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Abstract

In the context of document quality assessment,
previous work has mainly focused on predict-
ing the quality of a document relative to a pu-
tative gold standard, without paying attention
to the subjectivity of this task. To imitate peo-
ple’s disagreement over inherently subjective
tasks such as rating the quality of a Wikipedia
article, a document quality assessment system
should provide not only a prediction of the ar-
ticle quality but also the uncertainty over its
predictions. This motivates us to measure the
uncertainty in document quality predictions, in
addition to making the label prediction. Ex-
perimental results show that both Gaussian
processes (GPs) and random forests (RFs)
can yield competitive results in predicting the
quality of Wikipedia articles, while provid-
ing an estimate of uncertainty when there is
inconsistency in the quality labels from the
Wikipedia contributors. We additionally eval-
uate our methods in the context of a semi-
automated document quality class assignment
decision-making process, where there is asym-
metric risk associated with overestimates and
underestimates of document quality. Our ex-
periments suggest that GPs provide more reli-
able estimates in this context.

1 Introduction

The volume of textual web content generated col-
laboratively — through sites such as Wikipedia,
or community question answering platforms such
as Stack Overflow — has been growing progres-
sively. Such collaborative paradigms give rise to
a problem in quality assessment: how to ensure
documents are reliable and useful to end users.

Given the volume of such documents, and
velocity with which they are being produced,
there has been recent interest in automatic qual-
ity assessment using machine learning techniques
(Dang and Ignat, 2016a; Dalip et al., 2017; Shen

Figure 1: A screenshot of the “Warden Head Light”
Talk page. Wikipedia Project Lighthouses as-
signs a B-class quality label to this article, while
Wikipedia Project Australia assigns a Start-class
quality label.

et al., 2017). However, previous work has treated
this problem using off-the-shelf predictors, which
fail to take into account two key aspects. First,
any quality rating is inherently subjective: differ-
ent end users can heavily disagree on the quality of
a document. For example, as shown in Figure 1,
the Wikipedia article Warden Head Light1 is as-
signed to different labels from different Wikipedia
Projects:2 B (in the green block) by Wikipedia
Project Lighthouses, and Start (in the orange
block) by Wikipedia Project Australia;3 among a
30K datatset we collected, there are 7% such arti-
cles (even including high-quality articles), where
contributors disagree over the article quality. Sec-
ond, previous work has ignored decision-making

1https://en.wikipedia.org/w/index.php?
title=Warden_Head_Light&oldid=759074867

2A Wikipedia Project is a group of Wikipedia contributors
who work together to improve Wikipedia articles that they are
interested in.

3We return to describe the full label set in Section 2.

https://en.wikipedia.org/w/index.php?title=Warden_Head_Light&oldid=759074867
https://en.wikipedia.org/w/index.php?title=Warden_Head_Light&oldid=759074867
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procedures (such as expert reviewing, and featur-
ing articles on the Wikipedia main page) that are
impacted by the results of the prediction, which
can vary in non-trivial ways.

In this work, we address these two gaps by
modelling the uncertainty in the quality labels
by treating predictions as probability distributions.
In order to obtain these distributions, we experi-
ment with both Bayesian models (Gaussian Pro-
cesses, GPs, Rasmussen and Williams, 2006)
and frequentist, ensemble-based methods (Ran-
dom Forests, RFs, Breiman, 2001), applying them
to English Wikipedia articles. Our results show
that these approaches are competitive with the
state-of-the-art in terms of predictive performance,
while also providing estimates of uncertainty in
the form of predictive distributions.

As a case study on the utility of uncertainty es-
timates, we analyse a typical Wikipedia scenario,
where articles with predicted high quality are sent
to expert reviewers to confirm their status. Such
reviewing procedures are costly: if a low-quality
article is predicted to be a featured article (the
highest quality in Wikipedia), the triggered man-
ual review can substantially waste time and hu-
man effort. Conversely, if a high-quality article
is predicted to be of a lower-quality class, there is
no cost to the editor community.4 This is an ex-
ample of asymmetric risk, where underestimates
and overestimates have different penalties. In this
paper, we show how to use uncertainty estimates
from predictions in order to make a quality pre-
diction that minimises this asymmetric risk.

In summary, this paper makes the following
contributions:

(i) We are the first to propose to measure the
uncertainty of article quality assessment sys-
tems. We find that both GPs and RFs can
achieve performance competitive with the
state-of-the-art, while providing uncertainty
estimates over their predictions in the form
of predictive distributions.

(ii) To model asymmetric risk scenarios in
Wikipedia, we propose to combine the pre-
dictive distributions provided by our meth-
ods with asymmetric cost functions. Experi-
mental results show that GPs are superior to
RFs under such scenarios.

(iii) We constructed a 30K Wikipedia article
4Although there may be an opportunity cost (in terms of

not showcasing high-quality articles), and the potential de-
motivation of the associated editors.

dataset containing both gold-standard la-
bels and Wikipedia Project labels, which
we release for public use along with
all code associated with this paper at
https://github.com/AiliAili/
measure_uncertainty.

2 Preliminaries

In this section, we detail the specific scenario
addressed in this study: quality assessment of
Wikipedia articles. We also describe the procedure
to construct our dataset.

2.1 Problem Definition
In line with previous work (Warncke-Wang et al.,
2015; Dang and Ignat, 2016a,b, 2017), we con-
sider six quality classes of Wikipedia articles,
ordered from highest to lowest: Featured Ar-
ticle (“FA”), Good Article (“GA”), B-class Ar-
ticle (“B”), C-class Article (“C”), Start Article
(“Start”), and Stub Article (“Stub”). A descrip-
tion of the quality grading criteria can be found in
the Wikipedia grading scheme page.5

The quality assessment process over a
Wikipedia article is done in a collaborative
way, through discussions on the corresponding
article’s Talk page.6 Wikipedia contributors
also carefully review articles that are GA and FA
candidates. In particular, FA articles are eligible to
appear on the main page of the website. A reliable
automatic quality assessment model should take
these decision making aspects into account.

Problem statement. In this paper, our aim is to
predict the quality of unseen Wikipedia articles,
paired with an estimate of uncertainty over each
prediction, which we evaluate in a risk-aware deci-
sion making scenario. Figure 2 summarises model
application and actions depending on the uncer-
tainty: (1) quality-indicative features are first ex-
tracted from a Wikipedia article; (2) a model pre-
dicts the article quality and provides an indication
of how confident it is of its prediction; and (3)
different actions are taken based on the predicted
quality and confidence value, such as expert re-
view and featuring on the Wikipedia main page if
an article is predicted to be FA/GA with high con-
fidence.

5https://en.wikipedia.org/wiki/
Template:Grading_scheme

6Such as the Talk page for the “Warden Head Light”
article: https://en.wikipedia.org/wiki/Talk:
Warden_Head_Light

https://github.com/AiliAili/measure_uncertainty
https://github.com/AiliAili/measure_uncertainty
https://en.wikipedia.org/wiki/Template:Grading_scheme
https://en.wikipedia.org/wiki/Template:Grading_scheme
https://en.wikipedia.org/wiki/Talk:Warden_Head_Light
https://en.wikipedia.org/wiki/Talk:Warden_Head_Light
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Figure 2: Model application and decision-making
procedure.

2.2 Data Collection

We constructed an evaluation dataset by collecting
articles from Wikipedia in a balanced way. From
each quality class, we crawled 5K articles from its
corresponding repository.7 As mentioned in Sec-
tion 1, quality assessment is subjective and multi-
ple editors/Wikipedia Projects may disagree when
assigning a quality label to an article. We can ob-
serve this behaviour by inspecting an article’s cor-
responding Talk page, which records quality labels
from different Wikipedia Projects.8 For roughly
7% of the articles, there is a disagreement between
editors/Wikipedia Projects. Take Figure 1 in Sec-
tion 1 as an example, although the primary la-
bel of the Wikipedia article Warden Head Light
is B, two other quality labels are assigned to it:
B class (in the green block) by Wikipedia Project
Lighthouses, and Start class (in the orange block)
by Wikipedia Project Australia. Since we are in-
terested in investigating how an automatic qual-
ity assessment system performs when there is a
disagreement, we also crawl these secondary la-
bels when building our dataset. Finally, we re-
move markup that relates to the document quality
classes, such as {Featured Article} or {geo-start},
to alleviate any overt indication of the quality label
in the text of the article.

The resulting dataset contains 29,097 Wikipedia
articles, which we partition into two subsets for
separate evaluation in Section 4: (1) consistent ar-
ticles, where primary and secondary labels fully
agree; and (2) inconsistent articles, where there
is disagreement among secondary labels, with at
least one of them agreeing with the primary label.
We emphasise that we keep all secondary labels
for the latter, without performing any label aggre-
gation (e.g., voting). Our aim is to make qual-

7For example, we obtain FA articles by crawling pages
from the FA repository: https://en.wikipedia.
org/wiki/Category:Featured_articles

8Different Wikipedia articles can be rated by different
Wikipedia Projects. And the number of quality labels in a
Talk page depends on how many Wikipedia Projects rate this
article.

Train Dev Test Total

FA
consistent 3956 470 538

4998
inconsistent 28 4 2

GA
consistent 3887 468 495

4878
inconsistent 16 6 6

B
consistent 3138 400 416

4843
inconsistent 702 85 102

C
consistent 3036 382 381

4523
inconsistent 570 69 85

Start
consistent 3725 451 472

4924
inconsistent 223 28 25

Stub
consistent 3863 470 492

4931
inconsistent 83 12 11

Total — 23227 2845 3025 29097

Table 1: A breakdown of our Wikipedia dataset.

ity predictions as close as possible to the primary
labels while also providing uncertainty estimates
of such predictions: lower uncertainty over con-
sistent articles and higher uncertainty over incon-
sistent articles. The dataset is then stratified into
training, development, and test sets, as detailed in
Table 1.

3 Methods

A key aspect of the task is the ordinal nature of
the quality labels, e.g., a Start article is close in
quality to a C, but much worse than an FA. Sur-
prisingly though, most previous studies (Dang and
Ignat, 2016a,b, 2017; Shen et al., 2017) formu-
late the problem as multi-class classification and
use accuracy as the evaluation metric. Such mod-
elling and evaluation procedures completely disre-
gard the ordinal nature of the labels, which in turn
does not correspond to real world scenarios: the
cost of mispredicting a Start article as C is differ-
ent to mispredicting it as an FA (standard classifi-
cation metrics such as accuracy assume equal cost
for all mispredictions).

To better address the scenarios we are inter-
ested in, we treat quality assessment as a regres-
sion problem, in terms of both modelling and eval-
uation. In order to do this, we encode the quality
class labels as real values by mapping them to the
interval [−2.5, 2.5] with increments of 1. These
labels are −2.5, −1.5, −0.5, 0.5, 1.5, and 2.5,
respectively, where higher values indicate higher
quality.9 We perform this step to be able to use
off-the-shelf regression models, while also center-

9Having equal intervals is a heuristic: we discuss this lim-
itation in Section 6.

https://en.wikipedia.org/wiki/Category:Featured_articles
https://en.wikipedia.org/wiki/Category:Featured_articles
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ing the labels. The remainder of this section de-
tails the regression methods we use, as well as two
types of features we employ to represent each ar-
ticle. Both methods provide uncertainty estimates
through predictive distributions (Gaussian distri-
butions in our case).

3.1 Gaussian Processes
A principled approach to obtain predictive distri-
butions is to use GPs (Rasmussen and Williams,
2006), a Bayesian non-parametric framework
widely considered the state-of-the-art for regres-
sion (Hensman et al., 2013). Given a latent func-
tion f , which explains the relationship between an
input vector x and its corresponding output value
y, the model assumes that f is distributed accord-
ing to a GP, i.e.,

f(x) ˜ GP(m(x), k(x,x′)),

where m(x) is a mean function, and k(x,x′) is a
covariance or kernel function.

Following common practice, we fix the mean
function to zero, as our output values are centered.
Most of the information obtained from the train-
ing data can be encoded in the kernel function, of
which the most common one is the Radial Basis
Function (RBF), defined as

k(x,x′) = σv exp

−1

2

d∑
j=1

1

`2j
(xj − x′j)2

,
where σv is the variance hyperparameter control-
ling the scale of the labels, and `j is the lengthscale
for the jth dimension of the input. The length-
scales are learned by maximising the marginal
likelihood (Rasmussen and Williams, 2006), re-
sulting in a feature selection procedure known
as Automatic Relevance Determination (ARD):
lower lengthscales indicate features with higher
discriminative power. We use this procedure to
perform a feature analysis in Section 4.1. Besides
the RBF, we also experiment with a range of other
kernels used in GP models: see Rasmussen and
Williams (2006, Chap. 4) for details.

Standard GP inference takesO(n3) time, where
n is the number of instances in the training data.
As this is prohibitively expensive given the size of
our dataset, we employ Sparse GPs (Titsias, 2009;
Gal et al., 2014), a scalable extension that approx-
imates an exact GP by using a small set of latent
inducing points. These are learned by maximising

a variational lower bound on the marginal likeli-
hood: see Titsias (2009) for details.

3.2 Random Forests

As an alternative method to obtain predictive dis-
tributions, we use RFs (Breiman, 2001), which
are ensembles of decision trees (regression trees
in our case). Each tree is trained on a bootstrapped
sample of the training set and within each tree, a
random subset of features is used when splitting
nodes. To obtain predictive distributions, we as-
sume that the individual tree predictions follow an
“empirical” Gaussian distribution. The mean and
the variance are computed from the full set of pre-
dictions obtained by the RF. While this approach
is less principled — since there is no reason to
believe the distribution over individual predicted
values is Gaussian — it can work well in practice.
For instance, RFs have been used before to obtain
uncertainty estimates in the context of Bayesian
Optimisation (Hutter et al., 2011).

3.3 Features and Preprocessing

Following Dang and Ignat (2016a), we use hand-
crafted features, in the form of 11 structural
features and 10 readability scores, which are
listed in Dang and Ignat (2016a) and Shen et al.
(2017).10 Structural features can reflect the qual-
ity of Wikipedia articles in different ways. For ex-
ample, References, Pagelinks, and Citation show
how the article content is supported by informa-
tion from different sources, indicating whether the
article is reliable and thus indicating higher/lower
quality, while features Level2, and Level3+ indi-
cate how the content is organised, which is another
quality indicator of Wikipedia articles. Readabil-
ity scores reflect the usage of language and com-
prehension difficulty of a Wikipedia article. For
example, Difficult Words (Chall and Dale, 1995),
Dale-Chall (Dale and Chall, 1948), and Gunning-
Fog (Gunning, 1969) use the number or percent-
age of difficult words to measure the comprehen-
sion difficulty of a text, where a difficult word is a
word not in a list of predefined words that fourth-
grade American students can reliably understand.
These hand-crafted features are extracted from
Wikipedia articles using the open-source packages

10Dang and Ignat (2016a) explore nine readability scores,
to which we add an extra readability score denoted Consen-
sus. This score represents the estimated school grade level
required to understand the content.
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wikiclass11 and textstat.12

As features from the revision history, such as
the number of revisions and the article–editor net-
work, are indirect quality indicators, we only focus
on direct quality indicators from the content itself.

4 Experimental Study

In this section, we detail four sets of experiments:
(1) intrinsic comparison of our methods with re-
spect to their predictive distributions; (2) com-
parative experiments with the state-of-the-art with
respect to point estimates only; (3) experiments
measuring the performance of our methods in a
transfer setting, where the goal is to predict sec-
ondary labels; and (4) a case study where auto-
matic labels are used to filter articles for manual
revisions and we use distributions to incorporate
risk in the quality predictions. All our models are
trained on the primary labels but we explicitly re-
port our results on two different test sets: one with
consistent and one with inconsistent labels, as ex-
plained in Section 2.2.

4.1 Intrinsic Evaluation

Our first set of experiments evaluates the perfor-
mance of methods intrinsically, with respect to
their predictive distributions.

GP settings. We use GP models from the
GPflow toolkit (Matthews et al., 2017). In particu-
lar, we use a Sparse GP with 300 inducing points,
which are initialised with k-means clusters learned
on the training set and we explore different kernels
(RBF, Arccosine (Cho and Saul, 2009), Matérn 32,
Matérn 52, Rational Quadratic (RQ)).

RF settings. We use the RF implementation in
scikit-learn (Pedregosa et al., 2011), with 300
trees and a maximum depth of 40, fine-tuning over
the development set. All other hyperparameters
are set to default values.

Evaluation metrics. Standard metrics to evalu-
ate regression models such as Root Mean Squared
Error (RMSE) and Pearson’s correlation (r) are
only based on point estimate predictions. These
are not ideal for our setting since we aim to as-
sess predictive distributions instead. For such set-
tings, Candela et al. (2005) proposed the Negative

11https://github.com/wiki-ai/wikiclass
12https://pypi.python.org/pypi/

textstat/0.5.1

NLPD (consistent) NLPD (inconsistent)

RF 0.978† 1.642
GPRBF 1.224 1.364†
GParc0 1.280 1.460
GParc1 1.266 1.428
GParc2 1.286 1.426
GPMatérn32 1.275 1.427
GPMatérn52 1.275 1.425
GPRQ 1.271 1.442

Table 2: Intrinsic evaluation results. GParc0,
GParc1, and GParc2 denote GP using an Arcco-
sine kernel with orders of 0, 1, and 2. GPMatérn32,
GPMatérn52, and GPRQ denote GP using Matérn32,
Matérn52, and RQ, respectively. The best result is
indicated in bold, and marked with “†” if the im-
provement is statistically significant (based on a
one-tailed Wilcoxon signed-rank test; p < 0.05).

Log Predictive Density (“NLPD”) as an alterna-
tive metric, which is commonly used in the lit-
erature (Chalupka et al., 2013; Hernández-Lobato
and Adams, 2015; Beck et al., 2016) to evaluate
probabilistic regression models.

Given a test set containing the input and its ref-
erence score (xi, yi), NLPD is defined as

NLPD = − 1

n

n∑
i=1

log p(ŷi = yi|xi),

where n is the number of test samples and p(ŷi|xi)
is the predictive distribution for input xi. For
Gaussian distributions, NLPD penalises both over-
confident wrong predictions and underconfident
correct predictions.

Results. Table 2 shows the average NLPD over
10 runs on both test sets. Clearly, RFs outperform
GPs on the consistent set while the opposite hap-
pens on the inconsistent set. In general, this shows
that GPs tend to give more conservative predictive
distributions compared to RFs. This is beneficial
when there is label disagreement, and therefore,
high uncertainty over the labels. However, it also
translates into worse performance when labels are
consistent, where the higher confidence obtained
by RFs give better results. In terms of kernels, we
obtained the best results using RBF for both test
sets.

Feature Analysis. To find out which features
contribute most to the performance of our mod-
els, we analyse the lengthscales from GP and the
feature weigths from RF. Figure 3 shows the top

https://github.com/wiki-ai/wikiclass
https://pypi.python.org/pypi/textstat/0.5.1
https://pypi.python.org/pypi/textstat/0.5.1
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Figure 3: Feature importance values in the GP
model (left) and RF model (right) . A full descrip-
tion of all features can be found in Dang and Ignat
(2016a) and Shen et al. (2017).

five features in each model: four of those shared
by both GP and RF, indicating their importance
as quality indicators in both methods. In particu-
lar, the length of an article is a consistently good
indicator: a possible explanation is that short ar-
ticles lack enough content to be considered high
quality articles. The presence of structured indica-
tors such as number of references and non-citation
templates is also interesting, as it is evidence of
the contribution of non-textual information in the
quality assessment process.

4.2 Point Estimate Comparison
In terms of point estimates, the state-of-the-art in
our task is a neural model based on a BILSTM ar-
chitecture (Shen et al., 2017). As we model qual-
ity prediction of Wikipedia articles as a regression
problem, where a linear transformation is used as
the final layer instead of a softmax, the neural net-
work model does not provide predictive distribu-
tions, limiting their applicability in the scenarios
which we focus on in this work. However, to put
our proposed methods into perspective, we com-
pare their performance with these neural models
in terms of point estimates. Specifically, we use
the mean of the distributions for both GP and RF
as predictions and use standard regression metrics
(RMSE and Pearson’s r correlation) to assess the
performance of our models against BILSTM.

For the GP model, we restrict our evaluation in
this section (and in the remainder of this paper)
to the one with an RBF kernel, as it performed
significantly better in Section 4.1. We compare
with two BILSTM models: (1) with pre-trained
word embeddings, using GloVe (Pennington et al.,
2014) (“BILSTM+” hereafter); and with ran-
domly initialised word embeddings (“BILSTM−”
hereafter). See Shen et al. (2017) for a detailed
description of all hyperparameters.

Results. From Table 3, we see that while
BILSTM+ outperform our methods in the consis-

consistent inconsistent
RMSE r RMSE r

BILSTM+ 0.795† 0.897† 0.951 0.522
BILSTM− 0.810 0.891 0.936 0.548†
RF 0.805 0.892 0.942 0.527
GPRBF 0.822 0.887 0.932 0.545

Table 3: Point estimate comparison results.

tent set, the difference is small and we obtain good
results nevertheless. In particular, correlation is
close to 0.9 for all methods. Therefore, we can see
that GPs and RFs obtain comparable results with
the state-of-the-art while providing additional in-
formation through the predictive distributions.

The importance of having distributions as pre-
dictions becomes clear when we see the results for
the inconsistent set, in Table 3. Here, not only
do GPs perform on par with the BILSTM mod-
els, but the overall correlation is much lower (be-
tween 0.52 and 0.55). This highlights the harder
task of predicting quality labels under disagree-
ment, which further motivates the additional un-
certainty information coming from predictive dis-
tributions.

4.3 Prediction of Secondary Labels

As explained in Section 2.2, the inconsistent ar-
ticles are ones where the primary label is in dis-
agreement with the secondary ones, from different
Wikipedia Projects. In this section, we assess how
our models fare under a transfer scenario, where
the goal is to predict these secondary labels. Such
a scenario can be useful, for instance, if we want
to incorporate information from Projects to decide
the quality of a document.

To measure the performance with secondary la-
bels as references, one option is to aggregate the
labels of an article into a single one (through vot-
ing or averaging, for instance) and use that value
as the reference. Instead, we opt to embrace the
disagreement, and propose a weighted extension
of NLPD, namely wNLPD, which we define as

wNLPD = − 1

n

n∑
i=1

log

mi∑
j=1

wjp(ŷi = yj |xi),

where mi is the number of secondary labels for
article xi, and wj is the weight for label j.
If we have prior information about the reliabil-
ity of some label sources (for instance, different
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wNLPD wRMSE

RF 1.460 1.158
GPRBF 1.412† 1.152†

Table 4: Results for prediction of secondary labels.

Wikipedia Projects), one can plug this informa-
tion into the weights. Here we assume equal relia-
bility and use uniform weights wj = freq(j)/mi,
where freq is the count of label j among secondary
labels. The metric degrades to standard NLPD
when labels are consistent. We also evaluate point
estimate performance using a similar weighting
scheme for RMSE (which we denote as wRMSE).

Results. Table 4 summarises the results. Notice
that in this setting we only report results for the in-
consistent test set, as the consistent one has no dis-
agreement (and therefore, numbers would match
the ones in Section 4.1). Here we also see that
GPs achieve significantly better performance than
RFs, although by a much lower margin compared
to the results on the primary labels (Table 2). This
reflects the harder aspect of this setting. We hy-
pothesize we can obtain better performance in this
scenario by incorporating the secondary labels at
training time, which we leave for future work.

4.4 Case Study: Quality Prediction as
Filtering for Manual Revision

As mentioned in Section 1, one use for a quality
prediction system is to filter documents for man-
ual revision. In the case of Wikipedia, such revi-
sions are mandatory for articles to be assigned as a
Good Article or a Featured Article. This incurs in
an asymmetric risk: the cost of mispredicting an
article as GA and FA is higher than other labels,
as these trigger expensive, manual labour. Such a
scenario can be modelled through asymmetric loss
functions (Varian, 1975).

If a quality model provides predictive distribu-
tions, one can obtain optimal quality decisions
under an asymmetric loss function through the
framework of Minimum Bayes Risk (MBR). This
setting has been studied before by Christoffersen
and Diebold (1997) and more recently applied by
Beck et al. (2016) in the context of machine trans-
lation post-editing. However, these assume a re-
gression scenario. While we employ regression
models in our work for ease of modelling reasons,
the final decisions in the pipeline are discrete (al-
though still ordinal).

Figure 4: Discretisation of a continuous predictive
distribution. The shaded area shows the probabil-
ity of quality label Start (−1.5).

To adapt the MBR framework into our case, we
first define the risk δ(q) of predicting the quality
label q as

δ(q) =
∑
q̂

L(q̂, q)p(q̂|x),

where L(q̂, q) is an (asymmetric) loss function
over the discrete quality labels and p(q̂|x) is the
discretised probability of quality label q̂ for doc-
ument x under one of our proposed models. We
detail these two terms below.

Discretised distribution Given a predictive dis-
tribution obtained by a regression model we can
discretise it by using the cumulative density func-
tion (cdf). Define `(q̂) as the real value which
we encode quality label q̂, as described in Sec-
tion 3. With this, we obtain the discretised proba-
bility mass function

p(q̂|x) =

 1− cdf(`(q̂)− 0.5) if q̂ = FA
cdf(`(q̂) + 0.5) if q̂ = Stub
cdf(`(q̂) + 0.5)− cdf(`(q̂)− 0.5) otherwise,

where the cdf is obtained from the predictive dis-
tribution. As we only consider Gaussian distri-
butions for predictions, we can easily use off-the-
shelf implementations to obtain the cdf. Figure 4
gives an example of how to obtain the probability
of an instance being predicted to be Start (−1.5).

Asymmetric loss function To incorporate
asymmetry into the quality label prediction, we
define it as

L(q̂, q) =


0 if q̂ = q
α if q̂ 6= q, q̂ /∈ S, q ∈ S
1 otherwise

,



198

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

Varying values of α

A
sy

m
m

et
ri

c
co

st
GPcon

RFcon

GPinc

RFinc

Figure 5: Asymmetric risk vs. α (best viewed
in color). Here, GPcon/RFcon denote risk val-
ues achieved by GP/RF over consistent arti-
cles, respectively; GPinc/RFinc denote risk values
achieved by GP/RF over inconsistent articles.

where S is a high-risk label set and α > 1 is the
penalty associated with a higher risk prediction. In
our scenario, we set S = {GA,FA}, as these are
the labels we want to give larger penalties when
there is a misprediction. Notice that this loss is
only an example tailored to our specific setting:
other scenarios might warrant different definitions.

Evaluation Under a deployment scenario, one
would evaluate δ(q) for all possible 6 labels and
choose the one with minimum risk. However,
since in our case we have access to true test set
labels, we can just average all δ(q) for the gold
labels q in order to assess the models we are inter-
ested in (GPs and RFs). As in the previous sec-
tions, we report average results over 10 runs for
both consistent and inconsistent test sets.

Results. In Figure 5 we plot the average risk
while varying the penalty cost α. As in the in-
trinsic evaluation result, we see that GPs tend to
perform better in the inconsistent set. On the other
hand, the results in the consistent set are very sim-
ilar, and no conclusions can be made about which
method performs best. Overall, the results are
favourable towards GPs but the inconclusive re-
sults for consistent labels shows that there is room
for improvements in uncertainty modelling, which
we leave for future work.

5 Related Work

The quality assessment of Wikipedia articles is a
task that assigns a quality label to a Wikipedia
article, reflecting the quality assessment pro-
cess carried out by the Wikipedia community.

Hand-crafted feature-based approaches use fea-
tures from the article itself (e.g., article length),
meta-data features (the number of revisions of an
article), and a combination of these two. Various
features derived from Wikipedia articles have been
used for assessing the quality of Wikipedia arti-
cles (Blumenstock, 2008; Lipka and Stein, 2010;
Warncke-Wang et al., 2013, 2015; Dang and Ig-
nat, 2016a). For example, Blumenstock (2008)
and Lipka and Stein (2010) use article length and
writing styles (represented by binarised charac-
ter trigram features) to differentiate FA articles
from non-featured articles, respectively. Warncke-
Wang et al. (2015) proposed 11 structural features
(such as the number of references and whether
there is an infobox or not) to assess the quality of
Wikipedia articles. Dang and Ignat (2016a) fur-
ther proposed nine readability scores (such as the
Flesch reading-ease score (Kincaid et al., 1975))
to assess the quality of Wikipedia articles. Based
on these last two studies, an online Objective Re-
vision Evaluation Service has been built to mea-
sure the quality of Wikipedia articles (Halfaker
and Taraborelli, 2015). Features derived from the
meta-data of Wikipedia articles — e.g., the num-
ber of revisions a Wikipedia article has received
— have been proposed to assess the quality of
Wikipedia articles (Stvilia et al., 2005; Stein and
Hess, 2007; Adler et al., 2008; Dalip et al., 2009,
2017, 2014). For example, Stein and Hess (2007)
and Adler et al. (2008) use the authority of editors
to measure the quality of Wikipedia articles, as de-
termined by the quality of articles they edited.

Different neural network architectures have
been exploited to learn high-level representations
of Wikipedia articles. For example, Dang and
Ignat (2016b) use a distributed memory version
of Paragraph Vector (Le and Mikolov, 2014) to
learn Wikipedia article representations, which are
used to predict the quality of Wikipedia articles.
Dang and Ignat (2017) and Shen et al. (2017) ex-
ploit LSTMs (Hochreiter and Schmidhuber, 1997)
to learn document-level representations to train a
classifier and predict the quality label of an un-
seen Wikipedia article. Observing that the vi-
sual rendering of a Wikipedia article can cap-
ture implicit quality indicators (such as images
and tables), Shen et al. (2019) use Inception V3
(Szegedy et al., 2016) to capture visual represen-
tations, which are used to classify Wikipedia arti-
cles based on their quality. They further propose
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a joint model, which combines textual representa-
tions from bidirectional LSTM with visual repre-
sentations from Inception V3, to predict the qual-
ity of Wikipedia articles.

Beck et al. (2016) explore prediction uncer-
tainty in machine translation quality estimation
(QE), where post-editing rate is the dependent
variable. In QE, the post-editing rate — which
is computed by dividing the post-editing time by
the length of the translation hypothesis — is a
positive real value. The performance of a GP
model was studied in both underestimate and over-
estimate scenarios. Beck and Cohn (2017); Beck
(2017) employ GPs to model text representation
noise in emotion analysis, where Pearson’s corre-
lation and NLPD are used as the evaluation met-
rics. Our work is different from these two stud-
ies as we model the subjectivity of quality assess-
ment explicitly, which can mimic people’s differ-
ent opinions over the quality of a document.

There is also a rich body of work on identify-
ing trustworthy annotators and predicting the cor-
rect underlying labels from multiple annotations
(Hovy et al., 2013; Cohn and Specia, 2013; Pas-
sonneau and Carpenter, 2014; Graham et al., 2017;
Paun et al., 2018). For example, Hovy et al. (2013)
propose an item-response model to identify trust-
worthy annotators and predict the true labels of
instances in an unsupervised way. However, our
task is to measure the uncertainty of a model over
its predictions (as distinct from attempting to learn
the “true” label for an instance from potentially
biased/noisy annotations), in addition to correctly
predicting the gold label, in the context of as-
sessing the quality of Wikipedia articles. Addi-
tionally, we have a rich representation of the data
point (i.e. document) that we are attempting to
label, whereas in work on interpreting multiply-
annotated data, there is little or no representation
of each data point that has been annotated. Finally,
we do not have access to the IDs of annotators
across documents, and thus cannot model anno-
tator reliability or bias.

6 Conclusion and Future Work

In this paper, we proposed to measure the un-
certainty of Wikipedia article quality assessment
systems using Gaussian processes and random
forests, utilising the NLPD evaluation metric to
measure performance over consistent and incon-
sistent articles. Experimental results show that

both GPs and RFs are less certain over inconsis-
tent articles, where people tend to disagree over
their quality, and GPs are more conservative in
their predictions over such articles. To imitate a
real world scenario where decision-making pro-
cesses based on model predictions can lead to
different costs, we proposed an asymmetric cost,
which takes the prediction uncertainty into consid-
eration. Empirical results show that GPs are a bet-
ter option if overestimates are heavily penalised.

In the future, we are interested in conducting a
user study to find out how Wikipedians respond to
the utility of uncertainty information provided to
them. On the modelling side, having equal inter-
vals between adjacent quality classes is a heuristic,
which is potentially inappropriate in the case of
Wikipedia. Thus we are also planning to model the
quality assessment of Wikipedia articles as an or-
dinal regression problem, where the gap between
adjacent quality labels can vary.
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León-Villagrá, Zoubin Ghahramani, and James
Hensman. 2017. GPflow: A Gaussian process li-
brary using TensorFlow. Journal of Machine Learn-
ing Research, 18(40):1–6.

Rebecca J. Passonneau and Bob Carpenter. 2014. The
benefits of a model of annotation. TACL, 2:311–326.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk
Hovy, Udo Kruschwitz, and Massimo Poesio. 2018.
Comparing bayesian models of annotation. TACL,
6:571–585.
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