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Abstract
Word embeddings resulting from neural
language models have been shown to be
a great asset for a large variety of NLP
tasks. However, such architecture might
be difficult and time-consuming to train.
Instead, we propose to drastically sim-
plify the word embeddings computation
through a Hellinger PCA of the word co-
occurence matrix. We compare those new
word embeddings with some well-known
embeddings on named entity recognition
and movie review tasks and show that we
can reach similar or even better perfor-
mance. Although deep learning is not re-
ally necessary for generating good word
embeddings, we show that it can provide
an easy way to adapt embeddings to spe-
cific tasks.

1 Introduction

Building word embeddings has always generated
much interest for linguists. Popular approaches
such as Brown clustering algorithm (Brown et al.,
1992) have been used with success in a wide vari-
ety of NLP tasks (Schütze, 1995; Koo et al., 2008;
Ratinov and Roth, 2009). Those word embed-
dings are often seen as a low dimensional-vector
space where the dimensions are features poten-
tially describing syntactic or semantic properties.
Recently, distributed approaches based on neural
network language models (NNLM) have revived
the field of learning word embeddings (Collobert
and Weston, 2008; Huang and Yates, 2009; Turian
et al., 2010; Collobert et al., 2011). However, a
neural network architecture can be hard to train.
Finding the right parameters to tune the model is
often a challenging task and the training phase is
in general computationally expensive.

This paper aims to show that such good word
embeddings can be obtained using simple (mostly

linear) operations. We show that similar word
embeddings can be computed using the word co-
occurrence statistics and a well-known dimension-
ality reduction operation such as Principal Com-
ponent Analysis (PCA). We then compare our em-
beddings with the CW (Collobert and Weston,
2008), Turian (Turian et al., 2010), HLBL (Mnih
and Hinton, 2008) embeddings, which come from
deep architectures and the LR-MVL (Dhillon et
al., 2011) embeddings, which also come from a
spectral method on several NLP tasks.

We claim that, assuming an appropriate met-
ric, a simple spectral method as PCA can generate
word embeddings as good as with deep-learning
architectures. On the other hand, deep-learning
architectures have shown their potential in sev-
eral supervised NLP tasks, by using these word
embeddings. As they are usually generated over
large corpora of unlabeled data, words are repre-
sented in a generic manner. Having generic em-
beddings, good performance can be achieved on
NLP tasks where the syntactic aspect is domi-
nant such as Part-Of-Speech, chunking and NER
(Turian et al., 2010; Collobert et al., 2011; Dhillon
et al., 2011). For supervised tasks relying more
on the semantic aspect as sentiment classification,
it is usually helpful to adapt the existing embed-
dings to improve performance (Labutov and Lip-
son, 2013). We show in this paper that such em-
bedding specialization can be easily done via neu-
ral network architectures and that helps to increase
general performance.

2 Related Work

As 80% of the meaning of English text comes
from word choice and the remaining 20% comes
from word order (Landauer, 2002), it seems quite
important to leverage word order to capture all the
semantic information. Connectionist approaches
have therefore been proposed to develop dis-
tributed representations which encode the struc-
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tural relationships between words (Hinton, 1986;
Pollack, 1990; Elman, 1991). More recently, a
neural network language model was proposed in
Bengio et al. (2003) where word vector representa-
tions are simultaneously learned along with a sta-
tistical language model. This architecture inspired
other authors: Collobert and Weston (2008) de-
signed a neural language model which eliminates
the linear dependency on vocabulary size, Mnih
and Hinton (2008) proposed a hierarchical linear
neural model, Mikolov et al. (2010) investigated
a recurrent neural network architecture for lan-
guage modeling. Such architectures being trained
over large corpora of unlabeled text with the aim
to predict correct scores end up learning the co-
occurence statistics.

Linguists assumed long ago that words occur-
ring in similar contexts tend to have similar mean-
ings (Wittgenstein, 1953). Using the word co-
occurrence statistics is thus a natural choice to em-
bed similar words into a common vector space
(Turney and Pantel, 2010). Common approaches
calculate the frequencies, apply some transforma-
tions (tf-idf, PPMI), reduce the dimensionality and
calculate the similarities (Lowe, 2001). Consid-
ering a fixed-sized word vocabulary D and a set
of wordsW to embed, the co-occurence matrix C
is of size |W|×|D|. C is then vocabulary size-
dependent. One can apply a dimensionality reduc-
tion operation to C leading to C̄ ∈ R|W|×d, where
d � |D|. Dimensionality reduction techniques
such as Singular Valued Decomposition (SVD)
are widely used (e.g. LSA (Landauer and Du-
mais, 1997), ICA (Väyrynen and Honkela, 2004)).
However, word co-occurence statistics are dis-
crete distributions. An information theory mea-
sure such as the Hellinger distance seems to be
more appropriate than the Euclidean distance over
a discrete distribution space. In this paper we
will compare the Hellinger PCA against the clas-
sical Euclidean PCA and the Low Rank Multi-
View Learning (LR-MVL) method, which is an-
other spectral method based on Canonical Corre-
lation Analysis (CCA) to learn word embeddings
(Dhillon et al., 2011).

It has been shown that using word embeddings
as features helps to improve general performance
on many NLP tasks (Turian et al., 2010). How-
ever these embeddings can be too generic to per-
form well on other tasks such as sentiment clas-
sification. For such task, word embeddings must

capture the sentiment information. Maas et al.
(2011) proposed a model for jointly capturing se-
mantic and sentiment components of words into
vector spaces. More recently, Labutov and Lip-
son (2013) presented a method which takes exist-
ing embeddings and, by using some labeled data,
re-embed them in the same space. They showed
that these new embeddings can be better predic-
tors in a supervised task. In this paper, we con-
sider word embedding-based linear and non-linear
models for two NLP supervised tasks: Named En-
tity Recognition and IMDB movie review. We an-
alyze the effect of fine-tuning existing embeddings
over each task of interest.

3 Spectral Method for Word
Embeddings

A NNLM learns which words among the vocab-
ulary are likely to appear after a given sequence
of words. More formally, it learns the next word
probability distribution. Instead, simply counting
words on a large corpus of unlabeled text can be
performed to retrieve those word distributions and
to represent words (Turney and Pantel, 2010).

3.1 Word co-occurence statistics
”You shall know a word by the company it keeps”
(Firth, 1957). It is a natural choice to use the word
co-occurence statistics to acquire representations
of word meanings. Raw word co-occurence fre-
quencies are computed by counting the number of
times each context word w ∈ D occurs after a se-
quence of words T :

p(w|T ) =
p(w, T )
p(T )

=
n(w, T )∑
w n(w, T )

, (1)

where n(w, T ) is the number of times each context
word w occurs after the sequence T . The size of
T can go from 1 to t words. The next word prob-
ability distribution p for each word or sequence of
words is thus obtained. It is a multinomial dis-
tribution of |D| classes (words). A co-occurence
matrix of size N × |D| is finally built by com-
puting those frequencies over all the N possible
sequences of words.

3.2 Hellinger distance
Similarities between words can be derived by
computing a distance between their correspond-
ing word distributions. Several distances (or met-
rics) over discrete distributions exist, such as the
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Bhattacharyya distance, the Hellinger distance or
Kullback-Leibler divergence. We chose here the
Hellinger distance for its simplicity and symme-
try property (as it is a true distance). Consid-
ering two discrete probability distributions P =
(p1, . . . , pk) and Q = (q1, . . . , qk), the Hellinger
distance is formally defined as:

H(P,Q) = − 1√
2

√√√√ k∑
i=1

(
√
pi −√qi)2 , (2)

which is directly related to the Euclidean norm of
the difference of the square root vectors:

H(P,Q) =
1√
2
‖
√
P −

√
Q‖2 . (3)

Note that it makes more sense to take the Hellinger
distance rather than the Euclidean distance for
comparing discrete distributions, as P and Q are
unit vectors according to the Hellinger distance
(
√
P and

√
Q are units vector according to the `2

norm).

3.3 Dimensionality Reduction
As discrete distributions are vocabulary size-
dependent, using directly the distribution as a
word embedding is not really tractable for large
vocabulary. We propose to perform a princi-
pal component analysis (PCA) of the word co-
occurence probability matrix to represent words
in a lower dimensional space while minimizing
the reconstruction error according to the Hellinger
distance.

4 Architectures for NLP tasks

Traditional NLP approaches extract from docu-
ments a rich set of hand-designed features which
are then fed to a standard classification algorithm.
The choice of features is a task-specific empirical
process. In contrast, we want to pre-process our
features as little as possible. In that respect, a mul-
tilayer neural network architecture seems appro-
priate as it can be trained in an end-to-end fashion
on the task of interest.

4.1 Sentence-level Approach
The sentence-level approach aims at tagging with
a label each word in a given sentence. Embed-
dings of each word in a sentence are fed to linear
and non-linear classification models followed by a
CRF-type sentence tag inference. We chose here
neural networks as classifiers.

Sliding window Context is crucial to character-
ize word meanings. We thus consider n context
words around each word xt to be tagged, lead-
ing to a window of N = (2n + 1) words [x]t =
(xt−n, . . . , xt, . . . , xt+n). As each word is em-
bedded into a dwrd-dimensional vector, it results
a dwrd × N vector representing a window of N
words, which aims at characterizing the middle
word xt in this window. Given a complete sen-
tence of T words, we can obtain for each word a
context-dependent representation by sliding over
all the possible windows in the sentence. A same
linear transformation is then applied on each win-
dow for each word to tag:

g([x]t) = W [x]t + b , (4)

where W ∈ RM×dwrdN and b ∈ RM are the pa-
rameters, with M the number of classes. Alterna-
tively, a one hidden layer non-linear network can
be considered:

g([x]t) = Wh(U [x]t) + b , (5)

where U ∈ Rnhu×dwrdN , with nhu the number of
hidden units and h(.) a transfer function.

CRF-type inference There exists strong depen-
dencies between tags in a sentence: some tags
cannot follow other tags. To take the sentence
structure into account, we want to encourage valid
paths of tags during training, while discourag-
ing all other paths. Considering the matrix of
scores outputs by the network, we train a sim-
ple conditional random field (CRF). At inference
time, given a sentence to tag, the best path which
minimizes the sentence score is inferred with the
Viterbi algorithm. More formally, we denote θ
all the trainable parameters of the network and
fθ([x]T1 ) the matrix of scores. The element [fθ]i,t
of the matrix is the score output by the network for
the sentence [x]T1 and the ith tag, at the tth word.
We introduce a transition score [A]i,j for jumping
from i to j tags in successive words, and an initial
score [A]i,0 for starting from the ith tag. As the
transition scores are going to be trained, we define
θ̃ = θ∪{[A]i,j∀i, j}. The score of a sentence [x]T1
along a path of tags [i]T1 is then given by the sum
of transition scores and networks scores:

s([x]T1 , [i]
T
1 , θ̃) =

T∑
t=1

(A[i]t−1,[i]t + [fθ][i]t,t) .

(6)
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We normalize this score over all possible tag paths
[j]T1 using a softmax, and we interpret the resulting
ratio as a conditional tag path probability. Taking
the log, the conditional probability of the true path
[y]T1 is therefore given by:

log p([y]T1 , [x]T1 , θ̃) = s([x]T1 , [y]T1 , θ̃)
− logadd

∀[j]T1
s([x]T1 , [j]

T
1 , θ̃) ,

(7)

where we adopt the notation

logadd
i

zi = log (
∑
i

ezi) . (8)

Computing the log-likelihood efficiently is not
straightforward, as the number of terms in the
logadd grows exponentially with the length of
the sentence. It can be computed in linear time
with the Forward algorithm, which derives a recur-
sion similar to the Viterbi algorithm (see Rabiner
(1989)). We can thus maximize the log-likelihood
over all the training pairs ([x]T1 , [y]T1 ) to find, given
a sentence [x]T1 , the best tag path which minimizes
the sentence score (6):

argmax
[j]T1

s([x]T1 , [j]
T
1 , θ̃) . (9)

In contrast to classical CRF, all parameters θ are
trained in a end-to-end manner, by backpropa-
gation through the Forward recursion, following
Collobert et al. (2011).

4.2 Document-level Approach
The document-level approach is a document bi-
nary classifier, with classes y ∈ {−1, 1}. For each
document, a set of (trained) filters is applied to
the sliding window described in section 4.1. The
maximum value obtained by the ith filter over the
whole document is:

max
t

[
wi[x]t + bi

]
i,t

1 ≤ i ≤ nfilter . (10)

It can be seen as a way to measure if the infor-
mation represented by the filter has been captured
in the document or not. We feed all these inter-
mediate scores to a linear classifier, leading to the
following simple model:

fθ(x) = α max
t

[
W [x]t + b

]
. (11)

In the case of movie reviews, the ith filter might
capture positive or negative sentiment depending
on the sign of αi. As in section 4.1, we will also
consider a non-linear classifier in the experiments.

Training The neural network is trained using
stochastic gradient ascent. We denote θ all the
trainable parameters of the network. Using a train-
ing set T , we minimize the following soft margin
loss function with respect to θ:

θ ←
∑

(x,y)∈T
log
(

1 + e−yfθ(x)
)
. (12)

4.3 Embedding Fine-Tuning

As seen in section 3, the process to compute
generic word embedding is quite straightforward.
These embeddings can then be used as features
for supervised NLP systems and help to improve
the general performance (Turian et al., 2010; Col-
lobert et al., 2011; Chen et al., 2013). However,
most of these systems cannot tune these embed-
dings as they are not structurally able to. By lever-
aging the deep architecture of our system, we can
define a lookup-table layer initialized with exist-
ing embeddings as the first layer of the network.

Lookup-Table Layer We consider a fixed-sized
word dictionary D. Given a sequence of N words
w1, w2, . . . , wN , each word wn ∈ W is first em-
bedded into a dwrd-dimensional vector space, by
applying a lookup-table operation:

LTW (wn) =W

(
0, . . . , 1 , . . . , 0

at index wn

)
= 〈W 〉wn ,

(13)

where the matrix W ∈ Rdwrd×|D| represents
the embeddings to be tuned in this lookup layer.
〈W 〉wn ∈ Rdwrd is the wth column ofW and dwrd
is the word vector size. Given any sequence of N
words [w]N1 in D, the lookup table layer applies
the same operation for each word in the sequence,
producing the following output matrix:

LTW ([w]N1 ) =
(
〈W 〉1[w]1

. . . 〈W 〉1[w]N

)
.

(14)

Training Given a task of interest, a relevant rep-
resentation of each word is then given by the cor-
responding lookup table feature vector, which is
trained by backpropagation. Word representations
are initialized with existing embeddings.
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5 Experimental Setup

We evaluate the quality of our embeddings ob-
tained on a large corpora of unlabeled text by com-
paring their performance against the CW (Col-
lobert and Weston, 2008), Turian (Turian et al.,
2010), HLBL (Mnih and Hinton, 2008), and LR-
MVL (Dhillon et al., 2011) embeddings on NER
and movie review tasks. We also show that the
general performance can be improved for these
tasks by fine-tuning the word embeddings.

5.1 Building Word Representation over
Large Corpora

Our English corpus is composed of the entire En-
glish Wikipedia1 (where all MediaWiki markups
have been removed), the Reuters corpus and the
Wall Street Journal (WSJ) corpus. We consider
lower case words to limit the number of words
in the vocabulary. Additionally, all occurrences
of sequences of numbers within a word are re-
placed with the string “NUMBER”. The result-
ing text was tokenized using the Stanford tok-
enizer2. The data set contains about 1,652 million
words. As vocabulary, we considered all the words
within our corpus which appear at least one hun-
dred times. This results in a 178,080 words vocab-
ulary. To build the co-occurence matrix, we used
only the 10,000 most frequent words within our
vocabulary as context words. To get embeddings
for words, we needed to only consider sequences
T of t = 1 word. After PCA, each word can
be represented in any n-dimensional vector (with
n ∈ {1, . . . , 10000}). We chose to embed words
in a 50-dimensional vector, which is the common
dimension among the other embeddings in the lit-
erature. The resulting embeddings will be referred
as H-PCA in the following sections. To highlight
the importance of the Hellinger distance, we also
computed the PCA of the co-occurence probabil-
ity matrix with respect to the Euclidean metric.
The resulting embeddings are denoted E-PCA.

Computational cost The Hellinger PCA is very
fast to compute. We report in Table 1 the time
needed to compute the embeddings described
above. For this benchmark we used Intel i7 3770K
3.5GHz CPUs. As the computation of the covari-
ance matrix is highly parallelizable, we report re-
sults with 1, 100 and 500 CPUs. The Eigende-

1Available at http://download.wikimedia.org. We took the
May 2012 version.

2Available at http://nlp.stanford.edu/software/tokenizer.shtml

composition of the C matrix has been computed
with the SSYEVR LAPACK subroutine on one
CPU. We compare completion times for 1,000 and
10,000 eigenvectors. Finally, we report comple-
tion times to generate the emdeddings by linear
projection using 50, 100 and 200 eigenvectors. Al-
though the linear projection is already quite fast
on only one CPU, this operation can also be com-
puted in parallel. Those results show that the
Hellinger PCA can generate about 200,000 em-
beddings in about three minutes with a cluster of
100 CPUs.

time (s)
# of CPUs 1 100 500
Covariance matrix 9930 99 20
1,000 Eigenvectors 72 - -
10,000 Eigenvectors 110 - -
50D Embeddings 20 0.2 0.04
100D Embeddings 29 0.29 0.058
200D Embeddings 67 0.67 0.134
Total for 50D 10,022 171.2 92.04

Table 1: Benchmark of the experiment. Times are
reported in seconds.

5.2 Existing Available Word Embeddings

We compare our H-PCA’s embeddings with the
following publicly available embeddings:

• LR-MVL3: it covers 300,000 words with 50
dimensions for each word. They were trained
on the RCV1 corpus using the Low Rank
Multi-View Learning method. We only used
their context oblivious embeddings coming
from the eigenfeature dictionary.

• CW4: it covers 130,000 words with 50 di-
mensions for each word. They were trained
for about two months, over Wikipedia, using
a neural network language model approach.

• Turian5: it covers 268,810 words with 25,
50, 100 or 200 dimensions for each word.
They were trained on the RCV1 corpus us-
ing the same system as the CW embeddings
but with different parameters. We used only
the 50 dimensions.

3Available at http://www.cis.upenn.edu/ un-
gar/eigenwords/

4From SENNA: http://ml.nec-labs.com/senna/
5Available at http://metaoptimize.com/projects/wordreprs/
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• HLBL5 : it covers 246,122 words with 50 or
100 dimensions for each word. They were
trained on the RCV1 corpus using a Hierar-
chical Log-Bilinear Model. We used only the
50 dimensions.

5.3 Supervised Evaluation Tasks

Using word embeddings as feature proved that it
can improve the generalization performance on
several NLP tasks (Turian et al., 2010; Collobert
et al., 2011; Chen et al., 2013). Using our word
embeddings, we thus trained the sentence-level ar-
chitecture described in section 4.1 on a NER task.

Named Entity Recognition (NER) It labels
atomic elements in the sentence into categories
such as “PERSON” or “LOCATION”. The
CoNLL 2003 setup6 is a NER benchmark data
set based on Reuters data. The contest provides
training, validation and testing sets. The networks
are fed with two raw features: word embeddings
and a capital letter feature. The “caps” feature
tells if each word was in lowercase, was all up-
percase, had first letter capital, or had at least
one non-initial capital letter. No other feature has
been used to tune the models. This is a main
difference with other systems which usually use
more features as POS tags, prefixes and suffixes
or gazetteers. Hyper-parameters were tuned on
the validation set. We selected n = 2 context
words leading to a window of 5 words. We used a
special “PADDING” word for context at the be-
ginning and the end of each sentence. For the
non-linear model, the number of hidden units was
300. As benchmark system, we report the system
of Ando et al. (2005), which reached 89.31% F1
with a semi-supervised approach and less special-
ized features than CoNLL 2003 challengers.

The NER evaluation task is mainly syntactic.
As we wish to evaluate whether our word embed-
dings can also capture semantic, we trained the
document-level architecture described in section
4.2 over a movie review task.

IMDB Review Dataset We used a collection of
50,000 reviews from IMDB7. It allows no more
than 30 reviews per movie. It contains an even
number of positive and negative reviews, so ran-
domly guessing yields 50% accuracy. Only highly
polarized reviews have been considered. A nega-

6http://www.cnts.ua.ac.be/conll2003/ner/
7Available at http://www.andrew-maas.net/data/sentiment

tive review has a score ≤ 4 out of 10, and a posi-
tive review has a score ≥ 7 out of 10. It has been
evenly divided into training and test sets (25,000
reviews each). For this task, we only used the
word embeddings as features. We perform a sim-
ple cross-validation on the training set to choose
the optimal hyper-parameters. The network had a
window of 5 words and nfilter = 1000 filters. As
benchmark system, we report the system of Maas
et al. (2011), which reached 88.90% accuracy with
a mix of unsupervised and supervised techniques
to learn word vectors capturing semantic term-
document information, as well as rich sentiment
content.
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Figure 1: Effect of varying the normalization fac-
tor λ with a non-linear approach and fine-tuning.

5.4 Embeddings Normalization

Word embeddings are continuous vector spaces
that are not necessarily in a bounded range. To
avoid saturation issues in the network architec-
tures, embeddings need to be properly normalized.
Considering the matrix of word embeddings E,
the normalized embeddings are:

Ẽ =
λ(E − Ē)
σ(E)

(15)
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where Ē is the mean of the embeddings, σ(E) is
the standard deviation of the embeddings and λ is
a normalization factor. Figure 1 shows the effect
of λ on both supervised tasks. The embeddings
normalization depends on the type of the network
architecture. In the document-level approach, best
results are obtained with λ = 0.1 for all embed-
dings, while a normalization factor set to 1 is bet-
ter for H-PCA’s embeddings in the sentence-level
approach. These results show the importance of
applying the right normalization for word embed-
dings.

5.5 Results
H-PCA’s embeddings Results summarized in
Table 2 reveal that performance on NER task can
be as good with word embeddings from a word co-
occurence matrix decomposition as with a neural
network language model trained for weeks. The
best F1 scores are indeed obtained using the H-
PCA tuned embeddings. Results for the movie re-
view task in Table 3 show that H-PCA’s embed-
dings also perform as well as all the other embed-
dings on the movie review task. It is worth men-
tioning that on both tasks, H-PCA’s embeddings
outperform the E-PCA’s embeddings, demonstrat-
ing the value of the Hellinger distance. When the
embeddings are not tuned, the CW’s embeddings
slightly outperform the H-PCA’s embeddings on
NER task. The performance difference between
both fixed embeddings on the movie review task is
about 3%. Embeddings from the CW neural lan-
guage model seems to capture more semantic in-
formation but we showed that this lack of semantic
information can be offset by fine-tuning.

Embeddings fine-tuning We note that tuning
the embeddings by backpropagation increases the
general performance on both NER and movie re-
view tasks. The increase is, in general, higher for
the movie review task, which reveals the impor-
tance of embedding fine-tuning for NLP tasks with
a high semantic component. We show in Table 4
that the embeddings after fine-tuning give a higher
rank to words that are related to the task of interest
which is movie-sentiment-based relations in this
case.

Linear vs nonlinear model We also report re-
sults with a linear version of our neural networks.
Having non-linearity helps for NER. It seems im-
portant to extract non-linear features for such a
task. However, we note that the linear approach

Approach Fixed Tuned
Benchmark 89.31

Non-Linear Approach
H-PCA 87.91 ± 0.17 89.16 ± 0.09
E-PCA 84.28 ± 0.15 87.09 ± 0.12
LR-MVL 86.83 ± 0.20 87.38 ± 0.07
CW 88.14 ± 0.21 88.69 ± 0.16
Turian 86.26 ± 0.13 87.35 ± 0.12
HLBL 83.87 ± 0.25 85.91 ± 0.17

Linear Approach
H-PCA 84.64 ± 0.11 87.97 ± 0.09
E-PCA 78.15 ± 0.15 85.99 ± 0.09
LR-MVL 82.27 ± 0.14 86.83 ± 0.17
CW 84.50 ± 0.19 86.84 ± 0.08
Turian 83.33 ± 0.07 86.79 ± 0.11
HLBL 80.31± 0.11 85.06 ± 0.13

Table 2: Performance comparison on NER task
with different embeddings. The first column is
results with the original embeddings. The sec-
ond column is results with embeddings after fine-
tuning for this task. Results are reported in F1
score (mean ± standard deviation of ten training
runs with different initialization).

Approach Fixed Tuned
Benchmark 88.90

Non-Linear Approach
H-PCA 84.20 ± 0.16 89.89 ± 0.09
E-PCA 74.85 ± 0.12 89.70 ± 0.06
LR-MVL 85.33 ± 0.14 90.06 ± 0.09
CW 87.54 ± 0.27 89.77 ± 0.05
Turian 85.33 ± 0.10 89.99 ± 0.05
HLBL 85.51 ± 0.14 89.58 ± 0.06

Linear Approach
H-PCA 84.11 ± 0.05 89.90 ± 0.10
E-PCA 73.27 ± 0.16 89.62 ± 0.05
LR-MVL 84.37 ± 0.16 89.77 ± 0.09
CW 87.62 ± 0.24 89.92 ± 0.07
Turian 84.44 ± 0.13 89.66 ± 0.10
HLBL 85.34 ± 0.10 89.64 ± 0.05

Table 3: Performance comparison on movie re-
view task with different embeddings. The first
column is results with the original embeddings.
The second column is results with embeddings af-
ter fine-tuning for this task. Results are reported
in classification accuracy (mean ± standard devi-
ation of ten training runs with different initializa-
tion).
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BORING BAD AWESOME
before after before after before after
SAD CRAP HORRIBLE TERRIBLE SPOOKY TERRIFIC

SILLY LAME TERRIBLE STUPID AWFUL TIMELESS

SUBLIME MESS DREADFUL BORING SILLY FANTASTIC

FANCY STUPID UNFORTUNATE DULL SUMMERTIME LOVELY

SOBER DULL AMAZING CRAP NASTY FLAWLESS

TRASH HORRIBLE AWFUL WRONG MACABRE MARVELOUS

LOUD RUBBISH MARVELOUS TRASH CRAZY EERIE

RIDICULOUS SHAME WONDERFUL SHAME ROTTEN LIVELY

RUDE AWFUL GOOD KINDA OUTRAGEOUS FANTASY

MAGIC ANNOYING FANTASTIC JOKE SCARY SURREAL

Table 4: Set of words with their 10 nearest neighbors before and after fine-tuning for the movie review
task (using the Euclidean metric in the embedding space). H-PCA’s embeddings are used here.

performs as well as the non-linear approach for
the movie review task. Our linear approach cap-
tures all the necessary sentiment features to pre-
dict whether a review is positive or negative. It
is thus not surprising that a bag-of-words based
method can perform well on this task (Wang and
Manning, 2012). However, as our method takes
the whole review as input, we can extract windows
of words having the most discriminative power:
it is a major advantage of our method compared
to conventional bag-of-words based methods. We
report in Table 5 some examples of windows of
words extracted from the most discriminative fil-
ters αi (positive and negative). Note that there is
about the same number of positive and negative
filters after learning.

6 Conclusion

We have demonstrated that appealing word
embeddings can be obtained by computing a
Hellinger PCA of the word co-occurence ma-
trix. While a neural network language model
can be painful and long to train, we can get
a word co-occurence matrix by simply counting
words over a large corpus. The resulting em-
beddings give similar results on NLP tasks, even
from a N × 10, 000 word co-occurence matrix
computed with only one word of context. It re-
veals that having a significant, but not too large
set of common words, seems sufficient for cap-
turing most of the syntactic and semantic char-
acteristics of words. As PCA of a N × 10, 000
matrix is really fast and not memory consuming,
our method gives an interesting and practical al-
ternative to neural language models for generat-

αi [x]t

-
the worst film this year
very worst film i ’ve
very worst movie i ’ve

-
watch this unfunny stinker .
, extremely unfunny drivel come
, this ludicrous script gets

-
it was pointless and boring
it is unfunny . unfunny
film are awful and embarrassing

+
both really just wonderful .
. a truly excellent film
. a really great film

+
excellent film with great performances
excellent film with a great
excellent movie with a stellar

+
incredible . just incredible .
performances and just amazing .
one was really great .

Table 5: The top 3 positive and negative filters
αiwi and their respective top 3 windows of words
[x]t within the whole IMDB review dataset.

ing word embeddings. However, we showed that
deep-learning is an interesting framework to fine-
tune embeddings over specific NLP tasks. Our
H-PCA’s embeddings are available online, here:
http://www.lebret.ch/words/.
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