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Abstract

The state-of-the-art neural network architec-
tures make it possible to create spoken lan-
guage understanding systems with high qual-
ity and fast processing time. One major chal-
lenge for real-world applications is the high
latency of these systems caused by triggered
actions with high executions times. If an ac-
tion can be separated into subactions, the re-
action time of the systems can be improved
through incremental processing of the user ut-
terance and starting subactions while the utter-
ance is still being uttered. In this work, we
present a model-agnostic method to achieve
high quality in processing incrementally pro-
duced partial utterances. Based on clean and
noisy versions of the ATIS dataset, we show
how to create datasets with our method to cre-
ate low-latency natural language understand-
ing components. We get improvements of up
to 47.91 absolute percentage points in the met-
ric F1-score.

1 Introduction

Dialog Systems are ubiquitous - they are used in
customer hotlines, at home (Amazon Alexa, Ap-
ple Siri, Google Home, etc.), in cars, in robots
(Asfour et al., 2018), and in smartphones (Apple
Siri, Google Assistant, etc.). From a user experi-
ence point of view, one of the main challenges of
state-of-the-art dialog systems is the slow reaction
of the assistants. Usually, these dialog systems
wait for the completion of a user utterance and af-
terwards process the utterance. The processed ut-
terance can trigger a suitable action, e. g. ask for
clarification, book a certain flight, or bring an ob-
ject. Actions can have a high execution time, due
to which the dialog systems react slowly. If an ac-
tion can be separated into subactions, the reaction
time of the dialog system can be improved through
incremental processing of the user utterance and

starting subactions while the utterance is still be-
ing uttered. The action still has the same execution
time but the action is completed earlier because it
was started earlier and therefore the dialog system
can react faster. In the domain of airplane travel
information, database queries can be finished ear-
lier if the system can execute subqueries before the
completion of the user utterance, e. g. the utter-
ance On next Wednesday flight from Kansas City
to Chicago should arrive in Chicago around 7 pm
can be separated in the databases queries flight
from Kansas City to Chicago on next Wednesday
and use result of the first query to find flights that
arrive in Chicago around 7 pm. In the domain of
household robots, e. g. the user goal of the user
utterance Bring me from the kitchen the cup that I
like because it reminds me of my unforgettable va-
cation in the United States can be fulfilled faster if
the robot goes to the kitchen before the user utters
what object the robot should bring.

Motivated by this approach to improve the re-
action of dialog systems, our main contribution
is a low-latency natural language understanding
(NLU) component. We use the Transformer ar-
chitecture (Vaswani et al., 2017) to build this low-
latency NLU component, but the ingredient to un-
derstand partial utterances and incrementally pro-
cess user utterances is the model-agnostic training
process presented in this work. Secondly, partial
utterances are particularly affected by noise. This
is due to the short context available in partial utter-
ances and because automatic speech recognition
(ASR) systems cannot utilize their complete lan-
guage model and therefore potentially make more
errors when transcribing short utterances. We
address the potential noisier inputs by including
noisy inputs in the training process. Finally, we
present two evaluation schemes for low-latency
NLU components.
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2 Related Work

Gambino et al. (2018) described time buying
strategies to avoid long pauses, e. g. by uttering an
acknowledgement or echoing the user input. How-
ever, the triggered actions are not finished earlier
with this approach, but in cases where long pauses
cannot be avoided, even with incremental process-
ing, such time buying strategies can be applied.

The automatically generated backchannel de-
scribed by Rüde et al. (2017) gives feedback dur-
ing the uttering of an utterance. However, only
acoustic features are used and it does not reduce
the latency of actions that can be triggered by the
utterances.

Studies have been conducted on incremental
NLU. DeVault et al. (2009) used a maximum en-
tropy classificator (Berger et al., 1996) to classify
the partial utterances. They optimized the max-
imum entropy classificator for partial utterances
by using an individual classificator for every ut-
terance length. The problem of this classifica-
tion approach is that it is not suitable for tasks
with a lot of different parameter combinations; for
such tasks, a slot filling (sequence labeling task)
or word by word approach (sequence to sequence
task) is more suitable. Such a more suitable ap-
proach is described by Niehues et al. (2018) for
incrementally updating machine translations. The
authors used an attention-based encoder decoder
(Bahdanau et al., 2015), which outputs a sequence.
We described and evaluated in this work such a
more suitable approach for incremental NLU.

Different approaches are available to handle
noisy input, such as general-purpose regulariza-
tion techniques like dropout (Srivastava et al.,
2014) and domain-specific regularization tech-
niques e. g. data augmentation by inserting, delet-
ing, and substituting words (Sperber et al., 2017).
Our trained models in this work uses the general-
purpose techniques and some of our trained mod-
els are trained with such augmented data to have a
better performance on noisy data.

3 Low-latency NLU component

In this work, we present a model-agnostic method
to build an incremental processing low-latency
NLU component. The advantages of this model-
agnostic method are that we can use state-of-
the-art neural network architectures and reuse the
method for future state-of-the-art neural network
architectures. Our used architecture is described

in Section 3.1 and the used data is described in
Section 3.2. Our method to include the informa-
tion necessary to incrementally process user utter-
ances with high quality in the training dataset is
described in Section 3.3 and our methods to in-
clude noise to process noisy texts with high quality
are described in Section 3.4. In Sections 3.5 and
3.6, we present our evaluation metrics and evalu-
ation schemes respectively. The configuration of
the used architecture is given in Section 3.7.

3.1 Architecture

We used the Transformer architecture in our exper-
iments to demonstrate the model-agnostic method.
The Transformer architecture, with its encoder and
decoder, was used as sequence to sequence ar-
chitecture. The user utterances are the input se-
quences and their corresponding triggered actions
are the output actions (this is described in more
details in Section 3.2). We used the Transformer
implementation used by Pham et al. (2019) and
added the functionality for online translation. The
original code1 and the added code are publicly
available2. The partial utterances and, in the end,
the full utterance were fed successively and com-
pletely into the Transformer architecture without
using information of the computation of the pre-
vious partial utterances. Our proposed method is
model-agnostic because of this separate treatment
and therefore an arbitrary model that can process
sequences can be used to process the partial and
full utterances. The method is depicted in Figure
1 for the utterance Flights to Pittsburgh.

3.2 Data

For our experiments, we used utterances from
the Airline Travel Information System (ATIS)
datasets. We used the utterances that are used by
Hakkani-Tur et al. (2016) and are publicly avail-
able3. These utterances were cleaned and every ut-
terance is labeled with its intents and for every to-
ken, the corresponding slot is labeled with a tag (in
the IOB2 format (Sang and Veenstra, 1999) that is
depicted in Figure 2).

We converted the data from the IOB2 format to
a sequence to sequence format (Constantin et al.,
2019). The source sequence is a user utterance

1https://github.com/quanpn90/
NMTGMinor/tree/DbMajor

2https://github.com/msc42/NMTGMinor/
tree/DbMajor

3https://github.com/yvchen/JointSLU

https://github.com/quanpn90/NMTGMinor/tree/DbMajor
https://github.com/quanpn90/NMTGMinor/tree/DbMajor
https://github.com/msc42/NMTGMinor/tree/DbMajor
https://github.com/msc42/NMTGMinor/tree/DbMajor
https://github.com/yvchen/JointSLU
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atis flight atis flight atis flight toloc pittsburgh

model model model

Flights Flights to Flights to Pittsburgh

Figure 1: model-agnostic approach

utterance
(source sequence)

Which flights go from New York to Pittsburgh

slots O O O O B-fromloc I-fromloc O B-toloc
intents atis flight
target sequence atis flight fromloc new york toloc pittsburgh

Figure 2: joint intents classification and slot filling approach to end-to-end target sequence

and the target sequence consists of the intents fol-
lowed by the parameters. In this work, the slot tag
and the corresponding slot tokens compose an in-
tents parameter. An example of the conversion of
the IOB2 format to the sequence to sequence for-
mat is depicted in Figure 2. The sequence to se-
quence format has the advantages that no rules are
needed for mapping the slot tokens to an API call
or a database query and that this format is more ro-
bust against noisy text like What is restriction ap
slash fifty seven, where the noise word slash is in-
troduced (in the classical IOB2 format, the tokens
ap and fifty seven would not belong to the same
chunk).

The publicly available utterances are partitioned
in a training and test dataset. The training dataset
is partitioned in a training (train-2) and valida-
tion (dev-2) dataset. Hereinafter, original train-
ing dataset refers to the utterances of the training
dataset, training dataset refers to the utterances of
the train-2 dataset, and validation dataset refers to
the utterances of the dev-2 dataset. We created
a file that maps to every utterance in the training
dataset the line number of the corresponding utter-
ance in the original training dataset and a file that
maps to every utterance in the validation dataset
the line number of the corresponding utterance in
the original training dataset. We published these
two files4. The training dataset has 4478 utter-
ances, the validation dataset has 500 utterances,
and the test dataset has 893 utterances.

The utterances were taken from the ATIS2
dataset (Linguistic Data Consortium (LDC)
catalog number LDC93S5), the ATIS3 train-

4https://github.com/msc42/ATIS-data

ing dataset (LDC94S19) and the ATIS3 test
dataset (LDC94S26). The audio files of the
spoken utterances and the uncleaned human tran-
scribed transcripts are on the corresponding LDC
CDs. For the original training dataset and the test
dataset, we published5 in each case a file that maps
to every utterance the path of the corresponding
audio file and a file that maps to every utterance
the path of the corresponding transcript of the
corresponding LDC CD. One audio file is missing
on the corresponding LDC CD (LDC94S19):
atis3/17 2.1/atis3/sp trn/sri/tx0/2/tx0022ss.wav
(corresponding to the training dataset). We used
the tool sph2pipe6 to convert the SPH files (with
extension .wav) of the LDC CDs to WAVE files.

The utterances have an average token length
of 11.21 - 11.36 in the training dataset, 11.48
in the validation dataset, and 10.30 in the test
dataset. We tokenized the utterances with the de-
fault English word tokenizer of the Natural Lan-
guage Toolkit (NLTK)7 (Bird et al., 2009).

There are 19 unique intents in the ATIS data. In
the training dataset, 22 utterances are labeled with
2 intents and 1 utterance is labeled with 3 intents,
in the validation dataset, there are 3 utterances
with 2 intents and in the test dataset, there are 15
utterances with 2 intents, the rest of the utterances
are labeled with 1 intent. The intents are separated
by the number sign in the target sequence. The
intents are unbalanced (more than 70 % of the ut-
terances have the same intent, more than 90 % of

5see footnote 4
6https://www.ldc.upenn.edu/sites/www.

ldc.upenn.edu/files/ctools/sph2pipe_v2.
5.tar.gz

7https://www.nltk.org/

https://github.com/msc42/ATIS-data
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/ctools/sph2pipe_v2.5.tar.gz
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/ctools/sph2pipe_v2.5.tar.gz
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/ctools/sph2pipe_v2.5.tar.gz
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the utterances belong to the 5 most used intents).
More information about the intents distribution is
given Table 7. There are 83 different parameters
that can parameterize the intents. On average, a
target has 3.35 (training dataset), 3.46 (validation
dataset), and 3.19 (test dataset) parameters.

3.3 Training process to improve incremental
processing

We call our dataset, which contains the dataset
described in Section 3.2, cleaned full transcripts.
Our model-agnostic method to achieve good qual-
ity for partial utterances works in this manner: We
use the dataset with the full utterances and cre-
ate partial utterances from it. An utterance of
the length n is split into n utterances, where the
i-th utterance of these utterances has the length
i. The target contains all information that can be
gotten from the source utterance of the length i.
When only a part of a chunk is in the user utter-
ance, only this part is integrated in the target utter-
ances, e. g. I want a flight from New York to San
has the target atis flight fromloc.city name new
york toloc.city name san. Such partial information
contains information and can accelerate database
queries, for example. We created with this method
the cleaned incremental transcripts dataset. An ar-
bitrary model without modifications, in this work
the Transformer architecture, can be trained with
this dataset to have an improved incremental pro-
cessing ability compared to a model trained only
with full utterances. Since every partial utterance
is regarded as independent utterance, like the full
utterances, our approach is model-agnostic. The
model-agnostic approach for the utterance Flights
to Pittsburgh is depicted in Figure 1.

3.4 Training process to improve robustness

In Section 3.3, the training process for improv-
ing the incremental processing is described. How-
ever, the described process does not consider the
fact that the incremental data are noisier. We in-
duced noise in the training by training with artifi-
cial noise, human transcribed utterances that con-
tain the noise of spoken utterances, and utterances
transcribed by an ASR system.

The dataset cleaned incremental transcripts
with artificial noise consists of the utterances
from the dataset cleaned incremental transcripts
to these artificial noise were added with the ap-
proach described by Sperber et al. (2017). We

published the implementation8 of this approach.
In this approach, random distributions are used to
substitute, insert, and delete words. We sampled
the words for substitution and insertion based on
acoustic similarity to the original input. As vocab-
ulary for the substitutions and insertions, we used
the tokens of the utterances of the training dataset
of the cleaned incremental transcripts dataset and
filled the vocabulary with the most frequent tokens
not included in the used training dataset occurring
in the source utterances of a subset of the Open-
Subtitle corpus9 (Tiedemann, 2009) that is pub-
licly available10 (Senellart, 2017). We chose the
position of the words to be substituted and deleted
based on the length. Shorter words are often more
exposed to errors in ASR systems and therefore
should be substituted and deleted in the artificial
noise approach more frequently. Since substitu-
tions are more probable in ASR systems, we re-
flected this in the artificial noise generating by as-
signing substitutions a 5-times higher probability
than insertions or deletions. For the value of the
hyperparameter τ (the induced amount of noise),
we used 0.08.

For the dataset human full transcripts, we used
the human transcribed transcripts given by the
LDC CDs. We mapped these utterances to the
corresponding targets of the datasets based on the
cleaned full transcripts dataset. The utterances are
not cleaned and have some annotations like noise
and repeated words. The dataset human incre-
mental transcripts, human incremental transcripts
with artificial noise, and human full transcripts
with artificial noise were generated analogous to
the described approaches before.

For the dataset automatic incremental tran-
scripts, we automatically transcribed the audio
files from the LDC CDs with the ASR system
Janus Recognition Toolkit (JRTk) (Nguyen et al.,
2017, 2018). This ASR system is used as an out-
of-domain ASR system - there is no adaption for
the ATIS utterances. We used the incremental
mode of the JRTk, which means that transcrip-
tions are updated multiple times while transcrib-
ing. It is not automatically possible to generate
the partial output targets to the partial utterances,
because the ASR system makes errors and it is

8https://github.com/msc42/NLP-tools/
blob/master/noise_adder.py

9based on http://www.opensubtitles.org/
10https://s3.amazonaws.com/

opennmt-trainingdata/opensub_qa_en.tgz

https://github.com/msc42/NLP-tools/blob/master/noise_adder.py
https://github.com/msc42/NLP-tools/blob/master/noise_adder.py
http://www.opensubtitles.org/
https://s3.amazonaws.com/opennmt-trainingdata/opensub_qa_en.tgz
https://s3.amazonaws.com/opennmt-trainingdata/opensub_qa_en.tgz
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impossible to map with 100 % accuracy automat-
ically the wrong transcript to come up to the cor-
rect transcript Tacoma, for example. We used a
workaround: We measured the length of a partial
transcript, searched the corresponding transcript
of the human incremental transcripts dataset that
has the same length, and used the target of the
found transcript. If there were only shorter tran-
scripts, the target of the full transcript was used.
This approach punishes insertions and deletions
of the ASR system. For the dataset automatic full
transcripts, we used the last transcript of the incre-
mental transcripts of the ASR system for the user
utterance and the full target of the corresponding
utterance of the human full transcripts dataset. For
the mentioned missing audio file, we used the hu-
man transcription of the corresponding LDC CD.

An arbitrary model without modifications, in
this work the Transformer architecture, is trained
with one of the described noisy datasets to have
improved robustness compared to a model trained
only with clean utterances.

3.5 Evaluation metrics

We evaluated the quality of the models, trained
with the different datasets, with the metric F1-
score for which we used an adapted definition for
the precision and the recall in this work and the
metric intents accuracy.

The adapted definitions for the precision and the
recall consider the order of the classes in the target
sequence. The intents and the intents parameters
are the classes. Intents parameters with the same
slot tag are considered as different classes. We call
the F1-score calculated with the adapted definition
of the precision and the recall considering order
multiple classes F1-score (CO-MC F1-score). Or-
der considering means that the predicted param-
eters have to be in the correct order in the target
sequence. In the target sequence

atis flight fromloc.city name milwaukee
toloc.city name orlando depart date.day name
wednesday depart time.period of day evening or
or depart date.day name thursday
depart time.period of day morning

the order is important. To calculate the true pos-
itives, we adapted the Levenshtein distance (Lev-
enshtein, 1966). The entities that are compared in
this adapted Levenshtein distance are the classes.
The adapted Levenshtein distance is only changed
by a match (incremented by one) and the maxi-

mum instead of the minimum function is used to
select the best operation. In Figure 3 the recur-
sive definition of the adapted Levenshtein distance
(ALD) is depicted. Let r be the reference and h the
hypothesis and |r| and |h| the number of classes
of the reference or hyptothesis respectively and ri
and hi the i-th class of the reference or hypothesis
respectively. L|h|,|r| is the resultant adapted Lev-
enshtein distance and the number of true positives.

ALD0,0 = 0

ALDi,0 = i, 1 ≤ i ≤ |h|
ALD0,j = j, 1 ≤ j ≤ |r|

ALDi,j = max


ALDi−1,j−1 + 1, ri = hj

ALDi−1,j−1, ri 6= hj

ALDi−1,j

ALDi,j−1

1 ≤ i ≤ |h|, 1 ≤ j ≤ |r|

Figure 3: adapted Levenshtein distance

With this approach, the given example target
has 7 instead of 9 true positives if the slot to-
kens of the intents parameters with the slot tag
depart date.day name parameter are changed (in
this case both parameters are considered as substi-
tutions in the Levenshtein distance). We counted
all true positives for the different classes over the
evaluated dataset and divided the counted true pos-
itives by the reference lengths of all targets for the
recall and by the hypothesis lengths for the pre-
cision (micro-averaging). The CO-MC F1-score is
more strict than the vanilla F1-score because of the
consideration of the order.

The metric intents accuracy considers all intents
as whole. That means the intents accuracy of one
target is 100 % if the intents of the reference and
the hypothesis are equivalent; otherwise, the in-
tents accuracy is 0 %.

3.6 Evaluation schemes

We used for the evaluation of the models the
model version of the epoch with the best CO-
MC F1-score on the following validation datasets
with only full utterances: For the models trained
with the datasets based on the cleaned full tran-
scripts dataset, we used the validation dataset of
the cleaned full transcripts dataset, for models
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trained with the datasets based on the human full
transcripts dataset, we used the validation dataset
of the human full transcripts dataset, and for mod-
els trained with the datasets based on the auto-
matic incremental transcripts dataset, we used the
validation dataset of the automatic full transcribed
dataset.

We evaluated our models with our evaluation
metrics in the following manner: First, we evalu-
ated the models with partial utterances that contain
the first 100 %, 75 %, 50 %, and 25 % of the to-
kens of the full utterances. The number of tokens
is rounded off to the next integer and this number
is called i in the following. For evaluating with
the cleaned and the human transcribed utterances,
we used the first i tokens of the full utterances.
For evaluating with automatically transcribed ut-
terances, we used the first utterance in the auto-
matic incremental transcripts dataset of the corre-
sponding utterance that was equal than or greater
than i, because the ASR system did not produce
partial utterances for all numbers less than the to-
ken length of the full utterance. In the following,
this evaluation scheme is called partial utterances
processing.

In addition, we evaluated our models with the
metric intents accuracy in the following manner:
We predicted the intents incrementally and aborted
the incremental processing once a certain confi-
dence for the intents prediction was reached. We
used 95 %, 90 %, 85 %, and 80 % as confidence
thresholds. When the target confidence was never
reached, the full utterance was used to predict the
intents, even if the confidence of the full utter-
ance was under the confidence threshold. We used
for those experiments the partial utterances suc-
cessively for the cleaned and human transcribed
utterances and the partial utterances successively
of the automatically transcribed utterances. In the
automatically transcribed utterances, the last tran-
script is the full utterance. In the following, this
evaluation scheme is called confidence based pro-
cessing.

The models trained on the cleaned transcripts
cannot be evaluated appropriately on the un-
cleaned transcripts, because the numbers are writ-
ten in Arabic numerals in the cleaned transcripts
and in words in the uncleaned transcripts. The
conversion is often ambiguous. The same applies
to the other direction.

3.7 System Setup

We optimized the Transformer architecture for the
validation dataset of the cleaned full transcripts
dataset. The result of this optimization is a Trans-
former architecture with a model and inner size of
256, 4 layers, 4 heads, Adam (Kingma and Ba,
2015) with the noam learning rate decay scheme
(used by Vaswani et al. (2017) as learning rate de-
cay scheme) as optimization algorithm, a dropout
of 40 %, an attention, embedding, and residual
dropout of each 20 % and a label smoothing of
15 %. We used 64 utterances as batch size. The
vocabulary of a trained model contains all words
of the training dataset with which it was trained.
We trained the models for 100 epochs.

4 Results

4.1 Partial utterances processing

In Tables 1, 3, and 5, the CO-MC F1-scores and
the intents accuracies are depicted for the eval-
uation scheme partial hypothesis processing for
the cleaned, human transcribed, and automatically
transcribed utterances respectively.

In the following, all percentage differences are
absolute percentage differences. The ranges refer
to the smallest and biggest improvements on the
CO-MC F1-score. If no artificial noise is explicitly
mentioned, the models without artificial noise are
meant.

The models that were trained only with full ut-
terances have better results evaluated on the full
utterances than models trained with the partial and
full utterances (in the range from 1.3 % to 3.24 %).
However, the models trained on the partial and full
utterances have better results when they are eval-
uated on the first 75 % and 50 % of the tokens (in
the range from 0.81 % to 4.39 %). Evaluated on
the utterances of the first 25 % of the tokens, there
are even bigger improvements (in the range from
14.44 % to 47.91 %). This means that our pro-
posed training method improves the processing of
partial utterances, especially if they are partial ut-
terances produced incrementally at the beginning
of the incremental processing of an utterance. For
an incremental processing capable NLU compo-
nent, the best approach is to combine the two mod-
els. The model trained on only full utterances is
used for the full utterances and the model trained
on the partial and full utterances is used for the
incrementally produced partial utterances.
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With the combination described above, the per-
formance of the models trained with the automat-
ically transcribed utterances decreased less com-
pared to the models trained on the human tran-
scribed utterances, evaluated on the human tran-
scribed utterances (in the range from 0.13 % to
2.01 %) than the models trained with the human
transcribed utterances decreased compared to the
models trained on the automatically transcribed
utterances, evaluated on the automatically tran-
scribed utterances (in the range from 1.22 % to
4 %). In our experiments, the result was conse-
quently that it is better to train on noisier data.
This is especially the case on evaluating the full
utterances.

We tried to simulate the noise of the automat-
ically transcribed utterances with artificial noise.
We used again the same combination described
above. The performance of the models trained
with the human transcribed utterances with arti-
ficial noise decreased less compared to the models
trained on the human transcripts, evaluated on the
human transcribed utterances (in the range from
-1.43 % to 2.5 %) than the models trained with the
human transcribed utterances decreased compared
to the human transcribed utterances with artificial
noise, on the automatically transcribed utterances
(in the range from -1.06 % to 5.21 %).

4.2 Confidence based processing

In Tables 2, 4, and 6, the intents accuracies and
the needed percentage of tokens on average are de-
picted for the evaluation scheme confidence based
processing for the cleaned, human transcribed, and
automatically transcribed utterances respectively.

In the following, all percentage differences are
absolute percentage differences. The ranges refer
to the smallest and biggest improvements on the
intents accuracy metric. If no artificial noise is
explicitly mentioned, the models without artificial
noise are meant.

The following statements apply to the incre-
mentally trained models (the models trained only
on the full utterances have only good results if they
can use nearly the full utterances and therefore it
makes no sense to use them for early predicting
of intents). It is better to train on the automat-
ically transcribed utterances. The decreasing is
from 1.57 % to 2.58 % if they are evaluated on the
human transcribed utterances, but they have an im-
provement from 2.58 % to 4.25 % if they are eval-

uated on the automatically transcribed utterances
compared to the models trained on the human tran-
scribed utterances. The human transcribed utter-
ances with artificial noise decrease by -1.46 % to
2.58 % if they are evaluated on the human tran-
scribed utterances, but they have an improvement
from 0.67 % to 3.69 % if they are evaluated on the
automatically transcribed utterances compared to
the models trained on the human transcribed utter-
ances.

4.3 Computation time

Since the partial utterances are fed successively
in the Transformer architecture, the computation
must be fast enough for the system to work off
all partial utterances without latency. On a note-
book with an Intel Core i5-8250U CPU - all com-
putations were done only on the CPU and we lim-
ited the usage to one thread (with the app taskset)
so other component like the ASR system can run
on the same system - it took 310 milliseconds to
compute the longest utterance (46 tokens) of the
cleaned utterances and 293 milliseconds to com-
pute the utterance (38 tokens) with the longest
target sequence (41 tokens - one intent with 17
parameters) of the cleaned utterances. We pro-
cessed continually both utterances for 15 minutes
and selected for both utterances the run with the
maximum computation time. The model was the
model trained with the cleaned full utterances.
This means that it is possible to process an utter-
ance after every word because a normal user needs
on average more than these measured times to ut-
ter a word or type a word with a keyboard.

5 Conclusions and Further Work

In this work, we report that the best approach for
an incremental processing capable NLU compo-
nent is to mix models. A model trained on partial
and full utterances should be used for processing
partial utterances and a model trained only on full
utterances for processing full utterances. In par-
ticular, the improvements are for the first incre-
mentally produced utterances, which contain only
a small number of tokens, high if the model is not
only trained on full utterances.

Evaluated on the noisy human and even noisier
automatically transcribed utterances, we got bet-
ter results with the models trained with the human
transcribed utterances with artificial noise and the
models trained with the automatically transcribed
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training dataset first 100 % first 75 % first 50 % first 25 %
cleaned, full 92.90 / 97.09 89.95 / 96.19 88.98 / 90.37 49.36 / 49.05
cleaned, incremental 91.60 / 96.75 94.20 / 94.85 93.37 / 92.05 83.15 / 79.73
cleaned, incremental, art. noise 91.97 / 96.19 94.65 / 94.85 93.22 / 91.83 81.75 / 78.61

Table 1: CO-MC F1-scores / intents accuracies of the first 100 %, 75 %, 50 %, and 25 % of the tokens of the
utterances of the test dataset of the cleaned human transcribed full utterances

training dataset 95 % conf. 90 % conf. 85 % conf. 80 % conf.
cleaned, full 96.98 / 96.36 80.29 / 74.14 72.56 / 30.62 70.66 / 29.93
cleaned, incremental 96.42 / 97.27 95.97 / 92.16 92.83 / 34.74 89.47 / 30.56
cleaned, incremental, art. noise 95.86 / 99.02 95.41 / 92.20 91.71 / 33.12 86.56 / 24.54

Table 2: Intents accuracies / percentages of the used tokens for predicting the intents using the smallest partial
utterance of the test dataset of the cleaned human transcribed incremental utterances for which the system has a
confidence of more or equal than 95 %, 90 %, 85 %, and 80 %, if the confidence is not reached, the full utterance is
used

training dataset first 100 % first 75 % first 50 % first 25 %
human, full 90.44 / 94.85 87.91 / 94.51 87.75 / 89.14 34.86 / 48.38
human, full, art. noise 87.94 / 95.30 85.77 / 94.74 89.51 / 91.27 67.71 / 68.65
human, incremental 88.57 / 94.40 90.58 / 93.62 91.51 / 90.59 82.77 / 79.06
human, incremental, art. noise 88.24 / 95.41 90.71 / 94.18 92.94 / 91.83 84.14 / 79.17
automatic, full 88.43 / 93.39 86.18 / 93.62 89.24 / 90.37 56.80 / 70.66
automatic, incremental 86.38 / 92.72 89.56 / 93.73 90.05 / 89.03 82.64 / 79.17

Table 3: CO-MC F1-scores / intents accuracies of the first 100 %, 75 %, 50 %, and 25 % of the tokens of the
utterances of the test dataset of the human transcribed full utterances

training dataset 95 % conf. 90 % conf. 85 % conf. 80 % conf.
human, full 94.51 / 96.51 90.82 / 85.59 77.60 / 32.52 76.37 / 30.22
human, full, art. noise 95.41 / 96.33 90.71 / 81.50 77.72 / 30.58 76.04 / 28.13
human, incremental 94.18 / 99.10 93.95 / 89.53 90.59 / 32.83 88.47 / 27.04
human, incremental, art. noise 95.18 / 97.85 95.41 / 92.65 91.60 / 32.78 85.89 / 24.90
automatic, full 88.58 / 91.51 88.35 / 83.19 76.82 / 30.85 75.36 / 28.79
automatic, incremental 92.61 / 99.63 92.16 / 93.38 88.35 / 35.41 85.89 / 30.33

Table 4: Intents accuracies / percentages of the used tokens for predicting the intents using the smallest partial
utterance of the test dataset of the human transcribed incremental utterances for which the system has a confidence
of more or equal than 95 %, 90 %, 85 %, and 80 %, if the confidence is not reached, the full utterance is used

training dataset first 100 % first 75 % first 50 % first 25 %
human, full 83.87 / 91.49 80.26 / 91.04 83.13 / 85.78 42.06 / 51.74
human, full, art. noise 81.93 / 91.15 78.94 / 90.71 83.76 / 88.35 74.98 / 68.31
human, incremental 80.63 / 87.91 82.16 / 88.24 85.85 / 85.44 80.49 / 75.93
human, incremental, art. noise 82.93 / 91.04 83.16 / 89.70 88.13 / 88.02 83.75 / 77.27
automatic, full 87.14 / 93.39 82.06 / 92.61 85.15 / 90.03 70.05 / 72.45
automatic, incremental 84.62 / 92.27 84.90 / 91.71 87.07 / 88.35 84.49 / 79.73

Table 5: CO-MC F1-scores / intents accuracies of the first partial automatically transcribed utterances that have
equal or more than the first 100 %, 75 %, 50 %, and 25 % of the tokens of the utterances of the test dataset of the
automatically transcribed full utterances
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training dataset 95 % conf. 90 % conf. 85 % conf. 80 % conf.
human, full 91.04 / 97.63 87.46 / 88.24 78.84 / 41.52 76.82 / 38.41
human, full, art. noise 90.93 / 96.87 86.79 / 85.60 77.94 / 37.99 76.48 / 34.93
human, incremental 87.68 / 99.18 87.35 / 91.23 86.56 / 42.35 83.99 / 36.96
human, incremental, art. noise 90.59 / 98.29 90.37 / 93.58 88.47 / 40.33 82.98 / 31.53
automatic, full 88.24 / 93.41 87.91 / 86.65 80.40 / 38.74 78.50 / 35.70
automatic, incremental 91.83 / 99.16 91.60 / 94.29 89.14 / 39.67 86.67 / 34.54

Table 6: Intents accuracies / percentages of the used tokens for predicting the intents using the first partial utterance
of the test dataset of the automatically transcribed incremental utterances for which the system has a confidence of
more or equal than 95 %, 90 %, 85 %, and 80 %, if the confidence is not reached, the full utterance is used

utterances. This is especially the case when eval-
uating the full utterances. A reason for this could
be that the partial utterances can be already con-
sidered as noisier utterances.

The short computation time of the processing of
an utterance makes it possible to use the incremen-
tal processing for spoken and written utterances.

In future work, it has to be evaluated whether
our results are also valid for other architectures
and other datasets. A balanced version of the ATIS
datasets can also be seen as another dataset.

We got better performance with artificial noise.
However, the results could be improved by opti-
mizing the hyperparameter of the artificial noise
generator.

In this work, we researched the performance us-
ing incremental utterances. There should be re-
search on how the results of the incremental pro-
cessing can be separated into subactions and how
much this can accelerate the processing of actions
in real-world scenarios.

In future work not only the acceleration, but
also other benefits of the incremental processing,
like using semantic information for improving the
backchannel, could be researched.
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Robin Rüde, Markus Müller, Sebastian Stüker, and
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A Supplemental Material

train valid test intent(s)
73.89 71.4 70.77 atis flight
8.6 7.6 5.38 atis airfare
5.14 5.0 4.03 atis ground service
3.1 3.6 4.26 atis airline
2.9 3.4 3.7 atis abbreviation
1.56 2.2 1.01 atis aircraft
1.0 1.8 0.11 atis flight time
0.92 2.0 0.34 atis quantity
0.42 0.4 1.34 atis flight#atis airfare
0.4 0.2 0.67 atis city
0.38 0.6 1.12 atis distance
0.38 0.6 2.02 atis airport
0.33 0.6 0.78 atis ground fare
0.33 0.2 2.35 atis capacity
0.27 0 8 atis flight no
0.13 0 0.67 atis meal
0.11 0.2 0 atis restriction
0.04 0 0 atis airline#

atis flight no
0.02 0 0 atis ground service#

atis ground fare
0.02 0 0 atis cheapest
0.02 0 0 atis aircraft#atis flight#

atis flight no
0 0.2 0 atis airfare#

atis flight time
0 0 0.22 atis day name
0 0 0.11 atis flight#atis airline
0 0 0.11 atis airfare#atis flight
0 0 0.11 atis flight no#

atis airline

Table 7: intents distribution (in percent) of the ATIS
utterances used in this work
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