
Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 286–290
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

286

Contextual Text Denoising with Masked Language Models

Yifu Sun ∗
Tencent

yifusun2016@outlook.com

Haoming Jiang
Georgia Tech

jianghm@gatech.edu

Abstract
Recently, with the help of deep learning mod-
els, significant advances have been made in
different Natural Language Processing (NLP)
tasks. Unfortunately, state-of-the-art models
are vulnerable to noisy texts. We propose a
new contextual text denoising algorithm based
on the ready-to-use masked language model.
The proposed algorithm does not require re-
training of the model and can be integrated
into any NLP system without additional train-
ing on paired cleaning training data. We evalu-
ate our method under synthetic noise and natu-
ral noise and show that the proposed algorithm
can use context information to correct noise
text and improve the performance of noisy in-
puts in several downstream tasks.

1 Introduction
Based on our prior knowledge and contextual in-
formation in sentences, humans can understand
noisy texts like misspelled words without diffi-
culty. However, NLP systems break down for
noisy text. For example, Belinkov and Bisk
(2017) showed that modern neural machine trans-
lation (NMT) system could not even translate texts
with moderate noise. An illustrative example
of English-to-Chinese translation using Google
Translate 1 is presented in Table 1.

Text correction systems are widely used in
real-world scenarios to address noisy text inputs
problem. Simple rule-based and frequency-based
spell-checker are limited to complex language sys-
tems. More recently, modern neural Grammati-
cal Error Correction (GEC) systems are developed
with the help of deep learning (Zhao et al., 2019;
Chollampatt and Ng, 2018). These GEC systems
heavily rely on annotated GEC corpora, such as
CoNLL-2014 (Ng et al., 2014). The parallel GEC

∗ Work done at Georgia Tech.
1https://translate.google.com; Access Date:

08/09/2019

corpora, however, are expansive, limited, and even
unavailable for many languages. Another line of
researches focuses on training a robust model that
inherently deals with noise. For example, Be-
linkov and Bisk (2017) train robust character-level
NMT models using noisy training datasets, in-
cluding both synthetic and natural noise. On the
other hand, Malykh et al. (2018) consider robust
word vectors. These methods require retraining
the model based on new word vectors or noise
data. Retraining is expensive and will affect the
performance of clean text. For example, in Be-
linkov and Bisk (2017), the robustness scarifies the
performance of the clean text by about 7 BLEU
score on the EN-FR translation task.

In this paper, we propose a novel text denois-
ing algorithm based on the ready-to-use masked
language model (MLM, Devlin et al. (2018)). No-
tice that we are using English Bert. For other lan-
guages, We need to use MLM model pre-trained
on that specific language. The design follows the
human cognitive process that humans can utilize
the context, the spell of the wrong word (Mayall
et al., 1997), and even the location of the letters
on the keyboard to correct noisy text. The MLM
essentially mimics the process that the model pre-
dicts the masked words based on their context.
There are several benefits of the proposed method:
• Our method can make accurate corrections

based on the context and semantic meaning
of the whole sentence as Table 1 shows.
• The pre-trained masked language model is

ready-to-use (Devlin et al., 2018; Liu et al.,
2019). No extra training or data is required.
• Our method makes use of Word Piece embed-

dings (Wu et al., 2016) to alleviate the out-of-
vocabulary problem.

2 Method
Our denoising algorithm cleans the words in the
sentence in sequential order. Given a word, the

https://translate.google.com


287

Method Input Text Google Translate
Clean Input there is a fat duck swimming in the lake 湖里有一只胖鸭子在游泳
Noisy Input there is a fat dack swimming in the leake 在 leake里游泳时有一个胖子

Spell-Checker there is a fat sack swimming in the leak 在泄露处有一个肥胖袋在游泳
Grammaly2 there is a fat dack swimming in the lake 湖里游泳很胖

Ours there is a fat duck swimming in the lake 湖里有一只胖鸭子在游泳

Table 1: Illustrative example of spell-checker and contextual denoising.

algorithm first generates a candidate list using the
MLM and then further filter the list to select a can-
didate from the list. In this section, we first briefly
introduce the masked language model, and then
describe the proposed denoising algorithm.

2.1 Masked Language Model
Masked language model (MLM) masks some
words from a sentence and then predicts the
masked words based on the contextual informa-
tion. Specifically, given a sentence x = {xi}Li=1

with L words, a MLM models
p(xj |x1, ..., xj−1, [MASK], xj+1, ..., xL),

where [MASK] is a masking token over the j-th
word. Actually, MLM can recover multiple masks
together, here we only present the case with one
mask for notation simplicity. In this way, unlike
traditional language model that is in left-to-right
order (i.e., p(xj |x1, ..., xj−1)), MLM is able to
use both the left and right context. As a result,
a more accurate prediction can be made by MLM.
In the following, we use the pre-trained masked
language model, BERT (Devlin et al., 2018). So
no training process is involved in developing our
algorithm.

2.2 Denoising Algorithm
The algorithm cleans every word in the sentence
with left-to-right order except for the punctuation
and numbers by masking them in order. For each
word, MLM first provide a candidate list using a
transformed sentence. Then the cleaned word is
selected from the list. The whole process is sum-
marized in Algorithm 1.
Text Masking The first step is to convert the sen-
tence x into a masked form x′. With the use of
Word Piece tokens, each word can be represented
by several different tokens. Suppose the j-th word
(that needs to be cleaned) is represented by the js-
th token to the je-th token, we need to mask them
out together. For the same reason, the number of
tokens of the expected cleaned word is unknown.

2https://app.grammarly.com; Access Date:
08/09/2019

So we use different number of masks to create the
masked sentence {x′n}Nn=1, where x′n denotes the
masked sentence with n-gram mask. Specifically,
given x = x1, ..., xjs , ..., xje , ..., xL, the masked
form is x′n = x1, ..., [MASK] × n, ..., xL. We
mask each word in the noisy sentence by order.
The number of masks N can not be too small or
too large. The candidate list will fail to capture the
right answer with a small N . However, the opti-
mal answer would fit the noisy text perfectly with
a large enough N . Empirically, we find out N = 4
is sufficiently large to obtain decent performance
without too much overfitting.
Text Augmentation Since the wrong word is also
informative, so we augment each masked text x′n
by concatenating the original text x. Specifically,
the augmented text is x̃n = x′n[SEP ]x, where
[SEP ] is a separation token.3

Compared with directly leaving the noisy word
in the original sentence, the masking and augmen-
tation strategy are more flexible. It is benefited
from that the number of tokens of the expected
word does not necessarily equal to the noisy word.
Besides, the model pays less attention to the noisy
words, which may induce bias to the prediction of
the clean word.
Candidate Selection The algorithm then con-
structs a candidate list using the MLM, which is
semantically suitable for the masked position in
the sentence. We first construct candidate list V n

c

for each x̃n, and then combine them to obtained
the final candidate list Vc = V 1

c ∪ · · · ∪ V N
c .

Note that we need to handle multiple masks when
n > 1. So we first find k most possible word
pieces for each mask and then enumerate all pos-
sible combinations to construct the final candidate
list. Specifically,

V n
c = Top-k{p([MASK]1 = w|x̃n)}w∈V

× · · · × Top-k{p([MASK]n = w|x̃n)}w∈V ,
where V is the whole vocabulary and×means the
Cartesian product.

3In BERT convention, the input also needs to be embraced
with a [CLS] and a [SEP ] token.

https://app.grammarly.com


288

There may be multiple words that make sense
for the replacement. In this case, the spelling
of the wrong word is useful for finding the most
likely correct word. We use the edit distance to
select the most likely correct word further.

wc = arg min
w∈Vc

E(w, xj),

where E(w, xj) represent the edit distance be-
tween w and the noisy word xj .

Algorithm 1: Denoising with MLM

Input: Noisy sentence x = {xi}Li=1

Output: Denoised sentence x = {xi}Li=1

for i = 1, 2, ..., L do
{x′n}Nn=1 = Masking(x) ;
{x̃n}Nn=1 = {Augment(x′n,x)}Nn=1 ;
for n = 1, 2, ..., N do

V n
c = Candidate(x̃n) ;

end
Vc = V 1

c ∪ · · · ∪ V N
c ;

wc = argminw∈Vc E(w, xj) ;
xi = wc;

end

3 Experiment

We test the performance of the proposed text de-
noising method on three downstream tasks: neural
machine translation, natural language inference,
and paraphrase detection. All experiments are
conducted with NVIDIA Tesla V100 GPUs. We
use the pretrained pytorch Bert-large (with whole
word masking) as the masked language model 4.
For the denoising algorithm, we use at most N =
4 masks for each word, and the detailed configu-
ration of the size of the candidate list is shown in
Table 2. We use a large candidate list for one word
piece which covers the most cases. For multiple
masks, a smaller list would be good enough.

For all tasks, we train the task-specific model
on the original clean training set. Then we com-
pare the model performance on the different test
sets, including original test data, noise test data,
and cleaned noise test data. We use a commercial-
level spell-checker api 5 as our baseline method.

In this section, we first introduce how the noise
is generated, and then present experimental results
of three NLP tasks.

4https://github.com/huggingface/
pytorch-pretrained-BERT

5https://rapidapi.com/montanaflynn/
api/spellcheck; Access Date: 08/09/2019

No. of [MASK] (n) Top k Size
1 3000 3000
2 5 25
3 3 27
4 2 16

Total: 3068

Table 2: Size of the candidate list

3.1 Noise
To control the noise level, we randomly pick
words from the testing data to be perturbed with
a certain probability. For each selected word, we
consider two perturbation setting: artificial noise
and natural noise. Under artificial noise setting,
we separately apply four kinds of noise: Swap,
Delete, Replace, Insert with certain probability.
Specifically,
• Swap: We swap two letters per word.
• Delete: We randomly delete a letter in the

middle of the word.
• Replace: We randomly replace a letter in a

word with another.
• Insert: We randomly insert a letter in the mid-

dle of the word.

Following the setting in (Belinkov and Bisk,
2017), the first and the last character remains un-
changed.

For the artificial noise, we follow the experi-
ment of Belinkov and Bisk (2017) that harvest nat-
urally occurring errors (typos, misspellings, etc.)
from the edit histories of available corpora. It gen-
erates a lookup table of all possible errors for each
word. We replace the selected words with the cor-
responding noise in the lookup table according to
their settings.

3.2 Neural Machine Translation
We conduct the English-to-German translation ex-
periments on the TED talks corpus from IWSLT
2014 dataset 6. The data contains about 160, 000
sentence pairs for training, 6, 750 pairs for testing.

We first evaluate the performance using a 12-
layer transformer implemented by fairseq (Ott
et al., 2019). For all implementation details, we
follow the training recipe given by fairseq 7. We
also evaluate the performance of Google Trans-
late.

6https://wit3.fbk.eu/archive/2014-01/
texts/en/de/en-de.tgz

7https://github.com/pytorch/fairseq/
tree/master/examples/translation

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://rapidapi.com/montanaflynn/api/spellcheck
https://rapidapi.com/montanaflynn/api/spellcheck
https://wit3.fbk.eu/archive/2014-01/texts/en/de/en-de.tgz
https://wit3.fbk.eu/archive/2014-01/texts/en/de/en-de.tgz
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation


289

For the artificial noise setting, we perturb 20%
words and apply each noise with probability 25%.
For that natural noise setting, we also perturb 20%
words. All experiment results is summarized in
Table 3, where we use BLEU score (Papineni
et al., 2002) to evaluate the translation result.

Text Source Google Fairseq
Original 31.49 28.06

Artificial Noise 28.11 22.27
+ Spell-Checker 26.28 21.15

+ Ours 28.96 25.80

Natural Noise 25.22 17.29
+ Spell-Checker 20.90 15.04

+ Ours 25.49 21.40

Table 3: BLEU scores of EN-to-DE tranlsation

As can be seen, both fairseq model and Google
Translate suffer from a significant performance
drop on the noisy texts with both natural and syn-
thetic noise. When using the spell-checker, the
performance even drops more. Moreover, our pur-
posed method can alleviate the performance drop.

3.3 Natural Language Inference
We test the algorithm on Natural Language Infer-
ence (NLI) task, which is one of the most chal-
lenge tasks related to the semantics of sentences.
We establish our experiment based on the SNLI
(the Stanford Natural Language Inference, Bow-
man et al. (2015)) corpus. Here we use accuracy
as the evaluation metric for SNLI.

Here we use state-of-the-art 400 dimensional
Hierarchical BiLSTM with Max Pooling (HBMP)
(Talman et al., 2019). The implementation follows
the publicly released code 8. We use the same
noise setting as the NMT experiments. All results
are presented in Table 4. We observe performance
improvement with our method. To see if the de-
noising algorithm would induce noises to the clean
texts, we also apply the algorithm to the original
sentence and check if performance will degrade.
It can be seen that, unlike the traditional robust
model approach, applying a denoising algorithm
on a clean sample has little influence on perfor-
mance.

As shown in the Table4, the accuracy is very
close to the original one under the artificial noise.
Natural noises contain punctuations and are more
complicated than artificial ones. As a result, infer-
ence becomes much harder in this way.

8https://github.com/Helsinki-NLP/HBMP

Method Original
Artificial Natural

Noise Noise
HBMP 84.0 75.0 74.0

+Spell-Checker 84.0∗ 63.0 68.0
+Ours 83.0∗ 81.0 77.0

Table 4: SNLI classification accuracy with artificial
noise and natural noise. ∗: Applying denoising algo-
rithm on original texts.

3.4 Paraphrase Detection

We conducted Paraphrase detection experiments
on the Microsoft Research Paraphrase Corpus
(MRPC, Dolan and Brockett (2005)) consisting of
5800 sentence pairs extracted from news sources
on the web. It is manually labelled for pres-
ence/absence of semantic equivalence.

We evaluate the performance using the state-of-
the-art model: fine-tuned RoBERTa (Liu et al.,
2019). For all implemented details follows the
publicly released code 9. All experiment results
is summarized in Table 5. We increase the size of
the candidate list to 10000+25+27+16 = 10068
because there are a lot of proper nouns, which are
hard to predict.

Method Original
Artificial Natural

Noise Noise
RoBERTa 84.3 81.9 75.2

+Spell-Checker 82.6 81.3 75.4
+Ours 83.6 82.7 76.4

Table 5: Classification F1 score on MRPC

4 Conclusion and Future Work

In this paper, we present a novel text denois-
ing algorithm using ready-to-use masked language
model. We show that the proposed method can re-
cover the noisy text by the contextual information
without any training or data. We further demon-
strate the effectiveness of the proposed method on
three downstream tasks, where the performance
drop is alleviated by our method. A promising fu-
ture research topic is how to design a better can-
didate selection rule rather than merely using the
edit distance. We can also try to use GEC corpora,
such as CoNLL-2014, to further fine-tune the de-
noising model in a supervised way to improve the
performance.

9https://github.com/pytorch/fairseq/
tree/master/examples/roberta

https://github.com/Helsinki-NLP/HBMP
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/pytorch/fairseq/tree/master/examples/roberta


290

References
Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic

and natural noise both break neural machine transla-
tion. arXiv preprint arXiv:1711.02173.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Shamil Chollampatt and Hwee Tou Ng. 2018. Neural
quality estimation of grammatical error correction.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2528–2539.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Valentin Malykh, Varvara Logacheva, and Taras
Khakhulin. 2018. Robust word vectors: Context-
informed embeddings for noisy texts. In Proceed-
ings of the 2018 EMNLP Workshop W-NUT: The 4th
Workshop on Noisy User-generated Text, pages 54–
63.

Kate Mayall, Glyn W Humphreys, and Andrew Olson.
1997. Disruption to word or letter processing? the
origins of case-mixing effects. Journal of Experi-
mental Psychology: Learning, Memory, and Cogni-
tion, 23(5):1275.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Aarne Talman, Anssi Yli-Jyrä, and Jörg Tiedemann.
2019. Sentence embeddings in nli with iterative re-
finement encoders. Natural Language Engineering,
25(4):467–482.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical er-
ror correction via pre-training a copy-augmented
architecture with unlabeled data. arXiv preprint
arXiv:1903.00138.


