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Abstract 

The well-studied supervised Relation 
Extraction algorithms require training 
data that is accurate and has good 
coverage. To obtain such a gold standard, 
the common practice is to do independent 
double annotation followed by 
adjudication. This takes significantly 
more human effort than annotation done 
by a single annotator. We do a detailed 
analysis on a snapshot of the ACE 2005 
annotation files to understand the 
differences between single-pass 
annotation and the more expensive nearly 
three-pass process, and then propose an 
algorithm that learns from the much 
cheaper single-pass annotation and 
achieves a performance on a par with the 
extractor trained on multi-pass annotated 
data. Furthermore, we show that given 
the same amount of human labor, the 
better way to do relation annotation is not 
to annotate with high-cost quality 
assurance, but to annotate more.  

1. Introduction 

Relation Extraction aims at detecting and 
categorizing semantic relations between pairs of 
entities in text. It is an important NLP task that 
has many practical applications such as 
answering factoid questions, building knowledge 
bases and improving web search.  
    Supervised methods for relation extraction 
have been studied extensively since rich 
annotated linguistic resources, e.g. the Automatic 
Content Extraction1 (ACE) training corpus, were 
released. We will give a summary of related 
methods in section 2. Those methods rely on 
accurate and complete annotation. To obtain high 
quality annotation, the common wisdom is to let 

                                                 
1 http://www.itl.nist.gov/iad/mig/tests/ace/ 

two annotators independently annotate a corpus, 
and then asking a senior annotator to adjudicate 
the disagreements 2 . This annotation procedure 
roughly requires 3 passes3 over the same corpus. 
Therefore it is very expensive. The ACE 2005 
annotation on relations is conducted in this way. 
    In this paper, we analyzed a snapshot of ACE 
training data and found that each annotator 
missed a significant fraction of relation mentions 
and annotated some spurious ones. We found 
that it is possible to separate most missing 
examples from the vast majority of true-negative 
unlabeled examples, and in contrast, most of the 
relation mentions that are adjudicated as 
incorrect contain useful expressions for learning 
a relation extractor. Based on this observation, 
we propose an algorithm that purifies negative 
examples and applies transductive inference to 
utilize missing examples during the training 
process on the single-pass annotation. Results 
show that the extractor trained on single-pass 
annotation with the proposed algorithm has a 
performance that is close to an extractor trained 
on the 3-pass annotation. We further show that 
the proposed algorithm trained on a single-pass 
annotation on the complete set of documents has 
a higher performance than an extractor trained on 
3-pass annotation on 90% of the documents in 
the same corpus, although the effort of doing a 
single-pass annotation over the entire set costs 
less than half that of doing 3 passes over 90% of 
the documents. From the perspective of learning 
a high-performance relation extractor, it suggests 
that a better way to do relation annotation is not 
to annotate with a high-cost quality assurance, 
but to annotate more. 

                                                 
2 The senior annotator also found some missing examples as 
shown in figure 1. 
3 In this paper, we will assume that the adjudication pass has 
a similar cost compared to each of the two first-passes. The 
adjudicator may not have to look at as many sentences as an 
annotator, but he is required to review all instances found by 
both annotators. Moreover, he has to be more skilled and 
may have to spend more time on each instance to be able to 
resolve disagreements.  

194



2. Background 

2.1 Supervised Relation Extraction 

One of the most studied relation extraction tasks 
is the ACE relation extraction evaluation 
sponsored by the U.S. government. ACE 2005 
defined 7 major entity types, such as PER 
(Person), LOC (Location), ORG (Organization). 
A relation in ACE is defined as an ordered pair 
of entities appearing in the same sentence which 
expresses one of the predefined relations. ACE 
2005 defines 7 major relation types and more 
than 20 subtypes. Following previous work, we 
ignore sub-types in this paper and only evaluate 
on types when reporting relation classification 
performance. Types include General-affiliation 
(GEN-AFF), Part-whole (PART-WHOLE), 
Person-social (PER-SOC), etc. ACE provides a 
large corpus which is manually annotated with 
entities (with coreference chains between entity 
mentions annotated), relations, events and 
values. Each mention of a relation is tagged with 
a pair of entity mentions appearing in the same 
sentence as its arguments. More details about the 
ACE evaluation are on the ACE official website. 
    Given a sentence s and two entity mentions 
arg1 and arg2 contained in s, a candidate relation 
mention r with argument arg1 preceding arg2 is 
defined as r=(s, arg1, arg2). The goal of Relation 
Detection and Classification (RDC) is to 
determine whether r expresses one of the types 
defined. If so, classify it into one of the types. 
Supervised learning treats RDC as a 
classification problem and solves it with 
supervised Machine Learning algorithms such as 
MaxEnt and SVM. There are two commonly 
used learning strategies (Sun et al., 2011). Given 
an annotated corpus, one could apply a flat 
learning strategy, which trains a single multi-
class classifier on training examples labeled as 
one of the relation types or not-a-relation, and 
apply it to determine its type or output not-a 
relation for each candidate relation mention 
during testing. The examples of each type are the 
relation mentions that are tagged as instances of 
that type, and the not-a-relation examples are 
constructed from pairs of entities that appear in 
the same sentence but are not tagged as any of 
the types. Alternatively, one could apply a 
hierarchical learning strategy, which trains two 
classifiers, a binary classifier RD for relation 
detection and the other a multi-class classifier RC 
for relation classification. RD is trained by 
grouping tagged relation mentions of all types as 

positive instances and using all the not-a-relation 
cases (same as described above) as negative 
examples. RC is trained on the annotated 
examples with their tagged types. During testing, 
RD is applied first to identify whether an 
example expresses some relation, then RC is 
applied to determine the most likely type only if 
it is detected as correct by RD. 
    State-of-the-art supervised methods for 
relation extraction also differ from each other on 
data representation. Given a relation mention, 
feature-based methods (Miller et al., 2000;  
Kambhatla, 2004; Boschee et al., 2005; 
Grishman et al., 2005; Zhou et al., 2005; Jiang 
and Zhai, 2007; Sun et al., 2011) extract a rich 
list of structural, lexical, syntactic and semantic 
features to represent it; in contrast, the kernel 
based methods (Zelenko et al., 2003; Bunescu 
and Mooney, 2005a; Bunescu and Mooney, 
2005b; Zhao and Grishman, 2005; Zhang et al., 
2006a; Zhang et al., 2006b; Zhou et al., 2007; 
Qian et al., 2008) represent each instance with an 
object such as augmented token sequences or a 
parse tree, and used a carefully designed kernel 
function, e.g. subsequence kernel (Bunescu and 
Mooney, 2005b) or convolution tree kernel 
(Collins and Duffy, 2001),  to calculate their 
similarity. These objects are usually augmented 
with features such as semantic features. 

In this paper, we use the hierarchical learning 
strategy since it simplifies the problem by letting 
us focus on relation detection only. The relation 
classification stage remains unchanged and we 
will show that it benefits from improved 
detection. For experiments on both relation 
detection and relation classification, we use 
SVM4 (Vapnik 1998) as the learning algorithm 
since it can be extended to support transductive 
inference as discussed in section 4.3. However, 
for the analysis in section 3.2 and the purification 
preprocess steps in section 4.2, we use a 
MaxEnt5 model since it outputs probabilities6 for 
its predictions.  For the choice of features, we use 
the full set of features from Zhou et al. (2005) 
since it is reported to have a state-of-the-art 
performance (Sun et al., 2011).  

2.2 ACE 2005 annotation 

The ACE 2005 training data contains 599 articles 

                                                 
4 SVM-Light is used. http://svmlight.joachims.org/ 
5 OpenNLP MaxEnt package is used. 
http://maxent.sourceforge.net/about.html 
6 SVM also outputs a value associated with each prediction. 
However, this value cannot be interpreted as probability.  
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from newswire, broadcast news, weblogs, usenet 
newsgroups/discussion forum, conversational 
telephone speech and broadcast conversations. 
The annotation process is conducted as follows: 
two annotators working independently annotate 
each article and complete all annotation tasks 
(entities, values, relations and events). After two 
annotators both finished annotating a file, all 
discrepancies are then adjudicated by a senior 
annotator. This results in a high-quality 
annotation file. More details can be found in the 
documentation of ACE 2005 Multilingual 
Training Data V3.0. 
    Since the final release of the ACE training 
corpus only contains the final adjudicated 
annotations, in which all the traces of the two 
first-pass annotations are removed, we use a 
snapshot of almost-finished annotation, ACE 
2005 Multilingual Training Data V3.0, for our 
analysis. In the remainder of this paper, we will 
call the two independent first-passes of 
annotation fp1 and fp2. The higher-quality data 
done by merging fp1 and fp2 and then having 
disagreements adjudicated by the senior 
annotator is called adj. From this corpus, we 
removed the files that have not been completed 
for all three passes. On the final corpus 
consisting of 511 files, we can differentiate the 
annotations on which the three annotators have 
agreed and disagreed.  
    A notable fact of ACE relation annotation is 
that it is done with arguments from the list of 
annotated entity mentions. For example, in a 
relation mention tyco's ceo and president dennis 
kozlowski which expresses an EMP-ORG 
relation, the two arguments tyco and dennis 
kozlowski must have been tagged as entity 
mentions previously by the annotator. Since fp1 
and fp2 are done on all tasks independently, their 
disagreement on entity annotation will be 
propagated to relation annotation; thus we need 
to deal with these cases specifically.  

3. Analysis of data annotation 

3.1 General statistics 

As discussed in section 2, relation mentions are 
annotated with entity mentions as arguments, and 
the lists of annotated entity mentions vary in fp1, 
fp2 and adj. To estimate the impact propagated 
from entity annotation, we first calculate the ratio 
of overlapping entity mentions between entities 
annotated in fp1/fp2 with adj. We found that 
fp1/fp2 each agrees with adj on around 89% of 

the entity mentions. Following up, we checked 
the relation mentions7 from fp1 and fp2 against 
the adjudicated list of entity mentions from adj 
and found that 682 and 665 relation mentions 
respectively have at least one argument which 
doesn’t appear in the list of adjudicated entity 
mentions. 
    Given the list of relation mentions with both 
arguments appearing in the list of adjudicated 
entity mentions, figure 1 shows the inter-
annotator agreement of the ACE 2005 relation 
annotation. In this figure, the three circles 
represent the list of relation mentions in fp1, fp2 
and adj, respectively. 

3065

1486 1525

645 538

47

383

fp1 fp2

adj  
Figure 1. Inter-annotator agreement of ACE 2005 relation 
annotation. Numbers are the distinct relation mentions 
whose both arguments are in the list of adjudicated entity 
mentions. 
 

    It shows that each annotator missed a 
significant number of relation mentions 
annotated by the other. Considering that we 
removed 682/665 relation mentions from fp1/fp2 
because we generate this figure based on the list 
of adjudicated entity mentions, we estimate that 
fp1 and fp2 both missed around 18.3-28.5%8 of 
the relation mentions. This clearly shows that 
both of the annotators missed a significant 
fraction of the relation mentions. They also 
annotated some spurious relation mentions (as 
adjudicated in adj), although the fraction is 
smaller (close to 10% of all relation mentions in 
adj). 
    ACE 2005 relation annotation guidelines 
(ACE English Annotation Guidelines for 
Relations, version 5.8.3) defined 7 syntactic 
classes and the other class. We plot the 
distribution of syntactic classes of the annotated 

                                                 
7 This is done by selecting the relation mentions whose both 
arguments are in the list of adjudicated entity mentions. 
8 We calculate the lower bound by assuming that the 682 
relation mentions removed from fp1 are found in fp2, 
although with different argument boundary and headword 
tagged. The upper bound is calculated by assuming that they 
are all irrelevant and erroneous relation mentions. 
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relations in figure 2 (3 of the classes, accounting 
together for less than 10% of the cases, are 
omitted) and the other class. It seems that it is 
generally easier for the annotators to find and 
agree on relation mentions of the type 
Preposition/PreMod/Possessives but harder to 
find and agree on the ones belonging to Verbal 
and Other. The definition and examples of these 
syntactic classes can be found in the annotation 
guidelines.  
    In the following sections, we will show the 
analysis on fp1 and adj since the result is similar 
for fp2. 

 
Figure 2. Percentage of examples of major syntactic classes. 

3.2 Why the differences? 

To understand what causes the missing 
annotations and the spurious ones, we need 
methods to find how similar/different the false 
positives are to true positives and also how 
similar/different the false negatives (missing 
annotations) are to true negatives. If we adopt a 
good similarity metric, which captures the 
structural, lexical and semantic similarity 
between relation mentions, this analysis will help 
us to understand the similarity/difference from an 
extraction perspective. 
    We use a state-of-the-art feature space (Zhou 
et al., 2005) to represent examples (including all 
correct examples, erroneous ones and untagged 
examples) and use MaxEnt as the weight 
learning model since it shows competitive 
performance in relation extraction (Jiang and 
Zhai, 2007) and outputs probabilities associated 
with each prediction. We train a MaxEnt model 
for relation detection on true positives and true 
negatives, which respectively are the subset of 
correct examples annotated by fp1 (and 
adjudicated as correct ones) and negative 

examples that are not annotated in adj, and use it 
to make predictions on the mixed pool of correct 
examples, missing examples and spurious ones. 

To illustrate how distinguishable the missing 
examples (false negatives) are from the true 
negative ones, 1) we apply the MaxEnt model on 
both false negatives and true negatives, 2) put 
them together and rank them by the model-
predicted probabilities of being positive, 3) 
calculate their relative rank in this pool. We plot 
the Cumulative distribution of frequency (CDF) 
of the ranks (as percentages in the mixed pools) 
of false negatives in figure 3. We took similar 
steps for the spurious ones (false positives) and 
plot them in figure 3 as well (However, they are 
ranked by model-predicted probabilities of being 
negative). 

 

 
Figure 3: cumulative distribution of frequency (CDF) of the 
relative ranking of model-predicted probability of being 
positive for false negatives in a pool mixed of false 
negatives and true negatives; and the CDF of the relative 
ranking of model-predicted probability of being negative for 
false positives in a pool mixed of false positives and true 
positives. 
 

    For false negatives, it shows a highly skewed 
distribution in which around 75% of the false 
negatives are ranked within the top 10%. That 
means the missing examples are lexically, 
structurally or semantically similar to correct 
examples, and are distinguishable from the true 
negative examples. However, the distribution of 
false positives (spurious examples) is close to 
uniform (flat curve), which means they are 
generally indistinguishable from the correct 
examples. 

3.3 Categorize annotation errors 

The automatic method shows that the errors 
(spurious annotations) are very similar to the 
correct examples but provides little clue as to 
why that is the case. To understand their causes, 
we sampled 65 examples from fp1 (10% of the 
645 errors), read the sentences containing these 
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Category Percentage 
Example 

Relation 
Type Sampled text of spurious examples in fp1 Notes (examples are similar 

ones in adj for comparison) 
Duplicate 
relation 
mention for 
coreferential 
entity mentions 

49.2% ORG-AFF … his budding friendship with US      President 
George W. Bush in the face of … 

… his budding friendship 
with US      President George 
W. Bush in the face of … 

Correct 20% 

PHYS Hundreds of thousands of demonstrators took to 
the streets in Britain…  

PER-SOC The dead included the quack doctor, 55-year-old 
Nityalila Naotia, his teenaged son and… 

(Symmetric relation)  
The dead included the quack 
doctor, 55-year-old Nityalila 
Naotia, his teenaged son 

Argument not 
in list 

15.4% 
 PER-SOC 

Putin had even secretly invited British Prime 
Minister Tony Blair, Bush's staunchest backer      
in the war on Iraq… 

 

Violate 
reasonable 
reader rule 

6.2% PHYS 

"The      amazing thing is they are going to turn 
San Francisco into ground zero for every criminal 
who wants to profit at their chosen profession", 
Paredes said. 

 

Errors 6.1% 

PART-
WHOLE 

…a likely candidate to run Vivendi Universal's 
entertainment unit in the United States… 

Arguments are tagged 
reversed 

PART-
WHOLE 
 

Khakamada argued that the United 
States would also need Russia's help "to make the 
new Iraqi government seem legitimate. 

Relation type error 

illegal 
promotion 
through 
“blocked” 
categories 

3% PHYS 
 

Up to 20,000 protesters thronged the plazas and 
streets of San Francisco, where… 

Up to 20,000 protesters 
thronged the plazas and 
streets of San Francisco, 
where… 

Table 1. Categories of spurious relation mentions in fp1 (on a sample of 10% of relation mentions), ranked by the percentage 
of the examples in each category. In the sample text, red text (also marked with dotted underlines) shows head words of the 
first arguments and the underlined text shows head words of the second arguments. 
 

erroneous relation mentions and compared them 
to the correct relation mentions in the same 
sentence; we categorized these examples and 
show them in table 1. The most common type of 
error is duplicate relation mention for 
coreferential entity mentions. The first row in 
table 1 shows an example, in which there is a 
relation ORG-AFF tagged between US and 
George W. Bush in adj. Because President and 
George W. Bush are coreferential, the example 
<US, President > from fp1 is adjudicated as 
incorrect. This shows that if a relation is 
expressed repeatedly across relation mentions 
whose arguments are coreferential, the 
adjudicator only tags one of the relation mentions 
as correct, although the other is correct too. This 
shared the same principle with another type of 
error illegal promotion through “blocked” 
categories 9  as defined in the annotation 
guideline. The second largest category is correct, 
by which we mean the example is a correct 
relation mention and the adjudicator made a 

                                                 
9 For example, in sentence Smith went to a hotel in Brazil, 
(Smith, hotel) is a taggable PHYS Relation but (Smith, 
Brazil) is not, because to get the second relationship, one 
would have to “promote” Brazil through hotel. For the 
precise definition of annotation rules, please refer to ACE 
(Automatic Content Extraction) English Annotation 
Guidelines for Relations, version 5.8.3. 

mistake. The third largest category is argument 
not in list, by which we mean that at least one of 
the arguments is not in the list of adjudicated 
entity mentions. 
    Based on Table 1, we can see that as many as 
72%-88% of the examples which are adjudicated 
as incorrect are actually correct if viewed from a 
relation learning perspective, since most of them 
contain informative expressions for tagging 
relations.  The annotation guideline is designed 
to ensure high quality while not imposing too 
much burden on human annotators. To reduce 
annotation effort, it defined rules such as illegal 
promotion through “blocked” categories. The 
annotators’ practice suggests that they are 
following another rule not to annotate duplicate 
relation mention for coreferential entity 
mentions. This follows the similar principle of 
reducing annotation effort but is not explicitly 
stated in the guideline: to avoid propagation of a 
relation through a coreference chain. However, 
these examples are useful for learning more ways 
to express a relation. Moreover, even for the 
erroneous examples (as shown in table 1 as 
violate reasonable reader rule and errors), most 
of them have some level of similar structures or 
semantics to the targeted relation. Therefore, it is 
very hard to distinguish them without human 
proofreading. 
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Exp # Training 
data 

Testing 
data 

Detection (%) Classification (%) 
Precision Recall F1 Precision Recall F1 

1 fp1 adj 83.4 60.4 70.0 75.7 54.8 63.6 
2 fp2 adj 83.5 60.5 70.2 76.0 55.1 63.9 
3 adj adj 80.4 69.7 74.6 73.4 63.6 68.2 

Table 2. Performance of RDC trained on fp1/fp2/adj, and tested on adj. 
 

3.4 Why missing annotations and how 
many examples are missing? 

For the large number of missing annotations, 
there are a couple of possible reasons. One 
reason is that it is generally easier for a human 
annotator to annotate correctly given a well-
defined guideline, but it is hard to ensure 
completeness, especially for a task like relation 
extraction.  Furthermore, the ACE 2005 
annotation guideline defines more than 20 
relation subtypes. These many subtypes make it 
hard for an annotator to keep all of them in mind 
while doing the annotation, and thus it is 
inevitable that some examples are missed. 
    Here we proceed to approximate the number 
of missing examples given limited knowledge. 
Let each annotator annotate n examples and 
assume that each pair of annotators agrees on a 
certain fraction p of the examples. Assuming the 
examples are equally likely to be found by an 
annotator, therefore the total number of unique 
examples found by 𝑘  annotators is ∑ (1 −𝑘

𝑖=0
𝑝)𝑖𝑛. If we had an infinite number of annotators 
(𝑘 → ∞), the total number of unique examples 
will be 𝑛

𝑝
, which is the upper bound of the total 

number of examples. In the case of the ACE 
2005 relation mention annotation, since the two 
annotators annotate around 4500 examples and 
they agree on 2/3 of them, the total number of all 
positive examples is around 6750. This is close 
to the number of relation mentions in the 
adjudicated list: 6459. Here we assume the 
adjudicator is doing a more complex task than an 
annotator, resolving the disagreements and 
completing the annotation (as shown in figure 1).  
    The assumption of the calculation is a little 
crude but reasonable given the limited number of 
passes of annotation we have. Recent research (Ji 
et al, 2010) shows that, by adding annotators for 
IE tasks, the merged annotation tends to 
converge after having 5 annotators. To 
understand the annotation behavior better, in 
particular whether annotation will converge after 
adding a few annotators, more passes of 
annotation need to be collected. We leave this as 
future work. 
 

4. Relation extraction with low-cost 
annotation 

4.1 Baseline algorithm 

To see whether a single-pass annotation is useful 
for relation detection and classification, we did 
5-fold cross validation (5-fold CV) with each of 
fp1, fp2 and adj as the training set, and tested on 
adj. The experiments are done with the same 511 
documents we used for the analysis. As shown in 
table 2, we did 5-fold CV on adj for experiment 
3. For fairness, we use settings similar to 5-fold 
CV for experiment 1 and 2. Take experiment 1 as 
an example: we split both of fp1 and adj into 5 
folds, use 4 folds from fp1 as training data, and 1 
fold from adj as testing data and does one train-
test cycle. We rotate the folds (both training and 
testing) and repeat 5 times. The final results are 
averaged over the 5 runs. Experiment 2 was 
conducted similarly. In the reminder of the paper, 
5-fold CV experiments are all conducted in this 
way. 
    Table 2 shows that a relation tagger trained on 
the single-pass annotated data fp1 performs 
worse than the one trained on merged and 
adjudicated data adj, with 4.6 points lower F 
measure in relation detection, and 4.6 points 
lower relation classification. For detection, 
precision on fp1 is 3 points higher than on adj 
but recall is much lower (close to 10 points). The 
recall difference shows that the missing 
annotations contain expressions that can help to 
find more correct examples during testing. The 
small precision difference indirectly shows that 
the spurious ones in fp1 (as adjudicated) do not 
hurt precision. Performance on classification 
shows a similar trend because the relation 
classifier takes the examples predicted by the 
detector as correct as its input. Therefore, if there 
is an error, it gets propagated to this stage. Table 
2 also shows similar performance differences 
between fp2 and adj.  
    In the remainder of this paper, we will discuss 
a few algorithms to improve a relation tagger 
trained on single-pass annotated data10. Since we 

                                                 
10 We only use fp1 and adj in the following experiments 
because we observed that fp1 and fp2 are similar in general 
in the analysis, though a fraction of the annotation in fp1 
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already showed that most of the spurious 
annotations are not actually errors from an 
extraction perspective and table 2 shows that 
they do not hurt precision, we will only focus on 
utilizing the missing examples, in other words, 
training with an incomplete annotation. 

4.2 Purify the set of negative examples 

As discussed in section 2, traditional supervised 
methods find all pairs of entity mentions that 
appear within a sentence, and then use the pairs 
that are not annotated as relation mentions as the 
negative examples for the purpose of training a 
relation detector. It relies on the assumption that 
the annotators annotated all relation mentions 
and missed no (or very few) examples. However, 
this is not true for training on a single-pass 
annotation, in which a significant portion of 
relation mentions are left not annotated. If this 
scheme is applied, all of the correct pairs which 
the annotators missed belong to this “negative” 
category. Therefore, we need a way to purify the 
“negative” set of examples obtained by this 
conventional approach. 
    Li and Liu (2003) focuses on classifying 
documents with only positive examples. Their 
algorithm initially sets all unlabeled data to be 
negative and trains a Rocchio classifier, selects 
negative examples which are closer to the 
negative centroid than positive centroid as the 
purified negative examples, and then retrains the 
model. Their algorithm performs well for text 
classification. It is based on the assumption that 
there are fewer unannotated positive examples 
than negative ones in the   unlabeled set, so true 
negative examples still dominate the set of noisy 
“negative” examples in the purification step. 
Based on the same assumption, our purification 
process consists of the following steps: 

1) Use annotated relation mentions as 
positive examples; construct all possible 
relation mentions that are not annotated, and 
initially set them to be negative. We call this 
noisy data set D. 

2) Train a MaxEnt relation detection model 
Mdet on D. 

3) Apply Mdet  on all unannotated 
examples, and rank them by the model-
predicted probabilities of being positive, 

4) Remove the top N examples from D. 
These preprocessing steps result in a purified 
data set  𝐷𝑝𝑢𝑟𝑒. We can use 𝐷𝑝𝑢𝑟𝑒 for the normal 
                                                                          
and fp2 is different. Moreover, algorithms trained on them 
show similar performance. 

training process of a supervised relation 
extraction algorithm. 
    The algorithm is similar to Li and Liu 2003. 
However, we drop a few noisy examples instead 
of choosing a small purified subset since we have 
relatively few false negatives compared to the 
entire set of unannotated examples. Moreover, 
after step 3, most false negatives are clustered 
within the small region of top ranked examples 
which has a high model-predicated probability of 
being positive. The intuition is similar to what 
we observed from figure 3 for false negatives 
since we also observed very similar distribution 
using the model trained with noisy data. 
Therefore, we can purify negatives by removing 
examples in this noisy subset.  
    However, the false negatives are still mixed 
with true negatives. For example, still slightly 
more than half of the top 2000 examples are true 
negatives. Thus we cannot simply flip their 
labels and use them as positive examples. In the 
following section, we will use them in the form 
of unlabeled examples to help train a better 
model. 

4.3 Transductive inference on unlabeled 
examples 

Transductive SVM (Vapnik, 1998; Joachims, 
1999) is a semi-supervised learning method 
which learns a model from a data set consisting 
of both labeled and unlabeled examples. 
Compared to its popular antecedent SVM, it also 
learns a maximum margin classification 
hyperplane, but additionally forces it to separate 
a set of unlabeled data with large margin. The 
optimization function of Transductive  SVM 
(TSVM) is the following: 
 

 
Figure 4. TSVM optimization function for non-separable 
case (Joachims, 1999) 
 

    TSVM can leverage an unlabeled set of 
examples to improve supervised learning. As 
shown in section 3, a significant number of 
relation mentions are missing from the single-
pass annotation data. Although it is not possible 
to find all missing annotations without human 
effort, we can improve the model by further 
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utilizing the fact that some unannotated examples 
should have been annotated.  
    The purification process discussed in the 
previous section removes N examples which 
have a high density of false negatives. We further 
utilize the N examples as follows: 

1) Construct a training corpus 𝐷ℎ𝑦𝑏𝑟𝑖𝑑 from 
𝐷𝑝𝑢𝑟𝑒  by taking a random sample11 of N*(1-
p)/p (p is the ratio of annotated examples to 
all examples; p=0.05 in fp1) negatively 
labeled examples in 𝐷𝑝𝑢𝑟𝑒 and setting them to 
be unlabeled. In addition, the N examples 
removed by the purification process are added 
back as unlabeled examples.  

2) Train TSVM on 𝐷ℎ𝑦𝑏𝑟𝑖𝑑.  
    The second step trained a model which 
replaced the detection model in the hierarchical 
detection-classification learning scheme we used. 
We will show in the next section that this 
improves the model. 
 

5. Experiments 
 

Experiments were conducted over the same set of 
documents on which we did analysis: the 511 
documents which have completed annotation in 
all of the fp1, fp2 and adj from the ACE 2005 
Multilingual Training Data V3.0. To 
reemphasize, we apply the hierarchical learning 
scheme and we focus on improving relation 
detection while keeping relation classification 
unchanged (results show that its performance is 
improved because of the improved detection). 
We use SVM as our learning algorithm with the 
full feature set from Zhou et al. (2005).  
    Baseline algorithm: The relation detector is 
unchanged. We follow the common practice, 
which is to use annotated examples as positive 
ones and all possible untagged relation mentions 
as negative ones. We sub-sampled the negative 
data by ½ since that shows better performance. 
    +purify:  This algorithm adds an additional 
purification preprocessing step (section 4.2) 
before the hierarchical learning RDC algorithm. 
After purification, the RDC algorithm is trained 
on the positive examples and purified negative 
examples. We set N=200012 in all experiments. 

                                                 
11 We included this large random sample so that the balance 
of positive to negative examples in the unlabeled set would 
be similar to that of the labeled data. The test data is not 
included in the unlabeled set. 
12 We choose 2000 because it is close to the number of 
relations missed from each single-pass annotation. In 
practice, it contains more than 70% of the false negatives, 
and it is less than 10% of the unannotated examples. To 
estimate how many examples are missing (section 3.4), one 

    +tSVM: First, the same purification process of 
+purify is applied. Then we follow the steps 
described in section 4.3 to construct the set of 
unlabeled examples, and set all the rest of 
purified negative examples to be negative. 
Finally, we train TSVM on both labeled and 
unlabeled data and replace the relation detection 
in the RDC algorithm. The relation classification 
is unchanged. 
    Table 3 shows the results. All experiments are 
done with 5-fold cross validation13 using testing 
data from adj. The first three rows show 
experiments trained on fp1, and the last row 
(ADJ) shows the unmodified RDC algorithm 
trained on adj for comparison. The purification 
of negative examples shows significant 
performance gain, 3.7% F1 on relation detection 
and 3.4% on relation classification. The precision 
decreases but recall increases substantially since 
the missing examples are not treated as 
negatives. Experiment shows that the purification 
process removes more than 60% of the false 
negatives. Transductive SVM further improved 
performance by a relatively small margin. This 
shows that the latent positive examples can help 
refine the model. Results also show that 
transductive inference can find around 17% of 
missing relation mentions. We notice that the 
performance of relation classification is 
improved since by improving relation detection, 
some examples that do not express a relation are 
removed. The classification performance on 
single-pass annotation is close to the one trained 
on adj due to the help from a better relation 
detector trained with our algorithm.  
    We also did 5-fold cross validation with a 
model trained on a fraction of the 4/5 (4 folds) of 
adj data (each experiment shown in table 4 uses 
4 folds of adj documents for training since one 
fold is left for cross validation). The documents 
are sampled randomly. Table 4 shows results for 
varying training data size. Compared to the 
results shown in the “+tSVM” row of table 3, we 
can see that our best model trained on single-pass 
annotation outperforms SVM trained on 90% of 
the dual-pass, adjudicated data in both relation 
detection and classification, although it costs less 
than half the 3-pass annotation. This suggests 
that given the same amount of human effort for 

                                                                          
should perform multiple passes of independent annotation 
on a small dataset and measure inter-annotator agreements. 
13 Details about the settings for 5-fold cross validation are in 
section 4.1. 
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Algorithm Detection (%) Classification (%) 
Precision Recall F1 Precision Recall F1 

Baseline 83.4 60.4 70.0 75.7 54.8 63.6 
+purify 76.8 70.9 73.7 69.8 64.5 67.0 
+tSVM 76.4 72.1 74.2 69.4 65.2 67.2 
ADJ (on adj) 80.4 69.7 74.6 73.4 63.6 68.2 

Table 3. 5-fold cross-validation results. All are trained on fp1 (except the last row showing the unchanged algorithm trained 
on adj for comparison), and tested on adj. McNemar's test show that the improvement from +purify to +tSVM, and from 
+tSVM to ADJ are statistically significant (with p<0.05). 
 

Percentage of 
adj used 

Detection (%) Classification (%) 
Precision Recall F1 Precision Recall F1 

60% × 4/5 86.9 41.2 55.8 78.6 37.2 50.5 
70% × 4/5 85.5 51.3 64.1 77.7 46.6 58.2 
80% × 4/5 83.3 58.1 68.4 75.8 52.9 62.3 
90% × 4/5 82.0 64.9 72.5 74.9 59.4 66.2 

Table 4. Performance with SVM trained on a fraction of adj. It shows 5 fold cross validation results. 
 

relation annotation, annotating more documents 
with single-pass offers advantages over 
annotating less data with high quality assurance 
(dual passes and adjudication). 

6. Related work 

Dligach et al. (2010) studied WSD annotation 
from a cost-effectiveness viewpoint. They 
showed empirically that, with same amount of 
annotation dollars spent, single-annotation is 
better than dual-annotation and adjudication. The 
common practice for quality control of WSD 
annotation is similar to Relation annotation. 
However, the task of WSD annotation is very 
different from relation annotation. WSD requires 
that every example must be assigned some tag, 
whereas that is not required for relation tagging. 
Moreover, relation tagging requires identifying 
two arguments and correctly categorizing their 
types.  

The purified approach applied in this paper is 
related to the general framework of learning from 
positive and unlabeled examples. Li and Liu 
(2003) initially set all unlabeled data to be 
negative and train a Rocchio classifier, then 
select negative examples which are closer to the 
negative centroid than positive centroid as the 
purified negative examples.  We share a similar 
assumption with Li and Liu (2003) but we use a 
different method to select negative examples 
since the false negative examples show a very 
skewed distribution, as described in section 5.2.  

Transductive SVM was introduced by Vapnik 
(1998) and later refined in Joachims (1999). A 
few related methods were studied on the subtask 
of relation classification (the second stage of the 
hierarchical learning scheme) in Zhang (2005).   

Chan and Roth (2011) observed the similar 
phenomenon that ACE annotators rarely 
duplicate a relation link for coreferential 

mentions. They use an evaluation scheme to 
avoid being penalized by the relation mentions 
which are not annotated because of this behavior. 
 

7. Conclusion 
 

We analyzed a snapshot of the ACE 2005 
relation annotation and found that each single-
pass annotation missed around 18-28% of 
relation mentions and contains around 10% 
spurious mentions. A detailed analysis showed 
that it is possible to find some of the false 
negatives, and that most spurious cases are 
actually correct examples from a system 
builder’s perspective. By automatically purifying 
negative examples and applying transductive 
inference on suspicious examples, we can train a 
relation classifier whose performance is 
comparable to a classifier trained on the dual-
annotated and adjudicated data. Furthermore, we 
show that single-pass annotation is more cost-
effective than annotation with high quality 
assurance. 
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