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Abstract

In natural language processing (NLP) an-
notation projects, we use inter-annotator
agreement measures and annotation guide-
lines to ensure consistent annotations.
However, annotation guidelines often
make linguistically debatable and even
somewhat arbitrary decisions, and inter-
annotator agreement is often less than
perfect. While annotation projects usu-
ally specify how to deal with linguisti-
cally debatable phenomena, annotator dis-
agreements typically still stem from these
“hard” cases. This indicates that some er-
rors are more debatable than others. In this
paper, we use small samples of doubly-
annotated part-of-speech (POS) data for
Twitter to estimate annotation reliability
and show how those metrics of likely inter-
annotator agreement can be implemented
in the loss functions of POS taggers. We
find that these cost-sensitive algorithms
perform better across annotation projects
and, more surprisingly, even on data an-
notated according to the same guidelines.
Finally, we show that POS tagging mod-
els sensitive to inter-annotator agreement
perform better on the downstream task of
chunking.

1 Introduction

POS-annotated corpora and treebanks are collec-
tions of sentences analyzed by linguists accord-
ing to some linguistic theory. The specific choice
of linguistic theory has dramatic effects on down-
stream performance in NLP tasks that rely on syn-
tactic features (Elming et al., 2013). Variation
across annotated corpora in linguistic theory also
poses challenges to intrinsic evaluation (Schwartz
et al., 2011; Tsarfaty et al., 2012), as well as

for languages where available resources are mu-
tually inconsistent (Johansson, 2013). Unfortu-
nately, there is no grand unifying linguistic the-
ory of how to analyze the structure of sentences.
While linguists agree on certain things, there is
still a wide range of unresolved questions. Con-
sider the following sentence:

(1) @GaryMurphyDCU of @DemMattersIRL
will take part in a panel discussion on Octo-
ber 10th re the aftermath of #seanref . . .

While linguists will agree that in is a preposi-
tion, and panel discussion a compound noun, they
are likely to disagree whether will is heading the
main verb take or vice versa. Even at a more basic
level of analysis, it is not completely clear how to
assign POS tags to each word in this sentence: is
part a particle or a noun; is 10th a numeral or a
noun?

Some linguistic controversies may be resolved
by changing the vocabulary of linguistic theory,
e.g., by leaving out numerals or introducing ad
hoc parts of speech, e.g. for English to (Marcus
et al., 1993) or words ending in -ing (Manning,
2011). However, standardized label sets have
practical advantages in NLP (Zeman and Resnik,
2008; Zeman, 2010; Das and Petrov, 2011; Petrov
et al., 2012; McDonald et al., 2013).

For these and other reasons, our annotators
(even when they are trained linguists) often dis-
agree on how to analyze sentences. The strategy
in most previous work in NLP has been to monitor
and later resolve disagreements, so that the final
labels are assumed to be reliable when used as in-
put to machine learning models.

Our approach

Instead of glossing over those annotation disagree-
ments, we consider what happens if we embrace
the uncertainty exhibited by human annotators
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when learning predictive models from the anno-
tated data.

To achieve this, we incorporate the uncertainty
exhibited by annotators in the training of our
model. We measure inter-annotator agreement on
small samples of data, then incorporate this in the
loss function of a structured learner to reflect the
confidence we can put in the annotations. This
provides us with cost-sensitive online learning al-
gorithms for inducing models from annotated data
that take inter-annotator agreement into consider-
ation.

Specifically, we use online structured percep-
tron with drop-out, which has previously been ap-
plied to POS tagging and is known to be robust
across samples and domains (Søgaard, 2013a). We
incorporate the inter-annotator agreement in the
loss function either as inter-annotator F1-scores
or as the confusion probability between annota-
tors (see Section 3 below for a more detailed de-
scription). We use a small amounts of doubly-
annotated Twitter data to estimate F1-scores and
confusion probabilities, and incorporate them dur-
ing training via a modified loss function. Specif-
ically, we use POS annotations made by two an-
notators on a set of 500 newly sampled tweets
to estimate our agreement scores, and train mod-
els on existing Twitter data sets (described be-
low). We evaluate the effect of our modified
training by measuring intrinsic as well as down-
stream performance of the resulting models on two
tasks, namely named entity recognition (NER) and
chunking, which both use POS tags as input fea-
tures.

2 POS-annotated Twitter data sets

The vast majority of POS-annotated resources
across languages contain mostly newswire text.
Some annotated Twitter data sets do exist for En-
glish. Ritter et al. (2011) present a manually an-
notated data set of 16 thousand tokens. They
do not report inter-annotator agreement. Gimpel
et al. (2011) annotated about 26 thousand tokens
and report a raw agreement of 92%. Foster et
al. (2011) annotated smaller portions of data for
cross-domain evaluation purposes. We refer to the
data as RITTER, GIMPEL and FOSTER below.

In our experiments, we use the RITTER splits
provided by Derczynski et al. (2013), and the
October splits of the GIMPEL data set, version
0.3. We train our models on the concatenation of

RITTER-TRAIN and GIMPEL-TRAIN and evaluate
them on the remaining data, the dev and test set
provided by Foster et al. (2011) as well as an in-
house annotated data set of 3k tokens (see below).

The three annotation efforts (Ritter et al., 2011;
Gimpel et al., 2011; Foster et al., 2011) all used
different tagsets, however, and they also differ in
tokenization, as well as a wide range of linguistic
decisions. We mapped all the three corpora to the
universal tagset provided by Petrov et al. (2012)
and used the same dummy symbols for numbers,
URLs, etc., in all the data sets. Following (Fos-
ter et al., 2011), we consider URLs, usernames
and hashtags as NOUN. We did not change the tok-
enization.

The data sets differ in how they analyze many of
the linguistically hard cases. Consider, for exam-
ple, the analysis of will you come out to in GIM-
PEL and RITTER (Figure 1, top). While Gimpel
et al. (2011) tag out and to as adpositions, Ritter
et al. (2011) consider them particles. What is the
right analysis depends on the compositionality of
the construction and the linguistic theory one sub-
scribes to.

Other differences include the analysis of abbre-
viations (PRT in GIMPEL; X in RITTER and FOS-
TER), colon (X in GIMPEL; punctuation in RIT-
TER and FOSTER), and emoticons, which can take
multiple parts of speech in GIMPEL, but are al-
ways X in RITTER, while they are absent in FOS-
TER. GIMPEL-TRAIN and RITTER-TRAIN are
also internally inconsistent. See the bottom of Fig-
ure 1 for examples and Hovy et al. (2014) for a
more detailed discussion on differences between
the data sets.

Since the mapping to universal tags could
potentially introduce errors, we also annotated
a data set directly using universal tags. We
randomly selected 200 tweets collected over the
span of one day, and had three annotators tag
this set. We split the data in such a way that
each annotator had 100 tweets: two annotators
had disjoint sets, the third overlapped 50 items
with each of the two others. In this way, we
obtained an initial set of 100 doubly-annotated
tweets. The annotators were not provided with
annotation guidelines. After the first round of
annotations, we achieved a raw agreement of
0.9, a Cohen’s κ of 0.87, and a Krippendorff’s
α of 0.87. We did one pass over the data to
adjudicate the cases where annotators disagreed,
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. . .
will you come out to the

. . .GIMPEL VERB PRON VERB ADP ADP DET
RITTER VERB PRON VERB PRT PRT DET

RITTER

. . .
you/PRON come/VERB out/PRT to/PRT

. . .
it/PRON comes/VERB out/ADP nov/NOUN

GIMPEL

. . .
Advances/NOUN and/CONJ Social/NOUN Media/NOUN .../X

. . .
Journalists/NOUN and/CONJ Social/ADJ Media/NOUN experts/NOUN

Figure 1: Annotation differences between (top) and within (bottom) two available Twitter POS data sets.

or where they had flagged their choice as debat-
able. The final data set (lowlands.test),
referred below to as INHOUSE, contained 3,064
tokens (200 tweets) and is publicly available
at http://bitbucket.org/lowlands/
costsensitive-data/, along with the data
used to compute inter-annotator agreement scores
for learning cost-sensitive taggers, described in
the next section.

3 Computing agreement scores

Gimpel et al. (2011) used 72 doubly-annotated
tweets to estimate inter-annotator agreement, and
we also use doubly-annotated data to compute
agreement scores. We randomly sampled 500
tweets for this purpose. Each tweet was anno-
tated by two annotators, again using the univer-
sal tag set (Petrov et al., 2012). All annotators
were encouraged to use their own best judgment
rather than following guidelines or discussing dif-
ficult cases with each other. This is in contrast to
Gimpel et al. (2011), who used annotation guide-
lines. The average inter-annotator agreement was
0.88 for raw agreement, and 0.84 for Cohen’s κ.
Gimpel et al. (2011) report a raw agreement of
0.92.

We use two metrics to provide a more detailed
picture of inter-annotator agreement, namely
F1-scores between annotators on individual parts
of speech, and tag confusion probabilities, which
we derive from confusion matrices.

The F1-score relates to precision and recall
in the usual way, i.e, as the harmonic mean
between those two measure. In more detail, given
two annotators A1 and A2, we say the precision

Figure 2: Inter-annotator F1-scores estimated
from 500 tweets.

of A1 relative to A2 with respect to POS tag T in
some data setX , denoted PrecT (A1(X), A2(X)),
is the number of tokens both A1 and A2 predict to
be T over the number of times A1 predicts a token
to be T . Similarly, we define the recall with re-
spect to some tag T , i.e., RecT (A1(X), A2(X)),
as the number of tokens both A1 and A2 predict
to be T over the number of times A2 predicts
a token to be T . The only difference with
respect to standard precision and recall is that
the gold standard is replaced by a second anno-
tator, A2. Note that PrecT (A1(X), A2(X)) =
RecT (A2(X), A1(X)). It follows from all of
the above that the F1-score is symmetrical, i.e.,
F1T (A1(X), A2(X)) = F1T (A2(X), A1(X)).

The inter-annotator F1-scores over the 12
POS tags in the universal tagset are presented in
Figure 2. It shows that there is a high agreement
for nouns, verbs and punctuation, while the agree-
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Figure 3: Confusion matrix of POS tags obtained
from 500 doubly-annotated tweets.

ment is low, for instance, for particles, numerals
and the X tag.

We compute tag confusion probabilities
from a confusion matrix over POS tags like
the one in Figure 3. From such a matrix,
we compute the probability of confusing
two tags t1 and t2 for some data point x,
i.e. P ({A1(x), A2(x)} = {t1, t2}) as the
mean of P (A1(x) = t1, A2(x) = t2) and
P (A1(x) = t2, A2(x) = t1), e.g., the confusion
probability of two tags is the mean of the prob-
ability that annotator A1 assigns one tag and A2

another, and vice versa.
We experiment with both agreement scores (F1

and confusion matrix probabilities) to augment the
loss function in our learner. The next section de-
scribes this modification in detail.

4 Inter-annotator agreement loss

We briefly introduce the cost-sensitive perceptron
classifier. Consider the weighted perceptron loss
on our ith example 〈xi, yi〉 (with learning rate α =
1), Lw(〈xi, yi〉):

γ(sign(w · xi), yi) max(0,−yiw · xi)

In a non-cost-sensitive classifier, the weight
function γ(yj , yi) = 1 for 1 ≤ i ≤ N . The

1: X = {〈xi, yi〉}Ni=1 with xi = 〈x1
i , . . . , x

m
i 〉

2: I iterations
3: w = 〈0〉m
4: for iter ∈ I do
5: for 1 ≤ i ≤ N do
6: ŷ = arg maxy∈Y w · Φ(xi, y)
7: w← w + γ(ŷ, yi)[Φ(xi, yi)−Φ(xi, ŷ)]
8: w∗+ = w
9: end for

10: end for
11: return w∗/ = (N × I)

Figure 4: Cost-sensitive structured perceptron (see
Section 3 for weight functions γ).

two cost-sensitive systems proposed only differ in
how we formulate γ(·, ·). In one model, the loss is
weighted by the inter-annotator F1 of the gold tag
in question. This boils down to

γ(yj , yi) = F1yi(A1(X), A2(X))

where X is the small sample of held-out data used
to estimate inter-annotator agreement. Note that
in this formulation, the predicted label is not taken
into consideration.

The second model is slightly more expressive
and takes both the gold and predicted tags into ac-
count. It basically weights the loss by how likely
the gold and predicted tag are to be mistaken for
each other, i.e., (the inverse of) their confusion
probability:

γ(yj , yi)) = 1−P ({A1(X), A2(X)} = {yj , yi})

In both loss functions, a lower gamma value
means that the tags are more likely to be confused
by a pair of annotators. In this case, the update is
smaller. In contrast, the learner incurs greater loss
when easy tags are confused.

It is straight-forward to extend these cost-
sensitive loss functions to the structured percep-
tron (Collins, 2002). In Figure 4, we provide the
pseudocode for the cost-sensitive structured online
learning algorithm. We refer to the cost-sensitive
structured learners as F1- and CM-weighted be-
low.

5 Experiments

In our main experiments, we use structured per-
ceptron (Collins, 2002) with random corruptions
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using a drop-out rate of 0.1 for regularization, fol-
lowing Søgaard (2013a). We use the LXMLS
toolkit implementation1 with default parameters.
We present learning curves across iterations, and
only set parameters using held-out data for our
downstream experiments.2

5.1 Results

Our results are presented in Figure 5. The top left
graph plots accuracy on the training data per iter-
ation. We see that CM-weighting does not hurt
training data accuracy. The reason may be that
the cost-sensitive learner does not try (as hard) to
optimize performance on inconsistent annotations.
The next two plots (upper mid and upper right)
show accuracy over epochs on in-sample evalua-
tion data, i.e., GIMPEL-DEV and RITTER-TEST.
Again, the CM-weighted learner performs better
than our baseline model, while the F1-weighted
learner performs much worse.

The interesting results are the evaluations on
out-of-sample evaluation data sets (FOSTER and
IN-HOUSE) - lower part of Figure 5. Here, both
our learners are competitive, but overall it is clear
that the CM-weighted learner performs best. It
consistently improves over the baseline and F1-
weighting. The former is much more expressive
as it takes confusion probabilities into account and
does not only update based on gold-label uncer-
tainty, as is the case with the F1-weighted learner.

5.2 Robustness across regularizers

Discriminative learning typically benefits from
regularization to prevent overfitting. The simplest
is the averaged perceptron, but various other meth-
ods have been suggested in the literature.

We use structured perceptron with drop-out, but
results are relatively robust across other regular-
ization methods. Drop-out works by randomly
dropping a fraction of the active features in each
iteration, thus preventing overfitting. Table 1
shows the results for using different regularizers,
in particular, Zipfian corruptions (Søgaard, 2013b)
and averaging. While there are minor differences
across data sets and regularizers, we observe that
the corresponding cell using the loss function sug-
gested in this paper (CM) always performs better
than the baseline method.

1https://github.com/gracaninja/
lxmls-toolkit/

2In this case, we use FOSTER-DEV as our development
data to avoid in-sample bias.

6 Downstream evaluation

We have seen that our POS tagging model im-
proves over the baseline model on three out-of-
sample test sets. The question remains whether
training a POS tagger that takes inter-annotator
agreement scores into consideration is also effec-
tive on downstream tasks. Therefore, we eval-
uate our best model, the CM-weighted learner,
in two downstream tasks: shallow parsing—also
known as chunking—and named entity recogni-
tion (NER).

For the downstream evaluation, we used the
baseline and CM models trained over 13 epochs,
as they performed best on FOSTER-DEV (cf. Fig-
ure 5). Thus, parameters were optimized only on
POS tagging data, not on the downstream evalu-
ation tasks. We use a publicly available imple-
mentation of conditional random fields (Lafferty
et al., 2001)3 for the chunking and NER exper-
iments, and provide the POS tags from our CM
learner as features.

6.1 Chunking

The set of features for chunking include informa-
tion from tokens and POS tags, following Sha and
Pereira (2003).

We train the chunker on Twitter data (Ritter et
al., 2011), more specifically, the 70/30 train/test
split provided by Derczynski et al. (2013) for POS
tagging, as the original authors performed cross
validation. We train on the 70% Twitter data (11k
tokens) and evaluate on the remaining 30%, as
well as on the test data from Foster et al. (2011).
The FOSTER data was originally annotated for
POS and constituency tree information. We con-
verted it to chunks using publicly available conver-
sion software.4 Part-of-speech tags are the ones
assigned by our cost-sensitive (CM) POS model
trained on Twitter data, the concatenation of Gim-
pel and 70% Ritter training data. We did not in-
clude the CoNLL 2000 training data (newswire
text), since adding it did not substantially improve
chunking performance on tweets, as also shown
in (Ritter et al., 2011).

The results for chunking are given in Ta-
ble 2. They show that using the POS tagging
model (CM) trained to be more sensitive to inter-
annotator agreement improves performance over

3http://crfpp.googlecode.com
4http://ilk.uvt.nl/team/sabine/

homepage/software.html
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Figure 5: POS accuracy for the three models: baseline, confusion matrix loss (CM) and F1-weighted
(F1) loss for increased number of training epochs. Top row: in-sample accuracy on training (left) and
in-sample evaluation datasets (center, right). Bottom row: out-of-sample accuracy on various data sets.
CM is robust on both in-sample and out-of-sample data.

RITTER-TEST

F1: All NP VP PP
BL 76.20 78.61 74.25 86.79
CM 76.42 79.07 74.98 86.19

FOSTER-TEST

F1: All NP VP PP
BL 68.49 70.73 60.56 86.50
CM 68.97 71.25 61.97 87.24

Table 2: Downstream results on chunking. Overall
F1 score (All) as well as F1 for NP, VP and PP.

the baseline (BL) for the downstream task of
chunking. Overall chunking F1 score improves.

More importantly, we report on individual scores
for NP, VP and PP chunks, where we see consis-
tent improvements for NPs and VPs (since both
nouns and verbs have high inter-annotator agree-
ment), while results on PP are mixed. This is to
be expected, since PP phrases involve adposition-
als (ADP) that are often confused with particles
(PRT), cf. Figure 3. Our tagger has been trained
to deliberately abstract away from such uncertain
cases. The results show that taking uncertainty in
POS annotations into consideration during train-
ing has a positive effect in downstream results. It
is thus better if we do not try to urge our models
to make a firm decision on phenomena that neither
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BASELINE CM
Regularizer FOSTER-DEV FOSTER-TEST IN-HOUSE FOSTER-DEV FOSTER-TEST IN-HOUSE

Averaging 0.827 0.837 0.830 0.831 0.844 0.833
Drop-out 0.827 0.838 0.827 0.836 0.843 0.833
Zipfian 0.821 0.835 0.833 0.825 0.838 0.836

Table 1: Results across regularizers (after 13 epochs).

linguistic theories nor annotators do agree upon.

6.2 NER

In the previous section, we saw positive effects of
cost-sensitive POS tagging for chunking, and here
we evaluate it on another downstream task, NER.

For the named entity recognition setup, we use
commonly used features, in particular features
for word tokens, orthographic features like the
presence of hyphens, digits, single quotes, up-
per/lowercase, 3 character prefix and suffix infor-
mation. Moreover, we add Brown word cluster
features that use 2,4,6,8,..,16 bitstring prefixes es-
timated from a large Twitter corpus (Owoputi et
al., 2013).5

For NER, we do not have access to carefully
annotated Twitter data for training, but rely on
the crowdsourced annotations described in Finin
et al. (2010). We use the concatenation of the
CoNLL 2003 training split of annotated data from
the Reuters corpus and the Finin data for training,
as in this case training on the union resulted in a
model that is substantially better than training on
any of the individual data sets. For evaluation, we
have three Twitter data set. We use the recently
published data set from the MSM 2013 challenge
(29k tokens)6, the data set of Ritter et al. (2011)
used also by Fromheide et al. (2014) (46k tokens),
as well as an in-house annotated data set (20k to-
kens) (Fromheide et al., 2014).

F1: RITTER MSM IN-HOUSE

BL 78.20 82.25 82.58
CM 78.30 82.00 82.77

Table 3: Downstream results for named entity
recognition (F1 scores).

Table 3 shows the result of using our POS mod-
els in downstream NER evaluation. Here we ob-
serve mixed results. The cost-sensitive model is

5http://www.ark.cs.cmu.edu/TweetNLP/
6http://oak.dcs.shef.ac.uk/msm2013/ie_

challenge/

able to improve performance on two out of the
three test sets, while being slightly below baseline
performance on the MSM challenge data. Note
that in contrast to chunking, POS tags are just one
of the many features used for NER (albeit an im-
portant one), which might be part of the reason
why the picture looks slightly different from what
we observed above on chunking.

7 Related work

Cost-sensitive learning takes costs, such as mis-
classification cost, into consideration. That is,
each instance that is not classified correctly during
the learning process may contribute differently to
the overall error. Geibel and Wysotzki (2003) in-
troduce instance-dependent cost values for the per-
ceptron algorithm and apply it to a set of binary
classification problems. We focus here on struc-
tured problems and propose cost-sensitive learn-
ing for POS tagging using the structured percep-
tron algorithm. In a similar spirit, Higashiyama
et al. (2013) applied cost-sensitive learning to the
structured perceptron for an entity recognition task
in the medical domain. They consider the dis-
tance between the predicted and true label se-
quence smoothed by a parameter that they esti-
mate on a development set. This means that the
entire sequence is scored at once, while we update
on a per-label basis.

The work most related to ours is the recent study
of Song et al. (2012). They suggest that some er-
rors made by a POS tagger are more serious than
others, especially for downstream tasks. They de-
vise a hierarchy of POS tags for the Penn tree-
bank tag set (e.g. the class NOUN contains NN,
NNS, NNP, NNPS and CD) and use that in an
SVM learner. They modify the Hinge loss that
can take on three values: 0, σ, 1. If an error oc-
curred and the predicted tag is in the same class as
the gold tag, a loss σ occurred, otherwise it counts
as full cost. In contrast to our approach, they let
the learner focus on the more difficult cases by oc-
curring a bigger loss when the predicted POS tag
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is in a different category. Their approach is thus
suitable for a fine-grained tagging scheme and re-
quires tuning of the cost parameter σ. We tackle
the problem from a different angle by letting the
learner abstract away from difficult, inconsistent
cases as estimated from inter-annotator scores.

Our approach is also related to the literature
on regularization, since our cost-sensitive loss
functions are aimed at preventing over-fitting to
low-confidence annotations. Søgaard (2013b;
2013a) presented two theories of linguistic varia-
tion and perceptron learning algorithms that reg-
ularize models to minimize loss under expected
variation. Our work is related, but models varia-
tions in annotation rather than variations in input.

There is a large literature related to the issue of
learning from annotator bias. Reidsma and op den
Akker (2008) show that differences between anno-
tators are not random slips of attention but rather
different biases annotators might have, i.e. differ-
ent mental conceptions. They show that a classi-
fier trained on data from one annotator performed
much better on in-sample (same annotator) data
than on data of any other annotator. They propose
two ways to address this problem: i) to identify
subsets of the data that show higher inter-annotator
agreement and use only that for training (e.g. for
speaker address identification they restrict the data
to instances where at least one person is in the
focus of attention); ii) if available, to train sepa-
rate models on data annotated by different anno-
tators and combine them through voting. The lat-
ter comes at the cost of recall, because they de-
liberately chose the classifier to abstain in non-
consensus cases.

In a similar vein, Klebanov and Beigman (2009)
divide the instance space into easy and hard cases,
i.e. easy cases are reliably annotated, whereas
items that are hard show confusion and disagree-
ment. Hard cases are assumed to be annotated
by individual annotator’s coin-flips, and thus can-
not be assumed to be uniformly distributed (Kle-
banov and Beigman, 2009). They show that learn-
ing with annotator noise can have deteriorating ef-
fect at test time, and thus propose to remove hard
cases, both at test time (Klebanov and Beigman,
2009) and training time (Beigman and Klebanov,
2009).

In general, it is important to analyze the data
and check for label biases, as a machine learner is
greatly affected by annotator noise that is not ran-

dom but systematic (Reidsma and Carletta, 2008).
However, rather than training on subsets of data or
training separate models – which all implicitly as-
sume that there is a large amount of training data
available – we propose to integrate inter-annotator
biases directly into the loss function.

Regarding measurements for agreements, sev-
eral scores have been suggested in the literature.
Apart from the simple agreement measure, which
records how often annotators choose the same
value for an item, there are several statistics that
qualify this measure by adjusting for other fac-
tors, such as Cohen’s κ (Cohen and others, 1960),
the G-index score (Holley and Guilford, 1964), or
Krippendorff’s α (Krippendorf, 2004). However,
most of these scores are sensitive to the label dis-
tribution, missing values, and other circumstances.
The measure used in this paper is less affected by
these factors, but manages to give us a good un-
derstanding of the agreement.

8 Conclusion

In NLP, we use a variety of measures to assess
and control annotator disagreement to produce ho-
mogenous final annotations. This masks the fact
that some annotations are more reliable than oth-
ers, and which is thus not reflected in learned pre-
dictors. We incorporate the annotator uncertainty
on certain labels by measuring annotator agree-
ment and use it in the modified loss function of
a structured perceptron. We show that this ap-
proach works well independent of regularization,
both on in-sample and out-of-sample data. More-
over, when evaluating the models trained with our
loss function on downstream tasks, we observe im-
provements on two different tasks. Our results
suggest that we need to pay more attention to an-
notator confidence when training predictors.
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