@inproceedings{li-etal-2019-exploiting,
title = "Exploiting {BERT} for End-to-End Aspect-based Sentiment Analysis",
author = "Li, Xin and
Bing, Lidong and
Zhang, Wenxuan and
Lam, Wai",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/D19-5505/",
doi = "10.18653/v1/D19-5505",
pages = "34--41",
abstract = "In this paper, we investigate the modeling power of contextualized embeddings from pre-trained language models, e.g. BERT, on the E2E-ABSA task. Specifically, we build a series of simple yet insightful neural baselines to deal with E2E-ABSA. The experimental results show that even with a simple linear classification layer, our BERT-based architecture can outperform state-of-the-art works. Besides, we also standardize the comparative study by consistently utilizing a hold-out validation dataset for model selection, which is largely ignored by previous works. Therefore, our work can serve as a BERT-based benchmark for E2E-ABSA."
}
Markdown (Informal)
[Exploiting BERT for End-to-End Aspect-based Sentiment Analysis](https://preview.aclanthology.org/jlcl-multiple-ingestion/D19-5505/) (Li et al., WNUT 2019)
ACL