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Abstract

Pre-trained word embeddings are becoming
increasingly popular for natural language-
processing tasks. This includes medical ap-
plications, where embeddings are trained for
clinical concepts using specific medical data.
Recent work continues to improve on these
embeddings. However, no one has yet sought
to determine whether these embeddings work
as well for one field of medicine as they do
in others. In this work, we use intrinsic meth-
ods to evaluate embeddings from the various
fields of medicine as defined by their ICD-9
systems. We find significant differences be-
tween fields, and motivate future work to in-
vestigate whether extrinsic tasks will follow a
similar pattern.

1 Introduction

The application of natural language processing
(NLP) and machine learning to medicine presents
an exciting opportunity for tasks requiring predic-
tion and classification. Examples so far include
predicting the risk of suicide or accidental death
after a patient is discharged from general hospitals
(McCoy et al., 2016) or classifying which patients
have peripheral vascular disease (Afzal et al.,
2017). A common resource across NLP for such
tasks is to use high-dimensional vector word rep-
resentations. These word embedding include the
popular word2vec system (Mikolov et al., 2013)
which was initially trained on general English text,
using a skip-gram model on a Google News cor-
pus.

Due to considerable differences between the
language of medical text and general English
writing, prior work has trained medical embed-
dings using specific medical sources. Generally,
these approaches have trained embeddings to rep-

resent medical concepts according to their ‘clin-
ical unique identifiers’ (CUIs) in the Unified Li-
brary Management System (ULMS) (Bodenreider,
2004). Words in a text can then be mapped to
these CUIs (Yu and Cai, 2013). Various sources
have been used, such as medical journal arti-
cles, clinical patient records, and insurance claims
(De Vine et al., 2014), (Minarro-Giménez et al.,
2014), (Choi et al., 2016).

Prior authors have sought to improve the qual-
ity of these embeddings, such as using different
training techniques or more training data (Beam
et al., 2018). In order to judge the quality of
these embeddings, they have primarily used evalu-
ation methods quantifying intrinsic qualities, such
as their ability to predict drug-disease relations
noted in the National Drug File - Reference Ter-
minology (NDF-RT) ontology (Minarro-Giménez
et al., 2014), or whether similar types of clinical
concepts had cosine similiar vectors (Choi et al.,
2016).

To date these embeddings have been both
trained and evaluated on general medical data.
That is, no fields of medicine were specified or ex-
cluded; data could be from an obstetrician deliver-
ing a baby, a cardiologist placing a stent, or a der-
matologist suggesting acne treatment. It is unclear
how well such embeddings perform for a specific
field of medicine. For example, we can consider
psychiatry, the field of medicine concerned with
mental illnesses such as depression or schizophre-
nia. Prior work has shown that psychiatric symp-
toms are often described in a long, varied, and sub-
jective manner (Forbush et al., 2013) which may
present a particular challenge for training these
embeddings and NLP tasks generally.

As these pre-trained embeddings may increas-
ingly be used for down-stream NLP tasks in spe-
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cific fields of medicine, we seek to determine
whether embeddings from one field perform rel-
atively well or poorly relative to others. Specif-
ically, we aim to follow prior work using intrin-
sic evaluation methods, comparing the geomet-
ric properties of embedding vectors against others
given known relationships. This will offer a foun-
dation for future work that may compare the per-
formance on extrinsic NLP tasks in different med-
ical fields. Finding relative differences may sup-
port that certain medical fields would benefit from
embeddings trained on data specific to their field,
or using domain adaptation techniques as some-
times used in the past (Yu et al., 2017).

2 Methods

2.1 Sets of Embeddings

We sought to compare a variety of clinical con-
cept embeddings trained on medical data. Ta-
ble 1 contains details of the sets compared in
this project, all of which are based on word2vec.
We obtained DeVine200 (De Vine et al., 2014),
ChoiClaims300, and ChoiClinical300 (Choi et al.,
2016) all from the latter’s Github. We down-
loaded BeamCui2Vec500 (Beam et al., 2018) from
this site. Unfortunately, we were unable to obtain
other sets of embeddings mentioned in the litera-
ture (Minarro-Giménez et al., 2014), (Zhang et al.,
2018) (Xiang et al., 2019).

2.2 Determining a Field of Medicine’s
Clinical Concepts

A clinical concept’s corresponding field of
medicine is not necessarily obvious. In order to
have an objective and unambiguous classification,
we utilized the ninth revision of the International
Statistical Classification of Diseases and Related
Health Problems (ICD-9) (Slee, 1978). This is
a widely used system of classifying medical dis-
eases and disorders, dividing them into seventeen
chapters representing medical systems/categories
such as mental disorders, or disease of the respi-
ratory system. While the 10th version is available,
we chose this version based on prior work using
it, and the pending release of the 11th version. We
will use these ICD9 systems to define the different
medical fields.

We determined a CUI’s field of medicine ac-
cording to a CUI-to-ICD9 dictionary available
from the UMLS (Bodenreider, 2004). We con-
sider pharmacological substance related to a field

of medicine system if it treats or prevents a dis-
ease with an ICD9 code within a particular ICD9
system. We determine this by using the NDF-RT
dictionary, which maps CUIs of substances to the
CUIs of conditions they treat or prevent, and then
convert these CUIs to the ICD9 systems as be-
fore. As such, A CUI representing a drug may
have multiple ICD9 systems and therefore medi-
cal fields.

2.3 Evaluation Methods
We sought to compare multiple methods for eval-
uating the quality of a medical field’s embeddings
based on prior work. We were unable to use Yu et
al’s (2017) method, based on comparing the cor-
relation of vector cosine similarity against human
judgements from the UMNSRS-Similarity dataset
(Pakhomov, 2018) due to there being too few ex-
amples across many medical fields. The code for
all implemented methods will be publicly avail-
able upon publication of this work from the first
author’s GitHub.

Medical Relatedness Measure (MRM) This
method from Choi et al (2016) is based on quan-
tifying whether concepts with known relations are
neighbours of each other. They use known rela-
tionships between drugs and the diseases they treat
or prevent, and also the relations between diseases
that are grouped together in the Clinical Classifi-
cations Software (CCS) hierarchical groupings, a
classification from the Agency for Healthcare Re-
search and Quality (Cli). The scoring utilizes Dis-
counted Cumulative Gain, which attributes a di-
minishing score the further away a known relation-
ship is found if within k neighbours.

In our implementation, we calculate the Med-
ical Relatedness Measure (MRM) based on the
‘coarse’ groupings from the CCS hierarchies.
Scores are calculated for CUIs that represent
diseases with a known ICD9 code. The mean
MRM is then calculated for all CUIs within a
given ICD9 system. The implementation was
adapted from Python 2.7 code available from the
original author’s Github. We calculate MRM as:

MRM(V, F, k) = 1
|V (F )|

∑
v∈V (F )

1
|V (G)|

k∑
i=1

1G(v(i))
log2(i+1)

Where V are medical conditions, F a field of
medicine, V (F ) the medical conditions within an
ICD-9 system/field of medicine, G the CCS group
that medical condition v ∈ V (F ) is part of, and
V (G) the subset of medical conditions found in

https://.com/clinicalml/embeddings
https://figshare.com/s/00d69861786cd0156d81
https://github.com/jjnunez11/MedicalEmbeddingsByField
https://github.com/jjnunez11/MedicalEmbeddingsByField
https://github.com/clinicalml/embeddings
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Name Dimension Number Number of Training Data Type of Training Data
DeVine200 200 52,102 17k + 348k clinical narratives

journal abstracts
ChoiClaims300 300 14,852 4m health insurance claims
ChoiClinical300 300 22,705 20m clinical narratives
BeamCui2Vec500 500 109,053 60m + 20m + 1.7m health insurance claims

clinical narratives
full journal texts

Table 1: Characteristics of the embeddings compared, including the name referred, the embedding dimensions, the
number of embeddings in the dataset, and the type of data used to train them.

Drug Actual Medical Field Predicted Medical Field Correct?
Fluoxetine Mental Disorders Mental Disorders Yes
Sertraline Mental Disorders Neoplasms No
Risperidone Mental Disorders Mental Disorders Yes
Olanzapine Mental Disorders Mental Disorders Yes

Valproic Acid
Mental Disorders

Diseases of the Nervous System
Mental Disorders

Congenital Abnormalities
Yes

Lamotragine
Mental Disorders

Diseases of the Nervous System
Diseases of the Skin

Diseases of the Nervous System
No

Mental Disorders SysVec Score: 4/6 = 0.67

Table 2: Illustrative example showing how System Vector Accuracy (SysVec) would be calculated for the medical
field “Mental Disorders” if it contained only six drugs. Predicted medical field is the medical field/ICD9 system
vector closest to the drug, or n closest fields if a drug treats conditions in n multiple fields. System vectors are the
normalized mean vector of that system’s medical conditions.

this group. 1G is 0 or 1 depending on whether
v(i), the ith closest neighbour to a condition v, is
in the same group. k neighbours are considered.

To illustrate this, consider calculating the MRM
for F “Diseases of the Musculoskeletal System”.
It involves summing the scores for its conditions,
such as rheumatoid arthritis (v ∈ V (F )). This
condition is part of the CCS-coarse grouping (G),
“Rheumatoid arthritis and related disease”. This
group contains twelve conditions, such as Felty’s
syndrome and Rheumatoid lung. With Choi et al’s
choice of k = 40, the score for rheumatoid arthri-
tis would depend on how many of the eleven other
conditions in this group are within the 40 near-
est neighbours (v(i)) to rheumatoid arthritis, and
would give a higher score the nearer they are, the
highest being if they are the eleven nearest neigh-
bours.

Medical Conceptual Similarity Measure
(MCSM) The other method used by Choi et
al’s work evaluates whether embeddings known
to be of a particular set are clustered together.
They use conceptual sets from the UMLS such

as ‘pharmacologic substance’ or ‘disease or
syndrome’. Discounted Cumulative Gain is again
used, based on whether a CUI has other CUIs of
its set within k neighbours.

We reimplement this method, but instead of us-
ing the UMLS conceptual sets, we create sets from
the ICD9 systems, again giving a score to neigh-
bours that are diseases or drugs from the same
field of medicine/ICD9 system. Again, this was
adapted from code from Choi et al’s Github. The
Medical Conceptual Similarity Measure (MCSM)
can be represented as:

MCSM(V, F, k) = 1
|V (F )|

∑
v∈V (F )

k∑
i=1

1F (v(i))
log2(i+1)

Similar to MRM, F is a medical field/ICD9 sys-
tem, V (F ) the medical conditions within a sys-
tem, and 1F 0 or 1 depending on whether neigh-
bour v(i) is also in this medical field.

For illustration, consider an example calculat-
ing the MCSM for the medical field/system (F )
“Infectious and Parasitic Diseases”. This involves
calculating the score for the medical condition (v)
primary tuberculous infection. If rifampin, an an-
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tibiotic, was found to be nearby, it would con-
tribute to the MCSM, as it treats conditions in “In-
fectious and Parasitic Diseases” and so would be
classified as being part of this system. On the other
hand, if the respiratory illness asthma was one of
the k nearest neighbours, it would add nothing to
the MCSM score, as it is a disease in a different
system, “Diseases of the Respiratory System”.

Significance against Bootstrap Distribution
(Bootstrap) Beam et al (2018) also evaluate
how well known relationships between concepts
are represented by embedding vector similarity.
For a given known relation, they generate a boot-
strap distribution by randomly calculating cosine
similarities between embedding vectors of the
same class (eg. a random drug and disease when
evaluating drug-disease relations). For a given
known relation, they consider that the embeddings
produced an accurate prediction if their cosine
similarity is within the top 5%, the equivalent of
p < 0.05 for a one-sided t-test.

Our implementation considers the may-treat or
may-prevent known relationships from the NDF-
RT dataset. We calculate the percentage of known
relations for drug-disease pair within each medi-
cal field. Beam et al have not yet made their code
publicly available, so we reimplemented this tech-
nique in Python.

System Vector Accuracy (SysVec) We imple-
ment a new, simple method to evaluate a medi-
cal field’s embeddings. A representative vector
is calculated for each medical field/ICD9 system
by taking the mean of the normalized embedding
vectors of a field’s diseases. We then consider all
of the drugs known to treat or prevent a disease
of a given medical field. A field’s System Vec-
tor Accuracy is then the percentage of these drugs
whose most similar (by cosine similarity) system
vector is this field’s. A higher score indicates bet-
ter performance. We implemented this method in
Python.

For example, a system vector for “Mental Dis-
orders” would be calculated from the embeddings
for diseases such as schizophrenia and major de-
pressive disorder. “Mental Disorders’” System
Vector Accuracy is the percentage of its medi-
cations (e.g. fluoxetine, risperidone, paroxetine)
whose embedding vectors are more similar to the
“Mental Disorders” system vector than all others.
Fluoxetine is an anti-depressant medication solely

used to treat “Mental Disorders”, so we would ex-
pect its vector to be more similar to this system
vector than, say, the system vector representing
“Diseases of the Skin and Subcutaneous Tissue”.

Some drugs treat or prevent diseases in n multi-
ple medical field. For a field, such a drug is clas-
sified as being accurately predicted if the field’s
system vector is amongst the n most similar sys-
tem vectors. For instance, valproic acid is an anti-
convulsant used to treat both mental disorders and
those of the nervous system. “Mental Disorders’”
System Vector Accuracy would take into account
whether its system vector was one of the n=2 most
similar system vectors. For further illustration, Ta-
ble 2 shows an example SysVec calculation.

2.4 Comparing Scores

Comparing Sets of Embeddings We calculated
the mean scores for an embedding set, only includ-
ing embeddings with corresponding ICD9 values
and present in all of the compared sets. For the
MCSM and MRM scores, we conducted two-way
paired t-tests between the scores from each em-
bedding set, adjusted with the Bonferroni correc-
tion. For the binary Bootstrap and SysVec scores,
we judged statistical significance by calculating
z-scores and their corresponding Bonferroni cor-
rected p-values.

A negative control set of embeddings was con-
structed by taking the embeddings from Beam et
al (2018) and randomly arranging which clinical
concepts an embedding corresponds to.

Comparing Fields of Medicine As the embed-
dings from Beam et al (2018) are most recent,
trained on the most data, and have significantly
higher scores than the other embeddings com-
pared, we used these embeddings to compare
scores from the different fields of medicine. This
set also contained the most embeddings, allowing
more embeddings from each field to be compared.

We sought to determine whether a field of
medicine’s embeddings were significantly worse
or better than the average. As such, for each field
of medicine we calculated the mean score from
each evaluation method. We then used statisti-
cal tests to compare a field’s scores from a given
evaluation method with the same scores from all
other fields. For MCSM and MRM scores we used
two-tailed t-tests, and for Bootstrap and SysVec,
z-scores, all corrected with the Bonferroni correc-
tion.



15

To aggregate a medical field’s results, we cal-
culated a ‘Net Significance’ metric by taking how
many of the four method’s scores were signifi-
cantly above the mean, minus how many were sig-
nificantly below. We found this more interpretable
than other methods such as aggregating normal-
ized scores.

3 Results

3.1 Differences Between Sets of Embeddings
Comparing the sets of embeddings (Table 3)
shows consistent differences. BeamCui2Vec500’s
scores are the highest across all methods, and
this difference is very significant, with p-value
� 10−5 after Bonferonni correction. The
ChoiClaims300 embeddings seem next best, and
the remaining sets still have much higher scores
than those of the negative control.

3.2 Differences Between Medical Systems
Differences are also observed between embed-
dings from the various fields of medicine as rep-
resented by the ICD-9 systems (Table 4). For
instance, embeddings related to the medical field
Mental Disorders have scores significantly above
the mean score across all systems for two eval-
uation methods, while those of the field Symp-
toms, Signs, and Ill-defined Conditions are signif-
icantly below for three. Due to a smaller number
of documented drug-disease relationships across
two medical fields, scores were not calculated with
those methods using these relationships.

4 Discussion and Future Direction

To our knowledge, this is the first investigation
into whether clinical concept embeddings from a
given field of medicine perform relatively well or
poorly compared to others. We conducted this in-
vestigation comparing available sets of such em-
beddings, using a variety of previously described
intrinsic evaluation methods in addition to a new
one. Given that one set of embeddings performed
better than others, we used this set to compare the
different fields of medicine, and found significant
results between various fields.

The superior performance of one set of embed-
dings - those from Beam et al (2018) - are con-
sistent with the depth and breadth of data used to
train these embeddings. Training used three differ-
ent types of data, including that from health insur-
ance claims, clinical narratives, and full texts from

medical journals. The size of the dataset was also
much larger than that of the others. Our work vali-
dates their findings that their embeddings offer the
best performance. However, it would be interest-
ing to also consider the recent clinical concept em-
beddings developed by (Xiang et al., 2019). They
use a similar amount of data (50 million) as Beam
et al, using a large dataset from electronic health
records, and apply a novel method to incorporate
time-sensitive information. At the time of submis-
sion, we were unable to obtain their embeddings,
and so leave this comparison to future work.

Examining the differences between fields of
medicine, we note that the poor performance of
embeddings from the system “Symptoms, Signs,
and Ill-defined Conditions” may support validity
of the results. This collection of miscellaneous
medical conditions would not be expected to have
the intrinsic vector similarity and cohesion evalu-
ated by our evaluation methods.

Further work may explore why the other sys-
tems have varied performance. We wonder if the
observed results correlate with possible distinc-
tiveness of the various medical fields. For exam-
ple, one of the best performing systems was “Neo-
plasms”. The conditions in this field are often un-
ambiguous - a cancer like non-small cell lung can-
cer has little other meaning - and the drugs used
for these diseases tend to be similarly specific. On
the other hand, poorly performing systems such as
“Diseases of the Skin and Subcutaneous Tissue”
and ”Diseases of the Musculoskeletal Systems and
Connective Tissue” often utilize immunosuppres-
sant medications that are used across many fields
of medicine. Future work could investigate this
conjecture by comparing scores when restricting
what clinical concepts are compared, such as only
common or distinct medications.

This work evaluated embeddings using intrin-
sic measures of embedding quality. This presents
some advantages, but also the most obvious lim-
itation and direction for future work. These in-
trinsic methods allowed a consistent evaluation
to be carried out between medical fields, and al-
lowed a wide variety of embedding sets to be com-
pared. The methods all evaluate qualities that
well-trained embeddings should have, though still
represent artificial use-cases. Evaluating these
embeddings on extrinsic, down-stream tasks may
provide more practically relevant comparisons.
However, these tasks will need to be comparable
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Embedding Set MRM MCSM Bootsrap SysVec
Negative Control 0.02 1.24 0.05 0.35
DeVine200 0.24 5.14 0.27 0.79
ChoiClaims300 0.43 5.34 0.42 0.80
ChoiClinical300 0.33 4.49 0.42 0.74
BeamCui2Vec500 0.52 6.39 0.67 0.90

Table 3: Mean scores for embedding sets for each evaluation method. See Methods section for abbreviations

ICD-9 Systen MRM MCSM Bootstrap SysVec Net Significance
All Systems (Negative Control) 0 1.08 0.04 0.25 -
All Systems 0.55 8.07 0.89 0.63 -
Infectious and Parasitic Diseases 0.45 7.72 0.93 0.92 0
Neoplasms 0.62 9 0.94 0.55 +2
Endocrine, Nutritional and Metabolic
Diseases, and Immunity Disorders

0.44 5.64 0.89 0.53 -2

Diseases of the Blood
and Blood-forming Organs

0.31 4.36 0.82 0.79 -2

Mental Disorders 0.53 9.34 0.96 0.83 +2
Diseases of the Nervous System
and Sense Organs

0.76 8.44 0.87 0.33 +1

Diseases of the Circulatory System 0.59 8.12 0.96 0.72 +2
Diseases of the Respiratory System 0.36 5.85 0.94 0.82 +1
Diseases of the Digestive System 0.61 7.93 0.77 0.62 0
Diseases of the Genitourinary System 0.61 6.82 0.86 0.58 0
Complications of Pregnancy,
Childbirth, and the Puerperium

0.51 10.27 - - 0

Diseases of the Skin
and Subcutanous Tissue

0.37 5.1 0.81 0.58 -2

Diseases of the Musculoskeletal
System and Connective Tissue

0.47 8.22 0.88 0.29 -2

Congenital Anomalies 0.5 6.24 0.73 0.73 -1
Certain Conditions Originating
in the Perinatal Period

0.48 9.84 - - 0

Symptoms, Signs, and
Ill-defined Conditions

0.26 2.68 0.77 0.56 -3

Injury and Poisoning 0.59 9.09 0.75 0 0

Table 4: Comparison of mean scores using different evaluation methods for the fields of medicine as represented
by their ICD-9 system. The row All Systems shows the mean score for each method across embeddings from all
systems. A bold score indicates that a system’s score was significantly above the All Systems score, while an italic
score indicates it was below. Significance is judged by having a p-value <0.05 after Bonferroni correction. Net
Significance is the number of these significant differences above the All Systems score minus the number below.
A system’s score is not calculated if there are fewer than ten examples for a method. See Methods section for
evaluation method abbreviations. All scores in this table are calculated using the embeddings from Beam et al.

and available for multiple medical fields. For in-
stance, the recent work by Xiang et al (2019) com-
pared embeddings trained by different methodolo-
gies on a task predicting the onset of heart failure
(Rasmy et al., 2018). This would be an appropri-

ate task to judge embeddings from “Diseases of
the Circulatory System”; others would be needed
for other systems. We also plan to investigate the
validity of these intrinsic evaluation methods by
comparing them to extrinsic results.
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Another future direction could be to investigate
what could be done to improve performance in the
fields with lower scores. For instance, Zhang et al
(2018) used domain adaptation techniques for psy-
chiatric embeddings, and this could also be car-
ried out for those systems we identified as doing
poorly. Alternatively, one could train embeddings
solely on data from one field of medicine and in-
vestigate how this affects performance.
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