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Abstract

Word embedding algorithms have become a
common tool in the field of natural language
processing. While some, like Word2Vec, are
based on sequential text input, others are uti-
lizing a graph representation of text. In this
paper, we introduce a new algorithm, named
WordGraph2Vec, or in short WG2V, which
combines the two approaches to gain the ben-
efits of both. The algorithm uses a directed
word graph to provide additional information
for sequential text input algorithms. Our ex-
periments on benchmark datasets show that
text classification algorithms are nearly as ac-
curate with WG2V as with other word embed-
ding models while preserving more stable ac-
curacy rankings.

1 Introduction

Graph embedding in traditional studies aims to
represent nodes as vectors in low-dimensional
space. Nodes in a graph will have similar vec-
tors if they share similar attributes. An exam-
ple of a node attribute can be betweeness, which
is defined as the number of times a node ap-
pears on the shortest path between two other
nodes. Graph-based modeling has proved itself
in many applications including node classifica-
tion (Gibert et al., 2012), link prediction (Grover
and Leskovec, 2016), community detection (Wang
et al., 2017) and more (Goyal and Ferrara, 2018).
While graph representation can be applied in a va-
riety of domains, this paper will focus on natural
language processing applications. Language can
be represented by a graph of words in multiple
ways. The node (word) connections can repre-
sent semantic relationships between words such as
”king” and ”queen”, different grammatical forms
of the same word such as walk and walked, co-
occurring words, etc. Semantic similarity, which
is an inherit part of word embedding, can help with

a variety of NLP applications, such as text summa-
rization (Nallapati et al., 2016), document classifi-
cation (Yang et al., 2016), and machine translation
(Zou et al., 2013). Creating a good feature repre-
sentation of words is crucial for achieving reason-
able results in all these tasks.
In this study, we propose a novel word em-
bedding algorithm named WordGraph2Vec, or
WG2V. WordGraph2Vec combines the benefits of
existing word embedding algorithms and tries to
minimize their downfalls. While existing algo-
rithms are focused on input in the form of vec-
tors alone or in the form of graphs alone, Word-
Graph2Vec takes into consideration both of these
input types in its training phase. The word graph
construction procedure used by WordGraph2Vec
is similar to the graph representation in Schenker’s
(2003) work, where each unique word is repre-
sented by a node in the graph and there is a di-
rected edge between two nodes if the correspond-
ing two words follow each other in at least one
sentence. The difference is that Schenker’s orig-
inal word graph was used for representing indi-
vidual web documents whereas WordGraph2Vec
generates a word graph from a large corpus of
text that is expected to represent a natural lan-
guage. We evaluate WordGraph2Vec vs. the state-
of-the art node embedding algorithms (Grover and
Leskovec, 2016; Tang et al., 2015; Perozzi et al.,
2014) on the tasks of semantic relationships detec-
tion and text classification.

2 Related Work

In this section, we cover the related work on text
representation and the benefits of graph-based rep-
resentation models for natural language process-
ing, along with common word embedding meth-
ods and state-of-the-art algorithms for graph em-
bedding.
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2.1 Text Representation

One of the challenges in natural language process-
ing is how to represent a term. The most com-
mon term representation is vector representation,
such as ”one-hot” vector, a vector in the size of the
vocabulary, where only one dimension is equal to
one and all others are zeros. More advanced meth-
ods of embedding terms (mostly, words) in a vec-
tor space are covered in the next sub-section.

Graph representation of text, by its natural
structure, defines relationships between graph
nodes. Each graph node represents a term, which
can be defined in various ways including words,
sentences, and n-grams. The node connections can
define the ”closeness” of terms to each other in a
richer way than the ”one-hot” vector representa-
tion including lexical and semantic relations, con-
textual overlap, etc. A potential advantage of us-
ing a directed graph model over context-dependent
representations, such as word2vec, is preserving
information about the word order in the input text.

Graph representation is not new in the world
of text processing (Schenker et al., 2005; Son-
awane and Kulkarni, 2014). Graph representa-
tions outperformed the classical vector represen-
tations of text documents, such as TF-IDF, on
several NLP tasks including document classifi-
cation (Markov et al., 2008), text summariza-
tion (Garcı́a-Hernández et al., 2009), word sense
disambiguation (Agirre and Soroa, 2009), and
keyword extraction (Litvak and Last, 2008).

2.2 Word Embedding

Word Embedding is the process of represent-
ing words as dense vectors in a low-dimensional
space. This process gained momentum since the
paper of Mikolov (2013), which proposed a novel
deep learning algorithm that yields word embed-
ding. Mikolov’s Word2Vec algorithm can be im-
plemented in two ways. The first one is CBOW,
predicting a word based on the words surround-
ing it. The second one is Skip-Gram, predicting
the surrounding words of a specific word based on
this word. The target word and its neighbors are
selected from a sliding window, which traverses
the corpus in linear steps. Similar words that do
not fall in the same window, because they do not
appear next to each other in the corpus, might not
be ”close” to each other in the low-dimensional
space as will be shown in the next section. The
Word2Vec training objective, as implemented in

Skip-Gram, is to maximize the average log proba-
bility of:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

Where T is the entire input text, c is half of the
window size, and w are all co-occurring words.
GloVe (Pennington et al., 2014) is another algo-
rithm, which produces word embedding. The al-
gorithm is essentially a log-bilinear model. The
model tries to minimize the discrepancy between
the estimated probability of two words appearing
next to each other and the true probability of their
co-occurrence. Both GloVe and Word2Vec are
considered state-of-the-art algorithms for creating
word embedding. Those word embedding meth-
ods are suffering from the limitation of ignoring
the high-level, conceptual context of a given word.
The vector of each word is trained only on its raw,
low-level context and not on relations of words out
of that context, which may affect the quality of
word embedding. The word order is also ignored
by the above methods.

2.3 Graph Embedding

Graph embedding models can overcome the limi-
tations of the sequential input methods mentioned
in the previous section. Paths in a word graph may
connect semantically related words, which do not
necessarily appear in the same low-level context.
Those connections can be utilized for enriching
the word embedding. Thus, a graph-based model
can take into account both the structural and the
semantic information represented by text.

An example of the above can be demonstrated
by the following two sentences from a given cor-
pus: ”The boy went to school” and ”The man went
to work”. If the sentence ”The boy went to work”
does not exist in the corpus, a sequential input
model, such as Word2Vec, would not be trained
on it, whereas a graph input algorithm can also be
trained on this word sequence, because the node
”went” is shared in the graph between the two sen-
tences. Since ”The boy went to work” is a valid
path in the graph, the corresponding sentence can
be included in the training set. This way we can
enhance the semantic relationships between words
represented by the embedded vectors. In addition,
there is a need for NLP algorithms that can exploit
the benefits of the graph input on one hand and
face the challenges it brings on the other hand.
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There are several state-of-the-art algorithms for
producing graph embedding. Graph embedding
can be node embedding, edge embedding or both.
When defining an embedding, the ”similarity” be-
tween nodes is the main key. In a graph represen-
tation, there are two major node similarity mea-
sures that can be applied:

• Nodes with the same neighbors are logically
supposed to be similar. For example, in a so-
cial network a friend of my friend has a high
probability to be my friend.

• Nodes that are not connected to each other,
but have the same structural attributes, such
as hubs.

Different algorithms approached those similari-
ties in different ways. DeepWalk (Perozzi et al.,
2014) is an algorithm based on the notion of a
random walk. Random walk can be used to ap-
proximate similarity (Fouss et al., 2007). It is a
method which is useful in large graphs when it is
not possible for a computer to handle all of the
graph data in its memory. DeepWalk algorithm
tries to maximize the log probability of observing
the last k nodes and the next k nodes in a random
walk. The length of the random walk is set as 2k +
1. The algorithm generates multiple random walks
and it tries to optimize the sum of log-likelihoods
for each random walk. Random walks, as opposed
to the Word2Vec model, do not scan the data lin-
early, which can be beneficial if the data is not lin-
ear. (Perozzi et al., 2014) did not evaluate the
DeepWalk algorithm on text data.

Graph embedding algorithms achieved supe-
rior performance in domains that can be naturally
modeled as graphs including social networks, arti-
cle citations, word graphs, etc. A sample applica-
tion is link prediction in social networks (Grover
and Leskovec, 2016), where the Node2Vec algo-
rithm achieved a high AUC score.

The Node2Vec algorithm is also based on a ran-
dom walk. The algorithm tries to maximize the
occurrence of subsequent nodes in a random walk.
The main difference between the Node2Vec and
DeepWalk is that Node2Vec has a mechanism of
trade-off between breadth first search (BFS) and
depth first search (DFS). Each search will lead to
a different embedding. While in BFS the similar-
ity is mostly based on neighboring nodes, in DFS
further nodes will have a higher impact and hence
will succeed to represent the community better.

This trade-off produces better, more informative
and higher quality embedding. An example of
using Node2Vec algorithm for text representation
can be found in Figure 1.

Figure 1: Example for Node2Vec walks. The nodes
in bold represent a valid walk that was generated from
Node2Vec algorithm. A sliding window will be trained
on this walk.

The text graph used by Node2Vec in (Grover
and Leskovec, 2016) is different from Schenker’s
model. The Node2Vec graph is undirected. Each
two co-occurring words in the text have an edge
between them. The paper does not mention
whether they applied a minimal word frequency
threshold to graph nodes or took into account sen-
tence boundaries when defining edges.

Another node embedding algorithm is LINE
(Tang et al., 2015). LINE algorithm is based on
two types of connections:

• first-order proximity - local pairwise proxim-
ity between two nodes

• second-order proximity - proximity between
the neighborhood structures of the nodes

The algorithm objective is to minimize the com-
bination of the first and the second-order pair-
wise proximity. LINE defines for each two
nodes their joint probability distributions using the
two proximity measures and then minimizes the
Kullback-Leibler divergence of these two distri-
butions. LINE was evaluated on a text graph. In
LINE, the text graph is undirected, words with fre-
quency smaller than five are discarded, and words
are considered as co-occurring if they appear in
the same sliding-window of five words. It was not
mentioned in the paper whether the graph edges
were affected by the sentence boundaries.

Both DeepWalk and Node2Vec have the lim-
itation of skipping some nodes by the random
paths the algorithms generate for training. Con-
sequently, some semantically related words may
never appear on the same path. The LINE algo-
rithm only considers first and second order rela-
tions between words and ignores the relations of
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a higher order. This restriction may create word
embeddings with lower quality.

3 Methodology

To overcome some of the limitations of exist-
ing word embedding methods, we propose a new,
graph-based methodology, which has the follow-
ing original contributions:

• Word graph construction: utilizing
Schenker’s directed graph model and
extending it to a large language corpus.

• Graph-based word embedding: introducing
a new algorithm named WordGraph2Vec,
which combines the advantages of the
Word2Vec and Node2Vec algorithms.

3.1 Word Graph Construction

The construction of the text graph in this paper is
similar to Schenker’s work (Schenker et al., 2005),
but Schenker’s graphs were constructed from rel-
atively short web documents rather than from a
large corpus representing an entire language. Each
unique word in the corpus becomes a node in the
graph and there is a directed edge between two
nodes if the corresponding two words are consec-
utive in at least one sentence in the corpus. Stop
words and words with less than 100 occurrences
across the corpus were removed. The graph con-
tains only words and not punctuation marks of
any kind. The edge label represents the num-
ber of times the second word follows the first
one. The graph is directed and weighted by the
co-occurrence frequency. We preserve the edge
directions, because the order of words in a sen-
tence is usually important for its meaning, which
should also affect the calculation of edge fre-
quency weights. For example, the phrase ”hot
dog” will be represented in the graph with a rel-
atively higher weight than ”dog hot” which might
have an edge in the graph but with a much lower
weight as this phrase is very rare in English lan-
guage. The text graph we use is different from the
graphs in LINE and Node2Vec algorithms, which
were discussed in the Related Work section.

3.2 WordGraph2Vec Algorithm

WordGraph2Vec builds upon the Word2Vec
(Mikolov et al., 2013). The main difference be-
tween WordGraph2Vec to Word2Vec is that Word-
Graph2Vec enriches the text by adding target

words for a specific context word in a sliding-
window. In each sentence, m random context
words are chosen. From the sliding window,
which contains the context words, t target words
are chosen. For each target word, n neighboring
words in radius r are picked from the graph and
added as a new context-target combination. Here
the training objective is to maximize the log prob-
ability of words in the same sliding window and
the log probability of the new context-target com-
bination. This is done by maximizing equations 1
and 2.

1

T ′

T ′∑
t=1

∑
t∈m,nt∈n

log p(wnt|wt) (2)

where t indices refer only to the words that were
chosen as the m context words and nt are the new
target words from the graph that are relevant to a
specific t. T ′ is the number of new word combi-
nations. In this way, the context words can predict
additional target words from the word graph that
do not necessarily appear in the same sentence but
share a semantic relation to the context words.

Algorithm 1 WordGraph2Vec algorithm
Input: M: Number of context words, T: Num-

ber of target words, N: Number of neighboring
words, R: Radius in graph, Text: Text, Sliding-
Window: Size of the sliding window, G: Words
Graph, E: embedding size

Output: Word Embedding for each node
v ∈ G

1: for Sentence ∈ Text do
2: CWords ←

SelectCWords(Sentence,M)
3: for SlidingWindow ∈ Sentence do

Word2Vec ( SlidingWindow, E)
4: for word ∈ SlidingWindow do
5: if word ∈ CWords then
6: TargetWords ←

SelectTWords(SlidingWindow, T )
7: for target ∈ TargetWords

do
8: graphWords ←

SelectNWords(N, target,G,R)
9: for node ∈ graphWords

do Word2Vec ( combination of node+word,
E)

Figure 2 shows an example of WordGraph2Vec
algorithm where the radius is one. Two context
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Figure 2: Example for WordGraph2Vec algorithm.

words are chosen and for each context word, one
target word is picked from a specific sliding win-
dow in the size of five. For each target word, two
new target words are picked from the graph. The
advantage of WordGraph2Vec over Word2Vec and
Node2vec is that it overcomes the limitations of
both models. While the Word2Vec model only
looks at linear relations between words, our algo-
rithm takes into account context-target word pairs
that are not necessarily taken from existing sen-
tences in the corpus. In contrast, Node2Vec sam-
ples a path of words from the word graph using
random walks rather than considering all neigh-
boring words of a specific word. This means that
Node2Vec, unlike Word2Vec, may ignore seman-
tic relations between some co-occurring words in
the original text.

The Algorithm 1 pseudocode presents the pro-
posed algorithm (WordGraph2Vec). The SelectC-
Words function selects C random context words
from a sentence. SelectTWords selects T random
target words from the sliding window where at
least one word is in CWords. SelectNWords selects
N additional target words from the graph within
the radius R. Word2Vec is trained combinations
of context and target words for embedding of size
E.

4 Empirical Evaluation

In this section, we discuss the evaluation metrics,
the data, and the algorithms used in our experi-
ments.

4.1 Language Corpus
The Wikipedia dump [can be downloaded
from https://dumps.wikimedia.org/
backup-index.html] dataset is a publicly
available resource. Wikipedia publishes every
couple of months a free xml file for all their
articles and metadata in several languages. The
Wikipedia dump used in this paper is in the
English language. The dump was created on
”2018-07-20” and consists of approximately
5,700,000 articles. The dataset contains more
words than exist in the English language as there

Parameter Value
Tokens 2,183,079,274

Unique words 13,744,507
Tok’ less than 5 incidence 11,430,003

Tok’ less than 100 incidence 13,436,432

Table 1: Wikipedia dump statistic.

are also words that represent proper names such
as locations, people, organizations, dates etc. The
Wikipedia corpus is a collection of millions of
sentences, which are expected to represent well
the real-world distribution of a language.

While there are many unique words in the
Wikipedia dump, only a small amount of them is
frequently used. Thus, 83.1% of the words appear
in the corpus less than five times as can be seen in
Table 1 and only 2.2% of the words appear more
than 100 times. This small group of 2.2% unique
words is responsible for 97.2% of all word occur-
rences in the entire corpus.

In the view of these findings, we implemented
the graph construction method introduced by
Schenker (Schenker et al., 2005). All words with
frequency of lower than 100 times were discarded.
In addition, stopwords, as they usually do not con-
tribute to the semantic meaning of other words,
were also removed. Punctuation marks were re-
moved from the graph as well.

4.2 Evaluation Tasks and Metrics
Evaluation of the word embedding methods was
performed on two main tasks:

• Analogy test, both by Gladkova (analogy test,
a) and Mikolov (analogy test, b)

• Document classification, based on bench-
mark datasets

4.2.1 Analogy test
Both Gladkova (2016) and Mikolov proposed
analogy tests, which aim to test the semantic re-
lations between ”similar” words. The main dif-
ference between the two tests is in the combina-
tion of the questions. The test Gladkova proposed
contains 99,200 analogy questions in 40 morpho-
logical and semantic categories. The 40 linguis-
tic relations are separated into four types of rela-
tions: inflectional and derivational morphology, as
well as lexicographic and encyclopedic semantics.
Examples of these types can be seen in Table 2.

https://dumps.wikimedia.org/backup-index.html
https://dumps.wikimedia.org/backup-index.html
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Types Examples
Inflections car:cars, go:going
Derivation able:unable, life:lifeless

Lexicography sea:water, clean:dirty
Encyclopedia spain:madrid, dog:bark

Table 2: Examples for the four different types of anal-
ogy questions

All four types are balanced, i.e., there is the same
number of questions for each type. Mikolov pro-
posed a test which contains 19,544 questions from
14 different relations. The amount of questions is
unbalanced across the relations. For example, the
country:capital relation appears in over 50% of the
questions. All questions are in the structure of a is
to b as c is to d. Solving analogy questions can
be done using the similarity between words calcu-
lated by equations 3 and 4.

d = argmaxd∈V (sim(d, c− a+ b)) (3)

where V is a set of all words in the vocabulary
excluding a,b and c, and sim is defined as:

sim(u, v) = cosine(u, v) =
(u ∗ v)
||u||||v||

(4)

An answer to a question was labeled as correct
if the correct word was among the top ten most
similar words in the returned results.

Each question was tested on the word em-
bedding vectors that were generated by the dif-
ferent algorithms, which are described in sub-
section 5.1. For each algorithm, the percentage of
questions that were answered correctly was pre-
sented as the accuracy of each word embedding
method.

4.2.2 Document classification
Document classification is a common NLP task.
While the application of this task is well under-
stood, the implementation of classification algo-
rithms can be difficult. Using word vectors as an
input to such algorithm can help the algorithm to
”understand” the meaning of the entire document
based on the semantic relations of its words. Since
WordGraph2Vec is supposed to generate enhanced
semantic vectors, document classification seems
to be a natural task for this model. In our classifi-
cation experiments, each document is represented

Dataset Class train test
AGs news 4 3000 1900
DBpedia 14 40000 5000

Yelp reviews 5 130000 10000
Yelp polarity 2 280000 19000

Yahoo 10 140000 5000
Amazon review 5 600000 130000
Amazon polarity 2 1800000 200000

Table 3: datasets information, columns are the num-
ber of classes in the dataset, number of samples in the
training set and number of samples in the testing set,
respectively.

by a vector calculated as the average of the em-
beddings of all document words (subject to the fil-
tering specifications). The datasets that were used
in this study are based on (Zhang et al., 2015) and
they are listed in Table 3

Each document from the datasets was converted
to a vector in the size of the embedding. For the
classification task in this paper, we used the fol-
lowing three algorithms:

1. Neural Network algorithm:

• Input layer size embedding size
• three hidden layers of 256 neurons and

dropout of 20%
• dense layer
• softmax activation

2. Random forest - 10 estimators, two min sam-
ples and no max depth

3. Logistic regression - L2 penalty, hinge loss
and 1,000 iterations.

The parameters for Random Forest and Logis-
tic regression are the default parameters in scikit-
learn package in Python implementation. The
Neural Network architecture was based on our
previous experience in similar classification tasks.

We evaluated the proposed word embed-
ding model in terms of model accuracy against
the competing algorithms LINE, Word2Vec and
Node2Vec described in section 5.1 .

5 Experiments

In this section, we present the settings of our ex-
periments and their results.
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algorithm Mikolov test Inflectional Derivational Encyclopedic Lexicographic
Word2Vec 71.0 77.9 31.8 25.7 15.2
Node2Vec 53.2 59.2 7.5 20.4 14.3
Line-first 57.9 65.5 8.1 19.4 11.8
Line-second 49.3 75.6 13.1 15.4 13.7
Emb1 50.1 47.8 13.4 17.1 7.6
Emb2 60.8 68.9 21.4 20.6 10.7
Emb3 52.1 53.4 14.5 18.3 8.2
Emb4 63.3 71.9 24.7 21.9 11.6

Table 4: Accuracy percentage results of Mikolov Analogy test and the four main question types created in the
Gladkova Analogy test.

5.1 Experimental Setups

We compared WordGraph2Vec with the following
baselines:
Word2VEc: Window size 10, Skip-Gram method,
embedding size 300.
Node2Vec: Window size 10. 80 nodes per walk. p
and q equal to one. 10 rehearsals and embedding
size 300.
LINE: Both first and second proximities. Embed-
ding size of 300.
All baselines and WordGraph2Vec were trained on
the Wikipedia dump described in section 4.1.
Using WordGraph2Vec we generated four differ-
ent word embeddings, all were trained in window
size 10, Skip-gram method and embedding size
300:
Emb1: Two context words (M = 2), one target
word (T = 1) per context word. Two (N = 2) extra
target words from the graph within the radius of
one (R = 1).
Emb2: Two context words (M = 2), one target
word (T = 1) per context word. One (N = 1) ex-
tra target word from the graph within the radius of
one (R = 1).
Emb3: Three context words (M = 3), one target
word (T = 1) per context word. Three (N = 3) ex-
tra target words from the graph within the radius
of one (R = 1).
Emb4: Three context words (M = 3), one target
word (T = 1) per context word. One (N = 1) ex-
tra target word from the graph within the radius of
one (R = 1).

5.2 Experimental Results

5.2.1 Analogy test
We first compared the four tested embeddings of
WordGraph2Vec against all baselines in terms of
accuracy of the analogy test. In the Mikolov test,

only 19,303 questions remained after we removed
questions that contained words, which were fil-
tered in advance. In the Gladkova test, only 89,484
questions remained after the same filtering opera-
tion as mentioned above. The four question types
remained balanced.

As can be observed from Table 4, Word2Vec
achieved the best results in both Mikolov and
Gladkova analogy tests. Apparently, the low-
level linear context is much more significant for
analogy tasks in a natural language like En-
glish. However, Emb4 in WordGraph2Vec was
ranked as the second best after Word2Vec. It
may be no coincidence as Emb4 is the most
similar to the Word2Vec implementation. Both
Emb2 and Emb4 achieved better results than the
competing graph-based algorithms. The Glad-
kova test, which is more balanced and does not
contain significant outliers (such as country:city),
present a more comprehensible result. With Word-
Graph2Vec, Emb2 and Emb4 achieved the high-
est accuracy scores in the Gladkova test, similar
to the Mikolov’s test. Only questions under Lex-
icographic type resulted in lower accuracy scores
than the other baselines.

One reason, which might cause the lower ac-
curacy results of WordGraph2Vec in comparison
to Word2Vec, is the ”noise” WordGraph2Vec cre-
ates. This ”noise” can be described by the example
below. Let us assume that there are two sentences
in the corpus. The first, ”University application
could be tough”. The second, ”The safari in Kenya
could be dangerous”. With WordGraph2Vec, a
valid word sequence could be ”University appli-
cation could be dangerous”. The above sentence
is less likely to appear in the language and might
cause the word vectors of ”university” and ”dan-
gerous” to be ”closer” to each other though their
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Algorithms DBpedia Ag News Yelp Yelp pol Yahoo Amazon Amazon pol Rank Std
Emb1 97.56 91.00 71.08 85.19 81.96 69.25 82.24 1.40
Emb2 97.62 91.12 71.36 85.61 82.05 69.44 82.70 1.56
Emb3 97.63 91.01 70.96 85.16 81.83 69.27 82.29 1.54
Emb4 97.65 91.04 70.79 85.75 81.98 69.53 82.78 2.13
LINE-first 97.55 90.98 72.34 83.87 82.43 69.45 81.07 2.25
LINE-second 97.52 91.14 71.15 85.81 82.22 69.11 82.54 2.01
Node2vec 97.14 90.91 70.69 82.80 81.84 68.81 79.19 3.35
word2vec 97.69 91.31 70.92 86.48 82.44 69.09 83.08 2.69

Table 5: Average results across the different classification algorithms. The values are the accuracy in percent-
age. Rank Std is the standard deviation values of the ranking of each embedding across all 21 combinations of
classification algorithms and datasets.

semantic relationship is quite weak.
In further investigation of our results, we com-
pared Word2Vec with Emb4 embedding, which is
the closest to Word2Vec in terms of the training
sentence set and Mikolov’s analogy test results.

Out of 19,303 questions of the analogy test,
2,027 questions were answered correctly by
Word2Vec and incorrectly by WordGraph2Vec.
On the other hand, 515 questions were answered
correctly by WordGraph2Vec only. The result for
each question is a ranked list, which was cal-
culated by the equation 3, of all the vocabulary
words. Incorrect answer means the correct word
is not in the top ten words on that list. Figure 3
presents a histogram of the positions of the cor-
rect words in the list mentioned above. The distri-
bution can be described as a ”long-tail” where in
most cases (41.2%) the correct answer was ranked
between positions 10-20. This could be because
of the ”noise” that was created by unrelated sen-
tences. In addition, we examined the end of the
tail as it is interesting to understand why in some
questions the correct position drops from the top
ten to more than 1000.

Figure 3: WordGraph2Vec histogram for the correct
analogy results.

Figure 4 presents a table with Average and Me-

dian results for the amount of occurrences of a
word c from equation 3 for each position group.
The purpose of equation 3 is to find the best match
for a word c that will be as close as possible to the
subtraction of word vectors a and b. One theory
that requires further investigation is presented in
figure 4. WordGraph2Vec adds new sentences by
choosing random words from each existing sen-
tence and picking random words from a graph
based on their occurrence frequency in the entire
corpus. As the word c occurrence frequency in
the corpus decreases, the results of the analogy
tests containing this word drop. Presumably, this
happens because a smaller amount of new train-
ing sentences contain the word c. Furthermore,
we conducted a statistical comparison between the
occurrence frequency of words in the ranking po-
sition 10-50 and 50+ and it was shown with alpha
= 0.001 that the average occurrence frequency is
higher in the group of 10-50.

Figure 4: Word ranking positions vs. word frequencies.

5.2.2 Document classification
Each classification algorithm from section 5.1 was
used to predict the document labels. The input
was a vector representation of the document cre-
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ated by the word embedding. In total 21 results
were collected (seven datasets and three classifi-
cation algorithm). As can be seen from Table 5,
Word2Vec achieved the best average accuracy re-
sults on five datasets out of seven though the dif-
ferences vs. most other algorithms do not appear
significant. Emb2 was ranked in the second place
in four datasets out of seven. Mostly, Word2Vec
reached higher accuracy scores than Emb2, but the
most interesting insight is that when Word2Vec
achieved lower scores, Emb2 was still ranked in
the second place, probably as a result of the new
information gained from the graph.

Figure 5: Accuracy ranking results for the best config-
uration of the proposed algorithm and the competing
baselines. The x axis represents the average ranking of
each embedding across the datasets.

In Figure 5, we see the ranking of Emb2 com-
pared to all other baselines. Emb2 did not achieve
the best accuracy scores but from Table 5 Emb2
had more stable results than the baselines as the
standard deviation of its ranking is much lower
than Line, Node2Vec and Word2Vec. From ex-
amining Figure 5 it seems that Line-2 is more
stable but it has a higher standard deviation than
Emb2 and its average ranking is lower. Node2Vec
on average produced the lowest accuracy scores
and it is inferior to the rest of the algorithms. Be-
sides, Node2Vec is very unstable as its ranking
has a standard deviation of 3.35, which is more
than double than Emb2. In Figure 5, we can
also see how the ranking of Line-1 varies from
the first place to almost the last one. In order to
verify the significance of the accuracy difference,
we conducted a paired t-test. The test has shown
that Emb2 has significantly higher accuracy re-
sults than the other baselines.

Table 6 presents the statistical significance re-
sults between all baselines and Emb2. For p =

baselines d-avg sd se(d) t
W2V -0.16 0.55 0.001 -1.32
N2V 1.22 2.18 0.004 2.57

Line-1 0.32 1.17 0.002 1.25
Line-2 0.06 0.56 0.001 0.49

Table 6: Statistical significance results between the best
configuration of the proposed algorithm, Emb2, and the
baselines.

0.05 the t − value with 20 degrees of freedom is
2.086. Node2Vec was found significantly worse
than Emb2. Word2Vec reached a higher accuracy
score than Emb2, but the difference was not statis-
tically significant.

6 Conclusion

In this paper, we present WordGraph2Vec, a word
embedding algorithm with semantic enhancement.
The algorithm makes use of both linear and graph
input in order to strengthen the semantic relations
between words. Our experimental results show
that the proposed embedding did not achieve the
best results on analogy and classification tasks but
was stable across the datasets and in most cases
was ranked at the second place in terms of docu-
ment classification and analogy tests accuracy. In
future work, further settings of WordGraph2Vec
can be explored, such as additional word graph
configurations and a larger radius R for the new
target words, which should yield target words that
are not close to the context word in the original
text. In addition, the proposed graph-based ap-
proach to word embedding can be evaluated on
other NLP tasks in multiple languages.
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