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Abstract

Randomized controlled trials (RCTs) rep-
resent the paramount evidence of clinical
medicine. Using machines to interpret the
massive amount of RCTs has the poten-
tial of aiding clinical decision-making. We
propose a RCT conclusion generation task
from the PubMed 200k RCT sentence clas-
sification dataset to examine the effective-
ness of sequence-to-sequence models on un-
derstanding RCTs. We first build a pointer-
generator baseline model for conclusion gen-
eration. Then we fine-tune the state-of-the-art
GPT-2 language model, which is pre-trained
with general domain data, for this new medi-
cal domain task. Both automatic and human
evaluation show that our GPT-2 fine-tuned
models achieve improved quality and correct-
ness in the generated conclusions compared
to the baseline pointer-generator model. Fur-
ther inspection points out the limitations of
this current approach and future directions to
explore∗.

1 Introduction

Randomized controlled trials (RCTs) are the most
rigorous method to assess the effectiveness of
treatments, such as surgical procedures and drugs,
in clinical medicine (Sibbald and Roland, 1998).
A typical RCT often constitutes of two random-
ized groups of patients receiving either the “in-
tervention” (new treatment) or “control” (conven-
tional treatment). Then, a statistical analysis is
done after the experiments to determine whether
the intervention has a significant effect (i.e. actu-
ally making patients better or worse). The results
from various RCTs contribute to the medical deci-
sions made by physicians every day. However, an-
alyzing these large amounts of data could be over-

∗These authors contribute this paper equally.
∗The code is available at: https://github.com/

MiuLab/RCT-Gen

whelming for clinicians (Davidoff and Miglus,
2011). With the help of machine readers, we can
alleviate the burden for providing correct informa-
tion that contributes to critical clinical decisions.

In this work, we aim to evaluate the capabilities
of deep learning models on understanding RCTs
by generating the conclusions of RCT abstracts.
We achieve this by transforming the PubMed 200k
RCT abstract sentence classification dataset (Der-
noncourt and Lee, 2017) into a RCT conclusion
generation task. Generating a correct and coher-
ent conclusion requires the model to 1) identify
the objectives of the trial, 2) understand the result
and 3) generate succinct yet comprehensible texts.
Therefore, this task can be a preliminary goal to-
ward a more thorough understanding of clinical
medicine literature.

To tackle this task, we first build a pointer-
generator model (See et al., 2017) as the baseline.
This model is widely used in abstractive summa-
rization, which is similar to our conclusion gener-
ation task. We then leverage the high quality text
generation capability of the Open AI GPT-2 (Rad-
ford et al., 2019) language model by fine-tuning
the general domain GPT-2 model into a medical
domain conclusion generator.

Because the correctness of RCT understanding
is essential for supporting clinical decisions and
neural summarization models could inaccurately
present facts from the source document, we incor-
porate human evaluation on the correctness and
quality of the generated in addition to standard
ROUGE score (Lin, 2004) for automated summa-
rization scoring. Evaluation results show the fine-
tuned GPT-2 models score higher for both correct-
ness and quality. However, there is still quite a
large room for improvement both on the diversity
and accuracy of the generated conclusions, provid-
ing a guidance for future research directions.

https://github.com/MiuLab/RCT-Gen
https://github.com/MiuLab/RCT-Gen
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2 Related Work

The paper focuses on generating RCT conclu-
sions, which is related to natural language gen-
eration. We describe the related work below and
emphasize the difference between the prior work
and our work. In our proposed method, we ex-
ploit the state-of-the-art language model represen-
tations for understanding the complex medical lit-
erature, and related work is then briefly described
below.

2.1 Medical Natural Language Generation

Several medical domain natural language genera-
tion tasks have been studied using machine learn-
ing models, including generating radiology reports
from images (Jing et al., 2018; Vaswani et al.,
2017) and summarizing clinical reports (Zhang
et al., 2018; Pivovarov and Elhadad, 2015) or re-
search literature (Cohan et al., 2018). Recently,
Gulden et al. (2019) studied extractive summariza-
tion on RCT descriptions.

Abstractive summarization, in which the model
directly generates summaries from the source doc-
ument, is closely related to our conclusion gen-
eration task. Most neural approaches for ab-
stractive summarization were based on sequence-
to-sequence recurrent neural networks (RNNs)
with attention mechanisms (Devlin et al., 2019).
The pointer-generator network (See et al., 2017)
combined a copy mechanism that directly copies
words from the source document and a cover-
age mechanism to avoid repetition caused by the
RNN-based decoder, achieving good performance
by handling unseen information. Devlin et al.
(2019) further combined intra-encoder and intra-
decoder attention with policy learning by using
ROUGE-L score as the reward and improved
the performance in terms of the evaluation met-
ric. Hsu et al. (2018) combined an extractive
model that provided attention on the sentence level
and the pointer-generator architecture, and Co-
han et al. (2018) also worked on abstractive sum-
marization of long documents, including medical
papers from the PubMed database, based on the
pointer-generator network.

However, our goal to generate conclusions is
different from abstractive summarization in that
summarization is to shorten the source document
while preserving most of the important informa-
tion, whereas our conclusion generation model
gives one or two sentences describing the main

outcome of the given trial. Given the superior per-
formance of pointer-generation networks from the
above related summarization work, this paper uses
the pointer-generation model as baseline and fo-
cuses on RCT conclusion generation instead of ab-
stractive summarization.

2.2 Contextualized Representations

Recent advances of contextualized representation
models, such as ELMo (Peters et al., 2018), Open
AI GPT (Radford et al., 2018) and BERT (Devlin
et al., 2019) achieved remarkable results across
different natural language understanding tasks,
such as question answering, entailment classifica-
tion and named entity recognition. At the core of
these models was language modeling, with either
forward prediction used in GPT, bidirectional pre-
diction used in ELMo, or masked prediction used
by BERT. Variants of BERT also improved the
performance of bio-medical natural language un-
derstanding tasks (Xu et al., 2019; Pugaliya et al.,
2019). Peng et al. (2019) further proposed a new
benchmark to evaluate the performance of contex-
tualized models in the bio-medical domain.

Particularly, the Open AI GPT-2 model (Rad-
ford et al., 2019) has demonstrated rudimentary
zero-shot summarization capabilities with only
language modeling training. Its forward predic-
tion architecture made it suitable for autoregres-
sive generation in a sequence-to-sequence task.
Most benchmarks on contextualized representa-
tion were based on sequence classification tasks
such as natural language inference and multiple
choice question answering (Wang et al., 2018;
Peng et al., 2019). Our work, on the other hand,
focuses on exploring GPT-2’s capability of gen-
erating goal-directed sentences in the medical do-
main. Note that to our knowledge, this paper is
the first attempt that investigates GPT-2 towards
the medical document understanding and interpre-
tation.

3 Task Formulation

The PubMed 200k RCT dataset was originally
constructed for sequential short text classification,
with each sentence labeled as “background”, “ob-
jective”, “methods”, “results” and “conclusions”.
We concatenated the “background”, “objective”
and “results” sections of each RCT paper abstract
as the model input and the goal of the model is
to generate the “conclusions”. Table 1 illustrates
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Source:
(BACKGROUND) Varenicline is believed to work , in part , by reducing craving responses to smoking cues and by
reducing general levels of craving ; however , these hypotheses have never been evaluated with craving assessed in the
natural environments of treatment-seeking smokers .
(OBJECTIVE) Ecological momentary assessment procedures were used to assess the impact of varenicline on cue-
specific and general craving in treatment-seeking smokers prior to quitting .
(RESULTS) During all phases , smoking cues elicited greater craving than neutral cues ; the magnitude of this effect
declined after the first week . General craving declined across each phase of the study . Relative to the placebo condition
, varenicline was associated with a greater decline in general craving over the drug manipulation phase . Varenicline did
not significantly attenuate cue-specific craving during any phase of the study .

Target (True Negative):
Smoking cues delivered in the natural environment elicited strong craving responses in treatment-seeking smokers , but
cue-specific craving was not affected by varenicline administered prior to the quit attempt . These findings suggest
that the clinical efficacy of varenicline is not mediated by changes in cue-specific craving during the pre-quit period of
treatment-seeking smokers .

Pointer-generator baseline model with n = 1 hint word (N/A):
smoking cues are associated with a greater craving in general , and may be associated with a greater decline in general
craving and

Fine-tuned GPT-2 with n = 0 hint word (False Negative):
Varenicline did not reduce general craving in treatment-seeking smokers prior to quitting.

Fine-tuned GPT-2 with n = 1 hint word (True Negative):
Smoking cues are associated with greater general craving than neutral cues, and varenicline does not attenuate cue-
specific craving.

Table 1: An example of the GPT-2 n = 0 model generating a false negative conclusion (Varenicline did reduce
general craving), while the GPT-2 n = 1 model generated a better true negative one. The “(BACKGROUND)”,
“(OBJECTIVE)” and “(RESULTS)” tags denote the sentence classifications according to the original PubMed
RCT dataset and are not included in the actual input of our conclusion generation task.

the formulated task, where the generated conclu-
sion needs to contain correct information based on
the experiments and should be concise. After pre-
processing, the number of abstracts in the train-
ing set is 189,035 and there are 2,479 conclusions
used for validation. The average source paragraph
length is 170.1 words (6.0 sentences), and the av-
erage target conclusion length is 41.4 words (1.8
sentences) long.

4 Models

Language model pre-training has achieved a great
success among language understanding tasks with
different model architectures. Because training
language models requires a large amount of text
data, and it is relatively difficult to acquire a lot
of RCT documents, this work focuses on first pre-
training language models with the transformer ar-
chitecture (Vaswani et al., 2017) and then adapts
the model to support the medical domain by fine-
tuning. The language model pre-training from
general texts is described below.

4.1 Transformer Encoder in GPT-2
We first introduce the transformer encoder
(Vaswani et al., 2017) used as the backbone of the
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Figure 1: A modified transformer encoder block in the
GPT-2 language model.

GPT-2 model. The transformer encoder is a stack
of N transformer encoder blocks, where the l-th
block takes a sequence of hidden representations
X l = {X l

1, · · · , X l
n} as the input and outputs an

encoded sequence X l+1 = {X l+1
1 , · · · , X l+1

n }.
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A transformer encoder block consists of a multi-
head self-attention layer and a position-wise fully
connected feed-forward layer. A residual connec-
tion (He et al., 2016) is employed around each of
the two layers followed by layer normalization (Ba
et al., 2016). In GPT-2, however, the layer normal-
ization step is moved to the front of the multi-head
self-attention layers and the feed-forward layers.
An illustration of a GPT-2 transformer encoder
block is presented in Figure 1. Each component
is briefly described as follows.

Byte-Pair Encoding GPT-2 uses a special byte
pair encoding (BPE) for input and output repre-
sentations. It can cover essentially all Unicode
strings, which is useful in processing the medi-
cal texts due to the significant out-of-vocabulary
problems such as distinct nomenclature and jar-
gon. This special BPE prevents merging charac-
ters from different categories and preserves word-
level segmentation properties with a space excep-
tion.

Positional Encoding Because the transformer
model relies on a self-attention mechanism with
no recurrence, the model is unaware of the sequen-
tial order of inputs. To provide the model with po-
sitional information, positional encodings are ap-
plied to the input token embeddings

X1
i = embedtoken[wi] + embedpos[i],

where wi denotes the i-th input token, embedtoken
and embedpos denote a learned token embedding
matrix and a learned positional embedding matrix
respectively.

Multi-Head Self-attention An attention func-
tion can be described as mapping a query to an
output with a set of key-value pairs. The output is
a weighted sum of values. We denote queries, keys
and values asQ,K and V , respectively. Following
the original implementation (Vaswani et al., 2017),
a scaled dot-product attention is employed as the
attention function. Hence, the output can be cal-
culated as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where dk denotes the dimension of key vectors.
The idea of multi-head attention is to compute

multiple independent attention heads in parallel,
and then concatenate the results and project again.

The multi-head self-attention in the l-th block can
be calculated as

MultiHead(X l) = Concat(head1, · · · , headh)WO,

headi = Attention(X lWQ
i , X

lWK
i , X

lW V
i ),

where X l denotes the input sequence of the l-th
block, h denotes the number of heads, WQ

i , WK
i ,

W V
i and WO are parameter matrices.

Position-Wise Feed-Forward Layer The sec-
ond sublayer in a block is a position-wise feed-
forward layer, which is applied to each position
separately and independently. The output of this
layer can be calculated as

FFN(x) = max(0, x ·W1 + b1)W2 + b2,

where W1 and W2 are parameter matrices, b1 and
b2 are parameter biases.

Residual Connection and Layer Normalization
As shown in Figure 1, layer normalization is first
applied on the input to the multi-head attention
and feed-forward sublayers. The residual connec-
tion is then added around the two sublayers. The
output of the l-th block can be calculated as

H l = MultiHead(LayerNorm(X l)) +X l,

X l+1 = FFN(LayerNorm(H l)) +H l.

4.2 GPT-2 Pre-Training

The generative pre-training (GPT) via a language
model objective is shown to be effective for learn-
ing representations that capture syntactic and se-
mantic information without supervision (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019). The GPT model proposed by Radford et al.
(2018) employs the transformer encoder with 12
encoder blocks. It is pre-trained on a large generic
corpus that covers a wide range of topics. The
training objective is to minimize the negative log-
likelihood:

L =
T∑
t=1

− logP (wt | w<t, θ),

where wt denotes the t-th word in the sentence,
w<t denotes all words prior to wt, and θ are pa-
rameters of the transformer model.

To avoid seeing the future contexts, a masked
self-attention is applied to the encoding process.
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(b) The fine-tuning stage.

Figure 2: Illustration of the two-stage method in the
GPT model. The tag <hint> denotes where hint word
tokens are introduced during fine-tuning.

In the masked self-attention, the attention function
is modified into

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M)V,

where M is a matrix representing masks. Mij =
−∞ indicates that the j-th token has no contribu-
tion to the output of the i-th token, so it is essen-
tially “masked out” when encoding the i-th token.
Therefore, by setting Mij = −∞ for all j > i,
we can calculate all outputs simultaneously with-
out looking at future contexts. It was pre-trained
on the WebText dataset consisting of 40 GB high
quality text crawled from internet sources. We use
the small version (12 layers and 117 M parame-
ters) of the released GPT-2 models.

4.3 GPT-2 Fine-Tuning

After the model is pre-trained with a language
model objective, it can be fine-tuned on down-
stream tasks with supervised data. In our task,
we adapt the GPT-2 to the target domain by fine-
tuning using RCT data. Figure 2 illustrates the
learning procedure. By fine-tuning on the target
data, the GPT-2 model may have the potential of
understanding and generating medical texts.

In the fine-tuning stage, we modify the atten-
tion masking of the GPT-2 model so that source
byte pairs are fully aware of the entire context of
the source sentence, while the target byte pairs are
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Source Conclusion
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Figure 3: The attention mask used during fine-tuning.
White cells denote −∞ elements and grey cells denote
0 in the mask matrix.

aware of the entire source sentence plus the gen-
erated byte pairs that precede itself. That is, for
context token pairs (ci, cj) ∈ c1, · · · , cm, we set
Mij = −∞ for all j > i, while for context and
source token pairs (ci, sj), where ci ∈ c1, · · · , cm
and sj ∈ s1, · · · , sn, we set Mij = 0. For all
source token pairs (si, sj) ∈ s1, · · · , sn, we also
set Mij = 0. This setting is illustrated in Figure 3.

5 Experiments

Here we describe experimental details of the base-
line pointer-generator model and the GPT-2 fine-
tuned models.

5.1 Experimental Setup

The baseline model is a pointer-generator net-
work (See et al., 2017) with both copy and cov-
erage mechanisms, and is trained with a cover-
age loss. We adopt the implementation of Zhang
et al. (2018). The vocabulary size is about 50,000,
with uncased word embeddings pretrained from
the PubMed RCT 200k training set and the ab-
stracts from the PubMed dataset of long docu-
ments (Cohan et al., 2018). We concatenate n ∈
{0, 1} hint words following the source sentences,
where the hint words are first n words of the tar-
get conclusion. Our pointer-generator model uses
beam search with beam size 5 to decode the final
output conclusion.

In our GPT-2 models, we conduct conclusion
generation using n ∈ {0, 1, 3, 5} hint words. For
n = 0, we append “In conclusion , ” to the in-
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System ROUGE-1 ROUGE-2 ROUGE-L

PGNet n = 0 27.11 7.61 21.87
PGNet n = 1 26.88 8.19 22.63

GPT-2 n = 0 30.33 11.34 25.14
GPT-2 n = 1 31.61 11.88 26.71
GPT-2 n = 3 29.94 11.55 25.85
GPT-2 n = 5 29.79 11.29 25.94
GPT-2 res 24.24 6.79 20.71

Table 2: ROUGE scores of the PGNet baseline models
and the GPT-2 fine-tuned models on the development
set. The GPT-2 res were trained with the “results” sec-
tion only. Addition of n > 1 hint words did not show
further gains in ROUGE scores.

put. Also, we perform data ablation study using
only the “results” section as the model input. To
address the memory constraint on our machines,
we only train examples that are less than 500 byte
pairs after encoding. Because GPT-2 model uses
BPE for input and output, the generated conclu-
sions are capitalized. Previous work showed that
beam search did not help the generation quality of
GPT-2 models (Holtzman et al., 2019), so we sim-
ply use greedy decoding to generate the conclu-
sions . Our GPT-2 model is fine-tuned with teacher
forcing, using the SGD optimizer with learning
rate of 0.001, momentum of 0.9 and the decay fac-
tor of 0.0005. Our model is based on a PyTorch
implementation of GPT-2 †.

5.2 Automatic Evaluation

Table 2 shows the best validation ROUGE scores
of baselines and our models. Note that the
hint words are not considered in score calcula-
tion and the output of all models are lower-cased.
The GPT-2 fine-tuned model significantly outper-
forms the pointer-generator (PGNet) baseline on
all ROUGE scores, where the best performing
model is GPT-2 with hint word n = 1, demonstrat-
ing the effectiveness of generating good conclu-
sion in our model. However, more hint words do
not bring additional gain in ROUGE scores, prob-
ably because more constraints hinder the GPT-
2 model to explore potentially good conclusions.
Moreover, the ablation result shows the significant
drop in all ROUGE scores, indicating the impor-
tance of including the “background” and “objec-

†https://github.com/huggingface/
pytorch-transformers

System TP TN FP FN N/A Acc.

PGnet n = 1 15 3 5 3 24 36%

GPT-2 n = 0 24 3 4 5 14 54%
GPT-2 n = 1 26 6 5 3 10 64%

Target 32 11 0 0 7 86%

Table 3: Human evaluation results for text understand-
ing on the annotation questions of 50 randomly selected
source documents. Note that some source documents
which don’t fit into the binary paradigm of positive or
negative results are classified as N/A. TP: True Posi-
tive; TN: True Negative; FP: False Positive; FN: False
Negative; N/A: Not Applicable.

tive” sections in the input for better content under-
standing.

5.3 Human Evaluation

We recruited 10 medical students with prior train-
ing in bio-statistics and epidemiology to annotate
and rate the generated conclusions. Our question-
naire contains two types of questions: the annota-
tion question and the rating question.

• Annotation: A annotation question contains
a source document and four conclusions,
namely the target conclusion written by hu-
man, the GPT-2 n = 0, the GPT-2 n = 1
and the PGnet generated conclusions. The
raters are asked to classify each generated
conclusions as either true positive, true neg-
ative, false positive, false negative or not ap-
plicable. We define true / false as whether
the generated conclusion corresponds to the
given document, and positive / negative as
whether the intervention studied has a statis-
tically significant effect, regardless of the ef-
fect being favourable or detrimental to the pa-
tients. This is to explicitly examine whether
the generated conclusion is precise in terms
of RCT content understanding.

• Rating: Rating questions use the same set-up
except the question is a 5 point Likert scale
for correctness, quality and overall impres-
sion. Each rater is given 5 annotation ques-
tions and 5 rating questions, with each source
document randomly chosen from the valida-
tion set. This is to judge the generated con-
clusions both regarding to and regardless of
the source document.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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System Correctness Quality Overall

PGnet n = 1 3.02 2.86 2.86

GPT-2 n = 0 3.42 3.66 3.52
GPT-2 n = 1 3.30 3.94 3.50

Target 3.92 4.08 3.98

Table 4: Human evaluation results for generation qual-
ity on the rating questions.

To mitigate bias, we do not inform which con-
clusion was generated or written by human, and
the conclusions are lower-cased and randomly or-
dered in each question for fair comparison.

Table 3 presents the results from the annota-
tion question, where the number of true posi-
tive and true negative generations from the GPT-2
fine-tuned models increase when compared to the
PGNet baseline. It is clear that the proposed GPT-
2 achieves better performance in terms of accuracy
(the ratio of true samples). We also include the
performance of human-written conclusions in the
last row, which serves as the upper bound of this
task. However, there is still a gap between human-
written conclusions and the generated ones.

In the rating questions depicted in Table 4, the
human written conclusions obtain a score nearly
4 out of 5 on all three dimensions. The GPT-2
models have comparable scores in overall impres-
sion, both scoring around 3.5 out of 5. The most
significant improvement of the GPT-2 generated
conclusions is the text quality, with the correct-
ness improvement to a lesser extent. The correct-
ness of GPT-2 n = 1 is slightly better than that
of GPT-2 n = 0 in the annotation question, yet
in the rating question, GPT-2 n = 0 has a higher
averaged score. In sum, the human evaluation
results demonstrate that our models significantly
outperform the baseline pointer generator and tell
that the proposed RCT conclusion generation task
is not the same as typical summarization task, so
deep text understanding is required for better per-
formance.

6 Discussion

From the human evaluation results and our empir-
ical inspection, we discover two major problems
concerning the quality of the generated conclu-
sions from GPT-2 models. First, there is some rep-
etition in the generated conclusions, which impair
the quality of generated text, though not as com-

mon in that of RNN-based models. We suggest
additional weighted decoding or coverage mecha-
nisms to avoid such problems. Second, the GPT-
2 generated conclusions are significantly shorter
than the targets. The average length generated by
GPT-2 n = 0 and GPT-2 n = 1 are 19.4 and 21.0,
while that of human written conclusions is 41.4.
This could be caused by the limitation of greedy
decoding, but the examples generated by PGnet,
which applies beam search, only gives an average
length of 22.6. This suggests investigation of ad-
ditional measures to enrich and lengthen the gen-
erated conclusions in future work.

Another important issue is the correctness of the
generation model. The GPT-2 models are able to
identify simple patterns and generate conclusions
with the correct relationship. However, errors oc-
cur when the study design becomes more compli-
cated or the outcomes are complex. Therefore, fu-
ture work should aim at enhancing the language
understanding capabilities of generation models.
Methods such as pre-training the GPT-2 models
with medical domain literature or using external
background knowledge might fill the missing gap
in the correctness performance. This is very cru-
cial regarding to our RCT understanding task and
other tasks that require precise and reliable lan-
guage generation.

Here we select 3 examples to better illustrate
our evaluation methods and the discussed limita-
tions of the current models. The example in Ta-
ble 5 show two successful generations from the
GPT-2 models. Table 6 shows a false positive
example by the GPT-2 n = 1 model. On the
other hand, a false negative example generated
by the GPT-2 n = 0 can be seen in Table 7.
The generated conclusions in Table 7 is also much
shorter than the target conclusion written by hu-
man. Other factors that could cause this issue
may include that the human authors mention in-
formation not included in the preceding source
document, additional comments on the results and
background knowledge and they paraphrase the
same concept in different ways.

Given the above results, this paper opens a new
research direction by formulating the RCT conclu-
sion generation task and investigates the potential
of language generation models towards better un-
derstanding of medical documents.
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Source: Proton pump inhibitor ( PPI ) therapy is considered as the first choice for treatment of non-erosive reflux disease
( NERD ) . However , NERD is less sensitive to PPIs than erosive gastroesophageal reflux disease ( GERD ) and the
differences between PPIs and H2 receptor antagonists are less evident in NERD than in erosive GERD . Since gastric
acid secretion is lower in the Japanese population than in Western populations , we aimed to investigate whether PPI
therapy is really necessary for NERD patients in Japan . Both roxatidine and omeprazole significantly improved the
heartburn score at 4 and 8 weeks . The clinical response rates did not differ between roxatidine and omeprazole . Both
roxatidine and omeprazole significantly relieved not only reflux but also abdominal pain and indigestion . The degrees
of improvement did not differ between the two groups .

Target (True Positive): Roxatidine relieved the symptoms of NERD patients with similar effectiveness to omeprazole .
Therefore , roxatidine may be a good choice for NERD treatment .

GPT-2 n = 0 (True Positive): Both roxatidine and omeprazole significantly improved the heartburn score at 4 and 8
weeks.

GPT-2 n = 1 (True Positive): Roxatidine and omeprazole are effective in relieving symptoms of NERD in Japanese
patients.

Table 5: An example of GPT-2 models generating true positive conclusions.

Source: To evaluate the efficacy of oxcarbazepine ( OXC ) in the treatment of agitation and aggression in patients with
Alzheimer ’s disease , vascular dementia or both . In total , 103 institutionalized patients at 35 sites were randomized to
the trial . After 8 weeks , no statistically significant differences were found between the 2 groups for all outcomes . A
trend was observed in favor of the OXC group in the reduction in the scores on the BARS ( p = 0.07 ) .

Target (True Negative): This study found no significant effect of OXC in treatment of agitation and aggression in
patients with dementia .

GPT-2 n = 0 (True Negative): OXC was not effective in the treatment of agitation and aggression in patients with
Alzheimer’s disease, vascular dementia or both.

GPT-2 n = 1 (False Positive): This study suggests that OXC is effective in the treatment of agitation and aggression in
patients with Alzheimer’s disease.

Table 6: An example of GPT-2 n = 0 model generating a true negative conclusion, while the GPT-2 n = 1 model
generated a false positive one.

Source: Atrial fibrillation ( AF ) is the most common complication following coronary artery bypass graft ( CABG ) .
The mechanism of AF after CABG is not well defined ; however , it is suggested that endogenous adenosine , released
in response to tissue hypoxia , may play a mechanistic role in these arrhythmias . The purpose of this study was to
examine whether intravenous theophylline , via adenosine A1 receptor antagonism , would correct or modify new-onset
early ( <48 h post CABG ) atrial fibrillation in patients post CABG , and thereby implicate endogenous adenosine as an
inciting agent . Thirty patients comprised the study group . In Group A , 8 of the 15 patients ( 53 % ) converted from
AF to sinus rhythm within 15 min of theophylline administration . One patient who converted to sinus rhythm 20 min
after theophylline administration was accepted as showing a negative response . In the placebo-treated group , no patient
converted to sinus rhythm within 15 min ( p <0.007 compared with Group A ) .

Target (True Positive): The mechanism of AF after CABG is not well defined and is probably multifactorial . However
, this study demonstrated that antagonism of the adenosine A1 receptor can promptly convert many of these patients back
to sinus rhythm , and thereby implicates endogenously released adenosine in a mechanistic role for inciting early ( <48
h ) post-CABG AF .

GPT-2 n = 0 (False Negative): Intravenous theophylline, via adenosine A1 receptor antagonism, did not improve early
AF in patients post CABG.

GPT-2 n = 1 (True Positive): The results of this study suggest that intravenous theophylline, via adenosine A1 receptor
antagonism, may correct or modify early AF in patients post CABG.

Table 7: An example of GPT-2 n = 0 model generating a false negative conclusion, while the GPT-2 n = 1 model
generated a true positive one.

7 Conclusion and Future Work

This work introduces the RCT paper conclusion
generation task as a stepping stone to the auto-
matic understanding of clinical research literature.

Our results show the general domain pre-trained
GPT-2 language model can be fine-tuned to gen-
erate medical domain conclusions. The evaluation
results show improvements regarding to both qual-
ity and correctness in conclusions generated by the
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fine-tuned GPT-2 model compared to the pointer-
generator summarization model. Further study is
needed to enhance the generation quality by re-
ducing repetition errors and increasing the genera-
tion length, and to improve the correctness through
better language understanding for practical clini-
cal scenarios.

Beyond generating conclusions for RCT papers,
generative language models in the medical domain
with improved correctness and quality can open up
new opportunities to tasks that require profound
domain knowledge. For example, automatic gen-
eration of systemic review and meta-analysis arti-
cles.
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