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Abstract

We describe an approach to word ordering
using modelling techniques from statisti-
cal machine translation. The system in-
corporates a phrase-based model of string
generation that aims to take unordered
bags of words and produce fluent, gram-
matical sentences. We describe the gen-
eration grammars and introduce parsing
procedures that address the computational
complexity of generation under permuta-
tion of phrases. Against the best previous
results reported on this task, obtained us-
ing syntax driven models, we report huge
quality improvements, with BLEU score
gains of 20+ which we confirm with hu-
man fluency judgements. Our system in-
corporates dependency language models,
large n-gram language models, and mini-
mum Bayes risk decoding.

1 Introduction

Word ordering is a fundamental problem in NLP
and has been shown to be NP-complete in dis-
course ordering (Althaus et al., 2004) and in SMT
with arbitrary word reordering (Knight, 1999).
Typical solutions involve constraints on the space
of permutations, as in multi-document summari-
sation (Barzilay and Elhadad, 2011) and preorder-
ing in SMT (Tromble and Eisner, 2009; Genzel,
2010).

Some recent work attempts to address the fun-
damental word ordering task directly, using syn-
tactic models and heuristic search. Wan et al.
(2009) use a dependency grammar to address word
ordering, while Zhang and Clark (2011; 2012)
use CCG and large-scale n-gram language models.

These techniques are applied to the unconstrained
problem of generating a sentence from a multi-set
of input words.

We describe GYRO (Get Your Order Right), a
phrase-based approach to word ordering. Given a
bag of words, the system first scans a large, trusted
text collection and extracts phrases consisting of
words from the bag. Strings are then generated
by concatenating these phrases in any order, sub-
ject to the constraint that every string is a valid
reordering of the words in the bag, and the re-
sults are scored under an n-gram language model
(LM). The motivation is that it is easier to make
fluent sentences from phrases (snippets of fluent
text) than from words in isolation.

GYRO builds on approaches developed for syn-
tactic SMT (Chiang, 2007; de Gispert et al., 2010;
Iglesias et al., 2011). The system generates strings
in the form of weighted automata which can be
rescored using higher-order n-gram LMs, depen-
dency LMs (Shen et al., 2010), and Minimum
Bayes Risk decoding, either using posterior prob-
abilities obtained from GYRO or SMT systems.

We report extensive experiments using BLEU
and conclude with human assessments. We
show that despite its relatively simple formulation,
GYRO gives BLEU scores over 20 points higher
than the best previously reported results, gener-
ated by a syntax-based ordering system. Human
fluency assessments confirm these substantial im-
provements.

2 Phrase-based Word Ordering

We take as input a bag of N words Ω =
{w1, . . . , wN}. The words are sorted, e.g. alpha-
betically, so that it is possible to refer to the ith

word in the bag, and repeated words are distinct
tokens. We also take a set of phrases, L(Ω) that
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are extracted from large text collections, and con-
tain only words from Ω. We refer to phrases as u,
i.e. u ∈ L(Ω). The goal is to generate all permu-
tations of Ω that can be formed by concatenation
of phrases from L(Ω).

2.1 Word Order Generation Grammar
Consider a subset A ⊂ Ω. We can represent A by
an N-bit binary string I(A) = I1(A) . . . IN (A),
where Ii(A) = 1 if wi ∈ A, and Ii(A) = 0 other-
wise. A Context-Free Grammar (CFG) for gener-
ation can then be defined by the following rules:
Phrase-based Rules: ∀A ⊂ Ω and ∀u ∈ L(A)

I(A)→ u

Concatenation Rules: ∀A ⊂ Ω, B ⊂ A,C ⊂ A
such that I(A) = I(B)+I(C) and I(B)•I(C) =
0

I(A)→ I(B) I(C)

where • is the bit-wise logical AND
Root: S → I(Ω)
We use this grammar to ‘parse’ the list of the
words in the bag Ω. The grammar has one non-
terminal per possible binary string, so potentially
2N distinct nonterminals might be needed to gen-
erate the language. Each nonterminal can produce
either a phrase u ∈ L(A), or the concatenation of
two binary strings that share no bits in common. A
derivation is sequence of rules that starts from the
bit string I(Ω). Rules are unweighted in this basic
formulation.

For example, assume the following bag
Ω = {a, b, c, d, e}, which we sort alphabet-
ically. Assume the phrases are L(Ω) =
{“a b”, “b a”, “d e c”}. The generation grammar
contains the following 6 rules:

R1: 11000→ ab
R2: 11000→ ba
R3: 00111→ dec
R4: 11111→ 11000 00111
R5: 11111→ 00111 11000
R6: S→ 11111

Figure 1 represents all the possible derivations
in a hypergraph, which generate four alternative
strings. For example, string “d e c b a” is ob-
tained with derivation R6R5R3R2, whereas string
“a b d e c” is obtained via R6R4R1R3.

2.2 Parsing a Bag of Words
We now describe a general algorithm for parsing a
bag of words with phrase constraints. The search

a b c d e

11000 00111

3 1 21 2 2 1

11111

1 2 2 1

{"a b d e c", 
"b a d e c", 
"d e c a b", 
"d e c b a"}

{"d e c"}{"a b", "b a"}

Figure 1: Hypergraph representing gen-
eration from {a, b, c, d, e} with phrases
{“a b”, “b a”, “d e c”}.

is organized along a two-dimensional gridM [x, y]
of 2N –1 cells, where each cell is associated with
a unique nonterminal in the grammar (a bit string
I with at least one bit set to 1). Each row x in
the grid has

(
N
x

)
cells, representing all the possible

ways of covering exactly x words from the bag.
There are N rows in total.

For a bit string I , X(I) is the length of I , i.e.
the number of 1’s in I . In this way X(I(A))
points to the row associated with set A. There
is no natural ordering of cells within a row, so
we introduce a second function Y (I) which indi-
cates which cell in row X(I) is associated with I .
Hence M [X(I), Y (I)] is the cell associated with
bit string I . In the inverse direction, we using the
notation Ix,y to indicate a bit string associated with
the cell M [x, y].

The basic parsing algorithm is given in Figure 2.
We first initialize the grid by filling the cells linked
to phrase-based rules (lines 1-4 of Figure 2). Then
parsing proceeds as follows. For each row in in-
creasing order (line 5), and for each of the non-
empty cells in the row (line 6), try to combine its
bit string with any other bit strings (lines 7-8). If
combination is admitted, then form the resultant
bit string and add the concatenation rule to the as-
sociated cell in the grid (lines 9-10). The combi-
nation will always yield a bit string that resides in
a higher row of the grid, so search is exhaustive.
If a rule is found in cell M [N, 1], there is a parse
(line 11); otherwise none exists. The complexity
of the algorithm isO(2N ·K). If back-pointers are
kept, traversing these from cell M [N, 1] yields all
the generated word sequences.

The number of cells will grow exponentially as
the bag grows in size. In practice, the number of
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PARSE-BAG-OF-WORDS

Input: bag of words Ω of size N
Input: list of phrases L(Ω)
Initialize - Add phrase-based rules:

1 M [x, y]← ∅
2 for each subset A ∈ Ω
3 for each phrase u ∈ L(A)
4 add rule I(A)→ u to cell M [X(I(A)), Y (I(A))]

Parse:
5 for each row x = 1, . . . , N
6 for each y = 1, . . . ,

(
N
x

)
7 for each valid A ∈ Ω
8 if Ix,y • I(A) = 0, then
9 I ′ ← Ix,y + I(A)

10 add rule I ′ → Ix,y I(A) to cell M [X(I ′), Y (I ′)]
11 if |M [N, 1]| > 0, success.

Figure 2: Parsing algorithm for a bag of words.

cells actually used in parsing can be smaller than
2N − 1. This depends strongly on the number of
distinct phrase-based rules and the distinct subsets
of Ω they cover. For example, if we consider 1-
word subsets of Ω, then all cells are needed and
GYRO attempts all word permutation. However,
if only 10 distinct 5-word phrases and 20 distinct
4-word phrases are considered for a bag of N=9
words, then fewer than 431 cells will be used (20
+ 10 for the initial cells at rows 4 and 5; plus all
combinations of 4-word subsets into row 8, which
is less than 400; plus 1 for the last cell at row 9).

2.3 Generation from Exact Parsing

We are interested in producing the space of word
sequences generated by the grammar, and in scor-
ing each of the sequences according to a word-
based n-gram LM. Assuming that parsing the bag
of words suceeded, this is a very similar scenario
to that of syntax-based approaches to SMT: the
output is a large collection of word sequences,
which are built by putting together smaller units
and which can be found by a process of expansion,
i.e. by traversing the back-pointers from an initial
cell in a grid structure. A significant difference is
that in syntax-based approaches the parsing stage
tends to be computationally easier than the pars-
ing stage has only a quadratic dependency on the
length of the input sentence.

We borrow techniques from SMT to represent
and manipulate the space of generation hypothe-
ses. Here we follow the approach of expand-
ing this space onto a Finite-State Automata (FSA)
described in (de Gispert et al., 2010; Iglesias et
al., 2011). This means that in parsing, each cell
M [x, y] is associated with an FSA Fx,y, which en-
codes all the sequences generated by the grammar
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Figure 3: RTN representing generation from
{a, b, c, d, e} with phrases {“a b”, “b a”, “d e c”}
(top) and its expansion as an FSA (bottom).

when covering the words marked by the bit string
of that cell. When a rule is added to a cell, a new
path from the initial to the final state of Fx,y is
created so that each FSA is the union of all paths
arising from the rules added to the cell. Impor-
tantly, when an instance of the concatenation rule
is added to a cell, the new path is built with only
two arcs. These point to other FSAs at lower rows
in the grid so that the result has the form of a
Recursive Transition Network with a finite depth
of recursion. Following the example from Sec-
tion 2.1, the top three FSAs in Figure 3 represent
the RTN for example from Figure 1.

The parsing algorithm is modified as follows:
4 add rule I(A)→ u

as path to FSA FX(I(A)),Y (I(A))

...
10 add rule I ′ → Ix,y I(A)

as path to FSA FX(I′),Y (I′)
11 if NumStates(FN,1) > 1, success.

At this point we specify two strategies:
Algorithm 1: Full expansion is described by the
pseudocode in Figure 4, excluding lines 2-3. A
recursive FSA replacement operation (Allauzen et
al., 2007) can be used to expand the FSA in the
top-most cell. In our running example, the result
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is the FSA at the bottom of Figure 3. We then
apply a word-based LM to the resulting FSA via
standard FSA composition. This outputs the com-
plete (unpruned) language of interest, where each
word sequence generated from the bag according
to the phrasal constraints is scored by the LM.
Algorithm 2: Pruned expansion is described by
the pseudocode in Figure 4, now including lines
2-3. We introduce pruning because full, unpruned
expansion may not be feasible for large bags with
many phrasal rules. Once parsing is done, we in-
troduce the following bottom-up pruning strategy.
For each row starting at row r, we union all FSAs
of the row and expand the unioned FSA through
the recursive replacement operation. This yields
the space of all generation hypotheses of length
r. We then apply the language model to this lat-
tice and reduce it under likelihood-based pruning
at weight β. We then update each cell in the row
with a new FSA obtained as the intersection of its
original FSA and the pruned FSA.1 This intersec-
tion may yield an empty FSA for a particular cell
(meaning that all its hypotheses were pruned out
of the row), but it will always leave at least one
surviving FSA per row, guaranteeing that if pars-
ing succeeds, the top-most cell will expand into
a non-empty FSA. As we process higher rows,
the replacement operation will yield smaller FSAs
because some back-pointers will point to empty
FSAs. In this way memory usage can be con-
trolled through parameters r and β. Of course,
when pruning in this way, the final output lattice
L will not contain the complete space of hypothe-
ses that could be generated by the grammar.

2.4 Algorithm 3: Pruned Parsing and
Generation

The two generation algorithms presented above
rely on a completed initial parsing step. However,
given that the complexity of the parsing stage is
O(2N · K), this may not be achievable in prac-
tice. Leaving aside time considerations, the mem-
ory required to store 2N FSAs will grow exponen-
tially in N , even if the FSAs contain only pointers
to other FSAs. Therefore we also describe an al-
gorithm to perform bottom-up pruning guided by

1This step can be performed much more efficiently with
a single forward pass of the resultant lattice. This is possible
because the replace operation can yield a transducer where
the input symbols encode a pointer to the original FSA, so
in traversing the arcs of the pruned lattice, we know which
arcs will belong to which cell FSAs. However, for ease of
explanation we avoid this detail.

FULL-PARSE-EXPANSION

Input: bag of words Ω of size N
Input: list phrases L(Ω)
Input: word-based LM G
Output: word lattice L of generated sequences
Generate:

1 PARSE-BAG-OF-WORDS(Ω)
2 for each row x = r, . . . , N − 1
3 PRUNE-ROW(x)
4 F ← FSA-REPLACE(FN,1)
5 return L← F ◦G

6 function PRUNE-ROW(x) :
7 F ← ⋃

y Fx,y

8 F ← FSA-REPLACE(F )
9 F ← F ◦G

10 F ← FSA-PRUNE(F, β)
11 for each cell y = 1, . . . ,

(
N
x

)
12 Fx,y ← Fx,y · F
13 return

Figure 4: Pseudocode for Algorithm 1 (excluding
lines 2-3) and Algorithm 2 (including all lines).

the LM during parsing. The pseudocode is identi-
cal to that of Algorithm 1 except for the following
changes: in parsing (Figure 2) we pass G as input
and we call the row pruning function of Figure 4
after line 5 if x ≥ r.

We note that there is a strong connection be-
tween GYRO and the IDL approach of Soricut
and Marcu (2005; 2006). Our bag of words parser
could be cast in the IDL-formalism, and the FSA
‘Replace’ operation would be expressed by an
IDL ‘Unfold’ operation. However, whereas their
work applies pruning in the creation of the IDL-
expression prior to LM application, GYRO uses
unweighted phrase constraints so the LM must be
considered for pruning while parsing.

3 Experimental Results

We now report various experiments evaluating the
performance of the generation approach described
above. The system is evaluated using the MT08-
nw, and MT09-nw testsets. These correspond to
the first English reference of the newswire por-
tion of the Arabic-to-English NIST MT evalua-
tion sets2. They contain 813 and 586 sentences
respectively (53,325 tokens in total; average sen-
tence length = 38.1 tokens after tokenization). In
order to reduce the computational complexity, all
sentences with more than 20 tokens were divided
into sub-sentences, with 20 tokens being the up-
per limit. Between 70-80% of the sentences in the

2http://www.itl.nist.gov/iad/mig/tests/mt
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Figure 5: Average number of extracted phrases as
a function of the bag of word size.

testsets were divided in this way. For each of these
sentences we create a bag.

The GYRO system uses a n-gram LM estimated
over 1.3 billion words of English text, including
the AFP and Xinhua portions of the GigaWord
corpus version 4 (1.1 billion words) and the En-
glish side of various Arabic-English parallel cor-
pora typically used in MT evaluations (0.2 billion
words).

Phrases of up to length 5 are extracted for each
bag from a text collection containing 10.6 bil-
lion words of English news text. We use efficient
Hadoop-based look-up techniques to carry out this
extraction step and to retrieve rules for genera-
tion (Pino et al., 2012). The average number of
phrases extracted as a function of the size of the
bag is shown in Figure 5. These are the phrase-
based rules of our generation grammar.

3.1 Computational Analysis

We analyze here the computational requirements
of the three alternative GYRO algorithms pre-
sented in Sections 2.3 and 2.4. We carry out this
analysis on a subset of 200 random subsentences
from MT08-nw and MT09-nw chosen to have the
same sentence length distribution as the whole
data set. For a fixed generation grammar com-
prised of 3-gram, 4-gram and 5-gram rules only,
we run each algorithm with a memory limitation
of 20GB. If the process reaches this limit, then it
is killed. Figure 6 reports the worst-case memory
memory required by each algorithm as a function
of the size of the bag.

As shown, Full Expansion (Algorithm 1) is only
feasible for bags that contain at most 12 words.
By contrast, Pruned Expansion (Algorithm 2) with
β = 10 is feasible for bags of up to 18 words. For

4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

bag of words size

m
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

in
 G

B
)

 

 

Algorithm 1

Algorithm 2 β=10

Algorithm 3 β=10

Algorithm 3 β=5

Figure 6: Worst-case memory required (GB) by
each GYRO algorithm relative to the size of the
bags.

bigger bags, the requirements of unpruned pars-
ing make generation intractable under the mem-
ory limit. Finally, Pruned Parsing and Generation
(Algorithm 3) is feasible at all bag sizes (up to 20
words), and its memory requirements can be con-
trolled via the beam-width pruning parameter β.
Harsher pruning (i.e. lower β) will incur more
coverage problems, so it is desirable to use the
highest feasible value of β.

We emphasise that Algorithm 3, with suitable
pruning strategies, can scale up to larger problems
quite readily and generate output from much larger
input sets than reported here. We focus here on
generation quality for moderate sized problems.

3.2 Generation Performance

We now compare the GYRO system with the
Combinatory Categorial Grammar (CCG)-based
system described in (Zhang et al., 2012). By
means of extracted CCG rules, the CCG sys-
tem searches for an optimal parse guided by
large-margin training. Each partial hypothesis (or
‘edge’) is scored using the syntax model and a 4-
gram LM trained similarly on one billion words of
English Gigaword data. Both systems are evalu-
ated using BLEU (Papineni et al., 2002; Espinosa
et al., 2010).

For GYRO, we use the pruned parsing algo-
rithm of Section 2.4 with r = 6 and β = 10
and a memory usage limit of 20G. The phrase-
based rules of the grammar contain only 3-grams,
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LM System MT08-nw MT09-nw
4g CCG 48.0 48.8
3g GYRO 59.0 58.4

GYRO +3g 63.0 64.1
4g GYRO +4g 65.5 65.9

100-best oracle 76.1 76.1
lattice oracle 80.4 80.2

Table 1: CCG and GYRO BLEU scores.

4-grams and 5-grams.3 Under these conditions,
GYRO finds an output for 91.4% of the bags. For
the remainder, we obtain an output either by prun-
ing less or by adding bigram rules (in 7.2% of the
bags), or simply by adding all words as unigram
rules (1.4% of the bags).

Table 1 gives the results obtained by CCG and
GYRO under a 3-gram or a 4-gram LM. Because
GYRO outputs word lattices as opposed to a 1-
best hypothesis, we can reapply the same LM to
the concatenated lattices of any sentences longer
than 20 to take into account context in subsentence
boundaries. This is the result in the third row in
the Table, labeled ‘GYRO +3g’. We can see that
GYRO benefits significantly from this rescoring,
beating the CCG system across both sets. This is
possibly explained by the CCG system’s depen-
dence upon in-domain data that have been explic-
itly marked-up using the CCG formalism. The fi-
nal row reports the positive impact of increasing
the LM order to 4.

Impact of generation grammar. To measure
the benefits of using high-order n-grams as con-
straints for generation, we also ran GYRO with
unigram rules only. This effectively does permu-
tation under the LM with the pruning mechanisms
described. The BLEU scores are 54.0 and 54.5 for
MT08-nw and MT09 respectively. This indicates
that a strong GYRO grammar is very much needed
for this type of parsing and generation.

Quality of generated lattices. We assess the
quality of the lattices output by GYRO under the
4-gram LM by computing the oracle BLEU score
of either the 100-best lists or the whole lattices4

in the last two rows of Table 1. In order to com-
pute the latter, we use the linear approximation
to BLEU that allows an efficient FST-based im-
plementation of an Oracle search (Sokolov et al.,
2012). We draw two conclusions from these re-
sults: (a) that there is a significant potential for im-

3Any word in the bag that does not occur in the large col-
lection of English material is added as a 1-gram rule.

4Obtained by pruning at β = 10 in generation.

provement from rescoring, in that even for small
100-best lists the improvement found by the Ora-
cle can exceed 10 BLEU points; and (b) that the
output lattices are not perfect in that the Oracle
score is not 100.

3.2.1 Rescoring GYRO output
We now report on rescoring procedures intended
to improve the first-pass lattices generated by
GYRO.

Higher-order language models. The first row
in Table 2 reports the result obtained when apply-
ing a 5-gram LM to the GYRO lattices generated
under a 4-gram. The 5-gram is estimated over the
complete 10.6 billion word collection using the
uniform backoff strategy of (Brants et al., 2007).
We find improvements of 3.0 and 1.9 BLEU with
respect to the 4-gram baseline.

Dependency language models. We now in-
vestigate the benefits of applying a dependency
LM (Shen et al., 2010) in a rescoring mode. We
run the MALT dependency parser5 on the gener-
ation hypotheses and rescore them according to
log(pLM ) + λdlog(pdepLM ), i.e. a weighted com-
bination of the word-based LM and the depen-
dency LM scores. Since it is not possible to run the
parser on the entire lattice, we carry out this exper-
iment using the 100-best lists generated from the
previous experiment (‘+5g’). The dependency LM
is a 3-gram estimated on the entire GigaWord ver-
sion 5 collection (∼5 billion words). Results are
shown in rows 2 and 3 in Table 2, where in each
row the performance over the set used to tune the
parameter λd is marked with ?. In either case, we
observe modest but consistent gains across both
sets. We find this very promising considering that
the parser has been applied to noisy input sen-
tences.

Minimum Bayes Risk Decoding. We also use
Lattice-based Minimum Bayes Risk (LMBR) de-
coding (Tromble et al., 2008; Blackwood et al.,
2010a). Here, the posteriors over n-grams are
computed over the output lattices generated by the
GYRO system. The result is shown in row labeled
‘+5g +LMBR’, where again we find modest but
consistent gains across the two sets with respect to
the 5-gram rescored lattices.

LMBR with MT posteriors. We investigate
LMBR decoding when applying to the generation
lattice a linear combination of the n-gram pos-

5Available at www.maltparser.org
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4g GYRO rescoring: MT08-nw MT09-nw
+5g 68.5 67.8
+5g +depLM λd = 0.4 68.7 ? 68.1
+5g +depLM λd = 0.33 68.7 68.2 ?

+5g +LMBR 68.6 68.3
+5g +LMBR-mt α = 0.25 70.8 ? 72.2
+5g +LMBR-mt α = 0.25 70.8 72.2 ?

Table 2: Results in BLEU when rescoring the lat-
tices generated by GYRO using various strategies.
Tuning conditions are marked by ?.

terior probabilities extracted from (a) the same
generation lattice, and (b) from lattices produced
by an Arabic-to-English hierarchical-phrase based
MT system developed for the NIST 2012 OpenMT
Evaluation. As noted, LMBR relies on a posterior
distribution over n-grams as part of its computa-
tion or risk. Here, we use LMBR with a posterior
of the form αpGYRO + (1–α) pMT. This is effec-
tively performing a system combination between
the GYRO generation system and the MT system
(de Gispert et al., 2009; DeNero et al., 2010) but
restricting the hypothesis space to be that of the
GYRO lattice (Blackwood et al., 2010b). Results
are reported in the last two rows of Table 2. Rel-
ative to 5-gram LM rescoring alone, we see gains
in BLEU of 2.3 and 4.4 in MT08-nw and MT09-
nw, suggesting that posterior distributions over n-
grams provided by SMT systems can give good
guidance in generation. These results also suggest
that if we knew what words to use, we could gen-
erate very good quality translation output.

3.3 Analysis and examples

Figure 7 gives GYRO generation examples. These
are often fairly fluent, and it is striking how the
output can be improved with guidance from the
SMT system. The examples also show the harsh-
ness of BLEU, e.g. ‘german and turkish officials’
is penalised with respect to ‘ turkish and german
officials.’ Metrics based on richer meaning rep-
resentations, such as HyTER, could be valuable
here (Dreyer and Marcu, 2012).

Figure 8 shows BLEU and Sentence Preci-
sion Rate (SPR), the percentage of exactly recon-
structed sentences. As expected, performance is
sensitive to length. For bags of up to 10, GYRO
reconstructs the reference perfectly in over 65%
of the cases. This is a harsh performance metric,
and performance falls to less than 10% for bags
of size 16-20. For bags of 6-10 words, we find
BLEU scores of greater than 85. Performance is
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Figure 8: GYRO BLEU score and Sentence Pre-
cision Rate as a function of the bag of words size.
Computed on the concatenation of MT08-nw and
MT09-nw.

not as good for shorter segments, since these are
often headlines and bylines that can be ambiguous
in their ordering. The BLEU scores for bags of
size 21 and higher are an artefact of our sentence
splitting procedure. However, even for bag sizes
of 16-to-20 GYRO has BLEU scores above 55.

3.4 Human Assessments
Finally, the CCG and 4g-GYRO+5g systems were
compared using crowd-sourced fluency judge-
ments gathered on CrowdFlower. Judges were
asked ‘Please read the reference sentence and
compare the fluency of items 1 & 2.’ The test was
a selection of 75 fluent sentences of 20 words or
less taken from the MT dev sets. Each comparison
was made by at least 3 judges. With an average se-
lection confidence of 0.754, GYRO was preferred
in 45 cases, CCG was preferred in 14 cases, and
systems were tied 16 times. This is consistent with
the significant difference in BLEU between these
systems.

4 Related Work and Conclusion

Our work is related to surface realisation within
natural language generation (NLG). NLG typi-
cally assumes a relatively rich input representation
intended to provide syntactic, semantic, and other
relationships to guide generation. Example input
representations are Abstract Meaning Represen-
tations (Langkilde and Knight, 1998), attribute-
value pairs (Ratnaparkhi, 2000), lexical predicate-
argument structures (Bangalore and Rambow,
2000), Interleave-Disjunction-Lock (IDL) expres-
sions (Nederhof and Satta, 2004; Soricut and
Marcu, 2005; Soricut and Marcu, 2006), CCG-
bank derived grammars (White et al., 2007),
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Hypothesis SBLEU
REF a third republican senator joins the list of critics of bush ’s policy in iraq .
(a) critics of bush ’s iraq policy in a third of republican senator joins the list . 47.2
(b) critics of bush ’s policy in iraq joins the list of a third republican senator . 69.8
(c) critics of bush ’s iraq policy in a list of republican senator joins the third . 39.1
(d) the list of critics of bush ’s policy in iraq a third republican senator joins . 82.9

REF it added that these messages were sent to president bashar al-asad through turkish and german officials .
(a-c) it added that president bashar al-asad through these messages were sent to german and turkish officials . 61.5
(d) it added that these messages were sent to president bashar al-asad through german and turkish officials . 80.8

REF a prominent republican senator has joined the ranks of critics of george bush ’s policy in iraq , calling
for a new strategy just days before a new confrontation in congress

(a) a prominent republican senator george has joined the ranks of critics of bush ’s policy in iraq , just days
before a new strategy in congress calling for a new confrontation

66.7

(b) a prominent republican senator has joined the ranks of critics of george bush ’s policy in iraq , just days
before congress calling for a new strategy in a new confrontation

77.8

(c) a prominent republican senator has joined the ranks of critics of george bush ’s policy in iraq , just days
before a new strategy in congress calling for a new confrontation

82.3

(d) a prominent republican senator has joined the ranks of critics of george bush ’s policy in iraq , calling
for a new strategy just days before a new confrontation in congress

100

Figure 7: 4g GYRO (Table 2) output examples, with sentence level BLEU: (a) GYRO+4g; (b)
GYRO+5g; (c) GYRO+5g+LMBR; (d) GYRO+5g+LMBR-mt. (a-c) indicates systems with identical
hypotheses.

meaning representation languages (Wong and
Mooney, 2007) and unordered syntactic depen-
dency trees (Guo et al., 2011; Bohnet et al., 2011;
Belz et al., 2011; Belz et al., 2012)6.

These input representations are suitable for ap-
plications such as dialog systems, where the sys-
tem maintains the information needed to gener-
ate the input representation for NLG (Lemon,
2011), or summarisation, where representations
can be automatically extracted from coherent,
well-formed text (Barzilay and Elhadad, 2011; Al-
thaus et al., 2004). However, there are other appli-
cations, such as automatic speech recognition and
SMT that could possibly benefit from NLG, but
which do not generate reliable linguistic annota-
tion in their output. For these problems it would
be useful to have systems, as described in this pa-
per, which do not require rich input representa-
tions. We plan to investigate these applications in
future work.

There is much opportunity for future develop-
ment. To improve coverage, the grammars of Sec-
tion 2.1 could perform generation with overlap-
ping, rather than concatenated, n-grams; and fea-
tures could be included to define tuneable log-
linear rule probabilities (Och and Ney, 2002; Chi-
ang, 2007). The GYRO grammar could be ex-
tended using techniques from string-to-tree SMT,
in particular by modifying the grammar so that
output derivations respect dependencies (Shen et

6Surface Realisation Task, Generation Challenges 2011,
www.nltg.brighton.ac.uk/research/
genchal11

al., 2010); this will make it easier to integrate de-
pendency LMs into GYRO. Finally, it would be
interesting to couple the GYRO architecture with
automata-based models of poetry and rhythmic
text (Greene et al., 2010).
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