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Abstract

A serious bottleneck of comparative parser
evaluation is the fact that different parsers
subscribe to different formal frameworks
and theoretical assumptions. Converting
outputs from one framework to another is
less than optimal as it easily introduces
noise into the process. Here we present a
principled protocol for evaluating parsing
results across frameworks based on func-
tion trees, tree generalization and edit dis-
tance metrics. This extends a previously
proposed framework for cross-theory eval-
uation and allows us to compare a wider
class of parsers. We demonstrate the useful-
ness and language independence of our pro-
cedure by evaluating constituency and de-
pendency parsers on English and Swedish.

1 Introduction

The goal of statistical parsers is to recover a for-
mal representation of the grammatical relations
that constitute the argument structure of natural
language sentences. The argument structure en-
compasses grammatical relationships between el-
ements such as subject, predicate, object, etc.,
which are useful for further (e.g., semantic) pro-
cessing. The parses yielded by different parsing
frameworks typically obey different formal and
theoretical assumptions concerning how to rep-
resent the grammatical relationships in the data
(Rambow, 2010). For example, grammatical rela-
tions may be encoded on top of dependency arcs
in a dependency tree (Mel’čuk, 1988), they may
decorate nodes in a phrase-structure tree (Marcus
et al., 1993; Maamouri et al., 2004; Sima’an et
al., 2001), or they may be read off of positions in

a phrase-structure tree using hard-coded conver-
sion procedures (de Marneffe et al., 2006). This
diversity poses a challenge to cross-experimental
parser evaluation, namely: How can we evaluate
the performance of these different parsers relative
to one another?

Current evaluation practices assume a set of
correctly annotated test data (or gold standard)
for evaluation. Typically, every parser is eval-
uated with respect to its own formal representa-
tion type and the underlying theory which it was
trained to recover. Therefore, numerical scores
of parses across experiments are incomparable.
When comparing parses that belong to different
formal frameworks, the notion of a single gold
standard becomes problematic, and there are two
different questions we have to answer. First, what
is an appropriate gold standard for cross-parser
evaluation? And secondly, how can we alle-
viate the differences between formal representa-
tion types and theoretical assumptions in order to
make our comparison sound – that is, to make sure
that we are not comparing apples and oranges?

A popular way to address this has been to
pick one of the frameworks and convert all
parser outputs to its formal type. When com-
paring constituency-based and dependency-based
parsers, for instance, the output of constituency
parsers has often been converted to dependency
structures prior to evaluation (Cer et al., 2010;
Nivre et al., 2010). This solution has vari-
ous drawbacks. First, it demands a conversion
script that maps one representation type to another
when some theoretical assumptions in one frame-
work may be incompatible with the other one.
In the constituency-to-dependency case, some
constituency-based structures (e.g., coordination
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and ellipsis) do not comply with the single head
assumption of dependency treebanks. Secondly,
these scripts may be labor intensive to create, and
are available mostly for English. So the evalua-
tion protocol becomes language-dependent.

In Tsarfaty et al. (2011) we proposed a gen-
eral protocol for handling annotation discrepan-
cies when comparing parses across different de-
pendency theories. The protocol consists of three
phases: converting all structures into function
trees, for each sentence, generalizing the different
gold standard function trees to get their common
denominator, and employing an evaluation mea-
sure based on tree edit distance (TED) which dis-
cards edit operations that recover theory-specific
structures. Although the protocol is potentially
applicable to a wide class of syntactic represen-
tation types, formal restrictions in the procedures
effectively limit its applicability only to represen-
tations that are isomorphic to dependency trees.

The present paper breaks new ground in the
ability to soundly compare the accuracy of differ-
ent parsers relative to one another given that they
employ different formal representation types and
obey different theoretical assumptions. Our solu-
tion generally confines with the protocol proposed
in Tsarfaty et al. (2011) but is re-formalized to
allow for arbitrary linearly ordered labeled trees,
thus encompassing constituency-based as well as
dependency-based representations. The frame-
work in Tsarfaty et al. (2011) assumes structures
that are isomorphic to dependency trees, bypass-
ing the problem of arbitrary branching. Here we
lift this restriction, and define a protocol which
is based on generalization and TED measures to
soundly compare the output of different parsers.

We demonstrate the utility of this protocol by
comparing the performance of different parsers
for English and Swedish. For English, our
parser evaluation across representation types al-
lows us to analyze and precisely quantify previ-
ously encountered performance tendencies. For
Swedish we show the first ever evaluation be-
tween dependency-based and constituency-based
parsing models, all trained on the Swedish tree-
bank data. All in all we show that our ex-
tended protocol, which can handle linearly-
ordered labeled trees with arbitrary branch-
ing, can soundly compare parsing results across
frameworks in a representation-independent and
language-independent fashion.

2 Preliminaries: Relational Schemes for
Cross-Framework Parse Evaluation

Traditionally, different statistical parsers have
been evaluated using specially designated evalu-
ation measures that are designed to fit their repre-
sentation types. Dependency trees are evaluated
using attachment scores (Buchholz and Marsi,
2006), phrase-structure trees are evaluated using
ParsEval (Black et al., 1991), LFG-based parsers
postulate an evaluation procedure based on f-
structures (Cahill et al., 2008), and so on. From a
downstream application point of view, there is no
significance as to which formalism was used for
generating the representation and which learning
methods have been utilized. The bottom line is
simply which parsing framework most accurately
recovers a useful representation that helps to un-
ravel the human-perceived interpretation.

Relational schemes, that is, schemes that en-
code the set of grammatical relations that con-
stitute the predicate-argument structures of sen-
tences, provide an interface to semantic interpre-
tation. They are more intuitively understood than,
say, phrase-structure trees, and thus they are also
more useful for practical applications. For these
reasons, relational schemes have been repeatedly
singled out as an appropriate level of representa-
tion for the evaluation of statistical parsers (Lin,
1995; Carroll et al., 1998; Cer et al., 2010).

The annotated data which statistical parsers are
trained on encode these grammatical relationships
in different ways. Dependency treebanks provide
a ready-made representation of grammatical rela-
tions on top of arcs connecting the words in the
sentence (Kübler et al., 2009). The Penn Tree-
bank and phrase-structure annotated resources en-
code partial information about grammatical rela-
tions as dash-features decorating phrase structure
nodes (Marcus et al., 1993). Treebanks like Tiger
for German (Brants et al., 2002) and Talbanken
for Swedish (Nivre and Megyesi, 2007) explic-
itly map phrase structures onto grammatical rela-
tions using dedicated edge labels. The Relational-
Realizational structures of Tsarfaty and Sima’an
(2008) encode relational networks (sets of rela-
tions) projected and realized by syntactic cate-
gories on top of ordinary phrase-structure nodes.

Function trees, as defined in Tsarfaty et al.
(2011), are linearly ordered labeled trees in which
every node is labeled with the grammatical func-
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Figure 1: Deterministic conversion into function trees.
The algorithm for extracting a function tree from a de-
pendency tree as in (a) is provided in Tsarfaty et al.
(2011). For a phrase-structure tree as in (b) we can re-
place each node label with its function (dash-feature).
In a relational-realizational structure like (c) we can re-
move the projection nodes (sets) and realization nodes
(phrase labels), which leaves the function nodes intact.

tion of the dominated span. Function trees ben-
efit from the same advantages as other relational
schemes, namely that they are intuitive to under-
stand, they provide the interface for semantic in-
terpretation, and thus may be useful for down-
stream applications. Yet they do not suffer from
formal restrictions inherent in dependency struc-
tures, for instance, the single head assumption.

For many formal representation types there ex-
ists a fully deterministic, heuristics-free, proce-
dure mapping them to function trees. In Figure 1
we illustrate some such procedures for a simple
transitive sentence. Now, while all the structures
at the right hand side of Figure 1 are of the same
formal type (function trees), they have different
tree structures due to different theoretical assump-
tions underlying the original formal frameworks.

(t1) root

f1

f2

w

(t2) root

f2

f1

w

(t3) root

{f1,f2}

w

Figure 2: Unary chains in function trees

Once we have converted framework-specific
representations into function trees, the problem of
cross-framework evaluation can potentially be re-
duced to a cross-theory evaluation following Tsar-
faty et al. (2011). The main idea is that once
all structures have been converted into function
trees, one can perform a formal operation called
generalization in order to harmonize the differ-
ences between theories, and measure accurately
the distance of parse hypotheses from the gener-
alized gold. The generalization operation defined
in Tsarfaty et al. (2011), however, cannot handle
trees that may contain unary chains, and therefore
cannot be used for arbitrary function trees.

Consider for instance (t1) and (t2) in Figure 2.
According to the definition of subsumption in
Tsarfaty et al. (2011), (t1) is subsumed by (t2)
and vice versa, so the two trees should be identi-
cal – but they are not. The interpretation we wish
to give to a function tree such as (t1) is that the
word w has both the grammatical function f1 and
the grammatical function f2. This can be graphi-
cally represented as a set of labels dominating w,
as in (t3). We call structures such as (t3) multi-
function trees. In the next section we formally de-
fine multi-function trees, and then use them to de-
velop our protocol for cross-framework and cross-
theory evaluation.

3 The Proposal: Cross-Framework
Evaluation with Multi-Function Trees

Our proposal is a three-phase evaluation proto-
col in the spirit of Tsarfaty et al. (2011). First,
we obtain a formal common ground for all frame-
works in terms of multi-function trees. Then we
obtain a theoretical common ground by means
of tree-generalization on gold trees. Finally, we
calculate TED-based scores that discard the cost
of annotation-specific edits. In this section, we
define multi-function trees and update the tree-
generalization and TED-based metrics to handle
multi-function trees that reflect different theories.
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Figure 3: The Evaluation Protocol. Different formal frameworks yield different parse and gold formal types.
All types are transformed into multi-function trees. All gold trees enter generalization to yield a new gold for
each sentence. The different δ arcs represent the different edit scripts used for calculating the TED-based scores.

3.1 Defining Multi-Function Trees

An ordinary function tree is a linearly ordered tree
T = (V,A) with yield w1, ..., wn, where internal
nodes are labeled with grammatical function la-
bels drawn from some set L. We use span(v)
and label(v) to denote the yield and label, respec-
tively, of an internal node v. A multi-function tree
is a linearly ordered tree T = (V,A) with yield
w1, ..., wn, where internal nodes are labeled with
sets of grammatical function labels drawn from L
and where v 6= v′ implies span(v) 6= span(v′)
for all internal nodes v, v′. We use labels(v) to
denote the label set of an internal node v.

We interpret multi-function trees as encoding
sets of functional constraints over spans in func-
tion trees. Each node v in a multi-function tree
represents a constraint of the form: for each
l ∈ labels(v), there should be a node v′ in the
function tree such that span(v) = span(v′) and
label(v′) = l. Whenever we have a conversion for
function trees, we can efficiently collapse them
into multi-function trees with no unary produc-
tions, and with label sets labeling their nodes.
Thus, trees (t1) and (t2) in Figure 2 would both
be mapped to tree (t3), which encodes the func-
tional constraints encoded in either of them.

For dependency trees, we assume the conver-
sion to function trees defined in Tsarfaty et al.
(2011), where head daughters always get the la-
bel ‘hd’. For PTB style phrase-structure trees, we
replace the phrase-structure labels with functional
dash-features. In relational-realization structures
we remove projection and realization nodes. De-
terministic conversions exist also for Tiger style
treebanks and frameworks such as LFG, but we
do not discuss them here.1

1All the conversions we use are deterministic and are
defined in graph-theoretic and language-independent terms.
We make them available at http://stp.lingfil.uu.
se/˜tsarfaty/unipar/index.html.

3.2 Generalizing Multi-Function Trees
Once we obtain multi-function trees for all the
different gold standard representations in the sys-
tem, we feed them to a generalization operation
as shown in Figure 3. The goal of this opera-
tion is to provide a consensus gold standard that
captures the linguistic structure that the different
gold theories agree on. The generalization struc-
tures are later used as the basis for the TED-based
evaluation. Generalization is defined by means of
subsumption. A multi-function tree subsumes an-
other one if and only if all the constraints defined
by the first tree are also defined by the second tree.
So, instead of demanding equality of labels as in
Tsarfaty et al. (2011), we demand set inclusion:

T-Subsumption, denoted vt, is a relation
between multi-function trees that indicates
that a tree π1 is consistent with and more
general than tree π2. Formally: π1 vt π2

iff for every node n ∈ π1 there exists a node
m ∈ π2 such that span(n) = span(m) and
labels(n) ⊆ labels(m).

T-Unification, denoted tt, is an operation
that returns the most general tree structure
that contains the information from both input
trees, and fails if such a tree does not exist.
Formally: π1 tt π2 = π3 iff π1 vt π3 and
π2 vt π3, and for all π4 such that π1 vt π4

and π2 vt π4 it holds that π3 vt π4.

T-Generalization, denoted ut, is an opera-
tion that returns the most specific tree that
is more general than both trees. Formally,
π1utπ2 = π3 iff π3 vt π1 and π3 vt π2, and
for every π4 such that π4 vt π1 and π4 vt π2

it holds that π4 vt π3.

The generalization tree contains all nodes that ex-
ist in both trees, and for each node it is labeled by

47



the intersection of the label sets dominating the
same span in both trees. The unification tree con-
tains nodes that exist in one tree or another, and
for each span it is labeled by the union of all label
sets for this span in either tree. If we generalize
two trees and one tree has no specification for la-
bels over a span, it does not share anything with
the label set dominating the same span in the other
tree, and the label set dominating this span in the
generalized tree is empty. If the trees do not agree
on any label for a particular span, the respective
node is similarly labeled with an empty set. When
we wish to unify theories, then an empty set over
a span is unified with any other set dominating the
same span in the other tree, without altering it.

Digression: Using Unification to Merge Infor-
mation From Different Treebanks In Tsarfaty
et al. (2011), only the generalization operation
was used, providing the common denominator of
all the gold structures and serving as a common
ground for evaluation. The unification operation
is useful for other NLP tasks, for instance, com-
bining information from two different annotation
schemes or enriching one annotation scheme with
information from a different one. In particular,
we can take advantage of the new framework to
enrich the node structure reflected in one theory
with grammatical functions reflected in an anno-
tation scheme that follows a different theory. To
do so, we define the Tree-Labeling-Unification
operation on multi-function trees.

TL-Unification, denoted ttl, is an opera-
tion that returns a tree that retains the struc-
ture of the first tree and adds labels that ex-
ist over its spans in the second tree. For-
mally: π1 ttl π2 = π3 iff for every node
n ∈ π1 there exists a node m ∈ π3 such
that span(m) = span(n) and labels(m) =
labels(n) ∪ labels(π2, span(n)).

Where labels(π2, span(n)) is the set of labels of
the node with yield span(n) in π2 if such a node
exists and ∅ otherwise. We further discuss the TL-
Unification and its use for data preparation in §4.

3.3 TED Measures for Multi-Function Trees

The result of the generalization operation pro-
vides us with multi-function trees for each of the
sentences in the test set representing sets of con-
straints on which the different gold theories agree.

We would now like to use distance-based met-
rics in order to measure the gap between the gold
and predicted theories. The idea behind distance-
based evaluation in Tsarfaty et al. (2011) is that
recording the edit operations between the native
gold and the generalized gold allows one to dis-
card their cost when computing the cost of a parse
hypothesis turned into the generalized gold. This
makes sure that different parsers do not get penal-
ized, or favored, due to annotation specific deci-
sions that are not shared by other frameworks.

The problem is now that TED is undefined with
respect to multi-function trees because it cannot
handle complex labels. To overcome this, we
convert multi-function trees into sorted function
trees, which are simply function trees in which
any label set is represented as a unary chain of
single-labeled nodes, and the nodes are sorted ac-
cording to the canonical order of their labels.2 In
case of an empty set, a 0-length chain is created,
that is, no node is created over this span. Sorted
function trees prevent reordering nodes in a chain
in one tree to fit the order in another tree, since it
would violate the idea that the set of constraints
over a span in a multi-function tree is unordered.

The edit operations we assume are add-
node(l, i, j) and delete-node(l, i, j) where l ∈ L
is a grammatical function label and i < j define
the span of a node in the tree. Insertion into a
unary chain must confine with the canonical order
of the labels. Every operation is assigned a cost.
An edit script is a sequence of edit operations that
turns a function tree π1 into π2, that is:

ES(π1, π2) = 〈e1, . . . , ek〉

Since all operations are anchored in spans, the se-
quence can be determined to have a unique order
of traversing the tree (say, DFS). Different edit
scripts then only differ in their set of operations
on spans. The edit distance problem is finding the
minimal cost script, that is, one needs to solve:

ES∗(π1, π2) = min
ES(π1,π2)

∑
e∈ES(π1,π2)

cost(e)

In the current setting, when using only add and
delete operations on spans, there is only one edit
script that corresponds to the minimal edit cost.
So, finding the minimal edit script entails finding
a single set of operations turning π1 into π2.

2The ordering can be alphabetic, thematic, etc.
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We can now define δ for the ith framework, as
the error of parsei relative to its native gold stan-
dard goldi and to the generalized gold gen. This
is the edit cost minus the cost of the script turning
parsei into gen intersected with the script turning
goldi into gen. The underlying intuition is that
if an operation that was used to turn parsei into
gen is used to discard theory-specific information
from goldi, its cost should not be counted as error.

δ(parsei, goldi, gen) = cost(ES∗(parsei, gen))

−cost(ES∗(parsei, gen) ∩ ES∗(goldi, gen))

In order to turn distance measures into parse-
scores we now normalize the error relative to the
size of the trees and subtract it from a unity. So
the Sentence Score for parsing with framework i
is:

score(parsei, goldi, gen) =

1− δ(parsei, goldi,gen)

|parsei|+ |gen|
Finally, Test-Set Average is defined by macro-
avaraging over all sentences in the test-set:

1−
∑|testset|

j=1 δ(parseij , goldij , genj)∑|testset|
j=1 |parseij |+ |genj |

This last formula represents the TEDEVAL metric
that we use in our experiments.

A Note on System Complexity Conversion of
a dependency or a constituency tree into a func-
tion tree is linear in the size of the tree. Our
implementation of the generalization and unifica-
tion operation is an exact, greedy, chart-based al-
gorithm that runs in polynomial time (O(n2) in
n the number of terminals). The TED software
that we utilize builds on the TED efficient algo-
rithm of Zhang and Shasha (1989) which runs in
O(|T1||T2|min(d1, n1) min(d2, n2)) time where
di is the tree degree (depth) and ni is the number
of terminals in the respective tree (Bille, 2005).

4 Experiments

We validate our cross-framework evaluation pro-
cedure on two languages, English and Swedish.
For English, we compare the performance of
two dependency parsers, MaltParser (Nivre et al.,
2006) and MSTParser (McDonald et al., 2005),
and two constituency-based parsers, the Berkeley

parser (Petrov et al., 2006) and the Brown parser
(Charniak and Johnson, 2005). All experiments
use Penn Treebank (PTB) data. For Swedish,
we compare MaltParser and MSTParser with two
variants of the Berkeley parser, one trained on
phrase structure trees, and one trained on a vari-
ant of the Relational-Realizational representation
of Tsarfaty and Sima’an (2008). All experiments
use the Talbanken Swedish Treebank (STB) data.

4.1 English Cross-Framework Evaluation
We use sections 02–21 of the WSJ Penn Tree-
bank for training and section 00 for evaluation and
analysis. We use two different native gold stan-
dards subscribing to different theories of encoding
grammatical relations in tree structures:

◦ THE DEPENDENCY-BASED THEORY is the
theory encoded in the basic Stanford Depen-
dencies (SD) scheme. We obtain the set of
basic stanford dependency trees using the
software of de Marneffe et al. (2006) and
train the dependency parsers directly on it.

◦ THE CONSTITUENCY-BASED THEORY is
the theory reflected in the phrase-structure
representation of the PTB (Marcus et al.,
1993) enriched with function labels compat-
ible with the Stanford Dependencies (SD)
scheme. We obtain trees that reflect this
theory by TL-Unification of the PTB multi-
function trees with the SD multi-function
trees (PTBttlSD) as illustrated in Figure 4.

The theory encoded in the multi-function trees
corresponding to SD is different from the one
obtained by our TL-Unification, as may be seen
from the difference between the flat SD multi-
function tree and the result of the PTBttlSD in
Figure 4. Another difference concerns coordina-
tion structures, encoded as binary branching trees
in SD and as flat productions in the PTBttlSD.
Such differences are not only observable but also
quantifiable, and using our redefined TED metric
the cross-theory overlap is 0.8571.

The two dependency parsers were trained using
the same settings as in Tsarfaty et al. (2011), using
SVMTool (Giménez and Màrquez, 2004) to pre-
dict part-of-speech tags at parsing time. The two
constituency parsers were used with default set-
tings and were allowed to predict their own part-
of-speech tags. We report three different evalua-
tion metrics for the different experiments:
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(SD) -ROOT- John loves Mary
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root

⇒ root

sbj

John

hd
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Mary

⇒ {root}
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{hd}

loves

{obj}

Mary

(PTB) ttl (SD) = {root}

{sbj}

John

∅

{hd}

loves

{obj}

Mary

Figure 4: Conversion of PTB and SD tree to multi-
function trees, followed by TL-Unification of the trees.
Note that some PTB nodes remain without an SD label.

◦ LAS/UAS (Buchholz and Marsi, 2006)
◦ PARSEVAL (Black et al., 1991)
◦ TEDEVAL as defined in Section 3

We use LAS/UAS for dependency parsers that
were trained on the same dependency theory. We
use ParseEval to evaluate phrase-structure parsers
that were trained on PTB trees in which dash-
features and empty traces are removed. We
use our implementation of TEDEVAL to evaluate
parsing results across all frameworks under two
different scenarios:3 TEDEVAL SINGLE evalu-
ates against the native gold multi-function trees.
TEDEVAL MULTIPLE evaluates against the gen-
eralized (cross-theory) multi-function trees. Un-
labeled TEDEVAL scores are obtained by sim-
ply removing all labels from the multi-function
nodes, and using unlabeled edit operations. We
calculate pairwise statistical significance using a
shuffling test with 10K iterations (Cohen, 1995).

Tables 1 and 2 present the results of our cross-
framework evaluation for English Parsing. In the
left column of Table 1 we report ParsEval scores
for constituency-based parsers. As expected, F-
Scores for the Brown parser are higher than the
F-Scores of the Berkeley parser. F-Scores are
however not applicable across frameworks. In
the rightmost column of Table 1 we report the
LAS/UAS results for all parsers. If a parser yields

3Our TedEval software can be downloaded at
http://stp.lingfil.uu.se/˜tsarfaty/
unipar/download.html.

a constituency tree, it is converted to and evalu-
ated on SD. Here we see that MST outperforms
Malt, though the differences for labeled depen-
dencies are insignificant. We also observe here a
familiar pattern from Cer et al. (2010) and others,
where the constituency parsers significantly out-
perform the dependency parsers after conversion
of their output into dependencies.

The conversion to SD allows one to compare
results across formal frameworks, but not with-
out a cost. The conversion introduces a set of an-
notation specific decisions which may introduce
a bias into the evaluation. In the middle column
of Table 1 we report the TEDEVAL metrics mea-
sured against the generalized gold standard for all
parsing frameworks. We can now confirm that
the constituency-based parsers significantly out-
perform the dependency parsers, and that this is
not due to specific theoretical decisions which are
seen to affect LAS/UAS metrics (Schwartz et al.,
2011). For the dependency parsers we now see
that Malt outperforms MST on labeled dependen-
cies slightly, but the difference is insignificant.

The fact that the discrepancy in theoretical as-
sumptions between different frameworks indeed
affects the conversion-based evaluation procedure
is reflected in the results we report in Table 2.
Here the leftmost and rightmost columns report
TEDEVAL scores against the own native gold
(SINGLE) and the middle column against the gen-
eralized gold (MULTIPLE). Had the theories
for SD and PTBttlSD been identical, TEDEVAL

SINGLE and TEDEVAL MULTIPLE would have
been equal in each line. Because of theoretical
discrepancies, we see small gaps in parser perfor-
mance between these cases. Our protocol ensures
that such discrepancies do not bias the results.

4.2 Cross-Framework Swedish Parsing
We use the standard training and test sets of the
Swedish Treebank (Nivre and Megyesi, 2007)
with two gold standards presupposing different
theories:

• THE DEPENDENCY-BASED THEORY is the
dependency version of the Swedish Tree-
bank. All trees are projectivized (STB-Dep).

• THE CONSTITUENCY-BASED THEORY is
the standard Swedish Treebank with gram-
matical function labels on the edges of con-
stituency structures (STB).
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Formalism PS Trees MF Trees Dep Trees
Theory PTB tlt SD (PTB tlt SD) SD

ut SD
Metrics PARSEVAL TEDEVAL ATTSCORES

MALT N/A
U: 0.9525
L: 0.9088

U: 0.8962
L: 0.8772

MST N/A
U: 0.9549
L: 0.9049

U: 0.9059
L: 0.8795

BERKELEY
F-Scores
0.9096

U: 0.9677
L: 0.9227

U: 0.9254
L: 0.9031

BROWN
F-Scores
0.9129

U: 0.9702
L: 0.9264

U: 0.9289
L: 0.9057

Table 1: English cross-framework evaluation: Three
measures as applicable to the different schemes. Bold-
face scores are highest in their column. Italic scores
are the highest for dependency parsers in their column.

Formalism PS Trees MF Trees Dep Trees
Theory PTB tlt SD (PTB tlt SD) SD

ut SD
Metrics TEDEVAL TEDEVAL TEDEVAL

SINGLE MULTIPLE SINGLE

MALT N/A
U: 0.9525
L: 0.9088

U: 0.9524
L: 0.9186

MST N/A
U: 0.9549
L: 0.9049

U: 0.9548
L: 0.9149

BERKELEY
U: 0.9645
L: 0.9271

U: 0.9677
L: 0.9227

U: 0.9649
L: 0.9324

BROWN
U: 0.9667
L: 0.9301

U: 9702
L: 9264

U: 0.9679
L: 0.9362

Table 2: English cross-framework evaluation: TEDE-
VAL scores against gold and generalized gold. Bold-
face scores are highest in their column. Italic scores
are highest for dependency parsers in their column.

Because there are no parsers that can out-
put the complete STB representation including
edge labels, we experiment with two variants of
this theory, one which is obtained by simply re-
moving the edge labels and keeping only the
phrase-structure labels (STB-PS) and one which
is loosely based on the Relational-Realizational
scheme of Tsarfaty and Sima’an (2008) but ex-
cludes the projection set nodes (STB-RR). RR
trees only add function nodes to PS trees, and
it holds that STB-PSutSTB-RR=STB-PS. The
overlap between the theories expressed in multi-
function trees originating from STB-Dep and
STB-RR is 0.7559. Our evaluation protocol takes
into account such discrepancies while avoiding
biases that may be caused due to these differences.

We evaluate MaltParser, MSTParser and two
versions of the Berkeley parser, one trained on
STB-PS and one trained on STB-RR. We use
predicted part-of-speech tags for the dependency

Formalism PS Trees MF Trees Dep Trees
Theory STB STB ut Dep Dep
Metrics PARSEVAL TEDEVAL ATTSCORE

MALT N/A
U: 0.9266
L: 0.8225

U: 0.8298
L: 0.7782

MST N/A
U: 0.9275
L: 0.8121

U: 0.8438
L: 0.7824

BKLY/STB-RR
F-Score
0.7914

U: 0.9281
L: 0.7861

N/A

BKLY/STB-PS
F-Score
0.7855

N/A N/A

Table 3: Swedish cross-framework evaluation: Three
measures as applicable to the different schemes. Bold-
face scores are the highest in their column.

Formalism PS Trees MF Trees Dep Trees
Theory STB STB ut Dep Dep
Metrics TEDEVAL TEDEVAL TEDEVAL

SINGLE MULTIPLE SINGLE

MALT N/A
U: 0.9266
L: 0.8225

U: 0.9264
L: 0.8372

MST N/A
U: 0.9275
L: 0.8121

U: 0.9272
L: 0.8275

BKLY-STB-RR
U: 0.9239
L: 0.7946

U: 0.9281
L: 0.7861

N/A

Table 4: Swedish cross-framework evaluation: TEDE-
VAL scores against the native gold and the generalized
gold. Boldface scores are the highest in their column.

parsers, using the HunPoS tagger (Megyesi,
2009), but let the Berkeley parser predict its own
tags. We use the same evaluation metrics and pro-
cedures as before. Prior to evaluating RR trees
using ParsEval we strip off the added function
nodes. Prior to evaluating them using TedEval we
strip off the phrase-structure nodes.

Tables 3 and 4 summarize the parsing results
for the different Swedish parsers. In the leftmost
column of table 3 we present the constituency-
based evaluation measures. Interestingly, the
Berkeley RR instantiation performs better than
when training the Berkeley parser on PS trees.
These constituency-based scores however have a
limited applicability, and we cannot use them to
compare constituency and dependency parsers. In
the rightmost column of Table 3 we report the
LAS/UAS results for the two dependency parsers.
Here we see higher performance demonstrated by
MST on both labeled and unlabeled dependen-
cies, but the differences on labeled dependencies
are insignificant. Since there is no automatic pro-
cedure for converting bare-bone phrase-structure
Swedish trees to dependency trees, we cannot use
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LAS/UAS to compare across frameworks, and we
use TEDEVAL for cross-framework evaluation.

Training the Berkeley parser on RR trees which
encode a mapping of PS nodes to grammatical
functions allows us to compare parse results for
trees belonging to the STB theory with trees obey-
ing the STB-Dep theory. For unlabeled TEDE-
VAL scores, the dependency parsers perform at the
same level as the constituency parser, though the
difference is insignificant. For labeled TEDEVAL

the dependency parsers significantly outperform
the constituency parser. When considering only
the dependency parsers, there is a small advantage
for Malt on labeled dependencies, and an advan-
tage for MST on unlabeled dependencies, but the
latter is insignificant. This effect is replicated in
Table 4 where we evaluate dependency parsers us-
ing TEDEVAL against their own gold theories. Ta-
ble 4 further confirms that there is a gap between
the STB and the STB-Dep theories, reflected in
the scores against the native and generalized gold.

5 Discussion

We presented a formal protocol for evaluating
parsers across frameworks and used it to soundly
compare parsing results for English and Swedish.
Our approach follows the three-phase protocol of
Tsarfaty et al. (2011), namely: (i) obtaining a for-
mal common ground for the different representa-
tion types, (ii) computing the theoretical common
ground for each test sentence, and (iii) counting
only what counts, that is, measuring the distance
between the common ground and the parse tree
while discarding annotation-specific edits.

A pre-condition for applying our protocol is the
availability of a relational interpretation of trees in
the different frameworks. For dependency frame-
works this is straightforward, as these relations
are encoded on top of dependency arcs. For con-
stituency trees with an inherent mapping of nodes
onto grammatical relations (Merlo and Musillo,
2005; Gabbard et al., 2006; Tsarfaty and Sima’an,
2008), a procedure for reading relational schemes
off of the trees is trivial to implement.

For parsers that are trained on and parse into
bare-bones phrase-structure trees this is not so.
Reading off the relational structure may be more
costly and require interjection of additional theo-
retical assumptions via manually written scripts.
Scripts that read off grammatical relations based
on tree positions work well for configurational

languages such as English (de Marneffe et al.,
2006) but since grammatical relations are re-
flected differently in different languages (Postal
and Perlmutter, 1977; Bresnan, 2000), a proce-
dure to read off these relations in a language-
independent fashion from phrase-structure trees
does not, and should not, exist (Rambow, 2010).

The crucial point is that even when using ex-
ternal scripts for recovering a relational scheme
for phrase-structure trees, our protocol has a clear
advantage over simply scoring converted trees.
Manually created conversion scripts alter the the-
oretical assumptions inherent in the trees and thus
may bias the results. Our generalization operation
and three-way TED make sure that theory-specific
idiosyncrasies injected through such scripts do
not lead to over-penalizing or over-crediting
theory-specific structural variations.

Certain linguistic structures cannot yet be eval-
uated with our protocol because of the strict as-
sumption that the labeled spans in a parse form a
tree. In the future we plan to extend the protocol
for evaluating structures that go beyond linearly-
ordered trees in order to allow for non-projective
trees and directed acyclic graphs. In addition, we
plan to lift the restriction that the parse yield is
known in advance, in order to allow for evalua-
tion of joint parse-segmentation hypotheses.

6 Conclusion

We developed a protocol for comparing parsing
results across different theories and representa-
tion types which is framework-independent in the
sense that it can accommodate any formal syntac-
tic framework that encodes grammatical relations,
and it is language-independent in the sense that
there is no language specific knowledge encoded
in the procedure. As such, this protocol is ad-
equate for parser evaluation in cross-framework
and cross-language tasks and parsing competi-
tions, and using it across the board is expected
to open new horizons in our understanding of the
strengths and weaknesses of different parsers in
the face of different theories and different data.
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Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Paola Merlo and Gabriele Musillo. 2005. Accurate
function parsing. In Proceedings of EMNLP, pages
620–627.

Joakim Nivre and Beata Megyesi. 2007. Bootstrap-
ping a Swedish Treebank using cross-corpus har-
monization and annotation projection. In Proceed-
ings of TLT.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of LREC, pages
2216–2219.

Joakim Nivre, Laura Rimell, Ryan McDonald, and
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