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Abstract

In this paper, we show that the lexical
function model for composition of dis-
tributional semantic vectors can be im-
proved by adopting a more advanced re-
gression technique. We use the pathwise
coordinate-descent optimized elastic-net
regression method to estimate the compo-
sition parameters, and compare the result-
ing model with several recent alternative
approaches in the task of composing sim-
ple intransitive sentences, adjective-noun
phrases and determiner phrases. Experi-
mental results demonstrate that the lexical
function model estimated by elastic-net re-
gression achieves better performance, and
it provides good qualitative interpretabil-
ity through sparsity constraints on model
parameters.

1 Introduction

Vector-based distributional semantic models of
word meaning have gained increased attention in
recent years (Turney and Pantel, 2010). Differ-
ent from formal semantics, distributional seman-
tics represents word meanings as vectors in a high-
dimensional semantic space, where the dimen-
sions are given by co-occurring contextual fea-
tures. The intuition behind these models lies in
the fact that words which are similar in meaning
often occur in similar contexts, e.g., moon and
star might both occur with sky, night and bright.
This leads to convenient ways to measure similar-
ity between different words using geometric meth-
ods (e.g., the cosine of the angle between two
vectors that summarize their contextual distribu-
tion). Distributional semantic models have been
successfully applied to many tasks in linguistics
and cognitive science (Griffiths et al., 2007; Foltz
et al., 1998; Laham, 1997; McDonald and Brew,

2004). However, most of these tasks only deal
with isolated words, and there is a strong need
to construct representations for longer linguistic
structures such as phrases and sentences. In or-
der to achieve this goal, the principle of com-
positionality of linguistic structures, which states
that complex linguistic structures can be formed
through composition of simple elements, is ap-
plied to distributional vectors. Therefore, in recent
years, the problem of composition within distribu-
tional models has caught many researchers’ atten-
tion (Clark, 2013; Erk, 2012).

A number of compositional frameworks have
been proposed and tested. Mitchell and Lapata
(2008) propose a set of simple component-wise
operations, such as multiplication and addition.
Later, Guevara (2010) and Baroni and Zampar-
elli (2010) proposed more elaborate methods, in
which composition is modeled as matrix-vector
multiplication operations. Particularly new to their
approach is the proposal to estimate model param-
eters by minimizing the distance of the composed
vectors to corpus-observed phrase vectors. For ex-
ample, Baroni and Zamparelli (2010) consider the
case of Adjective-Noun composition and model it
as matrix-vector multiplication: adjective matrices
are parameters to be estimated and nouns are co-
occurrence vectors. The model parameter estima-
tion procedure becomes a multiple response mul-
tivariate regression problem. This method, that,
following Dinu et al. (2013) and others, we term
the lexical function composition model, can also
be generalized to more complex structures such
as 3rd order tensors for modeling transitive verbs
(Grefenstette et al., 2013).

Socher et al. (2012) proposed a more complex
and flexible framework based on matrix-vector
representations. Each word or lexical node in a
parsing tree is assigned a vector (representing in-
herent meaning of the constituent) and a matrix
(controlling the behavior to modify the meaning of
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Model Composition function Parameters
Add w1u⃗ + w2v⃗ w1, w2

Mult u⃗w1 ⊙ v⃗w2 w1, w2

Dil ||u⃗||22v⃗ + (λ − 1)⟨u⃗, v⃗⟩u⃗ λ
Fulladd W1u⃗ + W2v⃗ W1, W2 ∈ Rm×m

Lexfunc Auv⃗ Au ∈ Rm×m

Fulllex tanh([W1, W2]
[

Auv⃗
Av u⃗

]
) W1, W2,

Au, Av ∈ Rm×m

Table 1: Composition functions of inputs (u, v).

neighbor words or phrases) simultaneously. They
use recursive neural networks to learn and con-
struct the entire model and show that it reaches
state-of-the-art performance in various evaluation
experiments.

In this paper, we focus on the simpler, linear
lexical function model proposed by Baroni and
Zamparelli (2010) (see also Coecke et al. (2010))
and show that its performance can be further im-
proved through more advanced regression tech-
niques. We use the recently introduced elastic-
net regularized linear regression method, which
is solved by the pathwise coordinate descent opti-
mization algorithm along a regularization parame-
ter path. This new regression method can rapidly
generate a sequence of solutions along the regular-
ization path. Performing cross-validation on this
parameter path should yield a much more accurate
model for prediction. Besides better prediction ac-
curacy, the elastic-net method also brings inter-
pretability to the composition procedure through
sparsity constraints on the model.

The rest of this paper is organized as follows: In
Section 2, we give details on the above-mentioned
composition models, which will be used for com-
parison in our experiments. In Section 3, we de-
scribe the pathwise optimized elastic-net regres-
sion algorithm. Experimental evaluation on three
composition tasks is provided in Section 4. In Sec-
tion 5 we conclude and suggest directions for fu-
ture work.

2 Composition Models

Mitchell and Lapata (2008; 2010) present a set of
simple but effective models in which each compo-
nent of the output vector is a function of the cor-
responding components of the inputs. Given in-
put vectors u⃗ and v⃗, the weighted additive model
(Add) returns their weighted sum: p⃗ = w1u⃗ +
w2v⃗. In the dilation model (Dil), the output vector
is obtained by decomposing one of the input vec-
tors, say v⃗, into a vector parallel to u⃗ and an or-

thogonal vector, and then dilating only the parallel
vector by a factor λ before re-combining (formula
in Table 1). Mitchell and Lapata also propose a
simple multiplicative model in which the output
components are obtained by component-wise mul-
tiplication of the corresponding input components.
We use its natural weighted extension (Mult), in-
troduced by Dinu et al. (2013), that takes w1 and
w2 powers of the components before multiplying,
such that each phrase component pi is given by:
pi = uw1

i vw2
i .

Guevara (2010) and Zanzotto et al. (2010) ex-
plore a full form of the additive model (Fulladd),
where the two vectors entering a composition pro-
cess are pre-multiplied by weight matrices before
being added, so that each output component is
a weighted sum of all input components: p⃗ =
W1u⃗ + W2v⃗.

Baroni and Zamparelli (2010) and Coecke et
al. (2010), taking inspiration from formal seman-
tics, characterize composition as function applica-
tion. For example, Baroni and Zamparelli model
adjective-noun phrases by treating the adjective
as a regression function from nouns onto (mod-
ified) nouns. Given that linear functions can be
expressed by matrices and their application by
matrix-by-vector multiplication, a functor (such
as the adjective) is represented by a matrix Au

to be composed with the argument vector v⃗ (e.g.,
the noun) by multiplication, returning the lexical
function (Lexfunc) representation of the phrase:
p⃗ = Auv⃗.

The method proposed by Socher et al. (2012)
can be seen as a combination and non-linear ex-
tension of Fulladd and Lexfunc (that Dinu and col-
leagues thus called Fulllex) in which both phrase
elements act as functors (matrices) and arguments
(vectors). Given input terms u and v represented
by (u⃗, Au) and (v⃗, Av), respectively, their com-
position vector is obtained by applying first a lin-
ear transformation and then the hyperbolic tangent
function to the concatenation of the products Auv⃗
and Avu⃗ (see Table 1 for the equation). Socher
and colleagues also present a way to construct ma-
trix representations for specific phrases, needed
to scale this composition method to larger con-
stituents. We ignore it here since we focus on the
two-word case.

Parameter estimation of the above composition
models follows Dinu et al. (2013) by minimizing
the distance to corpus-extracted phrase vectors. In

435



Figure 1: A sketch of the composition model train-
ing and composing procedure.

the case of the Fulladd and Lexfunc models this
amounts to solving a multiple response multivari-
ate regression problem.

The whole composition model training and
phrase composition procedure is described with a
sketch in Figure 1. To illustrate with an example,
given an intransitive verb boom, we want to train
a model for this intransitive verb so that we can
use it for composition with a noun subject (e.g.,
export) to form an intransitive sentence (e.g., ex-
port boom(s)). We treat these steps as a composi-
tion model learning and predicting procedure. The
training dataset is formed with pairs of input (e.g.,
activity) and output (e.g., activity boom) vectors.
All composition models except Lexfunc also use
the functor vector (boom) in the training data. Lex-
func does not use this functor vector, but it would
rather like to encode the learning target’s vector
meaning in a different way (see experimental anal-
ysis in Section 4.3). Then, this dataset is used for
parameter estimation of models. When a model
(boom) is trained and given a new input seman-
tic vector (e.g., export), it will output another vec-
tor representing the concept for export boom. And
the concept export boom should be close to simi-
lar concepts (e.g., export prosper) in meaning un-

der some distance metric in semantic vector space.
The same training and composition scheme is ap-
plied for other types of functors (e.g., adjectives
and determiners). All the above mentioned com-
position models are evaluated within this scheme,
but note that in the case of Add, Dil, Mult and Ful-
ladd, a single set of parameters is obtained across
all functors of a certain syntactic category.

3 Pathwise Optimized Elastic-net
Algorithm

The elastic-net regression method (Zou and
Hastie, 2005) is proposed as a compromise be-
tween lasso (Tibshirani, 1996) and ridge regres-
sion (Hastie et al., 2009). Suppose there are N
observation pairs (xi, yi), here xi ∈ Rp is the ith
training sample and yi ∈ R is the corresponding
response variable in the typical regression setting.
For simplicity, assume the xij are standardized:∑N

i=1 x2
ij = 1, for j = 1, . . . , p. The elastic-net

solves the following problem:

min
(β0,β)∈Rp+1

[
1
N

N∑
i=1

(yi − β0 − xT
i β)2 + λPα(β)

]
(1)

where

Pα(β) = λ((1− α)
1
2
∥ β ∥2ℓ2 +αβℓ1)

=
p∑

j=1

[
1
2
(1− α)β2

j + α|βj |].

P is the elastic-net penalty, and it is a compro-
mise between the ridge regression penalty and the
lasso penalty. The merit of the elastic-net penalty
depends on two facts: the first is that elastic-net in-
herits lasso’s characteristic to shrink many of the
regression coefficients to zero, a property called
sparsity, which results in better interpretability of
model; the second is that elastic-net inherits ridge
regression’s property of a grouping effect, which
means important correlated features can be con-
tained in the model simultaneously, and not be
omitted as in lasso.

For these linear-type regression problem (ridge,
lasso and elastic-net), the determination of the λ
value is very important for prediction accuracy.
Efron et al. (2004) developed an efficient algo-
rithm to compute the entire regularization path
for the lasso problem in 2004. Later, Friedman
et al. (Friedman et al., 2007; Friedman et al.,
2010) proposed a coordinate descent optimization
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method for the regularization parameter path, and
they also provided a solution for elastic-net. The
main idea of pathwise coordinate descent is to
solve the penalized regression problem along an
entire path of values for the regularization param-
eters λ, using the current estimates as warm starts.
The idea turns out to be quite efficient for elastic-
net regression. The procedure can be described as
below: firstly establish an 100 λ value sequence
in log scale, and for each of the 100 regulariza-
tion parameters, use the following coordinate-wise
updating rule to cycle around the features for es-
timating the corresponding regression coefficients
until convergence.

β̃j ←
S

(
1
N

∑N
i=1 xij(yi − ỹ

(j)
i ), λα

)
1 + λ(1− α)

(2)

where

• ỹ
(j)
i = β̃0 +

∑
ℓ ̸=j xiℓβ̃ℓ is the fitted value ex-

cluding the contribution from xij , and hence
yi − ỹ

(j)
i the partial residual for fitting βj .

• S(z, γ) is the soft-thresholding operator with
value

S(z, γ) = sign(z)(|z| − γ)+

=


z − γ if z > 0 and γ < |z|
z + γ if z < 0 and γ < |z|
0 if γ ≥ |z|

Then solutions for a decreasing sequence of val-
ues for λ are computed in this way, starting at the
smallest value λmax for which the entire coeffi-
cient vector β̂ = 0. Then, 10-fold cross valida-
tion on this regularization path is used to deter-
mine the best model for prediction accuracy. The
α parameter controls the model sparsity (the num-
ber of coefficients equal to zero) and grouping ef-
fect (shrinking highly correlated features simulta-
neously).

In what follows, we call the elastic-net regres-
sion lexical function model EnetLex. In Sec-
tion 4, we will report the experiment results by
EnetLex with α = 1. It equals to pathwise co-
ordinate descent optimized lasso, which favours
sparser solutions and is often a better estimator
when the number of training samples is far greater
than the number of feature dimensions, as in our
case. We also experimented with intermediate α
values (e.g., α = 0.5), that were, consistently, in-
ferior or equal to the lasso setting.
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Figure 2: Example of model selection procedure
for elastic-net regression (“the” model for deter-
miner phrase experiment, SVD, 50 dimensions).

Figure 2 is an example of the model selection
procedure between different regularization param-
eter λ values for determiner “the” (experimental
details are described in section 4). When α is
fixed, EnetLex first generates a λ sequence from
λmax to λmin (λmax is set to the smallest value
which will shrink all the regression coefficients
to zero, λmin = 0.0001) in log scale (rightmost
point in the plot). The red points corresponding
to each λ value in the plot represent mean cross-
validated errors and their standard errors. To esti-
mate a model corresponding to some λ value ex-
cept λmax, we use the solution from previous λ
value as the initial coefficients (the warm starts
mentioned before) for iteration with coordinate
descent. This will often generate a stable solu-
tion path for the whole λ sequence very fast. And
we can choose the model with minimum cross-
validation error on this path and use it for more
accurate prediction. In Figure 2, the labels on the
top are numbers of corresponding selected vari-
ables (features), the right vertical dotted line is the
largest value of lambda such that error is within 1
standard error of the minimum, and the left verti-
cal dotted line corresponds to the λ value which
gives minimum cross-validated error. In this case,
the λ value of minimum cross-validated error is
0.106, and its log is -2.244316. In all of our ex-
periments, we will select models corresponding to
minimum training-data cross-validated error.

4 Experiments

4.1 Datasets

We evaluate on the three data sets described below,
that were also used by Dinu et al. (2013), our most
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direct point of comparison.

Intransitive sentences The first dataset, intro-
duced by Mitchell and Lapata (2010), focuses
on the composition of intransitive verbs and their
noun subjects. It contains a total of 120 sentence
pairs together with human similarity judgments on
a 7-point scale. For example, value slumps/value
declines is scored 7, skin glows/skin burns is
scored 1. On average, each pair is rated by 30
participants. Rather than evaluating against mean
scores, we use each rating as a separate data point,
as done by Mitchell and Lapata. We report Spear-
man correlations between human-assigned scores
and cosines of model-generated vector pairs.

Adjective-noun phrases Turney (2012) intro-
duced a dataset including both noun-noun com-
pounds and adjective-noun phrases (ANs). We fo-
cus on the latter, and we frame the task as in Dinu
et al. (2013). The dataset contains 620 ANs, each
paired with a single-noun paraphrase. Examples
include: upper side/upside, false belief/fallacy and
electric refrigerator/fridge. We evaluate a model
by computing the cosine of all 20K nouns in our
semantic space with the target AN, and looking at
the rank of the correct paraphrase in this list. The
lower the rank, the better the model. We report
median rank across the test items.

Determiner phrases The third dataset, intro-
duced in Bernardi et al. (2013), focuses on a
class of determiner words. It is a multiple-
choice test where target nouns (e.g., omniscience)
must be matched with the most closely related
determiner(-noun) phrases (DPs) (e.g., all knowl-
edge). There are 173 target nouns in total, each
paired with one correct DP response, as well as
5 foils, namely the determiner (all) and noun
(knowledge) from the correct response and three
more DPs, two of which contain the same noun as
the correct phrase (much knowledge, some knowl-
edge), the third the same determiner (all prelimi-
naries). Other examples of targets/related-phrases
are quatrain/four lines and apathy/no emotion.
The models compute cosines between target noun
and responses and are scored based on their accu-
racy at ranking the correct phrase first.

4.2 Setup

We use a concatenation of ukWaC, Wikipedia
(2009 dump) and BNC as source corpus, total-

Model Reduction Dim Correlation
Add NMF 150 0.1349
Dil NMF 300 0.1288

Mult NMF 250 0.2246
Fulladd SVD 300 0.0461
Lexfunc SVD 250 0.2673
Fulllex NMF 300 0.2682

EnetLex SVD 250 0.3239

Table 2: Best performance comparison for intran-
sitive verb sentence composition.

ing 2.8 billion tokens.1 Word co-occurrences are
collected within sentence boundaries (with a max-
imum of a 50-words window around the target
word). Following Dinu et al. (2013), we use the
top 10K most frequent content lemmas as context
features, Pointwise Mutual Information as weight-
ing method and we reduce the dimensionality of
the data by both Non-negative Matrix Factoriza-
tion (NMF, Lee and Seung (2000)) and Singular
Value Decomposition (SVD). For both data di-
mensionality reduction techniques, we experiment
with different numbers of dimension varying from
50 to 300 with a step of 50. Since the Mult model
works very poorly when the input vectors contain
negative values, as is the case with SVD, for this
model we report result distributions across the 6
NMF variations only.

We use the DIStributional SEmantics Compo-
sition Toolkit (DISSECT)2 which provides imple-
mentations for all models we use for comparison.
Following Dinu and colleagues, we used ordinary
least-squares to estimate Fulladd and ridge for
Lexfunc. The EnetLex model is implemented in R
with support from the glmnet package,3 which im-
plements pathwise coordinate descent elastic-net
regression.

4.3 Experimental Results and Analysis

The experimental results are shown in Ta-
bles 2, 3, 4 and Figures 3, 4, 5. The best per-
formances from each model on the three compo-
sition tasks are shown in the tables. The over-
all result distributions across reduction techniques
and dimensionalities are displayed in the figure

1http://wacky.sslmit.unibo.it;
http://www.natcorp.ox.ac.uk

2http://clic.cimec.unitn.it/composes/
toolkit/

3http://cran.r-project.org/web/
packages/glmnet/
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Model Reduction Dim Rank
Add NMF 300 113
Dil NMF 300 354.5

Mult NMF 300 146.5
Fulladd SVD 300 123
Lexfunc SVD 150 117.5
Fulllex SVD 50 394

EnetLex SVD 300 108.5

Table 3: Best performance comparison for adjec-
tive noun composition (lower ranks mean better
performance).

Model Reduction Dim Rank
Add NMF 100 0.3237
Dil NMF 100 0.3584

Mult NMF 300 0.2023
Fulladd NMF 200 0.3642
Lexfunc SVD 200 0.3699
Fulllex SVD 100 0.3699

EnetLex SVD 250 0.4046

Table 4: Best performance comparison for deter-
miner phrase composition.

boxplots (NMF and SVD results are shown sep-
arately). From Tables 2, 3, 4, we can see that
EnetLex consistently achieves the best composi-
tion performance overall, also outperforming the
standard lexical function model. In the boxplot
display, we can see that SVD is in general more
stable across dimensionalities, yielding smaller
variance in the results than NMF. We also observe,
more specifically, larger variance in EnetLex per-
formance on NMF than in Lexfunc, especially for
determiner phrase composition. The large vari-
ance with EnetLex comes from the NMF low-
dimensionality results, especially the 50 dimen-
sions condition. The main reason for this lies
in the fast-computing tricks of the coordinate de-
scent algorithm when cycling around many fea-
tures with zero values (as resulting from NMF),
which cause fast convergence at the beginning of
the regularization path, generating an inaccurate
model. A subordinate reason might lie in the un-
standardized larger values of the NMF features
(causing large gaps between adjacent parameter
values in the regularization path). Although data
standardization or other feature scaling techniques
are often adopted in statistical analysis, they are
seldom used in semantic composition tasks due to

A
dd

−
nm

f

D
il−

nm
f

M
ul

t−
nm

f

F
ul

la
dd

−
nm

f

Le
xf

un
c−

nm
f

F
ul

lle
x−

nm
f

E
ne

tL
ex

−
nm

f

A
dd

−
sv

d

D
il−

sv
d

M
ul

t−
sv

d

F
ul

la
dd

−
sv

d

Le
xf

un
c−

sv
d

F
ul

lle
x−

sv
d

E
ne

tL
ex

−
sv

d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Intransitive sentences

Figure 3: Intransitive verb sentence composition
results.
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Figure 4: Adjective noun phrase composition re-
sults.

the fact that they might negatively affect the se-
mantic vector space. A reasonable way out of this
problem would be to save the mean and standard
deviation parameters used for data standardization
and use them to project the composed phrase vec-
tor outputs back to the original vector space.

On the other hand, EnetLex obtained a stable
good performance in SVD space, with the best re-
sults achieved with dimensions between 200 and
300. A set of Tukey’s Honestly Significant Tests
show that EnetLex significantly outperforms the
other models across SVD settings for determiner
phrases and intransitive sentences. The difference
is not significant for most comparisons in the ad-
jective phrases task.

For the simpler models for which it was com-
putationally feasible, we repeated the experiments
without dimensionality reduction. The results ob-
tained with (unweighted) Add and Mult using full-
space representations are reported in Table 5. Due
to computational limitations, we tuned full-space
weights for Add model only, obtaining similar re-
sults to those reported in the table. The full-space
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Figure 5: Determiner phrase composition results.

model verb adjective determiner
Add 0.0259 957 0.2832
Mult 0.1796 298.5 0.0405

Table 5: Performance of Add and Mult models
without dimensionality reduction.

results confirm that dimensionality reduction is
not only a computational necessity when work-
ing with more complex models, but it is actually
improving the quality of the underlying semantic
space.

Another benefit that elastic-net has brought to
us is the sparsity in coefficient matrices. Sparsity
here means that many entries in the coefficient ma-
trix are shrunk to 0. For the above three exper-
iments, the mean adjective, verb and determiner
models’ sparsity ratios are 0.66, 0.55 and 0.18 re-
spectively. Sparsity can greatly reduce the space
needed to store the lexical function model, espe-
cially when we want to use higher orders of repre-
sentation. Moreover, sparsity in the model is help-
ful to interpret the concept a specific functor word
is conveying. For example, we show how to an-
alyze the coefficient matrices for functor content
words (verbs and adjectives). The verb burst and
adjective poisonous, when estimated in the space
projected to 100 dimensions with NMF, have per-
centages of sparsity 47% and 39% respectively,
which means 47% of the entries in the burst ma-
trix and 39% of the entries in the poisonous ma-
trix are zeros.4 Most of the (hopefully) irrelevant
dimensions were discarded during model training.
For visualization, we list the 6 most significant

4We analyze NMF rather than the better-performing SVD
features because the presence of negative values in the latter
makes their interpretation very difficult. And NMF achieves
comparably good performance for interpretation when di-
mension exceeds 100.

columns and rows from verb burst and adjective
poisonous in Table 6. Each reduced NMF di-
mension is represented by the 3 largest original-
context entries in the corresponding row of the
NMF basis matrix. The top columns and rows
are selected by ordering sums of row entries and
sums of column entries (the 10 most common fea-
tures across trained matrices are omitted). In the
matrix-vector multiplication scenario, a larger col-
umn contributes more to all the features of the
composed output phrase vector, while one large
row corresponds to a large composition output fea-
ture. From these tables, we can see that the se-
lected top columns and rows are mostly semanti-
cally relevant to the corresponding functor words
(burst and poisonous, in the displayed examples).

A very interesting aspect of these experiments
is the role of the intercept in our regression model.
The path-wise optimization algorithm starts with
a lambda value (λmax), which sets all the coef-
ficients exactly to 0, and at that time the inter-
cept is just the expected mean value of the train-
ing phrase vectors, which in turn is of course quite
similar to the co-occurrence vector of the cor-
responding functor word (by averaging the poi-
sonous N context distributions, we obtain a vec-
tor that approximates the poisonous distribution).
And, although the intercept also changes with dif-
ferent lambda values, it still highly correlates with
the co-occurrence vectors of the functor words
in vector space. For adjectives and verbs, we
compared the initial model’s (λmax) intercept and
the minimum cross-validation error model inter-
cept with corpus-extracted vectors for the corre-
sponding words. That is, we used the word co-
occurrence vector for a verb or an adjective ex-
tracted from the corpus and projected onto the
reduced feature space (e.g., NMF, 100 dimen-
sions), then computed cosine similarity between
this word meaning representation and its corre-
sponding EnetLex matrix initial and minimum-
error intercepts, respectively. Most of the simi-
larities are still quite high after estimation: The
mean cosine values for adjectives are 0.82 for the
initial intercept and 0.72 for the minimum-error
one. For verbs, the corresponding values are 0.75
and 0.69, respectively. Apparently, the sparsity
constraint helps the intercept retaining information
from training phrases.

Qualitatively, often the intercept encodes the
representation of the original word meaning in
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burst significant columns significant rows
policeman, mob, guard hurricane, earthquake, disaster

Iraqi, Lebanese, Kurdish conquer, Byzantine, conquest
jealousy, anger, guilt policeman, mob, guard

hurricane, earthquake, disaster terminus, traffic, interchange
defender, keeper, striker convict, sentence, imprisonment

volcanic, sediment, geological boost, unveil, campaigner
poisonous significant columns significant rows

bathroom, wc, shower ventilation, fluid, bacterium
ignite, emit, reactor ignite, emit, reactor

reptile, mammal, predator infectious, infect, infected
ventilation, fluid, bacterium slay, pharaoh, tribe
flowering, shrub, perennial park, lorry, pavement

sauce, onion, garlic knife, pierce, brass

Table 6: Interpretability for verbs and adjectives (exemplified by burst and poisonous).

vector space. For example, if we check the inter-
cept for poisonous, the cosine between the origi-
nal vector space representation (from corpus) and
the minimum-error solution intercept (from train-
ing phrases) is at 0.7. The NMF dimensions cor-
responding with the largest intercept entries are
rather intuitive for poisonous: ⟨ventilation, fluid,
bacterium⟩, ⟨racist, racism, outrage⟩, ⟨reptile,
mammal, predator⟩, ⟨flowering, shrub, perennial⟩,
⟨sceptical, accusation, credibility⟩, ⟨infectious, in-
fect, infected⟩.

The mathematical reason for the above facts lies
in the updating rule of the elastic-net’s intercept:

β0 = ȳ −
p∑

j=1

β̂jx̄j (3)

Sparsity in the regression coefficients (β̂j) encour-
ages intercept β0 to stay as close to the mean
value of response ȳ as possible. So the elastic-
net lexical function composition model is de facto
also capturing the inherent meaning of the func-
tor word, learning it from the training word-phrase
pairs. In future research, we would like to test if
these lexical meaning representations are as good
or even better than standard co-occurrence vectors
for single-word similarity tasks.

5 Conclusion

In this paper, we have shown that the lexical func-
tion composition model can be improved by ad-
vanced regression techniques. We use pathwise
coordinate descent optimized elastic-net, testing
it on composing intransitive sentences, adjective-

noun phrases and determiner phrases in compari-
son with other composition models, including lex-
ical function estimated with ridge regression. The
elastic-net method leads to performance gains on
all three tasks. Through sparsity constraints on the
model, elastic-net also introduces interpretability
in the lexical function composition model. The
regression coefficient matrices can often be eas-
ily interpreted by looking at large row and column
sums, as many matrix entries are shrunk to zero.
The intercept of elastic-net regression also plays
an interesting role in the model. With the sparsity
constraints, the intercept of the model tends to re-
tain the inherent meaning of the word by averaging
training phrase vectors.

Our approach naturally generalizes to similar
composition tasks, in particular those involving
higher-order tensors (Grefenstette et al., 2013),
where sparseness might be crucial in producing
compact representations of very large objects. Our
results also suggest that the performance of the
lexical function composition model might be fur-
ther improved with even more advanced methods,
such as nonlinear regression. In the future, we
would also like to explore interpretability more in
depth, by looking at grouping and interaction ef-
fects between features.
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