
Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 291–296
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

291

Towards Automated Semantic Role Labelling of Hindi-English
Code-Mixed Tweets

Riya Pal and Dipti Misra Sharma
Kohli Center on Intelligent Systems (KCIS)

International Institute of Information Technology, Hyderabad (IIIT-Hyderabad)
Gachibowli, Hyderabad, Telangana - 500032, India

riya.pal@research.iiit.ac.in
dipti@iiit.ac.in

Abstract

We present a system for automating Semantic
Role Labelling of Hindi-English code-mixed
tweets. We explore the issues posed by noisy,
user generated code-mixed social media data.
We also compare the individual effect of var-
ious linguistic features used in our system.
Our proposed model is a 2-step system for au-
tomated labelling which gives an overall ac-
curacy of 84% for Argument Classification,
marking a 10% increase over the existing rule-
based baseline model. This is the first attempt
at building a statistical Semantic Role Labeller
for Hindi-English code-mixed data, to the best
of our knowledge.

1 Introduction

Semantic Role Labelling (SRL) deals with iden-
tifying arguments of a given predicate or verb, in
a sentence or utterance, and classifying them into
various semantic roles. These labels give us infor-
mation about the function played by the argument
with respect to its predicate in the particular sen-
tence.

With the growing popularity of social media,
there is a lot of user generated data available
online on forums such as Facebook, Twitter,
Reddit, amongst many others. Subsequently, there
is an increasing need to develop tools to process
this text for its understanding. In multi-lingual
communities, code-mixing is a largely observed
phenomenon in colloquial usage as well as on
social media. Code-mixing is described as “the
embedding of linguistic units such as phrases,
words and morphemes of one language into an
utterance of another language” (Myers-Scotton,
1997). Social media data, Code-mixed text in
particular, doesn’t strictly adhere to the syntax,
morphology or structure of any of the involved
languages, which results in standard NLP tools
not performing well with this data for a lot of

tasks (Solorio and Liu, 2008; Çetinoğlu et al.,
2016). T1 is an example from the corpus of
Hindi-English code-mixed tweets (The Hindi
words are denoted in italics).

T1 : “My life is revolving around ‘bhook lagri
hai’ and ‘zyada kha liya”’
Translation: My life is revolving around ‘I am
hungry’ and ‘I ate too much’

We present a 2-step system for automated Se-
mantic Role Labelling of Hindi-English code-
mixed tweets. The first step is to identify the argu-
ments of the predicates in the sentence. The sec-
ond step is to then classify these identified argu-
ments into various semantic roles. We discuss the
effect of 14 linguistic features on our system, of
which 6 are derived from literature and rest are
specific to Hindi or to the nature of code-mixed
text. Semantic Role Labelling will aid in various
NLP tasks such as building question-answering
systems (Shen and Lapata, 2007), co-reference
resolution (Ponzetto and Strube, 2006), document
summarization (Khan et al., 2015), information re-
trieval (Moschitti et al., 2003; Osman et al., 2012)
and so on.

The structure of this paper is as follows. We
describe our data and the normalisation done for
pre-processing of the text for our system in Section
2. The features used and compared are explained
in detail in Section 3 along with the architecture
of our system. We analyse the experiments and its
results in Section 4. In Section 5, we conclude the
paper.

2 Data and Pre-Processing

We used a dataset of 1460 Hindi-English code-
mixed tweets comprising of 20,949 tokens la-
belled with their semantic roles (Pal and Sharma,



292

2019). This dataset is built on a dependency la-
belled corpus by Bhat et al. (2018). The tokens are
parsed and labelled with Proposition Bank (Prop-
Bank) labels shown in table 1, depicting semantic
roles of the arguments with respect to the predi-
cates in the sentence (Palmer et al., 2005; Bhatt
et al., 2009).

Label Description
ARGA Causer
ARG0 Agent or Experiencer or Doer
ARG1 Theme or Patient
ARG2 Benificiary

ARG2 ATTR Attribute or Quality
ARG2 LOC Physical Location
ARG2 GOL Destination or Goal
ARG2 SOU Source

ARG3 Instrument
ARGM DIR Direction
ARGM LOC Location
ARGM MNR Manner
ARGM EXT Extent or Comparison
ARGM TMP Temporal
ARGM REC Reciprocal
ARGM PRP Purpose
ARGM CAU Cause or Reason
ARGM DIS Discourse

ARGM ADV Adverb
ARGM NEG Negative
ARGM PRX Complex Predicate

Table 1: PropBank Tagset

Social media data doesn’t conform to the rules
of spelling, grammar or punctuation. These need
to be taken into account to maintain uniformity
for our system. We incorporated this in our pre-
processing steps.

2.1 Misspelling

One of the most widely seen errors in social me-
dia data is ‘typos’, which are errors in spelling,
usually slangs or typing errors. These errors can
be broadly classified as follows:

• Misspelling leading to another word. For
example, “thing”[NN]1 misspelled as
“think”[VM].

• Omission of vowels - For example, the to-
ken “hr” is a commonly used abbreviation for

1Part of Speech (POS) tag

the English word ‘hour’. In our corpus, it
referred to the Hindi word ‘har’ which is a
quantifier and means ‘every’.

• Elongation - tokens such as “Loooonng”,
“Heyyyyy”, “pyaaaar” and so on.

• Typing errors. For example, “saluet”, which
should have been ‘salute’.

• Non-Uniformity in transliteration of Hindi
tokens (usually written in Devanagari script)
using the Roman alphabet. For example, the
Hindi word for ‘no’ - “nahi” - had a lot of
variation in its spelling in the corpus - ‘nai’,
‘naee’, ‘nahi’, ‘nahee’, ‘nhi’ etc.

We were able to detect some of the other er-
rors through automated methods, such as elonga-
tion and some typing errors. Non-uniformity in
transliteration was the most commonly found er-
ror in our corpus. These were all normalised and
corrected manually to ensure a consistent spelling
throughout the corpus.

2.2 Word Sense Disambiguation

A word can have different meanings according to
the context in which it is used. T2 is an example
from the corpus. The token “dikhny” refers to
the Hindi verb ‘xeKa’2 which means to look.
This verb can have different senses according to
its context as shown in table 2. From context
we know the relevant roleset here would be
[xeKa.01]. Available Frame files are used
to identify rolesets for the verbs in the corpus
(Vaidya et al., 2013; Bonial et al., 2014).

T2: “We are journilist and hmy sechae dikhny
se kiu rok ni skta”
Translation: We are journalists and no one can
stop us from seeing the truth.

Different senses for xeKa
Roleset id Meaning
xeKa.01 to see something
xeKa.04 to see (without volition)
xeKa.06 to show someone something
xeKa.07 used as a light verb

Table 2: Rolesets and meanings for the Hindi verb
xeKa.

2WX notation



293

T3: “Shane on you maine tuje pehle hi Warne
kiya tha”
Translation: Shane[NNP] on you, I had
Warne[NNP] you before.
Implicit meaning: Shame[VM] on you, I had
warned[VM] you before.

T3 is an interesting example from the corpus.
The proper nouns ‘Shane’ and ‘Warne’ are used
as the verbs ‘shame’ and ‘warn’ respectively in
the sentence, due to their phonetic similarity. The
speaker is possibly warning against the famous
cricketer Shane Warne, and thus uses his name to
convey the same. This sort of word play is not un-
common in social media data. These tokens are
detected as proper nouns. We added them as pred-
icates, according to their context, manually.

3 Semantic Role Labeller

Our Semantic Role Labeller has a 2-step architec-
ture. The first step is a binary classification task
wherein each token in the tweet is classified as
‘Argument’ or ‘Not an Argument’. This step is
called Argument Identification. In the second
step, the identified arguments from the previous
step are classified into the various semantic roles.
This is called Argument Classification.

We used Support Vector Models (SVM) for bi-
nary classification. The identified arguments from
this step are then classified into various seman-
tic roles mentioned in Table 1. We used the Lin-
ear SVC class of SVM (Pedregosa et al., 2011)
for one-vs-rest multi-class classification. The data
was split in the ratio of 80:20 for training and test-
ing respectively. All parameters of the LinearSVC
were set to default for training.

3.1 Features used

Hindi and English have very different grammatical
rules and vary greatly syntactically as well. We in-
corporated linguistic features in our system which
may take into account these differences and help
the labeller attain higher accuracy in identifying
and classifying arguments.

3.1.1 Baseline Features
We used 6 baseline features which have been used
extensively for the task of Semantic Role La-
belling for English (Gildea and Jurafsky, 2002;
Xue and Palmer, 2004). They are as follows:

• Predicate: Identified verb in the sentence

• Headword: Headword of the chunk

• HeadwordPOS: Part of Speech tag of the
headword

• Phrasetype: Syntactic category of the phrase
(NP, VP, CCP etc.)

• Predicate + Phrasetype

• Predicate + Headword

Semantic Arguments are identified at a phrase
or chunk level. Hence we used features such as
Headword of the chunk, phrasetype category, as
baseline features. We also saw the impact of the
part of speech (POS) tag of the Headword.

3.1.2 Features specific to Indian Languages
Previous work on Semantic Role Labelling have
used the following features for Hindi specifically
(Anwar and Sharma, 2016):

• Dependency(karaka relation): Paninian de-
pendency label

• Named Entities

• HeadwordPOS + Phrasetype

• Headword + Phrasetype

We used the same features in our system.
Named Entities have previously been seen to be
a critical feature for Argument Identification task
in English (Pradhan et al., 2004).

Vaidya et al. (2011) showed the strong co-
relation between Paninian dependency (karta) la-
bels and Propbank labels for Hindi. This feature
was also seen to give the best results for Hindi and
Urdu monolingual corpus (Anwar and Sharma,
2016). Universal Dependencies (UD) have gained
a lot of attention lately for cross-lingual parsing.
Tandon et al. (2016) discussed and evaluated
UD scheme for Hindi and also compared them
to Paninian dependency labels. We evaluated UD
part of speech(POS) tags and UD dependency la-
bels as features in our system, as mentioned below.

• HeadwordPOS(UD) - UD part of speech tag
of the headword

• UD dependency label



294

3.1.3 Features for code-mixed data
Since we are dealing with code-mixed text, we
wanted to see the effect the identified language of
a token may have. We thus used the following fea-
tures:

• Predicate + language: Predicate and its iden-
tified language.

• Headword + language: The chunk headword
and its identified language.

4 Results and Analysis

We do a thorough analysis of the individual fea-
tures and their performance for the tasks of Ar-
gument identification and Argument Classification
separately. Table 3 shows the precision, recall and
F1 scores of the features for Argument Identifica-
tion. Paninian Dependency labels give the highest
F1-score of 78.

Named Entities also give good results for Argu-
ment Identification. This is because Named En-
tities are usually arguments of a predicate. How-
ever, they by themselves don’t capture much in-
formation about the role played by the argument
in the sentence. Hence, the score for Argument
Classification isn’t that high, as can be seen in ta-
ble 5.

Feature
Argument Identification
P R f-score

Predicate 33 50 40
Headword (HW) 52 47 49
HeadwordPOS 33 50 40
Phrasetype (PT) 41 34 37

Predicate-PT 42 65 51
Predicate-HW 55 49 51
Dependency 78 78 78

Named Entity 57 50 65
HeadwordPOS-PT 41 34 37

Headword-PT 57 49 53
HeadwordPOS(UD) 32 50 39

UD dependency 64 65 64
Predicate-language 43 65 52
Headword-language 55 47 51

Table 3: Individual feature performance for Argument
Identification.

We also see a significant increase in accu-
racy when we use the combinational feature of
predicate and its language, as compared to using

only predicate as a feature (Table 3). T4 is an
example from the corpus where the token “ban”
is the Hindi verb [bana], ‘to become’. This can
be confused with the English verb ‘ban’ (legal
prohibition). In such cases, the language of the
predicate token can play an important role.

T4: “Dear so called liberals, kabhi indian ban
ke dekho”
Translation: Dear so called liberals, try being an
Indian some time.

Feature
Argument Identification
P R f-score

Baseline 56 53 55
with predicate-lang 57 54 55

+dependency 81 76 78

Table 4: Accuracy scores for Argument Identification.

Table 4 gives the accuracy scores for the system
using baseline features. Here, the score doesn’t
change much when we use ‘predicate-language’
as a part of our baseline. We are able to obtain
the highest F1-score of 78 for this step by adding
dependency label to our baseline features. The
rule-based baseline model gives a much higher ac-
curacy of 96.74% (Pal and Sharma, 2019). The
baseline model uses the dependency tree structure
of the sentence and identifies direct dependents of
predicates as their arguments. Auxiliary verbs,
post-positions, symbols, amongst others, are not
considered as Arguments.

As the Classification step is based on the iden-
tified arguments from the first step, we chose to
adopt a hybrid approach. We used the rule-based
baseline system for Argument Identification, and
used statistical approach with SVM for Argument
Classification.

The precision, recall and F1 scores of the in-
dividual features for Argument Classification are
given in Table 5. The best F1-score of 83 is again
given by Paninian dependency labels. UD depen-
dency gives a score of 80 which is slightly lower.
Paninian dependency labels have performed bet-
ter for both tasks as seen in Tables 3 and 5.
There isn’t much variation in performance be-
tween ‘HeadwordPOS’ and ‘HeadwordPOS(UD)’
for both steps.

The UD tagset is a coarser tagset. The UD
POS tagset has only 17 tags, compared to the POS
tagset developed for Indian languages which has



295

32 tags (Bharati et al., 2006). Similarly, in the
Paninian dependency scheme, there are in total 82
relations, whereas UD has only 40. From the ac-
curacy scores, we can infer that Paninian depep-
ndency labels capture more semantic information
than UD dependency labels.

Feature
Argument Classification
P R f-score

Predicate 06 09 06
Headword (HW) 18 10 13
HeadwordPOS 05 07 06
Phrasetype (PT) 08 10 08

Predicate-PT 05 08 06
Predicate-HW 05 06 06
Dependency 81 86 83

Named Entity 20 14 16
HeadwordPOS-PT 07 09 08

Headword-PT 12 09 10
HeadwordPOS(UD) 08 11 09

UD dependency 77 83 80
Predicate-language 06 10 07
Headword-language 18 11 14

Table 5: Individual feature performance for Argument
Classification.

Feature
Argument Classification
P R f-score

Baseline 27 15 19
+dependency 84 84 84

Table 6: Accuracy scores for Argument Classification.

Table 6 gives the accuracy scores for Argument
Classification while using baseline features, and
after incorporating dependency labels. We ob-
tained an F1 score of 84. This is a significant im-
provement over the rule-based baseline model (Pal
and Sharma, 2019) which gives an overall accu-
racy of 73.93% for Argument Classification.

5 Conclusion

In this work, we analyse the problems posed by
code-mixed social media data. We present a sys-
tem for automatic Semantic Role Labelling of
Hindi-English code-mixed tweets. We used a hy-
brid approach of rule-based and statistical tech-
niques for Argument Identification and Argument
Classification respectively.

References
Maaz Anwar and Dipti Misra Sharma. 2016. Towards

building semantic role labeler for indian languages.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), pages 4588–4595.

Akshar Bharati, Rajeev Sangal, Dipti Misra Sharma,
and Lakshmi Bai. 2006. Anncorra: Annotating cor-
pora guidelines for pos and chunk annotation for in-
dian languages. LTRC-TR31, pages 1–38.

Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Manish Shri-
vastava, and Dipti Misra Sharma. 2018. Uni-
versal dependency parsing for hindi-english code-
switching. arXiv preprint arXiv:1804.05868.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Sharma, and Fei Xia. 2009.
A multi-representational and multi-layered treebank
for hindi/urdu. In Proceedings of the Third Linguis-
tic Annotation Workshop (LAW III), pages 186–189.

Claire Bonial, Julia Bonn, Kathryn Conger, Jena D
Hwang, and Martha Palmer. 2014. Propbank: Se-
mantics of new predicate types. In LREC, pages
3013–3019.

Özlem Çetinoğlu, Sarah Schulz, and Ngoc Thang Vu.
2016. Challenges of computational processing of
code-switching. arXiv preprint arXiv:1610.02213.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational linguis-
tics, 28(3):245–288.

Atif Khan, Naomie Salim, and Yogan Jaya Kumar.
2015. A framework for multi-document abstrac-
tive summarization based on semantic role labelling.
Applied Soft Computing, 30:737–747.

Alessandro Moschitti, Paul Morarescu, Sanda M
Harabagiu, et al. 2003. Open domain informa-
tion extraction via automatic semantic labeling. In
FLAIRS conference, volume 3, pages 397–401.

Carol Myers-Scotton. 1997. Duelling languages:
Grammatical structure in codeswitching. Oxford
University Press.

Ahmed Hamza Osman, Naomie Salim, Mo-
hammed Salem Binwahlan, Rihab Alteeb, and
Albaraa Abuobieda. 2012. An improved plagiarism
detection scheme based on semantic role labeling.
Applied Soft Computing, 12(5):1493–1502.

Riya Pal and Dipti Misra Sharma. 2019. A dataset for
semantic role labelling of hindi-english code-mixed
tweets. In Proceedings of the 13th Linguistic Anno-
tation Workshop, pages 178–188.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.



296

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Simone Paolo Ponzetto and Michael Strube. 2006.
Exploiting semantic role labeling, wordnet and
wikipedia for coreference resolution. In Proceed-
ings of the Human Language Technology Confer-
ence of the NAACL, Main Conference.

Sameer S Pradhan, Wayne H Ward, Kadri Hacioglu,
James H Martin, and Dan Jurafsky. 2004. Shal-
low semantic parsing using support vector machines.
In Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics: HLT-
NAACL 2004, pages 233–240.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In Proceed-
ings of the 2007 joint conference on empirical meth-
ods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL),
pages 12–21.

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for english-spanish code-switched text. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 1051–
1060. Association for Computational Linguistics.

Juhi Tandon, Himani Chaudhry, Riyaz Ahmad Bhat,
and Dipti Sharma. 2016. Conversion from paninian
karakas to universal dependencies for hindi depen-
dency treebank. In Proceedings of the 10th Linguis-
tic Annotation Workshop held in conjunction with
ACL 2016 (LAW-X 2016), pages 141–150.

Ashwini Vaidya, Jinho D Choi, Martha Palmer, and
Bhuvana Narasimhan. 2011. Analysis of the hindi
proposition bank using dependency structure. In
Proceedings of the 5th Linguistic Annotation Work-
shop, pages 21–29. Association for Computational
Linguistics.

Ashwini Vaidya, Martha Palmer, and Bhuvana
Narasimhan. 2013. Semantic roles for nominal
predicates: Building a lexical resource. In Proceed-
ings of the 9th Workshop on Multiword Expressions,
pages 126–131.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings
of the 2004 Conference on Empirical Methods in
Natural Language Processing, pages 88–94.


