
Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 297–301
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

297

Efficiency through Auto-Sizing:
Notre Dame NLP’s Submission to the WNGT 2019 Efficiency Task

Kenton Murray Brian DuSell David Chiang
Department of Computer Science and Engineering

University of Notre Dame
{kmurray4,bdusell1,dchiang}@nd.edu

Abstract

This paper describes the Notre Dame Natu-
ral Language Processing Group’s (NDNLP)
submission to the WNGT 2019 shared task
(Hayashi et al., 2019). We investigated the im-
pact of auto-sizing (Murray and Chiang, 2015;
Murray et al., 2019) to the Transformer net-
work (Vaswani et al., 2017) with the goal of
substantially reducing the number of param-
eters in the model. Our method was able to
eliminate more than 25% of the model’s pa-
rameters while suffering a decrease of only 1.1
BLEU.

1 Introduction

The Transformer network (Vaswani et al., 2017)
is a neural sequence-to-sequence model that has
achieved state-of-the-art results in machine trans-
lation. However, Transformer models tend to be
very large, typically consisting of hundreds of mil-
lions of parameters. As the number of parame-
ters directly corresponds to secondary storage re-
quirements and memory consumption during in-
ference, using Transformer networks may be pro-
hibitively expensive in scenarios with constrained
resources. For the 2019 Workshop on Neural Gen-
eration of Text (WNGT) Efficiency shared task
(Hayashi et al., 2019), the Notre Dame Natural
Language Processing (NDNLP) group looked at
a method of inducing sparsity in parameters called
auto-sizing in order to reduce the number of pa-
rameters in the Transformer at the cost of a rela-
tively minimal drop in performance.

Auto-sizing, first introduced by Murray and
Chiang (2015), uses group regularizers to encour-
age parameter sparsity. When applied over neu-
rons, it can delete neurons in a network and shrink
the total number of parameters. A nice advantage
of auto-sizing is that it is independent of model ar-
chitecture; although we apply it to the Transformer

network in this task, it can easily be applied to any
other neural architecture.

NDNLP’s submission to the 2019 WNGT Effi-
ciency shared task uses a standard, recommended
baseline Transformer network. Following Mur-
ray et al. (2019), we investigate the application
of auto-sizing to various portions of the network.
Differing from their work, the shared task used
a significantly larger training dataset from WMT
2014 (Bojar et al., 2014), as well as the goal of
reducing model size even if it impacted transla-
tion performance. Our best system was able to
prune over 25% of the parameters, yet had a BLEU
drop of only 1.1 points. This translates to over 25
million parameters pruned and saves almost 100
megabytes of disk space to store the model.

2 Auto-sizing

Auto-sizing is a method that encourages sparsity
through use of a group regularizer. Whereas the
most common applications of regularization will
act over parameters individually, a group regu-
larizer works over groupings of parameters. For
instance, applying a sparsity inducing regularizer
to a two-dimensional parameter tensor will en-
courage individual values to be driven to 0.0. A
sparsity-inducing group regularizer will act over
defined sub-structures, such as entire rows or
columns, driving the entire groups to zero. De-
pending on model specifications, one row or col-
umn of a tensor in a neural network can corre-
spond to one neuron in the model.

Following the discussion of Murray and Chiang
(2015) and Murray et al. (2019), auto-sizing works
by training a neural network while using a regular-
izer to prune units from the network, minimizing:

L = −
∑

f , e in data

log P(e | f ; W) + λR(‖W‖).

W are the parameters of the model and R is a reg-

298

Figure 1: Architecture of the Transformer (Vaswani
et al., 2017). We apply the auto-sizing method to the
feed-forward (blue rectangles) and multi-head attention
(orange rectangles) in all N layers of the encoder and
decoder. Note that there are residual connections that
can allow information and gradients to bypass any layer
we are auto-sizing. Following the robustness recom-
mendations, we instead layer norm before.

ularizer. Here, as with the previous work, we ex-
periment with two regularizers:

R(W) =
∑

i

∑
j

W2
i j

1
2

(`2,1)

R(W) =
∑

i

max
j
|Wi j| (`∞,1)

The optimization is done using proximal gradi-
ent descent (Parikh and Boyd, 2014), which al-
ternates between stochastic gradient descent steps
and proximal steps:

W ← W − η∇ log P(e | f ; w)

W ← arg min
W′

(
1
2η
‖W −W′‖2 + R(W′)

)
3 Auto-sizing the Transformer

The Transformer network (Vaswani et al., 2017) is
a sequence-to-sequence model in which both the

encoder and the decoder consist of stacked self-
attention layers. The multi-head attention uses
two affine transformations, followed by a softmax
layer. Each layer has a position-wise feed-forward
neural network (FFN) with a hidden layer of rec-
tified linear units. Both the multi-head attention
and the feed-forward neural network have residual
connections that allow information to bypass those
layers. In addition, there are also word and posi-
tion embeddings. Figure 1, taken from the original
paper, shows the architecture. NDNLP’s submis-
sion focuses on the N stacked encoder and decoder
layers.

The Transformer has demonstrated remarkable
success on a variety of datasets, but it is highly
over-parameterized. For example, the baseline
Transformer model has more than 98 million pa-
rameters, but the English portion of the training
data in this shared task has only 116 million to-
kens and 816 thousand types. Early NMT mod-
els such as Sutskever et al. (2014) have most of
their parameters in the embedding layers, but the
transformer has a larger percentage of the model in
the actual encoder and decoder layers. Though the
group regularizers of auto-sizing can be applied to
any parameter matrix, here we focus on the pa-
rameter matrices within the encoder and decoder
layers.

We note that there has been some work recently
on shrinking networks through pruning. However,
these differ from auto-sizing as they frequently re-
quire an arbitrary threshold and are not included
during the training process. For instance, See
et al. (2016) prunes networks based off a variety
of thresholds and then retrains a model. Voita
et al. (2019) also look at pruning, but of attention
heads specifically. They do this through a relax-
ation of an `0 regularizer in order to make it dif-
ferentiable. This allows them to not need to use
a proximal step. This method too starts with pre-
trained model and then continues training. Michel
et al. (2019) also look at pruning attention heads
in the transformer. However, they too use thresh-
olding, but only apply it at test time. Auto-sizing
does not require a thresholding value, nor does it
require a pre-trained model.

Of particular interest are the large, position-
wise feed-forward networks in each encoder and
decoder layer:

FFN(x) = W2(max(0,W1x + b1)) + b2.

299

W1

W2

ReLU

Figure 2: Auto-sizing FFN network. For a row in the
parameter matrix W1 that has been driven completely
to 0.0 (shown in white), the corresponding column in
W2 (shown in blue) no longer has any impact on the
model. Both the column and the row can be deleted,
thereby shrinking the model.

W1 and W2 are two large affine transformations
that take inputs from D dimensions to 4D, then
project them back to D again. These layers make
use of rectified linear unit activations, which were
the focus of auto-sizing in the work of Murray and
Chiang (2015). No theory or intuition is given as
to why this value of 4D should be used.

Following (Murray et al., 2019), we apply the
auto-sizing method to the Transformer network,
focusing on the two largest components, the feed-
forward layers and the multi-head attentions (blue
and orange rectangles in Figure 1). Remember
that since there are residual connections allow-
ing information to bypass the layers we are auto-
sizing, information can still flow through the net-
work even if the regularizer drives all the neurons
in a layer to zero – effectively pruning out an entire
layer.

4 Experiments

All of our models are trained using the fairseq im-
plementation of the Transformer (Gehring et al.,
2017).1 For the regularizers used in auto-sizing,
we make use of an open-source, proximal gradient
toolkit implemented in PyTorch2 (Murray et al.,
2019). For each mini-batch update, the stochastic
gradient descent step is handled with a standard
PyTorch forward-backward call. Then the proxi-
mal step is applied to parameter matrices.

4.1 Settings

We used the originally proposed transformer ar-
chitecture – with six encoder and six decoder lay-
ers. Our model dimension was 512 and we used
8 attention heads. The feed-forward network sub-
components were of size 2048. All of our sys-
tems were run using subword units (BPE) with
32,000 merge operations on concatenated source
and target training data (Sennrich and Haddow,
2016). We clip norms at 0.1, use label smoothed
cross-entropy with value 0.1, and an early stop-
ping criterion when the learning rate is smaller
than 10−5. We used the Adam optimizer (Kingma
and Ba, 2015), a learning rate of 10−4, and dropout
of 0.1. Following recommendations in the fairseq
and tensor2tensor (Vaswani et al., 2018) code
bases, we apply layer normalization before a sub-
component as opposed to after. At test time, we
decoded using a beam of 5 with length normal-
ization (Boulanger-Lewandowski et al., 2013) and
evaluate using case-sensitive, tokenized BLEU
(Papineni et al., 2002).

For the auto-sizing experiments, we looked at
both `2,1 and `∞,1 regularizers. We experimented
over a range of regularizer coefficient strengths, λ,
that control how large the proximal gradient step
will be. Similar to Murray and Chiang (2015), but
differing from Alvarez and Salzmann (2016), we
use one value of λ for all parameter matrices in
the network. We note that different regularization
coefficient values are suited for different types or
regularizers. Additionally, all of our experiments
use the same batch size, which is also related to λ.

4.2 Auto-sizing sub-components

We applied auto-sizing to the sub-components of
the encoder and decoder layers, without touching
the word or positional embeddings. Recall from

1https://github.com/pytorch/fairseq
2https://github.com/KentonMurray/ProxGradPytorch

300

System Disk Size Number of Parameters newstest2014 newstest2015
Baseline 375M 98.2M 25.3 27.9

All `2,1 = 0.1 345M 90.2M 21.6 24.1
Encoder `2,1 = 0.1 341M 89.4M 23.2 25.5
Encoder `2,1 = 1.0 327M 85.7M 22.1 24.5

FFN `2,1 = 0.1 326M 85.2M 24.1 26.4
FFN `2,1 = 1.0 279M 73.1M 24.0 26.8

FFN `2,1 = 10.0 279M 73.1M 23.9 26.5
FFN `∞,1 = 100.0 327M 73.1M 23.8 26.0

Table 1: Comparison of BLEU scores and model sizes on newstest2014 and newstest2015. Applying auto-sizing
to the feed-forward neural network sub-components of the transformer resulted in the most amount of pruning
while still maintaining good BLEU scores.

Figure 1, that each layer has multi-head attention
and feed-forward network sub-components. In
turn, each multi-head attention sub-component is
comprised of two parameter matrices. Similarly,
each feed-forward network has two parameter ma-
trices, W1 and W2. We looked at three main exper-
imental configurations:

• All: Auto-sizing is applied to every multi-
head attention and feed-forward network sub-
component in every layer of the encoder and
decoder.

• Encoder: As with All, auto-sizing is applied
to both multi-head attention and feed-forward
network sub-components, but only in the en-
coder layers. The decoder remains the same.

• FFN: Auto-sizing applied only to the feed-
forward network sub-components W1 and
W2, but not to the multi-head portions. This
too is applied to both the encoder and de-
coder.

4.3 Results
Our results are presented in Table 1. The base-
line system has 98.2 million parameters and a
BLEU score of 29.7. It takes up 375 megabytes on
disk. Our systems that applied auto-sizing only to
the feed-forward network sub-components of the
transformer network maintained the best BLEU
scores while also pruning out the most parame-
ters of the model. Overall, our best system used
`2,1 = 1.0 regularization for auto-sizing and left
73.1 million parameters remaining. On disk, the
model takes 279 megabytes to store – roughly
100 megabytes less than the baseline. The perfor-
mance drop compared to the baseline is 1.1 BLEU
points, but the model is over 25% smaller.

Applying auto-sizing to the multi-head atten-
tion and feed-forward network sub-components of
only the encoder also pruned a substantial amount
of parameters. Though this too resulted in a
smaller model on disk, the BLEU scores were
worse than auto-sizing just the feed-forward sub-
components. Auto-sizing the multi-head atten-
tion and feed-forward network sub-components of
both the encoder and decoder actually resulted in
a larger model than the encoder only, but with a
lower BLEU score. Overall, our results suggest
that the attention portion of the transformer net-
work is more important for model performance
than the feed-forward networks in each layer.

5 Conclusion

In this paper, we have investigated the impact of
using auto-sizing on the transformer network of
the 2019 WNGT efficiency task. We were able
to delete more than 25% of the parameters in the
model while only suffering a modest BLEU drop.
In particular, focusing on the parameter matrices
of the feed-forward networks in every layer of the
encoder and decoder yielded the smallest models
that still performed well.

A nice aspect of our proposed method is that
the proximal gradient step of auto-sizing can be
applied to a wide variety of parameter matri-
ces. Whereas for the transformer, the largest im-
pact was on feed-forward networks within a layer,
should a new architecture emerge in the future,
auto-sizing can be easily adapted to the trainable
parameters.

Overall, NDNLP’s submission has shown that
auto-sizing is a flexible framework for pruning pa-
rameters in a large NMT system. With an ag-
gressive regularization scheme, large portions of

301

the model can be deleted with only a modest im-
pact on BLEU scores. This in turn yields a much
smaller model on disk and at run-time.

Acknowledgements

This research was supported in part by University
of Southern California, subcontract 67108176 un-
der DARPA contract HR0011-15-C-0115.

References
Jose M Alvarez and Mathieu Salzmann. 2016. Learn-

ing the number of neurons in deep networks. In Ad-
vances in Neural Information Processing Systems,
pages 2270–2278.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
workshop on statistical machine translation. In Pro-
ceedings of the ninth workshop on statistical ma-
chine translation, pages 12–58.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. 2013. Audio chord recognition with
recurrent neural networks. In Proc. International
Society for Music Information Retrieval, pages 335–
340.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In Proc. ICML.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proc.
ICLR.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in Neural Information Processing Systems.

Kenton Murray and David Chiang. 2015. Auto-sizing
neural networks: With applications to n-gram lan-
guage models. In Proc. EMNLP.

Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen,
Walter Scheirer, and David Chiang. 2019. Auto-
sizing the transformer network: Improving speed,
efficiency, and performance for low-resource ma-
chine translation. In Proceedings of the Third Work-
shop on Neural Generation and Translation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. ACL,
pages 311–318.

Neal Parikh and Stephen Boyd. 2014. Proximal al-
gorithms. Foundations and Trends in Optimization,
1(3):123–231.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291–301.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proc. First Conference on Machine Translation:
Volume 1, Research Papers, volume 1, pages 83–91.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

http://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1803.07416
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580

