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Abstract

Deep learning models have achieved state-of-
the-art performances on many relation extrac-
tion datasets. A common element in these
deep learning models involves the pooling
mechanisms where a sequence of hidden vec-
tors is aggregated to generate a single rep-
resentation vector, serving as the features to
perform prediction for RE. Unfortunately, the
models in the literature tend to employ differ-
ent strategies to perform pooling for RE, lead-
ing to the challenge to determine the best pool-
ing mechanism for this problem, especially
in the biomedical domain. In order to an-
swer this question, in this work, we conduct a
comprehensive study to evaluate the effective-
ness of different pooling mechanisms for the
deep learning models in biomedical RE. The
experimental results suggest that dependency-
based pooling is the best pooling strategy for
RE in the biomedical domain, yielding the
state-of-the-art performance on two bench-
mark datasets for this problem.

1 Introduction

In order to analyze the entities in text, it is crucial
to understand how the entities are related to each
other in the documents. In the literature, this prob-
lem is formalized as relation extraction (RE), an
important task in information extraction. RE aims
to identify the semantic relationships between two
entity mentions within the same sentences in text.
Due to its important applications on many areas
of natural language processing (e.g., question an-
swering, knowledge base construction), RE has
been actively studied in the last decade, featuring
a variety of feature-based or kernel-based models
for this problem (Zelenko et al., 2002; Zhou et al.,
2005; Bunescu and Mooney, 2005; Sun et al.,
2011; Chan and Roth, 2010; Nguyen et al., 2009).
Recently, the introduction of deep learning has
produced a new generation of models for RE with

the state-of-the-art performance on many different
benchmark datasets (Zeng et al., 2014; dos San-
tos et al., 2015; Xu et al., 2015; Liu et al., 2015;
Zhou et al., 2016; Wang et al., 2016; Zhang et al.,
2017, 2018b). The advantage of deep learning
over the previous approaches for RE is the abil-
ity to automatically learn effective features for the
sentences from data via various network architec-
tures. The same trend has also been observed for
RE in the biomedical domain where deep learning
is gaining more and more attention from the re-
search community (Mehryary et al., 2016; Björne
and Salakoski, 2018; Nguyen and Verspoor, 2018;
Verga et al., 2018).

The typical deep learning models for RE have
involved Convolutional Neural Networks (CNN)
(Zeng et al., 2014; Nguyen and Grishman, 2015b;
Zeng et al., 2015; Lin et al., 2016; Zeng et al.,
2017), Recurrent Neural Networks (RNN), (Miwa
and Bansal, 2016; Zhang et al., 2017), Trans-
former (self-attention) networks (Verga et al.,
2018), and Graph Convolutional Neural Networks
(GCNN) (Zhang et al., 2018b). There are two
major common components in such deep learn-
ing models for RE, i.e., the representation com-
ponent and the pooling component. First, in the
representation component, some deep learning ar-
chitectures are employed to compute a sequence
of vectors to represent an input sentence for RE
for which each vector tends to capture the spe-
cific context information for a word in that sen-
tence. Such word-specific representation sequence
is then fed into the second pooling component
(e.g., max pooling) that aggregates the represen-
tation vectors to obtain an overall vector to repre-
sent the whole input sentence for the classification
problem in RE.

While there have been many work in the liter-
ature to compare different deep learning architec-
tures for the representation component, the pos-
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sible methods for the pooling component of the
deep learning models have not been systemati-
cally benchmarked for RE in general and for the
biomedical domain in particular. Specifically, the
prior work on relation extraction with deep learn-
ing has only assumed one form of pooling in the
model without considering the possible alterna-
tives for this component. In this work, we argue
that the pooling mechanisms also have significant
impact on the performance of the deep learning
models for RE and it is important to understand
how well different pooling methods perform in
this case. Consequently, in this work, we conduct
a comprehensive investigation on the effectiveness
of different max pooling methods for the deep
learning models of RE, focusing on the biomed-
ical domain as the case study. Our goal is to deter-
mine the best pooling methods for the deep learn-
ing models in biomedical RE. We also want to em-
phasize the experiments where the pooling meth-
ods are compared in a compatible manner with
the same representation components and resources
for the biomedical RE models in this work. Such
compatible comparison is unfortunately very rare
in the current literature about deep learning for RE
as new models are being intensively proposed, em-
ploying a diversity of options and resources (i.e.,
pre-trained word embeddings, optimizers, etc.).
Therefore, this is actually the first work to com-
pare different pooling methods for deep relation
extraction on the same setting.

In the experiments, we find that syntactic in-
formation (i.e., dependency parsing) can be ex-
ploited to provide the best pooling strategies for
biomedical RE. In fact, our experiments also sug-
gest that it is more beneficial to apply the syntac-
tic information in the pooling component of the
deep learning models for biomedical RE than that
in the representation component. This is different
from most of the prior work on relation extraction
that has only employed the syntactic information
in the representation component of the deep learn-
ing models (Xu et al., 2016; Miwa and Bansal,
2016). Based on the syntax-based pooling mecha-
nism, we achieve the state-of-the-art performance
on two benchmark datasets for biomedical RE.

2 Model

Relation Extraction can be seen as a multi-class
classification problem that takes a sentence and
two entity mentions of interest in that sentence as

the input. The goal is to predict the semantic re-
lation between these two entity mentions accord-
ing to some predefined set of relations. Formally,
let W = [w1, w2, . . . , wn] be the input sentence
where n is the number of tokens and wi is the i-
th word/token in W . As entity mentions can span
multiple consecutive words/tokens, let [s1, e1] be
the span of the first entity mention M1 where s1
and e1 are the indexes for the first and last token
of M1 respectively. Similarly, we define [s2, e2]
as the span for the second entity mention M2. For
convenience, we assume that the entity mentions
are not nested, i.e., 1 ≤ s1 ≤ e1 < s2 ≤ e2 ≤ n.

2.1 Input Vector Representation

In order to encode the positions and the entity
types of the two entity mentions in the input sen-
tence, following (Zhang et al., 2018b), we first re-
place the tokens in the entity mentions M1 and M2

with the special tokens of format M1-Type1 and
M2-Type2 respectively (Type1 and Type2 represent
the entity types of M1 and M2 respectively). The
purpose of this replacement is to help the models
to abstract from the specific tokens/words of the
entity mentions and only focus on their positions
and entity types, the two most important pieces of
information of the entity mentions for RE.

Given the enriched input sentence, the first step
in the deep learning models for RE is to convert
each word in the input sentence into a vector to fa-
cilitate the real-valued computation of the models.
In this work, the vector vi for wi is obtained by
concatenating the following two vectors:

1. The word embeddings of wi: The embed-
dings for the special tokens are initialized ran-
domly while the embeddings for the other words
are retrieved from the pre-trained word embedding
table provided by the Word2Vec toolkit with 300
dimensions (Mikolov et al., 2013).

2. The embeddings for the part-of-speech
(POS) tag of wi in W : We assign a POS tag for
each word in the input sentence using the Stanford
CoreNLP toolkit. The embedding for each POS
tag is also randomly initialized in this case.

Note that both the word embeddings and the
POS embeddings are updated during the training
time of the models in this work. The word-to-
vector conversion transforms the input sentence
W = [w1, w2, . . . , wn] into a sequence of vectors
V = [v1, v2, . . . , vn] (respectively) that would be
used as the input for all the deep learning mod-
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els considered in this work to ensure a compati-
ble comparison. As mentioned in the introduction,
the deep learning models for RE involves two ma-
jor components, i.e., the representation component
and the pooling component. We describe the op-
tions for such components in the following sec-
tions.

2.2 The Representation Component for RE

Given the input sequence of vectors V =
[v1, v2, . . . , vn], the next step in the deep learn-
ing models for RE is to transform this vector se-
quence into a more abstract vector sequence A =
[a1, a2, . . . , an] so ai would capture the underly-
ing representation for the context information spe-
cific to the i-th word in the sentence. In this work,
we examine the following typical architectures to
obtain such an abstract sequence A for V :

1. CNN (Zeng et al., 2014; Nguyen and Gr-
ishman, 2015b; dos Santos et al., 2015): CNN is
one of the early deep learning models for RE. It
involves an 1D convolution layer over the input
vector sequence V with multiple window sizes for
the filters. CNN produces a sequence of vectors in
which each vector capture some n-grams specific
to a word in the sentence. This sequence of vectors
is used as A for our purpose.

2. BiLSTM (Nguyen and Grishman, 2015a): In
BiLSTM, two Long-short Term Memory Networks
(LSTM) are run over the input vector sequence V
in the forward and backward direction. The hid-
den vectors generated at the position i by the two
networks are then concatenated to constitute the
abstract vector ai for this position. Due to the
recurrent nature, ai involves the context informa-
tion over the whole input sentence W although a
greater focus is put on the context of the current
word.

3. BiLSTM-CNN: This models resembles the
MASS model presented in (Le et al., 2018). It first
applies a bidirectional LSTM layer over the input
sequence V whose results are further processed by
a Convolutional Neural Network (CNN) layer as
in CNN. We also use the output of the CNN layer
as the abstract vector sequence A for this model.

4. BiLSTM-GCNN (Zhang et al., 2018b): Simi-
lar to BiLSTM-CNN, BiLSTM-GCNN also first em-
ploys a bidirectional LSTM network to abstract
the input vector sequence V . However, in the sec-
ond step, different from BiLSTM-CNN, BiLSTM-
GCNN introduces a Graph Convolutional Neural

Network (GCNN) layer that consumes the LSTM
hidden vectors and augments the representation
for a word with the representation vectors of the
surrounding words in the dependency trees. The
output of the GCNN layer is also a sequence of
vectors to represent the contexts for the words
in the sentence and functions as the abstract se-
quence A in our case. BiLSTM-GCNN (Zhang
et al., 2018b) is one of the current state-of-the-art
models for RE in the literature.

Note that there are many other variants of such
models for RE in the literature (Xu et al., 2016;
Zhang et al., 2017; Verga et al., 2018). However,
as our goal in this paper is to evaluate different
pooling mechanisms for RE, we focus on these
standard representation learning methods to avoid
the confounding effect of the complicated models,
thus better revealing the effectiveness of the pool-
ing methods.

2.3 The Pooling Component for RE

The goal of the pooling component is to aggregate
the representation vectors in the abstract sequence
A to constitute an overall vector F to represent
the whole input sentence W and the two entity
mentions of interest (i.e., F = aggregate(A)).
The overall representation vector should be able
to capture the most important features induced in
A. The typical method to achieve such aggrega-
tion in the RE models is to apply the element-wise
max-pooling operation over subsets of vectors in
A whose results are combined to obtain the over-
all representation vector. While there are differ-
ent methods to select the vector subsets for the
max-pooling operation, the prior work for RE has
only employed one particular selection method in
their deep learning models (Nguyen and Grish-
man, 2015a; Zhang et al., 2018b; Le et al., 2018).
This raises the question about the impact of the
other subset selection methods for such prior RE
models. Can these methods benefit from differ-
ent pooling mechanisms? What are the best pool-
ing methods for the deep learning models in RE?
In order to answer these questions, besides the ar-
chitectures for the representation component in the
previous section, we investigate the following sub-
set selection methods for the pooling component
of the RE models in this work:

1. ENT-ONLY: In this pooling method, we use
the subsets of the vectors corresponding to the
words in the two entity mentions of interest in
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A for the max-pooling operations (i.e., M1 with
the words in the range [s1, e1] and M2 with the
words in the range [s2, e2]). This is motivated by
the utmost importance of the two entity mentions
of interest for RE and employed in some prior
work (Nguyen and Grishman, 2015a; Zhang et al.,
2018b):

FM1 = max-pool (as1 , as1+1, . . . , ae1)

FM2 = max-pool (as2 , as2+1, . . . , ae2)

FENT−ONLY = [FM1 , FM2 ]

2. ENT-SENT: Besides the entity mentions,
the other context words in the sentence might
also involve important information for the rela-
tion prediction in RE. For instance, in the sentence
“Acetazolamide can elevate cyclosporine levels.”,
the context word “elevate” is crucial to deter-
mine the semantic relations between the two en-
tity mentions of interest “Acetazolamide and “cy-
closporine”. In order to capture such important
contexts for pooling, the typical approach in the
prior work for RE is to perform the max-pooling
operation over the abstract vectors for every word
in the sentence (i.e., the whole set A) (Zeng et al.,
2014; dos Santos et al., 2015; Le et al., 2018). The
rationale is to select the features of the abstract
vectors in A with the highest values in each di-
mension to reveal the most important context for
RE. The max-pooled vector over the whole set A
is combined with the FENT−ONLY vector in this
method:

FSENT = max-pool (a1, a2, . . . , an)

FENT−SENT = [FENT−ONLY , FSENT ]

3. ENT-DYM: Similar to ENT-SENT, this
method also seeks the important context informa-
tion beyond the two entity mentions of interest.
However, instead of taking the whole vector se-
quence A for the pooling, ENT-DYM divides A
into three separate vector subsequences based on
the start and end indexes of the first and second
entity mentions (i.e., s1 and e2) respectively. The
max-pooling operation is then applied over these
three subsequences and the resulting vectors are
combined to form an overall vector (i.e., dynamic

pooling) (Zeng et al., 2015):

FLEFT = max-pool (a1, a2, . . . , as1−1)

FMIDDLE = max-pool (as1 , as1+1, . . . , ae2)

FRIGHT = max-pool (ae2+1, ae2+2, . . . , an)

FENT−DYM = [FLEFT , FMIDDLE , FRIGHT ,

FENT−ONLY ]

4. ENT-DEP0: The previous pooling methods
have only relied on the sequential structures of
the sentence where the chosen subsets of A for
pooling always contain vectors for the consecu-
tive words in the sentence. Unfortunately, such se-
quential pooling might introduce irrelevant words
into the selected subsets of A, potentially caus-
ing noise in the pooling features and impeding
the performance of the RE models. For instance,
in the previous sentence example “Acetazolamide
can elevate cyclosporine levels.”, the ENT-SENT
and ENT-DYM methods woulds also include the
word “levels” in the pooling subsets that is not
very important for the relation prediction in this
case. Consequently, in ENT-DEP0, we explore the
possibility to use the dependency parse tree of the
input sentence W to filter out the irrelevant words
for the pooling operation. In particular, instead
of considering every word in the input sentence,
ENT-DEP0 only pools over the abstract vectors in
A that correspond to the words along the short-
est dependency path (SDP) between the two entity
mentions M1 and M2 in the dependency tree for
W (called SDP0(M1,M2)). Note that the short-
est dependency paths have been shown to be able
to select the important context words for RE in
many previous work (Zhou et al., 2005; Chan and
Roth, 2010; Xu et al., 2016). Similar to ENT-SENT
and ENT-DYM, we also include FENT−ONLY in
this method:

FDEP0 = max-poolai∈SDP0(M1,M2)(ai)

FENT−DEP0 = [FDEP0, FENT−ONLY ]

5. ENT-DEP1: This method is similar to
ENT-DEP0. However, instead of directly pool-
ing over the words in the shortest dependency path
SDP0(M1,M2), ENT-DEP1 extends this path to
also include every word that is connected to some
word in SDP0(M1,M2) via an edge in the de-
pendency tree for W (i.e., one edge distance from
SDP0(M1,M2)). We denote this extended word
set by SDP1(M1,M2) for which the correspond-
ing abstract vectors in A would be chosen for
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the max-pooling operation. The motivation for
SDP1(M1,M2) is that the representations of the
words close to the shortest dependency path be-
tween M1 and M2 might also provide useful infor-
mation to improve the performance for RE. In our
experiments, we find that one edge is the optimal
distance to enlarge the shortest dependency paths.
Using larger distance for the pooling mechanism
would hurt the performance of the deep learning
models for RE:

FDEP1 = max-poolai∈SDP1(M1,M2)(ai)

FENT−DEP1 = [FDEP1, FENT−ONLY ]

Once the overall representation vector F for
the input sentence W and the two entity men-
tions of interest has been produced, we feed it
into a feed-forward neural network with a softmax
layer in the end to obtain the probability distribu-
tion P (y|W,M1,M2) = feed-forward(F ) over
the possible relation types for our RE problem.
This probability distribution would then be used
for both making prediction (i.e., by taking the re-
lation type with the highest probability) and train-
ing models (i.e., by optimizing the negative log-
likelihood function).

3 Experiments

3.1 Datasets

In order to evaluate the performance of the models
in this work, we employ the following biomedical
datasets for RE in the experiments:

DDI-2013 (Herrero-Zazo et al., 2013): This
dataset contains 730 documents from the Drug-
bank database, involving about 25,000 examples
for the training and test sets (each example con-
sists of a sentence and two entity mentions of in-
terest for classification). There are 4 entity types
(i.e., drug, brand, group and brand n) and 5 rela-
tion types (i.e., mechanism, advise, effect, int, and
no relation) in this dataset. The no relation is to
indicate any example that does not belong to any
relation types of interest. This dataset is severely
imbalanced, containing 85% negative examples in
the training dataset. In order to deal with such im-
balanced data, we employ weighted sampling that
equally distributes the selection probability for the
positive and negative examples.

BB3 (Deléger et al., 2016). This dataset con-
tains 95 documents; each of them involves a title
and abstract from a document from the PubMed

database. There are 800 examples in this dataset
divided into two separate sets (i.e., the training set
and the validation set). BB3 also include a test
set; however, the relation types for the examples
in this test set are not provided. In order to obtain
the performance of the models on the test set, the
performers need to submit their system outputs to
an official API that would evaluate the output and
return the model performance. We train the mod-
els in this work on the training data and employ the
official API to obtain their test set performance to
be reported in the experiments for this dataset.

Following the prior work on these datasets
(Chowdhury and Lavelli, 2013; Lever and Jones,
2016; Zhou et al., 2018; Le et al., 2018), we use
the micro-averaged F1 scores as the performance
measure in the experiments to ensure a compatible
comparison.

3.2 Parameters and Resources

As the DDI-2013 dataset does not involve a de-
velopment set, we tune the parameters for the
models in this work based on the validation data
of the BB3 dataset and use the selected param-
eters for both datasets in the experiments. The
best parameters from this tuning process include
the learning rate of 0.5 and momentum of 0.8 for
the stochastic gradient descent (SGD) optimizer
with nesterov’s momentum to optimize the mod-
els. In order to regularize the models, we ap-
ply dropout between layers with the drop rate for
word embeddings set to 0.7 and other drop rates
set to 0.5. We also employ the weight dropout
DropConnect in (Wan et al., 2013) to regular-
ize the hidden-to-hidden transition matrix within
each bidirectional LSTM in the models (Merity
et al., 2017). For all the models that involve bidi-
rectional LSTMs (i.e., BiLSTM, BiLSTM-CNN,
and BiLSTM-GCNN), two layers of bidirectional
LSTMs are utilized with 300 hidden units for each
LSTM network. For the models with CNN com-
ponents (i.e., CNN and BiLSTM-CNN), we use one
CNN layer with multiple window sizes of 2, 3, 4,
and 5 for the filters (200 filters for each window
size). For the BiLSTM-GCN model, two GCNN
layers are employed with 300 hidden units in each
layer. Finally, for the final feed-forward neural
network to compute the probability distribution
(i.e., feed-forward), we utilize two hidden layers
for which 1000 hidden units are used for the first
layer and the number of hidden units for the sec-
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ond layer is determined by the number of relation
types in the datasets.

3.3 Evaluating the Pooling Methods for RE
This section evaluates the performance of different
pooling methods when they are applied to the deep
learning models for RE on the two datasets DDI-
2013 and BB3. In particular, we integrate each
of the pooling methods in Section 2.3 (i.e., ENT-
ONLY, ENT-SENT, ENT-DYM, END-DEP0, and
END-DEP1) into each of the deep learning models
in Section 2.2 (i.e., CNN, BiLSTM, BiLSTM-CNN,
and BiLSTM-GCN), resulting 20 different model
combinations to be investigated in this section. For
each model combination, we train five versions of
the model with different random seeds for param-
eter initialization over the training datasets. The
performance of such versions over the test sets
is averaged to serve as the overall model perfor-
mance on the corresponding dataset. Tables 1 and
2 report the performance of the models on the
DDI-2013 dataset and BB3 dataset respectively.

Model P R F1
CNN
+ ENT-ONLY 52.7 43.1 47.4
+ ENT-SENT 75.8 60.7 67.3
+ ENT-DYM 66.5 70.6 68.5
+ ENT-DEP0 59.8 61.5 60.6
+ ENT-DEP1 67.6 65.1 66.3
BiLSTM
+ ENT-ONLY 74.0 69.4 71.6
+ ENT-SENT 74.8 71.7 73.1
+ ENT-DYM 71.5 73.4 72.4
+ ENT-DEP0 72.8 69.4 71.1
+ ENT-DEP1 71.6 76.4 73.9
BiLSTM-CNN
+ ENT-ONLY 69.6 72.3 70.9
+ ENT-SENT 69.4 74.9 72.0
+ ENT-DYM 71.0 69.7 71.8
+ ENT-DEP0 72.2 69.5 70.8
+ ENT-DEP1 71.0 74.3 72.6
BiLSTM-GCNN
+ ENT-ONLY 69.3 71.4 70.4
+ ENT-SENT 72.2 71.9 72.0
+ ENT-DYM 69.7 73.9 71.7
+ ENT-DEP0 70.1 71.1 70.6
+ ENT-DEP1 72.7 72.9 72.8

Table 1: Results on DDI 2013

From the tables, we have the following observa-
tions about the effectiveness of the pooling meth-
ods for RE with deep learning:

1. Comparing ENT-SENT, ENT-DYM and ENT-
ONLY, we see that the pooling methods over the
whole sentence (i.e., ENT-SENT and ENT-DYM)
are significantly better than ENT-ONLY that only
focuses on the two entity mentions of interest in

Model P R F1
CNN
+ ENT-ONLY 54.2 65.7 59.1
+ ENT-SENT 55.0 62.5 59.1
+ ENT-DYM 54.6 53.3 53.5
+ ENT-DEP0 55.9 65.8 60.6
+ ENT-DEP1 55.7 67.7 61.1
BiLSTM
+ ENT-ONLY 58.9 59.6 59.2
+ ENT-SENT 60.7 59.2 59.9
+ ENT-DYM 50.2 66.0 56.9
+ ENT-DEP0 51.6 78.0 61.9
+ ENT-DEP1 54.7 72.6 62.4
BiLSTM-CNN
+ ENT-ONLY 56.4 66.2 60.8
+ ENT-SENT 53.6 69.2 60.5
+ ENT-DYM 47.1 78.0 58.7
+ ENT-DEP0 55.9 71.4 62.5
+ ENT-DEP1 54.1 74.7 62.4
BiLSTM-GCNN
+ ENT-ONLY 62.7 56.1 58.9
+ ENT-SENT 58.4 58.7 58.5
+ ENT-DYM 56.8 58.4 56.6
+ ENT-DEP0 55.6 67.4 60.8
+ ENT-DEP1 54.4 71.1 61.5

Table 2: Results on BioNLP BB3

the DDI-2013 dataset. This is true across differ-
ent deep learning models in this work. However,
this comparison is reversed for the BB3 dataset
where ENT-ONLY is in general better or compa-
rable to ENT-SENT and ENT-DYM over different
deep learning models. We attribute such phenom-
ena to the fact that the BB3 dataset often contains
many entity mentions and relations within a single
sentence (i.e., overlapping contexts) while the sen-
tences in DDI-2013 tend to involve only a single
relation with few entity mentions. This make ENT-
SENT and ENT-DYM) ineffective for BB3 as the
pooling mechanisms over the whole sentence are
likely to involve the contexts for the other entity
mentions and relations in the sentences, causing
the low quality of the resulting representations and
the confusion of the model for the relation predic-
tion. This problem is less severe in DDI-2013 as
the context of the whole sentence (with a single re-
lation) is more aligned with the important context
for the relation prediction. We call the many entity
mentions and relations in a single single sentence
of BB3 as the multiple relation effect for conve-
nient discussion in this paper.

2. Comparing ENT-SENT and ENT-DYM, their
performance are comparable in DDI-2013 (except
for CNN where ENT-DYM is better); however, in
the BB3 dataset, ENT-SENT singificantly outper-
forms ENT-DYM over all the models. This sug-
gests the amplification of the multiple relation ef-
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fect in BB3 due to ENT-DYM where the separation
of the sentence context for pooling encourages the
emergence of context information for multiple re-
lations in the final representation vector and in-
creases the confusion of the models.

3. Comparing the syntax-based pooling meth-
ods and the non-syntax pooling methods, the
pooling based on dependency paths (i.e., ENT-
DEP0) is worse than the non-syntax pooling meth-
ods (i.e., ENT-SENT and ENT-DYM) and perform
comparably with ENT-ONLY in the DDI-2013
dataset over all the models (except for the CNN
model where ENT-ONLY is much worse). These
evidences suggest that the dependency paths them-
selves are not able to capture effective contexts for
the pooling operation beyond the entity mentions
for biomedical RE in DDI-2013. However, when
we switch to the BB3 dataset, it turns out that
ENT-DEP0 is significantly better than all the non-
syntax pooling methods (i.e., ENT-ONLY, ENT-
SENT and ENT-DYM) for all the comparing mod-
els. This can be explained by the multiple relation
effect in BB3 for which the dependency paths help
to identify the most related context words for the
two given entity mentions and filter out the con-
fusing context words for the other relations in the
sentences. The models would thus become less
confused with different contexts for multiple re-
lations as those in ENT-SENT and ENT-DYM for
better performance in this case.

4. Finally, among all the pooling methods,
we find that ENT-DEP1 significantly outperforms
the other pooling methods across different models
and datasets (except the CNN model on DDI-2013
and BiLSTM on BB3). In particular, the perfor-
mance improvement is substantial over the non-
syntax pooling methods in BB3 where ENT-DEP1
is up to 2% better than ENT-SENT, ENT-DYM
and ENT-ONLY on the absolute F1 scores. This
helps to demonstrate the benefits of ENT-DEP1
for biomedical RE to both recognize the impor-
tant context words for pooling in DDI-2013 and
reduce the confusion effect of the multiple rela-
tions in single sentences for the models in BB3.

3.4 Comparing the Deep Learning Models
for RE

Regarding the comparison among different deep
learning models, the major observations from
from Tables 1 and 2 include:

1. The performance of CNN is in general

worse that the other models with the bidirectional
LSTM components (i.e., BiLSTM, BiLSTM-CNN
and BiLSTM-GCN) over different pooling meth-
ods and datasets. This illustrates the importance of
bidirectional LSTMs to capture the effective fea-
ture representations for biomedical RE.

2. Comparing BiLSTM and BiLSTM-CNN, we
find that BiLSTM is better in DDI-2013 while
BiLSTM-CNN achieves better performance in BB3
(over different pooling methods). In other words,
the CNN layer is only helpful for the BiLSTM
model in the BB3 dataset. This can also be at-
tributed to the multiple relation effect in BB3
where the CNN layer helps to further abstract the
representations from BiLSTM to better reveal the
underlying structures in such confusing and com-
plicated contexts in the sentences of BB3 for RE.

3. Graph convolutions over the dependency
trees are not effective for biomedical RE as in-
corporating it into the BiLSTM model hurts the
performance significantly. In particular, BiLSTM-
GCNN is significantly worse than BiLSTM no mat-
ter which pooling methods are applied and which
datasets are used for evaluation.

4. Interestingly, comparing the BiLSTM model
with the ENT-DEP1 pooling method (i.e., BiL-
STM + ENT-DEP1) and the BiLSTM-GCN model
with the non-syntax pooling methods (i.e., ENT-
ONLY, ENT-SENT and ENT-DYM), we see that
BiLSTM + ENT-DEP1 is significantly better with
large performance gaps over both datasets DDI-
2013 and BB3. For example, BiLSTM + ENT-
DEP1 is 1.9% better than BiLSTM-GCNN + ENT-
SENT in the DDI-2013 dataset and 3.5% better
than BiLSTM-GCNN + ENT-ONLY in BB3 with
respect to the absolute F1 scores. In fact, BiL-
STM + ENT-DEP1 also achieves the best perfor-
mance among the compared models in this sec-
tion for both datasets. The major difference be-
tween BiLSTM + ENT-DEP1 and BiLSTM-GCN
with the non-syntax pooling methods lies at the
specific component of the models where the syn-
tactic information (i.e., the dependency trees) is
applied. In BiLSTM-GCN with the non-syntax
pooling methods, the syntactic information is em-
ployed in the representation learning component
while in BiLSTM + ENT-DEP, the application of
the syntactic information is postponed all the way
to the pooling component. Our experiments thus
demonstrate that it is more effective to utilize the
syntactic information in the pooling component
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than in the representation learning component of
the deep learning models for biomedical RE. This
is an interesting and unique observation given that
the prior work for RE has only focused on us-
ing the syntactic information in the representation
component and never explicitly investigated the
effectiveness of the syntactic information for the
pooling component of the deep learning models.

3.5 Comparing to the State-of-the-art Models
In order to further demonstrate the advantage of
the syntactic information for the pooling com-
ponent for biomedical RE, this section compares
BiLSTM + ENT-DEP1 (i.e., the best model with
the ENT-DEP1 pooling in this work) with the best
reported models on the two datasets DDI-2013 and
BB3. For a fair comparison between models, we
select the previous single (non-ensemble) models
for the comparison in this section. Tables 3 and 4
presents the model performance.

Models P R F1
(Raihani and Laachfoubi, 2017) 73.6 70.1 71.8
(Zhang et al., 2018a) 74.1 71.8 72.9
(Zhou et al., 2018) 75.8 70.3 73.0
(Björne and Salakoski, 2018) 75.3 66.3 70.5
BiLSTM + ENT-DEP1 71.6 76.4 73.9

Table 3: Comparison with the state-of-the-art systems
on the DDI-2013 test set

Models P R F1
(Lever and Jones, 2016) 51.0 61.5 55.8
(Mehryary et al., 2016) 62.3 44.8 52.1
(Li et al., 2016) 56.3 58.0 57.1
(Le et al., 2018) 59.8 51.3 55.2
BiLSTM + ENT-DEP1 54.7 72.6 62.4

Table 4: Comparison with the state-of-the-art systems
on the BB3 test set

The most important observation from the tables
is that the BiLSTM model, once combined with the
ENT-DEP1 pooling method, significantly outper-
forms the previous models on DDI-2013 and BB3,
establishing new state-of-the-art performance for
these datasets. In particular, in the DDI-2013
dataset, BiLSTM + ENT-DEP1 is 0.9% better than
the current state-of-the-art model in (Zhou et al.,
2018) while the performance improvement over
the best reported model for BB3 in (Li et al., 2016)
is 5.3% (over the absolute F1 scores). Such sub-
stantial improvement clearly demonstrates the ad-

vantages of the syntactic information and its de-
layed application in the pooling component of the
deep learning models for biomedical RE.

4 Related Work

Traditional work on RE has mostly used feature
engineering with syntactical information for sta-
tistical or kernel based classifiers (Zelenko et al.,
2002; Zhou et al., 2005; Bunescu and Mooney,
2005; Sun et al., 2011; Chan and Roth, 2010). Re-
cently, deep learning has been shown to advance
many benchmark datasets for this RE problem
due to its representation learning capacity. The
typical architectures for such deep learning mod-
els involve CNN, LSTM, the attention mechanism
and their variants (Zeng et al., 2014; dos Santos
et al., 2015; Zhou et al., 2016; Wang et al., 2016;
Nguyen and Grishman, 2015a; Miwa and Bansal,
2016; Zhang et al., 2017, 2018b). Deep learn-
ing has also been applied to biomedical RE in
the last couple of years and started to demonstrate
much potentials for this area (Mehryary et al.,
2016; Björne and Salakoski, 2018; Nguyen and
Verspoor, 2018; Verga et al., 2018).

Pooling is a common and crucial component in
most of the deep learning models for RE. (Nguyen
and Grishman, 2015b; dos Santos et al., 2015) ap-
ply the pooling operation over the whole sentence
for RE while Zeng et al. (2015) proposes the dy-
namic pooling mechanism in the CNN models.
However, none of these prior work systematically
examines different pooling mechanisms for deep
learning in RE as we do in this work.

5 Conclusion

We conduct a comprehensive study on the effec-
tiveness of different pooling mechanisms for the
deep learning models in biomedical relation ex-
traction. Our experiments suggest that the pooling
mechanisms have a significant impact on the per-
formance of the deep learning models and a care-
ful evaluation should be done to decide the appro-
priate pooling mechanism for the biomedical RE
problem. From the experiments, we also find that
syntactic information (i.e., dependency parsing)
provides the best pooling methods for the mod-
els and biomedical RE datasets we investigate in
this work (i.e., ENT-DEP1). We achieve the state-
of-the-art performance for biomedical RE over the
two datasets DDI-2013 and BB3 with such syntax-
based pooling methods.
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