
Adaptive Transformation-based Learning for
Improving Dictionary Tagging

Burcu Karagol-Ayan, David Doermann, and Amy Weinberg

Institute for Advanced Computer Studies (UMIACS)

University of Maryland

College Park, MD 20742

{burcu,doermann,weinberg}@umiacs.umd.edu

Abstract

We present an adaptive technique that en-

ables users to produce a high quality dic-

tionary parsed into its lexicographic com-

ponents (headwords, pronunciations, parts

of speech, translations, etc.) using an

extremely small amount of user provided

training data. We use transformation-

based learning (TBL) as a postprocessor at

two points in our system to improve per-

formance. The results using two dictio-

naries show that the tagging accuracy in-

creases from 83% and 91% to 93% and

94% for individual words or “tokens”, and

from 64% and 83% to 90% and 93% for

contiguous “phrases” such as definitions

or examples of usage.

1 Introduction

The availability and use of electronic resources

such as electronic dictionaries has increased tre-

mendously in recent years and their use in

Natural Language Processing (NLP) systems is

widespread. For languages with limited electronic

resources, i.e. low-density languages, however,

we cannot use automated techniques based on par-

allel corpora (Gale and Church, 1991; Melamed,

2000; Resnik, 1999; Utsuro et al., 2002), compa-

rable corpora (Fung and Yee, 1998), or multilin-

gual thesauri (Vossen, 1998). Yet for these low-

density languages, printed bilingual dictionaries

often offer effective mapping from the low-density

language to a high-density language, such as En-

glish.

Dictionaries can have different formats and can

provide a variety of information. However, they

typically have a consistent layout of entries and a

1 Headword 5 Translation
2 POS 6 Example of usage
3 Sense number 7 Example of usage translation
4 Synonym 8 Subcategorization

Figure 1: Sample tagged dictionary entries. Eight

tags are identified and tagged in the given entries.

consistent structure within entries. Publishers of

dictionaries often use a combination of features to

impose this structure including (1) changes in font

style, font-size, etc. that make implicit the lexico-

graphic information1, such as headwords, pronun-

ciations, parts of speech (POS), and translations,

(2) keywords that provide an explicit interpreta-

tion of the lexicographic information, and (3) var-

ious separators that impose an overall structure on

the entry. For example, a boldface font may in-

dicate a headword, italics may indicate an exam-

ple of usage, keywords may designate the POS,

commas may separate different translations, and a

numbering system may identify different senses of

a word.

We developed an entry tagging system that rec-

ognizes, parses, and tags the entries of a printed

dictionary to reproduce the representation elec-

tronically (Karagol-Ayan et al., 2003). The sys-

tem aims to use features as described above and

the consistent layout and structure of the dictio-

1For the purposes of this paper, we will refer to the lexi-
cographic information as tag when necessary.

257

naries to capture and recover the lexicographic in-

formation in the entries. Each token2 or group of

tokens (phrase)3 in an entry associates with a tag

indicating its lexicographic information in the en-

try. Figure 1 shows sample tagged entries in which

eight different types of lexicographic information

are identified and marked. The system gets for-

mat and style information from a document image

analyzer module (Ma and Doermann, 2003) and

is retargeted at many levels with minimal human

assistance.

A major requirement for a human aided dic-

tionary tagging application is the need to mini-

mize human generated training data.4 This re-

quirement limits the effectiveness of data driven

methods for initial training. We chose rule-based

tagging that uses the structure to analyze and tag

tokens as our baseline, because it outperformed

the baseline results of an HMM tagger. The ap-

proach has demonstrated promising results, but we

will show its shortcomings can be improved by ap-

plying a transformation-based learning (TBL) post

processing technique.

TBL (Brill, 1995) is a rule-based machine learn-

ing method with some attractive qualities that

make it suitable for language related tasks. First,

the resulting rules are easily reviewed and under-

stood. Second, it is error-driven, thus directly min-

imizes the error rate (Florian and Ngai, 2001).

Furthermore, TBL can be applied to other annota-

tion systems’ output to improve performance. Fi-

nally, it makes use of the features of the token and

those in the neighborhood surrounding it.

In this paper, we describe an adaptive TBL

based technique to improve the performance of the

rule-based entry tagger, especially targeting cer-

tain shortcomings. We first investigate how using

TBL to improve the accurate rendering of tokens’

font style affects the rule-based tagging accuracy.

We then apply TBL on tags of the tokens. In our

experiments with two dictionaries, the range of

font style accuracies is increased from 84%-94%

to 97%-98%, and the range of tagging accuracies

is increased from 83%-90% to 93%-94% for to-

kens, and from 64%-83% to 90%-93% for phrases.

Section 2 discusses the rule-based entry tagging

2Token is a set of glyphs (i.e., a visual representation of a
set of characters) in the OCRed output. Each punctuation is
counted as a token as well.

3In Figure 1, not on time is a phrase consisting of 3 tokens.
4For our experiments we required hand tagging of no

more than eight pages that took around three hours of human
effort.

method. In Section 3, we briefly describe TBL,

and Section 4 recounts how we apply TBL to im-

prove the performance of the rule-based method.

Section 5 explains the experiments and results, and

we conclude with future work.

2 A Rule-based Dictionary Entry Tagger

The rule-based entry tagger (Karagol-Ayan et al.,

2003) utilizes the repeating structure of the dic-

tionaries to identify and tag the linguistic role

of tokens or sets of tokens. Rule-based tagging

uses three different types of clues—font style, key-

words and separators—to tag the entries in a sys-

tematic way. The method accommodates noise in-

troduced by the document analyzer by allowing

for a relaxed matching of OCRed output to tags.

For each dictionary, a human operator must spec-

ify the lexicographic information used in that par-

ticular dictionary, along with the clues for each

tag. This process can be performed in a few hours.

The rule-based method alone achieved token accu-

racy between 73%-87% and phrase accuracy be-

tween 75%-89% in experiments conducted using

three different dictionaries5.

The rule-based method has demonstrated prom-

ising results, but has two shortcomings. First, the

method does not consider the relations between

different tags in the entries. While not a prob-

lem for some dictionaries, for others ordering the

relations between tags may be the only informa-

tion that will tag a token correctly. Consider the

dictionary entries in Figure 1. In this dictionary,

the word “a” represents POS when in italic font,

and part of a translation if in normal font. How-

ever if the font is incorrect (font errors are more

likely to happen with short tokens), the only way

to mark correctly the tag involves checking the

neighboring tokens and tags to determine its rel-

ative position within the entry. When the token

has an incorrect font or OCR errors exist, and

the other clues are ambiguous or inconclusive, the

rule-based method may yield incorrect results.

Second, the rule-based method can produce in-

correct splitting and/or merging of phrases. An er-

roneous merge of two tokens as a phrase may take

place either because of a font error in one of the

tokens or the lack of a separator, such as a punctu-

ation mark. A phrase may split erroneously either

5Using HMMs for entry tagging on the same set of dic-
tionaries produced slightly lower performance, resulting in
token accuracy between 73%-88% and phrase accuracy be-
tween 57%-85%.

258

as a result of a font error or an ambiguous separa-

tor. For instance, a comma may be used after an

example of usage to separate it from its translation

or within it as a normal punctuation mark.

3 TBL

TBL (Brill, 1995), a rule-based machine learning

algorithm, has been applied to various NLP tasks.

TBL starts with an initial state, and it requires a

correctly annotated training corpus, or truth, for

the learning (or training) process. The iterative

learning process acquires an ordered list of rules

or transformations that correct the errors in this

initial state. At each iteration, the transformation

which achieved the largest benefit during appli-

cation is selected. During the learning process,

the templates of allowable transformations limit

the search space for possible transformation rules.

The proposed transformations are formed by in-

stantiation of the transformation templates in the

context of erroneous tags. The learning algorithm

stops when no improvement can be made to the

current state of the training data or when a pre-

specified threshold is reached.

A transformation modifies a tag when its con-

text (such as neighboring tags or tokens) matches

the context described by the transformation. Two

parts comprise a transformation: a rewrite rule—

what to replace— and a triggering environment—

when to replace. A typical rewrite rule is: Change

the annotation from aa to ab, and a typical trig-

gering environment is: The preceding word is wa.

The system’s output is the final state of this data

after applying all transformations in the order they

are produced.

To overcome the lengthy training time associ-

ated with this approach, we used fnTBL, a fast ver-

sion of TBL that preserves the performance of the

algorithm (Ngai and Florian, 2001). Our research

contribution shows this method is effective when

applied to a miniscule set of training data.

4 Application of TBL to Entry Tagging

In this section, we describe how we used TBL in

the context of tagging dictionary entries.

We apply TBL at two points: to render correctly

the font style of the tokens and to label correctly

the tags of the tokens6. Although our ultimate goal

6In reality, TBL improves the accuracy of tags and phrase
boundary flags. In this paper, whenever we say “application
of TBL to tagging”, we mean tags and phrase boundary flags

���������
	��

������������ 	��

������������ 	��

������ 	������

������ 	������

������ 	������

� ������� 	��

� ������� 	��

�!�����"�#	%$

�!�����"�#	'&

�!�����"�#	'(

�!�����"�#	')

�!�����"�#	'*

Figure 2: Phases of TBL application

is improving tagging results, font style plays a cru-

cial role in identifying tags. The rule-based entry

tagger relies on font style, which can be also incor-

rect. Therefore we also investigate whether im-

proving font style accuracy will further improve

tagging results. We apply TBL in three configu-

rations: (1) to improve font style, (2) to improve

tagging and (3) to improve both, one after another.

Figure 2 shows the phases of TBL application.

First we have the rule-based entry tagging results

with the font style assigned by document image

analysis (Result1), then we apply TBL to tagging

using this result (Result2). We also apply TBL to

improve the font style accuracy, and we feed these

changed font styles to the rule-based method (Re-

sult3). We then apply TBL to tagging using this

result (Result4). Finally, in order to find the upper

bound when we use the manually corrected font

styles in the ground truth data, we feed correct font

styles to the rule-based method (Result5), and then

apply TBL to tagging using this result (Result6).

In the transformation templates, we use the to-

kens themselves as features, i.e. the items in the

triggering environment, because the token’s con-

tent is useful in indicating the role. For instance

a comma and a period may have different func-

tionalities when tagging the dictionary. However,

when transformations are allowed to make refer-

ence to tokens, i.e., when lexicalized transforma-

tions are allowed, some relevant information may

be lost because of sparsity. To overcome the data

sparseness problem, we also assign a type to each

token that classifies the token’s content. We use

eight types: punctuation, symbol, numeric, upper-

case, capitalized, lowercase, non-Latin, and other.

For TBL on font style, the transformation tem-

plates contain three features: the token, the token’s

type, and the token’s font. For TBL on tagging, we

together.

259

use four features: the token, the token’s type, the

token’s font style, and the token’s tag.

The initial state annotations for font style are

assigned by document image analysis. The rule-

based entry tagging method assigns the initial state

of the tokens’ tags. The templates for font style ac-

curacy improvement consist of those from study-

ing the data and all templates using all features

within a window of five tokens (i.e., two preced-

ing tokens, the current token, and two following

tokens). For tagging accuracy improvement, we

prepared the transformation templates by studying

dictionaries and errors in the entry tagging results.

The objective function for evaluating transforma-

tions in both cases is the classification accuracy,

and the objective is to minimize the number of er-

rors.

5 Experiments

We performed our experiments on a Cebuano-

English dictionary (Wolff, 1972) consisting of

1163 pages, 4 font styles, and 18 tags, and on

an Iraqi Arabic-English dictionary (Woodhead and

Beene, 2003) consisting of 507 pages, 3 font

styles, and 26 tags. For our experiments, we used

a publicly available implementation of TBL’s fast

version, fnTBL7, described in Section 3.

We used eight randomly selected pages from the

dictionaries to train TBL, and six additional ran-

domly selected pages for testing. The font style

and tag of each token on these pages are manually

corrected from an initial run. Our goal is to mea-

sure the effect of TBL on font style and tagging

that have the same noisy input. For the Cebuano

dictionary, the training data contains 156 entries,

8370 tokens, and 6691 non-punctuation tokens,

and the test data contains 137 entries, 6251 tokens,

and 4940 non-punctuation tokens. For the Iraqi

Arabic dictionary, the training data contains 232

entries, 6130 tokens, and 4621 non-punctuation

tokens, and the test data contains 175 entries, 4708

tokens, 3467 non-punctuation tokens.

For evaluation, we used the percentage of accu-

racy for non-punctuation tokens, i.e., the number

of correctly identified tags divided by total num-

ber of tokens/phrases. The learning phase of TBL

took less than one minute for each run, and ap-

plication of learned transformations to the whole

dictionary less than two minutes.

We report how TBL affects accuracy of tagging

7http://nlp.cs.jhu.edu/rflorian/fntbl

when applied to font styles, tags, and font styles

and tags together. To find the upper bound tag-

ging results with correct font styles, we also ran

rule-based entry tagger using manually corrected

font styles, and applied TBL for tagging accuracy

improvement to these results. We should note that

feeding the correct font to the rule-based entry tag-

ger does not necessarily mean the data is totally

correct, it may still contain noise from document

image analysis or ambiguity in the entry.

We conducted three sets of experiments to ob-

serve the effects of TBL (Section 5.1), the effects

of different training data (Section 5.2), and the ef-

fects of training data size (Section 5.3).

5.1 TBL on Font Styles and Tags

Cebuano Iraqi Arabic

Original 84.43 94.15

TBL(font) 97.07 98.13

Table 1: Font style accuracy results for non-

punctuation tokens

We report the accuracy of font styles on the test

data before and after applying TBL to the font

style of the non-punctuation tokens in Table 1. The

initial font style accuracy of Cebuano dictionary

was much less than the Iraqi Arabic dictionary, but

applying TBL resulted in similar font style accu-

racy for both dictionaries (97% and 98%).

Cebuano Iraqi Arabic

Token Phrase Token Phrase

RB 83.25 64.08 90.89 82.72

RB+TBL(tag) 91.44 87.37 94.05 92.33

TBL(font)+RB 87.99 72.44 91.46 83.48

TBL(font)+RB+TBL(tag) 93.06 90.19 94.30 92.58

GT(font)+RB 90.76 74.71 91.74 83.90

GT(font)+RB+TBL(tag) 95.74 92.29 94.54 93.11

Table 2: Tagging accuracy results for non-punctu-

ation tokens and phrases for two dictionaries

The results of tagging accuracy experiments

are presented in Table 2. In the tables, RB is

rule-based method, TBL(tag) is the TBL run on

tags, TBL(font) is the TBL run on font style, and

GT(font) is the ground truth font style. In each

case, we begin with font style information pro-

vided by document image analysis. We tabulate

percentages of tagging accuracy of individual non-

punctuation tokens and phrases8. The results for

8In phrase accuracy, if a group of consequent tokens is
assigned one tag as a phrase in the ground truth, the tagging
of the phrase is considered correct only if the same group of

260

token and phrase accuracy are presented for three

different sets: The entry tagger using the font

style (1) provided by document image analysis,

(2) after TBL is applied to font style, and (3) cor-

rected manually, i.e. the ground truth. All re-

sults reported, except the token accuracies for two

cases for the Iraqi Arabic dictionary, namely us-

ing TBL(font) vs. GT(font) and using TBL(font)

and TBL(tag) together vs. using GT(font) and

TBL(tag), are statistically significant within the

95% confidence interval with two-tailed paired t-

tests9.

Using TBL(font) instead of initial font styles

improved initial accuracy as much as 4.74% for

tokens, and 8.36% for phrases in the Cebuano dic-

tionary which has a much lower initial font style

accuracy than the Iraqi Arabic dictionary. Using

the GT(font) further increased the tagging accu-

racy by 2.77% for tokens and 2.27% for phrases

for the Cebuano dictionary. As for the Iraqi Ara-

bic dictionary, using TBL(font) and GT(font) re-

sulted in an improvement of 0.57% and 0.85% for

tokens and 0.74% and 1.18% for phrases respec-

tively. The improvements in these two dictionar-

ies differ because the initial font style accuracy

for the Iraqi Arabic dictionary is very high while

for the Cebuano dictionary potentially very useful

font style information (namely, the font style for

POS tokens) is often incorrect in the initial run.

Using TBL(tag) alone improved rule-based

method results by 8.19% and 3.16% for tokens

and by 23.25% and 9.61% for phrases in Cebuano

and Iraqi Arabic dictionaries respectively. The last

two rows in Table 2 show the upper bound. For

the two dictionaries, our results using TBL(font)

and TBL(tag) together is 2.68% and 0.24% for

token accuracy and 2.10% and 0.53% for phrase

accuracy less than the upper bound of using the

GT(font) and TBL(tag) together.

Applying TBL to font styles resulted in a higher

accuracy than applying TBL to tagging. Since the

number of tag types (18 and 26) is much larger

than that of font style types (4 and 3), TBL appli-

cation on tags requires more training data than the

font style to perform as well as TBL application

on font style.

In summary, applying TBL using the same tem-

plates to two different dictionaries using very lim-

ited training data resulted in performance increase,

tokens was assigned the same tag as a phrase in the result.
9We did the t-tests on the results of individual entries.

and the greatest increases we observed are in

phrase accuracy. Applying TBL to font style first

increased the accuracy even further.

5.2 Effect of Training Data

We conducted experiments to measure the robust-

ness of our method with different training data.

For this purpose, we trained TBL on eight pages

randomly selected from the 14 pages for which we

have ground truth, for each dictionary. We used

the remaining six pages for testing. We did this ten

times, and calculated the average accuracy and the

standard deviation. Table 3 presents the average

accuracy and standard deviation. The accuracy re-

sults are consistent with the results we presented

in Table 2, and the standard deviation is between

0.56-2.28. These results suggest that using differ-

ent training data does not affect the performance

dramatically.

5.3 Effect of Training Data Size

The problem to which we apply TBL has one im-

portant challenge and differs from other tasks in

which TBL has been applied. Each dictionary has

a different structure and different noise patterns,

hence, TBL must be trained for each dictionary.

This requires preparing ground truth manually for

each dictionary before applying TBL. Moreover,

although each dictionary has hundreds of pages, it

is not feasible to use a significant portion of the

dictionary for training. Therefore the training data

should be small enough for someone to annotate

ground truth in a short amount of time. One of our

goals is to calculate the quantity of training data

necessary for a reasonable improvement in tagging

accuracy. For this purpose, we investigated the

effect of the training data size by increasing the

training data size for TBL one entry at a time. The

entries are added in the order of the number of er-

rors they contain, starting with the entry with max-

imum errors. We then tested the system trained

with these entries on two test pages10.

Figure 3 shows the number of font style and tag-

ging errors for non-punctuation tokens on two test

pages as a function of the number of entries in the

training data. The tagging results are presented

when using font style from document image anal-

ysis and font style after TBL. In these graphs, the

10We used two test data pages because if such a method
will determine the minimum training data required to obtain
a reasonable performance, the test data should be extremely
limited to reduce human provided data.

261

Cebuano Iraqi Arabic

Token Phrase Token Phrase

RB 81.46±1.14 62.38±1.09 92.10±0.69 85.05±1.64

RB + TBL(tag) 89.34±0.96 85.17±1.55 94.94±0.56 93.25±0.87

TBL(font) + RB 87.40±1.69 71.97±1.26 93.20±1.02 85.49±1.13

TBL(font) + RB + TBL(tag) 93.13±1.58 90.48±0.80 94.88±0.56 93.03±0.70

GT(font) + RB 89.25±1.57 73.13±1.02 93.02±0.58 85.03±2.28

GT(font) + RB + TBL(tag) 95.31±1.43 91.89±1.80 95.32±0.65 93.36±0.81

Table 3: Average tagging accuracy results with standard deviation for ten runs using different eight pages

for training, and six pages for testing

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

E
rr

o
rs

Number of Entries in Training Data for Cebuano Dictionary

of Errors in Font Style
of Errors in Tagging with TBL(tag)

of Errors in Tagging with TBL(font)-TBL(tag)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

N
u

m
b

e
r

o
f

E
rr

o
rs

 i
n

 T
e

s
t

D
a

ta

Number of Entries in Training Data for Iraqi Arabic Dictionary

of Errors in Font Style
of Errors in Tagging with TBL(tag)

of Errors in Tagging with TBL(font)-TBL(tag)

Figure 3: The number of errors in two test pages as a function of the number of entries in the training

data for two dictionaries

number of errors declines dramatically with the

addition of the first entries. For the tags, the de-

cline is not as steep as the decline in font style. The

main reason involves the number of tags (18 and

26), which are more than the number of font styles

(4 and 3). The method of adding entries to train-

ing data one by one, and finding the point when

the number of errors on selected entries stabilizes,

can determine minimum training data size to get a

reasonable performance increase. lexicalized

5.4 Example Results

Table 4 presents some learned transformations for

Cebuano dictionary. Table 5 shows how these

transformations change the font style and tags of

tokens from Figure 4. The first column gives the

tagging results before applying TBL. The con-

secutive columns shows how different TBL runs

changes these results. The tags with * indicate

incorrect tags, the tags with + indicate corrected

tags, and the tags with - indicate introduced er-

rors. The font style of tokens is also represented.

The No column in Tables 4 and 5 gives the applied

transformation number.

For these entries, using TBL on font styles and

tagging together gives correct results in all cases.

Using TBL only on tagging gives the correct tag-

ging only for the last entry.

TBL introduces new errors in some cases. One

error we observed occurs when an example of us-

age translation is assigned a tag before any exam-

ple of usage tag in an entry. This case is illustrated

when applying transformation 9 to the token Abaa

because of a misrecognized comma before the to-

ken.

6 Conclusion

In this paper, we introduced a new dictionary en-

try tagging system in which TBL improves tag-

ging accuracy. TBL is applied at two points, –

on font style and tagging– and yields high per-

formance even with limited user provided training

data. For two different dictionaries, we achieved

an increase from 84% and 94% to 97% and 98%

in font style accuracy, from 83% and 91% to 93%

and 94% in tagging accuracy of tokens, and from

64% and 83% to 90% and 93% in tagging accu-

racy of phrases. If the initial font style is not ac-

curate, first improving font style with TBL further

assisted the tagging accuracy as much as 2.62%

for tokens and 2.82% for phrases compared to us-

ing TBL only for tagging. This result cannot be

262

No Triggering Environment Change To

10 typen−2 = lowercase and typen−1 = punctuation and typen = capitalized and normal
fontn+1 = normal and fontn+2 = normal

15 fontn−1 = italic and typen = lowercase and typen+1 = lowercase and fontn+2 = italic italic

18 tokenn = the first token in the entry bold

1 tokenn = a and tagn−1 = translation and tagn+1 = translation translation

4 tag[n−7,n−1] = example and tokenn−1 = , and fontn = bold example translation

2 typen = lowercase and fontn = normal and tagn−1 = translation and fontn−1 = normal translation

9 tokenn−1 = , and fontn = italic and typen = capitalized example translation

8 tagn−2 = example translation and tagn−1 = separator and continuation
tagn = example translation and typen = capitalized of a phrase

11 tagn−2 = example and tagn−1 = separator and tagn = example and typen = capitalized continuation of a phrase

Table 4: Some sample transformations used for Cebuano dictionary entries in Figure 4. Here, continua-

tion of a phrase indicates this token merges with the previous one to form a phrase.

attributed to a low rule-based baseline as a simi-

lar, even a slightly lower baseline is obtained from

an HMM trained system. Results came from a

method used to compensate for extremely lim-

ited training data. The similarity of performance

across two different dictionaries shows the method

as adaptive and able to be applied genericly.

In the future, we plan to investigate the sources

of errors introduced by TBL and whether these

can be avoided by post-processing TBL results us-

ing heuristics. We will also examine the effects

of using TBL to increase the training data size in

a bootstrapped manner. We will apply TBL to

a few pages, then correct these and use them as

new training data in another run. Since TBL im-

proves accuracy, manually preparing training data

will take less time.

Acknowledgements

The partial support of this research under contract

MDA-9040-2C-0406 is gratefully acknowledged.

References

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational Lin-
guistics, 4(21):543–565.

Radu Florian and Grace Ngai. 2001. Multidimen-
sional transformational-based learning. Proceed-
ings of the 5th Conference on Computational Nat-
ural Language Learning, CoNLL 2001, pages 1–8,
July.

Pascale Fung and Lo Yuen Yee. 1998. An IR approach
for translating new words from nonparallel, com-
parable texts. In Christian Boitet and Pete White-
lock, editors, Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguis-
tics and 17th International Conference on Compu-
tational Linguistics, pages 414–420, San Francisco,
California. Morgan Kaufmann Publishers.

William A. Gale and Kenneth W. Church. 1991. A
program for aligning sentences in bilingual corpora.
In Proceedings of the 29th Annual Meeting of the
ACL, pages 177–184, Berkeley, California, June.

Burcu Karagol-Ayan, David Doermann, and Bonnie
Dorr. 2003. Acquisition of bilingual MT lexicons
from OCRed dictionaries. In Proceedings of the
9th MT Summit, pages 208–215, New Orleans, LA,
September.

Huanfeng Ma and David Doermann. 2003. Bootstrap-
ping structured page segmentation. In Proceedings
of SPIE Conference Document Recognition and Re-
trieval, Santa Clara, CA, January.

I. Dan Melamed. 2000. Models of translational equiv-
alence among words. Computational Linguistics,
26(2):221–249, June.

Grace Ngai and Radu Florian. 2001. Transformation-
based learning in the fast lane. In Proceedings of
the 2nd Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), pages 40–47, Pittsburgh, PA, June.

Philip Resnik. 1999. Mining the web for bilingual text.
In Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics (ACL’99),
University of Maryland, College Park, Maryland,
June.

Takehito Utsuro, Takashi Horiuchi, Yasunobu Chiba,
and Takeshi Hamamoto. 2002. Semi-automatic
compilation of bilingual lexicon entries from cross-
lingually relevant news articles on WWW news
sites. In Fifth Conference of the Association for
Machine Translation in the Americas, AMTA-2002,
pages 165–176, Tiburon, California.

Piek Vossen. 1998. EuroWordNet: A Multilingual
Database with Lexical Semantic Networks. Kluwer
Academic Publishers, Dordrecht.

John U. Wolff. 1972. A Dictionary of Cebuano Visaya.
Southeast Asia Program, Cornell University. Ithaca,
New York.

D. R. Woodhead and Wayne Beene, editors. 2003.
A Dictionary of Iraqi Arabic: Arabic–English Dic-
tionary. Georgetown University Press, Washington
D.C.

263

Figure 4: Cebuano-English dictionary entry samples

RB RB + TBL (tag) TBL (font) + RB TBL (font) + RB + TBL (tag)

Tag Token(s) No Tag Token(s) No Tag Token(s) No Tag Token(s)

abaa particle abaa particle 18 +hw abaa hw abaa

*hw indicating *hw indicating +tr particle indicating tr particle indicating

disapproval disapproval disapproval disapproval

*ex Abaa! 9 -ex-tr Abaa! *ex Abaa! Abaa!

*ex Mahúg ka *ex Mahúg ka *ex Mahúg ka 11 +ex Mahúg ka

gani dihà! gani dihà! gani dihà! gani dihà!

*ex-tr Stop that! 8 +ex-tr Stop that! *ex-tr Stop that! 8 +ex-tr Stop that!

*ex-tr You might fall! You might fall! *ex-tr You might fall! You might fall!

*tr emit emit a short grunt *tr emit emit a short grunt

*pos a 1 when hit in *pos a 2 when hit in

short grunt when the pit of the short grunt when the pit of the

*tr hit in the pit +tr stomach or *tr hit in the pit +tr stomach or

of the stomach or when exerting of the stomach or when exerting

when exerting an effort an effort when exerting an effort an effort

*ex Miaguntú *ex Miaguntú Miaguntú Miaguntú

*al-sp siya *al-sp siya 15 +ex siya ex siya

*ex dihang naig *ex dihang naig dihang naig dihang naig

sa kutukutu, sa kutukutu, sa kutukutu, sa kutukutu,

*al-sp The 4 The 10 The The

*ex-tr basketball court +ex-tr basketball court +ex-tr basketball court ex-tr basketball court

will be asphalted. will be asphalted. will be asphalted. will be asphalted.

hw: headword; tr: translation; al-sp: alternative spelling of headword; pos: POS; ex: example of usage; ex-tr: example of usage translation

Table 5: Illustration of TBL application to the incorrect tags in the sample entries shown in Figure 4.

* indicates incorrect tags, + indicates corrected tags, and - indicates introduced errors.

2
6
4

