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Abstract

Using a recent convex formulation of IBM
Model 2, we propose a new initialization
scheme which has some favorable compar-
isons to the standard method of initializing
IBM Model 2 with IBM Model 1. Addition-
ally, we derive the Viterbi alignment for the
convex relaxation of IBM Model 2 and show
that it leads to better F-Measure scores than
those of IBM Model 2.

1 Introduction

The IBM translation models are widely used in
modern statistical translation systems. Unfortu-
nately, apart from Model 1, the IBM models lead
to non-convex objective functions, leading to meth-
ods (such as EM) which are not guaranteed to reach
the global maximum of the log-likelihood function.
In a recent paper, Simion et al. introduced a con-
vex relaxation of IBM Model 2, I2CR-2, and showed
that it has performance on par with the standard IBM
Model 2 (Simion et al., 2013).

In this paper we make the following contributions:

• We explore some applications of I2CR-2. In
particular, we show how this model can be
used to seed IBM Model 2 and compare the
speed/performance gains of our initialization
under various settings. We show that initializ-
ing IBM Model 2 with a version of I2CR-2 that
uses large batch size yields a method that has
similar run time to IBM Model 1 initialization
and at times has better performance.

• We derive the Viterbi alignment for I2CR-2 and
compare it directly with that of IBM Model
2. Previously, Simion et al. (2013) had com-
pared IBM Model 2 and I2CR-2 by using IBM
Model 2’s Viterbi alignment rule, which is not
necessarily the optimal alignment for I2CR-2.

We show that by comparing I2CR-2 with IBM
Model 2 by using each model’s optimal Viterbi
alignment the convex model consistently has a
higher F-Measure. F-Measure is an important
metric because it has been shown to be corre-
lated with BLEU scores (Marcu et al., 2006).

Notation. We adopt the notation introduced in
(Och and Ney, 2003) of having 1m2n denote the
training scheme of m IBM Model 1 EM iterations
followed by initializing Model 2 with these parame-
ters and running n IBM Model 2 EM iterations. The
notation EGm

B 2n means that we run m iterations of
I2CR-2’s EG algorithm (Simion et al., 2013) with
batch size of B, initialize IBM Model 2 with I2CR-
2’s parameters, and then run n iterations of Model
2’s EM.

2 The IBM Model 1 and 2 Optimization
Problems

In this section we give a brief review of IBM Mod-
els 1 and 2 and the convex relaxation of Model 2,
I2CR-2 (Simion et al., 2013). The standard ap-
proach in training parameters for Models 1 and 2 is
EM, whereas for I2CR-2 an exponentiated-gradient
(EG) algorithm was developed (Simion et al., 2013).

We assume that our set of training examples is
(e(k), f (k)) for k = 1 . . . n, where e(k) is the k’th
English sentence and f (k) is the k’th French sen-
tence. The k’th English sentence is a sequence of
words e(k)

1 . . . e
(k)
lk

where lk is the length of the k’th

English sentence, and each e
(k)
i ∈ E; similarly

the k’th French sentence is a sequence f (k)
1 . . . f

(k)
mk

where each f (k)
j ∈ F . We define e(k)

0 for k = 1 . . . n
to be a special NULL word (note that E contains the
NULL word). IBM Model 2 is detailed in several
sources such as (Simion et al., 2013) and (Koehn,
2004).

The convex and non-convex objectives of respec-
tively IBM Model 1 and 2 can be found in (Simion
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et al., 2013). For I2CR-2, the convex relaxation of
IBM Model 2, the objective is given by

1
2n

n∑
k=1

mk∑
j=1

log′
lk∑

i=0

t(f (k)
j |e(k)

i )
(L+ 1)

+
1
2n

n∑
k=1

mk∑
j=1

log′
lk∑

i=0

min{t(f (k)
j |e(k)

i ), d(i|j)} .

For smoothness reasons, Simion et al. (2013) de-
fined log′(z) = log(z + λ) where λ = .001 is a
small positive constant. The I2CR-2 objective is a
convex combination of the convex IBM Model 1 ob-
jective and a direct (convex) relaxation of the IBM2
Model 2 objective, and hence is itself convex.

3 The Viterbi Alignment for I2CR-2

Alignment models have been compared using meth-
ods other than Viterbi comparisons; for example,
Simion et al. (2013) use IBM Model 2’s optimal
rule given by (see below) Eq. 2 to compare mod-
els while Liang et al. (2006) use posterior de-
coding. Here, we derive and use I2CR-2’s Viterbi
alignment. To get the Viterbi alignment of a pair
(e(k), f (k)) using I2CR-2 we need to find a(k) =
(a(k)

1 , . . . , a
(k)
mk) which yields the highest probability

p(f (k), a(k)|e(k)).Referring to the I2CR-2 objective,
this corresponds to finding a(k) that maximizes

log
∏mk

j=1 t(f
(k)
j |e(k)

a
(k)
j

)

2

+
log

∏mk

j=1 min {t(f (k)
j |e(k)

a
(k)
j

), d(a(k)
j |j)}

2
.

Putting the above terms together and using the
monotonicity of the logarithm, the above reduces to
finding the vector a(k) which maximizes

mk∏
j=1

t(f (k)
j |e(k)

a
(k)
j

) min {t(f (k)
j |e(k)

a
(k)
j

), d(a(k)
j |j)}.

As with IBM Models 1 and 2, we can find the vector
a(k) by splitting the maximization over the compo-
nents of a(k) and focusing on finding a(k)

j given by

argmaxa(t(f (k)
j |e(k)

a ) min {t(f (k)
j |e(k)

a ), d(a|j)}) . (1)

In previous experiments, Simion et al. (Simion et
al., 2013) were comparing I2CR-2 and IBM Model
2 using the standard alignment formula derived in a
similar fashion from IBM Model 2:

a
(k)
j = argmaxa(t(f (k)

j |e(k)
a )d(a|j)) . (2)

4 Experiments

In this section we describe experiments using the
I2CR-2 optimization problem combined with the
stochastic EG algorithm (Simion et al., 2013) for pa-
rameter estimation. The experiments conducted here
use a similar setup to those in (Simion et al., 2013).
We first describe the data we use, and then describe
the experiments we ran.

4.1 Data Sets

We use data from the bilingual word alignment
workshop held at HLT-NAACL 2003 (Michalcea
and Pederson, 2003). We use the Canadian Hansards
bilingual corpus, with 247,878 English-French sen-
tence pairs as training data, 37 sentences of devel-
opment data, and 447 sentences of test data (note
that we use a randomly chosen subset of the orig-
inal training set of 1.1 million sentences, similar to
the setting used in (Moore, 2004)). The development
and test data have been manually aligned at the word
level, annotating alignments between source and tar-
get words in the corpus as either “sure” (S) or “pos-
sible” (P ) alignments, as described in (Och and Ney,
2003).

As a second data set, we used the Romanian-
English data from the HLT-NAACL 2003 workshop
consisting of a training set of 48,706 Romanian-
English sentence-pairs, a development set of 17 sen-
tence pairs, and a test set of 248 sentence pairs.

We carried out our analysis on this data set as
well, but because of space we only report the de-
tails on the Hansards data set. The results on the
Romanian data were similar, but the magnitude of
improvement was smaller.

4.2 Methodology

Our experiments make use of either standard train-
ing or intersection training (Och and Ney, 2003).
For standard training, we run a model in the source-
target direction and then derive the alignments on
the test or development data. For each of the
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Training 210 15210 EG1
125210 EG1

1250210

Iteration Objective
0 -224.0919 -144.2978 -91.2418 -101.2250
1 -110.6285 -85.6757 -83.3255 -85.5847
2 -91.7091 -82.5312 -81.3845 -82.1499
3 -84.8166 -81.3380 -80.6120 -80.9610
4 -82.0957 -80.7305 -80.2319 -80.4041
5 -80.9103 -80.3798 -80.0173 -80-1009
6 -80.3620 -80.1585 -79.8830 -79.9196
7 -80.0858 -80.0080 -79.7911 -79.8048
8 -79.9294 -79.9015 -79.7247 -79.7284
9 -79.8319 -79.8240 -79.6764 -79.6751

10 -79.7670 -79.7659 -79.6403 -79.6354

Table 1: Objective results for the English→ French IBM
Model 2 seeded with either uniform parameters, IBM
Model 1 ran for 5 EM iterations, or I2CR-2 ran for 1 iter-
ation with either B = 125 or 1250. Iteration 0 denotes the
starting IBM 2 objective depending on the initialization.

models—IBM Model 1, IBM Model 2, and I2CR-
2— we apply the conventional methodology to in-
tersect alignments: first, we estimate the t and d
parameters using models in both source-target and
target-source directions; second, we find the most
likely alignment for each development or test data
sentence in each direction; third, we take the in-
tersection of the two alignments as the final output
from the model. For the I2CR-2 EG (Simion et al.,
2013) training, we use batch sizes of eitherB = 125
or B = 1250 and a step size of γ = 0.5 throughout.

We measure the performance of the models in
terms of Precision, Recall, F-Measure, and AER us-
ing only sure alignments in the definitions of the first
three metrics and sure and possible alignments in the
definition of AER, as in (Simion et al., 2013) and
(Marcu et al., 2006). For our experiments, we report
results in both AER (lower is better) and F-Measure
(higher is better).

4.3 Initialization and Timing Experiments

We first report the summary statistics on the test set
using a model trained only in the English-French di-
rection. In these experiments we seeded IBM Model
2’s parameters either with those of IBM Model 1 run
for 5, 10 or 15 EM iterations or I2CR-2 run for 1 it-
eration of EG with a batch size of either B = 125 or
1250. For uniform comparison, all of our implemen-
tations were written in C++ using STL/Boost con-
tainers.

There are several takeaways from our experi-
ments, which are presented in Table 2. We first note
that with B = 1250 we get higher F-Measure and

lower AER even though we use less training time: 5
iterations of IBM Model 1 EM training takes about
3.3 minutes, which is about the time it takes for 1 it-
eration of EG with a batch size of 125 (4.1 minutes);
on the other hand, using B = 1250 takes EG 1.7
minutes and produces the best results across almost
all iterations. Additionally, we note that the initial
solution given to IBM Model 2 by running I2CR-2
for 1 iteration with B = 1250 is fairly strong and
allows for further progress: IBM2 EM training im-
proves upon this solution during the first few iter-
ations. We also note that this behavior is global:
no IBM 1 initialization scheme produced subsequent
solutions for IBM 2 with as low in AER or high in
F-Measure. Finally, comparing Table 1 which lists
objective values with Table 2 which lists alignment
statistics, we see that although the objective progres-
sion is similar throughout, the alignment quality is
different.

To complement the above, we also ran inter-
section experiments. Seeding IBM Model 2 by
Model 1 and intersecting the alignments produced
by the English-French and French-English models
gave both AER and F-Measure which were better
than those that we obtained by any seeding of IBM
Model 2 with I2CR-2. However, there are still rea-
sons why I2CR-2 would be useful in this context. In
particular, we note that I2CR-2 takes roughly half
the time to progress to a better solution than IBM
Model 1 run for 5 EM iterations. Second, a possible
remedy to the above loss in marginal improvement
when taking intersections would be to use a more re-
fined method for obtaining the joint alignment of the
English-French and French-English models, such as
”grow-diagonal” (Och and Ney, 2003).

4.4 Viterbi Comparisons

For the decoding experiments, we used IBM Model
1 as a seed to Model 2. To train IBM Model 1, we
follow (Moore, 2004) and (Och and Ney, 2003) in
running EM for 5, 10 or 15 iterations. For the EG al-
gorithm, we initialize all parameters uniformly and
use 10 iterations of EG with a batch size of 125.
Given the lack of development data for the align-
ment data sets, for both IBM Model 2 and the I2CR-
2 method, we report test set F-Measure and AER re-
sults for each of the 10 iterations, rather than picking
the results from a single iteration.
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Training 210 15210 110210 115210 EG1
125210 EG1

1250210

Iteration AER
0 0.8713 0.3175 0.3177 0.3160 0.2329 0.2662
1 0.4491 0.2547 0.2507 0.2475 0.2351 0.2259
2 0.2938 0.2428 0.2399 0.2378 0.2321 0.2180
3 0.2593 0.2351 0.2338 0.2341 0.2309 0.2176
4 0.2464 0.2298 0.2305 0.2310 0.2283 0.2168
5 0.2383 0.2293 0.2299 0.2290 0.2268 0.2188
6 0.2350 0.2273 0.2285 0.2289 0.2274 0.2205
7 0.2320 0.2271 0.2265 0.2286 0.2274 0.2213
8 0.2393 0.2261 0.2251 0.2276 0.2278 0.2223
9 0.2293 0.2253 0.2246 0.2258 0.2284 0.2217
10 0.2288 0.2248 0.2249 0.2246 0.2275 0.2223

Iteration F-Measure
0 0.0427 0.5500 0.5468 0.5471 0.6072 0.5977
1 0.4088 0.5846 0.5876 0.5914 0.6005 0.6220
2 0.5480 0.5892 0.5916 0.5938 0.5981 0.6215
3 0.5750 0.5920 0.5938 0.5947 0.5960 0.6165
4 0.5814 0.5934 0.5839 0.5952 0.5955 0.6129
5 0.5860 0.5930 0.5933 0.5947 0.5945 0.6080
6 0.5873 0.5939 0.5936 0.5940 0.5924 0.6051
7 0.5884 0.5931 0.5955 0.5941 0.5913 0.6024
8 0.5899 0.5932 0.5961 0.5942 0.5906 0.6000
9 0.5899 0.5933 0.5961 0.5958 0.5906 0.5996
10 0.5897 0.5936 0.5954 0.5966 0.5910 0.5986

Table 2: Results on the Hansards data for English →
French IBM Model 2 seeded using different methods.
The first three columns are for a model seeded with IBM
Model 1 ran for 5, 10 or 15 EM iterations. The fourth
and fifth columns show results when we seed with I2CR-
2 ran for 1 iteration either withB = 125 or 1250. Iteration
0 denotes the starting statistics.

Training 15210 110210 115210 EG10
125 EG10

125

Viterbi Rule t× d t× d t× d t× d t×min{t× d}
Iteration AER

0 0.2141 0.2159 0.2146 0.9273 0.9273
1 0.1609 0.1566 0.1513 0.1530 0.1551
2 0.1531 0.1507 0.1493 0.1479 0.1463
3 0.1477 0.1471 0.1470 0.1473 0.1465
4 0.1458 0.1444 0.1449 0.1510 0.1482
5 0.1455 0.1438 0.1435 0.1501 0.1482
6 0.1436 0.1444 0.1429 0.1495 0.1481
7 0.1436 0.1426 0.1435 0.1494 0.1468
8 0.1449 0.1427 0.1437 0.1508 0.1489
9 0.1454 0.1426 0.1430 0.1509 0.1481
10 0.1451 0.1430 0.1423 0.1530 0.1484

Iteration F-Measure
0 0.7043 0.7012 0.7021 0.0482 0.0482
1 0.7424 0.7477 0.7534 0.7395 0.7507
2 0.7468 0.7499 0.7514 0.7448 0.7583
3 0.7489 0.7514 0.7520 0.7455 0.7585
4 0.7501 0.7520 0.7516 0.7418 0.7560
5 0.7495 0.7513 0.7522 0.7444 0.7567
6 0.7501 0.7501 0.7517 0.7452 0.7574
7 0.7493 0.7517 0.7507 0.7452 0.7580
8 0.7480 0.7520 0.7504 0.7452 0.7563
9 0.7473 0.7511 0.7513 0.7450 0.7590
10 0.7474 0.7505 0.7520 0.7430 0.7568

Table 3: Intersected results on the English-French data
for IBM Model 2 and I2CR-2 using either IBM Model 1
trained to 5, 10, or 15 EM iterations to seed IBM2 and us-
ing either the IBM2 or I2CR-2 Viterbi formula for I2CR-
2.

In Table 3 we report F-Measure and AER results
for each of the iterations under IBM Model 2 and
I2CR-2 models using either the Model 2 Viterbi rule
of Eq. 2 or I2CR-2’s Viterbi rule in Eq. 1. We
note that unlike in the previous experiments pre-
sented in (Simion et al., 2013), we are directly test-
ing the quality of the alignments produced by I2CR-
2 and IBM Model 2 since we are getting the Viterbi
alignment for each model (for completeness, we also
have included in the fourth column the Viterbi align-
ments we get by using the IBM Model 2 Viterbi for-
mula with the I2CR-2 parameters as Simion et al.
(2013) had done previously). For these experiments
we report intersection statistics. Under its proper
decoding formula, I2CR-2 model yields a higher F-
Measure than any setting of IBM Model 2. Since
AER and BLEU correlation is arguably known to be
weak while F-Measure is at times strongly related
with BLEU (Marcu et al., 2006), the above results
favor the convex model.

We close this section by pointing out that the main
difference between the IBM Model 2 Viterbi rule of
Eq. 2 and the I2CR-2 Viterbi rule in Eq. 1 is that
the Eq. 1 yield fewer alignments when doing inter-
section training. Even though there are fewer align-
ments produced, the quality in terms of F-Measure
is better.

5 Conclusions and Future Work

In this paper we have explored some of the details of
a convex formulation of IBM Model 2 and showed
it may have an application either as a new initial-
ization technique for IBM Model 2 or as a model
in its own right, especially if the F-Measure is the
target metric. Other possible topics of interest in-
clude performing efficient sensitivity analysis on the
I2CR-2 model, analyzing the balance between the
IBM Model 1 and I2CR-1 (Simion et al., 2013) com-
ponents of the I2CR-2 objective, studying I2CR-
2’s intersection training performance using methods
such as ”grow diagonal” or ”agreement” (Liang et
al., 2006), and integrating it into the GIZA++ open
source library so we can see how much it affects the
downstream system.
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