaller sources were likely included in full.

leased the test set 8 but the training part cannot
be publicly released because of the restrictive per-
missions of some of the sources used. The test
section is limited to short text. It contains 100
lines for each of the 131 languages (HTML is not
included), with the average line length of 142.3
characters.

Each line of the dataset starts with an ISO-3 la-
bel of the language presented on that line. All lines
were shuffled.

For training and testing, the language labels as
well as all line breaks must be ignored, otherwise
the model could learn to set language boundaries
at the new line character. After dropping all line
breaks, we obtain a multilingual text.

This way, we simulate a multilingual text and
our algorithm has to learn to identify language
boundaries without relying on any particular sym-
bol. We are aware of the fact that the original seg-
mentation of the corpora affects where these lan-
guage switches are expected, and this will mostly
correspond to sentence boundaries.

5 Monolingual Language Identification

Most of related research is focused on monolin-
gual language identification, i.e. recognizing the
single language of an input document.

We compare our method in this setting with sev-
eral other algorithms on the dataset presented by
Baldwin and Lui (2010). The dataset consists of 3
different test sets, each containing a different num-
ber of languages, styles and document lengths col-
lected from different sources, see Table 1 for de-
tails:

EuroGov contains texts in Western European
languages from European government re-
sources.

TCL was extracted by the Thai Computational
Linguistics Laboratory in 2005 from online
news sources and the test set also contains
multiple file encodings. Since our method as-
sumes Unicode input, we converted TCL to
Unicode encoding.

8https://ufal.mff.cuni.cz/tom-kocmi/lanidenn
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System Trained on Supported languages EuroGov TCL Wikipedia
LangDetect* Wikipedia 53 .9929 .818 .867
TextCat* TextCat Dataset 75 .941 .605 .706
CLD* unknown 64 .983 .732 .831
Langid.py* Lui and Baldwin (2011) 97 .987 .904 .913
Langid.py Lui and Baldwin (2011) 97 .987 .931 .913
CLD2 unknown 83 .979 .837 .854
Our model Our dataset 136 .977 .954 .893

Table 2: Results of monolingual language identification on the Baldwin and Lui (2010) test set. Entries
marked with “*” are accuracies reported by Lui and Baldwin (2012), the rest are our measurements.

Wikipedia are texts collected from a Wikipedia
dump.

Table 2 summarizes the accuracies of several
algorithms on the three test sets. For some algo-
rithms, we report values as presented by Lui and
Baldwin (2012) without re-running9. We re-ran
the Langid.py as the best algorithm out of them,
and got the same results except for the TCL test-
set, where we got better results than reported by
Lui and Baldwin (2012). After a discussion with
the authors, we believe the re-run benefited from
the conversion of all texts to Unicode.

We compare our method with two top language
recognizers, Langid.py and CLD2. Our model is
trained on more languages and we do not restrict
it to the languages included in the test set, so we
may be losing on detailed dialect labels.

Despite the considerably higher number of
languages covered, our model performs reason-
ably close to the competitors on EuroGov and
Wikipedia and best on TCL.

5.1 Short-Text Language Identification

In order to demonstrate the ability of our method
to identify language of very short texts such
as tweets, search queries or user messages, we
wanted to use an existing corpus, such as the one
released by Twitter.10 Unfortunately, the corpus
contains only references to the actual tweets and
most of them are no longer available. We thus
have to rely on our own test set, as described in
Section 4.

Results on short texts are reported in Table 3.
The two other systems, Langid.py and CLD2
cover fewer languages and they were trained on
texts unrelated to our collection of data. It is there-

9We should mention that LangDetect used EuroGov as a
validation set, so its score on this test set is not reliable.

10https://blog.twitter.com/2015/
evaluating-language-identification-
performance

System All languages Common languages
Langid.py .567 .912
CLD2 .545 .891
Our model .950 .955

Table 3: Results on our test set for short texts.
The first column shows accuracy over all 131 lan-
guages and the second column shows accuracy
over languages that all systems have in common.

ind↔msa 64 ekk↔est 36 bak↔tat 28
hrv↔srp 17 glg↔por 17 nno↔nor 16
ast↔spa 15 fas↔pus 13 ces↔slk 13
hrv↔slv 10 dan↔nor 10 nep↔new 8
aze↔tur 7 mar↔new 6 ceb↔tgl 6
cat↔spa 6 arg↔spa 6 fra↔oci 5

Table 6: Most frequent confusions on our test set.

fore not surprising that they perform much worse
when averaged over all languages.

For a fairer comparison, we report also accura-
cies on a restricted version of the test set that in-
cluded only languages supported by all the three
tested tools. Both our competitors are meant to
be generally applicable, so they should (and do)
perform quite well. Our system nevertheless out-
performs them, reaching the accuracy of 95.5. Ar-
guably, we can be benefitting from having trained
on (different) texts from the same sources as this
test set.

Table 6 lists the most frequent misclassifications
of our model on our test set (unordered language
pairs) of the 13100 items in the test set. The most
common error is confusing Indonesian with Mod-
ern Standard Arabic, which indicates some noise
in our training data rather than difficulty of sep-
arating these two languages. The following pairs
are expected: Standard Estonian (ekk) vs. Esto-
nian (est, a macro language which includes Stan-
dard Estonian), Bashkir vs. Tatar, Croatian vs.
Serbian, Asturian vs. Spanish, . . .

Finally, our model is trained to distinguish also
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System Training set PM RM FM Pµ Rµ Fµ
VRL (2010) * ALTW2010 .497 .467 .464 .833 .826 .829
ALTW2010 winner * ALTW2010 .718 .703 .699 .932 .931 .932
SEGLANG * ALTW2010 - mono .801 .810 .784 .866 .946 .905
LINGUINI * ALTW2010 - mono .616 .535 .513 .713 .688 .700
Lui et al. (2014) * ALTW2010 - mono .753 .771 .748 .945 .922 .933
Lui et al. (2014) our retrain ALTW2010 - mono .768 .716 .724 .968 .896 .931
Our model ALTW2010 - mono .819 .764 .779 .966 .964 .965
Our model Our dataset .709 .714 .695 .941 .941 .941

Table 4: Results of multilingual language identification on the ALTW2010 test set. * As reported by Lui
et al. (2014)

System PM RM FM Pµ Rµ Fµ
SEGLANG * .809 .975 .875 .771 .975 .861
LINGUINI * .853 .772 .802 .838 .774 .805
Lui et al. (2014) * .962 .954 .957 .963 .955 .959
Lui et al. (2014) our retrain .962 .963 .961 .963 .964 .963
Our model trained on WikipediaMulti .962 .974 .966 .954 .974 .964
Our model trained on our dataset .774 .778 .774 .949 .972 .961
Our model trained on our dataset, restricted .966 .973 .966 .956 .973 .964

Table 5: Results of multilingual language identification on the WikipediaMulti test set. * As reported by
Lui et al. (2014)

HTML as one additional language. We did not in-
clude HTML in our test corpus but to satisfy the
requests of one of our reviewers, we checked the
performance on our development corpus: only one
Portuguese and one Yakut segment was classified
as HTML and none of the 100 HTML segments
were misclassified.

6 Multilingual Language Identification

In multilingual language identification, systems
are expected to report the set of languages used in
each input document. The evaluation criterion is
thus macro- (M) or micro- (µ) averaged precision
(P), recall (R) or F-measure (F).11

We evaluate our model on two existing test sets
for multilingual identification, ALTW2010 shared
task and WikipediaMulti. We are mainly inter-
ested in the performance of our general model,
trained on all our training data, on these test sets.
But since both test sets come with training data,
we also retrain our model to test its in-domain per-
formance. We limit the training of these specific
models to 140,000 training steps for ALTW2010
and 75,000 steps for WikiMulti, keeping other set-
tings identical to the main model. Each training
step amounts to the processing of 64 batches of
200 letters of input. The number of steps for both

11Note that for comparability with results reported in other
works, macro-averaged F-score is calculated as average over
individual F-scores instead of the harmonic mean of PM and
RM . FM can thus fall out of the range between PM and RM .

tasks was established by testing the error on the
development parts of the datasets.

To interpret the character-level predictions by
our model for multilingual identification, we used
the ALTW2010 development data to empirically
set the threshold: if a language is predicted for
more than 3 % of characters in the document, it
is considered as one of the languages of the docu-
ment.

6.1 ALTW 2010 Shared Task

ALTW 2010 shared task (VRL, 2010) provided
10000 bilingual documents divided as follows:
8000 training, 1000 development and 1000 test
documents.

The results on the 1000 test documents are in
Table 4. For algorithms SEGLANG and LIN-
GUINI, we only reproduce the results reported by
Lui et al. (2014). We use the system by Lui et al.
(2014) as a proxy for the comparison: we retrain
their system and obtain results similar to those re-
ported by the original authors. The differences are
probably due to the Gibbs sampling used in their
approach.

Some of the reported methods rely on the fact
that the documents in the dataset are bilingual.
Other methods, including ours, simply break the
bilingual documents into the individual languages
and train on this simplified training set. We indi-
cate this by stating “ALTW2010 - mono” in Ta-
ble 4.
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Figure 3: Illustration of text partitioning. The black triangles indicate true boundaries of languages. The
black part shows probability with which the language written in gray is detected and the gray part shows
complement for the second language, since in this setup we restricted our model to use only the two
languages in question. The misclassification of Italian and German as English in the last two examples
may reflect increased noise in our English training data.

The main criterion of the ALTW2010 shared
task was to maximize the micro-averaged F-score
(Fµ). We see that our model trained on the
ALTW2010 data outperforms all other models in
this criterion (Fµ of .965) and so does our non-
adapted version, reaching Fµ of .941.

6.2 WikipediaMulti

WikipediaMulti (Lui et al., 2014) is a dataset of ar-
tificially prepared multilingual documents, mixed
from monolingual Wikipedia articles from 44 lan-
guages. Each of the artificial documents contains
texts in 1 ≤ k ≤ 5 randomly selected languages.
The average document length is 5500 bytes. The
training set consists of 5000 monolingual docu-
ments, the development set consists of 5000 mul-
tilingual documents and test set consists of 1000
documents for each value of k.

Table 5 shows that our model performs well,
both when trained on the provided data and when
trained on our training corpus. The model trained
on our dataset performs slightly worse in Fµ, but
if we simply prevent it from predicting languages

not present in the test set, the score gets on par
with the adapted version, see the line labelled “re-
stricted” in Table 5.

7 Text Partitioning

Figure 3 illustrates the behaviour of our model
on text with mixed languages. We have selected
very short (50–130 characters) and challenging
segments where the languages mostly share the
same script. Finding the boundary between lan-
guages written in different scripts is quite easy, as
illustrated by the first example.

Only too late, we discovered that King and Ab-
ney (2013) provide a test set for word-level iden-
tification for 30 languages. We thus have to leave
the evaluation of our model on this dataset for fu-
ture.

8 Conclusion

We have developed a language identification algo-
rithm based on bidirectional recurrent neural net-
works. The approach is designed for identifying
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languages on a short texts, allowing to detect code
switching including switches to formal markup
languages like HTML.

We collected a dataset and trained our model
to recognize considerably more languages than
other state-of-the-art tools. Our algorithm and the
trained model is provided for academic and per-
sonal use.12

Since there is no established dataset for the
novel setting of text partitioning by language,
we evaluated our model in several common tasks
(monolingual and multilingual language identifi-
cation for long and short texts) which were pre-
viously handled by separate algorithms. Our ap-
proach performs well, improving over the state of
the art in several cases.

A number of things are planned: (1) improv-
ing the implementation, especially the speed of
application of a trained model, (2) further extend-
ing the set of covered languages and possibly in-
cluding more artificial or programming languages
(e.g. JavaScript, PHP) or common formal nota-
tions (URLs, hashtags), (3) evaluating our method
on the dataset by King and Abney (2013), possibly
extending this dataset to include more languages,
(4) training and testing the model on noisy texts
like Tweets or forum posts, and (5) experimenting
with other network architectures and approaches,
possibly also training the model on bytes instead
of Unicode characters.
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Abstract

Most languages have no established writ-
ing system and minimal written records.
However, textual data is essential for nat-
ural language processing, and particularly
important for training language models to
support speech recognition. Even in cases
where text data is missing, there are some
languages for which bilingual lexicons are
available, since creating lexicons is a fun-
damental task of documentary linguistics.
We investigate the use of such lexicons
to improve language models when tex-
tual training data is limited to as few as a
thousand sentences. The method involves
learning cross-lingual word embeddings
as a preliminary step in training monolin-
gual language models. Results across a
number of languages show that language
models are improved by this pre-training.
Application to Yongning Na, a threatened
language, highlights challenges in deploy-
ing the approach in real low-resource en-
vironments.

1 Introduction

Most of the world’s languages are not actively
written, even languages with an official writing
system (Bird, 2011). This limits the available
textual data to small quantities of phonemic tran-
scriptions prepared by linguists. Since phone-
mic transcription is time-consuming, such data is
scarce. This makes language modeling, which
is a key tool for facilitating speech recognition
of these languages, a difficult challenge. One
of the touted advantages of neural network lan-
guage models (NNLMs) is their ability to model
sparse data (Bengio et al., 2003; Gandhe et al.,
2014). However, despite the success of NNLMs

on large datasets (Mikolov et al., 2010; Sutskever
et al., 2011; Graves, 2013), it remains unclear
whether their advantages transfer to scenarios with
extremely limited amounts of data.

Appropriate initialization of parameters in neu-
ral network frameworks has been shown to be ben-
eficial across a wide variety of domains, includ-
ing speech recognition, where unsupervised pre-
training of deep belief networks was instrumental
in attaining breakthrough performance (Hinton et
al., 2012). Neural network approaches to a range
of NLP problems have also been aided by ini-
tialization with word embeddings trained on large
amounts of unannotated text (Frome et al., 2013;
Zhang et al., 2014; Lau and Baldwin, 2016). How-
ever, in the case of extremely low-resource lan-
guages we do not have the luxury of this unanno-
tated text.

As a remedy to this problem we focus on cross-
lingual word embeddings (CLWEs), which learn
word embeddings using information from multi-
ple languages. Recent advances in CLWEs have
shown that high quality embeddings can be learnt
even in the absence of bilingual corpora by har-
nessing bilingual lexicons (Gouws and Søgaard,
2015; Duong et al., 2016). This is useful as some
threatened and endangered languages have been
subject to significant linguistic investigation, lead-
ing to the creation of high-quality lexicons, de-
spite the dearth of transcriptions. For example, the
training of a quality speech recognition system for
Yongning Na, a Sino-Tibetan language spoken by
approximately 40k people, is hindered by this lack
of data (Do et al., 2014) despite significant linguis-
tic investigation of the language (Michaud, 2008;
Michaud, 2016).

In this paper we address two research questions.
First, is the quality of CLWEs dependent on hav-
ing large amounts of data in multiple languages, or
can large amounts of data in a single source lan-
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guage inform embeddings trained with little target
language data? Secondly, can such CLWEs im-
prove language modeling in low-resource contexts
by initializing the parameters of an NNLM?

To answer these questions, we scale down the
available monolingual data of the target language
to as few as 1k sentences, while maintaining a
large source language dataset. We assess intrin-
sic embedding quality by considering correlation
with human judgment on the WordSim353 test
set (Finkelstein et al., 2001). We then perform
language modeling experiments where we initial-
ize the parameters of a long short-term mem-
ory (LSTM) language model for low-resource lan-
guage model training across a variety of language
pairs.

Results indicate that CLWEs remain resilient
when target language training data is drastically
reduced in a simulated low-resource environment,
and that initializing the embedding layer of an
NNLM with these CLWEs consistently leads to
better performance of the language model. In light
of these results, we explore the method’s applica-
tion to Na, an actual low-resource language with
realistic manually created lexicons and transcribed
data. We present a discussion of the negative re-
sults found which highlights challenges and future
opportunities.

2 Related Work

This paper draws on work in three general areas,
which we briefly describe in this section.

Neural network language models and word em-
beddings Bengio et al. (2003) and Goodman
(2001) introduce word embeddings in the context
of an investigation of neural language modeling.
One claimed advantage of such models is the abil-
ity to cope with sparse data by sharing information
among words with similar characteristics. Neural
language modeling has since demonstrated pow-
erful capabilities at the word level (Mikolov et al.,
2010) and character level (Sutskever et al., 2011).
Notably, LSTM models (Hochreiter and Schmid-
huber, 1997) for modeling long-ranging statisti-
cal influences have been shown to be effective
(Graves, 2013; Zaremba et al., 2014).

Word embeddings have became more popular
through the application of shallow neural network
architectures that allow for training on large quan-
tities of data (Mnih et al., 2009; Bengio et al.,
2009; Collobert and Weston, 2008; Mikolov et

al., 2013a), leading to many further investiga-
tions (Chen et al., 2013; Pennington et al., 2014;
Shazeer et al., 2016; Bhatia et al., 2016). A key
application of word embeddings has been in the
initializing of neural network architectures for a
wide variety of NLP tasks with limited annotated
data (Frome et al., 2013; Zhang et al., 2014; Zoph
et al., 2016; Lau and Baldwin, 2016).

Low-resource language modeling and language
model adaptation Bellegarda (2004) review
language model adaptation, and argue that small
amounts of in-domain data are often more valu-
able than large amounts of out-of-domain data, but
that adapting background models using in-domain
data can be even better. Kurimo et al. (2016)
present more recent work on improving large vo-
cabulary continuous speech recognition using lan-
guage model adaptation for low-resource Finno-
Ugric languages.

Cross-lingual language modeling has also been
explored with work on interpolation of a sparse
language model with one trained on a large
amount of translated data (Jensson et al., 2008),
and integrated speech recognition and translation
(Jensson et al., 2009; Xu and Fung, 2013).

Gandhe et al. (2014) investigate NNLMs for
low-resource languages, comparing NNLMs with
count-based language models, and find that
NNLMs interpolated with count-based methods
outperform standard n-gram models even with
small quantities of training data. In contrast, our
contribution is an investigation into harnessing
CLWEs learnt using bilingual dictionaries in order
to improve language modeling in a similar low-
resource setting.

Cross-lingual word embeddings Cross-lingual
word embeddings have also been the subject of
significant investigation. Many methods require
parallel corpora or comparable corpora to connect
the languages (Klementiev et al., 2012; Zou et al.,
2013; Hermann and Blunsom, 2013; Chandar A
P et al., 2014; Kočiský et al., 2014; Coulmance
et al., 2015; Wang et al., 2016), while others use
bilingual dictionaries (Mikolov et al., 2013b; Xiao
and Guo, 2014; Faruqui and Dyer, 2014; Gouws
and Søgaard, 2015; Duong et al., 2016; Ammar et
al., 2016), or neither (Miceli Barone, 2016).

In particular, we build on the work of Duong et
al. (2016). Their method harnesses monolingual
corpora in two languages along with a bilingual
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lexicon to connect the languages and represent the
words in a common vector space. The model
builds on the continuous bag-of-words (CBOW)
model (Mikolov et al., 2013a) which learns em-
beddings by predicting words given their contexts.
The key difference is that the word to be predicted
is a target language translation of a source lan-
guage word centered in a source language context.

Since dictionaries tend to include a number of
translations for words, the model uses an iterative
expectation-maximization style training algorithm
in order to best select translations given the con-
text. This process thus allows for polysemy to be
addressed which is desirable given the polysemous
nature of bilingual dictionaries.

3 Resilience of Cross-Lingual Word
Embeddings

Previous work using CLWEs typically assumes a
similar amount of training data of each available
language, often in the form of parallel corpora.
Recent work has shown that monolingual corpora
of two different languages can be tied together
with bilingual dictionaries in order to learn em-
beddings for words in both languages in a common
vector space (Gouws and Søgaard, 2015; Duong et
al., 2016). In this section we relax the assumption
of the availability of large monolingual corpora on
the source and target sides, and report an experi-
ment on the resilience of such CLWEs when data
is scarce in the target language but plentiful in a
source language.

3.1 Experimental Setup

Word embedding quality is commonly assessed by
evaluating the correlation of the cosine similar-
ity of the embeddings with human judgements of
word similarity. Here we follow the same evalu-
ation procedure, except where we simulate a low-
resource language by reducing the availability of
target English monolingual text while preserving
a large quantity of source language text from other
languages. This allows us to evaluate the CLWEs
intrinsically using the WordSim353 task (Finkel-
stein et al., 2001) before progressing to down-
stream language modeling where we additionally
consider other target languages.

We trained a variety of embeddings on English
Wikipedia data of between 1k and 128k sentences
from the training data of Al-Rfou et al. (2013).
In terms of transcribed speech data, this roughly

equates to between 1 and 128 hours of speech. For
the training data, we randomly chose sentences
that include words in the WordSim353 task pro-
portionally to their frequency in the set. As mono-
lingual baselines, we use the skip-gram (SG) and
CBOW methods of Mikolov et al. (2013a) as im-
plemented in the Gensim package (Řehůřek and
Sojka, 2010). We additionally used off-the-shelf
CBOW Google News Corpus embeddings with
300 dimensions, trained on 100 billion words.

The CLWEs were trained using the method of
Duong et al. (2016) since their method addresses
polysemy which is rampant in dictionaries. The
same 1k-128k sentence English Wikipedia data
was used but with an additional 5 million sen-
tences of Wikipedia data in a source language. The
source languages include Japanese, German, Rus-
sian, Finnish, and Spanish, which represent lan-
guages of varying similarity with English, some
with great morphological and syntactic differ-
ences. To relate the languages, we used the PanLex
lexicon (Kamholz et al., 2014). Following Duong
et al. (2016), we used the default window size of
48 so that the whole sentence’s context is almost
always taken into account. This mitigates the ef-
fect of word re-ordering between languages. We
trained with an embedding dimension of 200 for
all data sizes as a larger dimension turned out to be
helpful in capturing information from the source
side.1

3.2 Results

Figure 1 shows correlations with human judgment
in the WordSim353 task. The x-axis represents the
number of English training sentences. Coloured
lines represent CLWEs trained on different lan-
guages: Japanese, German, Spanish, Russian and
Finnish.2

With around 128k sentences of training data,
most methods perform quite well, with German
being the best performing. Interestingly the
CLWE methods all outperform GNC which was
trained on a far larger corpus of 100 billion words.
With only 1k sentences of target training data, all
the CLWEs have a correlation around 0.5, with
the exception of Finnish. Interestingly, no consis-

1Hyperparameters for both mono and cross-lingual word
embeddings: iters=15, negative=25, size=200, window=48,
otherwise default. Smaller window sizes led to similar results
for monolingual methods.

2We also tried Italian, Dutch, German and Serbian, yield-
ing similar results but omitted for presentation.
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Figure 1: Performance of different embeddings on
the WordSim353 task with different amounts of
training data. GNC is the Google News Corpus
embeddings, which are constant. CBOW and SG
are the monolingual word2vec embeddings. The
other, colored, lines are all cross-lingual word em-
beddings harnessing the information of 5m sen-
tences of various source languages.

tent benefit was gained by using source languages
for which translation with English is simpler. For
example, Spanish often under-performed Russian
and Japanese as a source language, as well as the
morphologically-rich Finnish.

Notably, all the CLWEs perform far better than
their monolingual counterparts on small amounts
of data. This resilience of the target English word
embeddings suggests that CLWEs can serve as a
method of transferring semantic information from
resource-rich languages to the resource-poor, even
when the languages are quite different. However,
the WordSim353 task is a constrained environ-
ment, so in the next section we turn to language
modeling, a natural language processing task of
much practical importance for resource-poor lan-
guages.

4 Pre-training Language Models

Language models are an important tool with
particular application to machine translation and
speech recognition. For resource-poor languages
and unwritten languages, language models are
also a significant bottleneck for such technologies
as they rely on large quantities of data. In this sec-
tion, we assess the performance of language mod-
els on varying quantities of data, across a number
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Figure 2: Perplexity of language models on the
validation set. Numbers in the legend indicate
LSTM language models with different hidden
layer sizes, as opposed to Modified Kneser-Ney
language models of order 3, 4 and 5.

of different source–target language pairs. In par-
ticular, we use CLWEs to initialize the first layer
in an LSTM recurrent neural network language
model and assess how this affects language model
performance. This is an interesting task not simply
for the practical advantage of having better lan-
guage models for low-resource languages. Lan-
guage modeling is a syntax-oriented task, yet syn-
tax varies greatly between the languages we train
the CLWEs on. This experiment thus yields some
additional information about how effectively bilin-
gual information can be used for the task of lan-
guage modeling.

4.1 Experimental Setup

We experiment with a similar data setup as in
Section 3. However, target training sentences are
not constrained to include words observed in the
WordSim353 set, and are random sentences from
the aforementioned 5 million sentence corpus. For
each language, the validation and test sets consist
of 3k randomly selected sentences. The large vo-
cabulary of Wikipedia and the small amounts of
training data used make this a particularly chal-
lenging language modeling task.

For our NNLMs, we use the LSTM language
model of Zaremba et al. (2014). As a count-
based baseline, we use Modified Kneser-Ney
(MKN) (Kneser and Ney, 1995; Chen and Good-
man, 1999) as implemented in KenLM (Heafield,
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2011). Figure 2 presents some results of tuning
the dimensions of the hidden layer in the LSTM
with respect to perplexity on the validation set,3

as well as tuning the order of n-grams used by
the MKN language model. A dimension of 100
yielded a good compromise between the smaller
and larger training data sizes, while an order 5
MKN model performed slightly better than its
lower-order brethren.4

Interestingly, MKN strongly outperforms the
LSTM on low quantities of data, with the LSTM
language model not reaching parity until between
16k and 32k sentences of data. This is consistent
with the results of Chen et al. (2015) and Neubig
and Dyer (2016) that show that n-gram models are
typically better for rare words, and here our vo-
cabulary is large but training data small since the
data are random Wikipedia sentences. However
these findings are inconsistent with the belief that
NNLMs have the ability to cope well with sparse
data conditions because of the smooth distribu-
tions that arise from using dense vector represen-
tations of words (Bengio et al., 2003). Traditional
smoothing stands strong.

4.2 English Results

With the parameters tuned on the English valida-
tion set as above, we evaluated the LSTM lan-
guage model when the embedding layer is initial-
ized with various monolingual and cross-lingual
word embeddings. Figure 3 compares the perfor-
mance of a number of language models on the test
set. In every case where pre-trained embeddings
were used, the embedding layer was held fixed
during training. However, we observed similar re-
sults when allowing them to deviate from their ini-
tial state. For the CLWEs, the same language set
was used as in Section 3. The curves for the source
languages (Dutch, Greek, Finnish, and Japanese)
are remarkably similar, as were those for the lan-
guages omitted from the figure (German, Russian,
Serbian, Italian, and Spanish). This suggests that
the English target embeddings are gleaning simi-
lar information from each of the languages, infor-
mation likely to be more semantic than syntactic,
given the syntactic differences between the lan-
guages.

3We used 1 hidden layer but otherwise the same as the
SmallConfig of models/rnn/ptb/ptb word lm.py available in
Tensorflow.

4Note that all perplexities in this paper include out-of-
vocabulary words, of which there are many.
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Figure 3: Perplexity of LSTMs when pre-trained
with cross-lingual word embeddings trained on the
same data. LSTM is a neural network language
model with no pre-trained embeddings. mono is
pre-trained with monolingual word2vec embed-
dings. GNC is pre-trained with Google News Cor-
pus embeddings of dimension 300. The rest are
pre-trained with CLWEs using information trans-
fer from different source languages. MKN is an
order 5 Modified Kneser-Ney baseline.
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Figure 4: Perplexities when interpolating MKN
with LSTMs pre-trained with various cross-
lingual word embeddings. LSTM interpolates
MKN with a neural network language model with
no pre-trained embeddings. The rest are inter-
polations of MKN with LSTMs pre-trained with
CLWEs using information transfer from different
source languages. MKN is an order 5 Modified
Kneser-Ney baseline without interpolation.
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We compare these language models pre-trained
with CLWEs with pre-training using other embed-
dings. Pre-training with the Google News Cor-
pus embeddings of the method of Mikolov et al.
(2013c) unsurprisingly performs the best due to
the large amount of English data not available
to the other methods, making it a sort of oracle.
Monolingual pre-training of word embeddings on
the same English data (mono) used by the CLWEs
yields poorer performance.

The language models initialized with pre-
trained CLWEs are significantly better than their
un-pre-trained counterpart on small amounts of
data, reaching par performance with MKN at
somewhere just past 4k sentences of training
data. In contrast, it takes more than 16k sen-
tences of training data before the plain LSTM lan-
guage model began to outperform MKN. The out-
performance of LSTMs by MKN with the lowest
amounts of training data motivated interpolation
of MKN probabilities with LSTM language model
probabilities, as shown in Figure 4. Such interpo-
lation allows for consistent improvement beyond
the performance of MKN or CLWE-pre-trained
LSTMs alone.

4.3 Other Target Languages

In Table 1 we present results of language model
experiments run with other languages used as the
low-resource target. In this table English is used in
each case as the large source language with which
to help train the CLWEs. The observation that the
CLWE-pre-trained language model tended to per-
form best relative to alternatives at around 8k or
16k sentences in the English case prompted us to
choose these slices of data when assessing other
languages as targets.

The pre-trained LSTM language model outper-
forms its non-pre-trained counterpart for all lan-
guages. There is competition between MKN and
the CLWE-pre-trained models. The languages for
which MKN tends to do better are typically those
further from English or those with rich morphol-
ogy, making cross-lingual transfer of information
more challenging. There seems to be a degree of
asymmetry here: while all languages helped En-
glish language modeling similarly, English helps
the other languages to varying degrees. For all lan-
guages, interpolating MKN with the CLWE (In-
terp.) yields the best performance, corroborating
the findings of Gandhe et al. (2014).

Neural language modeling of sparse data can
be improved by initializing parameters with cross-
lingual word embeddings. The consistent per-
formance improvements gained by an LSTM us-
ing CLWE-initialization is a promising sign for
CLWE-initialization of neural networks for other
tasks given limited target language data.

5 First Steps in an Under-Resourced
Language

Having demonstrated the effectiveness of CLWE-
pre-training of language models using simulation
in a variety of well-resourced written languages,
we proceed to a preliminary investigation of this
method to a low-resource, unwritten language, Na.

Yongning Na is a Sino-Tibetan language spoken
by approximately 40k people in an area in Yunnan,
China, near the border with Sichuan. It has no or-
thography and is tonal with a rich morphophonol-
ogy. Given the small quantity of manually tran-
scribed phonemic data available in the language,
Na provides an ideal test bed for investigating the
potential and difficulties this method faces in a re-
alistic setting. In this section we report results in
Na language modeling and discuss hurdles to be
overcome.

5.1 Experimental Setup

The phonemically transcribed corpus5 consists of
3,039 phonemically transcribed sentences which
are a subset of a larger spoken corpus. These
sentences are segmented at the level of the word,
morpheme and phonological process, and have
been translated into French, with smaller amounts
translated into Chinese and English. The corpus
also includes word-level glosses in French and En-
glish. The lexicon of Michaud (2016) contains ex-
ample sentences for entries, as well as translations
into French, English and Chinese.

The lexicon consists of around 2k Na entries,
with example sentences and translations into En-
glish, French and Chinese. To choose an appro-
priate segmentation of the corpus, we used a hier-
archical segmentation method where words were
queried in the lexicon. If a given word was present
then it was kept as a token, otherwise the word was
split into its constituent morphemes.

We took 2,039 sentences to be used as train-
ing data, with the remaining 1k sentences split

5Available as part of the Pangloss collection at
http://lacito.vjf.cnrs.fr/pangloss.
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8k sentences 16k sentences
Lang MKN LSTM CLWE Interp. MKN LSTM CLWE Interp.
Greek 827.3 920.3 780.4 650.6 749.8 687.9 634.4 549.5

Serbian 492.8 586.3 521.3 408.0 468.8 485.3 447.8 365.7
Russian 1656.8 2054.5 1920.4 1466.2 1609.5 1757.3 1648.3 1309.1
Italian 777.0 794.9 688.3 592.2 686.2 627.7 559.7 493.4

German 997.4 1026.0 1000.9 831.8 980.0 908.8 874.1 761.5
Finnish 1896.4 2438.8 2165.5 1715.3 1963.3 2233.2 2109.9 1641.2
Dutch 492.1 491.3 456.2 381.4 447.9 412.8 378.0 330.1

Japanese 1902.8 2662.4 2475.6 1866.7 1816.8 2462.8 2279.6 1696.9
Spanish 496.3 481.8 445.6 387.7 445.9 412.9 369.6 331.2

Table 1: Perplexity of language models trained on 8k and 16k sentences for different languages. MKN
is an order 5 Modified Kneser-Ney language model. LSTM is a long short-term memory neural network
language model with no pre-training. CLWE is an LSTM language model pre-trained with cross-lingual
word embeddings, using English as the source language. Interp. is an interpolation of MKN with CLWE.

Types Tokens
Tones 2,045 45,044

No tones 1,192 45,989

Table 2: Counts of types and tokens across the
whole Na corpus, given our segmentation method.

Tones No tones
MKN 59.4 38.0
LSTM 74.8 46.0
CLWE 76.6 46.2
Lem 76.8 44.7

En-split 76.4 47.0

Table 3: Perplexities on the Na test set using En-
glish as the source language. MKN is an order 5
Modified Kneser-Ney language model. LSTM is a
neural network language model without pretrain-
ing. CLWE is the same LM with pre-trained Na–
English CLWEs. Lem is the same as CLWE except
with English lemmatization. En-split extends this
by preprocessing the dictionary such that entries
with multiple English words are converted to mul-
tiple entries of one English word.

equally between validation and test sets. The
phonemic transcriptions include tones, so we cre-
ated two preprocessed versions of the corpus: with
and without tones. Table 2 exhibits type and to-
ken counts for these two variations. In addition
to the CLWE approach used in Sections 3 and
4, we additionally tried lemmatizing the English
Wikipedia corpus so that it each token was more
likely to be present in the Na–English lexicon.

5.2 Results and Discussion

Table 3 shows the Na language modeling results.
Pre-trained CLWEs do not significantly outper-
form that of the non-pre-trained, and MKN out-
performs both. Given the size of the training data,
and the results of Section 4, it is no surprise that
MKN outperforms the NNLM approaches. But the
lack of benefit in CLWE-pre-training the NNLMs
requires some reflection. We now proceed to dis-
cuss the challenges of this data to explore why
the positive results of language model pre-training
that were seen in Section 4 were not seen in this
experiment.

Tones A key challenge arises because of Na’s
tonal system. Na has rich tonal morphology. Syn-
tactic relationships between words influence the
surface form tone a syllable takes. Thus, seman-
tically identical words may take different surface
tones than is present in the relevant lexical entry,
resulting in mismatches with the lexicon.

If tones are left present, the percentage of Na
tokens present in the lexicon is 62%. Remov-
ing tones yields a higher hit rate of 88% and al-
lows tone mismatches between surface forms and
lexical entries to be overcome. This benefit is
gained in exchange for higher polysemy, with an
average of 4.1 English translations per Na entry
when tones are removed, as opposed to 1.9 when
tones are present. Though this situation of poly-
semy is what the method of Duong et al. (2016)
is designed to address, it means the language
model fails to model tones and doesn’t signifi-
cantly help CLWE-pre-training in any case. Fu-
ture work should investigate morphophonological
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processing for Na, since there is regularity behind
these tonal changes (Michaud, 2008) which could
mitigate these issues if addressed.

Polysemy We considered the polysemy of the
tokens of other languages’ corpora in the Pan-
Lex dictionaries. Interestingly they were higher
than the Na lexicon with tones removed, ranging
from 2.7 for Greek–English to 19.5 for German–
English. It seems the more important factor is the
amount of tokens in the English corpus that were
present in the lexicon. For the Na–English lexicon,
this was only 18% and 20% when lemmatized and
unlemmatized, respectively. However it was 67%
for the PanLex lexicon. Low lexicon hit rates of
both the Na and English corpora must damage the
CLWEs modeling capacity.

Lexicon word forms Not all the forms of many
English word groups are represented. For exam-
ple, only the infinitive ‘to run’ is present, while
‘running’, ‘ran’ and ‘runs’ are not. The limited
scope of this lexicon motivates lemmatization on
the English side as a normalization step, which
may be of some benefit (see Table 3). Further-
more, such lemmatization can be expected to re-
duce the syntactic information present in embed-
dings which does not transfer between languages
as effectively as semantics.

Some common words, such as ‘reading’ are
not present in the lexicon, but ‘to read aloud’
is. Additionally, there are frequently entries such
as ‘way over there’ and ‘masculine given name’
that are challenging to process. As an attempt
to mitigate this issue, we segmented such English
entries, creating multiple Na–English entries for
each. However, results in Table 3 show that this
failed to show improvements. More sophisticated
processing of the lexicon is required.

Lexicon size There are about 2,115 Na entries in
the lexicon and 2,947 Na–English entries, which
makes the lexicon especially small in comparison
to the PanLex lexicon used in the previous experi-
ments. Duong et al. (2016) report large reductions
in performance of CLWEs on some tasks when
lexicon size is scaled down to 10k.

To better understand how limited lexicon size
could be affecting language model performance,
we performed an ablation experiment where ran-
dom entries in the PanLex English–German lexi-
con were removed in order to restrict its size. Fig-
ure 5 shows the performance of English language
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Figure 5: Perplexities of an English–German
CLWE-pretrained language model trained on 2k
English sentences as the dictionary size available
in CLWE training increases to its full size (sub-
dict). As points of comparison, LSTM is a long
short-term memory language model with no pre-
training and full-dict is a CLWE-pretrained lan-
guage model with the full dictionary available.

modeling when training data is restricted to 2k
sentences (to emulate the Na case) and the size
of the lexicon afforded to the CLWE training is
adjusted. This can only serve as a rough compari-
son, since PanLex is large and so a 1k entry subset
may contain many obscure terms and few useful
ones. Nevertheless, results suggest that a critical
point occurs somewhere in the order of 10k en-
tries. However, since improvements are demon-
strated even with smaller dictionaries, this is fur-
ther evidence that more sophisticated preprocess-
ing of the Na lexicon is required.

Domain Another difference that may contribute
to the results is that the domain of the text is signif-
icantly different. The Na corpus is a collection of
spoken narratives transcribed, while the Wikipedia
articles are encyclopaedic entries, which makes
the registers very different.

5.3 Future Work on Na Language Modeling

Though the technique doesn’t work out of the box,
this sets a difficult and compelling challenge of
harnessing the available Na data more effectively.

The lexicon is a rich source of other informa-
tion, including part-of-speech tags, example sen-
tences and multilingual translations. In addition to
better preprocessing of the lexical information we
have already used, harnessing this additional in-
formation is an important next step to improving
Na language modeling. The corpus includes trans-
lations into French, Chinese and English, as well
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as glosses. Some CLWE methods can additionally
utilize such parallel data (Coulmance et al., 2015;
Ammar et al., 2016) and we leave to future work
incorporation of this information as well.

The tonal system is well described (Michaud,
2008), and so further Na-specific work should al-
low differences between surface form tones and
tones in the lexicon to be bridged.

Our work corroborates the observation that
MKN performs well on rare words (Chen et al.,
2015). Interpolation is an effective means to har-
ness this strength when training data is sparse.
Furthermore, hybrid count-based and NNLMs
(Neubig and Dyer, 2016) promise the best of both
worlds for language modeling for low-resource
languages.

6 Conclusion

In this paper we have demonstrated that CLWEs
can remain resilient when training data in the tar-
get language is scaled down drastically. Such
CLWEs continue to perform well on the Word-
Sim353 task, as well as demonstrating down-
stream efficacy across a number of languages
through initialization of NNLMs. This work sup-
ports CLWEs as a method of transfer of infor-
mation to resource-poor languages by harnessing
distributional information in a large source lan-
guage. We can expect parameter initialization with
CLWEs trained on such asymmetric data condi-
tions to aid in other NLP tasks too, though this
should be empirically assessed.
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Abstract

We propose a method to decide whether
two occurrences of the same noun in a
source text should be translated consis-
tently, i.e. using the same noun in the tar-
get text as well. We train and test clas-
sifiers that predict consistent translations
based on lexical, syntactic, and seman-
tic features. We first evaluate the ac-
curacy of our classifiers intrinsically, in
terms of the accuracy of consistency pre-
dictions, over a subset of the UN Corpus.
Then, we also evaluate them in combina-
tion with phrase-based statistical MT sys-
tems for Chinese-to-English and German-
to-English. We compare the automatic
post-editing of noun translations with the
re-ranking of the translation hypotheses
based on the classifiers’ output, and also
use these methods in combination. This
improves over the baseline and closes up
to 50% of the gap in BLEU scores between
the baseline and an oracle classifier.

1 Introduction

The repetition of a noun in a text may be due to
co-reference, i.e. repeated mentions of the same
entity, or to mentions of two entities of the same
type. But in other cases, two occurrences of the
same noun may simply convey different meanings.
The translation of repeated nouns depends, among
other things, on the conveyed meanings: in case of
co-reference or identical senses, they should likely
be translated with the same word, while otherwise
they should be translated with different words, if
the target language distinguishes the two mean-
ings. State-of-the-art machine translation systems
do not address this challenge systematically, and
translate two occurrences of the same noun inde-

pendently, thus potentially introducing unwanted
variations in translation.

We exemplify this issue in Figure 1 for Chinese-
to-English and German-to-English translations,
with examples of inconsistent translations of a re-
peated source noun by a baseline SMT system, as
opposed to consistent translations in the reference.
In Example 1, the system’s translation of the sec-
ond occurrence of politik is mistaken and should
be replaced by the first one (policy, not politics).
In Example 2, although the first translation differs
from the reference, it could be acceptable as a le-
gitimate variation, although the second one (iden-
tity documents) is more idiomatic and more fre-
quent. Of course, in addition to these two exam-
ples, there are other configurations of the six nouns
involved in a consistency relation across source,
candidate and reference translations, but they will
be discussed below when designing the training
and test data for our problem.

In this paper, we aim to improve the transla-
tion of repeated nouns by designing a classifier
which predicts, for every pair of repeated nouns in
a source text, whether they should be translated by
the same noun, i.e. consistently, and if that is the
case, which of the two candidate translations gen-
erated by an MT system should replace the other
one. We thus address one kind of long-range de-
pendencies between words in texts; such depen-
dencies have been the target of an increasing num-
ber of studies, presented briefly in Section 2.

To learn a consistency classifier from the data,
we consider a corpus with source texts and refer-
ence translations, from the parallel UN Corpora in
Chinese, German and English. As we explain in
Section 3, we mine the corpus for pairs of repeated
nouns in the source texts, and examine human and
machine translations in order to learn to predict
whether the machine translation of the first noun
must replace the second one, or vice-versa, or no
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Example 1
Source: nach einführung dieser politik [...] die politik auf dem gebiet der informationstechnik [...]
Reference: once the policy is implemented [...] the information technology policy [...]
MT: after introduction of policy [...] the politics in the area of information technology [...]
Example 2
Source: 欺诈性旅行或身份证证证件件件系指有下列情形之一的任何旅行或身份证证证件件件
Reference: Fraudulent travel or identity document; shall mean any travel or identity document
MT:欺诈性 travel or identity papers.系指 have under one condition; any travel, or identity document

Figure 1: Inconsistent translations of repeated nouns, in blue, from German (Example 1) and Chinese
(Example 2) into English. While in both examples one noun is different from the reference, only Exam-
ple 1 is truly mistaken: the second occurrence of the noun should be replaced with the first one.

change should be made. In Section 4, we present
the lexical, syntactic and semantic features used
by the classifiers. When presented with previously
unseen source texts and baseline MT output, the
decisions of the classifiers serve to post-edit or re-
rank the repeated nouns of the MT baseline.

As shown in Section 5, the new end-to-end MT
system generates improved Chinese-English and
German-English translations, with larger improve-
ments on the latter pair. Syntactic features appear
to be more useful than semantic ones, for reasons
that will be discussed. The case of more than two
consecutive occurrences of the same noun will be
briefly examined. Finally, a combined re-ranking
and post-editing approach appears to be the most
effective, covering about 50% of the gap in BLEU
scores between the baseline MT and the use of an
oracle classifier.

2 Related Work

This study is related to several research topics
in MT: lexical consistency, caching, co-reference,
and long-range dependencies between words in
general. Our proposal aims to improve the con-
sistency of noun translation, and thus has a nar-
rower scope than the “one translation per dis-
course” hypothesis (Carpuat, 2009; Carpuat and
Simard, 2012), which aimed to implement for
MT the broader hypothesis of “one sense per dis-
course” (Gale et al., 1992).

We focus on nouns because of their referential
properties, which are a strong requirement for con-
sistency in case of co-reference, although in many
cases consistency should not be blindly enforced,
in order to avoid the “trouble with MT consis-
tency” (Carpuat and Simard, 2012) which may in-
duce translation errors. As indicated in that study,
MT systems trained on small datasets are often

more consistent but of lower quality than systems
trained on larger and more diverse data sets. In
any case, in our study, we never alter consistent
translations, but we address inconsistencies, which
are often translation errors (Carpuat and Simard,
2012), and attempt to find those that can be cor-
rected simply by enforcing consistency.

Similarly, our scope is narrower than the
caching approach (Tiedemann, 2010; Gong et al.,
2011), which encourages a priori consistent trans-
lations of any word, with the risk on propagating
cached incorrect translations. In our study, the first
and second translation in a pair have equal status.

Noun phrase consistency is often due to co-
reference. Several recent studies consider co-
reference to improve pronoun resolution, but none
of them exploits noun phrase co-reference, likely
due to an insufficient accuracy of co-reference res-
olution systems (?; ?). The improvement of pro-
noun translation was only marginal with respect
to a baseline SMT system in a 2015 shared task
(Hardmeier et al., 2015), while the 2016 shared
task (Guillou et al., 2016) somewhat shifted its fo-
cus to pronoun prediction in a lemmatized refer-
ence translation.

This study builds upon and extends our previous
work on the translation of compounds (Mascarell
et al., 2014; Pu et al., 2015), which constrained
the translation of the head of a compound when it
was repeated separately after it. The present study
is considerably more general, as it makes no as-
sumption on either of the repeated nouns, i.e. it
does not require them to be part of compounds.

Our study contributes to a growing corpus of
research on modeling longer-range dependencies
than those modeled in phrase-based SMT or neu-
ral MT, often across different sentences of a doc-
ument. Ture et al. (2012) used cross-sentence
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consistency features in a translation model, while
Hardmeier (2012) designed the Docent decoder,
which can use document-level features to improve
the coherence across sentences of a translated doc-
ument. Our classifier for repeated nouns outputs
decisions that can serve as features in Docent, but
as the frequency of repeated nouns in documents
is quite low, we use here post-editing and/or re-
ranking rather than Docent.

3 Datasets for Noun Consistency in MT

3.1 Overview of the Method
Our method flexibly enforces noun consistency
in discourse to improve noun phrase translation.
We first detect two neighboring occurrences of the
same noun in the source text, i.e. closer than a
fixed distance, and which satisfy some basic con-
ditions. Then, we consider their baseline trans-
lations by a phrase-based statistical MT system,
which are identified from word-level alignments.
If the two baseline translations of the repeated
noun differ, then our classifier uses the source and
target nouns and a large set of features (presented
in Section 4) to decide whether one of the trans-
lations should be edited, and how. This decision
will serve to post-edit and/or re-rank the baseline
MT’s output (Section 4.4). To design the classi-
fier, we train machine-learning classifiers over ex-
amples that are extracted from parallel data and
from a baseline MT system, as described in Sec-
tion 3.3. A separate subset of unseen examples
will be used to test classifiers, first intrinsically and
then in combination with MT.

3.2 Corpora and Pre-processing
Our data comes from WIT3 Corpus1 (Cettolo et
al., 2012), a collection of transcripts of TED talks,
and the UN Corpora,2 a collection of documents
from the United Nations. The experiments are on
Chinese-to-English and German-to-English.

We first build a phrase-based SMT system for
each language pair with Moses (Koehn et al.,
2007), with its default settings. Both MT sys-
tems are trained on the WIT3 data, and are used
to generate candidate translations of the UN Cor-
pora. Then, the ML classifiers are trained on noun
pairs extracted from the UN Corpora, using se-
mantic and syntactic features extracted from both
source and target sides. The test sets also come

1http://wit3.fbk.eu
2http://www.uncorpora.org

from the UN Corpora, with the same features on
the source side. Table 1 presents statistics about
the data.

3.3 Extraction of Training/Testing Instances

At this stage, the goal is to automatically extract
for training the pairs of repeated nouns in the
source texts, noted N . . .N , which are translated
differently by the SMT baseline, noted T1 . . . T2,
with T1 6= T2. Indeed, when the translations are
identical, we have no element in the 1-best trans-
lation to post-edit them, therefore we do not con-
sider such pairs. We examine the reference trans-
lations of T1 and T2, noted RT1 and RT2, from
which we derive the answer we expect from the
classifiers (as specified below), and which will be
used for supervised learning. We obtain the Ti and
RTi values using word-alignment with GIZA++.

Prior to the identification of repeated nouns in
the source text, we tokenize the texts and iden-
tify parts-of-speech (POS) using the Stanford NLP
tools3. In particular, as Chinese texts are not word-
segmented, we first perform this operation and
then identify multi-character nouns. We then con-
sider each noun in turn, and look for a second oc-
currence of the same noun in what follows, lim-
iting the search to the same sentence for Chinese,
and to the same and next three sentences for Ger-
man. The difference in the distance settings is
based on observations of the Chinese vs. German
datasets: average length of sentences, average dis-
tance of repeated nouns, and sentence segmenta-
tion issues.

Once the pairs of repeated nouns have been
identified, we check the SMT translations of each
pair, and if the two translations are different, we
include the pair in our dataset. For instance, in
Figure 1, the noun 证件 appears twice in the
sentence, and the baseline translations of the two
occurrences are papers and document; therefore,
this pair is included in our dataset. We extracted
from the UN Corpora 3,301 pairs for training and
647 pairs for testing on ZH/EN, and 11,289 pairs
for training and 695 pairs for testing on DE/EN.
We selected a smaller amount of noun pairs for
ZH/EN than DE/EN for reasons of availability, be-
cause DE/EN dataset is more than 10 times larger
than the ZH/EN one. We kept similar test set sizes
to enable comparison.

The word-aligned reference translations are

3http://nlp.stanford.edu/software
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WIT3 MT training MT tuning Language modeling
Sentences Words Sentences Words Sentences Words

DE-EN 193,152 3.6M 2,052 40K 217K 4.4M
ZH-EN 185,443 3.4M 2,457 54K 4.8M 800M

UN Data Classifier training Classifier testing
Sentences Words Nouns Sentences Words Noun

DE-EN 150K 4.5M 11,289 7,771 225K 695
ZH-EN 10K 368K 3,301 3,000 121K 647

Table 1: WIT3 data for building the SMT systems and UN data to train/test the classifiers.

used to set the ground-truth class (or decision) for
training the classifiers, as follows. With the nota-
tions above (baseline translations of N noted T1
and T2, with T1 6= T2), if the reference trans-
lations differ (RT1 6= RT2), then we label the
pair as ‘none’, i.e. none of T1 and T2 should be
post-edited and changed into the other, because
this would not help to reach the reference transla-
tion anyway (recall that the only possible actions
knowing the SMT baseline are replacing T1 by T2
or vice-versa).

If the reference translations are the same
(RT1 = RT2), then we examine this word, noted
RT . If this word is equal to one of the baseline
translations (T1 = RT or T2 = RT ), then this
value should be given to other baseline (e.g., if
T1 = RT 6= T2, then T2 := T1). For classifi-
cation, we simply label these examples with the
index of the word that must be used, 1 or 2. How-
ever, if the reference differs from both baseline
translations, then the label is again ‘none’, because
we cannot infer which of them is a better transla-
tion.

After labeling all the pairs, we extract the fea-
tures in an attribute/value format to be used for
machine learning.

4 Classifiers for Translation Consistency

4.1 Role and Nature of the Classifiers

We describe here the machine learning classifiers
that are trained to predict one of the three classes
– ‘1’, ‘2’ or ‘none’ – for each pair of identical
source nouns with different baseline SMT transla-
tions. The sense of the predicted classes is the fol-
lowing: ‘1’ means that T1 should replace T2, ‘2’
means the opposite, and ‘none’ means translations
should be left unchanged. For instance, if Exam-
ple 2 in Figure 1 was classified as ‘2’, we would
replace the translation of the first occurrence (pa-
pers) with the second one (documents).

We use the WEKA environment4 to train and
test several different learning algorithms: SVMs
(Cortes and Vapnik, 1995), C4.5 Decision Trees
(noted J48 in Weka) (Quinlan, 1993), and Random
Forests (Breiman, 2001). We use 10-fold cross
validation on the training set, and then test them
once on the test set, and later on in combination
with MT. For performance reasons, we used the
Maximum Entropy classifier (Manning and Klein,
2003) from Stanford5 instead of WEKA’s Logistic
Regression.

The hyper-parameters of the above classifiers
were set as follows, mostly following the default
settings from WEKA, and setting others on the
cross-validation sets (not the unseen test sets). For
SVMs, the round-off error is ε = 10−12. For De-
cision Trees, we set the minimal number of in-
stances per leaf (‘minNumObj’) at 2 and the confi-
dence factor used for pruning to 0.25. For Random
Forests, we defined the number of trees to be gen-
erated (‘numTree’) as 100 and set their maximal
depth (‘maxDepth’) as unlimited. Finally, we set
the MaxEnt smoothing (σ) to 1.0, and the toler-
ance used for convergence in parameter optimiza-
tion to 10−5.

We evaluate our proposal in two ways. First,
we measure the classification accuracy in terms of
accuracy and kappa (κ) agreement (Cohen, 1960)
with the correct class, either in 10-fold cross-
validation experiments, or on the test set. Second,
we compare the updated translations with the ref-
erence, to check if we obtain a result that is closer
to it, using the popular BLEU measure (Papineni
et al., 2002).

4.2 Syntactic Features

We defined 19 syntactic features, mainly with the
assumption that out of a pair of repeated source
nouns N . . .N , the occurrence which is embed-

4http://www.cs.waikato.ac.nz/ml/weka/
5http://nlp.stanford.edu/software/classifier.shtml
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ded in a more complex local parse tree, i.e. has
more information syntactically bound to it, is more
“determined” and has a higher probability of been
translated correctly by the baseline MT system,
since this information can help the system to dis-
ambiguate it. The results tend to confirm this as-
sumption.

The features are listed in Figure 2, left side, with
an explicit description of each feature and its value
on a Chinese text (top of the figure). In the last line
of the table we show the ground-truth class of this
example.

The sentences are parsed using the Stanford
parser,6, and the values of the features are obtained
from the parse trees, using the sizes (in nodes or
words) of the siblings and ancestor sub-trees for
each analyzed noun. In the sample parse trees on
the right side of Figure 2, the first NP ancestor is
marked with a red rectangle, and the values of the
features are computed

We can distinguish three subsets of features.
The first subset includes lexical and positional fea-
tures: the original noun, automatic baseline trans-
lations of both occurrences from the baseline MT
system, and the distance between the sentences
that contain the two nouns. The second subset
includes features that capture the size of the sib-
lings in the parse trees of each of the two nouns.
The third subset includes the size of sub-tree for
the latest noun phrase ancestor for each analyzed
noun, and also the depth distances to the next noun
phrase ancestor.

4.3 Semantic Features

The semantic features, to be used independently or
in combination with the syntactic ones, are divided
into two groups: discourse vs. local context fea-
tures, which differ by the amount of context they
take into account. On the one hand, local context
features represent the immediate context of each
of the nouns in the pair and their translations, i.e.
three words to their left and three words to their
right in both source and MT output, always within
the same sentence.

On the other hand, discourse features capture
those cases where the inconsistent translations of
a noun might be due to a disambiguation prob-
lem of the source noun, and semantic similarity
can be leveraged to decide which of the two trans-
lations best matches the context. To compute the

6http://nlp.stanford.edu/software/lex-parser.html

discourse features, we use the word2vec word vec-
tor representations generated from a large corpus
(Mikolov et al., 2013), which have been success-
fully used in the recent past to compute similarity
between words (Schnabel et al., 2015). Specif-
ically, we employ the model trained on the En-
glish Google News corpus 7 with about 100 billion
words.

For each pair of inconsistent translations (T1,
T2) of a source noun N , we compute the cosine
similarities c1 and c2 between the vector repre-
sentation of each translation and the mean vec-
tor of their contexts. These mean vectors, noted
~v1 and ~v2, are computed by averaging all vectors
of the words in the respective contexts of T1 and
T2. Here, the contexts consist of 20 words to the
left and 20 words to the right of each Ti, possibly
crossing sentence boundaries. The cosine similar-
ities c1 and c2 are thus:

c1 = cos(~T1, ~v1) =
~T1 · ~v1
‖~T1‖‖~v1‖

(1)

c2 = cos(~T2, ~v2) =
~T2 · ~v2
‖~T2‖‖~v2‖

(2)

The two values c1 and c2 are used as features, al-
lowing classifiers to learn that, in principle, higher
values indicate a better translation in the sense of
its semantic similarity with the context.

In the Example 1 from Figure 1, the German
word Politik is translated into the English words
policy and then politics. The semantic similarity
between the word politics and its context (c2) is
lower than the similarity between policy and its
context (c1), which we consider to be an indica-
tion that the first occurrence, namely policy, has
better chances to be the correct translation – which
is actually the case in this example.

4.4 Integration with the MT System
The classifier outputs a post-editing decision for
each pair of repeated nouns: replace T1 with T2,
replace T2 with T1, or do nothing. This decision
can be directly executed, or it can be combined in a
more nuanced fashion with the MT system. There-
fore, to modify translations using this decision, we
propose and test three approaches for using in in
an MT system:

Post-editing: directly edit the translations T1 or
T2 depending on the classifier’s decision.

7https://code.google.com/p/word2vec/
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Source: 赞扬 联合国 人权 事务 高级 专专专员员员 办事处 高度 优先 从事 有关 国家 机构 的 工作 ，
[. . . ] ，鼓励高级专专专员员员确保作出适当安排和提供预算资源
Reference: commends the high priority given by the office of the united nations high commissioner
for human rights to work on national institutions , [. . . ] , encourages the high commissioner to ensure
that appropriate arrangements are made and budgetary resources provided
MT: praise the human rights high commissioner was the high priority to offices in the country , [. . . ]
, to encourage senior specialists to make sure that make appropriate and provide budget resources

Features Values

Source noun (Chinese) 专员

Distance in sentences between the two source occurrences 0

Translation of the first occurrence (labeled NN) commissioner

Translation of the second occurrence (labeled NN) specialists

Number of sibling nodes of the 1st occurrence 4

Number of sibling nodes of the 2nd occurrence 2

Sign of the difference between the above (+1, 0, −1) 1

Number of words of the 1st occurrence and its siblings 2

Number of words of the 2nd occurrence and its siblings 1

Sign of the difference between the above (+1, 0, −1) 1

Number of nodes in the first NP ancestor of 1st occ. 15

Number of nodes in the first NP ancestor of 2nd occ. 7

Sign of the difference between the above (+1, 0, −1) 1

Number of words in the first NP ancestor of the 1st occ. 6

Number of words in the first NP ancestor of the 2nd occ. 2

Sign of the difference between the above (+1, 0, −1) 1

Distance between the first NP ancestor and the 1st occ. 3

Distance between the first NP ancestor and the 2nd occ. 3

Sign of the difference between the above (+1, 0, −1) 0

Class (1, 2, 0) 1

(CP

(IP

(NP

(NP (NR 联合国) (NN 人权) (NN 事务))

(ADJP (JJ 高级))

(NP (NN 专员) (NN 办事处)))

(VP

(ADVP (AD 高度))

(VP

(VP

(ADVP (AD 优先))

(VP (VV 从事)

(NP

(DNP

(NP

(ADJP (JJ 有关))

(NP (NN 国家) (NN 机构)))

(DEG 的))

(NP (NN 工作)))))

(PU ，)

(CC 并且)

(VP

(PP (P 鉴于)

(NP

(DNP

(NP

(ADJP (JJ 有关))

(NP (NN 国家) (NN 机构)))

(DEG 的))

(NP (NN 活动))))

(VP (VV 有所)

(VP (VV 增加))))

(PU ，)

(VP (VV 鼓励)

(NP

(ADJP (JJ 高级))

(NP (NN 专员)))

(IP

(VP (VV 确保)

(VP

(VP (VV 作出)

(NP

(ADJP (JJ 适当))

(NP (NN 安排))))

(CC 和)

(VP (VV 提供)

(NP (NN 预算) (NN 资源)))))))

(PU ，)

Figure 2: Definition of syntactic features (left) and illustration of their values on a Chinese text (top).
The red boxes in the parse trees (right) show the first NP ancestors of the examined nouns.

Re-ranking: search among the translation hy-
potheses provided by the SMT system (in
practice, the first 10,000 ones) for those
where T1 and T2 are translated as predicted
by the classifier, and select the highest rank-
ing one as the new translation. If none is
found, the baseline 1-best hypothesis is kept.

Re-ranking + Post-editing: after applying re-
ranking, if no hypothesis conforms to the pre-
diction of the classifier, instead of keeping the
baseline translation we post-edit it as in the
first approach.

5 Results and Analysis

We first present the results of the classification
task, i.e. the prediction of the correct translation
variant (1st / 2nd / None), for Chinese-English
and German-English translation respectively in
Tables 2 and 3, with 10-fold cross-validation on
the training sets. Then, we present the scores on
the test sets for both the classification task and its

Syntactic features Semantic features All features
Acc. (%) κ Acc. (%) κ Acc. (%) κ

J48 72.1 0.48 60.2 0.00 60.2 0.00
SVM 74.5 0.54 60.2 0.00 73.9 0.51
RF 75.3 0.54 68.4 0.29 70.7 0.35
MaxEnt 76.7 0.65 69.5 0.32 83.3 0.75

Table 2: Prediction of the correct translation
(1st / 2nd / None) for repeated nouns in Chinese,
in terms of accuracy (%) and kappa scores, on
the development set with 10-fold cross-validation.
Methods are sorted by average accuracy over the
three feature sets. When using semantic or all fea-
tures, no decision tree outperformed the majority
class baseline, hence κ = 0.

combination with MT, for ZH/EN and DE/EN re-
spectively in Tables 4 and 5. We compare the re-
sults obtained with several ML methods: Decision
Trees (J48), SVMs, Random Forests and MaxEnt,
ordered in the tables by average increasing scores.
Moreover, we compare the merits of syntactic vs.
semantic features, as well as post-editing vs. re-
ranking the MT output.
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Syntactic features Semantic features All features

Acc. κ
BLEU Acc. κ

BLEU Acc. κ
BLEU

PE RR RR+PE PE RR RR+PE PE RR RR+PE
Baseline - - 11.07 11.07 11.07 - - 11.07 11.07 11.07 - - 11.07 11.07 11.07

J48 66.3 0.42 11.17 11.20 11.30 33.1 0.00 11.07 11.07 11.07 33.1 0.00 11.07 11.07 11.07
SVM 71.9 0.53 11.23 11.27 11.33 33.1 0.00 11.07 11.07 11.07 62.1 0.43 11.18 11.26 11.26
RF 71.7 0.53 11.22 11.24 11.27 55.2 0.33 11.04 11.07 11.12 54.9 0.32 11.16 11.20 11.24

MaxEnt 73.7 0.60 11.27 11.33 11.35 56.1 0.34 10.87 11.11 11.18 72.5 0.56 11.21 11.33 11.36
Oracle 100 1.00 11.40 11.52 11.64 100 1.00 11.40 11.52 11.64 100 1.00 11.40 11.52 11.64

Table 4: Prediction of the correct translation (accuracy (%) and kappa) and translation quality (BLEU)
for repeated nouns on the Chinese test set. Maximum Entropy was the best method found on the dev set.

Syntactic features Semantic features All features

Acc. κ
BLEU Acc. κ

BLEU Acc. κ
BLEU

PE RR RR+PE PE RR RR+PE PE RR RR+PE
Baseline - - 17.10 17.10 17.10 - - 17.10 17.10 17.10 - - 17.10 17.10 17.10

SVM 71.4 0.57 17.59 17.65 17.72 32.8 0.00 17.10 17.10 17.10 32.8 0.00 17.10 17.10 17.10
J48 70.5 0.56 17.59 17.61 17.70 48.2 0.23 17.13 17.27 17.33 69.4 0.54 17.56 17.60 17.66
RF 70.2 0.55 17.55 17.62 17.68 54.4 0.32 17.21 17.34 17.37 67.6 0.52 17.53 17.57 17.63

MaxEnt 78.3 0.67 17.63 17.66 17.75 63.5 0.49 17.39 17.47 17,49 68.7 0.53 17.58 17.59 17.67
Oracle 100 1.00 17.78 17.83 17.99 100 1.00 17.78 17.83 17.99 100 1.00 17.78 17.83 17.99

Table 5: Prediction of the correct translation (accuracy (%) and kappa) and translation quality (BLEU)
for repeated nouns on the German test set. Maximum Entropy was the best method found on the dev set.

Syntactic features Semantic features All features
Acc. (%) κ Acc. (%) κ Acc. (%) κ

SVM 77.8 0.67 38.1 0.00 38.1 0.00
J48 77.0 0.66 64.8 0.45 79.7 0.69
RF 82.0 0.73 73.5 0.60 84.5 0.77
MaxEnt 80.8 0.71 76.8 0.65 83.4 0.75

Table 3: Prediction of the correct translation
(1st / 2nd / None) for repeated nouns in German, in
terms of accuracy (%) and kappa scores, on the
development set with 10-fold c.-v. Methods are
sorted by average accuracy over the three feature
sets. The best scores are in bold.

5.1 Best Scores of Classification and MT

The classification accuracy is above 80% when ap-
plying 10-fold cross-validation, for both language
pairs, and reaches 74–78% on the test sets. As
the classes are quite balanced, a random baseline
would reach around 33% only. Kappa values reach
0.75 on the dev sets and 0.60–0.67 on the test sets.
The performances of the classifiers appear thus to
be well above chance, and the comparable perfor-
mances achieved on the unseen test sets indicate
that over-fitting is unlikely.

The ordering of methods by performance is
remarkably stable: Decision Trees (J48) and
SVMs get the lowest scores, followed by Random
Forests, and then by the MaxEnt classifier. The or-
dering {J48, SVM} < RF < MaxEnt is observed
over both language pairs, over the three types of
features, and the four datasets, with 1-2 exceptions
only. Overall, the best configuration of our method
found on the training sets is, for both languages,
the MaxEnt classifier with all features.

There is a visible rank correlation between the
increase in classification accuracy and the increase
in BLEU score, for all languages, features, clas-
sifiers, and combination methods with MT. The
best configurations found on the training sets bring
the following BLEU improvements: for ZH/EN,
from 11.07 to 11.36, and for DE/EN, from 17.10 to
17.67. In fact, syntactic features turn out to reach
an even higher value on the test set, at 17.75. To
interpret these improvements, they should be com-
pared to the oracle BLEU scores obtained by using
a “perfect” classifier, which are 11.64 for ZH/EN
and 17.99 for DE/EN. Our method thus bridges
51% of the BLEU gap between baseline and ora-
cle on ZH/EN and 64% on DE/EN – a significant
improvement.

The BLEU scores of the three different methods
for using classification for MT (Tables 4 and 5)
clearly show that the combined method outper-
forms both post-editing and re-ranking alone, for
all languages and features. Post-editing, the eas-
iest one to implement, has little consideration for
the words surrounding the nouns, while re-ranking
works on MT hypotheses and thus ensures that a
better global translation is found that is also con-
sistent. However, in some cases, no hypothesis
conforms to the consistency decision, and in this
case post-editing the best hypothesis appears to be
beneficial.

5.2 Feature Analysis: Syntax vs. Semantics

On the training sets, syntactic features always out-
perform the semantic ones when using the Max-
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ZH/EN DE/EN
Translation of the 2nd occurrence 0.165 Translation of the 1st occurrence 0.162
Translation of the 1st occurrence 0.163 Translation of the 2nd occurrence 0.162
Source noun 0.110 Source noun 0.099
#words in the first NP ancestor of the 2nd occ. 0.060 #words in the first NP ancestor of the 2nd occ. 0.062
#words in the first NP ancestor of the 1st occ. 0.050 #words in the first NP ancestor of the 1st occ. 0.057
#nodes in the first NP ancestor of the 2nd occ. 0.036 #nodes of the 2nd occ. 0.054
#nodes in the first NP ancestor of the 1st occ. 0.033 #sibling nodes of the 1st occ. 0.052
Sign of difference between #words and its siblings 0.031 #nodes in the first NP ancestor of the 1st occ. 0.042
Dist. between the first NP ancestor and the 2nd occ. 0.025 #nodes in the first NP ancestor of the 2nd occ. 0.037
#words of the 1st occ. and its siblings 0.023 #words of the 2nd occ. and its siblings 0.037

Table 6: Top ten syntactic features ranked by information gain for each language pair.

Ent classifier, and their joint use outperforms their
separate uses. For the other classifiers (not the
best ones on the training sets), on ZH/EN, adding
semantic features to syntactic ones decreases the
performance. Indeed, semantic features (specifi-
cally the discourse ones) are intended to disam-
biguate nouns based on contexts, but here, manual
inspection of the data showed that these are similar
for T1 and T2, which makes prediction difficult.

Semantic features appear to be more useful in
German compared to Chinese. We hypothesize
that this is because translation ambiguities of Chi-
nese nouns, i.e. cases when the same noun can
be translated into English with two very different
words, are less frequent and less semantically di-
vergent than in German. In other words, semantic
features are less useful in Chinese because cases of
strong polysemy or homonymy seem to be less fre-
quent than in German. Such a characteristic is sug-
gested for English vs. Chinese by Huang (1995),
and we believe it extends to German.

These facts might also explain the results ob-
tained when using all features, for German and
Chinese. As in Chinese semantic features are less
helpful, given also the limited amount of data,
combining them with syntactic ones actually de-
creases the performance of the syntactic ones used
independently. In contrast, semantic features are
more helpful on German dataset, and also improve
results when we considered along with the syntac-
tic ones together.

Table 6 shows the top ten syntactic features for
ZH/EN and for DE/EN, ranked by information
gain computed using Weka. These features in-
clude both lexical information and properties of
the parse tree. The analysis shows that lexical fea-
tures are significantly more important than purely
syntactic ones, for both languages. However, the
syntactic ones are not negligible.

Local Context Discourse Both
cosSim. Inst. Acc. κ Acc. κ Acc. κ
0.0–0.1 141 63.8 0.27 73.8 0.47 66.0 0.31
0.1–0.2 341 70.1 0.40 75.4 0.51 71.0 0.42
0.2–0.3 350 73.1 0.43 68.0 0.35 72.3 0.41
0.3–0.4 350 72.6 0.45 66.0 0.32 68.6 0.37

Table 7: Effects of semantic similarity (cosSim)
on classification (10-fold c.-v.). The scores with
discourse features increase as similarity between
T1 and T2 decreases.

Table 7 shows an analysis of the effect of the se-
mantic features on different training sets in terms
of accuracy and kappa scores. These training sets
are built according to the cosine similarity be-
tween T1 and T2, as follows: for each training
instance (pair of nouns), we compute the cosine
similarity between the vector representation of T1
and T2; then, we group instances by intervals and
carry out 10-fold c.-v. classification experiments
for each subset. The lower the range values, the
more dissimilar the translation pairs T1 and T2,
and the better the scores of discourse features.
Specifically, when the translations are dissimilar,
the classifier makes better predictions with the dis-
course features, i.e. considering a larger context.
However, the more similar the words are, the bet-
ter the local context features, i.e. the surrounding
words.

5.3 Extension to Triples of Repeated Nouns

Finally, we consider briefly the case of nouns that
appear more than twice. Using our dataset, we
identified them as noun pairs that share the same
word, i.e. triples of repeated nouns, to which we
limit our investigation. There are 129 ZH/EN
triples and 138 DE/EN ones.

We defined the following method to determine
the translation of such nouns when their baseline
translations are different across the two pairs. If
T1, T2 and T3 are the translation candidates, we
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aim to find the consistent translation Tc as follows.
If two of the Ti are identical, we use this value as
Tc, but if they all differ, then we compare the syn-
tactic features of the three source occurrences, and
select the one with the highest number of features
with highest values, and use its value as Tc. Going
back to our classifier, if the decision for a particu-
lar instance pair is not ‘none’, then we replace the
translations of the instance pairs with Tc.

We tested the method with the three feature
types and the four classifiers, i.e. 12 cases per lan-
guage. On ZH/EN, a small increase of BLEU is
observed in 5 cases (0.01), a decrease in two cases
(0.02), and no variation in 5 cases. On DE/EN,
half of the cases show a small improvement (up to
0.03) and the rest stay the same. The method ap-
pears to work better on DE/EN, possibly because
the initial accuracy on pairs is lower, but improve-
ments are overall very small. The main conclusion
from experimenting with triples, and considering
also longer lexical chains of consistent nouns, is
that the pairwise method should be replaced by a
different type of consistency predictor, which re-
mains to be found.

6 Conclusion and Perspectives

We presented a method for flexibly enforcing con-
sistent translations of repeated nouns, by using a
machine learning approach with syntactic and se-
mantic features to decide when it should be en-
forced. We experimented with Chinese-English
and German-English data. To build our datasets,
we detected source-side nouns which appeared
twice within a fixed distance and were translated
differently by MT. Syntactic features were defined
based on the complexity of the parse trees con-
taining the nouns, thus capturing which of the two
occurrences of a noun is more syntactically bound,
while semantic features focused on the similarity
between each translated noun and its context. The
trained classifiers have shown that they can pre-
dict consistent translations above chance, and that,
when combined to MT, bridge 50–60% of the gap
between the baseline and an oracle classifier.

In future work, we will consider whether neu-
ral MT is prone to similar consistency problems,
and whether they can be addressed by a similar
method. The answer is likely positive, because
both PBSMT and NMT assume that consistency
simply results from correct individual translations,
whereas human translators often take consistency

into account for lexical choice. Moreover, a better
consideration of legitimate lexical variation, e.g.
using multiple references or human evaluators,
should improve the assessment of consistency en-
forcement strategies.
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Abstract

While previous research on readability has
typically focused on document-level mea-
sures, recent work in areas such as nat-
ural language generation has pointed out
the need of sentence-level readability mea-
sures. Much of psycholinguistics has fo-
cused for many years on processing mea-
sures that provide difficulty estimates on
a word-by-word basis. However, these
psycholinguistic measures have not yet
been tested on sentence readability rank-
ing tasks. In this paper, we use four
psycholinguistic measures: idea density,
surprisal, integration cost, and embedding
depth to test whether these features are
predictive of readability levels. We find
that psycholinguistic features significantly
improve performance by up to 3 percent-
age points over a standard document-level
readability metric baseline.

1 Introduction

Previous work on readability has classified or
ranked texts based on document-level measures
such as word length, sentence length, number of
different phrasal categories & parse tree depth (Pe-
tersen, 2007), and discourse coherence (Graesser
et al., 2004), inter alia. However, not all appli-
cations that need readability ratings deal with long
documents. For many applications in text simplifi-
cation, computer-aided language learning (CALL)
systems, authorship tools, translation, and infor-
mation retrieval, sentence-level readability metrics
are direly needed.

For instance, an automatic text simplification
system must begin by asking which portions of a
text need to be simplified. To this end, a measure
that can assign ratings on a sentence-by-sentence

level can help target simplification only to those
sentences which need it most, and such measures
also serve to confirm that the resulting ‘simplified’
sentence is in fact simpler than the original sen-
tence.

Similarly, CALL and other pedagogical systems
will benefit if it is possible to predict which por-
tions of a text will be harder for students. Au-
thorship tools can offer more specific editorial ad-
vice when they know why individual sentences
can cause difficulties for readers. Translation tools
can aim to preserve not just meaning but also the
approximate difficulty of the sentences they are
translating or use a sentence-level difficulty metric
to target output that is easier to understand. Fur-
thermore, information retrieval systems also bene-
fit when they can return not merely relevant texts,
but also texts appropriate to the reading level of the
user. Recently there has been an increased interest
in sentential models of text difficulty in the auto-
matic text simplification and summarization com-
munities in particular (Vajjala and Meurers, 2014;
Macdonald and Siddharthan, 2016).

One area that has produced a lot of research on
sentence level processing difficulty is psycholin-
guistics. Over the past three decades, a number of
theories of human sentence processing (i.e. read-
ing) have been proposed and validated in a large
variety of experimental studies. The most im-
portant sentence processing theories have further-
more been implemented based on broad-coverage
tools, so that estimates for arbitrary sentences can
be generated automatically. For example, eye-
tracking studies of reading times on a large corpus
of newspaper text have found that measures such
as integration cost and surprisal provide partial
explanations for subjects’ reading behavior (Dem-
berg and Keller, 2008).

This paper leverages these implemented mea-
sures based on psycholinguistic theories of sen-
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tence processing in order to test whether they can
help to more accurately score individual sentences
with respect to their difficulty. In the process, we
evaluate the contributions of the individual fea-
tures to our models, testing their utility in examin-
ing fine-grained distinctions in sentence difficulty.
Section 2 reviews the literature on readability in
general before we shift to psycholinguistic theo-
ries of sentence processing in Section 4. In Sec-
tion 5 we discuss our methods, including the cor-
pora used, how features were extracted, and the
set up for our averaged perceptron models. Sec-
tion 6 presents our findings which we connect to
related work on sentence-level readability models
in 3. Finally we offer our conclusions and sugges-
tions for future work in Section 7.

2 Readability

Chall’s (1958) comprehensive review of readabil-
ity research in the first half of the 20th century
divides the early work in readability into “survey
and experimental studies” and “quantitative asso-
ciational studies”. Studies of the former category
took place during the 1930s and 1940s and in-
cluded surveys of expert and reader opinion as
well as experimental studies which manipulated
texts according to one variable at a time in order to
determine the effects of those variables on readers.
The results of these studies suggest that, once you
have managed to control for reader interest in the
content of a text, the most important factor with re-
spect to its readability is its ‘style’, e.g. its “scope
of vocabulary and...kinds of sentences” (Gray and
Leary, 1935, as quoted in (Chall, 1958)).

Our study belongs to the second class, relating
the features of a text to its ordering relative to some
other texts. The earliest work in this direction
was by L. A. Sherman, who proposed a quanti-
tative analysis of text difficulty based on the num-
ber of clauses per sentence, among other features
(Sherman, 1893). Where Sherman’s pedagogical
focus was on literature, Lively & Pressey (1923)
focused on vocabulary as a bottleneck in science
education. Work in this vein led to the develop-
ment of a number of readability formulae in the
mid-20th century1, including the familiar Flesch-
Kincaid Grade-Level score (Kincaid et al., 1975).

1For a comprehensive review of the literature up to 1958,
we recommend (Chall, 1958). For a more recent review of the
literature, we recommend Chapter 2 of (Vajjala, 2015). For
an introduction to some of the major studies from the 20th
century, we recommend the self-published (Dubay, 2007).

These formulae typically use a linear com-
bination of average word length and average
sentence length, though some also incorporate
a vocabulary-diversity term. The simple, two-
feature versions of these models are still widely
used, and inspired our BASELINE model.

More recently, Petersen (2007) sought to apply
familiar natural language processing techniques to
the problem of identifying text difficulty for non-
native readers. In particular, she used a number of
parse-based features which captured, for example,
the average number of noun and verb phrases per
sentence and the height of the parse tree. Petersen
trained SVM classifiers to classify texts as belong-
ing to one of four primary school grade levels
based on the Weekly Reader educational newspa-
per2. These document-level models achieved F -
scores in the range of 0.5 to 0.7, compared to the
F -scores between 0.25 and 0.45 achieved by the
Flesch-Kincaid Reading Ease score for the same
texts.

Recent work has also looked at features related
to discourse and working memory constraints.
Feng et al. (2009) worked on a model of readabil-
ity for adults with intellectual disabilities. Consid-
ering working memory constraints, they extracted
features related to the number of entities men-
tioned in a document and the ‘lexical chains’ (Gal-
ley and McKeown, 2003) that connected them.
They found that their features resulted in a bet-
ter correlation (Pearson’s r = −0.352) compared
to both Flesch-Kincaid score (r = −0.270) and
a number of ‘basic’ linguistic features based on
those used by Petersen & Ostendorf (2009) (r =
−0.283).3

Coh-Metrix (Graesser et al., 2004) also includes
a number of measures related to discourse coher-
ence, for example. Such features are not suited to
the problem of determining the difficulty of sen-
tences in isolation, but they have also been shown
to better predict readability for second-language
learners compared to ‘traditional’ readability mea-
sures like those described above (Crossley et al.,
2011).

2http://www.weeklyreader.com
3 Correlations here are negative because Feng et al. corre-

lated predicted reading levels with the performance of adults
with intellectual disabilities on comprehension tests. The
adults with disabilities are expected to perform worse on the
comprehension test as the grade level of the text increases.
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3 Measuring Sentence Complexity

Classification Few studies to date have addressed
sentence-level readability for English. Napoles &
Dredze (2010) built their own corpus with docu-
ments from English and Simple English Wikipedia
to train both document- and sentence-level classi-
fiers. Using bag-of-words features, unigram and
bigram part-of-speech features, type-token ratio,
the proportion of words appearing on a list of
easier words, and parse features similar to Pe-
tersen’s, their binary classifier achieved an accu-
racy of 80.8% on this task. The structure of this
task, however, is not suited to text simplification
applications, because the sentences are not con-
trolled for meaning. Classifying a sentence in iso-
lation as more likely to be from Simple Wikipedia
or English Wikipedia is not as useful as a model
trained to differentiate sentences carrying the same
meaning. This work is not directly comparable to
that of Vajjala & Meurers (2012; 2014) or sub-
sequent work on ranking sentences by their com-
plexity due to the differences in choice of corpora
and task structure.

In the medical domain, Kauchak et al. (2014)
also looked at sentence-level classification, iden-
tifying sentences as being either simple or diffi-
cult. Their features included word length, sen-
tences length, part-of-speech counts, average un-
igram frequencies and standard deviation, and the
proportion of words not on a list of the five thou-
sand most frequent words as well as three domain-
specific features based on an ontology of medical
terminology.

Ranking Vajjala & Meurers (Vajjala and Meur-
ers, 2014; Vajjala, 2015) were the first to look
at ranking sentences rather than classifying them,
having observed that the distributions of pre-
dicted reading levels across the two subcorpora of
the Parallel Wikipedia corpus (Zhu et al., 2010,
PWKP) were different. While the Simple English
portion of the corpus was clearly skewed toward
the lower grade levels, it appears that the English
portion of the corpus was evenly distributed across
all grade levels, making binary-classification diffi-
cult.

This led Vajjala & Meurers to develop a rank-
ing model using the predicted reading levels from
a multiclass classifier trained on whole docu-
ments. For each sentence pair, they assumed that
the English Wikipedia sentence should be clas-
sified at a higher level than the Simple English

Wikipedia sentence. Using a hard cut-off (i.e.
rank(sentenglish) > rank(sentsimple)), their
model achieved about 59% accuracy, although this
improved to 70% by relaxing the inequality con-
straint to include equality. Based on the find-
ing that 30% of sentence pairs from the PWKP
corpus are incorrectly ranked despite lying within
one reading level of each other, we hypothesize
that finer-grained distinctions may be necessary to
tease apart the differences in related pairs of sen-
tences.

Offline Psycholinguistic Features While Va-
jjala & Meurers (2012; 2014) do use some
psycholinguistically-motivated features, their fea-
tures are primarily lexical in nature and therefore
complementary to ours, which depend on the sen-
tence processing context. They drew psycholin-
guistic features from the MRC psycholinguistic
database (Wilson, 1988), including word famil-
iarity, concreteness, imageability, meaningfulness,
and age of acquisition. These features were cou-
pled with a second age of acquisition database and
values related to the average number of senses per
word.

Towards online considerations More recently,
Ambati et al. (2016) used an incremental parser
to extend Vajjala & Meurers work. Since hu-
man processing is incremental, they reasoned, fea-
tures from an incremental parser might be more
informative than features extracted from a non-
incremental parser. To this end, they used the
incremental derivations from a combinatory cat-
egorial grammar (CCG) parser. Ambati et al.
ran several models on the English and Simple
English Wikipedia data set (Hwang et al., 2015,
ESEW):one using only the syntactic features from
(Vajjala and Meurers, 2014); another (INCCCG)
using only features from the incremental parser;
and INCCCG+, incorporating morpho-syntactic
and psycholinguistic features from (Vajjala and
Meurers, 2014). At the sentence level, they
include sentence length, number of CCG con-
stituents in the final parse, and the depth of the
CCG derivation. They also use count features
for the number of times each CCG derivation rule
is applied (e.g. forward application, type-raising).
Finally, they include counts of different CCG syn-
tactic categories as well as the average ‘complex-
ity’ of the syntactic categories. While the parser
they use is inspired by human behavior, in that it
is an incremental parser, these features do not re-
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late to any specific linguistic theory of sentence
processing.

The work presented here is most comparable to
that of Vajjala & Meurers and Ambati et al., as we
all address the problem of ranking sentences ac-
cording to their linguistic complexity. Our study
is the only one of the three to examine features
based on theories of online sentence processing.
Ambati et al. (2016) provide accuracy information
for their own features as well as Vajjala & Meur-
ers’ (2014) features on the English and Simple En-
glish Wikipedia corpus (ESEW) which we use, but
used a 60-20-20 training-dev-test split where we
used 10-fold cross-validation, making the results
not directly comparable.

4 Theories of Online Sentence Processing

For our purposes, we focus on readability as read-
ing ease and on linguistic constraints in particu-
lar, rather than constraints of medium (relating to
e.g. legibility), reader interest, or comprehensibil-
ity. Without directly modeling comprehensibility,
we assume that making material easier to read will
also make it easier to comprehend. Here we focus
on four psycholinguistic theories of human sen-
tence processing: idea density, surprisal, integra-
tion cost, and embedding depth.

Kintsch (1972) defined propositional idea den-
sity as the ratio of propositions or ideas to words
in the sentences.4 Keenan & Kintsch conducted
two different experiments in order to examine free
reading behavior as well as subjects’ performance
in speeded reading conditions. They found that
“the number of propositions [in a text] had a large
effect upon reading times, [but] it could only ac-
count for 21% of their variance” when subjects
were allowed to read freely. Subjects’ overall re-
call was worse for more dense texts in the speeded
reading condition. In addition to effects of idea
density, they found that propositions which were
presented as surface-form modifiers (as opposed
to, e.g., main verbs) were “very poorly recalled”
and that propositions playing a subordinate role
relative to another proposition were also less-well
recalled. Finally, propositions involving a proper
name were generally recalled better than similar
propositions involving, e.g., a common noun.

While Kintsch & Keenan (1973) looked at the

4 This notion of idea density is closely related to Perfetti’s
(1969) notion of lexical density insofar as both are related to
the number of so-called content words in the text.

influence of propositional idea density on reading
times and recall for both individual sentences as
well as short paragraphs, work since the 1970s has
been limited to the level of multiple sentences and
used primarily as an indicator of cognitive deficits
(Ferguson et al., 2014; Bryant et al., 2013; Farias
et al., 2012; Riley et al., 2005). This paper returns
to the examination of idea density’s applicability
for individual sentences.

Surprisal, on the other hand, has been widely
examined in theories of language comprehension
at a variety of levels, including the word- and
sentence-levels. Surprisal is another word for
Shannon (1948) information, operationalized in
linguistics as the probability of the current word
conditioned on the preceding sequence of words:

surprisal(wn) = −log(P (wn|w1 . . . wn−1)) (1)

where wi is the ith word in the sentence and
P (w1 . . . wi) denotes the probability of the se-
quence of i words w1 . . . wi.

One reason psycholinguists consider surprisal
as a factor in sentence processing difficulty is
that it makes sense in a model of language users
as rational learners. Levy (2008) argues the ra-
tional reader’s attention must be spread across
all possible analyses for the sentence being ob-
served. Based on prior experience, the reader ex-
pects some analyses to be more probable than oth-
ers and therefore allocates more resources to those
analyses. In this analysis, surprisal is derived as
a measure of the cost paid when the reader mis-
allocates resources: when a new word invalidates
a highly probable analysis, the reader has effec-
tively ‘wasted’ whatever resources were allocated
to that analysis. The notion of surprisal is also
used in theories of language production, see the
Uniform Information Density hypothesis (Jaeger,
2006; Levy and Jaeger, 2007; Jaeger, 2010, UID).

While surprisal focuses on predictability effects
in sentence processing, Gibson’s (1998; 2000) De-
pendency Locality Theory (DLT) focuses on the
memory cost of recalling referents and integrating
new ones into a mental representation. DLT pro-
poses that the the distance between syntactic heads
and dependents, measured by the number of inter-
vening discourse referents, approximates the diffi-
culty that the listener or reader will have integrat-
ing the two units. This model maintains that the
act of creating a new discourse referent and hold-
ing it in memory makes it more difficult to recall
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a previous discourse referent and connect that dis-
course referent to the current one.5

In addition to integration cost, DLT proposes a
storage cost associated with the number of open
dependencies that must be maintained in mem-
ory. The notion of connected components in van
Schijndel et al.’s (2012; 2013) incremental pars-
ing model picks up this idea. Related models
were also suggested earlier by Yngve (1960) and
Miller’s (1956a; 1956b) whose work was based
on results showing that human working memory
is limited to 7± 2 items. Yngve’s mechanistic, in-
cremental model of language production consid-
ered the evaluation of phrase structure grammars
(PSGs) in a system with finite memory, exploring
the structure speakers must keep track of during
production and how grammars might be structured
to avoid overtaxing working memory.

Van Schijndel et al. develop this idea further in
the context of a hierarchical sequence model of
parsing. In this incremental model of parsing, at
each stage the reader has an active state (e.g. S
for sentence) and an awaited state (e.g. VP for
verb phrase).6 At each new word, the parser must
decide between continuing to analyze the current
connected component or hypothesizing the start of
a new one.7

These measures provide an idealized represen-
tation of the number of different states a human
parser must keep track of at any point in time.
We refer to this number of states as the embed-
ding depth of a sentence at a particular word, and
the ModelBlocks parser of van Schijndel et al.
(2012) calculates this number of states averaged
over the beam of currently plausible parses. Also
of interest is the embedding difference, which is
the embedding depth at the present word relative
to the previous word, elaborated upon in the fol-
lowing example.

Consider the state described above (i.e. that
of being in the active state S and awaiting state
VP) might be reached after a reader has observed
a noun phrase, resulting in the state S/VP. This

5 Gildea & Temperley (2010) measure dependencies in
terms of word span, such that adjacent words have a depen-
dency length of one. This approach produces similar diffi-
culty estimates nouns and verbs, with the caveat that dis-
tances are systematically increased, and is defined for all
words in a sentence.

6 In Combinatory Categorial Grammar notation, this state
is denoted S/VP.

7 These connected components are the parsing analogues
to the constituents awaiting expansion in Yngve’s analysis.

means that the word sequence observed so far will
be consistent with a sentence if the reader now ob-
serves a verb phrase. If, however, the next word
in the input is inconsistent with the start of a verb
phrase (e.g. the relative clause marker that), then
this parse will be ruled out and another must be
considered. At this point the parser must hypothe-
size the beginning of a new connected component,
i.e. a new syntactic substructure that must be com-
pleted before continuing to parse the top-level of
the sentence. Therefore, the parser must now keep
track of two states: (1) the fact that we are still
looking for a VP to complete the overall sentence;
and (2) the fact that we now have a relative clause
to parse before we can complete the current NP. In
this example, we are at embedding depth 1 or 0 up
until we encounter the word that, which increases
the embedding depth by 1, resulting in a nonzero
embedding difference score.

4.1 Experimental Evidence

We have already explained the experimental find-
ings of Kintsch & Keenan (1973) with respect to
idea density, but what behavioral evidence is there
to suggest that the remaining theories are valid?

Demberg & Keller (2008) examined the rela-
tionship between both surprisal and integration
cost and eye-tracking times in the Dundee cor-
pus (Kennedy and Pynte, 2005) Demberg & Keller
found that increased surprisal significantly corre-
lated with reading times. Although they found that
integration cost did not significantly contribute to
predicting eye-tracking reading times in general,
its contribution was significant when restricted to
nouns and verbs. They also found that surprisal
and integration cost were uncorrelated, suggest-
ing that they should be considered complementary
factors in a model of reading times. Another eye-
tracking study divided surprisal into lexical and
synactic components, finding that lexical surprisal
was a significant factor but not syntactic surprisal
(Roark et al., 2009).

Wu et al. (2010) examined surprisal, entropy
reduction, and embedding depth in a study of
psycholinguistic complexity metrics. Their study
of the reading times of 23 native English speak-
ers reading four narratives indicated that embed-
ding difference was a significant predictor of read-
ing times for closed class words. Moreover, this
contribution was independent of the contribution
of surprisal, indicating that the two measures are
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capturing different components of the variance in
reading times. Since integration cost was a sig-
nificant predictor of reading times for nouns and
verbs (i.e. not closed class words) and embedding
depth was a significant predictor of reading times
for closed class words, integration cost and em-
bedding depth should also be complementary to
each other.

5 Methods

5.1 Corpora

We used two corpora in this work. The English
and Simple English Wikipedia corpus of Hwang
et al. (2015, ESEW) is a new corpus of more than
150k sentence pairs designed to address the flaws
of the Parallel Wikipedia Corpus of Zhu et al.
(2010, PWKP), which was previously dominant
in work on text simplification, by using a more
sophisticated method of aligning pairs of English
and Simple English sentences. We used the sec-
tion labeled as having ‘good’ alignments for our
work and assumed that, in every sentence pair, the
Simple English sentence should be ranked as eas-
ier than the English sentence (rank=1 < rank=2
in Table 1). This provides a large corpus with
noisy labels, as there are likely to be instances
where the English and Simple English sentences
are not substantially different or the English sen-
tence is the easier one.8

For a more controlled corpus, we use Vaj-
jala’s (2015) One Stop English (OSE) corpus.
This corpus consists of 1577 sentence triples,
drawn from news stories edited to three diffi-
culty levels: elementary, intermediate, and ad-
vanced. Vajjala used TF ∗ IDF and cosine simi-
larity scores to align sentences from stories drawn
from onestopenglish.com. While One Stop
English does not publish an explanation of their
methods for creating these texts, they are at least
created by human editors for pedagogical pur-
poses, so the labels should be more consistent and
reliable than those associated with the ESEW cor-
pus.

The three levels of OSE make it possible to
compare system performance on sentence pairs
which are close to one another in difficulty (e.g.
‘advanced’ versus ‘intermediate’ sentences) with

8Indeed, 37, 095 of the 154, 805 sentence pairs have
the same sentence for both English and Simple English
Wikipedia and were therefore excluded from our experi-
ments.

performance on pairs which are further apart, as
with ‘advanced’ sentences paired with their ‘ele-
mentary’ counterparts. In this paper we will refer
to the pairs of advanced and elementary sentences
as OSEfar, the remaining pairs as OSEnear, and
the full OSE dataset asOSEall. An example triple
of sentences from the corpus is given in Table 2.

5.2 Feature Extraction and Feature Sets

We used two parsers to extract 22 features from
the corpora. The ModelBlocks parser provided
features based on surprisal and embedding depth
while the Stanford parser9 provided the depen-
dency parses used to calculate integration cost and
idea density features. Both parsers are trained and
perform near the state of the art on the standard
sections of the Wall Street Journal section of the
Penn Treebank.

From ModelBlocks’ complexity feature ex-
traction mode, we took the lexical and syntactic
surprisal features. We used the average lexical sur-
prisal and average syntactic surprisal as idealized
measures of the channel capacity required to read
a sentence. While this underestimates the chan-
nel capacity required to process a sentence, it is
at least internally consistent, insofar as a sentence
with higher average surprisal overall is likely to
require a higher channel capacity as well. We also
used the maximum of each form of surprisal as a
measure of the maximum demand on cognitive re-
sources. These features comprise the SURPRISAL

model.
We also calculated average and maximum val-

ues for the embedding depth and embedding dif-
ference output from ModelBlocks. The aver-
age provides an estimate of the typical memory
load throughout a sentence, while the (absolute)
embedding difference is a measure of how many
times a reader needs to push or pop a connected
component to or from their memory store. These
features comprise the EMBEDDING model.

To extract the remaining features, we first ran
the Stanford dependency parser on both corpora.
The program icy-parses uses part-of-speech
tags and head-dependent relations to determine
the total, average, and maximum integration cost
across a sentence. Here average integration cost
functions as another kind of memory load esti-
mate while the maximum value models the most-

9http://nlp.stanford.edu/software/lex-
parser.shtml
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Rank Sentence
2 Gingerbread was brought to Europe in 992 by the Armenian monk Gregory of Nicopolis

-LRB- Gregory Makar -RRB- -LRB- Grégoire de Nicopolis -RRB- .
1 Armenian monk Gregory of Nicopolis -LRB- Gregory Makar -RRB- -LRB- Grgoire de

Nicopolis -RRB- brought ginger bread to Europe in 992 .

Table 1: Example sentences from English (2) and Simple (1) English Wikipedia.

Rank Sentence
3 It is a work-hard, play-hard ethic that many of the world’s billionaires might subscribe to but

it would be a huge change for most workers and their employers.
2 It is a ‘work-hard, play-hard’ way of thinking that many of the world’s billionaires might

agree with but it would be a huge change for most workers and their employers.
1 Many of the world’s billionaires might agree with this way of thinking but it would be a very

big change for most workers and their employers.

Table 2: Example sentences from One Stop English, at levels advanced (3), intermediate (2), and ele-
mentary (1). The pair 3–1 is in OSEfar, the pairs 3–2 and 2–1 are in OSEnear, and all three pairs are
in OSEall.

difficult-to-integrate point in the sentence. These
features comprise the INTEGRATIONCOST model.

Finally, we use a modified version of the IDD3
library from Andre Cunha (Cunha et al., 2015)
to extract idea density decomposed across three
types of propositional idea: predications, modifi-
cations, and connections.10 Here we use only av-
eraged features, as the crucial measure is the idea
density rather than the raw number of ideas being
expressed. These features comprise the IDEAD-
ENSITY model.

As a point of comparison for these models, we
created a BASELINE which used only sentence
length and the average word length as features.

We also created models based on features
grouped by the parser used to extract them: SUR-
PRISAL+EMBED for the ModelBlocks parser
and IDEA+INTEGRATION for the Stanford parser.
While ModelBlocks achieves competitive ac-
curacies, it is much slower than other state-of-the-
art parsers available today. Therefore we wanted
to provide a point of comparison regarding the rel-
ative utility of these parsers: grouping features by
parser allows us to assess the trade-off between
model accuracy and the time necessary for feature
extraction.

Finally, we considered combinations
of the parser-grouped features with the
baseline (BASE+SURPRISAL+EMBED

and BASE+IDEA+INTEGRATION) and a
10Code available at: https://github.com/

dmhowcroft/idd3.

FULLMODEL using the baseline features and
all of the psycholinguistic features.

Replication The scripts required for replica-
tion are available at https://github.com/
dmhowcroft/eacl2017-replication.
This includes pointers to the corpora, pre-
processing scripts and settings for the parsers, as
well as scripts for feature extraction and running
the averaged perceptron model.

5.3 Ranking as Classification

In order to rank sentences, we need some way of
generating a complexity score for each sentence.
Using a perceptron model allows us to train a sim-
ple linear scoring model by converting the ranking
task into a classification task.

Suppose we have two sentences s1 and s2 with
feature vectors s1 and s2 such that s1 is more com-
plex than s2. Then we want to train a perceptron
model such that

score(s1) > score(s2) (2)

W · s1 > W · s2 (3)

W · (s1 − s2) > 0 (4)

We refer to the vector s1− s2 as a vector of dif-
ference features. In order to train the model, we
take all pairs of sentences present in a given cor-
pus and create a difference vector as above. In half
of the cases, we flip the sign of the difference vec-
tor, creating a binary classification task with bal-
anced classes. The learning problem is now to
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Figure 1: Results on the ESEW corpus for each
set of psycholinguistic features individually (first
4 columns) and altogether (5th column), with the
feature sets based on the ModelBlocks and
Stanford parsers in the last two columns.

classify each difference vector based on whether
the first term in the difference was the ‘easier’ or
the ‘harder’ sentence

Note that the benefit to this approach is that the
resulting weight vector W learned via the classifi-
cation task can be used directly to score individual
sentences as well, with the expectation that higher
scores will correspond to more difficult sentences.

We use an averaged perceptron model (Collins,
2002) implemented in Python as our classifier.

6 Analysis & Results

The feature sets for individual psycholinguistic
theories only achieve accuracies between 55% and
65% (see the first 4 columns of Fig. 1). Com-
bining all of these features into the PSYCHOLIN-
GUISTIC model improves performance to nearly
70% (column 5). Looking at the feature sets
grouped by parser (columns 6 and 7), we see
that the combination of surprisal and embedding
depth (from the ModelBlocks parser) signifi-
cantly outperforms the combination of integration
cost and idea density (from the Stanford Parser).
However, the strength of the features derived from
ModelBlocks seems to be primarily driven by
the EMBEDDING features, while the strength of
the dependency-parse-derived features appears to
stem from INTEGRATIONCOST.
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Figure 2: Results for the baseline model, our two
parser-grouped feature sets, and the full model on
the ESEW corpus.

Moving to Figure 2, we see that our BASE-
LINE features achieved an accuracy of 71.24%, de-
spite using only average word length and sentence
length. This is 1.48 percentage points higher than
the 69.76% accuracy of the PSYCHOLINGUIS-
TIC model, which includes surprisal, embedding
depth, integration cost, and idea density. How-
ever, the FULL model (column 4) outperforms the
BASELINE by a statistically significant11 1.98 per-
centage points (p � 0.01). This confirms our pri-
mary hypothesis: psycholinguistic features based
on online sentence processing can improve models
of sentence complexity beyond a simple baseline.

To address the secondary hypothesis, we turn
to the OSE data in Figure 3. The best model for
this corpus uses the baseline features combined
with embedding depth and surprisal features ex-
tracted from ModelBlocks. In both OSEfar

and OSEnear we gain about 3 points over the
baseline when adding these features (3.18 and
3.25 points, respectively), which is similar to the
gains for the FULL model over the baseline. The
fact that the increase in performance between the
BASELINE model and the best performing model
does not differ between the OSEnear and the
OSEfar datasets suggests a lack of support for our
secondary hypothesis that these features are espe-

11 Using McNemar’s (1947) test throughout, as is stan-
dard for paired samples like ours, with Bonferroni correction
where appropriate.
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Figure 3: Results for the baseline model, our two parser-grouped feature sets, and the full model on the
OSE corpus, with additional breakdown by level proximity.

cially helpful for distinguishing items of similar
difficulty levels.

These results warrant a full comparison to the
work of Ambati et al. (2016), despite the dif-
ferences in our evaluation sets. Ambati et al.
found that their features based on incremental
CCG derivations achieved an accuracy of 72.12%,
while the offline psycholinguistic features of Va-
jjala & Meurers came in at 74.58%, 1.36 per-
centage points better than our 73.22%. Finally, a
model combining all of Vajjala & Meurers featurs
with the incremental CCG features achieved a per-
formance of 78.87%. Since the features examined
in our study are complementary to those proposed
by these two previous studies, a model combining
all of these features should further improve in ac-
curacy.

7 Conclusion

We examined features for the ranking of sen-
tences by their complexity, training linear models
on two corpora using features derived from psy-
cholinguistic theories of online sentence process-
ing: idea density, surprisal, integration cost, and
embedding depth.

Surprisal coupled with embedding depth and
our baseline features (average word length & sen-
tence length) performed as well as the full model

across all subsets of the OSE corpus. Integration
cost and idea density were less effective, suggest-
ing that the gain in speed from running a faster
dependency parser may not be worth it. Instead,
it is necessary to use the slower ModelBlocks
parser to extract the more useful features.

Overall, our strongest model combined the
baseline features and the online psycholinguistic
features. Because these features are complemen-
tary to features which have been explored in other
work (Vajjala and Meurers, 2014; Ambati et al.,
2016), the next step in future work is to combine
all of these features and conduct a more compari-
son between the features proposed here and those
examined in earlier work. In the meantime, we
have demonstrated that features derived from psy-
cholinguistic theories of sentence processing can
be used to improve models for ranking sentences
by readability.

Acknowledgments

Thanks are due to Matthew Crocker, Michael
White, Eric Fosler-Lussier, William Schuler, Det-
mar Meurers, Marten van Schijndel, and Sowmya
Vajjala for discussions and guidance during the de-
velopment of this work. We are supported by DFG
collaborative research center SFB 1102 ‘Informa-
tion Density and Linguistic Encoding’.

966



References
Ram Bharat Ambati, Siva Reddy, and Mark Steedman.

2016. Assessing relative sentence complexity us-
ing an incremental ccg parser. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1051–1057. As-
sociation for Computational Linguistics.

Lucy Bryant, Elizabeth Spencer, Alison Ferguson,
Hugh Craig, Kim Colyvas, and Linda Worrall.
2013. Propositional Idea Density in aphasic dis-
course. Aphasiology, (July):1–18, jun.

Jeanne S. Chall. 1958. Readability: an appraisal of re-
search and application. The Ohio State University,
Columbus, OH, USA.

Michael Collins. 2002. Ranking Algorithms for
NamedEntity Extraction: Boosting and the Voted
Perceptron. In Proc. of the 40th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 489–496, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Scott A. Crossley, David B. Allen, and Danielle S. Mc-
Namara. 2011. Text readability and intuitive sim-
plification: A comparison of readability formulas.
Reading in a Foreign Language, 23(1):84–101.

Andre Luiz Verucci Da Cunha, Lucilene Bender De
Sousa, Leticia Lessa Mansur, and Sandra Maria
Aluı́sio. 2015. Automatic Proposition Extraction
from Dependency Trees: Helping Early Prediction
of Alzheimer’s Disease from Narratives. 2015 IEEE
28th International Symposium on Computer-Based
Medical Systems, pages 127–130.

Vera Demberg and Frank Keller. 2008. Data from
Eye-tracking Corpora as Evidence for Theories
of Syntactic Processing Complexity. Cognition,
109(2):193–210.

William H. Dubay. 2007. Unlocking Language: The
Classic Readability Studies.

Sarah Tomaszewski Farias, Vineeta Chand, Lisa
Bonnici, Kathleen Baynes, Danielle Harvey, Dan
Mungas, Christa Simon, and Bruce Reed. 2012.
Idea density measured in late life predicts subse-
quent cognitive trajectories: Implications for the
measurement of cognitive reserve. Journals of
Gerontology - Series B Psychological Sciences and
Social Sciences, 67 B(6):677–686.

Lijun Feng, Noémie Elhadad, and Matt Huenerfauth.
2009. Cognitively motivated features for readability
assessment. In Proc. of the 12th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL), pages 229–237.

Alison Ferguson, Elizabeth Spencer, Hugh Craig, and
Kim Colyvas. 2014. Propositional Idea Density in
women’s written language over the lifespan: Com-
puterized analysis. Cortex, 55(1):107–121, jun.

M. Galley and K. McKeown. 2003. Improving word
sense disambiguation in lexical chaining. In Proc. of
the 18th International Joint Conference on Artificial
Intelligence, pages 1486–1488.

Edward Gibson. 1998. Linguistic complexity: locality
of syntactic dependencies. Cognition, 68(1):1–76.

Edward Gibson. 2000. The Dependency Locality The-
ory: A Distance-Based Theory of Linguistic Com-
plexity. In Y Miyashita, A Marantz, and W O’Neil,
editors, Image, Language, Brain, chapter 5, pages
95–126. MIT Press, Cambridge, Massachusetts.

Daniel Gildea and David Temperley. 2010. Do Gram-
mars Minimize Dependency Length? Cognitive Sci-
ence, 34:286–310.

Arthur C. Graesser, Danielle S. McNamara, Max M.
Louwerse, and Zhiqiang Cai. 2004. Coh-metrix:
analysis of text on cohesion and language. Behav-
ior Research Methods, Instruments, & Computers,
36(2):193–202.

William S. Gray and Bernice E. Leary. 1935. What
makes a book readable. University of Chicago
Press, Chicago, Illinois, USA.

William Hwang, Hannaneh Hajishirzi, Mari Ostendorf,
and Wei Wu. 2015. Aligning Sentences from Stan-
dard Wikipedia to Simple Wikipedia. In Proc. of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), Denver, Colorado, USA.

T. Florian Jaeger. 2006. Redundancy and Syntactic
Reduction in Spontaneous Speech. Unpublished dis-
sertation, Stanford University.

T. Florian Jaeger. 2010. Redundancy and reduc-
tion: speakers manage syntactic information density.
Cognitive Psychology, 61(1):23–62, aug.

David Kauchak, Obay Mouradi, Christopher Pentoney,
and Gondy Leroy. 2014. Text simplification tools:
Using machine learning to discover features that
identify difficult text. Proceedings of the Annual
Hawaii International Conference on System Sci-
ences, pages 2616–2625.
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Abstract

The cataloging of product listings through
taxonomy categorization is a fundamental
problem for any e-commerce marketplace,
with applications ranging from personal-
ized search recommendations to query un-
derstanding. However, manual and rule
based approaches to categorization are not
scalable. In this paper, we compare sev-
eral classifiers for categorizing listings in
both English and Japanese product cata-
logs. We show empirically that a combina-
tion of words from product titles, naviga-
tional breadcrumbs, and list prices, when
available, improves results significantly.
We outline a novel method using corre-
spondence topic models and a lightweight
manual process to reduce noise from mis-
labeled data in the training set. We con-
trast linear models, gradient boosted trees
(GBTs) and convolutional neural networks
(CNNs), and show that GBTs and CNNs
yield the highest gains in error reduc-
tion. Finally, we show GBTs applied
in a language-agnostic way on a large-
scale Japanese e-commerce dataset have
improved taxonomy categorization perfor-
mance over current state-of-the-art based
on deep belief network models.

1 Introduction

Web-scale e-commerce catalogs are typically ex-
posed to potential buyers using a taxonomy cat-
egorization approach where each product is cate-
gorized by a label from the taxonomy tree. Most
e-commerce search engines use taxonomy labels
to optimize query results and match relevant list-
ings to users’ preferences (Ganti et al., 2010). To
illustrate the general concept, consider Fig. 1. A
merchant pushes new men’s clothing listings to

an online catalog infrastructure, which then orga-
nizes the listings into a taxonomy tree. When a
user searches for a denim brand, “DSquared2”,
the search engine first has to understand that the
user is searching for items in the “Jeans” category.
Then, if the specific items cannot be found in the
inventory, other relevant items in the “Jeans” cat-
egory are returned in the search results to encour-
age the user to browse further. However, achiev-
ing good product categorization for e-commerce
market-places is challenging.

Commercial product taxonomies are organized
in tree structures three to ten levels deep, with
thousands of leaf nodes (Sun et al., 2014; Shen et
al., 2012b; Pyo et al., 2016; McAuley et al., 2015).
Unavoidable human errors creep in while upload-
ing data using such large taxonomies, contributing
to mis-labeled listing noise in the data set. Even
EBay, where merchants have a unified taxonomy,
reported a 15% error rate in categorization (Shen
et al., 2012b). Furthermore, most e-commerce
companies receive millions of new listings per
month from hundreds of merchants composed of
wildly different formats, descriptions, prices and
meta-data for the same products. For instance,
the two listings, “University of Alabama all-cotton
non iron dress shirt” and “U of Alabama 100%
cotton no-iron regular fit shirt” by two merchants
refer to the same product.

E-commerce systems trade-off between classi-
fying a listing directly into one of thousands of
leaf node categories (Sun et al., 2014; ?) and
splitting the taxonomy at predefined depths (Shen
et al., 2011; ?) with smaller subtree models. In
the latter case, there is another trade-off between
the number of hierarchical subtrees and the prop-
agation of error in the prediction cascade. Simi-
lar to (Shen et al., 2012b; Cevahir and Murakami,
2016), we classify product listings in two or three
steps, depending on the taxonomy size. First,
we predict the top-level category and then clas-
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Figure 1: E-commerce platform using taxonomy categorization to understand query intent, match mer-
chant listings to potential buyers as well as to prevent buyers from navigating away on search misses.

sify the listings using another one or two levels
of subtree models selected by the previous predic-
tions. For our large-scale taxonomy categoriza-
tion experiments on product listings, we use two
in-house datasets,1 a publicly available Amazon
product dataset (McAuley et al., 2015), and a pub-
licly available Japanese product dataset.2

Our paper makes several contributions: 1) We
perform large-scale comparisons with several ro-
bust classification methods and show that Gradi-
ent Boosted Trees (GBTs) (Friedman, 2000; ?)
and Convolutional Neural Networks (CNNs) (Le-
Cun and Bengio, 1995; ?) perform substantially
better than state-of-the-art linear models (Section
5). We further provide analysis of their perfor-
mance with regards to imbalance in our datasets.
2) We demonstrate that using both listing price
and navigational breadcrumbs – the branches that
merchants assign to the listings in web pages for
navigational purposes – boost categorization per-
formance (Section 5.3). 3) We effectively apply
correspondence topic models to detect and remove
mis-labeled instances in training data with mini-
mal human intervention (Section 5.4). 4) We em-
pirically demonstrate the effectiveness of GBTs on
a large-scale Japanese product dataset over a re-
cently published state-of-the-art method (Cevahir
and Murakami, 2016), and in turn the otherwise
language-agnostic capabilities of our system given
a language-dependent word tokenization method.

2 Related Work
The nature of our problem is similar to those re-
ported in (Bekkerman and Gavish, 2011; Shen et
al., 2011; Shen et al., 2012b; Yu et al., 2013b;
Sun et al., 2014; Kozareva, 2015; ?), but with

1The in-house datasets are from Rakuten USA, managed
by Rakuten Ichiba, Japan’s largest e-commerce company.

2This dataset is from Rakuten Ichiba and is released under
Rakuten Data Release program.

more pronounced data quality issues. However,
the existing methods for noisy product classifica-
tion have only been applied to English. Their effi-
cacy for moraic and agglutinative languages such
as Japanese remains unknown.

The work in Sun et al. (2014) emphasizes the
use of simple classifiers in combination with large-
scale manual efforts to reduce noise and imperfec-
tions from categorization outputs. While human
intervention is important, we show how unsuper-
vised topic models can substantially reduce such
expensive efforts for product listings crawled in
the wild. Further, unlike Sun et al. (2014), we
adopt stronger baseline systems based on regu-
larized linear models (Hastie et al., 2003; Zhang,
2004; Zou and Hastie, 2005).

A recent work from Pyo et al. (2016) empha-
sizes the use of recurrent neural networks for tax-
onomy categorization purposes. Although, they
mention that RNNs render unlabeled pre-training
of word vectors (Mikolov et al., 2013) unneces-
sary, in contrast, we show that training word em-
beddings on the whole set of three product title
corpora improves performance for CNN models
and opens up the possibility of leveraging other
product corpora when available.

Shen et al. (2012b) advocate the use of algorith-
mic splitting of the taxonomy using graph theo-
retic latent group discovery to mitigate data imbal-
ance problems at the leaf nodes. They use a com-
bination of k-NN classifiers at the coarser level
and SVMs (Cortes and Vapnik, 1995) classifiers
at the leaf levels. Their SVMs solve much easier
k-way multi-class categorization problems where
k ∈ {3, 4, 5} with much less data imbalance. We,
however, have found that SVMs do not work well
in scenarios where k is large and the data is im-
balanced. Due to our high-dimensional feature
spaces, we avoided k-NN classifiers that can cause
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prohibitively long prediction times under arbitrary
feature transformations (Manning et al., 2008; Ce-
vahir and Murakami, 2016).

The use of a bi-level classification using k-NN
and hierarchical clustering is incorporated in Ce-
vahir and Murakami (2016)’s work, where they
use nearest neighbor methods in addition to Deep
Belief Networks (DBN) and Deep Auto Encoders
(DAE) over both titles and descriptions of the
Japanese product listing dataset. We show in Sec-
tion 5.6, that using a tri-level cascade of GBT clas-
sifiers over titles, we significantly outperform the
k-NN+DBN classifier on average.

3 Dataset Characteristics
We use two in-house datasets, named BU1 and
BU2, one publicly available Amazon dataset
(AMZ) (McAuley et al., 2015), and a Japanese
product listing dataset named RAI (Cevahir and
Murakami, 2016) (short for Rakuten Ichiba) for
the experiments in this paper.

BU1 is categorized using human annotation ef-
forts and rule-based automated systems. This
leads to a high precision training set at the expense
of coverage. On the other hand, for BU2, noisy
taxonomy labels from external data vendors have
been automatically mapped to an in-house taxon-
omy without any human error correction, resulting
in a larger dataset at the cost of precision. BU2
also suffers from inconsistencies in regards to in-
complete or malformed product titles and meta-
data arising out of errors in the web crawlers that
vendors use to aggregate new listings. However,
for BU2, the noise is distributed identically in the
training and test sets, thus evaluation of the classi-
fiers is not impeded by it.

The Japanese RAI dataset consists of
172, 480, 000 records split across 26, 223
leaf nodes. The distribution of product listings in
the leaf nodes is based on the popularity of certain
product categories and is thus highly imbalanced.
For instance, the top level “Sports & Outdoor”
category has 2, 565 leaf nodes, while the “Travel
/ Tours / Tickets” category has only 38. The RAI
dataset has 35 categories at depth one (level-one
categories) and 400 categories at depth two of the
full taxonomy tree. The total depth of the tree
varies from three to five levels.

The severity of data imbalance for BU2 is
shown in Figure 2. The top-level “Home, Furni-
ture and Patio” subtree that accounts for almost
half of the BU2 dataset. Table 1 shows dataset
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Figure 2: Top-level category distribution of 40
million deduplicated listings from an earlier Dec
2015 snapshot of BU2. Each category subtree is
also imbalanced, as seen in exploded view of the
“Home, Furniture, and Patio” category.

characteristics for the four different kinds of prod-
uct datasets we use in our analyses. It lists the
number of branches for the top-level taxonomy
subtrees, the total number of branches ending at
leaf nodes for which there are a non-zero num-
ber of listings and two important summary statis-
tics that helps quantify the nature of imbalance.
We first calculate the Pearson correlation coeffi-
cient (PCC) between the number of listings and
branches in each of the top-level subtrees for each
of the four datasets.

A perfectly balanced tree will have a PCC of
1.0. BU1 shows the most benign kind of imbal-
ance with a PCC of 0.643. This confirms that
the number of branches in the subtrees correlate
well with the volume of listings. Both AMZ and
RAI datasets show the highest branching factors in
their taxonomies. For the AMZ dataset, it could be

Datasets Subtrees Branches Listings PCC KL

BU1 16 1,146 12.1M 0.643 0.872
BU2 15 571 60M 0.209 0.715
AMZ 25 18,188 7.46M 0.269 1.654
RAI 35 26,223 172.5M 0.474 7.887

Table 1: Dataset properties on: total number of
top-level category subtrees, branches and listings

due to the fact that the crawled taxonomy is differ-
ent from Amazon’s internal catalog. The Rakuten
Ichiba taxonomy has been incrementally adjusted
to grow in size over several years by creating new
branches to support newer and popular products.
We observe that for RAI, AMZ and BU2 in par-
ticular, the number of branches in the subtrees do
not correlate well with the volume of listings. This
indicates a much higher level of imbalance.

We also compute the average Kullback-Leibler
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(KL) divergence, KL(p(x)|q(x)), (Cover and
Thomas, 1991) between the empirical distribution
over listings in branches for each subtree rooted in
the nodes at depth one, p(x), compared to a uni-
form distribution, q(x). Here, the KL divergence
acts as a measure of imbalance of the listing distri-
bution and is indicative of the categorization per-
formance that one may obtain on a dataset; high
KL divergence leads to poorer categorization and
vice-versa (see Section 5).

4 Gradient Boosted Trees and
Convolutional Neural Networks

GBTs (Friedman, 2000) optimize a loss func-
tional: L = Ey[L(y, F (x)|X)] where F (x) can
be a mathematically difficult to characterize func-
tion, such as a decision tree f(x) over X. The
optimal value of the function is expressed as
F ?(x) =

∑M
m=0 fm(x,a,w), where f0(x,a,w)

is the initial guess and {fm(x,a,w)}Mm=1 are ad-
ditive boosts on x defined by the optimization
method. The parameter am of fm(x,a,w) de-
notes split points of predictor variables and wm

denotes the boosting weights on the leaf nodes of
the decision trees corresponding to the partitioned
training set Xj for region j. To compute F ?(x),
we need to calculate, for each boosting round m,

{am,wm} = argmina,w

N∑

i=1

L(yi, Fm(xi)) (1)

with Fm(x) = Fm−1(x) + fm(x,am,wm). This
expression is indicative of a gradient descent step:

Fm(x) = Fm−1(x) + ρm (−gm(xi)) (2)

where ρm is the step length and[
∂L(y,F (x))
∂F (x)

]
F (xi)=Fm−1(xi)

= gm(xi) being the

search direction. To solve am and wm, we make
the basis functions fm(xi;a,w) correlate most
to −gm(xi), where the gradients are defined over
the training data distribution. In particular, using
Taylor series expansion, we can get closed form
solutions for am and wm – see Chen and Guestrin
(2016) for details. It can be shown that am =
argmina

∑N
i=1 (−gm(xi)− ρmfm(xi,a,wm))

2

and ρm = argminρ
∑N

i=1 L(yi, Fm−1(xi) +
ρfm(xi;am,wm)) which yields,

Fm(x) = Fm−1(x) + ρmfm(x,am,wm) (3)

Each boosting round m updates the weights
wm,j on the leaves and helps create a new tree

in the next iteration. The optimal selection of de-
cision tree parameters is based on optimizing the
fm(x,a,w) using a logistic loss. For GBTs, each
decision tree is resistant to imbalance and outliers
(Hastie et al., 2003), and F (x) can approximate
arbitrarily complex decision boundaries.

The convolutional neural network we use is
based on the CNN architecture described in Le-
Cun and Bengio (1995; Kim (2014) using the Ten-
sorFlow framework (Abadi and others, 2015). As
in Kim (2014), we enhance the performance of
“vanilla” CNNs (Fig. 3 right) using word em-
bedding vectors (Mikolov et al., 2013) trained on
the product titles from all datasets, without taxon-
omy labels. Context windows of width n, corre-
sponding to n-grams and embedded in a 300 di-
mensional word embedding space, are convolved
with L filters followed by rectified non-linear unit
activation and a max-pooling operation over the
set of all windows W . This operation results in a
L×1 vector, which is then connected to a softmax
output layer of dimension K × 1, where K is the
number of classes. Section A lists more details on
parameters.

The CNN model tries to allocate as few filters
to the context windows while balancing the con-
straints on the back-propagation of error resid-
uals with regards to cross-entropy loss L =
−∑K

k=1 qk log pk, where pk is the probability of
a product title x belonging to class k predicted by
our model, and q ∈ {0, 1}K is a one-hot vector
that represents the true label of title x. This re-
sults in a higher predictive power for the CNNs,
while still matching complex decision boundaries
in a smoother fashion than GBTs. We note here
that for all models, the predicted probabilities are
not calibrated (Zadrozny and Elkan, 2002).

5 Experimental Setup and Results
We use Naı̈ve Bayes (NB) (Ng and Jordan, 2001)
similar to the approach described in Shen et al.
(2012a) and Sun et al. (2014), and Logistic Re-
gression (LogReg) classifiers with L1 (Fan et al.,
2008) and Elastic Net regularization, as robust
baselines. Parameter setups for the various models
and algorithms are mentioned in Section A.

5.1 Data Preprocessing
Product listing datasets in English – BU1 is ex-
clusively comprised of product titles, hence, our
features are primarily extracted from these titles.
For AMZ and BU2, we additionally extract the list
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Figure 3: Classifier performance on BU1 test set. The CNN classifier has only one configuration and
thus shows constant curves in all plots. Left figure shows prediction on 10% test set using word unigram
count features; middle figure shows prediction on 10% test set using word bigram bi-positional count
features; and the right figure shows mean micro-precision over different feature setups except CNNs. In
all figures, “OvO” means “One vs. One” and “OvA” means “One vs All”.

price whenever available. For BU2, we also use
the leaf node of any available navigational bread-
crumbs. In order to decrease training and cate-
gorization run times, we employ a number of vo-
cabulary filtering methods. Further, English stop-
words and rare tokens that appear in 10 listings
or less are then filtered out. This reduces vocabu-
lary sizes by up to 50%, without a significant re-
duction in categorization performance. For CNNs,
we replace numbers by the nominal form [NUM]
and remove rare tokens. We also remove punctua-
tions and then lowercase the resulting text. Parts of
speech (POS) tagging using a generic tagger from
Manning et al. (2014) trained on English text pro-
duced very noisy features, as is expected for out-
of-domain tagging. Consequently, we do not use
POS features due to the absence of a suitable train-
ing set for listings unlike that in Putthividhya and
Hu (2011). For GBTs, we also experiment with
title word expansion using nearest neighbors from
Word2Vec model (Mikolov et al., 2013), for in-
stance, to group words like “t-shirts”, “tshirt”,
“t-shirt” in their respective equivalence classes,
however, the overall results have not been better.

Product listing datasets in Japanese – CJK
languages like Japanese lack white space between
words. Hence, the first pre-processing step re-
quires a specific Japanese tokenization tool to
properly segment the words in the product titles.

For our experiments, we used the MeCab3 to-
kenizer trained using features that are augmented
with in-house product keyword dictionaries. Ro-
maji words written using Latin characters are sep-

3
https://sourceforge.net/projects/mecab/

arated from Kanji and Kana words. All brack-
ets are normalized to square brackets and punc-
tuations from non-numeric tokens are removed.
We also use canonical normalization to change
the code points of the resulting Japanese text into
an NFKC normalized4 form, then remove any-
thing outside of standard Japanese UTF-8 charac-
ter ranges. Finally, the resulting text is lowercased.

Due to the size of the RAI dataset taxonomy
tree, three groups of models are trained to clas-
sify new listings into one of 35 level-one cate-
gories, then one of 400 level-two categories, and,
finally, the leaf node of the taxonomy tree. We
have found this scheme to be working better for
the RAI dataset than a bi-level scheme that we
adopted for the other English datasets.

Applying GBTs on the Japanese dataset in-
volved a bit more feature engineering. At the to-
kenized word-level, we use counts of word uni-
grams and word bi-grams. For character features,
the product title is first normalized as discussed
above. Consequently, character 2, 3, and 4-grams
are extracted with their counts, where extractions
include single spaces appearing at the end of word
boundaries. Identification of the best set of fea-
ture combinations in this case has been performed
during cross-validation.

5.2 Initial Experiments on BU1 dataset
Our initial experiments use unigram counts and
three other features: word bigram counts, bi-
positional unigram counts, and bi-positional bi-
gram counts. Consider a title text “120 gb hdd
5400rpm sata fdb 2 5 mobile” from the “Data

4
http://unicode.org/reports/tr15/
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storage” leaf node of the Electronics taxonomy
subtree and another title text “acer aspire v7
582pg 6421 touchscreen ultrabook 15 6 full hd in-
tel i5 4200u 8gb ram 120 gb hdd ssd nvidia geforce
gt 720m” from the “Laptops and notbooks” leaf
node. In such cases, we observe that merchants
tend to place terms pertaining to storage device
specifics in the front of product titles for “Data
storage” and similar terms towards the end of the
titles for “Laptops”. As such, we split the title
length in half and augment word uni/bigrams with
a left/right-half position.

This makes sense from a Naı̈ve Bayes point
of view, since terms like “120 gb”[Left Half],
“gb hdd”[Left Half], “120 gb”[Right Half] and
“gb hdd”[Right Half] de-correlates the feature
space better, which is suitable for the naı̈ve as-
sumption in NB classification. This also helps
in sightly better explanation of the class posteri-
ors. These assumptions for NB are validated in the
three figures: Fig. 3 left, Fig. 3 middle and Fig.
3 right. Word unigram count features perform
strongly for all classifiers except NB, whereas bi-
positional word bigram features helped only NB
significantly.

Additionally, the micro-precision and F1 scores
for CNNs and GBTs are significantly higher com-
pared to other algorithms on word unigrams using
paired t-test with a p-value < 0.0001. The per-
formances of GBTs and LogReg L1 classifiers de-
teriorate over the other feature sets as well. The
bi-positional and bigram feature sets also do not
produce any improvements for the AMZ dataset.
Based on these initial results, we focus on word
unigrams in all of our subsequent experiments.

5.3 Categorization Improvements with
Navigational Breadcrumbs and List
Prices on BU2 Dataset

BU2 is a challenging dataset in terms of class im-
balance and noise and we sought to improve cate-
gorization performance using available meta-data.
To start, we experiment with a smaller dataset con-
sisting of ≈ 500, 000 deduplicated listings under
the “Women’s Clothing” taxonomy subtree, ex-
tracted from our Dec 2015 snapshot of 40 million
records. Then we train and test against ≈ 2.85
million deduplicated “Women’s Clothing” listings
from the Feb 2016 snapshot of BU2. In all exper-
iments, 10% of the data is used as test set. The
womens clothing category had been chosen due
to the importance of the category from a business
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Figure 4: Improvements in micro-precision and
F1 for GBTs on BU2 dataset for “Women’s Cloth-
ing” subtree

standpoint, which provided early access to listings
in this category. Further, data distributions remain
the same in the two snapshots and the Feb 2016
snapshot consists of listings in addition to those
for the Dec 2015 snapshot.

The first noteworthy fact in Fig. 4 is that the
micro-precision and F1 of the GBTs substantially
improve after increasing the size of the dataset.
Further, stop words and rare words filtering de-
crease precision and F1 by less than 1%, despite
halving the feature space. The addition of navi-
gational leaf nodes and list prices prove advanta-
geous, with both features independently boosting
performance and raising micro-precision and F1 to
over 90%. Despite finding similar gains in catego-
rization performance for other top-level subtrees
by using these meta features, we needed a system
to filter mis-categorized listings from our training
data as well.

5.4 Noise Analysis of BU2 Dataset using
Correspondence LDA for Text

The BU2 dataset has the noisiest ground-truth la-
bels, as incorrect labels have been assigned to
product listings. However, since the manual ver-
ification of millions of listings is infeasible, using
some proxy for ground truth is a viable alternative
that has previously produced encouraging results
(Shen et al., 2012b). We next describe how resort-
ing to unsupervised topic models helped to detect
and remove incorrect listings.

As shown in Fig. 8, categorization perfor-
mance for the “Shoes” taxonomy subtree is over
25 points below the “Women’s Clothing” cate-
gory. Such a large difference could be caused by
incorrect assignments of listings to the correct cat-
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Figure 5: Selection of most probable
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listings in “Shoes” subtree. Human anno-
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Climbing	>		
Men’s	Shoes	>	Shoes	

Ambiguous	
labels	

Figure 6: Interpretation of latent topics us-
ing predictions from a GBT classifier. The
topics here do not include those in Fig. 5, but
are all from Feb 2016 snapshot of the BU2
dataset.

egories. However, unlike Sun et al. (2014), as
there are over 3.4 million “Shoes” listings in the
BU2 dataset, a manual analysis to detect noisy la-
bels is infeasible. To address this problem, we
compute p(x) over latent topics zk, and automati-
cally annotate the most probable words over each
topic.

We choose our CorrMMLDA model (Das et al.,
2011) to discover the latent topical structure of the
listings in the “Shoes” category because of two
reasons. Firstly, the model is a natural choice for
our scenario since it is intuitive to assume that
store and brand names are distributions over words
in titles. This is illustrated in the graphical model
in Fig. 7, where the store “Saks Fifth Avenue” and
the brand “Joie” are represented as words wd,m
in the M plate of listing d and are distributions
over the words in the product title “Joie kidmore
Embossed slipon sneakers” represented as words
wd,n in the N plate of the same listing d. The ti-
tle words are in turn distributions over the latent
topics zd for listing d ∈ {1..D}.

Secondly, the CorrMMLDA model has been
shown to exhibit lower held-out perplexities in-
dicative of improved topic quality. The reason be-
hind the lower perplexity stems from the follow-
ing observations: Using the notation in Das et al.
(2011), we denote the free parameters of the vari-
ational distributions over words in brand and store
names, say λd,m,n, as multinomials over words in
the titles and those over words in the title, say
φd,n,k, as multinomials over latent topics zd. It
is easy to see that the posterior over the topic zd,k
for each wd,m of brand and store names, is depen-
dent on λ and φ through

∑Nd
n=1 λd,m,n × φd,n,k.

This means that if a certain topic zd = j gener-
ates all words in the title, i.e., φd,n,j > 0, then

wnα zn r

β

N

M
ym wm

wdN =

D K

Joie
Kidmore
Embossed
Slipon
sneakers

wdM =
Saks
Fifth
Avenue
Joie

Figure 7: Correspondence MMLDA model.

only that topic also generates the brand and store
names thereby increasing likelihood of fit and re-
ducing perplexity. The other topics zd 6= j do not
contribute towards explaining the topical structure
of the listing d.
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Figure 8: Micro-precision and F1 across fifteen
top-level categories on 10% (4 million listings) of
Dec 2015 BU2 snapshot.

We train the CorrMMLDA model with K=100
latent topics. A sample of nine latent topics and
their most probable words shown in Fig. 5 demon-
strates that topics outside of the “Shoes” domain
can be manually identified, while reducing hu-
man annotation efforts from 3.4 million records
to one hundred. We choose K = 100 since it
is roughly twice the number of branches for the
Shoes subtree. This choice provides modeling
flexibility while respecting the number of ground
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Figure 9: Micro-precision on 10% of
BU2 across categories (see Sect. 5.4)
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Figure 10: Micro-precision on 10% of AMZ across
categories

Dataset NB LogReg ElasticNet LogReg L1 GBT CNN w pretraining Mean KL log(N/B)
BU1 81.45 86.30 86.75 89.03* 89.12* 0.872 9.27
BU2 68.21 84.29 85.01 90.63* 88.67 0.715 11.54
AMZ 49.01 69.39 66.65 67.17 72.66* 1.654 6.02

Table 2: Mean micro-precision on 10% test set from BU1, BU2 and AMZ English datasets

truth classes.
We next run a list of the most probable six

words, the average length of a “Shoes” listing’s ti-
tle, from each latent topic through our GBT classi-
fier trained on the full, noisy data, but without con-
sidering any metadata, due to bag-of-words nature
of the topic descriptions. As shown in the bottom
two rows in Fig. 6, categories mismatching their
topics are manually labeled as ambiguous. As a fi-
nal validation, we uniformly sampled a hundred
listings from each ambiguous topic detected by
the model. Manual inspections revealed numer-
ous listings from merchants not selling shoes are
wrongly cataloged in the “Shoes” subtree due to
vendor’s error. To this end, we remove listings cor-
responding to such “out-of-category” merchants
from all top-level categories.

Thus, by manually inspectingK×6 most prob-
able words from the K=100 topics and J × 100
listings, where J << K, instead of 3.4 million, a
few annotators accomplished in hours what would
have taken hundreds of annotators several months
according to the estimates in Sun et al. (2014).

5.5 Results on BU2 and AMZ Datasets
In section 5.2, we have shown the efficacy of word
unigram features on the BU1 dataset. Figure 8
shows that LogReg with L1 regularization (Yu
et al., 2013b; Yu et al., 2013a) initially achieves
83% mean micro-precision and F1 on the initial
BU2 dataset. This falls short of our expectation
of achieving an overall 90% precision (red line in

Fig. 8), but forms a robust baseline for our subse-
quent experiments with the AMZ and the cleaned
BU2 datasets. We additionally use the list price
and the navigational breadcrumb leaf nodes for the
BU2 dataset and, when available, the list price for
the AMZ dataset.

Overall, Naı̈ve Bayes, being an overly simpli-
fied generative model, generalizes very poorly on
all datasets (see Figs. 3, 9 and 10). A possible
option to improve NB’s performance is to use sub-
sampling techniques as described in Chawla et al.
(2002); however, sub-sampling can have its own
problems for when dealing with product datasets
(Sun et al., 2014).

From Table 2, we observe that most classifiers
tend to perform well when log(N/B) is relatively
high. The N in the previous ratio is the total num-
ber of listings and B is the total number of cate-
gories. Figures with a ∗ are statistically better than
other non-starred ones in the same row except the
last two columns. From Fig. 9 and Table 2, it is
clear that GBTs are better on BU2.

We also experiment with CNNs augmented to
use meta-data while respecting the convolutional
constraints on title text, however, the performance
improved only marginally. It is not immediately
clear why all the classifiers suffer on the “CDs
and Vinyl” category, which has more than 500
branches – see Fig. 10. The AMZ dataset also
suffers from novel cases of data imbalance. For
instance, most of the listings in “Books” and “Gro-
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KNN+DBN GBT Important statistics for the Rakuten 
Ichiba dataset and classifier performance:
- Average PCC at level one – 0.47
- Average KL at level one   – 7.88
- Average KL at level two   – 3.79
- Average of the micro-F1 scores across 

level one categories shown:
- KNN+DBN – 73.85
- GBT            – 76.89*

- GBT performs significantly better than 
KNN+DBN for 28 out of 35 level one 
categories. There is one other category, 
Smartphones and Tablets, where GBT 
performs only slightly better than 
KNN+DBN.

Figure 11: Comparison of GBTs versus the method from Cevahir and Murakami (2016) on a 10% test
set from the Rakuten Ichiba Japanese product listing dataset.

cery” are in one branch, with most other branches
containing less than 10 listings. In summary, from
both Figs. 9 and 10, we observe that GBTs and
CNNs with pre-training perform best even in ex-
treme data imbalance. It is possible that GBTs
need finer parameter tuning per top-level subtree
for datasets resembling AMZ.

5.6 Results on Rakuten Ichiba Dataset
In this section, we report our findings on the ef-
ficacy of GBTs vis-a-vis another hybrid nearest
neighbor and deep learning based method from
Cevahir and Murakami (2016). Our decision to
employ a tri-level classifier cascade, instead of the
bi-level one used for the other datasets, stems from
our observations of the KL divergence values (see
Section 3 and Table 1) at the first and second level
depths of the RAI taxonomy tree. Moving from
the first level down to the second decreases the
KL divergence by more than 50%. We thus expect
GBTs to perform better due to this reduced imbal-
ance. We also cross-validated this assumption on
some popular categories, such as “Clothing”.

From Fig. 11 and the statistics noted therein,
we observe that, on average, GBTs outperform the
KNN+DBN model from Cevahir and Murakami
(2016) by 3 percentage points across all top level
categories, which is statistically significant under
a paired t-test with p < 0.0001. As with previous
experiments, only a common best parameter con-
figuration has been set for GBTs, without resort-
ing to time consuming cross-validation across all
categories. For the 29 categories on which GBTs
do better, the mean of the absolute percentage im-
provement is 11.78, with a standard deviation of
5.07. Also, it has been observed that GBTs sig-
nificantly outperform KNN+DBN in 28 of those
categories.

The comparison in Fig. 11 is more holistic. Un-

like the top level categorization scores obtained
in Figs. 3, 9 and 10, the scores in Fig. 11 have
been obtained by categorizing each test example
through the entire cascade of hierarchical models
for two classifiers. Even with this setting, the per-
formance of GBTs is significantly better.

6 Conclusion
Large-scale taxonomy categorization with noisy
and imbalanced data is a challenging task. We
demonstrate deep learning and gradient tree boost-
ing models with operational robustness in real
industrial settings for e-commence catalogs with
several millions of items. We summarize our
contributions as follows: 1) We conclude that
GBTs and CNNs can be used as new state-of-the-
art baselines for product taxonomy categorization
problems, regardless of the language used; 2)
We quantify the nature of imbalance for differ-
ent product datasets in terms of distributional di-
vergence and correlate that to prediction perfor-
mance; 3) We also show evidence to suggest that
words from product titles, together with leaf nodes
from navigational breadcrumbs and list prices,
when available, can boost categorization perfor-
mance significantly on all the product datasets. Fi-
nally, 4) we showcase a novel use of topic models
with minimal human intervention to clean large
amounts of noise particularly when the source of
noise cannot be controlled. This is unlike any
experiment reported in previous publications on
product categorization. Automatic topic labeling
for a given category with a pre-trained classifier
from another dataset can help create an initial tax-
onomy over listings for which none exist. A major
benefit of this approach is that it reduces manual
efforts on initial taxonomy creation.
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A Supplemental Materials: Model
Parameters

In this paper, the baseline classifiers comprise of
Naı̈ve Bayes (NB) (Ng and Jordan, 2001) similar
to the approach described in Shen et al. (2012a)
and Sun et al. (2014), and Logistic Regression
(LogReg) classifiers with L1 (Fan et al., 2008) and
Elastic Net regularization. The objective functions
of both GBTs and CNNs involve L2 regularizers
over the set of parameters. Our development set
for parameter tuning is generated by randomly se-
lecting 10% of the listings under the “apparel /
clothing” categories. The optimized parameters
obtained from this scaled-down configuration is
then extended to all other classifiers to reduce ex-
perimentation time.

For parameter tuning, we set a linear combina-
tion of 15% L1 regularization and 85% L2 regu-
larization for Elastic Net. For GBTs (Chen and
Guestrin, 2016) on both English and Japanese
data, we limit each decision tree growth to a max-
imum depth of 500 and the number of boosting
rounds is set to 50. Additionally, for leaf node
weights, we use L2 regularization with a regu-
larization constant of 0.5. For GBTs on English
data, the initial learning rate is 0.2. For GBTs on
Japanese data, the initial learning rate is assigned
a value of 0.05 .

For CNNs, we use context window widths of
sizes 1, 3, 4, 5 for four convolution filters, a batch
size of 1024 and an embedding dimension of
300. The parameters for the embeddings are
non-static. The convolutional filters are initial-
ized with Xavier initialization (Glorot and Ben-
gio, 2010). We use mini-batch stochastic gradi-
ent descent with Adam optimizer (Kingma and Ba,
2014) to perform parameter optimization.

LogReg classifiers and CNN need data to be
normalized along each dimension, which is not
needed for NB and GBT.
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Abstract

In this paper, we propose a new task for as-
sessing the quality of natural language ar-
guments. The premises of a well-reasoned
argument should provide enough evidence
for accepting or rejecting its claim. Al-
though this criterion, known as sufficiency,
is widely adopted in argumentation theory,
there are no empirical studies on its appli-
cability to real arguments. In this work,
we show that human annotators substan-
tially agree on the sufficiency criterion and
introduce a novel annotated corpus. Fur-
thermore, we experiment with feature-rich
SVMs and convolutional neural networks
and achieve 84% accuracy for automati-
cally identifying insufficiently supported
arguments. The final corpus as well as
the annotation guideline are freely avail-
able for encouraging future research on ar-
gument quality.1

1 Introduction

Argumentation is an omnipresent routine and an
integral part of our daily verbal communication. It
is a verbal activity that aims at increasing or de-
creasing the plausibility of a controversial stand-
point (van Eemeren et al., 1996, p. 5). Well-
reasoned arguments of high quality are not only
important for making thoughtful decisions and
persuading a particular audience but also play a
major role for drawing widely accepted conclu-
sions. Computational argumentation is a recent re-
search field in natural language processing that fo-
cuses on the analysis of arguments in natural lan-
guage texts. Novel advances have a broad applica-

1https://www.ukp.tu-darmstadt.de/data/
argumentation-mining

tion potential in various areas like debating tech-
nologies (Levy et al., 2014; Rinott et al., 2015),
policy making (Sardianos et al., 2015), informa-
tion retrieval (Carstens and Toni, 2015), and le-
gal decision support (Mochales-Palau and Moens,
2009). Recently, computational argumentation is
receiving increasing interest in intelligent writ-
ing assistance (Song et al., 2014; Stab et al.,
2014) since it enables argumentative writing sup-
port systems that provide tailored feedback about
arguments in student essays.

Most of the existing approaches in computa-
tional argumentation consider argumentation as
discourse structures and focus on the identifica-
tion of arguments in natural language texts. For
instance, existing approaches classify text units
as argumentative or non-argumentative (Moens
et al., 2007), recognize argument components
such as claims or premises at the sentence-level
(Mochales-Palau and Moens, 2009; Kwon et al.,
2007; Eckle-Kohler et al., 2015) or clause-level
(Levy et al., 2014; Sardianos et al., 2015), or iden-
tify argument structures by classifying pairs of ar-
gument components (Stab and Gurevych, 2014).
However, these approaches are of limited use for
argumentative writing support systems since they
do not recognize the weak points of arguments.

Despite the comprehensive theoretical frame-
work on argument quality in logic and argumen-
tation theory (van Eemeren et al., 1996; Damer,
2009), there are only few computational ap-
proaches that focus on the assessment of argu-
ments in natural language texts. These existing
approaches either identify undisputed arguments
in online communities (Cabrio and Villata, 2012),
assess the persuasiveness of arguments (Wei et
al., 2016), compare and rank arguments regard-
ing their convincingness (Habernal and Gurevych,
2016b), or summarize the argumentation strength
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of an entire essay in a single holistic score (Persing
and Ng, 2015). Our approach is based on the theo-
retical framework proposed by Johnson and Blair
(2006). In particular, we focus on the sufficiency
criterion that an argument fulfills if its premises
provide enough evidence for accepting or reject-
ing the claim. The following example argument
illustrates a violation of the sufficiency criterion:

Example 1: “It is an undeniable fact
that tourism harms the natural habitats
of the destination countries. As Aus-
tralia’s Great Barrier Reef has shown,
the visitors cause immense destruction
by breaking corals as souvenirs, throw-
ing boat anchors or dropping fuel and
other sorts of pollution.”

The premise of this argument represents a particu-
lar example (second sentence) that supports a gen-
eral claim in the first sentence. The argument is
a generalization from one sample to the general
case. However, a single sample is not enough to
support the general case. Therefore, the argument
does not comply with the sufficiency criterion.

Example 2: “Cloning will be benefi-
cial for people who are in need of organ
transplants. Cloned organs will match
perfectly to the blood group and tissue
of patients since they can be raised from
cloned stem cells of the patient. In addi-
tion, it shortens the healing process.”

Example 2 illustrates a sufficiently supported ar-
gument. It is reasonable to accept that transplanta-
tion patients will benefit from cloning if it enables
a better match and an accelerated healing process.

Our primary motivation is to create an argument
analysis method for argumentative writing support
systems that classifies an argument as sufficient if
its premises provide enough evidence for accept-
ing its claim (example 2) or as insufficient if its
premises do not provide enough evidence (exam-
ple 1). Therefore, our first research question is
whether human annotators can reliably apply the
sufficiency criterion to real arguments and if it is
possible to create annotated data of high quality.
The second research question addresses the auto-
matic recognition of insufficiently supported argu-
ments. We investigate if, and how accurately, in-
sufficiently supported arguments can be identified
by computational techniques.

The contribution of this paper is threefold: first,
we investigate to what extent human annotators
agree on the sufficiency criterion. We present the
results of an annotation study with three annota-
tors and show that our annotation guideline suc-
cessfully guides annotators to substantial agree-
ment. Second, we show that insufficiently sup-
ported arguments can be identified with high accu-
racy using convolutional neural networks (CNN).
The experimental results show that a CNN signif-
icantly outperforms several challenging baselines
and manually created features. Third, we intro-
duce a novel corpus for studying the quality of ar-
guments.

2 Related Work

Previous works in computational argumentation
focused primarily on approaches for argument
mining. These include, for example, meth-
ods for the identification of arguments in legal
texts (Moens et al., 2007), news articles (Eckle-
Kohler et al., 2015; Sardianos et al., 2015),
or user-generated web discourse (Habernal and
Gurevych, 2016a). Other approaches address
the classification of argument components into
claims and premises (Mochales-Palau and Moens,
2009), supporting and opposing claims (Kwon
et al., 2007), or backings, rebuttals and refuta-
tions (Habernal and Gurevych, 2016a). Levy
et al. (2014) recognize context-dependent claims
and Rinott et al. (2015) retrieve several types
of evidence from Wikipedia. Approaches for
identifying the structure of arguments recognize
argumentative relations between argument com-
ponents using context-free grammars (Mochales-
Palau and Moens, 2009), pair classification (Stab
and Gurevych, 2014), or maximum spanning trees
(Peldszus and Stede, 2015). However, none of
these approaches consider the quality of argu-
ments.

Similarly, most existing corpora in compu-
tational argumentation are only annotated with
argument components (Habernal and Gurevych,
2016a; Aharoni et al., 2014; Mochales-Palau and
Moens, 2009) or argument structures (Reed et al.,
2008; Stab and Gurevych, 2014; Peldszus and
Stede, 2015) and do not include annotations of ar-
gumentative quality issues. Other resources in the
field contain arguments annotated with different
properties such as emotions and sarcasm (Walker
et al., 2012), the type of reasoning (Reed et al.,
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2008) or the stance on a topic (Somasundaran and
Wiebe, 2009). However, there is no corpus of ar-
guments annotated with the sufficiency criterion.

Currently there are only few approaches that fo-
cus on the automatic assessment of argument qual-
ity. Cabrio and Villata (2012) employed textual
entailment for identifying undisputed arguments
in online discussions. They built a graph that rep-
resents attack and support relations between ar-
guments and applied the abstract argumentation
framework (Dung, 1995) for identifying accepted
arguments. Although their approach is capable of
finding undisputed arguments among a given set
of arguments, it does not answer why a specific
argument is of inferior quality than another argu-
ment. Thus, their approach is of limited use for
guiding students since it does not pinpoint partic-
ular weaknesses of arguments.

Park and Cardie (2014) proposed an approach
for classifying propositions as verifiable (experi-
ential and non-experiential) or unverifiable. Their
best approach based on a support vector machine
achieves a macro F1 score of .690. Although the
verifiability of propositions enables to determine
appropriate types of support, it does not answer if
an argument is sufficiently supported or not.

Persing and Ng (2015) introduced an approach
for recognizing the argumentation strength of an
essay. They found that pos n-grams, prompt adher-
ence features, and predicted argument components
perform best. However, their model determines a
single holistic score that summarizes the argumen-
tation quality of the entire essay. Consequently, it
does not provide formative feedback that guides
students to improve their arguments.

Recently, researchers proposed approaches for
automatically assessing the persuasiveness of ar-
guments. For instance, Wei et al. (2016) proposed
an approach for ranking user comments taken
from online fora and found that argumentation re-
lated features are effective for this task. Cano-
Basave and He (2016) ranked speakers in political
debates by using semantic frames which indicate
persuasive argumentation features, and Habernal
and Gurevych (2016b) compared the convincing-
ness of argument pairs using feature-rich SVMs
and bidirectional LSTMs. However, the persua-
siveness score of an argument is only of limited
use for argumentative writing support, since it
summarizes various quality criteria and does not
explain why an argument is weak.

3 Argument Quality: Theoretical
Background

An argument consists of several argument com-
ponents. It includes a claim and one or more
premises. The claim (also called conclusion) is
a controversial statement and the central compo-
nent of an argument. The premises constitute the
reasons for believing the claim to be true or false
(Damer, 2009, p. 14). Assessing the quality of
arguments is a complex task since arguments in
natural language are hardly ever in a standardized
form (Damer, 2009; Govier, 2010). Moreover, ar-
gument quality is a product of many different cri-
teria (Johnson and Blair, 2006). The quality of
an argument depends, for instance, on its lexical
clarity and phrasing (representation), the level of
trust that the audience has in the arguer (ethos),
and the emotions and values appealed by the argu-
ment (pathos). The logical quality of arguments
(logos) is, however, independent of all other mer-
its, defects and external influence factors (John-
son and Blair, 2006, p. 50). Certainly, external
factors or the presentation style can have a strong
influence on the persuasive power of arguments.
However, these factors can at most masquerade
an illogical argument but not improve its logical
quality. Therefore, the logical quality is most suit-
able for assessing the (intrinsic) quality of argu-
ments and for providing feedback about written
arguments respectively.

Traditionally, there are two different perspec-
tives on the logical quality of arguments: (i) the
formal logic perspective and (ii) the informal logic
perspective. The objective of formal logic ap-
proaches is to distinguish deductively valid argu-
ments from invalid arguments (van Eemeren et al.,
1996, chapter 1.2), i.e. to recognize if the claim of
an argument follows necessarily from its premises.
However, formal logic approaches cannot be ap-
plied to everyday arguments since the vast major-
ity of arguments do not follow deductive inference
rules (Damer, 2009; van Eemeren et al., 1996).

Informal logic aims at developing theoretical
frameworks for analyzing arguments in ordinary
natural language (Groarke, 2015). These include,
for example, fallacy theories which focus on deter-
mining particular argumentative mistakes that can
be observed with a marked degree of frequency.
Current theories list various forms of fallacious ar-
guments. For instance, the framework proposed
by Damer (2009) describes 61 different fallacy
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types. However, fallacy theories are not appropri-
ate for recognizing logically good arguments (van
Eemeren et al., 1996, p. 178) since it is unknown
if all fallacies are already known. To overcome
this limitation, Johnson and Blair (2006) proposed
three binary criteria, known as RAS-criteria, that
a logically good argument needs to fulfill:

• Relevance: An argument fulfills the relevance
criterion, if all of its premises count in favor
of the truth (or falsity) of the claim.

• Acceptability: An argument fulfills the ac-
ceptability criterion if its premises represent
undisputed common knowledge or facts.

• Sufficiency: An argument complies with the
sufficiency criterion if its premises provide
enough evidence for accepting or rejecting
the claim.

The relevance criterion addresses the relation be-
tween each premise and the claim whereas the ac-
ceptability criterion focuses on the truthfulness of
each individual premise. Both need to be eval-
uated independently for each premise of the ar-
gument. The sufficiency criterion addresses the
premises of an argument together. It is fulfilled if
the relevant premises of an argument are enough
for justifying (or rejecting) the claim. The suffi-
ciency criterion presupposes a non-empty set of
relevant premises. However, an argument can
violate the relevance criterion and comply with
the sufficiency criterion at the same time. For
instance, an argument can have several relevant
premises that are sufficient for accepting the claim
and additional premises that are not relevant to the
claim. This also implies that a sufficient argument
has a non-empty set of relevant premises but it is
unknown if all premises of a sufficient argument
are relevant to the claim.

In contrast to fallacy theories, the RAS-criteria
enable to distinguish good from bad arguments
with respect to logical quality since each argument
that complies with all three criteria is a logically
good one (Govier, 2010; Johnson and Blair, 2006).
Moreover, the RAS-criteria attribute a particular
defect to the relation between individual premises
and the claim (relevance), the truthfulness of in-
dividual premises (acceptability), or the premises
considered together (sufficiency). Therefore, they
enable purposeful feedback for resolving particu-
lar defects of weak arguments and are well suited
for argumentative writing support systems.

4 Corpus Creation

We conducted our annotation on a corpus of 402
argumentative essays that has been previously an-
notated with argumentation structures (Stab and
Gurevych, 2016). By analyzing the annotated ar-
gumentation structures, we found that each body
paragraph contains at least one argument and only
4.3% of all body paragraphs include several argu-
ments, i.e. claims supported by premises. There-
fore, we considered each body paragraph as an in-
dividual argument. This approximation has ad-
ditional practical advantages for the identifica-
tion of insufficiently supported arguments since it
does not require the identification of argumenta-
tion structures in advance and prevents potential
error propagation. Following this procedure, we
extracted 1,029 arguments with an average length
of 94.6 tokens and 4.5 sentences per argument.

4.1 Annotation Study

Three non-native annotators with excellent En-
glish proficiency independently annotated the ar-
guments as sufficient or insufficient. We used 64
arguments from the corpus for elaborating the an-
notation guideline and 20 arguments for collabora-
tive training sessions with the annotators. In these
sessions, all three annotators collaboratively ana-
lyzed arguments for resolving disagreements and
obtaining a common understanding of the annota-
tion guideline. For the actual annotation task, we
used the freely available brat rapid annotation tool
(Stenetorp et al., 2012).

4.1.1 Inter-Annotator Agreement
All three annotators independently annotated an
evaluation set of 433 arguments. We evaluated
the agreement between the annotators using sev-
eral inter-annotator agreement measures imple-
mented in DKPro Agreement (Meyer et al., 2014).
We used observed agreement and the two chance-
corrected measures Fleiss’ κ (Fleiss, 1971) and
Krippendorff’s α with nominal distance function
(Krippendorff, 1980). The three annotators agreed
on 91.07% of all 433 arguments (observed agree-
ment). The chance-corrected agreement scores of
κ = .7672 and α = .7673 show substantial agree-
ment between the annotators which allows “ten-
tative conclusions” (Krippendorff, 1980). There-
fore, we conclude that human annotators can reli-
ably identify insufficiently supported arguments in
argumentative essays.
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4.1.2 Analysis of Disagreements

In order to identify the reasons for the disagree-
ments, we manually investigated all arguments on
which the annotators disagreed. We found that a
high proportion of these arguments include modal
verbs in their claims. The following example il-
lustrates such an argument:

“Watching television too often can have
a negative effect on communication abil-
ities. For instance, children often prefer
watching cartoons or movies instead of
meeting their classmates and thus they
will not learn how to communicate prop-
erly.”

Due to the modal verb “can” in the claim of this
argument (first sentence), it is sufficient to pro-
vide one specific example as premise. However,
annotators tend to overlook modal verbs and over-
hastily annotate these arguments as insufficient.

The second most frequent cause of disagree-
ments is due to the length of the arguments. In par-
ticular, one annotator annotated remarkably fewer
arguments as insufficient. These arguments ex-
hibit a comparatively large number of premises.
This indicates that longer arguments are more
likely to be perceived as sufficient than shorter ar-
guments.

We also observed that several disagreements are
due to hard cases. For instance, assessing the
sufficiency of the following argument depends on
the subjective interpretation of the undetermined
quantification “many” in the claim:

“Living in big cities provides many op-
portunities. First of all, it will be easier
to find a job in a city. Also there are
various bars and clubs where you can
meet new people. Above all there are
shopping malls and cinemas for spend-
ing your free time.”

We also found that annotators do not agree on ar-
guments including terms such as “some”, “vari-
ous”, or “large number”. Thus, extending the an-
notation guideline with an explanation of how to
handle modal verbs, the number of premises and
undetermined qualifiers could further improve the
agreement between the annotators in future anno-
tation studies.

4.2 Creation of the Final Corpus
We merged the annotations of the three annota-
tors on the evaluation set using majority voting.
The remaining arguments have been annotated by
the two annotators with the highest pairwise agree-
ment on the evaluation set (α = .815). Disagree-
ments on the remaining arguments have been man-
ually resolved in discussions among the two anno-
tators. Table 1 shows an overview of the corpus.

size
tokens 97,370
sentences 4,593
arguments 1,029

class distribution
sufficient 681 (66.2%)
insufficient 348 (33.8%)

Table 1: Size of the final corpus and class distri-
bution of sufficiency annotations.

The class distribution is skewed towards suffi-
ciently supported arguments. However, the pro-
portion of 33.8% insufficiently supported argu-
ments indicates that students frequently do not
support their claims with sufficient evidence.

5 Experiments

We consider the identification of insufficiently
supported arguments as a binary classification task
and label each body paragraph as sufficient or in-
sufficient. For preventing errors in model assess-
ment due to a particular data splitting (Krstajic
et al., 2014), we used a repeated 5-fold cross-
validation setup and ensured that arguments from
the same essay are not distributed over the train,
test and development sets. We repeated the cross-
validation 20 times which yields a total of 100
folds. As evaluation scores, we used accuracy and
macro F1 score as well as the F1 score, precision
and recall of the class “insufficient”. Whereas the
precision indicates the performance of the model
to identify arguments that are really in need of
revision, recall shows how well the model rec-
ognizes all insufficiently supported arguments in
an essay. All evaluation scores are reported as
average including the standard deviation over the
100 folds. In order to determine the macro F1
score, we employ macro-averaging as proposed
by Sokolova and Lapalme (2009, p. 430). For
model selection and hyperparameter tuning, we
randomly sampled 10% of the training set of each
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fold as a development set. For significance testing,
we employ Wilcoxon signed-rank test on macro
F1 scores with a significance level of α = .005.

We employ several models from the DKPro
Framework (Eckart de Castilho and Gurevych,
2014) for preprocessing. We use the language tool
segmenter2 for tokenization and sentence splitting.
We employ the Stanford parser (Klein and Man-
ning, 2003) and named entity recognizer (Finkel
et al., 2005) for constituency parsing and recog-
nizing organizations, persons and locations. Note
that only the model described in Section 5.2 re-
quires all preprocessing steps. All other models
use only the tokenization of the language tool seg-
menter.

5.1 Baselines

For our experiments, we use the following two
baselines: First, we employ a majority baseline
that classifies each argument as sufficient. Second,
we use a support vector machine with polynomial
kernel implemented in the Weka framework (Hall
et al., 2009). We employ the 4,000 most frequent
lowercased words as binary features and refer to
this model as SVM-bow.

5.2 Manually Created Features (SVM)

Our first system is based on manually created fea-
tures. As a learner, we use the same support vec-
tor machine as for SVM-bow. For feature ex-
traction and experimentation, we use the DKPro
TC text classification framework (Daxenberger et
al., 2014). We tried various features which have
been used previously for assessing the quality
or the persuasiveness of arguments (cf. Section
2). For instance, we experimented with argument
structures (Stab and Gurevych, 2014), transitional
phrases (Persing and Ng, 2015), semantic roles
(Das et al., 2014) and discourse relations (Lin et
al., 2014). However, we found that only the fol-
lowing features are effective for recognizing insuf-
ficiently supported arguments:
Lexical: To capture lexical properties, we employ
the 4,000 most frequent lowercased words as bi-
nary features analogous to SVM-bow.
Length: We use the number of tokens and the
number of sentences as features since sufficiently
supported arguments might exhibit more premises
than insufficiently supported arguments (cf. Sec-
tion 4.1.2).

2https://www.languagetool.org/

Syntax: For capturing syntactic properties, we ex-
tract binary production rules from the constituent
parse trees of each sentence of the argument as de-
scribed by Stab and Gurevych (2014).
Named Entities (ner): We assume that arguments
with insufficient support refer to particular entities
in order to justify more general claims (cf. ex-
ample 1 in Section 1). Thus, we add the num-
ber of named entities appearing in the argument
and the average occurrence of named entities per
sentence to our feature set. We consider organiza-
tions, persons and locations separately. Thus the
named entity features comprise six features in to-
tal, i.e. three binary and three numeric features.

5.3 Convolutional Neural Network (CNN)
Our second model is a convolutional neural net-
work with max-over time pooling (Collobert et al.,
2011). We use the implementation provided by
Kim (2014). The selection of this model is moti-
vated by the excellent performance that the model
achieves in many different classification tasks like
sentiment classification of question classification.
We found in our experiments that instead of using
several convolutional layers with different window
sizes, a single convolutional layer with a window
size of 2 and 250 feature maps performs best.
For representing each word of an argument, we
use word embeddings trained on the google news
data set by Mikolov et al. (2013). In order to
adapt these vectors to the identification of insuf-
ficient arguments, we use non-static word vectors
as proposed by Kim (2014). We train the net-
work with stochastic gradient descent over shuf-
fled mini-batches with the Adadelta update rule
(Zeiler, 2012), a dropout rate of .5 and a mini-
batch size of 50. For finding the best model, we
apply early stopping on the development sets.

5.4 Results
Table 2 shows the results of the model assessment
on the test sets. The SVM-bow model with un-
igram features achieves .755 macro F1 score and
.785 accuracy. It significantly outperforms the ma-
jority baseline by .357 macro F1 score which indi-
cates that lexical features are informative for iden-
tifying insufficiently supported arguments. The
support vector machine with manually created fea-
tures significantly outperforms both the majority
baseline and SVM-bow. It achieves .798 accu-
racy and .770 macro F1 score and thus outper-
forms the SVM-bow model by .015 macro F1
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Accuracy Macro F1 F1 Insufficient Precision Recall
Human Upper Bound∗ .911±.022 .887±.026 .940±.015 .863±.058 .808±.109
Baseline Majority .662±.033 .398±.012 0 0 0
Baseline SVM-bow † .785±.029 .755±.034 .661±.051 .709±.067 .624±.067
SVM †‡ .798±.028 .770±.032 .681±.047 .731±.060 .641±.061
CNN †‡ .843±.025 .827±.027 .770±.039 .762±.054 .784±.068

Table 2: Results of model assessment on the test sets and comparison to human upper bound († significant
improvement over baseline majority; ‡ significant improvement over Baseline SVM-bow; ∗determined
on a subset of 433 arguments).

score. We obtain the best performance by using
the CNN model. It significantly outperforms all
other models with respect to all evaluation scores
and achieves .827 macro F1 score and an accuracy
of .843. The results also show that the SVM model
with manually created features achieves a consid-
erably lower recall compared to precision. Thus,
the model is less suitable for exhaustively finding
all insufficiently supported arguments. In contrast,
the CNN model is more balanced with respect to
precision and recall and considerably outperforms
the recall of the SVM model. Therefore, the CNN
model outperforms the SVM model in finding in-
sufficiently supported arguments in argumentative
essay and performs better for recognizing argu-
ments that are really in need of revision.

We determine the human upper bound by av-
eraging the evaluation scores of all three annota-
tor pairs on the 433 independently annotated argu-
ments (cf. Section 4). Human annotators achieve
an accuracy of .911. The CNN model yields only
.068 less accuracy compared to the human upper
bound and thus achieves 92.5% of human perfor-
mance.

5.5 Feature Analysis
Although the CNN model outperforms the support
vector machine with manual features, we analyzed
the features for gaining a better understanding of
insufficiently supported arguments and to inves-
tigate which linguistic properties are informative
for recognizing arguments with insufficient sup-
port. Table 3 shows the macro F1 scores of the
support vector machine using individual features
and the results of feature ablation tests on the de-
velopment sets.

The results show that lexical features are most
effective for identifying insufficiently supported
arguments. They achieve the best macro F1 score
of .749 when used individually. Removing lexical
features from the feature set also yields the highest

Macro F1 F1 Insuf. F1 Suf.
BS Majority .396±.020 0 .793±.041
only lexical .749±.048 .649±.070 .835±.040
only length .397±.023 .002±.015 .792±.040
only syntax .640±.063 .502±.101 .767±.047
only ner .681±.059 .410±.114 .823±.039
all w/o lexical .658±.059 .529±.093 .776±.045
all w/o length .766±.049 .674±.068 .847±.040
all w/o syntax .755±.049 .659±.070 .839±.040
all w/o ner .760±.050 .666±.069 .843±.041
all features .768±.049 .677±.068 .848±.040

Table 3: Results of the SVM using individual fea-
tures and feature ablation tests on the dev sets.

decrease in macro F1 score compared to the other
features. The second best features are named en-
tities. Using only named entity features yields a
macro F1 score of .681. Thus, we can confirm
our assumption that named entities are informa-
tive features for assessing the sufficiency of argu-
ments. Syntactic features are also effective for rec-
ognizing insufficiently supported arguments. They
yield .640 macro F1 score when used individu-
ally. The results also show that the length of an ar-
gument is only marginally informative for assess-
ing the sufficiency of arguments. Using the length
features individually yields only a slight improve-
ment of the macro F1 score over the majority base-
line. However, removing the length from the en-
tire feature set causes a slight decrease of .002 in
the macro F1 score compared to the system which
uses all features. We achieve the best results by
combining all features.

For gaining further insights into the character-
istics of insufficiently supported arguments, we
ranked all unigrams using information gain. The
top ten words are “example”, “my”, “was”, “in-
stance”, “i”, “for”, “me”, “friend”, “he”, and
“did”. This might be an indication that examples
(signaled by the terms “example” and “instance”)
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or personal experiences (signaled by terms such as
“me”, “my”, “friend” or “he”) are not sufficient for
developing strong arguments.

5.6 Error Analysis

In order to analyze the most frequent errors of the
convolutional neural network, we manually inves-
tigated all arguments which are wrongly classified
in each run of the repeated cross-validation exper-
iment. In total, we found 41 sufficient arguments
which are consistently misclassified as insufficient
(false positives) and 28 insufficient arguments that
are always misclassified as sufficient (false nega-
tives).

Among the false positives, we observed that 35
arguments include examples as evidence which
are signaled by terms like “example” or “in-
stance”. Thus, the model tends to overemphasize
the presence of particular lexical indicators. Most
of these arguments either refer to an example in
addition to other premises which are already suf-
ficient to support the claim or include an example
for specifying another premise. However, we also
found several false negatives which include exam-
ples as evidence. Thus, the model does not solely
rely on these lexical clues.

Among the 28 false negatives, we found 8 ar-
guments that refer to multi-word named entities
which are not captured by word embeddings. An-
other 5 false negatives support the claim by means
of personal experience and 3 ones cite numbers,
i.e. previous studies or empirical evidence.

6 Discussion

Although the convolutional neural network
achieves promising results, the sufficiency crite-
rion is only one of three criteria that a logically
good argument needs to fulfill. Thus, our ap-
proach is not yet able to separate logically good
from illogical arguments. In our experiments,
we also analyzed arguments with respect to the
relevance and acceptability criterion. In particu-
lar, we conducted several annotation studies with
varying guidelines and two annotators on a set
of 100 arguments. For annotating the relevance
criterion, we presented the annotated structure of
each argument to the annotators and asked them to
assess the relevance of each premise for the claim
individually. In order to evaluate the acceptability
criterion, we asked the annotators to mark each
premise as acceptable if it represents undisputed

common knowledge or a fact. However, we
found that human annotators hardly agree on
these criteria. We obtained low agreement scores
of κ = .435 for the relevance criterion and
κ = .259 for the acceptability criterion, which
is not sufficient for creating a reliable corpus.
In addition, we found that the violations of the
relevance and acceptability criteria are less fre-
quent than violations of the sufficiency criterion in
argumentative essays. We observed that only 15%
of the arguments include a premise that violates
the relevance criterion and 14% of all premises
violate the acceptability criterion. Although this
imbalance explains the low agreement scores
(Artstein and Poesio, 2008, p. 573), it also poses
additional requirements for the size of the corpus
and for computational models.

Although we didn’t obtain adequate agreement
scores for the acceptability and relevance criteria,
we implemented a system that identifies insuffi-
ciently supported arguments in argumentative es-
says with a reasonable accuracy. Given that suf-
ficiency flaws are the most frequent quality de-
fects in argumentative essays, our system repre-
sents an important milestone for realizing argu-
mentative writing support systems.

7 Conclusion

We presented a novel approach for assessing the
quality of natural language arguments. In par-
ticular, we focused on the sufficiency criterion
that each logically good argument needs to ful-
fill. Previous approaches on argument quality
are of limited use for argumentative writing sup-
port systems since they are not capable of rec-
ognizing particular weaknesses in argumentative
texts. To overcome this limitation, we conducted
an empirical study on the applicability of the suf-
ficiency criterion to real arguments in argumen-
tative essays. The inter-annotator agreement of
α = .7673 shows that human annotators substan-
tially agree in this annotation task and confirms
that humans can reliably separate sufficiently sup-
ported arguments from insufficiently supported ar-
guments. We introduced a novel corpus annotated
with the sufficiency criterion for studying logical
mistakes in argumentation. This corpus is freely
available for ensuring the reproducibility of our
results and to encourage future research on ar-
gument quality. Furthermore, we presented the
results of our experiments for automatically rec-
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ognizing if an argument is sufficiently supported
or not. We found that convolutional neural net-
works significantly outperform challenging base-
lines and manually created features with a macro
F1 score of .827 and an accuracy of .843. More-
over, we showed that insufficiently supported ar-
guments frequently exhibit particular lexical indi-
cators. In addition, the feature analysis revealed
that named entities and syntactic features are good
indicators for separating sufficiently supported ar-
guments from insufficiently supported arguments.

For future work, we plan to continue with our
experiments with the relevance and acceptability
criteria. In addition, we plan to integrate our
method in writing environments for evaluating its
effectiveness for supporting authors.
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Abstract

Descriptive document clustering aims to
automatically discover groups of seman-
tically related documents and to assign
a meaningful label to characterise the
content of each cluster. In this paper,
we present a descriptive clustering ap-
proach that employs a distributed repre-
sentation model, namely the paragraph
vector model, to capture semantic similar-
ities between documents and phrases. The
proposed method uses a joint representa-
tion of phrases and documents (i.e., a co-
embedding) to automatically select a de-
scriptive phrase that best represents each
document cluster. We evaluate our method
by comparing its performance to an ex-
isting state-of-the-art descriptive cluster-
ing method that also uses co-embedding
but relies on a bag-of-words represen-
tation. Results obtained on benchmark
datasets demonstrate that the paragraph
vector-based method obtains superior per-
formance over the existing approach in
both identifying clusters and assigning ap-
propriate descriptive labels to them.

1 Introduction

Document clustering is a well-established tech-
nique whose goal is to automatically organise a
collection of documents into a number of seman-
tically coherent groups. Descriptive document
clustering goes a step further, in that each iden-
tified document cluster is automatically assigned
a human-readable label (either a word or phrase)
that characterises the semantic content of the doc-
uments within the cluster. Descriptive clustering

methods have been shown to be useful in a va-
riety of scenarios, including information retrieval
(Bharambe and Kale, 2011), analysis of social net-
works (Zhao and Zhang, 2011), and large-scale
exploration (Nassif and Hruschka, 2013) and visu-
alisation of text collections (Kandel et al., 2012).

A number of previously proposed descriptive
clustering techniques work by extending a stan-
dard document clustering approach. Documents
are typically clustered based on a bag-of-words
(BoW) representation (i.e., the occurrence counts
of the words that appear in each document).
Then, each cluster is labelled using the most com-
monly occurring word or phrase within the clus-
ter (Weiss, 2006). In contrast to this approach,
the recently proposed descriptive clustering ap-
proach (CEDL) (Mu et al., 2016) maps documents
and candidate cluster labels into a common se-
mantic vector space (i.e., co-embedding). The
co-embedding space facilitates the straightforward
assignment of descriptive labels to document clus-
ters. The CEDL method has been shown to gener-
ate accurate cluster labels and achieved improved
clustering performance when compared to stan-
dard descriptive clustering methods. Nonetheless,
the co-embedding is based solely on a BoW rep-
resentation of the documents and is thus limited
in its ability to accurately represent the semantic
similarity between documents.

In this paper, we investigate a specific case of
descriptive clustering that selects a single multi-
word phrase to characterise each cluster of doc-
uments (Li et al., 2008). Firstly, we assume de-
scriptive phrases are to be selected from a can-
didate phrase set extracted from the corpus dur-
ing preprocessing. The proposed method then
follows the co-embedding descriptive clustering
paradigm of the CEDL algorithm. However, in-
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stead of using a BoW representation, we employ
the paragraph vector (PV) (Le and Mikolov, 2014)
model to learn a distributed vector representa-
tions of phrases and documents. These distributed
representations move beyond unstructured BoW
representations by considering the local contexts
in which words and phrases appear within docu-
ments, which provides a more precise estimate of
semantic similarity.

In particular, we present two extensions to
the initial PV-based method that enable mod-
els that learn a common co-embedding space
of documents and phrases. The first extension
jointly learns co-embeddings of documents and
phrases. The second extension constructs ‘pseudo-
documents’ consisting of the lexical context sur-
rounding each occurrence of a particular phrase.
Each of these contexts are treated as separate doc-
ument instance that are associated with a single
embedded vector. In both cases, after clustering
the document embedding vectors, each embedded
phrase is a candidate cluster label. To select the
most appropriate descriptive label amongst these
candidates, we first rank the documents according
to their proximity to each candidate label’s embed-
ding vector and then select the phrase whose rank-
ing maximises the average precision for a given
cluster.

We compare the results obtained by our PV-
based descriptive clustering method against two
methods: spectral clustering (Shi and Malik,
2000), which only identifies clusters (but does not
assign labels to them), and the previously intro-
duced CEDL method (Mu et al., 2016), which car-
ries out both clustering and labelling. Experimen-
tal results based on publicly available benchmark
text collections demonstrate the effectiveness and
superiority of our methods in both clustering per-
formance and labelling quality.

2 Related Work

2.1 Descriptive Clustering

Descriptive clustering methods typically use an
unsupervised approach to firstly group documents
into flat or hierarchical clusters (Steinbach et
al., 2000). Document clusters are then charac-
terised using a set of informative and discrimina-
tive words (Zhu et al., 2006), phrases (Mu et al.,
2016; Li et al., 2008) or sentences (Kim et al.,
2015).

Early approaches to descriptive clustering

followed the description-comes-first (DCF)
paradigm (Osiński et al., 2004; Weiss, 2006;
Zhang, 2009). DCF-based methods work by
firstly identifying a set of cluster labels, and
subsequently forming document clusters by
measuring the relevance of each document to a
potential cluster label. DCF-based approaches
have several shortcomings, which include poor
clustering performance and low readability of
cluster descriptors (Lee et al., 2008; Carpineto et
al., 2009).

More recent developments in descriptive clus-
tering have proposed alternative techniques, which
approach the problems of improving clustering
performance and descriptive label quality from
various different angles. For instance, Scaiella et
al. (2012) identifies Wikipedia concepts in doc-
uments and then computes relatedness between
documents according to the linked structure of
Wikipedia. Navigli and Crisafulli (2010) pro-
pose a method that takes into account synonymy
and polysemy. Their method utilises the Google
Web1T corpus to identify word senses based on
word co-occurrences and computes the similarity
between documents using the extracted sense in-
formation.

More recently, Mu et al. (2016) presented their
co-embedding based descriptive clustering ap-
proach that learns a common co-embedding vec-
tor space of documents and candidate descriptive
phrases. The co-embedded space simplifies the
clustering and cluster labelling task into a more
straightforward process of computing similarity
between pairs of documents and between docu-
ments and candidate cluster labels.

2.2 Distributed Representation

Distributed representation techniques are becom-
ing increasingly important in a number of su-
pervised learning tasks, e.g., sentiment analysis
(Dai et al., 2015), text classification (Dai et al.,
2015; Ma et al., 2015) and named entity recog-
nition (Turian et al., 2010). A number of mod-
els have been proposed to learn distributed word
or phrase representations in order to predict word
occurrences given a local context (Mnih and Hin-
ton, 2009; Mikolov et al., 2013b; Mikolov et al.,
2013a; Pennington et al., 2014). Subsequently, the
PV model was proposed to learn representations
of both words and documents (Le and Mikolov,
2014; Dai et al., 2015). The PV model has been
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shown to be capable of learning a semantically
richer representation of documents compared to
unstructured BoW models. To our knowledge, our
work constitutes the first attempt to use distributed
representation models to co-embed documents and
phrases for unsupervised descriptive clustering.

3 Proposed Descriptive Clustering
Method

As outlined above, the descriptive clustering task
(i.e., grouping documents according to semantic
relatedness and characterising the cluster content
using a representative descriptive phrase) relies
heavily on learning a representation of documents
and phrases that can accurately capture relevant
semantic information. A particularly effective
strategy for descriptive clustering is to jointly map
documents and descriptive phrases together into a
common embedding space (Mu et al., 2016). The
clustering of documents and selection of descrip-
tive phrases for each cluster is then carried out by
calculating the cosine similarities between docu-
ments (to form clusters), and between documents
and descriptive phrases (to determine descriptive
labels) in the learned space. Instead of relying
on the commonly used BoW model, we propose a
novel descriptive clustering approach. Our method
uses similarities computed from distributed joint
embeddings of documents and phrases, which are
learned by considering both the global context
provided by the document and the local context of
the descriptive phrases. We propose two different
strategies to learn these embeddings, as described
below.

3.1 Joint Learning of Document and Phrase
Embeddings

The first strategy jointly learns the distributed rep-
resentations for documents and phrases by rep-
resenting phrases, words, and documents as vec-
tors that are used both to predict the occurrence of
words in given documents (reflecting global doc-
ument content information), and to predict the co-
occurrences of words and phrases within a sliding
window, to reflect the local context information.

We extend the PV model described in Dai et al.
(2015) to simultaneously generate word, phrase
and document embeddings. The objective func-
tion is to maximise the log probability of words
and phrases conditioned on either their global or

local context:
∑

t∈TP
log p(pt|dt) +

1

|Ct|
∑

c∈Ct
log p(pt|c) (1)

+
∑

s∈TW
log p(ws|ds) +

1

|Cs|
∑

c∈Cs
log p(ws|c)

where TP is the set of training phrase instances;
pt ∈ P is the t-th phrase instance; dt denotes
the document corresponding to the t-th training
instance; c denotes a member of the local con-
text Ct = [qt−L, . . . , qt−1, qt+1, . . . , qt+L], which
occurs within a window size of L of the training
instance (|Ct| = 2L) and consists of both words
and phrases qt ∈ P ∪W; likewise, TW is the set
of training word instances; ws ∈ W is the s-th tar-
get word instance; ds denotes the document cor-
responding to the s-th training instance; and Cs is
its local context with |Cs| = 2L. To summarise,
the probability terms p(pt|dt) and p(ws|dt) model
the document content information from a global
level, while p(pt|c) and p(ws|c) model the local
context. There are 2L + 1 conditional probabili-
ties estimated for each training instance.

The probability of a given lexical unit
qt ∈ P ∪W (either a word or a phrase) is mod-
elled using the vector embeddings of the |P|+|W|
words and phrases and the softmax function as fol-
lows:

p(qt|dt) =
exp(u>qtzdt)∑

q∈P∪W exp(u>q zdt)
(2)

p(qt|c) =
exp(u>qtzc)∑

q∈P∪W exp(u>q zc)
(3)

where uqt is a weight vector specific to the tar-
get word or phrase, zdt is the embedding vector
of the document corresponding to instance t, and
zc is the embedding vector of a word or phrase in
the context of qt. Since the document, phrase and
word vectors all use the same weight vector uqt
to predict the target phrase, they are necessarily in
the same vector space.

3.2 Phrase Embeddings via Local Context
Pseudo-Documents

The previous model considers learning an em-
bedding as a multi-objective problem by trying
to predict phrases and words based on the global
and local context. Besides indexing, Equation (1)
treats words and descriptive phrases interchange-
ably. An alternative approach is to treat phrases
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as ‘pseudo-documents’ by using the sets of words
appearing in the local context of each phrase oc-
curence. Specifically, training instances for a
phrase’s embedding vector are constructed by ex-
tracting the local context around each occurrence
of a phrase in the document collection. Using
the augmented training set, consisting of both
the original documents and the additional pseudo-
documents, we can then employ any existing PV
model (Le and Mikolov, 2014; Dai et al., 2015) to
learn the document-phrase co-embeddings.

However, due to the significant differences in
the sizes and numbers of documents and pseudo-
documents, there is a danger that the addition of
the pseudo-documents can have a detrimental ef-
fect on the performance of the model. Thus, we
adopt a two-stage training procedure. Firstly, an
embedding model is trained using only the docu-
ments. Then, we fix the weights of the model and
optimise the phrase embeddings by providing the
pseudo-documents as the input to the model.

We have integrated the above-mentioned pro-
cess with two PV approaches, namely the dis-
tributed memory model (PV-DM) Le and Mikolov
(2014), and the extension of the distributed BoW
model (PV-DBOW) in Dai et al. (2015).

In the PV-DM model, the probability that a tar-
get word will appear in a given lexical context
is conditioned on the surrounding co-occurring
words and also the document:

∑

t∈TW
log p(wt|Ct, dt), (4)

where wt is the target word for instance t,
TW is the set of training word instances,
Ct = [wt−L, . . . , wt−1, wt+1, . . . , wt+L] are con-
text words that occur within a window size of L
words around wt, and dt denotes the document
corresponding to the t-th training instance. The
probability is modelled using a softmax function.

For phrase p, the objective is to maximise the
sum of the log probabilities

∑
t∈Tp log p(wt|Ct, p)

where wt ∈ Tp are the word instances that appear
in local context around the phrase, i.e., Tp is the set
of word instances across all pseudo-documents,
and Ct is the set of words that occur around the t-th
word instance which also occur within the pseudo-
documents for the phrase. Explicitly, the optimal
embedding vector for the phrase is determined by

solving the following optimisation problem:

max
zp

∑

t∈Tp
log

exp(u>wt
xt + v>wt

zp)∑
w exp(u>wxt + v>wzp)

(5)

xt = [x>wt−L
, . . . ,x>wt−1

,x>wt+1
, . . . ,x>wt+L

]>

where xt is the concatenation of all word vectors
in the context of word w and {uw}w and {vw}w
for w. To find an approximate solution, the pa-
rameters of the embedding vector are randomly
initialised and optimised using stochastic gradient
descent; the gradient is calculated via backpropa-
gation (Rumelhart et al., 1986).

The PV-DBOW model simplifies the PV-DM
model by ignoring the local context of words in
the log probability function. The probability that
a target word will appear in a given lexical context
is conditioned solely by the document. Dai et al.
(2015) introduced a modified version of the PV-
DBOW model that treats words and documents
as interchangeable inputs to the neural network.
This enables the model to jointly learn word and
document embeddings in the same space; we de-
note the model as PV-DBOW-W. Essentially, the
objective of the PV-DBOW-W model is a combi-
nation of both the skip-gram model (Mikolov et
al., 2013b) that generates word embeddings and
the PV-DBOW method which is used for learning
document embeddings:

∑

t∈TW
log p(wt|dt) +

1

|Ct|
∑

c∈Ct
log p(wt|c). (6)

To optimise the embedding of a specific phrase,
denoted p, the existing word embeddings remain
fixed, and the objective function is simplified as∑

t∈Tp log p(wt|p) where wt ∈ Tp are word in-
stances that appear in the local contexts around
the phrase. The optimal embedding vector for this
phrase is determined by solving the following op-
timisation problem:

max
zp

∑

t∈Tp
log

exp(u>wt
zp)∑

w exp(u>wzp)
(7)

where the weight vectors {uw}w are fixed. As in
the previous model, the parameters of the embed-
ding vector are randomly initialised and optimised
using stochastic gradient descent.
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3.3 Descriptive Phrase Selection

Given co-embeddings of documents and phrases,
any clustering algorithm can be applied. We
use k-means, with the cosine similarity-based dis-
tance metric, to cluster the documents. Given
the set of documents within each identified clus-
ter G1, . . . ,GK , the document embedding vec-
tors {zd}Nd=1 and the descriptive phrase embed-
ding vectors {zp}Pp=1, we then select a descriptive
phrase that best represents the documents assigned
to a cluster.

A baseline approach for descriptive phrase se-
lection is to select the phrase whose embedding
vector is nearest to the cluster centroid; however,
proximity to the cluster centroid is not always a
good indicator of cluster membership, as it ignores
the location of documents belonging to other clus-
ters. An ideal phrase vector should lie closer to
documents within the cluster than documents out-
side of the cluster. Accordingly, we rank doc-
uments based on their proximity to a candidate
phrase and calculate the average precision of this
ranking (where documents belonging to the given
cluster are the true positives).

For cluster G, we define the cluster membership
indicator for each document as:

yd =

{
1 d ∈ G
0 otherwise

(8)

For a given phrase p, let πp(1) be the index of
the nearest document to the phrase, and πp(i) be
the index of the i-th nearest neighbour. The preci-
sion after the k-nearest documents are retrieved is
Pπp(k) =

1
k

∑k
i=1 yπp(i). The phrase which max-

imises the average precision P p is selected as the
cluster descriptor

p∗ = argmax
p



P p =

1

|G|
∑

k∈|G|
Pπp(k)



 , (9)

where |G| is the number of documents in the clus-
ter.

4 Results

We evaluate the proposed PV-based descriptive
clustering methods in terms of cluster quality and
descriptive phrase selection. Additionally, we
show a visualisation of the co-embedding space in
the supplementary material.

4.1 Datasets
We use two well-known, publicly available
datasets: “Reuters-21578 Text Categorization Test
Collection” from the Reuters newswire (Lewis,
1997), and the “20 Newsgroups” email dataset1.
We pre-process the 20 Newsgroups corpus to re-
move email header information while for both
datasets we extract candidate phrases using Ter-
mine (Frantzi et al., 2000), an automatic term ex-
traction tool.

For the Reuters corpus, we use the complete
document collection for training the PV models.
For evaluation, we use both the training and test-
ing sets of the modApte split, and select the 10
categories with the largest number of documents.
Moreover, we remove documents that belong to
multiple categories, this process results in an eval-
uation set of 8, 009 documents. For the 20 News-
groups dataset, we use the complete set of 18, 846
documents for training the PV models. We remove
words and phrases that only appear in a single
document and then remove any empty documents.
This process results in an evaluation set of 18, 813
documents with 20 categories, organised into 4
higher level parent categories. Table 1 summarises
various characteristics of the employed datasets,
including: a) number of documents, b) number of
candidate phrases and c) category labels.

Table 1: Categories included in the evaluation
subsets. ‘R10’ corresponds to the 10 largest cat-
egories after removing documents with multiple
categories; the number of documents is in paren-
theses. All 20-Newsgroups categories have be-
tween 628 and 997 documents.

Reuters - 8,009 docs - 9,984 words - 11,732 phrases
R10 earn(3923), acq(2292), crude(374), trade(327),

money-fx(293), interest(271), money-supply(151),
ship(144), sugar(122), coffee(112)

20 News - 18,813 docs - 43,285 words - 36,041 phrases
sci crypt, electronics, med, space
comp os.ms-windows.misc, sys.ibm.pc.hardware,

graphics, windows.x, sys.mac.hardware
rec autos, motorcycles, sport.baseball, sport.hockey
mix comp.os.ms-windows.misc, rec.autos,

rec.sport.baseball, sci.med, sci.space
all *

4.2 Paragraph Vector Models
In this section, we provide implementation de-
tails for the three PV models (PV-DBOW-WP,

1http://qwone.com/˜jason/20Newsgroups/
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PV-DBOW-W, and PV-DM), introduce a fourth
model (PV-CAT) and explain the different settings
that we use throughout the experiments. The PV-
DBOW-WP model is used to jointly train phrase,
word and document co-embeddings. For the PV-
DBOW-W and PV-DM models, we use the two-
stage training approach, in which the document
embeddings and softmax weights are trained first,
and then the phrase co-embeddings are trained
using pseudo-documents. A window size of 10
words around the target phrase is used as the lo-
cal context to create the pseudo-documents.

Each PV model has a number of parameters, in-
cluding the dimension of the embedded spaces and
the size of the context window. We set all em-
bedding dimensions to 100. For the PV-DBOW-
W and PV-DBOW-WP model, we use a context
window of 10 words/phrases while for the PV-DM
model a window size of 2 words (we tuned the
size of the context window by applying the two PV
models to a small development set of the Reuters
corpus). This disparity in window size is not sur-
prising since the PV-DM model considers the or-
der of words within the local context and uses dif-
ferent parameters for the vectors at each location
in the context window, Equation (5), whereas an
increased window size does not add additional pa-
rameters to the PD-DBOW model.

We create an additional model, namely PV-
CAT, by concatenating the vector representations
induced by the PV-DBOW-W and the PV-DM
models. This is performed after training the docu-
ment and the phrase vectors. Intuitively, the con-
catenation of the PV-DBOW-W and PV-DM fea-
ture vectors can provide complimentary informa-
tion given that the two models are trained using
a different size of context window (i.e., 10 and 2
words, respectively).

Given that the size of the vocabulary is very
large, computing the softmax function during
stochastic gradient descent is computationally ex-
pensive. For faster training, different optimisa-
tion algorithms can be used to approximate the
log probability function. We use a combina-
tion of negative sampling and hierachical soft-
max via backpropagation (Mnih and Hinton, 2009;
Mikolov et al., 2013b). Specifically, we use neg-
ative sampling and then further optimise the em-
beddings using hierarchical softmax. Although,
these are different optimisation approaches, both
methods can be applied in this ad-hoc manner.

Moreover, we follow the process described in Le
and Mikolov (2014) to tune the learning rate. For
this, we set the initial learning rate to 0.025 and
decrease it linearly during 10 training epochs such
that the learning rate is 0.001 during the last train-
ing epoch.

4.3 Baseline Methods

As our first baseline, we perform spectral clus-
tering based on the affinity matrix produced ac-
cording to the cosine similarity between the stan-
dard term-frequency inverse document (tf-idf) rep-
resentation of the documents. We used the nor-
malised cut (NC) spectral clustering algorithm
proposed by Shi and Malik (2000).

We also compare our proposed method to
the CEDL algorithm (Mu et al., 2016), which
uses a measure of second-order similarity be-
tween phrases and documents, based on their co-
occurrences at the document level, to obtain a
spectral co-embedding. We use the same pa-
rameters suggested in the original publication,
but carried out minor changes to the algorithm
to allow the method to be scaled up to larger
datasets. To compare clustering performance, we
also run the CEDL algorithm without the phrase
co-embeddings.

4.4 Evaluation of Cluster Quality

In this experiment, we evaluate the clustering per-
formance of the methods by comparing automati-
cally generated document clusters against the gold
standard categories. For all methods, we use k-
means clustering with cosine similarity as the dis-
tance metric. Following previous approaches (Xie
and Xing, 2013), we set the number of clusters
equal to the number of gold standard categories.
As evaluation metrics, we use the macro-averaged
F1 score2, and normalised mutual information3.

Table 2 compares the clustering performance
achieved by four PV models (PV-DBOW-WP, PV-
DBOW-W, PV-DM, and PV-CAT) against the per-
formance of the baselines (i.e., the two versions
of the CEDL algorithm and spectral clustering via
normalised cut).

2For each category, the maximum F1 score across the
clusters is used.

3Normalised mutual information MI(G,C)
max{H(G),H(C)} is de-

fined as the mutual information between the automatically
generated clusters and gold standard categories MI(G,C)
divided by the maximum of the entropy of the clusters H(G)
or the categories H(C).
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Table 2: Clustering performance assessed by
correspondence measures to gold standard cate-
gories. NC: spectral clustering via normalised
cut, CE1: CEDL, CE2: CEDL without phrase
co-embeddings, PV1: PV-DBOW-WP, PV2: PV-
DBOW-W, PV3: PV-DM, PV4: PV-CAT.

NC CE1 CE2 PV1 PV2 PV3 PV4
F1 (macro-averaged; higher is better)

R10 0.60 0.54 0.56 0.54 0.66 0.48 0.66
sci 0.89 0.89 0.88 0.91 0.91 0.90 0.92
comp 0.48 0.46 0.55 0.67 0.66 0.63 0.65
rec 0.87 0.86 0.90 0.92 0.92 0.88 0.92
mix 0.93 0.92 0.93 0.95 0.94 0.93 0.95
all 0.56 — — 0.69 0.69 0.66 0.69
all† 0.52 0.48 0.55 0.67 0.67 0.64 0.67

Normalised mutual information (higher is better)
R10 0.42 0.41 0.42 0.47 0.50 0.40 0.51
sci 0.68 0.68 0.66 0.72 0.71 0.70 0.74
comp 0.25 0.22 0.30 0.40 0.39 0.36 0.39
rec 0.69 0.67 0.74 0.78 0.78 0.70 0.78
mix 0.80 0.77 0.79 0.84 0.82 0.80 0.83
all 0.51 — — 0.62 0.62 0.60 0.63
all† 0.50 0.44 0.52 0.63 0.62 0.60 0.64
† Average of 10 random subsets using 10% of each category’s

documents.

The PV-DBOW-W and PV-CAT methods yield
the best clustering performance on the Reuters
dataset. Performance gains over the three baseline
methods range between 6%− 12% (F1 score) and
8% − 9% (normalised mutual information). On
the 20 Newsgroups dataset, the PV-DBOW-WP
and PV-CAT models outperformed the baseline
methods4 by approximately 2%− 21% (F1 score)
and 3% − 18% (normalised mutual information).
Moreover, we note that the performance achieved
by the PV-CAT model exceeds the best results re-
ported in Xie and Xing (2013) (normalised mutual
information of 0.6159 using a multi-grain cluster-
ing topic model).

Finally, we note that co-embedding is not
designed as a mechanism for improving clus-
ter quality. For CEDL, the co-embedding of
phrases reduced the clustering performances in
most datasets. This reduction in performance is
equally observed for the paragraph vector models
when applied to the Reuters dataset: the jointly
trained co-embedding model (i.e., PV-DBOW-
WP) achieved a lower performance than the two-
stage approach PV-DBOW-W (F1 score of 0.56
and 0.66, respectively).

4Our implementation of the CEDL algorithm did not scale
up to the entire dataset (‘all’), but average results on random
subsets were consistent, as shown in the table.

4.5 Evaluation of Cluster Labelling
In this section, we evaluate the cluster labels (i.e.,
multi-word phrases) selected by the proposed PV-
based descriptive clustering methods. As a base-
line approach, we use the CEDL algorithm that
produces a co-embedded space of documents and
phrases5.

For each document cluster, we apply the phrase
selection criterion, Equation (9), to identify the
phrase that best describes the underlying cluster.
Then for each gold standard category, the cluster
having the highest proportion of documents be-
longing to the category is determined. This pro-
cess means some clusters are assigned to multi-
ple categories while other clusters are left unas-
signed. For each assigned cluster, we rank all
documents according to their similarity to the au-
tomatically selected phrase (in the co-embedding
space), where documents within the cluster have
precedence over documents outside the cluster.
We evaluate the quality of the cluster label by
computing the average precision of this ranking in
recalling the gold standard category. The average
precision is maximised when documents closest to
the selected phrase belong to the gold standard cat-
egory. Table 3 shows the selected cluster descrip-
tors aligned to the gold standard categories, the av-
erage precision and mean average precision scores
achieved by the CEDL method and PV-based de-
scriptive clustering models when applied to the
Reuters and the 20 Newsgroups dataset.

The Reuters dataset presents a challenging case
for descriptive clustering methods given that the
distribution of gold standard categories is highly
skewed, i.e., the majority categories (e.g., ‘earn’
and ‘acq’) correspond to more than one clus-
ters while the remaining clusters cover multiple
smaller categories. Nonetheless, we observe that
the automatically selected cluster descriptors are
related to the corresponding gold standard cate-
gories (e.g., ‘import coffee’ and ‘oil export’ for
gold standard category ‘ship’). In practice, the
skewed distribution of gold standard categories
can be addressed by using a larger number of clus-
ters in k-means, or by using a cluster algorithm
more amenable to heterogeneously sized clusters.

The 20 Newsgroups dataset shows a more bal-
anced distribution of categories than the Reuters

5The spectral clustering via normalised cut and the CEDL
algorithm without document and phrase co-embeddings are
document clustering methods but not descriptive clustering
models and thus they are excluded from this experiment.
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Table 3: Cluster descriptions and average precision (as percentages) achieved by descriptive clustering
methods. CE1: CEDL, PV1: PV-DBOW-WP, PV2: PV-DBOW-W, PV3: PV-DM, PV4: PV-CAT. The
average precision metric depends on not only the phrase but also the location of documents relative to
the selected phrase; consequently, the average precision of a phrase may vary among the embeddings.

Category CE1 PV1 PV2 PV3 PV4
earn memotec datum 85 payable april 76 mln oper rev 89 mth jan 77 mln oper rev 88
acq undisclosed sum 80 tender offer 58 undisclosed sum 73 tender offer 70 definitive agreement 70
crude opec oil 92 venezuelan crude oil 47 oil production 88 oil export 79 oil production 91
trade european community 49 trade relation 48 trade problem 75 representative clayton 77 trade problem 79
money-fx bank rate 18 commercial lending rate 13 trade problem 17 deposit rate 22 trade problem 16
interest bank rate 68 commercial lending rate 36 week t 49 deposit rate 53 week t 45
ship european community 8 import coffee 7 raw sugar 15 oil export 11 costa rica 14
sugar european community 67 import coffee 17 raw sugar 79 representative clayton 8 costa rica 34
money-supply bank rate 9 commercial lending rate 15 week t 33 deposit rate 21 week t 37
coffee european community 8 import coffee 43 raw sugar 25 representative clayton 8 costa rica 68
Unused clusters: furman selz report improve earning share takeover offer definitive agreement share takeover offer

loss nil undisclosed term high earning april record revenue growth
bid null group turnover tax profit exclude loss april record
record today current qtr april record mln net mln dividend
present intention net shr profit

Mean average precision 48 36 54 42 54

sci.crypt clipper key 93 key registration 94 back door 95 encryption method 95 back door 96
sci.electronics transistor circuit 87 power amp 90 voltage divider 89 radio shack 86 circuit board 90
sci.med other doctor 93 tech people 95 other treatment 94 other symptom 94 other treatment 95
sci.space earth orbit 94 deep space 95 first spacecraft 95 low earth orbit 94 low earth orbit 96
comp.os.ms-windows.misc trident 8900c 24 enhance mode 62 ms speaker sound driver 60 window version 55 dos app 59
comp.graphics image file 44 art scene 70 art scene 74 swim chip 68 facet based modeller 70
comp.sys.ibm.pc.hardware scsi hard drive 47 ide drive 60 tape drive 51 cmos setup 55 tape drive 52
comp.windows.x application code 56 other widget 85 return value 77 widget name 79 return value 78
comp.sys.mac.hardware apple price 59 mac lc 69 apple price 63 extra box 47 apple price 63
rec.autos auto car 92 luxury sedan 94 same car 92 new car 89 sport car 94
rec.motorcycles other bike 95 cruiser rider 95 same site 94 dod ama icoa nia 89 waterski bike 95
rec.sport.baseball padded bat 88 leadoff hitter 94 playoff team 95 total baseball 91 playoff team 95
rec.sport.hockey hockey playoff 92 cup final 94 nhl results 96 cup final 90 cup final 95
comp.os.ms-windows.misc dos window font 95 auto show 97 dos window 97 dos window 97 dos window 98
rec.autos bmw car 96 other car 97 same car 96 new car 97 other car 97
rec.sport.baseball baseball fan 98 worst team 99 more game 98 last season 98 baseball season 99
sci.med other doctor 94 other medical problem 96 many patient 94 other symptom 93 many patient 95
sci.space earth orbit 94 japanese space agency 95 solar power 94 lunar surface 94 solar power 96
Mean average precision 80 88 86 84 87

corpus, and we note that all descriptive cluster-
ing methods were able to identify meaningful clus-
ter descriptors that have a clear correspondence to
the gold standard categories (e.g., ‘window ver-
sion’ and ‘dos app’ for the category ‘comp.os.ms-
windows.misc’).

With regard to the mean average precision, we
observe that the PV-DBOW-W and PV-CAT mod-
els obtained the best performance. Moreover, the
PV-CAT model achieved statistically significant
improvements over the CEDL baseline in terms
of the average precision across the 28 categories
while no significant6 improvement was observed
for the remaining three PV-based models.

The results that we obtained demonstrate that
the PV-based co-embedding space can effectively
capture semantic similarities between documents
and phrases. An illustrative example of this is
shown in Table 4. In this example, we selected two
documents that neighbour the phrase “user inter-
face” in the PV-CAT co-embedded feature space

6For significance testing, we used a paired sign-test, with
a significance threshold of 0.05 and Bonferroni multiple test
correction for the 4 tests; the uncorrected p-value for the PV-
CAT model is 0.0009.

for the “20 Newsgroups” dataset. It can be noted
that although neither of the two documents explic-
itly contain the input phrase, the first discusses a
semantically similar topic, and the second uses the
acronym GUI, i.e., graphical user interface.

As another example, we generate a two-
dimensional visualisation of the document-phrase
co-embeddings using t-SNE (van der Maaten
and Hinton, 2008) that demonstrates how co-
embedded phrases can be used as ‘landmarks’ for
exploring a corpus. For this example, we use the
‘sci’ categories from the 20 Newsgroup corpus and
select the 200 most frequent phrases in this subset.
As input to t-SNE, we use the chordal distance de-
fined by the cosine similarity in the co-embedding
space and set the perplexity level to 40. Figure 1
in the supplementary material shows the visuali-
sation with the cluster boundaries, location of the
documents and co-embedded phrases.

5 Conclusion

Descriptive document clustering helps informa-
tion retrieval tasks by automatically organising
document collections into semantically coherent
groups and assigning descriptive labels to each
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Table 4: Two documents whose vector embed-
dings were the 5th and 6th nearest neighbours (ac-
cording to the cosine of the angle of the corre-
sponding vectors) to the phrase “user interface” in
the PV-CAT based co-embedded space.
train/comp.windows.x 67337
Does anyone know the difference between MOOLIT and
OLIT? Does Sun support MOOLIT? Is MOOLIT avail-
able on Sparcstations? MoOLIT (Motif/Open Look Intrin-
sic Toolkit allows developers to build applications that can
switch between Motif and Open Look at run-time, while
OLIT only gives you Open Look.
Internet: chunhong@vnet.ibm.com
test/comp.windows.x 68238
Hi there,
I’m looking for tools that can make X programming easy. I
would like to have a tool that will enable to create X mo-
tif GUI Interactivly. Currently I’m Working on a SGI with
forms. A package that enables to create GUI with no cod-
ing at all (but the callbacks).
Any help will be appreciated.
Thanks Gabi.

group. In this paper, we have presented a descrip-
tive clustering method that uses paragraph vec-
tor models to support accurate clustering of doc-
uments and selection of meaningful and precise
cluster descriptors. Our PV-based approach maps
phrases and documents to a common feature space
to enable the straightforward assignment of de-
scriptive phrases to clusters. We have compared
our approach to another state-of-the-art algorithm
employing a co-embedding based on bag-of-word
representations. The PV-based descriptive clus-
tering method achieved superior clustering perfor-
mance on both the Reuters and the 20 Newsgroups
datasets. An evaluation of the selected cluster de-
scriptors showed that our method selects informa-
tive phrases that accurately characterise the con-
tent of each cluster.
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law enforcement
clipper chip
escrow agency
session key
encryption algorithm
key escrow
escrow agent
law enforcement agency
cellular phone
other word
back door
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Figure 1: t-SNE visualisation of the PV-CAT co-embedding of the 20 Newsgroups ‘sci’ categories.
Documents are represented by markers corresponding to the gold standard categories. Text boxes show
the 200 most frequent phrases with nearby co-embedded phrases aggregated together. To show the
correspondence between the categories and the phrase embedding, the text boxes are coloured based on
the majority category of the documents nearest to each phrase. Sets of phrases with no majority category
are left white. Hatch lines in the background denote the boundaries of each cluster, where the hatch
angle (and colour) is based on the cluster. In the embedding space, each cluster is a convex set, but
the t-SNE algorithm preserves local neighbourhoods and may fragment the clusters. (Best viewed with
digital magnification.)
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Abstract

We consider entity-level sentiment anal-
ysis in Arabic, a morphologically rich
language with increasing resources. We
present a system that is applied to com-
plex posts written in response to Ara-
bic newspaper articles. Our goal is to
identify important entity “targets” within
the post along with the polarity expressed
about each target. We achieve signif-
icant improvements over multiple base-
lines, demonstrating that the use of spe-
cific morphological representations im-
proves the performance of identifying both
important targets and their sentiment, and
that the use of distributional semantic clus-
ters further boosts performances for these
representations, especially when richer
linguistic resources are not available.

1 Introduction

Target-specific sentiment analysis has recently be-
come a popular problem in natural language pro-
cessing. In interpreting social media posts, anal-
ysis needs to include more than just whether peo-
ple feel positively or negatively; it also needs to
include what they like or dislike. The task of
finding all targets within the data has been called
“open-domain targeted sentiment” (Mitchell et
al., 2013; Zhang et al., 2015). If we could suc-
cessfully identify the targets of sentiment, it would
be valuable for a number of applications includ-
ing sentiment summarization, question answering,
understanding public opinion during political con-
flict, or assessing needs of populations during nat-
ural disasters.

In this paper, we address the open-domain tar-
geted sentiment task. Input to our system con-
sists of online posts, which can be comprised of
one or multiple sentences, contain multiple enti-
ties with different sentiment, and have different

Figure 1: Online post with annotated target enti-
ties and sentiment (green:pos, yellow:neg).

domains. Our goal is to identify the important
entities towards which opinions are expressed in
the post; these can include any nominal or noun
phrase, including events, or concepts, and they
are not restricted to named entities as has been
the case in some previous work. The only con-
straint is that the entities need to be explicitly men-
tioned in the text. Our work also differs from much
work on targeted sentiment analysis in that posts
are long, complex, with many annotated targets
and a lack of punctuation that is characteristic of
Arabic online language. Figure 1 shows an ex-
ample post, where targets are either labeled posi-
tive (green) if a positive opinion is expressed about
them and negative (yellow) if a negative opinion is
expressed.

To identify targets and sentiment, we develop
two sequence labeling models, a target-specific
model and a sentiment-specific model. Our mod-
els try to learn syntactic relations between enti-
ties and opinion words, but they also make use
of (1) Arabic morphology and (2) entity seman-
tics. Our use of morphology allows us to capture
all “words” that play a role in identification of the
target, while our use of entity semantics allows us
to group together similar entities which may all be
targets of the same sentiment; for example, if a
commenter expresses negative sentiment towards
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the United States, they may also express negative
sentiment towards America or Obama.

Our results show that morphology matters when
identifying entity targets and the sentiment ex-
pressed towards them. We find for instance that
the attaching Arabic definite article Al+ È@ is an
important indicator of the presence of a target en-
tity and splitting it off boosts recall of targets,
while sentiment models perform better when less
tokens are split. We also conduct a detailed anal-
ysis of errors revealing that the task generally en-
tails hard problems such as a considerable amount
of implicit sentiment and the presence of multiple
targets with varying importance.

In what follows, we describe related work (§ 2),
data and models (§ 3 and § 4), and linguistic deci-
sions made for Arabic (§ 5). In § 6, we describe
our use of word vector clusters learned on a large
Arabic corpus. Finally, § 7 presents experiments
and detailed error analysis.

2 Related Work

Aspect-based and Entity-specific Analysis
Early work in target-based sentiment looked at
identifying aspects in a restricted domain: product
or customer reviews. Many of these systems used
unsupervised and topical methods for determining
aspects of products; Hu and Liu (2004) used fre-
quent feature mining to find noun phrase aspects,
Brody and Elhadad (2010) used topic modeling
to find important keywords in restaurant reviews,
and Somasundaran and Wiebe (2009) mined the
web to find important aspects associated with
debate topics and their corresponding polarities.
SemEval 2014 Task 4 (Pontiki et al., 2014) ran
several subtasks for identifying aspect terms and
sentiment towards aspects and terms in restaurant
and laptop reviews.

Entity-specific sentiment analysis has been fre-
quently studied in social media and online posts.
Jiang et al. (2011) proposed identifying sentiment
of a tweet towards a specific named entity, tak-
ing into account multiple mentions of the given
entity. Biyani et al. (2015) studied sentiment to-
wards entities in online posts, where the local part
of the post that contained the entity or mentions of
it was identified and the sentiment was classified
using a number of linguistic features. The entities
were selected beforehand and consisted of known,
named entities. More recent work uses LSTM and
RNN networks to determine sentiment toward as-
pects in product reviews (Wang et al., 2016) and

towards entities in Twitter (Dong et al., 2014; Tang
et al., 2015). SemEval 2016 ran two tasks on senti-
ment analysis (Nakov et al., 2016) and stance (Mo-
hammad et al., 2016) towards pre-defined topics in
Twitter, both on English data.

Open domain targeted analysis In early work.
Kim and Hovy (2006) proposed finding opinion
target and sources in news text by automatic label-
ing of semantic roles. Here, opinion-target rela-
tionships were restricted to relations that can be
captured using semantic roles. Ruppenhofer et
al. (2008) discussed the challenges of identifying
targets in open-domain text which cannot be ad-
dressed by semantic role labeling, such as implic-
itly conveyed sentiment, global and local targets
related to the same entity, and the need for distin-
guishing between entity and proposition targets.

Sequence labeling models became more popu-
lar for this problem: Mitchell et al. (2013) used
CRF model combinations to identify named en-
tity targets in English and Spanish, and Yang and
Cardie (2013) used joint modeling to predict opin-
ion expressions and their source and target spans
in news articles, improving over several single
CRF models. Their focus was on identifying di-
rectly subjective opinion expressions (e.g "I hate
[this dictator]" vs. "[This dictator] is destroy-
ing his country.") Recent work (Deng and Wiebe,
2015) identifies entity sources and targets, as well
as the sentiment expressed by and towards these
entities. This work was based on probablistic soft
logic models, also with a focus on direct subjective
expressions.

There is also complementary work on using
neural networks for tagging open-domain targets
(Zhang et al., 2015; Liu et al., 2015) in shorter
posts. Previous work listed did not consider word
morphology, or explicitly model distributional en-
tity semantics as indicative of the presence of sen-
timent targets.

Related work in Arabic Past work in Arabic
machine translation (Habash and Sadat, 2006) and
named entity recognition (Benajiba et al., 2008)
considered the tokenization of complex Arabic
words as we do in our sequence labeling task.
Analysis of such segmentation schemes has not
been reported for Arabic sentiment tasks, which
cover mostly sentence-level sentiment analysis
and where the lemma or surface bag-of-word rep-
resentations have typically been sufficient.

There are now many studies on sentence-level
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sentiment analysis in Arabic news and social me-
dia (Abdul-Mageed and Diab, 2011; Mourad and
Darwish, 2013; Refaee and Rieser, 2014; Salameh
et al., 2015). Elarnaoty et al. (2012) proposed
identifying sources of opinions in Arabic using a
CRF with a number of patterns, lexical and sub-
jectivity clues; they did not discuss morphology
or syntactic relations. Al-Smadi et al. (2015) de-
veloped a dataset and built a majority baseline for
finding targets in Arabic book reviews of known
aspects; Obaidat et al. (2015) also developed a
lexicon-based approach to improve on this base-
line. Abu-Jbara et al. (2013) created a simple
opinion-target system for Arabic by identifying
noun phrases in polarized text; this was done in-
trinsically as part of an effort to identify opinion
subgroups in online discussions. There are no
other sentiment target studies in Arabic that we
know of. In our experiments, we compare to meth-
ods similar to these baseline systems, as well as to
results of English work that is comparable to ours.

Entity Clusters It has been shown consistently
that semantic word clusters improve the perfor-
mance of named entity recognition (Täckström et
al., 2012; Zirikly and Hagiwara, 2015; Turian
et al., 2010) and semantic parsing (Saleh et al.,
2014); we are not aware of such work for iden-
tifying entity targets of sentiment.

3 Data

We use the Arabic Opinion Target dataset devel-
oped by Farra et al. (2015), which is publicly avail-
able1. The data consists of 1177 online comments
posted in response to Aljazeera Arabic newspaper
articles and is part of the Qatar Arabic Language
Bank (QALB) corpus (Habash et al., 2013; Za-
ghouani et al., 2014). The comments are 1-3 sen-
tences long with an average length of 51 words.
They were selected such that they included topics
from three domains: politics, culture, and sports.

Targets are always noun phrases and they are
either labeled positive if a positive opinion is ex-
pressed about them and negative if a negative
opinion is expressed (as shown in Figure 1). Tar-
gets were identified using an incremental process
where first important entities were identified, and
then entities agreed to be neutral were discarded
(the annotation does not distinguish between neu-
tral and subjective neutral).

The data also contains ambiguous or ‘undeter-

1www.cs.columbia.edu/~noura/Resources.html

The dictator is destroying his country
T T O O O O
N N ∅ ∅ ∅ ∅

Table 1: Example of CRF annotations.

mined’ targets where annotators did agree they
were targets, but did not agree on the polarity. We
use these targets for training our target model, but
discard them when training our sentiment polarity
model. There are 4886 targets distributed as fol-
lows: 38.2% positive, 50.5% negative, and 11.3%
ambiguous. We divide the dataset into a training
set (80%), development set (10%), and blind test
set (10%), all of which represent the three differ-
ent domains. We make the splits available for re-
searchers to run comparative experiments.

4 Sequence Labeling Models

For modeling the data, we choose Conditional
Random Fields (CRF) (Lafferty et al., 2001) for
the ability to engineer Arabic linguistic features
and because of the success of CRF models in the
past for entity identification and classification re-
lated tasks.

We build two linear chain CRF models:

1. Target Model This model predicts a se-
quence of labels ~E for a sequence of input
tokens ~x, where

Ei ∈ {T (target), O(not_target)}

and each token xi is represented by a feature
vector ~fit. A token is labeled T if it is part
of a target; a target can contain one or more
consecutive tokens.

2. Sentiment Model This model predicts a se-
quence of labels ~S for the sequence ~x,

Si ∈ {P (pos), N(neg), ∅(neutral)}

and each token xi is represented by a feature
vector:

( ~fis, Ei);Ei ∈ {T,O}

Additionally, this model has the constraint:

ifEi = T, Si ∈ {P,N}

and otherwise
Si = ∅
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The last constraint indicating that sentiment is
either positive or negative is ensured by the train-
ing data, where we have no examples of target to-
kens having neutral sentiment. The two models
are trained independently. Thus, if target words
are already available for the data, the sentiment
model can be run without training or running the
target model. Otherwise, the sentiment model
can be run on the output of the target predictor.
The sentiment model uses knowledge of whether
a word is a target and utilizes context from neigh-
boring words whereby the entire sequence is opti-
mized to predict sentiment polarities for the tar-
gets. An example sequence is shown in Table
1, where the dictator is an entity target towards
which the writer implicitly expresses negative sen-
timent.

5 Arabic Morphology and Linguistics

5.1 Arabic Morphology
In Arabic, clitics and affixes can attach to the be-
ginning and end of the word stem, making words
complex. For example, in the sentence AëñÊJ. �®�J�A 	̄
‘So they welcomed her’, the discourse conjuction
(so +

	¬), the opinion target (her Aë+), opinion
holder (they ð@+), and the opinion expression itself
(welcomed ÉJ. �®�J�@) are all collapsed in the same
word.

Clitics, such as conjunctions +ð w+, preposi-
tions +H. b+, the definite article È@+ Al+ ‘the’
(all of which attach at the beginning), and posses-
sive pronouns and object pronouns è+ +h Aë+ +hA
‘his/her’ or ‘him/her’ (which attach at the end) can
all function as individual words. Thus, they can be
represented as separate tokens in the CRF.

The morphological analyzer MADAMIRA
(Pasha et al., 2014) enables the tokenization of a
word using multiple schemes. We consider the fol-
lowing two schemes:

• D3: the Declitization scheme which splits
off conjunction clitics, particles and prepo-
sitions, Al+, and all the enclitics at the end.

• ATB: the Penn Arabic Treebank tokeniza-
tion, which separates all clitics above except
the definite article Al+, which it keeps at-
tached.

For a detailed description of Arabic concatenative
morphology and tokenization schemes, the reader
is referred to Habash (2010).

For each token, we add a part of speech feature.
For word form (non-clitic) tokens, we use the part
of speech (POS) feature produced by the morpho-
logical analyzer. We consider the surface word
and the lemma for representing the word form.
For the clitics that were split off, we use a de-
tailed POS feature that is also extracted from the
output of the analyzer and can take such forms as
DET for Al+ or poss_pron_3MP for third person
masculine possessive pronouns. Table 2 shows the
words and part of speech for the input sentence
AëñÊJ. �®�J�A 	̄ ‘so they welcomed her’ fa-istaqbalu-ha,
using the lemma representation for the word form
and the D3 tokenization scheme.

These lexical and POS features are added to
both our target model and sentiment model.

5.2 Sentiment Features
The choice of sentiment lexicon is an impor-
tant consideration when developing systems for
new and/or low-resource languages. We con-
sider three lexicons: (1) SIFAAT, a manually con-
structed Arabic lexicon of 3982 adjectives (Abdul-
Mageed and Diab, 2011), (2) ArSenL, an Arabic
lexicon developed by linking English SentiWord-
Net with Arabic WordNet and an Arabic lexical
database (Badaro et al., 2014), and (3) the En-
glish MPQA lexicon (Wilson et al., 2005), where
we look up words by matching on the English
glosses produced by the morphological analyzer
MADAMIRA.

For the target model, we add token-level binary
features representing subjectivity, and for the sen-
timent model, we add both subjectivity and polar-
ity features.

We also add a feature specifying respectively
the subjectivity or polarity of the parent word of
the token in the dependency tree in the target or
sentiment model.

5.3 Syntactic Dependencies
We ran the CATiB (Columbia Arabic Treebank)
dependency parser (Shahrour et al., 2015) on
our data. CATiB uses a number of intuitive la-
bels specifying the token’s syntactic role: e.g
SBJ, OBJ, MOD, and IDF for the Arabic idafa
construct (e.g �éÓñºmÌ'@ ��
KP president of govern-
ment), as well as its part of speech role. In
addition to the sentiment dependency features
specifying the sentiment of parent words, we
added dependency features specifying the syn-
tactic role of the token in relation to its par-
ent, and the path from the token to the parent,
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Word English Representation POS Token type
f so f+ conj clitic
Astqblw welcomed-they isotaqobal_1 verb lemma
hA her +hA ivsuff_do:3FS clitic

Table 2: Example of morphological representation. The encoded features will be Representation and
POS. The POS for her represents an object pronoun. The word form represented is the lemma.

e.g nom_obj_vrb or nom_idf_nom, as well as the
sentiment path from the token to the parent, e.g
nom(neutral)_obj_vrb(negative) .

5.4 Chunking and Named Entities

The morphological analyzer MADAMIRA also
produces base phrase chunks (BPC) and named
entity tags (NER) for each token. We add fea-
tures for these as well, based on the hypothe-
sis that they will help define the spans for entity
targets, whether they are named entities or any
noun phrases. We refer to the sentiment and tar-
get models that utilize Arabic morphology, sen-
timent, syntactic relations and entity chunks as
best-linguistic.

6 Word Clusters and Entity Semantics

Similar entities which occur in the context of the
same topic or the same larger entity are likely to
occur as targets alongside each other and to have
similar sentiment expressed towards them. They
may repeat frequently in a post even if they do
not explicitly or lexically refer to the same per-
son or object. For example, someone writing
about American foreign policy may frequently re-
fer to entities such as {the United States, America,
Obama, the Americans, Westerners}. Such entities
can cluster together semantically and it is likely
that a person expressing positive or negative sen-
timent towards one of these entities may also ex-
press the same sentiment towards the other entities
in this set.

Moreover, cluster features serve as a denser fea-
ture representation with a reduced feature space
compared to Arabic lexical features. Such fea-
tures can benefit the CRF where a limited amount
of training data is available for target entities.

To utilize the semantics of word clusters, we
build word embedding vectors using the skip-gram
method (Mikolov et al., 2013) and cluster them
using the K-Means algorithm (MacQueen, 1967),
with Euclidean distance as a metric. Euclidean
distance serves as a semantic similarity metric and

has been commonly used as a distance-based mea-
sure for clustering word vectors.

The vectors are built on Arabic Wikipedia 2 on
a corpus of 137M words resulting in a vocabulary
of 254K words. We preprocess the corpus by tok-
enizing (using the schemes described in section 5)
and lemmatizing before building the word vectors.
We vary the number of clusters and use the clus-
ters as binary features in our target and sentiment
models.

7 Experiments and Results

7.1 Experiments
Setup To build our sentiment and target models,
we use CRF++ (Kudo, 2005) to build linear-chain
sequences. We use a context window of +/-2 for all
features except the syntactic dependencies, where
we use a window of +/-4 to better capture syntactic
relations in the posts. For the sentiment model,
we include the context of the previous predicted
label, to avoid predicting consecutive tokens with
opposite polarity.

We evaluate all our experiments on the devel-
opment set which contains 116 posts and 442 tar-
gets, and present a final result with the best mod-
els on the unseen test. For the SentiWordNet-
based lexicon ArSenL, we tune for the sentiment
score threshold and use t=0.2. We use Google’s
word2vec tool3 for building and clustering word
vectors with dimension 200. We vary the number
of clusters k between 10 (25K words/cluster) and
20K (12 words/cluster).

Baselines For evaluating the predicted targets,
we follow work in English (Deng and Wiebe,
2015) and use the all-NP baseline, where all nouns
and noun phrases in the post are predicted as im-
portant targets.

For evaluating sentiment towards targets, we
consider four baselines: the majority baseline
which always predicts negative, and the lexicon

2https://dumps.wikimedia.org/arwiki/20160920/arwiki-
20160920-pages-articles.xml.bz2

3https://github.com/dav/word2vec
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baseline evaluated in the case of each of our three
lexicons: manually created, WordNet-based, and
English-translated. The strong lexicon baseline
splits the post into sentences or phrases by punctu-
ation, finds the phrase that contains the predicted
target, and returns positive if there are more posi-
tive words than negative words, and negative oth-
erwise. These baselines are similar to the methods
of previously published work for Arabic targeted
sentiment (Al-Smadi et al., 2015; Obaidat et al.,
2015; Abu-Jbara et al., 2013).

We run our pipelined models for all morpho-
logical representation schemes: surface word (no
token splits), lemma (no clitics), lemma with ATB
clitics (contain all token splits except Al+), and
lemma with D3 clitics (contains all token splits).
We explore the effect of semantic word clusters
in these scenarios. Finally we show our best-
linguistic (high-resource) model, and the resulting
integration with word clusters.

7.2 Results

Tables 3-5 show the results. Target F-measure is
calculated using the subset metric (similar to met-
rics used by Yang and Cardie (2013), Irsoy and
Cardie (2014)); if either the predicted or gold tar-
get tokens are a subset of the other, the match
is counted when computing F-measure. Overlap-
ping matches that are not subsets do not count (e.g
Qå�Ó 	�̄ñÓ Egypt’s position and ÉJ
K @Qå� @ 	�̄ñÓ Is-
rael’s position do not match.). For this task, in
the case of multiple mentions of the same entity
in the post, any mention will be considered correct
if the subset matches4 (e.g if 	á�
¢�Ê 	̄ Palestine is
a gold target, and 	á�
¢�Ê 	̄ �éËðX state of Palestine
is predicted at a different position in the post, it
is still correct). This evaluation is driven from the
sentiment summarization perspective: we want to
predict the overall opinion in the post towards an
entity.

F-pos, F-neg, and Acc-sent show the perfor-
mance of the sentiment model on only the cor-
rectly predicted targets5. Since the target and sen-
timent models are trained separately, this is meant
to give an idea of how the sentiment model would
perform in standalone mode, if targets were al-
ready provided.

F-all shows the overall F-measure showing the

4We have also computed the performance for mention-
overlap; the difference in target F-measure is 2 points and
consistent across the different systems.

5We exclude targets with ambiguous sentiment whose po-
larity was not agreed on by the annotators.

performance of correctly predicted targets with
correct sentiment compared to the total number of
polar targets. This evaluates the end-to-end sce-
nario of both important target and sentiment pre-
diction.

Best results are shown in bold. Significance
thresholds are calculated for the best performing
systems (Tables 4-5) using the approximate ran-
domization test (Yeh, 2000) for target recall, preci-
sion, F-measure, Acc-sent and F-all. Significance
over the method in the previous row is indicated
by * (p < 0.05),** (p < 0.005),** (p < 0.0005).
A confidence interval of almost four F-measure
points is required to obtain p < 0.05. Our dataset
is small; nonetheless we get significant results.

Comparing Sentiment Lexicons Table 3 shows
the results comparing the different baselines. All
targets are retrieved using all-NP; sentiment is de-
termined using the lexical baselines. As expected,
the all-NP baseline shows near perfect recall and
low precision in predicting important targets. We
observe that the gloss-translated MPQA lexicon
outperforms the two other Arabic lexicons among
the sentiment baselines.

We believe that the hit rate of MPQA is
higher than that of the smaller, manually-labeled
SIFAAT, and it is more precise than the automat-
ically generated WordNet-based lexicon ArSenL.
The performance of MPQA is, however, reliant
on the availability of high-quality English glosses.
We found MPQA to consistently outperform in the
model results, so in our best-linguistic models, we
only show results using the MPQA lexicon.

Comparing Morphology Representations
Looking at table 4, we can see that using the
lemma representation easily outperforms the
sparser surface word, and that adding tokenized
clitics as separate tokens outperforms representa-
tions which only use the word form. Moreover,
upon using the D3 decliticization method, we
observe a significant increase in recall of targets
over the ATB representation. This shows that the
presence of the Arabic definite article È@ Al+ is an
important indicator of a target entity; thus, even if
an entity is not named, Al+ indicates that it is a
known entity and is likely more salient.

The more tokens are split off, the more targets
are recalled, although this comes at the cost of
a decrease in sentiment performance, where the
lemma representation has the highest sentiment
score and the D3 representation has the lowest af-
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Target Sentiment
All-NP Recall Precision F-score F-pos F-neg Acc-sent F-all
Baseline1 Majority 98.4 29.2 45 0 72.4 56.8 12.4
Baseline2 ArSenL 98.4 29.2 45 50.6 64.3 58.6 12.7
Baseline3 SIFAAT 98.4 29.2 45 61 58 59.5 13.1
Baseline4 MPQA 98.4 29.2 45 67 63.7 65.4 14.2

Table 3: Target and sentiment results using baselines; all-NP for targets and lexicons for sentiment.

Target Sentiment
Recall Precision F-score F-pos F-neg Acc-sent F-all

Surface + POS 41 60.6 48.9 62.2 73.6 68.9 32.6
Lemma + POS 48.2** 60.5 53.7* 65.4 77.6 72.8 38.1**

+ATB tokens 52.4* 59.5 55.7 61.3 75.7 70.1 38.2
+D3 tokens 59.6** 55.7* 57.6 64.1 73 69.2 36.1

Table 4: Target and sentiment results using different morphological representations. All models use POS.

ter surface word. We believe the addition of extra
tokens in the sequence (which are function words
and have not much bearing on semantics) gener-
ates noise with respect to the sentiment model. All
models significantly improve the baselines on F-
measure; for Acc-sent, the surface word CRF does
not significantly outperform the MPQA baseline.

Effect of Word Clusters Figures 2 - 5 show the
performance of different morphological represen-
tations when varying the number of word vector
clusters k. (Higher k means more clusters and
fewer entities per semantic cluster.) Adding clus-
ter features tends to further boost the recall of
important targets for all morphological schemes,
while more or less maintaining precision. The dif-
ference in different schemes is consistent with the
results of Table 4; the D3 representation maintains
the highest recall of targets, while the opposite is
true for identifying sentiment towards the targets.
The ATB representation shows the best overall F-
measure, peaking at 41.5 using k=250 (compare
with 38.2 using no clusters); however, it recalls
much fewer targets than the D3 representation.

The effect of clusters on sentiment is less clear;
it seems to benefit the D3 and ATB schemes more
than lemma (significant boosts in sentiment accu-
racy). The improvements in F-measure and F-all
observed by using the best value of k is statisti-
cally significant for all schemes (k=10 for lemma,
k=250 for lemma+ATB, k=500 for lemma+D3,
with F-all values of 40.7, 41.5, and 39.1 respec-
tively). In general, the cluster performances tend
to peak at a certain value of k which balances the

reduced sparsity of the model (fewer clusters) with
the semantic closeness of entities within a cluster
(more clusters).

Figure 2: Target recall vs clusters.

Figure 3: Target precision vs clusters.

Performance of Best Linguistic Model Table
5 shows the performance of our best-linguistic
model, which in addition to the word form and
part of speech, contains named entity and base
phrase chunks, the syntactic dependency features,
and the sentiment lexicon features. The best lin-
guistic model is run using both ATB and D3 to-
kenization schemes, and then using a combined
ATB+D3 scheme where we use D3 for the target
model and remove the extra clitics before piping in
the output to the sentiment model. This combined

1008



Target Sentiment
Recall Precision F-score F-pos F-neg Acc-sent F-all

best-linguistic-ATB 53 62.1 57.2 68.6 79.4 75.1 40.7
best-linguistic-D3 64.2*** 58.8 61.4* 62.7 75.6 70.5* 39.1
best-linguistic-D3+ATB 63.7 58.8 61.4 67.7 80 75.4*** 43.1***

best-linguistic+clusters 66.2 57.8 61.8 70 80 76 44.2

Table 5: Performance of best linguistic model

Figure 4: Target F-score vs clusters.

Figure 5: Sentiment accuracy vs clusters.

scheme results in the best results overall: F-score
of 61.4 for targets, accuracy of 75.4 for sentiment
and overall F-measure of 43.1.

Adding the richer linguistic resources results in
both improved target precision, recall, and senti-
ment scores, with F-measure for positive targets
reaching 67.7 for positive targets and 80 for nega-
tive targets. Performance exceeds that of the sim-
pler models which use only POS and word clus-
ters, but it is worth noting that using only the ba-
sic model with the word clusters can achieve sig-
nificant boosts in recall and F-measure bringing it
closer to the rich linguistic model.

The last row shows the best linguistic model
D3+ATB combined with the clusters (best re-
sult for k=8000, or about 30 words per clus-
ter). Adding the clusters improves target and F-
measure scores, although this result is not statisti-
cally significant. We observe that it becomes more
difficult to improve on the rich linguistic model
using word clusters, which are more beneficial for
low resource scenarios.

Our results are comparable to published work
for most similar tasks in English: e.g Yang
and Cardie (2013) who reported target subset F-
measure of ~65, Pontiki et al. (2014) where best

Figure 6: Overall F-score vs clusters.

Target Sentiment
R P F Acc F-all

Best-D3 63.7 52.3 57.4 69.4 35.4
Best-D3+ATB 63.7 51.8 57.1 70.3 36.8
+clusters 65.6 50.2 56.9 73.6 38.1

Table 6: Target and sentiment results on test data.

performing SemEval systems reported 70-80% for
sentiment given defined aspects, and (Mitchell et
al., 2013; Deng and Wiebe, 2015) for overall F-
measure; we note that our tasks differ as described
in section 2.

Results on blind test Table 6 shows the results
on unseen test data for best-linguistic using D3,
D3+ATB and with clusters using k=8000. The re-
sults are similar to what was observed in the de-
velopment data.

7.3 Error Analysis
We analyzed the output of our best linguistic mod-
els on the development set, and observed the fol-
lowing kind of errors:

Implicit Sentiment This was the most common
kind of error observed. Commenters frequently
expressed complex subjective language without
using sentiment words, often resorting to sarcasm,
metaphor, and argumentative language. We also
observed persistent errors where positive senti-
ment was identified towards an entity because of
misleading polar words; e.g minds Èñ�®ªË@ was
consistently predicted to be positive even though
the post in question was using implicit language
to express negative sentiment; the English gloss
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Example 1
Till when will [the world]- wait before it intervenes against these [crimes against humanity]- committed by this [criminal bloody
regime]- which will not stop doing that... because its presence has always been associated with oppression and murder and crime...
But now it’s time for it to disappear and descend into [the trash of history]-.

Output the world:neg crimes:neg criminal bloody regime:neg the trash of history:neg
Example 2
[Malaysia]+ is considered the most successful country in Eastern Asia, and its economic success has spread to other [aspects of life
in Malaysia]+, for its [services to its citizens]+ have improved, and there has been an increase in [the quality of its health and
educational and social and financial and touristic services]+, which has made it excellent for foreign investments.

Output Malaysia:pos health:pos educational and social:neg financial:neg

Table 7: Good and bad examples of output by SMARTies. Gold annotations for targets are provided in
the text with ‘-’ or ‘+’ reflecting negative and positive sentiment towards targets.

is brains, which appears as a positive subjective
word in the MPQA lexicon. The posts also con-
tained cases of complex coreference where sub-
jective statements were at long distances from the
targets they discussed.

Annotation Errors Our models often correctly
predicted targets with reasonable sentiment which
were not marked as important targets by annota-
tors; this points to the subjective nature of the task.

Sentiment lexicon misses These errors resulted
from mis-match between the sentiment of the En-
glish gloss and the intended Arabic meaning, lead-
ing to polar sentiment being missed.

Primary Targets The data contains multiple en-
tity targets and not all are of equal importance. Out
of the first 50 posts manually analyzed on the dev
set, we found that in 38 out of 50 cases (76%) the
correct primary targets were identified (the most
important topical sentiment target(s) addressed by
the post); in 4 cases, a target was predicted where
the annotations contained no polar targets at all,
and in the remaining cases the primary target was
missed. Correct sentiment polarity was predicted
for 31 out of the 38 correct targets (81.6%).

In general, our analysis showed that our system
does well on posts where targets and subjective
language are well formed, but that the important
target identification task is difficult and made more
complex by the long and repetitive nature of the
posts. Table 7 shows two examples of the trans-
lated output of SMARTies, the first on more well-
formed text and the second on text that is more
difficult to parse.

8 Conclusions

We presented a linguistically inspired system that
can recognize important entity targets along with
sentiment in opinionated posts in Arabic. The tar-
gets can be any type of entity or event, and they are

not known beforehand. Both target and sentiment
results significantly improve multiple lexical base-
lines and are comparable to previously published
results in similar tasks for English, a similarly hard
task. Our task is further complicated by the infor-
mal and very long sentences that are used in Ara-
bic online posts. We showed that the choice of
morphological representation significantly affects
the performance of the target and sentiment mod-
els. This could shed light on further research in
target-specific sentiment analysis for morphologi-
cally complex languages, an area little investigated
previously. We also showed that the use of se-
mantic clusters boosts performance for both target
and sentiment identification. Furthermore, seman-
tic clusters alone can achieve performance close
to a more resource-rich linguistic model relying
on syntax and sentiment lexicons, and would thus
be a good approach for low-resource languages.
Integrating different morphological preprocessing
schemes along with clusters gives our best result.

Our code and data is publicly available6. Fu-
ture work will consider cross-lingual clusters and
morphologically different languages.
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Abstract

Spanish is the third-most used language
on the Internet, after English and Chinese,
with a total of 7.7% of Internet users (more
than 277 million of users) and a huge users
growth of more than 1,400%. However,
most work on sentiment analysis has fo-
cused on English. This paper describes
a deep learning system for Spanish senti-
ment analysis. To the best of our knowl-
edge, this is the first work that explores the
use of a convolutional neural network to
polarity classification of Spanish tweets.

1 Introduction

Knowing the opinion of customers or users has be-
come a priority for companies and organizations in
order to improve the quality of their services and
products. With the ongoing explosion of social
media, it affords a significant opportunity to poll
the opinion of many internet users by processing
their comments. However, it should be noted that
sentiment analysis, which can be defined as the au-
tomatic analysis of opinion in texts (Pang and Lee,
2008), is a challenging task because even different
people often assign different polarities to a given
text. Moreover, sentiment analysis can involve
several Natural Language Processing (NLP) tasks
such as negation or subjectivity detection, which
have not been fully resolved by the NLP research
community to date. On Twitter, the task is even
more difficult, because the texts are small (only
140 characters) and are characterized by a infor-
mal style language utilized by users, many gram-
matical errors and spelling mistakes, slang and
vulgar vocabulary, and plenty of abbreviations.

The shortage of training and testing data is one
of the main bottlenecks for most NLP tasks in gen-
eral, and for sentiment analysis in particular. This

drawback has been partially overcome thanks to
the organization of shared tasks such as Sentiment
Analysis in Twitter Task at SemEval 2013-2015
(Nakov et al., 2013; Rosenthal et al., 2014; Rosen-
thal et al., 2015; Nakov et al., 2016), which pro-
vided annotated corpora of tweets for sentiment
analysis. Most research efforts in this task have
focused on English texts, much less attention has
been given to other languages (Abdul-Mageed et
al., 2011; Kapukaranov and Nakov, 2015). How-
ever, Spanish is the third language most used on
the internet, with a total of 7.7% (more than 277
million of users) and a huge internet growth of
more than 1,400%.

Since its introduction in 2013, the workshop on
Sentiment Analysis at SEPLN (Villena-Román et
al., 2013; Villena-Román et al., 2015b; Villena-
Román et al., 2015a; Garcı́a Cumbreras et al.,
2016) has had as main goal to promote the de-
velopment of methods and resources for sentiment
analysis of tweets written in Spanish. In this task,
the participating systems have to determine the
global polarity of each tweet in the test dataset. A
detailed description of the task can be found in the
overview paper of TASS 2016 (Garcı́a Cumbreras
et al., 2016).

As said above, sentiment analysis of tweets is a
very challenging task because of their small size,
and thereby, they usually contain very scarce con-
textual information. This shortage of contextual
information can be supplied by exploiting knowl-
edge from large collections of unlabelled texts.
Our approach uses a convolutional neural network
(CNN), which uses word embeddings as its only
input. Word embeddings can be very useful for
the sentiment analysis task because they are able
to represent syntactic and semantic information
of words (Collobert et al., 2011; Socher et al.,
2013b). We do not only experiment with randomly
initialized word vectors, but also explore the use of
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pre-trained word embeddings. We also perform a
detailed exploration of the hyper-parameters of the
CNN and their effect on the results.

The paper is organized as follows. In Section 2,
we discuss some related work. Section 3 describes
our approach. The experimental results are pre-
sented and discussed in Section 4. We conclude
in Section 5 with a summary of our findings and
some directions for future work.

2 Related Work

For the past two decades, a remarkable amount of
NLP research has been dedicated to the sentiment
analysis task. Most of early works were focused
on customer reviews of products and services,
while more recently researches usually carry out
the task on data from social media such as tweets
and user comments. Polarity classification can be
performed at three different levels: document, sen-
tence and entity level, being the first one the one
most addressed until now. However, it is increas-
ingly demanded to know the opinion of users on
specific topics (entities).

Both unsupervised and supervised approaches
have been used to tackle this problem, using
standard features such as unigram/bigrams, word
counts or binary presence features, word posi-
tion, POS tags and sentiment features from po-
larity lexicons such as SentiWordNet (Baccianella
et al., 2010), AFFIN (Hansen et al., 2011) or
iSOL (Molina-González et al., 2013). Addition-
ally, attention has recently been directed to more
complex linguistic processes such as negation and
speculation detection (Pang and Lee, 2008; Cruz
et al., 2015).

Only a few works have explored the use of neu-
ral networks for sentiment analysis. Socher and
colleagues (2011) proposed a recursive model that
is able to capture the recursive nature of sentences
and learn auto-encoders for multi-word phrases.
Later, they proposed a matrix-vector recursive
neural network model to learn compositional vec-
tor representations for phrases and sentences of
any length (Socher et al., 2012). A feed-forward
neural network was designed by dos Santos and
Gatti (2014) to learn relevant features from char-
acters, words and sentences for the sentiment anal-
ysis task.

In the four editions of the TASS workshop,
most systems have been based on the use of popu-
lar supervised machine learning classifiers (most

of them used SVM) and very extensive feature
sets, which included lexical and morphosyntactic
features (such as tokens, lemmas, n-grams, PoS
tags) and sentiment features from the polarity lex-
icons (such as ElhPolar (Saralegi and San Vicente,
2013), iSOL (Molina-González et al., 2013) or
AFFIN (Hansen et al., 2011)) to represent the in-
formation of each tweet. Only one of the systems
(Vilares et al., 2015) proposed an approach based
on deep learning, in particular, a neural network
Long Short-Term Memory (LSTM) with a logis-
tic function at the output layer. The evaluation of
the task showed that this deep learning approach
did not overcome the classical classifiers such as
SVM. In TASS, there are two different evalua-
tions: one based on 6 different polarity labels (P+,
P, NEU, N, N+, NONE) and another based on just
4 labels (P, N, NEU, NONE). The state-of-art re-
sult for the task with 4 polarity levels is around
0.70 of accuracy. As expected, the best accuracy
is lower (around 0.67) for the task with 6 polarity
levels. A more in-depth analysis of the results and
the different participating systems can be found in
(Villena-Román et al., 2013; Villena-Román et al.,
2015b; Villena-Román et al., 2015a; Garcı́a Cum-
breras et al., 2016).

To the best of our knowledge, convolutional net-
works have not been applied to the sentiment anal-
ysis of Spanish tweets yet. Several works (dos
Santos and Gatti, 2014; Severyn and Moschitti,
2015) have shown that they can be a valuable ap-
proach for English tweets, and thereby, the same
could be expected also for Spanish. One of the
main advantages of this architecture is that it does
not require syntactic information from sentences.
It should be noted that many tweets are grammat-
ically incorrect, and thereby, those methods not
based on syntactic information, could give better
results.

3 Approach

3.1 The General Corpus

The General corpus was created for the TASS
competition. It consists of 68,000 Spanish tweets,
which were collected from November 2011 to
March 2012, and covers a variety of topics such
as economy, communication, politics, mass me-
dia and culture. The corpus was divided into
training and test sets with a 10%-90% ratio. As
said above, each tweet in the training set is clas-
sified with its polarity, which can take some of
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the following values: strong positive (P+), posi-
tive (P), neutral (NEU), negative (N), strong neg-
ative (N+) and one additional for tweets without
polarity (NONE). The annotation process of the
training set was semi-automatic using a baseline
machine learning model whose annotations were
manually reviewed later by human experts. Al-
though the test set has not been released with
their gold annotations, the evaluation platform of
the TASS competition is still open1 for registered
users. This platform allows participants to submit
new runs and then obtain their scores.

3.2 A baseline approach

To start with, we developed a baseline based on the
most common approach for polarity classification
at document level: the use of very popular super-
vised machine learning algorithms such as SVM
and logistic regression. Our goal is to compare
this baseline with the CNN model.

Instead of using bag-of-words (BoW) to repre-
sent tweets, we exploited word embedding rep-
resentation. A word embedding is a function to
map words to low dimensional vectors, which are
learned from a large collection of texts. At present,
Neural Network is one of the most used learn-
ing techniques for generating word embeddings
(Mikolov et al., 2013). The essential assumption
of this model is that semantically close words will
have similar vectors (in terms of cosine similar-
ity). Word embeddings can help to capture seman-
tic and syntactic relationships of the correspond-
ing words. While the well-known BoW model in-
volves a very large number of features (as many as
the number of non-stopwords words with at least
a minimum number of occurrences in the training
data), the word embedding representation allows a
significant reduction in the feature set size (in our
case, from millions to just 300). The dimensional-
ity reduction is a desirable goal, because it helps in
avoiding over-fitting and leads to a reduction of the
training and classification times, without any per-
formance loss. Moreover, word embeddings have
shown promising results in NLP tasks, such as
named entity recognition (Segura-Bedmar et al.,
2015), relation extraction (Alam et al., 2016), sen-
timent analysis (Socher et al., 2013b) or parsing
(Socher et al., 2013a).

As a preprocessing step, tweets must be
cleaned. First, all links, urls and usernames (these

1www.sepln.org/workshops/tass/2016/private/evaluate.php

last ones can be easily recognized because their
first character is always the symbol @) were re-
moved. Then, the hashtags were transformed to
words by removing its first character (that is, the
symbol #). Taking advantage of regular expres-
sions, the emoticons were detected and classified
in order to count the number of positive and neg-
ative emoticons in each tweet and then were re-
moved from the text. Table 1 shows the list of
positive and negative emoticons, which have been
taken from Wikipedia2. The tweets were con-
verted to lower-case. Moreover, the misspelled ac-
cented letters were replaced by their correct ones
(for instance á with a). We also treated elongations
(that is, the repetition of a character) by removing
the repetition of a character after its second occur-
rence (for example, hoooolaaaa would be trans-
lated to hola). We also took into account laughs
(for instance jajaja) which turned out to be chal-
lenging because of the diverse ways they are ex-
pressed (i.e. expressions like ”ja”, ”jaja”, jajajaja,
”jiji” or jejeje and even misspelled ones like jajja-
jaaj). We addressed this using regular expressions
to standardize the different forms (i.e. jajjjaaj to
jajaja) and then replaced them with the Spanish
translation of laugh: ”risa”. Finally we removed
all non-letters characters and all stopwords present
in tweets3.

Orientation Emoticons
Positive :-), :), :D, :o), :], D:3,

:c), :>, =], 8), =), :},
:ˆ), :-D, 8-D, 8D, x-
D, xD, X-D, XD, =-D,
=D, =-3, =3, BˆD, :’),
:’), :*, :-*, :ˆ*, ;-), ;),
*-), *), ;-], ;], ;D, ;ˆ),
>:P, :-P, :P, X-P, x-p,
xp, XP, :-p, :p, =p, :-b,
:b

Negative >:[, :-(, :(, :-c, :-<, :<,
:-[, :[, :{, ;(, :-||, >:(,
:’-(, :’(, D:<, D=, v.v

Table 1: List of positive and negative emoticons

Once the tweets were preprocessed, they were
tokenized using the NLTK toolkit (a Python pack-

2https://en.wikipedia.org/wiki/List of emoticons
3http://snowball.tartarus.org/algorithms/spanish/stop.txt

1016



age for NLP). To represent the tweets, we used
Cardellino’s pre-trained model (Cardellino, 2016).
This model is available for research community
and was built from several Spanish collection texts
such as Spanish Wikipedia (2015), the OPUS cor-
pora (Tiedemann and Nygaard, 2004) or the An-
cora corpus (Taulé et al., 2008), among others.
It contains nearly 1.5 billion words (Cardellino,
2016). The dimension of its vectors is 300. Then,
for each token, we searched its vector in the word
embedding model. It should be noted that this
model was trained on a collection of texts from
different resources such as Spanish Wikipedia,
WikiSource and Wikibooks, and none of them
contains tweets. Therefore, it is possible that the
main characteristics of the social media texts (such
as informal style language, grammatical errors and
spelling mistakes, slang and vulgar vocabulary,
abbreviations, etc) are not correctly represented in
this model. Indeed, we found that there was a sig-
nificant number of words from the tweets (almost
a 6%) that were not found in this word embedding
model. We performed a review of a small sample
of these words, showing that most of them were
mainly hashtags.

In our baseline approach, a tweet of n tokens
(T = w1, w2, ..., wn) is represented as the centroid
of the word vectors ~wi of its tokens, as shown in
the following equation:

~T =
1

n

n∑

i=1

~wi =

∑N
j=1 ~wj .TF (wj , t)
∑N

j=1 TF (wj , t)
(1)

where N is the vocabulary size, that is, the total
number of distinct words, while TF (wj , t) refers
to the number of occurrences of the j-th vocabu-
lary word in the tweet T.

In addition to using the centroid, we completed
the feature set with the following additional fea-
tures:

• posWords: number of positive words present
in the tweet.

• negWords: number of negative words present
in the tweet.

• posEmo: number of positive emoticons
present in the tweet.

• negEmo: number of negative emoticons
present in the tweet.

For the posWords and negWords features we
used the iSOL lexicon (Molina-González et al.,
2013), a list composed by 2,509 positive words
and 5,626 negative words. As described before,
for the emoticons we used the listed in Table 1,
but also added to the positive ones the number of
laughs detected; and also, we included the num-
ber of recommendations present in the form of a
“Follow Friday” hashtag (#FF), due to its ease of
detection and its positive bias.

We also applied a set of emoticon’s rules as a
pre-classification stage, similar to Chikersal et al.
(2015), in which we determined a first stage polar-
ity for each tweet as follows:

• If posEmo is greater than zero and negEmo is
equal to zero, the tweet is marked as “P”.

• If negEmo is greater than zero and posEmo is
equal to zero, the tweet is marked as “N”.

• If both posEmo and negEmo are greater than
zero, the tweet is marked as “NEU”.

• If both posEmo and negEmo are equal to
zero, the tweet is marked as “NONE”.

Then, the classification of tweets was performed
using scikit-learn, a Python module for machine
learning. This package provides many algorithms
such as Random Forest, Support Vector Machine
(SVM) and so on. One of its main advantages is
that it is supported by extensive documentation.
Moreover, it is robust, fast and easy to use. Ini-
tially, we performed experiments using three dif-
ferent classifiers: Random Forests, Support Vector
Machines and Logistic Regression because these
classifiers often achieved the best results for text
classification and sentiment analysis (Garcı́a Cum-
breras et al., 2016).

After the classification, we made three tests: i)
applying no rule, ii) honoring the polarity defined
by the rule, which means, we keep the predefined
polarity if the tweet was marked as “P” or “N”,
otherwise we take the value estimated by the clas-
sifier, and iii) a mixed approach where we give
each polarity a value (N+: -2; N: -1; NEU,NONE:
0; P: 1; P+: 2) and performed an arithmetic sum of
both the predefined and estimated polarity if and
only if they are not equal; with that for instance,
if the classifier marked a tweet as “N:-1” and the
rules marked it as “P:1” the tweet will be classified
as “NEU:0”.
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In order to choose the best-performing clas-
sifiers, we used 10-fold cross-validation because
there was no development dataset and this strat-
egy has become the standard method in practical
terms. Our experiments showed that, although the
results were similar, the best settings were:

• SVM+MIX: Support Vector Machine and ap-
plying the mixed rules approach.

• LR+MIX: Logistic Regression and applying
the mixed rules approach.

3.3 CNN Model
In this study, the CNN model proposed for senti-
ment analysis is based on the model for sentence
classification described in Kim (2014). The model
has been implemented using Google’s Tensorflow
toolkit. Based on the fact that single level archi-
tectures seem to provide similar performance than
larger networks (Kim, 2014), we decided to de-
sign our network with only a single convolutional
layer, followed by a max-pooling layer and a soft-
max classifier as final layer. In this way, we were
able to reduce the large amount of time needed to
train a CNN on a large corpus as our training set
(with almost 7,000 tweets).

Each tweet was represented by a matrix that
concatenates the word embeddings of its words.
This matrix is the input of the network. In our
experiments, we learned our word embeddings
from scratch, but also we tried with two differ-
ent pre-trained word2vec models: Cardellino’s
model, which was described above, and a pre-
trained model from tweets. To train this second
model of word embeddings, we used the corpus
provided by the TASS organizers (68,000 tweets)
as well as a very extensive collection of 8,774,487
tweets, which we collected during 2014. To do
this, we used the word2vec tool, which imple-
ments the continuous bag-of-words and skip-gram
architectures for computing vector representations
of words (Mikolov et al., 2013). We used the
continuous bag of words model with a context
window of size 8. The size of the pre-trained
model from tweets is 347,970 words. We ran-
domly initialized those words that were not in the
pre-trained model.

In the next layer, convolutions were performed
over the word embeddings using multiple filter
sizes. A filter is a sliding window of a given
number of words. That is, different size win-
dows are treated at a time. Then, a max pooling

layer extracted the most important feature (in our
case, the maximum value) to reduce the compu-
tational complexity. In order to avoid over-fitting,
dropout regularization was also used (Srivastava
et al., 2014). This process randomly drops some
units and their connections from the network dur-
ing training. The final layer is a softmax predic-
tion.

We used 10-fold cross-validation for parame-
ter tuning. Many different combinations of hyper-
parameters of the neural network can be defined.
Summarizing, we experimented with several vari-
ants of the model:

• CNN-rand: all words are randomly initial-
ized and then learned during training.

• CNN-wiki: a model initialized with the word
vectors from Cardellino’s pre-trained model.
The word embeddings as well as the other pa-
rameters are fine-tuned for training.

• CNN-tweets: the network is initialized with
the pre-trained model from tweets. As the
previous model, both word embeddings and
the other parameters are learned during the
training.

4 Results

We adopt the same metrics used in the TASS
shared task, which are the accuracy and the macro-
averaged version of the precision, recall and F1.

One of our main goals is to study the effect
of the word embeddings on the performance of
our CNN model. Table 2 compares the models
based on the type of word-embeddings used as
input of the network: CNN-rand, CNN-wiki and
CNN-Twitter. The other parameters of the model
were set as follows: dimension of word embed-
dings = 300, number of filters = 128, size of fil-
ters = 3,4,5 dropout=0.5, λ = 0, batch size=64
and number of epochs=200. When the classifi-
cation only considers 4 levels (POS, NEU, NEG,
NONE), the best results are provided by the pre-
trained model built from tweets, despite being
much smaller (with less than 350,000 words) than
Cardellino’s pre-trained model (with 1.5 million
of words). Even the word vectors from scratch
(CNN-rand) provided slightly higher performance
than the CNN model trained with Cardellino’s pre-
trained model. This may be due to the language
style of tweets is completely different to the usual
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4 polarity levels
Approach Acc P R F1
CNN-rand 0.544 0.467 0.465 0.466
CNN-wiki 0.528 0.431 0.438 0.434
CNN-twitter 0.578 0.478 0.484 0.481

6 polarity levels
Approach Acc P R F1
CNN-rand 0.431 0.354 0.408 0.379
CNN-wiki 0.442 0.345 0.378 0.361
CNN-twitter 0.427 0.378 0.407 0.392

Table 2: Results for 4 polarity levels (P, N, NEU and NONE) and 6 polarity levels (P+,P,N+,N,NEU and
NONE)

4 polarity levels
Approach Acc P R F1
SVM+MIX 0.652 0.506 0.510 0.508
LR+MIX 0.652 0.508 0.508 0.508
CNN-Twitter 0.637 0.518 0.519 0.518

6 polarity levels
Approach Acc P R F1
SVM+MIX 0.527 0.411 0.449 0.429
LR+MIX 0.527 0.412 0.448 0.429
CNN-twitter 0.427 0.463 0.444 0.538

Table 3: Results of the baseline systems and the best CNN model

one of text collections (for example Wikipedia)
that make up Cardellino’s corpus. As expected,
the results are lower when the classification is per-
formed using 6 polarity levels because there are
less examples in the training set for the classes: P,
P+ and N, N+. The pre-trained model from tweets
still provides the best F1, but the best accuracy is
provided by Cardellino’s pre-trained model. The
worst results are obtained when the word vectors
are randomly initialized.

Once we evaluated the impact of word em-
beddings on the performance of the CNN model,
we decided to focus on the rest of its parame-
ters. The dropout regularization is parameterized
by the dropout probability ∈ [0, 1]. Our experi-
ments using 10-fold cross validation revealed that
the best performance is achieved when it is set
to 0.5. As expected, several experiments showed
that the larger the number of training epochs used,
the more accurate the model. The final number
of training epochs was set to 200. The experi-
ments also show that the learning rate is the pa-
rameter with a largest impact in the prediction per-
formance. The best results were obtained when
this parameter was set to 3. The size of filter also
seems to have a significant effect on results. Thus,
the model achieved better results when our setting
also considered smaller size such as 2. This may
be due to tweets are small texts whose average
number of words is 12 (Li et al., 2011). The best
results were obtained with the filter-size parame-
ter equals to ”2,3,4,5”. In order to determine the
best model, we performed a comprehensive series
of experiments, showing that the best parameter
setting is as follows: dimension of word embed-
dings = 300, number of filters = 300, size of filters
= 2,3,4,5 dropout=0.5, λ = 3, batch size=500 and

year system levels Acc

2014 (Hurtado and Pla, 2014) 4 0.71
6 0.64

2015 (Hurtado et al., 2015) 4 0.72
6 0.66

2016 (Hurtado and Pla, 2016) 4 0.72
6 0.67

CNN-Twitter 4 0.64
6 0.54

Table 4: Top ranking TASS systems

category P
¯

R
¯

F1 Total
N 0.539 0.845 0.658 15,844
NEU 0.096 0.078 0.086 1,305
NONE 0.690 0.478 0.565 21,416
P 0.746 0.673 0.708 22,233

Table 5: CNN model’s results for each polarity (4
polarities)

number of epochs=200.
Table 3 shows the results of our baselines (using

SVM or logistic regression trained with the feature
set and the rules described above). It also presents
the results of our best CNN model. We can ob-
serve that our CNN model provides slightly bet-
ter results in terms of F1 than SVM and logistic
regression. However, in terms of accuracy, these
popular algorithms overcome CNN model. Mean-
while, SVM and Logistic regression provide re-
sults that are extremely similar. It is worth men-
tioning that the logistic regression’s performance
was observably faster than the other two models.
Although our CNN model worked acceptably, its
performance is still far from the top ranking sys-
tems of TASS (see Table4).

Tables 5 and 6 show the scores for each polar-
ity using the best CNN model. As expected, the
lower results are obtained for those classes with
less instances in the training dataset.
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category P
¯

R
¯

F1 Total
N 0.430 0.625 0.510 11,287
N+ 0.471 0.441 0.455 4,557
NEU 0.094 0.132 0.110 1,305
NONE 0.640 0.564 0.600 21,416
P 0.119 0.501 0.193 1,488
P+ 0.808 0.514 0.628 20,745

Table 6: CNN model’s results for each polarity (6
polarities)

5 Conclusion and future work

This paper explores the use of a convolutional neu-
ral network in order to extract relevant features
without the necessity of handcrafted features (such
as stems, named entities, PoS tags, syntactic in-
formation, etc). Our paper shows that a convo-
lutional neural network architecture can be an ef-
fective method for sentiment analysis of Spanish
tweets. Although our performance is lower than
top ranking systems of the TASS workshop, our
CNN model provides promising results.

As future work, we also plan to study if the
inclusion of external features (such as sentiment
features from polarity lexicons) to the final layer
(softmax layer) achieves to improve the results.
Because the General Corpus of the TASS task cov-
ers very different domains, we will perform leave-
one-domain-out cross validation in order to asses
the generality of our CNN model. We also plan to
explore how balanced corpora and bigger datasets
could help to increase the performance classifi-
cation of minority classes in the training dataset.
Moreover, we would like to explore other deep
learning that could effectively deal with the polar-
ity classification of Spanish tweets.
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Abstract

Traditional learning-based approaches to
sentiment analysis of written text use
the concept of bag-of-words or bag-of-n-
grams, where a document is viewed as
a set of terms or short combinations of
terms disregarding grammar rules or word
order. Novel approaches de-emphasize
this concept and view the problem as a
sequence classification problem. In this
context, recurrent neural networks (RNNs)
have achieved significant success. The
idea is to use RNNs as discriminative bi-
nary classifiers to predict a positive or neg-
ative sentiment label at every word posi-
tion then perform a type of pooling to get
a sentence-level polarity. Here, we investi-
gate a novel generative approach in which
a separate probability distribution is esti-
mated for every sentiment using language
models (LMs) based on long short-term
memory (LSTM) RNNs. We introduce a
novel type of LM using a modified version
of bidirectional LSTM (BLSTM) called
contextual BLSTM (cBLSTM), where the
probability of a word is estimated based
on its full left and right contexts. Our ap-
proach is compared with a BLSTM binary
classifier. Significant improvements are
observed in classifying the IMDB movie
review dataset. Further improvements are
achieved via model combination.

1 Introduction

Sentiment analysis of text (also known as opinion
mining) is the process of computationally identify-
ing and categorizing opinions expressed in a piece
of text in order to determine the writer’s attitude
towards a particular topic. Due to the tremendous

increase in web content, many organizations be-
came increasingly interested in analyzing this big
data in order to monitor the public opinion and as-
sist decision making. Therefore, sentiment analy-
sis attracted the interest of many researchers.

The task of sentiment analysis can be seen as a
text classification problem. Depending on the tar-
get of the analysis, the classes can be described by
continuous primitives such as valence, a polarity
state (positive or negative attitude), or a subjectiv-
ity state (objective or subjective). In this work, we
are interested in the binary classification of doc-
uments into a positive or negative attitude. Such
detection of polarity is a non-trivial problem due
to the existence of noise, comparisons, vocabulary
changes, and the use of idioms, irony, and domain
specific terminology (Schuller et al., 2015).

Traditional approaches to sentiment analysis
rely on the concept of bag-of-words or bag-of-n-
grams, where a document is viewed as a set of
terms or short combinations of terms disregarding
grammar rules or word order. In this case, usually,
the analysis involves: tokenization and parsing of
text documents, careful selection of important fea-
tures (terms), dimensionality reduction, and clas-
sification of the documents into categories. For ex-
ample, Pang et al. (2002) have considered different
classifiers, such as Naive Bayes (NB), maximum
entropy (MaxEnt), and support vector machines
(SVM) to detect the polarity of movie reviews.
Pang and Lee (2004) have combined polarity and
subjectivity analysis and proposed a technique to
filter out objective sentences of movie reviews
based on finding minimum cuts in graphs. In
(Taboada et al., 2011; Ding et al., 2008), lexicon-
based techniques are examined, where word-level
sentimental orientation scores are used to evaluate
the polarity of product reviews. More advanced
approaches utilize word or n-gram vectors, like in
(Maas et al., 2011; Dahl et al., 2012).

1023



Novel approaches are mainly based on artifi-
cial neural networks (ANNs). These approaches
de-emphasize the concept of bag-of-words or bag-
of-n-grams. A document is viewed as a set of
sentences, each sentence is a sequence of words.
The sentiment problem is rather considered as a
sequence classification problem. For example, in
(Dong et al., 2014; Dong et al., 2016), RNN clas-
sifiers are used with an adaptive method to select
relevant semantic composition functions for ob-
taining vector representations of sentences. This
is found to improve sentiment classification on the
Stanford Sentiment Treebank (SST). Rong et al.
(2014) have used a RNN model to learn word rep-
resentation simultaneously with the sentiment dis-
tribution. Santos and Gatti (2014) have proposed a
convolutional neural network (CNN) that exploits
from character- to sentence-level information to
perform sentiment analysis on the Stanford Twit-
ter Sentiment (STS) corpus. Kalchbrenner et al.
(2014) have used a dynamic convolutional neu-
ral network (DCNN) with a dynamic k-max pool-
ing to perform sentiment analysis on the SST and
Twitter sentiment datasets. Lai et al. (2015) have
utilized a combination of RNNs and CNNs called
recurrent convolutional neural network (RCNN) to
perform text classification on multiple datasets in-
cluding sentiment analysis on the SST dataset.

Other novel approaches use tree structured neu-
ral models instead of sequential models (like
RNNs) in order to capture complex semantic re-
lationships that relate words to phrases. Despite
their good performance, these models rely on
existing parse trees of the underlying sentences
which are, in most cases, not readily available or
not trivial to generate. For example, Socher et
al. (2013) have introduced a recursive neural ten-
sor network (RNTN) to predict the compositional
semantic effects in the SST dataset. In (Tai et
al., 2015; Le and Zuidema, 2015), tree-structured
LSTMs are used to improve the earlier models.

Another perspective to the sentiment problem
is to assume that each sentence with a positive or
negative class is drawn from a particular proba-
bility distribution related to that class. Then, in-
stead of estimating a discriminative model that
learns how to separate sentiment classes in sen-
tence space, we estimate a generative model that
tells us how these sentences are generated. This
generative approach can be better or complemen-
tary in some sense to the discriminative approach.

The probability distributions over word se-
quences are well known as language models
(LMs). They have also been used for sentiment
analysis. However, no trial is made to go beyond
simple bigram models. For example, Hu et al.
(2007b) have estimated two separate positive and
negative LMs from training collections. Tests are
performed by computing the Kullback-Leibler di-
vergence between the LM estimated from the test
document and the sentiment LMs. Therein, uni-
and bigram models are shown to outperform SVM
models in classifying a movie review dataset. In
(Hu et al., 2007a), a batch of terms in a domain
are identified. Then, two different unigram LMs
representing classifying knowledge for every term
are built up from subjective sentences. A classi-
fying function based on the generation of a test
document is defined for the sentiment classifica-
tion. This approach has outperformed SVM on a
Chinese digital product review dataset. Liu et al.
(2012) have employed an emoticon smoothed un-
igram LM to perform sentiment classification.

In this paper, we compare the generative LM
approach with the discriminative binary classifi-
cation approach. We estimate a separate proba-
bility distribution for each sentiment using long-
span LMs based on unidirectional LSTMs (Sun-
dermeyer et al., 2012) trained to predict a word
depending on its full left context. The probability
scores from positive and negative LMs are used to
classify unseen sentences. In addition, we intro-
duce a novel type of LM using a modified version
of the standard bidirectional LSTM called contex-
tual bidirectional LSTM (cBLSTM). In contrast to
the unidirectional model, this model is trained to
predict a word depending on its full left and right
contexts. Moreover, we combine the LM approach
with the binary classification approach using lin-
ear interpolation of probabilities. We observe that
the cBLSTM LM outperforms both the LSTM
LM and the BLSTM binary classifier. Combining
approaches together yields further improvements.
Models are evaluated on the IMDB large movie
review dataset1 (Maas et al., 2011).

2 Language Models

A statistical LM is a probability distribution over
word sequences that assigns a probability p(wM

1 )
to any word sequence wM

1 of length M . Thus, it
provides a way to estimate the relative likelihood

1http://ai.stanford.edu/∼amaas/data/sentiment/
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of different phrases. It is a widely used model in
many natural language processing tasks, like au-
tomatic speech recognition, machine translation,
and information retrieval. Usually, to estimate a
LM, the assumption of the (n−1)th order Markov
process is used (Bahl et al., 1983), in which a cur-
rent word wm is assumed conditionally dependent
on the preceding (n− 1) history words, such that:

p(wM
1 ) ≈

M∏

m=1

p(wm|wm−1
m−n+1). (1)

This is called an n-gram LM. A conventional ap-
proach to estimate these probabilities is the back-
off LM which is based on count statistics col-
lected from the training text. In addition to the
initial n-gram approximation, a major drawback
of this model is that it backs-off to a shorter his-
tory whenever insufficient statistics are observed
for a given n-gram. Novel state-of-the-art LMs are
based on ANNs like RNNs that provide long-span
probabilities conditioned on all predecessor words
(Mikolov et al., 2010; Kombrink et al., 2011).

3 Unidirectional RNN Models

3.1 Standard RNN
A RNN maps from a sequence of input observa-
tions to a sequence of output labels. The mapping
is defined by a set of activation weights and a non-
linear activation function. Recurrent connections
allow to access activations from past time steps.
For an input sequence xT1 , a RNN computes the
hidden sequence hT1 and the output sequence yT1
by performing the following operations for time
steps t = 1 to T (Graves et al., 2013):

ht = H(Wxhxt +Whhht−1 + bh) (2)

yt = Whyht + by, (3)

where H is the hidden layer activation function,
Wxh is the weight matrix between the input and
hidden layer, Whh is the recurrent weight ma-
trix between the hidden layer and itself, Why is
the weight matrix between the hidden and output
layer, bh and by are the hidden and output layer
bias vectors respectively. H is usually an element-
wise application of the sigmoid function.
3.2 LSTM RNN
In (Hochreiter and Schmidhuber, 1997), an al-
ternative RNN called Long Short-Term Memory
(LSTM) is introduced where the conventional neu-
ron is replaced with a so-called memory cell con-
trolled by input, output and forget gates in order to

overcome the vanishing gradient problem of tradi-
tional RNNs. In this case, H can be described by
the following composite function:

it=σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4)

ft=σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )(5)

ct=ftct−1+it tanh(Wxcxt+Whcht−1+bc)(6)

ot=σ(Wxoxt +Whoht−1 +Wcoct + bo) (7)

ht=ot tanh(ct), (8)

where σ is the sigmoid function, i,f ,o, and c are
respectively the input, forget, output gates, and
cell activation vectors (Graves et al., 2013).

3.3 LSTM LM

In a LSTM LM, the time steps correspond to the
word positions in a training sentence. At every
time step, the network takes as input the word at
the current position encoded as a 1-hot binary vec-
tor. The input vector is then passed to one or more
recurrent hidden layers with self connections that
implicitly take into account all the previous his-
tory words presented to the network. The output of
the final hidden layer is passed to an output layer
with a softmax activation function to produce a
correctly normalized probability distribution. The
target output at each word position is the next word
in the sentence. A cross-entropy loss function is
used which is equivalent to maximizing the likeli-
hood of the training data. At the end, the network
can predict the long-span conditional probability
p(wm|wm−1

1 ) for any word wm ∈ V and a given
history wm−1

1 , where V is the vocabulary. Fig. 1
shows an unfolded example of a LSTM LM over a
sentence <s> w1 w2 w3 </s>, where <s> and
</s> are the sentence start and end symbols.
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Figure 1: Architecture of a LSTM LM predicting
a word given its full previous history.

4 Bidirectional RNN Models

4.1 BLSTM RNN

A BLSTM processes input sequences in both di-
rections with two sub-layers in order to account
for the full input context. These two sub-layers
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compute forward and backward hidden sequences−→
h ,
←−
h respectively, which are then combined to

compute the output sequence y (see Fig. 2), thus:

−→
h t = H(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h
) (9)

←−
h t = H(W

x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h
)(10)

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (11)
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Figure 2: Architecture of a BLSTM, every output
depends on the whole input sequence.

4.2 Contextual BLSTM LM
The standard BLSTM described in Section 4.1 is
not suitable for estimating LMs. This is because
it predicts every output symbol depending on the
whole input sequence. Since a LM indeed uses the
same word sequence in both input and target sides
of the network, it would be incorrect to predict a
word given the whole input sentence. Rather, it is
required to predict a word given the full left and
right context while excluding the predicted word
itself from the conditional dependence. To allow
for this, we modify the architecture of the standard
BLSTM such that it accounts for a contextual de-
pendence rather than a full sequence dependence.
The new model is called a contextual BLSTM or
cBLSTM in short. The architecture of this model
is illustrated in Fig. 3.

 

 

𝑤2   

ℎ  0 

ℎ  0 

ℎ  1 

 

ℎ  1 

 

ℎ  2 

 

ℎ  2 

 

< 𝑠 > 

 
𝑤1 

 

Target Words 

Backward Layer 

Forward Layer 

Inputs Words 

𝑤2   < 𝑠 > 
  

𝑤1 
  

𝑤3  

ℎ  3 
  

ℎ  3 
  

𝑤3   

</𝑠 > 

</𝑠 > 

Figure 3: Architecture of a cBLSTM LM predict-
ing a word given its full left and right contexts.

The model consists of a forward and a backward
sub-layer. The forward sub-layer receives the en-
coded input words staring from the sentence start
symbol up to the last word before the sentence
end symbol (sequence < s> w1 w2 w3 in Fig.
3). The forward hidden states are used to predict
words starting from the first word after the sen-
tence start symbol up to the sentence end symbol
(sequence w1 w2 w3 </s> in Fig. 3). The back-
ward sub-layer does exactly the reverse operation.
The two sub-layers are interleaved together in or-
der to adjust the conditional dependence such that
the prediction of any target word depends on the
full left and right contexts. Note that the hidden
state at the first as well as the last time step needs
to be padded by zeros so that the size of the hid-
den vector is consistent across all time steps. At
the end, the model can effectively predict the con-
ditional probability p(wm|wm−1

1 , wM
m+1) for any

word wm ∈ V , left context wm−1
1 and right con-

text wM
m+1, where V is the vocabulary and M is

the length of the sentence. Table 1 shows the pre-
dicted probability at each time step of Fig. 3. Note
that one direction dependence is maintained at the
start and end of sentence (time steps 1 and 5).

time step predicted conditional prob.
1 p(<s> | w1 w2 w3 </s>)
2 p(w1 | <s> , w2 w3 </s>)
3 p(w2 | <s> w1 , w3 </s>)
4 p(w3 | <s> w1 w2 , </s>)
5 p(</s> | <s> w1 w2 w3)

Table 1: Predicted conditional probabilities at ev-
ery time step of the cBLSTM shown in Fig. 3.

Our implementation of the novel cBLSTM
RNN model is integrated into our publicly avail-
able CURRENNT2 toolkit initially introduced by
Weninger et al. (2014). A new version of the
toolkit with the novel implementations is planned
to be available by the date of publication.

Here, it is worth noting that deep cBLSTM
models can not be easily constructed by stacking
multiple hidden bidirectional layers together. The
reason is that the hidden states obtained after the
first bidirectional layer are dependent on the full
left and right contexts. If these states are utilized
as inputs to a second bidirectional layer that identi-
cally repeats the same operation again, then the de-
sired conditional dependence will not be correctly

2http://sourceforge.net/p/currennt
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maintained. One method to solve this problem is
to create deeper models by stacking multiple for-
ward and backward sub-layers independently. The
fusion of both sub-layers takes place and the end
of the deep stack. The implementation of such a
deep cBLSTM model is not yet available.

5 Dataset

Our experiments on sentiment analysis are per-
formed on the IMDB large movie review dataset
(v1.0) introduced by Maas et al. (2011). The la-
beled partition of the dataset consists of 50k bal-
anced full-length movie reviews with 25k positive
and 25k negative reviews extracted from the Inter-
net Movie Database (IMDB)3.

Since the reviews are in a form of long para-
graphs which are difficult to handle directly with
RNNs, we break down these paragraphs into rela-
tively short sentences based on punctuation clues.
After breaking down the paragraphs, the average
number of sentences per review is around 13 sen-
tences. We randomly selected 1000 positive and
1000 negative reviews as our test set. A similar
number of random reviews are selected as a devel-
opment set. The remaining reviews are used as a
training set. Note that this is not the official dataset
division provided by Maas et al. (2011), where 25k
balanced reviews are dedicated for training and the
other 25k balanced reviews are dedicated for test-
ing. The reasons not to follow the official divi-
sion are firstly that, it does not provide a devel-
opment set; secondly, our proposed models need
much data to train well as revealed by initial exper-
iments; thirdly, it would be very time consuming
to use the whole data as one partition and perform
multi-fold cross validation as usually adopted with
large sentiment datasets (Schuller et al., 2015). A
preprocessed version of the IMDB dataset with the
modified partitioning is planned to be available for
download by the date of publication.

A word list of the 10k most frequent words is se-
lected as our vocabulary. This covers around 95%
of the words in our development and test sets. Any
out-of-vocabulary word is mapped to a special unk
symbol. We use the classification accuracy as our
evaluation measure. The unweighted average F1
scores over positive and negative classes are also
calculated. However, their values are found almost
similar to the classification accuracies. Therefore,
only classification accuracies are reported.

3http://www.imdb.com

6 Related Work

The work of this paper is closely related to several
previous publications that report sentiment classi-
fication accuracy on the same dataset. For exam-
ple, in (Maas et al., 2011), the IMDB dataset is
introduced and a semi-supervised word vector in-
duction framework is used, where an unsupervised
probabilistic model similar to latent Dirichlet allo-
cation (LDA) is proposed to learn word vectors.
Another supervised model is utilized to constrain
words expressing similar sentiment to have sim-
ilar representations in vector space. In (Dahl et
al., 2012), documents are treated as bags of n-
grams. Restricted Boltzmann machines (RBMs)
are used to extract vector representations for n-
grams. Then, a linear SVM model is utilized to
classify documents based on the resulting feature
vectors. Wang and Manning (2012) have used a
variant of SVM with Naive Bayes log-count ratios
as well as word bigrams as features. This modi-
fied SVM model is referred to as NBSVM. In our
previous publication (Schuller et al., 2015), LSTM
LMs trained on 40% of the whole IMDB dataset
are used for performing sentiment analysis. How-
ever, a carefully tuned MaxEnt classifier is found
to perform better. Le and Mikolov (2014) have
used a paragraph vector methodology with an un-
supervised algorithm based on feed-forward neu-
ral networks that learns fixed-length vector rep-
resentations from variable-length texts. All these
publications use the official IMDB dataset division
except for (Schuller et al., 2015), where a similar
division as in this paper is used. To give a compre-
hensive idea about the aforementioned techniques,
we show in Table 2 the classification results as re-
ported in the related publications. Note that only
the results of (Schuller et al., 2015) are directly
comparable to our results.

experiment Accuracy [%]
Maas et al. (2011) 88.89
Dahl et al. (2012) 89.23
Wang and Manning (2012) 91.22
Schuller et al. (2015)∗ 91.55
Le and Mikolov (2014) 92.58

Table 2: Sentiment classification accuracies from
previous publications on the IMDB dataset.

In relation to our novel cBLSTM LM, previ-
ous trials have been made to estimate bidirectional
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LMs. For example, in (Frinken et al., 2012), dis-
tinct forward and backward LMs are estimated
for handwriting recognition. However, no trial is
made to go beyond 4-gram models. In (Xiong et
al., 2016), standard forward and backward RNN
LMs are separately estimated for a conversational
speech recognition task. The log probabilities
from both models are added. In (Arisoy et al.,
2015), bidirectional RNNs and LSTMs are used
to estimate LMs for an English speech recogni-
tion task. Therein, the standard bidirectional ar-
chitecture (as in Fig. 2) is used without modifica-
tions. This causes circular dependencies to arise
when combining probabilities from multiple time
steps. Therefore, pseudo-likelihoods are utilized
rather than true likelihoods which is not perfect
from the mathematical point of view. Not sur-
prisingly, the BLSTM LMs do not yield any gain
over the LSTM LMs. In addition, the perplexity
of such a model becomes invalid. More impor-
tantly, in (Peris and Casacuberta, 2015), bidirec-
tional RNN LMs are used for a statistical machine
translation task. However, only standard RNNs
but not LSTMs are utilized. Furthermore, no de-
tails are provided about how the model is exactly
modified and how the left and right dependencies
are maintained over time steps.

7 Sentiment Classification

7.1 Generative LM-based classifier

Our first approach to sentiment classification is the
generative approach based on LMs. We either use
LSTM LMs described in Section 3.3 or cBLSTM
LMs described Section 4.2. Two separate LMs
are estimated from positive and negative training
data. We use networks with a single hidden layer
that consists of 300 memory cells followed by a
softmax layer with a dimension of 10k + 3. This
is equal to the full vocabulary size in addition to
<s>, </s>, and unk symbols representing sen-
tence start, sentence end, and unknown word sym-
bols respectively. In case of using cBLSTM net-
works, a single hidden layer of 600 memory cells
is used (300 cells for each forward and backward
sub-layer). A cross-entropy loss function is used
with a momentum of 0.9. We use sentence-level
mini-batches of size 100 sentences computed in
parallel. The learning rate is set initially to 10−3

and then decreased gradually to 10−6. The train-
ing process is controlled by monitoring the cross-
entropy error over the development set.

In addition, we use a data sub-sampling
methodology during training. For this purpose,
a traditional 5-gram backoff LM is created out of
the development data, we call this a ranking LM.
Then, all training sentences are ranked according
to their perplexities with the ranking LM. Using
these ranks, we divide our training sentences into
three partitions that reflect the relative importance
of the data, such that the first partition contains
the 100k sentences with the lowest perplexities,
the second partition contains the 100k sentences
with next lowest perplexities. The third partition
contains all the other sentences. Instead of using
the whole training data in each epoch, we use a
random sample with more sentences from the first
two partitions than the third one. After a suffi-
cient number of epochs, the whole training data
is covered. The sub-sampling approach speeds up
the training and makes it feasible with any size of
training data. At the same time, the training is fo-
cused on the relatively more important examples.
In addition, it adds a useful regularization to the
training process. Yet, it leads to a less smoother
convergence. To show the efficiency of our sen-
tence ranking methodology, Table 3 shows exam-
ples of the highest and lowest ranked sentences
from positive and negative training data.

most +ve this is one of the best films
ever made.

least +ve cheap laughs but great value.
most -ve this is one of the worst movies

i have ever seen.
least -ve life’s too short.

Table 3: Examples of the highest/lowest ranked
sentences from positive/negative training data.

After training the neural networks, each of the
positive and negative sentiment LM estimates a
probability distribution for the corresponding sen-
timent, we call these probability distributions p+
and p−. To evaluate the sentiment of some test
review, we calculate the perplexity of each model
p+ and p− with respect to the whole review. Thus,
given a probability distribution p, and a review text
S composed of K sentences S = s1, ..., sK , each
sentence sk : 1 ≤ k ≤ K is composed of a se-
quence of Mk words sk = wk

1 , w
k
2 , ..., w

k
Mk

; we
calculate the perplexity PPp(S) of a model p with
respect to text S. It is a very common measure-
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ment of how well a probability distribution pre-
dicts a sample. A low perplexity indicates that the
probability distribution is good at predicting the
sample. Perplexity is defined as the exponentiated
negative average log-likelihood, or in other words,
the inverse of the geometric average probability
assigned by the model to each word in the sam-
ple. We calculate the Perplexity using Equation
12 if the model p is based on LSTM, and using
Equation 13 if the model is based on cBLSTM:

PPp(S)=

[ K∏

k=1

Mk∏

m=1

p(wk
m|wk

1, w
k
2, ..., w

k
m−1)

]−1
N

(12)

PPp(S) =

[ K∏

k=1

Mk∏

m=1

p(wk
m|wk

1, w
k
2, ..., w

k
m−1;

wk
m+1, w

k
m+2, ..., w

k
Mk

)

]−1
N

,(13)

where N =
∑K

k=1Mk is the total number of
words in text S. Then, a sentiment polarity P ∈
{−1,+1} is assigned to S according to the follow-
ing decision rule:

P(S) =
{

+1 if PPp+(S) < PPp−(S)
−1 otherwise

.

(14)

7.2 Discriminative BLSTM-based Binary
Classifier

Our second approach to sentiment classification
is the discriminative approach based on BLSTM
RNNs described in Section 4.1. We use BLSTM
networks with a single hidden layer that consists of
600 memory cells (300 cells for each forward and
backward sub-layer). Since the BLSTM performs
a binary classification task, only a single output
neuron is used with a sigmoid activation function.
A cross-entropy loss function is used with a mo-
mentum of 0.9. The same training settings like
the case of LSTM/cBLSTM LMs are used includ-
ing sub-sampling with the same partitioning of the
training data. However, a single training dataset
with all positive and negative reviews is used. For
a sentence with a positive sentiment, the target out-
puts are set to ones at all time steps. For a sentence
with a negative sentiment, the target outputs are set
to zeros at all time steps. Since the sigmoid func-
tion provides output values in the interval [0,1],

the network is trained to produce the probability
of the positive class at every time step. Although
the output of the BLSTM network at a given time
step is dependent on the whole input sequence, it
is widely known that every output is more affected
by the inputs at closer time steps in both direc-
tions. Therefore, a sentence-level sentiment can
be deduced by comparing the average probability
mass assigned to the positive class over all time
steps with the average probability mass assigned
to the negative class. Thus, similar to Section 7.1,
given a review text S composed of K sentences,
each sentence is a sequence of Mk words, we cal-
culate two probabilities p+(S) and p−(S) that the
review S has a positive or negative sentiment us-
ing Equations 15 and 16 respectively:

p+(S) =
1

N

K∑

k=1

Mk∑

m=1

p+(w
k
m) (15)

p−(S) =
1

N

K∑

k=1

Mk∑

m=1

(1− p+(wk
m)), (16)

where N is the total number of words in text S,
and p+(wk

m) is the probability that a positive class
is assigned to the word at position m of the kth

sentence of the review S. Then, a sentiment po-
larity P ∈ {−1,+1} is assigned to S according to
the following decision rule:

P(S) =
{

+1 if p+(S) > p−(S)
−1 otherwise

. (17)

7.3 Model Combination
The probability scores of the generative LM-based
classifier and the discriminative BLSTM-based bi-
nary classifier discussed in Sections 7.1 and 7.2
can be combined together via linear interpolation.
This is achieved by first normalizing the probabil-
ities from the LMs such that the probabilities of
positive and negative classes for a given review are
summed up to 1.0. Note that this normalization
property holds by default for the BLSTM-based
binary classifier. Then, the probabilities of both
models are linearly interpolated to obtain a single
probability score. The interpolation weights are
optimized on the development data.

8 Experimental Results

Table 4 shows the results of our experiments.
All the neural networks in this work are trained
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and optimized using our own CURRENNT toolkit
(Weninger et al., 2014). Both the LSTM and
cBLSTM LMs are linearly interpolated with two
additional LMs, namely a 5-gram backoff LM
smoothed with modified Kneser-Ney smoothing
(Kneser and Ney, 1995), and another 5-gram Max-
Ent LM (Alumäe and Kurimo, 2010). These two
models are estimated using the SRILM language
modeling toolkit (Stolcke, 2002).

classification model Acc.
[%]

LSTM LM 89.58
+ 5-grm backoff LM 91.05
+ 5-grm MaxEnt LM 91.23

cBLSTM LM 89.88
+ 5-grm backoff LM 91.38
+ 5-grm MaxEnt LM 91.48

BLSTM binary classifier 90.15
LSTM LM + BLSTM binary classifier 92.35
cBLSTM LM + BLSTM binary classifier 92.83
Schuller et al. (2015) LSTM + 5-grm LM 90.50
Schuller et al. (2015) MaxEnt classifier 91.55

Table 4: Sentiment classification accuracies mea-
sured on the IMDB dataset.

We observe that the use of cBLSTM LM
as a generative sentiment classifier significantly
outperforms the use of both LSTM LM and
BLSTM discriminative binary classifiers. The
statistical significance is verified using a boot-
strap method of significance analysis described by
Bisani and Ney (2004). The probability of im-
provement (POIboot) is around 95%. Combining
LM-based classifiers with BLSTM-based binary
classifiers via linear interpolation of probabilities
achieves further improvements. Our best accuracy
(92.83%) is obtained by combining the cBLSTM
LM classifier with the BLSTM binary classifier.
These results reveal that both the generative and
discriminative approaches are complementary in
solving the sentiment classification problem.

Finally, our best result is better than the best
previously published result in (Schuller et al.,
2015) on the same IMDB dataset with the same
dataset partitioning. Even though they are not di-
rectly comparable, our results are better than other
previously published results reported in Table 2
where a different dataset partitioning is used.

For illustration, Table 5 shows two examples
of positive and negative reviews that could not be

correctly classified by the discriminative BLSTM
binary classifier, however they are correctly clas-
sified by the cBLSTM LM classifier. We can ob-
serve the implicit indication of the writer’s attitude
towards the movie which can not be easily cap-
tured by simple approaches. In this case, learning
a separate long-span bidirectional probability dis-
tribution for each sentiment seems to help.

+ve low budget mostly no name actors.
this is what a campy horror flick
is supposed to be all about. these
are the types of movies that kept
me on the edge of my seat as a kid
staying up too late to watch cable.
if you liked the eighties horror
scene this is the movie for you.

-ve i and a friend rented this movie.
we both found the movie soundtrack
and production techniques to be
lagging. the movie’s plot appeared
to drag on throughout with little
surprise in the ending. we both
agreed that the movie could have
been compressed into roughly an
hour giving it more suspense and
moving plot.

Table 5: Examples of reviews correctly classified
by the cBLSTM LM classifier.

9 Conclusions

We have introduced a generative approach to senti-
ment analysis in which a novel contextual BLSTM
(cBLSTM) LM is used as a sentiment classifier.
Separate LM probability distributions are esti-
mated for positive and negative sentiment from the
training data. Then, probability scores from these
LMs are utilized to classify test data. Results have
been compared with a discriminative sentiment
classification approach that uses a BLSTM-based
binary classifier. We have observed that the gener-
ative cBLSTM LM approach significantly outper-
forms other approaches. Models have been eval-
uated on the IMDB large movie review dataset.
The proposed models have achieved better results
than the previously published results on the same
dataset with the same partitioning. In addition,
indicative comparisons have been made with the
previously published results on the same dataset
with different partitioning. Using model combi-
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nation, we could achieve further performance im-
provement indicating that both the generative and
discriminative approaches are complementary in
solving the sentiment analysis problem. More-
over, we have introduced an efficient methodol-
ogy based on perplexity calculation to partition
the training data according to relative importance
to the learning task. This partitioning methodol-
ogy has been combined with a sub-sampling tech-
nique to efficiently train the neural networks on
large data. As a future work, we plan to investi-
gate deeper cBLSTM as well as hybrid recurrent
and convolutional models. Another direction is to
experiment with pre-trained word vectors.
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Abstract

We investigate the task of open domain
opinion relation extraction. Given a large
number of unlabelled texts, we propose an
efficient distantly supervised framework
based on pattern matching and neural net-
work classifiers. The patterns are de-
signed to automatically generate training
data, and the deep learning model is de-
signed to capture various lexical and syn-
tactic features. The result algorithm is fast
and scalable on large-scale corpus. We test
the system on the Amazon online review
dataset, and show that the proposed model
is able to achieve promising performances
without any human annotations.

1 Introduction

Opinion mining systems aim to detect and ex-
tract opinion-related information from texts. With
the help of natural language processing algo-
rithms and large-scale user generated contents, re-
searchers could take a closer look at how peo-
ple express their opinions on various objects and
topics. Such observations are important both for
applications (e.g., recommendation and retrieval)
and linguistic studies.

In this paper, we address the task of opin-
ion relation extraction. The task tries to identify
opinion expressions (words indicating sentiments,
emotions and comments), opinion targets (objects
of opinions) and their relations (what opinion on
which target). The following are two examples.

1. The unit is [well designed] and [per-
fect reception].

2. The Passion of The Christ will [touch
your heart].

Opinion relations in the two sentences are (“well
designed”, “unit”), (“perfect reception”, “unit”),
and (“touch your heart”, “The Passion of The
Christ”). Extracting opinion bearing relations is
usually the first step towards fine-gained analysis
of opinion in texts, and plays an important role
in other sentiment related applications (e.g., senti-
ment summarization). The goal of this paper is to
extract opinion relations from open domain large-
scale opinion bearing texts.

Previous works on fine-grained opinion infor-
mation extraction have achieved notable success
on many aspects: various domains were exam-
ined (Pontiki et al., 2015), different types of re-
lations were studied (Ganapathibhotla and Liu,
2008; Narayanan et al., 2009; Wu et al., 2011),
and both supervised and unsupervised (pattern-
based) algorithms were applied. But we have ob-
served some difficulties when trying to use exist-
ing methods. The pattern based methods (both
lexical patterns and syntactic patterns) are simple,
fast, and scalable on large-scale datasets. How-
ever, the robustness of patterns is usually question-
able in practice. For example, syntactic patterns
are sensitive to errors in parse trees, which are
common in user generated contents. Lexical pat-
terns either have limited coverage (e.g., fixed set
of patterns (Riloff and Wiebe, 2003)), or hard-to-
control noise (e.g., bootstrapping approaches (Qiu
et al., 2011)). On the other hand, supervised mod-
els can achieve better performances than patterns
on manually labeled datasets, but it is often diffi-
cult to obtain large number of annotations for the
relation extraction task, and the trained models are
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also limited to specified domains. Thus, we still
need an algorithm to better combine the power of
syntactic and lexical patterns, while reduce man-
ual annotations.

Another problem is that many existing systems
rely on general purpose opinion lexicons to se-
lect candidate relations. If an opinion expression
is not recognized by the lexicon, the systems are
unable to extract the related relations. As an ex-
ample, one weakness of many existing lexicons is
the lack of support on multiword expressions (e.g.,
“more than what I expected”, “honest to the book”
and “adrenaline pumping”), which are common in
opinion bearing texts. Another example is that
some true expressions could be ignored either due
to errors from POS taggers and syntactic parsers.
Thus, to enlarge the coverage of opinion relation
extraction, we need some method to better detect
opinion expressions.

Regarding above problems, we make efforts to
contribute to following aspects.

First, we propose a distantly supervised algo-
rithm for open domain opinion relation extrac-
tion. The algorithm first applies domain inde-
pendent patterns to get a set of opinion relations,
then trains a classifier on them. We show that,
although the relations from pattern matching are
not as accurate as gold standard annotations, the
distantly supervised classifier still improves per-
formances. Our algorithm significantly outper-
forms the double propagation algorithm (Qiu et
al., 2011), which is the state-of-the-art unsuper-
vised opinion relation extraction system.

Second, we develop a neural network model to
learn representations for lexical and syntactic con-
texts. The model uses bidirectional LSTMs to cap-
ture global information and convolutional neural
networks to get local low dimensional feature em-
beddings. Comparing with other neural network
models on relation extraction, we learn representa-
tions for different contexts explicitly, which is in-
spired by features in traditional relation classifiers.
Empirical results show that the proposed model
outperforms a strong logistic regression baseline,
which uses handcrafted features as state-of-the-art
supervised relation classifiers.

Third, we explore an unsupervised classifier to
detect multiword opinion expressions. Given an
expression, the classifier looks adjacent words and
predicts whether it is an opinion expression. The
new classifier helps us to discover opinion expres-

sions which are not in general purpose opinion lex-
icons, and benefits the relation extractor.

We aim to make all algorithms simple, fast
and scalable for large-scale corpus. Our sys-
tem is tested on Amazon review data which con-
tains 15 different domains and 33 million reviews.
The output database contains 72.5 million pairs
of opinion relations. Extensive experiments have
been conducted on various aspects of the algo-
rithm, and the performances of the proposed un-
supervised models are even competitive with pre-
vious supervised models.

2 Related Works

Opinion relation extraction is an important task for
fine-grained sentiment analysis. If human anno-
tations are provided (e.g. MPQA corpus (Deng
and Wiebe, 2015)), we could formulate the task
into a supervised relation extraction problem as
(Kobayashi et al., 2007; Johansson and Moschitti,
2013). Two types of models have been applied:
pipeline models which first extract candidates of
opinion expressions and targets then identify cor-
rect relations (Wu et al., 2009; Li et al., 2010;
Yang and Cardie, 2012), and joint models which
extract opinion expressions, targets and relations
using a unified joint model (Yang and Cardie,
2013; Yang and Cardie, 2014). One consideration
of applying supervised methods is their dependen-
cies on the domains and human annotations.

Semi-supervised and unsupervised models are
also applied for extracting opinion relations. Ap-
proaches include rule-based bootstrapping (Qiu et
al., 2011), graph propagation algorithms (Xu et al.,
2013; Liu et al., 2014; Brody and Elhadad, 2010),
integer programming (Lu et al., 2011), and proba-
bilistic topic models (Titov and McDonald, 2008;
Mukherjee and Liu, 2012).

Our model is inspired by previous distantly su-
pervised algorithms (Snow et al., 2004; Mintz et
al., 2009). They use relations from WordNet or
knowledge bases as distant supervision. Since
we don’t have similar resources for opinion rela-
tion extraction, we use patterns to generate rela-
tions. Neural network classifiers are popular for
relation extraction recently. Many of them fo-
cus on fully supervised settings, recurrent neu-
ral networks (RNN) and convolutional neural net-
works (CNN) (Vu et al., 2016; Zeng et al., 2015;
Xu et al., 2015a; Xu et al., 2015b; Zhang and
Wang, 2015), sequence models and tree models
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are investigated (Li et al., 2015; dos Santos et
al., 2015). One similar network structure to our
model is proposed in (Miwa and Bansal, 2016).
They jointly extract entities and relations using
two LSTM models. Another recent work (Jeb-
bara and Cimiano, 2016) uses stacked RNNs and
CNNs for aspect and opinion detection. Different
from models there, we will learn representations
for different lexical and syntactic features explic-
itly. Our formulation follows the features in tradi-
tional relation classifiers, which helps to interpret
the learned vectors.

A closely related task is aspect-based opin-
ion mining (Zhao et al., 2010; Yu et al., 2011;
Wang et al., 2015). Instead of locating the opin-
ion expressions, aspect-based opinion mining di-
rectly analyzes polarities of different opinion tar-
gets. The targets are usually constrained to be
some predefined set. Shared tasks (SemEval2014,
SemEval2015) have been held on the task, and
various systems are proposed and evaluated (Pon-
tiki et al., 2014; Pontiki et al., 2015). Comparing
with aspect-based opinion mining, we will extract
opinion expressions which are more informative,
and we won’t constrain opinion target types which
helps us to handle open domain texts.

3 The Approach

Given an input sentence s = w1, w2, · · · , wn,
where wi is a word, the opinion relation ex-
traction task outputs (O, T ) pairs, where O =
wi, wi+1, . . . , wj is an opinion expression, T =
wk, wk+1, . . . , wl is an opinion target and the pair
(O, T ) is an opinion relation which asserts that
opinion O is directed to target T 1. Both O and
T could be multiword expressions.

3.1 Patterns

Syntactic patterns have been shown to be effec-
tive for relation extraction. They are fast and can
generalize well across domains, which are highly
desirable for the open domain large-scale relation
extraction task. However, despite of their advan-
tages, two concerns are often raised: syntactic
trees could be unreliable due to noise in texts and
parsing errors, and the coverage of patterns is lim-
ited. To tackle the first problem, we deploy strong
constraints on patterns in order to guarantee the
quality of output. For the second problem, we en-

1We assume O, T are non-overlapped, and their distance
in s is less than a threshold (10 in all experiments).

large the coverage by using a distantly supervised
classifier (Section 3.2) and an opinion expression
classifier (Section 3.3)

Table 1 lists the patterns used in our system.
Like (Qiu et al., 2011), patterns are based on the
dependency tree of input sentences, which ba-
sically capture adjective-noun, verb-complement
and adverb-verb relations. The notation w1

l−→ w2

denotes that there is a dependency relation be-
tween word w1 and w2 with dependency relation
type l. For example, the pattern P1 is activated if
w1 is the parent of w2 in the dependency tree, and
the dependency type is amod or dep.

In order to overcome noise and errors in depen-
dency trees, we constrain all patterns by prede-
fined part-of-speech (POS) tag sets and a general
purpose opinion lexicon L. For example, the pat-
tern P1 only accepts nouns and adjectives as ar-
guments, and the adjectives are required to be an
opinion word in L.

We also design the patterns to be able to handle
multiword opinion expressions and targets (about
30% of all annotated expressions). Two cases are
considered here. First, when two words match a
pattern, we expand them to the smallest phrases
containing them. It helps to collect some lo-
cal contexts of opinion relations. For example,
in pattern P4, the matching words “case” and
“choice” are expanded to “the case” and “an ex-
cellent choice”. Second, a relation pair could be
compiled to a new opinion expression, which may
have relations with other opinion targets. For ex-
ample, in pattern C2, (“perfectly”, “fit”) is a re-
lation, and it can be compiled into “fit perfectly”
which appears in a new relation (“fit perfectly”,
“the case”). The compiled expressions can bring
more informative relations which are ignored in
previous works.

As an alternative of pattern matching, we also
investigate the bootstrapping setting like (Qiu et
al., 2011). In this setting, the algorithm is allowed
to add new words to the opinion lexicon, and use
the updated lexicon for successive pattern match-
ing. While the bootstrapping could discover new
opinion words which are not in the original lexi-
con, we find that the errors caused by newly added
words are hard to control, and the advantages of
bootstrapping are suppressed by the noise as the
corpus becomes large. We will show (in the exper-
iment section) that the accuracy drops 30% com-
paring with the direct pattern matching.
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Name Pattern Output Example

P1 w1

amod
dep−−−→ w2

w1.pos ∈ NOUN, w2.pos ∈ ADJ

T = w1.np
O = w2

It is a [cool] case.
case amod−−−→ cool

P2 w1

acomp
xcomp−−−→ w2

w1.pos ∈ VERB, w2.pos ∈ ADJ

T = w1.vp
O = w2

The case looks [great].
looks xcomp−−−→ great

P3 w1
advmod−−−−→ w2

w1.pos ∈ VERB, w2.pos ∈ADV
T = w1

O = w2

The cover matches [perfectly].
matches advmod−−−−→ perfectly

P4

w1
nsubj−−−→ w2

w1.pos ∈ NOUN,
w2.pos ∈ NOUN or VERB or ADJ
has a coplua verb between w1 and w2

T = w1.np
(O = w2.np
O = w2.vp
O = w2.adjp)

This case is [an excellent choice].
case nsubj←−−− choice

C1
w1

conj←−−− (O′, T ′)
O′.pos. ∈ ADJ or ADV
w1.pos ∈ ADJ or ADV

T = T ′

O = w1

The case looks [great] and very [cute].
cute conj←−−− (great, looks)

C2
(O′, T ′)

nsubj−−−→ w1

w1.pos ∈ NOUN, T ′.pos ∈ VERB
O′.pos ∈ ADV, T ′ and O′ are adjacent

T = w1

O = T ′O′
The case [fits perfectly].
(perfectly, fits) nsubj−−−→ the case

Table 1: Syntactic patterns in the system. We denote POS tag sets: NOUN ={NN, NNS}, VERB = {VB, VBD, VBN,
VBP, VBZ}, ADJ = {JJ, JJR, JJS}, ADV = {RB, RBR, RBS}. wi.pos is the POS tag of wi. wi.np (wi.vp, wi.adjp)
is the smallest noun (verb, adjective) phrase containing wi (return wi if no such phrase exists). T, T ′ are opinion targets, O, O′

are opinion expressions. “(O′, T ′)→” and “← (O′, T ′)” represent dependency relations on words O′ and T ′ respectively.

3.2 Distant Supervision

Despite of the high precision, one well-known
disadvantage of pattern-based methods is the low
coverage. Consider the following example,

Ordered the k9ballistics Crate Pad and I
am [so pleased].

No pattern in Table 1 is applicable on relation (“so
pleased”, “Ordered the k9ballistics Crate Pad”),
although it could be inferred from the context. In
fact, the two expressions are close in distance, and
“Ordered the k9ballistics Crate Pad ” is the only
possible object of “please” in the sentence. Many
similar cases appear in online review corpus which
downgrade the performance of patterns. To fur-
ther explore those relations, we develop distantly
supervised classifiers to integrate various lexical
and syntactic contexts. Our experiments show that
classifiers help to increase coverage of patterns by
20%.

Given a candidate relation x = (O, T )
in sentence s, the classifier outputs probability
p(y|x), y ∈ {1, −1} telling whether x is a valid
opinion relation. Since manually labelled corpus
are costly and difficult to obtain for open domains,
we would prefer unsupervised classifiers. On the
other side, the pattern matching can generate a set
of opinion relations without any human annota-

tions. Although the relations are not completely
correct, they are almost free to collect and easily
amount to a large set. Thus, we can take the re-
lations from the pattern matching as the distant
supervision, and hope the broad coverage could
overcome the noise.

Formally, we take all relations extracted by pat-
terns as positive samples. For each positive sam-
ple (O, T ), we add a negative sample (O, T ′) for
T ′ ̸= T (T ′ is NP, VP or ADJP). Similarly, we
add negative samples (O′, T ) for all O′ ̸= O. At
test time, we consider all VP and ADJP in s which
contain at least one word in the general opinion
lexicon L as candidate opinion expressions, all NP
and VP as candidate opinion targets, and all possi-
ble pairs between them are candidate relations.

Our distantly supervised classifier is based on
a neural network. Different from most previ-
ous deep learning models, the classifier learns
representations for different lexical and syntac-
tic contexts explicitly, which is inspired by fea-
tures in traditional (non-neural-network-based) re-
lation classifiers. We would observe from experi-
ments that knowledge form previous feature en-
gineering works can help neural network mod-
els to achieve better performances. Before ex-
plaining the model, we refresh some notations
first. For x = (O, T ) in sentence s, where
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Figure 1: Representation learning of lexical and syntactic contexts. The left hand side is the five CNNs
and the sentence level biLSTM for lexical contexts. For a word w, operator “⊕” concatenates word/POS
embeddings of w and the output vectors of the biLSTM on w. The right hand side is the biLSTM for
syntactic contexts. wp1, . . . , wp4 is the dependency path D, wp3 is the lowest common ancestor of head
words of O and T .

O = wi, . . . , wj , T = wk, . . . , wl, denote other
parts of s to be L = w1, . . . , wi−1, B =
wi+1, . . . , wk−1, R = wl+1, . . . , wn, where L, R
are the left and right contexts of x, B is the con-
text between O and T 2. Let D = wp1, . . . , wpm

be the path connecting head words of O and T in
the dependency tree.

To capture lexical contexts of x, we use five
convolutional neural networks (CNN) to learn rep-
resentations for L,O, B, T,R. Take B as an ex-
ample, the output hB ∈ Rd is the result of a single
layer convolution of inputs with max-pooling. The
input of the CNN includes word and POS tag em-
beddings of wi+1, . . . , wk−1. The five local CNN
models can be independently trained before mak-
ing the final predictions, however, it ignores global
information of the sentence, and also the poten-
tial sharing of features among local models. In or-
der to incorporate global structures, we build the
five local models on top of a sentence level bidi-
rectional long short term memory network (biL-
STM). The recurrent structure and memory mech-
anism of biLSTM can propagate and share long
distance features of s. We take outputs of mem-
ory cells as inputs of the CNN models (in ad-
dition to the embeddings). All representations
hL,hO,hB,hT ,hR use the same network struc-
ture in our experiments. Finally, to make a pre-
diction on y, we use a softmax function p(y|x) =
1
Z exp{θ⊺Φ(x, y)} on the weighted averaged fea-

2For simplicity, we assume O appears before T . In the
implementation, an indicator dimension is set to identify
whether O appears first.

ture vector Φ(x, y),

Φ(x, y) =aLhL + aOhO + aBhB + aThT

+aRhR,

where aL, aO, aB, aT , aR ∈ R, θ ∈ Rd are pa-
rameters of the model.

We also try to incorporate dependency path D
into the model as suggested by (Xu et al., 2015a;
Xu et al., 2015b). We use a similar bidirectional
LSTM like (Xu et al., 2015b), and concatenate the
final outputs of the forward LSTM and the back-
ward LSTM to get feature representation hD ∈
Rd. The experiments show that, however, hD

can not get further performance gains. We sus-
pect that the errors from dependency parsing lim-
ited the contribution of this feature.

3.3 Opinion Expression Classifier
In above pattern matching and distant supervision
algorithms, a candidate opinion expression is ex-
tracted if it contains at least one opinion word in
the general purpose opinion lexicon L. Although
the simple approach helps to handle multiword ex-
pressions, some expressions could also be ignored
since they have no opinion words in L or their POS
tags are wrongly assigned. In this section, we in-
troduce our unsupervised opinion expression clas-
sifier, which predicts whether a phrase is an opin-
ion expression based on its contexts.

Formally, for a candidate expression O =
wi, . . . , wj in sentence s, we use context words
wi−c, . . . , wi−1 and wj+1, . . . , wj+c as inputs of a
CNN classifier (c is the context window size, and
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we set it to 5 in all experiments). After the con-
volution layer, max-pooling and softmax (similar
to the CNNs in Section 3.2), the classifier outputs
probability p(z|O) where z ∈ {−1, 1} indicates
whether O is a valid opinion expression. In order
to get the training set, we rely on the lexicon L.
Given the unlabelled corpus and w ∈ L, we con-
sider each appearance of w in the corpus as a posi-
tive example, and other randomly chosen words as
negative examples.

To apply the opinion expression classifier in
the opinion relation classifier, we add expressions
which have p(z|O) greater than some threshold γ
to the relation classifier.

4 Experiments

4.1 Configurations
We extract opinion relations on a subset of Ama-
zon product review corpus provided by (McAuley
et al., 2015), which contains 15 domains and 33
million reviews. The statistics of extracted rela-
tions are in Table 2.

For quantitative evaluation, we select four do-
mains (Cell Phones, Movie and TV, Food, Pet
Supplies) for detailed analyses. We manually la-
bel all correct opinion relations in 1000 sentences,
and select 200 sentences as the development set,
the rest 800 as the test set 3. Furthermore, to com-
pare with previous supervised methods, we also
conduct experiments on USAGE corpus (Klinger
and Cimiano, 2014) which annotates 4481 opinion
relations for 8 products.

We use NLTK (Bird et al., 2009) for sentence
splitting and word segmentation, Stanford parser
4 for getting POS tags, phrase chunks and depen-
dency trees, and scikit-learn toolkit (Pedregosa et
al., 2011) and TensorFlow 5 for machine learning
algorithms. The general purpose opinion lexicon
is from (Wilson et al., 2005).

4.2 Main Results
Table 4 shows results on four domains. The meth-
ods for comparison are:

• Adjacent is a simple baseline system from (Hu
and Liu, 2004). It first identifies words in the
general purpose opinion lexicon, then finds the
nearest noun or verb phrase to them as their
opinion targets.
3https://github.com/AntNLP/OpinionRelationCorpus
4http://nlp.stanford.edu/software/lex-parser.shtml
5https://www.tensorflow.org/

Domain #Reviews #Sents #Relations

Cell Phones 3.4 19.1 6.7
Movie and TV 4.6 47.6 15.3
Food 1.3 7.6 2.5
Pet Supplies 1.2 8.0 2.4
Automotive 1.4 9.5 2.6
Digital Music 0.8 7.3 2.4
Beauty 2.2 6.4 3.8
Toys and Games 2.3 11.7 3.8
Instruments 0.5 13.5 1.4
Office Products 1.2 4.1 2.6
Patio 1.0 8.3 2.0
Baby 0.9 6.5 1.8
Clothing 5.7 29.1 10.2
Sports 3.3 20.2 7.1
Kindle 3.2 25.0 7.9
All 33 223.9 72.5

Table 2: Statistics of the opinion relation database.
The relations are extracted by patterns in Table 1
and normalized by removing leading articles, pro-
nouns and copulas of opinion expressions and tar-
gets. All numbers are in 106.

• Bootstrapping reimplements the double propa-
gation in (Qiu et al., 2011), which is the state-of-
the-art unsupervised opinion relation extraction
algorithm. It also uses a set of patterns, but adds
new opinion words discovered by the patterns
to the existing lexicon on the fly. The updated
lexicon is then used in following bootstrapping
iterations.

• Pattern is the pattern matching method in Sec-
tion 3.1.

• LR is a logistic regression trained with the same
distant supervision as Section 3.2. We use
standard relation extraction features (Table 3),
which are used in state-of-the-art supervised re-
lation classifiers (Mintz et al., 2009) 6.

• NN is our neural network model in Section 3.2.
We set the dimension d of outputs (e.g., hB) be
128, the output dimension of biLSTM be 128,
the dimension of word/POS tag embeddings be
300. We use three convolution kernels with win-
dow size 1, 2, 3, and initialize word embeddings
with pre-trained word vectors from word2vec
tools 7. By default, we use the five CNNs on the
sentence level biLSTM and not include depen-
dency path hD and the opinion expression clas-
sifier (the configuration of “NN” equals “biL-
STM+LOBTR” in Table 5). In order to build
6We select the features on the development set.
7https://code.google.com/archive/p/word2vec/
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Lexical Features
1⃝ POS tag sequences of O and T .
2⃝ The length of O and T .
3⃝ The distance between O and T .
4⃝ The word sequence between O and T in s.
5⃝ POS tags of words between O and T in s.
6⃝Words, POS tags of wi−1, wi−2, wj+1, wj+2.
7⃝Words, POS tags of wk−1, wk−2, wl+1, wl+2.
8⃝ Combined POS tags of O and T .

Syntactic Features
9⃝ Does a dependency relation exist between O and T .

10⃝ The dependency path between O and T .
11⃝ The length of the dependency path.

Table 3: Features in logistic regression.

the training set, we run the pattern matching on
6 × 104 unlabelled sentences.

• NN+Pattern stacks results of “Pattern” and
“NN”.

We have several observations on Table 4.
First, performances of “Adjacent” are poor, which
means that we do need some advanced linguistic
features for the task. Second, “Bootstrapping” un-
derperforms “Pattern” in four domains. We exam-
ine the outputs of “Bootstrapping” and find that
the newly added words bring a lot of noise into the
opinion lexicon, which affect the accuracy nega-
tively. Third, while “Pattern” has the highest pre-
cision in all systems, distantly supervised meth-
ods (“LR” and “NN”) help to improve recall and
achieve better F1 values (except on the Pet do-
main). Hence, based on the distant supervision
from patterns, classifiers cover more correct rela-
tions. Regarding the Pet domain, the precision of
“Pattern” is low, so the number of errors in training
set of “LR” and “NN” is large, and one could fail
to learn reliable models. Fourth, the neural net-
work model “NN” outperforms traditional classi-
fier “LR” on all domains, which shows that learn-
ing feature representations has some advantages
than handcrafting features on our experiment set-
tings. Finally, simply stacking the results of “Pat-
tern” and “NN” can improve the overall scores.

Next, we test our neural network model with
various settings in Table 5. First, we com-
pare models with different configurations on
CNNs in row 1 to row 3. The setting “biL-
STM+B” only uses the CNN corresponding to
the words in B (i.e., the words between O and
T ); “biLSTM+OBT” uses three CNN on words
in B,O, T ; “biLSTM+LOBTR” involves all five
CNNs (equals to “NN” in Table 4). We see

that, in general, the performances (especially re-
calls) increase as we introduce more CNNs. How-
ever, the dependency path feature hD (“biL-
STM+LOBTR+D” in row 4) won’t help to get fur-
ther improvements. Second, in row 5, we drop
the sentence level biLSTM and only use the five
CNNs, and observe some loss on performances
compared with row “biLSTM+LOBTR”. Hence,
the long distance information provided by the biL-
STM is also helpful. Third, we test the opinion ex-
pression classifier in the last two rows. Recall that
γ is the threshold that controls the output of the
classifier. The result shows that when γ = 0.8,
new opinion expressions added by the classifier
can improve the scores, but when γ = 0.5, the
noise can overwhelm the gains. We futher show
the precision-recall curves of “NN” and “LR” in
the case of γ = 0.8 in Figure 2. Some inter-
esting opinion expressions added by the classi-
fier are “not even enough”, “became extremely
hot”, “*just* enough”, “arrived damaged”, “looks
cool n cute”, which shows that the classifier could
both discover opinion expressions without words
in general purpose lexicons, and have some toler-
ance to noise.

4.3 Results on USAGE Corpus

In order to compare with fully supervised meth-
ods, we evaluate our models on USAGE corpus in
Table 6. To build the distantly supervised mod-
els, we use untagged reviews which are about the
8 products of USAGE. The baseline systems are
(Klinger and Cimiano, 2014) and (Jebbara and
Cimiano, 2016), which are state-of-the-art sys-
tems on the dataset.

Results show that, with the same setting
(“gold”) 8, our fully unsupervised models achieve
competitive precision scores against previous fully
supervised methods. By examining the outputs,
one reason for the performance gaps on recall may
be the differences of annotation guidelines be-
tween USAGE and our dataset. For example, we
don’t annotate pronouns as opinion targets while
USAGE does (e.g., (“love”, “it”) is a proper an-
notation in USAGE). We can also observe that
distant supervisions provide notable performances
gains than direct pattern matching.

8Both baselines don’t report end-to-end performances. As
a reference, in (Jebbara and Cimiano, 2016), the F1 of opin-
ion expression and target extraction are 50% and 67%.
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System Phone Movie Food Pet
P R F P R F P R F P R F

Adjacent 38.6 65.7 48.6 30.0 58.8 39.7 31.4 46.5 37.5 28.4 62.2 39.0
Bootstrapping 44.0 62.9 51.8 26.9 49.3 34.8 43.6 54.0 48.2 33.6 57.7 42.5
Pattern 69.4* 64.4 61.1 62.2* 42.4 50.4 76.0* 41.9 54.1 59.9* 51.3 55.3∗

LR 60.1 64.7 62.4 55.6 57.0 55.3 65.5 49.2∗ 56.2 47.6 59.3* 52.8
NN 63.4 67.9∗ 65.6∗ 56.8 58.2∗ 57.5* 70.5 47.7 56.9∗ 51.4 58.0 54.5

NN+Pattern 64.4 70.5 67.3 58.2 59.9 59.1 68.4 50.8 58.3 54.9 58.2 56.5

Table 4: Comparison with different baseline systems. The dark entries are the highest scores among all
systems, and “*” indicates the highest scores excluding “NN+Pattern”.

System Phone Movie Food Pet
P R F P R F P R F P R F

biLSTM +B 59.8 69.5 64.3 54.7 59.1 56.8 64.8 48.5 55.5 47.4 57.2 51.8
biLSTM +OBT 63.4 66.7 65.3 59.8 58.2 58.9 68.6 46.8 55.6 56.2 56.9 56.5
biLSTM +LOBTR 63.4 67.9 65.6 56.8 58.2 57.5 66.5 47.7 55.5 51.4 58.0 54.5
biLSTM +LOBTR+D 65.5 61.3 63.4 59.5 55.8 57.6 69.1 46.8 55.8 54.9 57.7 56.3

LOBTR 64.0 65.3 64.7 57.5 56.7 57.1 70.6 43.1 53.5 54.3 57.7 55.9

γ = 0.5 64.2 64.7 64.5 56.2 57.9 57.0 65.5 45.5 53.7 61.6 54.3 57.7
γ = 0.8 65.6 66.1 65.9 61.1 58.2 59.6 67.1 48.2 56.1 58.6 50.8 54.4

Table 5: Different settings of the proposed model.
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Figure 2: Precision recall curves for γ = 0.8.

4.4 Error Analysis

Finally, we do some error analyses on the ex-
tracted relations. Taking movie domain as exam-
ple, we find that for movie reviews, the opinions

from reviewers are mixed with plot and charac-
ters of movies, which makes it difficult to dis-
tinguish opinions and background topics with our
simple opinion relation definition. For example,
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Systems P R F
Klinger et al. (2014) - - 65.0
Jebbara et al. (2016) 87.0 75.0 81.0
Pattern 51.4 20.7 29.5
LR (end-to-end) 49.5 27.8 35.6
NN (end-to-end) 43.3 40.1 41.6
LR (gold) 89.1 47.9 62.3
NN (gold) 81.4 62.8 70.9

Table 6: Results on USAGE corpus. First two
rows are state-of-the-art systems on the dataset.
Both of them assume gold annotations on opin-
ion expressions and targets have been given. We
report results with identical settings (“gold”), and
also “end-to-end” results in which no gold annota-
tions are provided.

in “Also said repeatedly how Tojo was [loyal to
Emperor Hirohito]”, the word “loyal” indicates a
wrong opinion relation since it’s a description of
the story. A true comment from the reviewer is
behind the word “repeatedly”, which is hard to be
expressed with our opinion relations. We plan to
introduce both more background knowledge and
more powerful relation types in future work.

5 Conclusion

We investigate the task of large-scale opinion re-
lation extraction. Our algorithm first uses syntac-
tic patterns to get a set of opinion relations, then
builds a neural network classifier based on these
relations. We also develop an opinion expression
classifier to better extract opinion words. Exten-
sive experiments on Amazon review data show the
effectiveness of the proposed methods.
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Abstract

Weighted finite automata and transduc-
ers (including hidden Markov models and
conditional random fields) are widely used
in natural language processing (NLP) to
perform tasks such as morphological anal-
ysis, part-of-speech tagging, chunking,
named entity recognition, speech recog-
nition, and others. Parallelizing finite
state algorithms on graphics processing
units (GPUs) would benefit many areas
of NLP. Although researchers have imple-
mented GPU versions of basic graph al-
gorithms, limited previous work, to our
knowledge, has been done on GPU algo-
rithms for weighted finite automata. We
introduce a GPU implementation of the
Viterbi and forward-backward algorithm,
achieving decoding speedups of up to 5.2x
over our serial implementation running
on different computer architectures and
6093x over OpenFST.

1 Introduction

Weighted finite automata (Mohri, 2009), includ-
ing hidden Markov models and conditional ran-
dom fields (Lafferty et al., 2001), are used to solve
a wide range of natural language processing (NLP)
problems, including phonology and morphology,
part-of-speech tagging, chunking, named entity
recognition, and others. Even models for speech
recognition and phrase-based translation can be
thought of as extensions of finite automata (Mohri
et al., 2002; Kumar et al., 2005).

Although the use of graphics processing units
(GPUs) is now de rigeur in applications of neu-
ral networks and made easy through toolkits like
Theano (Theano Development Team, 2016), there
has been little previous work, to our knowledge,

on acceleration of weighted finite-state compu-
tations on GPUs (Narasiman et al., 2011; Li
et al., 2014; Peng et al., 2016; Chong et al.,
2009). In this paper, we consider the operations
that are most likely to have high speed require-
ments: decoding using the Viterbi algorithm, and
training using the forward-backward algorithm.
We present an implementation of the Viterbi and
forward-backward algorithms for CUDA GPUs.
We release it as open-source software, with the
hope of expanding in the future to a toolkit includ-
ing other operations like composition.

Most previous work on parallel processing of
finite automata (Ladner and Fischer, 1980; Hillis
and Steele, 1986; Mytkowicz et al., 2014) uses
dense representations of finite automata, which is
only appropriate if the automata are not too sparse
(that is, most states can transition to most other
states). But the automata used for natural language
tend to be extremely large and sparse. In addition,
the more recent work in this line assumes deter-
ministic automata, but automata that model natural
language ambiguity are generally nondeterminis-
tic.

Previous work has been done on accelerating
particular NLP tasks on GPUs: in machine trans-
lation, phrase-pair retrieval (He et al., 2013) and
language model querying (Bogoychev and Lopez,
2016); parsing (Hall et al., 2014; Canny et al.,
2013); and speech recognition (Kim et al., 2012).
Our aim here is for a more general-purpose collec-
tion of algorithms for finite automata.

Our work uses concepts from the work of Mer-
rill et al. (2012), who show that GPUs can be
used to accelerate breadth-first search in sparse
graphs. Our approach is simple, but well-suited
to the large, sparse automata that are often found
in NLP applications. We show that it achieves a
speedup of a factor of 5.2 on a GPU relative to a
serial algorithm, and 6093 relative to OpenFST.
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2 Graphics Processing Units

GPUs became known for their ability to ren-
der high quality images faster than conventional
multi-core CPUs. Current off-the-shelf CPUs con-
tain 8–16 cores while GPUs contain 1500–2500
simple CUDA cores built into the card. General
Purpose GPUs (GPGPU) contain cores able to ex-
ecute calculations that are not constrained to im-
age processing. GPGPUs are now widely used
across scientific domains to enhance the perfor-
mance of diverse applications.

2.1 Architecture

CUDA cores (also known as scalar processors) are
grouped into different Streaming Multiprocessors
(SM) on the graphics card. The number of cores
per SM varies depending on the GPU’s micro-
architecture, ranging from 8 cores per SM (Tesla)
up to 192 (Kepler). The overall number of SM on
the chip varies, and it can range from 15 (Kepler)
up to 24 (Maxwell). Streaming Multiprocessors
are composed of the following components:

• Special Function units (SFU) These allow
computations of functions such as sine, co-
sine, etc.

• Shared Memory and L1 Cache The size of
the memory varies on the GPU model.

• Warp Schedulers assigns threads in an SM
to be executed in a specific warp.

To execute a workload on the GPU, a kernel
must be launched with a specified grid structure.
The kernel must specify the number of threads
to run on a block and the number of blocks
in a grid before being executed on the device.
The maximum number of threads per block and
blocks per grid can vary depending on the GPU
device. If the kernel is successfully launched,
each block in the grid will get assigned to a
SM. Each SM will execute 32 threads at a time
(also called a warp) in its assigned block. If
the number of threads in a block is not divisible
by 32, the kernel will not launch on the device.
Each SM contains a warp scheduler in charge
of choosing the warps in a block to be executed
in parallel. When the amount of blocks in a
grid surpasses the amount of SM on the device,
the SMs will execute a subset of blocks in parallel.

K40 Specs
Global Memory 11520 MB
L2 cache size 1.57 MB

Shared memory per block 0.049 MB
Multiprocessors 15
Cores per MP 192

Registers per block 65536

Table 1: Device properties of a K40c GPU

The memory hierarchy on the device is laid out
to maximize the data throughput. Table 1 shows
the amount of cores available for execution as well
as the amount of memory available on a Kepler
based GPU. Registers are the fastest type of mem-
ory on the device, and this memory is private to
each thread running on a block. Shared memory is
the second fastest, and is shared by all threads run-
ning in the same block. The next type of memory
is the L2 cache, which is shared among all stream-
ing multiprocessors. The slowest and largest type
of memory is global memory. Directly reading and
writing to global memory affects performance sig-
nificantly. Efficient memory management (reading
and writing to and from contiguous addresses in
memory) is important to fully utilize the memory
hierarchy and increase performance.

2.2 Optimizations

Different factors such as number of threads in a
block or coalesced memory accesses affect the
performance on the GPU. In this section, we will
cover the methods and modifications we used to
improve the performance of our parallel imple-
mentations.

The optimal number of threads per block de-
pends on the device configuration. The number of
multiprocessors and cores per multiprocessor must
be considered before launching a CUDA kernel on
the device. Table 1 shows the number of stream-
ing multiprocessors and the number of cores per
multiprocessor on a K40 GPU. Multiple blocks in
a kernel grid can get scheduled to be executed on
a single streaming multiprocessor if the number of
blocks in a grid exceeds the number of streaming
multiprocessors. Each streaming multiprocessor
will only execute one warp in a block in parallel
during execution, and that is why choosing an ap-
propriate number of blocks is important. For ex-
ample, if two blocks get assigned to a multipro-
cessor and each block contains 192 threads, the
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multiprocessor must execute 12 warps total where
1 warp gets executes at a time in parallel.

In our implementations, we take the following
approach. The number of cores per multiproces-
sor is considered first to configure the block size.
The block size is set to contain the same number
of threads as the number of cores per multiproces-
sor of the graphics card used. If the number of
threads needed to perform a computation is not di-
visible by the amount of cores per multiprocessor,
the number of threads is rounded up to the clos-
est dividend. Once the block size and number of
threads are selected, the number of blocks is cho-
sen by dividing the total number of threads by the
block size.

Coalesced memory accesses are essential to
maximize the use of resources running on the
GPU. When data is requested by a warp execut-
ing on a streaming multiprocessor, a block from
global memory will be accessed and allocated in
shared memory. It is crucial to coalesce mem-
ory accesses so the number of blocks of global
memory requested and the global memory access
times decrease. This can be achieved by making
all threads in a warp access contiguous spaces in
memory. A similar speedup can be achieved if
each thread in a block allocates all the data re-
quired from global memory into a compact data
structure allocated in shared memory (size of the
shared memory varies across devices). Section 4
describes the data structure used to coalesce mem-
ory reads. For each input symbol wt the source
states of all possible transitions can be read in a
coalesced form and stored in shared memory al-
lowing faster execution times.

Using special function units on the device can
inhibit the performance of a program running on
the GPU. Performance is affected because the
number of SFU is lower than the amount of regular
cores (e.g. The GK104 Kepler architecture con-
tains 1536 regular cores and 256 special function
units total). Also, the cycle penalty for using SFU
rather than CUDA cores is higher than the penalty
for regular cores on the device. For this work, the
amount of instructions that use a specific SFU are
kept to a minimum to obtain a higher speedup. By
combining the mentioned techniques in this sec-
tion, an application can significantly increase its
performance.

3 Weighted Finite Automata

In this section, we review weighted finite au-
tomata, using a matrix formulation. A weighted fi-
nite automaton is a tuple M = (Q,Σ, s, F, δ), where

• Q is a finite set of states.

• Σ is a finite input alphabet.

• s ∈ RQ is a one-hot vector: if M can start in
state q, then s[q] = 1; otherwise, s[q] = 0.

• f ∈ RQ is a vector of final weights: if M can
accept in state q, then f [q] > 0 is the weight
incurred; otherwise, f [q] = 0.

• δ : Σ → RQ×Q is the transition function: if
M is in state q and the next input symbol is
a, then δ[a][q, q′] is the weight of going to
state q′.

Note that we currently do not allow transitions on
empty strings or epsilon transitions. This defi-
nition can easily be extended to weighted finite
transducers by augmenting the transitions with
output symbols. See Figure 1 for an example FST.

Using this notation, the total weight of a string
w = w1 · · ·wn can be written succinctly as:

weight(w) = s>


n∏

t=1

δ[wt]

 f . (1)

Matrix multiplication is defined in terms of multi-
plication and addition of weights. It is common to
redefine weights and their multiplication/addition
to make the computation of (1) yield various use-
ful values. When this is done, multiplication is
often written as ⊗ and addition as ⊕. If we define
p1⊗p2 = p1 p2 and p1⊕p2 = p1+p2, then equation
(1) gives the total weight of the string.

Or, we can make Equation (1) obtain the maxi-
mum weight path as follows. The weight of a tran-
sition is (p, k), where p is the probability of the
transition and k is (a representation of) the transi-
tion itself. Then

(p1, k1) ⊗ (p2, k2) ≡ (p1 p2, k1k2)

(p1, k1) ⊕ (p2, k2) ≡


(p1, k1) if p1 > p2

(p2, k2) otherwise.

The Viterbi algorithm simply computes Equation
(1) under the above definition of weights.
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Figure 1: Example of a FST that translates the
french string le chat to English.

4 Serial Algorithm

Applications of finite automata use a variety of al-
gorithms, but the most common are the Viterbi,
forward, and backward algorithms. Several of
these automata algorithms are related to one an-
other and used for learning and inference. Speed-
ing up these algorithms will allow faster training
and development of large scale machine learning
systems.

The forward and backward algorithms are used
to compute weights (Eq. 1), in left-to-right (Read-
ing an input utterance from left to right) and right-
to-left order, respectively. Their intermediate val-
ues are used to compute expected counts dur-
ing training by expectation-maximization (Eisner,
2002). They can be computed by Algorithm 2.

Algorithm 1 is one way of computing Viterbi
using Equation (1). It is a straightforward algo-
rithm, but the data structures require a brief expla-
nation.

Throughout this paper, we use zero-based in-
dexing for arrays. Let m = |Σ|, and number the in-
put symbols in Σ consecutively 0, . . . ,m− 1. Then
we can think of δ as a three-dimensional array. In
general, this array is very sparse. We store it using
a combination of compressed sparse row (CSR)
format and coordinate (COO) format, as shown in
Figure 2 where:

• z is the number of transitions with nonzero
weight

• R is an array of length (m + 1) containing off-
sets into the arrays S ,T ,O, and P. if a ∈ Σ,
the transitions on input a can be found at po-
sitions R[a], . . .R[a + 1]− 1 (i.e. to access all
transitions δ[a] ). Note that R[m] = z

• S contains the source states for each transi-
tion 0 ≤ k < z ∈ δ[a]

• T contains target states for transitions 0 ≤
k < z ∈ δ[a]

le chat </s>

R 0 2 4 6

S 0 0 1 2 3 4

T 1 2 3 4 5 5

O the a cat cat </s> </s>

P 0.48 0.08 1 1 1 1

Figure 2: CSR/COO representation of FST in Fig-
ure 1.

• O contains the output symbols for transitions
from state S [k] to state T [k]

• P contains the probabilities for transitions
from state S [k] to state T [k]

The vector f of final weights is stored as a
sparse vector: for each k, S f [k] is a final state with
weight P f [k].

Algorithm 1 Serial Viterbi algorithm (using
CSR/COO representation).

1: for q ∈ Q do
2: α[0][q] = 0
3: α[0][s] = 1
4: for t = 1, . . . , n do
5: a← wt

6: for k = R[a], . . . ,R[a + 1] − 1 do
7: p← α[t − 1][S [k]] ⊗ P[k]
8: α[t][T [k]]← α[t][T [k]] ⊕ p
9: return

⊕
k α[n][S f [k]] ⊗ P f [k]

If the transition matrices δ[a] are stored in com-
pressed sparse row (CSR) format, which enables
efficient traversal of a matrix in row-major order,
then these algorithms can be written out as Algo-
rithm 2 for the forward-backward algorithm and
1 for Viterbi. (Using compressed sparse columns
(CSC) format, the loop over q′ would be outside
the loop over q, which is perhaps the more com-
mon way to implement these algorithms.)

5 Parallel Algorithm

Our parallel implementation is based on Algo-
rithm 1 for Viterbi and Algorithm 2 for forward-
backward, but parallelizes the loop over t, that is,
over the transitions on symbol wt. The transitions

1047



Algorithm 2 Forward-Backward algorithm (row-
major).

1: forward[0][s]← 1 . Begin forward pass
2: for t = 0, . . . , n − 1 do
3: for q ∈ Q do
4: for q′ ∈ Q such that δ[wt+1][q, q′] > 0 do
5: p = forward[t][q]δ[wt+1][q, q′]
6: forward[t + 1][q′] += p
7: for q ∈ Q do . backward pass
8: backward[n][q] = f [q]
9: for t = n − 1, . . . , 0 do

10: for q ∈ Q do
11: for q′ ∈ Q such that δ[wt+1][q, q′] > 0 do
12: p = δ[wt+1][q, q′]backward[t][q′]
13: backward[t][q] += p
14: Z =

∑
q∈Q forward[n][q] f [q]

15: for t = 0, . . . , n − 1 do
16: for q, q′ ∈ Q do
17: α = forward[t][q] . Expected counts
18: β = backward[t + 1][q′]
19: count[q, q′] += α × δ[w][q, q′] × β/Z

are stored in CSR/COO format as described above
for Algorithm 1. The S , T , and P arrays are stored
on the GPU in global memory; the R and O arrays
are kept on the host. For each input symbol a, the
transitions on S and T are sorted first by source
state and then by target state; this improves mem-
ory locality slightly. For the forward-backward
algorithm, sorting by target improves the perfor-
mance for the backward pass since the input is
read from right to left.

For each input symbol wt, one thread is
launched per transition, that is, for each nonzero
entry of the transition matrix δ[wt]. Equivalently,
one thread is launched for each transition k such
that R[wt] ≤ k < R[wt + 1], for a total of
R[wt + 1] − R[wt] threads. Each thread looks up
q = S [k], q′ = T [k] and computes its correspond-
ing operation.

For example, in Figure 2, input word “le” has
index 0; since R[0] = 0 and R[1] = 2, two threads

are launched, one for k = 0 (that is, 0
le:the/0.48−−−−−−−−→ 1)

and one for k = 1 (that is, 0
le:a/0.08−−−−−−→ 2).

5.1 Viterbi

At the time of computing a transition δ[wt][q, q′],
if the probability (at line 8 in Algorithm 1) is
higher than α[t][q′], we store the probability in
α[t][q′]. Because this update potentially involves

concurrent reads and writes at the same memory
location, we use an atomic max operation (defined
as atomicMax on the NVIDIA toolkit). However,
atomicMax is not defined for floating-point val-
ues. Additionally, this update needs to store a
back-pointer (k) that will be used afterwards to re-
construct the highest-probability path. The prob-
lem is that the atomicMax provided by NVIDIA
can only update a single value atomically.

We solve both problems with a trick: pack
the Viterbi probability and the back-pointer into
a single 64-bit integer, with the probability in the
higher 32 bits and the back-pointer in the lower 32
bits. In IEEE 754 format, the mapping between
nonnegative real numbers and their bit representa-
tions (viewed as integers) is order-preserving, so
a max operation on this packed representation up-
dates both the probability and the back-pointer si-
multaneously.

The reconstruction of the Viterbi path is not par-
allelizable, but is done on the GPU to avoid copy-
ing α back to the host avoiding a slowdown. This
generates a sequence of transition indices, which
is moved back to the host. There, the output sym-
bols can be looked up in array O.

5.2 Forward-Backward

The forward and backward algorithms 2 are sim-
ilar to the Viterbi algorithm, but do not need to
keep back-pointers. In the forward algorithm,
when a transition δ[wt][q, q′] is processed, we up-
date the sum of probabilities reaching state q′ in
forward[t + 1][q′]. Likewise, in the backward al-
gorithm, we update the sum of probabilities start-
ing from q in backward[t][q]. Both passes require
atomic addition operations, but because we use
log-probabilities to avoid underflow, the atomic
addition must be implemented as:

log(exp a + exp b) = b + log1p(exp(a − b)), (2)

assuming a ≤ b and where log1p(x) = log(1+ x), a
common function in math libraries which is more
numerically stable for small x.

We implemented an atomic version of this
log-add-exp operation. The two transcenden-
tals are expensive, but CUDA’s fast math option
(-use_fast_math) speeds them up somewhat by
sacrificing some accuracy.
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6 Other Approaches

6.1 Parallel prefix sum
We have already mentioned a line of work begun
by (Ladner and Fischer, 1980) for unweighted,
nondeterministic finite automata, and continued
by (Hillis and Steele, 1986) and (Mytkowicz et
al., 2014) for unweighted, deterministic finite au-
tomata. These approaches use parallel prefix sum
to compute the weight (1), multiplying each adja-
cent pair of matrices in parallel and repeating until
all the matrices have been multiplied together.

This approach could be combined with ours; we
leave this for future work. A possible issue is that
matrix-vector products are replaced with slower
matrix-matrix products. Another is that prefix sum
might not be applicable in a more general setting
– for example, if a FST is composed with an input
lattice rather than an input string.

6.2 Matrix libraries
The formulation of the Viterbi and forward-
backward algorithms as a sequence of matrix mul-
tiplications suggests two possible easy implemen-
tation strategies. First, if transition matrices are
stored as dense matrices, then the forward algo-
rithm becomes identical to forward propagation
through a rudimentary recurrent neural network.
Thus, a neural network toolkit could be used to
carry out this computation on a GPU. However,
in practice, because our transition matrices are
sparse, this approach will probably be inefficient.

Second, off-the-shelf libraries exist for sparse
matrix/vector operations, like cuSPARSE.1 How-
ever, such libraries do not allow redefinition of the
addition and multiplication operations, making it
difficult to implement the Viterbi algorithm or use
log-probabilities. Also, parallelization of sparse
matrix/vector operations depends heavily on the
sparsity pattern (Bell and Garland, 2008), so that
an off-the-shelf library may not provide the best
solution for finite-state models of language. We
test this approach below and find it to be several
times slower than a non-GPU implementation.

7 Experiment

7.1 Setup
To test our algorithm, we constructed a FST for
rudimentary French-to-English translation. We
trained different unsmoothed bigram language

1http://docs.nvidia.com/cuda/cusparse/
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Figure 3: Example automata/transducers for (a)
language model (b) translation model (c) input
sentence. These three composed together form the
transducer in Figure 1.

models on 1k/10k/100k/150k lines of French-
English parallel data from the Europarl corpus and
converted it into a finite automaton (see Figure 3a
for a toy example).

GIZA++ was used to word-align the same data
and generate word-translation tables P( f | e)
from the word alignments, as in lexical weight-
ing (Koehn et al., 2003). We converted this table
into a single-state FST (Figure 3b). The language
model automaton and the translation table trans-
ducer were intersected to create a transducer simi-
lar to the one in Figure 1.

For more details about the transducers (number
of nodes, edges, and percentage of non-zero ele-
ments on the transducer) see Table 4.

We tested on a subset of 100 sentences from
the French corpus with lengths of up to 80 words.
For each experimental setting, we ran on this set
1000 times and report the total time. Our exper-
iments were run on three different systems: (1) a
system with an Intel Core i7-4790 8-core CPU and
an NVIDIA Tesla K40c GPU, (2) a system with an
Intel Xeon E5 16-core CPU and an NVIDIA Titan
X GPU, and (3) a system with an Intel Xeon E5
24-core CPU and an NVIDIA Tesla P100 GPU.

7.2 Baselines
We compared against the following baselines:

Carmel is an FST toolkit developed at USC/ISI.2

OpenFST is a FST toolkit developed by Google
as an open-source successor of the AT&T Finite
State Machine library (Allauzen et al., 2007). For
compatibility, our implementations read the Open-
FST/AT&T text file format.

2https://github.com/graehl/carmel
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Figure 4: Viterbi decoding times for 1000 individ-
ual test sentences compared for our serial, parallel,
and cuSPARSE implementations (Titan X).

Our serial implementation Algorithm 1 for
Viterbi and Algorithm 2 for forward-backward.

cuSPARSE was used to implement the forward
algorithm, using CSR format instead of COO for
transition matrices. Since we can’t redefine addi-
tion and multiplication, we could not implement
the Viterbi algorithm. To avoid underflow, we
rescaled the vector of forward values at each time
step and kept track of the log of the scale in a sep-
arate variable.

To be fair, it should be noted that Carmel and
OpenFST are much more general than the other
implementations listed here. Both perform FST
composition in order to decode an input string
adding another layer of complexity to the process.
The timings for OpenFST and Carmel on Table 2
include composition

7.3 Results

Table 2 shows the overall performance of our
Viterbi algorithm and the baseline algorithms. Our
parallel implementation does worse than our se-
rial implementation when the transducer used is
small (presumably due to the overhead of kernel
launches and memory copies), but the speedups
increase as the size of the transducer grows, reach-
ing a speedup of 5x. The forward-backward algo-
rithm with expected counts obtains a 5x speedup
over the serial code on the largest transducer (See
Table 3).

CuSPARSE does significantly worse than even
our serial implementation; presumably, it would
have done better if the transition matrices of our

transducers were sparser.
Figure 4 shows decoding times for three algo-

rithms (our serial and parallel Viterbi, and cuS-
PARSE forward) on individual sentences. It can
be seen that all three algorithms are roughly linear
in the sentence length.

Viterbi is faster than either the forward or back-
ward algorithm across the board. This is because
the latter need to add log-probabilities (lines 6 and
13 of Algorithm 2), which involves expensive calls
to transcendental functions.

7.4 Comparison across GPU architectures
Table 2 compares the performance of the Kepler-
based K40, where we did most of our experiments,
with the Maxwell-based Titan X and the Pascal-
based Tesla P100. The performance improvement
is due to different factors, such as a larger num-
ber of active thread blocks per streaming multipro-
cessor on a GPU architecture, the grid and block
size selected to run the kernels, and memory man-
agement on the GPU. After the release of the Ke-
pler architecture, the Maxwell architecture intro-
duced an improved workload balancing, reduced
arithmetic latency, and faster atomic operations.
The Pascal architecture allows speedups over all
the other architectures by introducing an increased
floating point performance, faster data movement
performance (NVLink), larger and more efficient
shared memory, and improved atomic operations.
Also, SMs on the pascal architecture are more
efficient allowing speedups larger speedups than
its predecessors. Our parallel implementations
were compiled using architecture specific flags
(-arch=compute_XX) to take full advantage of
the architectural enhancements described in this
section.

7.5 Comparison against a multi-core
implementation

Table 2 shows how our parallel implementation
on a GPU compares against a multi-core version
of our serial Viterbi algorithm implemented in
MPI. We chose MPI since it supports distributed
and shared memory unlike OpenMP that supports
shared memory only. Results show that a multi-
core implementation of the algorithm leads to
slower performance than the serial code due to
the communication and synchronization overhead.
Several cores must transfer information frequently
and synchronize all messages on a single core.
GPUs perform better than multi-core in this case
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Training size (lines)
1000 10000 100000 150000

Method Hardware Time Ratio Time Ratio Time Ratio Time Ratio
OpenFST Core i7 42.06 1.9 2547 87 313800 4085 626700 6093
Carmel Core i7 195.9 9.1 7652 263 224500 2923 376400 3659
our serial Core i7 10.99 0.5 44.16 1.5 374.2 4.9 534.9 5.2
our serial Xeon E5 10.84 0.5 42.05 1.4 375.3 4.9 529.6 5.1
our MPI 4-core Core i7 194.0 9.0 581.2 20 1849 24 2243 21
our parallel K40 27.52 1.3 38.26 1.3 116.5 1.5 131.1 1.3
our parallel Titan X 25.05 1.2 33.92 1.2 94.07 1.2 121.6 1.2
our parallel Tesla P100 21.49 1.0 29.04 1.0 76.79 1.0 102.9 1.0

Table 2: Our GPU implementation of the Viterbi algorithm outperforms all others tested on the medium
and large FSTs. Times (in seconds) are for decoding a set of 100 examples 1000 times using Viterbi.
Ratios are relative to our parallel algorithm on the Tesla P100.

Training size (lines)
method 1k 10k 100k 150k
cuSPARSE forward 646 1846 3555 5948
serial forward 36 251 2297 3346
parallel forward 17 37 236 327
serial backward 13 248 3585 5303
parallel backward 43 80 644 1070
serial combined 47 534 6065 8790
parallel combined 60 120 1111 1773

Table 3: Our GPU implementations of the
forward and backward algorithms, and for-
ward+backward+expected counts combined, out-
perform all others tested, on the medium and large
FSTs. Times (in seconds) are for processing 100
examples 1000 times, on a Core i7 and K40.

Training size States Transitions Non-zero
1000 3505 443527 3.6%
10000 11644 6792487 5.0%
100000 33125 95381368 8.7%
150000 39420 150971615 9.7%

Table 4: FST Comparison. This table shows
the number of states, edges, and percent of non
zero elements of the transducers created using
1k/10k/100k/150k examples.

since all the memory is already on the graphics
card and the cost of using global memory on the
GPU is lower than synchronizing and sharing data
between cores.

8 Conclusion

We have shown that our algorithm outperforms
several serial implementations (our own serial im-
plementation on a Intel Core i7 and Xeon E ma-
chines, Carmel and OpenFST) as well as a GPU
implementation using cuSPARSE.

A system with newer and faster cores might
achieve higher speedups than a GPU on smaller
datasets. However,building a multi-core system
that beats a GPU setup can be more expensive. For
example, a 16 core Intel Xeon E5-2698 V3 can
cost 3,500 USD (Bogoychev and Lopez, 2016).
Newer GPU models offer previous generation
CPU’s the opportunity to obtain speedups for a
lower price (Titan X GPUs sell cheaper than Xeon
E5 setups at US$1,200). Speeding up computation
on a GPU would allow users to speed up applica-
tions cheaper without investing on a newer multi-
core system.

Our implementation has been open-sourced and
is available online. 3 In the future, we plan to ex-
pand this software into a toolkit that includes other
algorithms needed to run a full machine translation
system.
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Abstract

Translating in real-time, a.k.a. simultane-
ous translation, outputs translation words
before the input sentence ends, which is a
challenging problem for conventional ma-
chine translation methods. We propose a
neural machine translation (NMT) frame-
work for simultaneous translation in which
an agent learns to make decisions on when
to translate from the interaction with a
pre-trained NMT environment. To trade
off quality and delay, we extensively ex-
plore various targets for delay and design
a method for beam-search applicable in
the simultaneous MT setting. Experiments
against state-of-the-art baselines on two
language pairs demonstrate the efficacy
of the proposed framework both quantita-
tively and qualitatively.1

1 Introduction

Simultaneous translation, the task of translating
content in real-time as it is produced, is an im-
portant tool for real-time understanding of spoken
lectures or conversations (Fügen et al., 2007; Ban-
galore et al., 2012). Different from the typical
machine translation (MT) task, in which transla-
tion quality is paramount, simultaneous translation
requires balancing the trade-off between transla-
tion quality and time delay to ensure that users
receive translated content in an expeditious man-
ner (Mieno et al., 2015). A number of methods
have been proposed to solve this problem, mostly
in the context of phrase-based machine translation.
These methods are based on a segmenter, which
receives the input one word at a time, then decides
when to send it to a MT system that translates each

1Code and data can be found at https://github.
com/nyu-dl/dl4mt-simul-trans.
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Figure 1: Example output from the proposed
framework in DE → EN simultaneous transla-
tion. The heat-map represents the soft alignment
between the incoming source sentence (left, up-
to-down) and the emitted translation (top, left-
to-right). The length of each column represents
the number of source words being waited for be-
fore emitting the translation. Best viewed when
zoomed digitally.

segment independently (Oda et al., 2014) or with a
minimal amount of language model context (Ban-
galore et al., 2012).

Independently of simultaneous translation, ac-
curacy of standard MT systems has greatly im-
proved with the introduction of neural-network-
based MT systems (NMT) (Sutskever et al., 2014;
Bahdanau et al., 2014). Very recently, there have
been a few efforts to apply NMT to simultane-
ous translation either through heuristic modifica-
tions to the decoding process (Cho and Esipova,
2016), or through the training of an independent
segmentation network that chooses when to per-
form output using a standard NMT model (Satija
and Pineau, 2016). However, the former model
lacks a capability to learn the appropriate timing
with which to perform translation, and the latter
model uses a standard NMT model as-is, lack-
ing a holistic design of the modeling and learning
within the simultaneous MT context. In addition,
neither model has demonstrated gains over previ-
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ous segmentation-based baselines, leaving ques-
tions of their relative merit unresolved.

In this paper, we propose a unified design for
learning to perform neural simultaneous machine
translation. The proposed framework is based on
formulating translation as an interleaved sequence
of two actions: READ and WRITE. Based on this,
we devise a model connecting the NMT system
and these READ/WRITE decisions. An example
of how translation is performed in this framework
is shown in Fig. 1, and detailed definitions of the
problem and proposed framework are described in
§2 and §3. To learn which actions to take when, we
propose a reinforcement-learning-based strategy
with a reward function that considers both qual-
ity and delay (§4). We also develop a beam-search
method that performs search within the translation
segments (§5).

We evaluate the proposed method on English-
Russian (EN-RU) and English-German (EN-DE)
translation in both directions (§6). The quantita-
tive results show strong improvements compared
to both the NMT-based algorithm and a conven-
tional segmentation methods. We also extensively
analyze the effectiveness of the learning algorithm
and the influence of the trade-off in the optimiza-
tion criterion, by varying a target delay. Finally,
qualitative visualization is utilized to discuss the
potential and limitations of the framework.

2 Problem Definition
Suppose we have a buffer of input words X =
{x1, ..., xTs} to be translated in real-time. We de-
fine the simultaneous translation task as sequen-
tially making two interleaved decisions: READ or
WRITE. More precisely, the translator READs a
source word xη from the input buffer in chrono-
logical order as translation context, or WRITEs a
translated word yτ onto the output buffer, resulting
in output sentence Y = {y1, ..., yTt}, and action
sequence A = {a1, ..., aT } consists of Ts READs
and Tt WRITEs, so T = Ts + Tt.

Similar to standard MT, we have a measure
Q(Y ) to evaluate the translation quality, such as
BLEU score (Papineni et al., 2002). For simulta-
neous translation we are also concerned with the
fact that each action incurs a time delay D(A).
D(A) will mainly be influenced by delay caused
by READ, as this entails waiting for a human
speaker to continue speaking (about 0.3s per word
for an average speaker), while WRITE consists of
generating a few words from a machine transla-

Figure 2: Illustration of the proposed framework:
at each step, the NMT environment (left) com-
putes a candidate translation. The recurrent agent
(right) will the observation including the candi-
dates and send back decisions–READ or WRITE.

tion system, which is possible on the order of mil-
liseconds. Thus, our objective is finding an opti-
mal policy that generates decision sequences with
a good trade-off between higher quality Q(Y ) and
lower delay D(A). We elaborate on exactly how
to define this trade-off in §4.2.

In the following sections, we first describe how
to connect the READ/WRITE actions with the NMT
system (§3), and how to optimize the system to
improve simultaneous MT results (§4).

3 Simultaneous Translation
with Neural Machine Translation

The proposed framework is shown in Fig. 2, and
can be naturally decomposed into two parts: envi-
ronment (§3.1) and agent (§3.2).

3.1 Environment

Encoder: READ The first element of the NMT
system is the encoder, which converts input words
X = {x1, ..., xTs} into context vectors H =
{h1, ..., hTs}. Standard NMT uses bi-directional
RNNs as encoders (Bahdanau et al., 2014), but this
is not suitable for simultaneous processing as us-
ing a reverse-order encoder requires knowing the
final word of the sentence before beginning pro-
cessing. Thus, we utilize a simple left-to-right uni-
directional RNN as our encoder:

hη = φUNI-ENC (hη−1, xη) (1)

Decoder: WRITE Similar with standard MT, we
use an attention-based decoder. In contrast, we
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only reference the words that have been read from
the input when generating each target word:

cητ = φATT (zτ−1, yτ−1, Hη)

zητ = φDEC (zτ−1, yτ−1, cητ )

p (y|y<τ , Hη) ∝ exp [φOUT (zητ )] ,

(2)

where for τ , zτ−1 and yτ−1 represent the previous
decoder state and output word, respectively. Hη

is used to represent the incomplete input states,
where Hη is a prefix of H . As the WRITE action
calculates the probability of the next word on the
fly, we need greedy decoding for each step:

yητ = arg maxy p (y|y<τ , Hη) (3)

Note that yητ , z
η
τ corresponds to Hη and is the can-

didate for yτ , zτ . The agent described in the next
section decides whether to take this candidate or
wait for better predictions.

3.2 Agent

A trainable agent is designed to make decisions
A = {a1, .., aT }, at ∈ A sequentially based on
observations O = {o1, ..., oT }, ot ∈ O, and then
control the translation environment properly.

Observation As shown in Fig 2, we concatenate
the current context vector cητ , the current decoder
state zητ and the embedding vector of the candidate
word yητ as the continuous observation, oτ+η =
[cητ ; zητ ;E(yητ )] to represent the current state.

Action Similarly to prior work (Grissom II et al.,
2014), we define the following set of actions:

• READ: the agent rejects the candidate and waits
to encode the next word from input buffer;
• WRITE: the agent accepts the candidate and

emits it as the prediction into output buffer;

Policy How the agent chooses the actions based
on the observation defines the policy. In our set-
ting, we utilize a stochastic policy πθ parameter-
ized by a recurrent neural network, that is:

st = fθ (st−1, ot)

πθ(at|a<t, o≤t) ∝ gθ (st) ,
(4)

where st is the internal state of the agent, and is
updated recurrently yielding the distribution of the
action at. Based on the policy of our agent, the
overall algorithm of greedy decoding is shown in
Algorithm 1, The algorithm outputs the translation
result and a sequence of observation-action pairs.

Algorithm 1 Simultaneous Greedy Decoding

Require: NMT system φ, policy πθ, τMAX, input
buffer X , output buffer Y , state buffer S.

1: Init x1 ⇐ X,h1 ← φENC (x1) , H
1 ← {h1}

2: z0 ← φINIT

(
H1
)
, y0 ← 〈s〉

3: τ ← 0, η ← 1
4: while τ < τMAX do
5: t← τ + η
6: yητ , z

η
τ , ot ← φ (zτ−1, yτ−1, Hη)

7: at ∼ πθ (at; a<t, o<t) , S ⇐ (ot, at)
8: if at = READ and xη 6= 〈/s〉 then
9: xη+1 ⇐ X,hη+1 ← φENC (hη, xη+1)

10: Hη+1 ← Hη ∪ {hη+1}, η ← η + 1
11: if |Y | = 0 then z0 ← φINIT (Hη)

12: else if at = WRITE then
13: zτ ← zητ , yτ ← yητ
14: Y ⇐ yτ , τ ← τ + 1
15: if yτ = 〈/s〉 then break

4 Learning

The proposed framework can be trained using re-
inforcement learning. More precisely, we use pol-
icy gradient algorithm together with variance re-
duction and regularization techniques.

4.1 Pre-training
We need an NMT environment for the agent to ex-
plore and use to generate translations. Here, we
simply pre-train the NMT encoder-decoder on full
sentence pairs with maximum likelihood, and as-
sume the pre-trained model is still able to generate
reasonable translations even on incomplete source
sentences. Although this is likely sub-optimal, our
NMT environment based on uni-directional RNNs
can treat incomplete source sentences in a manner
similar to shorter source sentences and has the po-
tential to translate them more-or-less correctly.

4.2 Reward Function
The policy is learned in order to increase a reward
for the translation. At each step the agent will re-
ceive a reward signal rt based on (ot, at). To eval-
uate a good simultaneous machine translation, a
reward must consider both quality and delay.

Quality We evaluate the translation quality us-
ing metrics such as BLEU (Papineni et al., 2002).
The BLEU score is defined as the weighted geo-
metric average of the modified n-gram precision
BLEU0, multiplied by the brevity penalty BP to
punish a short translation. In practice, the vanilla
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BLEU score is not a good metric at sentence level
because being a geometric average, the score will
reduce to zero if one of the precisions is zero. To
avoid this, we used a smoothed version of BLEU
for our implementation (Lin and Och, 2004).

BLEU(Y, Y ∗) = BP · BLEU0(Y, Y ∗), (5)

where Y ∗ is the reference and Y is the output. We
decompose BLEU and use the difference of par-
tial BLEU scores as the reward, that is:

rQt =

{
∆BLEU0(Y, Y ∗, t) t < T

BLEU(Y, Y ∗) t = T
(6)

where Y t is the cumulative output at t (Y 0 = ∅),
and ∆BLEU0(Y, Y ∗, t) = BLEU0(Y t, Y ∗) −
BLEU0(Y t−1, Y ∗). Obviously, if at = READ, no
new words are written into Y , yielding rQt = 0.
Note that we do not multiply BP until the end of
the sentence, as it would heavily penalize partial
translation results.

Delay As another critical feature, delay judges
how much time is wasted waiting for the transla-
tion. Ideally we would directly measure the actual
time delay incurred by waiting for the next word.
For simplicity, however, we suppose it consumes
the same amount of time listening for one more
word. We define two measurements, global and
local, respectively:

• Average Proportion (AP): following the def-
inition in (Cho and Esipova, 2016), X , Y are
the source and decoded sequences respectively,
and we use s(τ) to denote the number of source
words been waited when decoding word yτ ,

0 < d (X,Y ) =
1

|X||Y |
∑

τ

s(τ) ≤ 1

dt =

{
0 t < T
d(X,Y ) t = T

(7)

d is a global delay metric, which defines the av-
erage waiting proportion of the source sentence
when translating each word.

• Consecutive Wait length (CW): in speech
translation, listeners are also concerned with
long silences during which no translation oc-
curs. To capture this, we also consider on how
many words were waited for (READ) consecu-
tively between translating two words. For each
action, where we initially define c0 = 0,

ct =

{
ct−1 + 1 at = READ

0 at = WRITE
(8)

• Target Delay: We further define “target delay”
for both d and c as d∗ and c∗, respectively, as
different simultaneous translation applications
may have different requirements on delay. In
our implementation, the reward function for de-
lay is written as:

rDt = α·[sgn(ct − c∗) + 1]+β ·bdt−d∗c+ (9)

where α ≤ 0, β ≤ 0.

Trade-off between quality and delay A good
simultaneous translation system requires balanc-
ing the trade-off of translation quality and time
delay. Obviously, achieving the best translation
quality and the shortest translation delays are in
a sense contradictory. In this paper, the trade-off
is achieved by balancing the rewards rt = rQt +rDt
provided to the system, that is, by adjusting the co-
efficients α, β and the target delay d∗, c∗ in Eq. 9.

4.3 Reinforcement Learning
Policy Gradient We freeze the pre-trained pa-
rameters of an NMT model, and train the agent
using the policy gradient (Williams, 1992). The
policy gradient maximizes the following expected
cumulative future rewards, J = Eπθ

[∑T
t=1 rt

]
,

whose gradient is

∇θJ = Eπθ

[
T∑

t′=1

∇θ log πθ(at′ |·)Rt
]

(10)

Rt =
∑T

k=t

[
rQk + rDk

]
is the cumulative future

rewards for current observation and action. In
practice, Eq. 10 is estimated by sampling multi-
ple action trajectories from the current policy πθ,
collecting the corresponding rewards.

Variance Reduction Directly using the policy
gradient suffers from high variance, which makes
learning unstable and inefficient. We thus em-
ploy the variance reduction techniques suggested
by Mnih and Gregor (2014). We subtract from
Rt the output of a baseline network bϕ to obtain
R̂t = Rt − bϕ (ot), and centered re-scale the re-
ward as R̃t = R̂t−b√

σ2+ε
with a running average b

and standard deviation σ. The baseline network is
trained to minimize the squared loss as follows:

Lϕ = Eπθ

[
T∑

t=1

‖Rt − bϕ (ot) ‖2
]

(11)

We also regularize the negative entropy of the
policy to facilitate exploration.
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Algorithm 2 Learning with Policy Gradient

Require: NMT system φ, agent θ, baseline ϕ
1: Pretrain the NMT system φ using MLE;
2: Initialize the agent θ;
3: while stopping criterion fails do
4: Obtain a translation pairs: {(X,Y ∗)};
5: for (Y, S) ∼ Simultaneous Decoding do
6: for (ot, at) in S do
7: Compute the quality: rQt ;
8: Compute the delay: rDt ;
9: Compute the baseline: bϕ (ot);

10: Collect the future rewards: {Rt};
11: Perform variance reduction: {R̃t};
12: Update: θ ← θ + λ1∇θ [J − κH(πθ)]
13: Update: ϕ← ϕ− λ2∇ϕL

The overall learning algorithm is summarized
in Algorithm 2. For efficiency, instead of updating
with stochastic gradient descent (SGD) on a single
sentence, both the agent and the baseline are opti-
mized using a minibatch of multiple sentences.

5 Simultaneous Beam Search
In previous sections we described a simultaneous
greedy decoding algorithm. In standard NMT it
has been shown that beam search, where the de-
coder keeps a beam of k translation trajectories,
greatly improves translation quality (Sutskever et
al., 2014), as shown in Fig. 3 (A).

It is non-trivial to directly apply beam-search in
simultaneous machine translation, as beam search
waits until the last word to write down translation.
Based on our assumption WRITE does not cost de-
lay, we can perform a simultaneous beam-search
when the agent chooses to consecutively WRITE:
keep multiple beams of translation trajectories in
temporary buffer and output the best path when
the agent switches to READ. As shown in Fig. 3
(B) & (C), it tries to search for a relatively better
path while keeping the delay unchanged.

Note that we do not re-train the agent for simul-
taneous beam-search. At each step we simply in-
put the observation of the current best trajectory
into the agent for making next decision.

6 Experiments

6.1 Settings

Dataset To extensively study the proposed si-
multaneous translation model, we train and evalu-
ate it on two different language pairs: “English-

Figure 3: Illustrations of (A) beam-search, (B) si-
multaneous greedy decoding and (C) simultaneous
beam-search.

German (EN-DE)” and “English-Russian (EN-
RU)” in both directions per pair. We use the par-
allel corpora available from WMT’152 for both
pre-training the NMT environment and learning
the policy. We utilize newstest-2013 as the valida-
tion set to evaluate the proposed algorithm. Both
the training set and the validation set are tokenized
and segmented into sub-word units with byte-pair
encoding (BPE) (Sennrich et al., 2015). We only
use sentence pairs where both sides are less than
50 BPE subword symbols long for training.

Environment & Agent Settings We pre-trained
the NMT environments for both language pairs
and both directions following the same setting
from (Cho and Esipova, 2016). We further built
our agents, using a recurrent policy with 512
GRUs and a softmax function to produce the ac-
tion distribution. All our agents are trained us-
ing policy gradient using Adam (Kingma and Ba,
2014) optimizer, with a mini-batch size of 10. For
each sentence pair in a batch, 5 trajectories are
sampled. For testing, instead of sampling we pick
the action with higher probability each step.

Baselines We compare the proposed methods
against previously proposed baselines. For fair
comparison, we use the same NMT environment:

• Wait-Until-End (WUE): an agent that starts to
WRITE only when the last source word is seen.
In general, we expect this to achieve the best
quality of translation. We perform both greedy
decoding and beam-search with this method.

• Wait-One-Step (WOS): an agent that WRITEs
after each READs. Such a policy is problematic
when the source and target language pairs have
different word orders or lengths (e.g. EN-DE).
2http://www.statmt.org/wmt15/
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Figure 4: Learning progress curves for variant delay targets on the validation dataset for EN → RU.
Every time we only keep one target for one delay measure. For instance when using target AP, the
coefficient of α in Eq. 9 will be set 0.
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Figure 5: Delay (AP) v.s. BLEU for both language pair–
directions. The shown point-pairs are the results of simul-
taneous greedy decoding and beam-search (beam-size = 5)
respectively with models trained for various delay targets:
(J /: CW=8, N4: CW=5, �♦: CW=2, I .: AP=0.3, HO:
AP=0.5, ��: AP=0.7). For each target, we select the model
that maximizes the quality-to-delay ratio ( BLEU

AP ) on the val-
idation set. The baselines are also plotted (F: WOS FI:
WUE, ×: WID, +: WIW).

• Wait-If-Worse/Wait-If-Diff (WIW/WID): as
proposed by Cho and Esipova (2016), the al-
gorithm first pre-READs the next source word,
and accepts this READ when the probability of
the most likely target word decreases (WIW), or
the most likely target word changes (WID).

• Segmentation-based (SEG) (Oda et al., 2014):
a state-of-the-art segmentation-based algorithm
based on optimizing segmentation to achieve
the highest quality score. In this paper, we
tried the simple greedy method (SEG1) and the
greedy method with POS Constraint (SEG2).

6.2 Quantitative Analysis
In order to evaluate the effectiveness of our rein-
forcement learning algorithms with different re-

ward functions, we vary the target delay d∗ ∈
{0.3, 0.5, 0.7} and c∗ ∈ {2, 5, 8} for Eq. 9 sepa-
rately, and trained agents with α and β adjusted to
values that provided stable learning for each lan-
guage pair according to the validation set.

Learning Curves As shown in Fig. 4, we plot
learning progress for EN-RU translation with dif-
ferent target settings. It clearly shows that our
algorithm effectively increases translation quality
for all the models, while pushing the delay close,
if not all of the way, to the target value. It can
also be noted from Fig. 4 (a) and (b) that there ex-
ists strong correlation between the two delay mea-
sures, implying the agent can learn to decrease
both AP and CW simultaneously.
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Figure 6: Delay (CW) v.s. BLEU score for EN
→ RU, (J /: CW=8, N4: CW=5, �♦: CW=2, I
.: AP=0.3, HO: AP=0.5, ��: AP=0.7), against
the baselines (F: WOS F: WUE, +: SEG1, ×:
SEG2).

Quality v.s. Delay As shown in Fig. 5, it is
clear that the trade-off between translation quality
and delay has very similar behaviors across both
language pairs and directions. The smaller delay
(AP or CW) the learning algorithm is targeting, the
lower quality (BLEU score) the output translation.
It is also interesting to observe that, it is more diffi-
cult for “→EN” translation to achieve a lower AP
target while maintaining good quality, compared
to “EN→”. In addition, the models that are op-
timized on AP tend to perform better than those
optimized on CW, especially in “→EN” transla-
tion. German and Russian sentences tend to be
longer than English, hence require more consecu-
tive waits before being able to emit the next En-
glish symbol.

v.s. Baselines In Fig. 5 and 6, the points closer
to the upper left corner achieve better trade-off
performance. Compared to WUE and WOS which
can ideally achieve the best quality (but the worst
delay) and the best delay (but poor quality) re-
spectively, all of our proposed models find a good
balance between quality and delay. Some of the
proposed models can achieve good BLEU scores
close to WUE, while have much smaller delay.

Compared to the method of Cho and Esipova
(2016) based on two hand-crafted rules (WID,
WIW), in most cases our proposed models find
better trade-off points, while there are a few ex-
ceptions. We also observe that the baseline models
have trouble controlling the delay in a reasonable
area. In contrast, by optimizing towards a given
target delay, our proposed model is stable while
maintaining good translation quality.

We also compared against Oda et al. (2014)’s

state-of-the-art segmentation algorithm (SEG). As
shown in Fig 6, it is clear that although SEG can
work with variant segmentation lengths (CW), the
proposed model outputs high quality translations
at a much smaller CW. We conjecture that this is
due to the independence assumption in SEG, while
the RNNs and attention mechanism in our model
makes it possible to look at the whole history to
decide each translated word.

w/o Beam-Search We also plot the results of si-
multaneous beam-search instead of using greedy
decoding. It is clear from Fig. 5 and 6 that most
of the proposed models can achieve an visible in-
crease in quality together with a slight increase in
delay. This is because beam-search can help to
avoid bad local minima. We also observe that the
simultaneous beam-search cannot bring as much
improvement as it did in the standard NMT set-
ting. In most cases, the smaller delay the model
achieves, the less beam search can help as it re-
quires longer consecutive WRITE segments for ex-
tensive search to be necessary. One possible so-
lution is to consider the beam uncertainty in the
agent’s READ/WRITE decisions. We leave this to
future work.

6.3 Qualitative Analysis

In this section, we perform a more in-depth analy-
sis using examples from both EN-RU and EN-DE
pairs, in order to have a deeper understanding of
the proposed algorithm and its remaining limita-
tions. We only perform greedy decoding to sim-
plify visualization.

EN→RU As shown in Fig 8, since both En-
glish and Russian are Subject-Verb-Object (SVO)
languages, the corresponding words may share the
same order in both languages, which makes si-
multaneous translation easier. It is clear that the
larger the target delay (AP or CW) is set, the more
words are read before translating the correspond-
ing words, which in turn results in better transla-
tion quality. We also note that very early WRITE

commonly causes bad translation. For example,
for AP=0.3 & CW=2, both the models choose
to WRITE in the very beginning the word “The”,
which is unreasonable since Russian has no arti-
cles, and there is no word corresponding to it. One
good feature of using NMT is that the more words
the decoder READs, the longer history is saved,
rendering simultaneous translation easier.
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Figure 7: Comparison of DE→EN examples using the proposed framework and usual NMT system
respectively. Both the heatmaps share the same setting with Fig. 1. The verb “gedeckt” is incorrectly
translated in simultaneous translation.

	 Source	 	AP=0.3	 	AP=0.7	 	CW=2	 CW=8	
The		 The	The					 	 The		 	
people		 p--	i--	ent	the	p--	ol--	s							 	 	 	
,	 								,						 	 p--	riv--	 	
as		 	 	 ers	 	
I					 as	I	 	 	 	
heard		 я	слышал	 Люди		 							,	 Люди		
in	 	 ,		как	я	слышал	 	 	
the	 	 	 как		 	
countryside	 						в			 						в			 я	слышал	 	
,	 	 	 	 								,	
want	 сельской	местности						 сельской		 						в			 как	я	
a	 	 местности		 	 слышал		
Government	 	 	 сельской		 	
that	 						,	 	 	 						в				
is	 	 	 местности		 сельской			
not	 	 	 	 	
made	 хочу			 	 						,	 	
up	 правительство	 	 	 местности			
of	 	 	 хочу			 	
thi--	 ,	 ,	 	 	
eves	 	 хотят			 правительство	 	
.	 	 	 	 						,	
<eos>	 которое	не	производится	

во--	ров	.	
,	чтобы	правительство	,	
которое	не	в--	меши--	
вается	в	во--	ры	.	

,	которое	не	является	
состав--	ной	частью	во--	
ров	.	

хотят	,	чтобы	
правительство	,	которое	
не	в--	меши--	вается	в	во--	
ры	.	

Summary	 BLEU=39/	AP=0.46	 BLEU=64/AP=0.77	 BLEU=54/CW=1.76	 BLEU=64/CW=2.55	

Figure 8: Given the example input sentence (leftmost column), we show outputs by models trained for
various delay targets. For these outputs, each row corresponds to one source word and represents the
emitted words (maybe empty) after reading this word. The corresponding source and target words are in
the same color for all model outputs.

DE→EN As shown in Fig 1 and 7 (a), where
we visualize the attention weights as soft align-
ment between the progressive input and output
sentences, the highest weights are basically along
the diagonal line. This indicates that our simul-
taneous translator works by waiting for enough
source words with high alignment weights and
then switching to write them.

DE-EN translation is likely more difficult as
German usually uses Subject-Object-Verb (SOV)
constructions a lot. As shown in Fig 1, when a sen-
tence (or a clause) starts the agent has learned such
policy to READ multiple steps to approach the verb
(e.g. serviert and gestorben in Fig 1). Such a pol-
icy is still limited when the verb is very far from
the subject. For instance in Fig. 7, the simultane-
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ous translator achieves almost the same translation
with standard NMT except for the verb “gedeckt”
which corresponds to “covered” in NMT output.
Since there are too many words between the verb
“gedeckt” and the subject “Kosten für die Kam-
pagne werden”, the agent gives up reading (oth-
erwise it will cause a large delay and a penalty)
and WRITEs “being paid” based on the decoder’s
hypothesis. This is one of the limitations of the
proposed framework, as the NMT environment is
trained on complete source sentences and it may
be difficult to predict the verb that has not been
seen in the source sentence. One possible way is
to fine-tune the NMT model on incomplete sen-
tences to boost its prediction ability. We will leave
this as future work.

7 Related Work

Researchers commonly consider the problem of
simultaneous machine translation in the scenario
of real-time speech interpretation (Fügen et al.,
2007; Bangalore et al., 2012; Fujita et al., 2013;
Rangarajan Sridhar et al., 2013; Yarmohammadi
et al., 2013). In this approach, the incoming
speech stream required to be translated are first
recognized and segmented based on an automatic
speech recognition (ASR) system. The translation
model then works independently based on each of
these segments, potentially limiting the quality of
translation. To avoid using a fixed segmentation
algorithm, Oda et al. (2014) introduced a trainable
segmentation component into their system, so that
the segmentation leads to better translation quality.
Grissom II et al. (2014) proposed a similar frame-
work, however, based on reinforcement learning.
All these methods still rely on translating each seg-
ment independently without previous context.

Recently, two research groups have tried to ap-
ply the NMT framework to the simultaneous trans-
lation task. Cho and Esipova (2016) proposed
a similar waiting process. However, their wait-
ing criterion is manually defined without learning.
Satija and Pineau (2016) proposed a method sim-
ilar to ours in overall concept, but it significantly
differs from our proposed method in many details.
The biggest difference is that they proposed to use
an agent that passively reads a new word at each
step. Because of this, it cannot consecutively de-
code multiple steps, rendering beam search diffi-
cult. In addition, they lack the comparison to any
existing approaches. On the other hand, we per-

form an extensive experimental evaluation against
state-of-the-art baselines, demonstrating the rela-
tive utility both quantitatively and qualitatively.

The proposed framework is also related to some
recent efforts about online sequence-to-sequence
(SEQ2SEQ) learning. Jaitly et al. (2015) pro-
posed a SEQ2SEQ ASR model that takes fixed-
sized segments of the input sequence and outputs
tokens based on each segment in real-time. It is
trained with alignment information using super-
vised learning. A similar idea for online ASR is
proposed by Luo et al. (2016). Similar to Satija
and Pineau (2016), they also used reinforcement
learning to decide whether to emit a token while
reading a new input at each step. Although shar-
ing some similarities, ASR is very different from
simultaneous MT with a more intuitive definition
for segmentation. In addition, Yu et al. (2016)
recently proposed an online alignment model to
help sentence compression and morphological in-
flection. They regarded the alignment between the
input and output sequences as a hidden variable,
and performed transitions over the input and out-
put sequence. By contrast, the proposed READ and
WRITE actions do not necessarily to be performed
on aligned words (e.g. in Fig. 1), and are learned
to balance the trade-off of quality and delay.

8 Conclusion

We propose a unified framework to do neural si-
multaneous machine translation. To trade off qual-
ity and delay, we extensively explore various tar-
gets for delay and design a method for beam-
search applicable in the simultaneous MT setting.
Experiments against state-of-the-art baselines on
two language pairs demonstrate the efficacy both
quantitatively and qualitatively.
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Abstract

We aim to shed light on the strengths and
weaknesses of the newly introduced neu-
ral machine translation paradigm. To that
end, we conduct a multifaceted evaluation
in which we compare outputs produced by
state-of-the-art neural machine translation
and phrase-based machine translation sys-
tems for 9 language directions across a
number of dimensions. Specifically, we
measure the similarity of the outputs, their
fluency and amount of reordering, the ef-
fect of sentence length and performance
across different error categories. We find
out that translations produced by neural
machine translation systems are consider-
ably different, more fluent and more ac-
curate in terms of word order compared
to those produced by phrase-based sys-
tems. Neural machine translation sys-
tems are also more accurate at producing
inflected forms, but they perform poorly
when translating very long sentences.

1 Introduction

A new paradigm to statistical machine transla-
tion, neural MT (NMT), has emerged very re-
cently and has already surpassed the performance
of the mainstream approach in the field, phrase-
based MT (PBMT), for a number of language
pairs, e.g. (Sennrich et al., 2016b; Luong et al.,
2015; Costa-Jussà and Fonollosa, 2016; Chung et
al., 2016).

In PBMT (Koehn, 2010) different models
(translation, reordering, target language, etc.) are
trained independently and combined in a log-
linear scheme in which each model is assigned a

∗Work partly done at his previous position in Dublin City
University, Ireland.

different weight by a tuning algorithm. On the
contrary, in NMT all the components are jointly
trained to maximise translation quality. NMT sys-
tems have a strong generalisation power because
they encode translation units as numeric vectors
that represent concepts, whereas in PBMT transla-
tion units are encoded as strings. Moreover, NMT
systems are able to model long-distance phenom-
ena thanks to the use of recurrent neural networks,
e.g. long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) or gated recurrent
units (Chung et al., 2014).

The translations produced by NMT systems
have been evaluated thus far mostly in terms of
overall performance scores, be it by means of au-
tomatic or human evaluations. This has been the
case of last year’s news translation shared task
at the First Conference on Machine Translation
(WMT16).1 In this translation task, outputs pro-
duced by participant MT systems, the vast ma-
jority of which fall under either the phrase-based
or neural approaches, were evaluated (i) automat-
ically with the BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) metrics, and (ii) manu-
ally by means of ranking translations (Federmann,
2012) and monolingual semantic similarity (Gra-
ham et al., 2016). In all these evaluations, the per-
formance of each system is measured by means of
an overall score, which, while giving an indication
of the general performance of a given system, does
not provide any additional information.

In order to understand better the new NMT
paradigm and in what respects it provides bet-
ter (or worse) translation quality than state-of-the-
art PBMT, Bentivogli et al. (2016) conducted a
detailed analysis for the English-to-German lan-
guage direction. In a nutshell, they found out
that NMT (i) decreases post-editing effort, (ii) de-

1http://www.statmt.org/wmt16/
translation-task.html
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grades faster than PBMT with sentence length and
(iii) results in a notable improvement regarding re-
ordering.

In this paper we delve further in this direc-
tion by conducting a multilingual and multifaceted
evaluation in order to find answers to the follow-
ing research questions. Whether, in comparison to
PBMT, NMT systems result in:

• considerably different output and higher de-
gree of variability;

• more or less fluent output;

• more or less monotone translations;

• translations with better or worse word order;

• better or worse translations depending on
sentence length;

• less or more errors for different error cate-
gories: inflectional, reordering and lexical;

Hereunder we specify the main differences and
similarities between this work and that of Ben-
tivogli et al. (2016):

• Language directions. They considered 1
while our study comprises 9.

• Content. They dealt with transcribed
speeches while we work with news stories.
Previous research has shown that these two
types of content pose different challenges for
MT (Ruiz and Federico, 2014).

• Size of evaluation data. Their test set had 600
sentences while our test sets span from 1 999
to 3 000 depending on the language direction.

• Reference type. Their references were both
independent from the MT output and also
post-edited, while we have access only to sin-
gle independent references.

• Analyses. While some analyses overlap,
some are novel in our experiments. Namely,
output similarity, fluency and degree of re-
ordering performed.

Our analyses are conducted on the best PBMT
and NMT systems submitted to the WMT16 trans-
lation task for each language direction. This (i)
guarantees the reproducibility of our results as all
the MT outputs are publicly available, (ii) ensures

that the systems evaluated are state-of-the-art, as
they are the result of the latest developments at top
MT research groups worldwide, and (iii) allows
the conclusions that will be drawn to be rather
general, as 6 languages from 4 different families
(Germanic, Slavic, Romance and Finno-Ugric) are
covered in the experiments.

The rest of the paper is organised as follows.
Section 2 describes the experimental setup. Sub-
sequent sections cover the experiments carried
out in which we measured different aspects of
NMT, namely: output similarity (Section 3), flu-
ency (Section 4), degree of reordering and quality
of word order (Section 5), sentence length (Sec-
tion 6), and amount of errors for different error
categories (Section 7). Finally, Section 8 holds the
conclusions and proposals for future work.

2 Experimental Setup

The experiments are run on the best PBMT and
NMT constrained systems submitted to the news
translation task of WMT16. We selected such sys-
tems according to the human evaluation (Bojar et
al., 2016, Sec. 3.4).2 We noted that many of the
PBMT systems contain neural features, mainly in
the form of language models. If the best PBMT
submission contains any neural features we use
this as the PBMT system in our analyses as long as
none of these features is a fully-fledged NMT sys-
tem. This was the case of the best submission in
terms of BLEU for RU→EN (Junczys-Dowmunt
et al., 2016).

Out of the 12 language directions at the trans-
lation task, we conduct experiments on 9.3 These
are the language pairs between English (EN) and
Czech (CS), German (DE), Finnish (FI), Roma-
nian (RO) and Russian (RU) in both directions (ex-
cept for Finnish, where only the EN→FI direction
is covered as no NMT system was submitted for
the opposite direction, FI→EN). Finally, there was
an additional language at the shared task, Turk-
ish, that is not considered here, as either none of
the systems submitted was neural (Turkish→EN),
or there was one such system but its performance

2When there are not statistically significant differences
between two or more NMT or PBMT systems (i.e. they be-
long to the same equivalence class), we pick the one with the
highest BLEU score. If two NMT or PBMT systems were
the best according to BLEU (draw), we pick the one with the
best TER score.

3Some experiments are run on a subset of these languages
due to the lack of required tools for some of the languages
involved.
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Language
Pair

MT
Paradigm

System details

EN→CS
PBMT Phrase-based, word clusters (Ding et al., 2016)
NMT Unsupervised word segmentation and backtranslated monolingual cor-

pora (Sennrich et al., 2016a)

EN→DE
hierarchical
PBMT

String-to-tree, neural and dependency language models (Williams et al.,
2016)

NMT Same as for EN→CS

EN→FI
PBMT Phrase-based, rule-based and unsupervised word segmentation, opera-

tion sequence model (Durrani et al., 2011), bilingual neural language
model (Devlin et al., 2014), re-ranked with a recurrent neural language
model (Sánchez-Cartagena and Toral, 2016)

NMT Rule-based word segmentation, backtranslated monolingual cor-
pora (Sánchez-Cartagena and Toral, 2016)

EN→RO
PBMT Phrased-based, operation sequence model, monolingual and bilingual

neural language models (Williams et al., 2016)
NMT Same as for EN→CS

EN→RU
PBMT Phrase-based, word clusters, bilingual neural language model (Ding et al.,

2016)
NMT Same as for EN→CS

CS→EN
PBMT Same as for EN→CS
NMT Same as for EN→CS

DE→EN
PBMT Phrase-based, pre-reordering, compound splitting (Williams et al., 2016)
NMT Same as for EN→CS plus reranked with a right-to-left model

RO→EN
PBMT Phrase-based, operation sequence model, monolingual neural language

model (Williams et al., 2016)
NMT Same as for EN→CS

RU→EN
PBMT Phrase-based, lemmas in word alignment, sparse features, bilingual neural

language model and transliteration (Lo et al., 2016)
NMT Same as for EN→CS

Table 1: Details of the best systems pertaining to the PBMT and NMT paradigms submitted to the
WMT16 news translation task for each language direction.
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was extremely low (EN→Turkish) and hence most
probably not representative of the state-of-the-art
in NMT.

Table 1 shows the main characteristics of the
best PBMT and NMT systems submitted to the
WMT16 news translation task. It should be noted
that all the NMT systems listed in the table fall
under the encoder-decoder architecture with at-
tention (Bahdanau et al., 2015) and operate on
subword units. Word segmentation is carried out
with the help of a lexicon in the EN→FI di-
rection (Sánchez-Cartagena and Toral, 2016) and
in an unsupervised way in the remaining direc-
tions (Sennrich et al., 2016a).

2.1 Overall Evaluation

First, and in order to contextualise our analyses
below, we report the BLEU scores achieved by the
best NMT and PBMT systems for each language
direction at WMT16’s news translation task in Ta-
ble 2.4 The best NMT system clearly outperforms
the best PBMT system for all language directions
out of English (relative improvements range from
5.5% for EN→RO to 17.6% for EN→FI) and the
human evaluation (Bojar et al., 2016, Sec. 3.4)
confirms these results. In the opposite direction,
the human evaluation shows that the best NMT
system outperforms the best PBMT system for all
language directions except when the source lan-
guage is Russian. This slightly differs from the
automatic evaluation, according to which NMT
outperforms PBMT for translations from Czech
(3.3% relative improvement) and German (9.9%)
but underperforms PBMT for translations from
Romanian (-3.7%) and Russian (-3.8%).

3 Output Similarity

The aim of this analysis is to assess to which ex-
tent translations produced by NMT systems are
different from those produced by PBMT systems.
We measure this by taking the outputs of the top
n5 NMT and PBMT systems submitted to each
language direction and checking their pairwise
overlap in terms of the chrF1 (Popović, 2015)

4We report the official results from http://matrix.
statmt.org/matrix for the test set newstest2016 using
normalised BLEU (column z BLEU-cased-norm).

5The number of systems considered is different for each
language direction as it depends on the number of systems
submitted. Namely, we have considered 2 NMT and 2 PBMT
into Czech, 3 NMT and 5 PBMT into German, 2 NMT and 4
PBMT into Finnish, 2 NMT and 4 PBMT into Romanian and
2 NMT and 3 PBMT into Russian.

System CS DE FI RO RU
From EN

PBMT 23.7 30.6 15.3 27.4 24.3
NMT 25.9 34.2 18.0 28.9 26.0

Into EN
PBMT 30.4 35.2 23.7 35.4 29.3
NMT 31.4 38.7 - 34.1 28.2

Table 2: BLEU scores of the best NMT and PBMT
systems for each language pair at WMT16’s news
translation task. If the difference between them is
statistically significant according to paired boot-
strap resampling (Koehn, 2004) with p = 0.05 and
1 000 iterations, the highest score is shown in bold.

automatic evaluation metric.6 In order to make
sure that all systems considered are truly different
(rather than different runs of the same system) we
consider only 1 system per paradigm (NMT and
PBMT) submitted by each team for each language
direction.

We would consider NMT outputs considerably
different (with respect to PBMT) if they resem-
ble each other (i.e. high pairwise overlap between
NMT outputs) more than they do to PBMT sys-
tems (i.e. low overlap between an output by NMT
and another by PBMT). This analysis is carried out
only for language directions out of English, as for
all the language directions into English there was,
at most, 1 NMT submission.

TL 2 NMT 2 PBMT NMT & PBMT
CS 68.66 77.63 64.34
DE 72.10 72.97 66.80
FI 56.03 57.42 55.55
RO 69.47 75.96 68.77
RU 35.52 43.35 29.87

Table 3: Average of the overlaps between pairs of
outputs produced by the top n NMT and PBMT
systems for each language direction from English
to the target language (TL). The higher the value,
the larger is the overlap.

Table 3 shows the results. We can observe
the same trends for all the language directions,
namely: (i) the highest overlaps are between pairs

6Throughout our analyses we use this metric as it has been
shown to correlate better with human judgements than the
de facto standard automatic metric, BLEU, when the target
language is a morphologically rich language such as Finnish,
while its correlation is on par with BLEU for languages with
simpler morphology such as English (Popović, 2015).
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of PBMT systems; (ii) next, we have overlaps
between NMT systems; (iii) finally, overlaps be-
tween PBMT and NMT are the lowest.

We can conclude then that NMT systems lead
to considerably different outputs compared to
PBMT. The fact that there is higher inter-system
variability in NMT than in PBMT (i.e. over-
laps between pairs of NMT systems are lower
than between pairs of PBMT systems) may sur-
prise the reader, considering the fact that all NMT
systems belong to the same paradigm (encoder-
decoder with attention) while for some language
directions (EN→DE, EN→FI and EN→RO) there
are PBMT systems belonging to two different
paradigms (pure phrase-based and hierarchical).
However, the higher variability among NMT
translations can be attributed, we believe, to the
fact that NMT systems use numeric vectors that
represent concepts instead of strings as translation
units.

4 Fluency

In this experiment we aim to find out whether
the outputs produced by NMT systems are more
or less fluent than those produced by PBMT sys-
tems. To that end, we take perplexity of the
MT outputs on neural language models (LMs) as
a proxy for fluency. The LMs are built using
TheanoLM (Enarvi and Kurimo, 2016). They
contain 100 units in the projection layer, 300 units
in the LSTM layer, and 300 units in the tanh layer,
following the setup described by Enarvi and Ku-
rimo (2016, Sec. 3.2). The training algorithm is
Adagrad (Duchi et al., 2011) and we used 1 000
word classes obtained with mkcls from the train-
ing corpus. Vocabulary is limited to the most fre-
quent 50 000 tokens.

LMs are trained on a random sample of 4 mil-
lion sentences selected from the News Crawl 2015
monolingual corpora, available for all the lan-
guages considered.7

Table 4 shows the results. For all the language
directions considered but one, perplexity is higher
on the PBMT output compared to the NMT out-
put. The only exception is translation into Finnish,
in which perplexity on the PBMT output is slightly
lower, probably because its fluency was improved
by reranking it with a neural LM similar to the one

7http://data.statmt.org/
wmt16/translation-task/
training-monolingual-news-crawl.tgz

Language PBMT NMT Rel. diff.direction
EN→CS 202.91 173.33 −14.58%
EN→DE 131.54 107.08 −18.60%
EN→FI 214.10 222.40 3.88%
EN→RO 124.66 116.33 −6.68%
EN→RU 158.18 127.83 −19.19%
CS→EN 110.08 102.36 −7.01%
DE→EN 122.26 104.72 −14.35%
RO→EN 106.08 102.18 −3.68%
RU→EN 123.86 106.75 −13.81%
Average 143.74 129.22 −10.45%

Table 4: Perplexity scores for the outputs of the
best NMT and PBMT systems on language mod-
els built on 4 million sentences randomly selected
from the News Crawl 2015 corpora.

we use in this experiment (Sánchez-Cartagena and
Toral, 2016). The average relative difference, i.e.
considering all language directions, is notable at
−10.45%. Thus, our experiment shows that the
outputs produced by NMT systems are, in gen-
eral, more fluent than those produced by PBMT
systems.

One may argue that the perplexity obtained for
NMT outputs is lower than that for PBMT out-
puts because the LMs we used to measure per-
plexity follow the same model as the decoder of
the NMT architecture (Bahdanau et al., 2015) and
hence perplexity on a neural LM is not a valid
proxy for fluency. However, the following facts
support our strategy:

• The manual evaluation of fluency carried out
at the WMT16 shared translation task (Bo-
jar et al., 2016, Sec. 3.5) already confirmed
that NMT systems consistently produce more
fluent translations than PBMT systems. That
manual evaluation only covered language di-
rections into English. In this experiment, we
extend that conclusion to language directions
out of English.

• Neural LMs consistently outperform n-gram
based LMs when assessing the fluency of real
text (Kim et al., 2016; Enarvi and Kurimo,
2016). Thus, we have used the most accurate
automatic tool available to measure fluency.
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Language direction Monotone vs. PBMT vs. Ref. NMT vs. Ref.PBMT NMT Ref.
EN→CS 0.9273 0.9029 0.8295 0.8008 0.7964
EN→DE 0.8006 0.8229 0.7740 0.7560 0.7791
EN→FI 0.8912 0.9172 0.8367 0.7611 0.7819
EN→RO 0.8389 0.8378 0.7937 0.8312 0.8282
EN→RU 0.9342 0.9114 0.8364 0.8249 0.8240

CS→EN 0.7694 0.7589 0.7128 0.8000 0.8015
DE→EN 0.8036 0.7830 0.7409 0.7728 0.7943
RO→EN 0.8693 0.8427 0.8013 0.8187 0.8245
RU→EN 0.8170 0.7891 0.7247 0.7958 0.8069

Table 5: Average Kendall’s tau distance between the word alignments obtained after translating the test
set with each MT system being evaluated and a monotone alignment (left); and average Kendall’s tau dis-
tance between the word alignments obtained for each MT system’s translation and the word alignments
of the reference translation (right). Larger values represent more similar alignments. If the difference
between the distances depicted in the two last columns is statistically significant according to paired
bootstrap resampling (Koehn, 2004) with p = 0.05 and 1 000 iterations, the largest distance is shown in
bold.

5 Reordering

In this section we measure the amount of reorder-
ing performed by PBMT and NMT systems. Our
objective is to empirically determine whether: (i)
the recurrent neural networks in NMT systems
produce more changes in the word order of a sen-
tence than an PBMT decoder; and whether (ii)
these neural networks make the word order of the
translations closer to that of the reference.

In order to measure the amount of reorder-
ing, we used the Kendall’s tau distance between
word alignments obtained from pairs of sen-
tences (Birch, 2011, Sec. 5.3.2). As the dis-
tance needs to be computed from permutations,8

we turned word aligments into permutations by
means of the algorithm defined by Birch (2011,
Sec. 5.2).

For each language direction, we computed word
alignments between the source-language side of
the test set and the target-language reference, the
PBMT output and the NMT output by means of
MGIZA++ (Gao and Vogel, 2008). As the test
sets are rather small for word alignment (1 999 to
3 000 sentence pairs depending on the language
pair), we append bigger parallel corpora to help
ensure accurate word alignments and avoid data
sparseness. For languages for which in-domain

8A permutation between a source-language sentence and
a target-language sentence is defined as the set of operations
that need to be carried out over the words in the source-
language sentence to reflect the order of the words in the
target-language sentence (Birch, 2011, Sec. 5.2).

(news) parallel training data is available (German
and Russian), we append that dataset (News Com-
mentary). For the remaining languages (Finnish
and Romanian) we use the whole Europarl corpus.

The amount of reordering performed by each
system can be estimated as the distance between
the word alignments produced by that system and
a monotone word alignment. The similarity be-
tween the reorderings produced by each MT sys-
tem and the reorderings in the reference translation
can also be estimated as the distance between the
corresponding word alignments. Table 5 shows
the value of these distances for the language pairs
included in our evaluation. The average over all
the sentences in the test set of the distance pro-
posed by Birch (2011) is depicted.

It can be observed that the amount of reorder-
ing introduced by both types of MT systems is
lower than the quantity of reordering in the refer-
ence translation. NMT generally produces more
changes in the structure of the sentence than
PBMT. This is the case for all language pairs but
two (EN→DE and EN→FI). A possible explana-
tion for these two exceptions is the following: in
the former language pair, the PBMT system is hi-
erarchical (Williams et al., 2016) while in the lat-
ter, the output was reranked with neural LMs.

Concerning the similarity between the reorder-
ings produced by both MT systems and those in
the reference translation, out of 9 directions, in 5
directions the NMT system performs a reordering
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closer to the reference, in 1 direction the PBMT
system performs a reordering closer to the refer-
ence and in the remaining 3 directions the dif-
ferences are not statistically significant. That is,
NMT generally produces reorderings which are
closer to the reference translation. The exceptions
to this trend, however, do not exactly correspond
to the language pairs for which NMT underper-
formed PBMT.

In summary, NMT systems achieve, in general,
a higher degree of reordering than pure, phrase-
based PBMT systems, and, overall, this reordering
results in translations whose word order is closer
to that of the reference translation.

6 Sentence Length

In this experiment we aim to find out whether
the performances of NMT and PBMT are some-
how sensitive to sentence length. In this regard,
Bentivogli et al. (2016) found that, for transcribed
speeches, NMT outperformed PBMT regardless
of sentence length while also noted that NMT’s
performance degraded faster than PBMT’s as sen-
tence length increases. It should be noted, how-
ever, that sentences in our content type, news, are
considerably longer than sentences in transcribed
speeches.9 Hence, the current experiment will de-
termine to what extent the findings on transcribed
speeches stand also for texts made of longer sen-
tences.

1-5 6-10 11-15 16-20 21-25 26-30 30-35 36-40 41-45 46-50 >50
40

42

44

46

48

50

52

54

PBMT

NMT

Sentence length (range)

ch
rF

1

Figure 1: NMT and PBMT chrF1 scores on sub-
sets of different sentence length for the language
direction EN→FI.

We split the source side of the test set in sub-
sets of different lengths: 1 to 5 words (1-5), 6 to
10 and so forth up to 46 to 50 and finally longer
than 50 words (> 50). We then evaluate the out-

9According to Ruiz et al. (2014), sentences of transcribed
speeches in English average to 19 words while sentences in
news average to 24 words.

puts of the top PBMT and NMT submissions for
those subsets with the chrF1 evaluation metric.
Figure 1 presents the results for the language di-
rection EN→FI. We can observe that NMT out-
performs PBMT up to sentences of length 36-
40, while for longer sentences PBMT outperforms
NMT, with PBMT’s performance remaining fairly
stable while NMT’s clearly decreases with sen-
tence length. The results for the other language
directions exhibit similar trends.
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Figure 2: Relative improvement of the best NMT
versus the best PBMT submission on chrF1 for
different sentence lengths, averaged over all the
language pairs considered.

Figure 2 shows the relative improvements of
NMT over PBMT for each sentence length subset,
averaged over all the 9 language directions con-
sidered. We observe a clear trend of this value de-
creasing with sentence length and in fact we found
a strong negative Pearson correlation (-0.79) be-
tween sentence length and the relative improve-
ment (chrF1) of the best NMT over the best PBMT
system.

The correlations for each language direction are
shown in Table 6. We observe negative corre-
lations for all the language directions except for
DE→EN.

Direction CS DE FI RO RU
From EN -0.72 -0.26 -0.89 -0.01 -0.74
Into EN -0.19 0.10 - -0.36 -0.70

Table 6: Pearson correlations between sentence
length and relative improvement (chrF1) of the
best NMT over the best PBMT system for each
language pair.

7 Error Categories

In this experiment we assess the performance of
NMT versus PBMT systems on a set of error
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Error type EN→CS EN→DE EN→FI EN→RO EN→RU Average
Inflection −16.18% −13.26% −11.65% −15.13% −16.79% −14.60%
Reordering −7.97% −21.92% −12.12% −15.91% −6.18% −12.82%
Lexical −0.44% −3.48% −1.09% 2.17% −0.09% −0.59%

Table 7: Relative improvement of NMT versus PBMT for 3 error categories, for language directions out
of English.

Error type CS→EN DE→EN RO→EN RU→EN Average
Inflection −4.38% −2.47% −3.65% −21.12% −7.91%
Reordering −8.68% −21.09% −9.48% −8.50% −11.94%
Lexical −1.92% −4.91% −3.90% 5.32% −1.35%

Table 8: Relative improvement of NMT versus PBMT for 3 error categories, for language directions into
English.

categories that correspond to five word-level er-
ror classes: inflection errors, reordering errors,
missing words, extra words and incorrect lexi-
cal choices. These errors are detected automat-
ically using the edit distance, word error rate
(WER), precision-based and recall-based position-
independent error rates (hPER and rPER, respec-
tively) as implemented in Hjerson (Popović,
2011). These error classes are then defined as fol-
lows:

• Inflection error (hINFer). A word for which
its full form is marked as a hPER error while
its base form matches the base form in the
reference.

• Reordering error (hRer). A word that
matches the reference but is marked as a
WER error.

• Missing word (MISer). A word that occurs as
deletion error in WER, is also a rPER error
and does not share the base form with any
hypothesis error.

• Extra word (EXTer). A word that occurs as
insertion error in WER, is also a hPER error
and does not share the base form with any
reference error.

• Lexical choice error (hLEXer). A word that
belongs neither to inflectional errors nor to
missing or extra words.

Due to the fact that it is difficult to disam-
biguate between three of these categories, namely
missing words, extra words and lexical choice er-
rors (Popović and Ney, 2011), we group them in

a unique category, which we refer to as lexical er-
rors.

As input, the tool requires the full forms and
base forms of the reference translations and MT
outputs. For base forms, we use stems for practi-
cal reasons. These are produced with the Snow-
ball stemmer from NLTK10 for all languages ex-
cept for Czech, which is not supported. For
this language we used the aggresive variant in
czech stemmer.11

Tables 7 and 8 show the results for language di-
rections out of English and into English, respec-
tively. For all language directions, we observe that
NMT results in a notable decrease of both inflec-
tion (−14.6% on average for language directions
out of EN and −7.91% for language directions
into EN) and reordering (−12.82% from EN and
−11.94 into EN) errors. The reduction of reorder-
ing errors is compatible with the results of the ex-
periment presented in Section 5.12

Differences in performance for the remaining
error category, lexical errors, are much smaller.
In addition, the results for that category show a
mixed picture in terms of which paradigm is better,
which makes it difficult to derive conclusions that
apply regardless of the language pair. Out of En-

10http://www.nltk.org
11http://research.variancia.com/czech_

stemmer/
12Although the results depicted both in this section and in

Section 5 show that NMT performs better reordering in gen-
eral, results for particular language pairs are not exactly the
same in both sections. This is due to the fact that the quality
of the reordering is computed in different ways. In this sec-
tion, only those words that match the reference are considered
when identifying reordering errors, while in Section 5 all the
words in the sentence are taken into account. That said, in
Section 5 the precision of the results depends on the quality
of word alignment.
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glish, NMT results in slightly less errors (0.59%
decrease on average) for all target languages ex-
cept for RO (2.17% increase). Similarly, in the
opposite language direction, NMT also results in
slightly better performance overall (1.35% error
reduction on average), and looking at individual
language directions NMT outperforms PBMT for
all of them except RU→EN.

8 Conclusions

We have conducted a multifaceted evaluation to
compare NMT versus PBMT outputs across a
number of dimensions for 9 language directions.
Our aim has been to shed more light on the
strengths and weaknesses of the newly introduced
NMT paradigm, and to check whether, and to what
extent, these generalise to different families of
source and target languages. Hereunder we sum-
marise our findings:

• The outputs of NMT systems are consider-
ably different compared to those of PBMT
systems. In addition, there is higher inter-
system variability in NMT, i.e. outputs by
pairs of NMT systems are more different be-
tween them than outputs by pairs of PBMT
systems.

• NMT outputs are more fluent. We have cor-
roborated the results of the manual evaluation
of fluency at WMT16, which was conducted
only for language directions into English, and
we have shown evidence that this finding is
true also for directions out of English.

• NMT systems introduce more changes in
word order than pure PBMT systems, but less
than hierarchical PBMT systems.13 Never-
theless, for most language pairs, including
those for which the best PBMT system is hi-
erarchical, NMT’s reorderings are closer to
the reorderings in the reference than those of
PBMT. This corroborates the findings on re-
ordering by Bentivogli et al. (2016).

• We have found negative correlations between
sentence length and the improvement brought
by NMT over PBMT for the majority of
the languages examined. While for most
sentence lengths NMT outperforms PBMT,
for very long sentences PBMT outperforms

13The latter finding applies only to one language direction
as only for that one the best PBMT system is hierarchical.

NMT. The latter was not the case in the
work by Bentivogli et al. (2016). We be-
lieve the reason behind this different find-
ing is twofold. Firstly, the average sentence
length in their evaluation dataset was consid-
erably shorter; and secondly, the NMT sys-
tems included in our evaluation operate on
subword units, which increases the effective
sentence length they have to deal with.

• NMT performs better in terms of inflection
and reordering consistently across all lan-
guage directions. We thus confirm that the
findings of Bentivogli et al. (2016) regarding
these two error types apply to a wide range
of language directions. Differences regard-
ing lexical errors are much smaller and in-
consistent across language directions; for 7
of them NMT outperforms PBMT while for
the remaining 2 the opposite is true.

The results for some of the evaluations, espe-
cially error categories (Section 7) have been anal-
ysed only superficially, looking at what conclu-
sions can be derived that apply regardless of lan-
guage direction. Nevertheless, all our data is pub-
licly released,14 so we encourage interested parties
to use this resource to conduct deeper language-
specific studies.
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Maja Popović and Hermann Ney. 2011. Towards au-
tomatic error analysis of machine translation output.
Comput. Linguist., 37(4):657–688, December.
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Abstract

The language that we produce reflects our
personality, and various personal and de-
mographic characteristics can be detected
in natural language texts. We focus on
one particular personal trait of the author,
gender, and study how it is manifested in
original texts and in translations. We show
that author’s gender has a powerful, clear
signal in originals texts, but this signal is
obfuscated in human and machine trans-
lation. We then propose simple domain-
adaptation techniques that help retain the
original gender traits in the translation,
without harming the quality of the trans-
lation, thereby creating more personalized
machine translation systems.

1 Introduction

Among many factors that mold the makeup of
a text, gender and other authorial traits play a
major role in our perception of the content we
face. Many studies have shown that these traits
can be identified by means of automatic classifi-
cation methods. Classical examples include gen-
der identification (Koppel et al., 2002), and au-
thorship attribution and profiling (Seroussi et al.,
2014). Most research, however, addressed texts in
a single language, typically English.

We investigate a related but different question:
we are interested in understanding what happens
to personality and demographic textual markers
during the translation process. It is generally
agreed that good translation goes beyond transfor-
mation of the original content, by preserving more
subtle and implicit characteristics inferred by au-
thor’s personality, as well as era, geography, and
various cultural and sociological aspects. In this
work we explore whether translations preserve the

stylistic characteristic of the author and, further-
more, whether the prominent signals of the source
are retained in the target language.

As a first step, we focus on gender as a demo-
graphic trait (partially due to the absence of par-
allel data annotated for other traits). We evalu-
ate the accuracy of automatic gender classification
on original texts, on their manual translations and
on their automatic translations generated through
statistical machine translation (SMT). We show
that while gender has a strong signal in originals,
this signal is obfuscated in human and machine
translation. Surprisingly, determining gender over
manual translation is even harder than over SMT;
this may be an artifact of the translation process
itself or the human translators involved in it.

Mirkin et al. (2015) were the first to show that
authorial gender signals tend to vanish through
both manual and automatic translation, using a
small TED talks dataset. We use their data and
extend it with a version of Europarl that we an-
notated with age and gender (§3). Furthermore,
we conduct experiments with two language pairs,
in both directions (§4). We also adopt a differ-
ent classification methodology based on the find-
ing that the translation process itself has a stronger
signal than the author’s gender (§4.1).

We then move on to assessing gender traits in
SMT (§5). Since SMT systems typically do not
take personality or demographic information into
account, we hypothesize that the author’s style, af-
fected by their personality, will fade. Furthermore,
we propose simple domain-adaptation techniques
that do consider gender information and can there-
fore better retain the original traits. We build
“gender-aware” SMT systems, and show (§6) that
they retain gender markers while preserving gen-
eral translation quality. Our findings therefore
suggest that SMT can be made much more person-
alized, leading to translations that are more faith-
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ful to the style of the original texts.
Finally, we analyze the prominent features that

reflect gender in originals and translations (§7).
Our experiments reveal that gender markers dif-
fer greatly by language, and the specific source
language has a significant impact on the features
and classification accuracy of the translated text.
In particular, gender traits of the original language
overshadow those of the target language in both
manual and automatic translation products.

The main contributions of this paper are thus:
(i) a new parallel corpus annotated with gender
and age information, (ii) an in-depth assessment
of the projection of gender traits in manual and
automatic translation, and (iii) experiments show-
ing that gender-personalized SMT systems better
project gender traits while maintaining translation
quality.

2 Related work

While modeling of demographic traits has been
proven beneficial in some NLP tasks such as senti-
ment analysis (Volkova et al., 2013) or topic clas-
sification (Hovy, 2015), very little attention has
been paid to translation. We provide here a brief
summary of research relevant to our work.

Machine translation (MT) Virtually no previ-
ous work in MT takes into account personal traits.
State-of-the-art MT systems are built from exam-
ples of translations, where the general assump-
tion is that the more data available to train mod-
els, the better, and a single model is usually pro-
duced. Exceptions to this assumption revolve
around work on domain adaption, where systems
are customized by using data that comes from a
particular text domain (Hasler et al., 2014; Cuong
and Sima’an, 2015); and work on data cleaning,
where spurious data is removed from the training
set to ensure the quality of the final models (Cui
et al., 2013; Simard, 2014). Personal traits, some-
times well marked in the translation examples, are
therefore not explicitly addressed. Learning from
different, sometimes conflicting writing styles can
hinder model performance and lead to translations
that are unfaithful to the source text.

Focusing on reader preferences, Mirkin and
Meunier (2015) used a collaborative filtering ap-
proach from recommender systems, where a user’s
preferred translation is predicted based on the
preferences of similar users. However, the user
preferences in this case refer to the overall choice

between MT systems of a specific reader, rather
than a choice based on traits of the writer. Mirkin
et al. (2015) motivated the need for personaliza-
tion of MT models by showing that automatic
translation does not preserve demographic and
psychometric traits. They suggested treating the
problem as a domain adaptation one, but did not
provide experimental results of personalized MT
models.

Gender classification A large body of research
has been devoted to isolating distinguishing traits
of male and female linguistic variations, both the-
oretically and empirically. Apart from content,
male and female speech has been shown to exhibit
stylistic and syntactic differences. Several studies
demonstrated that literary texts and blog posts pro-
duced by male and female writers can be distin-
guished by means of automatic classification, us-
ing (content-independent) function words and n-
grams of POS tags (Koppel et al., 2002; Schler et
al., 2006; Burger et al., 2011).

Although the tendencies of individual word us-
age are a subject of controversy, distributions of
word categories across male and female English
speech is nearly consensual: pronouns and verbs
are more frequent in female texts, while nouns and
numerals are more typical to male productions.
Newman et al. (2008) carried out a comprehensive
empirical study corroborating these findings with
large and diverse datasets.

However, little effort has been dedicated to
investigating the variation of individual markers
of demographic traits across different languages.
Johannsen et al. (2015) conducted a large-scale
study on linguistic variation over age and gender
across multiple languages in a social media do-
main. They showed that gender differences cap-
tured by shallow syntactic features were preserved
across languages, when examined by linguistic
categories. However, they did not study the dis-
tribution of individual gender markers across do-
mains and languages. Our work demonstrates that
while marker categories are potentially preserved,
individual words typical to male and female lan-
guage vary across languages and, more promi-
nently, across different domains.

Authorial traits in translationese A large body
of previous research has established that transla-
tions constitute an autonomic language variety:
a special dialect of the target language, often re-
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ferred to as translationese (Gellerstam, 1986). Re-
cent corpus-based investigations of translationese
demonstrated that originals and translations are
distinguishable by means of supervised and un-
supervised classification (Baroni and Bernardini,
2006; Volansky et al., 2015; Rabinovich and
Wintner, 2015). The identification of machine-
translated text has also been proven an easy task
(Arase and Zhou, 2013; Aharoni et al., 2014).

Previous work has investigated how gender ar-
tifacts are carried over into human translation in
the context of social and gender studies, as well as
cultural transfer (Simon, 2003; Von Flotow, 2010).
Shlesinger et al. (2009) conducted a computational
study exploring the implications of the translator’s
gender on the final product. They conclude that
“the computer could not be trained to accurately
predict the gender of the translator”. Preservation
of authorial style in literary translations was stud-
ied by Lynch (2014), identifying Russian authors
of translated English literature, by using (shal-
low) stylistic and syntactic features. Forsyth and
Lam (2014) investigated authorial discriminabil-
ity in translations of French originals into English,
inspecting two distinct human translations, as well
as automatic translation of the same sources.

Our work, to the best of our knowledge, is
the first to automatically identify speaker gen-
der in manual, and more prominently, automatic
translations over multiple domains and language-
pairs, examining distribution of gender markers in
source and target languages.

3 Europarl with demographic info

We created a resource1 based on the parallel cor-
pus of the European Parliament (Europarl) Pro-
ceedings (Koehn, 2005). More specifically, we
utilize the extension of its en-fr and en-de paral-
lel versions (Rabinovich et al., 2015), where each
sentence-pair is annotated with speaker name, the
original language the sentence was uttered in, and
the date of the corresponding session protocol.
To extend speaker information with demographic
properties, we used the Europarl website’s MEP
information pages2 and applied a procedure of
gender and age identification, as further detailed
in §3.1.

The final resource comprises en-fr and en-de
parallel bilingual corpora where metadata of mem-

1Available at http://cl.haifa.ac.il/projects/pmt
2
http://www.europarl.europa.eu/meps/en/

bers of the European Parliament (MEPs) is en-
riched with their gender and age at the time of
the corresponding session. The data is restricted
to sentence-pairs originally produced in English,
French, or German. Table 1 provides statistics on
the two datasets. We also release the full list of
3, 586 MEPs with their meta information.

en-fr fr-en en-de de-en
male 100K 67K 101K 88K
female 44K 40K 61K 43K
total 144K 107K 162K 131K

Table 1: Europarl corpora (EP) statistics (# of
sentence-pairs); gender refers to an author of the
source utterance.

3.1 Identification of MEP gender
Gender annotation was conducted using three dif-
ferent resources: Wikidata, Genderize and Alche-
myVision, which we briefly describe below.

Wikidata (Vrandečić and Krötzsch, 2014) is
a human-curated knowledge repository of struc-
tured data from Wikipedia and other Wikime-
dia projects. Wikidata provides an API3 through
which one can retrieve details about people in the
repository, including place and date of birth, occu-
pation, and gender. For MEPs found in the Wiki-
data, we first verified that the person holds (or
held) a position of Member of the European Parlia-
ment and if so, retrieved the gender. Wikidata in-
formation is not complete: not all MEP names, po-
sitions or gender data is included. In total we ob-
tained gender information for 2, 618 MEPs (73%
of the total 3, 586), of which 1, 882 (72%) are male
and 736 female (28%).

Genderize4 is an open resource containing over
2 million distinct names grouped by countries. It
determines people’s gender based on their first
name and the country of origin. Provided with
the first name and the country a MEP represents.5

Genderize was able to predict the gender of 2, 785
MEPs, the vast majority of them with a probabil-
ity of 0.9 or higher. We filtered out the 55 lower-
confidence entries, keeping 2, 730 MEPs (76% of
total), of which 2001 (73%) are male and 729
(27%) female.

3
https://www.mediawiki.org/wiki/Wikibase/API

4
https://genderize.io/

5We assume that the country MEPs represent is highly
correlated, if not strictly identical, to their country of origin.
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AlchemyVision The European Parliament web-
site maintains a page for every MEP, including
personal photos. We classified MEP personal im-
ages using AlchemyVision,6 a publicly available
image recognition service. In total, we retrieved
the gender of 2, 236 MEPs using AlchemyVision.
Similarly to Genderize, we filtered out all predic-
tions with a confidence score below 0.9, thus ob-
taining the gender of 2, 138 MEPs (60% of total),
of which 1, 528 are male and 610 female (71% and
29%, respectively).

3.2 Resource evaluation and statistics

Even though Wikidata was created manually, to
verify its correctness, we manually annotated the
gender of 100 randomly selected MEPs with avail-
able Wikidata gender information; we found the
metadata perfectly accurate. We therefore rely on
Wikidata as a gold-standard against which we can
assess the accuracy of the two other resources. Ta-
ble 2 presents the accuracy and coverage of each
resource based on this methodology.

resource Wikidata Genderize Alchemy
coverage 73.0 76.1 59.6
accuracy 100.0 99.6 99.1

Table 2: Gender prediction performance (%).

Given information obtained from the three re-
sources, we assign each MEP with a single gen-
der prediction in the following way: whenever it is
found in Wikidata (2, 618 MEPs), the gender is de-
termined by this resource. Otherwise, if both Gen-
derize and AlchemyVision produced agreed-upon
gender information (336 out of 338 cases), we
set gender according to this prediction; the same
applies to the case where only one of Gender-
ize or AlchemyVision provided a prediction (346
and 178, respectively). We ended up with gen-
der annotation for a total of 3, 478 out of 3, 586
members. The remaining 108 MEPs (92 male, 16
female) were annotated manually, a rather labor-
intensive annotation in this case.

In total, the resource includes 947 (26%) female
and 2, 639 (74%) male MEPs. Based on the above
accuracy estimations, and assuming that manual
annotation is correct, the overall accuracy of gen-
der information in this resource is 99.88%.

Utilizing the information on session dates and

6
https://www.ibm.com/smarterplanet/us/en/

ibmwatson/developercloud/alchemy-vision.html

MEPs dates of birth available in the metadata, we
also annotated each sentence-pair with the age of
the MEP at the time the sentence was uttered. To
summarize, we release the following resources:
(i) meta information for 3, 586 MEPs, as described
above, (ii) bilingual parallel en-fr and en-de cor-
pora, where each sentence-pair metadata is en-
riched with speaker MEPID, gender and age.

4 Experimental setup

We evaluate the extent to which gender traits are
preserved in translation by evaluating the accuracy
of gender classification of original and translated
texts. The rationale is that the more prominent
gender markers are in the text, the easier it is to
classify the gender of its author.

4.1 Translationese vs. gender traits

Since we use the accuracy of gender identifica-
tion as our evaluation metric, we isolate the di-
mension of gender in our data: the classification
experiments are carried out separately on original,
human translated text, as well as on each one of
the MT products. Human, and more prominently,
machine translations constitute distinct and dis-
tinguishable language variation, characterized by
unique feature distributions (§2). We posit that in
both human and machine translation products, the
differences between original texts and translations
overshadow the differences in gender. We corrob-
orate this assumption by analysing a sample data
distribution by two dimensions: (i) translation sta-
tus and (ii) gender. Figure 1 presents the results for
the English Europarl corpus. Both charts display
data distributions of the same four classes: orig-
inal (O) and translated (T) English7 by male (M)
and female (F) speakers (OM, OF, TM, TF). For
the sake of visualization, the dimension of func-
tion words feature vectors was reduced to 2, us-
ing principal component analysis (Jolliffe, 2002).
The left graph depicts color-separation by gender
(male vs. female), while the right one by trans-
lation status (original vs. translated). Evidently,
the linguistic variable of translationese stands out
against the weaker signal of gender.

4.2 Datasets

In addition to the Europarl corpus annotated for
gender (§3), we experimented with a corpus of

7This experiment refers to English translated from
French; other language-pairs exhibited similar trends.
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Figure 1: English EP data distributions across two
dimensions: gender (left) and trans. status (right).

TED talks (transcripts and translations): a collec-
tion of texts from a completely different genre,
where demographic traits may manifest differ-
ently. Testing the potential benefits of person-
alized SMT models on these two very diverse
datasets allows us to examine the robustness of
our approach. We used the TED gender-annotated
data from Mirkin et al. (2015).8 This corpus con-
tains annotation of the speaker’s gender included
in the English-French corpus of the IWSLT 2014
Evaluation Campaign’s MT track (Cettolo et al.,
2012). We annotated 68 additional talks from the
development and test sets of IWSLT 2014, 2015
and 2016. Using the full set, we split the TED par-
allel corpora by gender to obtain sub-corpora of
140K and 43K sentence pairs for male and female
speakers, respectively.

The sizes of the datasets used for training, tun-
ing and testing of SMT models are shown in Ta-
ble 3. Relatively large test sets are used for eval-
uation of the MT results for the sake of reliable
per-outcome gender classification (§4.1).

Although the size of the training/tuning/test sets
in either direction for any language-pair is the
same, their content is different. We use data in
both translation directions (i.e., en-fr and fr-en,
or en-de and de-en) for both SMT experiments.
Out of these data, 2K and 15K sentence-pairs (for
each gender) are held out for tuning and test, re-
spectively, where they comply with the transla-
tion direction. That is, for en-fr experiments, tun-
ing and test sets are sampled from the en-fr di-
rection only and vice-versa. The additional bilin-
gual data (ADD) for training the models comes
from the gender-unannotated portion of Europarl
(all but the gender-annotated sub-corpus detailed
in §3) for the EP experiments, and from combining
TED’s male and female data for the experiments
with TED.

8Downloaded from http://cm.xrce.xerox.com/.

4.3 Classification setting

All datasets were split by sentence, filtering out
sentence alignments other than one-to-one. For
POS tagging, we employed the Stanford imple-
mentation9 with its models for English, French
and German. We divided all datasets into chunks
of approximately 1,000 tokens, respecting sen-
tence boundaries, and normalized the values of
lexical features by the actual number of tokens in
each chunk. For classification, we used Platt’s se-
quential minimal optimization algorithm (Keerthi
et al., 2001) to train support vector machine clas-
sifiers with the default linear kernel (Hall et al.,
2009). In all experiments we used (the maximal)
equal amount of data from each category (M and
F), specifically, 370 chunks for each gender.

Aiming to abstract away from content and cap-
ture instead stylistic and syntactic characteristics,
we used as our feature set the combination of func-
tion words (FW)10 and (the top-1,000 most fre-
quent) POS-trigrams. We employ 10-fold cross-
validation for evaluation of classification accuracy.

4.4 SMT setting

We trained phrase-based SMT models with
Moses (Koehn et al., 2007), an open source SMT
system. KenLM (Heafield, 2011) was used for
language modeling. We trained 5-gram language
models with Kneser-Ney smoothing (Chen and
Goodman, 1996). The models were tuned us-
ing Minimum Error Rate Tuning (MERT) (Och,
2003). Our preprocessing included cleaning (re-
moval of empty, long and misaligned sentences),
tokenization and punctuation normalization. The
Stanford tokenizer (Manning et al., 2014) was
used for tokenization and standard Moses scripts
were used for other preprocessing tasks. We used
BLEU (Papineni et al., 2002) to evaluate MT qual-
ity against one reference translation.

5 Personalized SMT models

In order to investigate and improve gender traits
transfer in MT, we devise and experiment with
gender-aware SMT models. We demonstrate that
despite their simplicity, these models lead to bet-
ter preservation of gender traits, while not harming
the general quality of the translations.

9
http://nlp.stanford.edu/software/tagger.shtml

10We used the lists of function words available at
https://code.google.com/archive/p/stop-words.
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training tuning test
dataset language-pair M F ADD M F M F
EP en-fr & fr-en 144K 65K 1.71M 2K 2K 15K 15K

en-de & de-en 170K 86K 1.50M 2K 2K 15K 15K
TED en-fr 117K 21K 138K 2K 2K 20K 20K

Table 3: MT datasets split for train, tuning and test, after cleaning.

We treat the task of personalizing SMT models
as a domain adaptation task, where the domain is
the gender. We applied two common techniques:
(i) gender-specific model components (phrase ta-
ble and language model (LM)) and (ii) gender-
specific tuning sets. These personalized configu-
rations are further compared to a baseline model
where gender information is disregarded, as de-
scribed below. In all cases, we use a single re-
ordering table built from the entire training set.

Baseline The baseline (MT-B) system was
trained using the complete parallel corpus avail-
able for a language-pair. The training set con-
tained both gender-specific and unannotated data,
but no distinction was made between them. A sin-
gle translation model and a single LM were built,
and the model was tuned using a random sample of
2K sentence-pairs from the mixed data dedicated
for tuning, preserving, therefore, the gender distri-
bution of the underlying dataset.

Personalized models These models use three
datasets: male, female, and additional in-domain
bilingual data. Two configurations were devised:
MT-P1, a model with three phrase tables and three
LMs trained on the three datasets; and MT-P2,
where for each gender a phrase table and a lan-
guage model were built using only the gender-
specific data, as well as a general phrase table
and LM. In both configurations, each of the two
genderized model variants was tuned using the
gender-specific tuning set. In order to evaluate
the translation quality of a personalized model, we
separately translated the male and female source
segments, merged the outputs and evaluated the
merged result.

6 Results

Recall that we use the accuracy of gender clas-
sification as a measure of the strength of gender
markers in texts. We assessed this accuracy be-
low on originals and (human and machine) trans-
lations. First, however, we establish that the qual-
ity of SMT is not harmed with our personalized

models.

MT evaluation We trained a baseline (MT-B)
and two personalized models (MT-P1 and MT-P2)
for each language pair as detailed in §5. The
BLEU scores of en-fr and fr-en personalized mod-
els were 38.42, 38.34 and 37.16, 37.16, with
the baseline models scoring 38.65 and 37.35, re-
spectively. Similarly, for experiments with en-de
and de-en and the TED data, the baseline scores
(21.95, 26.37 and 33.25) were only marginally
higher than those of the personalized models
(21.65, 21.80; 26.35, 26.21; and 33.19, 33.16),
with differences ranging from 0.02 to 0.3. Neither
MT-P1 nor MT-P2 was consistently better than the
other. We conclude, therefore, that all MT systems
are comparable in terms of general quality.

Classification accuracy Tables 4 and 5 present
the results of gender classification accuracy in
original (O), human- (HT) and machine-translated
texts in the EP corpus. Female texts are dis-
tinguishable from their male counterparts with
77.3% and 77.1% accuracy for English originals,
in line with accuracies reported in the literature
(Koppel et al., 2002). Classification of original
French and German texts reach 81.4% (Table 4)
and 76.1% (Table 5), respectively.

precision recall acc.
dataset M F M F
en O 77.7 76.9 76.5 78.1 77.3
fr O 80.9 81.9 82.2 80.5 81.4
fr-en HT 75.6 74.4 73.8 76.2 75.0
fr-en MT-B 77.0 78.2 78.6 76.5 77.6
fr-en MT-P1 82.0 80.7 80.3 82.4 81.4
fr-en MT-P2 79.1 81.0 81.6 78.4 80.0
en-fr HT 56.6 56.4 55.7 57.3 56.5
en-fr MT-B 60.2 60.1 60.0 60.3 60.1
en-fr MT-P1 62.7 63.0 63.5 62.2 62.8
en-fr MT-P2 65.2 65.3 65.4 65.1 65.3

Table 4: EP en-fr, fr-en classification scores (%).

Evidently, gender traits are significantly obfus-
cated by both manual and non-personalized ma-
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precision recall acc.
dataset M F M F
en O 77.5 76.7 76.5 77.7 77.1
de O 76.4 75.7 75.4 76.8 76.1
de-en HT 68.6 67.9 67.3 69.2 68.2
de-en MT-B 69.3 69.9 70.3 68.9 69.6
de-en MT-P1 77.4 75.9 75.1 78.1 76.6
de-en MT-P2 76.2 75.7 75.4 76.5 75.9
en-de HT 59.8 59.7 59.5 60.0 59.7
en-de MT-B 63.8 64.0 64.3 63.5 63.9
en-de MT-P1 69.6 69.4 69.2 69.7 69.5
en-de MT-P2 66.7 67.7 68.6 65.7 67.2

Table 5: EP en-de, de-en classification scores (%).

chine translation. The relatively low accuracy for
human translation can be (partially) explained by
the extensive editing procedure applied on Eu-
roparl proceedings prior to publishing (Cucchi,
2012), as well as the potential “fingerprints” of
(male or female) human translators left on the final
product.

Both MT-P1 and MT-P2 models yield trans-
lations that better preserve gender traits, com-
pared to their manual and gender-agnostic auto-
matic counterparts: accuracy improvements vary
between 3.8 for fr-en translations to 7.0 percent
points for de-en11 (MT-P1 vs MT-B in both cases).
Per-class precision and recall scores do not ex-
hibit significant differences, despite the unbal-
anced amount of per-gender data used for training
the MT models.

Gender classification results in the TED dataset
are presented in Table 6. The classification accu-
racy of English originals is 80.4%. While, sim-
ilarly to Europarl, the gender signal is generally
weakened in human translations12 and baseline
MT, overall accuracies are in most cases higher
than in Europarl across all models. We attribute
this difference to the more emotional and personal
nature of TED speeches, compared with the for-
mal language of the EP proceedings. Both person-
alized SMT models significantly outperform their
baseline counterpart, as well as the manual transla-
tion, yielding 77.2% and 77.7% accuracy for MT-
P1 and MT-P2, respectively.

11All differences between MT-P1 and MT-P2 and baseline
models are statistically significant.

12TED talks are subtitled, rather than transcribed, under-
going some editing and rephrasing.

precision recall acc.
dataset M F M F
en O 81.2 79.7 79.2 81.6 80.4
en-fr HT 74.0 73.5 73.2 74.3 73.8
en-fr MT-B 71.3 70.1 69.2 72.2 70.7
en-fr MT-P1 77.5 76.8 76.5 77.8 77.2
en-fr MT-P2 78.2 77.2 76.8 78.6 77.7

Table 6: TED en-fr classification scores (%).

7 Analysis

Analysis of gender markers To analyze the ex-
tent to which personal traits are preserved in trans-
lations, we extract the set of most discriminative
FWs in various texts by employing the InfoGain
feature selection procedure (Gray, 1990). Gender
markers vary across original languages (with few
exceptions); in EP, the most discriminating En-
glish features are also, very, perhaps, as, its, oth-
ers, you. The French list includes on, vous, dire,
afin, doivent, doit, aussi, avait, voilà, je, while the
German list consists of wir, man, wirklich, sollten,
von, für, dass, allen, ob. The list of discrimina-
tive markers in the TED English dataset contains
mainly personal pronouns: she, her, I, you, my,
our, me, and, who, it.

Figure 2 (top) presents weights assigned to vari-
ous gender markers by the InfoGain attribute eval-
uator in originals and translations. Gender mark-
ers are carried over to (both manual and machine)
translations to an extent that overshadows the orig-
inal markers of the target language. In partic-
ular, the markers observed in translated English
mirror their original French counterparts, in the
same marker role: I (M) in English translations
reflecting the original French je (M), say (M) re-
flecting dire (M), must (F) translated from doit (F)
and doivent (F); the latter contradicting the orig-
inal English must which characterizes M speech.
The original English prominent gender markers
(e.g., also, very) almost completely lose their dis-
criminative power in translations. A similar phe-
nomenon is exhibited by English translations from
German, as depicted in Figure 2 (bottom): the
German wir (we), für (for) and ob (whether) are
preserved in (both manual and machine) English
translations, in the same marker role.

We conclude that (i) gender traits in translation
are weakened, compared to their originals. Fur-
thermore, (ii) translations tend to embrace gender
tendencies of the original language, thus resulting
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Figure 2: Persistence of en and fr markers in fr-en translations (top); en and de markers in de-en transla-
tions (bottom). The transparent bars refer to (weak) F/M markers, assigned weight<0.01 by InfoGain.

in a hybrid outcome, where male and female traits
are affected both by markers of the source and (to
a much lesser extent) the target language.

Capturing the “personalization” effect Both
manual- and all machine-translations of Europarl
are tested on a strictly identical set of sentences;
therefore, the performance gap introduced by per-
sonalized SMT models can be captured by a subset
of sentences misclassified by the baseline model,
but classified correctly when applying a more per-
sonalized approach. The inspection of differ-
ences in these translations can shed some light on
the underlying nature of our personalized mod-
els. Table 7 (top) shows manual, baseline, and
personalized machine translations of examples of
French and German sentences. The translation of
the French word “vraiment” (in a male utterance)
varies in English as “really” or “exactly”, where
the former is more frequent in female English
texts, and the latter is a male marker. The choice of
a male English marker over its female equivalent
by the gender-aware SMT model demonstrates the

effect of personalization as proposed in this pa-
per. The translations of the German female sen-
tence into English, as presented in Table 7 (bot-
tom), further highlight this phenomenon by choos-
ing the English female marker think in its person-
alized translation over the more neutral consider
and believe in the manual and baseline versions,
respectively.

8 Conclusions

We presented preliminary results of employing
personalized SMT models for better preservation
of gender traits in automatic translation. This work
leaves much room for further research and prac-
tical activities. Authors’ personal traits are uti-
lized by recommendation systems, conversational
agents and other personalized applications. While
resources annotated for personality traits mainly
exist for English (and recently, for a small set of
additional languages), they are scarce or missing
from most other languages. Employing MT mod-
els that are sensitive to authors’ personal traits can
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fr O ... on a corrigé la traduction du mot qui a été traduit en français par “propriété” qui n’est
pas vraiment la même chose qu’ “appropriation”.

fr-en HT ... it had been translated into French using the word for “property”, which is not really the
same thing as “ownership”.

fr-en MT-B ... it was corrected the translation of the word which has been translated into French as
“ownership”, which is not really the same as “ownership”.

fr-en MT-P1 ... it has corrected the translation of the word which has been translated into French as
“ownership”, which is not exactly the same as “ownership”.

de O Entsprechend halte ich es auch für notwendig, daß die Kennzeichnung möglichst schnell und
verpflichtend eingeführt wird, und zwar für Rinder und für Rindfleisch .

de-en HT Accordingly, I consider it essential that both the identification of cattle and the labelling of
beef be introduced as quickly as possible on a compulsory basis.

de-en MT-B Similarly, I believe that it is necessary, as quickly as possible and that compulsory labelling
will be introduced, and for bovine animals and for beef and veal.

de-en MT-P1 Accordingly, I also think it is essential that the labelling and become mandatory as quickly
as possible, and for bovine animals and for beef.

Table 7: Translation of fr (M) and de (F) sentences into English manually, and by different MT models.

facilitate user modeling in other languages as well
as augment English data with translated content.

Our future plans include experimenting with
more sophisticated MT models, and with addi-
tional demographic traits, domains and language-
pairs.
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Abstract

We study the problem of bilingual lexicon
induction (BLI) in a setting where some
translation resources are available, but un-
known translations are sought for certain,
possibly domain-specific terminology. We
frame BLI as a classification problem for
which we design a neural network based
classification architecture composed of re-
current long short-term memory and deep
feed forward networks. The results show
that word- and character-level representa-
tions each improve state-of-the-art results
for BLI, and the best results are obtained by
exploiting the synergy between these word-
and character-level representations in the
classification model.

1 Introduction

Bilingual lexicon induction (BLI) is the task of find-
ing words that share a common meaning across dif-
ferent languages. Automatically induced bilingual
lexicons support a variety of tasks in information
retrieval and natural language processing, includ-
ing cross-lingual information retrieval (Lavrenko
et al., 2002; Levow et al., 2005; Vulić and Moens,
2015; Mitra et al., 2016), statistical machine trans-
lation (Och and Ney, 2003; Zou et al., 2013), or
cross-lingual entity linking (Tsai and Roth, 2016).
In addition, they serve as a natural bridge for
cross-lingual annotation and model transfer from
resource-rich to resource-impoverished languages,
finding their application in downstream tasks such
as cross-lingual POS tagging (Yarowsky and Ngai,
2001; Täckström et al., 2013; Zhang et al., 2016),
dependency parsing (Zhao et al., 2009; Durrett et
al., 2012; Upadhyay et al., 2016), semantic role
labeling (Padó and Lapata, 2009; van der Plas et
al., 2011), to name only a few.

Current state-of-the-art BLI results are obtained
by cross-lingual word embeddings (Mikolov et
al., 2013b; Faruqui and Dyer, 2014; Gouws et al.,
2015; Vulić and Moens, 2016; Duong et al., 2016,
inter alia). They significantly outperform tradi-
tional count-based baselines (Gaussier et al., 2004;
Tamura et al., 2012). Although cross-lingual word
embedding models differ on the basis of a bilingual
signal from parallel, comparable or monolingual
data used in training (e.g., word, sentence, docu-
ment alignments, translation pairs from a seed lexi-
con),1 they all induce word translations in the same
manner. (1) They learn a shared bilingual semantic
space in which all source language and target lan-
guage words are represented as dense real-valued
vectors. The shared space enables words from both
languages to be represented in a uniform language-
independent manner such that similar words (re-
gardless of the actual language) have similar rep-
resentations. (2) Cross-lingual semantic similar-
ity between words w and v is then computed as
SF (~w,~v), where ~w and ~v are word representations
in the shared space, and SF denotes a similarity
function operating in the space (cosine similarity
is typically used). A target language word v with
the highest similarity score argmaxv SF (~w,~v) is
then taken as the correct translation of a source
language word w.

In this work, we detect two major gaps in cur-
rent representation learning for BLI. First, the stan-
dard embedding-based approach to BLI learns rep-
resentations solely on the basis of word-level in-
formation. While early BLI works already estab-
lished that character-level orthographic features
may serve as useful evidence for identifying trans-
lations (Melamed, 1995; Koehn and Knight, 2002;

1See recent comparative studies on cross-lingual word em-
bedding learning (Upadhyay et al., 2016; Vulić and Korhonen,
2016) for an in-depth discussion of the differences in modeling
and bilingual supervision.
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Haghighi et al., 2008), there has been no attempt
to learn character-level bilingual representations
automatically from the data and apply them to im-
prove on the BLI task. Moreover, while prior work
typically relies on simple orthographic distance
measures such as edit distance (Navarro, 2001),
we show that such character-level representations
can be induced from the data. Second, Irvine and
Callison-Burch (2013; 2016) demonstrated that
bilingual lexicon induction may be framed as a
classification task where multiple heterogeneous
translation clues/features may be easily combined.
Yet, all current BLI models still rely on straightfor-
ward similarity computations in the shared bilin-
gual word-level semantic space (see Sect. 2).

Motivated by these insights, we propose a
novel bilingual lexicon induction (BLI) model that
combines automatically extracted word-level and
character-level representations in a classification
framework. As the seminal bilingual representa-
tion model of Mikolov et al. (2013b), our bilingual
model learns from a set of training translation pairs,
but we demonstrate that the synergy between word-
level and character-level features combined within
a deep neural network based classification frame-
work leads to improved BLI results when evalu-
ated in the medical domain. BLI has a large value
in finding translation pairs in specialized domains
such as the medical domain, where general trans-
lation resources are often insufficient to capture
translations of all domain terminology.

This paper has several contributions:
(C1) On the word level, we show that fram-
ing BLI as a classification problem, that is, using
word embeddings as features for classification
leads to improved results compared to standard
embedding-based BLI approaches (Mikolov et al.,
2013b; Vulić and Korhonen, 2016) which rely on
similarity metrics in a bilingual semantic space.
(C2) On the character level, we find that learning
character-level representations with an RNN
architecture significantly improves results over
standard distance metrics used in previous BLI
research to operationalize orthographic similarity.
(C3) We finally show that it is possible to effec-
tively combine word- and character-level signals
using a deep feed-forward neural network. The
combined model outperforms “single” word-level
and character-level BLI models which rely on only
one set of features.

2 Background

Word-Level Information for BLI Bilingual lex-
icon induction is traditionally based on word-level
features, aiming at quantifying cross-lingual word
similarity on the basis of either (1) context vec-
tors, or (2) automatically induced bilingual word
representations. A typical context-vector approach
(Rapp, 1995; Fung and Yee, 1998; Gaussier et
al., 2004; Laroche and Langlais, 2010; Vulić and
Moens, 2013b; Kontonatsios et al., 2014, inter alia)
constructs context vectors in two languages using
weighted co-occurrence patterns with other words,
and a bilingual seed dictionary is then used to trans-
late the vectors. Second-order BLI approaches
which represent a word by its monolingual seman-
tic similarity with other words were also proposed,
e.g., (Koehn and Knight, 2002; Vulić and Moens,
2013a), as well as models relying on latent topic
models (Vulić et al., 2011; Liu et al., 2013).

Recently, state-of-the-art BLI results were ob-
tained by a suite of bilingual word embedding
(BWE) models. Given source and target language
vocabularies V S and V T , all BWE models learn a
representation of each wordw ∈ V StV T as a real-
valued vector: ~w = [ft1, . . . , ftd], where ftk ∈ R
denotes the value for the k-th cross-lingual fea-
ture for w within a d-dimensional shared bilingual
embedding space. Semantic similarity sim(w, v)
between two words w, v ∈ V S t V T is then com-
puted by applying a similarity function (SF), e.g.
cosine (cos) on their representations in the bilingual
space: sim(w, v) = SF (~w,~v) = cos(~w,~v).

A plethora of variant BWE models were pro-
posed, differing mostly in the strength of bilingual
supervision used in training (e.g., word, sentence,
document alignments, translation pairs) (Zou et al.,
2013; Mikolov et al., 2013b; Hermann and Blun-
som, 2014; Chandar et al., 2014; Søgaard et al.,
2015; Gouws et al., 2015; Coulmance et al., 2015;
Vulić and Moens, 2016, inter alia). Although the
BLI evaluation of the BWE models was typically
performed on Indo-European languages, none of
the works attempted to learn character-level repre-
sentations to enhance the BLI performance.

In this work, we experiment with two BWE mod-
els that have demonstrated a strong BLI perfor-
mance using only a small seed set of word trans-
lation pairs (Mikolov et al., 2013b), or document
alignments (Vulić and Moens, 2016) for bilingual
supervision.

It is also important to note that other word-level
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translation evidence was investigated in the litera-
ture. For instance, the model of Irvine and Callison-
Burch (2016) relies on raw word frequencies, tem-
poral word variations, and word burstiness. As the
main focus of this work is investigating the com-
bination of automatically induced word-level and
character-level representations, we do not exploit
the whole space of possible word-level features
and leave this for future work. However, we stress
that our framework enables the inclusion of these
additional word-level signals.

Character-Level Information for BLI For lan-
guage pairs with common roots such as English-
Dutch or English-Spanish, translation pairs often
share orthographic character-level features, and reg-
ularities (e.g., ideal:ideaal, apparition:aparición).
Orthographic translation clues are even more im-
portant in certain domains such as medicine, where
words with the same roots (from Greek and
Latin), and abbreviations are frequently encoun-
tered (e.g., D-dimer:D-dimeer, meiosis:meiose).
When present, such orthographic clues are typically
strong indicators of translation pairs (Haghighi et
al., 2008). This observation was exploited in BLI,
applying simple string distance metrics such as
Longest Common Subsequence Ratio (Melamed,
1995; Koehn and Knight, 2002), or edit distance
(Mann and Yarowsky, 2001; Haghighi et al., 2008).
Irvine and Callison-Burch (2016) showed that these
metrics may be used with languages with different
scripts: they transliterate all words to the Latin
script before calculating normalized edit distance.

BLI as a Classification Task Irvine and
Callison-Burch (2016) demonstrate that BLI can
be observed as a classification problem. They train
a linear classifier to combine similarity scores from
different signals (e.g., temporal word variation, nor-
malized edit distance, word burstiness) using a set
of training translation pairs. The approach out-
performs an unsupervised combination of signals
based on a mean reciprocal rank aggregation, as
well as the matching canonical correlation analysis
algorithm of Haghighi et al. (2008). A drawback
of their classification framework is that translation
signals are processed (i.e., converted to a similarity
score) and weighted independently.

In contrast to their work, we propose to learn
character-level representations instead of using
the simple edit distance signal between candidate
translations. In addition, our model identifies

translations by jointly processing and combining
character-level and word-level translation signals.

3 Methodology

In this paper we frame BLI as a classification prob-
lem as it supports an elegant combination of word-
level and character-level representations. Let V S

and V T denote the sets of all unique source and
target words respectively, and CS and CT denote
the sets of all unique source and target characters.
The goal is to learn a function g : X → Y , where
the input space X consists of all candidate trans-
lation pairs V S × V T and the output space Y is
{−1,+1}. We define g as:

g(wS , wT ) =

{
+1 , if f(wS , wT ) > t

−1 , otherwise

Here, f is a function realized by a neural network
that outputs a classification score between 0 and
1; t is a threshold tuned on a validation set. When
the neural network is confident that wS and wT

are translations, f(wS , wT ) will be close to 1. The
reason for placing a threshold t on the output of f
is twofold. First, it allows balancing between recall
and precision. Second, the threshold naturally ac-
counts for the fact that words might have multiple
translations: if two target language words wT

1 and
wT
2 both have high scores when paired with wS ,

both may be considered translations of wS .

Since neural network parameters are trained us-
ing a set of positive translation pairs Dlex, one
way to interpret f is to consider it an automati-
cally trained similarity function. For each positive
training translation pair < wS , wT >, we create
2Ns noise or negative training pairs. These nega-
tive samples are generated by randomly sampling
Ns target language words wT

neg,S,i, i = 1, . . . , Ns

from V T and pairing them with the source lan-
guage word wS from the true translation pair
< wS , wT >.2 Similarly, we randomly sample
Ns source language words wS

neg,T,i and pair them
with wT to serve as negative samples. We then
train the network by minimizing cross-entropy loss,
expressed by Eq. (1):

2If we accidentally construct a negative pair which occurs
in the set of positive pairs Dlex, we re-sample until we obtain
exactly Ns negative samples.
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Lce =
∑

<ws,wt>∈Dlex

(
log(f(wS , wT ))−

Ns∑

i=1

log(f(wS
neg,T,i, w

T ))−
Ns∑

i=1

log(f(wS , wT
neg,S,i))

)

(1)

We further explain the architecture of the neu-
ral network and the strategy we use to identify
candidate translations during prediction. Four key
components may be distinguished: (1) the input
layer; (2) the character-level encoder; (3) the word-
level encoder; and (4) a feed-forward network that
combines the output representations from the two
encoders into the final classification score.

3.1 Input Layer
The goal is to exploit the knowledge encoded in
both the word and character levels. Therefore, the
raw input representation of a word w ∈ V S of char-
acter length M consists of (1) its one-hot encoding
on the word level, labeled xSw; and (2) a sequence
ofM one-hot encoded vectors xSc0, .., x

S
ci, ..x

S
cM on

the character level, representing the character se-
quence of the word. xSw is thus a |V S |-dimensional
word vector with all zero entries except for the
dimension that corresponds to the position of the
word in the vocabulary. xSci is a |CS |-dimensional
character vector with all zero entries except for the
dimension that corresponds to the position of the
character in the character vocabulary CS .

3.2 Character-Level Encoder
To encode a pair of character sequences
xSc0, .., x

S
ci, ..x

S
cn, xTc0, .., x

T
ci, ..x

T
cm we use a two-

layer long short-term memory (LSTM) recurrent
neural network (RNN) (Hochreiter and Schmid-
huber, 1997) as illustrated in Fig. 1. At position
i in the sequence, we feed the concatenation of
the ith character of the source language and target
language word from a training pair to the LSTM
network. The characters are represented by their
one-hot encoding. To deal with the possible differ-
ence in word length, we append special padding
characters at the end of the shorter word (see Fig. 1).
s1i, and s2i denote the states of the first and sec-
ond layer of the LSTM. We found that a two-layer
LSTM performed better than a shallow LSTM. The
output at the final state s2N is the character-level
representation rSTc . We apply dropout regulariza-
tion (Srivastava et al., 2014) with a keep probability
of 0.5 on the output connections of the LSTM (see

Figure 1: An illustration of the character-level
LSTM encoder architecture using the example EN-
NL translation pair <analogous, analoog>.

the dotted lines in Fig. 1). We will further refer to
this architecture as CHAR-LSTMjoint . 3

3.3 Word-Level Encoder
We define the word-level representation of a word
pair < wS , wT > simply as the concatenation of
word embeddings for wS and wT :

rSTw =WS · xSw ‖ W T · xTw (2)

Here, rSTw is the representation of the word pair,
andWS ,W T are word embedding matrices looked
up using one-hot vectors xSw and xTw. The first
variant of the architecture assumes that WS and
W T are obtained in advance using any state-of-the-
art word embedding model, e.g., (Mikolov et al.,
2013b; Vulić and Moens, 2016). They are then kept
fixed when minimizing the loss from Eq. (1). In
Sect. 5.3, however, we investigate another variant
architecture where word embeddings are optimized
jointly with their unsupervised context-prediction
objective and the cross-entropy loss from Eq. (1).

To test the generality of our approach, we ex-
periment with two well-known embedding mod-
els: (1) the model from Mikolov et al. (2013b),
which trains monolingual embeddings using skip-
gram with negative sampling (SGNS) (Mikolov
et al., 2013a); and (2) the model of Vulić and
Moens (2016) which learns word-level bilingual
embeddings from document-aligned comparable

3A possible modification to the architecture would be to
swap the (unidirectional) LSTM for a bidirectional LSTM. In
preliminary experiments on the development set this did not
yield improvements over the proposed architecture, we thus
do not discuss it further.
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data (BWESG). For both models, the top layers of
our proposed classification network should learn
to relate the word-level features stemming from
these word embeddings using a set of annotated
translation pairs.

3.4 Combination: Feed-Forward Network
To combine representations on word- and character-
level we use a fully connected feed-forward neural
network rh on top of the concatenation of rSTw and
rSTc which is fed as the input to the network:

rh0 = rSTw ‖ rSTc (3)

rhi
= σ(Whi

· rhi−1
+ bhi

) (4)

score = σ(Wo · rhH
+ bo) (5)

σ denotes the sigmoid function and H denotes
the number of layers between the representation
layer and the output layer. In the simplest architec-
ture, H is set to 0 and the word-pair representation
rh0 is directly connected to the output layer (see
Fig. 2A). In this setting each dimension from the
concatenated representation is weighted indepen-
dently. This architecture induces undesirable pat-
terns in the combined activation of features, and
consequently does not learn generalizable relation-
ships between source and target language inputs.
On the word level, for instance, it is obvious that
the classifier needs to combine the embeddings of
the source and target word to make an informed
decision and not merely calculate a weighted sum
of them. Therefore, we opt for an architecture
with hidden layers instead (see Fig. 2B). Unless
stated otherwise, we use two hidden layers, while
in Section 5.3 we further analyze the influence of
parameter H .

3.5 Candidate Generation
To identify which word pairs are translations, one
could enumerate all translation pairs and feed them
to the classifier g. The time complexity of this
brute-force approach is O(|V S | × |V T |) times the
complexity of g. For large vocabularies this can
be a prohibitively expensive procedure. Therefore,
we have resorted to a heuristic which uses a noisy
classifier: it generates 2Nc << |V T | translation
candidates for each source language word wS as
follows. It generates (1) theNc target words closest
to wS measured by edit distance as translations,
and (2) Nc target words measured closest to wS

based on the cosine distance between their word-
level embeddings in a bilingual space induced by
the embedding model of Vulić and Moens (2016).

Figure 2: Illustrations of the classification com-
ponent with feed-forward networks of different
depths. A: H = 0. B: H = 2 (our model). All
layers are fully connected.

4 Experimental Setup

Data One of the main advantages of automatic
BLI systems is their portability to different lan-
guages and domains. However, current standard
BLI evaluation protocols still rely on general-
domain data and test sets (Mikolov et al., 2013a;
Gouws et al., 2015; Lazaridou et al., 2015; Vulić
and Moens, 2016, inter alia). To tackle the lack of
quality domain-specific data for training and eval-
uation of BLI models, we have constructed a new
English-Dutch (EN-NL) text corpus in the medical
domain. The corpus contains topic-aligned doc-
uments (i.e., for a given document in the source
language, we provide a link to a document in
the target language that has comparable content).
The domain-specific document collection was con-
structed from the English-Dutch aligned Wikipedia
corpus available online4, where we retain only doc-
ument pairs with at least 40% of their Wikipedia
categories classified as medical.5

The simple selection heuristic ensures that the
main topic of the corpus lies in the medical domain,
yielding a final collection of 1198 training docu-
ment pairs. Following a standard practice (Koehn
and Knight, 2002; Haghighi et al., 2008; Prochas-
son and Fung, 2011), the corpus was then tokenized
and lowercased, and words occurring less than five
times were filtered out.

Translation Pairs: Training, Development, Test
We construct semi-automatically a set of EN-NL
translation pairs by translating all words that occur

4http://linguatools.org/tools/corpora/
5https://www.dropbox.com/s/hlewabraplb9p5n/medicine en.txt?dl=0
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in our pre-processed corpus. This process relied
on Google Translate and manual corrections done
by fluent EN and NL speakers. Translating the
EN vocabulary yields 13,856 translation pairs in
total, while the reverse process of translating the
NL vocabulary yields 6,537 translation pairs. Tak-
ing the union of both lexicons results in 17,567
unique translation pairs, where 7,368 translation
pairs (41.94%) have both the source and target lan-
guage word occurring in our corpus.6

We perform a 80/20 random split of the obtained
subset of 7,368 translation pairs to construct a train-
ing and test set respectively. We make another
80/20 random split of the training set into training
and validation data. We note that 20.31% of the
source words have more than one translation.

Word-Level Embeddings Skip-gram word em-
beddings with negative sampling (SGNS) (Mikolov
et al., 2013b) are obtained with the word2vec
toolkit with the subsampling threshold set to 10e-4
and window size to 5. BWESG embeddings (Vulić
and Moens, 2016) are learned by merging topic-
aligned documents with length-ratio shuffling, and
then by training a SGNS model over the merged
documents with the subsampling threshold set to
10e-4 and the window size set to 100. The dimen-
sionality of all word-level embeddings is d = 50.

Classifier The model is implemented in Python
using Tensorflow (Abadi et al., 2015). For train-
ing we use the Adam optimizer with default values
(Kingma and Ba, 2015) and mini-batches of 10 ex-
amples. We used 2Ns = 10 negative samples and
we generated 2Nc = 10 candidate translation pairs
during prediction. The classification threshold t
is tuned measuring F1 scores on the validation set
using a grid search in the interval [0.1, 1] in steps
of 0.1.

Evaluation Metric The metric we use is F1,
the harmonic mean between recall and precision.
While prior work typically proposes only one trans-
lation per source word and reports Accuracy@1
scores accordingly, here we also account for the
fact that words can have multiple translations. We
evaluate all models using two different modes: (1)
top mode, as in prior work, identifies only one
translation per source word (i.e., it is the target
word with the highest classification score), (2) all

6Since we use a comparable corpus in our experiments,
not all translations of the English vocabulary words occur in
the Dutch part of the corpus and vice versa.

mode identifies as translation pairs all pairs for
which the classification score exceeds threshold t.

5 Results and Discussion

A Roadmap to Experiments We first study au-
tomatically extracted word-level and character-
level representations and their contribution to BLI
in isolation (Sect. 5.1 and Sect. 5.2). It effectively
means that for such single-component experiments
Eq. 3 is simplified to rho = rSTw (word-level) and
rho = rSTc (character-level). Following that, we
investigate different ways of combining word-level
and character-level representations into improved
BLI models (Sect. 5.3). There, we conduct addi-
tional analyses which investigate the influence of
(i) the number of hidden layers of the classifier, (ii)
training data size, and (iii) other variant architec-
tures (i.e., training word-level and character-level
representations separately vs. training character-
level representations jointly with the classifier vs.
training all components jointly).

5.1 Experiment I: Word Level

The goal of this experiment is twofold. First, we
want to analyze the potential usefulness of standard
word embeddings in a classification framework.
Second, we want to compare the BLI approach
based on classification to standard BLI approaches
that simply compute similarities in a shared bilin-
gual space. All classification NNs are trained for
150 epochs. The results are shown in Tab. 1.

The top two rows are BLI baselines that apply
cosine similarity (SIM) in a bilingual embedding
space to score translation pairs. For SGNS-based
embeddings, we follow (Mikolov et al., 2013b) and
align two monolingual embedding spaces by learn-
ing a linear mapping using the same set of train-
ing translation pairs as used by our classification
framework. The BWESG-based embeddings do
not exploit available translation pairs, but rely on
document alignments during training. The bottom
two rows of Tab. 1 use the classification framework
we proposed (CLASS).

As the main finding, we see that the classification
framework using word-level features outperforms
the standard similarity-based framework. BWESG
in the similarity-based approach works best in top-
mode, i.e., it is good at finding a single translation
for a source word.7 The classification-based ap-

7Surprisingly, the similarity-based approach with SGNS
embeddings (Mikolov et al., 2013b) reports extremely low
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development test
Representation F1 F1 F1 F1

(top) (all) (top) (all)
S

IM
BWESG 15.71 11.56 13.43 9.84
SGNS 0.43 0.40 0.56 0.37

C
L

A
S

S

BWESG 11.51 16.02 12.12 15.09
SGNS 17.67 20.67 17.25 19.79

Table 1: Comparison of different BLI systems
which use only word-level information.

proach is consistently better in translating words
with multiple translations as evident from higher
all-mode scores in Tab. 1.

When comparing BWESG and SGNS embed-
dings within the classification framework, we ob-
serve that we obtain significantly better results with
SGNS embeddings. A plausible explanation is that
SGNS embeddings better capture properties related
to the local context of a word like syntax informa-
tion since they are trained with much smaller con-
text windows.8 We also note that SGNS also has a
practical advantage over BWESG concerning the
data requirements as the former does not assume
document-level alignments.

5.2 Experiment II: Character Level
Here, we compare the representation learned by the
character-level encoder with manually extracted
features that are commonly used. The following
character-level methods are evaluated:

• CHAR-LSTMjoint , the output of the architec-
ture described in Sect. 3.2
• EDnorm, the edit distance between the word

pair normalized by the average of the number
of characters of ws and wt as used in prior
work (Irvine and Callison-Burch, 2013; Irvine
and Callison-Burch, 2016).
• log(EDrank), the logarithm of the rank of wt

in a list sorted by the edit distance w.r.t. ws.
This means that the target word that is nearest
in edit distance w.r.t. ws will have a feature
value of log(1) = 0, words that are more
distant from ws will get higher feature values.

results. A possible explanation for such results is that the
model is not able to learn a decent linear mapping between
two monolingual embedding spaces induced from a small
monolingual corpus relying on low-frequency word translation
pairs (Vulić and Korhonen, 2016). We verified the influence of
low-frequency word pairs by gradually decreasing the amount
of pairs in the seed lexicon, keeping only the most frequent
word pairs: e.g., limiting the seed lexicon to the 1000 most
frequent word pairs, we obtain better results, which are still
well below other models in our comparison.

8Large window sizes are inherent to the BWESG model.

development test
Representation F1 F1 F1 F1

(top) (all) (top) (all)
EDnorm 30.35 31.36 30.89 28.43
log(EDrank) 29.01 26.14 29.48 22.25
EDnorm+ log(EDrank) 31.32 30.32 32.27 30.04
CHAR-LSTMjoint 33.93 35.26 33.89 34.93

Table 2: Comparison of character-level BLI meth-
ods from prior work with automatically learned
character-level representations.

Target words with the same edit distance score
are assigned the same rank.
• EDnorm + log(EDrank), the concatenation of

the EDnorm and log(EDrank) features. The
combined model results in a stronger baseline.

For the ED-based features we use the same classifi-
cation framework. However, we use hidden layers
only for EDnorm + log(EDrank) as hidden lay-
ers do not make the the one-dimensional feature
models (EDnorm and log(EDrank)) any more ex-
pressive. The ED-based models were additionally
tuned by performing a grid search to find the op-
timal values for the number of negative samples
2Ns and the number of generated translation can-
didates 2Nc. Both 2Ns and 2Nc are chosen from
the interval [10, 100] in steps of 10 based on the
performance on the validation set. The ED-based
models converge quickly and were only trained for
25 epochs. For the CHAR-LSTMjoint representa-
tion, we use 512 memory cells per layer, we train
the model for 300 epochs, and the parameters 2Ns

or 2Nc were set to the default values (10) without
any additional fine-tuning.

The results are displayed in Tab. 2. The overall
performance is high compared to the results of the
word-level models. The importance of character-
level information in this data set is explained by
the large amount of medical terminology and ex-
pert abbreviations (e.g., amynoglicosides, aphasics,
nystagmus, EPO, EMDR), which due to its ety-
mological processes, typically contain recurring
morphological patterns across languages. It also
further supports the need of models that are able
to exploit and combine word-level and character-
level features. Results also indicate that learning
character-level representations from the data is ben-
eficial as the CHAR-LSTMjoint model significantly
outperforms the baselines used in prior work. The
CHAR-LSTMjoint shows consistent improvements
over baselines across evaluation modes, while the
largest gains are again in the all-mode.
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(a) (b)

Figure 3: (a) The influence of the number of layers H between the representations and the output layer on
the BLI performance; (b) The influence of the training set size (the number of training pairs).

5.3 Experiment III: Combined Model

Encouraged by the excellent results of single-
component word-level and character-level BLI
models in the classification framework, we also
evaluate the combined model. As word-level repre-
sentations we choose SGNS embeddings and the
LSTM consists of 128 in memory cells in each
layer in all further experiments.9 We compare three
alternative strategies to learn the parameters of the
neural network used for classification:
(1) SEPARATE: Word-level and character-level rep-
resentations are trained separately. Word-level em-
beddings and LSTM weights for character-level
representations are kept fixed when training the
hidden and output layers are simply appended on
top of the fixed representations.
(2) CHAR JOINT: Word-level embeddings are
trained separately, while character-level represen-
tations are trained together with the hidden layers
and output layer. This can encourage the network
to learn new information on the character-level, dif-
ferent from word-level representations.
(3) ALL JOINT: Motivated by recent work (Ferreira
et al., 2016) which proposed a joint formulation for
learning task-specific BWEs in a document classi-
fication task, all components in our BLI framework
are now trained jointly. The joint training objective
now consists of two components: the context pre-
diction objective (i.e., SGNS-style objective) and
the translation objective described by Eq. (1).

The results are shown in Tab. 3. The CHAR

JOINT strategy significantly improves on the best
single word-level/character-level models. SEPA-
RATE and ALL JOINT, however, do not improve on
the CHAR-LSTMjoint model. CHAR JOINT allows
the character-level representations to learn features
that are complementary to word-level information,

9We found that in this setting, where we use both word-
level and character-level representations, it is beneficial to use
a smaller LSTM than in the character-level only setting.

development test
training F1 F1 F1 F1

(top) (all) (top) (all)
SEPARATE 35.35 35.09 33.60 33.17
CHAR JOINT 36.78 35.85 37.73 36.61
ALL JOINT 33.02 33.75 32.86 33.31

Table 3: Results of the combined model (word-
level SGNS plus CHAR-LSTMjoint ). Three differ-
ent strategies of information fusion are compared.

which seems crucial for an optimal combination
of both representations. Learning word-level em-
beddings jointly with the rest of the network is not
beneficial. This can be explained by the fact that
the translation objective deteriorates the generaliza-
tion capabilities of word embeddings.

Another crucial parameter is the number of hid-
den layers H . Fig. 3(a) shows the influence of
H on F1 in top mode. BLI performance increases
with H . As expected, we see the largest improve-
ment from H = 0 to H = 1. With H = 0 the
network is not able to model dependencies between
features. More hidden layers allow the network to
learn more complex, abstract relations between fea-
tures, resulting in an improved BLI performance.

Influence of Training Set Size In practice, for
various language pairs and domains, one may have
at disposal only a limited number of readily avail-
able translation pairs. Fig. 3(b) shows the influence
of the size of the training set on performance: while
it is obvious that more training data leads to a better
BLI performance, the results suggest that a com-
petitive BLI performance may be achieved with
smaller training sets (e.g., the model reaches up to
77% of the best performance with only 1K training
pairs, and > 80% with 2K pairs).

6 Conclusion and Future work

We have introduced a neural network based classifi-
cation architecture for the task of bilingual lexicon
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induction (BLI). We have designed, implemented
and evaluated a character-level encoder in the form
of a two-layer long short-term memory network
and have experimented with different word-level
representations. The resulting encodings were used
in a deep feed-forward neural network. The results
show that especially this combination of character-
and word-level knowledge is very successful in the
BLI task when evaluated in the medical domain.

Our novel method for learning character-level
representations will raise the interest in studying
character-level encoders which could be tested in
different tasks where string comparisons are impor-
tant. In future work, we intend to further propose
and compare with alternative character-level encod-
ing architectures, and combine additional useful
BLI signals in our BLI classification framework.
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Abstract

In news aggregation systems focused on
broad news domains, certain stories may
appear in multiple articles. Depending
on the relative importance of the story,
the number of versions can reach dozens
or hundreds within a day. The text
in these versions may be nearly identi-
cal or quite different. Linking multiple
versions of a story into a single group
brings several important benefits to the
end-user—reducing the cognitive load on
the reader, as well as signaling the rela-
tive importance of the story. We present
a grouping algorithm, and explore several
vector-based representations of input doc-
uments: from a baseline using keywords,
to a method using salience—a measure
of importance of named entities in the
text. We demonstrate that features beyond
keywords yield substantial improvements,
verified on a manually-annotated corpus of
business news stories.

1 Introduction

We address the problem of grouping multiple ver-
sions of the same story in a system that contin-
uously processes articles incoming from a large
number of news streams. Our problem setting
is PULS—an on-line information extraction (IE)
system, which analyses news in the business do-
main.1 PULS collects articles from over 1000
on-line sources that provide RSS feeds. Among
approximately 4000–6000 articles arriving daily,
some of the stories appear multiple times.

The role of the aggregation component is to
cluster the articles into a set of stories—a story is
a set of articles that report the same piece of news.

1http://puls.cs.helsinki.fi/

The purpose of grouping is that when a user is-
sues a query, the system should show one item per
story, rather than one item per article, so the same
fact is not shown over and over again. Informa-
tion should be presented in a way that minimizes
redundancy of the returned results; this implies
narrowly clustering news articles that describe the
same events or facts.

Another goal is to identify trending stories. In
the business domain, if a story is globally impor-
tant, it will appear in many feeds. When repeated
news items are identified, the number and variety
of sources covering the story is an indicator of that
story’s relative importance.

Thus, from the end-user’s perspective, we have
at least two motivations for grouping different
news that describe the same story: reducing re-
dundancy and ranking stories by importance.

The main contributions of this paper are:

• We try to identify the most effective doc-
ument representation for news clustering.
We demonstrate that automatically extracted
named entities (NE) are better features than
words. Moreover, considering the salience
of NEs—a measure that combines frequency
and prominence of the NE—gives further im-
provement in clustering performance. We in-
troduce a novel salience weighting scheme,
which in our experiments outperforms TF-
IDF and raw count weighting.
• For word representation, we compare pre-

trained word2vec vectors with vectors trained
on a domain-specific news corpus. Although
the corpus-specific word embeddings alone
give lower performance on the clustering
task, we show that they work better in com-
bination with NE features.
• We analyze two measures for evaluation of

clustering performance—Rand index and V-
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measure—and a standard way of adjusting
them for “chance.” We demonstrate that ad-
justing favors clustering with a smaller num-
ber of clusters. We propose a new type of
normalization, which avoids this problem.
• We publish the data-set, consisting of nearly

4000 articles collected by our system for one
day, grouped into clusters manually. The
data-set represents a real task, which the ag-
gregation component must solve daily. We
also provide a command-line annotation tool,
to facilitate manual clustering. We also pub-
lish the word embeddings.

Although in this paper we deal only with busi-
ness news, we consider redundancy and the ten-
dency to repeat the more important events to be
general properties of news streams. Thus, we be-
lieve that our task and the proposed solution gen-
eralize to many other news-monitoring settings.

The paper is organized as follows. Section 2
discusses related work. Section 3 presents the NE
extraction system and introduces salience for NE
weighting. Section 4 describes the algorithm and
features. Section 5 describes the data and annota-
tion process. Section 6 discusses evaluation meth-
ods and results. Section 7 contains conclusions
and future work.

2 Related work

A general overview of text clustering techniques
can be found in (Aggarwal and Zhai, 2012). Many
results on document clustering are published in IR
literature, where these techniques are used to clus-
ter search results (Carpineto et al., 2009).

News are clustered for various purposes: find-
ing breaking news in streams (Kumaran and Al-
lan, 2004), linking duplicates or articles about the
same story (Vadrevu et al., 2011), tracking threads
of news over time (van Erp et al., 2014; Azzopardi
and Staff, 2012; Steinberger and Pouliquen, 2008),
or facilitating access to information (Zhang et al.,
2013; Toda and Kataoka, 2005).

The main techniques for clustering documents
are: agglomerative clustering (Steinberger and
Pouliquen, 2008) and partitioning clustering, such
as k-means, buckshot, and fractionation (Az-
zopardi and Staff, 2012; Sankaranarayanan et al.,
2009; Cutting et al., 1992). Hierarchical ag-
glomerative clustering is commonly used in prac-
tice, though in general it has a complexity of
O(n2 log(n)), (Berkhin, 2006). All objects start

in their own, trivial cluster. The closest pair of
clusters is merged, iteratively, until the hierarchy is
complete. Partitional algorithms can also be used
to create a hierarchical solution, e.g., bisecting
k-means, which is better than standard k-means
and comparable to agglomerative hierarchical ap-
proaches, (Steinbach et al., 2000).

On the other hand, determining the number of
clusters might be a tricky task for partitional algo-
rithms (Gialampoukidis et al., 2016).

Suffix Tree Clustering (STC) is a linear-time
algorithm based on identifying common phrases
within groups of documents, (Zamir and Etzioni,
1999). Spectral clustering models the documents
as an undirected graph, where each node repre-
sents a document, assigns a similarity between
documents as a weight on the edges, and tries to
find the best cuts of the graph, (Shi and Malik,
2000). Xu et al. (2003) identify document clus-
ters in the latent semantic space derived by non-
negative factorization of the term-document ma-
trix of the given corpus.

A common procedure for agglomerative cluster-
ing (also used in this paper) can be summarized as
follows: convert documents into a vector represen-
tation, then use a metric to compute pairwise sim-
ilarity between documents—often, cosine similar-
ity. In this procedure, clustering quality crucially
depends on document representation.

Traditionally, a common way of representing
documents for clustering is by a vector of TF-
IDF weights for each keyword, e.g., (Iglesias et
al., 2016; Azzopardi and Staff, 2012; Vadrevu
et al., 2011). Steinberger and Pouliquen (2008)
use log-likelihood (LL) for weighting keywords
rather than TF-IDF. LL statistics can be computed
for each word in the corpus, relative to a sep-
arate, “reference” corpus (Rayson and Garside,
2000). Staff et al. (2015) claim that for search
results, using raw term frequencies outperforms
TF-IDF. Recent lines of research use word embed-
dings (Mikolov et al., 2013b) to represent docu-
ments. Sophisticated deep learning algorithms can
also be applied to text clustering (Xu et al., 2015),
but to date they require labeled training data, while
the method proposed in this paper is unsupervised.

In contrast to bag-of-words (BOW) schemes,
named entities (NEs) can be used as fea-
tures (Montalvo et al., 2012). In most cases, NEs
are also weighted according to TF-IDF (Toda and
Kataoka, 2005) or its variants (Cheng et al., 2012;
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Kiritoshi and Qiang, 2016).
Kumaran and Allan (2004) combined three vec-

tor representations for a document, namely: all
words, NEs, and all words except NEs. This is
similar to the series of experiments in this paper;
the difference is that Kumaran and Allan (2004)
used TF-IDF in all three cases, while we compare
TF-IDF with several alternatives.

Popular clustering data sets target much coarser
categorization tasks. For instance, 20 News-
group2 and Reuters’ RCV13 categorize news into
business sectors such as “Fruit Growing” or
“comp.graphics.” TDT24 classifies news related
to certain topics—a phenomenon or a big event–
such as “Asian Economic Crisis” or “1998 Win-
ter Olympics.” Our task focuses on more focused
groups; stories about business activities that oc-
curred within a given industry sector or that are
related to a broader phenomenon are not consid-
ered the same story. If the same entities engage
in two different activities, we consider that as two
distinct stories. Therefore, we manually annotated
a sample of our corpus, which is more suitable for
evaluating our methods.

3 Named Entities and Salience

We use a Named Entity Recognition module as
part of the PULS news monitoring system. (Yan-
garber and Steinberger, 2009; Huttunen et al.,
2013; Du et al., 2016) It uses patterns and
rules to extract NEs; currently the system uses
about a thousand patterns, some of which were
learned (Yangarber, 2003) and some manually
constructed. The system assigns a type to each
NE—company, person, product, etc.—but the NE
types are not used for grouping to reduce the ef-
fect of mistakes in analysis, e.g., when an entity is
classified with different types across multiple doc-
uments. Rather, we consider clustering to be an
earlier step in the overall processing pipeline (Yan-
garber, 2006). Ji and Grishman (2008) show that
performance of an IE system can be improved by
using clusters of topically-related documents. In
PULS we use grouping to improve NE classifica-
tion: we assign each entity a type based on the
majority within the set of clustered documents.

2http://www-2.cs.cmu.edu/
˜TextLearning/datasets.html

3http://about.reuters.com/
researchandstandards/corpus/

4https://catalog.ldc.upenn.edu/
LDC2001T57

Our definition of salience relies on the gen-
eral nature of news articles. Authors typically
mention the main event in the title, in condensed
form; then, the main information is elaborated in
the first few sentences, followed by further detail
and background. Thus, the most important NEs
are mentioned early in the text and then repeated,
whereas less important NEs are mentioned in the
later paragraphs and are less frequent.

We compute salience as a combination of
prominence and frequency of an entity in a docu-
ment. Prominence captures the importance of the
first mention of entity e in document d:

prominence(e, d) =
ns(d)− fs(e, d)

ns(d)

where ns(d) is the total number of sentences in the
document, fs(e, d) is the number of the sentence
(starting at zero) of the first mention of e in d.
Thus, the prominence of entities mentioned in the
title is 1. Prominence also takes into account the
total length of the document, to capture diversity
of news sources in the collection. For example, the
second sentence in a two-page article is more im-
portant than the second sentence in a short article,
where all crucial information must be condensed
at the very beginning.

Frequency is the ratio of mentions of a given NE
over all NE mentions:

frequency(e, d) =
C(e, d)∑

e′∈NE(d)
C(e′, d)

where C(e, d) is the count of e in d, NE(d) is the
set of all NEs in d. Note that we compute the NE
frequency relative to the other NEs only and ig-
nore all the other words in the document, since
NEs and common words have rather different dis-
tributions: important terms are usually repeated
more times than names.

We define salience as the geometric mean of
prominence and frequency:

S(e, d) =
√

prominence(e, d) · frequency(e, d)

Salience lies between 0 and 1, but the saliences in
a document need not add up to one—there may
be more than one salient entity in the document,
or none. In the business domain, the majority of
events involve some NEs (often, companies).

We make extensive use of salience in the PULS
system to aggregate and present information to
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users. For example, we represent each group
as a list of salient companies, with the least
salient companies removed. Similarly, when a
user searches for a name, the system returns only
documents where the entity salience is above a
certain threshold.

We compare salience to two other weighting
strategies: namely, frequency alone, and TF-IDF.

4 Clustering algorithm

The experiments follow the same structure. We
start with a collection of documents and trans-
form it into a collection of vectors, by one of the
methods described below. We apply agglomera-
tive clustering to the collection of document vec-
tors, using cosine distance between vectors. The
agglomerative algorithm produces a dendrogram
with the documents as leaves, and we obtain a
clustering by cutting at a distance threshold θ ∈
(0, 1). We use the complete metric, meaning that
the distance between clusters A and B is the max-
imum of the distances between any two vectors in
A and B (Aggarwal and Zhai, 2012). The thresh-
old θ imposes a limit on the maximum distance
between any two documents in a cluster.

4.1 Mapping documents to Rk

To represent documents as vectors we use two
types of features: all words, or named entities.
For words, we use three representations: TF-
IDF, word2vec embeddings pre-trained on a large
general corpus, and embeddings trained on our
business-news corpus. For NEs, we use raw
counts, TF-IDF and salience. Thus, we experi-
ment with six vector representations.
Word-based representations: For each word w,
we compute TF-IDF as:

TF-IDF(w, d) =
C(w, d)∑

w′∈W (d)

C(w′, d)
· log |D||Dw|

where C(w, d) counts how many times the word
w appears in document d, W (d) is all words in d,
D is all documents in the corpus, and |Dw| are all
documents in D which contain word w. Then the
vector representation for the document is:

TF-IDF(d) =
∑

w∈W (d)

TF-IDF(w, d)ûw

where ûw is the one-hot vector, whose length is
the size of the vocabulary, and which contains ze-
ros in all positions but the one corresponding to

w1 w2 Google News Business
jump climb 0.55 0.85
recall remember 0.43 0.13

Table 1: Cosine similarity for sample word vec-
tors.

w. The vector TF-IDF(d) contains TF-IDF val-
ues for its words and zeros in all other positions.
We use only content words—nouns, adjectives and
verbs—in the TF-IDF representations.

Another approach is to represent each word as a
vector in a low-dimensional vector space. We can
then represent documents by adding their corre-
sponding word vectors. We use word vectors pro-
duced by the CBOW approach—continuous bag-
of-words (Mikolov et al., 2013a). The vector rep-
resenting document d is then:

CBOW(d) =
∑

w∈W (d)

C(w, d)ew

where ew is the embedding vector representing w.
In this paper we use the “standard” word2vec

embeddings built on the Google News data-set5

(referred to as “CBOW-st”), and embeddings
trained on our business-news corpus “CBOW-b”.
Our corpus is relatively small (4.5 million doc-
uments), but it contains only documents relevant
to business news. We do not know a priori
which set of embeddings is more suitable for our
task. Although the two embeddings produce simi-
lar results, the resulting word vectors have notice-
able differences, as can be seen in Table 1. The
business-domain embeddings for jump and climb
are much closer than in the general corpus, since
both are used to denote increases; meanwhile, em-
beddings for recall and remember are much closer
in the general corpus, because, in the business do-
main, recall frequently refers to product recalls.

Named entity-based representations: An-
other natural representation for a document d can
be obtained by using only named entity counts:

NEC(d) =
∑

e∈NE(d)

C(e, d)ûe

where NE(d) is the set of all named entities in doc-
ument d,6 and ûe is the one-hot vector. TF-IDF for
NEs is computed in the same way as for keywords

5code.google.com/archive/p/word2vec
6Here we use counts instead of frequencies since there are

equivalent when cosine similarity is used.
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but using only NEs, ignoring common words. We
refer to this representation as NE-TFIDF. Finally,
a salience-based document representation lever-
ages the salience S of the NEs, described in Sec-
tion 3:

NES(d) =
∑

e∈NE(d)

S(e, d)ûe

4.2 Combining representations
Named entities are crucial for news clustering. In
some reporting, journalists use standardized lan-
guage and even article templates to describe simi-
lar events. In such cases, the article’s NEs are the
only way to obtain a meaningful document simi-
larity. On the other hand, NEs can be misleading,
e.g., if two different events take place in the same
location (see (Kumaran and Allan, 2004) for ex-
amples in both kinds of problems). Thus, we try
to combine NE and other textual features.

To that end, we use the best-performing meth-
ods in their respective categories—see results in
Section 6—namely CBOW for words and salience
for NEs. We use two methods of combining of
CBOW and NES representation: juxtaposition and
the AND function.

Juxtaposing means simply appending together
the vectors corresponding to the NEs and the key-
words, to form longer document vectors:

NES CBOWα(d) =

[
αkd

NES(d)

‖NES(d)‖ ,
CBOW(d)

‖CBOW(d)‖

]

(1)
where first, we normalize both representations by
their respective Euclidean distances, ‖ · ‖; then,
we scale by α, which controls the relative weight
of NES vs. CBOW. We further scale NES by kd—
the number of NEs found in d. The rationale be-
hind this is that if a document contains more NEs,
then the NES representation conveys more infor-
mation; whereas if d has only one NE, then group-
ing should rely much more on the keywords. We
apply the same agglomerative clustering proce-
dures as in other experiments to these juxtaposed
vectors. We experiment with both vector represen-
tations, CBOW-st and CBOW-b.

The second method, similar to that used in (Ku-
maran and Allan, 2004), requires that both word
distance and NE distance should be sufficiently
close—closer than corresponding thresholds. In
this case, we cannot use the complete linkage met-
ric since a maximum of distances is not defined if
the distance is a pair of numbers. Thus, unlike all

other experiments described in this paper, for the
AND combination method we use the single met-
rics (Aggarwal and Zhai, 2012). This is equiva-
lent to finding connected components of the graph
where the nodes are documents and there is and
edge between two nodes if and only if both dis-
tances are below their respective thresholds.

5 Data and annotation scheme

From our business news corpus (Pivovarova et al.,
2013) we selected one “typical” day for annota-
tion, with a total of 3959 documents.7 We manu-
ally annotated all of these documents via a special-
ized interface, which displays documents pairwise
and allows an annotator to make three main deci-
sions: documents can be

• Grouped: if their main stories are the same.

• Not grouped: if their stories are not the same.

• Partially grouped: if their main stories are not
the same, but may partially overlap. For ex-
ample, one article might mention the other’s
main story toward the end.

The interface provides other helpful options, for
example, the annotator can use regular expressions
to search for all documents similar to a given one;
another option is to mark the document as invalid
if the document is malformed.8

We use a triangular matrix M to keep track of
the pairwise relations among documents. Since
annotation is an extremely time-consuming pro-
cess, the key aim is to reduce the amount of data
shown to the annotator as far as possible. We ini-
tialize M by pre-marking all pairs of documents
that do have no NE in common as un-grouped; this
decision may later be reversed by the annotator.

Another idea that allows us to minimize man-
ual work is decision propagation. Document
grouping—that is, documents having the same
main story—can be viewed as an equivalence re-
lation. This means that (ideally) only one member
of a group needs to be checked against a member
of another group to decide whether both groups

7Some sites publish “summary” articles, which contain an
overview of 10 or more (possibly unrelated) stories, with as
little as one sentence per story. In this paper, summaries are
filtered out, to make the grouping task well defined. Filter-
ing is performed by a simple segmentation algorithm, which
checks whether the text is separable into contiguous seg-
ments, containing non-overlapping sets of named entities.

8This includes documents where some broken content was
retrieved, such as a login page or advertisement.
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should be merged. Every time a user groups two
documents, the decision is propagated so that two
corresponding groups are merged, and other pairs
from the merged group are never shown to the
user. Sometimes this leads to a contradiction, in-
cluding cases when the initialization was wrong—
i.e., when initialization suggests that two docu-
ments cannot be in the same group, but the an-
notator decides to merge two groups they belong
to. In such a case, the annotator is warned and has
to resolve the contradiction. Negative decisions
can also be propagated: when an annotator marks
a pair of documents as ungrouped, this affects all
documents in both groups. Partial relations, on the
other hand, are not equivalence relations, and re-
quire more manual annotation.

Our annotation tool keeps track of annotators’
decisions, U , and reconstructs the annotation from
them. This process can be viewed as applying each
u ∈ U to successive versions of M :

Mi = ui(Mi−1)

In this scenario, mistakes—which will appear as
contradictions in M—are much easier to detect
and correct. Given U that generates contradic-
tions, a minimal subset U ′ ⊂ U that generates the
same contradiction can be more easily inspected.
Then, the offending input can be corrected and we
can proceed with the annotation.9

In total four members of our team were involved
in the annotation process. Most of the instances
were annotated by one person. In the beginning
of the process we annotated several cases together
and discussed difficult ones to work out general
guidelines. Annotators also checked some ran-
dom part of others’ annotations, and corrected sev-
eral cases during error analysis, by looking at mis-
classified instances with the highest confidence.10

Of the 3959 documents annotated in this man-
ner, all documents marked as either invalid or
partially related to others were removed (402
documents), leaving 3557 documents that can
be grouped unambiguously. This constitutes the
ground-truth clustering against which we test our
system. Figure 1 shows how the documents are
distributed among cluster sizes: the vast majority
of them (2249) are in a cluster by themselves,11

9We arrived at this annotation scheme through trial and
error, since annotating thousands of documents is a complex
and tedious task. This seems to be an effective approach.

10Overall, the annotation process spanned across two cal-
endar months.

11Leftmost bar is cut off at 500 to improve readability.
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Figure 1: Distribution of annotated data (the left-
most bar goes up to 2249: 2249 documents are not
clustered with any other document)

and the rest form larger ones. This is expected,
as most of the data has been gathered from spe-
cialized business RSS feeds (mining news, dairy
news, and so on); these sources usually report all
news related to their industry including less impor-
tant events that do not appear in other sources.

6 Evaluation and results

6.1 Evaluation methods

We evaluate our resulting clusters using Rand in-
dex (RI) and V-Measure. Rand index considers
all possible pairs of documents, and is the pro-
portion of correctly classified pairs—grouped or
ungrouped—among all pairs (Rand, 1971). RI can
be adjusted for chance, as described in (Hubert and
Arabie, 1985):

ARI(Srep) =
RI(Srep)− E[RI(Schance)]

1− E[RI(Schance)]
(2)

where Srep is the clustering strategy based on a
document representation rep—rep is one of the
representation strategies described in Section 4.
The strategy Schance is a random clustering strat-
egy; RI(S) is the RI of applying strategy S to the
data; and E is expectation, which is estimated as
described in (Hubert and Arabie, 1985).

V-Measure is the harmonic mean of homogene-
ity (H) and completeness (C) (Rosenberg and
Hirschberg, 2007).

H = 1−H(C|K)

H(C)
C = 1−H(K|C)

H(K)
V =

2HC

H + C

where H denotes entropy, K are predicted labels,
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and C are the true labels. Completeness, homo-
geneity and V-measure are analogous to recall,
precision and F-measure respectively.

Figures 2 and 3 show the measures we wish
to optimize, namely the Rand index (unadjusted
for chance) and the V-Measure. RI adjusted for
chance (ARI) is shown in Figure 4.

From figures 2 and 3 it is relatively difficult to
see the maxima of the measures. In both, most of
the interesting information lies in a very small re-
gion, which is difficult to visualize. If we zoomed
into these regions sufficiently, we would find that
the maxima in these figures correspond to similar
values θ, which are different from the maxima in
Figure 4. This highlights several problems.

Adjustment for chance depends on the number
of clusters, which in turn depends on the thresh-
old value (θ); a random clustering that produces a
very large number of clusters will have a very high
RI value (which is the adjustment penalty) and the
ARI will be very low, because the penalty for the
adjustment is high. Therefore, the ARI measure
favors higher values of θ, where the number of re-
sulting clusters will be smaller.

We consider this a shortcoming of the ARI mea-
sure and propose another function to maximize.
We rather adjust for the naı̈ve strategy, Snaı̈ve,
which assigns each document to its own cluster.
In other words, we try to measure what is the gain
of clustering some documents compared to “doing
nothing.”

We transform Equation 2 to adjust for Snaı̈ve
rather than chance. Suppose f(S) is a scoring
measure for a clustering strategy S; in our case,
f is RI or V-measure. Now, f(S) ∈ [0, 1], and 1 is
the perfect score, and 0 is the worst score. We can
adjust f as follows:

f̂naı̈ve(Srep) =
f(Srep)− E[f(Snaı̈ve)]

1− E[f(Snaı̈ve)]

=
f(Srep)− f(Snaı̈ve)

1− f(Snaı̈ve)
(3)

Equation 3 adjusts the score for the naı̈ve
strategy—which shows how much better than the
naı̈ve the given strategy performs; if it performs
worse than naı̈ve adjusted score is less than zero.

The naı̈ve strategy produces high scores: V-
measure of 0.965 and RI of 0.9993. Homogeneity
for the naı̈ve strategy is 1, and completeness for
our corpus is also quite high because the major-
ity of documents do not belong to any group, as
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shown in Figure 1. Rand index considers all pos-
sible pairings and yields a high score since most
must belong to different clusters.

Using the naı̈ve adjustment, Figures 5 and 6
show a much clearer picture of how each doc-
ument representation behaves.12 The figures
show that the two measures—RI and V-measure—
behave similarly, and reach their maxima at very
similar values of θ. Because the measures indicate
the same maximum, we do not need to prefer one
measure over the other.

6.2 Results
As seen in Figure 5 and 6, the NE-based strategies
outperform the word-based ones. Even the worst-
performing NE-based measure (raw count, NEC)
is better than the word-based strategies. TF-IDF,
which is the most frequently mentioned strategy
in the literature, outperforms raw counts. We can

12In these figures we show only positive values.
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argue for and against TF-IDF. For example, it is
clear that locations that rarely pop up in news are
more informative than popular country names. On
the other hand, big companies, such as Google, are
involved in many different activities and often ap-
pear in the news, which should not affect their rel-
evance in a particular event. The best-performing
measure, which is based on salience (NES), com-
pletely ignores the overall distribution of NEs in
the corpus. However, it takes into account the po-
sition of the entity mentions in the text, and man-
ages to outperform both raw counts and TF-IDF.

Among word-based measures, embeddings—
CBOW-st and CBOW-b—outperform TF-IDF,
and pre-trained embeddings, CBOW-st, are
slightly better than the ones trained on our small
business corpus, CBOW-b. It is also interesting
how concave the CBOW plots are, as can be seen
in Figures 5 and 6; this shows that the embedding
representation has a clear, well-defined, threshold.
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Figure 6: V Measure adjusted for Snaı̈ve
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Figures 7 and 8 show the measures obtained by
combining embedding-based representations and
salience, according to Equation 1—juxtaposing
combination method. We tested several values of
α, on a logarithmic scale from 1

1000 to 1000, some
of them are shown using thin blue lines, dark for
CBOW-st and light for CBOW-b. The thick lines
present the best performing combinations, which
correspond to α = 1 for CBOW-st and α = 0.5
for CBOW-b; the red curves present the values ob-
tained by NES in figures 5 and 6.

It can be seen, from Figures 7 and 8, that, when
combined with salience, the embeddings trained
on our small domain-specific corpus outperform
those trained on a much larger general corpus,
even though CBOW-b alone performs worse than
CBOW-st. It is interesting that, in the case of
business-specific embeddings, it is better to give
less weight to the NE features: the best α for
CBOW-st is half of the best α for CBOW-b.
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Figure 9: V-Measure adjusted for Snaı̈ve

However, as can be seen from these figures, jux-
taposed representations does not yield significant
improvements over simply using a single set of
features. Figures 9 and 10 show, respectively, the
V-measure and Rand-index for CBOW-b and NES
combined using the AND function: two documents
are in the same group if and only if both distances
are below their corresponding thresholds—θn for
NEs and θw for words. Since we are optimizing
these two parameters, we plot the results in a heat
map. It can be seen that this approach to com-
bination yields a significant improvement: up to
0.39 for Snaı̈ve-adjusted Rand index and 0.47 for
V-measure.

This significant improvement can be explained
by the distribution of our corpus, presented in Fig-
ure 1, and by the fact that we use two represen-
tations of documents with different information.
By using the AND function to combine them, we
can filter out the cases where using only one repre-
sentation would result in a false positive. In other
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Figure 10: Rand index adjusted for Snaı̈ve

words, two documents are grouped only if both
their names and their common keywords are sim-
ilar. We hypothesize that this can be a reason-
able method for event-based clustering of news
streams: the trending events are reported in many
sources, while each source tries to produce some
unique content. On the other hand, this may be not
an appropriate strategy for topic classification.

7 Conclusions and future work

We have shown how considering the relative im-
portance of named entities, in the form of salience,
can be used to improve detection of related stories
in different news articles. We have introduced an
effective adjustment for the clustering metrics, and
a method for combining different document vector
representations, which outperforms the base rep-
resentations alone. We make public the annotation
interface, the news data, and the word embeddings
used in this work, on our project page.13

We plan to explore other, more user-oriented
metrics, which could take into account what a po-
tential user might expect from a news-aggregating
system. Other representations using the rela-
tive importance of named entities in a given
news article should also be considered, such as
a continuous-vector representation for documents
where named entities play a role. Zhao and
Karypis (2002) claim that agglomerative cluster-
ing may not be the best algorithm for this kind of
task; therefore we plan to explore how the rep-
resentations behave under other clustering algo-
rithms.

13http://puls.cs.helsinki.fi/grouping
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Abstract

The dominant approach for many NLP
tasks are recurrent neural networks, in par-
ticular LSTMs, and convolutional neural
networks. However, these architectures
are rather shallow in comparison to the
deep convolutional networks which have
pushed the state-of-the-art in computer vi-
sion. We present a new architecture (VD-
CNN) for text processing which operates
directly at the character level and uses
only small convolutions and pooling oper-
ations. We are able to show that the per-
formance of this model increases with the
depth: using up to 29 convolutional layers,
we report improvements over the state-of-
the-art on several public text classification
tasks. To the best of our knowledge, this is
the first time that very deep convolutional
nets have been applied to text processing.

1 Introduction

The goal of natural language processing (NLP) is
to process text with computers in order to analyze
it, to extract information and eventually to rep-
resent the same information differently. We may
want to associate categories to parts of the text
(e.g. POS tagging or sentiment analysis), struc-
ture text differently (e.g. parsing), or convert it
to some other form which preserves all or part of
the content (e.g. machine translation, summariza-
tion). The level of granularity of this processing
can range from individual characters to subword
units (Sennrich et al., 2016) or words up to whole
sentences or even paragraphs.

After a couple of pioneer works (Bengio et al.
(2001), Collobert and Weston (2008), Collobert et
al. (2011) among others), the use of neural net-
works for NLP applications is attracting huge in-

terest in the research community and they are sys-
tematically applied to all NLP tasks. However,
while the use of (deep) neural networks in NLP
has shown very good results for many tasks, it
seems that they have not yet reached the level to
outperform the state-of-the-art by a large margin,
as it was observed in computer vision and speech
recognition.

Convolutional neural networks, in short Con-
vNets, are very successful in computer vision. In
early approaches to computer vision, handcrafted
features were used, for instance “scale-invariant
feature transform (SIFT)”(Lowe, 2004), followed
by some classifier. The fundamental idea of Con-
vNets(LeCun et al., 1998) is to consider feature
extraction and classification as one jointly trained
task. This idea has been improved over the years,
in particular by using many layers of convolutions
and pooling to sequentially extract a hierarchical
representation(Zeiler and Fergus, 2014) of the in-
put. The best networks are using more than 150
layers as in (He et al., 2016a; He et al., 2016b).

Many NLP approaches consider words as ba-
sic units. An important step was the introduction
of continuous representations of words(Bengio et
al., 2003). These word embeddings are now the
state-of-the-art in NLP. However, it is less clear
how we should best represent a sequence of words,
e.g. a whole sentence, which has complicated syn-
tactic and semantic relations. In general, in the
same sentence, we may be faced with local and
long-range dependencies. Currently, the main-
stream approach is to consider a sentence as a se-
quence of tokens (characters or words) and to pro-
cess them with a recurrent neural network (RNN).
Tokens are usually processed in sequential order,
from left to right, and the RNN is expected to
“memorize” the whole sequence in its internal
states. The most popular and successful RNN vari-
ant are certainly LSTMs(Hochreiter and Schmid-
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Dataset Label Sample
Yelp P. +1 Been going to Dr. Goldberg for over 10 years. I think I was one of his 1st

patients when he started at MHMG. Hes been great over the years and is really
all about the big picture. [...]

Amz P. 3(/5) I love this show, however, there are 14 episodes in the first season and this DVD
only shows the first eight. [...]. I hope the BBC will release another DVD that
contains all the episodes, but for now this one is still somewhat enjoyable.

Sogou ”Sports” ju4 xi1n hua2 she4 5 yue4 3 ri4 , be3i ji1ng 2008 a4o yu4n hui4 huo3 ju4 jie1
li4 ji1ng guo4 shi4 jie4 wu3 da4 zho1u 21 ge4 che2ng shi4

Yah. A. ”Computer,
Internet”

”What should I look for when buying a laptop? What is the best brand and
what’s reliable?”,”Weight and dimensions are important if you’re planning to
travel with the laptop. Get something with at least 512 mb of RAM. [..] is a
good brand, and has an easy to use site where you can build a custom laptop.”

Table 1: Examples of text samples and their labels.

huber, 1997) – there are many works which have
shown the ability of LSTMs to model long-range
dependencies in NLP applications, e.g. (Sunder-
meyer et al., 2012; Sutskever et al., 2014) to name
just a few. However, we argue that LSTMs are
generic learning machines for sequence process-
ing which are lacking task-specific structure.

We propose the following analogy. It is well
known that a fully connected one hidden layer
neural network can in principle learn any real-
valued function, but much better results can be
obtained with a deep problem-specific architec-
ture which develops hierarchical representations.
By these means, the search space is heavily con-
strained and efficient solutions can be learned with
gradient descent. ConvNets are namely adapted
for computer vision because of the compositional
structure of an image. Texts have similar proper-
ties : characters combine to form n-grams, stems,
words, phrase, sentences etc.

We believe that a challenge in NLP is to develop
deep architectures which are able to learn hierar-
chical representations of whole sentences, jointly
with the task. In this paper, we propose to use deep
architectures of many convolutional layers to ap-
proach this goal, using up to 29 layers. The design
of our architecture is inspired by recent progress
in computer vision, in particular (Simonyan and
Zisserman, 2015; He et al., 2016a).

This paper is structured as follows. There have
been previous attempts to use ConvNets for text
processing. We summarize the previous works in
the next section and discuss the relations and dif-
ferences. Our architecture is described in detail
in section 3. We have evaluated our approach on

several sentence classification tasks, initially pro-
posed by (Zhang et al., 2015). These tasks and
our experimental results are detailed in section 4.
The proposed deep convolutional network shows
significantly better results than previous ConvNets
approach. The paper concludes with a discus-
sion of future research directions for very deep ap-
proach in NLP.

2 Related work

There is a large body of research on sentiment
analysis, or more generally on sentence classifica-
tion tasks. Initial approaches followed the clas-
sical two stage scheme of extraction of (hand-
crafted) features, followed by a classification
stage. Typical features include bag-of-words or n-
grams, and their TF-IDF. These techniques have
been compared with ConvNets by (Zhang et al.,
2015; Zhang and LeCun, 2015). We use the
same corpora for our experiments. More recently,
words or characters, have been projected into a
low-dimensional space, and these embeddings are
combined to obtain a fixed size representation of
the input sentence, which then serves as input for
the classifier. The simplest combination is the
element-wise mean. This usually performs badly
since all notion of token order is disregarded.

Another class of approaches are recursive neu-
ral networks. The main idea is to use an ex-
ternal tool, namely a parser, which specifies the
order in which the word embeddings are com-
bined. At each node, the left and right context are
combined using weights which are shared for all
nodes (Socher et al., 2011). The state of the top
node is fed to the classifier. A recurrent neural net-
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work (RNN) could be considered as a special case
of a recursive NN: the combination is performed
sequentially, usually from left to right. The last
state of the RNN is used as fixed-sized representa-
tion of the sentence, or eventually a combination
of all the hidden states.

First works using convolutional neural networks
for NLP appeared in (Collobert and Weston, 2008;
Collobert et al., 2011). They have been subse-
quently applied to sentence classification (Kim,
2014; Kalchbrenner et al., 2014; Zhang et al.,
2015). We will discuss these techniques in more
detail below. If not otherwise stated, all ap-
proaches operate on words which are projected
into a high-dimensional space.

A rather shallow neural net was proposed
in (Kim, 2014): one convolutional layer (using
multiple widths and filters) followed by a max
pooling layer over time. The final classifier uses
one fully connected layer with drop-out. Results
are reported on six data sets, in particular Stanford
Sentiment Treebank (SST). A similar system was
proposed in (Kalchbrenner et al., 2014), but us-
ing five convolutional layers. An important differ-
ence is also the introduction of multiple temporal
k-max pooling layers. This allows to detect the k
most important features in a sentence, independent
of their specific position, preserving their relative
order. The value of k depends on the length of
the sentence and the position of this layer in the
network. (Zhang et al., 2015) were the first to per-
form sentiment analysis entirely at the character
level. Their systems use up to six convolutional
layers, followed by three fully connected classifi-
cation layers. Convolutional kernels of size 3 and
7 are used, as well as simple max-pooling layers.
Another interesting aspect of this paper is the in-
troduction of several large-scale data sets for text
classification. We use the same experimental set-
ting (see section 4.1). The use of character level
information was also proposed by (Dos Santos and
Gatti, 2014): all the character embeddings of one
word are combined by a max operation and they
are then jointly used with the word embedding in-
formation in a shallow architecture. In parallel to
our work, (Yang et al., 2016) proposed a based hi-
erarchical attention network for document classi-
fication that perform an attention first on the sen-
tences in the document, and on the words in the
sentence. Their architecture performs very well
on datasets whose samples contain multiple sen-

tences.
In the computer vision community, the com-

bination of recurrent and convolutional networks
in one architecture has also been investigated,
with the goal to “get the best of both worlds”,
e.g. (Pinheiro and Collobert, 2014). The same
idea was recently applied to sentence classifica-
tion (Xiao and Cho, 2016). A convolutional net-
work with up to five layers is used to learn high-
level features which serve as input for an LSTM.
The initial motivation of the authors was to ob-
tain the same performance as (Zhang et al., 2015)
with networks which have significantly fewer pa-
rameters. They report results very close to those
of (Zhang et al., 2015) or even outperform Con-
vNets for some data sets.

In summary, we are not aware of any work
that uses VGG-like or ResNet-like architecture
to go deeper than than six convolutional layers
(Zhang et al., 2015) for sentence classification.
Deeper networks were not tried or they were re-
ported to not improve performance. This is in
sharp contrast to the current trend in computer vi-
sion where significant improvements have been re-
ported using much deeper networks(Krizhevsky et
al., 2012), namely 19 layers (Simonyan and Zis-
serman, 2015), or even up to 152 layers (He et al.,
2016a). In the remainder of this paper, we describe
our very deep convolutional architecture and re-
port results on the same corpora than (Zhang et
al., 2015). We were able to show that performance
improves with increased depth, using up to 29 con-
volutional layers.

3 VDCNN Architecture

The overall architecture of our network is shown
in Figure 1. Our model begins with a look-up ta-
ble that generates a 2D tensor of size (f0, s) that
contain the embeddings of the s characters. s is
fixed to 1024, and f0 can be seen as the ”RGB”
dimension of the input text.

We first apply one layer of 64 convolutions of
size 3, followed by a stack of temporal “convolu-
tional blocks”. Inspired by the philosophy of VGG
and ResNets we apply these two design rules: (i)
for the same output temporal resolution, the layers
have the same number of feature maps, (ii) when
the temporal resolution is halved, the number of
feature maps is doubled. This helps reduce the
memory footprint of the network. The networks
contains 3 pooling operations (halving the tempo-
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Figure 1: VDCNN architecture.

ral resolution each time by 2), resulting in 3 levels
of 128, 256 and 512 feature maps (see Figure 1).
The output of these convolutional blocks is a ten-
sor of size 512 × sd, where sd = s

2p with p = 3
the number of down-sampling operations. At this
level of the convolutional network, the resulting
tensor can be seen as a high-level representation
of the input text. Since we deal with padded in-
put text of fixed size, sd is constant. However,
in the case of variable size input, the convolu-
tional encoder provides a representation of the in-
put text that depends on its initial length s. Repre-
sentations of a text as a set of vectors of variable
size can be valuable namely for neural machine
translation, in particular when combined with an
attention model. In Figure 1, temporal convolu-
tions with kernel size 3 and X feature maps are
denoted ”3, Temp Conv, X”, fully connected
layers which are linear projections (matrix of size
I × O) are denoted ”fc(I, O)” and ”3-max
pooling, stride 2” means temporal max-
pooling with kernel size 3 and stride 2.

Most of the previous applications of ConvNets
to NLP use an architecture which is rather shal-
low (up to 6 convolutional layers) and combines
convolutions of different sizes, e.g. spanning 3, 5
and 7 tokens. This was motivated by the fact that
convolutions extract n-gram features over tokens
and that different n-gram lengths are needed to
model short- and long-span relations. In this work,
we propose to create instead an architecture which
uses many layers of small convolutions (size 3).
Stacking 4 layers of such convolutions results in a
span of 9 tokens, but the network can learn by it-
self how to best combine these different “3-gram
features” in a deep hierarchical manner. Our ar-
chitecture can be in fact seen as a temporal adap-
tation of the VGG network (Simonyan and Zisser-
man, 2015). We have also investigated the same
kind of “ResNet shortcut” connections as in (He
et al., 2016a), namely identity and 1× 1 convolu-
tions (see Figure 1).

For the classification tasks in this work, the tem-
poral resolution of the output of the convolution
blocks is first down-sampled to a fixed dimension
using k-max pooling. By these means, the net-
work extracts the k most important features, inde-
pendently of the position they appear in the sen-
tence. The 512 × k resulting features are trans-
formed into a single vector which is the input to
a three layer fully connected classifier with ReLU
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Figure 2: Convolutional block.

hidden units and softmax outputs. The number of
output neurons depends on the classification task,
the number of hidden units is set to 2048, and k
to 8 in all experiments. We do not use drop-out
with the fully connected layers, but only temporal
batch normalization after convolutional layers to
regularize our network.

Convolutional Block

Each convolutional block (see Figure 2) is a se-
quence of two convolutional layers, each one
followed by a temporal BatchNorm (Ioffe and
Szegedy, 2015) layer and an ReLU activation. The
kernel size of all the temporal convolutions is 3,
with padding such that the temporal resolution is
preserved (or halved in the case of the convolu-
tional pooling with stride 2, see below). Steadily
increasing the depth of the network by adding
more convolutional layers is feasible thanks to the
limited number of parameters of very small con-
volutional filters in all layers. Different depths
of the overall architecture are obtained by vary-
ing the number of convolutional blocks in between
the pooling layers (see table 2). Temporal batch
normalization applies the same kind of regulariza-
tion as batch normalization except that the activa-
tions in a mini-batch are jointly normalized over
temporal (instead of spatial) locations. So, for a
mini-batch of size m and feature maps of tempo-
ral size s, the sum and the standard deviations re-
lated to the BatchNorm algorithm are taken over
|B| = m · s terms.

We explore three types of down-sampling be-
tween blocks Ki and Ki+1 (Figure 1) :

(i) The first convolutional layer of Ki+1 has
stride 2 (ResNet-like).

Depth: 9 17 29 49
conv block 512 2 4 4 6
conv block 256 2 4 4 10
conv block 128 2 4 10 16
conv block 64 2 4 10 16
First conv. layer 1 1 1 1
#params [in M] 2.2 4.3 4.6 7.8

Table 2: Number of conv. layers per depth.

(ii) Ki is followed by a k-max pooling layer
where k is such that the resolution is halved
(Kalchbrenner et al., 2014).

(iii) Ki is followed by max-pooling with kernel
size 3 and stride 2 (VGG-like).

All these types of pooling reduce the temporal res-
olution by a factor 2. At the final convolutional
layer, the resolution is thus sd.

In this work, we have explored four depths for
our networks: 9, 17, 29 and 49, which we de-
fine as being the number of convolutional lay-
ers. The depth of a network is obtained by sum-
ming the number of blocks with 64, 128, 256 and
512 filters, with each block containing two con-
volutional layers. In Figure 1, the network has
2 blocks of each type, resulting in a depth of
2 × (2 + 2 + 2 + 2) = 16. Adding the very first
convolutional layer, this sums to a depth of 17 con-
volutional layers. The depth can thus be increased
or decreased by adding or removing convolutional
blocks with a certain number of filters. The best
configurations we observed for depths 9, 17, 29
and 49 are described in Table 2. We also give the
number of parameters of all convolutional layers.

4 Experimental evaluation

4.1 Tasks and data

In the computer vision community, the availabil-
ity of large data sets for object detection and im-
age classification has fueled the development of
new architectures. In particular, this made it pos-
sible to compare many different architectures and
to show the benefit of very deep convolutional net-
works. We present our results on eight freely avail-
able large-scale data sets introduced by (Zhang et
al., 2015) which cover several classification tasks
such as sentiment analysis, topic classification or
news categorization (see Table 3). The number of
training examples varies from 120k up to 3.6M,
and the number of classes is comprised between 2
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Data set #Train #Test #Classes Classification Task
AG’s news 120k 7.6k 4 English news categorization
Sogou news 450k 60k 5 Chinese news categorization
DBPedia 560k 70k 14 Ontology classification
Yelp Review Polarity 560k 38k 2 Sentiment analysis
Yelp Review Full 650k 50k 5 Sentiment analysis
Yahoo! Answers 1 400k 60k 10 Topic classification
Amazon Review Full 3 000k 650k 5 Sentiment analysis
Amazon Review Polarity 3 600k 400k 2 Sentiment analysis

Table 3: Large-scale text classification data sets used in our experiments. See (Zhang et al., 2015) for a
detailed description.

and 14. This is considerably lower than in com-
puter vision (e.g. 1 000 classes for ImageNet).
This has the consequence that each example in-
duces less gradient information which may make
it harder to train large architectures. It should be
also noted that some of the tasks are very ambigu-
ous, in particular sentiment analysis for which it
is difficult to clearly associate fine grained labels.
There are equal numbers of examples in each class
for both training and test sets. The reader is re-
ferred to (Zhang et al., 2015) for more details on
the construction of the data sets. Table 4 summa-
rizes the best published results on these corpora
we are aware of. We do not use “Thesaurus data
augmentation” or any other preprocessing, except
lower-casing. Nevertheless, we still outperform
the best convolutional neural networks of (Zhang
et al., 2015) for all data sets. The main goal of our
work is to show that it is possible and beneficial
to train very deep convolutional networks as text
encoders. Data augmentation may improve our re-
sults even further. We will investigate this in future
research.

4.2 Common model settings

The following settings have been used in all
our experiments. They were found to be best
in initial experiments. Following (Zhang et
al., 2015), all processing is done at the char-
acter level which is the atomic representation
of a sentence, same as pixels for images. The
dictionary consists of the following characters
”abcdefghijklmnopqrstuvwxyz0123456
789-,;.!?:’"/| #$%ˆ&*˜‘+=<>()[]{}”
plus a special padding, space and unknown token
which add up to a total of 69 tokens. The input
text is padded to a fixed size of 1014, larger
text are truncated. The character embedding is

of size 16. Training is performed with SGD,
using a mini-batch of size 128, an initial learning
rate of 0.01 and momentum of 0.9. We follow
the same training procedure as in (Zhang et al.,
2015). We initialize our convolutional layers
following (He et al., 2015). One epoch took from
24 minutes to 2h45 for depth 9, and from 50
minutes to 7h (on the largest datasets) for depth
29. It took between 10 to 15 epoches to converge.
The implementation is done using Torch 7. All
experiments are performed on a single NVidia
K40 GPU. Unlike previous research on the use
of ConvNets for text processing, we use temporal
batch norm without dropout.

4.3 Experimental results
In this section, we evaluate several configurations
of our model, namely three different depths and
three different pooling types (see Section 3). Our
main contribution is a thorough evaluation of net-
works of increasing depth using an architecture
with small temporal convolution filters with dif-
ferent types of pooling, which shows that a signif-
icant improvement on the state-of-the-art configu-
rations can be achieved on text classification tasks
by pushing the depth to 29 convolutional layers.

Our deep architecture works well on big data
sets in particular, even for small depths. Table
5 shows the test errors for depths 9, 17 and 29 and
for each type of pooling : convolution with stride
2, k-max pooling and temporal max-pooling. For
the smallest depth we use (9 convolutional layers),
we see that our model already performs better than
Zhang’s convolutional baselines (which includes
6 convolutional layers and has a different archi-
tecture) on the biggest data sets : Yelp Full, Ya-
hoo Answers and Amazon Full and Polarity. The
most important decrease in classification error can
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Corpus: AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.
Method n-TFIDF n-TFIDF n-TFIDF ngrams Conv Conv+RNN Conv Conv
Author [Zhang] [Zhang] [Zhang] [Zhang] [Zhang] [Xiao] [Zhang] [Zhang]
Error 7.64 2.81 1.31 4.36 37.95∗ 28.26 40.43∗ 4.93∗

[Yang] - - - - - 24.2 36.4 -
Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data
augmentation technique (marked with an ∗). Yang et al. (2016)’s hierarchical methods is particularly
adapted to datasets whose samples contain multiple sentences.

Depth Pooling AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.
9 Convolution 10.17 4.22 1.64 5.01 37.63 28.10 38.52 4.94
9 KMaxPooling 9.83 3.58 1.56 5.27 38.04 28.24 39.19 5.69
9 MaxPooling 9.17 3.70 1.35 4.88 36.73 27.60 37.95 4.70

17 Convolution 9.29 3.94 1.42 4.96 36.10 27.35 37.50 4.53
17 KMaxPooling 9.39 3.51 1.61 5.05 37.41 28.25 38.81 5.43
17 MaxPooling 8.88 3.54 1.40 4.50 36.07 27.51 37.39 4.41
29 Convolution 9.36 3.61 1.36 4.35 35.28 27.17 37.58 4.28
29 KMaxPooling 8.67 3.18 1.41 4.63 37.00 27.16 38.39 4.94
29 MaxPooling 8.73 3.36 1.29 4.28 35.74 26.57 37.00 4.31

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.

be observed on the largest data set Amazon Full
which has more than 3 Million training samples.
We also observe that for a small depth, temporal
max-pooling works best on all data sets.

Depth improves performance. As we increase
the network depth to 17 and 29, the test errors
decrease on all data sets, for all types of pooling
(with 2 exceptions for 48 comparisons). Going
from depth 9 to 17 and 29 for Amazon Full re-
duces the error rate by 1% absolute. Since the
test is composed of 650K samples, 6.5K more
test samples have been classified correctly. These
improvements, especially on large data sets, are
significant and show that increasing the depth is
useful for text processing. Overall, compared
to previous state-of-the-art, our best architecture
with depth 29 and max-pooling has a test error of
37.0 compared to 40.43%. This represents a gain
of 3.43% absolute accuracy. The significant im-
provements which we obtain on all data sets com-
pared to Zhang’s convolutional models do not in-
clude any data augmentation technique.

Max-pooling performs better than other pool-
ing types. In terms of pooling, we can also see
that max-pooling performs best overall, very close
to convolutions with stride 2, but both are signifi-
cantly superior to k-max pooling.

Both pooling mechanisms perform a max oper-
ation which is local and limited to three consec-

utive tokens, while k-max polling considers the
whole sentence at once. According to our exper-
iments, it seems to hurt performance to perform
this type of max operation at intermediate layers
(with the exception of the smallest data sets).

Our models outperform state-of-the-art Con-
vNets. We obtain state-of-the-art results for all
data sets, except AG’s news and Sogou news
which are the smallest ones. However, with our
very deep architecture, we get closer to the state-
of-the-art which are ngrams TF-IDF for these data
sets and significantly surpass convolutional mod-
els presented in (Zhang et al., 2015). As observed
in previous work, differences in accuracy between
shallow (TF-IDF) and deep (convolutional) mod-
els are more significant on large data sets, but we
still perform well on small data sets while getting
closer to the non convolutional state-of-the-art re-
sults on small data sets. The very deep models
even perform as well as ngrams and ngrams-TF-
IDF respectively on the sentiment analysis task
of Yelp Review Polarity and the ontology classi-
fication task of the DBPedia data set. Results of
Yang et al. (only on Yahoo Answers and Amazon
Full) outperform our model on the Yahoo Answers
dataset, which is probably linked to the fact that
their model is task-specific to datasets whose sam-
ples that contain multiple sentences like (question,
answer). They use a hierarchical attention mecha-
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nism that apply very well to documents (with mul-
tiple sentences).

Going even deeper degrades accuracy. Short-
cut connections help reduce the degradation.
As described in (He et al., 2016a), the gain in accu-
racy due to the the increase of the depth is limited
when using standard ConvNets. When the depth
increases too much, the accuracy of the model gets
saturated and starts degrading rapidly. This degra-
dation problem was attributed to the fact that very
deep models are harder to optimize. The gradi-
ents which are backpropagated through the very
deep networks vanish and SGD with momentum
is not able to converge to a correct minimum of
the loss function. To overcome this degradation
of the model, the ResNet model introduced short-
cut connections between convolutional blocks that
allow the gradients to flow more easily in the net-
work (He et al., 2016a).

We evaluate the impact of shortcut connections
by increasing the number of convolutions to 49
layers. We present an adaptation of the ResNet
model to the case of temporal convolutions for text
(see Figure 1). Table 6 shows the evolution of the
test errors on the Yelp Review Full data set with or
without shortcut connections. When looking at the
column “without shortcut”, we observe the same
degradation problem as in the original ResNet ar-
ticle: when going from 29 to 49 layers, the test
error rate increases from 35.28 to 37.41 (while the
training error goes up from 29.57 to 35.54). When
using shortcut connections, we observe improved
results when the network has 49 layers: both the
training and test errors go down and the network is
less prone to underfitting than it was without short-
cut connections.

While shortcut connections give better results
when the network is very deep (49 layers), we
were not able to reach state-of-the-art results with
them. We plan to further explore adaptations of
residual networks to temporal convolutions as we
think this a milestone for going deeper in NLP.
Residual units (He et al., 2016a) better adapted to
the text processing task may help for training even
deeper models for text processing, and is left for
future research.

Exploring these models on text classification
tasks with more classes sounds promising.
Note that one of the most important difference
between the classification tasks discussed in this

depth without shortcut with shortcut
9 37.63 40.27
17 36.10 39.18
29 35.28 36.01
49 37.41 36.15

Table 6: Test error on the Yelp Full data set for all
depths, with or without residual connections.

work and ImageNet is that the latter deals with
1000 classes and thus much more information is
back-propagated to the network through the gra-
dients. Exploring the impact of the depth of tem-
poral convolutional models on categorization tasks
with hundreds or thousands of classes would be an
interesting challenge and is left for future research.

5 Conclusion

We have presented a new architecture for NLP
which follows two design principles: 1) operate at
the lowest atomic representation of text, i.e. char-
acters, and 2) use a deep stack of local operations,
i.e. convolutions and max-pooling of size 3, to
learn a high-level hierarchical representation of a
sentence. This architecture has been evaluated on
eight freely available large-scale data sets and we
were able to show that increasing the depth up to
29 convolutional layers steadily improves perfor-
mance. Our models are much deeper than pre-
viously published convolutional neural networks
and they outperform those approaches on all data
sets. To the best of our knowledge, this is the first
time that the “benefit of depths” was shown for
convolutional neural networks in NLP.

Eventhough text follows human-defined rules
and images can be seen as raw signals of our en-
vironment, images and small texts have similar
properties. Texts are also compositional for many
languages. Characters combine to form n-grams,
stems, words, phrase, sentences etc. These simi-
lar properties make the comparison between com-
puter vision and natural language processing very
profitable and we believe future research should
invest into making text processing models deeper.
Our work is a first attempt towards this goal.

In this paper, we focus on the use of very deep
convolutional neural networks for sentence classi-
fication tasks. Applying similar ideas to other se-
quence processing tasks, in particular neural ma-
chine translation is left for future research. It
needs to be investigated whether these also benefit
from having deeper convolutional encoders.
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Abstract

Future search engines are expected to de-
liver pro and con arguments in response to
queries on controversial topics. While ar-
gument mining is now in the focus of re-
search, the question of how to retrieve the
relevant arguments remains open. This pa-
per proposes a radical model to assess rel-
evance objectively at web scale: the rel-
evance of an argument’s conclusion is de-
cided by what other arguments reuse it as a
premise. We build an argument graph for
this model that we analyze with a recur-
sive weighting scheme, adapting key ideas
of PageRank. In experiments on a large
ground-truth argument graph, the resulting
relevance scores correlate with human av-
erage judgments. We outline what natural
language challenges must be faced at web
scale in order to stepwise bring argument
relevance to web search engines.

1 Introduction

What stance should I take? What are the best argu-
ments to back up my stance? Information needs of
people aim more and more at arguments in favor of
or against a given controversial topic (Cabrio and
Villata, 2012b). As a result, future information
systems, above all search engines, are expected
to deliver pros and cons in response to respective
queries (Rinott et al., 2015). Recently, argument
mining has become emerging in research, also be-
ing studied for the web (Al-Khatib et al., 2016a).
Such mining finds and relates units of arguments
(i.e., premises and conclusions) in natural lan-
guage text, but it does not assess what arguments
are relevant for a topic. Consider the following
arguments (with implicit conclusions) for a query
“reasons against capital punishment”:

Example a1. “The death penalty legitimizes an
irreversible act of violence. As long as human jus-
tice remains fallible, the risk of executing the in-
nocent can never be eliminated.”
Example a2. “Capital punishment produces an
unacceptable link between the law and violence.”1

While both arguments are on-topic, a1 seems
more clear, concrete, and targeted, potentially ma-
king it more relevant. First approaches to assess
argument quality exist (see Section 2). However,
they hardly account for the problem that argument
quality (and relevance in particular) is often per-
ceived subjectively. Whether a3, e.g., is more rele-
vant than a1 or less depends on personal judgment:
Example a3. “The death penalty doesn’t deter
people from committing serious violent crimes.
The thing that deters is the likelihood of being
caught and punished.”

In this paper, we study from a retrieval perspec-
tive how to assess argument relevance objectively,
i.e., without relying on explicit human judgments.
Following argumentation theory, we see relevance
as a dialectical quality that depends on how benefi-
cial all participants of a discussion deem the use of
an argument for the discussion (Walton, 2006). In
the context of web search, an objective assessment
hence at best takes place at web scale. We propose
the radical model that relevance is not decided by
the content of arguments, but structurally by how
many arguments across the web use the conclusion
of an argument as a premise and by how relevant
these are in turn. The rationale is that an author
cannot control who “cites” his or her argument in
this way, so each citation can be assumed to add
to relevance. Thereby, we achieve to decouple rel-
evance from the soundness of the inference an ar-
gument makes to draw its conclusion.

1All example arguments in Sections 1–4 are derived from
www.bbc.co.uk/ethics/capitalpunishment/against_1.shtml.
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Given algorithms that mine arguments from the
web and that decide if two argument units mean
the same, an argument graph can be built where
nodes represent arguments and each edge the reuse
of a conclusion as a premise (Section 3). Based on
the graph, we devise an adaptation of the Page-
Rank algorithm (Page et al., 1999) to assess argu-
ment relevance. Originally, PageRank recursively
processes the web link graph to infer the objective
relevance of each web page from what other pages
link to that page. In an according manner, we pro-
cess the argument graph to compute a score for
each argument unit. An argument’s relevance then
follows from the scores of its premises (Section 4).
Analogue to the supportive nature of web links,
our new PageRank for argument relevance counts
any use of a conclusion as a premise as a support
of relevance. In principle, balancing support and
attack relations would also be possible, though.

At web scale, mining arguments from natural
language text raises complex challenges. Since not
all have been solved reliably yet, we here derive an
argument graph from the complete Argument Web
(Bex et al., 2013), a large ground-truth database
consisting of about 50,000 argument units. This
way, we can evaluate PageRank without the noise
induced by mining errors. Moreover, we provide a
first argument relevance benchmark dataset, where
seven experts ranked arguments for 32 conclusions
of general interest (Section 5). On the dataset, the
PageRank scores beat several intuitive baselines
and correlate with human average judgments of
relevance—even though they ignore an argument’s
content and inference—indicating the impact of
our approach (Section 6). We discuss how to bring
argument relevance to web search engines, starting
from the technologies of today (Section 7).

Contributions To summarize, the work at hand
provides three main contributions to research:

1. An approach to structurally and hence objec-
tively assess argument relevance at web scale.

2. A first benchmark ranking dataset for the eva-
luation of argument relevance assessment.

3. Evidence that argument relevance depends on
the reuse of conclusions in other arguments.

2 Related Work

Argument relevance can be seen as one dimension
of argumentation quality. In argumentation theory,
two relevance types are distinguished: Local rele-

vance means that an argument’s premises actually
help accepting or rejecting its conclusion. Such
relevance is one prerequisite of a cogent argument,
along with the accepability of the premises and
their sufficiency for drawing the conclusion (John-
son and Blair, 2006). Here, we are interested in
an argument’s global relevance, which refers to
the benefit of the argument in a discussion (Wal-
ton, 2006): An argument is more globally relevant
the more it contributes to resolving an issue (van
Eemeren, 2015). While Blair (2012) deems both
types as vague and resisting analysis so far, we as-
sess global relevance using objective statistics.

In (Wachsmuth et al., 2017), we comprehen-
sively survey theories on argumentation quality as
well as computational approaches to specific qual-
ity dimensions. Among the latter, Persing and Ng
(2015) rely on manual annotations of essays to
predict how strong an essay’s argument is—a natu-
rally subjective and non-scalable assessment. For
scalability, Habernal and Gurevych (2016) learn
on crowdsourced labels, which of two arguments
is more convincing. Similar to us, they construct a
graph to rank arguments, but since their graph is
based on the labels, the subjectivity remains. This
also holds for (Braunstain et al., 2016) where clas-
sical retrieval and argument-related features serve
to rank argument units by the level of support they
provide in community question answering.

More objectively, Boltužić and Šnajder (2015)
find popular arguments in online debates. How-
ever, popularity alone is often not correlated with
merit (Govier, 2010). We additionally analyze de-
pendencies between arguments—like Cabrio and
Villata (2012a) who classify attack relations be-
tween debate portal arguments. From these, they
derive accepted arguments in the logical argumen-
tation framework of Dung (1995). Relevance and
acceptability are orthogonal dimensions: an argu-
ment may be relevant even if far from everyone ac-
cepts it. While probabilistic extensions of Dung’s
framework exist (Bistarelli et al., 2011; Dondio,
2014), they aim at the probability of logical truth.
In contrast, relevance reflects the importance of ar-
guments, for which we take on a retrieval view.

In information retrieval, relevance represents a
fundamental concept, particularly in the context of
search engines. A web page is seen as relevant for
a search query if it contains information the query-
ing person was looking for (Croft et al., 2009). To
assess argument relevance objectively, we adapt
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a core retrieval technique, recursive link analysis.
Due to its wide use, we build upon Google’s orig-
inal PageRank algorithm (Page et al., 1999), but
alternatives such as (Kleinberg, 1999) would also
apply. PageRank is sensitive to certain manipula-
tions, such as link farms (Croft et al., 2009). Some
of them will affect argument graphs, too. Improve-
ments of the original algorithm should therefore be
taken into account in future work. In this paper, we
omit them on purpose for simplicity and clarity.

We already introduced our PageRank approach
in (Al-Khatib et al., 2016a), but we only roughly
sketched its general idea there. Recursive analyses
have also been proposed for fact finding, assum-
ing that trustworthy web pages contain many true
facts, and that true facts will be found on many
trustworthy web pages (Yin et al., 2007; Galland
et al., 2010). Pasternack and Roth (2010) model
a user’s prior knowledge in addition. Close to ar-
gumentation, Samadi et al. (2016) evaluate claims
using a credibility graph derived from evidence
found in web pages. All these works target truth.
In order to capture relevance, we base PageRank
on the reuse of argument units instead.

In particular, we construct a graph from all ar-
guments found in web pages. Both complex argu-
ment models from theory (Toulmin, 1958; Reis-
ert et al., 2015) and simple proprietary models
(Levy et al., 2014) have been studied for web
text. Some include quality-related concepts, such
as evidence types (Al-Khatib et al., 2016b). Oth-
ers represent the overall structure of argumenta-
tion (Wachsmuth et al., 2015). Like Mochales and
Moens (2011), we consider only premises and
conclusions as units of arguments here. This is
the common ground of nearly all argument-level
models, and it will allow an integration with ap-
proaches to analyze argument inference (Feng and
Hirst, 2011) based on the argumentation schemes
of Walton et al. (2008). Edges in our graph emerge
from the usage of units in different arguments. Al-
ternatively, it would be possible to mine support
and attack relations between arguments (Park and
Cardie, 2014; Peldszus and Stede, 2015).

Not all mining steps work robustly on web text
yet (Al-Khatib et al., 2016a). To focus on the im-
pact of PageRank, we thus rely on ground-truth
data in our experiments. In isolation, existing ar-
gument corpora do not adequately mimic web con-
text, as they are small and dedicated to a specific
genre (Stab and Gurevych, 2014), or restricted to

flat relations between units (Aharoni et al., 2014).
To maximize size and heterogeneity, we here re-
fer to the Argument Web (Bex et al., 2013), which
is to our knowledge the largest ground-truth argu-
ment database available so far. It includes relation-
rich corpora, e.g., AraucariaDB (Reed and Rowe,
2004), as well as much annotated web text, e.g.,
from (Walker et al., 2012) and (Wacholder et al.,
2014). Thus, it serves as a suitable basis for con-
structing an argument graph.

3 The Web as an Argument Graph

We now present the model that we envision as the
basis for argument relevance in future web search,
targeting information needs of the following kind:
“What are the most relevant arguments to support
or attack my stance?” The model relies on three
principles that aim at the separation of concerns:

I. Freedom of Inference. No inference from arg-
ument premises to conclusions is challenged.

II. Freedom of Mining. No restrictions are made
for how to mine and relate argument units.

III. Freedom of Assessment. No graph processing
method is presupposed to assess relevance.2

3.1 Definition of the Argument Graph
Let D = {d1, d2, . . .} be the set of all considered
web pages. Each d ∈ D may contain zero or more
arguments. Given D, we model the web as an arg-
ument graph in three incremental building blocks:
Canonical Argument Structure A canonical
structure that represents each argument in D as a
tuple a = 〈c, P 〉where c denotes the conclusion of
a and P = {c1, . . . , ck} its premises, k≥ 0. Both
conclusions and premises form argument units.
Reuse Interpretation Function An interpretation
function I that assigns one label from the set
{“≈”, “6≈”} to each pair of argument units (c, c′)
from all arguments in D.
Argument Graph A graph G = (A,E) such that

A = {a1, . . . , an} is a set of nodes where each
a ∈ A corresponds to one argument in D;

E ⊆ A× A is a set of edges where (a, a′) ∈ E
iff. I(c, ci) = “≈” holds for the conclusion c
of a and any premise ci of a′.3

2We will introduce a specific method in Section 4. Never-
theless, other methods would also be applicable in principle.

3In order to keep the definition of the argument graph sim-
ple, we include all possible pairs of arguments for the edges
here. In practice, some pairs should rather be excluded in
order to counter manipulation, e.g., those within a web page.

1119



stance
on topic

. . .

Web pages

≈

Premises P
Conclusion c

Arguments

≈

≈
≈

≈

≈

≈

≈

matches matches matches

Figure 1: A small argument graph with three po-
tentially relevant arguments for a queried stance.

Figure 1 sketches an argument graph. Given a
user query with a stance on a controversial topic,
as shown, each argument whose (maybe implicit)
conclusion c matches the stance is potentially rel-
evant. Stance classification is outside the scope of
this paper. We assess the relevance of arguments
with conclusion c. The reuse of such conclusions
in other arguments is exemplified in Figure 2.

3.2 Properties of the Argument Graph Model

In accordance with Principle I, the canonical struc-
ture implicitly accepts the inference that an argu-
ment draws to arrive at its conclusion. This sepa-
rates soundness from relevance, reducing the lat-
ter to an argument’s units. We even permit “argu-
ments” that have no premise. The reason is that
argument units can be relevant without justifica-
tion (e.g., when serving as axioms for others).

In accordance with Principle II, we do not de-
tail the semantics of the concepts that we propose
to construct arguments and their relations, leaving
the exact interpretation to the mining algorithms
at hand. For arguments, premises and conclusions
denote the common ground, and they are generally
identifiable in various web texts. For relations, the
definition based on the reuse of argument units ac-
tually refines previous rather vague relation mod-
els, such as (Dung, 1995)—this is possible due to
the abstraction from inference.

In accordance with Principle III, we do not pre-
define how to assess relevance given an argument
graph (and the web pages). In addition to a conclu-

Capital punishment does
not act as a deterrent for

would-be murderers.

Even if it did, is it acceptable for
someone to pay for the predicted

future crimes of others?

The death penalty
should be abolished.

The murder rate in states where it has
been abolished is 4% per 100k people.

Where it is used, the figure was 5%.

The death penalty doesn’t
deter people from committing

serious violent crimes.

A survey conducted for the UN
determines the relation between the
death penalty and homicide rates.

The evidence as a whole
gives no positive support to

the deterrent hypothesis.

The death penalty doesn’t deter people 
from committing serious violent crimes.

Statistics show that capital punishment
leads to a brutalisation of society.

≈

≈

Figure 2: Example for the reuse of an argument’s
conclusion as a premise in two other arguments.

sion, e.g., its opposite can be generated (Bilu et al.,
2015) to balance support and attack somehow. In
general, the usage of conclusions as premises fa-
vors a monotonous assessment (the more the bet-
ter), which we implement in Section 4. Note that
we allow circles in the graph. This might look un-
wanted as it enables circular reasoning. However,
not all arguments use the same inference rule (say,
modus ponens). Hence, it is reasonable that they,
directly or indirectly, refer to each other.

Altogether, our model defines a framework for
assessing argument relevance. It is instantiated by
concrete mining and graph processing algorithms.
An analysis of argument inference should comple-
ment this, e.g., to filter out unsound arguments.
Despite its framework nature, the model suggests
a recursive assessment where an argument is more
relevant the more relevant arguments it relates to.

4 PageRank for Argument Relevance

Given an argument graph G=(A,E), we propose
to assess argument relevance structurally and thus
objectively. In the following, we first develop how
to adapt PageRank in order to recursively compute
relevance scores for all units of the arguments inA
based on E. Then, we discuss how to derive the
relevance of each argument from these scores.

4.1 PageRank for Conclusion Relevance

PageRank revolutionalized web search, because it
introduced ”a method for rating web pages objec-
tively and mechanically, effectively measuring the
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human interest and attention” (Page et al., 1999).
The original method assigns a high PageRank p(d)
to a web page d if d is linked by many other web
pages with a high PageRank. This value corre-
sponds to the probability that a web surfer, who
either follows a link on a visited web page or ran-
domly chooses a new page, enters d. In particular,
based on the link graph induced by a set of web
pages D, p(d) is computed recursively as:

p(d) = (1− α) · 1

|D| + α ·
∑

i

p(di)

|Di|

Here, p(di) is the PageRank score of a web page
di ∈ D that links to d, and Di is the set of all
web pages that di links to. According to the right
summand, a web page linking to d contributes to
p(d) more the less outgoing links it has, in order to
reward the focus on specific links. The left sum-
mand specifies an equal ground relevance 1

|D| for
all web pages d, summing up to 1. The factor
α ∈ [0, 1] weights the two summands.

Based on an argument graph G = (A,E), we
adapt the PageRank idea in order to analogously
rate the conclusion c of each argument a∈A “ob-
jectively and mechanically”. Recall that an edge
(a, a′)∈E states that c is a premise in another ar-
gument a′ ∈A. Now, we assign a high PageRank
p̂(c) to c if c serves as a premise for many conclu-
sions ci with high p̂(ci). For this, we adjust the
equation above in two ways:

Ground Relevance Originally, PageRank works
on the lowest layer of the web, the link graph. This
layer has no specific entry point, which is why the
ground relevance of all pages d ∈ D is the same
in p(d) above. Working with arguments on web
pages, however, adds a new layer on top. There-
fore, we start with the original PageRank as the
ground relevance, i.e., we postulate that the higher
p(d) is, the more relevant is a conclusion c found
on d by default. In order to maintain a sum of 1 for
all arguments, we normalize p(d) with the average
number of arguments per web page. This results
in the ground relevance p(d)·|D|

|A| for each c.

Recursive Relevance The author of a web page d
can specify the web pages that d links to, but the
author cannot control which pages eventually link
to d. This contrast is a cornerstone of the origi-
nal PageRank to model relevance objectively. By
analogy, the author of an argument specifies which
argument units to use as premises for the argu-
ment’s conclusion c, but the author cannot control

which arguments use c as a premise for their con-
clusion ci. This contrast is a cornerstone of our
“PageRank for arguments” to model relevance ob-
jectively. In order to reward a focus on specific
conclusions, we normalize the impact of the rel-
evance p̂(ci) of each conclusion ci, for which c
serves as a premise, on the relevance of c by the
number of premises |Pi| given for ci. This results
in the contribution p̂(ci)

|Pi| for each ci.
Altogether, we compute the PageRank of a con-

clusion c that is contained in a web page d as:

p̂(c) = (1− α) · p(d) · |D||A| + α ·
∑

i

p̂(ci)

|Pi|

4.2 Properties of the PageRank Approach
For space reasons, we only sketch that the adapted
PageRank p̂(c) maintains two important properties
of the original PageRank (Page et al., 1999).

First, by construction, the original scores p(d)
of all web pages sum up to 1. The left summand of
p̂(c) shares this sum among all arguments. The
right summand ensures that the total contribution
of conclusion usages is normalized with the total
number of premises. Thus, the sum of all adapted
PageRank scores is also 1.

Second, as the original PageRank, p̂(c) reflects
the idea of a citation ranking: Basic conclusions
that serve as a premise for many arguments get a
high score. They take the role of fundamental liter-
ature, say, “human life is valuable” in the context
of death penalty. At the other end, each conclusion
of a leaf argument in the graph is assigned only its
ground relevance, since it is never reused. Without
citations, relevance can still be estimated based on
authorship, e.g., finding an argument on the BBC
page from Footnote 1 might suffice to deem it rel-
evant. We model this by including p(d) in p̂(c).

4.3 From Conclusion to Argument Relevance
Given a conclusion c, all arguments 〈c, P 〉 com-
pete in terms of relevance. Since each such argu-
ment has the same conclusion, its relevance needs
to be derived from its premises P . Intuitively,
an argument proves only as strong at its weakest
premise, so the minimum premise PageRank score
could govern relevance. This fits our model, as we
have “outsourced” the soundness of the inference
based on the premises. However, it favors argu-
ments with few premises. In order to find the best
derivation, we compare four different premise ag-
gregation methods in Section 6:
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(a) Ground-truth argument graph
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Figure 3: (a) Histograms of the usages of all argument units in the ground-truth argument graph as a
conclusion or premise, respectively. (b) Histograms of the arguments per conclusion and the premises per
argument in the benchmark dataset as well as the mean Kendall’s τ rank correlation of all seven rankers.

(a) Minimum. The relevance of an argument cor-
responds to its minimum premise PageRank.

(b) Average. The relevance of an argument cor-
responds to its average premise PageRank.

(c) Maximum. The relevance of an argument cor-
responds to its maximum premise PageRank.

(d) Sum. The relevance of an argument corre-
sponds to the sum of its premise PageRanks.

In general, as for web pages (Croft et al., 2009),
PageRank should certainly not be seen as the ul-
timate way of assessing argument relevance, es-
pecially because it fully ignores the content and
inference of arguments. Rather, it provides an ob-
jective means to identify arguments commonly re-
ferred to for a given conclusion.

5 The Webis-ArgRank-17 Dataset

This section describes our construction of a large
ground-truth argument graph as well as our cre-
ation of manual relevance rankings of arguments
from the graph. The resulting Webis-ArgRank-17
dataset is not meant for training statistical ranking
approaches. Rather, it serves as a first benchmark
for evaluating argument relevance assessment.4

5.1 A Large Ground-Truth Argument Graph
As discussed in Section 2, the Argument Web is
the largest existing argument database. It contains
structured argument corpora (several from pub-
lished research) with diverse types of mostly En-
glish text, often web content.5 The Argument Web
stores annotations in a standard format, so called
argument maps. Each map specifies nodes that

4The dataset and the Java code for reproducing all experi-
ment results are freely available at: http://www.arguana.com

5All corpora contained in the Argument Web can be found
at: http://www.arg.dundee.ac.uk/aif-corpora

correspond to argument units or to inference rules.
Edges connect one of each in either direction. Im-
plicitly, incoming edges of an inference node de-
fine premises of an argument, the single outgoing
edge an argument’s conclusion. At the last date we
accessed the Argument Web (June 2, 2016), it con-
tained 57 corpora with 8479 maps, summing up to
49,504 argument units and 26,012 arguments.

In order to get a ground-truth argument graph of
maximum size, we merged all argument maps ex-
cept for duplicates. We created one argument node
for each inference node while maintaining argu-
ment units not connected to any inference node
for completeness. For the edges of the argument
graph, we assumed two units to be the same if and
only if they capture exactly the same text, thereby
minimizing the number of falsely detected usages
of conclusions. Figure 3(a) shows how many units
are used how often as a premise and as a conclu-
sion respectively.6

The constructed graph contains 31,080 differ-
ent argument units, 28,795 of which participate in
17,877 arguments. For convenience, we already
precomputed the adapted PageRank score p̂(c) of
each argument unit c as well as the frequency of c
in the graph. As no original PageRank score p(d)
can be accessed for c, we started with the same
ground relevance 1

31,080 for all units.

5.2 Benchmark Argument Rankings

3113 conclusions in the constructed graph have
more than one argument and, so, are candidates for
ranking. From these, we selected all 498 conclu-
sions for which at least one argument has multiply

6We tested some high-precision heuristics to match units
that occur multiple times in different manisfestations, such
as ignoring capitalization or discourse connectives. However,
the effect was little, which is why we decided to stick with ex-
act matches to avoid false positives in the ground-truth graph.
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Conclusion Argument Premises of Argument Rank ∅
Strawberries are the
best choice for your
breakfast meal!

a1 (pro) “Berries are superfoods because they’re so high in antioxidants without being
high in calories”, says Giovinazzo[premise 1] MS, RD, a nutritionist at Clay
health club and spa, in New York City.[premise 2]

1 1.43

a2 (pro) One cup of strawberries, for instance, contains your full recommended daily
intake of vitamin C, along with high quantities of folic acid and fiber.

2 1.57

a3 (pro) Strawberries are good for your ticker. 3 3.00

Technology has
enhanced the daily
life of humans.

a4 (pro) The internet has enabled us to widen our knowledge. 1 2.00
a5 (pro) Technology has given us a means of social interaction that wasn’t possible before. 2 2.71
a6 (pro) The use of technology has revolutionized business. 3 3.14
a7 (con) No longer is shopping a personal experience, you’re mostly dealing with

computers when you’re purchasing online.
4 3.43

a8 (con) Social interactions via the internet are a huge waste of time. 5 4.29
a9 (con) There’s a ton of information on the internet that is entirely useless. 6 5.42

Table 1: Two argument conclusions in the benchmark dataset, together with the premises of all alternative
pro and con arguments, the arguments’ ranks in the dataset, and the mean ranks assigned by the 7 rankers.

used premises, as all others show no structural dif-
ference in the graph. We then let two experts from
computational linguistics classify for each conclu-
sion as to whether it denotes (a) a claim that in-
ternet users might search arguments for or (b) not
such a claim for any of five reasons: (1) It is not of
general interest but comes from a personal or any
other too specific context, e.g., “Viv needs to be al-
lowed to prove herself”, (2) its meaning is unclear,
e.g., “we need to get back to the classics”, (3) it is
not in English, (4) it mixes multiple conclusions,
or (5) it is not a real conclusion but a topic, anec-
dote, question, or description, e.g., “fingerprinting
at the airport” or “what!?”.

The experts could access the premises to see if
unclear references can be resolved. They chose the
same class 451 times (90.6%) with a substantial
Cohen’s κ agreement of 0.69. In 136 cases, no ex-
pert saw a real claim, indicating some noise in the
data. For the rankings, we selected only those con-
clusions that both saw as claims. We disregarded
multiple instances of an argument and the few con-
clusions where only one argument was left then.

Next, each of the 264 arguments for the remain-
ing 70 conclusions was classified by the same ex-
perts as to whether it is (a) a correct argument for
the conclusion, (b) a correct counterargument, or
(c) not correct for lack of real premises. Restate-
ments of the conclusion as well as ad-hominem at-
tacks were not seen as premises, while the experts
were asked to ignore an argument’s strength.

The experts agreed in 201 cases (76.1%) with
κ = 0.63. An example that they saw differently
is “I agree... the thrill is gone” for the conclu-
sion “a tweet is fundamentally valueless”. To al-

low for a reasonable but tractable ranking, we kept
only conclusions where the experts agreed on two
to six arguments and/or counterarguments, and we
discarded one conclusion that paraphrased another
one. The resulting dataset covers 32 conclusions.
We included all 110 arguments for these conclu-
sions, since their relevance is assessed via ranking.
Figure 3(b) shows the distribution of arguments
over conclusions and the premises per argument.
For two conclusions, all premises are listed in Ta-
ble 1. The ranks resulted from the final step.

In particular, since we expected argument rele-
vance to be perceived subjectively, a total of seven
experts from computational linguistics and infor-
mation retrieval ranked all arguments (in terms of
a strict ordering) for each conclusion by how much
they contribute to the acceptance or rejection of
the conclusion. In order not to bias the experts,
they received arguments with corrected grammar,
resolved references, and merged premises. They
should follow their own view but acknowledge
that there may be relevant counterarguments.

The highest agreement of two experts on all 32
rankings was 0.59 in terms of Kendall’s τ rank
correlation (Pearson coefficient 0.63), the mean
over all expert pairs 0.36 (Pearson 0.40). This gap
supports the subjectivity hypothesis. Figure 3(b)
shows that five rankings had a negative τ -value for
all experts (the lowest τ was –0.14), whereas in 12
cases τ was above 0.5, in four cases above 0.8.
Overall, the resulting ranks thus largely qualify as
benchmark average relevance judgments.7

7We are aware that the seven chosen experts are certainly
not representative of average web users. In order to achieve a
controlled setting, however, we preferred to rely on experts,
e.g., to avoid misconceptions of terms such as “argument”.
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(a) Minimum (b) Average (c) Maximum (d) Sum (e) Best results

# Approach τ best worst τ best worst τ best worst τ best worst τ best worst

1 PageRank 0.01 11 6 0.02 12 6 0.11 11 4 0.28 15 3 0.28 15 3
2 Frequency –0.10 5 9 –0.03 8 10 –0.01 7 9 0.10 11 9 0.10 11 9
3 Similarity –0.13 7 12 –0.05 8 11 0.01 9 10 0.02 9 10 0.02 9 10
4 Sentiment 0.01 8 6 0.11 12 4 0.12 10 5 0.12 12 4 0.12 12 4
5 Most premises n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.19 6 1
6 Random n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.00 8 7

Table 2: (a–d) Mean Kendall’s τ correlation of each approach with all benchmark argument rankings and
counts of the best / worst rankings, once for each premise aggregation method. (e) Best observed results.

6 Evaluation

Finally, we report on an experiment that we carried
out on the whole argument graph from Section 5 in
order to provide first evidence that our PageRank
approach objectively assesses argument relevance.
Here, we assume that the average judgments of our
benchmark rankings reflect objective relevance.
Approaches We compare six ranking approaches
below. In case of 1.–4., we evaluate all premise ag-
gregation methods from Section 4: (a) Minimum,
(b) Average, (c) Maximum, and (d) Sum. While we
are aware that more sophisticated ranking approa-
ches are possible, the considered selection cap-
tures principle properties of arguments:

1. PageRank. An argument’s relevance corre-
sponds to the PageRank of its premises. This
is the approach that we propose.

2. Frequency. An argument’s relevance corre-
sponds to the frequency of its premises in the
graph. This baseline captures popularity, as
proposed in related work (see Section 2).

3. Similarity. An argument’s relevance corre-
sponds to the similarity of its premises to its
conclusion. We use the Jaccard similarity be-
tween all words in the premises and the con-
clusion. This basic content-oriented baseline
quantifies the support of premises.

4. Sentiment. An argument’s relevance corre-
sponds to the positivity of its premises. Here,
we sum up the positive values of all premise
words in SentiWordNet (Baccianella et al.,
2010) and substract all negatives. Also this
baseline quantifies the support of premises.

5. Most premises. An argument’s relevance cor-
responds to its number of premises. This sim-
ple baseline captures the amount of support.

6. Random. The relevance is decided randomly.
This baseline helps interpreting the results.

Experiment For all 32 conclusions of our bench-
mark rankings, we assessed the relevance of every
associated argument with all six approaches—in
case of 1.–4. once for each premise aggregation
method. For all approaches, we then compared
the resulting ranks with the respective benchmark
ranks and computed the mean correlation over all
conclusions in terms of Kendall’s τ . Kendall’s τ
is most suitable here, as it is meant for ranks and
as it applies even when all arguments are ranked
equally (unlike, e.g., the Pearson coefficient).

Results Table 2 shows that the highest rank cor-
relation is clearly achieved by our PageRank ap-
proach, namely, when using the Sum aggregation.
While a Kendall’s τ of 0.28 is not very high, it can
be interpreted as noncoincidental, and it is close to
the low mean τ of all experts (0.36) resulting from
subjectivity (see Section 5). PageRank Sum proves
best in 15 of 32 cases. Most premises, which has
the second highest τ (0.19), produced fewer worst
rankings, but this is because it ranks all arguments
equally for those 22 of the 32 conclusions where
all have the same number of premises.

Matching the notion that popularity is not corre-
lated with merit (see Section 2), Frequency hardly
achieves anything. In fact, each frequency ap-
proach is outperformed by the PageRank approach
with the respective aggregation method. The same
holds for Similarity, which even seems to correlate
rather negatively with relevance. An explanation
may be that similarity rewards redundancy, which
is why, e.g., all four similarity approaches falsely
ranked the redundancy-free argument a1 in Table 1
lowest. However, this requires further investiga-
tion, including an analysis of more sophisticated
similarity measures. Sentiment, finally, performs
comparably strong with τ > 0.1 in three cases.
In accordance with the second ranking in Table 1,
this suggests that naming positive aspects (which
support a conclusion) benefits relevance.
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Regarding the four premise aggregation meth-
ods, we point out that their success might be partly
affected by the scale of our data: 31,080 argument
units is still tiny compared to the web argument
graph we envision. In case of the first conclusion
in Table 1, e.g., both Mininum and Average under-
rate the relevance of a1, since premise 1 fails to
counter the low PageRank score of premise 2 (re-
sulting in τ = −0.82). Summing up scores makes
sense for these strongly connected premises, and it
increases τ to 0.82. In contrast, Maximum assigns
the same rank to all three arguments, which would
be unlikely if web-scale data was given.

We conclude that a final judgment about our ap-
proach will require a web-scale analysis. Still, we
saw first evidence for the impact of assessing argu-
ment relevance with PageRank. Considering that
PageRank fully ignores an argument’s content and
inference—unlike our human expert rankers—its
observed dominance is quite intriguing.

7 Towards Argument Search Engines

From an application viewpoint, the long-term goal
of our research on argument relevance is to enable
web search engines to provide the most important
arguments in response to queries on controversial
topics. In this regard, the proposed PageRank ap-
proach serves to retrieve relevant candidate argu-
ments. These arguments should then be further as-
sessed, e.g., in terms of the soundness of their in-
ference or other quality dimensions (Wachsmuth
et al., 2017). At web scale, however, our approach
poses several challenges of processing natural lan-
guage text, most of which refer to the construction
of a reliable argument graph.

The kind of construction process that we foresee
starts with the language identification and content
extraction of web pages, followed by linguistic
preprocessing (sentence splitting, part-of-speech
tagging, etc.). For major languages, the respective
technologies are not perfect but reliable (Gottron,
2008). Then, argument mining is needed in order
to segment and classify argument units as well as
to compose arguments. While some mining ap-
proaches for web content exist, their robustness
still needs improval (Al-Khatib et al., 2016a). The
most complex step is to identify the reuse of a con-
clusion as a premise in another argument. Ulti-
mately, this implies that the units are semantically
equivalent (or contradictory). Both textual entail-
ment and paraphrasing help but are themselves un-

solved in general. At least, promising results with
about 70% accuracy are reported for ground-truth
arguments (Cabrio and Villata, 2012a).

Nevertheless, the goal of bringing argument rel-
evance to practice is not at all a dream of the far fu-
ture. The decisive observation is here that the size
of the web allows preferring precision over recall.
In particular, an initial high-precision, lower-recall
argument graph may be obtained by focusing on
“low-hanging fruits”. For instance, reliable argu-
ments can be derived from those web sources that
are directly cited in online debate portals, such as
http://www.debatepedia.org. Generally, the min-
ing process can be tailored to narrow domains and
to well-structured text genres first. In order to lim-
ite the noise from mining errors, simple and unam-
biguous sentence-level arguments may be focused
on and mined only if the respective approaches
have a high confidence. Similarly, the recognition
of equivalent argument units may be restricted to
near-duplicates based on high-precision heuristics,
such as ignoring capitalization, discourse connec-
tives and other filler words, or similar.

From there on, the framework nature of the de-
fined argument graph allows a stepwise refinement
of the process, integrating new approaches to any
process step as available. Research towards argu-
ment search engines can hence start now.

8 Conclusion

This paper proposes a model to integrate argument
relevance in future web search, and it lays theoret-
ical ground for research on argument relevance. In
particular, we have defined how to construct an ar-
gument graph at web scale as well as how to adapt
PageRank for arguments in order to objectively as-
sess relevance given the graph. The results on our
new, freely available Webis-ArgRank-17 bench-
mark dataset with a ground-truth argument graph
of notable size suggest that PageRank outperforms
both frequency-based and simple content-based
relevance assessment approaches.

An evaluation at web scale is left to future work.
Currently, we are working on approaches that ro-
bustly mine arguments from web pages, preferring
precision over recall in order to obtain a more reli-
able argument graph. In general, several consider-
able challenges exist towards the argument search
engines we envision, not only in terms of argument
mining. We propose to face these challenges in or-
der to shape the future of web search together.
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Abstract

As the number of people receiving psycho-
therapeutic treatment increases, the au-
tomatic evaluation of counseling practice
arises as an important challenge in the
clinical domain. In this paper, we address
the automatic evaluation of counseling
performance by analyzing counselors’ lan-
guage during their interaction with clients.
In particular, we present a model towards
the automation of Motivational Interview-
ing (MI) coding, which is the current gold
standard to evaluate MI counseling. First,
we build a dataset of hand labeled MI en-
counters; second, we use text-based meth-
ods to extract and analyze linguistic pat-
terns associated with counselor behaviors;
and third, we develop an automatic sys-
tem to predict these behaviors. We intro-
duce a new set of features based on seman-
tic information and syntactic patterns, and
show that they lead to accuracy figures of
up to 90%, which represent a significant
improvement with respect to features used
in the past.

1 Introduction

Effective behavioral counseling is an essential el-
ement in combating public health issues such
as mental health, substance abuse, and nutri-
tion among others. A key component in train-
ing addiction counselors and other health care
providers is providing detailed clinical feedback
and evaluation. In clinical psychotherapy, this
is done through behavioral coding, a labor in-
tensive and time consuming process that requires
highly trained practitioners who observe the coun-
seling interactions via audio/video or reading tran-
scripts and, then provide detailed evaluative feed-

back based on a set of predefined behaviors.
Recently, research efforts have been made to-

wards implementing automatic means to assist this
process and provide clinicians with tools to code
and analyze counseling narratives (Atkins et al.,
2014; Xiao et al., 2014; Klonek et al., 2015). Such
tools can enable analyzes at larger scale by provid-
ing faster, cheaper, and more reliable methods for
coding and data summarizing tasks.

Following this line of work, this paper presents
a text-based approach for the automatic coding
of counselor’s verbal behaviors during counseling
encounters. We focus our analysis on counseling
conducted using Motivational Interviewing (MI),
a well established evidence-based psychotherapy
style, and the Motivational Interviewing Treat-
ment Integrity (MITI) coding scheme.

2 Background on Motivational
Interviewing

Miller and Rollnick define MI as a collaborative,
goal-oriented style of psychotherapy with partic-
ular attention to the language of change (Miller
and Rollnick, 2013). MI has been widely used as
treatment method in clinical trials on psychother-
apy research to address addictive behaviors such
as alcohol, tobacco and drug use; promote health-
ier habits such as nutrition and fitness; and help
clients with psychological problems such as de-
pression and anxiety (Rollnick et al., 2008; Pol-
lak et al., 2010; Lundahl et al., 2010; Vader et al.,
2010; Apodaca et al., 2014; Magill et al., 2014;
Moyers and Martin, 2006; Moyers et al., 2009;
Glynn and Moyers, 2010; Barnett et al., 2014).
In addition, MI has been successfully applied in
different practice settings including social work in
behavioral health centers, education, and criminal
justice (Wahab, 2005; McMurran, 2009).

MI implementation requires effective counselor
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training, supervision, and evaluation. Counselor’s
competence in MI delivery is measured by either
focusing on counselor behaviors, client behaviors,
or both (Jelsma et al., 2015).

The MITI coding system is currently the gold
standard instrument for this task (Moyers et al.,
2005). MITI focuses on counselors verbal behav-
iors and measures their MI proficiency by evaluat-
ing the use of reflective listening; questions; coun-
selor strategies to engage clients such as seeking
collaboration, affirming, and emphasizing auton-
omy; behaviors that indicate counselor deficien-
cies while delivering MI such as confronting and
persuading without permission; and finally, neu-
tral behaviors such as providing information and
persuading with permission.

3 Related Work

Recently there have been a number of efforts on
building computational tools that assist clinical
psychotherapy on behavioral coding tasks.

(Can et al., 2012) proposed a linguistic based
approach to automatically detect and code coun-
selor reflections that is based on analyzing n-
grams patterns, similarity features between coun-
selor and client speech, and contextual meta-
features, which aim to represent the dialog se-
quence between the client and counselor. A
method based on labeled topic models is presented
in (Atkins et al., 2012; Atkins et al., 2014), where
authors focus on automatically identifying topics
related to MI behaviors from the MISC scheme
such as reflections, questions, support, and em-
pathy. Unlike their work, we introduce and ex-
periment with richer sets of features that repre-
sent more accurately the linguistic structure of
counselor behaviors, including syntactic patterns
and semantic information. Moreover, although
we also focus on the recognition of the two most
frequently encountered behaviors (reflections and
questions), we also apply and evaluate our system
on the other MI behaviors measures by the MITI
coding scheme. Speech and linguistic based meth-
ods have also been proposed to evaluate overall MI
quality. For instance, (Xiao et al., 2014) presents
a study on the automatic evaluation of counselor
empathy. The method is based on analyzing cor-
relations between prosody patterns and empathy
showed by the therapist during the counseling in-
teractions.

Although most of the work on coding of MI

within session language has focused on model-
ing the counselor language, there is also work
that investigates the client language. (Tanana et
al., 2015) addresses the identification of coun-
selor’s statements discussing client’s change talk.
Their approach uses recursive neural networks
to model sequences of counselor and client ver-
bal exchanges. (Lord et al., 2015b) analyze the
language style synchrony between therapist and
client during MI encounters. They rely on the
psycholinguistic categories from the Linguistic In-
quiry and Word Count lexicon to measure the
degree in which counselor language matches the
client language.

Also related to our research is work on the
social interaction domain. (Danescu-Niculescu-
Mizil et al., 2012) studied power differences from
language coordination in group discussions by
measuring the similarity of word usage across dif-
ferent linguistic categories. Stylistic influence and
symmetry have also been explored in social me-
dia interactions (Danescu-Niculescu-Mizil et al.,
2011). More recently, (Althoff et al., 2016) ex-
plored these phenomena in the mental health do-
main by analyzing text-message-based counseling
and observed that counselors who are more suc-
cessful act with more control in the conversations
and coordinate in a lower degree than their less
successful counterparts.

In summary, research findings have shown that
natural language processing approaches can be
successfully applied to clinical narratives for the
automatic annotation and analysis of therapists’
and clients’ behaviors. However, developed meth-
ods have not yet explored the use of linguistic fea-
tures that incorporate semantic or syntactic infor-
mation. In this paper we seek to explore new lin-
guistic representations that can improve the iden-
tification of MITI counselor behaviors. Further-
more, we also experiment with features that mea-
sure participants linguistic accommodation during
the counseling interaction.

4 MI Narratives Dataset

The data used in this study consists of 277 MI
sessions conducted in several medical settings, in-
cluding randomized control trials in clinical re-
search for smoking cessation and medication ad-
herence; MI training from a graduate-level MI
course; wellness coaching phone calls; and brief
medical encounters in dental practice and student
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counseling. The full set comprises 97.8 hours of
audio with an average session length of 20.8 min-
utes with a standard deviation of 11.5 minutes.

4.1 Transcription
Before transcribing, all the counseling recordings
were preprocessed to remove any personal identi-
fiers. This includes manually trimming the audio
to remove introductions and replacing references
to participant’s name and location with silences.

Sessions were transcribed via Mechanical Turk
(Marge et al., 2010) using the following guide-
lines: 1) transcribe speech turn by turn, 2) clearly
identify the speaker (either client or counselor),
3) include speech disfluences, such as false starts,
repetitions of whole words or parts of words, pro-
longations of sounds, fillers, long pauses. Tran-
scriptions were manually verified at random points
to avoid spam and ensure their quality. The final
transcript set contains 22,719 utterances.

4.2 MI Coding
MITI coding was conducted by a team of three
counselors who have extensive experience with
MI.1 Prior to the annotation phase, annotators par-
ticipated in a coding calibration step where they
discussed the criteria for sentence parsing, the cor-
rect assignment of behavior codes, and conducted
team coding in a set of sample sessions.

As suggested in the MI literature, we evaluated
the coding reliability on a sample of ten double-
coded sessions, which were coded by our staff and
by MITI developers (Moyers et al., 2005).

We measured the inter-annotator agreement at
both session and utterance level. For the session
level, we measured the Intraclass Correlation Co-
efficient (ICC), which indicates how much of the
total variation in MITI scores is due to differences
among annotators (Dunn et al., 2015). The ut-
terance level agreement was measured using the
Kappa score (Lord et al., 2015a).

The ICC values reported in Table 1 show no-
ticeable high agreement for the Question and Re-
flection codes with scores ranging between 0.89 to
0.97, which are considered excellent agreement in
the MI literature (Jelsma et al., 2015). The remain-
ing codes show lower agreement values due to low
frequency counts in the sample. This was partic-
ularly the case for the Giving Information, Affirm

1Annotators were trained in the use of MITI 4.1 by ex-
pert trainers from the Motivational Interviewing Network of
Trainers

and Emphasizing Autonomy codes, for which we
were unable to obtain ICC scores (NA). Confront,
and Persuading without Permission codes are not
reported as they did not appear in our sample.
The main reason for this is that the dataset was
derived from sessions conducted by experienced
counselors who avoided such codes as they indi-
cate bad MI practice.

Overall, the ICC scores suggest that the annota-
tors do not show significant variations at session
level coding, i.e., the total frequency counts of
each code per session did not differ significantly
between coders. Furthermore, the Kappa scores
suggest that annotators have fair to good pairwise
agreement at utterance level coding.

Since the inter-reliability analysis showed rea-
sonable agreement among the coding team mem-
bers, we moved forward to the annotation phase.
The 277 sessions are randomly distributed among
the three members of the coding team. Annota-
tions are conducted using the session audio record-
ing along with its transcript using Nvivo,2 a quan-
titative analysis suite for behavioral coding that al-
lows selecting free text and assigning it to a given
category. Table 2 presents an excerpt of a session
transcript. As observed, a talk-turn can comprise
multiple utterances.

The team annotated approximately 20 sessions
per week. The entire annotation process took
nearly three months. After the annotation phase,
the annotated transcripts were processed to extract
the verbal content of each MITI annotation; non-
coded utterances were also extracted and labeled
as neutral speech. In the coded set 33% (5262)
are Questions, 17% (2690) are Simple Reflections,
18% (2876) are Complex Reflections, and 32%
(5058) are other MITI codes: Seeking Collabo-
ration (614), Emphasizing Autonomy (141), Af-
firm (499), Confront (141), Persuading without
Permission (598), Giving information (1017), and
Persuading with Permission (2100).

5 Linguistic Features for MI behaviors

In order to explore linguistic patterns related to
counselor behaviors, we analyze their definitions
and usage. For instance, the use of reflective state-
ments helps counselors understand client’s state-
ments through hypothesis testing (Miller and Roll-
nick, 2013); questions help counselor elicit infor-
mation and engage the clients in the conversation;

2http://www.qsrinternational.com/what-is-nvivo
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Transcript Code
T So, before we go further, you know, there’s two different aspects of, you know, of

weight. So there’s the food aspect and the exercise aspect. Is there something that
you’d particularly like to focus on today?

GI,QUEST

C Well I think my-my biggest concern is the food issue, and h-how to eat better. So, I
think I’d like to start there.

T Okay. Because you mentioned that you’ve been active before in sports S-REFL

C Yeah, and, you know, with the nice weather coming, I’d like to get outside and do
things, so I’m sure that will come, you know, soon.

T Right.
C I just, you know, it’s so hard to-to change my eating habits.
T So, it sounds like, you know, you may even feel, sort of, more confident that you’ll

be more active physically. And then that’s why you’d like to focus on the food part.
Because if you know that that’s coming up and you’re sure that you will be able to
do that, then the food part would really help.

C-REFL

C Yeah, exactly.

Table 2: Transcript excerpt from a MI session between therapist (T) and client (C). MI codes include:
Complex Reflection (C-Refl), Simple Reflection (S-Refl), Question (Quest), Giving information (GI).
Coded utterances are shown in italics.

Behavior Inter-reliability
ICC Kappa

Question 0.97 0.64
Complex reflection 0.97 0.49
Simple reflection 0.89 0.34
Seeking collaboration 0.03 0.42
Giving Information NA 0.28
Affirm NA 0.47
Emphasizing autonomy NA 0.31

Table 1: Inter-annotator agreement for the MI
dataset in a random sample of 10 sessions

and so on. Considering these guidelines, we de-
rive the following features that aim to capture the
linguistic differences among these behaviors.

N-grams: These features represent the language
used by the counselor and include all the unique
words and word-pairs present in counselor speech.
We extract a vector containing the frequencies of
each word and word pair present in each utterance.

Semantic information: These features attempt
to bring semantic information into the analysis
of counselor language by identifying words as
belonging to certain semantic categories that are
potential markers of counseling style. For in-
stance, semantic categories related to reflective
language include tentative language e.g., maybe,
perhaps, looks, as well as anxiety words e.g.,
afraid, tense, worried. We use two groups of se-
mantic features. The first consists of features de-
rived from the LIWC lexicon (Tausczik and Pen-
nebaker, 2010), a psycholinguistic resource that
contains 70 semantic categories representing psy-

chological cues to human thought processes, emo-
tional states, intentions, and motivations. The sec-
ond is a self-acquired reflection lexicon consisting
of 146 words frequently present during reflective
statements. These features are represented as the
total frequency counts of all the words in a word
category that are present in the annotation.

Similarity: Since reflective listening includes
repetition and rephrasing, we can expect to ob-
serve linguistic similarity between client and
counselor speech. Thus, we measure the degree to
which the counselor matches the client language
by using Linguistic Style Matching (LSM) (Gon-
zales et al., 2009), a technique that allows to quan-
tify the extent to which one person uses compara-
ble types of words to another person. We measure
LSM at a turn-by-turn level using the LIWC word
categories, e.g., positive words, pronouns, nega-
tions, quantifiers. In order to capture information
from return statements, we combine client speech
from the previous and current turn along with the
counselor utterance. The features are represented
by a score ranging between 0 and 1 indicating the
degree to which the counselor and client use the
same type of words.

Syntactic features: These features aim to repre-
sent the syntactic structure of the clinician state-
ments. We use these features to encode informa-
tion about the word order in the sentence. We ex-
pect syntactic patterns with high occurrence will
likely capture reflection starters commonly used
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Features Acc. P R F
REFL vs. ALL

Baseline 75.00% 0.00 0.00 0.00
N-grams 82.47% 0.69 0.66 0.67
Semantic 77.37% 0.68 0.34 0.45
Similarity 60.95% 0.58 0.34 0.42
Syntax 78.65% 0.72 0.67 0.62
All features 82.62% 0.69 0.66 0.67

REFL vs. OTHER
Baseline 64.00% 0.00 0.00 0.00
N-grams 83.51% 0.78 0.80 0.79
Semantic 71.57% 0.68 0.54 0.58
Similarity 63.00% 0.58 0.27 0.37
Syntax 86.80% 0.82 0.86 0.84
All features 81.27% 0.84 0.83 0.84

Table 3: Classification results for counselor reflec-
tions (REFL), other MITI codes (OTHER), other
MITI codes + transition (unannotated) utterances
(ALL)

by the counselor such as “it sounds like ...”. First,
we use the Stanford parser to generate the Context
Free Grammar parse trees of counselor utterances
and extract all production rules present in the trees.
Second, we derive features for each lexicalized
and unlexicalized production rule augmented with
its grandparent node; this means we also include
chunk tags such as noun phrases, adverb phrases,
prepositional phrases, and so on. Third, each fea-
ture is calculated by counting how many times a
production rule or production-rule-sequence oc-
curs in the utterance.

6 Experiments and Results

After the feature extraction, we explore whether
these features can be used as predictors of coun-
selor behaviors. We first focus on the prediction
of reflections and questions, as they represent the
most frequent behaviors in counseling narratives;
we then experiment with the use of these features
for the prediction of the other behavior codes.

6.1 Predicting Counselor Reflections
We conduct learning experiments where we ex-
plore the use of n-grams, syntactic, semantic, and
similarity features to build reflection classifiers at
three levels of detail.

First, we attempt to mimic the process human
coders follow while MITI annotating a session,
i.e., the coder goes through each counselor utter-
ance and chooses the most appropriate code ac-
cording to the MITI guidelines. Hence, we focus
on the identification of Reflection utterances re-
gardless of being complex or simple. The learning

task aims to classify a counselor utterance either
as a Reflection, or a Not-reflection, i.e., any other
counselor utterance. Second, given that a large
portion of the verbal exchanges between the coun-
selor and the client consists of transition or facili-
tative statements (e.g., yeah, right), we decided to
remove this content from the analysis thus focus-
ing on the task of discriminating between Reflec-
tion and any other MITI code. Third, we aim to
discriminate between Simple and Complex reflec-
tion. In MI, counselors use both types of reflec-
tions to understand the client’s perspective, feel-
ings, and values. However, in general, complex
reflections are preferable over simple reflections
as they show counselor’s deeper understanding of
the issues being discussed. In a real setting, distin-
guishing between these two behaviors and under-
standing their linguistic differences is important in
order to provide the counselor with feedback on
the nature of their reflective statements.

During our experiments we employ the Sup-
port Vector Machines (SVM) (Cortes and Vapnik,
1995) classifier as the main classifier. We use the
version implemented in the LibLinear library with
the default parameters. We build several classifi-
cation models using each of the different sets of
linguistic features. We evaluate the ability of such
models to predict the target behavior using a five-
fold cross-validation. As reference value, we use
a majority class baseline, which is the percentage
of instances correctly classified when selecting by
default the most frequent category in the training
data.

Table 3 summarizes the classification perfor-
mance for each set of features in the detection of
reflections. During our experiments we used F-
score as the main evaluation metric. This metric
considers both the proportion of reflections identi-
fied from the training set (recall) and the propor-
tion of reflections correctly identified as such (pre-
cision). From this table, we can observe that the
syntactic model accurately captures differences
between reflective and non-reflective content. This
difference is even more noticeable when discrim-
inating between syntactic structures associated to
reflective statements versus syntactic structures as-
sociated to other MITI codes (REFL vs OTHER col-
umn).

Table 4 presents the classification performance
for the simple (S-Refl) and complex reflections
(C-Refl). F-scores among the classification mod-
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Features Acc. S-REFL C-REFL
P R F P R F

Baseline 52.00% 0.00 0.00 0.00 0.52 1.00 0.68
N-grams 63.24% 0.61 0.65 0.64 0.66 0.62 0.63
Semantic 67.21% 0.63 0.65 0.64 0.67 0.70 0.69
Similarity 63.22% 0.62 0.59 0.58 0.67 0.58 0.63
Syntax 65.06% 0.63 0.66 0.64 0.67 0.70 0.657
All features 62.52% 0.60 0.62 0.61 0.64 0.62 0.63

Table 4: Classification results for Simple Reflections (S-Refl) and Complex Reflections (C-Refl)
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Figure 1: Learning curve for Simple (S-Refl) and
Complex Reflection (C-Refl) detection using dif-
ferent amounts of training data and four feature
sets.

els do not show noticeable improvement gain for
the syntactic model. This suggest that the syn-
tactic features might not have enough discrimi-
native power to accurately differentiate between
Complex and Simple reflections as the differences
among these behavior codes are mostly semantic.
This could be also attributed to the similarity of
syntactic constructions for Simple and Complex
reflections, i.e., common starters such as it sounds
like, it looks like, and other similar syntactic con-
structions. Note that this task is also challenging
for humans, as reported pairwise inter-annotator
agreements for Simple and Complex reflections in
our sample ranges between fair to good levels (see
Kappa values in Table 1).

Finally, we investigate whether larger amounts
of training data can be helpful to discriminate be-
tween Simple and Complex reflections, in particu-
lar with the use of syntax-based features. We plot
the learning curves of the different sets of features
using incremental amounts of data as shown in
Figure 1. The learning trend suggests the classifi-
cation performance while distinguishing between
Complex and Simple Reflection improves when
increasing the number of training examples. No-
tably, the syntactic features curve shows consistent
growth, suggesting that larger quantities of train-

Target Behavior Change Sessions REF OTHER
Medication adherence 93 2977 4031
Smoking Cessation 95 2290 3745
Dietary Changes 72 2045 2669

Table 5: Class distribution for three target behav-
ior changes

ing data might improve the classification perfor-
mance for this task.

6.2 The Role of Behavior Change Target

During MI encounters, counselors follow specific
strategies to guide the client towards behavior
change. For instance, reflective listening strategies
include generic starters to reformulate, rephrase,
or intensify client’s statements, which are used re-
gardless of the behavior change target. Consid-
ering that MI has proven to be effective on ad-
dressing a wide range of application domains, this
might suggest a certain degree of domain indepen-
dence, which can be of importance for the devel-
opment of natural language processing strategies
for the automatic coding of MI sessions.

Aiming to explore the role played by the health
issue being discussed during the counseling en-
counter, we conduct an additional set of experi-
ments on three target behavior changes present in
our dataset, namely medication adherence, smok-
ing cessation, and dietary changes. The class dis-
tribution for each set is shown in Table 5. We ex-
clude 16 sessions as they correspond to miscella-
neous change goals.

Using this data, we build reflection classifiers
using the linguistic features described before. Re-
sults are shown in Table 6. From this table, we
can derive interesting observations. First, fol-
lowing a similar trend as in our previous exper-
iments, syntactic features offer improved perfor-
mance over the n-grams, similarity, and semantic
feature sets. Second, we observe more steady im-
provement when using a combination of different
feature sets, as compared to our previous experi-
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Target Behavior Change Baseline N-grams Semantic Similarity Syntax All Features
Medication adherence 57.52% 83.56% 61.48% 57.52% 85.31% 88.78%
Smoking cessation 62.05% 82.41% 66.16% 62.96% 83.41% 85.34%
Dietary changes 56.51% 82.75% 66.50% 59.56% 82.42% 85.41%

Table 6: Classification performance for reflection detection (REFL VS. ALL) on sessions aiming at three
behavior changes

Category Medication Adherence Smoking Cessation Dietary Changes
Noun health, family, routine, life children, control, past, role, parent pre-diabetes, people, husband, future
Verb live, imagine, see, eat, help see, affect, feel, want, talk care, affect, concern, leave
Adjective difficult, responsible, important concern, hard, helpful scary, busy, difficult, willing

Table 7: Counselor word usage across different health issues

ments. Still, the performance for both sets of ex-
periments is comparable, thus suggesting that the
task is not heavily affected by the health issue be-
ing discussed. This further suggests that training
data on the same behavior target is desirable but
not essential.

Since we did not observe noticeable differ-
ences in language constructions used by coun-
selors across different health issues, we decided
to analyze whether counselors differ in their word
choices. We thus looked at the top syntactic
features generated for each classification model
and their corresponding terminal nodes and part
of speech tags. Table 7 shows sample words
for nouns, verbs, and adjectives used by coun-
selors while formulating reflections for three tar-
get behavior changes. From this table we no-
tice that counselor word usage does vary with the
health issue being addressed. For instance, when
discussing smoking cessation, counselor empha-
size verbs and nouns that evoke clients’ desire to
change (affect, want, feel) and discuss client val-
ues that are related to how they are perceived by
others (role, parent, control).

6.3 Prediction of Counselor Questions

Our next set of experiments aims to predict coun-
selor questioning statements. As before, we build
different prediction models using the developed
feature sets and attempt to discriminate between
1) Questions and any other counselor utterance
(QUEST vs ALL), and 2) Questions and other
MITI codes (QUEST vs OTHER). Classification
performances for these models are shown in Table
8. The best performing feature set is the syntactic
followed by the n-grams model.

Note that in addition to the experiments re-
ported in this table, we attempted to combine dif-
ferent features sets. However, we did not observe

Features Acc. P R F
QUEST vs. ALL

Baseline 76.83% 0.00 0.00 0.00
N-grams 87.81% 0.91 0.92 0.76
Semantic 79.19% 0.69 0.37 0.48
Similarity 62.33% 0.36 0.31 0.36
Syntax 90.59% 0.82 0.81 0.81
All features 81.87% 0.76 0.74 0.75

QUEST vs. OTHER
Baseline 66.87% 0.00 0.00 0.00
N-grams 88.84% 0.86 0.85 0.85
Semantic 75.28% 0.70 0.64 0.67
Similarity 57.33% 0.38 0.49 0.42
Syntax 90.48% 0.92 0.92 0.87
All features 86.57% 0.82 0.82 0.82
GRU 92.8% 0.89 0.92 0.90

Table 8: Classification results for counselor ques-
tions (QUEST), other MITI codes + transition
(unannotated) utterances (ALL), and other MITI
codes (OTHER).

substantial improvement over our best performing
model consisting of syntactic features.

6.4 Prediction of Other MI Codes

Aiming to identify potential predictors for the re-
maining MI codes, we conduct a set of experi-
ments where we use our linguistic feature sets to
build multiclass classifiers. Table 9 shows the pre-
cision and recall figures obtained for the different
classification models. Note that the results using
semantic and similarity features are not reported,
as the resulting classifiers showed very low re-
call values. From these results we observe that
both syntactic features and n-grams aid the iden-
tification of other counselor behavior codes, par-
ticularly Giving Information, Affirm, and Seeking
Collaboration. However, the prediction accuracy
of the syntactic models is slightly lower than the
n-grams models. We believe that the more verbose
nature of these codes, in contrast to reflections,
makes it difficult to benefit from syntactic patterns.
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GI AF SEEK AUTO PWP PWOP CON
Features P R P R P R P R P R P R P R
N-grams 0.56 0.47 0.42 0.37 0.55 0.49 0.29 0.26 0.23 0.15 0.29 0.22 0.10 0.07
Syntax 0.52 0.47 0.41 0.35 0.54 0.50 0.26 0.19 0.18 0.14 0.28 0.22 0.10 0.04
GRU 0.48 0.79 0.28 0.75 0.41 0.80 0.24 0.30 0.09 0.47 0.21 0.38 0.05 0.17.

Table 9: Classification results for seven MI behaviors: Giving Information (GI), Affirm (AF), Seeking
Collaboration (SEEK), Emphasizing Autonomy (AUTO), Persuading with Permission (PWP), Persuad-
ing without Permission (PWOP), Confront (CON)

QUEST REFL S-REFL C-REFL

1 *. ˆ S→ ? *VBZ ˆ VP→ sounds ROOT ˆ ROOT→ S VP ˆ S→ TO VP
2 *. ˆ SBARQ→ ? *IN ˆ SBAR→ since *VBD ˆ VP→ mentioned NP ˆ PP→ PRP$ NN
3 ROOT ˆ ROOT→ SBARQ *IN ˆ S→ so ROOT ˆ ROOT→ FRAG *VBZ ˆ VP→ sounds
4 NP ˆ SQ→ PRP S ˆ ROOT→ IN NP ROOT ˆ ROOT→ NP *VB ˆ VP→ be
5 *.SQ→ ? VP ˆ S→ VBZ SBAR VP ˆ S→ VBD SBAR *TO ˆ VP→ to
6 ROOT ˆ ROOT→ SQ *PRP ˆ NP→ it *RB ˆ ADVP→ so *RB ˆ ADVP→ really
7 *WP ˆ WHNP→ what *RB ˆ ADVP→ really VP ˆ S→ VBD NP *PRP ˆ NP→ it
8 *IN ˆ PP→ about S ˆ ROOT→ CC ADVP *NN ˆ NP→ ok *IN ˆ SBAR→ like
9 *DT ˆ NP→ any ADJP ˆ VP→ RBR JJ *UH ˆ INTJ→ okay *IN ˆ PP→ like
10 *. ˆ FRAG→ ? VP ˆ S→ VBP PRT VP ˆ S→ VBD PP *DT ˆ NP→ this

Table 10: Most discriminative syntactic features for Questions (QUEST), Reflections (REFL), Simple
reflection (S-REFL) and Complex reflection (C-REFL).

Also, note that Emphasizing Autonomy, Persuad-
ing With And Without Permission, and the Con-
front codes lead to low precision and recall val-
ues, which can be partially attributed to having a
smaller number of training examples as compared
to the other codes.

7 Discussion

Our experimental results support the use of auto-
matic means to predict MITI counselor behaviors.
Unsurprisingly, better results are obtained for the
more frequent behaviors such as reflections and
questions. Unlike previous studies that focused
on the identification of reflective content in psy-
chotherapy narratives (Atkins et al., 2014; Xiao et
al., 2014), we build prediction models that predict
all the MITI behavior codes. We also introduce
and leverage new features consisting of seman-
tic and syntactic patterns; our experimental results
suggest the effectiveness of these new features.

To gain further insight into the syntactic pat-
terns, we extract the most predictive features for
each classification model. Table 10 presents a
summary of the top ten production rules associ-
ated to Question (Quest), Reflection (Refl), Sim-
ple Reflection (S-Refl), and Complex Reflection
(C-Refl). As expected, question production rules
include the question mark as a clear indicator
of questions. However, we also observe clause
tags and phrase tags that capture more complex
questioning structures such as direct questions in-

troduced by a wh-word or a wh-phrase SBARQ,
inverted yes/no questions SQ, question personal
pronoun WP (wh-pronoun, personal), and noun
phrases WHNP.

Similarly, the most predictive rules for Reflec-
tions (REFL column) include adverbs (RB, RBR),
adjectives (JJ), present tense verbs (VBZ), per-
sonal pronouns (PRP); as well as adverb and ad-
jective phrases (ADVP, ADJP). We observe that
the syntactic similarity of reflective statements is
well represented by the syntactic model as they in-
clude verbal structures that are frequently used by
the counselor to formulate reflective statements;
for instance, generic reflection starters such as
“So, it sounds like ...” (see rules 1, 3, 5, and 6
in column REFL), and word categories, such as
adjectives, conjunctions and comparative adverbs
(see rules 8, 9, and 10 in column REFL). More-
over, we observe an interesting difference in the
verb tense usage for Simple and Complex Reflec-
tion detection: production rules for Simple Reflec-
tion include present tense while production rules
for Complex Reflection include past tense.

Overall, our experimental results show the po-
tential of applying linguistic methods in the pre-
diction of counselor behaviors, and in particular
those that incorporate syntactic information into
the analysis.
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8 Conclusions

In this paper, we presented a classification model
towards the automation of MI coding using the
MITI coding system.

We made two important contributions. First, we
introduced a novel large psychotherapy dataset de-
rived from MI interventions, consisting of 277 MI
sessions with a total of 22,719 utterances. The
dataset was manually transcribed and annotated
with ten counselor verbal behaviors. Second, us-
ing several features, we applied the classification
model to the recognition of MI counseling behav-
iors, with an emphasis on the two most frequently
encountered behaviors: reflections and questions.
We showed how a richer feature set, and in par-
ticular a set consisting of semantic and syntac-
tic patterns, can lead to accuracy figures of up to
90%, which represents a significant improvement
with respect to the bag-of-word features used in
the past.

We also presented several analyses, including
an exploration of the role of the behavior change
target in the prediction of reflections; and an anal-
ysis of the most discriminative features in the syn-
tactic model. Although this study focused on the
MITI as the coding system and MI as the counsel-
ing approach, we believe that the proposed meth-
ods could apply to other measures of MI skill
fidelity such as Behavior Change Counselor In-
dex (BECCI) (Lane et al., 2005), Independent
Tape Rating Scale (ITRS) (Martino et al., 2009),
Stimulated Client Interview Rating Scale (SCIRS)
(Arthur, 1999), and the One Pass coding system
(McMaster and Resnicow, 2015).
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Abstract

Authorship attribution is associated with
important applications in forensics and hu-
manities research. A crucial point in this
field is to quantify the personal style of
writing, ideally in a way that is not af-
fected by changes in topic or genre. In this
paper, we present a novel method that en-
hances authorship attribution effectiveness
by introducing a text distortion step be-
fore extracting stylometric measures. The
proposed method attempts to mask topic-
specific information that is not related to
the personal style of authors. Based on ex-
periments on two main tasks in authorship
attribution, closed-set attribution and au-
thorship verification, we demonstrate that
the proposed approach can enhance exist-
ing methods especially under cross-topic
conditions, where the training and test cor-
pora do not match in topic.

1 Introduction

Authorship attribution is the task of determining
the author of a disputed text given a set of candi-
date authors and samples of their writing (Juola,
2008; Stamatatos, 2009). This task has gained
increasing popularity since it is associated with
important forensic applications, e.g., identifying
the authors of anonymous messages in extremist
forums, verifying the author of threatening email
messages, etc. (Abbasi and Chen, 2005; Lambers
and Veenman, 2009; Coulthard, 2013), as well as
humanities and historical research, e.g., unmask-
ing the authors of novels published anonymously
or under aliases, verifying the authenticity of lit-
erary works by specific authors, etc. (Koppel and
Seidman, 2013; Juola, 2013; Stover et al., 2016).

The majority of published works in authorship

attribution focus on closed-set attribution where
it is assumed that the author of the text under
investigation is necessarily a member of a given
well-defined set of candidate authors (Stamatatos
et al., 2000; Gamon, 2004; Escalante et al., 2011;
Schwartz et al., 2013; Savoy, 2013; Seroussi et
al., 2014). This setting fits many forensic appli-
cations where usually specific individuals have ac-
cess to certain resources, have knowledge of cer-
tain issues, etc. (Coulthard, 2013) A more general
framework is open-set attribution (Koppel et al.,
2011). A special case of the latter is authorship
verification where the set of candidate authors is
singleton (Stamatatos et al., 2000; van Halteren,
2004; Koppel et al., 2007; Jankowska et al., 2014;
Koppel and Winter, 2014). This is essentially a
one-class classification problem since the negative
class (i.e., all texts by all other authors) is huge
and extremely heterogeneous. Recently, the verifi-
cation setting became popular in research commu-
nity mainly due to the corresponding PAN shared
tasks (Stamatatos et al., 2014; Stamatatos et al.,
2015).

In authorship attribution it is not always real-
istic to assume that the texts of known author-
ship and the texts under investigation belong in
the same genre and are in the same thematic area.
In most applications, there are certain restrictions
that do not allow the construction of a represen-
tative training corpus. Unlike other text catego-
rization tasks, a recent trend in authorship attri-
bution research is to build cross-genre and cross-
topic models, meaning that the training and test
corpora do not share the same properties (Keste-
mont et al., 2012; Stamatatos, 2013; Sapkota et
al., 2014; Stamatatos et al., 2015).

One crucial issue in any authorship attribu-
tion approach is to quantify the personal style of
authors, a line of research also called stylome-
try (Stamatatos, 2009). Ideally, stylometric fea-
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tures should not be affected by shifts in topic or
genre variations and they should only depend on
personal style of the authors. However, it is not
yet clear how the topic/genre factor can be sep-
arated from the personal writing style. Function
words (i.e., prepositions, articles, etc.) and lexical
richness features are not immune to topic shifts
(Mikros and Argiri, 2007). In addition, charac-
ter n-grams, the most effective type of features in
authorship attribution as demonstrated in multiple
studies (Grieve, 2007; Stamatatos, 2007; Luyckx
and Daelemans, 2008; Escalante et al., 2011) in-
cluding cross-topic conditions (Stamatatos, 2013;
Sapkota et al., 2015), unavoidably capture infor-
mation related to theme and genre of texts. Fea-
tures of higher level of analysis, including mea-
sures related to syntactic or semantic analysis of
texts, are too noisy and less effective, and can be
used as complement to other more powerful low-
level features (van Halteren, 2004; Argamon et al.,
2007; Hedegaard and Simonsen, 2011).

In this paper, we propose a novel method that is
based on text distortion to compress topic-related
information. The main idea of our approach is to
transform input texts to an appropriate form where
the textual structure, related to personal style of
authors, is maintained while the occurrences of the
least frequent words, corresponding to thematic
information, are masked. We show that this dis-
torted view of text when combined with existing
authorship attribution methods can significantly
improve their effectiveness under cross-topic con-
ditions in both closed-set attribution and author-
ship verification.

2 Related Work

Previous work in authorship attribution focuses
mainly on stylometric features that capture aspects
of personal writing style (Gamon, 2004; Luy-
ckx and Daelemans, 2008; Escalante et al., 2011;
Schwartz et al., 2013; Tschuggnall and Specht,
2014; Sidorov et al., 2014). In addition, beyond
the use of typical classification algorithms, sev-
eral attribution models that are specifically de-
signed for authorship attribution tasks have been
proposed (Koppel et al., 2011; Seroussi et al.,
2014; Qian et al., 2014). Basic approaches and
models are reviewed by Juola (2008) and Sta-
matatos (2009). In addition, recent studies in au-
thorship verification are surveyed in (Stamatatos
et al., 2014; Stamatatos et al., 2015).

An early cross-topic study in authorship attri-
bution using a very small corpus (3 authors and
3 topics) showed that the identification of au-
thors of email messages is not affected too much
when the training and test messages are on dif-
ferent topics (de Vel et al., 2001). Based on an-
other small corpus (2 authors and 3 topics) Madi-
gan, et al. (2005) demonstrated that POS features
are more effective than word unigrams in cross-
topic conditions. The unmasking method for au-
thor verification of long documents based on very
frequent word frequencies was successfully tested
in cross-topic conditions (Koppel et al., 2007) but
Kestemont, et al. (2012) found that its reliabil-
ity was significantly lower in cross-genre condi-
tions. Function words have been found to be
effective when topics of the test corpus are ex-
cluded from the training corpus (Baayen et al.,
2002; Goldstein-Stewart et al., 2009; Menon and
Choi, 2011). However, Mikros and Argiri (2007)
demonstrated that function word features actu-
ally correlate with topic. Other types of fea-
tures found effective in cross-topic and cross-
genre authorship attribution are punctuation mark
frequencies (Baayen et al., 2002), LIWC fea-
tures (Goldstein-Stewart et al., 2009), and charac-
ter n-grams (Stamatatos, 2013). To enhance the
performance of attribution models based on char-
acter n-gram features, Sapkota et al. (2015) define
several n-gram categories and then they combine
n-grams that correspond to word affixes and punc-
tuation marks. Combining several topics in the
training set seems also to enhance the ability to
identify the authors of texts on another topic (Sap-
kota et al., 2014). More recently, Sapkota et
al. (2016) proposed a domain adaptation model
based on structural correspondence learning and
punctuation-based character n-grams as pivot fea-
tures.

Text distortion has successfully been used to en-
hance thematic text clustering by masking the oc-
currences of frequent words while maintaining the
textual structure (Granados et al., 2011; Granados
et al., 2012). That way, the clustering model was
no longer confused by non relevant information
hidden in the produced distorted text (Granados
et al., 2014). An important conclusion drawn by
these studies was that, in cases the textual structure
was not maintained, the performance of clustering
decreased despite the fact that the same thematic
information was available.
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3 Text Distortion Views

In this paper we propose a method to transform
texts by applying a text distortion process before
extracting the stylometric features. The main idea
is to provide a new version of texts that is more
topic-neutral in comparison to the original texts
while maintaining most of the information related
with the personal style of the author. Our method
is inspired by the text distortion approach intro-
duced by Granados, et al. (2011; 2012) but it sig-
nificantly differs from that since it is more suit-
able for authorship attribution rather than thematic
clustering. In more detail, given the k most fre-
quent words of the language Wk, the proposed
method transforms the input Text as described in
Algorithm 1.

Algorithm 1 DV-MA
Input: Text, Wk

Output: Text
1: Tokenize Text
2: for each token t in Text do
3: if lowercase(t) /∈Wk then
4: replace each digit in t with #
5: replace each letter in t with *
6: end if
7: end for

We call this method Distorted View with Mul-
tiple Asterisks (DV-MA). Alternatively, a single
symbol can be used to replace sequences of dig-
its/letters meaning that the token length informa-
tion is lost. This version of the proposed method,
called Distorted View with Single Asterisks (DV-
SA) is illustrated in Algorithm 2.

Algorithm 2 DV-SA
Input: Text, Wk

Output: Text
1: Tokenize Text
2: for each token t in Text do
3: if lowercase(t) /∈Wk then
4: replace any sequence of digits in t with a

single #
5: replace any sequence of letters in t with

a single *
6: end if
7: end for

Note that DV-MA does not affect the length of
input text while DV-SA reduces text-length. The

proposed text transformation is demonstrated in
the example of Table 1 where an input text is trans-
formed according to either DV-MA or DV-SA al-
gorithms. In each example, Wk consists of the k
most frequent words of the BNC corpus1. As can
be seen, each value of k provides a distorted view
on the text where the textual structure is main-
tained but some, mainly thematically related, in-
formation is masked. In the extreme case where
k=0 all words are replaced by asterisks and the
only information left concerns word-length, punc-
tuation marks and numbers usage. When k=100,
function words remain visible and it is possible to
extract patterns of their usage. Note that capital-
ization of letters remain unaffected. When k in-
creases to include thousands of frequent words of
BNC more topic-related information is visible. In
general, the lower the k, the more thematic infor-
mation is masked. By appropriately tuning param-
eter k, it is possible to decide how much thematic
information is going to be compressed.

The text distortion method described in Grana-
dos, et al. (2011; 2012) has also been applied to
the input text of Table 1 for k=1,000. In com-
parison to that method, the proposed approach is
different in the following points:

• We replace the occurrences of the least fre-
quent words rather than the most frequent
words since it is well known that function
word usage provide important stylometric in-
formation.

• Punctuation marks and other symbols are
maintained since they are important style
markers.

• Capitalization of original text is maintained.

• We treat numbers in a special way in order
to keep them in the resulting text but in a
more neutral way that reflects the stylistic
choices of authors. For example, note that
in each example of Table 1 both $15,000 and
$17,000 are transformed to the same pattern.
Thus, the proposed methods are able to cap-
ture the format used by the author and discard
the non-relevant information about the exact
numbers. In the case of DV-SA, any similar
number (e.g., $1,000, $100,000) would have
exactly the same transformation.

1https://www.kilgarriff.co.uk/bnc-readme.html
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Original text
The cars, slightly smaller than the Ford Taurus and expected to be priced in the $15,000-$17,000
range, could help GM regain a sizeable piece of the mid-size car market, a segment it once
dominated.

DV-MA, k=0
*** **** , ******** ******* **** *** **** ****** *** ******** ** ** ****** ** *** $##
, ### - $## , ### ***** , ***** **** ** ****** * ******** ***** ** *** *** - **** ***
****** , * ******* ** **** ********* .

DV-MA, k=100
The **** , ******** ******* than the **** ****** and ******** to be ****** in the $## ,
### - $## , ### ***** , could **** ** ****** a ******** ***** of the *** - **** *** ******
, a ******* it **** ********* .

DV-MA, k=1,000
The **** , ******** ******* than the **** ****** and expected to be ****** in the $## ,
### - $## , ### range , could help ** ****** a ******** ***** of the *** - size car market , a
******* it once ********* .

DV-SA, k=1,000 The * , * * than the * * and expected to be * in the $# , # - $# , # range , could help * * a * * of
the * - size car market , a * it once * .

Granados et al. (2012),
k=1,000

*** cars slightly smaller **** *** ford taurus *** ******** ** ** priced ** *** *******
******* ***** ***** **** gm regain * sizeable piece ** *** mid **** *** ****** * segment
** **** dominated

Table 1: An example of transforming an input text according to DV-MA and DV-SA algorithms using
different values of k.

The new version of texts after the application
of the above distortion processes can then be used
to extract regular stylometric features like char-
acter n-grams and word n-grams. The resulting
features are expected to be more topic-neutral and
therefore more useful to an authorship attribution
model that is applied to cross-topic problems. One
crucial issue now is the appropriate selection of
parameter k that reflects how much thematic in-
formation is going to remain in the representation
of text. As will be explained in the next section
the most suitable value of k can be estimated us-
ing either the training or a validation corpus and
it reflects the thematic differences in texts by the
same authors.

4 Experimental Settings

In this section we are going to examine the ef-
fectiveness of the proposed text distortion method
when combined with regular stylometric features
and existing authorship attribution approaches. In
more detail, the following features, popular in pre-
vious authorship attribution studies, are extracted
from text: character n-grams and token n-grams2

In both cases, following the suggestions of pre-
vious work, the most frequent n-grams of the train-
ing corpus are included in the feature set (Sta-
matatos, 2009). Towards this direction, there are
two alternatives: either selecting the top d most
frequent n-grams or selecting all words with at
least ft occurrences in the training corpus. In this
study, we adopt the latter approach. Thus, for each

2We avoid to use the term word n-grams to put emphasis
on the fact that all tokens are taken into account including
punctuation marks and numbers.

of the above type of features there are two param-
eters: the order (length) of n-grams (n) and the
frequency threshold (ft). In addition, when the
proposed text distortion method is used, an addi-
tional parameter is introduced, the k most frequent
words of the language.

In most previous studies, predefined values of
n and ft (or d) are used (Hedegaard and Simon-
sen, 2011; Schwartz et al., 2013; Qian et al.,
2014; Sapkota et al., 2014; Sapkota et al., 2015).
However, the appropriate tuning of these param-
eters is crucial especially in attribution methods
that are tested in cross-topic or cross-genre con-
ditions (Stamatatos, 2013). In this paper, we es-
timate the most appropriate values of the three
above parameters by performing grid search on
the training corpus or a validation corpus (sep-
arate from the test corpus) (Jankowska et al.,
2014). In more detail, the following initial set
of values are examined: n ∈ {3, 4, 5, 6, 7, 8}
for character n-grams and n ∈ {1, 2, 3} for
token n-grams, ft ∈ {5, 10, 15, ..., 50}, and
k ∈ {0, 100, 200, ..., 500, 1000, 2000, ..., 5000}.
In case of ties, the parameter settings that corre-
spond to the lowest feature set size are selected.

In each of the experiments presented in the fol-
lowing sections, the effect of the proposed text dis-
tortion approach is examined when combined with
an existing well-known attribution model. We are
going to examine the following three cases:

• Baseline: original input texts are used (no
text distortion).

• DV-MA: the input texts are distorted using
the Algorithm 1.
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• DV-SA: the input texts are distorted using the
Algorithm 2.

5 Closed-set Attribution

5.1 Corpora
First, we examine the case where a given closed-
set of candidate authors is given. Multiple corpora
are nowadays available for this task. We selected
to use the following two corpora:

1. CCAT-10: this is a subset of the Reuters
Corpus v.1 comprising 10 authors and 100
texts per author belonging to the CCAT
thematic category (corporate and industrial
news). This corpus has been used in sev-
eral previous studies (Plakias and Stamatatos,
2008; Escalante et al., 2011; Sapkota et al.,
2015). Separate training and test corpora of
equal size are provided.

2. Guardian: this is a corpus of articles from The
Guardian UK newspaper. It includes opin-
ion articles by 13 authors on 4 thematic areas
(politics, society, UK, and world) as well as
book reviews by the same authors. It has been
used in previous work that focused on author-
ship attribution in cross-topic and cross-genre
conditions (Stamatatos, 2013; Sapkota et al.,
2014). Following the practice of previous
studies, we use at most 10 texts per author
in each category of this corpus.

It is important to highlight the main difference
among the above corpora. CCAT-10 authors tend
to write newswire stories on specific subjects and
this is consistent in both training and test corpora.
On the other hand, in the Guardian corpus the texts
by one author cover several thematic areas and two
genres (opinion articles and book reviews). There-
fore, it is expected that an authorship attribution
method that is not robust to topic shifts will be less
effective in the Guardian corpus. In CCAT-10, it
is the combination of personal style and preferred
thematic nuances that define each class (author).

To make this difference among the above cor-
pora more clear, Table 2 shows the top fifteen
words of each corpus with respect to their χ2 value
and a total frequency of at least five. As expected,
most of these words correspond to named-entities
and other topic-related information. For each
word, the total term frequency tf, document fre-
quency df (number of different documents where

CCAT-10 Guardian
Word tf df af Word tf df af
Prague 133 74 1 dam 14 3 1
crowns 168 43 1 technologies 6 2 1
ING 41 34 2 Congo 12 2 1
PX50 39 29 1 DRC 17 2 1
Wood 27 27 1 Rwandan 25 2 1
Patria 27 24 1 speakers 7 3 2
fixing 37 27 1 theft 8 3 2
Futures 23 21 1 columnist 6 2 2
Barings 58 22 2 enriched 6 2 2
pence 70 20 1 whatsoever 6 2 2
Banka 52 18 1 combatants 7 2 2
Petr 17 17 1 Gadafy 9 2 2
Czechs 49 17 1 wellbeing 9 2 2
Grenfell 48 17 1 Libya 21 2 2
derivatives 31 16 1 allusions 6 4 1

Table 2: Top fifteen words with respect to χ2 in
CCAT-10 and Guardian corpora together with oc-
currence statistics.

the word appears), and author frequency af (num-
ber of different authors in whose documents the
word appears) are also provided. As can be seen,
in CCAT-10 there are multiple words that are
author-specific and tend to appear in multiple doc-
uments by that author (both tf and df are high).
Thus, these words are useful indicators of author-
ship for that specific corpus. On the other hand, in
the Guardian corpus, it is not easy to find words
that appear in multiple documents of the same au-
thor and do not appear in documents by other au-
thors (when af is low, df is also very low).

5.2 Attribution Model

From each text of the corpus (either in its orig-
inal form or in the proposed distorted view) the
stylometric features are extracted (either character
n-grams or token n-grams) and then a SVM classi-
fier with a linear kernel is built. Such a simple at-
tribution model has been extensively used in previ-
ous work and proved to be an effective approach to
closed-set authorship attribution (Plakias and Sta-
matatos, 2008; Stamatatos, 2013; Sapkota et al.,
2014; Sapkota et al., 2015).

The BNC corpus is used to estimate the most
frequent words of the English language. For each
model, the appropriate parameter settings for n,
ft, and k are estimated based on grid search as
described in Section 4.

5.3 Results

First, we apply the examined models to the CCAT-
10 corpus. Based on 10-fold cross-validation on
the training corpus we estimate the best parame-
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Acc. n ft k N

Character
n-grams

Baseline 80.6 6 15 18,859
DV-MA 78.2 7 35 2,000 5,426
DV-SA 77.4 7 35 4,000 5,708

Token
n-grams

Baseline 80.0 1 20 1,805
DV-MA 79.2 2 5 4,000 10,199
DV-SA 79.4 2 10 4,000 4,023

Table 3: Accuracy results of closed-set attribution
on the CCAT-10 corpus. For each model, parame-
ter settings (n, ft, k) and number of features (N )
are also shown.

ter settings for each model. Then, the best models
are applied to the test corpus. Table 3 presents
the results of this experiment. As can be seen,
the baseline models are the most effective ones
using both character and token n-gram features.
However, only the DV-SA model using character
n-grams is statistically significantly worse accord-
ing to a McNemar’s test with continuity correction
(p<0.05) (Dietterich, 1998). For character n-gram
features, both the baseline models and the pro-
posed models are based on long n-grams (n=6 or
7), longer than usually examined in authorship at-
tribution studies. This reflects the topic-specificity
of classes in that corpus since longer character n-
grams are better able to capture thematic infor-
mation. Moreover, the proposed distortion-based
models were based on high values of k confirming
that thematic information is important in that cor-
pus. As concerns the token n-gram features, the
baseline model was based on unigrams while bi-
grams were selected for the proposed methods.

Next, we applied the examined models on the
opinion articles of the cross-topic Guardian cor-
pus as follows: one thematic category was used
as training corpus, another was used as validation
corpus (to estimate the best parameter settings)
and the remaining two categories were used as test
corpus. Since there are four thematic categories
in total, all 12 combinations were examined and
the results are shown in Table 4. Here the results
favour the proposed methods. Note that the aver-
age value of k is low indicating that most thematic
information is masked. For character n-gram fea-
tures, in almost all cases the distorted view models
(both DV-MA and DV-SA) outperform the base-
line. In many cases the difference with respect to
the baseline is very high, especially for character
n-gram models. According to a McNemar’s test
with continuity correction (p<0.05) on the over-
all performances, DV-MA based on character n-

grams is significantly better than all other models
except the corresponding DV-SA model. The aver-
age k value of this model is very low (150) mean-
ing that essentially only function words remain un-
masked. It should be mentioned that the base-
line character n-gram models in most cases are
more effective than baseline token n-gram models.
However, in average, they are worse than token
n-grams due to their poor performance when the
Society texts are used for training. This thematic
category contains the least number of texts (Sta-
matatos, 2013). All examined models are based on
significantly reduced feature sets in comparison to
the CCAT-10 corpus indicating that in cross-topic
conditions the least frequent features are not so
useful.

In another experiment using the Guardian cor-
pus, a cross-genre scenario was followed where
the training and evaluation corpora come from dif-
ferent genres. In more detail, the book reviews
category of that corpus was used as training cor-
pus, one thematic category of opinion articles was
used as validation corpus (to estimate the best pa-
rameter settings) and the remaining three thematic
categories of opinion articles were used as test
corpus. Again, all 4 combinations were exam-
ined (each time using a different validation cor-
pus). Note that since the training and validation
corpus belong to different genres we expect the at-
tribution models to capture the cross-genre vari-
ation. What makes this experiment challenging
is again the cross-topic variation since validation
and test corpora do not share thematic properties.
Table 5 presents the results for all tested models.
Again, the proposed distortion-based models per-
form much better in comparison to the baseline
models. In terms of overall performance, a Mc-
Nemar’s test shows that DV-MA using character
n-grams is significantly better (p<0.05) than the
rest of the models. Note also that the feature set
size for most models in this experiment is further
reduced in comparison to the previous experiment.

Tables 4 and 5 also show the average values of
best parameter settings for the experiments related
with the Guardian corpus. In comparison to the
CCAT-10 corpus (Table 3), we see that shorter
character n-grams are used for the Guardian cor-
pus while parameter k is much smaller. All these
reflect the cross-topic nature of this corpus. Note
that the proposed method is able to take advantage
of this fact by masking topic-specific information.
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Character n-grams Token n-grams
Train Valid. Test Baseline DV-MA DV-SA Baseline DV-MA DV-SA

P S U&W 83.1 86.0 87.4 78.3 77.8 79.2
P U S&W 84.4 89.9 89.4 73.7 82.7 81.0
P W S&U 88.8 88.8 85.5 83.6 85.5 84.9
S P U&W 34.0 44.4 46.4 48.5 48.5 48.5
S U P&W 32.1 47.7 47.2 49.1 45.8 49.1
S W P&U 35.4 48.8 49.0 50.5 53.6 51.6
U P S&W 69.8 80.7 69.3 68.7 72.1 65.4
U S P&W 71.6 69.1 72.5 67.7 67.2 65.1
U W P&S 76.4 82.2 79.3 75.9 70.7 75.9
W P S&U 71.7 84.9 82.9 71.1 80.9 78.9
W S P&U 70.8 87.8 88.6 68.3 77.2 79.2
W U P&S 76.4 91.0 90.8 73.6 85.1 82.8

Average Accuracy 66.2 75.1 74.0 67.4 70.6 70.1
n 3.8 4.1 4.1 1.2 1.1 1.4
ft 33.3 27.5 30.4 32.9 30.4 30.4
k 541.7 283.3 425 425
N 3,665.5 1,649.8 1,722.8 528.7 382.6 403.7

Table 4: Accuracy results of closed-set attribution on the Guardian corpus in cross-topic conditions.
P, S, U, and W correspond to Politics, Society, UK, and World thematic categories. In each row, best
performance is in boldface. Average parameter settings and average number of features (N ) are also
given.

Character n-grams Token n-grams
Train Valid. Test Baseline DV-MA DV-SA Baseline DV-MA DV-SA

B P S&U&W 38.3 60.1 58.1 43.9 49.8 51.4
B S P&U&W 41.0 57.7 52.0 47.7 49.7 50.0
B U P&S&W 39.3 57.4 49.6 40.1 48.5 51.8
B W P&S&U 40.5 59.1 59.5 48.0 50.8 52.4

Average Accuracy 39.4 58.9 55.8 44.0 49.7 51.9
n 4 3.8 4 1.8 1.5 2
ft 45 41.3 35 32.5 35 31.3
k 150 800 1,650 775
N 1,563.8 694 1,082.8 184.3 451.3 330.3

Table 5: Accuracy results of closed-set attribution on the Guardian corpus in cross-genre conditions.
B corresponds to book reviews while P, S, U, and W correspond to Politics, Society, UK, and World
thematic categories of opinion articles. In each row, best performance is in boldface. Average parameter
settings and average number of features (N ) are also given.

5.4 Effect of Parameter k

So far, the parameter settings of the proposed mod-
els, as well as the baseline methods, were ob-
tained using a validation corpus. To study the
effect of the newly introduced parameter k, we
performed an additional experiment this time us-
ing character n-gram features with fixed n =
4 and ft = 5 and varying k values (k ∈
{100, 200, ..., 1000, 1500, ..., 5000}). Similar, for
baseline models we used the same fixed n and ft
values. Figure 1 shows the performance of DV-
MA, DV-SA, and baseline models on the CCAT-
10 and Guardian corpora. Note that the results for
CCAT-10 are directly comparable to Table 3. On
the other hand, for the Guardian corpus we present
the average performance of all possible 12 combi-
nations (using one thematic category as training

corpus and another thematic category as test cor-
pus). This is not directly comparable to Table 4
(where the test corpus of each case consists of two
thematic categories).

As can be clearly seen in Figure 1 the effect
of parameter k in DV-MA and DV-SA models is
crucial. In the case of CCAT-10, performance
in general increases with k reflecting the topic-
specific information per author in this corpus. De-
spite the fact that the baseline approach is better
than the proposed models in this corpus, a care-
fully selected k value (around 3,500) makes DV-
MA equally effective to the baseline. On the other
hand, in the Guardian cross-topic corpus, the pro-
posed DV-MA and DV-SA models are better than
the baseline for all examined k values. The best
performance is obtained for low k and the accu-
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racy decreases as k increases. This clearly shows
that the use of topic-specific information in this
corpus negatively affects the effectiveness of au-
thorship attribution models. It is also notable that,
in both corpora, the differences between DV-MA
and DV-SA are not significant. However, DV-MA
is slightly better than DV-SA in most of the cases.

6 Authorship Verification

6.1 Corpora

Recently, the PAN evaluation campaigns fo-
cused on the authorship verification task and sev-
eral benchmark corpora were developed for this
task (Stamatatos et al., 2014; Stamatatos et al.,
2015). Each PAN corpus consists of a number of
verification problems and each problem includes
a set of known documents by the same author
and exactly one document of unknown authorship.
The task is to decide whether the known and the
unknown documents are by the same author. In
this paper, we use the following corpora:

PAN-2014: It includes 6 corpora cover-
ing 4 languages and several genres: Dutch
essays (PAN14-DE), Dutch reviews (PAN14-
DR), English essays (PAN14-EE), English novels
(PAN14-EN), Greek newspaper articles (PAN14-
GR) and Spanish newspaper articles (PAN14-SP).
Each corpus is divided into training and test sets.
Within each verification problem all documents
belong to the same genre and fall into the same
thematic area. Details of these corpora are pre-
sented in (Stamatatos et al., 2014).

PAN-2015: In this collection, within each veri-
fication problem the documents can belong to dif-
ferent genres and thematic areas. It includes a
cross-genre corpus in Dutch (PAN15-DU), cross-
topic corpora in English (PAN15-EN) and Greek
(PAN15-GR) and a mixed (partially cross-topic
and cross-genre) corpus in Spanish (PAN15-SP).
More details of these corpora are provided in (Sta-
matatos et al., 2015).

6.2 Verification model

In this study, we use the authorship verification ap-
proach proposed by Potha and Stamatatos (2014).
In more detail, this is a profile-based approach
meaning that first it concatenates all available
known documents and then it extracts a single
representation from the resulting document (Sta-
matatos, 2009). The top Lk n-grams of the known
text are then compared to the top Lu n-grams of

the unknown text and if the similarity is above a
predefined threshold the unknown text is attributed
to the author of the known texts. Note that pa-
rameters Lk and Lu essentially replace ft that was
used in previous experiments. All necessary pa-
rameters for this method, including n and k for the
proposed method are estimated using the training
part of each PAN corpus. Moreover, the most fre-
quent words for each language are extracted from
the corresponding training corpus.

6.3 Results

Table 6 shows the performance of the authorship
verification models on the 10 PAN benchmark
corpora based on the area under the Receiver-
Operating-Characteristic curve (AUC-ROC). This
evaluation measure was also used in PAN evalu-
ation campaigns and the presented results can be
directly compared to the ones reported by PAN or-
ganizers (Stamatatos et al., 2014; Stamatatos et al.,
2015). In average, the proposed distortion-based
models surpass the performance of the baseline
models with both character n-gram and token n-
gram features. The baseline model is better only
in the case of the most challenging cross-genre
PAN15-DU corpus. However, its performance es-
sentially resembles random guessing (0.5). DV-
SA models seem more competitive than DV-MA
in the author verification task.

Table 6 also shows the performance of DV-Opt
that corresponds to the best model (either DV-MA
or DV-SA using either character or token n-grams)
that can be selected by optimizing the performance
(AUC-ROC) on the training corpus, separately for
each one of the 10 corpora. The practice of using
different models and settings per verification cor-
pus is common in previous work (Seidman, 2013;
Jankowska et al., 2014). As can be seen in Table 6,
DV-Opt is better than any other single model in
average performance and a one-tailed t-test shows
that it is significantly better (at the 5% level) than
both baseline models and DV-MA using character
n-grams. The performance of DV-Opt is directly
comparable to the results of PAN participants re-
ported in (Stamatatos et al., 2014; Stamatatos et
al., 2015) since the best models are selected based
on information obtained from the training corpus.
The last column of Table 6 compares DV-Opt with
the overall winners of PAN-2014 (Khonji and
Iraqi, 2014) and PAN-2015 (Bagnall, 2015). DV-
Opt achieves better results in comparison to PAN
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Figure 1: Performance of DV-MA, DV-SA, and baseline models based on character n-grams for fixed
n = 4 and ft = 5 and varying k values on CCAT-10 corpus (left) and the Guardian cross-topic corpus
(right).

Corpus Character n-grams Token n-grams Diff. PAN
Baseline DV-MA DV-SA Baseline DV-MA DV-SA DV-Opt Winner

PAN14-DE 0.975 0.961 0.979 0.948 0.919 0.900 0.961 +0.048
PAN14-DR 0.643 0.686 0.700 0.691 0.690 0.704 0.704 -0.032
PAN14-EE 0.528 0.591 0.582 0.626 0.690 0.606 0.690 +0.091
PAN14-EN 0.696 0.708 0.733 0.714 0.695 0.732 0.695 -0.055
PAN14-GR 0.625 0.783 0.779 0.794 0.838 0.853 0.783 -0.106
PAN14-SP 0.770 0.784 0.802 0.718 0.838 0.832 0.832 -0.066
PAN15-DU 0.519 0.470 0.509 0.247 0.433 0.505 0.509 -0.191
PAN15-EN 0.766 0.721 0.770 0.706 0.752 0.743 0.770 -0.041
PAN15-GR 0.710 0.720 0.706 0.672 0.674 0.646 0.720 -0.162
PAN15-SP 0.690 0.818 0.813 0.852 0.841 0.852 0.852 -0.034
Average 0.692 0.724 0.737 0.697 0.737 0.737 0.752 -0.055

Table 6: AUC-ROC scores of the examined authorship verification models. Last column shows the
difference of DV-Opt with respect to the overall PAN-2014 and PAN-2015 winners.

winners in two corpora (PAN14-DE and PAN14-
EE) while its performance is notably worse than
PAN winners in PAN14-GR, PAN15-DU, and
PAN15-GR. It should be underlined that the verifi-
cation method used in this paper is an intrinsic ap-
proach while both PAN-2014 and PAN-2015 win-
ners followed an extrinsic approach (where addi-
tional documents by other authors are considered
in order to transform the verification problem to a
binary classification task). Extrinsic models tend
to perform better (Stamatatos et al., 2015).

7 Conclusions

In this paper, we presented techniques of text dis-
tortion that can significantly enhance the robust-
ness of authorship attribution methods in chal-
lenging cases where the topic of documents by
the same author varies. The proposed algorithms
transform texts into a form where topic informa-
tion is compressed while textual structure related
to personal style is maintained. These algorithms
are language-independent, do not require compli-

cated resources, and can easily be combined with
existing authorship attribution methods. Experi-
mental results demonstrated a considerable gain
in effectiveness when using the proposed models
under the realistic cross-topic conditions in both
closed-set attribution and author verification tasks.
On the other hand, when the corpora are too topic-
specific where the texts by a given author are con-
sistently on certain subjects different than the ones
of the other candidate authors, the distortion meth-
ods seem not to be helpful. Parameter k can be
carefully adjusted to reflect topic properties of a
given corpus.

More experiments are needed in the case of
cross-genre conditions to estimate if the proposed
method is also able to compress genre information
and at the same time maintain properties related to
personal style of authors. It would also be inter-
esting to examine whether the distorted views of
texts can be useful to other style-based text catego-
rization tasks, including author profiling and genre
detection.
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Abstract

We propose a scalable structured learning
model that jointly predicts temporal rela-
tions between events and temporal expres-
sions (TLINKS), and the relation between
these events and the document creation
time (DCTR). We employ a structured per-
ceptron, together with integer linear pro-
gramming constraints for document-level
inference during training and prediction to
exploit relational properties of temporal-
ity, together with global learning of the re-
lations at the document level. Moreover,
this study gives insights in the results of in-
tegrating constraints for temporal relation
extraction when using structured learning
and prediction. Our best system outper-
forms the state-of-the art on both the CON-
TAINS TLINK task, and the DCTR task.

1 Introduction

Temporal information is critical in many clinical
areas (Combi and Shahar, 1997). A big part of this
temporal information is captured in the free text
of patient records. The current work aims to im-
prove temporal information extraction from such
clinical texts. Extraction of temporal information
from clinical text records can be used to construct
a time-line of the patient’s condition (such as in
Figure 1). The extracted time-line can help clini-
cal researchers to better select and recruit patients
with a certain history for clinical trials. Moreover,
the time-line is crucial for making a good patient
prognosis and clinical decision support (Onisko et
al., 2015; Stacey and McGregor, 2007).

Temporal information extraction can be divided
into three sub-problems: (1) the detection of
events (Ee); (2) the detection of temporal expres-
sions (Et); and (3) the detection of temporal rela-

tions between them. In the clinical domain, events
include medical procedures, treatments, or symp-
toms (e.g. colonoscopy, smoking, CT-scan). Tem-
poral expressions include dates, days of the week,
months, or relative expressions like yesterday, last
week, or post-operative. In this work, we focus on
the last sub-problem, extraction of temporal rela-
tions (assuming events and temporal expressions
are given). As a small example of the task we aim
to solve, given the following sentence:

In 1990 the patient was diagnosed and
received surgery directly afterwards.

in which we assume that the events diagnosed
and adenocarcinoma, and the temporal expression
1990 are given, we wish to extract the following
relations:

• CONTAINS(1990, diagnosed)

• CONTAINS(1990, surgery)

• BEFORE(diagnosed, surgery)

• BEFORE(diagnosed, d)

• BEFORE(surgery, d)

where d stands for the document creation time.
Our work leads to the following contributions:

First, we propose a scalable structured learning
model that jointly predicts temporal relations be-
tween events and temporal expressions (TLINKS),
and the relation between these events and the doc-
ument creation time (DCTR). In contrast to ex-
isting approaches which detect relation instances
separately, our approach employs a structured per-
ceptron (Collins, 2002) for global learning with
joint inference of the temporal relations on a
document level. Second, we ensure scalability
through using integer linear programming (ILP)
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Figure 1: Fragment of a (partial) patient time-line.

constraints with fast solvers, loss augmented sub-
sampling, and good initialization. Third, this
study leads to valuable insights on when and how
to make inferences over the found candidate rela-
tions both during training and prediction and gives
an in-depth assessment of the use of additional
constraints and global features during inference.
Finally, our best system outperforms the state-of-
the-art of both the CONTAINS TLINK task, and the
DCTR task.

2 Related Work

There have been two shared tasks on the topic of
temporal relation extraction in the clinical domain:
the I2B2 Temporal Challenge (Sun et al., 2013),
and more recently the Clinical TempEval Shared
Task with two iterations, one in 2015 and one in
2016 (Bethard et al., 2014; Bethard et al., 2015;
Bethard et al., 2016). In the I2B2 Temporal Chal-
lenge eight types of relations were initially anno-
tated. However, due to low inter-annotator agree-
ment these were merged to three types of temporal
relations, OVERLAP, BEFORE, and AFTER. Good
annotation of temporal relations is difficult, as an-
notators frequently miss relation mentions. In the
Clinical TempEval Shared tasks the THYME cor-
pus is used (Styler IV et al., 2014), with a dif-
ferent annotation scheme that aims at annotating
those relations that are most informative w.r.t. the
time-line, and gives less priority to relations that
can be inferred from the others. This results in
two categories of temporal relations: The rela-
tion between each event and the document creation
time (DCTR), dividing all events in four temporal
buckets (BEFORE, BEFORE/OVERLAP,OVERLAP,
AFTER). These buckets are called narrative con-
tainers (Pustejovsky and Stubbs, 2011). And sec-
ond, relations between temporal entities that both
occur in the text (TLINKS). TLINKS may occur
between events (Ee × Ee), and between events

and temporal expressions (Ee ×Et and Et ×Ee).
The TLINK types (and their relative frequency
in the THYME corpus) are CONTAINS (64,42%),
OVERLAP (15,19%), BEFORE (12,65%), BEGINS-
ON (6.15%), and ENDS-ON (1.59%). The rela-
tions AFTER, and DURING are expressed in terms
of their inverse, BEFORE, and CONTAINS respec-
tively. In our experiments, we use the THYME
corpus for its relatively high inter-annotator agree-
ment (particularly for CONTAINS).

To our knowledge, in all submissions (4 in
2015, and 10 in 2016) of Clinical TempEval the
task is approached as a classical entity-relation ex-
traction problem, and the predictions for both cat-
egories of relations are made independently from
each other, or in a one way dependency, where the
containment classifier uses information about the
predicted document-time relation. Narrative con-
tainment, temporal order, and document-time rela-
tion have very strong dependencies. Not modeling
these may result in inconsistent output labels, that
do not result in a consistent time-line.

An example of inconsistent labeling is given in
Figure 2. The example is inconsistent when as-
signing the AFTER label for the relation between
lesion and the document-time. It is inconsis-
tent because we can also infer that lesion occurs
BEFORE the document-time, as the colonoscopy
event occurs before the document-time, and the le-
sion is contained by the colonoscopy.

Temporal inference, in particular temporal clo-
sure, is frequently used to expand the training data
(Mani et al., 2006; Chambers and Jurafsky, 2008;
Lee et al., 2016; Lin et al., 2016b), most of the
times resulting in an increase in performance, and
is also taken into account when evaluating the pre-
dicted labels (Bethard et al., 2014; UzZaman and
Allen, 2011). Only very limited research regards
the modeling of temporal dependencies into the
machine learning model. (Chambers and Juraf-
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(event) (timex3) (event)
A colonoscopy on September 27, 2008 revealed a circumferential lesion .

BEFORE AFTER

contains

contains

Figure 2: Example of inconsistent output labeling. Containment is indicated by directed edges, and the
relation to the document-time by small caps below the events.

sky, 2008) and (Do et al., 2012) modeled label de-
pendencies when predicting TimeBank TLINKS
(Pustejovsky et al., 2003). They trained local
classifiers and used a set of global temporal label
constraints. Integer linear programming was em-
ployed to maximize the score from the local clas-
sifiers, while satisfying the global label constraints
at prediction time. For both, this gave a significant
increase in performance, and resulted in consistent
output labels.

(Yoshikawa et al., 2009) modeled the label
dependencies between TLINKS and DCTR with
Markov Logic Networks (MLN), allowing for soft
label constraints during training and prediction.
However, MLN can sometimes be sub-optimal for
text mining tasks w.r.t. time efficiency (Mojica
and Ng, 2016). Quite recently, for a similar prob-
lem, spatial relation extraction, (Kordjamshidi et
al., 2015) used an efficient combination of a struc-
tured perceptron or structured support vector ma-
chine with integer linear programming. In their
experiments, they compare a local learning model
(LO), a local learning model with global inference
at prediction time (L+I), and a structured learn-
ing model with and without inference during train-
ing (IBT+I, and IBT-I respectively). In their ex-
periments L+I gave better results than LO, but a
more significant improvement was made when us-
ing structured learning in contrast to local learn-
ing.

In this work, we aim to jointly predict TLINKS
and DCTR in a structured learning model with in-
ference during training and prediction, to assess
inference with temporal constraints of (Cham-
bers and Jurafsky, 2008; Do et al., 2012) for the
THYME relations, and to experiment with both
local, and document-level inference for temporal
information extraction in the clinical domain.

3 The Model

For jointly learning both tasks on a document
level, we employ a structured perceptron learning
paradigm (Collins, 2002). The structured percep-
tron model uses a joint feature function Φ(X,Y )
to represent a full input document X with a label
assignment Y . During training the model learns a
weight vector λ to score how good the label as-
signment is. Predicting label assignment Y for
a document X corresponds to finding the Y with
the maximal score. In the following sub-sections
we define the joint feature function Φ, describe
the prediction procedure of the model, and provide
how we train the model (i.e. learn a good λ).

3.1 Joint Features

To compose the joint feature function, we first de-
fine two local feature functions: φtl : (x, y) →
Rp assigns features for the local classifications
regarding TLINKS (with possible labels Ltl =
{CONTAINS, BEFORE, OVERLAP, BEGINS-ON,
ENDS-ON, NO LABEL}), and a second local fea-
ture function φdr : (x, y) → Rq, for local
features regarding document-time relation clas-
sification (with labels Ldr = {BEFORE, BE-
FORE OVERLAP, OVERLAP, AFTER}. The fea-
tures used by these local feature functions are
given in Table 1.

From these, we define a joint feature func-
tion Φjoint : (X,Y ) → Rp+q, that concate-
nates (⊕) the summed local feature vectors, cre-
ating the feature vector for the global prediction
task (predicting all labels in the document for both
sub-tasks at once). Φjoint is defined in Equa-
tion 1, where Ctl(X) and Cdr(X) are candidate
generation functions for the TLINK sub-task, and
DCTR sub-task respectively (further explained in
Section 3.2).
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Features φdr φtl

String features for tokens and POS of each entity X X
String features for tokens and POS in a window of size {3, 5}, left and right of each entity X X
Boolean features for entity attributes (event polarity, event modality, event degree, and type) X X
String feature for the token and POS of the closest verb X
String feature for the token and POS of the closest left and right entity X
String features for the token {1, 2, 3}-grams and POS {1, 2, 3}-grams in-between the two entities X
Dependency path between entities (consisting of POS and edge labels) X
Boolean feature on if the first argument occurs before the second (w.r.t. word order) X

Table 1: Features of the local feature functions of each sub-task, φtl for TLINKS, and φdr for DCTR.

Φjoint(X,Y ) =
∑

x∈Cdr(X)

∑

l∈Ldr

φdr(x, l)

⊕
∑

x∈Ctl(X)

∑

l∈Ltl

φtl(x, l) (1)

3.2 Local Candidate Generation
For each document X , we create local candi-
dates for both sub-tasks. In this work, we as-
sume that event (Ee) and temporal expression
(Et) annotations are provided in the input. The
DCTR-candidates in document X are then given
by Cdr(X), which returns all events in the docu-
ment, i.e. Ee(X). Ctl(X) returns all TLINK can-
didates, i.e. Ee(X) ∪ Et(X) × Ee(X). In our
experiments we usually restrict the number of can-
didates generated by Ctl to gain training and pre-
diction speed (without significant loss in perfor-
mance). This is explained further in Section 4.3.

3.3 Global Features
We also experiment with a set of global features,
by which we mean features that are expressed in
terms of multiple local labels. The global features
are specified in Table 2. Global features are de-
fined by a feature function Φglobal(X,Y ) → Rr

and have their corresponding weights in weight
vector λ. When using global features Φglobal is
concatenated with the joint feature function Φjoint

to form the final feature function Φ, as show in in
Equation 2.

Φ(X,Y ) = Φjoint(X,Y )⊕ Φglobal(X,Y ) (2)

When not using global features, we use only the
joint features, as shown in Equation 3.

Φ(X,Y ) = Φjoint(X,Y ) (3)

Feature Description

Φsdr Bigram and trigram counts of subsequent
DCTR-labels in the document

Φdrtl Counts of DCTR-label pairs of the
entities of each TLINK

Table 2: Global (document-level) features.

3.4 Prediction

The model assigns a score to each input document
X together with output labeling Y . The score
for (X,Y ) is defined as the dot product between
the learned weight vector λ and the outcome of
the joint feature function Φ(X,Y ), as shown in
Equation 4.

S(X,Y ) = λΦ(X,Y ) (4)

The prediction problem for an input document X
is finding the label assignment Y that maximizes
the score S based on the weight vector λ, shown
in Equation 5.

Ŷk = arg max
Y

S(X,Y ) (5)

We use integer linear programming (ILP) to solve
the prediction problem in Equation 5. Each pos-
sible local decision is modeled with a binary de-
cision variable. For each local relation candidate
input xi,j (for the relation between i and j) a bi-
nary decision variable wl

i,j is used for each poten-
tial label l that could be assigned to xi,j , depend-
ing on the sub-task. The objective of the integer
linear program, given in Equation 6, is to maxi-
mize the sum of the scores of local decisions. In
all equations the constant d refers to the document-
creation time. The objective is maximized under
two sets of constraints, given in Equations 7 and
8, that express that each candidate is assigned ex-
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actly one label, for each sub-task.

O = arg max
W

∑

xi,d∈Cdr(X)

∑

l∈Ldr

wl
i,d·S(xi,d, y

l
i,d)

+
∑

xi,j∈Ctl(X)

∑

l∈Ltl

wl
i,j · S(xi,j , y

l
i,j) (6)

∀i :
∑

l∈Ldr

wl
i,d = 1 (7)

∀i,j :
∑

l∈Ltl

wl
i,j = 1 (8)

For solving the integer linear program we use
Gurobi (Gurobi Optimization, 2015).

3.4.1 Temporal Label Constraints
Because temporal relations are interdependent, we
experimented with using additional constraints on
the output labeling. The additional temporal con-
straints we experiment with are shown in Table 3.
Constraints are expressed in terms of the binary
decision variables used in the integer linear pro-
gram.

In Table 3, constraints CCtrans, and CBtrans

model transitivity of CONTAINS, and BEFORE re-
spectively. Constraints CCBB , and CCAA model
the consistency between TLINK relation CON-
TAINS and DCTR relations BEFORE, and AFTER

respectively (resolving the inconsistent example
of CCBB in section 1, and Figure 2). Similarly,
CBBB , and CBAA model the consistency between
TLINK relation BEFORE and DCTR relations BE-
FORE, and AFTER.

Constraints can be applied during training and
prediction, as Equation 5 is to be solved for both.
If not mentioned otherwise, we use constraints
both during training and prediction.

3.5 Training
The training procedure for the averaged structured
perceptron is given by Algorithm 1, for I itera-
tions, on a set of training documents T . Notice
that the prediction problem is also present during
training, in line 6 of the algorithm. Weight vec-
tor λ is usually initialized with ones, and updated
when the predicted label assignment Ŷk for input
documentXk is not completely correct. The struc-
tured perceptron training may suffer from over-
fitting. Averaging the weights over the training ex-
amples of each iteration is a commonly used way
to counteract this handicap (Collins, 2002; Freund

and Schapire, 1999). In Algorithm 1, c is used to
count the number of training updates, and λa as a
cache for averaging the weights. We also employ
local loss-augmented negative sub-sampling, and
local pre-learning to address class-imbalance and
training time.

Algorithm 1 Averaged Structured Perceptron
Require: λ, λa, c, I, T
1: c← 0
2: λ← 〈1, . . . , 1〉
3: λa ← 〈1, . . . , 1〉
4: for i in I do
5: for k in T do
6: Ŷk ← arg max

Y
λΦ(Xk, Y )

7: if Ŷk 6= Yk then
8: λ← λ+ Φ(Xk, Yk)− Φ(Xk, Ŷk)

9: λa ← λa + c · Φ(Xk, Yk)− c · Φ(Xk, Ŷk)
10: c← c+ 1

return λ− λa/c

3.5.1 Loss-augmented Negative
Sub-sampling

For the TLINK sub-task, we have a very large neg-
ative class (NO LABEL) and a relatively small pos-
itive class (the other TLINK labels) of training ex-
amples. To speed up training convergence and ad-
dress class imbalance at the same time, we sub-
sample negative examples during training. Within
a document X , for each positive local training
example (xpositive, ypositive) we take 10 random
negative examples and add the negative example
(xnegative, yno label) with the highest score for re-
lation ypositive, i.e. S(xnegative, ypositive). This
cutting plane optimization gives preference to neg-
ative training examples that are more likely to be
classified wrongly, and thus can be learned from
(in an online manner), and it provides only one
negative training example for each positive train-
ing example, balancing the TLINK classes.

3.5.2 Local Initialization
To reduce training time, we don’t initialize λ with
ones, but we train a perceptron for both local sub-
tasks, based on the same local features mentioned
in Table 1, and use the trained weights to initial-
ize λ for those features. A similar approach was
used by (Weiss et al., 2015) for dependency pars-
ing. Details on the training parameters of the per-
ceptron are given in Section 4.3.

4 Experiments

We use our experiments to look at the effects of
four modeling settings.
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Abbrev. Label Dependencies Constraints

CCtrans CONTAINSi,j ∧ CONTAINSj,k → CONTAINSi,k ∀i,j,k : wcontains
i,k − wcontains

i,j − wcontains
j,k ≥ −1

CBtrans BEFOREi,j ∧ BEFOREj,k → BEFOREi,k ∀i,j,k : wbefore
i,k − wbefore

i,j − wbefore
j,k ≥ −1

CCBB CONTAINSi,j ∧ BEFOREi,d → BEFOREj,d ∀i,j : wbefore
j,d − wcontains

i,j − wbefore
i,d ≥ −1

CCAA CONTAINSi,j ∧ AFTERi,d → AFTERj,d ∀i,j : wafter
j,d − wcontains

i,j − wafter
i,d ≥ −1

CBBB BEFOREi,j ∧ BEFOREj,d → BEFOREi,d ∀i,j : wbefore
i,d − wbefore

i,j − wbefore
j,d ≥ −1

CBAA BEFOREi,j ∧ AFTERi,d → AFTERj,d ∀i,j : wafter
j,d − wbefore

i,j − wafter
i,d ≥ −1

Table 3: Temporal label dependencies expressed as integer linear programming constraints. The vari-
ables i, j and k range over the corresponding TLINK arguments, and constant d refers to the document-
creation-time. CONTAINSi,j indicates that entity i contains entity j.

1. Document-level learning in contrast to pair-
wise entity-relation learning.

2. Joint learning of DCTR and TLINKS.

3. Integrating temporal label constraints.

4. Using global structured features.

We will discuss our results in Section 4.4. But
first, we describe how we evaluate our system, and
provide information on our baselines, and the pre-
processing and hyper-parameter settings used in
the experiments.

4.1 Evaluation
We evaluate our method on the clinical notes test
set of the THYME corpus (Styler IV et al., 2014),
also used in the Clinical TempEval 2016 Shared
Task (Bethard et al., 2016). Some statistics about
the dataset can be found in Table 4. F-measure
is used as evaluation metric. For this we use the
evaluation script from the Clinical TempEval 2016
Shared Task. TLINKS are evaluated under the
temporal closure (UzZaman and Allen, 2011).

Section Documents TLINKS EVENTS

Train 440 17.109 38.872
Test 151 8.903 18.989

Table 4: Dataset statistics for the THYME sec-
tions we used in our experiments.

4.2 Baselines
Our first baseline is a perceptron algorithm,
trained for each local task using the same local
features as used to compose the joint feature func-
tion Φjoint of our structured perceptron. We have

two competitive state-of-the-art baselines, one for
the DCTR sub-task, and one for the TLINK sub-
task. The first baseline is the best performing
system of the Clinical TempEval 2016 on the
DCTR task (Khalifa et al., 2016). They exper-
iment with a feature rich SVM and a sequential
conditional random field (CRF) for the prediction
of DCTR and report the – to our knowledge –
highest performance on the DCTR task. The com-
petitive TLINK baseline is the latest version of the
cTAKES Temporal system (Lin et al., 2016b; Lin
et al., 2016a). They employ two SVMS to pre-
dict TLINKS, one for TLINKS between events,
and one for TLINKS between events and tempo-
ral expressions and recently improved their sys-
tem by generating extra training data using ex-
tracted UMLS concepts. They report the – to our
knowledge – highest performance on CONTAINS

TLINKS in the THYME corpus.

4.3 Hyper-parameters and Preprocessing

In all experiments, we preprocess the text by us-
ing a very simple tokenization procedure consid-
ering punctuation1 or newline tokens as individ-
ual tokens, and splitting on spaces. For our part-
of-speech (POS) features, and dependency parse
path features, we rely on the cTAKES POS tag-
ger and cTAKES dependency parser respectively
(Savova et al., 2010). After POS tagging and pars-
ing we lowercase the tokens. As mentioned in
Section 3.2, we restrict our TLINK candidate gen-
eration in two ways. First, both entities should
occur in a token window of 30, selected from
{20, 25, 30, 35, 40} based on development set per-
formance. And second, both entities should occur
in the same paragraph (paragraphs are separated

1, ./\"’=+-;:()!?<>%&$*|[]{}
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by two consecutive newlines). Our motivation for
not using sentence based candidate generation is
that the clinical records contain many ungrammat-
ical phrases, bullet point enumerations, and tables
that may result in missing cross-sentence relation
instances (Leeuwenberg and Moens, 2016). In all
experiments, we train the normal perceptron for 8
iterations, and the structured perceptron for 32 it-
erations, both selected from {1, 2, 4, 8, 16, 32, 64}
based on best performance on the development set.
The baseline perceptron is also used for the initial-
ization of the structured perceptron. Moreover, we
apply the transitive closure of CONTAINS, and BE-
FORE on the training data.

4.4 Results
Our experimental results on the THYME test set
are reported in Table 5. In the table, the abbrevia-
tion SP refers to the structured perceptron model
described in Section 3 but without temporal la-
bel constraints or global features, i.e. the joint
document-level unconstrained structured percep-
tron, using local initialization, and loss-augmented
negative sub-sampling. We compare this model
with a number of modified versions to explore the
effect of the modifications.

4.4.1 Document-Level Learning
When we compare the local perceptron base-
line with any of the document-level models
(any SP variation), we can clearly see that
learning the relations at a document-level im-
proves our model significantly2 (P<0.0001 for
both DCTR and TLINKS). Furthermore, when
comparing loss-augmented sub-sampling (SP)
with random sub-sampling of negative TLINKS
(SPrandom sub-sampling) it can be seen that a good
selection of negative training instances is very
important for learning a good model (again
P<0.0001), and resulted in our model to im-
prove the state-of-the-art by 1.4 on the CONTAINS

TLINK task3.

4.4.2 Jointly Learning DCTR and TLINKS
When comparing the disjoint model (SPdisjoint)
with our joint model (SP) it can be noticed that
joint prediction gives only a very small improve-
ment (P=0.0768 for TLINKS, and P=0.0451 for

2Significance is based on a document-level paired t-test.
3Only CONTAINS is generally reported for the THYME

corpus, as the other TLINKS are less frequent, and the inter-
annotator agreement for them is very low. We included them
just for completeness in our experiments.

DCTR). However, joint learning on a document
level provides the flexibility to formulate con-
straints connecting the labels of both tasks, such
as the last four constraints in Table 3, resulting in
a more consistent labeling over both tasks. Sim-
ilarly, in the joint learning setting, we can define
global features that connect both tasks (like Φdrtl).

4.4.3 Integrating Temporal Constraints
We experimented with integrating label con-
straints in two ways (1) both during training and
prediction (SPcc + C∗), or (2) only during predic-
tion (SPuc + C∗). In general it can be noticed
that in our experiments using the temporal label
constraints from Table 3 slightly increases DCTR
performance, but slightly decreases TLINK per-
formance. A reason for this can be that the model
generally gives better predictions for DCTR, that
might result in providing a better alternative to
a constraint violating solution. A difference in
consistency of the annotation between both tasks
could also be a reason. Furthermore, we can
see that integrating the constraints both during
training and prediction gives slightly lower per-
formance compared only integrating them during
prediction.

4.4.4 Using Global Structured Features
We have two types of features, Φsdr, which is
only based on DCTR labels, and Φdrtl, which is
based on a combination of DCTR and TLINK la-
bels. When we add Φsdr to our model, the overall
F-measure on the DCTR task improves with 1.3
points (P<0.0001), improving the state-of-the-art
by 0.3 points. A reason for this can be the sequen-
tial dependency of DCTR labels, also exploited by
(Khalifa et al., 2016), using the sequential CRF.
The second global feature, Φdrtl, in fact models
the same type of dependencies as the last four con-
straints in Table 3, relating the TLINK relations
with the DCTR labels of each TLINK argument,
however as a soft dependency and not as a hard
constraint. In our experiments, this feature did
not improve either of the two sub-tasks. It ap-
pears that training with cross-task constraints, or
global cross-task features is not trivial, and fur-
ther research is needed on how to exploit these
cross-task dependencies also during training. We
assume that the lower-than-expected scores when
modeling cross-task dependencies may be related
to sub-sampling the negative TLINK training in-
stances.
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System F DCTR
BEFORE F DCTR

AFTER F DCTR
OVERLAP F DCTR

BEFORE/OVERLAP F DCTR
ALL F TLINK

CONTAINS F TLINK
BEFORE F TLINK

OVERLAP F TLINK
BEGINS-ON F TLINK

ENDS-ON F TLINK
ALL

Baseline: perceptron 0.776 0.744 0.769 0.528 0.759 0.456 0.147 0.073 0.060 0.024 0.364
(Khalifa et al., 2016) - - - - 0.843 - - - - -
(Lin et al., 2016b) - - - - - 0.594 - - - - -

SP 0.837 0.805 0.860 0.575 0.833 0.608 0.294 0.185 0.158 0.231 0.518
SPrandom sub-sampling 0.837 0.803 0.859 0.575 0.833 0.564 0.275 0.204 0.154 0.218 0.490
SPdisjoint 0.835 0.801 0.859 0.576 0.832 0.607 0.290 0.183 0.146 0.232 0.516
SPcc + C∗ 0.843 0.810 0.861 0.573 0.836 0.603 0.292 0.186 0.148 0.222 0.514
SPuc + C∗ 0.843 0.814 0.861 0.574 0.837 0.606 0.291 0.184 0.157 0.236 0.516
SP + Φsdr 0.856 0.830 0.867 0.569 0.846 0.608 0.291 0.182 0.159 0.222 0.518
SP + Φdrtl 0.838 0.811 0.855 0.564 0.831 0.605 0.286 0.176 0.147 0.217 0.514

Table 5: Results on the THYME test set. SP refers to our structured perceptron model, without con-
straints or global features, using local initialization and loss-augmented negative sub-sampling. C∗ refers
to using all constraints. Superscript CC and UC refer to using constraints at training and prediction time,
or only at prediction time respectively.

5 Conclusions

In this work, we proposed a structured per-
ceptron model for learning temporal relations
between events and the document-creation time
(DCTR), and between temporal entities in the
text (TLINKS) in clinical records. Our model
efficiently learns and predicts at a document
level, exploiting loss-augmented negative sub-
sampling, and uses global features allowing
it to exploit relations between local output la-
bels. For construction of a consistent output
labeling, needed for time-line construction, we
formulated a number of constraints, including
those from (Chambers et al., 2007; Do et al.,
2012), and assessed them during inference. Our
best system outperforms the state-of-the-art
of both the CONTAINS TLINK task, and the
DCTR task. Our code for this work is available at
https://github.com/tuur/SPTempRels.
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Abstract

Text mining has drawn significant atten-
tion in recent past due to the rapid growth
in biomedical and clinical records. Entity
extraction is one of the fundamental com-
ponents for biomedical text mining. In
this paper, we propose a novel approach of
feature selection for entity extraction that
exploits the concept of deep learning and
Particle Swarm Optimization (PSO). The
system utilizes word embedding features
along with several other features extracted
by studying the properties of the datasets.
We obtain an interesting observation that
compact word embedding features as de-
termined by PSO are more effective com-
pared to the entire word embedding fea-
ture set for entity extraction. The pro-
posed system is evaluated on three bench-
mark biomedical datasets such as GENIA,
GENETAG and AiMed. The effective-
ness of the proposed approach is evident
with significant performance gains over
the baseline models as well as the other ex-
isting systems. We observe improvements
of 7.86%, 5.27% and 7.25% F-measure
points over the baseline models for GE-
NIA, GENETAG, and AiMed dataset re-
spectively.

1 Introduction

The tremendous amount of information accumu-
lated in the domains of molecular biology has
drawn the attention of biomedical natural lan-
guage processing (BioNLP) community in order
to facilitate the development of various tools for
various text processing applications, curation and
organization of ever-growing biomedical literature
etc. Entity extraction is crucial step for solving

several pipelined applications such as information
extraction, automatic summarization, question-
answering, word sense disambiguation etc. Bio-
medical entities mostly refer to the biological se-
quences of protein & gene such as DNA, RNA,
cell type, cell line etc. (Kim et al., 2004). The
way of extracting these information from biomed-
ical and clinical texts refers to as entity extraction.
An automatic system which can extract biomed-
ical names such as gene, protein or any disease
name from text can substantially reduce the human
efforts. However, extracting these entities from
text poses several challenges which are presented
as follows:

1. Named entities are very generative in nature,
i.e. many new names are continuously being
generated. Any dictionary can not capture all
the various forms of a given name.

2. Similar words convey different meanings,
and therefore, a word can have multiple NE
types. For example, gene names often con-
tain alphabets, digits, hyphens, and other
characters, thus having many variants (e.g.,
“HIV-1 enhancer” versus “HIV 1 enhancer”).
Moreover, many abbreviations (e.g., “IL2”
for “Interleukin 2”) constitute integral parts
of biomedical named entities (NEs).

3. Biomedical names are usually of long length,
and contains different types of symbols, and
hence boundary detection becomes problem-
atic.

4. Ambiguity: Same name could be used to rep-
resent variety of biological entities which fur-
ther worsen the problem.

The challenges as of these kinds are the pri-
mary causes behind the low accuracies of the sys-
tems developed for entity extraction in biomedi-
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cal text. The research challenges have been ad-
dressed in the literature including in some shared-
task challenges, such as JNLPBA (Joint Workshop
on Natural Language Processing in Biomedicine
and its Applications) in 2004 (Kim et al., 2004)
and BioCreative (Critical Assessment for Informa-
tion Extraction in Biology Challenge) II GM (gene
mention) subtask in 2007 (Smith et al., 2008).
Over the years several benchmark corpora have
been created that do not conform to the uniform
annotation guidelines. Therefore the system, de-
veloped by targeting a specific domain, often fails
to show reasonable accuracy when it is evaluated
for some other domains. In our work we attempt to
build a system for entity extraction that performs
well across various biomedical corpora.
Popular existing system mostly rely on rule-based
system or supervised machine learning technique
to automatically extract entities. They looked
upon this problem as in terms of sequence label-
ing and used algorithm such as hidden markov
models (HMM) (Zhao, 2004), support vector ma-
chines (SVM) (Kazama et al., 2002; GuoDong
and Jian, 2004), maximum entropy Markov model
(MEMM) (Finkel et al., 2005) and conditional
random fields (CRF) (Ekbal et al., 2013; Settles,
2004; Kim et al., 2005). These supervised learn-
ing models is fully dependent on the features that
we use for training. Some of the popular fea-
tures used in the existing studies include linguistic
features such as morphological, syntactic and se-
mantic information of words and domain-specific
features from biomedical ontologies such as Bio-
Thesaurus (Liu et al., 2006) and UMLS (Unified
Medical Language System) (Bodenreider, 2004).
However, these features heavenly account to the
problem of data sparsity.
In the recent past, there has been huge interest
in using large unlabeled corpus to generate word
representation feature using deep neural network
technique. We are motivated by the strength of
deep learning concepts to build our model. We
use the well-known word embedding model that
is a robust framework to incorporate word repre-
sentation features (Mikolov et al., 2013b). Word
representation feature is a mathematical descrip-
tion of the word in vector form. Each position
of vector corresponds to a feature with some se-
mantic or grammatical inference which leads to
the term word feature. Word representation fea-
tures contains latent syntactic/semantic informa-

tion of a word. The main objective to use word
embedding is to provide more useful information
to the model being trained. Vector based word
representation has powerful capability that cap-
tures the phenomenon that words having the sim-
ilar meanings should appear together (Mikolov et
al., 2013b). In traditional machine learning, data
sparsity is a problem that often causes the degra-
dation in performance. This drawback could be
overcome by the incorporation of word embed-
ding with the presumption that similar type of
word (as to semantics) appear in the similar con-
text (Mikolov et al., 2013b).

The aim is to exploit the usefulness of neural
network based word embedding (Bengio et al.,
2003) as a feature for entity extraction in biomed-
ical text. In addition we also make use of a very
diverse feature set that exploits the properties of
data and problem specific knowledge. We restrict
ourselves from using much domain-specific in-
formation for feature extraction, keeping in view
easy adaptability of the system to more than one
biomedical corpora.

However, the huge dimensionality of the word
representation vector often contributes to the com-
plexity of the system. This motivated us to ap-
ply feature selection technique to reduce the di-
mensionality contributed by word embedding as
well as to improve the system performance. Our
algorithm for feature selection is based on wrap-
per based approach, which is formulated as an
optimization problem. We use Particle Swarm
Optimization(PSO) (Kennedy and Eberhart, 1997)
as the underlying optimization strategy. Particle
Swarm Optimization is an evolutionary technique,
inspired by the social behavior of birds. Some
recent studies show that PSO converges faster
compared to some other widely used optimization
techniques (Bansal et al., 2011). Inspired by this
observation we use PSO in our current study.
To analyze the effect of pruned word embedding,
we have carried out an experiment with all the
handcrafted features and the reduced features as
determined by PSO. We perform experiments on
three standard datasets, namely GENIA, GENE-
TAG and AiMed. Evaluation results show that we
achieve significant performance gains with the use
of pruned word embedding feature set. The best
performance of the system was obtained when we
apply PSO based feature selection technique on
combination of handcrafted features set and word
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embedding features. The key contribution of this
paper are, (i) proposal of PSO based feature se-
lection technique in bio-medical entity extraction.
(ii) analysis of feature selection on only word rep-
resentation features. (iii) impact of feature selec-
tion on word representation features with hand-
craft features.

2 Related Works

There has been quite a significant number of ex-
isting works available for biomedical named en-
tity recognition (BNER). These approaches can
be divided into three major categories: (1) dictio-
nary based, (2) rule based and (3) machine learn-
ing based techniques. Among these existing ap-
proaches, machine learning based techniques have
gained a lot more attention due to the availabil-
ity of sufficiently good amount of annotated cor-
pus. For example, majority of the systems sub-
mitted to the JNLPBA challenge made use of ma-
chine learning algorithms which have been ob-
served to significantly outperform the dictionary
based methods.
Some of the recent works in BNER includes the
unsupervised model as proposed in (Zhang and
Elhadad, 2013), and the system based on CRF
(Li et al., 2015a). A two-phase approach based
on semi-Markov CRF is proposed in (Yang and
Zhou, 2014). In the first phase boundaries of
entities are identified while in the second phase
semantic labeling is performed to label the de-
tected entities. A CRF based system has been
proposed by (Tang et al., 2015), where in the
first step boundaries of NEs are identified and in
the second step appropriate labels are assigned.
(Grouin, 2014) performed experiments on the
i2b2/VA-2010 challenge dataset to detect bacte-
ria and biotopes names. They developed a model
based on CRFs. An unsupervised approach is
proposed in (Han et al., 2016) that made use of
clustering based active learning. They have used
Shared Nearest Neighbor (SNN) clustering tech-
nique. The work reported in (Li et al., 2015a),
authors have proposed a parallel CRF algorithm
(MapReduce CRF) which provides a mechanism
to minimise the time taken for CRF learning. They
showed that the proposed approach outperforms
other traditional models in terms of time and ef-
ficiency. While, most of the proposed system used
CRF, recently (Patra and Saha, 2013) proposed a
an entity extraction system based on SVM. Par-

ticularly, they have introduced a tree kernel based
function that can efficiently solve the full NER
task. The work proposed in (Tohidi et al., 2014)
aims to improve the performance of entity extrac-
tion using statistical character-based syntax simi-
larity (SCSS) algorithm. This algorithm computes
the similarity between the identified candidate en-
tities and a known set of well-known NEs. This set
of NEs is created by extracting the most frequently
occurring NEs in the GENIA V3.0 corpus. In re-
cent times deep learning based approaches such
as Recurrent Neural Network and Bi-directional
LSTM have also used for entity extraction(Li et
al., 2015b; Limsopatham and Collier, 2016). It is
well known that relevant features play an impor-
tant role for building a high accurate system. In
our work, in addition to the standard features we
also use the features extracted from the word em-
bedding model.
Bengio et al.(Bengio et al., 2003) have proposed
a neural network based model for vector represen-
tation of words. Distributed representation (also
known as word embedding) of a word has been
used to improve the performance of various NLP
tasks like Part-of-Speech (POS) tagging, NER in
news-wire domain (Collobert et al., 2011), parsing
(Socher et al., 2013; Turian et al., 2010) etc. Word
cluster has been used used by Miller et al.(Miller
et al., 2004) to boost the performance of a NER
system. Tang et al. (Tang et al., 2012; Tang et al.,
2013) have reported that performance of biomed-
ical entity extraction can be improved when word
representation is used as a feature to CRF and
SVM classifiers.
Here we propose a PSO based feature selection
technique that determines the most relevant fea-
tures from a full word embedding set, and use
this subset as feature for classifier’s training. Fea-
ture selection has been widely used for many tasks
such as gene expression (Ding and Peng, 2005),
face recognition (Seal et al., 2015) and signal pro-
cessing (Alamedine et al., 2013). Dealing with
biomedical text is, however, more difficult and
challenging as the features have non-numeric val-
ues and the texts are heavily unstructured. Ex-
cept the few works such as NER (Ekbal and Saha,
2016), co-reference resolution (Sikdar et al., 2015)
and sentiment analysis (Gupta et al., 2015), sys-
tematic methods of feature selection using meta-
heuristics algorithms are very rare. Nevertheless,
the importance of using pruned neural language
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model based word representation features with ef-
fective feature selection have not been exploited
so far in the literature.
2.1 A Brief Introduction to Particle Swarm

Optimization (PSO)

Particle Swarm Optimization (PSO) is a meta-
heuristic intelligent technique inspired by social
behavior of the swarm for its survival (Eberhart
and Shi, 1998; Kennedy and Eberhart, 1997). This
is a population based technique which is perceived
in birds and fishes for the search of the best path.
In general, PSO consists of the swarm of the par-
ticle where each particle has its particular position
in the search space with which it moves around
the search space by some velocity. The parti-
cle selects the best path on each iteration by us-
ing its memory and by learning the effective path
that was followed previously by the swarm. The
new position is chosen on the basis of the knowl-
edge gained previously by its self-best position
and the best position of the swarm. PSO, being
a meta-heuristic model, makes few or no assump-
tion about the problem being optimized and can
search very large spaces of candidate solutions.
This makes PSO highly efficient for the optimiza-
tion purpose (Yan et al., 2013). The algorithm it-
erates by keeping track of two variables:
Global best position represents the most promis-
ing vector found so far, and Personal best position
denotes the particle’s own personal best solution.

2.1.1 Algorithm: PSO based Feature
Selection

1. Initially, we randomly set the swarm popu-
lation. Each particle of the swarm is repre-
sented by binary-valued features of length n
(total no. of feature) and has its position and
velocity with which it moves in search space.
Mathematically, particle position and particle
velocity are represented as:

−→
P (i) and

−→
V (i)

respectively:

−→
P (i) = (p(i, 1), p(i, 2), ....., p(i, n))

−→
V (i) = (v(i, 1), v(i, 2), ....., v(i, n))

where p(i, j) ∈ {0, 1}, i = 1, 2, ..., N and
j = 1, 2, ..., n where N is no. of particle.
Particle maintains its best position (

−→
B (i))

that they have achieved so far and also the
global best position (

−→
G)i.e., the best position

of the particle having the best solution.

2. Particle’s position
−→
P (i) value is set either

{0, 1} on the basis of following expression:

p(i,j) =

{
1 if random ≥ 0.5
0 otherwise

3. Each particle is evaluated on the basis of
fitness function (F-measure value) f(

−→
P (i)).

The memory is updated by keeping track of
the best position and global best position.

4. Initially, the value of best position (
−→
B (i)) of

every particle is set to 0. At every epoch(ep)
the value of the best position is updated as
follows:

f(
−→
B (i))ep = max(f(

−→
P (i))ep, f(

−→
B (i)ep−1)

5. Update in the global best position value is
done when the fitness function f(

−→
B (i)) in

the swarm is superior than the existing f(
−→
G).

6. Originally, the velocity vector is generated
randomly. At each iteration, velocity of a
particle is updated according to the following
equation:
v(i,j) = ω∗v(i,j)+φ1(b(i,j)−p(i,j))+φ2(g(j)−p(i,j))

(1)

where ω(0 < ω < 1), φ1 and φ2 are known
as inertia weights. These parameters are ini-
tialized with an uniformly generated random
numbers in the range (0,1). The b(i,j), p(i,j),

and g(j) denote the jth components of
−→
B (i),

−→
P (i) and

−→
G , respectively.

7. The position of a particle is updated by the
following mathematical expression:

p(i,j) =

{
1 if(random < S(v(i,j)))

0 otherwise

where 0≤ random ≤ 1 is an uniform random
number.

S(v(i,j)) = 1
1+exp(−−→v (i,j))

This represents the sigmoid function. Thus,
we update the particle position value of 0 or
1 on the basis of the value of velocity.

8. Repeat steps 4-7 until convergence.
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2.2 Learning Word Representations
Word embedding (also known as distributed word
representations) persuade a real-valued latent se-
mantic or syntactic vector for each word from a
large unlabeled corpus by using continuous space
language models (Tang et al., 2014). Better
word representation can be obtained if we have a
large amount of training data as the obtained real-
valued vectors of words become more representa-
tive. We use the popular word2vec1 tool proposed
by Mikolov et al. (Mikolov et al., 2013a) to ex-
tract the vector representations of words. Owing
to its simpler architecture which reduces the com-
putational complexity, this technique can be used
for large corpus. Two models have been proposed
in (Mikolov et al., 2013a) to learn vector represen-
tation known as Continuous Bag-of-Words Model
(CBOW) and Skip-gram model. Since skip-gram
model is able to capture the semantic informa-
tion of a word, we adapt this to train the model
for vector representation. The Skip-gram archi-
tecture tries to maximize the classification of a
word based on the other words in the same sen-
tence. More formally, given a sequence of training
words w1,w2,......, wT , the objective of the Skip-
gram model is to maximize the average log proba-
bility

1

T

T∑

t=1

∑

−c≤j≤c
j=0

log p(wt+j |wt) (2)

where c is the window size. Here, we show
few words that are more nearby to any biomed-
ical entity: ‘antigen’, ‘lymphocytes’ and ‘inhib-
ited’. If we look at the most similar words
for the word ‘lymphocytes’, we observe that
apart from syntactically similar words like ‘T-
lymphocytes’, ‘B-lymphocytes’, it is also able to
capture the words which are semantically similar
like ‘CD3+’, ‘PBLs’ and ‘T-cells’.

3 Features for Entity Extraction

The features being extracted are described as fol-
lows:

1. Contextual feature: It is the local contextual
feature which refers to the tokens which ap-
pear within the window size of 10 words, i.e
5 to the left and 5 to the right w.r.t current
token.

1https://code.google.com/p/word2vec/

2. Word prefixes and suffixes: These features
refer to the fixed length character sequences
stripped either from the left or rightmost po-
sitions of the words.

3. Word length: It is observed that short words
are rarely the NEs. We define a binary-valued
feature that triggers the value 1 if the length
of current word is greater than the threshold
value specified. The threshold value is set as
5 in this case.

4. Part-of-Speech (PoS) information: PoS pro-
vides useful syntactic evidence for detecting
named entities (NEs).We use PoS informa-
tion of the current and/or the surrounding
token(s) as the feature. The PoS informa-
tion was extracted from the GENIA tagger2

V2.0.2.

5. Chunk information: We use GENIA tagger
V2.0.2 corpus to extract the chunk informa-
tion. We employ the chunk information of
the present and neighboring tokens as the fea-
tures.

6. Word shape: Word shape is defined as the
mapping of each word to its equivalent class.
In order to implement this feature we nor-
malize the words by converting every capital
character by ‘A’, small character to ‘a’ and
digit to ‘0’. After this conversion, we squeeze
the consecutive characters into a single char-
acter. For example, if we consider the token
‘Ly-49’, the normalized word for this token
would be ‘Aa-00’.

7. Word class feature : This feature is based on
the concept that entities present in the same
class are mostly similar. Here, all the cap-
ital letters are converted to ‘A’, small let-
ters to ‘a’, numbers to ‘O’ and non-English
characters to ‘-’. After this conversion, we
squeeze the consecutive characters into a sin-
gle character. For example, the word class
feature for the token ‘IL-2-mediated’ is ‘AA-
O-aaaaaaaa’, which is further reduced to ‘A-
O-a’.

8. Orthographic features: We use several ortho-
graphic features that consider capitalization
and digit information. These features are:

2http://www.nactem.ac.uk/GENIA/tagger/
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initial capital, all capital, capital in inner,
initial capital then mix, only digits, digit with
special character, initial digit then alphabet,
digit in inner. It is observed that some sym-
bols like (‘,’, ‘-’, ‘.’, ‘ ’) are very common in
the biomedical text. Some symbols like ‘,’
are also very helpful for the identification of
NE boundaries.

4 Methodology

We propose a PSO based feature selection tech-
nique that determines the most relevant features
from a set of features, containing both hand-
crafted as well as word embedding based features.
We use Conditional Random Field (CRF) (Laf-
ferty et al., 2001) as a base learning algorithm. For
each token, a feature vector is generated from the
training and test dataset using the features as de-
scribed in the previous section. Basic steps of our
algorithm are as follows:

1. Initially, we design 32 features (listed in
Section-3) for three datasets, namely GE-
NIA, GENETAG and AiMed. These fea-
tures are used for the classifier’s training. The
models built using these features are termed
as the baseline models.

2. We generate the word embedding feature
vector of 200 dimensions based on the model
trained on a large corpus like Wikipedia and
the biomedical corpora such as PubMed 3 and
PubMed Central Open Access (PMC OA)4.

3. A new feature set is generated by combin-
ing both word embedding based features and
handcrafted features.

4. PSO based feature selection is performed to
determine the most relevant feature set.

5. CRF classifier is trained with the features se-
lected by PSO. The model, thus generated, is
evaluated on all the three datasets.

Figure-1 depicts the various steps of our proposed
approach.
5 Datasets and Experiments

3http://www.ncbi.nlm.nih.gov/pubmed
4http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist

5.1 Dataset

Our system is evaluated on three distinguished
biomedical datasets, namely GENIA5, AiMed6

and GENETAG7. The GENIA corpus is derived
from the MEDLINE corpus. It comprises of
500,000 and 100,000 words in training and test
dataset, respectively. These datasets are manu-
ally annotated with five NE tags, namely Protein,
DNA, RNA, Cell line & Cell type.
AiMed corpus was created using 20,000 sen-
tences having gene/protein names extracted from
the Database of Interacting Protein (DIP). We use
7,500 labeled sentences for training and 2,500 sen-
tences for validation. For evaluation we use a test
set consisting of 5,000 sentences.

GENETAG dataset is derived from the ‘Med-
Tag’ dataset. Training and test datasets comprise
of 118K and 142K words, respectively. In order to
properly denote the boundaries of NE, we use the
IOB28 encoding scheme. We evaluate our system
in terms of recall, precision and F-measure values.
For evaluation we use the script, which was made
available with the JNLPBA 2004 shared task 9.

5.2 Baseline Models and Analysis

We start experiments with the first baseline (i.e.
Baseline-1) by developing the model trained with
all the features as discussed in Section-3. We
evaluate the presence of word embedding features
trained on various unlabeled data sets obtained
from the different text sources. In order to real-
ize the effect of each trained word representation
model, we augment the word vector obtained from
the respective model one by one to the baseline
feature set. In order to obtain word embedding, we
use four different models trained on the unlabeled
data extracted from PubMed 10, PubMed Central
Open Access (PMC OA)11 and the latest English
Wikipedia dump12. Corpus statistics of PubMed
and PMC OA are provided in Table-1.
The extracted text upon which four different mod-
els are trained are as follows:

5http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-
shared-task-2004

6ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
7ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENETAG.tar.gz
8I, O and B represent the intermediate, outside and begin-

ning token of a NE
9http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html

10http://www.ncbi.nlm.nih.gov/pubmed
11http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
12http://en.wikipedia.org/wiki/Main Page
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Figure 1: Proposed model architecture for biomedical entity extraction

1. Model developed using extracted data from
PubMed biomedical literature: denoted as
WE(1).

2. Model built on the extracted text from PMC
biomedical literature: denoted as WE(2).

3. Model developed using the combination
of extracted text from PubMed and PMC
biomedical texts: denoted as WE(3).

4. Model trained using the extracted text from
PubMed, PMC and Wikipedia: denoted as
WE(4).

We develop the second baseline (i.e. Baseline-2)
by executing the best word embedding model in
combination with the hand-crafted feature set. We
further develop the third baseline, i.e. Baseline-
3 by merging word embedding feature set as de-
termined by PSO along with the full handcrafted
feature set. We observe that selection of relevant
word embedding features helps in improving per-
formance over the whole word embedding feature
set.
We generate 200-dimensional word vectors using
the parameters 13 as follows: skip-gram model
with a window size of 5, hierarchical soft-max
training, and a frequent word sub-sampling thresh-
old of 0.001. In order to make our proposed sys-
tem generic, i.e. not biased to any particular do-
main of data, we use the same parameters of PSO
in all our settings. We fine-tune the parameters
ω, φ1 and φ2 by performing 3-fold cross valida-
tion experiments. We keep the number of particles

13We use same parameters for training of all the four mod-
els

Corpus Documents Sentences Tokens
PubMed 22,120,269 124,615,674 2,896,348,481

PMC 672,589 105,194,341 2,591,137,744
PubMed+PMC 22,792,858 229,810,015 5,487,486,225

Table 1: Corpus statistics (Pyysalo et al., 2013) of
PubMed and PMC OA openly available biomed-
ical literature; PubMed abstracts for articles that
are also present in PMC OA were discarded while
creating the data

and the number of iterations as 10 and 100, respec-
tively throughout all the experiments.

Effectiveness of PSO based feature selection is
evident with performance improvement as shown
in Table-5.

5.3 Comparison with Existing Feature
Selection Techniques

Here we compare our PSO based feature selec-
tion technique with other existing feature selection
techniques. We perform experiments with both fil-
ter and wrapper based models. For filter based
model, we use univariate feature selection based
on information theoretical concept like Informa-
tion Gain. While for multivariate filter model we
use correlation based feature selection. Our results
indicate that PSO performs better than univariate
by 3.03 % and multivariate by 2.60 % F-measure
points for the GENIA dataset. We also observe
quite similar behaviors for the other two datasets.

In addition, we also explore two popular wrap-
per based feature selection techniques, Genetic Al-
gorithm (GA) (Holland, 1975) based feature selec-
tion (Ekbal et al., 2010) technique and Recursive
Feature Elimination (RFE) (Guyon et al., 2002)

1165



Feature Selection GENIA GENETAG AiMed
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Filter (Information Gain) 69.02 71.28 70.13 88.25 94.47 91.25 87.46 90.47 88.93
Filter (Correlation) 70.19 70.95 70.56 88.89 93.68 91.22 87.18 89.85 88.49
Wrapper (GA) 72.48 71.98 72.22 89.19 95.04 92.02 89.07 91.11 90.07
Wrapper (RFE) 71.28 71.54 71.40 89.25 94.81 91.94 88.67 91.66 90.14
CRF[PSO] 72.48 73.87 73.16 89.33 96.42 92.74 89.77 92.09 90.92

Table 2: Comparison of PSO with other filter (Information Gain & Correlation) and wrapper (G.A &
RFE) based feature selection technique

based approach. Genetic algorithm belongs to the
class of randomized wrapper model where feature
selection is always classifier dependent and is less
prone to stuck at local optima. The RFE is catego-
rized under the deterministic type wrapper model
which is computationally less complex than ran-
domized type but has the disadvantage to stuck at
local optima.
Results show that PSO performs better than RFE
for all the datasets and GA for two datasets (GE-
NIA & GENETAG) in terms of F-measure and the
number of features selected. Results are depicted
in Table-2. On AiMed dataset, GA and RFE based
feature selection techniques perform quite compa-
rable to our PSO based method. It is to be noted
that PSO based feature selection yields better per-
formance even with a smaller set of features. The
pruned and compact feature set incurs less less
computational complexity.

6 Result and Discussion

Table-3 shows the extensive results of our
proposed system on all three datasets, namely
GENIA, AiMed and GENETAG by augmenting
word embedding features. It seems that word
embedding features generated from the model
which is trained on the combined datasets of
PubMed, PMC and Wikipedia [WE(4)] perform
better than the other models. The unsupervised
word representation features help in detecting
unseen entities, i.e. those not appearing in the
training data set.
We augment word embedding WE(4) features
to the hand-crafted features, and then apply
feature selection using PSO on this combined
set. Feature selection through PSO not only
helps in improving the performance, but at the
same time it reduces the feature dimensionality.
Evaluation results as reported in Table-4 reveal
this fact. Table-3 clearly depicts the effectiveness

of word embedding features in BNER (biomed-
ical NER) system. We observe improvements
of 7.86%, 5.27% and 7.25% F-measures over
the first baseline (i.e. Baseline-1) for GENIA,
AiMed and GENETAG data sets, respectively by
using PSO based feature selection on PubMed-
PMC-wikipedia trained word embedding and
handcrafted features. Evaluation also suggests
that performance does not degrade significantly,
even when we use word embedding features
obtained only from Pubmed & PMC OA. It seems
that word embedding features obtained from
the combination of Pubmed and PMC are more
representatives compared to the individual one.
We also show evaluation of some of the existing
approaches that attempt to make use of word
representation features. A F-measure of 71.39%
is reported in the work (Tang et al., 2014). Word
representation feature was also used in (Chang
et al., 2015) that reported to have achieved
F-measure value of 71.77%.

We perform statistical significance (t-test) test
on the results obtained by our proposed model.
For different datasets, experiments are executed
for 10 independent runs and the t-statistic is
adopted to analyze the obtained experimental re-
sults. Using the known distribution of the test
statistic, p-value is calculated. It is observed that p
values are less than 0.04 for all the three data sets,
which signify that our obtained results are statisti-
cally significant.

6.1 Error Analysis
Here, we analyze the outputs obtained for each
dataset in order to identify the possible errors.We
categorize the errors in three ways as follows:

1. Wrong boundary: This error occurs due
to the incorrect boundary identification of
entities.These types of cases are observed
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System GENIA AiMed GENETAG
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Baseline-1: Handcraft feature 66.78 63.89 65.30 84.11 87.25 85.65 83.88 87.17 85.49
WE1(Handcraft feature + PubMed) 70.72 72.29 71.50 88.42 89.21 88.81 81.92 95.82 88.33
WE2(Handcraft feature + PMC OA) 70.72 72.29 71.50 88.56 89.02 88.78 82.01 95.62 88.29

WE3(Handcraft feature + PubMed + PMC) 70.79 72.47 71.62 89.48 89.01 89.24 82.41 95.89 88.64
WE4(Handcraft feature + PubMed + PMC + Wikipedia) 70.88 72.64 71.75 89.07 90.11 89.59 82.78 95.70 88.77

Baseline-2: Best of WE model 70.88 72.64 71.75 89.07 90.11 89.59 82.78 95.70 88.77
Baseline-3: (PSO with only WE(4)) + Handcraft feature 71.92 72.62 72.26 89.63 90.34 89.98 83.46 95.69 89.15

Proposed: PSO with (handcrafted features + WE) 72.48 73.87 73.16 89.77 92.09 90.92 89.33 96.42 92.74
WE model by Tang et al.(Tang et al., 2014)) 70.78 72.00 71.39 - - - - - -

WE model by Chang et al.(Chang et al., 2015)) 71.36 72.18 71.77 - - - - - -

Table 3: Performance evaluation on GENIA, AiMed and GENETAG data sets using various word em-
bedding (WE) features trained on different unlabeled data.

Approach
Dataset

GENIA GENETAG AiMed
Handcraft Features + W.E Features 232 230 232

PSO based feature selection 129 136 121

Table 4: Comparison of no. of features being used
to train the model: Before feature selection and after
feature selection

Approach
Dataset

GENIA GENETAG AiMed
Only W.E features 57.78 55.63 41.22

PSO selected W.E features 58.96 57.41 42.74

Table 5: Comparisons (in terms of F-score)
between whole word embedding features using
WE(4) and the PSO selected word embedding fea-
tures excluding handcrafted features. Here, W.E:
Word embedding

mostly with the entities having long and
compounded wordforms such as ‘T cell
activation-specific enchance’. We also ob-
serve that our system lacks in correctly clas-
sifying the instances which includes brackets.

2. Incorrect entity type: This error is obtained
when the entity is properly identified but it
belongs to some other entity class. This er-
ror is more prominent in case of GENIA and
GENETAG datasets. For GENIA dataset,
classifier is mostly confused with ‘Protein’
vs. ‘Cell line’ or ‘Cell type’. In total 126
Protein words are wrongly classified either as
the ‘Cell line’ or ‘Cell type’. While with the
use of PSO, the rate of mis-classification was
reduced to 97. In GENETAG, majority of
classes are predicted as ‘I-NEWGENE’. This
may be due to the fact that majority of the
instances belongs to the ‘I-NEWGENE’ cat-

egory. While after applying PSO, we observe
that mis-classification of ‘I-NEWGENE’ is
significantly reduced from 325 to just 129.

3. Missed entity: Our system misses significant
number of NE instances.It is found that num-
ber of false negatives count to 1357, 155 and
40 for GENTIA, AiMed and GENETAG, re-
spectively. All these NEs are mis-classfied to
belong to the other-than-NE category.

7 Conclusions & Future work

In this paper we have investigated the effect of
word embedding features in addition to the hand-
crafted features for entity extraction from three
benchmark biomedical data sets, namely GENIA,
AiMed & GENETAG. We have evaluated the
system using four different word representation
schemes trained on extracted texts from PubMed,
PMC OA biomedical literature and Wikipedia
dump datasets. In addition to this we have per-
formed PSO based feature selection on the whole
feature set for the different data sets. We can con-
clude that instead of using a full word representa-
tion feature, if only prominent features are used,
it could help in improving the performance of the
system. In future work, we would like to perform
additional experiments to fine-tune the dimensions
of vectors and the parameters of CRF through
cross-validation on the training set. The applica-
bility of feature selection on word embedding fea-
tures need to be explored in other domain also. In
addition we want to compare the performance of
representation obtained through word2vec to the
others such as GloVe. We would also like to ex-
plore deep learning techniques replacing CRF.
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Abstract

The growing demand for structured
knowledge has led to great interest in
relation extraction, especially in cases
with limited supervision. However,
existing distance supervision approaches
only extract relations expressed in single
sentences. In general, cross-sentence
relation extraction is under-explored, even
in the supervised-learning setting. In this
paper, we propose the first approach for
applying distant supervision to cross-
sentence relation extraction. At the core
of our approach is a graph representa-
tion that can incorporate both standard
dependencies and discourse relations,
thus providing a unifying way to model
relations within and across sentences. We
extract features from multiple paths in this
graph, increasing accuracy and robustness
when confronted with linguistic variation
and analysis error. Experiments on an
important extraction task for precision
medicine show that our approach can learn
an accurate cross-sentence extractor, using
only a small existing knowledge base and
unlabeled text from biomedical research
articles. Compared to the existing distant
supervision paradigm, our approach
extracted twice as many relations at
similar precision, thus demonstrating the
prevalence of cross-sentence relations and
the promise of our approach.

1 Introduction

The accelerating pace in technological advance
and scientific discovery has led to an explosive
growth in knowledge. The ensuing information
overload creates new urgency in assimilating frag-

mented knowledge for integration and reasoning.
A salient case in point is precision medicine (Bah-
call, 2015). The cost of sequencing a person’s
genome has fallen below $10001, enabling indi-
vidualized diagnosis and treatment of complex ge-
netic diseases such as cancer. The availability of
measurement for 20,000 human genes makes it
imperative to integrate all knowledge about them,
which grows rapidly and is scattered in millions
of articles in PubMed2. Traditional extraction
approaches require annotated examples, which
makes it difficult to scale to the explosion of ex-
traction demands. Consequently, there has been
increasing interest in indirect supervision (Banko
et al., 2007; Poon and Domingos, 2009; Toutanova
et al., 2015), with distant supervision (Craven et
al., 1998; Mintz et al., 2009) emerging as a partic-
ularly promising paradigm for augmenting exist-
ing knowledge bases from unlabeled text (Poon et
al., 2015; Parikh et al., 2015).

This progress is exciting, but distant-
supervision approaches have so far been limited
to single sentences, thus missing out on relations
crossing the sentence boundary. Consider the fol-
lowing example:“The p56Lck inhibitor Dasatinib was

shown to enhance apoptosis induction by dexamethasone

in otherwise GC-resistant CLL cells. This finding concurs

with the observation by Sade showing that Notch-mediated

resistance of a mouse lymphoma cell line could be overcome

by inhibiting p56Lck.” Together, the two sentences
convey the fact that the drug Dasatinib could
overcome resistance conferred by mutations to
the Notch gene, which can not be inferred from
either sentence alone. The impact of missed
opportunities is especially pronounced in the long
tail of knowledge. Such information is crucial
for integrative reasoning as it includes the newest

1http://www.illumina.com/systems/
hiseq-x-sequencing-system.html

2http://www.ncbi.nlm.nih.gov/pubmed
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findings in specialized domains.
In this paper, we present DISCREX, the first ap-

proach for distant supervision to relation extrac-
tion beyond the sentence boundary. The key idea
is to adopt a document-level graph representation
that augments conventional intra-sentential depen-
dencies with new dependencies introduced for ad-
jacent sentences and discourse relations. It pro-
vides a unifying way to derive features for classi-
fying relations between entity pairs. As we aug-
ment this graph with new arcs, the number of pos-
sible paths between entities grow. We demonstrate
that feature extraction along multiple paths leads
to more robust extraction, allowing the learner to
find structural patterns even when the language
varies or the parser makes an error.

The cross-sentence scenario presents a new
challenge in candidate selection. This motivates
our concept of minimal-span candidates in Sec-
tion 3.2. Excluding non-minimal candidates sub-
stantially improves classification accuracy.

There is a long line of research on discourse
phenomena, including coreference (Haghighi and
Klein, 2007; Poon and Domingos, 2008; Rahman
and Ng, 2009; Raghunathan et al., 2010), narrative
structures (Chambers and Jurafsky, 2009; Che-
ung et al., 2013), and rhetorical relations (Marcu,
2000). For the most part, this work has not been
connected to relation extraction. Our proposed ex-
traction framework makes it easy to integrate such
discourse relations. Our experiments evaluated
the impact of coreference and discourse parsing, a
preliminary step toward in-depth integration with
discourse research.

We conducted experiments on extracting drug-
gene interactions from biomedical literature, an
important task for precision medicine. By boot-
strapping from a recently curated knowledge base
(KB) with about 162 known interactions, our DIS-
CREX system learned to extract inter-sentence
drug-gene interactions at high precision. Cross-
sentence extraction doubled the yield compared to
single-sentence extraction. Overall, by applying
distant supervision, we extracted about 64,000 dis-
tinct interactions from about one million PubMed
Central full-text articles, attaining two orders of
magnitude increase compared to the original KB.

2 Related Work

To the best of our knowledge, distant supervision
has not been applied to cross-sentence relation ex-

traction in the past. For example, Mintz et al.
(2009), who coined the term “distant supervision”,
aggregated features from multiple instances for the
same relation triple (relation, entity1, entity2), but
each instance is a sentence where the two entities
co-occur. Thus their approach cannot extract rela-
tions where the two entities reside in different sen-
tences. Similarly, Zheng et al. (2016) aggregated
information from multiple sentential instances, but
could not extract cross-sentence relations.

Distant supervision has also been applied to
completing Wikipedia Infoboxes (Wu and Weld,
2007) or TAC KBP Slot Filling3, where the goal is
to extract attributes for a given entity, which could
be considered a special kind of relation triples (at-
tribute, entity, value). These scenarios are very
different from general cross-sentence relation ex-
traction. For example, the entity in considera-
tion is often the protagonist in the document (ti-
tle entity of the article). Moreover, state-of-the-art
methods typically consider extracting from single
sentences only (Surdeanu et al., 2012; Surdeanu
and Ji, 2014; Koch et al., 2014).

In general, cross-sentence relation extrac-
tion has received little attention, even in the
supervised-learning setting. Among the limited
amount of prior work, Swampillai & Stevenson
(2011) is the most relevant to our approach, as it
also considered syntactic features and introduced
a dependency link between the root nodes of parse
trees containing the given pair of entities. How-
ever, the differences are substantial. First and
foremost, their approach used standard supervised
learning rather than distant supervision. More-
over, we introduced the document-level graph rep-
resentation, which is much more general, capable
of incorporating a diverse set of discourse rela-
tions and enabling the use of rich syntactic and
surface features (Section 3). Finally, Swampillai
& Stevenson (2011) evaluated on MUC64, which
contains only 318 Wall Street Journal articles.
In contrast, we evaluated on large-scale extrac-
tion from about one million full-text articles and
demonstrated the large impact of cross-sentence
extraction for an important real-world application.

The lack of prior work in cross-sentence rela-
tion extraction may be partially explained by the
domains of focus. Prior extraction work focuses

3http://www.nist.gov/tac/2016/KBP/
ColdStart/index.html

4https://catalog.ldc.upenn.edu/
LDC2003T13
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on newswire text5 and the Web (Craven et al.,
2000). In these domains, the extracted relations
often involve popular entities, for which there of-
ten exist single sentences expressing the relation
(Banko et al., 2007). However, there is much
less redundancy in specialized domains such as the
frontiers of science and technology, where cross-
sentence extraction is more likely to have a sig-
nificant impact. The long-tailed characteristics of
such domains also make distant supervision a nat-
ural choice for scaling up learning. This paper rep-
resents a first step toward exploring the confluence
of these two directions.

Distant supervision has been extended to cap-
ture implicit reasoning, via matrix factorization or
knowledge base embedding (Riedel et al., 2013;
Toutanova et al., 2015; Toutanova et al., 2016).
Additionally, various models have been proposed
to address the noise in distant supervision labels
(Hoffmann et al., 2011; Surdeanu et al., 2012).
These directions are orthogonal to cross-sentence
extraction, and incorporating them will be inter-
esting future work.

Recently, there has been increasing interest
in relation extraction for biomedical applications
(Kim et al., 2009; Nédellec et al., 2013). However,
past methods are generally limited to single sen-
tences, whether using supervised learning (Björne
et al., 2009; Poon and Vanderwende, 2010; Riedel
and McCallum, 2011) or distant supervision (Poon
et al., 2015; Parikh et al., 2015).

The idea of leveraging graph representations
has been explored in many other settings, such
as knowledge base completion (Lao et al., 2011;
Gardner and Mitchell, 2015), frame-semantic
parsing (Das and Smith, 2011), and other NLP
tasks (Radev and Mihalcea, 2008; Subramanya
et al., 2010). Linear and dependency paths are
popular features for relation extraction (Snow et
al., 2006; Mintz et al., 2009). However, past ex-
traction focuses on single sentences, and typically
considers the shortest path only. In contrast, we al-
low interleaving edges from dependency and word
adjacency, and consider top K paths rather than
just the shortest one. This resulted in substantial
accuracy gain (Section 4.5).

There has been prior work on leveraging coref-
erence in relation extraction, often in the standard
supervised setting (Hajishirzi et al., 2013; Durrett

5E.g., MUC6, ACE https://www.ldc.upenn.
edu/collaborations/past-projects/ace

and Klein, 2014), but also in distant supervision
(Koch et al., 2014; Augenstein et al., 2016). No-
tably, while Koch et al. (2014) and Augenstein et
al. (2016) still learned to extract from single sen-
tences, they augmented mentions with coreferent
expressions to include linked entities that might
be in a different sentence. We explored the po-
tential of this approach in our experiments, but
found that it had little impact in our domain, as
it produced few additional candidates beyond sin-
gle sentences. Recently, discourse parsing has re-
ceived renewed interest (Ji and Eisenstein, 2014;
Feng and Hirst, 2014; Surdeanu et al., 2015), and
discourse information has been shown to improve
performance in applications such as question an-
swering (Sharp et al., 2015). In this paper, we
generated coreference relations using the state-of-
the-art Stanford coreference systems (Lee et al.,
2011; Recasens et al., 2013; Clark and Manning,
2015), and generated rhetorical relations using the
winning approach (Wang and Lan, 2015) in the
CoNLL-2015 Shared Task on Discourse Parsing.

3 Distant Supervision for Cross-Sentence
Relation Extraction

In this section, we present DISCREX, short for
DIstant Supervision for Cross-sentence Relation
EXraction. Similar to conventional approaches,
DISCREX learns a classifier to predict the relation
between two entities, given text spans where the
entities co-occur. Unlike most existing methods,
however, DISCREX allows text spans comprising
multiple sentences and explores potentially many
paths between these entities.

3.1 Distant Supervision

Like prior approaches, DISCREX learns from an
existing knowledge base (KB) and unlabeled text.
The KB contains known instances for the given re-
lation. In a preprocessing step, relevant entities are
annotated within this text using available entity ex-
traction tools. Co-occurring entity pairs known to
have the relation in the KB are chosen as positive
examples. Under the assumption that related en-
tities are relatively rare, we randomly sample co-
occurring entity pairs not known to have the rela-
tion as negative examples. To ensure a balanced
training set, we always sampled roughly the same
number of negative examples as positive ones.
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The p56Lck inhibitor Dasatinib was shown to enhance apoptosis induction in otherwise GC-resistant CLL cells
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This shows that Notch -mediated resistance of a mouse lymphoma cell line could be overcome by inhibiting p56Lck .
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Figure 1: An example document graph for two sentences. Edges represent conventional intra-sentential
dependencies, as well as connections between the roots of adjacent sentences (NEXTSENT). For sim-
plicity, we omit edges between adjacent words or representing discourse relations.

3.2 Minimal-Span Candidates

In standard distant supervision, co-occurring en-
tity pairs with known relations are enlisted as can-
didates of positive training examples. This is rea-
sonable when the entity pairs are within single
sentences. In the cross-sentence scenario, how-
ever, this would risk introducing too many wrong
examples. Consider the following two sentences:
Since amuvatinib inhibits KIT, we validated MET
kinase inhibition as the primary cause of cell
death. Additionally, imatinib is known to inhibit
KIT. The mention of drug-gene pair imatinib and
KIT (in bold) span two sentences, but the same pair
also co-occur in the second sentence alone. In gen-
eral, one might find co-occurring entity pairs in a
large text span, where the same pairs also co-occur
in a smaller text span that overlaps with the larger
one. In such cases, if there is a relation between
the pair, mostly likely it is expressed in the smaller
text span when the entities are closer to each other.

This motivates us to define that an co-occurring
entity pair has the minimal span if there does
not exist another overlapping co-occurrence of the
same pair where the distance between the entity
mentions is smaller. Here, the distance is mea-
sured in the number of consecutive sentences be-
tween the two entities. Experimentally, we com-
pared extraction with or without the restriction to
minimal-span candidates, and show that the for-
mer led to much higher extraction accuracy.

3.3 Document Graph

To derive features for entity pairs both within and
across sentences, DISCREX introduces a docu-
ment graph with nodes representing words and
edges representing intra- and inter-sentential re-
lations such as dependency, adjacency, and dis-
course relations. Figure 1 shows an example doc-
ument graph spanning two sentences. Each node
is labeled with its lexical item, lemma, and part-
of-speech. We used a conventional set of intra-
sentential edges: typed, collapsed Stanford depen-
dencies derived from syntactic parses (de Marn-
effe et al., 2006). To mitigate parser errors, we
also add edges between adjacent words.

As for inter-sentential edges, a simple but intu-
itive approach is to add an edge between the de-
pendency roots of adjacent sentences: if we imag-
ined that each sentence participated as a node in a
type of discourse dependency tree, this represents
a simple right-branching baseline. To gather a
finer grained representation of rhetorical structure,
we ran a state-of-the-art discourse parser (Wang
and Lan, 2015) to identify discourse relations,
which returned a set of labeled binary relations
between spans of words. We found the short-
est path between any word in the first span and
any word in the second span using only depen-
dency and adjacent sentence edges, and added an
edge labeled with the discourse relation between
these two words. Another source of potentially
cross-sentence links comes from coreference. We
generated coreference relations using the Stanford
Coreference systems (both statistical and deter-
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ministic) (Lee et al., 2011; Recasens et al., 2013;
Clark and Manning, 2015), and added edges from
anaphora to their antecedents.

We also considered a special case of cross-
sentence relation extraction by augmenting single-
sentence candidates with coreference (Koch et al.,
2014; Augenstein et al., 2016). Namely, extrac-
tion is still conducted within single sentences, yet
entity linking is extended to consider all corefer-
ence mentions for a relation argument. However,
this did not produce significantly more candidates
(2% more for positive examples), most of which
were not cross-sentence ones (only 1%).

3.4 Features

Dependency paths have been established as a par-
ticularly effective source for relation extraction
features (Mintz et al., 2009). DISCREX gener-
alizes this idea by defining feature templates over
paths in the document graph, which may contain
interleaving edges of various types (dependency,
word and sentence adjacency, discourse relation).
Dependency paths provide interpretable and gen-
eralizable features but are subject to parser error.
One error mitigation strategy is to add edges be-
tween adjacent words, allowing multiple paths be-
tween entities.

Feature extraction begins with a pair of entities
in the document graph that potentially are con-
nected by a relation. We begin by finding a path
between the entities of interest, and extract fea-
tures from that path.

Over each such path, we explore a number
of different features. Below, we assume that
each path is a sequence of nodes and edges
(n1, e1, n2, . . . , eL−1, nL), with n1 and nL re-
placed by special entity marker nodes.6

Whole path features We extract four binary in-
dicator features for each whole path, with nodes ni
represented by their lexical item, lemma, part-of-
speech tag, or nothing. These act as high precision
but low recall indicators of useful paths.

Path n-gram features A more robust and gener-
alizable approach is to consider a sliding window
along each path. For each position i, we extract n-
gram (n = 1−5) features starting at each node (ni,
then ni ·ei and so on until ni ·ei ·ni+1 ·ei+1 ·ni+2)
and each edge (ei up to ei ·ni+1 ·ei+1 ·ni+2 ·ei+2).

6 This prevents our method from memorizing the entities
in the original knowledge base.

Again, each node could be represented by its lex-
ical item, lemma, or part of speech, leading to 27
feature templates. We add three more feature tem-
plates using only edge labels (ei; ei · ei+1; and
ei · ei+1 · ei+2) for a total of 30 feature templates.

3.5 Multiple paths

Most prior work has only looked at the single
shortest path between two entities. When authors
use consistent lexical and syntactic constructions,
and when the parser finds the correct parse, this
approach works well. Real data, however, is quite
noisy.

One way to mitigate errors and be robust against
noise is to consider multiple possible paths. Given
a document graph with arcs of multiple types,
there are often multiple paths between nodes. For
instance, we might navigate from the gene to the
drug using only syntactic arcs, or only adjacency
arcs, or some combination of the two. Consid-
ering such variations gives more opportunities to
find commonalities between seemingly disparate
language.

We explore varying the number of shortest
paths, N , between the nodes in the document
graph corresponding to the relevant entities. By
default, all edge types have an equal weight of
1, except edges between adjacent words. Empir-
ically, penalizing adjacency edges led to substan-
tial benefits, though including adjacency arcs was
important for benefits from multiple paths. This
suggests that the parser produces valuable infor-
mation, but that we should have a back-off strategy
for accommodating parser errors.

3.6 Evaluation

There is no gold annotated dataset in distant super-
vision, so evaluation typically resorts to two strate-
gies. One strategy uses held-out samples from the
training dataset, essentially treating the noisy an-
notation as gold standard. This has the advantage
of being automatic, but could produce biased re-
sults due to false negatives (i.e., entity pairs not
known to have the relation might actually have the
relation). Another strategy reports absolute recall
(number of extractions from all unlabeled text), as
well as estimated precision by manually annotat-
ing extraction samples from general text. We con-
ducted both types of evaluation in the experiments.
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Figure 2: Sample rows from the Gene Drug Knowledge Database. Our current work focuses on two
important columns: gene, and therapeutic context (drug).

4 Experiments

We consider the task of extracting drug-gene inter-
actions from biomedical literature. A drug-gene
interaction is broadly construed as an association
between the drug efficacy and the gene status. The
status includes mutations and activity measure-
ments (e.g., overexpression). For simplicity, we
only consider the relation at the drug-gene level,
without distinguishing among details such as drug
dosage or distinct gene status.

4.1 Knowledge Base

We used the Gene Drug Knowledge Database
(GDKD) (Dienstmann et al., 2015) for distant
supervision. Figure 2 shows a snapshot of the
dataset. Each row specifies a gene, some drugs,
the fine-grained relations (e.g., sensitive), the gene
status (e.g., mutation), and some supporting arti-
cle IDs. In this paper, we only consider the coarse
drug-gene association and ignore the other fields.

4.2 Unlabeled Text

We obtained biomedical literature from PubMed
Central7, which as of early 2015 contained about
960,000 full-text articles. We preprocessed the
text using SPLAT (Quirk et al., 2012) to conduct
tokenization, part-of-speech tagging, and syntactic
parsing, and obtained Stanford dependencies (de
Marneffe et al., 2006) using Stanford CoreNLP
(Manning et al., 2014). We used the entity tag-
gers from Literome (Poon et al., 2014) to identify
drug and gene mentions.

4.3 Candidate Selection

To avoid unlikely candidates such as entity pairs
far apart in the document, we consider entity pairs
within K consecutive sentences. K = 1 corre-
sponds to extraction within single sentences. For
cross-sentence extraction, we chose K = 3 as it

7http://www.ncbi.nlm.nih.gov/pmc/

Number of Candidates K = 1 K = 3

Unique Pairs 169,168 332,969
Instances 1,724,119 3,913,338

Matching GDKD 58,523 87,773

Table 1: Statistics for drug-gene interaction can-
didates in PubMed Central articles: unique pairs,
instances, instances with known relations in Gene
Drug Knowledge Database (GDKD).

doubled the number of overall candidates, while
being reasonably small so as not to introduce too
many unlikely ones. Table 1 shows the statis-
tics of drug-gene interaction candidates identified
in PubMed Central articles. For K = 3, there
are 87,773 instances for which the drug-gene pair
has known associations in Gene Drug Knowledge
Database (GDKD), which are used as positive
training examples. Note that these only include
minimal-span candidates (Section 3.2). Without
the restriction, there are 225,520 instances match-
ing GDKD, though many are likely false positives.

4.4 Classifier

Our classifiers were binary logistic regression
models, trained to optimize log-likelihood with an
`2 regularizer. We used a weight of 1 for the reg-
ularizer; the results were not very sensitive to the
specific value. Parameters were optimized using
L-BFGS (Nocedal and Wright, 2006). Rather than
explicitly mapping each feature to its own dimen-
sion, we hashed the feature names and retained 22
bits (Weinberger et al., 2009). Approximately 4
million possible features seemed to suffice for our
problem: fewer bits produced degradations, but
more bits did not lead to improvements.

4.5 Automatic Evaluation

To evaluate the impact of features, we conducted
five-fold cross validation, by treating the positive
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Features Single-Sent. Cross-Sent.

Base 81.3 81.7

3 paths 85.4 85.5
+coref 85.0 84.7
+disc — 84.6
+coref+disc — 84.5

10 paths 87.0 86.6
+coref 86.5 85.9
+disc — 86.5
+coref+disc — 85.9

Table 2: Average test accuracy in five-fold cross-
validation. Cross-sentence extraction was con-
ducted within a sliding window of 3 sentences us-
ing minimal-span candidates. Base only used the
shortest path to construct features. 3 paths and
10 paths gathered features from the top three or
ten shortest paths, assigning uniform weights to
all edges except adjacency, which had a weight of
16. +coref adds edges for the relations predicted
by Stanford Coreference. +disc adds edges for the
predicted rhetorical relations by a state-of-the-art
discourse parser (Wang and Lan, 2015).

and negative examples from distant supervision as
gold annotation. To avoid train-test contamina-
tion, all instances from a document are assigned
to the same fold. We then evaluated the average
test performance across folds. Since our datasets
were balanced by design (Section 3.1), we simply
reported accuracy. As discussed before, the results
could be biased by the noise in annotation, but this
automatic evaluation enables an efficient compar-
ison of various design choices.

First, we set out to investigate the impact of
edge types and path number. We set the weight for
adjacent-word edges to 16, to give higher priority
to other edge types (weight 1) that are arguably
more semantics-related. Table 2 shows the aver-
age test accuracy for single-sentence and cross-
sentence extraction with various edge types and
path numbers. Compared to extraction within sin-
gle sentences, cross-sentence extraction attains a
similar accuracy, even though the recall for the lat-
ter is much higher (Table 1).

Adding more paths other than the shortest one
led to a substantial improvement in accuracy. The
gain is consistent for both single-sentence and
cross-sentence extraction. This is surprising, as
prior methods often derive features from the short-

Paths Adj. Wt. Single-Sent. Cross-Sent.

3

1 82.2 82.1
4 85.0 84.9
16 85.4 85.5
64 85.1 85.0

10

1 85.7 83.6
4 87.2 86.7
16 87.0 86.6
64 87.0 86.6

30

1 87.6 85.4
4 88.0 87.5
16 87.5 87.2
64 87.5 87.2

Table 3: Average test accuracy in five-fold cross-
validation. Uniform weights are used, except for
adjacent-word edges.

est dependency path alone.
Adding discourse relations, on the other hand,

consistently led to a small drop in performance,
especially when the path number is small. Upon
manual inspection, we found that Stanford Coref-
erence made many errors in biomedical text, such
as resolving a dummy pronoun with a nearby en-
tity. In hindsight, this is probably not surprising:
state-of-the-art coreference systems are optimized
for newswire domain and could be ill-suited for
scientific literature (Bell et al., 2016). We are less
certain about why discourse parsing didn’t seem to
help. There are clearly examples where extraction
errors could have been avoided given rhetorical re-
lations (e.g., when the sentence containing the sec-
ond entity starts a new topic). We leave more in-
depth investigation to future work.

Next, we further evaluated the impact of path
number and adjacency edge weight. Only de-
pendency and adjacency edges were included in
these experiments. Table 3 shows the results. Pe-
nalizing adjacency produces large gains; a harsh
penalty is particularly helpful with fewer paths.
These results support the hypothesis that depen-
dency edges are usually more meaningful for rela-
tion extraction than word adjacency. Therefore, if
adjacency edges get the same weights, they might
cause some dependency sub-paths drop out of the
top K paths, thus degrading performance. When
the path number increases, there is a consistent and
substantial increase in accuracy, which demon-
strates the advantage of allowing adjacency edges
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Relations Single-Sent. Cross-Sent.

Candidates 169,168 332,969
p ≥ 0.5 32,028 64,828
p ≥ 0.9 17,349 32,775

GDKD 162

Table 4: Unique drug-gene interactions ex-
tracted from PubMed Central articles, compared
to the manually curated Gene Drug Knowledge
Database (GDKD) used for distant supervision. p
signifies the output probability. GDKD contains
341 relations, but only 162 have specific drug ref-
erences usable as distant supervision.

Gene Drug

GDKD 140 80

Single-Sent. (p ≥ 0.9) 4036 311
Single-Sent. (p ≥ 0.5) 6189 347

Cross-Sent. (p ≥ 0.9) 5580 338
Cross-Sent. (p ≥ 0.5) 9470 373

Table 5: Numbers of unique genes and drugs in
the Gene Drug Knowledge Database (GDKD) vs.
DISCREX extractions.

to interleave with dependency ones. This presum-
ably helps address syntactic parsing errors, among
other things. The importance of adjacency weights
decreases with more paths, but it is still signifi-
cantly better to penalize adjacency edges.

In the experiments mentioned above, cross-
sentence extraction was conducted using minimal-
span candidates only. We expected that this would
provide a reasonable safeguard to filter out many
unlikely candidates. As empirical validation, we
also conducted experiments on cross-sentence ex-
traction without the minimal-span restriction, us-
ing the base model. Test accuracy dropped sharply
from 81.7% to 79.1% (not shown in the table).

4.6 PubMed-Scale Extraction

Our ultimate goal is to extract knowledge from all
available text. First, we retrained DISCREX on all
available distant-supervision data, not restricting
to a subset of the folds as in the automatic eval-
uation. We used the systems performing best on
automatic evaluation, with features derived from
30 shortest paths between each entity pair, and
minimal-span candidates within three sentences

for cross-sentence extraction. We then applied the
learned extractors to all PubMed Central articles.
We grouped the extracted instances into unique
drug-gene pairs. The classifier output a probabil-
ity for each instance. The maximum probability
of instances in a group was assigned to the rela-
tion as a whole. Table 4 shows the statistics of ex-
tracted relations by varying the probability thresh-
old. Cross-sentence extraction obtained far more
unique relations compared to single-sentence ex-
traction, improving absolute recall by 89-102%.
Table 5 compares the number of unique genes and
drugs. DISCREX extractions cover far more genes
and drugs compared to GDKD, which bode well
for applications in precision medicine.

4.7 Manual Evaluation

Automatic evaluation accuracies can be overly op-
timistic. To assess the true precision of DISCREX,
we also conducted manual evaluation on extracted
relations. Based on the automatic evaluation, the
accuracy is similar for single-sentence and cross-
sentence extraction. So we focused on the lat-
ter. We randomly sampled extracted relation in-
stances and asked two researchers knowledgeable
in precision medicine to evaluate their correctness.
For each instance, the annotators were provided
with the provenance sentences where the drug-
gene pair were highlighted. The annotators as-
sessed in each case whether some relation was
mentioned for the given pair.

A total of 450 instances were judged: 150 were
sampled randomly from all candidates (random
baseline), 150 from the set of instances with prob-
ability no less than 0.5, and 150 with probability
no less than 0.9. From each set, we randomly se-
lected 50 relations for review by both annotators.
The two annotators agreed on 133 of 150. After
review, all disagreements were resolved, and each
annotator judged an additional set of 50 relation
instances, this time without overlap.

Table 6 showed the sample precision and per-
centage of errors due to entity linking vs. relation
extraction. With either classification threshold,
cross-sentence extraction clearly outperformed the
random baseline by a wide margin. Not surpris-
ingly, the higher threshold of 0.9 led to higher pre-
cision. Interestingly, a significant portion of errors
stems from mistakes in entity linking, as has been
observed in prior work (Poon et al., 2015). Im-
proved entity linking, either alone or joint with re-

1178



Prec. Entity Err. Relation Err.

Single-sentence extractions
Random 31 52 17
p ≥ 0.5 61 25 15
p ≥ 0.9 71 13 15

Cross-sentence extractions
Random 23 50 27
p ≥ 0.5 57 20 23
p ≥ 0.9 61 13 26

Table 6: Sample precision and error percent-
age: comparison between the single sentence
and cross-sentence extraction models at various
thresholds. Single sentence extraction is slightly
better at all thresholds, at the expense of substan-
tially lower recall: a reduction of 40% or more in
terms of unique interactions.

lation extraction, is an important future direction.
Based on these estimates, DISCREX extracted

about 37,000 correct unique interactions at the
threshold of 0.5, and about 20,000 at the threshold
of 0.9. In both cases, it expanded the Gene Drug
Knowledge Base by two orders of magnitude.

We also performed manual evaluation in the
single-sentence setting. As in the automatic
evaluation, single-sentence precisions are similar
though slightly higher at all thresholds. This sug-
gests that the candidate set is cleaner and the re-
sulting predictions are more accurate. However,
the resulting recall is substantially lower, dropping
by 46% at a threshold of 0.5, and by 40% at a
threshold of 0.9.

5 Conclusion

We present the first approach for applying distant
supervision to cross-sentence relation extraction,
by adopting a document-level graph representa-
tion that incorporates both intra-sentential depen-
dencies and inter-sentential relations such as ad-
jacency and discourse relations. We conducted
both automatic and manual evaluation on extract-
ing drug-gene interactions from biomedical liter-
ature. With cross-sentence extraction, our DIS-
CREX system doubled the yield of unique inter-
actions, while maintaining the same accuracy. Us-
ing distant supervision, DISCREX improved the
coverage of the Gene Drug Knowledge Database
(GDKD) by two orders of magnitude, without re-
quiring annotated examples.

Future work includes: further exploration of
features; improved integration with coreference
and discourse parsing; combining distant super-
vision with active learning and crowd sourcing;
evaluate the impact of extractions to precision
medicine; applications to other domains.
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Abstract

In this paper, we address two different
types of noise in information extraction
models: noise from distant supervision
and noise from pipeline input features.
Our target tasks are entity typing and rela-
tion extraction. For the first noise type, we
introduce multi-instance multi-label learn-
ing algorithms using neural network mod-
els, and apply them to fine-grained entity
typing for the first time. Our model outper-
forms the state-of-the-art supervised ap-
proach which uses global embeddings of
entities. For the second noise type, we
propose ways to improve the integration
of noisy entity type predictions into re-
lation extraction. Our experiments show
that probabilistic predictions are more ro-
bust than discrete predictions and that joint
training of the two tasks performs best.

1 Introduction

Knowledge bases (KBs) are important resources
for natural language processing tasks like ques-
tion answering and entity linking. However, KBs
are far from complete (e.g., Socher et al. (2013)).
Therefore, methods for automatic knowledge base
completion (KBC) are beneficial. Two subtasks of
KBC are entity typing (ET) and relation extraction
(RE). We address both tasks in this paper.

As in other information extraction tasks, obtain-
ing labeled training data for ET and RE is chal-
lenging. The challenge grows as labels become
more fine-grained. Therefore, distant supervision
(Mintz et al., 2009) is widely used. It reduces the
need for manually created resources. Distant su-
pervision assumes that if an entity has a type (resp.
two entities have a relationship) in a KB, then
all sentences mentioning that entity (resp. those

two entities) express that type (resp. that relation-
ship). However, that assumption is too strong and
gives rise to many noisy labels. Different tech-
niques to deal with that problem have been in-
vestigated. The main technique is multi-instance
(MI) learning (Riedel et al., 2010). It relaxes the
distant supervision assumption to the assumption
that at least one instance of a bag (collection of all
sentences containing the given entity/entity pair)
expresses the type/relationship given in the KB.
Multi-instance multi-label (MIML) learning is a
generalization of MI in which one bag can have
several labels (Surdeanu et al., 2012).

Most MI and MIML methods are based on hand
crafted features. Recently, Zeng et al. (2015) in-
troduced an end-to-end approach to MI learning
based on neural networks. Their MI method takes
the most confident instance as the prediction of
the bag. Lin et al. (2016) further improved that
method by taking other instances into account as
well; they proposed MI learning based on selective
attention as an alternative way of relaxing the im-
pact of noisy labels on RE. In selective attention,
a weighted average of instance representations is
calculated first and then used to compute the pre-
diction of a bag.

In this paper, we introduce two multi-label ver-
sions of MI. (i) MIML-MAX takes the maximum
instance for each label. (ii) MIML-ATT applies,
for each label, selective attention to the instances.
We apply MIML-MAX and MIML-ATT to fine-
grained ET. In contrast to RE, the ET task we con-
sider contains a larger set of labels, with a variety
of different granularities and hierarchical relation-
ships. We show that MIML-ATT deals well with
noise in corpus-level ET and improves or matches
the results of a supervised model based on global
embeddings of entities.

The second type of noise we address in this pa-
per influences the integration of ET into RE. It has
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been shown that adding entity types as features im-
proves RE models (cf. Ling and Weld (2012), Liu
et al. (2014)). However, noisy training data and
difficulties of classification often cause wrong pre-
dictions of ET and, as a result, noisy inputs to RE.
To address this, we propose a joint model of ET
and RE and compare it with methods that integrate
ET results in a strict pipeline. The joint model per-
forms best. Among the pipeline models, we show
that using probabilities instead of binary decisions
better deals with noise (i.e., possible ET errors).

To sum up, our contributions are as follows.
(i) We introduce new algorithms for MIML us-
ing neural networks. (ii) We apply MIML to fine-
grained entity typing for the first time and show
that it outperforms the state-of-the-art supervised
method based on entity embeddings. (iii) We show
that a novel way of integrating noisy entity type
predictions into a relation extraction model and
joint training of the two tasks lead to large im-
provements of RE performance.

We release code and data for future research.1

2 Related Work

Noise mitigation for distant supervision. Distant
supervision can be used to train information ex-
traction systems, e.g., in relation extraction (e.g.,
Mintz et al. (2009), Riedel et al. (2010), Hoffmann
et al. (2011), Zeng et al. (2015)) and entity typ-
ing (e.g., Ling and Weld (2012), Yogatama et al.
(2015), Dong et al. (2015)). To mitigate the noisy
label problem, multi-instance (MI) learning has
been introduced and applied in relation extraction
(Riedel et al., 2010; Ritter et al., 2013). Surdeanu
et al. (2012) introduced multi-instance multi-label
(MIML) learning to extend MI learning for multi-
label relation extraction. Those models are based
on manually designed features. Zeng et al. (2015)
and Lin et al. (2016) introduced MI learning meth-
ods for neural networks. We introduce MIML al-
gorithms for neural networks. In contrast to most
MI/MIML methods, which are applied in relation
extraction, we apply MIML to the task of fine-
grained entity typing. Ritter et al. (2013) applied
MI on a Twitter dataset with ten types. Our dataset
has a larger number of classes or types (namely
102) and input examples, compared to that Twitter
dataset and also to the most widely used datasets
for evaluating MI (cf. Riedel et al. (2010)). This
makes our setup more challenging because of dif-

1cistern.cis.lmu.de

ferent dependencies and the multi-label nature of
the problem. Also, there seems to be a difference
between how entity relations and entity types are
expressed in text. Our experiments support that
hypothesis.

Knowledge base completion (KBC). Most
KBC systems focus on identifying triples
R(e1, r, e2) missing from a KB (Nickel et al.,
2012; Bordes et al., 2013; Weston et al., 2013;
Socher et al., 2013; Jiang et al., 2012; Riedel et
al., 2013; Wang et al., 2014). Work on entity
typing or unary relations for KBC is more recent
(Yao et al., 2013; Neelakantan and Chang, 2015;
Yaghoobzadeh and Schütze, 2015; Yaghoobzadeh
et al., 2017). In this paper, we build a KBC system
for unary and binary relations using contextual
information of words and entities.

Named entity recognition (NER) and typing.
NER systems (e.g., Finkel et al. (2005), Collobert
et al. (2011)) used to consider only a small set
of entity types. Recent work also addresses fine-
grained NER (Yosef et al., 2012; Ling and Weld,
2012; Yogatama et al., 2015; Dong et al., 2015;
Del Corro et al., 2015; Ren et al., 2016a; Ren
et al., 2016b; Shimaoka et al., 2016). Some of
this work (cf. Yogatama et al. (2015), Dong et al.
(2015)) treats entity segment boundaries as given
and classifies mentions into fine-grained types.
We make a similar assumption, but in contrast to
NER, we evaluate on the corpus-level entity typ-
ing task of Yaghoobzadeh and Schütze (2015);
thus, we do not need test sentences annotated with
context dependent entity types. This task was
also used to evaluate embedding learning methods
(Yaghoobzadeh and Schütze, 2016).

Entity types for relation extraction. Sev-
eral studies have integrated entity type informa-
tion into relation extraction – either coarse-grained
(Hoffmann et al., 2011; Zhou et al., 2005) or fine-
grained (Liu et al., 2014; Du et al., 2015; Augen-
stein et al., 2015; Vlachos and Clark, 2014; Yao et
al., 2010; Ling and Weld, 2012) entity types. In
contrast to most of this work, but similar to Yao
et al. (2010), we do not incorporate binary entity
type values, but probabilistic outputs. Thus, we al-
low the relation extraction system to compensate
for errors of entity typing. Additionally, we com-
pare this approach to various other possibilities, to
investigate which approach performs best. Yao et
al. (2010) found that joint training of entity typ-
ing and relation extraction is better than a pipeline
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model; we show that this result also holds for neu-
ral network models and when the number of entity
types is large.

3 MIML Learning for Entity Typing

Entity typing (ET) is the task of finding, for
each named entity, a set of types or classes that
it belongs to, e.g., “author” and “politician” for
“Obama”. Our goal is corpus-level prediction of
entity types. We use the entity-type information
from a KB and annotated contexts of entities in a
corpus to estimate P (t|e), the probability that en-
tity e has type t.

More specifically, consider an entity e and B =
{c1, c2, ..., cq}, the set of q contexts of e in the
corpus. Each ci is an instance of e and since
e can have several labels, it is a multi-instance
multi-label (MIML) learning problem. We address
MIML using neural networks by representing each
context as a vector ~ci ∈ Rh, and learn P (t|e) from
the set of contexts of entity e. In the following,
we first describe our MIML algorithms and then
explain how ~ci is computed.

Notations and definitions. Lowercase letters
(e.g., e) refer to variables. Lowercase letters with
an upper arrow (e.g., ~e) are vectors. We define
BCE, binary cross entropy, as follows where y is
a binary variable and ŷ is a real valued variable
between 0 and 1.

BCE(y, ŷ) = −
(
y log(ŷ)+(1−y)(1−log(ŷ))

)

3.1 Algorithms

Distant supervision. The basic way to estimate
P (t|e) is based on distant supervision with learn-
ing the type probability of each ci individually, by
making the assumption that each ci expresses all
labels of e. Therefore, we define the context-level
probability function as:

P (t|ci) = σ( ~wt~ci + bt) (1)

where ~wt ∈ Rh is the output weight vector and bt
is the bias scalar for type t. The cost function is
defined based on binary cross entropy:

(2)L(θ) =
∑

c

∑

t

BCE(yt, P (t|c))

where yt is 1 if entity e has type t otherwise 0. To
compute P (t|e) at prediction time, i.e., P pred(t|e),

the context-level probabilities must be aggregated.
Average is the usual way of doing that:

P pred(t|e) =
1

q

q∑

i=1

P (t|ci) (3)

Multi-instance multi-label. The distant super-
vision assumption is that all contexts of an en-
tity with type t are contexts of t; e.g., we la-
bel all contexts mentioning “Barack Obama” with
all of his types. Obviously, the labels are incor-
rect or noisy for some contexts. Multi-instance
multi-label (MIML) learning addresses this prob-
lem. We apply MIML to fine-grained ET for the
first time. Our assumption is: if entity e has type
t, then there is at least one context of e in the cor-
pus in which e occurs as type t. So, we apply this
assumption during training with the following es-
timation of the type probability of an entity:

P (t|e) = max
1≤i≤q

P (t|ci) (4)

which means we take the maximum probability of
type t over all contexts of entity e as P (t|e). We
call this approach MIML-MAX.

MIML-MAX picks the most confident context
for t, ignoring the probabilities of all the other con-
texts. Apart from missing information, this can be
especially harmful if the entity annotations in the
corpus are the result of an entity linking system.
In that case, the most confident context might be
wrongly linked to the entity. So, it can be bene-
ficial to leverage all contexts into the final predic-
tion, e.g., by averaging the type probabilities of
all contexts of entity e:

P (t|e) =
1

q

q∑

i=1

P (t|ci) (5)

We call this approach MIML-AVG. We also pro-
pose a combination of the maximum and average,
which uses MIML-MAX (Eq. 4) in training and
MIML-AVG (Eq. 5) in prediction. We call this ap-
proach MIML-MAX-AVG.

MIML-AVG treats every context equally which
might be problematic since many contexts are ir-
relevant for a particular type. A better way is to
weight the contexts according to their similarity to
the types. Therefore, we propose using selective
attention over contexts as follows and call this
approach MIML-ATT. MIML-ATT is the multi-
label version of the selective attention method pro-
posed in Lin et al. (2016). To compute the type
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Model Train Prediction
MIML-MAX MAX MAX
MIML-AVG AVG AVG
MIML-MAX-AVG MAX AVG
MIML-ATT ATT ATT

Table 1: Different MIML algorithms for entity
typing, and the aggregation function they use to
get corpus-level probabilities.

probability for e, we define:

P (t|e) = σ( ~wt~at + bt) (6)

where ~wt ∈ Rh is the output weight vector and
bt the bias scalar for type t, and ~at is the aggre-
gated representation of all contexts ci of e for type
t, computed as follows:

~at =
∑

i

αi,t~ci (7)

where αi,t is the attention score of context ci for
type t and ~at ∈ Rh can be interpreted as the repre-
sentation of entity e for type t.
αi,t is defined as:

αi,t =
exp(~ciM~t)∑q
j=1 exp(~cjM~t)

(8)

where M ∈ Rh×dt is a weight matrix that mea-
sures the similarity of ~c and ~t. ~t ∈ Rdt is the rep-
resentation of type t.

Table 1 summarizes the differences of our
MIML methods with respect to the aggregation
function they use to get corpus-level probabilities.
For optimization of all MIML methods, we use the
binary cross entropy loss function,

L(θ) =
∑

e

∑

t

BCE(yt, P (t|e)) (9)

In contrast to the loss function of distant supervi-
sion in Eq. 2, which iterates over all contexts, we
iterate over all entities here.

3.2 Context Representation

To produce a high-quality context representation
~c, we use convolutional neural networks (CNNs).

The first layer of the CNN is a lookup table that
maps each word in c to an embedding of size d.
The output of the lookup layer is a matrix E ∈
Rd×s (the embedding layer), where s is the context
size (a fixed number of words).

The CNN uses n filters of different window
widths w to narrowly convolve E. For each of the
n filters H ∈ Rd×w, the result of applying H to
matrix E is a feature map ~m ∈ Rs−w+1:

m[i] = g(E:,i:i+w−1 �H) (10)

where g is the relu function, � is the Frobenius
product, E:,i:i+w−1 are the columns i to i+w− 1
of E and 1 ≤ w ≤ k are the window widths we
consider. Max pooling then gives us one feature
for each filter and the concatenation of those fea-
tures is the CNN representation of c.

As it is shown in the entity typing part of Fig-
ure 1, we apply the CNN to the left and right
context of the entity mention and the concatena-
tion ~φ(c) ∈ R2n is fed into a multi-layer percep-
tron (MLP) to get the final context representation
~c ∈ Rh:

~c = tanh
(

Wh
~φ(c)

)
(11)

4 Type-aware Relation Extraction

Relation extraction (RE) is mostly defined as find-
ing relations between pairs of entities, for in-
stance, finding the relation “president-of” between
“Obama” and “USA”. Given a set of q contexts for
an entity pair z, B = {c1, c2, ..., cq} in the cor-
pus, we learn P (r|z), which is the probability of
relation r for z. We assume that each z has one
relation r(z). Each ci is represented by a vector
~ci ∈ Rh, which is our type-aware representation
of context described in Section 4.1.

To learn P (r|z), we use the multi-instance (MI)
learning method of Zeng et al. (2015):

P (r|ci) = softmax
(

Wout~ci

)
,

P (r|z) = max
1≤i≤q

P (r|ci)
(12)

where P (r|ci) is the probability of relation r for
context ci. The cost function we optimize is:

L(θ) = −
∑

z

logP (r(z)|z)

4.1 Context Representation
Similar to our entity typing system, we apply
CNNs to compute the context representation ~φ(c).
In particular, we use Adel et al. (2016)’s CNN. It
uses an input representation designed for RE. Each
sentence is split into three parts: left of the re-
lation arguments, between the relation arguments
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Figure 1: Our architecture for joint entity typing and relation extraction

and right of the relation arguments. The parts
“overlap”, i.e., the left (resp. right) argument is in-
cluded in both left (resp. right) and middle parts.
For each of the three parts, convolution and 3-max
pooling (Kalchbrenner et al., 2014) is performed.
The context representation ~φ(c) ∈ R3·3·n is the
concatenation of the pooling results.

4.1.1 Integration of Entity Types
We concatenate the entity type representations
~t1 ∈ Rτ and ~t2 ∈ Rτ of the relation arguments
to the CNN representation of the context, ~φ(c):

~φ(c)′ = [~φ(c) : ~t1 : ~t2] (13)

Our context representation ~c is then:

~c = tanh
(

Wh
~φ(c)′

)
(14)

where Wh ∈ Rh×(3·3·n+2τ) is the weight matrix.
This is also depicted in Figure 1, right column,
third layer from the top: ~t1, ~t2, ~Φ(c). We calculate
~t1 and ~t2 from the predictions of the entity typing
model with the following transformation:

~tk = f
(

Wt[P (t1|cek) . . . P (tT |cek)]
)

(15)

where cek is the context of ek, Wt ∈ Rτ×T is
a weight matrix (learned from corpus or during
training) and f is a function (identity or tanh).
With the transformation Wt, the model can com-
bine predictions for different types to learn better
internal representations t1 and t2. The choices of
Wt and f depend on the different representations
we investigate and describe in the following.

(1) Pipeline: We integrate entity types into the
RE model, using the output of ET in a pipeline

model (see Eq. 15). We test the following rep-
resentations of ~tk, k ∈ {1, 2}. PREDICTED-
HIDDEN: Wt from Eq. 15 is learned during
training and f is tanh. That means that a hid-
den layer learns representations based on the
predictions P (t1|cek) . . . P (tT |cek). BINARY-
HIDDEN: This is the binarization of the input of
PREDICTED-HIDDEN, i.e., each probability es-
timate is converted to 0 or 1 (with a threshold of
0.5). BINARY: ~tk is the binary vector itself (used
by Ling and Weld (2012)). WEIGHTED: The
columns of matrix Wt from Eq. 15 are the distribu-
tional embeddings of types trained on the corpus
(see Section 5.1). f is the identity function.

(2) Joint model: As an alternative to the
pipeline model, we investigate integrating entity
typing into RE by jointly training both mod-
els. We use the architecture depicted in Fig-
ure 1. The key difference to the pipeline model
PREDICTED-HIDDEN is that we learn P (t|c)
and P (r|c) jointly, called JOINT-TRAIN. We
compare JOINT-TRAIN to other models, includ-
ing the pipeline models.

During training of JOINT-TRAIN, we compute
the cost of the ET model for typing the first en-
tity L1(θT ), the cost for typing the second entity
L2(θT ) and the cost of the RE model for assign-
ing a relation to the two entities L(θR). Then,
we combine those costs with a weight γ which is
tuned on the development set:

L(θ) =
∑

z

(
L1(θT ) + L2(θT ) + γ · L(θR)

)
,

Li(θT ) =
∑

t

BCE(yeit , P (t|cei)),

L(θR) = − logP (r(z)|z)
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GOV.GOV agency.jurisdiction PPL.PER.children
GOV.us president.vice president PPL.PER.nationality
PPL.deceased PER.place of death PPL.PER.religion
ORG.ORG.place founded PPL.PER.place of birth
ORG.ORG founder.ORGs founded NA (no relation)
LOC.LOC.containedby

Table 2: Selected relations for relation extraction;
PPL = people, GOV = governement

P (r|z) is computed based on Eq. 12.
Note that based on this equation, the ET param-

eters are optimized on the contexts of the RE ex-
amples, which are a subset of all training exam-
ples of ET. However in the pipeline models, ET
is trained on the whole training set used for typ-
ing. Also note that in JOINT-TRAIN we do not
use MIML for the ET part but a distant supervised
cost function.

5 Experimental Data, Setup and Results

For entity typing, we use CF-FIGMENT (URL,
2016b), a dataset published by Yaghoobzadeh and
Schütze (2015). CF-FIGMENT is derived from
a version of ClueWeb (URL, 2016c) in which
Freebase entities are annotated using FACC1
(URL, 2016d; Gabrilovich et al., 2013). CF-
FIGMENT contains 200,000 Freebase entities that
were mapped to 102 FIGER types (Ling and Weld,
2012), divided into train (50%), dev (20%) and test
(30%); and a set of 4,300,000 sentences (contexts)
containing those entities.

For relation extraction, we first select the ten
most frequent relations (plus NA for no rela-
tion according to Freebase) of entity pairs in CF-
FIGMENT. We ensure that the entity pairs have at
least one context in CF-FIGMENT. This results in
5815, 3054 and 6889 unique entity pairs for train,
dev and test.2 Dev and test set sizes are 124,462
and 556,847 instances. For the train set, we take
a subsample of 135,171 sentences. The entity and
sentence sets of CF-FIGMENT were constructed
to ensure that entities in the entity test set do not
occur in the sentence train and dev sets; that is, a
sentence was assigned to the train set only if all
entities it contains are train entities.1

5.1 Word, Entity and Type Embeddings

We use 100-dimensional word embeddings to ini-
tialize the input layer of ET and RE. Embeddings

2We only assign those entity pairs to test (resp. dev, resp.
train) for which both constituting entities are in the ET test
(resp. dev, resp. train) set.

are kept fixed during training. Since we need em-
beddings for words, entities and types in the same
space, we process ClueWeb+FACC1 (corpus with
entity information) as follows. For each sentence
s, we add two copies: s itself, and a copy in which
each entity is replaced with its notable type, the
most important type according to Freebase. We
process train, dev and test this way, but do not re-
place test entities with their notable type because
the types of test entities are unknown in our ap-
plication scenario. We run word2vec (Mikolov et
al., 2013) on the resulting corpus to learn embed-
dings for words, entities and types. Note that our
application scenario is that we are given an unan-
notated input corpus and our system then extracts
entity types and relations from this input corpus to
enhance the KB.

5.2 Entity Typing Experiments

Entity context setup. We use a window size of
5 on each side of the entity mentions. Follow-
ing Yaghoobzadeh and Schütze (2015), we replace
other entities occurring in the context with their
Freebase notable type mapped to FIGER.

Models. Yaghoobzadeh and Schütze (2015) ap-
plied a multi-layer perceptron (MLP) architecture
to create context representations. Therefore, we
use an MLP baseline to compute the context rep-
resentation ~φ(c). The input to the MLP model is a
concatenation of context word embeddings. As an
alternative to MLP, we also train a CNN (see Sec-
tion 3.2) to compute context representations. We
run experiments with MLP and CNN, each trained
with standard distant supervision and with MIML.

EntEmb and FIGMENT baselines. Follow-
ing Yaghoobzadeh and Schütze (2015), we also
learn entity embeddings and classify those embed-
dings to types, i.e., instead of distant supervision,
we classify entities based on aggregated informa-
tion represented in entity embeddings. An MLP
with one hidden layer is used as classifier. We call
that model EntEmb. We join the results of EntEmb
with our best model (line 13 in Table 3), similar to
the joint model (FIGMENT) in Yaghoobzadeh and
Schütze (2015).

We use the same evaluation measures as Ling
and Weld (2012), Yaghoobzadeh and Schütze
(2015) and Neelakantan and Chang (2015) for en-
tity typing: precision at 1 (P@1), which is the
accuracy of picking the most confident type for
each entity, micro average F1 of all entity-type
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P@1 F1 F1 F1 MAP
all all head tail

1 MLP 74.3 69.1 74.8 52.5 42.1
2 MLP+MIML-MAX 74.7 59.2 50.7 46.8 41.3
3 MLP+MIML-AVG 77.2 70.6 74.9 56.2 45.0
4 MLP+MIML-MAX-AVG 75.2 71.2 76.4 56.0 47.1
5 MLP+MIML-ATT 81.0 72.0 76.9 59.1 48.8
6 CNN 78.4 72.2 77.3 56.3 47.6
7 CNN+MIML-MAX 78.6 62.2 53.5 49.7 46.6
8 CNN+MIML-AVG 80.8 73.5 77.7 59.2 50.4
9 CNN+MIML-MAX-AVG 79.9 74.3 79.2 59.8 53.3

10 CNN+MIML-ATT 83.4 75.1 79.4 62.2 55.2
11 EntEmb 80.8 73.3 79.9 57.4 56.6
12 FIGMENT 81.6 74.3 80.3 60.1 57.0
13 CNN+MIML-ATT+EntEmb 85.4 78.2 83.3 66.2 64.8

Table 3: P@1, Micro F1 for all, head and tail en-
tities and MAP results for entity typing.

assignments and mean average precision (MAP)
over types. We could make assignment decisions
based on the standard criterion p > θ, θ = 0.5, but
we found that tuning θ improves results. For each
probabilistic classifier and each type, we set θ to
the value that maximizes performance on dev.

Results. Table 3 shows results for P@1, micro
F1 and MAP. For F1, we report separate results
for all, head (frequency higher than 100) and tail
(frequency less than 5) entities.

Discussion. The improvement of CNN (6)
compared to MLP (1) is not surprising consider-
ing the effectiveness of CNNs in finding position
independent local features, compared to the flat
representation of MLP. Lines 2-5 and 7-10 show
the results of different MIML algorithms for MLP
and CNN, respectively. Considering micro F1 for
all entities as the most importance measure, the
trend is similar in both MLP and CNN for MIML
methods: ATT > MAX-AVG > AVG > MAX.

MAX is worse than even basic distant super-
vised models, especially for micro F1. MAX pre-
dictions are based on only one context of each en-
tity (for each type), and the results suggest that this
is harmful for entity typing. This is in contradic-
tion with the previous results in RE (cf. Zeng et al.
(2015)) and suggests that there might be a signif-
icant difference between expressing types of enti-
ties and relations between them in text. Related
to this, MAX-AVG which averages the type prob-
abilities at prediction time improves MAX by a
large margin. Averaging the context probabilities
seems to be a way to smooth the entity type prob-
abilities. MAX-AVG models are also better than
the corresponding models with AVG that train and
predict with averaging. This is due to the fact that
AVG gives equal weights to all context probabil-
ities both in training and prediction. ATT uses

… /m/024g5w , and DOCTOR into disease will be ...

… whooping cough , and kidney disease ( /m/024g5w ‘s 
disease ...

In 7 , DOCTOR and /m/024g5w write Elements of the ...

book but his catarrhal bronchitis turned to /m/024g5w ‘s 
disease and ...

It has cured /m/024g5w ‘s disease that could be traced to ...

two clinical wards so /m/024g5w can carry on intensive 
study ...

/m/024g5w , who once explored LOCATION-COUNTRY
and wrote up his ...
... is /m/024g5w , who is collecting and painstakingly 
recording ...

pe
rs
on

au
th
or

do
ct
or

pe
rs
on
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th
or
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ct
or

ATT MAX

Figure 2: MIML-ATT and MIML-MAX scores for
the example entity /m/024g5w.

weighted contexts in both training and prediction
and that is probably the reason for its effectiveness
over all other MIML algorithms. Overall, using at-
tention (ATT) significantly improves the results of
both MLP and CNN models.

CNN+MIML-ATT (10) performs comparable
to EntEmb (11), with better micro F1 on all and
tail entities and worse MAP and micro F1 on head
entities. These two models have different proper-
ties, e.g., MIML is also able to type each mention
of entities while EntEmb works only for corpus-
level typing of entities. (See Yaghoobzadeh and
Schütze (2015) for more differences) It is impor-
tant to note that MIML can also be applied to any
entity typing architecture or model that is trained
by distant supervision. Due to the lack of large
annotated corpora, distant supervision is currently
the only viable approach to fine-grained entity typ-
ing; thus, our demonstration of the effectiveness of
MIML is an important finding for entity typing.

Joining the results of CNN+MIML-ATT with
EntEmb (line 13) gives large improvements over
each of the single models. It is also consistently
better (by more than 3% in all measures) than
our baseline FIGMENT (12), which is basically
MLP+EntEmb. This improvement is achieved by
using CNN instead of MLP for context represen-
tation and integrating MIML-ATT. EntEmb is im-
proved by Yaghoobzadeh et al. (2017) by using en-
tity names. We leave the integration of that model
to future work.

Example. To show the behavior of MIML-
MAX and MIML-ATT, we extract the scores that
each method assigns to the labels for each context.
A comparison for the example entity “Richard
Bright” (MID: /m/024g5w) who is a PERSON,
DOCTOR and AUTHOR is shown in Figure 2. Note
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that the weights from MIML-ATT (Eq. 8) sum to 1
for each label because of the applied softmax func-
tion while the scores from MIML-MAX (Eq. 1)
do not. For both methods, the scores for the type
PERSON are more equally distributed than for the
other types which makes sense since the entity has
the PERSON characteristics in every sentence. For
the other types, both models seem to be influenced
by other entities occurring in the context (e.g., an
occurrence with another DOCTOR could indicate
that the entity is also a DOCTOR) but also by trig-
ger words such as “write” or “book” for the type
AUTHOR or “disease” for the type DOCTOR.

5.3 Relation Extraction Experiments

Models. In our experiments, we compare two
state-of-the-art RE architectures: piecewise CNN
(Zeng et al., 2015) and contextwise CNN (Adel et
al., 2016). We use the publicly available imple-
mentation for the piecewise CNN (URL, 2016a)
and our own implementation for the contextwise
CNN. Both CNNs represent the input words with
embeddings and split the contexts based on the
positions of the relation arguments. The context-
wise CNN splits the input before convolution, the
piecewise CNN after convolution. Also, while
the piecewise CNN applies a softmax layer di-
rectly after pooling, the contextwise CNN feeds
the pooling results into a fully-connected hidden
layer first. For both models, we use MI learning to
mitigate the noise from distant supervision.

Results. The precision recall (PR) curves in
Figure 3 show that the contextwise CNN outper-
forms the piecewise CNN on our RE dataset. We
also compare them to a baseline model that does
not learn context features but uses only the em-
beddings of the relation arguments as an input and
feeds them into an MLP (similar to the EntEmb
baseline for ET). The results confirm that the con-
text features which the CNNs extract are very im-
portant, not only for ET but also for RE. Note that
the PR curves are calculated on the corpus level
and not on the sentence-level, i.e., after aggregat-
ing the predictions for each entity pair. Following
Ritter et al. (2013), we compute the area A under
the PR curves which supports this trend (EntEmb:
A = 0.34, piecewise CNN: A = 0.48, context-
wise CNN: A = 0.50).

Pipeline vs. joint training. Since the con-
textwise CNN outperforms the piecewise CNN,
we use the contextwise CNN for integrating en-
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Figure 3: PR curves: relation extraction models
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Figure 4: PR curves: type-aware relation extrac-
tion models

tity types. Figure 4 shows that the performance
on the RE dataset increases when we integrate
entity type information into the CNN. The main
trend of the PR curves and the areas under them
shows the following order of model performances:
JOINT-TRAIN > WEIGHTED > PREDICTED-
HIDDEN > BINARY-HIDDEN > BINARY.

Discussion. The better performance of our
approaches of integrating type predictions into
the contextwise CNN (PREDICTED-HIDDEN,
WEIGHTED) compared to baseline type integra-
tions (BINARY, BINARY-HIDDEN) shows that
probabilistic predictions of an entity typing sys-
tem can be a valuable resource for RE. With bi-
nary types, it is not possible to tell whether one
of the selected types had a higher probability than
another or whether a type whose binary value is
0 just barely missed the threshold. Probabilistic
representations preserve this information. Thus,
using probabilistic representations, the RE system
can compensate for noise in ET predictions.

WEIGHTED with access to the distributional
type embeddings learned from the corpus works
better than all other pipeline models. This shows
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that our type embeddings can be valuable for RE.
JOINT-TRAIN performs better than all pipeline
models, even though the ET part in the pipelines is
trained on more data. The area of JOINT-TRAIN
under the PR curve is A = 0.66. A plausible rea-
son is the mutual dependencies of those two tasks
which a joint model can better learn than a pipeline
model. We can also relate it to better noise mitiga-
tion of jointed ET, compared to isolated models.3

Analysis of joint training. In this paragraph,
we investigate the joint training in more detail.
In particular, we evaluate different variants of it
by combining relation extraction with other en-
tity typing approaches: EntEmb and FIGMENT.
For joint training with ET-EntEmb, we do not use
the context for predicting the types of the relation
arguments but only their embeddings. Then, we
feed those embeddings into an MLP which com-
putes a representation that we use for the type pre-
diction. This corresponds to the EntEmb model
presented in Table 3 (line 11). For joint train-
ing with ET-FIGMENT, we compute two differ-
ent cost functions for entity typing: one for typ-
ing based on entity embeddings (see ET-EntEmb
above) and one for typing based on an MLP con-
text model. This does not correspond exactly to
the FIGMENT model from Table 3 (line 12) which
combines an entity embedding and MLP context
model as a postprocessing step but comes close.
In addition to those two baseline ET models, we
also train a version in which both entity typing
and relation extraction use EntEmb as their only
input features. Figure 5 shows the PR curves for
those models. The curve for the model that uses
only entity embedding features for both entity typ-
ing and relation extraction is much worse than the
other curves. This emphasizes the importance of
our context model for RE (see also Figure 3), also
in combination with joint training. Similarly, the
curve for the model with EntEmb as entity typ-
ing component has more precision variations than
the curves for the other models which use context
features for ET. Thus, joint training does not help
per se but it is important which models are trained
together. The areas under the PR curves show the
following model trends: joint with ET-FIGMENT
≈ joint as in Figure 1 > joint with ET-EntEmb >
joint with ET-EntEmb and RE-EntEmb.

Most improved relations. To identify which

3On the joint dataset, joint training improves MAP for en-
tity typing by about 20% compared to the best isolated model.
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Figure 5: Variants of joint training

relations are improved the most when entity
types are integrated, we compare the relation
specific F1 scores of CNN, CNN+WEIGHTED
and CNN+JOINT-TRAIN. With WEIGHTED, the
relations PPL.deceased PER.place of death and
LOC.LOC.containedby are improved the most
(from 36.13 to 53.73 and 49.04 to 64.19 F1,
resp.). JOINT-TRAIN has the most posi-
tive impact on PPL.deceased PER.place of death,
ORG.ORG.place founded and GOV.GOV agen-
cy.jurisdiction (from 36.13 to 67.10, 42.38 to
58.51 and 62.26 to 70.41 resp.).

6 Conclusion

In this paper, we addressed different types of noise
in two information extraction tasks: entity typ-
ing and relation extraction. We presented the first
multi-instance multi-label methods for entity typ-
ing and showed that it helped to alleviate the noise
from distant supervised labels. This is an impor-
tant contribution because most of the current fine-
grained entity typing systems are trained by distant
supervision. Our best model sets a new state of the
art in corpus-level entity typing. For relation ex-
traction, we mitigated noise from using predicted
entity types as features. We compared different
pipeline approaches with each other and with our
proposed joint type-relation extraction model. We
observed that using type probabilities is more ro-
bust than binary predictions of types, and joint
training gives the best results.
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Abstract

We analyze semantic changes in loan-
words from English that are used in
Japanese (Japanese loanwords). Specifi-
cally, we create word embeddings of En-
glish and Japanese and map the Japanese
embeddings into the English space so that
we can calculate the similarity of each
Japanese word and each English word. We
then attempt to find loanwords that are
semantically different from their original,
see if known meaning changes are cor-
rectly captured, and show the possibility
of using our methodology in language ed-
ucation.

1 Introduction

We often come across advertisements that have ex-
travagant images. In Japan, such images are usu-
ally accompanied by the following sentence1:

This sentence sounds like a nonsense tautology,
but actually means this image is only for illustra-
tive purposes and may differ from the actual prod-
uct. Both gazō and imēji are Japanese words, each
meaning image. However, the latter is a loanword
from English, i.e., image2. In the sentence above,
imēji, the loanword for image, is closer in mean-
ing to the word impression, and it makes the sen-
tence roughly mean this image is just an impres-

1TOP and COP respectively mean a topic marker and a
copula in interlinear glossed text (IGT) representation. The
last line is a literal translation of the Japanese sentence.

2Note that although gazō is also from ancient Chinese, we
focus on loanwords from English, which are usually written
in katakana letters in Japanese.

sion that you might have on this product. What
happens in this seeming tautology is that the loan-
word changes meaning; i.e., the sense of the loan-
word deviates from the sense of its original word.

Loanwords from English occupy an important
place in the Japanese language. It is reported that
approximately 8% of the vocabulary of contem-
porary Japanese consists of loanwords from En-
glish (Barrs, 2013). One noteworthy characteris-
tics of loanwords in Japanese is that their mean-
ings are often different from their original words,
as in the above example.Indeed, the meanings of
loanwords in any language are not generally the
same as those in the language, but according to
Kay (1995), Japanese has particularly a strong ten-
dency of changing the meanings of loanwords;
Kay argued that in Japan there is no deep cul-
tural motivation to protect their original meaning.
Daulton (2009) also argued that Japanese loan-
words are malleable in terms of meanings. Thus,
Japanese loanwords would be an interesting sub-
ject to work on in the study of meaning change.

Japanese loanwords from English are also im-
portant in language education (Barrs, 2013).
Japanese learners of English often make mistakes
in using English words that have corresponding
loanwords in Japanese but with very different
meanings. By contrast, learners are able to make
better use of a loanword in conversation if they
know that its meaning is the same as that of the
original. It is thus important to know which loan-
words are semantically different from their origi-
nal and which are not.

With this background in mind, we work on
Japanese loanwords derived from English. Since
the word embedding vectors (or simply, embed-
dings), which have become very popular recently,
are powerful tools for dealing with word mean-
ings, we use them to analyze Japanese loanwords.
Specifically, we create word embeddings of En-
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glish and Japanese, and map the Japanese embed-
dings into the English space so that we can cal-
culate the similarity of each Japanese word and
each English word. We then attempt to find loan-
words that are semantically different from their
original, see if known meaning changes are cor-
rectly captured, and show the possibility of using
our methodology in language education.

In this paper, we use the term semantic change
or meaning change in a broad sense. Some loan-
words are semantically different from the origi-
nal words because the loanwords or the original
words semantically changed after they were intro-
duced into Japanese or because only one of the
multiple senses of the original words were intro-
duced. Moreover, some loanwords did not come
directly from English, but from words in other lan-
guages, which later became English words. Thus,
in this paper, the terms semantic change or mean-
ing change cover all of these semantic differences.

2 Related Work

Japanese loanwords have attracted much interest
from researchers. Many interesting aspects of
Japanese loanwords are summarized in a book
written by Irwin (2011). In the field of natu-
ral language processing, there have been a num-
ber of efforts to capture the behavior of Japanese
loanwords including the phonology (Blair and In-
gram, 1998; Mao and Hulden, 2016) and seg-
mentation of multi-word loanwords (Breen et al.,
2012). The rest of this section explains the compu-
tational approaches to semantic changes or varia-
tions of words. In particular, there are mainly two
different phenomena, namely diachronic change
and geographical variation.

Jatowt and Duh (2014) used conventional
distributional representations of words, i.e.,
bag-of-context-words, calculated from Google
Book (Michel et al., 2011)3 to analyze the di-
achronic meaning changes of words. They also
attempted to capture the change in sentiment of
words across time. Kulkarni et al. (2014) used dis-
tributed representations of words (or word embed-
dings), instead of the bag-of-context-words used
by Jatowt and Duh, to capture meaning changes
of words and in addition used the change point
detection technique to find the point on the time-
line where the meaning change occurred. Hamil-

3https://books.google.com/ngrams/
datasets

ton et al. (2016) also used distributed representa-
tions for the same purpose and attempted to re-
veal the statistical laws of meaning change. They
compared the following three methods for creat-
ing word embedding: positive pointwise mutual
information (PPMI), low-dimensional approxima-
tion of PPMI obtained through singular value de-
composition, and skip-gram with negative sam-
pling. They suggested that the skip-gram with
negative sampling is a reasonable choice for study-
ing meaning changes of words. We decided to fol-
low their work and use the skip-gram with nega-
tive sampling to create word embeddings.

Bamman et al. (2014) used a similar technique
to study differences in word meanings ascribed to
geographical factors. They succeeded in correctly
recognizing some dialects of English within the
United States. Kulkarni et al. (2016) also worked
on geographic variations in languages.

With some modification, the methods used in
the literature (Kulkarni et al., 2014; Hamilton et
al., 2016) can be applied to loanword analysis.

3 Methodology

We use word embeddings to analyze the seman-
tic changes in Japanese loanwords from the corre-
sponding English. Among the methods of anal-
ysis, we chose to use the skip-gram with nega-
tive sampling for the reason discussed in Section 2
with reference to Hamilton et al.’s work (2016).

First, we create word embeddings for two lan-
guages. We then calculate the similarity or dis-
similarity between the embedding (or vector) of a
word in a language (say, Japanese) and the embed-
ding of a word in another language (say, English).
For this purpose, words in the two languages need
to be represented in the same vector space with the
same coordinates. There are a number of meth-
ods for this purpose (Gouws et al., 2015; Zou et
al., 2013; Faruqui and Dyer, 2014; Mikolov et al.,
2013a). Among them, we choose the simplest and
most computationally efficient one proposed by
Mikolov et al. (2013a), where it is assumed that
embeddings in one language can be mapped into
the vector space of another language by means of
a linear transformation represented by W . Sup-
pose we are given trained word embeddings of the
two languages and a set of seed pairs of embed-
ding vectors {(xi, zi)|1 ≤ i ≤ n}, each of which
is a pair of a vector in one language and a vector
in the other language that are translation equiva-
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lents of each other. The transformation matrix W
is obtained by solving the following minimization
problem :

min
W

n∑

i=1

||Wxi − zi||2, (1)

where, in our case, xi is the embedding of a
Japanese seed word and zi is the embedding of its
English counterpart. Thus, the Japanese word em-
beddings are mapped into the English vector space
so that the embeddings of the words in each seed
pair should be as close to each other as possible.
Although Hamilton et al. (2016) preserved cosine
similarities between embedding vectors by adding
the orthogonality constraint (i.e., W T W = I ,
where I is the identity matrix) when they aligned
English word embeddings of different time pe-
riods, we do not adopt this constraint for two
reasons. The first reason is that since we need
an inter-language mapping instead of across-time
mappings of the same language, the orthogonality
constraint would degrade the quality of the map-
ping; the two spaces might be so different that
even the best rotation represented by an orthogo-
nal matrix would leave much error between corre-
sponding words. The second reason is that we do
not need to preserve cosine similarities between
words in mapping embedding vectors, because we
do not use the cosine similarities between mapped
embedding vectors of Japanese words.

After mapping the Japanese word embeddings
to the English vector space, we calculate the co-
sine similarity between each Japanese loanword
and its original English word. If the cosine sim-
ilarity is low for a pair of words, the meaning of
the Japanese loanword is different from that of its
original English word.

4 Empirical Evaluations

Since it is generally difficult to evaluate methods
for capturing semantic changes in words, we con-
duct a number of quantitative and qualitative eval-
uations from different viewpoints.

4.1 Data and Experimental Settings
The word embeddings of English and Japanese
were obtained via the skip-gram with negative
sampling (Mikolov et al., 2013b)4 with differ-
ent dimensions as shown in the result. The data

4https://code.google.com/archive/p/
word2vec/ with options “-window 5 -sample 1e-4
-negative 5 -hs 0 -cbow 0 -iter 3”

used for this calculation was taken from Wikipedia
dumps5 as of June 2016 for each language; the
text was extracted by using wp2txt (Hasebe,
2006)6, non-alphabetical symbols were removed,
and noisy lines such as the ones corresponding
to the infobox were filtered out7. We performed
word segmentation on the Japanese Wikipedia
data by using the Japanese morphological ana-
lyzer MeCab (Kudo et al., 2004)8 with the neolo-
gism dictionary, NEologd9, so that named entities
would be recognized correctly.

The list of Japanese loanwords was obtained
from Wiktionary10. Only one-word entries were
used and some errors were corrected, resulting in
1,347 loanwords from English11.

We extracted seed word pairs from an English-
Japanese dictionary, edict (Breen, 2000)12; these
were used in the minimization problem expressed
by Equation (1). Specifically, we extracted one-
word English entries that were represented as a
single Japanese word. We then excluded the 1,347
loanwords obtained above from the word pairs,
which resulted in 41,366 seed word pairs.

4.2 Evaluation through Correlation
To see if the differences in word embeddings
are related to the meaning changes of loanwords,
we calculate an evaluation measure indicating the
global trend. We first extracted one-to-one trans-
lation sentence pairs from Japanese-English News
Article Alignment Data (JENAAD) (Utiyama and
Isahara, 2003). We then use this set of sentence
pairs to calculate the Dice coefficient for each pair
of a loanword wjpn and its original English word
weng, which is defined as

2 × P (wjpn, weng)

P (wjpn) + P (weng)
, (2)

5https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/jawiki/

6https://github.com/yohasebe/wp2txt
7https://en.wikipedia.org/wiki/Help:

Infobox
8http://taku910.github.io/mecab/
9https://github.com/neologd/

mecab-ipadic-neologd
10https://ja.wiktionary.org/wiki/%E3%82

%AB%E3%83%86%E3%82%B4%E3%83%AA%3A%E6%97%
A5%E6%9C%AC%E8%AA%9E %E5%A4%96%E6%9D%A5%E
8%AA%9E

11Some of these loanwords may have been introduced into
Japanese via other languages. However, in this paper, we
regard them as from English as long as they are also used in
English.

12http://www.edrdg.org/jmdict/edict.
html
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dimension correlation coefficient
dimjpn dimeng Pearson Spearman

100 100 0.363 0.443
200 100 0.386 0.471
200 200 0.402 0.474
400 200 0.404 0.487
300 300 0.422 0.492
600 300 0.432 0.506

Table 1: Correlation coefficients between the
Dice coefficient and the cosine similarity. dimjpn

and dimeng are respectively the dimensions of
the Japanese and English word embeddings; i.e.,
the dimjpn-dimensional space is mapped to the
dimeng-dimensional space. All the coefficients are
statistically significant (significance level 0.01).

where P (wjpn, weng) is the probability that this
word pair appears in the same sentence pair, and
P (wjpn) and P (weng) are the generative probabil-
ities of wjpn and weng. All the probabilities were
obtained using the maximum likelihood estima-
tion. The Dice coefficient is a measure of coocur-
rence and can be used to extract translate equiv-
alents (Smadja et al., 1996). If the Dice coeffi-
cient of a word pair is low, the words in the pair
are unlikely to be translation equivalents of each
other. Therefore, if the meaning of a loanword has
changed from the original English word, its Dice
coefficient should be low. In other words, the co-
sine similarity should be correlated to the Dice co-
efficient if the cosine similarity is a good indicator
of meaning change. We thus calculate the Pear-
son’s correlation coefficient between the two. In
addition, we calculate the Spearman’s rank-order
correlation coefficient to examine the relation of
the orders given by the Dice coefficient and the
cosine similarity.

Note that although we use a parallel corpus for
evaluation, it does not mean that we can simply
use a parallel corpus for finding meaning changes
in loanwords. Parallel corpora are usually much
smaller than monolingual corpora and can cover
only a small portion of the entire set of loanwords.
With the model described in Section 3, we will be
able to find meaning changes in loanwords that do
not appear in a parallel corpus.

The results for different Japanese and English
dimensions, dimjpn and dimeng, are shown in
Table 1. Pearson’s correlation coefficients sug-
gest that the cosine similarity is moderately cor-
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Figure 1: Dice coefficient vs. cosine similarity.
Dice coefficients are extracted from a parallel cor-
pus. Cosine similarities are for the embedding
vectors of the Japanese loanwords and their En-
glish counterparts. The line in the figure is ob-
tained by linear regression.

related with the Dice coefficient except for the
case dimeng=100, which shows weak correla-
tion. Spearman’s rank-order correlation coeffi-
cients also suggest that these two are moderately
correlated with each other. The result depends on
the dimensions of the word embeddings. Basi-
cally, larger dimensions tend to have higher cor-
relation coefficients. In addition, when the di-
mension is decreased (e.g., dimjpn = 600 to
dimeng = 300), the correlation coefficients tend
to be higher, compared with the case where the
dimension remains the same (e.g., dimjpn = 300
to dimeng = 300). This result is consistent with
the report by Mikolov et al. (2013a) that the word
vectors trained on the source language should be
several times (around 2x-4x) larger than the word
vectors trained on the target language.

To examine the relation between the Dice coef-
ficient and the cosine similarity in more detail, we
plot these values for the bottom row in Table 1,
i.e., where the dimensions for Japanese number
600 and the dimensions for English number 300.
The scatter plot that we obtained is shown in Fig-
ure 1. The line obtained by linear regression is
also drawn in the figure.

4.3 Detailed Evaluation on Known Change

Here, we conduct a detailed evaluation on mean-
ing changes that are already known. We se-
lected the ten Japanese loanwords shown in Ta-
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cos(weng, wa) cos(wjpn, wb)
weng wjpn wa wb − cos(wjpn, wa) − cos(weng, wb)

image imēji photo impression 0.097 0.274
corner cōnā crossroad section 0.099 0.115
digest daijesuto dissolve summary 0.047 0.291
bug bagu insect glitch 0.092 0.200
idol aidoru deity popstar 0.127 0.086
icon aikon deity illustration −0.035 0.145

cunning kanningu shrewd cheating 0.259 0.273
pension penshon annuity hotel 0.368 0.445
nature neichā characteristics magazine 0.106 0.202
driver doraibā chauffeur screwdriver −0.063 0.158

Table 2: Differences in cosine similarity. The Japanese loanword from corner can mean a small section in
a larger building or space. The Japanese loanword from bug usually means a bug in a computer program.
The Japanese loanword from cunning usually means cheating on an exam. The Japanese loanword from
nature is often used to indicate the scientific journal Nature. The Japanese loanword from driver can
mean both a vehicle driver and a screwdriver (the latter meaning was not one of the original word).

ble 2 that are supposed to have different mean-
ings compared with the original English words.
Some of these words were taken from a book
about loanwords written by Kojima (1988). The
others were collected by the authors. We also
added two pivot words wa and wb for each word13.
For the first nine words, the meaning of pivot
word wa is supposed to be closer to the English
word weng than to the Japanese loanword wjpn,
and the meaning of the pivot word wb is sup-
posed to be closer to the Japanese loanword wjpn

than to the English word weng. It is thus ex-
pected that cos(weng, wa) − cos(wjpn, wa) > 0
and cos(wjpn, wb) − cos(weng, wb) > 0 hold true.
The last Japanese loanword in Table 2 is used as
both pivot words wa and wb, but the original En-
glish word is not used as wb. It is thus expected
that cos(wjpn, wb)−cos(weng, wb) > 0 holds true,
but cos(weng, wa) − cos(wjpn, wa) > 0 might not
be necessarily true. The differences in cosine sim-
ilarities are shown in Table 2. As expected, al-
most all the differences are positive, which sug-
gests that the difference of the word embeddings
captures the meaning change. However, there was
one exception:

cos(icon, deity) − cos(iconjpn, deity) = −0.035.

13Pivot words are not necessarily synonyms of the corre-
sponding English words. They are the words that we think
are useful for capturing how the meanings of the loanwords
and the original English are different. We also made sure that
pivot words themselves are unambiguous.

The cosine similarity between icon and deity was
0.266, which is smaller than expected. We ran-
domly sampled 100 lines containing icon from En-
glish Wikipedia text, which we used for calculat-
ing word embeddings, and found that the domi-
nant sense of icon in Wikipedia is not a religious
painting or figure, but a representative person or
thing’ as in the Wikipedia page of a football super-
star David Beckham14 :

Beckham became known as a fashion
icon, and together with Victoria, the
couple became · · ·

Thus, the reason of icon’s anomalous behavior is
that the distribution over senses in Wikipedia was
a lot different from the expected one.

4.4 Nearest Neighbors

We show in Table 3 the English nearest neighbors
of the English word weng and the Japanese loan-
word wjpn in the 300-dimensional space of En-
glish. Japanese loanwords are mapped from the
600-dimensional space of Japanese into the 300-
dimensional space of English. The English word
image is close in meaning to the word picture, as
suggested by jpeg and close-up, while its loanword
seems to have a more abstract meaning such as
idealizing. The nearest neighbors of the English
word digest are influenced by an American fam-

14https://en.wikipedia.org/wiki/David_
Beckham
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weng nearest neighbor of weng nearest neighbors of wjpn

image file 0.774 idealizing 0.671
jpeg 0.748 stylization 0.665
jpg 0.724 inescapably 0.665

closeup 0.694 evoking 0.664
close-up 0.658 englishness 0.664

corner corners 0.727 recapped 0.666
tiltons 0.646 cliff-hanger 0.644

goerkes 0.643 “blank” 0.642
uphams 0.629 announcer’s 0.641

intersection’s 0.627 sports-themed 0.632
digest digests 0.609 recaps 0.717

digest’s 0.594 wrap-up 0.697
reader’s 0.591 recapped 0.695

wallace-reader’s 0.573 preview 0.693
wallace/reader’s 0.556 recap 0.690

bug bugs 0.672 heartbleed 0.714
leaf-footed 0.605 workaround 0.695
motherhead 0.590 workarounds 0.686

harpactorinae 0.582 glitches 0.684
thread-legged 0.579 copy-on-write 0.684

icon icons 0.750 swoosh 0.701
iverskaya 0.580 viewport 0.694
nicopeia 0.579 crosshair 0.691
eleusa 0.570 upper-left 0.684

derzhavnaya 0.569 wireframe 0.680
nature teiči 0.649 phytogeography 0.684

søraust-svalbard 0.643 ethological 0.679
naturans 0.627 life-history 0.676
naturata 0.623 paleoclimatology 0.671
naturing 0.623 archaeoastronomy 0.670

driver drivers 0.837 driver 0.762
driver’s 0.703 race-car 0.689

car 0.685 mechanic 0.649
co-drivers 0.655 harvick’s 0.645

owner-driver 0.653 andretti’s 0.642

Table 3: English words that are nearest weng and wjpn. wjpn is a Japanese loanword and weng is the
original English word. wjpn is mapped into the English vector space. Only words that appear more than
100 times in the Wikipedia corpus are considered as candidates of the nearest neighbors. The value next
to each word is the cosine similarity between the nearest neighbor word and weng or wjpn.
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ily magazine Reader’s Digest15 by Wallaces, but
the terms related to summary do not appear in the
top-5 list, except for digest itself. In contrast, its
loanword seems to mean wrap-up. We now re-
turn to the English word icon that was mentioned
as an exception in Section 4.3. Besides icons, the
nearest neighbors of icon are iverskaya, nicopeia,
eleusa, and derzhavnaya. These four words are all
related to religious paintings or figures, but they
have low cosine similarities. The other parts of
the table are also mostly interpretable. The nearest
neighbors of weng nature look uninterpretable at a
first glance, but they are influenced by the Søraust-
Svalbard Nature Reserve in Norway, and Natura
naturans, which is a term associated with the phi-
losophy of Baruch Spinoza.

4.5 Ranking of Word Pairs According to
Similarity

Here, we investigate the possibility of whether the
similarity calculated in the mapped space can be
used to detect the loanwords that are very differ-
ent from or close to the original English words.
We show the 20 words with the lowest cosine sim-
ilarities and the 20 words with highest cosine sim-
ilarities in Table 4. First, let us take a look at the
words on the right, which have high similarities.
Most of them are technical terms (e.g., hexade-
cane and propylene), and domain-specific terms
such as musical instruments (e.g., piano and vi-
olin) and computer-related terms (computer and
software). This result is consistent with the fact
that the meanings of technical terms tend not to
change, at least for Japanese (Nishiyama, 1995).
Next, let us take a look at the words on the left,
which have low similarities. Many of them are ac-
tually ambiguous, and this ambiguity is often due
to the Japanese phonetic system. For example,
lighter and writer are assigned to the same loan-
word in Japanese, because the Japanese language
does not distinguish the consonants l and r. The
words clause, close and clothe are also assigned
to the same loanword also because of the Japanese
phonetic system. Other words are used as parts of
named entities, also resulting in low similarity. For
example, the Japanese loanword for refer is more
often used as Rifaa, the name of a city in Bahrain,
but hardly as refer. The loanword for irregular is
often used as part of a video game title Irregular
Hunter. However, we can also find words with sig-

15http://rd.com

dissimilar pair similar pair
weng cosine weng cosine
lac 0.225 piano 0.886

refer 0.245 violin 0.881
police 0.247 cello 0.881
spread 0.251 hexadecane 0.864
mof 0.261 propylene 0.857
pond 0.270 keyboard 0.855
inn 0.274 clarinet 0.851
ism 0.279 cheese 0.849

lighter 0.280 mayonnaise 0.848
root 0.281 software 0.847
tabu 0.284 methanol 0.843
gnu 0.293 hotel 0.843

thyme 0.296 chocolate 0.841
clause 0.310 computer 0.840
board 0.315 engine 0.840

present 0.319 globalization 0.835
coordinate 0.337 tomato 0.833
expanded 0.341 trombone 0.832
irregular 0.342 recipe 0.831
measure 0.346 antimony 0.829

Table 4: Twenty words with the lowest similarities
and twenty words with the highest similarities.

nificant changes in meaning, such as present16 and
coordinate17. Therefore, the result suggests that
the similarity calculated by our method has the ca-
pability of detecting changes in the meanings of
loanwords, but we need to filter out the words that
are ambiguous in the Japanese phonetic system.

We manually evaluated the 100 words that have
the lowest similarities to the corresponding loan-
words including the 20 words shown in Table 4.
Among the 100 words, 21 words are influenced
by ambiguity, and 19 are influenced by named
entities. Among the remaining 60 words, 57
are judged to be semantically different from their
loanwords. For the other three words, the embed-
dings would not be quite accurate probably due
to their infrequency in either the English or the
Japanese corpora used for training.

4.6 Evaluation for Educational Use

To see if the obtained word embeddings of En-
glish and Japanese can assist in language learn-

16In Japanese, present usually means a gift, or to give a
gift, but hardly to show or introduce.

17In Japanese, this word usually means to match one’s
clothes attractively.
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ing, for purposes such as lexical-choice error cor-
rection, we evaluate their usefulness by using the
writings of Japanese learners of English. Specif-
ically, we use the Lang-8 English data set (Mizu-
moto et al., 2011)18 to calculate the Dice coeffi-
cient instead of JENAAD. This dataset consists of
sentences originally written by learners, some of
which have been corrected by (presumably) native
speakers of English. Because we target embed-
dings of English and Japanese, we only use En-
glish sentences written by Japanese among other
learners of English. Of those, approximately one
million sentences have corresponding corrections.
With these sentence pairs, we calculate the Dice
coefficient just as in Section 4.2. The coefficient
measures how often a word co-occurs in the orig-
inal sentences and corresponding corrections. If a
word is often corrected to another, it tends to ap-
pear only in the original sentences and not in the
corresponding corrections, and thus, its Dice co-
efficient becomes small, and vice versa. In other
words, the Dice coefficient roughly measures how
often a word is corrected in the Lang-8 English
data. Considering this, we compare the cosine
similarity based on the proposed method with the
Dice coefficient by means of the Pearson’s corre-
lation to evaluate how effective the cosine similar-
ity is in predicting words in which lexical-choice
errors likely occur19; the higher the correlation is,
the better the cosine similarity is as an indicator of
lexical-choice errors. Note that we apply lemma-
tization to all words both in the original sentences
and in the corresponding corrections when calcu-
lating the Dice coefficient in order to focus only
on lexical-choice errors20.

It turns out that the value of the Pear-
son’s correlation coefficient shows a milder cor-
relation (ρ=0.302; significant at the signifi-
cance level α=0.01) in this dataset than in
JENAAD. Some loanwords having the almost
equivalent senses in English have high values
both for the cosine similarity and the Dice
coefficient; examples are musical instruments

18http://cl.naist.jp/nldata/lang-8/
19Some of the words in the loanword list are too infrequent

to calculate the Dice coefficient in the Lang-8 data set. Ac-
cordingly, we excluded those appearing fewer than 30 times
in it when calculating the Pearson’s correlation.

20Other grammatical errors including errors in number and
inflection often appear in the Lang-8 English data, which are
mistakenly included in lexical-choice errors in the calculation
of the Dice coefficient. Lemmatization reduces their influ-
ences to some extent.

such as piano (cos=0.886, Dice=0.951) and vi-
olin (cos=0.881, Dice=0.914); computer terms
computer (cos=0.840, Dice=0.865) and software
(cos=0.847, Dice=0.880) as has discussed in Sec-
tion 4.5. Moreover, some that do not have equiva-
lent senses show mild correspondences (e.g., sen-
tence (cos=0.493, Dice=0.346); note (cos=0.470,
Dice=0.352)).

By contrast, most of the others show less cor-
respondence. One possible reason is that in
the Lang-8 English data, corrections are applied
to grammatical errors other than lexical choices,
which undesirably decreases the Dice coefficient.
Typical examples are errors in number (singu-
lar countable nouns are often corrected as corre-
sponding plural nouns; e.g., book → books) and in
inflection (e.g., book → booked). Therefore, loan-
words whose corresponding English words un-
dergo word-form changes less often tend to show
strong correspondences as can been seen in the
above examples (i.e., software and piano). This
can be regarded as noise in the use of the Lang-
8 data set. As mentioned above, we applied
lemmatization to reduce the influences by noise.
More sophisticated methods such as word align-
ment might improve the accuracy of the evalua-
tion.

5 Conclusions

We computationally analyzed semantic changes
of Japanese loanwords. We used the word em-
beddings of Japanese and English, and mapped
the Japanese embeddings to the space of English,
where we calculated the cosine similarity of a
Japanese loanword and its original English word.
We regarded this value as an indicator of semantic
change. We evaluated our methodology in a num-
ber of ways.

To detect semantic changes accurately, we have
to filter out the words that are ambiguous in the
Japanese phonetic system. Such words tend to
have low cosine similarities. One direction for fu-
ture work is application of the technique to sim-
ilar tasks. For example, we can use our method
to analyze semantic changes of cognates. There
are also a number of ways to investigate seman-
tic changes of loanwords in more detail. For ex-
ample, we can examine the relation between the
semantic change of a loanword and the time at
which the word was introduced in the target lan-
guage. Hamilton et al. (2016) reported that they
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used word embeddings to show the relation be-
tween semantic changes and polysemy. It would
be interesting to see if similar results are obtained
for loanwords.
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Abstract

Most current approaches in phylogenetic
linguistics require as input multilingual
word lists partitioned into sets of etymo-
logically related words (cognates). Cog-
nate identification is so far done manu-
ally by experts, which is time consuming
and as of yet only available for a small
number of well-studied language families.
Automatizing this step will greatly ex-
pand the empirical scope of phylogenetic
methods in linguistics, as raw wordlists
(in phonetic transcription) are much easier
to obtain than wordlists in which cognate
words have been fully identified and an-
notated, even for under-studied languages.
A couple of different methods have been
proposed in the past, but they are ei-
ther disappointing regarding their perfor-
mance or not applicable to larger datasets.
Here we present a new approach that uses
support vector machines to unify diffe-
rent state-of-the-art methods for phonetic
alignment and cognate detection within a
single framework. Training and evaluat-
ing these method on a typologically broad
collection of gold-standard data shows it
to be superior to the existing state of the
art.

1 Introduction

Computational historical linguistics is a relatively
young sub-discipline of computational linguistics
which uses computational methods to uncover
how the world’s 7 000 human languages have de-
veloped into their current shape. The discipline
has made great strides in recent years. Excit-
ing progress has been made with regard to auto-
mated language classification (Bowern and Atkin-

son, 2012; Jäger, 2015), inference regarding the
time depth and geographic location of ancestral
language stages (Bouckaert et al., 2012), or the
identification of sound shifts and the reconstruc-
tion of ancestral word forms (Bouchard-Côté et
al., 2013), to mention just a few. Most of the
mentioned and related work relies on multilingual
word lists manually annotated for cognacy. Unlike
the classical NLP conception, cognate words are
here understood as words in different languages
which are etymologically related, that means, they
have regularly developed from a common ances-
tral form, such as both English tooth and Ger-
man Zahn ‘tooth’ that go back to an earlier Proto-
Germanic word tanT- with the same meaning.
Manual cognate classification is a slow and la-
bor intensive task requiring expertise in histori-
cal linguistics and intimate knowledge of the lan-
guage family under investigation. From a method-
ological perspective, it can further be problematic
to build phylogenetic inference on expert judg-
ments, as the expert annotators necessarily base
their judgments on certain hypotheses regarding
the internal structure of the language family in
question. In this way, the human-annotated cog-
nate sets bear the danger of circularity. Deploy-
ing automatically inferred cognate classes thus has
two advantages: it avoids the bias inherent in man-
ually collected expert judgments and it is appli-
cable to both well-studied and under-studied lan-
guage families.

In the typical scenario, the researcher has ob-
tained a collection of multilingual word lists in
phonetic transcription (e.g. from field research or
from dictionaries) and wants to classify them ac-
cording to cognacy. Such datasets usually cover
many languages and/or dialects (from scores to
hundreds or even thousands) but only a small num-
ber of concepts (often the 200-item or 100-item
Swadesh list or subsets thereof). The machine
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learning task is to perform cross-linguistic clus-
tering. There exists a growing body of gold stan-
dard data, i.e. multilingual word lists covering
between 40 and 210 concepts which are manu-
ally annotated for cognacy (see Methods section
for details). This suggests a supervised learn-
ing approach. The challenge here is quite diffe-
rent from most machine learning problems in NLP
though since the goal is not to identify and de-
ploy language-specific features based on a large
amount of mono- or bi-lingual resources. Rather,
the gold standard data have to be used to find
cross-linguistically informative features that gen-
eralize across arbitrary language families. In the
remainder of this paper we will propose such an
approach, drawing on and expanding related work
such as List (2014b) and Jäger and Sofroniev
(2016).

2 Previous Work

Cognate detection is a partitioning task: a cluster-
ing task which does not necessarily assume a hi-
erarchy. An early approach (Dolgopolsky, 1964)
is based on the idea of sound classes: In order to
reduce the phonetic space and to guarantee compa-
rability across languages, sounds are clustered into
classes which frequently occur in correspondence
relation in genetically related languages. Dolgo-
polsky proposed a very rough sound class system,
proposing to group all consonants into ten classes
ignoring vowels. When converting all transcrip-
tions in the data to their respective sound classes,
one can use different criteria to assign words re-
sembling each other in their sound classes to the
same set of cognate words. Turchin et al. (2010)
further formalized this approach and employed a
modified sound class schema of 9 vowel classes to
test the Altaic hypothesis. Their Consonant Class
Matching (CCM) approach was reported to pro-
duce a low rate of false positives. Unfortunately,
the rate of false negatives is also very high (List,
2014b). This is especially due to the lack of flex-
ibility of the procedure, which hard-codes sounds
to classes, ignoring that sound change is usually
based on fine-grained transitions.

An alternative family of approaches to cognate
detection circumvents this problem by first cal-
culating distances or similarities between pairs
of words in the data, and then feeding those
scores to a flat clustering algorithm which parti-
tions the words into cognate sets. This workflow

is very common in evolutionary biology, where
it is used to detect homologous genes and pro-
teins (Bernardes et al., 2015). Two basic families
of partitioning algorithms can be distinguished:
hierarchical cluster algorithms and graph-based
algorithms. Hierarchical cluster algorithms are
based on classical agglomerative cluster algo-
rithms (Sokal and Michener, 1958), but terminate
when a user-defined threshold of average similari-
ties among clusters is reached. In graph-based par-
titioning algorithms (Andreopoulos et al., 2009),
words are represented as nodes in a network and
links between nodes represent similarities. When
clustering, links are added and removed until the
nodes are partitioned into homogeneous groups
(van Dongen, 2000).

More important than the clustering algorithm
one uses is the computation of pairwise simila-
rity scores between words. Here, different mea-
sures have been tested, ranging from simple string
distance metrics (Bergsma and Kondrak, 2007),
via enhanced sound-class-based alignment algo-
rithms (SCA, List 2014a), to iterative frameworks
in which segmental similarities between sounds
are either iteratively inferred from the data (Steiner
et al., 2011), or aggregated using machine learning
techniques (Hauer and Kondrak, 2011). Frame-
works may differ greatly regarding their under-
lying workflow. While the LexStat algorithm by
List (2014b) uses a permutation method to com-
pute individual segmental similarities between in-
dividual language pairs which are then fed to an
alignment algorithm, the PMI similarity approach
by Jäger (2013) infers general segmental similari-
ties between sounds from an exhaustive parameter
training procedure.

3 Materials

Benchmark data for training and testing was as-
sembled from different previous studies and con-
siderably enhanced by unifying semantic and pho-
netic representations and correcting numerous er-
rors in the datasets. Our collection was taken from
six major sources (Greenhill et al., 2008; Dunn,
2012; Wichmann and Holman, 2013; List, 2014b;
List et al., 2016b; Mennecier et al., 2016)1 and

1The Indo-European data from ielex.mpi.nl were
accessed on 4-26-2016. The Austronesian data from the Aus-
tronesian Basic Vocabulary Database (ABVD, language.
psy.auckland.ac.nz/austronesian/) were ac-
cessed on 12-2-2015. Among the 395 languages covered by
ABVD, we only used a randomly selected subset of 100 lan-
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Dataset Words Conc. Lang. Families Cog. Div.

ABVD (Greenhill
et al. 2008)

12414 210 100 Austronesian 3558 0.27

Afrasian (Militarev
2000)

790 40 21 Afro-Asiatic 355 0.42

Bai (Wang 2006) 1028 110 9 Sino-Tibetan 285 0.19
Chinese (Hu 2004) 2789 140 15 Sino-Tibetan 1189 0.40
Chinese (Bijng
Dxu 1964)

3632 179 18 Sino-Tibetan 1225 0.30

Huon (McElhanon
1967)

1176 84 14 Trans-New Guinea 537 0.41

IELex (Dunn 2012) 11479 208 52 Indo-European 2459 0.20
Japanese (Hattori
1973)

1983 199 10 Japonic 456 0.15

Kadai (Peiros
1998)

400 40 12 Tai-Kadai 103 0.17

Kamasau (Sanders
1980)

271 36 8 Torricelli 60 0.10

Lolo-Burmese
(Peiros 1998)

570 40 15 Sino-Tibetan 101 0.12

Central Asian
(Manni et al. 2016)

15903 183 88 Altaic (Turkic),
Indo-European

895 0.05

Mayan (Brown
2008)

2841 100 30 Mayan 844 0.27

Miao-Yao (Peiros
1998)

208 36 6 Hmong-Mien 70 0.20

Mixe-Zoque
(Cysouw et al.
2006)

961 100 10 Mixe-Zoque 300 0.23

Mon-Khmer
(Peiros 1998)

1424 100 16 Austroasiatic 719 0.47

ObUgrian (Zhivlov
2011)

2006 110 21 Uralic 229 0.06

Tujia (Starostin
2013)

498 107 5 Sino-Tibetan 164 0.15

Table 1: Benchmark data used for the study. Items
on red background were used for testing, and the
rest for training. Items on white are available in
ASJP transcription; all others are available in IPA
transcription. The last column lists the diversity of
each dataset by dividing the number of actual cog-
nates by the number of potentially different cog-
nates (List 2014:188).

covers datasets ranging between 100 and 210 con-
cepts translated into 5 to 100 languages from 13
different language families.

Modifications introduced in the process of
preparing the datasets included (a) the correction
of errata (e.g. orthographic forms in place of pho-
netic representations), (b) the replacement of non-
IPA symbols with their IPA counterparts (e.g. t

˙→ ú or ’ → P), (c) the removal of non-IPA sym-
bols used to convey meta-information (e.g. %),
(d) removal of extraneous phonetic representation
variants, and (e) the removal of morphological
markers. In addition, all concept labels in the
different datasets were linked to the Concepticon
(http://concepticon.clld.org, List et
al. 2016a), a resource which links concept labels

guage since the computational effort would have been im-
practical otherwise. For all data sets, only entries containing
both a phonetic transcription and the cognate classification
were used.

Table 2: Sample entries for woman in IELex. The
cognate class identifier in the last column consists
of a the concept label and an arbitrary letter combi-
nation. If two words share the same cognate class
identifier, they are marked as cognate.

to standardized concept sets in order to ease the
exchange and standardization of cross-linguistic
datasets. A small sample of the entries extracted
from the IELex data is shown in Table 2 for illus-
tration.

4 Methods

Unlike many other supervised or semi-supervised
clustering tasks, the set of cluster labels to be in-
ferred is disjoint from the gold standard labels.
Therefore we chose a two-step procedure: (1)
A similarity score for each pair of synonymous
words from the same dataset is inferred using su-
pervised learning, and (2) these inferred similari-
ties are used as input for unsupervised clustering.

As for subtask (1), the relevant gold standard
information are the labels “cognate” and “not
cognate” for pairs of synonymous words. The
sub-goal is to predict a probability distribution
over these labels for unseen pairs of synonymous
words. This is achieved by training a Support
Vector Machine (SVM), followed by Platt scal-
ing (Platt, 1999). The SVM primarily operates on
two string similarity measure from the literature,
PMI similarity Jäger (2013) and LexStat simila-
rity (List, 2014b), which are both known to gen-
eralize well across languages and language fami-
lies. We also used some auxiliary features from
(Jäger and Sofroniev, 2016), which are derived
from string similarities. For the clustering sub-
task (2), we followed List et al. (2016b) and List et
al. (2017) in using the Infomap algorithm (Rosvall
and Bergstrom, 2008).

The gold standard data were split into a train-
ing set and a test set. Feature selection for sub-
task (1) and parameter training for subtask (2)
were achieved via cross-validation over the train-
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ing data. For evaluation, we trained an SVM on
all training data and used it to perform automatic
clustering on the test data.

The remainder of this section spells out these
steps in detail.

4.1 String Similarity Measures
Our strategy is to first calculate string similari-
ties and distances between pairs of words denot-
ing the same concept and then inferring a partition
of the corresponding words from those similari-
ties or distances via a partitioning algorithm. For
word comparison we utilize two recently proposed
string similarity measures.

The first string similarity measure is the one un-
derlying the above-mentioned LexStat algorithm
for automatic cognate detection (List, 2014b). The
core features of the string similarity produced by
the LexStat algorithm include (a) an enhanced
sound-class model of 28 symbols, including tone
symbols for the handling of South-East Asian tone
languages, (b) a linguistically informed scoring
function derived from frequently recurring direc-
tional sound change processes, and (c) a prosodic
tier which automatically defines a prosodic con-
text for each sound in a word and thus allows
for a rough handling of context. The LexStat al-
gorithm for determining string similarities can be
roughly divided into four stages. In a first stage,
words for the same concept in each language pair
are aligned, using the SCA algorithm for pho-
netic alignment (List, 2014b), both globally and
locally, and correspondences in the word pairs
with a promising score are retained. At the same
time, a randomized distribution of expected sound
correspondences is calculated, using a permuta-
tion method (Kessler, 2001) in which the wordlist
are shuffled, so that words denoting different con-
cepts, which are much more likely to be not cog-
nate, are aligned instead. In a second step, both
distributions are compared, and log-odds scores
(Durbin et al., 2002) for each segment pair sx,y
are calculated (List, 2014b, 181). In a third step,
the new scoring function is used to re-align the
words, using a semi-global alignment algorithm
which ignores prefixes or suffixes occurring in one
of two strings (Durbin et al., 2002), and the simi-
larity scores produced by classical alignment al-
gorithms are normalized to similarity scores using
the formula by Downey et al. (2008)

D =
2 · SAB

SA + SB
(1)

where SAB is the similarity score of an align-
ment of two words A and B produced by the SCA
method, and SA and SB are the similarity scores
produced by the alignment of A and B with them-
selves.2

In Jäger (2013) a data-driven method for deter-
mining string similarities is proposed which we
will refer to as PMI similarity, as it is based on the
notion of Pointwise Mutual Information between
phonetic segments. It has successfully been used
for phylogenetic inference in Jäger (2015). The
method operates on phonetic strings in ASJP tran-
scription (Brown et al., 2013) without diacritics,
i.e., each segment is assigned one out of only 41
sound classes.

The PMI score of two sound classes a, b is de-
fined as

PMI(a, b)
.
= log

s(a, b)

q(a)q(b)
, (2)

where s(a, b) is the probability of a and b being
aligned to each other in a pair of cognate words,
and q(a), q(b) are the probabilities of occurrence
of a and b respectively. Sound pairs with positive
PMI score provide evidence for cognacy, and vice
versa.

To estimate the likelihood of sound class align-
ments, a corpus of probable cognate pairs was
compiled from the ASJP data base3 using two
heuristics. First, a crude similarity measure be-
tween wordlists, based on Levenshtein distance,
was defined and the 1% of all ASJP doculect4 pairs
with highest similarity were kept as probably re-
lated. Second, the normalized Levenshtein dis-
tance was computed for all translation pairs from
probably related doculects. Those with a distance
below a certain threshold were considered as prob-
ably cognate. These probable cognate pairs were
used to estimate PMI scores. Subsequently, all
translation pairs were aligned via the Needleman-
Wunsch algorithm Needleman and Wunsch (1970)
using the PMI scores from the previous step as
weights. This resulted in a measure of string si-
milarity, and all pairs above a certain similarity

2The original LexStat algorithm uses distance scores by
subtracting the similarity score from 1.

3The ASJP database Wichmann et al. (2013), available
from http://asjp.clld.org/, is a collection of 40-
item Swadesh lists from more than 6,000 languages and di-
alects covering all regions of the globe.

4Doculect is a neutral term for a linguistic variety which
is documented in some coherent way, leaving the issue of
distinguishing between languages and dialects aside.
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(a) PMI scores between sound classes (Jäger 2015)
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Figure 1: PMI scores (a) and string similarities (b)
of cognate and non-cognate word pairs from the
training data.

threshold were treated as probable cognates in the
next step. This procedure was repeated ten times.
In the last step, app. 1.3 million probable cognate
pairs were used to estimate the final PMI scores.

The PMI scores thus obtained are visualized in
Figure 1a (numerical values are available from the
Supplementary Material of Jäger (2015)). The
aggregate PMI score of a pair of aligned strings
(where gaps may be inserted at any position) is de-
fined as the sum of the PMI scores of the aligned
symbol pairs. Matching a symbol with a gap in-
curs a penalty, with different penalties for initial
and non-initial positions in a sequence of consecu-
tive gaps.5 The similarity s(w1, w2) between two

5The values of the gap penalties were taken from Jäger
(2013), where the method of estimating them is described.

strings w1, w2 is then defined as minimal aggre-
gate PMI score for all possible alignments. It
can be computed efficiently via the Needleman-
Wunsch algorithm.

There are major conceptual differences on how
the two similarity measures are derived. LexStat
similarity estimates separate scores between each
pair of doculects, thus utilizing regular sound cor-
respondences, while PMI similarity uses the same
PMI scores regardless of the doculects compared.
LexStat alignments further capture a prosodic
tier which allows for a rough modeling of pho-
netic context and reflects theories on the impor-
tance of phonetic strength in sound change pro-
cesses (Geisler, 1992), while the parameters used
for computing PMI similarities are estimated in
a purely data-driven way without using specifi-
cally linguistic insights beyond the classification
of sounds into ASJP sound classes. The parame-
ters of the PMI framework are statistically esti-
mated using a large amount (more than 1 000 000
word pairs) of cross-linguistically diverse data. In
contrast, LexStat’s initial alignment algorithm is
based on manually assigned parameters, and the fi-
nal parameters are estimated empirically from the
word pairs in the doculects being compared, and
no external information is being applied. As a re-
sult, the algorithm needs a minimum of 100 con-
cepts to yield reliable results and it yields notably
better results with more than 200 words (List,
2014b; List, 2014a).

The joint distribution of LexStat and PMI string
similarities for cognate and non-cognate pairs
within our training set is visualized in Figure 1b.

Despite those differences, the two measures
capture a similar signal; for the data from List
(2014b) and List et al. (2016b), e.g., their corre-
lation is as high as 0.727. Also, both variables
are contain similar information about the binary
cognate/not cognate variable. Figure 2 shows the
Precision-Recall curves (cf. for instance Manning
and Schütze, 1999) for LexStat and PMI simila-
rity. While the curves are slightly different (Lex-
Stat achieves a higer precision for low recalls and
PMI for high recalls), the areas under the curve are
almost identical (0.893 for LexStat and 0.880 for
PMI).

4.2 Workflow

In this study, we utilized both string similarity
measures discussed above, as well as a collec-
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Figure 2: Precision-Recall curves for LexStat and
PMI string similarities, based on the evaluation of
the word pairs from the data by List (2014a).

tion of auxiliary predictors pertaining to the simi-
larity of the doculects compared and the differen-
tial diachronic stability of lexical meanings, to in-
fer cognate classifications. We chose a supervised
learning approach using a Support Vector Machine
(SVM) for this purpose. The overall workflow is
shown in Figure 3. It consists of two major parts.
During the first phase (the upper part in the fig-
ure shown in red), a SVM is trained on a set of
training data and then used to predict the proba-
bility of cognacy between pairs of words from a
set of test data. During the second phase (lower
part in the figure, shown in green), those probabil-
ities are used to cluster the words from the test set
into inferred cognacy classes. The system is eval-
uated by comparing the inferred classification with
the expert classification. We used the three largest
data sets at our disposal (cf. the datasets colored in
red in Table 1), ABVD, Central Asian, and IELex,
for testing and all other datasets for training.

4.3 Support Vector Machine Training
Each data point during the first phase is a pair of
words w1, w2 (i.e., a pair of phonetic strings) from
doculects L1, L2 from data set S, both denoting
the same concept c. It is mapped to a vector of
values for the following features:6

1. LexStat string similarity between w1 and
w2 (computed with LingPy, List and Forkel,

6Features 2–5 are taken from (Jäger and Sofroniev, 2016).
The other features used there (calibrated PMI distances and
their logarithms, and the logarithm of doculect similarity) did
not improve results under cross-validation over the training
data.

word pair ➔ cognate? (yes/no)

word pair ➔ feature vectors

word pair ➔ predicted probability of cognacy

word ➔ inferred class label

string similarity computation

SVM training

SVM predictiontrained SVM

word pair ➔ distance

logarithmic 
transformation

infomap clustering

training
set

test 
set

evaluation

threshold 
training

threshold

word -> cognate set label

Figure 3: Workflow for supervised learning and
prediction. Boxes and ellipses represent data and
computations respectively.

2016) ,
2. PMI string similarity between w1 and w2,
3. doculect similarity between L1 and L2 as de-

fined in Jäger (2013),7

4. mean word length (measured in number of
segments) of words for concepts c within S.

5. correlation coefficient between PMI string
similarity and doculect similarity across all
word pairs denoting concept c within S.8

The marginal distributions for cognate and non-
cognate pairs of those features (for the data from
List (2014b) and List et al. (2016b)) is displayed in
Figure 4. It can be discerned from these plots that
word length is a negative predictor and the other
four features are positive predictors for cognacy.

7We refrain from recapitulating the full definition here for
reasons of space. Essentially this amounts to the average PMI
similarity between synonymous word pairs from L1 and L2.

8The last two features represent measures of the di-
achronic stability of concepts, based on Dellert and Buch
(2016).
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Figure 4: Distribution of features values for cog-
nate and non-cognate word pairs

The fact that word length is a negative predic-
tor of cognacy arguably results from the inter-
play of two known regularities. (1) Pagel et al.
(2007) present evidence that diachronic stability
of concepts is positively correlated with their us-
age frequency in modern corpora. (2) Accord-
ing to Zipf’s Law of Abbreviation (Zipf, 1935),
there is an negative correlation between the cor-
pus frequency of words and their lengths. Taken
together, this means that concepts usually being
expressed by short words tend to have a high usage
frequency and therefore tend to be diachronically
stable. Therefore we expect a higher proportion of
cognate pairs among concepts expressed by short
words than among those expressed by short words.

As the data points within the training set are mu-
tually non-independent, we randomly chose one
word pair per concept and data set for training the
SVM. During the training phase, we used cross-
validation over the data sets within the training set
(i.e., using one training data set for validation and
the other training data sets for SVM training) to
identify the optimal kernel and its optimal para-
meters. This was carried out by completing both
phases of the work flow and optimizing the Ad-
justed Rand Index (see Subsection 4.5) of the re-
sulting classification. Training and prediction was
carried out using the svm module from the Python
package sklearn (http://scikit-learn.
org/stable/modules/svm.html), which
is based on the LIBSVM library (Fan et al., 2005).
Predicting class membership probabilities from a
trained SVM was carried out using Platt scaling
(Platt, 1999) as implemented in sklearn (http:
//scikit-learn.org). This results in a pre-
dicted probability of cognacy p(w1, w2|c, S) for
each data point. The best cross-validation per-
formance was achieved with a linear kernel with
a penalty value of C = 0.82. Polynomial and
RBF-kernels performed slightly worse. Also, we
found that leaving out any subset of the features
decreases performance.

4.4 Cognate Set Partitioning

In order to cluster the words into sets of poten-
tially cognate words, we follow recent approaches
by List et al. (2016b) and List et al. (2017) in using
Infomap (Rosvall and Bergstrom, 2008), an algo-
rithm which was originally designed for the detec-
tion of communities in large social networks, to
detect “communities” of related words. Infomap
uses random walks in undirected networks to iden-
tify the best way to assign the nodes in the net-
work, that is, in our case, the words, to distinct
groups which form a homogeneous class.

For each data set D and each concept c covered
in D, a network was constructed. The vertices are
all words from D denoting c. Two vertices are
connected if and only if the corresponding words
are predicted to be cognate with a probability ≥ θ
according to SVM prediction + Platt scaling. The
optimal value for θ was determined as 0.66 via
cross-validation over the training data. Infomap
was then applied to this network, resulting in an
assignment of class labels to vertices/words.
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data set Adjusted Rand Index B-Cubed Precision B-Cubed Recall B-Cubed F-Score
LexStat SVM LexStat SVM LexStat SVM LexStat SVM

aggregated 0.676 0.683 0.868 0.847 0.838 0.869 0.850 0.855
Austronesian 0.545 0.588 0.791 0.781 0.801 0.855 0.796 0.817
Central Asian 0.866 0.843 0.916 0.883 0.962 0.981 0.938 0.929
Indo-European 0.618 0.619 0.896 0.877 0.750 0.770 0.817 0.820

Table 3: Evaluation results on the test data for the benchmark method (LexStat) and our method (SVM)
according to Adjusted Rand Index and B-Cubed precision, recall, and F-score

aggregated Central-Asian Austronesian Indo-European

ARI precision recall F-score ARI precision recall F-score ARI precision recall F-score ARI precision recall F-score

-0.02

0.00

0.02

0.04

Figure 5: Evaluation results (difference between performance of our method and baseline). Green bars
indicate positive values (our method outperforms baseline) and red bars indicate negative values.

4.5 Evaluation

We used two evaluation measures to compare in-
ferred with expert classifications on the test data.
The Adjusted Rand Index (ARI, Hubert 1985) as-
sesses how much the equivalence relations in-
duced by two partitions coincide. It assumes real
values ≤ 1, where 1 means “perfect agreement”
and 0 means “degree of agreement expected by
chance”. Negative values may result when from
an agreement smaller than expected by chance.

B-Cubed scores (Bagga and Baldwin, 1998)
measure precision and recall of a partition analysis
compared against a gold standard by computing an
individual accuracy score for the cluster decisions
on each item in the data and then averaging the re-
sults. Hauer and Kondrak (2011) were the first to
introduce this measure to test the accuracy of mul-
tilingual cognate detection algorithms. In contrast
to pair scores such as ARI, B-Cubed scores have
the advantage of being independent of the evalua-
tion data itself. While pair-scores tend vary greatly
depending on dataset size and cognate density, B-
Cubed scores do not show this effect. They are
reported as precision and recall. A low B-Cubed
precision almost directly translates to the classi-
cal notion of a high amount of false positive cog-
nate judgments made by an algorithm, while low
B-Cubed recall points to a large amount of cognate
sets which were missed by an algorithm.

We took the original LexStat algorithm as a
baseline with which we compare our results.

LexStat provides a good baseline, since it was
shown to outperform alternative approaches like
the above-mentioned CCM approach (Turchin et
al., 2010), or clustering based on alternative string
similarity measures, like the normalized edit dis-
tance, or the normalized scores of the above-
mentioned SCA algorithm (List, 2014b). The
LexStat implementation in LingPy offers different
methods for cognate clustering. Since we em-
ployed Infomap for our SVM approach, and since
Infomap clustering was shown to work well with
LexStat similarities (List et al., 2017), we also
used Infomap as the cluster algorithm for the Lex-
Stat approach. Since Infomap requires a thresh-
old, we trained the threshold on our training data,
excluding short wordlists. Optimal results on the
training data was obtained with θ∗ = 0.57.

5 Results and Outlook

The evaluation results are given in Table 3, and
the differences to the baseline are visualized in
Figure 5. On average, the SVM-based classifi-
cation shows a superior performance when com-
pared to the baseline (an improvement of 0.7%
ARI and 0.5% B-cubed F-score). This is mostly
due to a substantial improvement for the Austrone-
sian data (4.3% ARI/2.1% B-cubed F-score). Our
method slightly outperforms the baseline for Indo-
European but is minimally inferior when applied
to the Central Asian data. While this might seem a
minor improvement only, it is worth exploring on
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Figure 6: Performance of our method and the
benchmark, depending on length of wordlists.
Each dot represents one dataset/method pair. The
x-axis shows the numer of concepts covered in this
dataset and the y-axis the Adjusted Rand Index.
Solid lines represent smoothed interpolations us-
ing Generalized Additive Models.

what type of data our method makes progress.

The plot in Figure 6 shows the dependency of
performance (ARI) on the number concepts per
data base for the training data. While this re-
sult has to be taken with a grain of salt as it in-
volves the data used for model fitting, the pattern
is both plausible and striking. It shows that our
method clearly outperforms LexStat if the num-
ber of concepts is smaller than 100. This finding
is unsurprising since LexStat depends on regular
sound correspondences. If those cannot be reliably
inferred due to data sparseness, its performance
drops. Our method is more robust here as it makes
use of the PMI string similarity which does not
rely on language-specific information. This may
also explain the performance on the Austronesian
data: although it covers 210 concepts across 100
languages, the languages contain many gaps, and
many languages have only 100 words if not even
less.

In order to get a clearer impression on where
our algorithm failed, we compared false positives
and negatives in the Indo-European data (Dunn,
2012), which has been investigated in deep de-
tail during the last 200 years. While a quantita-
tive comparison of part of speech and word length
did not reveal any strong correlations with the

accuracy of our approach, a qualitative analysis
showed that false positives produced by our ap-
proach are usually due to language-specific fac-
tors. Among the factors triggering false nega-
tives, there are specific morphological processes
involving complex paradigms, such as Proto-Indo-
European *séh2wel- ‘sun’, which shows many suf-
fixes in its descendant forms, and specific in-
stances of sound change, involving words that
were drastically changed (cf. English four vs.
French quatre). False positives are not only due
to chance similarities (compare English much with
Spanish mucho), but also due to words which
share morphological elements but are marked as
non-cognate in our gold standard (cf. Dutch man
vs. German Ehemann ‘husband’), and errors in
the gold standard (cf. Upper Sorbian powjaz vs.
Lower Sorbian powrjoz ‘rope’, wrongly marked as
non-cognate in the gold standard).

The classical methods for the identification of
cognate words in genetically related languages are
based on the general idea that relatedness can be
rigorously proven. This requires that the lan-
guages under investigation have retained enough
similarity to identify regular sound correspon-
dences. The further we go back in time, how-
ever, the less similarities we find. The fact that
an algorithm like LexStat, which closely mimics
the classical comparative method in historical lin-
guistics, needs at least 100 (if not more) concepts
in order to yield a satisfying performance reflects
this problem of data sparseness in historical lin-
guistics. One could argue that a serious analysis in
historical linguistics should never be carried out if
data are too sparse. As an alternative to this agnos-
tic attitude, however, one could also try to work on
methods that go beyond the classical framework,
adding a probabilistic component, where data are
too sparse to yield undisputable proof. In this pa-
per, we have tried to make a first step into this
direction by testing the power of machine learn-
ing approaches with state-of-the-art measures for
string similarity in quantitative historical linguis-
tics. The fact that our approach outperforms exist-
ing automatic approaches shows that this direction
could prove fruitful in future research.
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The supplementary material can be down-
loaded from https://zenodo.org/badge/
latestdoi/77850709. and gives all datasets
used for this study along with the results, the
source code needed for the replication of the
study, and instructions on how to apply the
software. If you find errors in the code or
want to suggest improvements, please turn to
our GitHub repository at https://github.
com/evolaemp/svmcc. In order to browse
through the data and results interactively, have
a look at the project website accompanying
this publication at http://www.evolaemp.
uni-tuebingen.de/svmcc/.
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Abstract

We investigate the value of feature en-
gineering and neural network models for
predicting successful writing. Similar to
previous work, we treat this as a binary
classification task and explore new strate-
gies to automatically learn representations
from book contents. We evaluate our fea-
ture set on two different corpora created
from Project Gutenberg books. The first
presents a novel approach for generating
the gold standard labels for the task and
the other is based on prior research. Us-
ing a combination of hand-crafted and re-
current neural network learned representa-
tions in a dual learning setting, we obtain
the best performance of 73.50% weighted
F1-score.

1 Introduction

Every year millions of new books are published,
but only a few of them turn into commercial suc-
cesses, and even fewer achieve critical praise in the
form of prestigious awards or meaningful sales.
Editors have the difficult task of making the go/no-
go decision for all manuscripts they receive, and
the revenue for their publishing house depends
on the accuracy of that judgment. The website
www.litrejections.com documents some
of the biggest mistakes in the history of the pub-
lishing industry, including Agatha Christie, J.K.
Rowling, and Dr. Seuss, all of whom received
many rejection letters before landing their first
publishing deal.

Many factors contribute to the eventual success
of a given book. Internal factors such as plot, story
line, and character development all have a role in
the likability of a book. External factors such as
author reputation and marketing strategy are ar-
guably equally relevant. Some factors might even
be out of the control of an author or publishing
house, such as the current trends, the competition
from books released simultaneously, and the his-
torical and contextual factors inherent to society.

Previous work by Ganjigunte Ashok et al.
(2013) demonstrated relevant results using stylis-
tic features to predict the success of books. Their
definition of success was a function of the number
of downloads from Project Gutenberg. However
downloading a book is not by itself an indicator of
a highly liked or a commercially successful book.
We instead propose to use the rating from review-
ers collected from Goodreads as a measure of suc-
cess. We also propose features and deep learning
techniques that have not been used before on this
problem, and validate their usefulness in two dif-
ferent tasks: success prediction and genre classifi-
cation. Our key contributions are the following:

• We provide a new benchmark dataset for pre-
dicting successful books in a more realistic
class distribution. This data set is available to
the community from this link1.

• We show that sentiment analysis using Sen-
ticNet sentics is an accurate way to model
emotion in books.

1The data can be downloaded from http://ritual.
uh.edu/resources/ page.
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• We provide the first results on using recurrent
neural networks (RNN) to discover book con-
tent representations that are useful for classi-
fication tasks such as success prediction and
genre detection.

• We show that the multitask approach, simul-
taneously evaluating success and genre pre-
diction, benefits from its constituent tasks to
obtain better performance than the single suc-
cess prediction task approach.

2 Previous work

Predicting the success of books is a difficult task,
even for an experienced editor. Researchers have
studied related tasks, for example predicting the
quality of text from lexical features, syntactic fea-
tures and different measures of density. Pitler
and Nenkova (2008) found a strong correlation
between user-perceived text quality and the like-
lihood measures of the vocabulary as computed
by a language model, as well as the likelihood
measures of discourse relations, as determined by
a language model trained on discourse relations.
Louis and Nenkova (2013) proposed a combina-
tion of genre-specific and readability features with
topic-interest metrics for the prediction of great
writing in science articles. While some of the fea-
tures in this prior work were relevant to our task,
our goal is different and more aligned to Ganji-
gunte Ashok et al. (2013), since we aim to model
success in books of different genres.

Ganjigunte Ashok et al. (2013) investigated
the correlation between writing style and num-
ber of downloads. The authors analyzed lexical
features, production rules, constituents, and sen-
timent features of books downloaded from Project
Gutenberg2. They obtained an average accuracy of
70.38% using only unigram features with Support
Vector Machines (SVM) as the classifier.

Deep learning representations have seen their
share of successes in Natural Language Process-
ing (NLP) tasks (Bahdanau et al., 2014; Zheng
et al., 2013; Gao et al., 2014; Glorot et al.,
2011; Samih et al., 2016). In particular, RNN
models have been successfully applied in sev-
eral scenarios where temporal dependencies pro-
vide relevant information (Ian Goodfellow and
Courville, 2016; LeCun et al., 2015). Kiros et
al. (2015) used RNN models to learn language

2 https://www.gutenberg.org/

models from books using an unsupervised ap-
proach. Also, word embedding (Mikolov et al.,
2013) and Paragraph Vector (Le and Mikolov,
2014) have been shown to achieve state-of-the-
art performance in several text classification and
sentiment classification tasks. These techniques
are able to learn distributed vector representa-
tions that capture semantic and syntactic rela-
tionships between words. Collobert and Weston
(2008) trained jointly a single Convolutional Neu-
ral Network (CNN) architecture on different NLP
tasks and showed that multitask learning increases
the generalization of the shared tasks. Other re-
searchers (Ian Goodfellow and Courville, 2016;
Søgaard and Goldberg, 2016; Attia et al., 2016)
have also reached to similar conclusions.

3 Dataset

We experimented with two book collections: one
prepared by Ganjigunte Ashok et al. (2013)3 and
the other constructed by us to evaluate a new def-
inition of success. We refer to the first dataset as
EMNLP13 and the second dataset as Goodreads.

The EMNLP13 collection contained Project
Gutenberg books from eight different genres. The
authors created a balanced dataset containing 100
books per genre, resulting in a total of 800 books.
We manually reviewed the dataset and found miss-
ing or irrelevant content in 58 books: a total of
53 books contained Project Gutenberg license in-
formation repeated verbatim, and five books con-
tained only the audio recording certificate in place
of the actual book content. We removed the
license-related text, since lexical features might be
erroneously biased, and replaced the five files with
the actual content of the books. Except for these
corrections, the data we used is the same as that
presented in Ganjigunte Ashok et al. (2013).

We also identified some odd adjudications. For
example, ‘The Prince And The Pauper’ is a pop-
ular book by Mark Twain that was adapted into
various films and stage plays. Also, ‘The Adven-
tures of Captain Horn’ was the third best selling
book of 1895 (Hackett, 1967). Both these books
are labeled as unsuccessful due to their low down-
load counts. We suspect as well that some of the
counts are inflated by college students doing En-
glish or Literature assignments that may not be di-
rectly related to the potential commercial success

3The data can be downloaded from http://www3.cs.
stonybrook.edu/˜songfeng/success/
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Genre Unsuccessful Successful Total
Detective Mystery 60 46 106
Drama 29 70 99
Fiction 30 81 111
Historical Fiction 16 65 81
Love Stories 20 60 80
Poetry 23 158 181
Science Fiction 48 39 87
Short Stories 123 135 258
Total 349 654 1,003

Table 1: Goodreads Data Distribution

EMNLP13 Success definition
Unsuccessful Successful

Goodreads
Success definition

Unsuccessful 73 32
Successful 110 184

Table 2: Confusion matrix between two different defini-
tions of success.

of a book.
To address these concerns, we propose a new

approach to creating gold labels for success-
ful books based on public reviews rather than
download counts. We collected a new set of
Project Gutenberg books for this benchmarking.
We mapped the books to their review pages on
Goodreads4, a website where book lovers can
search, review, and rate books. We consider only
those books that have been rated by at least 10 peo-
ple. We use the average star rating and total num-
ber of reviews for labeling each book. We then set
an average rating of 3.5 as the threshold for suc-
cess, such that books with average rating < 3.5
are classified as Unsuccessful. Table 1 shows the
data distribution of our books. To our knowledge,
we have one of the largest collection of books, as
researchers generally work with a low number of
books (Coll Ardanuy and Sporleder, 2014; Goyal
et al., 2010; van Cranenburgh and Koolen, 2015).
Success Definitions Comparison: After com-
piling and labeling both the datasets, we drew
a comparison between the two definitions of
success. To do this, we downloaded the
Project Gutenberg download counts for the books
in Goodreads dataset and labeled them using
the Ganjigunte Ashok et al. (2013) definition of
success. Since they only considered books in the
extremes of download counts, we could only la-
bel 399 books in the Goodreads dataset using their
definition. We found that 142 books had differ-
ent labels according to the two definitions. 19.7%
of these mismatched books were labeled as unsuc-

4https://www.goodreads.com/

cessful despite having ratings ≥ 3.5 and being re-
viewed by more than 100 reviewers. Table 2 de-
tails the discrepancies between the two definitions.

4 Methodology

We investigated a wide range of textual features in
an attempt to capture the topic, sentiment, writ-
ing style, and readability for each book. This
set included both new and previously used fea-
tures. We also explored techniques for automati-
cally learning representations from text using neu-
ral networks, which have been shown to be suc-
cessful in various text classification tasks (Kiros et
al., 2015; LeCun et al., 2015). These techniques
include word embeddings, document embeddings,
and recurrent neural networks.

4.1 Hand-crafted text features

Lexical: We used skip-grams, char n-grams, and
typed char n-grams (Sapkota et al., 2015) with
term frequency-inverse document frequency (TF-
IDF) as the weighting scheme. Sapkota et al.
(2015) showed that classical character n-grams
lose some information in merging instances of n-
grams like the which could be a prefix (thesis),
a suffix (breathe), or a standalone word (the).
They separated character n-grams into ten cate-
gories representing grammatical classes, like af-
fixes, and stylistic classes, like beg-punct and mid-
punct which reflect the position of punctuation
marks in the n-gram. The purpose of these fea-
tures is to correlate success with an author’s word
choice.
Constituents: We computed the normalized
counts of ‘SBAR’, ‘SQ’, ‘SBARQ’, ‘SINV’, and ‘S’
syntactic tag sets from the parse tree of each sen-
tence in each book, following the method of Gan-
jigunte Ashok et al. (2013) to determine the syn-
tactic style of the authors.
Sentiment: We computed sentence neutrality,
positive and negative, using SentiWordNet (Bac-
cianella et al., 2010) along with the counts of
nouns, verbs, adverbs, and adjectives. We aver-
aged these scores for every 50 consecutive sen-
tences in order to evaluate change in sentiment
throughout the course of each book, because we
anticipate emotions, like suspense, anger, and hap-
piness to contribute to the success of the book.
SenticNet Concepts: We extracted sentiment con-
cepts from the books using the Sentic Concept
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Figure 1: Multitask method. Words are represented in the
Word2Vec space. Such representations are averaged per win-
dow. Sequences are feed to GRU network. Finally, the fea-
tures are feed to two softmax components to predict genre
and success simultaneously.

Parser5. The parser chunks a sentence into noun
and verb clauses, and extracts concepts from them
using Part Of Speech (POS) bigram rules. We
modeled these as binary bag-of-concepts (BoC)
features. We also extracted average polarity,
sensitivity, attention, pleasantness, and aptitude
scores for the concepts defined in the SenticNet-
3.0 knowledgebase, which contains semantics
and sentics associated with 30,000 common-sense
concepts (Cambria and Hussain, 2015).

Writing density: We computed the number of
words, characters, uppercase words, exclamations,
question marks, as well as the average word
length, sentence length, words per sentence, and
lexical diversity of each book, with the expecta-
tion that successful and unsuccessful writings will
have dissimilar distributions of these density met-
rics.

Readability: We computed multiple readability
measures including Gunning Fog Index (Gunning,
1952), Flesch Reading Ease (Flesch, 1948), Flesch
Kincaid Grade Level (Kincaid et al., 1975), RIX,
LIX (Anderson, 1983), ARI (Senter and Smith,
1967), and Smog Index (Mc Laughlin, 1969) and
used their mean normalized values for training. In-
tuitively, the use of simple language will resonate
with a larger audience and contribute to book suc-
cess.

4.2 Neural network learned representations

Representation learning techniques are able to
learn a set of features automatically from the raw
data. Our hypothesis is that the learned representa-
tion can capture the complex factors that influence
the success of a book.
Word embeddings with Book2Vec: In contrast
with Word2Vec, which learns a representation for
individual words, Doc2Vec learns a representa-
tion for text fragments or even for full docu-
ments. We trained the Doc2Vec module of the
Gensim (Řehůřek and Sojka, 2010) Python library,
on all the books in the Goodreads dataset to ob-
tain a 500 dimensional dense vector representation
for each book. Using Doc2Vec, we first trained a
distributional memory (DM) model with two ap-
proaches: concatenation of context vectors (DMC)
and sum of context word vectors (DMM). Then
we trained a distributional bag of words (DBoW)
model and combined it with the DMC and the
DMM for a total of five different models. We set
the number of iterations to 50 epochs and shuf-
fled the training data in each pass. We called these
book vectors Book2Vec. Furthermore, we cre-
ated two 300 dimensional vector representations
for each book by averaging the vectors of each
word in the book using pre-trained Word2Vec vec-
tors from the Google News dataset6 and our own
Word2Vec trained with ∼350M words from 5,000
random books crawled from Project Gutenberg.
Multitask RNN method: When dealing with
variable length data such as time series or plain
text, traditional approaches like feed-forward neu-
ral networks are not easily adapted since they ex-
pect fixed-size input to model sequential data. One
limitation of RNNs is that it has problems dealing
with long sequences (Pascanu et al., 2013). We
propose a strategy to represent large documents,
such as books, with an aggregated representation.
Figure 1 depicts the proposed multitask method.
The overall strategy uses a RNN to learn a model
of sequences of sentences. Each sentence is repre-
sented by the average of the Word2Vec represen-
tation of its constituent words. The RNN is com-
posed of 2 hidden layers with 32 hidden gated re-
current units (GRU) (Cho et al., 2014) each, and
the output is a softmax layer. We train the RNN

5https://github.com/pbhuss/
Sentimental/blob/master/parser/
SenticParser.py

6The pre-trained Word2Vec was downloaded
from https://code.google.com/p/word2vec/
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in a supervised fashion using the success catego-
rization and the book genre as labels. The RNN
serves a feature extractor and the last hidden states
for each sequence acts as its representation. At
training time, all sentences from one book are ex-
tracted and divided in chunks of 128 sentences.
The book’s success/genre labels are assigned to
each sequence. A sentence is then represented as
the average of its constituent word vectors. To
make the book label assignment at testing time, we
average the predictions of all sequences extracted
from each book. Using 128 sentences has three-
fold a motivation: (1) mitigate vanishing gradient
problem (Pascanu et al., 2013), (2) obtain more
examples from one book, and (c) be a power of 2
to efficiently use the GPU.

An interesting property of neural networks is
that the same learning approach, i.e stochastic gra-
dient descent, still holds for more complex archi-
tectures as long as the objective cost function is
differentiable. We take advantage of this property
to build a unified neural network that addresses
both genre and success prediction using a single
model. These kinds of multitask architectures are
also useful as regularizers (Ian Goodfellow and
Courville, 2016). In particular, our cost function
J (X,Y ) is defined as follows:

hi = rnn (xi)

ŷsucci =
ez

succ
i

∑
k e

zsucck

ŷgeni =
ez

gen
i

∑
l e

zgenl

J (X,Y ) = −
∑

i

(ysucci ln ŷsucci + ygeni ln ŷgeni )

where xi represents the i-th sample and ysucc and
ygen are success and genre labels respectively. The
rnn (·) function represents the forward propaga-
tion over the recurrent neural network and h rep-
resents the last hidden state. ŷsucc and ŷgen rep-
resent predictions for the two labels. Notice that
both of them are computed using the same unified
representation h. zsucc and zgen represent two dif-
ferent linear transformations over h that map to the
number of classes.

5 Experiments and Results

5.1 Experiments on Goodreads dataset
We merged books from different genres, and then
randomly divided the data into a 70:30 train-

ing/test ratio, while maintaining the distribution
of Successful and Unsuccessful classes per genre.
As a preprocessing step we converted all words
to lowercase and removed infrequent tokens hav-
ing document frequency ≤ 2. For our tag-
ging and parsing needs, we used the Stanford
parser (Socher et al., 2013). We then trained a Li-
bLinear Support Vector Machine (SVM)7 classi-
fier with L2 regularization using the hand-crafted
features described in Section 4. We tuned the
C parameter in the training set with 3-fold grid
search cross-validation over different values of
1e{-4,...,4}.

With the features used by Ganjigunte Ashok et
al. (2013), we obtained the highest weighted F1-
score of 0.659 with word bigram features. We
set this value as our baseline. In order to study
the effect of the multitask approach, we devised
analogous experiments to our proposed multitask
RNN method and predicted both genre and suc-
cess together for the features described in Sec-
tion 4. Hence we have two settings for the clas-
sification experiments, Single task (ST) and Mul-
titask (MT).

Since we had average rating information, we
also modeled the problem as a regression prob-
lem and predicted the average rating using only the
content of the books. Our work differs from other
researchers in this aspect, as most of them (Lei et
al., 2016; Li et al., 2011; Mudambi et al., 2014)
use review content instead of the actual book con-
tent to predict the average rating. We used the
Elastic Net regression algorithm with l1 ratio
tuned over range {0.01, 0.05, 0.25, 0.5, 0.75, 0.95,
0.99} with 3-fold grid search cross-validation of
the training data.

Parameter tuning for RNN: We trained 25 mod-
els with random hyper-parameter initialization for
learning rate, weights initialization ranges and reg-
ularization parameters. We chose the best valida-
tion performance model. This is preferable over
grid search when training deep models (Bergstra
and Bengio, 2012). We used the ADAM algo-
rithm (Kingma and Ba, 2014) to update the gra-
dients. Since these models are prone to overfitting
because of the high number of parameters, we ap-
plied clip gradient, max-norm weights, early stop-
ping and dropout regularization strategies.

7We use LibLinear SVM wrapper from http://
scikit-learn.org/stable/
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Features ST (F1) MT (F1) MSE
Word Bigram 0.659 0.685 0.152
2 Skip 2 gram 0.645 0.688 0.156
2 Skip 3 gram 0.506 0.680 0.156
Char 3 gram 0.669 0.700 0.155
Char 4 gram 0.676 0.689 0.155
Char 5 gram 0.683 0.699 0.154
Typed beg punct 3 gram 0.621 0.672 0.151
Typed mid punct 3 gram 0.598 0.641 0.151
Typed end punct 3 gram 0.626 0.677 0.151
Typed mid word 3 gram 0.653 0.687 0.156
Typed whole word 3 gram 0.658 0.666 0.154
Typed multi word 3 gram 0.607 0.657 0.154
Typed prefix 3 gram 0.624 0.624 0.154
Typed space prefix 3 gram 0.589 0.646 0.155
Typed suffix 3 gram 0.624 0.637 0.154
Typed space suffix 3 gram 0.626 0.664 0.154
Clausal 0.506 0.558 0.156
Writing Density (WR) 0.605 0.640 0.156
Readability (R) 0.506 0.634 0.144
SentiWordNet Sentiments(SWN) 0.582 0.610 0.156
Sentic Concepts and Scores (SCS) 0.657 0.670 0.155
GoogleNews Word2Vec 0.669 0.692 0.156
Gutenberg Word2Vec 0.672 0.673 0.140
Book2Vec (DBoW) 0.643 0.654 0.130
Book2Vec (DMM) 0.686 0.731 0.142
Book2Vec (DMC) 0.640 0.674 0.131
Book2Vec (DBoW+DMC) 0.647 0.677 0.131
Book2Vec (DBoW+DMM) 0.695 0.729 0.142
RNN 0.529 0.686 0.125

Table 3: Results for classification (ST = Single task setting,
MT = Multi-task setting) and regression tasks on Goodreads
dataset. MSE = Mean Square Error, F1 score is weighted F1
scores across Successful and Unsuccessful classes.

5.2 Results on Goodreads dataset

Table 3 shows the results with our new proposed
feature sets for the classification and regression
tasks. In the ST setting, except for the character n-
gram features, all proposed hand-crafted features
individually had a weighted F1-score less than the
word bigram baseline. On the other hand, the neu-
ral network methods obtained better results than
the baseline. We obtained the highest weighted
F1-score of 0.695 and 0.731 with the Book2Vec
method in the ST and MT settings, respectively.
The results show that the MT approach is better
than the ST approach. The genre prediction task
must have acted as a regularizer for the success
prediction task. Also, we found that modeling the
entire book as a vector, rather than modeling it
as the average of word vectors, gave better per-
formance. Although the ST Book2Vec performs
better than the MT RNN method, the difference
is very small. We performed McNemar’s test on
these methods and found that the results were not
statistically significant, with p=0.5. The MT RNN
method had the lowest mean square error (MSE)
for the regression task, at 0.125.

The character ngram proved to be one of the
most important hand-crafted features, whereas
clausal feature was the least important one. In-

Features ST (F1) MT (F1) MSE
Unigram+Bigram 0.660 0.691 0.15
Unigram+Bigram+Trigram 0.660 0.700 0.149
Char 3,4,5 gram 0.682 0.689 0.153
All Typed ngram 0.663 0.691 0.144
SCS+WR+Typed mid word 0.720 0.710 0.155
SCS+Book2Vec 0.695 0.731 0.139
R+Book2Vec 0.695 0.729 0.139
WR+Book2Vec 0.693 0.726 0.139
Word Ngram+ RNN 0.691 0.688 0.125
Skip gram + RNN 0.689 0.683 0.125
Typed char ngram+ RNN 0.689 0.702 0.125
Char 3 gram + RNN 0.689 0.688 0.125
Clausal+ RNN 0.689 0.688 0.125
SCS + RNN 0.691 0.688 0.125
WR+Book2Vec+ RNN 0.701 0.735 0.129
SCS+WR+RNN 0.675 0.696 0.123
All hand-crafted 0.670 0.689 0.148
All hand-crafted+neural 0.667 0.712 0.129

Table 4: Feature Combination Results for Goodreads
dataset. (ST = Single Task, MT =Multi-task, SCS = Sentic
concept+average scores of sensitivity, attention, pleasantness,
aptitude, polarity, WR = Writing Density, R = Readability)

dividually, writing density and readability features
seemed to be weak features. We assumed that the
sentiment changes in books would be an important
characteristic for the task. However, the results in
Table 3 show an unimpressive F1-score of 0.610
for sentiment features. On the other hand, the bag
of sentic concepts model with average scores for
sensitivity, attention, pleasantness, aptitude, and
polarity gave a more impressive F1-score of 0.670,
much higher than the baseline. This result points
to the relevance of performing a more nuanced
sentiment analysis beyond lexical statistics for this
task.

Our next set of experiments included the com-
binations of hand-crafted and neural network rep-
resentations. Some of the best combination results
are shown in Table 4. Out of the different possi-
ble feature combinations, we obtained the highest
weighted F1 score of 0.735 by combining hand-
crafted and learned representations in the MT set-
ting. We observed that combining low perform-
ing hand-crafted features like readability, syntactic
clauses, and skip grams with neural representation
boosted their performance. Likewise for the re-
gression task, the MT RNN representation proved
to be a better choice, as its combination with
other features generally lowered the MSE. The
best combinations for the regression task lowered
the MSE to 0.123. Deep learning and hand-crafted
methods may capture complementary sources of
information, which upon combination boost per-
formance.
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5.3 Results on EMNLP13 dataset

We tried to reproduce the results reported in Gan-
jigunte Ashok et al. (2013) by re-implementing
their system. Unlike our setup, they performed ex-
periments on individual genres and reported aver-
age accuracy across all genres. We obtained sim-
ilar results, but not as close as we expected, even
after extensive experimentation, and extending the
search for parameter optimization. For most of
their features we obtained a lower accuracy 8. The
differences may be due to a combination of the cu-
rating process we described in Section 3 that cor-
rected content in the books used, as well as the dif-
ferent set of parameter values we explored for tun-
ing the classifier. As pointed out by Fokkens et al.
(2013), even seemingly small differences in pre-
processing can prevent reproducibility. Hence, we
consider our best accuracy so far (71.25%) to be
the state-of-the-art performance on this data set.

Table 5 shows the results from some of our
best feature sets. The features that worked best
for the Goodreads data also worked best for the
EMNLP13 data. Significantly, with the combi-
nation of the sentic concepts and scores, typed
ngrams, and writing density, we obtained an av-
erage accuracy of 73.00%, much higher than the
baseline score of 71.25% for this dataset.

The RNN performance was very low in compar-
ison with the handcrafted features. We relate this
behavior to the small size of this particular training
dataset and evaluation setup. Notice that Ganji-
gunte Ashok et al. (2013) experimented per genre,
i.e. trained a single classifier per genre. Thus,
in a 5-fold approach we only have 80 samples to
train and 20 to test. Additionally, we must take out
some samples from the training data for validation.
It has been empirically shown that one of the key
elements in the success of representation learning
strategies is a large amount of data, on the order of
tens of thousands of samples at least. Moreover,
in the EMNLP13 dataset, it is not possible to take
advantage of the multitask approach because there
is only one target genre in each experiment.

6 Discriminative features

Table 6 lists some of the features that were highly-
weighted by the classifier. For the sentic con-
cepts, salient features included important adjec-
tives, verbs and relations; all objects that might

8There was a maximum 4% difference for some features.

Features Avg Accuracy(%)
Word Bigram 71.25
Char 3 grams 71.00
Typed mid word 3-gram 70.25
Writing Density (WR) 68.38
Readability 61.38
Sentic concepts & scores(SCS) 72.38
GoogleNews Word2Vec 69.88
Gutenberg Word2Vec 64.25
Book2Vec 72.38
RNN 55.80
Unigram+Bigram+Trigram 72.75
Book2Vec+SCS 64.75
Book2Vec+WR 66.38
SCS+WR+Typed char ngrams 73.00

Table 5: Average accuracy results with new feature and
their combinations on EMNLP13 dataset.

Type Features

ngrams
. “, . ”, said :, young man, very young man, the young man,
boys, . i, father, his father, mother, he said, she said, said NE,
princess, lord, colonel, captain, doctor, tour, mr, miss

Sentic concepts

conceive, grieve, zealous, emptiness, bitterness, corpse,
hypothesis, irony, theory of the, wagon,deep blue,
scarred, screaming, grudging, vigil, vein,
beautiful place, rural, marriage, friendship, cats, 911
avg aptitude, polarity, pleasantness, attention scores

Character and
typed character ngrams

mr., mrs., john, thou, amor, pen, his, and,the, ing,
n’s,ed, gg’, pt’, d’a, t”, i-t, , ,”i ,” ”, ” say,” s,” she

Table 6: Discriminative Features

trigger a crucial event. Similarly, for the charac-
ter n-gram features, honorific titles, stop words,
common word endings, and especially n-grams
with quotation marks were highly weighted. Quo-
tation marks indicate the exchange of dialogues
between characters. This suggests that dialogue
is an important aspect of novels. Word n-gram
features also support this suggestion. Features
like s/he said, said Person Name were also highly
weighted. Moreover, pronouns and titles related to
male gender also had high weights. Features like

i was, . i, i am also had high weights. This
might be an indication that books with first person
narration tend to be more successful. Another in-
teresting observation was that the number of ques-
tion marks in a book was also consistently posi-
tively correlated with success. This might suggest
that readers enjoy books consisting of dialogue or
interaction between the characters. We also calcu-
lated the maximal information criterion (MIC) and
correlation coefficient (CC) for the writing den-
sity as well as the readability features against the
average rating. Generally, readers prefer books
with high writing density (0.19 MIC, 0.25 CC) and
somewhat complex writing (0.17 MIC, 0.21 CC).
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Figure 2: Projection of Book2Vec from four different gen-
res into 2D space for the Goodreads dataset.

Figure 3: Projection of successful and unsuccessful books
using representation learned with the RNN model.

7 Analysis of learned representations

In order to investigate deep vectors, we projected
them onto 2-dimensional space using t-SNE. Fig-
ure 2 suggests that the vectors successfully capture
genre-related concepts, as books from the same
genre are close to each other in the 2D space. We
then performed 8-way genre classification exper-
iment using random stratified division of the data
into 70:30 training/test ratio. We obtained an ac-
curacy of 62.50% and F1 score of 69.30% for the
EMNLP13 and Goodreads datasets, respectively.
These scores were well above the random baseline
of 12.50% accuracy and 15.23% F1-score for the
EMNLP13 and Goodreads datasets, respectively.
We further found that Poetry and Drama were the
most accurately classified genres, whereas Fiction
was the most difficult to classify.

In order to further investigate the representa-
tions learned by RNN for successful and unsuc-
cessful books, we plotted the 2D t-SNE projection
of the book representations. Figure 3 shows the

projection of vectors for the Short stories genre.
The visualization shows that the RNN is able to
cluster the book vectors into two separate regions.
Furthermore, to investigate what else the RNN
might be learning, we plotted some books by the
same authors. Figure 3 also shows books from
authors Jack London and Alan E. Nourse. The
four books by Jack London and the two books by
Alan E. Nourse are very close to each other. We
thus infer that along with learning peculiarities of
successful and unsuccessful classes, the RNN was
able to capture features related to the style of au-
thors.

8 How much content is needed for
success prediction?

Figure 4: Weighted F1 score for training and validation
data for varying number of sentences with char 3 gram fea-
ture.

Humans are good at detecting poor writing af-
ter reading just a few pages. We wanted to in-
vestigate if it is the same for machines. We de-
vised stratified 3-fold cross-validation exploratory
experiments on training data by gradually increas-
ing the content of the books in the training fold.
The results are shown in Figure 4. We see that the
cross-validation score gradually increases until we
reach 200 sentences. After this point, it plateaued
out. Hence, we conclude that 200 sentences is the
minimum threshold for the classifier.

9 Conclusions

In this paper we propose new features for pre-
dicting the success of books. We used two main
feature categories: hand-crafted and RNN-learned
features. Hand-crafted features included typed
character n-grams and sentic concepts. For the
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learned features we proposed two different strate-
gies based on neural networks. The first ex-
tends Word2Vec-type representations to work in
large documents such as books, and the second
one uses an RNN to capture sequential patterns
in large texts. We evaluated our methods on our
Goodreads dataset, whose classes are not based
on download counts, but rather are a function
of average star ratings and number of reviewers.
Our results outperform state-of-the-art methods.
We conclude that instead of having either deep-
learning or hand-crafted features outperform the
other, both methods capture complementary infor-
mation, which upon combination gives better per-
formance. Also, the multitask setting is prefer-
able to the single task setting, as the multitask ap-
proach helps the classifier better generalize during
learning by letting constituent tasks act as regu-
larizers. As our next steps, we plan to investi-
gate features that capture plot-related aspects, such
as character profiles and interaction through so-
cial network analysis, historical setting, and other
feature-learning strategies.
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Abstract

We consider the task of predicting how lit-
erary a text is, with a gold standard from
human ratings. Aside from a standard bi-
gram baseline, we apply rich syntactic tree
fragments, mined from the training set, and
a series of hand-picked features. Our model
is the first to distinguish degrees of highly
and less literary novels using a variety of
lexical and syntactic features, and explains
76.0 % of the variation in literary ratings.

1 Introduction

What makes a literary novel literary? This seems
first of all to be a value judgment; but to what ex-
tent is this judgment arbitrary, determined by social
factors, or predictable as a function of the text? The
last explanation is associated with the concept of
literariness, the hypothesized linguistic and formal
properties that distinguish literary language from
other language (Baldick, 2008). Although the defi-
nition and demarcation of literature is fundamental
to the field of literary studies, it has received sur-
prisingly little empirical study. Common wisdom
has it that literary distinction is attributed in social
communication about novels and that it lies mostly
outside of the text itself (Bourdieu, 1996), but an
increasing number of studies argue that in addition
to social and historical explanations, textual fea-
tures of various complexity may also contribute to
the perception of literature by readers (cf. Harris,
1995; McDonald, 2007). The current paper shows
that not only lexical features but also hierarchical
syntactic features and other textual characteristics
contribute to explaining judgments of literature.

Our main goal in this project is to answer the
following question: are there particular textual con-
ventions in literary novels that contribute to readers
judging them to be literary? We address this ques-

tion by building a model of literary evaluation to
estimate the contribution of textual factors. This
task has been considered before with a smaller set
of novels (restricted to thrillers and literary nov-
els), using bigrams (van Cranenburgh and Koolen,
2015). We extend this work by testing on a larger,
more diverse corpus, and by applying rich syn-
tactic features and several hand-picked features to
the task. This task is first of all relevant to liter-
ary studies—to reveal to what extent literature is
empirically associated with textual characteristics.
However, practical applications are also possible;
e.g., an automated model could help a literary pub-
lisher decide whether the work of a new author
fits its audience; or it could be used as part of a
recommender system for readers.

Literary language is arguably a subjective no-
tion. A gold standard could be based on the expert
opinions of critics and literary prizes, but we can
also consider the reader directly, which, in the form
of a crowdsourced survey, more easily provides
a statistically adequate number of responses. We
therefore base our gold standard on a large online
survey of readers with ratings of novels.

Literature comprises some of the most rich and
sophisticated language, yet stylometry typically
does not exploit linguistic information beyond
part-of-speech (POS) tags or grammar productions,
when syntax is involved at all (cf. e.g., Stamatatos
et al., 2009; Ashok et al., 2013). While our re-
sults confirm that simple features are highly effec-
tive, we also employ full syntactic analyses and
argue for their usefulness. We consider tree frag-
ments: arbitrarily-sized connected subgraphs of
parse trees (Swanson and Charniak, 2012; Bergsma
et al., 2012; van Cranenburgh, 2012). Such features
are central to the Data-Oriented Parsing frame-
work (Scha, 1990; Bod, 1992), which postulates
that language use derives from arbitrary chunks
(e.g., syntactic tree fragments) of previous lan-
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SMAIN-
sat:inf:pv

INF-vc:inf

NP-suNP-mod

VNW-hd

er
there

WW[pv]-hd

ging
going

VNW
[pron]-hd

iets
something

ADJ-mod

verschrikkelijks
terrible

WW
[inf,vrij]-hd

gebeuren
to happen

Figure 1: A parse tree fragment from Franzen, The
Corrections. Original sentence: something terrible
was going to happen.

guage experience. In our case, this suggests the
following hypothesis.

HYPOTHESIS 1: Literary authors employ a dis-
tinctive inventory of lexico-syntactic constructions
(e.g., a register) that marks literary language.

Next we provide an analysis of these construc-
tions which supports our second hypothesis.

HYPOTHESIS 2: Literary language invokes a
larger set of syntactic constructions when com-
pared to the language of non-literary novels, and
therefore more variety is observed in the parse tree
fragments whose occurrence frequencies are corre-
lated with literary ratings.

The support provided for these hypotheses sug-
gests that the notion of literature can be explained,
to a substantial extent, from textual factors, which
contradicts the belief that external, social factors
are more dominant than internal, textual factors.

2 Task, experimental setup

We consider a regression problem of a set of novels
and their literary ratings. These ratings have been
obtained in a large reader survey (about 14k partici-
pants),1 in which 401 recent, bestselling Dutch nov-
els (as well as works translated into Dutch) where
rated on a 7-point Likert scale from definitely not
to highly literary. The participants were presented
with the author and title of each novel, and pro-
vided ratings for novels they had read. The ratings
may have been influenced by well known authors
or titles, but this does not affect the results of this
paper because the machine learning models are not
given such information. The task we consider is
to predict the mean2 rating for each novel. We ex-

1The survey was part of The Riddle of Literary Quality, cf.
http://literaryquality.huygens.knaw.nl

2Strictly speaking the Likert scale is ordinal and calls for
the median, but the symmetric 7-point scale and the number of
ratings arguably makes using the mean permissible; the latter
provides more granularity and sensitivity to minority ratings.

clude 16 novels that have been rated by less than
50 participants. 91 % of the remaining novels have
a t-distributed 95 % confidence intervală 0.5; e.g.,
given a mean of 3, the confidence interval typically
ranges from 2.75 to 3.25. Therefore for our pur-
poses the ratings form a reliable consensus. Novels
rated as highly literary have smaller confidence in-
tervals, i.e., show a stronger consensus. Where a
binary distinction is needed, we call a rating of 5
or higher ‘literary.’

Since we aim to extract relevant features from
the texts themselves and the number of novels is
relatively small, we apply cross-validation, so as
to exploit the data to the fullest extent while main-
taining an out-of-sample approach. We divide the
corpus in 5 folds of roughly equal size, with the fol-
lowing constraints: (a) novels by the same author
must be in the same fold, since we want to rule out
any influence of author style on feature selection
or model validation; (b) the distribution of literary
ratings in each fold should be similar to the overall
distribution (stratification).

We control for length and potential particulari-
ties of the start of novels by considering sentences
1000–2000 of each novel. 18 novels with fewer
than 2000 sentences are excluded. Together with
the constraint of at least 50 ratings, this brings the
total number of novels we consider to 369.

We evaluate the effectiveness of the features us-
ing a ridge regression model, with 5-fold cross-
validation; we do not tune the regularization. The
results are presented incrementally, to illustrate the
contribution of each feature relative to the features
before it. This makes it possible to gauge the effec-
tive contribution of each feature while taking any
overlap into account.

We use R2 as the evaluation metric, expressing
the percentage of variance explained (perfect score
100); this shows the improvement of the predic-
tions over a baseline model that always predicts
the mean value (4.2, in this dataset). A mean base-
line model is therefore defined to have an R2 of 0.
Other baseline models, e.g., always predicting 3.5
or 7, attain negative R2 scores, since they perform
worse than the mean baseline. Similarly, a random
baseline will yield a negative expected R2.

3 Basic features

Sentence length, direct speech, vocabulary richness,
and compressibility are simple yet effective stylo-
metric features. We count direct speech sentences
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by matching on specific punctuation; this provides
a measure of the amount of dialogue versus nar-
rative text in the novel. Vocabulary richness is
defined as the proportion of words in a text that ap-
pear in the top 3000 most common words of a large
reference corpus (Sonar 500; Oostdijk et al., 2013);
this shows the proportion of difficult or unusual
words. Compressibility is defined as the bzip2
compression ratio of the texts; the intuition is that
a repetitive and predictable text will be highly com-
pressible. CLICHES is the number of cliché expres-
sions in the texts based on an external dataset of
6641 clichés (van Wingerden and Hendriks, 2015);
clichés, being marked as informal and unoriginal,
are expected to be more prevalent in non-literary
texts. Table 1 shows the results of these features.
Several other features were also evaluated but were
either not effective or did not achieve appreciable
improvements when these basic features are taken
into account; notably Flesch readability (Flesch,
1948), average dependency length (Gibson, 2000),
and D-level (Covington et al., 2006).

R2

MEAN SENT. LEN. 16.4
+ % DIRECT SPEECH SENTENCES 23.1
+ TOP 3000 VOCAB. 23.5
+ BZIP2 RATIO 24.4
+ CLICHES 30.0

Table 1: Basic features, incremental scores.

4 Automatically induced features

In this section we consider extracting syntactic fea-
tures, as well as three (sub)lexical baselines.

TOPICS is a set of 50 topic weights induced with
Latent Dirichlet Allocation (LDA; Blei et al., 2003)
from the corpus (for details, cf. Jautze et al., 2016).

Furthermore, we use character and word n-gram
features. For words, bigrams present a good trade
off in terms of informativeness (a bigram frequency
is more specific than the frequency of an individ-
ual word) and sparsity (three or more consecutive
words results in a large number of n-gram types
with low frequencies). For character n-grams,
n “ 4 achieved good performance in previous
work (e.g., Stamatatos, 2006).

We note three limitations of n-grams. First, the
fixed n: larger or discontiguous chunks are not ex-
tracted. Combining n-grams does not help since
a linear model cannot capture feature interactions,
nor is the consecutive occurrence of two features

captured in the bag-of-words representation. Sec-
ond, larger n imply a combinatorial explosion of
possible features, which makes it desirable to se-
lect the most relevant features. Finally, word and
character n-grams are surface features without lin-
guistic abstraction. One way to overcome these
limitations is to turn to syntactic parse trees and
mine them for relevant features unrestricted in size.

Specifically, we consider tree fragments as fea-
tures, which are arbitrarily-sized fragments of parse
trees. If a parse tree is seen as consisting of a se-
quence of grammar productions, a tree fragment
is a connected subsequence thereof. Compared to
bag-of-word representations, tree fragments can
capture both syntactic and lexical elements; and
these combine to represent constructions with open
slots (e.g., to take NP into account), or sentence
templates (e.g., “Yes, but . . . ”, he said). Tree frag-
ments are thus a very rich source of features, and
larger or more abstract features may prove to be
more linguistically interpretable.

We present a data-driven method for extracting
and selecting tree fragments. Due to combinatorics,
there are an exponential number of possible frag-
ments given a parse tree. For this reason it is not
feasible to extract all fragments and select the rel-
evant ones later; we therefore use a strategy to di-
rectly select fragments for which there is evidence
of re-use by considering commonalities in pairs of
trees. This is done by extracting the largest com-
mon syntactic fragments from pairs of trees (San-
gati et al., 2010; van Cranenburgh, 2014). This
method is related to tree-kernel methods (Collins
and Duffy, 2002; Moschitti, 2006), with the dif-
ference that it extracts an explicit set of fragments.
The feature selection approach is based on rele-
vance and redundancy (Yu and Liu, 2004), similar
to Swanson and Charniak (2013). Kim et al. (2011)
also use tree fragments, for authorship attribution,
but with a frequent tree mining approach; the dif-
ference with our approach is that we extract the
largest fragments attested in each tree pair, which
are not necessarily the most frequent.

4.1 Preprocessing
We parse the 369 novels with Alpino (Bouma et
al., 2001). The parse trees include discontinuous
constituents, non-terminal labels consist of both
syntactic categories and function tags, selected
morphological features,3 and constituents are bina-

3The DCOI tag set (van Eynde, 2005) is fine grained; we
restrict the set to distinguish the 7 coarse POS tags, as well
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rized head-outward with a markovization of h=1,
v=1 (Klein and Manning, 2003).

For a fragment to be attested in a pair of parse
trees, its labels need to match exactly, including
the aforementioned categories, tags, and features.
The h “ 1 binarization implies that fragments
may contain partial constituents; i.e., a contiguous
sequence of children from an n-ary constituent.

Figure 1 shows an example parse tree; for brevity,
this tree is rendered without binarization. The
non-terminal labels consist of a syntactic category
(shown in red), followed by a function tag (green).
The part-of-speech tags additionally have morpho-
logical features (black) in square brackets. Some
labels contain percolated morphological features,
prefixed by a colon.

4.2 Mining syntactic tree fragments
The procedure is divided in two parts. The first part
concerns fragment extraction:

1. Given texts divided in folds F1 . . . Fn, each
Ci is the set of parse trees obtained from pars-
ing all texts in Fi. Extract the largest common
fragments of the parse trees in all pairs of
folds xCi, Cjy with i ă j. A common frag-
ment f of parse trees t1, t2 is a connected
subgraph of t1 and t2. The result is a set of
initial candidates that occur in at least two dif-
ferent texts, stored separately for each pair of
folds xCi, Cjy.

2. Count occurrences of all fragments in all texts.

Fragment selection is done separately w.r.t. each
test fold. Given test fold i, we consider the frag-
ments found in training folds t1..nu z i; e.g., given
n “ 5, for test fold 1 we select only from the frag-
ments and their counts as observed in training folds
2–5. Given a set of fragments from training folds,
selection proceeds as follows:

1. Zero count threshold: remove fragments that
occur in less than 5 % of texts (too specific
to particular novels); frequency threshold: re-
move fragments that occur less than 50 times
across the corpus (too rare to reliably detect a
correlation with the ratings).

2. Relevance threshold: select fragments by con-
sidering the correlation of their counts with
the literary ratings of the novels in the train-
ing folds. Apply a simple linear regression

as infinite verbs, auxiliary verbs, proper nouns, subordinating
conjunctions, personal pronouns, and postpositions.

based on the Pearson correlation coefficient,
and use an F-test to filter out fragments whose
p-value4 ą 0.05. The F-test determines signif-
icance based on the number of datapoints N ,
and the correlation r; the effective threshold
is approximately |r| ą 0.11.

3. Redundancy removal: greedily select the most
relevant fragment and remove other fragments
that are too similar to it. Similarity is mea-
sured by computing the correlation coefficient
between the feature vectors of two fragments,
with a cutoff of |r| ą 0.5. Experiments where
this step was not applied indicated that it im-
proves performance.

Note that there is some risk of overfitting since
fragments are both extracted and selected from the
training set. However, this is mitigated by the fact
that fragments are extracted from pairs of folds,
while selection is constrained to fragments that
are attested and significantly correlated across the
whole training set.

The values for the thresholds were chosen man-
ually and not tuned, since the limited number of
novels is not enough to provide a proper tuning
set. Table 2 lists the number of fragments extracted
from folds 2–5 after each of these steps.

recurring fragments 3,193,952
occurs in ą 5% of texts 375,514
total freq. ą 50 across corpus 98,286
relevance: correlated s.t. p ă 0.05 30,044
redundancy: |r| ă 0.5 7,642

Table 2: The number of fragments in folds 2–5
after each filtering step.

4.3 Evaluation

Due to the large number of induced features, Sup-
port Vector Regression (SVR) is more effective
than ridge regression. We therefore train a linear
SVR model with the same cross-validation setup,
and feed its predictions to the ridge regression
model (i.e., stacking). Feature counts are turned
into relative frequencies. The model has two hyper-
parameters: C determines the regularization, and
ε is a threshold beyond which predictions are con-
sidered good enough during training. Instead of

4If we were actually testing hypotheses we would need to
apply Bonferroni correction to avoid the Family-Wise Error
due to multiple comparisons; however, since the regression
here is only a means to an end, we leave the p-values uncor-
rected.
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1 2 3 4 5 Mean

Word Bigrams 59.8 47.0 58.0 63.6 50.7 55.8
Char. 4-grams 58.6 50.4 54.2 65.0 56.2 56.9
Fragments 61.6 53.4 58.7 65.8 46.5 57.2

Table 3: Regression evaluation. R2 scores on the 5
cross-validation folds.

R2

BASIC FEATURES (TABLE 1) 30.0
+ TOPICS 52.2
+ BIGRAMS 59.5
+ CHAR. 4-GRAMS 59.9
+ FRAGMENTS 61.2

Table 4: Automatically induced features; incremen-
tal scores.

tuning these parameters we pick fixed values of
C=100 and ε=0, reducing regularization compared
to the default of C=1 and disabling the threshold.

Cf. Table 3 for the scores. The syntactic frag-
ments perform best, followed by char. 4-grams and
word bigrams. We report scores for each of the
5 folds separately because the variance between
folds is high. However, the differences between
the feature types are relatively consistent. The vari-
ance is not caused by the distribution of ratings,
since the folds were stratified on this. Nor can it
be explained by the agreement in ratings per novel,
since the 95 % confidence intervals of the indi-
vidual ratings for each novel were of comparable
width across the folds. Lastly, author gender, genre,
and whether the novel was translated do not differ
markedly across the folds. It seems most likely that
the novels simply differ in how predictable their
ratings are from textual features.

In order to gauge to what extent these automati-
cally induced features are complementary, we com-
bine them in a single model together with the basic
features; cf. the scores in Table 4. Both charac-
ter 4-grams and syntactic fragments still provide a
relatively large improvement over the previous fea-
tures, taking into account the inherent diminishing
returns of adding more features.

Figure 2 shows a bar plot of the ten novels with
the largest prediction error with the fragment and
word bigram models. Of these novels, 9 are highly
literary and underestimated by the model. For the
other novel (Smeets, Afrekening) the literary rating
is overestimated by the model. Since this top 10
is based on the mean prediction from both models,
the error is large for both models. This does not

1 2 3 4 5 6 7

Barnes: Sense of an ending

Murakami: 1q84

Voskuil: Buurman

Franzen: Freedom

Murakami: Norwegian wood

Grunberg: Huid en haar

Voskuijl: Dorp

Smeets: Afrekening

Ammaniti: Me and you

Bakker: Omweg

true

pred_frag

pred_bigram

Figure 2: The ten novels with the largest prediction
error (using both fragments and bigrams).

Novel

residual
(true -
pred.)

mean
sent.
len.

% direct
speech

% Top
3000

vocab.
bzip2
ratio

Rosenboom: Zoete mond 0.075 23.5 24.7 0.80 0.31
Mortier: Godenslaap 0.705 24.9 25.2 0.77 0.34
Lewinsky: Johannistag 0.100 18.3 28.6 0.85 0.32
Eco: The Prague cemetery 0.148 24.5 15.7 0.79 0.33

Franzen: Freedom 2.154 16.2 56.8 0.84 0.33
Barnes: Sense of an ending 2.143 14.1 23.1 0.85 0.32
Voskuil: Buurman 2.117 7.66 58.0 0.89 0.28
Murakami: 1q84 1.870 12.3 20.4 0.84 0.32

Table 5: Comparison of baseline features for novels
with good (1–4) and bad (5–8) predictions.

change when the top 10 errors using only fragments
or bigrams is inspected; i.e., the hardest novels to
predict are hard with both feature types.

What could explain these errors? At first sight,
there is no obvious commonality between the liter-
ary novels that are predicted well, or between the
ones with a large error; e.g., whether the novels
have been translated or not does not explain the
error. A possible explanation is that the success-
fully predicted literary novels share a particular
(e.g., rich) writing style that sets them apart from
other novels, while the literary novels that are un-
derestimated by the model are not marked by such
a writing style. It is difficult to confirm this directly
by inspecting the model, since each prediction is
the sum of several thousand features, and the con-
tributions of these features form a long tail. If we
define the contribution of a feature as the absolute
value of its weight times its relative frequency in
the document, then in case of Barnes, The sense
of an ending, the top 100 features contribute only
34 % of the total prediction.

Table 5 gives the basic features for the top 4
literary novels with the largest error and contrasts
them with 4 literary novels which are well pre-
dicted. The most striking difference is sentence
length: the underestimated literary novels have
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Figure 3: Learning curve when varying training set
size. The error bars show the standard error.

markedly shorter sentences. Voskuil and Franzen
have a higher proportion of direct speech (they
are in fact the only literary novels in the top 10
novels with the most direct speech). Lastly, the
underestimated novels have a higher proportion of
common words (lower vocabulary richness). These
observations are compatible with the explanation
suggested above, that a subset of the literary novels
share a simple, readable writing style with non-
literary novels. Such a style may be more difficult
to detect than a literary style with long and complex
sentences, or rich vocabulary and phraseology, be-
cause a simple, well-crafted sentence may not offer
overt surface markers of stylization. Book reviews
appear to support this notion for The sense of an
ending: “A slow burn, measured but suspenseful,
this compact novel makes every slyly crafted sen-
tence count” (Tonkin, 2011); and “polished phras-
ings, elegant verbal exactness and epigrammatic
perceptions” (Kemp, 2011).

In order to test whether the amount of data is suf-
ficient to learn to predict the ratings, we construct
a learning curve for different training set sizes; cf.
Figure 3. The set of novels is shuffled once, so that
initial segments of different size represent random
samples. The novels are sampled in 5 % increments
(i.e., 20 models are trained). The graphs show the
cross-validated scores.

The graphs show that increasing the number of
novels has a large effect on performance. The curve
is steep up to 30 % of the training set, and the per-
formance keeps improving steadily but more slowly
up to the last data point. Since the performance is
relatively flat starting from 85 %, we can conclude
that the k-fold cross-validation with k “ 5 provides
an adequate estimate of the model’s performance if

R2

BASIC FEATURES (TABLE 1) 30.0
+ AUTO. INDUCED FEAT. (TABLE 4) 61.2
+ GENRE 74.3
+ TRANSLATED 74.0
+ AUTHOR GENDER 76.0

Table 6: Metadata features; incremental scores.

it were trained on the full dataset; if the model was
still gaining performance significantly with more
training data, the cross-validation score would un-
derestimate the true prediction performance.

A similar experiment was performed varying the
number of features. Here the performance plateaus
quickly and reaches an R2 of 53.0 % at 40 %, and
grows only slightly from that point.

5 Metadata features

In addition to textual features, we also include three
(categorical) metadata features not extracted from
the text, but still an inherent feature of the novel
in question: GENRE, TRANSLATED, and AUTHOR

GENDER; cf. Table 6 for the results. Figure 4 shows
a visualization of the predictions in a scatter plot.

GENRE is the coarse genre classification Fiction,
Suspense, Romantic, Other, derived from the pub-
lisher’s categorization. Genre alone is already a
strong predictor, with an R2 of 58.3 on its own.
However, this score is arguably misleading, be-
cause the predictions are very coarse due to the
discrete nature of the feature.

A striking result is that the variables AUTHOR

GENDER and TRANSLATED increase the score, but
only when they are both present. Inspecting the
mean ratings shows that translated novels by female
authors have an average rating of 3.8, while origi-
nally Dutch male authors are rated 5.0 on average;
the ratings of the other combinations lie in between
these extremes. This explains why the combination
works better than either feature on its own, but due
to possible biases inherent in the makeup of the
corpus, such as which female or translated authors
are published and selected for the corpus, no con-
clusions on the influence of gender or translation
should be drawn from these datapoints.

6 Previous work

Table 7 shows an overview of previous work on the
task of predicting the (literary) quality of novels.
Note that the datasets and targets differ, therefore
none of the results are directly comparable. For
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Figure 4: A scatter plot of regression predictions and actual literary ratings. Original/translated titles.
Note the histograms beside the axes showing the distribution of ratings (top) and predictions (right).

example, regression is a more difficult task than
binary classification, and recognizing the differ-
ence between an average and highly literary novel
is more difficult than distinguishing either from a
different domain or genre (e.g., newswire).

Louwerse et al. (2008) discriminate literature
from other texts using Latent Semantic Analysis.
Ashok et al. (2013) use bigrams, POS tags, and
grammar productions to predict the popularity of
Gutenberg texts. van Cranenburgh and Koolen
(2015) predict the literary ratings of texts, as in
the present paper, but only using bigrams, and on a
smaller, less diverse corpus. Compared to previous
work, this paper gives a more precise estimate of
how well shades of literariness can be predicted
from a diverse range of features, including larger
and more abstract syntactic constructions.

7 Analysis of selected tree fragments

An advantage of parse tree fragments is that they
offer opportunities for interpretation in terms of
linguistic aspects as well as basic distributional
aspects such as shape and size.

Figure 5 shows three fragments ranked highly

Binary
classification

Dataset, task Acc.

Louwerse et al.
(2008)

119 all-time literary classics
and 55 other texts, literary
novels vs. non-fiction/sci-fi

87.4

Ashok et al. (2013) 800 19th century novels,
low vs. high download
count

75.7

van Cranenburgh
and Koolen (2015)

146 recent novels, low vs.
high survey ratings

90.4

Regression result Dataset, task R2

van Cranenburgh
and Koolen (2015)

146 recent novels,
survey ratings

61.3

This work 401 recent novels,
survey ratings

76.0

Table 7: Overview of previous work on modeling
(literary) quality of novels.

by the correlation metric, as extracted from the
first fold. The first fragment shows an incomplete
constituent, indicated by the ellipses as first and
last leaves. Such incomplete fragments are made
possible by the binarization scheme (cf. Sec. 4.1).

Table 8 shows a breakdown of fragment types in
the first fold. In contrast with n-grams, we also see
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Figure 5: Three fragments whose frequencies in the first fold have a high correlation with the literary
ratings. Note the different scales on the y-axis. From left to right; Blue: complex NP with comma; Green:
quoted speech; Red: Adjunct PP with indefinite article.

fully lexicalized 1,321
syntactic (no lexical items) 2,283
mixed 4,038

discontinuous 684
discontinuous substitution site 396

total 7,642

Table 8: Breakdown of fragment types selected in
the first fold.

a large proportion of purely syntactic fragments,
and fragments mixing both lexical elements and
substitution sites. In the case of discontinuous frag-
ments, it turns out that the majority has a positive
correlation; this might be due to being associated
with more complex constructions.

Figure 6 shows a breakdown by fragment size
(defined as number of non-terminals), distinguish-
ing fragments that are positively versus negatively
correlated with the literary ratings.

Note that 1 and 3 are special cases correspond-
ing to lexical (e.g., DTÑ the) and binary grammar
productions (e.g., NPÑ DT N), respectively. The
fragments with 2, 4, and 6 non-terminals are not as
common because an even number implies the pres-
ence of unary nodes. Except for fragments of size
1, the frontier of fragments can consist of either
substitution sites or terminals (since we distinguish
only the number of non-terminals). On the one
hand smaller fragments corresponding to one or
two grammar productions are most common, and
are predominantly positively correlated with the
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Figure 6: Breakdown by fragment size (number of
non-terminals).

literary ratings. On the other hand there is a sig-
nificant negative correlation between fragment size
and literary ratings (r “ ´0.2, p ă 0.001); i.e.,
smaller fragments tend to be positively correlated
with the literary ratings.

It is striking that there are more positively than
negatively correlated fragments, while literary nov-
els are a minority in the corpus (88 out of 369
novels are rated 5 or higher). Additionally, the
breakdown by size shows that the larger number
of positively correlated fragments is due to a large
number of small fragments of size 3 and 5; however,
combinatorially, the number of possible fragment
types grows exponentially with size (as reflected
in the initial set of recurring fragments), so larger
fragment types would be expected to be more nu-
merous. In effect, the selected negatively corre-
lated fragments ignore this distribution by being
relatively uniform with respect to size, while the
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Figure 7: Breakdown by category (above) and func-
tion tag (below) of fragment root (top 15 labels).

literary fragments actually show the opposite dis-
tribution.

What could explain the peak of positively corre-
lated, small fragments? In order to investigate the
peak of small fragments, we inspect the 40 frag-
ments of size 3 with the highest correlations. These
fragments contain indicators of unusual or more
complex sentence structure:

• DU, dp: discourse phenomena for which no
specific relation can be assigned (e.g., dis-
course relations beyond the sentence level).
• appositive NPs, e.g., ‘John the artist.’
• a complex NP, e.g., containing punctuation,

nested NPs, or PPs.
• an NP containing an adjective used nominally

or an infinitive verb.

On the other hand, most non-literary fragments are
top-level productions containing ROOT or clause-
level labels, for example to introduce direct speech.

Another way of analyzing the selected fragments
is by frequency. When we consider the total fre-
quencies of selected fragments across the corpus,
there is a range of 50 to 107,270. The bulk of frag-
ments have a low frequency (before fragment selec-
tion 2 is by far the most dominant frequency), but
the tail is very long. Except for the fact that there is
a larger number of positively correlated fragments,
the histograms have a very similar shape.

Lastly, Figure 7 shows a breakdown by the syn-

tactic categories and function tags of the root node
of the fragments. The positively correlated frag-
ments are spread over a larger variety of both syn-
tactic categories and function tags. This means that
for most labels, the number of positively correlated
fragments is higher; the exceptions are ROOT, SV1
(a verb-initial phrase, not part of the top 15), and
the absence of a function tag (indicative of a non-
terminal directly under the root node). All of these
exceptions point to a tendency for negatively corre-
lated fragments to represent templates of complete
sentences.

8 Conclusion

The answer to the main research question is that
literary judgments are non-arbitrary and can be ex-
plained to a large extent from the text itself: there is
an intrinsic literariness to literary texts. Our model
employs an ensemble of textual features that show
a cumulative improvement on predictions, achiev-
ing a total score of 76.0 % variation explained. This
result is remarkably robust: not just broad genre
distinctions, but also finer distinctions in the ratings
are predicted.

The experiments showed one clear pattern: lit-
erary language tends to use a larger set of syntac-
tic constructions than the language of non-literary
novels. This also provides evidence for the hypoth-
esis that literature employs a specific inventory of
constructions. All evidence points to a notion of
literature which to a substantial extent can be ex-
plained purely from internal, textual factors, rather
than being determined by external, social factors.

Code and details of the experimental setup
are available at https://github.com/
andreasvc/literariness
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Abstract

Political surveys have indicated a relation-
ship between a sense of Scottish identity
and voting decisions in the 2014 Scot-
tish Independence Referendum. Identity
is often reflected in language use, suggest-
ing the intuitive hypothesis that individ-
uals who support Scottish independence
are more likely to use distinctively Scot-
tish words than those who oppose it. In
the first large-scale study of sociolinguistic
variation on social media in the UK, we
identify distinctively Scottish terms in a
data-driven way, and find that these terms
are indeed used at a higher rate by users of
pro-independence hashtags than by users
of anti-independence hashtags. However,
we also find that in general people are less
likely to use distinctively Scottish words
in tweets with referendum-related hashtags
than in their general Twitter activity. We
attribute this difference to style-shifting rel-
ative to audience, aligning with previous
work showing that Twitter users tend to
use fewer local variants when addressing a
broader audience.

1 Introduction

A central idea from sociolinguistics is that people’s
social identity is reflected in their use of language,
and that people modulate their use of language in
order to present particular identities in different
situations. The recent availability of social media
data has raised interest in confirming and extending
these results using large scale datasets. For exam-
ple, Twitter data has been used to examine patterns

of regional variation in general US English (Doyle,
2014; Huang et al., 2015), African American En-
glish (Jones, 2015), and global Spanish (Gonçalves
and Sánchez, 2014), and to study variation asso-
ciated with factors such as race/ethnicity (Jones,
2015; Blodgett et al., 2016; Jørgensen et al., 2015)
and gender (Bamman et al., 2014). These studies
have shown that tweets mirror spoken language in
many ways, such as displaying dialect variation not
only in the use of distinct lexical items, but also in
the use of non-standard spellings to indicate non-
standard pronunciation—in fact, these spellings
even reflect the phonological processes found in
spoken language (Eisenstein, 2015). There is also
evidence that, as in spoken language, individuals
may shift their style of language in response to the
audience. In particular, studies have found that
when the expected audience of a tweet is larger,
Americans use fewer non-standard and local words
(Pavalanathan and Eisenstein, 2015) and Dutch
bilingual speakers of a minority language are more
likely to use Dutch rather than their other language
(Nguyen et al., 2015). A small-scale case study
of a single Scottish Twitter user also provides pre-
liminary evidence that users may modulate their
production of regional variants according to the
topic of the tweet (Tatman, 2015).

Here we present the first large-scale sociolinguis-
tic study of British tweets, and the first to examine
the relationship between sociolinguistic variation
and political views using social media data. We use
a large corpus of tweets to examine the relationship
between users’ linguistic choices and their views
about the 2014 Scottish independence referendum.
The referendum (on whether Scotland should leave
the UK) generated considerable political discus-
sion and an unprecedented turnout of 84.6% of the
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electorate, with the ‘No’ (anti-independence) side
taking 55.3% of the vote. The 2013 Scottish Social
Attitudes Survey (ScotCen, 2013) showed a clear
correlation between national identity and voting
intentions (53% of those who identified as ‘Scot-
tish not British’ said they intended to vote ‘Yes’ to
independence, vs. just 5% of those who identified
as ‘British not Scottish’), and there was much dis-
cussion in the popular press about the relationship
between a sense of Scottish identity and support
for Scottish sovereignty.

Although this recent discussion was not centered
on language, there is a long history of scholarly
discourse connecting the use of the Scots language1

and sociolinguistic and political identity (Grant,
1931; Mcafee, 1985; Corbett et al., 2003). If this
connection still holds today, then we might expect
to find that those on the ‘Yes’ side of the debate use
more identifiably Scottish language than those on
the ‘No’ side. We might also expect to find some
modulation of Scottish language use depending on
whether users are discussing the referendum or not.

To examine these questions, we used a data-
driven approach to identify linguistic terms that are
used more in Scotland than in the rest of the UK.
The identified terms include uniquely Scots words
that are attested in Scots literature dating back to
the 1600s and earlier, contemporary regional col-
loquialisms, spelling variants of Standard English
words which reflect Scottish pronunciations, and
acronyms used as shorthand for distinctive Scot-
tish phrases. From these, we selected variables
for which users can produce either a Standard En-
glish or Scottish variant (e.g., DO vs. DAE). We
then classified users as pro- or anti-independence
based on the referendum-related hashtags they used
and asked whether these two groups use Scottish
variants at different rates. We found that the pro-
independence group did use Scottish variants sig-
nificantly more than the anti-independence group,
although the overall rate of Scottish variants is very
low amongst all users.

Next, we compared the use of Scottish variants
in tweets containing referendum-related hashtags
to their use in other tweets. If users are aiming
to project their Scottish identity as part of politi-

1Historically, Scots has been considered a different lan-
guage than English (see §2), though with many cognates and
overlapping vocabulary. Most native Scottish people today
speak some variety of Scottish English, which retains a few
uniquely Scots words but is mainly distinguished from other
varieties of English by its pronunciation.

cal discourse, then we might expect greater use of
Scottish variants in referendum tweets than in non-
referendum tweets. However, previous studies have
suggested that non-standard and local variants are
used less frequently in tweets containing hashtags,
which typically have a larger audience than other
tweets (Pavalanathan and Eisenstein, 2015). This
effect would predict the opposite result—a lower
use of Scottish variants in tweets with referendum
hashtags—and indeed this is the result we found.
So it appears that although pro-independence users
do make greater use of Scottish variants overall,
they do not increase their Scottish usage when en-
gaging in broad-audience political discourse.

To summarize, the contributions of our paper are:
(1) The first large-scale study of dialect variation on
twitter in the UK. We show that in addition to using
Scots in speech and some literary genres such as po-
etry, people are using Scots in informal public writ-
ing. The data-driven approach enables us to iden-
tify Scotland-specific lexical items without relying
on pre-conceived notions of which variables to look
for (cf. Tatman, 2015), and reveals that in addition
to using attested Scots vocabulary, Twitter users
appear to be creatively adapting to the medium
with their use of acronyms for distinctly Scottish
turns of phrase. (2) The first study connecting soci-
olinguistic variables to political stance using social
media data, showing that pro-independence users
have a higher rate of Scottish usage. (3) Further
evidence of Pavalanathan and Eisenstein’s (2015)
claim that Twitter users modulate their language
according to the audience, with local variants being
less likely in tweets directed to larger audiences.

2 Context

‘Scots’ refers to the group of dialects historically
spoken in the Lowlands of Scotland. While Scots
has Anglo-Scandinavian origins in common with
English, by the 16th century its pronunciation, vo-
cabulary, and literary norms had considerably di-
verged from those of English, and Scots had be-
come established as the prestige language in Scot-
land (Kay, 1988).2 However, following the Union
of Crowns in 1603, when King James VI of Scot-
land acceded to the thrones of England and Ireland,

2Previously, Gaelic had been the dominant spoken and
literary language in Scotland. Note that while in medieval
times non-Gaelic speakers referred to the Gaels as ‘Scots’,
what we now refer to as ‘Scots’ is the Anglo-Scandinavian
language which spread at the expense of Scottish Gaelic (a
Celtic language) in the 15th & 16th centuries.
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he and his court began to adopt English norms
in their writing. After the Union of Parliaments in
1707, English firmly replaced Scots as the language
of serious or elevated discourse in Scotland (Grant,
1931). While some people still use distinctive el-
ements of Scots in their speech, until recently the
average Scottish person’s exposure to written Scots
would have been largely confined to a select few
literary domains such as poetry and comic narrative
(Corbett et al., 2003). However, social media has
given rise to a new genre of casual, communicative
writing that is potentially visible to large and di-
verse audiences, providing both a platform and an
impetus to express one’s identity through the use of
written language. Below, we provide three example
tweets (each from a different user) which contain
orthographic representations of Scots vocabulary
and/or Scottish English pronunciation. Standard
English variants of Scottish terms are provided in
italics.

(1) No matter how shite [shit] a day you’ve had
just remember there’s always good biscuits in
yer [your] grannies hoose [house]

(2) “Absolute carnage” at polling station earlier.
Bairns [kids] playing, polite grannies, Yessers
and Nos blethering [blathering] to each other.
#VoteYesScotland

(3) #fuckoffscotland hud on we will fuck off but
afore we dae eh challenge ye tae a square go
ya queen loving DIDDY doughnut Sasijs YUP-
TAE
#fuckoffscotland hold on we will fuck off but
before we do I challenge you to a fair fight you
queen loving fools. What are you doing!?

3 Data

Our data was drawn from the Sample endpoint
of Twitter’s Streaming API (a.k.a. the ‘Spritzer’),
which provides a random 1% sample of all public
tweets in near real-time. We started with all tweets
streamed from the Spritzer between 1st September
2013 and 30th September 2014. These dates cover
a year of activity leading up to the referendum, as
well as the day the vote took place (18 September
2014), and immediate reactions. We used a lan-
guage classifier (Lui and Baldwin, 2012) to filter
out non-English tweets, yielding an initial dataset
of 629,431,509 tweets.3 Because we are interested

3One might be concerned that an automatic language filter
could remove some of the heavily Scottish tweets. However,

in the linguistic choices that individuals make in
various contexts, we took steps to remove tweets
which were not originally authored by the individ-
ual who posted them. Retweets (tweets which are
verbatim copies of other tweets) were identified by
a case-insensitive search for the token ‘RT’, and
discarded. Quote tweets (tweets which contain ver-
batim copies of other tweets, but are augmented
with original comments) were dealt with by dis-
carding any text between double quotation marks,
but retaining the remainder of the tweet.

From this initial dataset we extracted three over-
lapping subsets:

The Geotagged-UK (GU) dataset contains all
tweets geotagged to a location in the United King-
dom (1,654,204 tweets by 446,923 distinct users).

The Geotagged-Scotland (GS) dataset con-
tains all tweets geotagged to a location in Scotland
(166,992 tweets by 40,861 distinct users).

The Indyref Tweets (IT) dataset consists of
tweets containing hashtags relating to the 2014
Scottish Independence Referendum.

To construct the IT dataset, we first created a
list of relevant hashtags, starting with the following
five seed hashtags: #IndyRef, #VoteYes, #VoteNo,
#YesScotland, #BetterTogether.4 For each of these
five seeds, we extracted from our initial filtered
dataset a list of all tweets by any user who used
the seed hashtag. We identified the 100 most fre-
quent hashtags in each of these five lists of tweets,
and manually discarded all hashtags which were
unrelated to the referendum, as well as those which
were highly ambiguous (e.g., #Indy, which some-
times refers to the referendum, but also commonly
refers to a genre of music). The resulting list of
referendum-related hashtags is given in Table 1.

Next, we extracted all tweets from our initial
dataset which contain at least one of the hashtags
on this list, yielding 77,708 tweets by 26,019 dis-
tinct users. We then applied a heuristic to filter
out tweets produced by bots and spammers: for

even tweets such as example (3) in §2 are assigned a very
high probability of being English by the filter. Perhaps other
tweets with many Scottish terms were filtered out, in which
case we will underestimate the probability that users choose
Scottish variants. However this issue should not cause us to
find differences in use between different groups where there
are none.

4‘Yes Scotland’ and ‘Better Together’ are the names of
the principal organisations representing the Yes and No vote
campaigns, respectively.
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each user in the IT dataset for whom we had at
least 5 tweets in the initial dataset, we computed
the proportion of their tweets that contain URLs,
and discarded users for whom this proportion was
in the 90th percentile. This step filtered out 11,443
tweets by 1389 users.

Note that seven of the hashtags in Table 1
(#voteyes, #bettertogether, #nothanks, #voteno,
#yes2014, #letsstaytogether, and #yesvote) are oc-
casionally used in contexts unrelated to the Scottish
Independence Referendum (e.g. #bettertogether
can also refer to interpersonal relationships). How-
ever, they are distinctive enough that if a user has
also used hashtags which are unambiguously re-
lated to the referendum, then it seems reasonable
to assume that their usage of these potentially-
ambiguous hashtags relates to the referendum too.
Therefore, in order for a tweet containing one of
these seven hashtags to be retained in the Indyref
dataset, we required that its author had also used at
least one other hashtag from Table 1. This criterion
filtered out a further 6601 tweets by 6041 distinct
users, such that the final IT dataset contains 59,664
tweets by 18,589 distinct users.

4 Identifying distinctively Scottish
vocabulary on Twitter

We wish to identify terms that are more likely to be
used by Twitter users in Scotland than in the rest
of the UK. We follow the method of Pavalanathan
and Eisenstein (2015), who used the Sparse Addi-
tive Generative Model of Text (SAGE) framework
(Eisenstein et al., 2011) to identify tweet terms asso-
ciated with metropolitan areas in the United States.
SAGE models deviations in the log-frequencies of
terms in a corpus of interest (here, the GS dataset)
with respect to their log-frequencies in some “back-
ground” corpus (here, the GU dataset). The esti-
mated deviations are regularized to avoid overstat-
ing the importance of deviations in the frequencies
of rare words. Here, we use a publicly available
implementation of SAGE5 to obtain log-frequency
deviation estimates for all terms which occur at
least fifty times in the GU dataset, excluding hash-
tags, mentions, URLs, and stopwords. The terms
with the highest estimates are those which are most
distinctive to tweets geo-located in Scotland.

5https://github.com/jacobeisenstein/jos-gender-2014/

4.1 Scotland-specific terms

Unsurprisingly, many of the Scotland-specific
terms are proper nouns which are topically associ-
ated with Scotland, such as Scottish placenames,
political figures, and sports personalities. There are
also several common nouns (e.g. ‘devolution’, ‘bag-
pipes’) and verbs (e.g. ‘canvass’, ‘invade’) which
are strongly associated with the political or cul-
tural climate in Scotland. These terms occur with
greater relative frequency in the GS dataset simply
because their referents are discussed with greater
relative frequency; not because they are distinct
from the terms that people in the rest of the UK
use to index those referents. However, there are
also many terms with high log-frequency devia-
tions that are linguistically distinctive. To isolate
such terms, we began with the 400 terms with the
highest estimated deviations, and then manually fil-
tered this list, discarding Standard English words,
proper nouns, numerals, and non-standard terms
which had clear topical associations (e.g. ‘devo’:
an abbreviation for ‘devolution’; ‘hh’: an acronym
for ‘Hail Hail’, a football chant used by supporters
of Celtic F.C.). The remaining 113 distinctively
Scottish terms are listed in Table 2.

Almost three fourths of these terms are at-
tested in the Scottish National Dictionary (SND)
(Grant and Murison, 1931) or its online sup-
plement (Scottish Language Dictionaries, 2004),
which catalogue words that are distinctive to Scots
(i.e. those which are not used, or are used dif-
ferently, in Standard English), covering the pe-
riod from the 1700s up to the present day. Many
are also attested in the Dictionary of the Older
Scottish Tongue (Aitken et al., 1990), which cat-
alogues the entire vocabulary of Scots from the
1100s to the late 1600s. Of the attested Scots
words, some are unique to Scots, e.g. BAIRNS

(‘sons/daughters’), GREETIN (‘weeping’); some are
cognates with English words that have fallen out
of common usage, e.g. CRABBIT (‘crabbed’; ‘ill-
tempered’), FEART (‘feared’; ‘frightened/timid’);
some are cognates with English words but have a
wider range of senses, e.g. HUNNERS is cognate
with‘hundreds’, but used more generally to mean
‘lots’ as in “love you hunners”, “there was hun-
ners to do”; and many differ only in form from
their English cognates, e.g. AFF (‘off’) and BAW

(‘ball’).
Of the 29 terms that are not attested in SND, 9

are spelling variants or derived forms of attested
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Neutral hashtags: #IndyRef (46,491) #ScotlandDecides (2552) #BBCIndyref (1591) #ScotDecides (934)
#BigBigDebate (676) #ScottishIndependence (583) #IndyPlan (296) #ScottishReferendum (239) #IndyReasons (180)
#IndependentScotland (26)
Yes hashtags: #VoteYes (8463) #YesScotland (1453) #YesBecause (1312) #The45 (908) #YouYesYet (827) #YesScot (670)
#ActiveYes (508) #HopeOverFear (325) #Yes2014 (321) #VoteYesScotland (256) #GoForItScotland (153)
#The45Plus (138) #YesFlash (114) #GenYes (92) #YesVote (76) #1Year2Yes (56) #VoteAye (53) #FreeScotland (52)
#SaorAlba (45) #YesGenerations (39) #RIPBetterTogether (36) #NHSForYes (24) #AnotherScotlandIsPossible (23)
#EndLondonRule (13)
No hashtags: #BetterTogether (2342) #NoThanks (1103) #VoteNo (867) #LabourNo (333) #LetsStayTogether (145)
#VoteNo2014 (92) #UKOK (86) #VoteNoScotland (45) #JustSayNaw (43) #VoteNaw (42) #NoScotland (34)
#DayOfUnity (30) #MaintainTheUnion (9)

Table 1: Hashtags related to the Scottish Independence Referendum and their frequencies in the IT dataset

Scots words, e.g. CANA, CANNY, and CANI are
alternative spellings of the attested CANNAE, and
WANTY is a contracted form of ‘want to’, analo-
gous to the attested GONNAE and GONY. A further
5 are orthographic representations of distinctively
Scottish pronunciations, e.g. ANO (‘I know’), HING

(‘thing’); and 2 are acronyms for distinctively Scot-
tish turns of phrase: GTF (‘Get Tae Fuck’ ) and
MWI (‘Mad Wae It’). The final 13 could be de-
scribed as contemporary Scottish slang, and in-
clude abbreviations: BEVY (‘beverage’)6, DEFOS

(‘definitely’); drug-related lexis: WHITEY, ECCIES;
profanities: BOABY, FANNYS; and everyday af-
fective and descriptive words: DYNO (‘amazing’),
ROASTER (‘idiot’).

4.2 Lexical variables
Our goal is to measure the rate at which people
index their Scottishness (either consciously or sub-
consciously) through the use of distinctively Scot-
tish words, and to find out whether this rate varies
across different groups of users (Yes hashtag users
vs. No hashtag users), or across different contexts
(tweets which contain referendum-related hashtags
vs. tweets that don’t).

Were we to directly compare the frequencies of
our Scottish terms across different sets of tweets, it
would be difficult to untangle differences in the rate
at which users are indexing the referents of those
terms from differences in the rate at which they
are indexing their Scottishness. For example, if
people use the term MASEL (‘myself’) with a lower
frequency in one context than in another, this could
be because they are modulating their use of distinc-
tively Scottish terms in response to the context, but
it could also be because they are modulating the

6While‘bevy’ is also used colloquially for ‘beverage’ in
other parts of the UK, in Scotland it is more frequent and can
additionally be used as a mass noun (“I had so much bevy I
couldn’t even carry it”), and as a verb (“I’d bevy with him
every weekend”).

rate at which they talk about themselves. To avoid
this confound, we instead compare the conditional
probabilities with which Scottish terms are used,
given that their referents are being indexed at all.

We therefore consider only those Scottish terms
for which we can identify semantically equivalent
Standard English variants. We require that each
variant of a given variable indexes the same set of
senses and can occur in the same set of contexts,
so for example we do not include YOUS as a vari-
ant of YOU, since while Scottish YI and Standard
English YOU can index both the singular and plu-
ral second person pronouns, YOUS is only used
for the plural. We also did not include variants of
YES and NO since their use could be influenced by
campaign slogans (e.g., the hashtags #VoteAye and
#JustSayNaw). Our variables are listed in Table 3.

5 Study 1: Scotland-specific vocabulary
usage on either side of the debate

Do tweeters who use Yes hashtags use Scottish
variants at a higher rate than tweeters who use No
hashtags, either when using these hashtags, or in
general?

5.1 Method
We assign users in the IT dataset to two groups, Yes
and No, based on the quantity nu,yes

nu,yes+nu,no
, where

nu,yes is the number of tweets in which user u has
used at least one of the Yes hashtags and none of the
No hashtags in Table 1; and nu,no is the number of
tweets in which u has used at least one No hashtag
and none of the Yes hashtags. The Yes group con-
sists of all users for whom this quantity is greater
than or equal to 0.75, while the No group consists
of all users for whom it is less than or equal to 0.25.
Users for whom the value lies between 0.25 and
0.75 (as well as those for whom our dataset does
not contain any tweets with Yes or No hashtags),
are not assigned to either group. The Yes group
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Acronyms: GTF MWI
Closed Class Words: ABOOT AE AFF ATS DAE FAE HAE MASEL MASELF OAN OOR OOT TAE WAE WAN WI WIS YERSEL
YI YIN YOUS
Contractions CANNAE CANNI CANY CANA DEH DINI DINNY DIDNY DOESNY GONNAE GONY ISNY WANTY YER YIR
Discourse Markers: ACH ANAW ANO AWRIGHT AWRITE AWRYT AYE EH NAE NAW OOFT YASS YASSS YASSSS YASSSSS
YIP
Open Class Words: AULD AWFY BAIRNS BAW BAWS BELTER BELTERS BEVY BOABY BOKE BRAW BURD BURDS
CRABBIT DAFTY DAIN DEFOS DOON DUGS DYNO ECCIES FANNYS FEART FITBA FUD GAD GAWN GEES GID GRANDA
GREETIN HAME HAW HING HINK HOOSE HOWLIN HUNNERS JIST LADDIE LASSIE LASSIES MANKY MAW MAWS MORRA
MONGO PISH PISHED PISHING RAGIN ROASTER SARE SHITE SHITEY STEAMIN SUHIN WEANS WHITEY

Table 2: Scotland-specific vocabulary. Standard English equivalents of many words are shown in Table 3.

contains 4,513 users, while the No group contains
1,356 users, which is consistent with the general
perception at the time that the Yes campaign was
much more vocal than the No campaign. To test our
hypothesis that the probability of choosing Scot-
tish variants is, on average, greater for users in the
Yes group than for users in the No group, we esti-
mate the difference between the two groups in the
average probability of choosing Scottish variants,
and conduct a permutation test to approximate the
distribution of this difference under the null hypoth-
esis. We first test whether the Yes group are more
likely than the No group to use Scottish variants
in tweets which contain hashtags that indicate a
stance on the referendum. Subsequently, we test
whether the Yes group are more likely than the No
group to use Scottish variants in general across all
of their tweets.

5.1.1 Test statistic
Let Ug be the set of all users in group g ∈ {yes, no}
who have used at least one of the variables in
Table 3. For a given user u ∈ Ug, let V be
the set of all variables that u has used in at least
one tweet. We estimate the probability of user u
choosing a Scottish variant of variable v ∈ V as
p̂u,v =

nu,vscot

nu,v
, where nu,vscot is the token count

of Scottish variants of v in user u’s tweets, and
nu,v is the token count of all variants of v in user
u’s tweets. Averaging across variables, we obtain
p̂u = 1

V

∑
v∈V p̂u,v. We then average across users

to obtain the group mean, p̂g = 1
U

∑
u∈Ug

p̂u. Our
test statistic is the difference between the two group
means, d = p̂yes − p̂no.

5.1.2 Permutation test
We randomly shuffle users between the two groups
(maintaining each group’s original number of
users), and re-compute the value of d using
these permuted groups. We repeat this procedure
100,000 times in order to approximate the distri-

Tweets w/ Yes
or No hashtags

All tweets

Group Yes No Yes No
# Users 3776 1121 4352 1322
# Tweets 10,436 2411 173,171 80,736

Table 4: Number of users and tweets included per
group in the two analyses in Study 1

bution of differences in group means that would
be observable were the difference independent of
the assignment of users to groups. The proportion
of permuted differences which are greater than or
equal to the observed difference between the origi-
nal group means provides an approximate p-value.

5.2 Results

For a tweet to be included in the analysis, it must
contain at least one of the variables in Table 3.
Hence not all users contribute data to the test statis-
tic, as some have not used any of the variables
in their tweets. The number of tweets and users
included in each analysis are shown in Table 4.

The results for the first analysis are shown in the
left column of Table 5. The difference between the
two groups in their average probability of choosing
Scottish variants in tweets that contain polarised
referendum hashtags is statistically significant (p <
0.002). Results for the second analysis are shown
in the right column of Table 5. Once again, the
difference between the two groups is statistically
significant (p < 0.001).

5.3 Discussion

The results show that the Yes group do use Scottish
variants at a significantly higher rate than the No
group, both when using Yes or No hashtags, and
in general. The stronger significance level for the
‘All tweets’ dataset is partly due to its larger size
(see Table 4), which enables better estimates of the
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Variable Scottish variants (freq. per million words) Standard English variants (freq. per million words)

ABOUT ABOOT (50) ABOUT (2562)
ALRIGHT AWRIGHT (10), AWRITE (17), AWRYT (17) ALRIGHT (77), ALL RIGHT (4)
BALL BAW (11) BALL (116)
BALLS BAWS (17) BALLS (47)
BIRD BURD (35) BIRD (78)
BIRDS BURDS (31) BIRDS (44)
DEFINITELY DEFOS (27) DEFINITIELY (217)
DIDNT DIDNY (26) DIDNT (563), DID NOT (31)
DO DAE (61) DO (2712)
DOESNT DOESNY (18) DOESNT (433), DOES NOT (33)
DOGS DUGS (11) DOGS (69)
DOING DAIN (17) DOING (590)
DONT DEH (12), DINI (12), DINNY (62) DONT (2880), DO NOT (92)
DOWN DOON (49) DOWN (786)
FOOTBALL FITBA (13) FOOTBALL (289)
FROM FAE (77) FROM (2485)
GIVES GEES (14) GIMME (5), GIVE ME (108), GIVE US (21), GIVES (75)
GOING GAWN (15) GOING (1884)
GOOD GID (82) GOOD (2602)
GRANDAD GRANDA (7) GRANDAD (19), GRANDFATHER (5), GRANDPA (9)
HAVE HAE (9) HAVE (4549)
HOME HAME (22) HOME (832)
HOUSE HOOSE (20) HOUSE (463)
I KNOW ANO (42) I KNOW (556)
ISNT ISNY (16) ISNT (342), IS NOT (151)
JUST JIST (7) JUST (5550)
MYSELF MASEL (14), MASELF (15) MYSELF (553)
OF AE (75) OF (9186)
OFF AFF (82) OFF (1567)
OLD AULD (28) OLD (526)
ON OAN (38) ON (7782)
ONE WAN (33), YIN (28) ONE(2537)
OUR OOR (14) OUR (790)
OUT OOT (181) OUT (3053)
PISSED PISHED (19) PISSED (66)
PISSING PISHING (12) PISSING (32)
SHIT SHITE (428) SHIT (764)
SHITTY SHITEY (25) SHITTY (52)
SOMETHING SUHIN (17) SOMETHING (614)
SORE SARE (13) SORE (140)
THATS ATS (9) THATS (1405)
THING HING (11) THING (749)
THINK HINK (34) THINK (1939)
TO TAE (186) TO (19996), TOO (1629)
TOMORROW MORRA (27) TOMORROW (1183)
WANT TO WANTY (52) WANNA (284), WANT TO (940)
WAS WIS (33) WAS (4197)
WITH WI (85), WAE (116) WITH (4774)
YOU YI (26) YOU (10891)
YOUR YER (237), YIR (11) YOUR (3094), YOURE (915), YOU ARE (342)
YOURSELF YERSEL (11) YOURSELF (193)

Table 3: Variables used in our studies, with each variant’s frequency per million tokens in the GS dataset
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Tweets w/ Yes or
No hashtags

All tweets

p̂yes 0.00766 0.01443
p̂no 0.00211 0.00734
d 0.00555 0.00709
p-value 0.00103 0.00001

Table 5: Results of the two analyses in Study 1

usage rates. While the rates are very low overall,
the relative differences are large: the Yes group rate
is more than three times the No group rate when we
include only tweets with Yes or No hashtags, and
approximately twice as big when we include all
tweets. The higher rates in the ‘All Tweets’ dataset
suggest that both groups of users chose Scottish
variants less often when discussing the referendum
than in their other tweets. However, the test we
used does not provide a significance value for the
difference in usage rates across the two datasets. To
establish whether users do modulate their usage of
Scottish variants when discussing the referendum,
we will need a more careful paired design.

6 Study 2: Effects of topic and audience
on Scotland-specific vocabulary usage

Do tweeters choose Scottish variants at a different
rate when using referendum-related hashtags than
in their other tweets?

6.1 Method

We need a statistic that corrects for the fact that
some variables might have higher rates of Scottish
variants than others. For example if users tend to
produce Scottish variants of variable v1 at a higher
rate than for v2, and use v1 more in tweets that
don’t contain referendum-related hashtags, then it
could appear that users are suppressing their Scot-
tish usage in referendum-related tweets when in
fact this is a lexical effect.

Let U be the set of all users who have used at
least one of the variables in Table 3 in both a tweet
that contains a referendum-related hashtag (i.e. a
tweet that belongs to the IT dataset, referred to
hereafter as an Indyref tweet) and in a tweet that
does not contain a referendum-related hashtag (re-
ferred to hereafter as a Control tweet). For a given
user u ∈ U , let V be the set of all variables that
u has used in at least one Indyref tweet, and in at
least one Control tweet. Let p̂I,v for user u be the

estimated probability that u chooses a Scottish vari-
ant of variable v ∈ V , conditioned on the fact that
she is using variable v in an Indyref tweet. Anal-
ogously, let p̂C,v be the estimated probability that
u chooses a Scottish variant of variable v, condi-
tioned on the fact that she is using variable v in a
Control tweet. The difference in user u’s proba-
bility of choosing a Scottish variant of variable v
in an Indyref tweet and in a Control tweet is then
dv = p̂I,v − p̂C,v. Averaging across all variables,
we define du = 1

V

∑
v∈V dv.

The null hypothesis is that on average, users are
no more or less likely to choose Scottish variants
in Indyref tweets than in Control tweets. There-
fore, under the null hypothesis, the mean value of
du across all users, d̄u = 1

U

∑
u∈U du, would be

zero. We perform a one-sample t-test to determine
whether d̄u is significantly different than zero.

We use this method to conduct two separate anal-
yses. In the first analysis, our pool of Control
tweets is the set of all tweets from the original fil-
tered dataset that do not contain any of the hashtags
in Table 1. In the second analysis, we limit our pool
of Control tweets to those which do not contain any
of the hashtags from Table 1, but do contain at least
one other hashtag. This second analysis is designed
to test whether the recent finding that US Twitter
users are less likely to use regionally-specific words
in tweets which contain hashtags (Pavalanathan and
Eisenstein, 2015) applies to Scottish users as well.

6.2 Results
The number of tweets and users that were included
in each analysis are shown in Table 6.

Results for the first analysis are shown in the left
column of Table 7. The difference is statistically
significant (p < 0.01), indicating that on average,
individuals are less likely to choose Scottish vari-
ants when using referendum-related hashtags than
in their other tweets. Results for the second analy-
sis are shown in the right column of Table 7. In this
case, the difference is not statistically significant.

6.3 Discussion
In light of (a) the apparent relationship between
national identity and constitutional preference, (b)
the history of Scots as the prestige language of
a previously-independent Scotland, supplanted by
English in large part due to the birth of the United
Kingdom, and (c) the results of Study 1, which
indicate that pro-independence users choose Scot-
tish variants at a significantly higher rate than anti-
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All Controls Controls w/
Hashtags

# Users 11,011 7429
# Indyref Tweets 41,924 35,241
# Control Tweets 693,815 195,145

Table 6: Number of users and tweets included in
the two analyses in Study 2

All Controls Controls w/ Hashtags

d̄u −0.0015 −0.0010
std error 0.0005 0.0006
t-statistic −2.996 −1.758
p-value 0.0027 0.0788

Table 7: Results of the two analyses in Study 2

independence users—it may at first appear surpris-
ing that people are less likely to choose Scottish
variants in tweets containing referendum-related
hashtags than in their other tweets.

It is conceivable that Yes users increase their
rate of Scottish variants in Indyref tweets whilst
No users decrease it, such that their effects can-
cel out; but since Yes users are more prolific in
the IT dataset, if anything we would expect this
imbalance to make the effect even more positive.
The fact that we see a significant negative effect
in spite of the greater number of Yes tweets means
we can be reasonably confident that even if Yes
users aren’t significantly reducing their usage of
Scottish variants in Indyref tweets, they certainly
aren’t increasing it.

It is also worth noting that we did not exhaus-
tively identify every hashtag that has been used in
relation to the referendum, so inevitably there will
be some tweets with referendum-related hashtags
in the Control set (such as example tweet (3) in §2),
and there may also be some non-referendum tweets
in the Indyref set. However, if anything this would
dilute any differences between the two lists, yet we
still find an effect.

The fact that this effect does not reach signif-
icance when we remove Control tweets without
hashtags suggests that the primary reason users are
reducing their rate of Scottish variants in Indyref
tweets is not because of the topic under discussion,
but because the use of hashtags broadens the po-
tential audience. This explanation accords with
Pavalanathan and Eisenstein’s (2015) finding that

amongst Twitter users in the US, non-standard and
regional variants are less likely to be used in tweets
that target larger audiences. Of course, it is possible
that topic has an effect as well, but the present study
does not provide evidence for that conclusion.

7 Conclusion

We presented the first large-scale study of distinc-
tively Scottish language use on social media, show-
ing that this use includes a mixture of traditional
Scots vocabulary, newer Scottish slang, and alter-
native spellings that reflect Scottish pronunciation.
We also studied how users’ language might reflect
their political views and discourse. We showed that
Yes users use Scottish variants at a higher rate than
No users, whether discussing the independence ref-
erendum or not. But overall, users tend to decrease
their use of Scottish variants when discussing the
referendum. This result suggests that although Yes
users generally express a stronger Scottish linguis-
tic identity than No users, they are not choosing to
express this identity strongly in political discourse
aimed at a broad audience. Due to the very low
rates of Scottish variants overall, our data set is too
small to study differences between individual vari-
ables or even conclusively say whether there may
be effects of both topic and audience size on the use
of Scottish language. However, we hope to be able
to answer these questions in future by collecting a
more complete set of data for the particular users
studied here.
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Abstract

Recurrent neural network grammars
(RNNG) are a recently proposed prob-
ablistic generative modeling family for
natural language. They show state-of-
the-art language modeling and parsing
performance. We investigate what in-
formation they learn, from a linguistic
perspective, through various ablations
to the model and the data, and by aug-
menting the model with an attention
mechanism (GA-RNNG) to enable closer
inspection. We find that explicit modeling
of composition is crucial for achieving the
best performance. Through the attention
mechanism, we find that headedness
plays a central role in phrasal represen-
tation (with the model’s latent attention
largely agreeing with predictions made
by hand-crafted head rules, albeit with
some important differences). By training
grammars without nonterminal labels, we
find that phrasal representations depend
minimally on nonterminals, providing
support for the endocentricity hypothesis.

1 Introduction

In this paper, we focus on a recently proposed
class of probability distributions, recurrent neural
network grammars (RNNGs; Dyer et al., 2016),
designed to model syntactic derivations of sen-
tences. We focus on RNNGs as generative proba-
bilistic models over trees, as summarized in §2.

Fitting a probabilistic model to data has often
been understood as a way to test or confirm some
aspect of a theory. We talk about a model’s as-
sumptions and sometimes explore its parameters
or posteriors over its latent variables in order to
gain understanding of what it “discovers” from the

data. In some sense, such models can be thought
of as mini-scientists.

Neural networks, including RNNGs, are capa-
ble of representing larger classes of hypotheses
than traditional probabilistic models, giving them
more freedom to explore. Unfortunately, they tend
to be bad mini-scientists, because their parameters
are difficult for human scientists to interpret.

RNNGs are striking because they obtain state-
of-the-art parsing and language modeling perfor-
mance. Their relative lack of independence as-
sumptions, while still incorporating a degree of
linguistically-motivated prior knowledge, affords
the model considerable freedom to derive its own
insights about syntax. If they are mini-scientists,
the discoveries they make should be of particular
interest as propositions about syntax (at least for
the particular genre and dialect of the data).

This paper manipulates the inductive bias of
RNNGs to test linguistic hypotheses.1 We be-
gin with an ablation study to discover the impor-
tance of the composition function in §3. Based
on the findings, we augment the RNNG composi-
tion function with a novel gated attention mech-
anism (leading to the GA-RNNG) to incorporate
more interpretability into the model in §4. Using
the GA-RNNG, we proceed by investigating the
role that individual heads play in phrasal represen-
tation (§5) and the role that nonterminal category
labels play (§6). Our key findings are that lexi-
cal heads play an important role in representing
most phrase types (although compositions of mul-
tiple salient heads are not infrequent, especially

1RNNGs have less inductive bias relative to traditional
unlexicalized probabilistic context-free grammars, but more
than models that parse by transducing word sequences to
linearized parse trees represented as strings (Vinyals et al.,
2015). Inductive bias is necessary for learning (Mitchell,
1980); we believe the important question is not “how little
can a model get away with?” but rather the benefit of differ-
ent forms of inductive bias as data vary.
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for conjunctions) and that nonterminal labels pro-
vide little additional information. As a by-product
of our investigation, a variant of the RNNG with-
out ensembling achieved the best reported super-
vised phrase-structure parsing (93.6 F1; English
PTB) and, through conversion, dependency pars-
ing (95.8 UAS, 94.6 LAS; PTB SD). The code and
pretrained models to replicate our results are pub-
licly available2.

2 Recurrent Neural Network Grammars

An RNNG defines a joint probability distribution
over string terminals and phrase-structure nonter-
minals.3 Formally, the RNNG is defined by a
triple 〈N,Σ,Θ〉, where N denotes the set of non-
terminal symbols (NP, VP, etc.), Σ the set of all
terminal symbols (we assume that N ∩ Σ = ∅),
and Θ the set of all model parameters. Unlike
previous works that rely on hand-crafted rules to
compose more fine-grained phrase representations
(Collins, 1997; Klein and Manning, 2003), the
RNNG implicitly parameterizes the information
passed through compositions of phrases (in Θ and
the neural network architecture), hence weakening
the strong independence assumptions in classical
probabilistic context-free grammars.

The RNNG is based on an abstract state ma-
chine like those used in transition-based parsing,
with its algorithmic state consisting of a stack
of partially completed constituents, a buffer of
already-generated terminal symbols, and a list of
past actions. To generate a sentence x and its
phrase-structure tree y, the RNNG samples a se-
quence of actions to construct y top-down. Given
y, there is one such sequence (easily identified),
which we call the oracle, a = 〈a1, . . . , an〉 used
during supervised training.

The RNNG uses three different actions:

• NT(X), where X ∈ N , introduces an open non-
terminal symbol onto the stack, e.g., “(NP”;
• GEN(x), where x ∈ Σ, generates a terminal

symbol and places it on the stack and buffer; and
• REDUCE indicates a constituent is now com-

plete. The elements of the stack that comprise
the current constituent (going back to the last

2https://github.com/clab/rnng/tree/
master/interpreting-rnng

3Dyer et al. (2016) also defined a conditional version of
the RNNG that can be used only for parsing; here we focus
on the generative version since it is more flexible and (rather
surprisingly) even learns better estimates of p(y | x).

The hungry cat

NP (VP(S
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DU

CE
GE

N
NT

(N
P)

NT
(VP

)

…

cat hungry The
a<t

p(at)

ut
Ttz }| {Stz }| {

Figure 1: The RNNG consists of a stack, buffer of
generated words, and list of past actions that lead
to the current configuration. Each component is
embedded with LSTMs, and the parser state sum-
mary ut is used as top-layer features to predict a
softmax over all feasible actions. This figure is
due to Dyer et al. (2016).

open nonterminal) are popped, a composition
function is executed, yielding a composed rep-
resentation that is pushed onto the stack.

At each timestep, the model encodes the stack,
buffer, and past actions, with a separate LSTM
(Hochreiter and Schmidhuber, 1997) for each
component as features to define a distribution over
the next action to take (conditioned on the full
algorithmic state). The overall architecture is il-
lustrated in Figure 1; examples of full action se-
quences can be found in Dyer et al. (2016).

A key element of the RNNG is the composition
function, which reduces a completed constituent
into a single element on the stack. This function
computes a vector representation of the new con-
stituent; it also uses an LSTM (here a bidirectional
one). This composition function, which we con-
sider in greater depth in §3, is illustrated in Fig. 2.

NP

u v w

NP u v w NP

x
x

Figure 2: RNNG composition function on each
REDUCE operation; the network on the right mod-
els the structure on the left (Dyer et al., 2016).

Since the RNNG is a generative model, it at-
tempts to maximize p(x,y), the joint distribution
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of strings and trees, defined as

p(x,y) = p(a) =
n∏

t=1

p(at | a1, . . . , at−1).

In other words, p(x,y) is defined as a product
of local probabilities, conditioned on all past ac-
tions. The joint probability estimate p(x,y) can
be used for both phrase-structure parsing (finding
arg maxy p(y | x)) and language modeling (find-
ing p(x) by marginalizing over the set of possi-
ble parses for x). Both inference problems can be
solved using an importance sampling procedure.4

We report all RNNG performance based on the
corrigendum to Dyer et al. (2016).

3 Composition is Key

Given the same data, under both the discrimina-
tive and generative settings RNNGs were found to
parse with significantly higher accuracy than (re-
spectively) the models of Vinyals et al. (2015) and
Choe and Charniak (2016) that represent y as a
“linearized” sequence of symbols and parentheses
without explicitly capturing the tree structure, or
even constraining the y to be a well-formed tree
(see Table 1). Vinyals et al. (2015) directly predict
the sequence of nonterminals, “shifts” (which con-
sume a terminal symbol), and parentheses from
left to right, conditional on the input terminal se-
quence x, while Choe and Charniak (2016) used a
sequential LSTM language model on the same lin-
earized trees to create a generative variant of the
Vinyals et al. (2015) model. The generative model
is used to re-rank parse candidates.

Model F1

Vinyals et al. (2015) – PTB only 88.3
Discriminative RNNG 91.2
Choe and Charniak (2016) – PTB only 92.6
Generative RNNG 93.3

Table 1: Phrase-structure parsing performance on
PTB §23. All results are reported using single-
model performance and without any additional
data.

The results in Table 1 suggest that the RNNG’s
explicit composition function (Fig. 2), which

4Importance sampling works by using a proposal distri-
bution q(y | x) that is easy to sample from. In Dyer et al.
(2016) and this paper, the proposal distribution is the discrim-
inative variant of the RNNG; see Dyer et al. (2016).

Vinyals et al. (2015) and Choe and Charniak
(2016) must learn implicitly, plays a crucial role in
the RNNG’s generalization success. Beyond this,
Choe and Charniak’s generative variant of Vinyals
et al. (2015) is another instance where generative
models trained on the PTB outperform discrimina-
tive models.

3.1 Ablated RNNGs
On close inspection, it is clear that the RNNG’s
three data structures—stack, buffer, and action
history—are redundant. For example, the action
history and buffer contents completely determine
the structure of the stack at every timestep. Every
generated word goes onto the stack, too; and some
past words will be composed into larger structures,
but through the composition function, they are all
still “available” to the network that predicts the
next action. Similarly, the past actions are redun-
dant with the stack. Despite this redundancy, only
the stack incorporates the composition function.
Since each of the ablated models is sufficient to
encode all necessary partial tree information, the
primary difference is that ablations with the stack
use explicit composition, to which we can there-
fore attribute most of the performance difference.

We conjecture that the stack—the component
that makes use of the composition function—is
critical to the RNNG’s performance, and that the
buffer and action history are not. In transition-
based parsers built on expert-crafted features, the
most recent words and actions are useful if they
are salient, although neural representation learners
can automatically learn what information should
be salient.

To test this conjecture, we train ablated RN-
NGs that lack each of the three data structures (ac-
tion history, buffer, stack), as well as one that lacks
both the action history and buffer.5 If our conjec-
ture is correct, performance should degrade most
without the stack, and the stack alone should per-
form competitively.

Experimental settings. We perform our exper-
iments on the English PTB corpus, with §02–21
for training, §24 for validation, and §23 for test;
no additional data were used for training. We fol-

5Note that the ablated RNNG without a stack is quite sim-
ilar to Vinyals et al. (2015), who encoded a (partial) phrase-
structure tree as a sequence of open and close parentheses,
terminals, and nonterminal symbols; our action history is
quite close to this, with each NT(X) capturing a left parenthe-
sis and X nonterminal, and each REDUCE capturing a right
parenthesis.
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low the same hyperparameters as the generative
model proposed in Dyer et al. (2016).6 The gen-
erative model did not use any pretrained word em-
beddings or POS tags; a discriminative variant of
the standard RNNG was used to obtain tree sam-
ples for the generative model. All further experi-
ments use the same settings and hyperparameters
unless otherwise noted.

Experimental results. We trained each abla-
tion from scratch, and compared these models on
three tasks: English phrase-structure parsing (la-
beled F1), Table 2; dependency parsing, Table 3,
by converting parse output to Stanford dependen-
cies (De Marneffe et al., 2006) using the tool by
Kong and Smith (2014); and language modeling,
Table 4. The last row of each table reports the
performance of a novel variant of the (stack-only)
RNNG with attention, to be presented in §4.

Model F1

Vinyals et al. (2015)† 92.1
Choe and Charniak (2016) 92.6
Choe and Charniak (2016)† 93.8
Baseline RNNG 93.3
Ablated RNNG (no history) 93.2
Ablated RNNG (no buffer) 93.3
Ablated RNNG (no stack) 92.5
Stack-only RNNG 93.6
GA-RNNG 93.5

Table 2: Phrase-structure parsing performance on
PTB §23. † indicates systems that use additional
unparsed data (semisupervised). The GA-RNNG
results will be discussed in §4.

Discussion. The RNNG with only a stack is the
strongest of the ablations, and it even outperforms
the “full” RNNG with all three data structures.
Ablating the stack gives the worst among the new
results. This strongly supports the importance of
the composition function: a proper REDUCE oper-
ation that transforms a constituent’s parts and non-
terminal label into a single explicit (vector) repre-
sentation is helpful to performance.

It is noteworthy that the stack alone is stronger
than the original RNNG, which—in principle—
can learn to disregard the buffer and action his-

6The model is trained using stochastic gradient descent,
with a learning rate of 0.1 and a per-epoch decay of 0.08. All
experiments with the generative RNNG used 100 tree sam-
ples for each sentence, obtained by sampling from the local
softmax distribution of the discriminative RNNG.

Model UAS LAS
Kiperwasser and Goldberg (2016) 93.9 91.9
Andor et al. (2016) 94.6 92.8
Dozat and Manning (2016) 95.4 93.8
Choe and Charniak (2016)† 95.9 94.1
Baseline RNNG 95.6 94.4
Ablated RNNG (no history) 95.4 94.2
Ablated RNNG (no buffer) 95.6 94.4
Ablated RNNG (no stack) 95.1 93.8
Stack-only RNNG 95.8 94.6
GA-RNNG 95.7 94.5

Table 3: Dependency parsing performance on
PTB §23 with Stanford Dependencies (De Marn-
effe and Manning, 2008). † indicates systems that
use additional unparsed data (semisupervised).

tory. Since the stack maintains syntactically “re-
cent” information near its top, we conjecture that
the learner is overfitting to spurious predictors in
the buffer and action history that explain the train-
ing data but do not generalize well.

A similar performance degradation is seen in
language modeling (Table 4): the stack-only
RNNG achieves the best performance, and ablat-
ing the stack is most harmful. Indeed, model-
ing syntax without explicit composition (the stack-
ablated RNNG) provides little benefit over a se-
quential LSTM language model.

Model Test ppl. (PTB)
IKN 5-gram 169.3
LSTM LM 113.4
RNNG 105.2
Ablated RNNG (no history) 105.7
Ablated RNNG (no buffer) 106.1
Ablated RNNG (no stack) 113.1
Stack-only RNNG 101.2
GA-RNNG 100.9

Table 4: Language modeling: perplexity. IKN
refers to Kneser-Ney 5-gram LM.

We remark that the stack-only results are
the best published PTB results for both phrase-
structure and dependency parsing among super-
vised models.

4 Gated Attention RNNG

Having established that the composition function
is key to RNNG performance (§3), we now seek
to understand the nature of the composed phrasal
representations that are learned. Like most neural
networks, interpreting the composition function’s
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behavior is challenging. Fortunately, linguistic
theories offer a number of hypotheses about the
nature of representations of phrases that can pro-
vide a conceptual scaffolding to understand them.

4.1 Linguistic Hypotheses
We consider two theories about phrasal represen-
tation. The first is that phrasal representations are
strongly determined by a privileged lexical head.
Augmenting grammars with lexical head informa-
tion has a long history in parsing, starting with
the models of Collins (1997), and theories of syn-
tax such as the “bare phrase structure” hypothe-
sis of the Minimalist Program (Chomsky, 1993)
posit that phrases are represented purely by sin-
gle lexical heads. Proposals for multiple headed
phrases (to deal with tricky cases like conjunction)
likewise exist (Jackendoff, 1977; Keenan, 1987).
Do the phrasal representations learned by RN-
NGs depend on individual lexical heads or mul-
tiple heads? Or do the representations combine all
children without any salient head?

Related to the question about the role of heads
in phrasal representation is the question of whether
phrase-internal material wholly determines the
representation of a phrase (an endocentric repre-
sentation) or whether nonterminal relabeling of a
constitutent introduces new information (exocen-
tric representations). To illustrate the contrast, an
endocentric representation is representing a noun
phrase with a noun category, whereas S→ NP VP
exocentrically introduces a new syntactic category
that is neither NP nor VP (Chomsky, 1970).

4.2 Gated Attention Composition
To investigate what the stack-only RNNG learns
about headedness (and later endocentricity), we
propose a variant of the composition function
that makes use of an explicit attention mechanism
(Bahdanau et al., 2015) and a sigmoid gate with
multiplicative interactions, henceforth called GA-
RNNG.

At every REDUCE operation, the GA-RNNG as-
signs an “attention weight” to each of its chil-
dren (between 0 and 1 such that the total weight
off all children sums to 1), and the parent phrase
is represented by the combination of a sum of
each child’s representation scaled by its attention
weight and its nonterminal type. Our weighted
sum is more expressive than traditional head rules,
however, because it allows attention to be divided
among multiple constituents. Head rules, con-

versely, are analogous to giving all attention to one
constituent, the one containing the lexical head.

We now formally define the GA-RNNG’s com-
position function. Recall that ut is the concatena-
tion of the vector representations of the RNNG’s
data structures, used to assign probabilities to each
of the actions available at timestep t (see Fig. 1, the
layer before the softmax at the top). For simplicity,
we drop the timestep index here. Let ont denote
the vector embedding (learned) of the nonterminal
being constructed, for the purpose of computing
attention weights.

Now let c1, c2, . . . denote the sequence of vec-
tor embeddings for the constituents of the new
phrase. The length of these vectors is defined by
the dimensionality of the bidirectional LSTM used
in the original composition function (Fig. 2). We
use semicolon (;) to denote vector concatenation
operations.

The attention vector is given by:

a = softmax
(

[c1 c2 · · · ]>V [u;ont ]
)

(1)

Note that the length of a is the same as the num-
ber of constituents, and that this vector sums to
one due to the softmax. It divides a single unit of
attention among the constituents.

Next, note that the constituent source vector
m = [c1; c2; · · · ]a is a convex combination of the
child-constituents, weighted by attention. We will
combine this with another embedding of the non-
terminal denoted as tnt (separate from ont ) using
a sigmoid gating mechanism:

g = σ (W1tnt + W2m + b) (2)

Note that the value of the gate is bounded between
[0, 1] in each dimension.

The new phrase’s final representation uses
element-wise multiplication (�) with respect to
both tnt and m, a process reminiscent of the
LSTM “forget” gate:

c = g � tnt + (1− g)�m. (3)

The intuition is that the composed represen-
tation should incorporate both nonterminal in-
formation and information about the constituents
(through weighted sum and attention mechanism).
The gate g modulates the interaction between
them to account for varying importance between
the two in different contexts.
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Experimental results. We include this model’s
performance in Tables 2–4 (last row in all ta-
bles). It is clear that the model outperforms the
baseline RNNG with all three structures present
and achieves competitive performance with the
strongest, stack-only, RNNG variant.

5 Headedness in Phrases

We now exploit the attention mechanism to probe
what the RNNG learns about headedness on the
WSJ §23 test set (unseen before by the model).

5.1 The Heads that GA-RNNG Learns

The attention weight vectors tell us which con-
stituents are most important to a phrase’s vector
representation in the stack. Here, we inspect the
attention vectors to investigate whether the model
learns to center its attention around a single, or
by extension a few, salient elements, which would
confirm the presence of headedness in GA-RNNG.

First, we consider several major nonterminal
categories, and estimate the average perplexity of
the attention vectors. The average perplexity can
be interpreted as the average number of “choices”
for each nonterminal category; this value is only
computed for the cases where the number of com-
ponents in the composed phrase is at least two
(otherwise the attention weight would be trivially
1). The minimum possible value for the perplexity
is 1, indicating a full attention weight around one
component and zero everywhere else.

Figure 3 (in blue) shows much less than 2
average “choices” across nonterminal categories,
which also holds true for all other categories not
shown. For comparison we also report the average
perplexity of the uniform distribution for the same
nonterminal categories (Fig. 3 in red); this repre-
sents the highest entropy cases where there is no
headedness at all by assigning the same attention
weight to each constituent (e.g. attention weights
of 0.25 each for phrases with four constituents).
It is clear that the learned attention weights have
much lower perplexity than the uniform distribu-
tion baseline, indicating that the learned attention
weights are quite peaked around certain compo-
nents. This implies that phrases’ vectors tend to
resemble the vector of one salient constituent, but
not exclusively, as the perplexity for most cate-
gories is still not close to one.

Next, we consider the how attention is dis-
tributed for the major nonterminal categories in

Table 5, where the first five rows of each category
represent compositions with highest entropy, and
the next five rows are qualitatively analyzed. The
high-entropy cases where the attention is most di-
vided represent more complex phrases with con-
junctions or more than one plausible head.

NPs. In most simple noun phrases (representa-
tive samples in rows 6–7 of Table 5), the model
pays the most attention to the rightmost noun
and assigns near-zero attention on determiners and
possessive determiners, while also paying nontriv-
ial attention weights to the adjectives. This finding
matches existing head rules and our intuition that
nouns head noun phrases, and that adjectives are
more important than determiners.

We analyze the case where the noun phrase con-
tains a conjunction in the last three rows of Table
5. The syntax of conjunction is a long-standing
source of controversy in syntactic analysis (Johan-
nessen, 1998, inter alia). Our model suggests that
several representational strategies are used, when
coordinating single nouns, both the first noun (8)
and the last noun (9) may be selected. However, in
the case of conjunctions of multiple noun phrases
(as opposed to multiple single-word nouns), the
model consistently picks the conjunction as the
head. All of these representational strategies have
been argued for individually on linguistic grounds,
and since we see all of them present, RNNGs face
the same confusion that linguists do.

VPs. The attention weights on simple verb
phrases (e.g., “VP→V NP”, 9) are peaked around
the noun phrase instead of the verb. This implies
that the verb phrase would look most similar to the
noun under it and contradicts existing head rules
that unanimously put the verb as the head of the
verb phrase. Another interesting finding is that
the model pays attention to polarity information,
where negations are almost always assigned non-
trivial attention weights.7 Furthermore, we find
that the model attends to the conjunction terminal
in conjunctions of verb phrases (e.g., “VP → VP
and VP”, 10), reinforcing the similar finding for
conjunction of noun phrases.

PPs. In almost all cases, the model attends
to the preposition terminal instead of the noun
phrases or complete clauses under it, regardless of
the type of preposition. Even when the preposi-

7Cf. Li et al. (2016), where sequential LSTMs discover
polarity information in sentiment analysis, although perhaps
more surprising as polarity information is less intuitively cen-
tral to syntax and language modeling.
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tional phrase is only used to make a connection
between two noun phrases (e.g., “PP → NP after
NP”, 10), the prepositional connector is still con-
sidered the most salient element. This is less con-
sistent with the Collins and Stanford head rules,
where prepositions are assigned a lower prior-
ity when composing PPs, although more consis-
tent with the Johansson head rule (Johansson and
Nugues, 2007).

ADJP VP NP PP QP SBAR

1

1.5

2

2.5

3

Figure 3: Average perplexity of the learned atten-
tion vectors on the test set (blue), as opposed to
the average perplexity of the uniform distribution
(red), computed for each major phrase type.

5.2 Comparison to Existing Head Rules
To better measure the overlap between the atten-
tion vectors and existing head rules, we converted
the trees in PTB §23 into a dependency represen-
tation using the attention weights. In this case,
the attention weight functions as a “dynamic” head
rule, where all other constituents within the same
composed phrase are considered to modify the
constituent with the highest attention weight, re-
peated recursively. The head of the composed rep-
resentation for “S” at the top of the tree is attached
to a special root symbol and functions as the head
of the sentence.

We measure the overlap between the resulting
tree and conversion results of the same trees us-
ing the Collins (1997) and Stanford dependencies
(De Marneffe et al., 2006) head rules. Results are
evaluated using the standard evaluation script (ex-
cluding punctuation) in terms of UAS, since the
attention weights do not provide labels.

Results. The model has a higher overlap with
the conversion using Collins head rules (49.8

UAS) rather than the Stanford head rules (40.4
UAS). We attribute this large gap to the fact that
the Stanford head rules incorporate more semantic
considerations, while the RNNG is a purely syn-
tactic model. In general, the attention-based tree
output has a high error rate (≈ 90%) when the de-
pendent is a verb, since the constituent with the
highest attention weight in a verb phrase is of-
ten the noun phrase instead of the verb, as dis-
cussed above. The conversion accuracy is better
for nouns (≈ 50% error), and much better for de-
terminers (30%) and particles (6%) with respect to
the Collins head rules.

Discussion. GA-RNNG has the power to in-
fer head rules, and to a large extent, it does. It
follows some conventions that are established in
one or more previous head rule sets (e.g., preposi-
tions head prepositional phrases, nouns head noun
phrases), but attends more to a verb phrase’s nom-
inal constituents than the verb. It is important
to note that this is not the by-product of learn-
ing a specific model for parsing; the training ob-
jective is joint likelihood, which is not a proxy
loss for parsing performance. These decisions
were selected because they make the data maxi-
mally likely (though admittedly only locally max-
imally likely). We leave deeper consideration of
this noun-centered verb phrase hypothesis to fu-
ture work.

6 The Role of Nonterminal Labels

Emboldened by our finding that GA-RNNGs learn
a notion of headedness, we next explore whether
heads are sufficient to create representations of
phrases (in line with an endocentric theory of
phrasal representation) or whether extra nontermi-
nal information is necessary. If the endocentric
hypothesis is true (that is, the representation of a
phrase is built from within depending on its com-
ponents but independent of explicit category la-
bels), then the nonterminal types should be easily
inferred given the endocentrically-composed rep-
resentation, and that ablating the nonterminal in-
formation would not make much difference in per-
formance. Specifically, we train a GA-RNNG on
unlabeled trees (only bracketings without nonter-
minal types), denoted U-GA-RNNG.

This idea has been explored in research on
methods for learning syntax with less complete
annotation (Pereira and Schabes, 1992). A key
finding from Klein and Manning (2002) was that,
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Noun phrases Verb phrases Prepositional phrases
1 Canadian (0.09) Auto (0.31) Workers (0.2) union (0.22) president (0.18) buying (0.31) and (0.25) selling (0.21) NP (0.23) ADVP (0.14) on (0.72) NP (0.14)
2 no (0.29) major (0.05) Eurobond (0.32) or (0.01) foreign (0.01) bond (0.1) offerings (0.22) ADVP (0.27) show (0.29) PRT (0.23) PP (0.21) ADVP (0.05) for (0.54) NP (0.40)
3 Saatchi (0.12) client (0.14) Philips (0.21) Lighting (0.24) Co. (0.29) pleaded (0.48) ADJP (0.23) PP (0.15) PP (0.08) PP (0.06) ADVP (0.02) because (0.73) of (0.18) NP (0.07)
4 nonperforming (0.18) commercial (0.23) real (0.25) estate (0.1) assets (0.25) received (0.33) PP (0.18) NP (0.32) PP (0.17) such (0.31) as (0.65) NP (0.04)
5 the (0.1) Jamaica (0.1) Tourist (0.03) Board (0.17) ad (0.20) account (0.40) cut (0.27) NP (0.37) PP (0.22) PP (0.14) from (0.39) NP (0.49) PP (0.12)
6 the (0.0) final (0.18) hour (0.81) to (0.99) VP (0.01) of (0.97) NP (0.03)
7 their (0.0) first (0.23) test (0.77) were (0.77) n’t (0.22) VP (0.01) in (0.93) NP (0.07)
8 Apple (0.62) , (0.02) Compaq (0.1) and (0.01) IBM (0.25) did (0.39) n’t (0.60) VP (0.01) by (0.96) S (0.04)
9 both (0.02) stocks (0.03) and (0.06) futures (0.88) handle (0.09) NP (0.91) at (0.99) NP (0.01)

10 NP (0.01) , (0.0) and (0.98) NP (0.01) VP (0.15) and (0.83) VP 0.02) NP (0.1) after (0.83) NP (0.06)

Table 5: Attention weight vectors for some representative samples for NPs, VPs, and PPs.

given bracketing structure, simple dimensional-
ity reduction techniques could reveal conventional
nonterminal categories with high accuracy; Petrov
et al. (2006) also showed that latent variables can
be used to recover fine-grained nonterminal cate-
gories. We therefore expect that the vector em-
beddings of the constituents that the U-GA-RNNG
correctly recovers (on test data) will capture cate-
gories similar to those in the Penn Treebank.

Experiments. Using the same hyperparameters
and the PTB dataset, we first consider unlabeled
F1 parsing accuracy. On test data (with the usual
split), the GA-RNNG achieves 94.2%, while the
U-GA-RNNG achieves 93.5%. This result sug-
gests that nonterminal category labels add a rel-
atively small amount of information compared to
purely endocentric representations.

Visualization. If endocentricity is largely suf-
ficient to account for the behavior of phrases,
where do our robust intuitions for syntactic cate-
gory types come from? We use t-SNE (van der
Maaten and Hinton, 2008) to visualize composed
phrase vectors from the U-GA-RNNG model ap-
plied to the unseen test data. Fig. 4 shows that the
U-GA-RNNG tends to recover nonterminal cate-
gories as encoded in the PTB, even when trained
without them.8 These results suggest nontermi-
nal types can be inferred from the purely endocen-
tric compositional process to a certain extent, and
that the phrase clusters found by the U-GA-RNNG
largely overlap with nonterminal categories.

Analysis of PP and SBAR. Figure 4 indicates
a certain degree of overlap between SBAR (red)
and PP (yellow). As both categories are interest-
ing from the linguistic perspective and quite sim-
ilar, we visualize the learned phrase vectors of 40
randomly selected SBARs and PPs from the test
set (using U-GA-RNNG), illustrated in Figure 5.
First, we can see that phrase representations for
PPs and SBARs depend less on the nonterminal

8We see a similar result for the non-ablated GA-RNNG
model, not shown for brevity.

Figure 4: t-SNE on composed vectors when train-
ing without nonterminal categories. Vectors in
dark blue are VPs, red are SBARs, yellow are PPs,
light blue are NPs, and green are Ss.

categories9 and more on the connector. For in-
stance, the model learns to cluster phrases that
start with words that can be either prepositions
or complementizers (e.g., for, at, to, under, by),
regardless of whether the true nonterminal labels
are PPs or SBARs. This suggests that SBARs that
start with “prepositional” words are similar to PPs
from the model’s perspective.

Second, the model learns to disregard the word
that, as “SBAR → that S” and “SBAR → S” are
close together. This finding is intuitive, as comple-
mentizer that is often optional (Jaeger, 2010), un-
like prepositional words that might describe rela-
tive time and location. Third, certain categories of
PPs and SBARs form their own separate clusters,
such as those that involve the words because and
of. We attribute these distinctions to the fact that
these words convey different meanings than many
prepositional words; the word of indicates posses-
sion while because indicates cause-and-effect re-
lationship. These examples show that, to a cer-
tain extent, the GA-RNNG is able to learn non-

9Recall that U-GA-RNNG is trained without access to the
nonterminal labels; training the model with nonterminal in-
formation would likely change the findings.

1256



trivial semantic information, even when trained on
a fairly small amount of syntactic data.

SBAR that S
SBAR that S

SBAR that S
SBAR S

SBAR S

SBAR S SBAR S

SBAR because S
PP ADVP above NP

SBAR ADVP WHADVP S

SBAR for S

PP at NP

PP at NP

PP after NP

PP by NP

PP under NPPP by NP

SBAR as S

PP to NP

PP to NP

PP to NP

PP on NP

PP ADVP above NP

SBAR SBAR and SBAR

SBAR than S

PP than NP

PP from S
PP about NP

SBAR WHADVP

PP about NP

SBAR WHNP S

SBAR WHNP S

SBAR WHNP S

SBAR S

PP of S

PP of NP
PP of NPPP of NP

PP of NP

Figure 5: Sample of PP and SBAR phrase repre-
sentations.

7 Related Work

The problem of understanding neural network
models in NLP has been previously studied for se-
quential RNNs (Karpathy et al., 2015; Li et al.,
2016). Shi et al. (2016) showed that sequence-to-
sequence neural translation models capture a cer-
tain degree of syntactic knowledge of the source
language, such as voice (active or passive) and
tense information, as a by-product of the transla-
tion objective. Our experiment on the importance
of composition function was motivated by Vinyals
et al. (2015) and Wiseman and Rush (2016), who
achieved competitive parsing accuracy without ex-
plicit composition. In another work, Li et al.
(2015) investigated the importance of recursive
tree structures (as opposed to linear recurrent mod-
els) in four different tasks, including sentiment
and semantic relation classification. Their findings
suggest that recursive tree structures are beneficial
for tasks that require identifying long-range rela-
tions, such as semantic relationship classification,
with no conclusive advantage for sentiment classi-
fication and discourse parsing. Through the stack-
only ablation we demonstrate that the RNNG com-
position function is crucial to obtaining state-of-
the-art parsing performance.

Extensive prior work on phrase-structure
parsing typically employs the probabilistic
context-free grammar formalism, with lexicalized
(Collins, 1997) and nonterminal (Johnson, 1998;
Klein and Manning, 2003) augmentations. The
conjecture that fine-grained nonterminal rules and
labels can be discovered given weaker bracketing
structures was based on several studies (Chiang

and Bikel, 2002; Klein and Manning, 2002;
Petrov et al., 2006).

In a similar work, Sangati and Zuidema (2009)
proposed entropy minimization and greedy famil-
iarity maximization techniques to obtain lexical
heads from labeled phrase-structure trees in an un-
supervised manner. In contrast, we used neural
attention to obtain the “head rules” in the GA-
RNNG; the whole model is trained end-to-end to
maximize the log probability of the correct ac-
tion given the history. Unlike prior work, GA-
RNNG allows the attention weight to be divided
among phrase constituents, essentially propagat-
ing (weighted) headedness information from mul-
tiple components.

8 Conclusion

We probe what recurrent neural network gram-
mars learn about syntax, through ablation sce-
narios and a novel variant with a gated atten-
tion mechanism on the composition function. The
composition function, a key differentiator between
the RNNG and other neural models of syntax, is
crucial for good performance. Using the atten-
tion vectors we discover that the model is learning
something similar to heads, although the attention
vectors are not completely peaked around a sin-
gle component. We show some cases where the
attention vector is divided and measure the rela-
tionship with existing head rules. RNNGs without
access to nonterminal information during training
are used to support the hypothesis that phrasal rep-
resentations are largely endocentric, and a visu-
alization of representations shows that traditional
nonterminal categories fall out naturally from the
composed phrase vectors. This confirms previous
conjectures that bracketing annotation does most
of the work of syntax, with nonterminal categories
easily discoverable given bracketing.
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Abstract

This article introduces a novel transition
system for discontinuous lexicalized con-
stituent parsing called SR-GAP. It is an ex-
tension of the shift-reduce algorithm with
an additional gap transition. Evaluation on
two German treebanks shows that SR-GAP

outperforms the previous best transition-
based discontinuous parser (Maier, 2015)
by a large margin (it is notably twice as ac-
curate on the prediction of discontinuous
constituents), and is competitive with the
state of the art (Fernández-González and
Martins, 2015). As a side contribution, we
adapt span features (Hall et al., 2014) to
discontinuous parsing.

1 Introduction

Discontinuous constituent trees can be used to
model directly certain specific linguistic phenom-
ena, such as extraposition, or more broadly to de-
scribe languages with some degree of word-order
freedom. Although these phenomena are some-
times annotated with indexed traces in CFG tree-
banks, other constituent treebanks are natively an-
notated with discontinuous constituents, e.g. the
Tiger corpus (Brants, 1998).

From a parsing point of view, discontinuities
pose a challenge. Mildly context-sensitive for-
malisms, that are expressive enough to model dis-
continuities have high parsing complexity. For ex-
ample, the CKY algorithm for a binary probabilis-
tic LCFRS is in O(n3k), where k is the fan-out of
the grammar (Kallmeyer, 2010).

Recently, there have been several proposals for
direct discontinuous parsing. They correspond
roughly to three different parsing paradigms. (i)
Chart parsers are based on probabilistic LCFRS
(Kallmeyer and Maier, 2013; Maier, 2010; Evang

S

NP

NP

PPER VVFIN ADV ADJA NN

Es bestünde somit hinreichender Spielraum

Figure 1: Discontinuous tree extracted from the
Tiger corpus (punctuation removed).

and Kallmeyer, 2011), or on the Data-Oriented
Parsing (DOP) framework (van Cranenburgh,
2012; van Cranenburgh and Bod, 2013; van Cra-
nenburgh et al., 2016). However, the complex-
ity of inference in this paradigm requires to de-
sign elaborate search strategies and heuristics to
make parsing run-times reasonable. (ii) Several
approaches are based on modified non-projective
dependency parsers, for example Hall and Nivre
(2008), or more recently Fernández-González and
Martins (2015) who provided a surprisingly ac-
curate parsing method that can profit from effi-
cient dependency parsers with rich features. (iii)
Transition-based discontinuous parsers are based
on the easy-first framework (Versley, 2014a) or the
shift-reduce algorithm augmented with a swap ac-
tion (Maier, 2015). In the latter system, which we
will refer to as SR-SWAP, a SWAP action pushes
the second element of the stack back onto the
buffer.

Although SR-SWAP is fast and obtained good
results, it underperforms Fernández-González and
Martins (2015)’s parser by a large margin. We be-
lieve this result does not indicate a fatal problem
for the transition-based framework for discontin-
uous parsing, but emphasizes several limitations
inherent to SR-SWAP, in particular the length of
derivations (Section 3.5).

1259



S

S:*

NP

NP*

PPER VVFIN* ADV ADJA NN*

Es1 bestünde2 somit3 hinreichender4Spielraum5

Figure 2: Lexicalized binarized tree. The symbol
‘*’ encodes head information. Symbols suffixed
by ‘:’ are temporary symbols introduced by the
binarization.

Contributions We introduce a novel transition
system for discontinuous parsing we call SR-GAP.
We evaluate this algorithm on two German tree-
banks annotated with discontinuous constituents,
and show that, in the same experimental settings,
it outperforms the previous best transition-based
parser of Maier (2015), and matches the best
published results on these datasets (Fernández-
González and Martins, 2015). We provide a theo-
retical and empirical comparison between SR-GAP

and SR-SWAP. Finally we adapt span-based fea-
tures to discontinuous parsing.

The code and preprocessing scripts to repro-
duce experiments are available for download at
https://github.com/mcoavoux/mtg.

2 Discontinuous Shift-Reduce Parsing

In this section we present SR-GAP, a transition
system for discontinuous constituent parsing. SR-
GAP is an extension of the shift-reduce system. In
what follows, we assume that part-of-speech tags
for the words of a sentence are given. A terminal
refers to a tag-word couple.

2.1 Standard Shift-Reduce Constituent
Parsing

The shift-reduce system is based on two data struc-
tures. The stack (S) contains tree fragments repre-
senting partial hypotheses and the buffer (B) con-
tains the remaining terminals. A parsing configu-
ration is a couple 〈S,B〉. Initially, B contains the
sentence as a list of terminals and S is empty.

The three types of actions are defined as fol-
lows.

• SHIFT(〈S,w|B〉) = 〈S|w,B〉
• REDUCE-X(〈S|A1|A2, B〉) = 〈S|X,B〉

• REDUCEUNARY-X(〈S|A,B〉) = 〈S|X,B〉

where X is any non-terminal in the grammar. The
analysis terminates when the buffer is empty and
the only symbol in the stack is an axiom of the
grammar. This transition system can predict any
labelled constituent tree over a set of non-terminal
symbols N .

These three action types can only produce bi-
nary trees. In practice, shift-reduce parsers often
assume that their data are binary. In this article,
we assume that trees are binary, that each node X
is annotated with a head h (notation: X[h]), and
that the only unary nodes are parents to a terminal.
Therefore, we only need unary reductions immedi-
ately after a SHIFT. We refer the reader to Section
3.1 for the description of the preprocessing opera-
tions.

2.2 SR-GAP Transition System

In order to handle discontinuous constituents, we
need an algorithm expressive enough to predict
non-projective trees.

Compared to the standard shift-reduce algo-
rithm, the main intuition behind SR-GAP is that re-
ductions do not always apply to the two top-most
elements in the stack. Instead, the left element of a
reduction can be any element in the stack and must
be chosen dynamically.

To control the choice of the symbols to which
a reduction applies, the usual stack is split into
two data structures. A deque D represents its top
and a stack S represents its bottom. Alternatively,
we could see these two data structures as a sin-
gle stack with two pointers indicating its top and a
split point. The respective top-most element of D
and S are those available for a reduction.

The transition system is given as a deductive
system in Figure 3. A REDUCE-X action pops the
top element of S and the top element ofD, flushes
the content of D to S and finally pushes a new
non-terminal X on D. As feature extraction (Sec-
tion 3.1) relies on the lexical elements, we use two
types of binary reductions, left and right, to assign
heads to new constituents. Unary reductions re-
place the top of D by a new non-terminal.

The SHIFT action flushes D to S, pops the next
token from B and pushes it onto D.

Finally, the GAP action pops the first element
of S and appends it at the bottom of D. This ac-
tion enables elements below the top of S to be also
available for a reduction with the top of D.
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Input t1[w1]t2[w2] . . . tn[wn]

Axiom 〈ε, ε, t1[w1]t2[w2] . . . tn[wn]〉

Goal 〈ε, S[w], ε〉

SH
〈S,D, t[w]|B〉
〈S|D, t[w], B〉

RU(X)
〈S, d0[h], B〉
〈S,X[h], B〉

RR(X)
〈S|s0[h], D|d0[h′], B〉
〈S|D,X[h′], B〉

RL(X)
〈S|s0[h], D|d0[h′], B〉
〈S|D,X[h], B〉

GAP
〈S|s0[h], D,B〉
〈S, s0[h]|D,B〉

Figure 3: SR-GAP transition system for discontin-
uous phrase structure parsing. X[h] denotes a non-
terminal X and its head h. s0 and d0 denote the
top-most elements of respectively S and D.

Constraints In principle, a tree can be derived
by several distinct sequences of actions. If a
SHIFT follows a sequence of GAPS, the GAPS will
have no effect, because SHIFT flushes D to S be-
fore pushing a new terminal toD. In order to avoid
useless GAPS, we do not allow a SHIFT to follow
a GAP. A GAP must be followed by either another
GAP or a binary reduction.

Moreover, as we assume that preprocessed trees
do not contain unary nodes, except possibly above
the terminal level, unary reductions are only al-
lowed immediately after a SHIFT. Other con-
straints on the transition system are straightfor-
ward, we refer the reader to Table 7 of Appendix
A for the complete list.

2.3 Oracle and Properties

Preliminary Definitions Following Maier and
Lichte (2016), we define a discontinuous tree as
a rooted connected directed acyclic graph T =
(V,E, r) where

• V is a set of nodes;
• r ∈ V is the root node;
• E : V ×V is a set of (directed) edges and E∗

is the reflexive transitive closure of E.

If (u, v) ∈ E, then u is the parent of v. Each node
has a unique parent (except the root that has none).
Nodes without children are terminals.

The right index (resp. left index) of a node is
the index of the rightmost (resp. leftmost) termi-
nal dominated by this node. For example, the left
index of the node labelled S: in Figure 2 is 1 and
its right index is 5.

Oracle We extract derivations from trees by fol-
lowing a simple tree traversal. We start with an ini-
tial configuration. While the configuration is not
final, we derive a new configuration by perform-
ing the gold action, which is chosen as follows:

• if the nodes at the top of S and at the top of
D have the same parent node in the gold tree,
perform a reduction with the parent node la-
bel;
• if the node at the top of D and the ith node in
S have the same parent node, perform i − 1
GAP;
• otherwise, perform a SHIFT, optionally fol-

lowed by a unary reduction in the case where
the parent node of the top of D has only one
child.

For instance, the gold sequence of actions for
the tree in Figure 2 is the sequence SH, SH, SH,
SH, SH, RR(NP), GAP, GAP, RR(NP), GAP,
RL(S:), RR(S). Table 1 details the sequence of
configurations obtained when deriving this tree.

Given the constraints defined in Section 2.2, and
if we ignore lexicalisation, there is a bijection be-
tween binary trees and derivations.1 To see why,
we define a total order < on the nodes of a tree.
Let n and n′ be two nodes and let n < n′ iff either
rindex(n) < rindex(n′) or (n′, n) ∈ E∗.

It is immediate that if (n′, n) ∈ E∗, then nmust
be reduced before n′ in a derivation. An invari-
ant of the GAP transition system is that the right
index of the first element of D is equal to the in-
dex of the last shifted element. Therefore, after
having shifted the terminal j, it is impossible to
create nodes whose right-index is strictly smaller
to j. We conclude that during a derivation, the
nodes must be created according to the strict total
order < defined above. In other words, for a given
tree, there is a unique possible derivation which
enforces the constraints described above. Recip-

1But several binarized trees can correspond to the same
n-ary tree.
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S D B Action

Es bestünde somit hinreichender Spielraum
Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit hinreichender Spielraum SH

Es bestünde somit NP[Spielraum] RR(NP)
Es bestünde somit NP[Spielraum] GAP

Es bestünde somit NP[Spielraum] GAP

bestünde somit NP[Spielraum] RR(NP)
bestünde somit NP[Spielraum] GAP

somit S:[bestünde] RL(S:)
S[bestünde] RR(S)

Table 1: Example derivation for the sentence in Figure 2, part-of-speech tags are omitted.

rocally, a well-formed derivation corresponds to a
unique tree.

Completeness and Soundness The GAP transi-
tion system is sound and complete for the set of
discontinuous binary trees labelled with a set of
non-terminal symbols. When augmented with cer-
tain constraints to make sure that predicted trees
are unbinarizable (see Table 7 of Appendix A),
this result also holds for the set of discontinuous
n-ary trees (modulo binarization and unbinariza-
tion).

Completeness follows immediately from the
correctness of the oracle, which corresponds to a
tree traversal in the order specified by <.

To prove soundness, we need to show that any
valid derivation sequence produces a discontinu-
ous binary tree. It holds from the transition system
that no node can have several parents, as parent
assignation via REDUCE actions pops the children
nodes and makes them unavailable to other reduc-
tions. This implies that at any moment, the con-
tent of the stack is a forest of discontinuous trees.
Moreover, at each step, at least one action is possi-
ble (thanks to the constraints on actions). As there
can be no cycles, the number of actions in a deriva-
tion is upper-bounded by 1

2(n
2+n) for a sentence

of length n (see Appendix A.1). Therefore, the
algorithm can always reach a final configuration,
where the forest only contains one discontinuous
tree.

The correctness of SR-GAP system holds only
for the robust case: that is the full set of labeled
discontinuous trees, and not, say, for the set of
trees derived by a true LCFRS grammar also able
to reject agrammatical sentences. From an empir-
ical point of view, a transition system that over-

generates is necessary for robustness, and is de-
sirable for fast approximate linear-time inference.
However, from a formal point of view, the re-
lationship of the SR-GAP transition system with
automata explicitly designed for LCFRS parsing
(Villemonte de La Clergerie, 2002; Kallmeyer and
Maier, 2015) requires further investigations.

2.4 Length of Derivations

Any derivation produced by SR-GAP for a sen-
tence of length n will contain exactly n SHIFTS

and n− 1 binary reductions. In contrast, the num-
ber of unary reductions and GAP actions can vary.
Therefore several possible derivations for the same
sentence may have different lengths.

This is a recurring problem for transition-based
parsing because it undermines the comparability
of derivation scores. In particular, Crabbé (2014)
observed that the score of a parse item is approx-
imatively linear in the number of previous tran-
sitions, which creates a bias towards long deriva-
tions.

Different strategies have been proposed to en-
sure that all derivations have the same length (Zhu
et al., 2013; Crabbé, 2014; Mi and Huang, 2015).
Following Zhu et al. (2013), we use an additional
IDLE action that can only be performed when a
parsing item is final. Thus, short derivations are
padded until the last parse item in the beam is fi-
nal. IDLE actions are scored exactly like any other
action.

SR-CGAP As an alternative strategy to the prob-
lem of comparability of hypotheses, we also
present a variant of SR-GAP, called SR-CGAP, in
which the length of any derivation only depends
on the length of the sentence. In SR-CGAP, each
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SHIFT action must be followed by either a unary
reduction or a ghost reduction (Crabbé, 2015), and
each binary reduction must be preceded by ex-
actly one compound GAPi action (i ∈ {0, . . .m})
specifying the number i of consecutive standard
GAPS. For example, GAP0 will have no effect, and
GAP2 counts as a single action equivalent to two
consecutive GAPS. We call these actions COM-
POUNDGAP, following the COMPOUNDSWAP ac-
tions of Maier (2015).

With this set of actions, any derivation will have
exactly 4n − 2 actions, consisting of n shifts, n
unary reductions or ghost reductions, n − 1 com-
pound gaps, and n− 1 reductions.

The parameter m (maximum index of a com-
pound gap) is determined by the maximum num-
ber of consecutive gaps observed in the training
set. Contrary to SR-GAP, SR-CGAP is not com-
plete, as some discontinuous trees whose deriva-
tion should contain more than m consecutive
GAPS cannot be predicted.

2.5 Beam Search with a Tree-structured
Stack

A naive beam implementation of SR-GAP will
copy the whole parsing configuration at each step
and for each item in the beam. This causes the
parser algorithm to have a practicalO(k ·n2) com-
plexity, where k is the size of the beam and n the
length of a derivation. To overcome this, one can
use a tree-structured stack (TSS) to factorize the
representations of common prefixes in the stack as
described by (Goldberg et al., 2013) for projec-
tive dependency parsing. However the discontinu-
ites entail that a limited amount of copying cannot
be entirely avoided. When a reduction follows n
GAP actions, we need to grow a new branch of
size n + 1 in the tree-structured stack to account
for reordering. The complexity of the inference
becomes O(k · (n+ g)) where g is the number of
gaps in the derivation. As there are very few gap
actions (in proportion) in the dataset, the practical
runtime is linear in the length of the derivation.

2.6 Relationship to Dependency Parsing
Algorithms

The transition system presented in this article uses
two distinct data structures to represent the stack.
In this respect, it belongs to the family of al-
gorithms presented by Covington (2001) for de-
pendency parsing. Covington’s algorithm iterates
over every possible pair of words in a sentence

and decides for each pair whether to attach them
– with a left or right arc – or not. This algorithm
can be formulated as a transition system with
a split stack (Gómez-Rodrı́guez and Fernández-
González, 2015).

3 Experiments

3.1 Datasets

We evaluated our model on two corpora, namely
the Negra corpus (Skut et al., 1997) and the Tiger
corpus (Brants, 1998). To ensure comparability
with previous work, we carried out experiments
on several instantiations of these corpora.

We present results on two instantiations of Ne-
gra. NEGRA-30 consists of sentences whose
length is smaller than, or equal to, 30 words. We
used the same split as Maier (2015). A second
instantiation, NEGRA-ALL, contains all the sen-
tences of the corpus, and uses the standard split
(Dubey and Keller, 2003).

For the Tiger corpus, we also use two instantia-
tions. TIGERHN08 is the split used by Hall and
Nivre (2008). TIGERM15 is the split of Maier
(2015), which corresponds to the SPMRL split
(Seddah et al., 2013).2 We refer the reader to Ta-
ble 8 in Appendix A for further details on the splits
used.

For both corpora, the first step of preprocessing
consists in removing function labels and reattach-
ing the nodes attached to the ROOT and causing
artificial discontinuities (these are mainly punctu-
ation terminals).3

Then, corpora are head-annotated using the
headrules included in the DISCO-DOP package,
and binarized by an order-0 head-Markovization
(Klein and Manning, 2003). There is a rich lit-
erature on binarizing LCFRS (Gómez-Rodrı́guez
et al., 2009; Gildea, 2010), because both the gap-
degree and the rank of the resulting trees need
to be minimized in order to achieve a reason-
able complexity when using chart-based parsers
(Kallmeyer and Maier, 2013). However, this
seems not to be a problem for transition-based
parsing, and the gains of using optimized bina-
rization algorithms do not seem to be worth the

2As in previous work (Maier, 2015), two sentences (num-
ber 46234 and 50224) are excluded from the test set because
they contain annotation errors.

3We used extensively the publicly available software
TREETOOLS and DISCO-DOP for these preprocessing steps.
The preprocessing scripts will be released with the parser
source code for full replicability.
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s1.c[w/t]

s1.lc[lw/lt]

s1.wl/tl

s1.rc[rw/rt]

s1.wr/tr

s0.c[w/t]

s0.lc[lw/lt]

s0.wl/tl

s0.rc[rw/rt]

s0.wr/tr

d1.c[w/t]

d1.lc[lw/lt]

d1.wl/tl

d1.rc[rw/rt]

d1.wr/tr

d0.c[w/t]

d0.lc[lw/lt]

d0.wl/tl

d0.rc[rw/rt]

d0.wr/tr
b0.w/t b1.w/t . . .

Figure 4: Schematic representation of the top-most elements of S, D and B, using the notations in-
troduced in Table 2. Due to discontinuities, it is possible that both the left- and right- index of si are
generated by the same child of si.

BASELINE

b0tw b1tw b2tw b3tw d0tc
d0wc s0tc s0wc s1tc s1wc
s2tc s2wc s0lwlc s0rwrc d0lwlc

d0rwrc s0wd0w s0wd0c s0cd0w s0cd0c
b0wd0w b0td0w b0wd0c b0td0c b0ws0w
b0ts0w b0ws0c b0ts0c b0wb1w b0wb1t
b0tb1w b0tb1t s0cs1wd0c s0cs1cd0c b0ws0cd0c
b0ts0cd0c b0ws0wd0c b0ts0wd0c s0cs1cd0w b0ts0cd0w

+ EXTENDED

s3tc s3wc s1lwlc s1rwrc d1tc
d1wc d2tc d2wc s0cs1cd0c s2cs0cs1cd0c

s0cd1cd0c s0cd1cs1cd0c

+ SPANS

d0cwlwr s0cwlwr d0cwls0wr d0cwrs0wl d0wlwrb0w
d0wlwrb1w d0cwrs0wlo d0ctlwr d0cwltr d0ctltr
s0ctlwr s0cwltr s0ctltr d0ctls0wr d0cwls0tr
d0ctls0tr d0ctrs0wl d0cwrs0tl d0ctrs0tl d0wlwrb0t
d0wlwrb1t d0cwlo d0ctlo s0cwro s0ctro

Table 2: Feature templates. s, d and b refer respec-
tively to the data structures (S, D, B) presented in
Section 2.2. The integers are indices on these data
structures. left and right refer to the children of
nodes. We use c, w and t to denote a node’s la-
bel, its head and the part-of-speech tag of its head.
When used as a subscript, l (r) refers to the left
(right) index of a node. Finally lo (ro) denotes the
token immediately left to the left index (right to
the right index). See Figure 4 for a representation
of a configuration with these notations.

complexity of these algorithms (van Cranenburgh
et al., 2016).

Unless otherwise indicated, we did experiments
with gold part-of-speech tags, following a com-
mon practice for discontinuous parsing.

3.2 Classifier

We used an averaged structured perceptron
(Collins, 2002) with early-update training (Collins
and Roark, 2004). We use the hash trick (Shi et al.,
2009) to speed up feature hashing. This has no no-
ticeable effect on accuracy and this improves train-
ing and parsing speed. The only hyperparameter
of the perceptron is the number of training epochs.

We fixed it at 30 for every experiment, and shuf-
fled the training set before each epoch.

Features We tested three feature sets described
in Table 2 and Figure 4. The BASELINE feature
set is the transposition of Maier (2015)’s baseline
features to the GAP transition system. It is based
on B, on S, and on the top element of D, but does
not use information from the rest of D (i.e. the
gapped elements). This feature set was designed
in order to obtain an experimental setting as close
as possible to that of Maier (2015).

In constrast, the EXTENDED feature set in-
cludes information from further in D, as well as
additional context in S and n-grams of categories
from both S and D.

The third feature set SPANS is based on the idea
that constituent boundaries contain critical infor-
mation (Hall et al., 2014) for phrase structure pars-
ing. This intuition is also confirmed in the context
of lexicalized transition-based constituent parsing
(Crabbé, 2015). To adapt this type of features to
discontinuous parsing, we only rely on the right
and left index of nodes, and on the tokens preced-
ing the left index or following the right index.4

Unknown Words In order to learn parameters
for unknown words and limit feature sparsity, we
replace hapaxes in the training set by an UN-
KNOWN pseudo-word. This accounts for an im-
provement of around 0.5 F1.

3.3 Results

We report results on test sets in Table 3.
All the metrics were computed by DISCO-DOP

with the parameters included in this package
(proper.prm). The metrics are labelled F1, ig-
noring roots and punctuation. We also present
metrics which consider only the discontinuous
constituents (Disc. F1 in Tables 3 and 4), as these

4For discontinuous constituents, internal boundaries (for
gaps) might prove useful too.
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NEGRA-30 NEGRA-ALL TIGERHN08 TIGERM15
Method All L ≤ 40 All L ≤ 40 All SPMRL / standard

Fernández-González and Martins (2015) dep2const 82.56† 81.08 80.52 85.53 84.22 80.62 / -
Hall and Nivre (2008) dep2const - - - 79.93 - -/-
van Cranenburgh (2012) DOP - 72.33 71.08 - - -/-
van Cranenburgh and Bod (2013) DOP - 76.8 - - - -/-
Kallmeyer and Maier (2013) LCFRS 75.75 - - - - -/-
Versley (2014a) EAFI - - - 74.23 - -/-
Maier (2015) (baseline, b=(Ne=8/Ti=4)) SR-SWAP 75.17 (15.76) - - - - -/-
Maier (2015) (best, b=(Ne=8/Ti=4)) SR-SWAP 76.95 (19.82) - - 79.52 - - / 74.71 (18.77)
Maier and Lichte (2016) (best, b=4) SR-SWAP 80.02 -/ 76.46 (16.31)

This work, beam=4 F1 (Disc. F1)

GAP, BASELINE SR-GAP 79.31 (38.66) 79.29 (39.78) 78.53 (38.64) 82.84 (47.13) 81.67 (44.83) 78.77 / 78.86 (41.36)
GAP, +EXTENDED SR-GAP 80.44 (41.13) 80.34 (43.42) 79.79 (43.56) 83.57 (50.91) 82.43 (48.81) 79.42 / 79.51 (43.76)
GAP, +SPANS SR-GAP 81.64 (42.94) 81.70 (47.17) 81.28 (46.85) 84.40 (51.98) 83.16 (49.76) 80.30 / 80.40 (46.50)

CGAP, BASELINE SR-CGAP 79.61 (41.06) 79.32 (43.49) 78.64 (42.13) 82.90 (47.86) 81.68 (45.55) 78.32 / 78.41 (39.99)
CGAP, +EXTENDED SR-CGAP 80.26 (40.52) 80.48 (43.42) 79.98 (42.60) 83.23 (50.57) 82.00 (48.28) 79.32 / 79.42 (44.66)
CGAP, +SPANS SR-CGAP 81.16 (42.39) 81.41 (44.73) 80.89 (44.13) 83.92 (50.83) 82.79 (48.84) 80.38 / 80.48 (46.17)

This work, beam=32 F1 (Disc. F1)

GAP, BASELINE SR-GAP 80.57 (42.16) 80.20 (43.87) 79.75 (42.80) 83.53 (51.91) 82.41 (49.63) 79.60 / 79.69 (44.77)
GAP, +EXTENDED SR-GAP 81.61 (45.75) 81.13 (47.52) 80.54 (46.89) 84.33 (53.84) 83.17 (51.88) 80.50 / 80.59 (46.45)
GAP, +SPANS SR-GAP 82.46 (47.35) 82.76 (51.82) 82.16 (50.00) 85.11 (55.99) 84.01 (54.26) 81.50 / 81.60 (49.17)

Table 3: Final test results. For TIGERM15, we report metrics computed with the SPMRL shared task
parameters (see Section 3.3), as well as the standard parameters. †Trained on NEGRA-ALL.

can give some qualitative insight into the strengths
and weaknesses of our model.

For experiments on TIGERM15, we addition-
ally report evaluation scores computed with the
SPMRL shared task parameters5 for comparabil-
ity with previous work.

SR-GAP vs SR-CGAP In most experimental set-
tings, SR-CGAP slightly underperformed SR-GAP.
This result came as a surprise, as both compound
actions for discontinuities (Maier, 2015) and ghost
reductions (Crabbé, 2014) were reported to im-
prove parsing.

We hypothesize that this result is due to the
rarity of unary constituents in the datasets and to
the difficulty to predict COMPOUNDGAPS with a
bounded look at D and S caused by our practical
definition of feature templates (Table 2). In con-
trast, predicting gaps separately involves feature
extraction at each step, which crucially helps.

Feature Sets The EXTENDED feature set out-
performs the baseline by up to one point of F1.
This emphasizes that information about gapped
non-terminal is important. The SPANS feature set
gives another 1 point improvement. This demon-
strates clearly the usefulness of span features for
discontinuous parsing. A direct extension of this
feature set would include information about the

5These are included in http://pauillac.inria.
fr/˜seddah/evalb_spmrl2013.tar.gz. In this
setting, we reattach punctuation to the root node before eval-
uation.

Beam size TIGERHN8 TIGERM15
F1 Disc. F1 F1 Disc. F1

2 81.86 48.49 84.28 49.04
4 83.27 53.00 85.43 53.14
8 83.61 54.42 85.93 55.00
16 83.84 54.81 86.13 56.17
32 84.32 56.22 86.10 55.50
64 84.14 56.01 86.30 56.90

128 84.05 55.76 86.13 57.04

Table 4: Results on development sets for different
beam sizes.

boundaries of gaps in a discontinuous constituent.
A difficulty of this extension is that the number of
gaps in a constituent can vary.

3.4 Comparisons with Previous Works

There are three main approaches to direct dis-
continuous parsing.6 One such approach is
based on unprojective or pseudo-projective depen-
dency parsing (Hall and Nivre, 2008; Fernández-
González and Martins, 2015), and aims at enrich-
ing dependency labels in such a way that con-
stituents can be retrieved from the dependency
tree. The advantage of such systems is that they
can use off-the-shelf dependency parsers with rich
features and efficient inference.

6As opposed to non-direct strategies, based for example
on PCFG parsing and post-processing.
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The second approach is chart-based parsing,
as examplified by the DOP (Data Oriented Pars-
ing) models of van Cranenburgh (2012) and
van Cranenburgh et al. (2016) and Probabilistic
LCFRS (Kallmeyer and Maier, 2013; Evang and
Kallmeyer, 2011).

The last paradigm is transition-based parsing.
Versley (2014a) and Versley (2014b) use an easy-
first strategy with a swap transition. Maier (2015)
and Maier and Lichte (2016) use a shift-reduce al-
gorithm augmented with a swap transition.

Table 3 includes recent results from these vari-
ous parsers. The most successful approach so far
is that of Fernández-González and Martins (2015),
which outperforms by a large margin transition-
based parsers (Maier, 2015; Maier and Lichte,
2016).

SR-GAP vs SR-SWAP In the same settings (base-
line features and beam size of 4), SR-GAP outper-
forms SR-SWAP by a large margin on all datasets.
It is also twice as accurate when we only consider
discontinuous constituents.

In Section 3.5, we analyse the properties of both
transition systems and give hypotheses for the per-
formance difference.

Absolute Scores On all datasets, our model
reaches or outperforms the state of the art
(Fernández-González and Martins, 2015). This is
still the case in a more realistic experimental setup
with predicted tags, as reported in Table 5.7

As pointed out by Maier and Lichte (2016), a
limitation of shift-reduce based parsing is the lo-
cality of the feature scope when performing the
search. The parser could be in states where the
necessary information to take the right parsing de-
cision is not accessible with the current scoring
model.

To get more insight into this hypothesis, we
tested large beam sizes. If the parser maintains
a much larger number of hypotheses, we hope that
it could compensate for the lack of information by
delaying certain decisions. In Table 4, we present
additional results on development sets of both in-
stantiations of the TIGER corpus, with different
beam sizes. As was expected, a larger beam size

7Like Fernández-González and Martins (2015), we used
the predicted tags provided by the SPMRL shared task orga-
nizers.

TIGERM15 F1 (spmrl.prm)
≤ 70 All

Versley (2014b) 73.90 -
Fernández-González and Martins (2015) 77.72 77.32

SR-GAP, beam=32, +SPANS 79.44 79.26

Table 5: Results on the Tiger corpus in the
SPMRL predicted tag scenario.

gives better results. The beam size controls the
tradeoff between speed and accuracy.8

Interestingly, the improvement from a larger
beam size is greater on discontinuous constituents
than overall. For example, from 16 to 32, F1 im-
proves by 0.5 on TIGERHN8 and F1 on discontin-
uous constituents improves by 1.4.

This suggests that further improvements could
be obtained by augmenting the lookahead on the
buffer and using features further on S and D. We
plan in the future to switch to a neural model such
as a bi-LSTM in order to obtain more global repre-
sentations of the whole data structures (S, D, B).

3.5 Discussion: Comparing SR-SWAP and
SR-GAP

This section investigates some differences be-
tween SR-SWAP and SR-GAP. We think that char-
acterizing properties of transition systems helps to
gain better intuitions into the problems inherent to
discontinuous parsing.

Derivation Length Assuming that GAP or
SWAP are the hardest actions to predict and are
responsible for the variability of the lengths of
derivation, we hypothesize that the number of
these actions, hence the length of a derivation, is
an important factor. Shorter derivations are less
prone to error propagation.

In both cases, the shortest possible derivation
for a sentence of length n corresponds to a pro-
jective tree, as the derivation will not contain any
SWAP or GAP.

In the worst case, i.e. the tree that requires the
longest derivation to be produced by a transition
system, SR-GAP is asymptotically twice as more
economical than SR-SWAP (Table 6). In Figure 5
of Appendix A, we present the trees corresponding
to the longest possible derivations in both cases.

8Training with the full-feature model took approximately
1h30 on TIGERM15 with a beam size of 4. Parsing speed, in
the same setting, is approximately 4, 700 tokens per second
(corresponding to 260 sentences per second) on a single Xeon
2.30 GHz CPU.
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SR-GAP SR-SWAP SR-CSWAP

Theoretical longest derivation n2+n
2 n2 − n+ 1

Longest derivation 276 2187 1276
Total number of gaps/swaps 64096 411970
Max consecutive gaps/swaps 10 69
Avg. deriv. length wrt n 2.03n 3.09n 2.66n

Table 6: Statistics on Tiger train corpus. n is the
length of a sentence. SR-CSWAP is a variant of SR-
SWAP proposed by Maier (2015).

These trees maximise the number of GAP and
SWAP actions.

The fact that derivations are shorter with SR-
GAP is confirmed empirically. In Table 6, we
present several metrics computed on the train sec-
tion of TIGERM15. In average, SR-SWAP deriva-
tions are empirically 50% longer than SR-GAP

derivations. Despite handling discontinuities, SR-
GAP derivations are not noticeably longer than
those we would get with a standard shift-reduce
transition system (n shifts and n− 1 binary reduc-
tions).

Intuitively, the difference in length of deriva-
tions comes from two facts. First, swapped termi-
nals are pushed on the buffer and must be shifted
once more, whereas with SR-GAP, each token is
shifted exactly once. Second, transition systems
for discontinuous parsing implicitly predict an or-
der on terminals (discontinuous trees can be trans-
formed to continuous trees by changing the prece-
dence order on terminals). With SR-SWAP, re-
ordering is done by swapping two terminals. In
contrast, SR-GAP can swap complex non-terminals
(already ordered chunks of terminals), making the
reordering more efficient in terms of number of
operations.

It would be interesting to see if SR-SWAP is im-
proved when swapping non-terminals is allowed.
However, it would make feature extraction more
complex, because it would no longer be assumed
that the buffer contains only tokens.

The effect of the derivation length is confirmed
by Maier and Lichte (2016) who explored different
oracles for SR-SWAP and found that oracles pro-
ducing shorter derivations gave better results.

Feature Locality A second property which ex-
plains the performance of SR-GAP is the access
to three data structures (vs two for SR-SWAP) for
extracting features; SR-GAP has access to an ex-
tended domain of locality. Moreover, with SR-
SWAP, the semantics of features from the queue

does not make a distinction between swapped to-
kens and tokens that have not been shifted yet.
When the parser needs to predict a long sequence
of consecutive swaps, it is hardly in a position to
have access to the relevant information. The use of
three data structures, along with shorter sequences
of GAP actions, seems to alleviate this problem.

4 Conclusion

We have introduced a novel transition system for
lexicalized discontinuous parsing. The SR-GAP

transition system produces short derivations, com-
pared to SR-SWAP, while being able to derive any
discontinuous tree.

Our experiments show that it outperforms the
best previous transition system (Maier, 2015) in
similar settings and different datasets. Combined
with a span-based feature set, we obtained a very
efficient parser with state-of-the-art results.

We also provide an efficient C++ implementa-
tion of our parser, based on a tree-structured stack.

Direct follow-ups to this work consist in switch-
ing to a neural scoring model to improve the rep-
resentations of D and S and alleviate the local-
ity issues in feature extraction (Kiperwasser and
Goldberg, 2016; Cross and Huang, 2016).
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Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
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A Supplemental Material

Action Conditions

SHIFT B is not empty.
The last action is not GAP.

GAP S has at least 2 elements.
If d0 is a temporary symbol, there must be
at least one non temporary symbol in S1:.

RU(X) The last action is SHIFT.
X is an axiom iff this is a one-word sentence.

R(R|L)(X) S is not empty.
X is an axiom iff B is empty, and S
and D both have exactly one element.
If X is a temporary symbol and if B is empty,
there must be a non-temporary symbol in either
S1: or D1:.

RR(X) s0 is not a temporary symbol.

RL(X) d0 is not a temporary symbol.

IDLE The configuration must be final, i.e.
S and B are empty and the only element
of S is the axiom.

Table 7: List of all constraints on actions for the
SR-GAP transition system. The notation S1: is
used to denote the elements of S without the first
one.

A.1 Longest Derivation Computation
This section details the computation of the longest
possible derivations for a sentence of length n.
For the sake of simplicity, we ignore unary con-
stituents.
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Number or index of sentences

NEGRA-30 train/dev/test 14669/1833/1833
NEGRA-ALL train/test/dev 18602/1000/1000
TIGERM15 train/dev/test 40468/5000/5000

TIGERHN08 train/dev i (mod 10) > 1/i ≡ 1 (mod 10)
TIGERHN08 train/test i 6≡ 0 (mod 10)/i ≡ 0 (mod 10)

Table 8: Details on the standard splits.

SR-GAP There are n shifts and n − 1 binary re-
ductions in a derivation. The longest derivation
maximises the number of gap actions, by perform-
ing as many gap actions as possible before each
binary reductions. When S contains k elements,
there are k − 1 possible consecutive gap actions.
So the longest derivation starts by n shifts, fol-
lowed by n− 2 gap actions, one binary reduction,
n−3 gap actions, one binary reduction, and so on.

Lgap(n) = n+ ((n− 2) + 1) + · · ·+ 1

= 1 + 2 + · · ·+ n

=
n(n− 1)

2

This corresponds to the tree on the left-hand
side of Figure 5.

SR-SWAP Using the oracle or Maier (2015), the
longest derivation for a sentence of length n con-
sists in maximising the number of swaps before
each reduction.9

After the first shift, the derivation performs re-
peatedly n − i shifts, n − i − 1 swaps and one
reduction, i being the number of shifted terminals
before each iteration.

Lswap(n) = 1 +
n−1∑

i=1

((n− i) + (n− i− 1) + 1)

= 1 + 2
n−1∑

i=1

(n− i)

= 1 + 2
n(n− 1)

2
= n2 − n+ 1

This corresponds to the tree on the right-hand
side of Figure 5.

9Other possible oracles (Maier and Lichte, 2016) are more
efficient on this example and could have different (and better)
worst cases.

GAP SWAP

D

C

B

A

a eb c d

B

C

D

E

a edcb

Figure 5: Example tree corresponding to the
longest derivation for a sentence of length 5 with
GAP and SWAP.
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Abstract

In this work, we investigate several neu-
ral network architectures for fine-grained
entity type classification and make three
key contributions. Despite being a natural
comparison and addition, previous work
on attentive neural architectures have not
considered hand-crafted features and we
combine these with learnt features and es-
tablish that they complement each other.
Additionally, through quantitative analysis
we establish that the attention mechanism
learns to attend over syntactic heads and
the phrase containing the mention, both of
which are known to be strong hand-crafted
features for our task. We introduce param-
eter sharing between labels through a hi-
erarchical encoding method, that in low-
dimensional projections show clear clus-
ters for each type hierarchy. Lastly, de-
spite using the same evaluation dataset,
the literature frequently compare models
trained using different data. We demon-
strate that the choice of training data has a
drastic impact on performance, which de-
creases by as much as 9.85% loose mi-
cro F1 score for a previously proposed
method. Despite this discrepancy, our
best model achieves state-of-the-art results
with 75.36% loose micro F1 score on the
well-established FIGER (GOLD) dataset
and we report the best results for models
trained using publicly available data for
the OntoNotes dataset with 64.93% loose
micro F1 score.

a	  	  	  match	  	  	  series	  	  	  	  against	  	  	  New	  	  	  	  Zealand	  	  	  	  	  	  is	  	  	  	  	  	  	  	  held	  	  	  	  	  on	  	  	  	  	  Monday	

Output	

Word	  
Embeddings	

LSTM	  
Layers	  

A9en:ons	  

Context	  Representa:on	  Men:on	  Representa:on	  

/organiza)on,	  	  /organiza)on/sports_team	

Figure 1: An illustration of the attentive en-
coder neural model predicting fine-grained seman-
tic types for the mention “New Zealand” in the ex-
pression “a match series against New Zealand is
held on Monday”.

1 Introduction

Entity type classification aims to label entity men-
tions in their context with their respective semantic
types. Information regarding entity type mentions
has proven to be valuable for several natural lan-
guage processing tasks; such as question answer-
ing (Lee et al., 2006), knowledge base popula-
tion (Carlson et al., 2010), and co-reference reso-
lution (Recasens et al., 2013). A natural extension
to traditional entity type classification has been to
divide the set of types – which may be too coarse-
grained for some applications (Sekine, 2008) –
into a larger set of fine-grained entity types (Lee
et al., 2006; Ling and Weld, 2012; Yosef et al.,
2012; Gillick et al., 2014; Del Corro et al., 2015);
for example person into actor, artist, etc.

Given the recent successes of attentive neural
∗This work was conducted during a research visit to Uni-

versity College London.
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models for information extraction (Globerson et
al., 2016; Shimaoka et al., 2016; Yang et al.,
2016), we investigate several variants of an atten-
tive neural model for the task of fine-grained entity
classification (e.g. Figure 1). This model category
uses a neural attention mechanism – which can
be likened to a soft alignment – that enables the
model to focus on informative words and phrases.
We build upon this line of research and our contri-
butions are three-fold:

1. Despite being a natural comparison and ad-
dition, previous work on attentive neural ar-
chitectures do not consider hand-crafted fea-
tures. We combine learnt and hand-crafted
features and observe that they complement
each other. Additionally, we perform ex-
tensive analysis of the attention mechanism
of our model and establish that the atten-
tion mechanism learns to attend over syn-
tactic heads and the tokens prior to and af-
ter a mention, both which are known to be
highly relevant to successfully classifying a
mention.

2. We introduce label parameter sharing using
a hierarchical encoding that improves perfor-
mance on one of our datasets and the low-
dimensional projections of the embedded la-
bels form clear coherent clusters.

3. While research on fine-grained entity type
classification has settled on using two eval-
uation datasets, a wide variety of training
datasets have been used – the impact of which
has not been established. We demonstrate
that the choice of training data has a dras-
tic impact on performance, observing per-
formance decreases by as much as 9.85%
loose Micro F1 score for a previously pro-
posed method. However, even when compar-
ing to models trained using different datasets
we report state-of-the-art results of 75.36%
loose micro F1 score on the FIGER (GOLD)
dataset.

2 Related Work

Our work primarily draws upon two strains of re-
search, fine-grained entity classification and atten-
tion mechanisms for neural models. In this section
we introduce both of these research directions.

By expanding a set of coarse-grained types into
a set of 147 fine-grained types, Lee et al. (2006)

were the first to address the task of fine-grained
entity classification. Their end goal was to use the
resulting types in a question answering system and
they developed a conditional random field model
that they trained and evaluated on a manually an-
notated Korean dataset to detect and classify en-
tity mentions. Other early work include Sekine
(2008), that emphasised the need for having ac-
cess to a large set of entity types for several NLP
applications. The work primarily discussed de-
sign issues for fine-grained set of entity types and
served as a basis for much of the future work on
fine-grained entity classification.

The first work to use distant supervision (Mintz
et al., 2009) to induce a large – but noisy – train-
ing set and manually label a significantly smaller
dataset to evaluate their fine-grained entity classi-
fication system, was Ling and Weld (2012) who
introduced both a training and evaluation dataset
FIGER (GOLD). Arguing that fine-grained sets
of types must be organised in a very fine-grained
hierarchical taxonomy, Yosef et al. (2012) in-
troduced such a taxonomy covering 505 distinct
types. This new set of types lead to improve-
ments on FIGER (GOLD), and they also demon-
strated that the fine-grained labels could be used
as features to improve coarse-grained entity type
classification performance. More recently, con-
tinuing this very fine-grained strategy, Del Corro
et al. (2015) introduced the most fine-grained en-
tity type classification system to date, covering the
more than 16, 000 types contained in the WordNet
hierarchy.

While initial work largely assumed that mention
assignments could be done independently of the
mention context, Gillick et al. (2014) introduced
the concept of context-dependent fine-grained en-
tity type classification where the types of a men-
tion is constrained to what can be deduced from its
context and introduced a new OntoNotes-derived
manually annotated evaluation dataset. In addi-
tion, they addressed the problem of label noise in-
duced by distant supervision and proposed three
label cleaning heuristics. Building upon the noise
reduction aspects of this work, Ren et al. (2016)
introduced a method to reduce label noise even
further, leading to significant performance gains
on both the evaluation dataset of Ling and Weld
(2012) and Gillick et al. (2014).

Yogatama et al. (2015) proposed to map hand-
crafted features and labels to embeddings in or-
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der to facilitate information sharing between both
related types and features. A pure feature learn-
ing approach was proposed by Dong et al. (2015).
They defined 22 types and used a two-part neural
classifier that used a recurrent neural network to
obtain a vector representation of each entity men-
tion and in its second part used a fixed-size win-
dow to capture the context of a mention. A re-
cent workshop paper (Shimaoka et al., 2016) intro-
duced an attentive neural model that unlike previ-
ous work obtained vector representations for each
mention context by composing it using a recurrent
neural network and employed an attention mecha-
nism to allow the model to focus on relevant ex-
pressions in the mention context. Although not
pointed in Shimaoka et al. (2016), the attention
mechanism used differs from previous work in that
it does not condition the attention. Rather, they
used global weights optimised to provide attention
for every fine-grained entity type classification de-
cision.

To the best of our knowledge, the first work
that utilised an attention architecture within the
context of NLP was Bahdanau et al. (2014), that
allowed a machine translation decoder to attend
over the source sentence. Doing so, they showed
that adding the attention mechanism significantly
improved their machine translation results as the
model was capable of learning to align the source
and target sentences. Moreover, in their qualitative
analysis, they concluded that the model can cor-
rectly align mutually related words and phrases.
For the set of neural models proposed by Hermann
et al. (2015), attention mechanisms are used to fo-
cus on the aspects of a document that help the
model answer a question, as well as providing a
way to qualitatively analyse the inference process.
Rocktäschel et al. (2015) demonstrated that by ap-
plying an attention mechanism to a textual entail-
ment model, they could attain state-of-the-art re-
sults, as well as analyse how the entailing sentence
would align to the entailed sentence.

Our work differs from previous work on fine-
grained entity classification in that we use the
same publicly available training data when com-
paring models. We also believe that we are the first
to consider the direct combination of hand-crafted
features and an attentive neural model.

Feature Description Example

Head Syntactic head of the mention Obama
Non-head Non-head words of the mention Barack, H.
Cluster Brown cluster for the head token 1110, . . .
Characters Character trigrams for the mention head :ob, oba, . . .
Shape Word shape of the mention phrase Aa A. Aa
Role Dependency label on the mention head subj
Context Words before and after the mention B:who, A:first
Parent The head’s lexical parent picked
Topic The LDA topic of the document LDA:13

Table 1: Hand-crafted features, based on those
of Gillick et al. (2014), used by the sparse fea-
ture and hybrid model variants in our experiments.
The features are extracted for each entity mention
and the example mention used to extract the ex-
ample features in this table is “. . . who [Barack H.
Obama] first picked . . . ”.

3 Models

In this section we describe the neural model vari-
ants used in this paper as well as a strong feature-
based baseline from the literature. We pose
fine-grained entity classification as a multi-class,
multi-label classification problem. Given a men-
tion in a sentence, the classifier predicts the types
t ∈ {1, 0}K whereK is the size of the set of types.
Across all the models, we compute a probability
yk ∈ R for each of the K types using logistic re-
gression. Variations of the models stem from the
ways of computing the input to the logistic regres-
sion.

At inference time, we enforce the assumption
that at least one type is assigned to each mention
by first assigning the type with the largest proba-
bility. We then assign any additional types based
on the condition that their corresponding probabil-
ities must be greater than a threshold of 0.5, which
was determined by tuning it using development
data.

3.1 Sparse Feature Model

For each entity mentionm, we create a binary fea-
ture indicator vector f(m) ∈ {0, 1}Df and feed
it to the logistic regression layer. The features
used are described in Table 1, which are compa-
rable to those used by Gillick et al. (2014) and
Yogatama et al. (2015). It is worth noting that
we aimed for this model to resemble the indepen-
dent classifier model in Gillick et al. (2014) so
that it constitutes as a meaningful well-established
baseline; however, there are two noteworthy dif-
ferences. Firstly, we use the more commonly used
clustering method of Brown et al. (1992), as op-
posed to Uszkoreit and Brants (2008), as Gillick
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et al. (2014) did not make the data used for their
clusters publicly available. Secondly, we learned a
set of 15 topics from the OntoNotes dataset using
the LDA (Blei et al., 2003) implementation from
the popular gensim software package,1 in contrast
to Gillick et al. (2014) that used a supervised topic
model trained using an unspecified dataset. De-
spite these differences, we argue that our set of
features is comparable and enables a fair compar-
ison given that the original implementation and
some of the data used is not publicly available.

3.2 Neural Models
The neural models from Shimaoka et al. (2016)
processes embeddings of the words of the mention
and its context; and we adopt the same formalism
when introducing these models and our variants.
First, the mention representation vm ∈ RDm×1

and context representation vc ∈ RDc×1 are com-
puted separately. Then, the concatenation of these
representations is used to compute the prediction:

y =
1

1 + exp

(
−Wy

[
vm
vc

]) (1)

Where Wy ∈ RK×(Dm+Dc) is the weight ma-
trix.

Let the words in the mention be
m1,m2, ...,m|m|. Then the representation of
the mention is computed as follows:

vm =
1

|m|

|m|∑

i=1

u(mi) (2)

Where u is a mapping from a word to an em-
bedding. This relatively simple method for com-
posing the mention representation is motivated by
it being less prone to overfitting.

Next, we describe the three methods from Shi-
maoka et al. (2016) for computing the context rep-
resentations; namely, Averaging, LSTM, and At-
tentive Encoder.

3.2.1 Averaging Encoder
Similarly to the method of computing the mention
representation, the Averaging encoder computes
the averages of the words in the left and right con-
text. Formally, let l1, ..., lC and r1, ..., rC be the
words in the left and right contexts respectively,
where C is the window size. Then, for each se-
quence of words, we compute the average of the

1http://radimrehurek.com/gensim/

corresponding word embeddings. Those two vec-
tors are then concatenated to form the representa-
tion of the context vc.

3.2.2 LSTM Encoder
For the LSTM Encoder, the left and right contexts
are encoded by an LSTM (Hochreiter and Schmid-
huber, 1997). The high-level formulation of an
LSTM can be written as:

hi, si = lstm(ui, hi−1, si−1) (3)

Where ui ∈ RDm×1 is an input embedding,
hi−1 ∈ RDh×1 is the previous output, and si−1 ∈
RDh×1 is the previous cell state.

For the left context, the LSTM is applied to the
sequence l1, ..., lC from left to right and produces
the outputs

−→
hl1, ...,

−→
hlC . For the right context, the

sequence rC , ..., r1 is processed from right to left
to produce the outputs

←−
hr1, ...,

←−
hrC . The concatena-

tion of
−→
hlC and

←−
hr1 then serves as the context repre-

sentation vc.

3.2.3 Attentive Encoder
An attention mechanism aims to encourage the
model to focus on salient local information that
is relevant for the classification decision. The at-
tention mechanism variant used in this work is
defined as follows. First, bi-directional LSTMs
(Graves, 2012) are applied for both the right and
left context. We denote the output layers of the
bi-directional LSTMs as

−→
hl1,
←−
hl1, ...,

−→
hlC ,
←−
hlC and−→

hr1,
←−
hr1, ...,

−→
hrC ,
←−
hrC .

For each output layer, a scalar value ãi ∈ R
is computed using a feed forward neural network
with the hidden layer ei ∈ RDa×1 and weight ma-
trices We ∈ RDa×2Dh and Wa ∈ R1×Da :

eli = tanh

(
We

[ −→
hli←−
hli

])
(4)

ãli = exp(Wae
l
i) (5)

Next, the scalar values are normalised such that
they sum to 1:

ali =
ãli∑C

i=1 ã
l
i + ãri

(6)

These normalised scalar values ai ∈ R are
referred to as attentions. Finally, we compute
the sum of the output layers of the bidirectional
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LSTMs, weighted by the attentions ai as the rep-
resentation of the context:

vc =

C∑

i=1

ali

[ −→
hli←−
hli

]
+ ari

[ −→
hri←−
hri

]
(7)

An illustration of the attentive encoder model
variant can be found in Figure 1.

3.3 Hybrid Models
To allow model variants to use both human back-
ground knowledge through hand-crafted features
as well as features learnt from data, we extended
the neural models to create new hybrid model
variants as follows. Let vf ∈ RDl×1 be a low-
dimensional projection of the sparse feature f(m):

vf =Wff(m) (8)

Where Wf ∈ RDl×Df is a projection matrix.
The hybrid model variants are then defined as fol-
lows:

y =
1

1 + exp


−Wy



vm
vc
vf






(9)

These models can thus draw upon learnt fea-
tures through vm and vc as well as hand-crafted
features using vf when making classification deci-
sions. While existing work on fine-grained entity
type classification have used either sparse, man-
ually designed features or dense, automatically
learnt embedding vectors, our work is the first to
propose and evaluate a model using the combina-
tion of both features.

3.4 Hierarchical Label Encoding
Since the fine-grained types tend to form a for-
est of type hierarchies (e.g. musician is a sub-
type of artist, which in turn is a subtype of
person), we investigated whether the encoding
of each label could utilise this structure to enable
parameter sharing. Concretely, we compose the
weight matrix Wy for the logistic regression layer
as the product of a learnt weight matrix Vy and a
constant sparse binary matrix S:

W T
y = VyS (10)

We encode the type hierarchy formed by the
set of types in the binary matrix S as fol-
lows. Each type is mapped to a unique col-
umn in S, where membership at each level of
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Figure 2: Hierarchical label encoding illustration.

Work W2M W2M+D W2.6M GN1 GN2

Ling and Weld (2012) X
Gillick et al. (2014) ×
Yogatama et al. (2015) ×
Ren et al. (2016) X ×
Shimaoka et al. (2016) X

Table 2: Training datasets used and its avail-
ability. W2M and W2.6M are Wikipedia-based,
+D indicates denoising, and GN1/GN2 are two
company-internal Google News datasets. The
symbols Xand × indicates publicly available and
unavailable data.

its type hierarchy is marked by a 1. For exam-
ple, if we use the set of types defined by Gillick
et al. (2014), the column for /person could
be encoded as [1, 0, . . .], /person/artist as
[1, 1, 0, . . .], and /person/artist/actor as
[1, 1, 1, 0, . . .]. This encoding scheme is illustrated
in Figure 2.

This enables us to share parameters between
labels in the same hierarchy, potentially making
learning easier for infrequent types that can now
draw upon annotations of other types in the same
hierarchy.

4 Experiments

4.1 Datasets

Despite the research community having largely
settled on using the manually annotated datasets
FIGER (GOLD) (Ling and Weld, 2012) and
OntoNotes (Gillick et al., 2014) for evalua-
tion, there is still a remarkable difference in
the data used to train models (Table 2) that
are then evaluated on the same manually anno-
tated datasets. Also worth noting is that some
data is not even publicly available, making a

1275



fair comparison between methods even more dif-
ficult. For evaluation, in our experiments we
use the two well-established manually annotated
datasets FIGER (GOLD) and OntoNotes, where
like Gillick et al. (2014), we discarded pronomi-
nal mentions, resulting in a total of 8, 963 men-
tions. For training, we use the automatically in-
duced publicly available datasets provided by Ren
et al. (2016). Ren et al. (2016) aimed to elimi-
nate label noise generated in the process of distant
supervision and we use the “raw” noisy data2 pro-
vided by them for training our models.

4.2 Pre-trained Word Embeddings

We use pre-trained word embeddings that were not
updated during training to help the model gener-
alise to words not appearing in the training set
(Rocktäschel et al., 2015). For this purpose, we
used the freely available 300-dimensional cased
word embeddings trained on 840 billion tokens
from the Common Crawl supplied by Pennington
et al. (2014). For words not present in the pre-
trained word embeddings, we use the embedding
of the “unk” token.

4.3 Evaluation Criteria

We adopt the same criteria as Ling and Weld
(2012), that is, we evaluate the model performance
by strict accuracy, loose macro, and loose micro
scores.

4.4 Hyperparameter Settings

Values for the hyperparameters were obtained
from preliminary experiments by evaluating the
model performance on the development sets. Con-
cretely, all neural and hybrid models used the same
Dm = 300-dimensional word embeddings, the
hidden-size of the LSTM was set toDh = 100, the
hidden-layer size of the attention module was set
to Da = 100, and the size of the low-dimensional
projection of the sparse features was set to Dl =
50. We used Adam (Kingma and Ba, 2014) as our
optimisation method with a learning rate of 0.001,
a mini-batch size of 1, 000, and iterated over the
training data for five epochs. As a regularizer we

2 Although Ren et al. (2016) provided both “raw” data
and code to “denoise” the data, we were unable to replicate
the performance benefits reported in their work after running
their pipeline. We have contacted them regarding this as we
would be interested in comparing the benefit of their denois-
ing algorithm for each model, but at the time of writing we
have not yet received a response.

Model Acc. Macro Micro

Hand-crafted 51.33 71.91 68.78

Averaging 46.36 71.03 65.31
Averaging + Hand-crafted 52.58 72.33 70.04

LSTM 55.60 75.15 71.73
LSTM + Hand-crafted 57.02 76.98 73.94

Attentive 54.53 74.76 71.58
Attentive + Hand-crafted 59.68 78.97 75.36

FIGER (Ling and Weld, 2012) 52.30 69.90 69.30
FIGER (Ren et al., 2016) 47.4 69.2 65.5

Table 3: Performance on FIGER (GOLD) for
models using the same W2M training data.

Model Data Acc. Macro Micro

Attentive + Hand-crafted W2M 59.68 78.97 75.36
Attentive (Shimaoka et al., 2016) W2.6M 58.97 77.96 74.94

FIGER + PLE (Ren et al., 2016) W2M+D 59.9 76.3 74.9
HYENA + PLE (Ren et al., 2016) W2M+D 54.2 69.5 68.1

K-WASABIE (Yogatama et al., 2015) GN2 n/a n/a 72.25

Table 4: Performance on FIGER (GOLD) for
models using different training data.

used dropout (Hinton et al., 2012) with probabil-
ity 0.5 applied to the mention representation and
sparse feature representation. The context win-
dow size was set to C = 10 and if the length of
a context extends beyond the sentence length, we
used a padding symbol in-place of a word. After
training, we picked the best model on the develop-
ment set as our final model and report their perfor-
mance on the test sets. Our model implementation
was done in Python using the TensorFlow (Abadi
et al., 2015) machine learning library.

4.5 Results
When presenting our results, it should be noted
that we aim to make a clear separation between re-
sults from models trained using different datasets.

4.5.1 FIGER (GOLD)
We first analyse the results on FIGER (GOLD)
(Tables 3 and 4). The performance of the baseline
model that uses the sparse hand-crafted features
is relatively close to that of the FIGER system of
Ling and Weld (2012). This is consistent with the
fact that both systems use linear classifiers, similar
sets of features, and training data of the same size
and domain.

Looking at the results of neural models, we ob-
serve a consistent pattern that adding hand-crafted
features boost performance significantly, indicat-
ing that the learnt and hand-crafted features com-
plement each other. The effects of adding the hier-
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Model Acc. Macro Micro

Hand-crafted 48.16 66.33 60.16

Averaging 46.17 65.26 58.25
Averaging + Hier 47.15 65.53 58.25
Averaging + Hand-crafted 51.57 70.61 64.24
Averaging + Hand-crafted + Hier 51.74 70.98 64.91

LSTM 49.20 66.72 60.52
LSTM + Hier 48.96 66.51 60.70
LSTM + Hand-crafted 48.58 68.54 62.89
LSTM + Hand-crafted + Hier 50.42 69.99 64.57

Attentive 50.32 67.95 61.65
Attentive + Hier 51.10 68.19 61.57
Attentive + Hand-crafted 49.54 69.04 63.55
Attentive + Hand-crafted + Hier 50.89 70.80 64.93

FIGER (Ren et al., 2016) 36.90 57.80 51.60

Table 5: Performance on OntoNotes for models
using the same W2M training data.

archical label encoding were inconsistent, some-
times increasing, sometimes decreasing perfor-
mance. We thus opted not to include them in the
results table due to space constraints and hypothe-
sise that given the size of the training data, param-
eter sharing may not yield any large performance
benefits. Among the neural models, we see that
the averaging encoder perform considerably worse
than the others. Both the LSTM and attentive en-
coder show strong results and the attentive encoder
with hand-crafted features achieves the best per-
formance among all the models we investigated.

When comparing our best model to previously
introduced models trained using different train-
ing data, we find that we achieve state-of-the-art
results both in terms of loose macro and micro
scores. The closest competitor, FIGER + PLE (Ren
et al., 2016), achieves higher accuracy at the ex-
pense of lower F1 scores, we suspect that this is
due to an accuracy focus in their label pruning
strategy. It is worth noting that we achieve state-
of-the-art results without the need for any noise re-
duction strategies. Also, even with 600,000 fewer
training examples, our variant with hand-crafted
features of the attentive model from Shimaoka et
al. (2016) outperforms its feature-learning variant.

In regards to the impact of the choice of training
set, we observe that the model introduced in Shi-
maoka et al. (2016) drops as much as 3.36 points
of loose micro score when using a smaller dataset.
Thus casting doubts upon the comparability of re-
sults of fine-grained entity classification models
using different training data.

4.5.2 OntoNotes
Secondly, we discuss the results on OntoNotes
(Tables 5, and 6). Again, we see consistent per-

Model Data Acc. Macro Micro

Averaging + Hand-crafted + Hier W2M 51.74 70.98 64.91
Attentive + Hand-crafted + Hier W2M 50.89 70.80 64.93

FIGER + PLE (Ren et al., 2016) W2M+D 57.2 71.5 66.1
HYENA + PLE (Ren et al., 2016) W2M+D 54.6 69.2 62.5

Hand-crafted (Gillick et al., 2014) GN1 n/a n/a 70.01
K-WASABIE (Yogatama et al., 2015) GN2 n/a n/a 72.98

Table 6: Performance on OntoNotes for models
using different training data.

formance improvements when the sparse hand-
crafted features are added to the neural models.
In the absence of hand-crafted features, the aver-
aging encoder suffer relatively poor performance
and the attentive encoder achieves the best per-
formance. However, when the hand-crafted fea-
tures are added, a significant improvement oc-
curs for the averaging encoder, making the per-
formance of the three neural models much alike.
We speculate that some of the hand-crafted fea-
tures such as the dependency role and parent word
of the head noun, provide crucial information for
the task that cannot be captured by the plain av-
eraging model, but can be learnt if an attention
mechanism is present. Another speculative reason
is that because the training dataset is noisy com-
pared to FIGER (GOLD) (since FIGER (GOLD)
uses anchors to detect entities whereas OntoNotes
uses an external tool), and the size of the dataset
is small, the robustness of the simpler averaging
model becomes clearer when combined with the
hand-crafted features.

Another interesting observation can be seen
for models with the hierarchical label encoding,
where it is clear that consistent performance in-
creases occur. This can be explained by the fact
that the type ontology used in OntoNotes is more
well-formed than its FIGER counterpart. While we
do not obtain state-of-the-art performance when
considering models using different training data,
we do note that in terms of F1-score we perform
within 1 point of the state of the art. This being
achieved despite having trained our models on dif-
ferent non-proprietary noisy data.

Once again we have an opportunity to study the
impact of the choice of training data by comparing
the results of the hand-crafted features of Gillick
et al. (2014) to our own comparable set of fea-
tures. What we find is that the performance drop
is very dramatic, 9.85 points of loose micro score.
Given that the training data for the previously in-
troduced model is not publicly available, we hesi-

1277



(a)	

(b)	

Figure 3: PCA projections of the label embed-
dings learnt from the OntoNotes dataset where
subtypes share the same color as their parent type.
Sub-figure (a) uses the non-hierarchical encoding,
while sub-figure (b) uses the hierarchical encod-
ing.

tate to speculate as to exactly why this drop is so
dramatic, but similar observations have been made
for entity linking (Ling et al., 2015). This clearly
underlines how essential it is to compare models
on an equal footing using the same training data.

4.6 PCA visualisation of label embeddings
By visualising the learnt label embeddings (Fig-
ure 3) and comparing the non-hierarchical and hi-
erarchical label encodings, we can observe that the
hierarchical encoding forms clear distinct clusters.

4.7 Attention Analysis
While visualising the attention weights for specific
examples have become commonplace, it is still not
clear exactly what syntactic and semantic patterns
that are learnt by the attention mechanism. To
better understand this, we first qualitatively anal-
ysed a large set of attention visualisations and ob-
served that head words and the words contained
in the phrase forming the mention tended to re-
ceive the highest level of attention. In order to
quantify this notion, we calculated how frequently
the word strongest attended over for all mentions
of a specific type was the syntactic head or the
words before and after the mention in its phrase.
What we found through our analysis (Table 7) was
that our attentive model without hand-crafted fea-
tures does indeed learn that head words and the
phrase surrounding the mention are highly indica-

Type Parent Before After Frequent Words

/location 0.319 0.228 0.070 in, at, born
/organization 0.324 0.178 0.119 at, the, by
/art/film 0.207 0.429 0.021 film, films, in
/music 0.259 0.116 0.018 album, song, single
/award 0.583 0.292 0.083 won, a, received
/event 0.310 0.188 0.089 in, during, at

Table 7: Quantitative attention analysis.

tive of the mention type, without any explicit su-
pervision. Furthermore, we believe that this in
part might explain why the performance benefit of
adding hand-crafted features was smaller for the
attentive model compared to our other two neural
variants.

5 Conclusions and Future Work

In this paper, we investigated several model vari-
ants for the task of fine-grained entity type classifi-
cation. The experiments clearly demonstrated that
the choice of training data – which until now been
ignored for our task – has a significant impact on
performance. Our best model achieved state-of-
the-art results with 75.36% loose micro F1 score
on FIGER (GOLD) despite being compared to
models trained using larger datasets and we were
able to report the best results for any model trained
using publicly available data for OntoNotes with
64.93% loose micro F1 score. The analysis of
the behaviour of the attention mechanism demon-
strated that it can successfully learn to attend over
expressions that are important for the classifica-
tion of fine-grained types. It is our hope that our
observations can inspire further research into the
limitations of what linguistic phenomena attentive
models can learn and how they can be improved.

As future work, we see the re-implementation
of more methods from the literature as a desirable
target, so that they can be evaluated after utilis-
ing the same training data. Additionally, we would
like to explore alternative hierarchical label encod-
ings that may lead to more consistent performance
benefits.

To ease the reproducability of our work,
we make our code used for the experiments
available at https://github.com/
shimaokasonse/NFGEC.
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Mrkšić, Nikola, 438
Mu, Tingting, 991
Mukherjee, Atreyee, 347
Munkhdalai, Tsendsuren, 11, 397
Murray, Iain, 1239
Muzny, Grace, 460

Naderi, Nona, 176
Nagata, Masaaki, 386
Nagata, Ryo, 1195
Navigli, Roberto, 99
Neelakantan, Arvind, 132, 613
Negri, Matteo, 525
Neubig, Graham, 937, 1053, 1249
Neumann, Guenter, 505
Nguyen, Kim Anh, 76
Nguyen, Minh Le, 905
Nishino, Masaaki, 386
Nowson, Scott, 754
Nozza, Debora, 273

Padmakumar, Aishwarya, 547
Palmer, Martha, 558
Palshikar, Girish, 818
Panchenko, Alexander, 86, 590
Patel, Raj Nath, 1074
Patti, Viviana, 262
Pawar, Sachin, 818
Pelemans, Joris, 417
Peng, Baolin, 450
Peng, Xiaochang, 366
Perez, Julien, 1, 305, 754
Pérez-Rosas, Verónica, 1128
Pivovarova, Lidia, 1096
Plank, Barbara, 44, 230

Ponzetto, Simone Paolo, 86, 590
Poon, Hoifung, 1171
Popescu-Belis, Andrei, 948
Prabhakaran, Vinodkumar, 176
Procter, Rob, 483
Pu, Xiao, 948
Puduppully, Ratish, 643

Quirk, Chris, 1171
Quiros, Antonio, 1014

Rabinovich, Ella, 1074
Radford, Will, 633
Raganato, Alessandro, 99
Raghu, Dinesh, 376
Ralaivola, Liva, 775
Reddy, Sathish, 376
Reganti, Aishwarya N., 731
Resnicow, Kenneth, 1128
Riedel, Sebastian, 1271
Rojas Barahona, Lina M., 438
Ruppert, Eugen, 86
Rutherford, Attapol, 281

Saha, Amrita, 251
Saha, Sriparna, 1159
Sánchez-Cartagena, Víctor M., 1063
Santus, Enrico, 65
Sarabi, Zahra, 860
Sato, Motoki, 991
Satta, Giorgio, 536
Scheutz, Matthias, 347
Schlangen, David, 326
Schlechtweg, Dominik, 65
Schlichtkrull, Michael, 220
Schuller, Björn, 1023
Schulte im Walde, Sabine, 76
Schütze, Hinrich, 22, 514, 578, 699, 785, 1183
Schwenk, Holger, 1107
Segura-Bedmar, Isabel, 1014
Seltzer, Michael, 450
Sennrich, Rico, 881
Søgaard, Anders, 220, 230, 292, 765
Shimaoka, Sonse, 1271
Shoemark, Philippa, 1239
Shrimpton, Luke, 1239
Shrivastava, Manish, 643
Shroff, Gautam, 850
Shulby, Christopher, 315
Shwartz, Vered, 65
Silva de Carvalho, Danilo, 905
Simkó, Katalin, 356



Singh, Satinder, 1128
Slonim, Noam, 251
Smith, Noah A., 1249
Sofroniev, Pavel, 1205
Solorio, Thamar, 1217
Specia, Lucia, 1074
Stab, Christian, 980
Stamatatos, Efstathios, 1138
Stanovsky, Gabriel, 142
Stein, Benno, 176, 1117
Stenetorp, Pontus, 1271
Strube, Michael, 828
Su, Pei-Hao, 438
Sun, Changzhi, 1033
Sun, Shiliang, 1033
Sur, Debnil, 1239
Suzuki, Jun, 386
Szántó, Zsolt, 356

Takamura, Hiroya, 1195
Thijm, Tim Alberdingk, 176
Thomason, Jesse, 547
Toral, Antonio, 1063
Tran, Quan Hung, 428
Tran, Tuan Dung, 408
Treviso, Marcos, 315
Tsujii, Jun’ichi, 991
Tuggener, Don, 188
Tunaoglu, Doruk, 210
Turchi, Marco, 525

Ultes, Stefan, 438
Upadhyay, Shyam, 494

van Cranenburgh, Andreas, 1228
van Genabith, Josef, 505
Van hamme, Hugo, 417
Vandyke, David, 438
Verga, Patrick, 613
Verwimp, Lyan, 417
Vig, Lovekesh, 850
Vincze, Veronika, 356
Vu, Ngoc Thang, 76
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