
Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN), pages 1–10
Hong Kong, China, November 3, 2019. c©2019 Association for Computational Linguistics

1

Structure Learning for Neural Module Networks

Vardaan Pahuja�∗ Jie Fu†‡ Sarath Chandar†§ Christopher J. Pal†‡

†Mila §Université de Montréal
‡Polytechnique Montréal �The Ohio State University

Abstract

Neural Module Networks, originally proposed
for the task of visual question answering, are
a class of neural network architectures that in-
volve human-specified neural modules, each
designed for a specific form of reasoning. In
current formulations of such networks only the
parameters of the neural modules and/or the or-
der of their execution is learned. In this work,
we further expand this approach and also learn
the underlying internal structure of modules in
terms of the ordering and combination of sim-
ple and elementary arithmetic operators. We
utilize a minimum amount of prior knowledge
from the human-specified neural modules in
the form of different input types and arithmetic
operators used in these modules. Our results
show that one is indeed able to simultaneously
learn both internal module structure and mod-
ule sequencing without extra supervisory sig-
nals for module execution sequencing. With
this approach, we report performance compa-
rable to models using hand-designed modules.
In addition, we do a analysis of sensitivity of
the learned modules w.r.t. the arithmetic oper-
ations and infer the analytical expressions of
the learned modules.

1 Introduction

Designing general purpose reasoning modules is
one of the central challenges in artificial intelli-
gence. Neural Module Networks (Andreas et al.,
2016b) were introduced as a general purpose vi-
sual reasoning architecture and have been shown to
work well for the task of visual question answering
(Antol et al., 2015; Malinowski and Fritz, 2014;
Ren et al., 2015b,a). They use dynamically com-
posable modules which are then assembled into
a layout based on syntactic parse of the question.
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The modules take as input the images or the at-
tention maps1 and return attention maps or labels
as output. In (Hu et al., 2017), the layout predic-
tion is relaxed by learning a layout policy with a
sequence-to-sequence RNN. This layout policy is
jointly trained along with the parameters of the
modules. The model proposed in (Hu et al., 2018)
avoids the use of reinforcement learning to train the
layout predictor, and uses soft program execution
to learn both layout and module parameters jointly.

A fundamental limitation of these previous mod-
ular approaches to visual reasoning is that the mod-
ules need to be hand-specified. This might not
be feasible when one has limited knowledge of
the kinds of questions or associated visual reason-
ing required to solve the task. In this work, we
present an approach to learn the module structure,
along with the parameters of the modules in an
end-to-end differentiable training setting. Our pro-
posed model, Learnable Neural Module Network
(LNMN), learns the structure of the module, the
parameters of the module, and the way to compose
the modules based on just the regular task loss.
Our results show that we can learn the structure of
the modules automatically and still perform com-
parably to hand-specified modules. We want to
highlight the fact that our goal in this paper is not
to beat the performance of the hand-specified mod-
ules since they are specifically engineered for the
task. Instead, our goal is to explore the possibility
of designing general-purpose reasoning modules in
an entirely data-driven fashion.

2 Background

In this section, we describe the working of the
Stack-NMN model (Hu et al., 2018) as our proposed
LNMN model uses this as the base model. The

1An attention map denotes a H ×W × 1 tensor which
assigns a saliency score to the convolutional features in the
spatial dimension.



2

Stack-NMN model is an end-to-end differentiable
model for the task of Visual Question Answering
and Referential Expression Grounding (Rohrbach
et al., 2016). It addresses a major drawback of
prior visual reasoning models in the literature that
compositional reasoning is implemented without
the need of supervisory signals for composing the
layout at training time. It consists of several hand-
specified modules (namely Find, Transform, And,
Or, Filter, Scene, Answer, Compare and NoOp)
which are parameterized, differentiable, and imple-
ment common routines needed in visual reasoning
and learns to compose them without strong supervi-
sion. The implementation details of these modules
are given in Appendix A.2 (see Table 8). The dif-
ferent sub-components of the Stack-NMN model
are described below.

2.1 Module Layout Controller
The structure of the controller is similar to the one
proposed in (Hudson and Manning, 2018). The
controller first encodes the question using a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997). Let [h1,h2, ...,hS ] denote the output of
Bi-LSTM at each time-step of the input sequence
of question words. Let q denote the concatenation
of final hidden state of Bi-LSTM during the for-
ward and backward passes. q can be considered as
the encoding of the entire question. The controller
executes the modules iteratively for T times. At
each time-step, the updated query representation u
is obtained as:

u =W2[W
(t)
1 q + b1; ct−1] + b2

where W (t)
1 ∈ Rd×d, W2 ∈ Rd×2d, b1 ∈ Rd,

b2 ∈ Rd are controller parameters. ct−1 is the
textual parameter from the previous time step. The
controller has two outputs viz. the textual param-
eter at step t (denoted by ct) and the attention on
each module (denoted by vector w(t)). The con-
troller first predicts an attention cvt,s on each of the
words of the question and then uses this attention
to do a weighted average over the outputs of the
Bi-LSTM.

cvt,s = softmax(W3(u� hs))

ct =
S∑
s=1

cvt,s · hs

where,W3 ∈ R1×d is another controller parameter.
The attention on each module w(t) is obtained by

feeding the query representation at each time-step
to a Multi-layer Perceptron (MLP).

w(t) = softmax(MLP (u; θMLP ))

2.2 Operation of Memory Stack for storing
attention maps

In order to answer a visual reasoning question, the
model needs to execute modules in a tree-structured
layout. In order to facilitate this sort of composi-
tional behavior, a differentiable memory pool to
store and retrieve intermediate attention maps is
used. A memory stack (with length denoted by L)
stores H ×W dimensional attention maps, where
H and W are the height and width of image fea-
ture maps respectively. Depending on the number
of attention maps required as input by the mod-
ule, it pops them from the stack and later pushes
the result back to the stack. The model performs
soft module execution by executing all modules
at each time step. The updated stack and stack

Data: Question (string), Image features (I)
Encode the input question into
d-dimensional sequence [h1,h2, ...,hS ]
using Bidirectional LSTM.
A(0) ← Initialize the memory stack (A; p)
with uniform image attention and set the
stack pointer p to point at the bottom of the
stack (one-hot vector with 1 in the 1st

dim.).
for each time-step t = 0, 1, ...., (T-1) do

u =W2[W
(t)
1 q + b1; ct−1] + b2;

w(t) = softmax(MLP (u; θMLP ));
cvt,s = softmax(W3(u� hs));
ct =

∑S
s=1 cvt,s · hs

for every module m ∈M do
Produce updated stack and stack
pointer: (A(t)

m , p
(t)
m ) =

run-module(m,A(t), p(t), ct, I);
end
A(t+1) =

∑
m∈M A

(t)
m · w(t)

m ;

p(t+1) = softmax(
∑

m∈M p
(t)
m · w(t)

m )

end
Algorithm 1: Operation of Module Layout
Controller and Memory Stack.

pointer at each subsequent time-step are obtained
by a weighted average of those corresponding to
each module using the weights w(t) predicted by
the module controller. This is illustrated by the
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equations below:

(A(t)
m , p

(t)
m ) = run-module(m,A(t), p(t))

A(t+1) =
∑
m∈M

A(t)
m · w(t)

m

p(t+1) = softmax(
∑
m∈M

p(t)m · w(t)
m )

Here, A(t)
m and p

(t)
m denote the stack and stack

pointer respectively, after executing module m at
time-step t. A(t) and p(t) denote the stack and stack
pointer obtained after the weighted average of those
corresponding to all modules at previous time-step
(t− 1). The working of module layout controller
and its interfacing with memory stack is illustrated
in Algorithm 1. The implementation details of op-
eration of the stack are shown in Appendix (see
Algorithm 3).

2.3 Final Classifier

At each time-step of module execution, the
weighted average of output of the Answer modules
is called memory features (denoted by f (t)mem =∑

m∈ans. module o
(t)
m w

(t)
m ). Here, o(t)m denotes the out-

put of module m at time t. The memory features
are given as one of the inputs to the Answer mod-
ules at the next time-step. The memory features
at the final time-step are concatenated with the
question representation, and then fed to an MLP to
obtain the logits.

3 Learnable Neural Module Networks

In this section, we introduce Learnable Neural
Module Networks (LNMNs) for visual reasoning,
which extends Stack-NMN. However, the modules
in LNMN are not hand-specified. Rather, they are
generic modules as specified below.

3.1 Structure of the Generic Module

The cell (see Figures 1 and 2) denotes a generic
module, which we suppose can span all the re-
quired modules for a visual reasoning task. Each
cell contains a certain number of nodes. The func-
tion of a node (denoted by O) is to perform a
weighted sum of outputs of different arithmetic op-
erations applied on the input feature maps x1 and
x2. Let α

′
= σ(α) denote the output of softmax

function applied to the vector α such that

O(x1,x2) = α
′
1 ∗min(x1,x2)

+α
′
2 ∗max(x1,x2) +α

′
3 ∗ (x1 + x2)+

α
′
4 ∗ (x1 � x2) +α

′
5 ∗ choose1(x1,x2)

+α
′
6 ∗ choose2(x1,x2)

All of the above operations (min, max, +,
�) are element-wise operations. The last
two non-standard functions are defined as:
choose1(x1,x2) = x1 and choose2(x1,x2) =
x2.

We consider two broad kinds of modules: (i)
Attention modules which output an attention map
(ii) Answer modules which output memory features
to be stored in the memory. Among each of these
two categories, there is a finer categorization:

3.1.1 Generic Module with 3 inputs

This module type receives 3 inputs (i.e. image
features, textual parameter, and a single attention
map) and produces a single output. The first node
receives input from the image feature (I) and the
attention map (popped from the memory stack).
The second node receives input from the textual
parameter followed by a linear layer (W1ctxt), and
the output of the first node.

3.1.2 Generic Module with 4 inputs

This module type receives 4 inputs (i.e. image fea-
tures, textual parameter and two attention maps)
and produces a single output. The first node re-
ceives the two attention maps, each of which are
popped from the memory stack, as input. The sec-
ond node receives input from the image features
along with the output of the first node. The third
node receives input from the textual parameter fol-
lowed by a linear layer, and the output of the second
node.

For the Attention modules, the output of the final
node is converted into a single-channel attention
map using a 1 × 1 convolutional layer. For the
Answer modules, the output of the final node is
summed over spatial dimensions, and the resulting
feature vector is concatenated with memory fea-
tures of previous time-step and textual parameter
features, fed to a linear layer to output memory fea-
tures. The schematic diagrams of Answer modules
are given in the Appendix A.1 (see Figures 6, 7).
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Figure 1: Attention Module schematic diagram (3 inputs).

Figure 2: Attention Module schematic diagram (4 inputs).

3.2 Overall structure

The structure of our end-to-end model extends
Stack-NMN in that we specify each module in terms
of the generic module (defined in Section 3.1). We
experiment with three model ablations in terms of
number of modules for each type being used. See
Table 3 for details2. We train the module structure
parameters (denoted by α =

{
αm,ki

}6

i=1
for kth

node of module m) and the weight parameters (W)
by adopting alternating gradient descent steps in ar-
chitecture and weight spaces respectively. For a par-
ticular epoch, the gradient step in weight space is
performed on each training batch, and the gradient
step in architecture space is performed on a batch
randomly sampled from the validation set. This is
done to ensure that we find an architecture corre-
sponding to the modules which has a low validation
loss on the updated weight parameters. This is in-
spired by the technique used in (Liu et al., 2018)
to learn monolithic architectures like CNNs and
RNNs in terms of basic building blocks (or cells).
Algorithm 2 illustrates the training algorithm. Here,
Ltrain(W,α) and Lval(W,α) denote the training

21 NoOp module is included by default in all ablations.

while not converged do
1. Update weightsW by descending

∇w
[
Ltrain(W,α)− λw

T

T∑
t=1
H(w(t))

]
2. Update architecture α by descending
∇α
[
Lval(W,α)−

λop
M∑
m=1

p∑
k=1

‖σ(αm,k)‖
2

‖σ(αm,k)‖
1

]
end

Algorithm 2: Training Algorithm for LNMN
Modules. Here, α denotes the collection of

module network parameters i.e.
{
αm,ki

}6

i=1

for kth node of module m,W denotes the col-
lection of weight parameters of modules and
all other non-module parameters.
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loss and validation loss on the combination of pa-
rameters (W,α) respectively. For the gradient step
on the training batch, we add an additional loss
term to initially maximize the entropy of w(t) and
gradually anneal the regularization coefficient (λw)
to the opposite sign (which minimizes the entropy
of w(t) towards the end of training). The value of
λw varies linearly from 1.0 to 0.0 in the first 20
epochs and then steeply decreases to −1.0 in next
10 epochs. The trend of variation of λw is shown
in Appendix (see Figure 5). For the gradient steps
in the architecture space, we add an additional loss
term ( l

2

l1
=
‖σ(α)‖2
‖σ(α)‖1

) (Hurley and Rickard, 2009) to
encourage the sparsity of module structure parame-
ters (α) after the softmax activation.

4 Experiments

We train our model on the CLEVR visual rea-
soning task. CLEVR (Johnson et al., 2017a) is
a synthetic dataset for visual reasoning contain-
ing around 700K examples, and has become the
standard benchmark to test visual reasoning mod-
els. It contains questions that test visual reasoning
abilities such as counting, comparing, logical rea-
soning based on 3D shapes like cubes, spheres, and
cylinders of varied shades. A typical example ques-
tion and image pair from this dataset is given in
Appendix (see Figure 4). The results on CLEVR
test set are reported in Table 1. Some ablations
of the model are shown in Table 2. We use the
pre-trained CLEVR model to fine-tune the model
on CLEVR-Humans dataset. The latter is a dataset
of challenging human-posed questions based on
a much larger vocabulary on the same CLEVR
images. The corresponding results are shown in
Table 1 (see last column). In addition, we exper-
iment on VQA v1 (Antol et al., 2015) and VQA
v2 (Goyal et al., 2017) which are VQA datasets
containing natural images. The results for VQA v1
and VQA v2 are shown in Table 4.

The detailed accuracy for each question sub-type
for the VQA datasets is given in Appendix A.4
(see Tables 9 and 10). We use Adam (Kingma
and Ba, 2014) as the optimizer for the weight pa-
rameters with a learning rate of 1e−4, (β1, β2) =
(0.9, 0.999) and no weight decay. For the module
network parameters, we use the same optimizer
with a different learning rate 3e−4, (β1, β2) =
(0.5, 0.999) and a weight decay of 1e−3. The value
of λop is set to 1.0. The code for implementation

of our model is available online3.

4.1 Results
The comparison of CLEVR overall accuracy shows
that our model (LNMN (9 modules)) receives only
a slight dip (1.53%) compared to the Stack-NMN
model. We also experiment with other variants
of our model in which we increase the number
of Answer modules (LNMN (11 modules)) and/or
Attention modules (LNMN (14 modules)). The
LNMN (11 modules) model performs better than
the other two ablations (0.89% accuracy drop w.r.t.
the Stack-NMN model). For the ‘Count’ and ‘Com-
pare Numbers’ sub-category of questions, all of
the 3 variants perform consistently better than the
Stack-NMN model. In case of CLEVR-Humans
dataset, the accuracy drop is a modest 1.71%. Even
for the natural image VQA datasets, our approach
has comparable results with the Stack-NMN model.
The results clearly show that the modules learned
by our model (in terms of elementary arithmetic op-
erations) perform approximately as well as the ones
specified in the Stack-NMN model (that contains
hand-designed modules which were tailor-made
for the CLEVR dataset). The results from the ab-
lations in Table 2 show that a naive concatenation
of all inputs to a module (or cell) results in a poor
performance (around 47 %). Thus, the structure
we propose to fuse the inputs plays a key role in
model performance. When we replace the α vector
for each node by a one-hot vector during inference,
the drop in accuracy is only 1.79% which shows
that the learned distribution over operation weights
peaks over a specific operation which is desirable.

4.2 Measuring the sensitivity of modules
We use an attribution technique called Integrated
Gradients (Sundararajan et al., 2017) to study the
impact of module structure parameters (denoted

by
{
αm,ki

}6

i=1
for kth node of module m) on

the probability distribution in the last layer of
LNMN model. Let Ij and qj denote the (im-
age, question) pairs for the jth example. Let
F (Ij , qj ,α) denote the function that assigns the
probability corresponding to the correct answer in-
dex in the softmax distribution. Here, αm,ki denotes
the module network parameter for the ith operator
in kth node of module m. Then, the attribution
of [αm1 , α

m
2 , α

m
3 , α

m
4 , α

m
5 , α

m
6 ] (summed across all

nodes k = 1, ..., p for a particular module m and
3https://github.com/vardaan123/LNMN

https://github.com/vardaan123/LNMN
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Model CLEVR Count Exist Compare Query Compare CLEVR
Overall Numbers Attribute Attribute Humans

Human (Johnson et al., 2017b) 92.6 86.7 96.6 86.5 95.0 96.0 -
Q-type baseline (Johnson et al., 2017b) 41.8 34.6 50.2 51.0 36.0 51.3 -
LSTM (Johnson et al., 2017b) 46.8 41.7 61.1 69.8 36.8 51.8 36.5
CNN+LSTM (Johnson et al., 2017b) 52.3 43.7 65.2 67.1 49.3 53.0 43.2
CNN+LSTM+SA+MLP (Johnson et al., 2017a) 73.2 59.7 77.9 75.1 80.9 70.8 57.6
N2NMN* (Hu et al., 2017) 83.7 68.5 85.7 84.9 90.0 88.7 -
PG+EE (700K prog.)* (Johnson et al., 2017b) 96.9 92.7 97.1 98.7 98.1 98.9 -
CNN+LSTM+RN‡ (Santoro et al., 2017) 95.5 90.1 97.8 93.6 97.9 97.1 -
CNN+GRU+FiLM (Perez et al., 2017) 97.7 94.3 99.1 96.8 99.1 99.1 75.9
MAC (Hudson and Manning, 2018) 98.9 97.1 99.5 99.1 99.5 99.5 81.5
TbD (Mascharka et al., 2018) 99.1 97.6 99.2 99.4 99.5 99.6 -

Stack-NMN (9 mod.)†(Hu et al., 2018) 91.41 81.78 95.78 85.23 95.45 95.68 68.06

LNMN (9 modules) 89.88 84.28 93.74 89.63 89.64 94.84 66.35
LNMN (11 modules) 90.52 84.91 95.21 91.06 90.03 94.97 65.68
LNMN (14 modules) 90.42 84.79 95.52 90.52 89.73 95.26 65.86

Table 1: CLEVR and CLEVR-Humans Accuracy by baseline methods and our models. (*) denotes use of extra su-
pervision through program labels. (‡) denotes training from raw pixels. † Accuracy figures for our implementation
of Stack-NMN.

Model Overall Count Exist Compare
number

Query
attribute

Compare
Attribute

Original setting
(T = 5, L = 5,map_dim = 384)

89.78 84.54 93.46 88.70 89.59 94.87

Use hard-max for operation weights
(for inference only)

(T = 5, L = 5,map_dim = 384)
87.99 81.53 94.11 87.70 88.27 91.55

T = 9, L = 9,map_dim = 256 89.96 84.03 93.45 89.98 90.75 93.10
Concatenate all inputs

followed by conv. layer 47.03 42.5 61.15 68.64 38.06 49.43

Table 2: Model Ablations for LNMN (CLEVR Validation set performance). The term ‘map_dim’ refers to the
dimension of feature representation obtained at the input or output of each node of cell.

Model
Attn.

modules
(3 input)

Attn.
modules
(4 input)

Ans.
modules
(3 input)

Ans.
modules
(4 input)

LNMN (9) 4 2 1 1
LNMN (11) 4 2 2 2
LNMN (14) 5 4 2 2

Table 3: Number of modules of each type for different
model ablations.

Model VQA v2 VQA v1

Stack-NMN 58.23 59.84
LNMN (9 modules) 54.85 57.67

Table 4: Test Accuracy on Natural Image VQA datasets

over all examples) is defined as:

IG(αmi ) =

N∑
j=1

p∑
k=1

[
(αm,ki − (αm,ki )

′
)×

∫ 1

ξ=0

∂F (Ij , qj , (1− ξ)× (αm,ki )
′
+ ξ × αm,ki )

∂αm,ki

]
Please note that attributions are defined relative
to an uninformative input called the baseline. We
use a vector of all zeros as the baseline (denoted
by (αm,ki )

′
). Table 5 shows the results for this

experiment.
The module structure parameters (α parameters)

of the Answer modules have their attributions to
the final probability around 1-2 orders of magni-
tudes higher than rest of the modules. The higher
influence of Answer modules can be explained by
the fact that they receive the memory features from
the previous time-step and the classifier receives
the memory features of the final time-step. The
job of Attention modules is to utilize intermediate
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Module ID Module type min max sum product choose_1 choose_2

0 Attn. (3 input) 6.3 e4 2.7 e4 3.6 e4 1.1 e5 5.1 e4 1.6 e4
1 Attn. (3 input) 4.4 e4 1.8 e4 6.2 e4 1.4 e4 2.8 e4 1.7 e5
2 Attn. (3 input) 7.0 e4 3.3 e4 3.8 e4 1.1 e5 5.2 e4 1.5 e4
3 Attn. (3 input) 8.6 e3 6.2 e4 1.7 e4 1.8 e4 4.7 e4 3.0 e4
4 Attn. (4 input) 4.5 e4 3.2 e4 7.6 e4 1.7 e4 3.6 e4 2.1 e5
5 Attn. (4 input) 1.1 e5 5.6 e5 2.3 e5 8.5 e3 2.8 e4 1.8 e5
6 Ans. (3 input) 2.1 e6 4.3 e6 4.4 e6 8.3 e6 2.3 e6 4.9 e5
7 Ans. (4 input) 1.2 e5 5.8 e4 1.7 e5 5.2 e3 1.0 e5 4.5 e5

Table 5: Analysis of gradient attributions of α parameters corresponding to each module (LNMN (9 modules)),
summed across all examples of CLEVR validation set.

attention maps to produce new feature maps which
are used as input by the Answer modules.

Figure 3: Visualization of module structure parameters
(LNMN (11 modules)). For each module, each row de-
notes the α

′
= σ(α) parameters of the corresponding

node.

4.3 Visualization of module network
parameters

In order to better interpret the individual contribu-
tions from each of the arithmetic operators to the
modules, we plot them as color-maps for each type
of module. The resulting visualizations are shown
in Figure 3 for LNMN (11 modules). It is clear
from the figure that the operation weights (orα

′
pa-

rameter) are approximately one-hot for each node.
This is necessary in order to learn modules which
act as composition of elementary operators on input
feature maps rather than a mixture of operations at

each node. The corresponding visualizations for
LNMN (9 modules) and LNMN (14 modules) are
given in Figure 8 and Figure 9 respectively (all of
which are given in the Appendix A.3). The analyti-
cal expressions of modules learned by LNMN (11
modules) are shown in Table 6. The diversity of
modules as given in their equations indicates that
distinct modules emerge from training.

4.4 Measuring the role of individual
arithmetic operators

Each module (aka cell) contains nodes which in-
volves use of six elementary arithmetic opera-
tions (i.e. min, max, sum, product, choose_1 and
choose_2). We zero out the contribution to the
node output for one of the arithmetic operations
for all nodes in all modules and observe the degra-
dation in the CLEVR validation accuracy4. The
results of this study are shown in Table 7. The
trend of overall accuracy shows that removing max
and product operators results in maximum drop in
overall accuracy (∼ 50%). Other operators like
min, sum and choose_1 result in minimal drop in
overall accuracy.

5 Related Work

Neural Architecture Search: Neural Architecture
Search (NAS) is a technique to automatically learn
the structure and connectivity of neural networks
rather than training human-designed architectures.
In (Zoph and Le, 2016), a recurrent neural net-
work (RNN) based controller is used to predict
the hyper-parameters of a CNN such as number
of filters, stride, kernel size etc. They used RE-
INFORCE (Williams, 1992) to train the controller

4The CLEVR test set ground truth answers are not pub-
lic, so we use the validation set instead. However, Table 1
shows results for CLEVR test set (evaluated by the authors of
CLEVR dataset).
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Module type Module implementation

Attention
(3 inputs)

O(img, a, ctxt) = conv2(choose2(conv1(I), a)�W1ctxt) = conv2(a�W1ctxt)
O(img, a, ctxt) = conv2(choose2(choose1(conv1(I), a),W1ctxt)) = conv2(W1ctxt)
O(img, a, ctxt) = conv2(choose2(min(conv1(I), a),W1ctxt)) = conv2(W1ctxt)
O(img, a, ctxt) = conv2(max(conv1(I), a) +W1ctxt))

Attention
(4 inputs)

O(img, a1, a2, ctxt) = conv2(choose1(max(a1, a2), conv1(I))�W1ctxt))
= conv2(max(a1, a2)�W1ctxt)

O(img, a1, a2, ctxt) = conv2(max(choose2(a1, a2), conv1(I))�W1ctxt))
= conv2(max(a2, conv1(I))�W1ctxt))

Answer
(3 inputs)

O(img, a, ctxt) = W2[
∑

min(conv1(I), a)�W1ctxt,W1ctxt, fmem]
O(img, a, ctxt) = W2[

∑
min((conv1(I)� a),W1ctxt),W1ctxt, fmem]

Answer
(4 inputs)

O(img, a1, a2, ctxt) = W2[
∑

min((min(a1, a2)� conv1(I)),W1ctxt),W1ctxt, fmem]
O(img, a1, a2, ctxt) = W2[

∑
((min(a1, a2) + conv1(I))�W1ctxt),W1ctxt, fmem]

Table 6: Analytical expression of modules learned by LNMN (11 modules). In the above equations,
∑

denotes
sum over spatial dimensions of the feature tensor.

Operator
Name Overall Count Exist Compare

number
Query

attribute
Compare
Attribute

min 86.64 77.98 86.79 87.89 88.77 93.10
max 45.54 35.92 55.25 63.66 40.52 51.83
sum 82.67 69.89 80.25 85.22 87.69 90.05

product 34.65 14.55 51.49 48.79 30.31 49.92
choose_1 89.74 84.24 93.81 89.02 89.59 94.67
choose_2 79.45 64.77 76.07 82.96 86.78 84.94

Original Model 89.88 84.28 93.74 89.63 89.64 94.84

Table 7: Analysis of performance drop with removing operators from a trained model (LNMN 9 modules) on
CLEVR validation set.

with validation set accuracy as the reward signal.
As an alternative to reinforcement learning, evolu-
tionary algorithms (Stanley, 2017) have been used
to perform architecture search in (Real et al., 2017;
Miikkulainen et al., 2019; Liu et al., 2017; Real
et al., 2018). Recently, (Liu et al., 2018) proposed
DARTS, a differentiable approach to perform archi-
tecture search and reported success in discovering
high-performance architectures for both image clas-
sification and language modeling. Our approach
for learning the structure of modules is inspired by
DARTS. (Kirsch et al., 2018) proposes an EM style
algorithm to learn black-box modules and their lay-
out for image recognition and language modeling
tasks.

Visual Reasoning Models: Among the end-to-
end models for the task of visual reasoning, FiLM
(Perez et al., 2017) uses Conditional Batch Normal-
ization (CBN) (De Vries et al., 2017; Dumoulin
et al., 2017) to modulate the channels of input con-
volutional features in a residual block. (Hudson and
Manning, 2018) obtains the features by iteratively
applying a Memory-Attention-Control (MAC) cell
that learns to retrieve information from the image
and aggregate the results into a recurrent memory.

(Santoro et al., 2017) constructs the feature repre-
sentation by taking into account the relational inter-
actions between objects of the image. With regards
to the modular approaches, (Andreas et al., 2016b)
proposes to compose neural network modules (with
shared parameters) for each input question based
on layout predicted by syntactic parse of the ques-
tion. (Andreas et al., 2016a) extends this approach
to question-answering in a database domain. In
End-to-end Neural Module Networks (Hu et al.,
2017), the layout prediction is relaxed by learning
a layout policy with a sequence-to-sequence RNN.
This layout policy is jointly trained along with the
parameters of modules. The Stack-NMN (Hu et al.,
2018) model is a differentiable version of End-to-
end Neural Module Networks and we use this as
our baseline model. In (Johnson et al., 2017b),
the modules are residual blocks (convolutional),
they learn the program generator separately and
then fine-tune it along with the modules. TbD-net
(Mascharka et al., 2018) builds upon the End-to-
End Module Networks (Hu et al., 2017) but makes
an important change in that the proposed modules
explicitly utilize attention maps passed as inputs
instead of learning whether or not to use them. This
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results in more interpretability of the modules since
they perform specific functions.

Visual Question Answering: Visual question
answering requires a learning model to answer so-
phisticated queries about visual inputs. Significant
progress has been made in this direction to design
neural networks that can answer queries about im-
ages. This can be attributed to the availability of
relevant datasets which capture real-life images like
DAQUAR (Malinowski and Fritz, 2014), COCO-
QA (Ren et al., 2015a) and most recently VQA (v1
(Antol et al., 2015) and v2 (Goyal et al., 2017)).
The most common approaches (Ren et al., 2015b;
Noh et al., 2016) to this problem include construc-
tion of a joint embedding of question and image
and treating it as a classification problem over the
most frequent set of answers. Recent works (Jabri
et al., 2016; Johnson et al., 2017a) have shown that
the neural networks tend to exploit biases in the
datasets without learning how to reason.

6 Conclusion

We have presented a differentiable approach to
learn the modules needed in a visual reasoning
task automatically. With this approach, we obtain
results comparable to an analogous model in which
modules are hand-specified for a particular visual
reasoning task. In addition, we present an exten-
sive analysis of the degree to which each module
influences the prediction function of the model, the
effect of each arithmetic operation on overall accu-
racy and the analytical expressions of the learned
modules. In the future, we would like to benchmark
this generic learnable neural module network with
various other visual reasoning and visual question
answering tasks.
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