
EMNLP-IJCNLP 2019

The 2019 Conference on
Empirical Methods in Natural Language Processing

And the 9th International Joint Conference on
Natural Language Processing

Proceedings of System Demonstrations

November 3 – 7, 2019
Hong Kong, China

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-92-5

ii

Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 2019 Conference on Empirical Methods in Natural Language
Processing and 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
which was held in Hong Kong, China on November 3-7, 2019.

The system demonstrations session includes papers describing systems ranging from early research
prototypes to mature production-ready software. We received 110 submissions, 22 of which were either
invalid or withdrawn by the authors. Of the 88 valid submissions, 44 were selected for inclusion in the
proceedings after review of three members of the program committee, achieving an overall acceptance
rate of 40%.

We thank all authors for their submissions, and the 130 members of the program committee for their
timely and thoughtful reviews. In addition, EMNLP-IJCNLP 2019 has a Best Demo Award for the first
time, and the best paper award was selected among outstanding papers following a second round of
reviewing by five senior members of the program committee who are due a special recognition for their
efforts.

Ruihong Huang and Sebastian Padó
EMNLP-IJCNLP 2019 System Demonstration Co-Chairs

iii

Organizers:

Ruihong Huang, Texas A&M University
Sebastian Padó, University of Stuttgart

Program Committee:

Heike Adel, Alan Akbik, Jun Araki, Eleftherios Avramidis, Gianni Barlacchi, Bernd Bohnet,
Georgeta Bordea, Laura Ana Maria Bostan, Aljoscha Burchardt, José G. C. de Souza, Arun Cha-
ganty, Yee Seng Chan, Hai Leong Chieu, Prafulla Kumar Choubey, Anne Cocos, Danilo Croce,
Montse Cuadros, Zeyu Dai, Falavigna Daniele, Marina Danilevsky, Pradipto Das, Thierry De-
clerck, Jesse Dodge, Doug Downey, Carsten Eickhoff, Michael Elhadad, Micha Elsner, Patrick
Ernst, James Fan, Dimitris Galanis, Marcos Garcia, Pawan Goyal, Ben Hachey, Xianpei Han,
Leonhard Hennig, Barbora Hladka, Ales Horak, Shajith Ikbal, Masoud Jalili Sabet, Zhanming Jie,
Jenna Kanerva, Sudipta Kar, Philipp Koehn, Mamoru Komachi, Valia Kordoni, Anoop Kunchukut-
tan, Mark Last, Carolin Lawrence, John Lee, Hao Li, Bill Yuchen Lin, Marina Litvak, Changsong
Liu, Fei Liu, Nikola Ljubešić, Wei Lu, Wencan Luo, Adrián Pastor López Monroy, Nitin Madnani,
Suraj Maharjan, Wolfgang Maier, Suresh Manandhar, Benjamin Marie, Stella Markantonatou, Pas-
cual Martínez-Gómez, David McClosky, Marie-Jean Meurs, Christian M. Meyer, Ivan Vladimir
Meza Ruiz, Margot Mieskes, Simon Mille, Koji Mineshima, Makoto Miwa, Taesun Moon, Roser
Morante, Aldrian Obaja Muis, Philippe Muller, Preslav Nakov, Diane Napolitano, Tae-Gil Noh,
Pierre Nugues, Yusuke Oda, Tsuyoshi Okita, Petya Osenova, Alexander Panchenko, Siddharth
Patwardhan, Stelios Piperidis, Prokopis Prokopidis, Afshin Rahimi, Carlos Ramisch, German
Rigau, Melissa Roemmele, Pablo Ruiz, Irene Russo, Niloofar Safi Samghabadi, Saurav Sahay,
Naomi Saphra, Sven Schmeier, Jean Senellart, Sanuj Sharma, Sameer Singh, Sunayana Sitaram,
Amy Siu, Konstantinos Skianis, Juan Soler, Dezhao Song, Josef Steinberger, Pontus Stenetorp,
Juan-Manuel Torres-Moreno, Natalia Vanetik, Andrea Varga, Alakananda Vempala, Serena Vil-
lata, Svitlana Volkova, Ivan Vulić, Byron C. Wallace, Rui Wang, Leo Wanner, Lingfei Wu, Deyi
Xiong, tae yano, Wenlin Yao, Seid Yimam, Liang-Chih Yu, Mo Yu, Kevin Zhang, Jun Zhao,
Guangyou Zhou, Imed Zitouni

v

Table of Contents

ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System
Oren Pereg, Daniel Korat, Moshe Wasserblat, Jonathan Mamou and Ido Dagan 1

AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner and Sameer Singh . . . 7

ALTER: Auxiliary Text Rewriting Tool for Natural Language Generation
Qiongkai Xu, Chenchen Xu and Lizhen Qu. .13

Applying BERT to Document Retrieval with Birch
Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang, Haotian Zhang and Jimmy Lin 19

Automatic Taxonomy Induction and Expansion
Nicolas Rodolfo Fauceglia, Alfio Gliozzo, Sarthak Dash, Md. Faisal Mahbub Chowdhury and

Nandana Mihindukulasooriya . 25

CFO: A Framework for Building Production NLP Systems
Rishav Chakravarti, Cezar Pendus, Andrzej Sakrajda, Anthony Ferritto, Lin Pan, Michael Glass,

Vittorio Castelli, J William Murdock, Radu Florian, Salim Roukos and Avi Sil .31

Chameleon: A Language Model Adaptation Toolkit for Automatic Speech Recognition of Conversational
Speech

Yuanfeng Song, Di Jiang, Weiwei Zhao, Qian Xu, Raymond Chi-Wing Wong and Qiang Yang . 37

Controlling Sequence-to-Sequence Models - A Demonstration on Neural-based Acrostic Generator
Liang-Hsin Shen, Pei-Lun Tai, Chao-Chung Wu and Shou-De Lin . 43

EASSE: Easier Automatic Sentence Simplification Evaluation
Fernando Alva-Manchego, Louis Martin, Carolina Scarton and Lucia Specia 49

EGG: a toolkit for research on Emergence of lanGuage in Games
Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt and Marco Baroni 55

Entity resolution for noisy ASR transcripts
Arushi Raghuvanshi, Vijay Ramakrishnan, Varsha Embar, Lucien Carroll and Karthik Raghunathan

61

EUSP: An Easy-to-Use Semantic Parsing PlatForm
Bo An, Chen Bo, Xianpei Han and Le Sun . 67

FAMULUS: Interactive Annotation and Feedback Generation for Teaching Diagnostic Reasoning
Jonas Pfeiffer, Christian M. Meyer, Claudia Schulz, Jan Kiesewetter, Jan Zottmann, Michael Sailer,

Elisabeth Bauer, Frank Fischer, Martin R. Fischer and Iryna Gurevych . 73

Gunrock: A Social Bot for Complex and Engaging Long Conversations
Dian Yu, Michelle Cohn, Yi Mang Yang, Chun Yen Chen, Weiming Wen, Jiaping Zhang, Mingyang

Zhou, Kevin Jesse, Austin Chau, Antara Bhowmick, Shreenath Iyer, Giritheja Sreenivasulu, Sam David-
son, Ashwin Bhandare and Zhou Yu . 79

HARE: a Flexible Highlighting Annotator for Ranking and Exploration
Denis Newman-Griffis and Eric Fosler-Lussier .85

vii

Honkling: In-Browser Personalization for Ubiquitous Keyword Spotting
Jaejun Lee, Raphael Tang and Jimmy Lin . 91

IFlyLegal: A Chinese Legal System for Consultation, Law Searching, and Document Analysis
Ziyue Wang, Baoxin Wang, Xingyi Duan, Dayong Wu, Shijin Wang, Guoping Hu and Ting Liu 97

INMT: Interactive Neural Machine Translation Prediction
Sebastin Santy, Sandipan Dandapat, Monojit Choudhury and Kalika Bali . 103

Joey NMT: A Minimalist NMT Toolkit for Novices
Julia Kreutzer, Joost Bastings and Stefan Riezler . 109

Journalist-in-the-Loop: Continuous Learning as a Service for Rumour Analysis
Twin Karmakharm, Nikolaos Aletras and Kalina Bontcheva . 115

LIDA: Lightweight Interactive Dialogue Annotator
Edward Collins, Nikolai Rozanov and Bingbing Zhang . 121

LINSPECTOR WEB: A Multilingual Probing Suite for Word Representations
Max Eichler, Gözde Gül Şahin and Iryna Gurevych . 127

MAssistant: A Personal Knowledge Assistant for MOOC Learners
Lan Jiang, Shuhan Hu, Mingyu Huang, Zhichun Wang, Jinjian Yang, Xiaoju Ye and Wei Zheng133

MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use
Case Specific Customisation

Thomas Searle, Zeljko Kraljevic, Rebecca Bendayan, Daniel Bean and Richard Dobson 139

Memory Grounded Conversational Reasoning
Seungwhan Moon, Pararth Shah, Rajen Subba and Anuj Kumar . 145

Multilingual, Multi-scale and Multi-layer Visualization of Intermediate Representations
Carlos Escolano, Marta R. Costa-jussà, Elora Lacroux and Pere-Pau Vázquez 151

MY-AKKHARA: A Romanization-based Burmese (Myanmar) Input Method
Chenchen Ding, Masao Utiyama and Eiichiro Sumita . 157

NeuronBlocks: Building Your NLP DNN Models Like Playing Lego
Ming Gong, Linjun Shou, Wutao Lin, Zhijie Sang, Quanjia Yan, Ze Yang, Feixiang Cheng and

Daxin Jiang . 163

OpenNRE: An Open and Extensible Toolkit for Neural Relation Extraction
Xu Han, Tianyu Gao, Yuan Yao, Deming Ye, Zhiyuan Liu and Maosong Sun 169

ParaQG: A System for Generating Questions and Answers from Paragraphs
vishwajeet kumar, Sivaanandh Muneeswaran, Ganesh Ramakrishnan and Yuan-Fang Li 175

PolyResponse: A Rank-based Approach to Task-Oriented Dialogue with Application in Restaurant Search
and Booking

Matthew Henderson, Ivan Vulić, Iñigo Casanueva, Paweł Budzianowski, Daniela Gerz, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola Mrkšić and Pei-Hao Su. .181

PyOpenDial: A Python-based Domain-Independent Toolkit for Developing Spoken Dialogue Systems
with Probabilistic Rules

Youngsoo Jang, Jongmin Lee, Jaeyoung Park, Kyeng-Hun Lee, Pierre Lison and Kee-Eung Kim
187

viii

Redcoat: A Collaborative Annotation Tool for Hierarchical Entity Typing
Michael Stewart, Wei Liu and Rachel Cardell-Oliver . 193

SEAGLE: A Platform for Comparative Evaluation of Semantic Encoders for Information Retrieval
Fabian David Schmidt, Markus Dietsche, Simone Paolo Ponzetto and Goran Glavaš 199

A Stylometry Toolkit for Latin Literature
Thomas J. Bolt, Jeffrey H. Flynt, Pramit Chaudhuri and Joseph P. Dexter . 205

A Summarization System for Scientific Documents
Shai Erera, Michal Shmueli-Scheuer, Guy Feigenblat, Ora Peled Nakash, Odellia Boni, Haggai

Roitman, Doron Cohen, Bar Weiner, Yosi Mass, Or Rivlin, Guy Lev, Achiya Jerbi, Jonathan Herzig,
Yufang Hou, Charles Jochim, Martin Gleize, Francesca Bonin, Francesca Bonin and David Konopnicki
211

A System for Diacritizing Four Varieties of Arabic
Hamdy Mubarak, Ahmed Abdelali, Kareem Darwish, Mohamed Eldesouki, Younes Samih and

Hassan Sajjad . 217

Tanbih: Get To Know What You Are Reading
Yifan Zhang, Giovanni Da San Martino, Alberto Barrón-Cedeño, Salvatore Romeo, Jisun An, Hae-

woon Kwak, Todor Staykovski, Israa Jaradat, Georgi Karadzhov, Ramy Baly, Kareem Darwish, James
Glass and Preslav Nakov . 223

TEASPN: Framework and Protocol for Integrated Writing Assistance Environments
Masato Hagiwara, Takumi Ito, Tatsuki Kuribayashi, Jun Suzuki and Kentaro Inui 229

TellMeWhy: Learning to Explain Corrective Feedback for Second Language Learners
Yi-Huei Lai and Jason Chang . 235

UER: An Open-Source Toolkit for Pre-training Models
Zhe Zhao, Hui Chen, Jinbin Zhang, Xin Zhao, Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju and

Xiaoyong Du . 241

Visualizing Trends of Key Roles in News Articles
Chen Xia, Haoxiang Zhang, Jacob Moghtader, Allen Wu and Kai-Wei Chang 247

VizSeq: a visual analysis toolkit for text generation tasks
Changhan Wang, Anirudh Jain, Danlu Chen and Jiatao Gu . 253

What’s Wrong with Hebrew NLP? And How to Make it Right
Reut Tsarfaty, Shoval Sadde, Stav Klein and Amit Seker .259

ix

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 1–6
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

ABSApp: A Portable Weakly-Supervised
Aspect-Based Sentiment Extraction System

Oren Pereg1, Daniel Korat1, Moshe Wasserblat1, Jonathan Mamou1, Ido Dagan2

1Intel AI Lab, Petah Tikva, Israel
2Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

1firstname.lastname@intel.com
2dagan@cs.biu.ac.il

Abstract
We present ABSApp, a portable system for
weakly-supervised aspect-based sentiment ex-
traction 1. The system is interpretable and
user friendly and does not require labeled
training data, hence can be rapidly and cost-
effectively used across different domains in
applied setups. The system flow includes three
stages: First, it generates domain-specific as-
pect and opinion lexicons based on an unla-
beled dataset; second, it enables the user to
view and edit those lexicons (weak supervi-
sion); and finally, it enables the user to select
an unlabeled target dataset from the same do-
main, classify it, and generate an aspect-based
sentiment report. ABSApp has been success-
fully used in a number of real-life use cases,
among them movie review analysis and con-
vention impact analysis.

1 Introduction

Aspect Based Sentiment Analysis (ABSA) is the
task of extracting, from a given corpus, opinion
targets (aspect terms) and the sentiment expressed
towards them. For example, in the sentence “The
dessert was incredible”, the aspect term is dessert
and the sentiment towards it is positive. This fine-
grained trait of ABSA makes it an effective ap-
plication for measuring and monitoring the ratio
between positive and negative opinions expressed
towards specific aspects of a product or service.

Most work around ABSA focused on super-
vised sequence tagging based systems. Liu et al.
(2015) showed promising results when the train-
ing and the inference data are from the same do-
main. However, this approach is typically not ro-
bust across different domains since aspect terms
from two different domains are usually semanti-
cally different hence separated in the embedding

1A demo video of ABSApp is available at
https://drive.google.com/open?id=
1BLk0xkjIOqyRhNy4UQEFQpDF_KR_NMAd.

vector space. For example, frequent aspect terms
in the restaurant domain, like food, menu, starters
and salad, have little or no semantic relatedness
to frequent aspect terms in the laptop domain,
like screen size, keyboard and battery life. In ad-
dition to aspect terms, many opinion terms are
also domain-specific. For example, opinion terms
like tasty (positive), yummy (positive), flavorful
(positive) and tasteless (negative) are specific to
the restaurant domain whereas opinion terms like
lightweight (positive), durable (positive), compat-
ible (positive) and heavy (negative) are specific to
the laptop domain. This makes domain-agnostic
ABSA a challenging task, with little work address-
ing it.

A recent line of work is based on transfer-
learning methods, in which labeled data from a
source domain is used for training a model to clas-
sify data in a target domain. Ding et al. (2017) and
Wang and Jialin Pan (2018) proposed using super-
vised RNNs for cross-domain aspect term extrac-
tion and for aspect and opinion term co-extraction.
This approach showed encouraging results, how-
ever it requires a considerable amount of labeled
data from the source domain which is often not
practical in applied settings due to cost or legal
considerations (relevant data is usually not avail-
able for commercial use).

Another approach towards domain robustness
is based on unsupervised methods. Hu and Liu
(2004) used association rules and Qiu et al. (2011)
used syntactic rules for aspect and opinion term
co-extraction. Industrial setups usually lack la-
beled data for training and this is where unsuper-
vised methods excel. However, these methods can
be noisy (see the ABSApp-unsup baseline in Ta-
ble 2). In this paper we show that weak super-
vision, namely a short manual process of editing
lexicons that were generated by an unsupervised
method, produces results that are comparable to

1

Figure 1: ABSApp workflow.

transfer-learning based supervised methods.
The contribution of this paper is twofold.

First, it presents ABSApp, a practical weakly-
supervised system that does not require labeled
data for training, hence can be rapidly and cost-
effectively used across different domains for pro-
ducing fine-grained sentiment reports. Second,
it introduces a workflow that enables users to
weakly-supervise the system, thus enhancing its
precision. This workflow enables users to select
an unlabeled input dataset from a completely new
domain, produce domain-specific aspect and opin-
ion lexicons, and edit the lexicons. The user can
then select an unlabeled target dataset from the
same domain, classify it, and obtain a detailed re-
port regarding the positive and negative sentiments
expressed towards each aspect in the corpus and
browse through the results.

Our system has been successfully deployed in
several real-life use cases. One of them is the anal-
ysis of social media opinions towards specific as-
pects of movies, preformed in collaboration with
a major entertainment content provider. Another
use case involves measuring the impact of social
events, like conventions and conferences, based on
opinions published in social media posts.

The system is distributed as open source soft-
ware under the Apache license as part of NLP Ar-
chitect by Intel AI Lab.2

2 System Workflow

This section describes the workflow of ABSApp,
as depicted in Figure 1.

Steps 1 & 2: Selecting a Dataset and Extracting
Lexicons. The first step of the flow is to select
an input dataset for lexicon extraction, performed
by clicking the Extract lexicons button shown in
Figure 2. Once a dataset is selected, the system
performs the lexicon extraction process. This step
extracts aspect terms and produces an aspect lexi-
con. In addition, this step extracts candidate opin-
ion terms, filters them and estimates their polarity,
producing an opinion lexicon (see Section 3.1).

2http://nlp_architect.nervanasys.com/
absa.html

Step 3: Lexicon Editing. Figure 2 shows the
aspect and opinion lexicon management (editing)
user interface. The user can choose to edit an as-
pect lexicon or an opinion lexicon that was gener-
ated in step 2. As shown in Figure 2, in which the
Aspect Lexicon has been selected, the Term col-
umn displays the aspect terms while the Alias1-3
columns display aspect terms that have the same
semantic meaning.

Upon selecting a specific aspect, the Examples
view on the right-hand side of Figure 2 displays
text snippets from the input dataset that include
this term (highlighted in blue). The Examples
view enables the user to verify that the selected
term indeed functions as an aspect term in var-
ious contexts in the domain. Based on this, the
user can delete (by unchecking the term’s check-
box), add or modify the lexicon items. The rec-
ommended best practice is to keep relevant aspect
terms and delete non-relevant aspect terms. For
example, keep terms like ’service’ and ’decor’ and
delete terms like ’time’ and ’city’ from an aspect
lexicon related to restaurant reviews.

In addition, the user can group together syn-
onym aspects like ’drinks’ and ’beverages’ (see
Figure 2). Finally, the user can save the edited
lexicon. The opinion lexicon editor (not shown)
functions similarly to the aspect lexicon editor
except that it includes a Polarity column and a
Score column (see Section 3.1) instead of the Alias
columns. Both the polarity and the score can be
edited by the user.

Steps 4 & 5: Selecting a Target Dataset and
Performing Sentiment Classification. A target
dataset and its classification are performed by
clicking the Classify button in Figure 2. Once the
dataset is selected the system starts the sentiment
classification process (see Section 3.2).

Step 6: Results Visualization. Figure 3 shows
the output of the sentiment classification process.
The upper part of the figure displays the count
of positive and negative sentiment mentions de-
tected in the target dataset towards each aspect, as
green and red bars. Hovering over a green(red) bar
displays the count of the positive(negative) senti-

2

Figure 2: ABSApp user interface for aspect and opinion lexicons management. The figure displays an aspect
lexicon related to the restaurants domain.

Figure 3: ABSApp user interface for displaying the accumulated amount of positive & negative sentiment per
aspect (top) and sentences containing sentiment towards a specific aspect (bottom).

ment mentions towards a specific aspect (see the
blue rectangle in Figure 3). The displayed value
is an aggregation of the sentiment mention count
towards the aspect term and towards all of its Alias
terms (as in Figure 2).

Upon clicking a bar related to a specific aspect,
a list of sentences containing positive and negative
sentiment towards that aspect is displayed with the
aspect terms colored blue and the positive and neg-
ative opinion terms colored green and red, respec-
tively (lower part of Figure 3). This view enables
the user to drill-down into the results and extract
further insight.

3 Algorithmic Components

Our algorithmic approach is based on using un-
labeled data from a new target domain to co-
extract aspect and opinion terms, in order to gen-
erate domain-specific aspect and opinion lexi-
cons (Section 3.1). Those lexicons are then used
to extract aspect-opinion sentiment mentions in
datasets from the same domain (Section 3.2).

3.1 Lexicon Extraction
Pre-processing. The first lexicon extraction step
includes applying tokenization, part-of-speech

tagging 3 and dependency parsing to the input
data. For dependency parsing, we used the Bi-
LSTM parser proposed by Kiperwasser and Gold-
berg (2016).

Aspect and Opinion Term Extraction. This
step is based on applying the bootstrap opinion
and aspect term co-extraction using the depen-
dency relation rules algorithm, proposed by Qiu
et al. (2011). The bootstrap process is initialized
with a seed lexicon of generic opinion terms. New
aspect and opinion terms are extracted based on
the seed lexicon and the dependency relation rules.
The extracted terms are then added to the seed lex-
icon, and used for extracting additional terms in
the next iteration. In order to initialize the boot-
strap process, we used the opinion lexicon gener-
ated by Hu and Liu (2004), which contains around
6800 opinion terms along with their sentiment po-
larity. Table 1 shows two of the 8 rules that are
used along with example sentences. The exam-
ple for rule R1 illustrates the extraction of the as-
pect term decor based on the known opinion term
nice, while the example for rule R2 illustrates the
extraction of the opinion term tasty based on the

3Performed by spaCy (https://spacy.io/).

3

known aspect term food.

RuleID Rule Example

R1 O amod−−−→ A(NN) nice decor
(nice amod−−−→ decor)

R2 A
nsubj−−−−→ O(ADJ) the food was super tasty

(food
nsubj−−−−→ tasty)

Table 1: Examples of the opinion and aspect terms ex-
traction rules. O represents an opinion term and A rep-
resents an aspect term.

Opinion Lexicon Scoring and Filtering. This
step aims to filter the noisy candidate opinion
terms extracted by the bootstrap process. It is
based on using an MLP classifier for generating
a score that represents the probability that a candi-
date is indeed an opinion term. Candidate opinion
terms are qualified as opinion terms if their classi-
fication score exceeds a threshold 4.

The MLP classifier input features consists of
the candidate term word embedding5 and the
mean, standard-deviation, maximum and mini-
mum word-embedding cosine similarities between
the candidate term and a pre-determined set of
generic opinion terms. The MLP consists of a sin-
gle hidden layer and is trained once for a binary
classification task using manually labeled data that
consists of a set of opinion terms (positive class)
and a set of non-opinion terms (negative class)
from a specific domain6. Once the model is gener-
ated it is then used for grading candidate opinion
terms extracted in other domains. It is reasonable
to use such model across domains, since the classi-
fication features represent semantic similarity lev-
els that are robust across domains.

Opinion Polarity Estimation The goal of this
step is to set the binary sentiment polarity (posi-
tive or negative) of the opinion terms. Following
Pablos et al. (2016), an opinion term polarity is
assigned based on estimating whether it is seman-
tically closer to a set of generic positive opinion
terms or to a set of generic negative opinion terms.
To produce those sets we used a subset of 47 pos-
itive terms and a subset of 47 negative terms de-

4The threshold’s value was empirically determined based
on precision-recall tradeoff.

5We used Stanford Glove embeddings https://nlp.
stanford.edu/projects/glove/

6This training data can be downloaded from https://
github.com/NervanaSystems/nlp-architect/
blob/master/nlp_architect/models/absa/
train/lexicons/RerankTrainingData.csv

rived from the opinion lexicon generated by Hu
and Liu (2004). The semantic similarity between
an opinion term and a positive or negative set is
estimated by averaging the cosine similarity of the
embedding of the opinion term and the embedding
of each one of the terms in the positive or negative
set.

In this module we used pre-trained embed-
dings5 which produce overall good results but
raise a drawback; some opinion terms may con-
vey different sentiment polarities in different do-
mains (e.g. ’delicate movie’ (positive) vs. ’del-
icate cellphone’ (negative)), while a pre-trained
embeddings setup is only capable of setting a sin-
gle polarity per opinion term. A suggested solu-
tion is to adapt the embeddings to the target do-
main or to use context embeddings. We intend to
address this challenge in future work.

3.2 Sentiment Classification
Sentiment classification uses the opinion and as-
pect lexicons for detecting aspect-opinion pairs
(sentiment mentions) within the input target
dataset, and determining their sentiment polarity.
Aspect-opinion pairs are extracted based on de-
tecting a direct or second-order dependency re-
lation of any type, between them. The aspect-
opinion pair polarity is assigned according to the
polarity of the opinion term. This step also uses a
pre-determined negation lexicon containing nega-
tion terms. Upon detecting a direct dependency
relation between a negation term and the opinion
term, the aspect-opinion pair polarity is reversed.

4 Evaluation

Our evaluation objective is to show that the differ-
ent algorithmic steps, namely, lexicon extraction
and sentiment classification, produce usable re-
sults. An additional objective is to show that weak
supervision of an aspect lexicon that was gener-
ated in an unsupervised manner produces compa-
rable results to the recent transfer-learning based
methods (Ding et al., 2017; Wang and Jialin Pan,
2018). For this purpose, we leveraged the data of
SemEval 2014 task 4 (Pontiki et al., 2014), which
tests the two main ABSA sub-tasks: aspect term
extraction and aspect term polarity detection.

Datasets. The performance of the algorithm was
evaluated using data from two different domains:
restaurant reviews and laptop reviews. Those two
domains are disjoint and therefore demonstrate

4

the robustness of our system. Following previous
work, the restaurant reviews dataset consists of the
restaurant reviews from SemEval 2014 task 4 sub-
task 1 (Pontiki et al., 2014) and from SemEval
2015 task 12 subtask 1 (Pontiki et al., 2015). The
laptop domain consists of the laptop reviews from
SemEval 2014 task 4 subtask 1. The gold data in-
cludes manual labeling of the spans of aspect term
mentions within each sentence in the dataset as
well as the sentiment polarity (positive, negative,
conflict or neutral) related to each aspect. The two
domains consist of a total of 5841 and 3614 sen-
tences, respectively.

Experimental Setup. Following the first two
subtasks of the SemEval 2014 task 4, our exper-
iment is split into two parts: First, we evaluate as-
pect term extraction by generating an aspect lex-
icon, using it for detecting aspect terms within
the test set and comparing it against the gold la-
bels. Second, we evaluate the sentiment polarity
detected towards each extracted aspect by compar-
ing between the aspect-opinion pairs detected with
their assigned polarity and the gold labels.

The data from each domain was randomly split
into 75% training and 25% testing. The training
data was used (ignoring its annotation) for gener-
ating the domain-specific opinion and aspect lexi-
cons according to workflow steps 1-3 of Figure 1.
As a baseline to the aspect term extraction eval-
uation, we tested the unsupervised output of AB-
SApp, in which the lexicons were not manually
edited. We also tested the weakly-supervised out-
put of the system, in which the aspect lexicon was
edited ; this manual process, which took about 15
minutes, involved deleting aspects that are non-
relevant to the domain (see step 3 in Section 2 for
detailed description of this process).

Following the settings in prior aspect term ex-
traction work, only exact matches between the pre-
dicted aspects and gold labels are counted as cor-
rect. We also added a more lenient metric where
partial matches are counted as correct, since, for
many practical usages, partial matches are suffi-
cient for extracting valuable insight. For example,
in the restaurant domain, ’service’ and ’waiting
service’ can be counted as the same aspect. This
lenient metric was also used for the aspect term
polarity evaluation task.

Results. Table 2 shows an F1 score evaluation
of the aspect term extraction task. It includes
a comparison between the unsupervised output

of the system (‘ABSApp-unsup’), its weakly-
supervised output (‘ABSApp-wksup’) and two
transfer-learning based methods: ‘Hier-joint’ by
Ding et al. (2017) and ‘RNSCN’ by Wang and
Jialin Pan (2018). ‘ABSApp-wksup Ln’ represents
the weakly-supervised system lenient matches.

It is noticeable from Table 2 that the results of
the unsupervised output of the system (‘ABSApp-
unsup’) are noisy, but that the weakly-supervised
output results (‘ABSApp-wksup’) are quite com-
parable to the cited transfer-learning based meth-
ods, however, the latter require annotated data
from a source domain (the results shown are av-
eraged across tests using data from 2 different an-
notated source domains), whereas ABSApp relies
on a short weak supervision process but does not
require any labeled data, which is often unavail-
able in applied industrial settings.

Table 3 shows an evaluation of the weakly-
supervised ABSApp lenient performance of the
aspect term polarity task. This task relates to the
sentiment polarity (positive, negative) detected to-
wards each extracted aspect mention, hence it re-
flects the quality of both algorithmic components:
aspect and opinion lexicon extraction (Section 3.1)
and sentiment classification (Section 3.2).

It is seen from Table 3 that although the recall in
both tests is not high (because it reflects correct de-
tection of an aspect term, an opinion term and a re-
lation between them), the precision is above 70%.
Such precision is often sufficient for practical pur-
poses. Note that there is no transfer-learning work
related to the aspect term polarity task, therefore
no benchmarks to other systems are shown.

Model Restaurants Laptops

Hier-Joint† 48.0 34.2
RNSCN† 51.5 45.9

ABSApp-unsup 43.5 23.2
ABSApp-wksup 51.1 40.1

ABSApp-wksup Ln 66.9 58.2

Table 2: Aspect term extraction evaluation (F1 score).
† average performance over evaluations using different
random dataset splits of the test data, as reported by
Wang and Jialin Pan (2018).

Domain Precision Recall F1 score

Restaurants 70.3 44.5 54.6
Laptops 72.7 27.6 40.1

Table 3: Weakly-supervised ABSApp aspect term po-
larity evaluation.

5

5 Field Use Cases
This section describes two use cases in which AB-
SApp has been successfully used.

Movie Reviews Analysis. One of the main pre-
dictors for the commercial success of a movie
is the estimated hype effect of the movie’s pre-
release in social media as measured using senti-
ment analysis (Natarajan et al., 2019). ABSApp
was used in collaboration with a major enter-
tainment content provider for analyzing audience
opinion in social media towards movies and trail-
ers. The system detected the different characters,
actors, scenes and music as aspects, and produced
fine-grained sentiment reports periodically. These
reports were used to fine-tune the content of future
movie trailer releases.

Convention Impact Analysis. Analysis of sen-
timent towards different aspects is useful also for
measuring the impact of professional events, de-
termining user impressions, and acting accord-
ingly. ABSApp was used during the 2018 Intel
AI development convention in San Francisco 7 to
extract aspects related to the convention and to an-
alyze the sentiment towards them based on Twit-
ter feeds. The system detected aspects like ses-
sions, keynotes, demos, venue, etc., and provided
the event organizers with valuable information re-
garding the level of positive/negative sentiment to-
wards them. In addition, it enabled organizers to
browse through sentences containing sentiment to-
wards specific aspects and draw conclusions as to
what should be changed and what should be con-
tinued at current and future conventions.

6 Conclusion
We presented ABSApp, a weakly-supervised sys-
tem for Aspect Based Sentiment Analysis. We
showed that weak supervision of lexicons, which
were generated in an unsupervised manner, pro-
duces comparable results to recent supervised
transfer-learning based methods. This enables,
rapid and cost-effective use across different do-
mains in applied setups where labeled data is often
unavailable.

References
Ying Ding, Jianfei Yu, and Jing Jiang. 2017. Recur-

rent neural networks with auxiliary labels for cross-
7https://newsroom.intel.com/

press-kits/2018-ai-devcon/#gs.bejr0q

domain opinion target extraction. In Association
for the Advancement of Artificial Intelligence, pages
3436–3442.

Minqing Hu and Bing Liu. 2004. Mining opinion fea-
tures in customer reviews. In American Association
for Artificial Intelligence.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural net-
works and word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural-
Language Processing, EMNLP 2015, pages 1433–
1443.

V. Anantha Natarajan, K SaiHarsha, and M Santhosh
Kumar. 2019. Box-office revenue estimation for tel-
ugu movie industry using predictive analytic tech-
niques. International Journal of Recent Technology
and Engineering (IJRTE), 7(6):896–902.

Aitor Garcı́a Pablos, Montse Cuadros, and German
Rigau. 2016. A comparison of domain-based word
polarity estimation using different word embed-
dings. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), pages 54–60, Portorož, Slovenia. Eu-
ropean Language Resources Association (ELRA).

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 task 12: Aspect based sentiment
analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 486–495, Denver, Colorado. Association for
Computational Linguistics.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 task 4:
Aspect based sentiment analysis. In Proceedings of
the 8th International Workshop on Semantic Evalua-
tion (SemEval 2014), pages 27–35, Dublin, Ireland.
Association for Computational Linguistics.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extrac-
tion through double propagation. Comput. Linguist.,
37(1):9–27.

Wenya Wang and Sinno Jialin Pan. 2018. Recursive
neural structural correspondence network for cross-
domain aspect and opinion co-extraction. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1–11.

6

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 7–12
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

AllenNLP Interpret:
A Framework for Explaining Predictions of NLP Models

Eric Wallace1 Jens Tuyls2 Junlin Wang2 Sanjay Subramanian1

Matt Gardner1 Sameer Singh2

1Allen Institute for Artificial Intelligence 2University of California, Irvine
ericw@allenai.org, sameer@uci.edu

Abstract

Neural NLP models are increasingly accu-
rate but are imperfect and opaque—they break
in counterintuitive ways and leave end users
puzzled at their behavior. Model interpreta-
tion methods ameliorate this opacity by pro-
viding explanations for specific model pre-
dictions. Unfortunately, existing interpreta-
tion codebases make it difficult to apply these
methods to new models and tasks, which hin-
ders adoption for practitioners and burdens in-
terpretability researchers. We introduce Al-
lenNLP Interpret, a flexible framework for in-
terpreting NLP models. The toolkit provides
interpretation primitives (e.g., input gradients)
for any AllenNLP model and task, a suite of
built-in interpretation methods, and a library
of front-end visualization components. We
demonstrate the toolkit’s flexibility and util-
ity by implementing live demos for five in-
terpretation methods (e.g., saliency maps and
adversarial attacks) on a variety of models
and tasks (e.g., masked language modeling
using BERT and reading comprehension us-
ing BiDAF). These demos, alongside our code
and tutorials, are available at https://allennlp.
org/interpret.

1 Introduction

Despite constant advances and seemingly super-
human performance on constrained domains,
state-of-the-art models for NLP are imperfect:
they latch on to superficial patterns (Gururan-
gan et al., 2018), reflect unwanted social bi-
ases (Doshi-Velez and Kim, 2017), and signifi-
cantly underperform humans on a myriad of tasks.
These imperfections, coupled with today’s ad-
vances being driven by (seemingly black-box)
neural models, leave researchers and practitioners
scratching their heads, asking, “why did my model
make this prediction?”

Figure 1: An interpretation generated using AllenNLP
Interpret for NER. The model predicts three tags for an
input (top). We interpret each tag separately, e.g., input
reduction (Feng et al., 2018) (bottom) removes as many
words as possible without changing a tag’s prediction.
Input reduction shows that the words “named”, “at”,
and “in downtown” are sufficient to predict the People,
Organization, and Location tags, respectively.

Instance-level interpretation methods help to
answer this question by providing explanations for
specific model predictions. These explanations
come in many flavors, e.g., visualizing a model’s
local decision boundary (Ribeiro et al., 2016),
highlighting the saliency of the input features (Si-
monyan et al., 2014), or adversarially modifying
the input (Ebrahimi et al., 2018). Interpretations
are useful to illuminate the strengths and weak-
nesses of a model (Feng et al., 2018), increase user
trust (Ribeiro et al., 2016), and evaluate hard-to-
define criteria such as safety or fairness (Doshi-
Velez and Kim, 2017).

Many open-source implementations exist for
instance-level interpretation methods. However,
most codebases focus on computer vision, are
model- or task-specific (e.g., sentiment analysis),
or contain implementations for a small number of
interpretation methods. Thus, it is difficult for
practitioners to interpret their model. As a re-

7

sult, model developers rarely leverage interpre-
tations and thus lack a robust understanding of
their system. The inflexibility of existing in-
terpretation codebases also burdens interpretabil-
ity researchers—they cannot easily evaluate their
methods on multiple models.

We present AllenNLP Interpret, an open-
source, extensible toolkit built on top of Al-
lenNLP (Gardner et al., 2018) for interpreting
NLP models. The toolkit makes it easy to apply
existing interpretation methods to new models, as
well as develop new interpretation methods. The
toolkit consists of three contributions: a suite of
interpretation techniques implemented for broad
classes of models, model- and task-agnostic APIs
for developing new interpretation methods (e.g.,
APIs to obtain input gradients), and reusable front-
end components for interactively visualizing the
interpretations.

AllenNLP Interpret has numerous use cases.
Our external website shows demos of:
• Uncovering Model Biases: A SQuAD model

relies on lexical overlap between the words in
the question and the passage. Alternatively, a
textual entailment model infers contradiction on
observing the word “politics” in the hypothesis.
• Finding Decision Rules: A named entity recog-

nition model predicts the location tag when it
sees the phrase “in downtown”.
• Diagnosing Errors: A sentiment model incor-

rectly predicts the positive class due to the tri-
gram “tony hawk style”.

2 Interpreting Model Predictions

This section introduces an end user’s view of our
toolkit, i.e., the available interpretations, models,
and visualizations.

2.1 What Are Instance-Level Interpretations

AllenNLP Interpret focuses on two types of inter-
pretations: gradient-based saliency maps and ad-
versarial attacks. We choose these methods for
their flexibility—gradient-based methods can be
applied to any differentiable model.

Saliency maps explain a model’s prediction
by identifying the importance of the input to-
kens. Gradient-based methods determine this im-
portance using the gradient of the loss with respect
to the tokens (Simonyan et al., 2014).

Adversarial attacks provide a different lens into
a model—they elucidate its capabilities by exploit-

ing its weaknesses. We focus on methods that
modify tokens in the input (e.g., replace or remove
tokens) in order to change the model’s output in a
desired manner.

2.2 Saliency Map Visualizations

We consider three saliency methods. Since our
goal is to interpret why the model made its pre-
diction (not the ground-truth answer), we use the
model’s own output in the loss calculation. For
each method, we reduce each token’s gradient
(which is the same dimension as the token embed-
ding) to a single value by taking the L2 norm.

Vanilla Gradient This method visualizes the
gradient of the loss with respect to each token (Si-
monyan et al., 2014). Figure 2 shows an example
interpretation of BERT (Devlin et al., 2019).

Integrated Gradients Sundararajan et al.
(2017) introduce integrated gradients. They
define a baseline x′, which is an input absent
of information (we use a sequence of all zero
embeddings). Word importance is determined by
integrating the gradient along the path from this
baseline to the original input.

SmoothGrad Smilkov et al. (2017) average the
gradient over many noisy versions of the input.
For NLP, we add small Gaussian noise to every
embedding and take the average gradient value.

2.3 Adversarial Attacks

We consider two adversarial attacks: replacing
words to change the model’s prediction (HotFlip)
and removing words to maintain the model’s pre-
diction (Input Reduction).

Untargeted & Targeted HotFlip We consider
word-level substitutions using HotFlip (Ebrahimi
et al., 2018). HotFlip uses the gradient to swap
out words from the input in order to change the
model’s prediction. It answers a sensitivity ques-
tion: how would the prediction change if certain
words are replaced? We also extend HotFlip to
a targeted setting, i.e., we substitute words in or-
der to change the model’s prediction to a specific
target prediction. This answers an almost counter-
factual question: what words should be swapped
in order to cause a specific prediction?

We closely follow the original HotFlip algo-
rithm: replace tokens based on a first-order Taylor

8

Figure 2: A saliency map generated using Vanilla Gradient (Simonyan et al., 2014) for BERT’s masked language
modeling objective. BERT predicts the [MASK] token given the input sentence; the interpretation shows that BERT
uses the gendered pronoun “her” and the hospital-specific “emergency” to predict “nurse”.

approximation of the loss around the current to-
ken embeddings.1 Figure 3 shows an example of a
HotFlip attack on sentiment analysis.

Input Reduction Feng et al. (2018) introduce
input reduction. They remove as many words
as possible from the input without changing a
model’s prediction. Input reduction works by it-
eratively removing the word with the smallest gra-
dient value. We classify input reduction as an “ad-
versarial attack” because the resulting inputs are
usually nonsensical but cause high confidence pre-
dictions (Feng et al., 2018). Figure 1 shows an ex-
ample of reducing an NER input.

2.4 Currently Available Models

The toolkit currently interprets six tasks which
cover a wide range of input-output formats and
model architectures.

• Reading Comprehension using the
SQuAD (Rajpurkar et al., 2016) and
DROP (Dua et al., 2019) datasets. We use
NAQANet (Dua et al., 2019) and BiDAF
models (Seo et al., 2017).

• Masked Language Modeling using the trans-
former models available in Pytorch Trans-
formers2, e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and more.

• Text Classification and Textual Entailment
using BiLSTM and self-attention classifiers.

• Named Entity Recognition (NER) and Coref-
erence Resolution. These are examples of
tasks with complex input-output structure; we
can use the same function calls to analyze each
predicted tag (e.g., Figure 1) or cluster.
1We also adapt HotFlip to contextual embeddings; details

provided in Section 3.2.
2https://github.com/huggingface/pytorch-transformers

3 AllenNLP Interpret Under the Hood

This section provides implementation details for
AllenNLP Interpret: how we compute the token
embedding gradient in a model-agnostic way, as
well as the available front-end interface. Figure 4
provides an overview of our software implementa-
tion and the surrounding AllenNLP ecosystem.

3.1 Model-Agnostic Input Gradients

Existing Classes in AllenNLP Models in Al-
lenNLP are of type Model (a thin wrapper around
a PyTorch Module). The Model wrapper includes
a forward() function, which runs the model and
optionally computes the loss if a label is provided.

Obtaining predictions from an AllenNLP Model
is simplified via the Predictor class. This class
provides a model-agnostic way for obtaining pre-
dictions: call predict json() with a JSON contain-
ing raw strings and it will return the model’s pre-
diction. For example, passing {“input”: “this
demo is amazing!”} to a sentiment analysis Pre-
dictor will receive positive and negative class
probabilities in return.

Our AllenNLP Extension The core backbone
of our toolkit is an extension to the Predictor class
that allows interpretation methods to compute in-
put gradients in a model-agnostic way. Creating
this extension has two main implementation chal-
lenges: (1) the loss (with the model’s own predic-
tions as the labels) must be computed for widely
varying output formats (e.g., classification, tag-
ging, or language modeling), and (2) the gradi-
ent of this loss with respect to the token embed-
dings must be computed for widely varying em-
bedding types (e.g., word vectors, ELMo (Peters
et al., 2018) embeddings, BERT embeddings).

Predictions to Labeled Instances To handle
challenge (1), we leverage the fact that all mod-

9

Figure 3: A word-level HotFlip attack on a sentiment analysis model—replacing “anyone” with “inadequate”
causes the model’s prediction to change from Positive to Negative.

els will return a loss if a label is passed to their
forward() function. We first query the model
with the input to obtain its prediction. Next,
we convert this prediction into a set of “la-
beled examples” using a function called predic-
tions to labeled instances(). For categorical pre-
dictions (e.g., classification, span prediction), this
function returns a single instance with the label set
to the model’s argmax prediction.

For tasks with structured outputs (e.g., NER,
coref), this function returns multiple instances,
where each instance is used to compute the loss
for a different part of the output. For example,
there are separate instances for each of the three
NER tags predicted in Figure 1. Separating out
the instances allows us to have more fine-grained
interpretations—we can analyze one part of the
overall prediction rather than interpreting the en-
tire tag sequence.

Embedding-Agnostic Gradients To handle dif-
ficulty (2)—computing the gradients of varying to-
ken embeddings—we rely on the abstractions of
AllenNLP. In particular, AllenNLP uses a Token-
Embedder interface to converts token ids into em-
beddings. We can thus compute the gradient for
any embedding method by registering a PyTorch
backward gradient hook on the model’s TokenEm-
bedder function.

Our end result is a simple API for com-
puting input gradients for any model: call
predictions to labeled instances() and then
get gradients().

3.2 Context-Independent Embedding Matrix
for Deep Embeddings

The final implementation difficulty arises from the
fact that contextual embeddings such as ELMo
and BERT do not have an “embedding matrix”
to search over (their embeddings are context-

dependent). This raises difficulties for meth-
ods such as Hotflip (Section 2.3) that require
searching over a discrete embedding matrix. To
solve this, we create a context-independent ma-
trix that contains the features from the model’s
last context-independent layer. For instance, we
pass all of the words from a particular task’s train-
ing set into ELMo and save the features from its
context-independent Char-CNN into a “word em-
bedding matrix”. This allows us to run HotFlip for
contextual embeddings while still capturing con-
text information since the gradient backpropagates
through the contextual layers.

3.3 Frontend Visualizations

We interactively visualize the interpretations us-
ing the AllenNLP Demo, a web application for
running AllenNLP models. We add HTML and
JavaScript components that provide visualizations
for saliency maps and adversarial attacks. These
components are reusable and greatly simplify the
process for adding new models and interpretation
methods (Section 4). For example, a single line of
HTML code can create the visualizations shown in
Figures 1–3. Note that visualizing the interpreta-
tions is not required—AllenNLP Interpret can be
run in an offline, batch manner. This is useful for
aggregating interpretation results, e.g., as in Feng
et al. (2018) and Wallace et al. (2018).

4 Adding a Model or Interpretation

This section describes the high-level process for
adding new analysis methods or AllenNLP models
to our toolkit.

New Interpretation We provide a tutorial for
adding a new analysis method to our toolkit. In
particular, it walks through the three main require-
ments for adding SmoothGrad:

10

Existing

NER
 SaliencyMap
 AdversarialAttack
 ...

Front-end Pages

Entailment
 SaliencyMap
 AdversarialAttack
 ...

AllenNLP

Predictor
 def predict_json()
 ...
 def get_gradients()
 ...
 def p_to_label_inst()
 # abstract

Interpreter
 def interpret()
 # abstract

AllenNLP-Demo

...

 Front-end Components

SaliencyMap
 ./interpret

AdversarialAttack
 ./attack

...

 NERPredictor
 def p_to_label_inst()
 ...

...

SmoothGrad
 def interpret()
 ...
 p_to_label_inst()
 get_gradients()
 ...

Attacker
 def attack()
 # abstract

HotFlip
 def attack()
 ...
 p_to_label_inst()
 get_gradients()
 ...

... ...

AllenNLP Interpret

Figure 4: System Overview: Our toolkit (in blue) and the surrounding AllenNLP ecosystem. The only model-
specific code is a simple function called predictions to labeled instances() (abbreviated as p to label inst()),
which is added to the model’s Predictor class (e.g., for an NER model’s predictor; left of figure). This func-
tion allows input gradients to be calculated using get gradients() in a model-agnostic manner (e.g., for use in
SmoothGrad or HotFlip; middle left of Figure). On the front-end (right of Figure), we create reusable visualization
components, e.g., for visualizing saliency maps or adversarial attacks.

1. Implementing SmoothGrad in AllenNLP, us-
ing predictions to labeled instances() and
get gradients() (requires adding about ten
lines of code to the vanilla gradient method).

2. Adding a SmoothGrad Interpreter to the
demo back-end (about five lines of code).

3. Adding the HTML/JavaScript for saliency vi-
sualization (requires making a one-line call to
the reusable front-end components).

New Model We also provide a tutorial for inter-
preting a new model. If your task is already avail-
able in the demos (e.g., text classification), you
need to change a single line of code to replace the
demo model with your model. If your task is not
present in the demos, you will need to:

1. Write the predictions to labeled instances()
function for your model (consists of three
lines for classification).

2. Create a path to your model in the demo’s
back-end (about 5-10 lines of code).

3. Add a front-end page to visualize the model
and interpretation output. This is simplified
by the reusable front-end components (con-
sists of copy-pasting code templates).

5 Related Work

Alternative Interpretation Methods We focus
on gradient-based methods (saliency maps and
adversarial attacks) but numerous other instance-
level model interpretation methods exist. For ex-
ample, a common practice in NLP is to visual-
ize attention weights (Bahdanau et al., 2015) or to

isolate the effect of individual neurons (Karpathy
et al., 2016). We focus on gradient-based methods
because they are applicable to many models.

Existing Interpretation Toolkits In computer vi-
sion, various open-source toolkits exist for ex-
plaining and attacking models (e.g., Papernot et al.
(2016); Ozbulak (2019), inter alia); some toolk-
its also include interactive demos (Norton and Qi,
2017). Similar toolkits for NLP are significantly
scarcer, and most toolkits focus on specific models
or tasks. For instance, Liu et al. (2018), Strobelt
et al. (2019), and Vig (2019) visualize attention
weights for specific NLP models, while Lee et al.
(2019) apply adversarial attacks to reading com-
prehension systems. Our toolkit differs because it
is flexible and diverse; we can interpret and attack
any AllenNLP model.

6 Conclusion

We presented AllenNLP Interpret, an open-source
toolkit that facilitates the interpretation of NLP
models. The toolkit is flexible—it enables the de-
velopment and evaluation of interpretation meth-
ods across a wide range of NLP models and tasks.

The toolkit is continually evolving—we will
continue to implement new interpretation methods
and models as they become available. We wel-
come open-source contributions, and we hope the
toolkit is useful for model developers and inter-
pretability researchers alike.

11

Acknowledgements

The authors thank Shi Feng, the members of UCI
NLP, and the anonymous reviewers for their valu-
able feedback. We also thank the developers of
AllenNLP for their help with constructing our
toolkit, especially Joel Grus. This work is sup-
ported in part by NSF Grant IIS-1756023.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. In
NAACL.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In ACL.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In EMNLP.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In ACL Workshop for NLP Open
Source Software.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and Noah
A. Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In NAACL.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016.
Visualizing and understanding recurrent networks.
In ICLR Workshop Track.

Gyeongbok Lee, Sungdong Kim, and Seung-won
Hwang. 2019. QADiver: Interactive framework for
diagnosing QA models. In AAAI Demonstrations.

Shusen Liu, Tao Li, Zhimin Li, Vivek Srikumar, Vale-
rio Pascucci, and Peer-Timo Bremer. 2018. Visual
interrogation of attention-based models for natural
language inference and machine comprehension. In
EMNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv:1907.11692.

Andrew P Norton and Yanjun Qi. 2017. Adversarial-
Playground: A visualization suite showing how ad-
versarial examples fool deep learning. In 2017 IEEE
VizSec Symposium.

Utku Ozbulak. 2019. Pytorch CNN visual-
izations. https://github.com/utkuozbulak/
pytorch-cnn-visualizations.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini,
Ian Goodfellow, Reuben Feinman, Alexey Ku-
rakin, Cihang Xie, Yash Sharma, Tom Brown,
Aurko Roy, et al. 2016. Technical report on
the CleverHans v2.1.0 adversarial examples library.
arXiv:1610.00768.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should I trust you?: Explain-
ing the predictions of any classifier. In KDD.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In ICLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In ICLR.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B.
Viégas, and Martin Wattenberg. 2017. SmoothGrad:
removing noise by adding noise. In ICML Workshop
on Visualization for Deep Learning.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2019. Seq2Seq-Vis: A visual
debugging tool for sequence-to-sequence models.
IEEE TVCG.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2017. Axiomatic attribution for deep networks. In
ICML.

Jesse Vig. 2019. Visualizing attention in transformer-
based language models. arXiv:1904.02679.

Eric Wallace, Shi Feng, and Jordan Boyd-Graber. 2018.
Interpreting neural networks with nearest neighbors.
In EMNLP 2018 Blackbox NLP Workshop.

12

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 13–18
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

ALTER: Auxiliary Text Rewriting Tool for Natural Language Generation

Qiongkai Xu Chenchen Xu
The Australian National University

Data61 CSIRO
Qiongkai.Xu@anu.edu.au
Chenchen.Xu@anu.edu.au

Lizhen Qu
Laboratory for Dialogue Research

Monash University
Lizhen.Qu@monash.edu

Abstract

In this paper, we describe ALTER, an aux-
iliary text rewriting tool that facilitates the
rewriting process for natural language gener-
ation tasks, such as paraphrasing, text simpli-
fication, fairness-aware text rewriting, and text
style transfer. Our tool is characterized by two
features, i) recording of word-level revision
histories and ii) flexible auxiliary edit support
and feedback to annotators. The text rewrit-
ing assist and traceable rewriting history are
potentially beneficial to the future research of
natural language generation.

1 Introduction

Generative modeling of editing text with respect
to control attributes, coined GMETCA, has seen
increasing progress over the past few years. Such
a generative task is referred to as style transfer,
when the control attributes indicate a change of
writing styles (Mir et al., 2019; Fu et al., 2018).
This generative task subsumes also gender obfus-
cation (Reddy and Knight, 2016), authorship ob-
fuscation (Shetty et al., 2018), and text simplifica-
tion (Xu et al., 2015), when the control attributes
indicate protection of gender information, protec-
tion of authorship, and simplifying the content and
structure of the text, respectively.

The research on GMETCA are impeded by the
lack of standard evaluation practices (Mir et al.,
2019; Tikhonov and Yamshchikov, 2018). Differ-
ent evaluation methods make system comparison
across publications difficult. In light of this, Mir
et al. (2019); Fu et al. (2018) proposed both human
evaluation and automated methods to judge style
transfer models on three aspects: a) style trans-
fer intensity; b) content preservation; c) natural-
ness. However, it is still difficult to reach an agree-
ment on how to measure to what extent a gener-
ated text satisfy all three criterion. Moreover, the

lack of human generated gold references hinders
the progress of related research, as they i) auto-
mate error analysis as in (Li et al., 2018); ii) avoid
repeated efforts in user studies to check if sys-
tem outputs reproduce human-like editing. There-
fore, it is beneficial to collect gold references, hu-
man edited text, as test corpora for those emerging
tasks.

The collection of gold references can be con-
ducted on a crowd-sourcing platform, such as
Amazon Mechanical Turk1, or through existing
writing tools (Goldfarb-Tarrant et al., 2019). How-
ever, the existing crowd-sourcing platforms and
annotation tools do not have the flexibility to
add task-specific classifiers and language models,
which are widely used for evaluating GMETCA
models (Mir et al., 2019). As pointed out by Dow
et al. (2011), it is important to incorporate task-
specific feedback to achieve the improvement of
user engagement and quality of results. Feedback
is particularly important for GMETCA according
to our user study (details in Section 4.1), because
annotators fail to capture the weak associations
between certain textual patterns and attribute val-
ues. For example, for gender obfuscation on ‘The
dessert is yummy !’, people can easily overlook the
implicit indicator ‘yummy’ of female authors.

To tackle the aforementioned challenges, we de-
sign ALTER, an AuxiLiary TExt Rewriting tool,
to collect gold references for GMETCA. Our tool
contains multiple models to provide feedback on
rewriting quality and also allows easy incorpo-
ration of more task-specific evaluation models.
In addition, our tool has a module to record
word-level revision histories with edit operations.
The revisions are decomposed into a sequence
of word-level edit operations, such as insertions
(I), deletions (D), and replacements (R), as illus-

1https://www.mturk.com/

13

Ori: My husband and I enjoy LA Hilton Hotel.
P1: Family enjoy LA Hilton Hotel. (Rs)
P2: Family enjoy Hilton Hotel in LA. (Ro)
P3: All family members enjoy Hilton Hotel in LA. (I)
P4: All family members love Hilton Hotel in LA. (Rv)

(a) Revision history 1 (RH1)

Ori: My husband and I enjoy LA Hilton Hotel.
P1: My husband and I love LA Hilton Hotel. (Rv)
P2: My husband and I love Hilton Hotel. (D)
P3: My husband and I love Hilton Hotel in Los Angeles. (I)
P4: My husband and I love Hilton Hotel in LA. (Ro)
P5: Family love Hilton Hotel in LA. (Rs)
P6: All family members love Hilton Hotel in LA. (I)

(b) Revision history 2 (RH2)

Table 1: Two revision histories, RH1 and RH2, from
‘My husband and I enjoy LA Hilton Hotel.’ to ‘All
family members love Hilton Hotel in LA.’. Although
the overall transformations of RH1 and RH2 are simi-
lar, they follow different revision histories.

trated in Table 1. The benefits of revision histories
are three-fold. Firstly, revision histories can pro-
vide supervision signals for the generative mod-
els, which consider rewriting as applying a se-
quence of edit operations on text (Li et al., 2018;
Guu et al., 2018). Secondly, revision histories can
potentially provide deep insights regarding cogni-
tive process and human edit behaviours in vary-
ing demographic groups. For example, in Table 1,
human writers could prefer replacing the subject
(Rs) and the object (Ro) as RH1 than replacing
the verb (Rv) as RH2. Statistics on revision his-
tories could provide supporting evidence about re-
lated assumptions. Thirdly, there are often multi-
ple gold references for the same text. It is more ac-
cessible using revision histories to acquire multi-
ple references than rewriting every reference from
scratch. As shown in Table 1, P3, P4 in RH1 and
P1, P3, P4 and P6 in RH2 are all valid revisions of
the original sentence.

To sum up, our contributions are:

• We implemented a tool ALTER, which is ca-
pable of providing instant task-specific feed-
back on rewriting quality for GMETCA.

• ALTER records revision histories with edit
operations, which are useful for comparing
and analyzing human edit behaviours.

The code of ALTER is publicly available un-
der MIT license at https://github.com/
xuqiongkai/ALTER. A screencast video demo
of our system is provided at Google drive.

2 Related Work

Our work is related to the research on edit history
of text and assistant text rewriting.

Document-level edit records were used as data
to analyze the evolution of knowledge base (Fer-
schke et al., 2011; Medelyan et al., 2009) and re-
trieve sentence paraphrases (Max and Wisniewski,
2010). In contrast, our work focuses on word-
level edit operations with order. We believe such
paradigm introduces more linguistic features, that
will benefit both linguistic and social behavior re-
search. Recently, there has been a series of work
on conducting edit operations on text to advance
automatic natural language generation (Guu et al.,
2018; Li et al., 2018). We believe the real-world
human rewriting history collected by our system
will strengthen these works.

A writing assistant has been proposed to facili-
tate users, organizing and revising their document.
Zhang et al. (2016) proposed to detect the writers’
purpose in the revised sentences. Goldfarb-Tarrant
et al. (2019) developed a collaborative human-
machine story-writing tool that assists writers with
story-line planning and story-detail writing. The
assistant and feedback generally improved the user
engagement and the quality of generated text in
those works.

3 ALTER

In this section, we describe the design of ALTER,
an auxiliary text rewriting tool that is able to i)
provide instant task-specific feedback to encour-
age user engagement, and ii) trace the word-level
revision histories. We demonstrate an example of
adapting our system on a GMETCA task, namely
generating the gender-aware rewritten text, which
is i) semantically relevant, ii) grammatically flu-
ent, and iii) gender neutral.

3.1 System Overview

Figure 1 depicts the overall architecture of ALTER,
which consists of a rewriting module, an admin-
istrative module, and multiple machine assistance
services. The rewriting module offers annotators
a user friendly interface for editing a given sen-
tence with instant feedback. The feedback and
revision histories in the interface are provided by
the machine assistance services. Moreover, the ad-
ministrative module provides administrators an in-
terface for user management and assigning target

14

Figure 1: System architecture of the Auxiliary Text Rewriting Tool (ALTER).

tasks, which are basically a set of sentences for
rewriting, as jobs to individual annotators.

ALTER is based on an easy-to-extend web-
based framework that follows the Model-View-
Controller (Krasner et al., 1988) software de-
sign pattern. The models are the wrappers of
the databases (DB). The controller decides what
should be displayed on the interfaces, which are
considered as the views. This flexible design
enables various feedback providers to be easily
plugged in and out, making it possible to support
different text generation tasks. The front-end is
developed with React2 that enables cross-platform
support for major operating systems.

3.2 Rewriting Interface

Figure 2 illustrates a screenshot of the annotator
interface. In the left column, there is a list of jobs,
which are the sentences assigned to the annotator.
The completed jobs are marked in blue. An anno-
tator starts with selecting an incomplete job from
the job list, which will be shown in the auxiliary
edit panel in the right column. We support two
edit modes:

• Direct typing mode: Annotators can directly
type a whole sentence into the text input field.
This mode is provided for the annotators who
prefer typing to clicking. To save time, the
original sentence is copied to the input field
as default value.

• Auxiliary mode: Annotators can click on a
word shown above the text input field, and
choose one of the edit operations from a set,

2https://reactjs.org

S = {Word Typing, Deletion, Substitution,
Reordering}. If the annotator chooses Substi-
tution, he can select to show a list of words in
the gray panel recommended by either word
similarity or a pre-trained language model.
In this mode, the annotator receives feedback
from the upper right corner. Each feedback
is a numerical score computed by a feedback
provider based on the current sentence. After
each edition, a record is added to the revision
history below, with the corresponding edit
operation and the modified sentences. The
annotators are also allowed to roll back the
sentences to a previous status by clicking the
corresponding record in a history.

3.3 Machine Assistance Services

The machine assistance services in our system in-
clude feedback providers and word recommenda-
tion services. The machine assistance services can
be categorized as sentence-level and word-level.

At the sentence-level, we provide automatic
sentence evaluation scores as feedback. In our
current system, we consider evaluation metrics
widely used in style transfer and obfuscation of
demographic attributes (Mir et al., 2019; Zhao
et al., 2018; Fu et al., 2018).

• PPL. PPL denotes the perplexity score of
the edited sentences based on the language
model BERT3 (Devlin et al., 2019).

• WMD. WMD is the word mover dis-
tance (Kusner et al., 2015) between the origi-

3https://github.com/google-research/
bert

15

Figure 2: The Auxiliary Text Rewriting Interface is composed of (a) a job list, (b) an auxiliary edit panel and (c) a
list of the revision history of current job.

nal sentence and the edited sentence based on
Google’s pre-trained Word2Vec model4.

• ED. ED denotes the word edit distance be-
tween the original sentence and the rewritten
sentence.

• Class. Class denotes the probability of the at-
tribute value given the edited sentence. It is
used to measure style transfer intensity or the
degree of obfuscation. In our user study, we
employ a transformer-based (Vaswani et al.,
2017) binary classifier trained on the Gen-
der (Reddy and Knight, 2016) corpus, which
contains 2.6M balanced training samples.

At the word-level, we provide two word recom-
mendation services for word substitution, which
are based on word embedding similarity and lan-
guage model, respectively. We include also a
word-level feedback provider, which character-
izes the contributions of individual words to the
sentence-level classification results.

• Word Similarity Recommendation. Given
a selected word, this service recommends a
list of words ranked by the cosine similarity

4https://code.google.com/archive/p/
word2vec

computed based on pre-trained Google word
embeddings.

• Language Model Recommendation. The
services apply a pre-trained language model
BERT to the context around the selected
word to predict top-k most likely words.

• Salience. This module utilizes the sen-
tence classifier trained on the Gender corpus
to compute a salience score for each word.
A salience score is defined as S(X, i) =
P (Y |X)−P (Y |X \xi), where P (Y |X) de-
notes the probability of an attribute value Y
given the input sentence X , and X \ xi de-
notes the sentence X excluding the ith word.

4 User Study

We conduct empirical studies to demonstrate i)
annotators fail to capture certain textual patterns
leading to worse estimation accuracy than the clas-
sifier; ii) ALTER improves user engagement; iii)
machine assistance consistently collects more ref-
erences per sentence than asking annotators di-
rectly typing edited sentences. Both studies are
based on the Gender (Reddy and Knight, 2016)
dataset, which consists of reviews from Yelp an-
notated with the gender of the authors. In the first

16

study, we ask annotators to estimate the gender of
authors given a sentence. In the second study, We
consider a privacy-aware text rewriting task. We
ask annotators to rewrite sentences that i) leak less
gender information, ii) maximally preserve con-
tent; iii) are grammatically fluent.

4.1 Awareness of Gender Information

In the first study, we compare the accuracy of
predicting gender information between two hu-
man annotators and the classifier5. Both of them
predict the authors’ gender of 300 sentences ran-
domly sampled from the test set. Human anno-
tators obtain merely 66.0 of accuracy on average,
while the classifier achieves 77.3. We have care-
fully investigated the prediction results and the
sampled sentences. We found out that it is in-
deed difficult for humans to estimate correctly the
authors’ gender based on a short piece of text,
e.g.,“the food is delicious” and “the people were
nice”. Both examples are perceived as neutral for
our annotators. Apart from human failure to cap-
ture weak associations between certain textual pat-
terns and gender, we conjecture that the bias in the
corpus may help the classifier achieve better per-
formance.

4.2 User Engagement

In this study, three graduate students are invited to
rewrite 100 sentences randomly selected from the
test set of the Gender corpus. All students take two
steps to rewrite each sentence:

1. In the direct typing mode, type the edited sen-
tence directly in the input field .

2. In the auxiliary mode, improve the edited
sentence from the first step when necessary.
The annotators are instructed that i) it is fine
to leave the sentences as they are if feed-
back do not provide useful clues; ii) all feed-
back and recommendations are machine gen-
erated, thus not perfect.

We consider the two-step approach to compare the
differences between the two modes while mini-
mizing individual differences between annotators.

We analyze the revision history collected in the
second step, and found out that feedback indeed
leads to significant improvement of user engage-
ment. In the second step, 89.67% of the sentences

5We use a linear SVM model trained on Gender.

Figure 3: Distribution of operations in revision his-
tory by Word Typing, Deletion, Substitution, Reorder-
ing and Sentence Typing.

were modified in the auxiliary mode. The aver-
age number of edit operations in the second step is
4.63, showing the willingness of writers to further
edit the text under auxiliary mode. The distribu-
tion of edit operations is illustrated in Figure 3,
word typing and deletion are clearly the most pop-
ular edit operations. Word recommendation ser-
vices are also effective, contributing more than
10% of the new edits in the auxiliary mode.

The references collected in the second step re-
sult in less leakage of gender information than the
ones in the first step. We measure the leakage of
gender information by applying the transformer-
based classifier on references collected in both
steps. We compute averaged entropy score,
−∑

i pi log pi, based on the predication of each
class pi. Higher entropy indicates better obfus-
cation of gender. The sentences collected in the
first step and the second step achieve 0.347 and
0.535 respectively. The entropy of the sentences
collected in the first step is just 0.027 better than
that of the original sentences.

We further investigate the revision histories, and
find more gold references per sentence in the sec-
ond step than in the first step. We consider se-
mantically relevant and grammatically fluent sen-
tences as valid references. The average number of
the valid references generated in auxiliary mode
is 3.79, while we can merely obtain one reference
per sentence in the direct typing mode.

5 Conclusion and Future Work

In this paper, we demonstrate our auxiliary text
rewriting tool ALTER to collect gold references for
GMETCA, assisted with word-level revision histo-
ries and task-specific instant feedback. In the fu-
ture, we will apply ALTER to collect high-quality
benchmarks for GMETCA.

17

Acknowledgement

This project is supported by the partnership be-
tween ANU and Data61/CSIRO. We also grate-
fully acknowledge the funding from Data61 schol-
arship that supports Qiongkai Xu and Chenchen
Xu’s PhD research.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Steven Dow, Anand Kulkarni, Brie Bunge, Truc
Nguyen, Scott Klemmer, and Björn Hartmann.
2011. Shepherding the crowd: managing and pro-
viding feedback to crowd workers. In CHI’11 Ex-
tended Abstracts on Human Factors in Computing
Systems, pages 1669–1674. ACM.

Oliver Ferschke, Torsten Zesch, and Iryna Gurevych.
2011. Wikipedia revision toolkit: efficiently access-
ing wikipedia’s edit history. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Systems Demonstrations, pages 97–102.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, and Rui Yan. 2018. Style transfer in text:
Exploration and evaluation. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Seraphina Goldfarb-Tarrant, Haining Feng, and
Nanyun Peng. 2019. Plan, write, and revise: an
interactive system for open-domain story gener-
ation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
89–97.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
of Computational Linguistics, 6:437–450.

Glenn E Krasner, Stephen T Pope, et al. 1988. A de-
scription of the model-view-controller user interface
paradigm in the smalltalk-80 system. Journal of ob-
ject oriented programming, 1(3):26–49.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to docu-
ment distances. In International Conference on Ma-
chine Learning, pages 957–966.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874.

Aurélien Max and Guillaume Wisniewski. 2010. Min-
ing naturally-occurring corrections and paraphrases
from wikipedia’s revision history. In LREC.

Olena Medelyan, David Milne, Catherine Legg, and
Ian H Witten. 2009. Mining meaning from
wikipedia. International Journal of Human-
Computer Studies, 67(9):716–754.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad
Rahwan. 2019. Evaluating style transfer for text.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 495–504.

Sravana Reddy and Kevin Knight. 2016. Obfuscating
gender in social media writing. In Proceedings of
the First Workshop on NLP and Computational So-
cial Science, pages 17–26.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2018.
A4nt: Author attribute anonymity by adversarial
training of neural machine translation. In 27th
{USENIX} Security Symposium ({USENIX} Secu-
rity 18), pages 1633–1650.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018.
What is wrong with style transfer for texts? CoRR,
abs/1808.04365.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the As-
sociation for Computational Linguistics, 3:283–297.

Fan Zhang, Rebecca Hwa, Diane Litman, and Homa B
Hashemi. 2016. Argrewrite: A web-based revision
assistant for argumentative writings. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Demonstrations, pages 37–41.

Junbo Zhao, Yoon Kim, Kelly Zhang, Alexander Rush,
and Yann LeCun. 2018. Adversarially regularized
autoencoders. In International Conference on Ma-
chine Learning, pages 5897–5906.

18

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 19–24
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Applying BERT to Document Retrieval with Birch

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang, Haotian Zhang, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Abstract

We present Birch, a system that applies BERT
to document retrieval via integration with
the open-source Anserini information retrieval
toolkit to demonstrate end-to-end search over
large document collections. Birch implements
simple ranking models that achieve state-
of-the-art effectiveness on standard TREC
newswire and social media test collections.
This demonstration focuses on technical chal-
lenges in the integration of NLP and IR capa-
bilities, along with the design rationale behind
our approach to tightly-coupled integration be-
tween Python (to support neural networks) and
the Java Virtual Machine (to support document
retrieval using the open-source Lucene search
library). We demonstrate integration of Birch
with an existing search interface as well as in-
teractive notebooks that highlight its capabili-
ties in an easy-to-understand manner.

1 Introduction

The information retrieval community, much like
the natural language processing community, has
witnessed the growing dominance of approaches
based on neural networks. Applications of neu-
ral networks to document ranking usually involve
multi-stage architectures, beginning with a tra-
ditional term-matching technique (e.g., BM25)
over a standard inverted index, followed by a
reranker that rescores the candidate list of docu-
ments (Asadi and Lin, 2013).

Researchers have developed a panoply of neural
ranking models—see Mitra and Craswell (2019)
for a recent overview—but there is emerging evi-
dence that BERT (Devlin et al., 2019) outperforms
previous approaches to document retrieval (Yang
et al., 2019c; MacAvaney et al., 2019) as well
as search-related tasks such as question answer-
ing (Nogueira and Cho, 2019; Yang et al., 2019b).

We share with the community Birch,1 which in-
tegrates the Anserini information retrieval toolkit2

with a BERT-based document ranking model that
provides an end-to-end open-source search en-
gine. Birch allows the community to replicate
the state-of-the-art document ranking results pre-
sented in Yilmaz et al. (2019) and Yang et al.
(2019c). Here we summarize those results, but our
focus is on system architecture and the rationale
behind a number of implementation design deci-
sions, as opposed to the ranking model itself.

2 Integration Challenges

The problem we are trying to solve, and the focus
of this work, is how to bridge the worlds of infor-
mation retrieval and natural language processing
from a software engineering perspective, for appli-
cations to document retrieval. Following the stan-
dard formulation, we assume a (potentially large)
corpus D that users wish to search. For a keyword
query Q, the system’s task is to return a ranked
list of documents that maximizes a retrieval met-
ric such as average precision (AP). This stands in
contrast to reading comprehension tasks such as
SQuAD (Rajpurkar et al., 2016) and many formu-
lations of question answering today such as Wiki-
QA (Yang et al., 2015) and the MS MARCO QA
Task (Bajaj et al., 2018), where there is no (or min-
imal) retrieval component. These are better char-
acterized as “selection” tasks on (pre-determined)
text passages.

Within the information retrieval community,
there exists a disconnect between academic re-
searchers and industry practitioners. Outside of a
few large organizations that deploy custom infras-
tructure (mostly commercial search engine com-
panies), Lucene (along with the closely-related

1http://birchir.io/
2http://anserini.io/

19

projects Solr and Elasticsearch) has become the de
facto platform for building real-world search ap-
plications, deployed at Twitter, Netflix, eBay, and
numerous other organizations. However, many re-
searchers still rely on academic systems such as
Indri3 and Terrier,4 which are mostly unknown
in real-world production environments. This gap
hinders technology transfer and the potential im-
pact of research results.

Even assuming Lucene as a “common denom-
inator” that academic researchers learn to adopt,
there is still one technical hurdle: Lucene is im-
plemented in Java, and hence runs on the Java Vir-
tual Machine (JVM). However, most deep learn-
ing toolkits today, including TensorFlow and Py-
Torch, are written in Python with a C++ backend.
Bridging Python and the JVM presents a technical
challenge for NLP/IR integration.

3 Birch

3.1 Anserini

Anserini (Yang et al., 2017, 2018) represents an at-
tempt to better align academic researchers with in-
dustry practitioners by building a research-focused
toolkit on top of the open-source Lucene search
library. Further standardizing on a common plat-
form within the academic community can foster
greater replicability and reproducibility, a growing
concern in the community (Lin et al., 2016).

Already, Anserini has proven to be effective and
has gained some traction: For example, Nogueira
and Cho (2019) used Anserini for generating can-
didate documents before applying BERT to rank-
ing passages in the TREC Complex Answer Re-
trieval (CAR) task (Dietz et al., 2017), which led
to a large increase in effectiveness. Yang et al.
(2019b) also combined Anserini and BERT to
demonstrate large improvements in open-domain
question answering directly on Wikipedia.

3.2 Design Decisions

The architecture of Birch is shown in Figure 1,
which codifies a two-stage pipeline architecture
where Anserini is responsible for retrieval, the out-
put of which is passed to a BERT-based reranker.
Since our research group has standardized on Py-
Torch, the central challenge we tackle is: How
do we integrate the deep learning toolkit with
Anserini?

3https://www.lemurproject.org/
4http://terrier.org/

(Python)

Query

top k candidatesResults
BERT

Reranker

(JVM)

Inverted
Index

Code Entry
Point

Anserini

Figure 1: Architecture of Birch, illustrating a tight
integration between Python and the Java Virtual Ma-
chine. The main code entry point is in Python, which
calls Anserini for retrieval; candidate documents from
Anserini are then reranked by our BERT models.

At the outset, we ruled out “loosely-coupled”
integration approaches: For example, passing in-
termediate text files is not a sustainable solution in
the long term. It is not only inefficient, but inter-
change formats frequently change (whether inten-
tionally or accidentally), breaking code between
multiple components. We also ruled out integra-
tion via REST APIs for similar reasons: efficiency
(overhead of HTTP calls) and stability (imperfect
solutions for enforcing API contracts, particularly
in a research environment).

There are a few options for the “tightly-
coupled” integration we desired. In principle, we
could adopt the Java Virtual Machine (JVM) as
the primary code entry point, with integration to
the Torch backend via JNI, but this was ruled out
because it would create two separate code paths
(JVM to C++ for execution and Python to C++
for model development), which presents maintain-
ability issues. After some exploration, we de-
cided on Python as the primary development en-
vironment, integrating Anserini using the Pyjnius
Python library5 for accessing Java classes. The
library was originally developed to facilitate An-
droid development in Python, and allows Python
code to directly manipulate Java classes and ob-
jects. Thus, Birch supports Python as the main
development language (and code entry point, as
shown in Figure 1), connecting to the backend
JVM to access retrieval capabilities.

3.3 Models

Our document ranking approach is detailed in Yil-
maz et al. (2019) and Yang et al. (2019c). We fol-
low Nogueira and Cho (2019) in adapting BERT
for binary (specifically, relevance) classification
over text. Candidate documents from Anserini

5https://pyjnius.readthedocs.io/

20

2011 2012 2013 2014

Model AP P@30 AP P@30 AP P@30 AP P@30
QL 0.3576 0.4000 0.2091 0.3311 0.2532 0.4450 0.3924 0.6182
RM3 0.3824 0.4211 0.2342 0.3452 0.2766 0.4733 0.4480 0.6339
MP-HCNN (Rao et al., 2019) 0.4043 0.4293 0.2460 0.3791 0.2896 0.5294 0.4420 0.6394
BiCNN (Shi et al., 2018) 0.4293 0.4728 0.2621 0.4147 0.2990 0.5367 0.4563 0.6806

Birch 0.4697 0.5040 0.3073 0.4356 0.3357 0.5656 0.5176 0.7006

Table 1: Results on test collections from the TREC Microblog Tracks, comparing BERT with selected neural
ranking models. The first two blocks of the table contain results copied from Rao et al. (2019).

are processed individually. As model input, we
concatenate the query Q and document D into a
text sequence [[CLS], Q, [SEP], D, [SEP]], and
then pad each text sequence in a mini-batch to N
tokens, where N is the maximum length in the
batch. The [CLS] vector is then taken as input
to a single layer neural network. Starting from a
pre-trained BERT model, we fine-tune with exist-
ing relevance judgments using cross-entropy loss.
BERT inference scores are then combined with the
original retrieval scores, in the simplest case, using
linear interpolation.

In this simple approach, long documents pose
a problem since BERT wasn’t specifically de-
signed to perform inference on long input texts.
We present a simple solution: inference is applied
over each sentence in a candidate document and
sentence-level evidence is aggregated for ranking
documents as follows:

Sf = a · Sdoc + (1− a) ·
n∑

i=1

wi · Si (1)

where Sdoc is the original document score and
Si is the i-th top-scoring sentence according to
BERT; a and wi’s are parameters that need to be
learned. In practice, we only consider up to the
three top-scoring sentences in each document.

The intuition behind this approach comes from
Zhang et al. (2018b,a), who found that the “best”
sentence or paragraph in a document provides a
good proxy for document relevance. From a dif-
ferent perspective, we are essentially implement-
ing a form of passage retrieval.

4 Retrieval Results

4.1 TREC 2011–2014 Microblog Tracks

As originally reported in Yang et al. (2019c), Birch
was evaluated on tweet test collections from the
TREC Microblog Tracks, 2011 to 2014 (Lin et al.,

2014). Since tweets are short, relevance judg-
ments can be directly used to fine-tune the BERT
model (Section 3.3). For evaluation on each year’s
dataset, we used the remaining years for fine-
tuning, e.g., tuning on 2011–2013 data, testing on
2014 data. Additional details on the fine-tuning
strategy and experimental settings are described
in Yang et al. (2019c).

At retrieval (inference) time, query likelihood
(QL) with RM3 relevance feedback (Nasreen
et al., 2004) was used to provide the initial pool
of candidates (to depth 1000). Since tweets are
short, we can apply inference over each candidate
document in its entirety. The interpolation weight
between the BERT scores and the retrieval scores
was tuned on the validation data.

Experimental results are shown in Table 1,
where we present average precision (AP) and pre-
cision at rank 30 (P@30), the two official met-
rics of the evaluation (Ounis et al., 2011). The
first two blocks of the table are copied from Rao
et al. (2019), who compared bag-of-words base-
lines (QL and RM3) to several popular neural
ranking models as well as MP-HCNN, the model
they introduced. The results of Rao et al. (2019)
were further improved in Shi et al. (2018); in all
cases, the neural models include interpolation with
the original document scores. We see that Birch
yields a large jump in effectiveness across all Mi-
croblog collections.

4.2 TREC 2004 Robust Track

In addition to searching short social media posts,
we also examined a “traditional” document re-
trieval task over newswire articles. For this, we
used the test collection from the TREC 2004 Ro-
bust Track (Voorhees, 2004), which comprises 250
topics over a newswire corpus of around 500K
documents. Here, we provide a summary of Yil-
maz et al. (2019), which contains more detailed

21

Model AP P@20 NDCG@20
BM25+RM3 0.2903 0.3821 0.4407

1S: BERT 0.3676 0.4610 0.5239
2S: BERT 0.3697 0.4657 0.5324
3S: BERT 0.3691 0.4669 0.5325

Table 2: Results on Robust04, where nS denotes com-
bining scores from the top n sentences in a document.

descriptions of our approach and presents experi-
ments on more test collections.

The additional challenge with ranking newswire
articles is the lack of training data to fine-tune
the BERT models, since relevance judgments are
provided at the document level. That is, in the
standard formulation of document ranking, a doc-
ument is considered relevant if any part of it is
relevant—but documents are typically longer than
the lengths of text BERT was designed to handle.
The surprising finding of Yilmaz et al. (2019) is
that BERT models fine-tuned with the Microblog
test collections in Section 4.1 can be directly ap-
plied to rank newswire documents, despite the dif-
ferences in domain (social media posts vs. news
articles). Furthermore, it appears that out-of-
domain passage-level relevance judgments fortu-
itously available, such as the MS MARCO passage
dataset (Bajaj et al., 2018) and the TREC CAR
dataset (Dietz et al., 2017), are also beneficial.

Thus, it appears that BERT is able to learn
cross-domain, sentence-level notions of relevance
that can be exploited for ranking newswire doc-
uments. Table 2 presents an extract of results
from Yilmaz et al. (2019) for Robust04, where we
find that the best results are achieved by first fine-
tuning on MS MARCO and then on the Microblog
data. Scores from BERT are then combined with
document scores (BM25+RM3) based on Eq (1).
The notation “1S”, “2S”, and “3S” refer to ag-
gregating scores from the top one, two, and three
sentences, respectively. Including more sentences
doesn’t help and ranking is already quite good if
we just consider the top-scoring sentence. This re-
sult, surprisingly, suggests that document ranking
can be distilled into relevance prediction primarily
at the sentence level. Based on the meta-analysis
by Yang et al. (2019a), this is not only the highest
known AP reported on the Robust04 dataset for
neural models, but also exceeds the previous best
known AP score of 0.3686, which is a non-neural
method based on ensembles.

5 Demonstration

We demonstrate the integration of Birch with the
search frontend from HiCAL (Abualsaud et al.,
2018b) and interactive Google Colab notebooks.

5.1 HiCAL
The goal of the HiCAL system6 is to help human
assessors efficiently find as many relevant doc-
uments as possible in a large document collec-
tion to achieve high recall on a search task. The
system comprises two main components: a Con-
tinuous Active Learning (CAL) model (Cormack
and Grossman, 2014) and a search model. In the
CAL model, a machine-learned classifier selects
the most likely relevant document or paragraph
for the assessor to judge; judgments are then fed
back to retrain the classifier. In the current Hi-
CAL implementation, Anserini provides the back-
end search capabilities.

For the TREC Common Core Tracks in 2017
and 2018, a small group of researchers used
HiCAL to find and judge relevant documents.
The runs generated based on their assessments
achieved the highest AP scores among all the
submitted runs for two consecutive years (Zhang
et al., 2017; Abualsaud et al., 2018a). The effec-
tiveness of the system was further demonstrated in
Zhang et al. (2018a).

We further augment the Anserini backend for
HiCAL with Birch in two ways: First, HiCAL can
directly take advantage of improved rankings pro-
vided by BERT. Second, the top-scoring sentences
can be highlighted in the document to aid in as-
sessment. A sample screenshot is shown in Fig-
ure 2. For query 336 “black bear attacks” from Ro-
bust04, we show part of the highest-scoring docu-
ment LA081689-0039 with one of the top three
sentences (according to BERT) highlighted.

5.2 Interactive Colab Notebooks
We present Google Colab7 notebooks that make it
possible for anyone to reproduce our end-to-end
document retrieval pipeline in an interactive man-
ner.8 We make all our data and pre-trained mod-
els available, although users may also opt to re-
build them from scratch; the Colab GPU backend
enables fine-tuning BERT models directly in the
notebook environment.

6https://github.com/hical
7https://colab.research.google.com/
8To ensure long-term availability, sample notebooks are

linked from the main Birch repository.

22

Figure 2: Screenshot of HiCAL using Birch to identify
the most relevant sentences in a document retrieved for
the query “black bear attacks”.

Our notebooks are set up to allow relevance
scores to be computed for an entire test collection
in batch, and also to support interactive querying.
When the user issues a query through the interac-
tive notebook, candidate documents from the cor-
pus are first retrieved using Anserini. A sentence-
level dataset is created on the fly from the initial
ranking by splitting each document into its con-
stituent sentences. Each sentence is fed into our
BERT model to obtain a relevance score. These
relevance scores are then aggregated with docu-
ment scores to rerank the candidate documents,
per Eq (1). The notebook setting allows a user to
step through each part of the process and examine
intermediate results to gain a better understanding
of our approach.

In addition, we have implemented two meth-
ods to visualize the relevant documents for a given
query from a test collection, hopefully conveying
even more insights. First, we generate a table that
displays the document scores juxtaposed with the
BERT scores of constituent sentences. Sentences
with low document scores but high BERT scores
(and vice versa) are highlighted, allowing the user
to examine the relative contributions of exact term
matching and semantic matching, as contributed
by BERT. Second, we incorporate bertviz,9 an
open-source tool for visualizing attention in trans-
former models, to explore the interaction between
multiple attention heads. In Figure 3, we show a
sentence with a high BERT score in a document
retrieved for query 322 “international art crime”
from Robust04. Note that this sentence does not

9https://github.com/jessevig/bertviz

Figure 3: Screenshot of attention visualization for a
sentence with a high BERT score from a document re-
trieved for the query “international art crime”. Note the
lack of exact matches with query terms.

contain any of the query terms, but yet appears
to be relevant. If we examine the attention vi-
sualization for the query term “crime”, we see
that the model attends to obviously-related terms
like “thieves”, “demand”, and “ransom”, illustrat-
ing the semantic knowledge that is captured in the
BERT model.

6 Conclusions

This paper describes the system architecture and
motivation behind a straightforward application
of BERT to document ranking, via sentence-level
inference and simple score aggregation. With
the implementation of this system, we have also
overcome the technical challenge of integrating a
Lucene-based backend on the JVM with PyTorch
to enable development in an environment NLP
researchers and practitioners are already familiar
with. The fruits of our labor are released in an
open-source system for the community to continue
explorations in search-related tasks with BERT.

Acknowledgments

This research was supported by the Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada, and enabled by computa-
tional resources provided by Compute Ontario and
Compute Canada.

23

References
M. Abualsaud, G. Cormack, N. Ghelani, A. Ghenai,

M. Grossman, S. Rahbariasl, M. Smucker, and
H. Zhang. 2018a. UWaterlooMDS at the TREC
2018 Common Core Track. In TREC.

M. Abualsaud, N. Ghelani, H. Zhang, M. Smucker,
G. Cormack, and M. Grossman. 2018b. A system
for efficient high-recall retrieval. In SIGIR, pages
1317–1320.

N. Asadi and J. Lin. 2013. Effectiveness/efficiency
tradeoffs for candidate generation in multi-stage re-
trieval architectures. In SIGIR, pages 997–1000.

P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao,
X. Liu, R. Majumder, A. McNamara, B. Mitra,
T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Ti-
wary, and T. Wang. 2018. MS MARCO: A hu-
man generated MAchine Reading COmprehension
dataset. arXiv:1611.09268v3.

G. Cormack and M. Grossman. 2014. Evaluation of
machine-learning protocols for technology-assisted
review in electronic discovery. In SIGIR, pages 153–
162.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transform-
ers for language understanding. In NAACL, pages
4171–4186.

L. Dietz, M. Verma, F. Radlinski, and N. Craswell.
2017. TREC Complex Answer Retrieval overview.
In TREC.

J. Lin, M. Crane, A. Trotman, J. Callan, I. Chattopad-
hyaya, J. Foley, G. Ingersoll, C. Macdonald, and
S. Vigna. 2016. Toward reproducible baselines: The
open-source IR reproducibility challenge. In ECIR
2016, pages 408–420.

J. Lin, M. Efron, Y. Wang, and G. Sherman. 2014.
Overview of the TREC-2014 Microblog Track. In
TREC.

S. MacAvaney, A. Yates, A. Cohan, and N. Goharian.
2019. CEDR: Contextualized embeddings for docu-
ment ranking. In SIGIR, pages 1101–1104.

B. Mitra and N. Craswell. 2019. An introduction
to neural information retrieval. Foundations and
Trends in Information Retrieval, 13(1):1–126.

A. Nasreen, J. Allan, W. B. Croft, F. Diaz, L. Larkey,
X. Li, D. Metzler, M. Smucker, T. Strohman, H. Tur-
tle, and C. Wade. 2004. UMass at TREC 2004: Nov-
elty and HARD. In TREC.

R. Nogueira and K. Cho. 2019. Passage re-ranking
with BERT. arXiv:1901.04085.

I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. 2011.
Overview of the TREC-2011 Microblog Track. In
TREC 2011.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
SQuAD: 100,000+ questions for machine compre-
hension of text. In EMNLP 2016, pages 2383–2392.

J. Rao, W. Yang, Y. Zhang, F. Ture, and J. Lin. 2019.
Multi-perspective relevance matching with hierar-
chical ConvNets for social media search. AAAI,
pages 232–240.

P. Shi, J. Rao, and J. Lin. 2018. Simple attention-based
representation learning for ranking short social me-
dia posts. In NAACL, pages 2212–2217.

E. Voorhees. 2004. Overview of the TREC 2004 Ro-
bust Track. In TREC 2004, pages 52–69.

P. Yang, H. Fang, and J. Lin. 2017. Anserini: Enabling
the use of Lucene for information retrieval research.
In SIGIR 2017, pages 1253–1256.

P. Yang, H. Fang, and J. Lin. 2018. Anserini: Repro-
ducible ranking baselines using Lucene. Journal of
Data and Information Quality, 10(4):Article 16.

W. Yang, K. Lu, P. Yang, and J. Lin. 2019a. Critically
examining the “neural hype”: weak baselines and the
additivity of effectiveness gains from neural ranking
models. In SIGIR, pages 1129–1132.

W. Yang, Y. Xie, A. Lin, X. Li, L. Tan, K. Xiong, M. Li,
and J. Lin. 2019b. End-to-end open-domain ques-
tion answering with BERTserini. In NAACL Demo,
pages 72–77.

W. Yang, H. Zhang, and J. Lin. 2019c. Simple ap-
plications of BERT for ad hoc document retrieval.
arXiv:1903.10972.

Y. Yang, W. Yih, and C. Meek. 2015. WikiQA: A chal-
lenge dataset for open-domain question answering.
In EMNLP, pages 2013–2018.

Z. Akkalyoncu Yilmaz, W. Yang, H. Zhang, and J. Lin.
2019. Cross-domain modeling of sentence-level ev-
idence for document retrieval. In EMNLP.

H. Zhang, M. Abualsaud, N. Ghelani, A. Ghosh,
M. Smucker, G. Cormack, and M. Grossman. 2017.
UWaterlooMDS at the TREC 2017 Common Core
Track. In TREC.

H. Zhang, M. Abualsaud, N. Ghelani, M. Smucker,
G. Cormack, and M. Grossman. 2018a. Effective
user interaction for high-recall retrieval: less is more.
In CIKM, pages 187–196.

H. Zhang, G. Cormack, M. Grossman, and
M. Smucker. 2018b. Evaluating sentence-level
relevance feedback for high-recall information
retrieval. arXiv:1803.08988.

24

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 25–30
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Automatic Taxonomy Induction and Expansion

Nicolas Rodolfo Fauceglia, Alfio Gliozzo, Sarthak Dash,
Md Faisal Mahbub Chowdhury and Nandana Mihindukulasooriya

IBM Research AI, Yorktown Heights, NY, USA
{nicolas.fauceglia, nandana.m} @ibm.com
{gliozzo, sdash, mchowdh} @us.ibm.com

Abstract
The Knowledge Graph Induction
Service (KGIS) is an end-to-end knowl-
edge induction system. One of its main
capabilities is to automatically induce tax-
onomies1 from input documents using a
hybrid approach that takes advantage of
linguistic patterns, semantic web and neural
networks. KGIS allows the user to semi-
automatically curate and expand the induced
taxonomy through a component called smart
spreadsheet by exploiting distributional
semantics. In this paper, we describe these
taxonomy induction and expansion features of
KGIS. A screencast video demonstrating the
system is available in https://ibm.box.
com/v/emnlp-2019-demo .

1 Introduction

Knowledge Graph Induction Service
(KGIS) is an end-to-end knowledge graph (KG)
induction system. Among other capabilities,
it enables automatic taxonomy induction and
human-in-the-loop curation. The output taxon-
omy representation can be used by downstream
applications such as dialog systems and search
engines.

The taxonomy is induced directly from the in-
put documents by a combination of different ap-
proaches: one based on linguistic-patterns, an-
other that leverages the semantic-web, and finally
a novel neural network for cleaning and expand-
ing taxonomies. The induced taxonomies are ac-
cessible through another component of the KGIS
called Smart Spreadsheet (SSS), which
consists of an editable interactive tabular grid
where the first row contains induced types (aka
hypernyms), and each corresponding column con-
tains its instances (aka hyponyms), henceforth,
simply types and instances.

1A taxonomy is a classification of things or concepts.

Using the SSS, the user can refine the au-
tomatically induced taxonomy, both by remov-
ing wrong types or instances, and by further ex-
panding the instances of a particular type. This
is accomplished by leveraging its main features:
auto-complete 2, type-suggestion, and automatic
population from semantic web and distant super-
vision using external Knowledge Graphs (KG).
KGIS also allows taxonomies to be exported in
RDF/OWL representation with the terms linked to
Wikidata3 entities (Vrandečić, 2012).

We describe the use case in question in Section
2, followed by the system description for taxon-
omy induction component in Section 3. Then, in
Section 4, we illustrate how the features of the SSS
can be used for taxonomy curation and expansion.
Finally, in Section 5 we conclude by discussing
example outputs of the system.

2 Use Case Scenario

A typical KGIS user has a collection of documents
that contain knowledge about a specific domain.
The size of the collection makes human analysis
or annotation impractical (slow and expensive).
Therefore, the user ingests its collection into the
KGIS, and fires a KG Induction job. Depending
on the size of the collection, in minutes or a few
hours the system provides the following artifacts:
an annotated corpus, a terminology, a type embed-
ding model, and different types of taxonomies that
can be further refined.

2The option of completing terms by selecting from a sug-
gested list of terms on the basis of the letters that has been
already typed by the user.

3https://www.wikidata.org

25

Figure 1: KGIS home

3 System Description

3.1 Input processing and annotation
The input of the system is a collection of doc-
uments. The corpus creation process transforms
different formats of inputs (txt, json, pdf, word,
etc) into a standard document format. This is done
through the Document Conversion Service API in
IBM Cloud

TM 4.
After corpus creation, the system annotates

terms (analyzing all noun phrases). This is done
through the usage of IBM Watson R© NLU API5.
Next, all terms that have a frequency greater than
a threshold (specified by the user during KG In-
duction, see figure 3) are combined to form the
terminology.

3.2 Type Models
As part of the pipeline, the system builds a type
model, which captures type similarity between two
given domain terms (e.g. SVM and Logistic Re-
gression are both of type supervised learning al-
gorithm). To do so, the system trains a Word2Vec
model (Mikolov et al. (2013)) using Gensim6 with
a CBOW configuration of window size 2. The
reason for this choice is that type similarity is
captured by analyzing the local context around
the terms. In addition, other input parameters
for this model (e.g., embedding dimensions, min-
frequency, learning rate, etc.), can be provided by
the user while firing the KG Induction.

3.3 Taxonomy Induction
The Taxonomy Induction module takes the anno-
tated corpus (see Section 3.1) and identifies is-a
relations between pairs of terms. KGIS uses three

4https://cloud.ibm.com/docs/cli
5https://cloud.ibm.com/apidocs/

natural-language-understanding
6https://radimrehurek.com/gensim/

different approaches for inducing shallow (i.e., not
hierarchical) taxonomies, as described in the fol-
lowing sections. The results of each approach are
presented as an SSS where the users can manually
validate the generated taxonomies and further cu-
rate them (see Section 4.

3.3.1 Pattern-Based Approach
For extracting type-instance relationships, i.e. is-a
pairs, the system makes use of 24 lexico-syntactic
patterns (e.g., “NPy is a NPx”), aka Hearst-like
patterns (Hearst (1992)). Once the is-a pairs are
extracted, the system applies the following pre-
processing steps. First, the list of is-a pairs are
represented as a graph by considering each pair
as an edge, and the corresponding terms as nodes.
The weight of each edge is the count of how often
a pair has been extracted by pattern-matching.

The system excludes any cycle inside the graph;
e.g. if (x, y), (y, z) and (z, x) are present in the list
of extracted is-a pairs, then all of them are dis-
carded. KGIS also discards all edges that have a
value lower than a frequency threshold f, which
is specified by the user. KGIS checks all types
and tries to identify potential proper nouns among
them, using the following heuristic – a term x1
would be considered as a proper noun if all the
following three conditions hold: (i) it is not a sub-
string of a type x2 and vice-versa, (ii) x2 is a type
of x1, and (iii) x2 belongs to a list of types7 that
are known to have massive amount of proper noun
instances. If a type is identified as a proper noun,
KGIS discards all edges that link the term as type
with any other term.

The next step of the pre-processing is to expand
the list of pairs in the graph with likely (but not
yet extracted) pairs of nested term types and super

7To be specific, “person”, “place”, “organization”, and
“name”.

26

Figure 2: Taxonomy induction and expansion/curation workflow.

Figure 3: KG induction

term instances. A nested term is a term that is part
of a larger term (called super term).8 Often there
are types that are nested terms in one or many of
their instances. For example, the type “bank” is
a nested term in instances “Capital One Bank

TM
”,

“Chase Bank
TM

” and “Bank of America
TM

”.
KGIS builds a nested term search index

8For example, the terms “IBM” and “Corporation” are
nested terms in their super term “IBM Corporation”.

(Chowdhury and Farrell, 2019) using the list of re-
maining is-a pairs. For every single word type9,
the system identifies corresponding super terms
from the index which are not already identified by
the Hearst-like patterns as potential instances. If
the type is the syntactic head word of one of these
super terms, then KGIS adds that super term as a
type in the list of is-a pairs.

The final list of pairs after all these steps is the
output of the Pattern-Based approach.

3.3.2 Semantic Web Based Approach
Wikidata is a comprehensive cross-domain source
of knowledge semantically represented using RDF
and OWL. It contains a large amount of taxo-
nomic information with relations such as rdf:type
or rdfs:subClassOf. The semantic web based ap-
proach for candidate generation in KGIS con-
sists on linking the terms identified in terminol-
ogy extraction to Wikidata entities and discover-
ing is-a relations between them using the back-
ground knowledge. Linking is done by approxi-
mate matching of the surface from of the term with
the label and the aliases of the Wikidata candidate
entity.

Once the initial list of is-a pairs is extracted, fur-
ther filtering is performed to eliminate terms that
might be erroneously linked. This is done by com-
paring the type-instance similarity and pairwise

9We avoid multi-word types as we found that exploitation
of them results in significant amount of erroneous is-a pairs.

27

instance-instance similarity (using the Type model
mentioned in Section 3.2) against a threshold that
is provided as a parameter.

3.3.3 Neural Network Based Approach
Is-a relations are reflexive and transitive but not
symmetric (Miller et al., 1990; Hearst, 1992). Us-
ing ideas from order theory, we can model these
relations as strict partial order relations, i.e. a bi-
nary relation that is transitive, asymmetric and ir-
reflexive.

We developed STRICT PARTIAL ORDER NET-
WORKS (SPON), a novel neural network archi-
tecture comprising of non-negative activations and
residual connections designed to enforce strict
partial order as a soft constraint. We use SPON as
a component within the KGIS platform to model
is-a relationships among pairs that have been gen-
erated from the approaches described in the previ-
ous Sections 3.3.1 and 3.3.2.

SPON works in three stages. In the first stage, it
models the is-a relationships extracted in the pre-
vious steps and aims to provide a score to each
individual is-a pair. In the second stage, it uses
the same learned model in order to generate a top-
k ranked list of types for every term present in
the terminology. Finally, it ranks the accumulated
is-a relationships generated in the previous steps
according to certain user-specified criterion, and
presents it back to the user.

Stage One. The purpose of this step is to score
existing is-a relationships T . This stage assumes
that a true is-a relationship t is more likely to be
inferred correctly, as opposed to a false relation-
ship f when evaluated against a SPON model that
has been trained using other is-a relationships i.e.
T \ {t, f}.

Following the assumption, the list of existing is-
a relationships obtained via either Pattern based
approaches or Semantic Web based approaches,
are divided into k-folds. k independent SPON
processes are then run in parallel, each process
then trains upon k-2 folds, performs early stop-
ping based on evaluations on the (k-1)th fold and
finally generates scores for the kth fold. The re-
sults for each fold are then concatenated together
to generate the output O1 of Stage One.

Stage Two. The purpose of this step is to gener-
ate a ranked list of types for all the terms extracted
in the Terminology extraction step (Section 3.1),
but was not included in the list of is-a relationships

extracted using either Pattern based or Semantic
Web based approaches.

Following similar approach as of Stage One, the
list of existing is-a relationships are divided into
k-folds. k independent SPON processes are then
run in parallel, wherein each process trains upon
k-1 folds, performs early stopping based on eval-
uations on the (k-1)th fold and finally generates a
ranked list of types for all the terms in the Termi-
nology.

Once all the SPON processes are over, we ob-
tain k different ranked lists of types for each term
in the Terminology. These ranked lists are then
averaged to obtain a single ranked list of types per
term. This generated output O2 then behaves as
output for Stage Two.

Stage Three. Concatenating the results O1 and
O∈ from previous stages, we obtain an extended
list of ranked instances for each type.

This stage, then works in two steps, in the first
step all the instances for a given type whose score
is less than a threshold θ are removed. In the sec-
ond step, the types are then ranked by an average
score of its top m instances.

Note that the parameters θ andm are entered by
the user. The output of this step provides the final
result for SPON component in KGIS.

4 Knowledge Curation using the Smart
Spreadsheet (SSS)

The KGIS framework features a novel way of in-
teracting with the induced knowledge called Smart
Spreadsheet (SSS). The cells in an SSS correspond
to the nodes in a KG 10. In addition, within an
SSS, the first row is reserved for induced types,
and other cells in each column contain instances
of the corresponding type (i.e. the term in the
1st row of the column). Functionality wise, SSS
provides: auto-complete of term names, for eas-
ily identifying terms matching an input text; type-
suggestion, to help the user assign a type to a set of
instances, and also suggestion of similar or related
terms given existing ones.

Each time a new taxonomy is created (Section
3.3), it is also saved as an SSS so that the user
can modify it to match their business needs. In
the description that follows, the example snap-
shots following the functionality descriptions are
taken from an automatically induced taxonomy,

10cells whose content does not match the terminology are
painted red

28

Term Predicted types
dicoumarol drug, carbohydrate, acid, person, service , ...
Planck person, particle, physics, elementary particle, service, ...
Belt Line main road, infrastructure, transport infrastructure, expressway, way, ...
relief service, assistance, resource, support, aid, ...
honesty virtue, ideal, moral philosophy, philosophy, chastity, ...
shoe footwear, shoe, footgear, overshoe, sandal, ...
ethanol alcohol, fuel, person, fluid, resource, ...
ruby language, precious stone, person, resource, stone, ...

Table 1: Examples of ranked predictions (from left-to-right) made by our system on a set of eight randomly selected
test queries from SemEval 2018 English dataset. Types predicted by SPON that match the gold annotations are
highlighted in bold, while we use underline for predictions that we judge to be correct but are missing in the gold
standard expected types.

obtained by running the steps described in Sec-
tion 3.3 on a corpus of scientific papers from the
NeurIPS conference.

Firstly, given a list of few terms by the user sup-
posedly belonging to a type, SSS has the ability
to generate additional terms belonging to the same
type using the following three options,

• Populate from seeds. The embeddings for
the user-entered terms are averaged together
to create a centroid vector; and a nearest
neighbor algorithm is run across all the terms
in the terminology to obtain additional terms
belonging to the same type.

• Populate from KG Type. This option is only
available when the user has found a match-
ing type from the Semantic Web (using type
suggestion). It allows the user to get the in-
stances in the target KG are of this column’s
type and are also present in the corpus’ termi-
nology.

• Populate from KG, Distant Supervision.
This option also requires a selected KG type,
and it is a combination of the previous two
techniques: it retrieves more instances of the
given type from the KG, then it combines
them with the ones already in the column
(seeds) and applies the same ‘populate from
seeds‘ technique.

Figure 4b shows a snapshot of the KGIS sys-
tem that demonstrates the Populate from fea-
ture. In this example, the user enters the name of a
few algorithm names as instances, sets algorithm
as the type, then selects a few cells and right-clicks
to invoke the window containing the Populate
from feature.

In addition, SSS provides an auto-complete fea-
ture, i.e. the option of completing terms wherein
the list of displayed terms conform to the Termi-
nology extraction step as discussed in Section 3.1.
For example, in figure 4a as soon as the user types
the term spectral, the system suggests mean-
ingful possible terms to auto-complete based on
the input corpus.

5 Conclusion and Future Work

Table 1 shows the result of applying our KGIS sys-
tem on the English Domain corpus of the SemEval
2018 Hypernym Detection shared task. Two sets
of four query terms (from test set input) are chosen
at random. The first four terms have correspond-
ing is-a pairs in the gold annotation provided by
the task organizers, whereas the final four terms
do not. The right hand column presents a ranked
list of types for each query term.

Note that the correct types in the gold label test
set are set in bold, whereas underlined terms are
the types which we believe to be correct. This
qualitative example, together with the academic
benchmark results (not reported in this demo pa-
per) together demonstrate that our system is the
state of the art in discovering is-a pairs from text.

In conclusion, we have introduced the
Knowledge Graph Induction Service
(KGIS), an end-to-end knowledge induction
system, which provides numerous functionalities,
most notably automatic taxonomy induction. The
learned taxonomy is instantiated via a Smart
Spreadsheet, which allows users to make
changes as and how they see fit. The KGIS
framework reduces the need of costly human
annotations (i.e. it can automatically induce

29

(a) AutoComplete feature in Smart Spreadsheet. (b) Smart Spreadsheet Feature: Allowing automatic population.

Figure 4: Features for Smart Spreadsheet.

taxonomies), but at the same time allows for a
human-in-the-loop to interact with it, thereby
ensuring that the user has always the final say in
all the system outputs.

In the future, we plan on developing customer-
centric downstream applications for using this
framework. In addition, we also plan on working
upon additional knowledge centric problems, such
as Unsupervised Relation Induction to provide ad-
ditional facets to our proposed framework.

References
Md. Faisal Mahbub Chowdhury and Robert Farrell.

2019. An efficient approach for super and nested
term indexing and retrieval. CoRR, abs/1905.09761.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 15th International Conference on
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. J. Miller. 1990. Introduction to WordNet: an on-
line lexical database. International Journal of Lexi-
cography, 3(4):235–244.

Denny Vrandečić. 2012. Wikidata: A new platform for
collaborative data collection. In Proceedings of the
21st international conference on world wide web,
pages 1063–1064. ACM.

30

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 31–36
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

CFO: A Framework for Building Production NLP Systems

Rishav Chakravarti1 Cezar Pendus2 Andrzej Sakrajda2 Anthony Ferritto1

Lin Pan1 Michael Glass2 Vittorio Castelli2 J. William Murdock1

Radu Florian2 Salim Roukos2 Avirup Sil2∗

1IBM Watson, 2IBM Research AI

{rchakravarti, cpendus, ansa, panl, mrglass, vittorio, murdockj, raduf, roukos, avi}@us.ibm.com
aferritto@ibm.com

Abstract
This paper introduces a novel orchestra-
tion framework, called CFO (COMPUTATION
FLOW ORCHESTRATOR), for building, ex-
perimenting with, and deploying interactive
NLP (Natural Language Processing) and IR
(Information Retrieval) systems to produc-
tion environments. We then demonstrate a
question answering system built using this
framework which incorporates state-of-the-art
BERT based MRC (Machine Reading Com-
prehension) with IR components to enable
end-to-end answer retrieval. Results from the
demo system are shown to be high quality in
both academic and industry domain specific
settings. Finally, we discuss best practices
when (pre-)training BERT based MRC mod-
els for production systems.

1 Introduction

Production NLP (Natural Language Processing)
and IR (information retrieval) applications often
rely on a system flow consisting of multiple com-
ponents that need to be woven together to build an
end-to-end system (A. Ferrucci et al., 2010; Yang
et al., 2019). This paper presents a novel approach
for defining flow graphs and a toolkit for compil-
ing those definitions into deploy-able production
grade systems1.

Though the framework, which we refer to as
CFO (COMPUTATION FLOW ORCHESTRATOR),
is well suited to a variety of use cases, we demon-
strate it by creating an interactive QA (Ques-
tion Answering) system that can be used both for
academic benchmarking as well as industry spe-
cific use cases. The interactive system integrates
SOTA (state-of-the-art) BERT-based MRC (Ma-
chine Reading Comprehension), an Elasticsearch

∗ Corresponding author.
1We are actively seeking to open source the toolkit and

flow definition language. If successful, we will be releasing
the code to http://ibm.biz/cfo_framework

based document retrieval component, and a de-
duplication & sorting component to provide end-
to-end answer retrieval. We will refer to this
demonstration system as GAAMA (Go Ahead,
Ask Me Anything). The key contributions of this
work, therefore, are to (1) introduce a novel frame-
work for stitching together deployable NLP com-
ponents, (2) demonstrate the framework with an
end-to-end QA system, and (3) discuss the training
steps necessary for adapting a SOTA MRC model
to a data set before plugging it into the QA system.

Section 2 provides the motivations and de-
tails of the CFO framework, section 3 discusses
the specific model components integrated into
GAAMA, section 4 discusses experimentation to
adapt the BERT-based MRC component to this
system, section 5 discusses related work, and, fi-
nally, section 6 provides a conclusion and discus-
sion of future work.

In addition, a (private) screencast video demon-
stration of GAAMA has been uploaded at http:
//ibm.biz/gaama_demo (along with a sup-
plementary presentation of the CFO framework at
http://ibm.biz/gaama_cfo_demo).

2 CFO Architecture

The CFO framework relies on two sets of sys-
tem specifications to define the computation flow
graph. First, each node within the graph defines
its service name, input message data fields, and
output message data fields using Google’s Proto-
col Buffer Interface Definition Language2. Sec-
ond, the orchestrator is described using a custom
specification format allowing the user to declare:

1. The set of nodes (provided as containerized
gRPC3 microservices). Each node will have

2https://developers.google.com/
protocol-buffers/

3https://grpc.io/

31

implemented a microservice according to the
node’s declared interface specification.

2. The set of nodes to treat as entry points to the
flow graph.

3. A mapping within the flow for each data el-
ement comprising the input and output mes-
sage interfaces for nodes.

4. For ease of deployment, the specification
also provides the ability to describe deploy-
ment specific configuration settings like ser-
vice ports, docker registry location etc.

Given these specification files, CFO provides
a compiler to auto-generate an orchestrator node
which implements the computation flow graph, a
(dockerized) launch script, and a simple REST in-
terface / GUI which provide access to the defined
entry points and debug information.

The resulting design allows data flows and de-
pendencies to be described both concisely and
transparently. The flow specification allows for
easy debugging and modification of how data
fields enter the computation flow, get transformed,
and finally outputted. This is a significant depar-
ture from traditional orchestration systems which
would require parsing through source code to de-
termine and change the route taken by data fields
through the computation flow. Furthermore, the
use of Protocol Buffers to describe these data
fields ensures a language and platform agnostic
representation that does not compromise the sys-
tem’s speed or ability to ensure data type cor-
rectness at compile time (as opposed to tradi-
tional JSON/XML representations which need to
encode/decode from strings at run time).

Another benefit of the CFO toolkit is to auto-
generate the serialization and connectivity code
for each node as well as exposing the entry points
via REST interfaces. Relinquishing this respon-
sibility to the CFO toolkit frees the developer
up from writing a significant amount of boiler-
plate code and worrying about distributed system
best practices such as enforcing time outs, error
propagation, latency logging, and parallelization
through asynchronous calls. As an illustrative ex-
ample, the auto-generated code for the GAAMA
demo consists of 2,800 lines of C++ orchestration
code.

Finally, the CFO toolkit generates a set of shell
scripts, docker images, and config files for de-
ploying and running the flow graph using either

Elastic
Server

Pre-Ingest
Document Corpus

1. Ask a
Question

GAAMA (built on CFO)

2. Retrieve
Candidate

Documents

BERT
for QA

3. Extract
Answer Spans

5. Receive
Answer

Snippets in
Context

Combiner

4. De-duplicate
& Sort

Figure 1: GAAMA System Architecture

docker-compose4 or kubernetes5. This allows the
generated project to be deployed both locally for
debugging as well as on modern cloud infrastruc-
ture.

3 GAAMA Architecture

As a simple case study for CFO, we create
a demonstration QA system consisting of four
nodes: (1) an Elasticsearch6 based IR node (2)
a BERT based MRC node (3) an answer “de-
duplication” node and (4) a final answer combiner
node. See fig. 1 for an overview of the QA system.

As described in section 2, each component
starts by declaring an interface specification allow-
ing the underlying implementation to be swapped
out without the need to modify the rest of the
QA system. Next, a gRPC server is implemented
with the core business logic. Auto-generated
gRPC code stubs provide the core communica-
tion/serialization logic for the service layer of the
server. We describe the IR and MRC nodes in fur-
ther detail in the following two sections.

3.1 IR with Elasticsearch
The core business logic of the IR node uses Elas-
ticsearch APIs to retrieve the top k documents
from the appropriate corpus based on BM25, a
popular variant of term frequency overlap between
the query and document text (Robertson et al.,
1976). Two document corpora are ingested us-
ing the standard English analyzer. The first cor-
pus consists of Wikipedia paragraphs used for aca-
demic benchmarking and the second corpus con-
sists of an industry dataset made up of IBM Tech-
nical Support Documentation. The user interface
allows us to choose either corpus when asking

4https://docs.docker.com/compose/
5https://kubernetes.io/
6https://www.elastic.co/products/

elasticsearch

32

questions to evaluate the system. We use “para-
graphs” as the base unit of ingestion in line with
(Yang et al., 2019) which shows this as an optimal
pre-processing step for consumption by a MRC
component.

The node’s input interface, therefore, accepts
query text, a hyperparameter k, and a target corpus
identifier. Its output interface produces a list of
document texts accompanied by retrieval scores.
As discussed earlier, these interfaces are defined
using protocol buffer definitions, so we follow
standard steps7 for auto-generating a gRPC server
with placeholders for the custom business logic of
retrieving documents. Similarly, with the server
logic in place, we follow standard steps8 to cre-
ate a docker image that CFO will need to launch
the gRPC server. Though we are wrapping Elas-
ticsearch’s index based retrieval implementation
here, we can swap our implementation for more
recent Neural IR based techniques (Craswell et al.,
2017) without changing the exposed interface or
the orchestration code.

3.2 MRC with BERT

The MRC node similarly wraps a BERT-for-QA
model in a dockerized gRPC server which accepts
a single query-document pair as its input and pro-
duces a span from the document along with a pre-
diction score as its output. Note that CFO’s or-
chestrator automatically realizes that the IR node
produces a list of documents, while the MRC node
accepts a single document at a time. So CFO will
take care of calling the MRC node for each of the k
retrieved documents (using asynchronous calls to
parallelize requests if a configuration flag is set).

The underlying BERT-for-QA model is based
on (Alberti et al., 2019). BERT (Devlin et al.,
2018) is one of a series of pre-trained neural mod-
els that can be fine tuned to provide state-of-the-
art results in NLP (Peters et al., 2018; Howard
and Ruder, 2018; Radford et al., 2019) including
on the SQuAD (Rajpurkar et al., 2018) and NQ
(Kwiatkowski et al., 2019) tasks that align with
our MRC based QA.

We use the Huggingface PyTorch implementa-
tion of BERT 9 which supports starting from a
Base (a 12 layer, 768 hidden dimension, 12 atten-

7https://grpc.io/docs/tutorials/
8https://github.com/grpc/

grpc-docker-library/
9https://github.com/huggingface/

pytorch-transformers

Answerability Prediction Start / End Position Predictions

…

…

E[CLS] E1 EN E[SEP] E’1 E’M……

C T1 TN T[SEP] T’1 T’M……

[CLS] Question [SEP] Candidate Paragraph

BERT

Figure 2: BERT for QA (Devlin et al., 2018)

tion head, 110M parameter transformer network)
or a Large (a 24 layer, 1024 hidden dimension, 16
attention head, 340M parameter transformer net-
work) model. An output feed forward layer is
added on top of this to produce 3 sets of scores:
(1) scores at each token offset marking the like-
lihood of an answer chunk starting at this offset
(2) scores at each token offset marking the likeli-
hood of an answer chunk ending at this offset (3)
a score for the entire sequence marking the like-
lihood of the question being answerable given the
current context.

The parameters of the entire network are fine
tuned using a set of question and document pairs
where annotators provide the correct start and end
offsets or have marked the question-document pair
as having no correct answer. Refer to fig. 2 for a
visual depiction of the model and to (Alberti et al.,
2019) for additional details about model architec-
ture and implementation.

Section 4 includes practical pre-training, fine
tuning, and hyperparameter optimization steps
for building the final model deployed as part of
GAAMA. At the time of writing, our BERT-based
MRC model10 was the best performing submis-
sion (dated 7/31/2019), outperforming the next
best system by 1% on F1 on the Natural Questions
public leaderboard11.

4 Experiments

Prior to integration of the MRC node into
GAAMA, we first experiment with data prepa-
ration and training of the BERT MRC model as
a standalone component using dev sets provided
with the NQ and SQuAD data sets (see 5 for more
on these data sets). NQ is preferred for evaluat-

10The best performing submission to the leaderboard
uses an ensemble of models using different hyperparameters
rather than a single model

11https://ai.google.com/research/
NaturalQuestions/leaderboard

33

F1
Prior Work
DecAtt + Doc Reader (Parikh et al., 2016) 31.4
BERT (Devlin et al., 2018) 50.2
BERT w/ SQuAD 1.1 (Alberti et al., 2019) 52.7
This Work
BERT w/ U-MRC 53.6
BERT w/ U-MRC & SQuAD 1.1 54.2
BERT w/ U-MRC & SQuAD 1.1
+ SQuAD 2.0 Data Aug 54.5

Table 1: Dev Set Performance on NQ with different
pre-training & data augmentation techniques. We also
report some baselines from (Alberti et al., 2019) for
context

ing production systems since the questions were
“naturally” generated and does not suffer from
the observational bias inherent in SQuAD’s data
collection approach (Kwiatkowski et al., 2019).
When reporting results with the SQuAD dataset,
we use the methodology (and evaluation script)
made available with (Rajpurkar et al., 2018). Sim-
ilarly, when reporting results with the NQ dataset,
we use the methodology (and evaluation script)
made available with (Kwiatkowski et al., 2019).
Once we are satisfied with the performance of this
model, we integrate into GAAMA and evaluate
manually using an internal corpus.

We use the F-score at an “optimal” threshold
for the dev set12 as the headline metric for assess-
ing the system. Latency measurements are car-
ried out using a random sample of examples on
a system with an Intel R© Xeon R© E5-2690 16-core
CPU, 2 Nvidia R© Tesla R© P100 GPUs, and 128GB
of RAM.13 We then examine the feasibility of de-
ploying base and large models in a production en-
vironment on GPUs and CPUs.

4.1 Pre-Training & Data Augmentation

We explore two types of pre-training. The first fol-
lows (Alberti et al., 2019) by leveraging a similar
task for which supervised labels are available and
pre-training the model on it before moving onto
fine tuning on the target dataset. Specifically, we
use SQuAD 1.1 (Rajpurkar et al., 2016). Table 1
shows that this strategy can provide an absolute
improvement of 2.5% over a model that starts with
just the default BERT language model.

12See http://www.ibm.biz/confidence_
thresholding for more on choosing business specific
thresholds

13We only use 1 P100 GPU or 8 CPU threads in latency
experiments

Pre-Training EM F1
BERT (Devlin et al., 2018) 78.7 81.9
BERT w/ U-MRC 82.2 85
BERT w/ U-MRC & NQ 82.6 85.4

Table 2: Dev Set Performance on SQuAD 2 with dif-
ferent pre-training strategies.

We also employ (Glass et al., 2019)’s approach
to using an unsupervised auxilary task that is bet-
ter aligned to our final task (i.e. MRC) than the
default Masked Language Model and Next Sen-
tence Prediction used in (Devlin et al., 2018) to
pre-train the BERT models. Using the Wikipedia
corpus, we create cloze style queries by masking
out terms (named entities or noun phrases) in a
sentence. Then we identify an answer bearing pas-
sage from the Wikipedia corpus that is relevant to
the query (as identified by BM25 IR). This allows
us to pre-train all layers of the BERT model in-
cluding the answer extraction weights by training
the model to extract the answer term from the se-
lected passage. Like the Masked Language Model,
this task relies on predicting a masked component
of an input sequence, but the prediction is gener-
ated by extraction rather than generation. Table 1
labels these results as “BERT w/ U-MRC” and
shows that this additional training on a MRC spe-
cific unsupervised task improves the model’s final
fine-tuned performance on the NQ task by 1.5%.
Table 2 similarly shows the benefits of these pre-
training strategies on the SQuAD 2.0 dataset.

In addition, as noted by the authors of the orig-
inal BERT-for-QA submission to SQuAD (Devlin
et al., 2018), there can be a benefit to fine tuning
the entire network with labelled examples from
multiple datasets. The last row of table 1 shows an
incremental gain of 0.3% by introducing SQuAD
2.0 during the fine-tuning phase. For now, the ad-
ditional data is simply shuffled into the first 80%
of mini batches during the fine-tuning phase.

4.2 BERT Models & Latency

Most model settings are taken from (Alberti et al.,
2019) with the exception of batch size and learn-
ing rate which are tuned using the approach from
(Smith, 2018). In addition, we experiment with
models trained on BERT base and BERT large to
understand trade-offs between latency and accu-
racy. Using the hardware described in section 4,
we evaluate F1 and latency on a subset of the NQ

34

Model F1 TG
50 TG

95 TC
50 TC

95

Base 42.5 0.05 0.49 0.53 2.32
Large 50.8 0.10 0.66 1.51 6.00

Table 3: F1 and latencies for BERT base and large
models running on GPU and CPU for a subset of the
NQ dev set. TD

K is the K-th percentile query latency in
seconds when running on device D (GPU or CPU).

dev set14. In order to decrease latency, we sim-
ulate passage retrieval to send GAAMA the most
relevant passage by selecting the first correct top
level candidate if there is one and the first (in-
correct) top level candidate if there is not. We
find in table 3 that switching from base to large
yields an 8.3% absolute increase in F1 in exchange
for 1.3x to 2.8x increases in latency. When run-
ning GAAMA on a GPU these result in manage-
able 95th percentile query latencies of less than a
second; whereas on the CPU the 95th percentile
times are in excess of two and five seconds for
base and large respectively. For large, even the
median latency is greater than one and a half sec-
onds, effectively cementing GPUs as a require-
ment for deploying to production environments. In
future work we intend to explore network pruning
or knowledge distillation techniques for potential
speedups with the large model.

5 Related Work

Recently (Yang et al., 2019) proposed BERT-
Serini, an end-to-end QA pipeline demo that lever-
ages the Anserini IR toolkit (Yang et al., 2017) to
look for relevant documents for a question, then
uses BERT-based techniques (Devlin et al., 2018)
to extract the correct answer. However, their re-
liance on a Lucene based IR toolkit means that
constructing a NLP pipeline would either require
pipeline components to be written as Lucene based
plugins (which comes with a variety of constraints
on programming language and structure) or writ-
ing custom orchestration code to connect compo-
nents outside of the toolkit. Similar constraints are
imposed by other popular NLP pipeline toolkits
such as StanfordNLP (Qi et al., 2018) and Spacy15

(both of which require development in Python
with limited flexibility in training neural models
with other frameworks such as Tensorflow16).

In contrast, CFO’s inherent programming lan-

14Used 500 random examples from dev set for experiments
15https://spacy.io/
16https://www.tensorflow.org/

guage and platform agnostic microservice archi-
tecture encourages flexibility and robustness in be-
ing able to switch out individual components with-
out re-doing boilerplate code. In addition, CFO’s
out-of-the-box support for containerization pro-
vides flexibility in the compute infrastructure that
can be leveraged for rapid deployment to both lo-
cal and cloud environments.

This flexibility is important in a domain such as
Machine Reading Comprehension (MRC) where
recent advances in language-modeling based pre-
trained embeddings like ELMO (Peters et al.,
2018) and BERT (Devlin et al., 2018) along with
large scale open data sets like the Stanford Ques-
tion Answering Dataset (SQuAD) 1.1 (Rajpurkar
et al., 2016) and its successor SQuAD 2.0 (Ra-
jpurkar et al., 2018) have spurred a diverse array of
model architecture improvements in a short time
span. Recent work has even produced systems
that surpass human-level exact match accuracy on
the SQuAD datasets, causing us to focus on the
challenging new Natural Questions (NQ) dataset
(Kwiatkowski et al., 2019) where the questions do
not have any observational bias as they were not
artificially created. To the best of our knowledge,
there is no current software framework paper that
shows its analysis on the NQ dataset and displays
strong empirical performance.

UIMA (Ferrucci and Lally, 2004) is an inte-
gration framework that provides defined APIs for
analyzing unstructured information and a shared
data structure for storing the results of that anal-
ysis. When paired with the UIMA Asynchronous
Scaleout layer (Apache UIMA Community, 2018)
and the Distributed UIMA Cluster Computing tool
(DUCC Team, 2013), this technology stack pro-
vides many of the same core capabilities that CFO
does: pipeline orchestration, microservice deploy-
ment and management, data serialization and con-
nectivity, etc. However, CFO is designed for
modern cloud environments and includes built-
in integration with docker-compose and kuber-
netes; the UIMA stack can be used with these
technologies but facilities for doing so are not
built-in to the stack so more development effort
is needed in those contexts. Also, UIMA and
CFO both require that each component expresses
its data model (including input and output speci-
fications) declaratively, but UIMA then unifies the
data model of all components into a global type hi-
erarchy, which requires some level of compatibil-

35

ity across type definitions. In contrast, CFO only
requires consistency in the data model for compo-
nents that directly connect to each other, and the
names of corresponding types and fields do not
need to match. These differences make CFO eas-
ier to use in cases where components were devel-
oped by different developers and integrated by a
third party.

6 Conclusion

This paper introduces CFO, a novel methodology
and toolkit for rapid development of production
grade systems for use cases which can be repre-
sented as computation flow graphs. We demon-
strate the use of this framework to build an end-
to-end QA system composed of a SOTA MRC
model that is adapted to answering “natural lan-
guage questions”. We also show experimentation
using the NQ dataset to illustrate training tech-
niques that can be used to build SOTA systems on
top of existing pre-trained language models like
BERT.

We are actively seeking to open source the CFO
framework and hope that, once available, the com-
munity will be able to quickly build and deploy
their own SOTA NLP components as interactive
multi-component systems. We also intend on ex-
panding GAAMA to incorporate additional QA
components to improve its performance through
approaches like query expansion for improved re-
call and network pruning for improved latency.

References
David A. Ferrucci, Eric Brown, Jennifer Chu-Carroll,

James Fan, David Gondek, Aditya Kalyanpur, Adam
Lally, J William Murdock, Eric Nyberg, John Prager,
Nico Schlaefer, and Christopher Welty. 2010. Build-
ing Watson: An overview of the DeepQA project. AI
Magazine, 31:59–79.

Chris Alberti, Kenton Lee, and Michael Collins. 2019.
A bert baseline for the natural questions.

Apache UIMA Community. 2018. UIMA Asyn-
chronous Scaleout: Version 2.10.3.

Nick Craswell, W Croft, Maarten de Rijke, Jiafeng
Guo, and Bhaskar Mitra. 2017. Sigir 2017 work-
shop on neural information retrieval (neu-ir’17).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

DUCC Team. 2013. Distributed UIMA cluster com-
puting.

David Ferrucci and Adam Lally. 2004. UIMA: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10(3-4):327348.

Michael Glass, Alfio Gliozzo, Rishav Chakravarti, An-
thony Ferritto, Lin Pan, Bhargav GP Shrivatsa, Di-
nesh Garg, and Avirup Sil. 2019. Span selection pre-
training for question answering.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. TACL.

Ankur Parikh, Oscar Tckstrm, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. EMNLP.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. NAACL.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. CoNLL. ACL.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2019. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. EMNLP.

C S. Robertson, H. Zaragoza, Stephen Robertson, and
Hugo Zaragoza. 1976. The probabilistic relevance
framework: Bm25 and beyond.

Leslie N. Smith. 2018. A disciplined approach to neu-
ral network hyper-parameters: Part 1 – learning rate,
batch size, momentum, and weight decay.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of lucene for information retrieval
research. SIGIR. ACM.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini.

36

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 37–42
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Chameleon: A Language Model Adaptation Toolkit for Automatic Speech
Recognition of Conversational Speech

Yuanfeng Song1,2, Di Jiang2, Weiwei Zhao2

Qian Xu2, Raymond Chi-Wing Wong1, Qiang Yang1,2

1Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong SAR, China

2AI Group, WeBank Co., Ltd, Shenzhen, China
{songyf, raywong, qyang}@cse.ust.hk
{dijiang, davezhao, qianxu}@webank.com

Abstract

Language model is a vital component in
modern automatic speech recognition (ASR)
systems. Since “one-size-fits-all” language
model works suboptimally for conversational
speeches, language model adaptation (LMA)
is considered as a promising solution for solv-
ing this problem. In order to compare the
state-of-the-art LMA techniques and system-
atically demonstrate their effect in conversa-
tional speech recognition, we develop a novel
toolkit named Chameleon, which includes the
state-of-the-art cache-based and topic-based
LMA techniques. This demonstration does
not only vividly visualize underlying working
mechanisms of a variety of the state-of-the-art
LMA models but also provide an interface for
the user to customize the hyperparameters of
them. With this demonstration, the audience
can experience the effect of LMA in an in-
teractive and real-time fashion. We wish this
demonstration would inspire more research on
better language model techniques for ASR.

1 Introduction

In recent years, conversational speech recognition
attracts much research attention in both academia
and industry, since it is the very premise of build-
ing intelligent conversational applications. In con-
temporary ASR systems, language model plays
an essential role of guiding the search among the
word candidates and has a decisive effect on the
quality of results (Jurafsky, 2000; Xu et al., 2018).
However, most commercial ASR products sim-
ply rely on a “one-size-fits-all” language model.
The mismatch between training and testing scenar-
ios becomes a huge obstacle to high-quality ASR
of conversational speeches in practice. Despite
its simplicity and reliability, the widely used n-
gram language model suffers the drawback of lim-
ited capacity of capturing the long-distance depen-
dencies and richer semantic information, which

greatly motivates the development of LMA tech-
niques (Gandhe et al., 2018).

Although LMA techniques are increasingly
considered as promising solutions for aforemen-
tioned limitation of n-gram language model, their
effectiveness in real-life ASR tasks has never been
systematically investigated so far. In this demon-
stration, we categorize the existing LMA models
as two paradigms: the cache-based and the topic-
based. The cache-based paradigm exploits histor-
ical observation by caching the previously used
words in recent history, and then increases the
probability of these words when predicting new
words (Kuhn and De Mori, 1990; Lau et al., 1993;
Chen, 2017). The topic models-based paradigm
relies on the latent semantics discovered by prob-
abilistic topic models, which are known for their
ability to capture the semantic correlation be-
tween words and proven promising performance
when applied to ASR systems (Chen et al., 2010;
Wintrode and Khudanpur, 2014). Besides ASR,
the topic models are also widely used in vari-
ous applications such as word analysis (Kennedy
et al., 2017), RFID data modeling (Kennedy et al.,
2017), urban perception (de Oliveira Capela and
Ramirez-Marquez, 2019) etc. We include a wide
range of LMA techniques in Chameleon and some
of them are specialized for ASR system. In
Chameleon, the LMA techniques from the above
two paradigms are implemented by conforming to
the same APIs. Hence, the users could seamlessly
switch between different LMA techniques and ob-
serve their real-time impact on ASR results. The
ultimate goal of our demonstration is to provide a
unique opportunity for the users to customize and
experience the working mechanisms of a variety
of the state-of-the-art LMA techniques in a vivid
and interactive approach. We wish it will inspire
more research on LMA in the field of ASR.

The rest of this paper is organized as fol-

37

Figure 1: The Pipeline of Language Model Adaptation for ASR

lows. In Section 2, we describe the details of the
Chameleon toolkit. In Section 3, we quantitatively
demonstrate the performance of Chameleon, fol-
lowed by the demonstration description in Sec-
tion 4. Finally, we conclude this paper in Sec-
tion 5.

2 Toolkit Description

In this section, we first describe the pipeline of
LMA used in Chameleon, then we introduce the
cache-based LMA paradigm and the topic-based
LMA paradigm respectively.

2.1 Language Model Adaptation Pipeline
The pipeline of LMA used in Chameleon is il-
lustrated in Figure 1. In the 1st-pass decoding,
the system generates a word lattice containing the
candidate results, which are further digested by
LMA. Then the adapted language model rescores
the word lattice and generate the 2nd-pass word
lattice, in which the final decoding result can be
straightforwardly obtained.

2.2 Cache-based Paradigm
There widely exists a phenomena named “word
burstiness” in natural language such as conversa-
tional speech: if a word appears once, the same
word and its semantically related words tend to

appear again in the same speech (Madsen et al.,
2005). Compared with basic n-gram model, the
cache-based paradigm stores the recent historical
information constructed by the 1st-pass decoded
word lattices. Hence, it has the ability to em-
phasize the local context and boost the probabil-
ities of recently seen words. The cache-based
paradigm is widely used in language model, e.g.
the cache model (Kuhn and De Mori, 1990) and
the self-trigger models (Lau et al., 1993). In
Chameleon, we implement the Trigger-based Dis-
criminative Language Model (DLM) proposed in
(Singh-Miller and Collins, 2007), which aims to
find the optimal string w∗ for a given acoustic in-
put, denoted as a, by the following equation:

w∗ = argmax(α logPLM (w)

+ logPAM (a|w) + 〈β, φ(a,w,h)〉) (1)

where PLM represents a back-off n-gram lan-
guage model, PAM is an acoustic model,
φ(a,w,h) maps the tuple (a,w,h) into a feature-
vector, and h is the history of a (represented as
h = {v1, · · · ,vi−1}). The parameter β is es-
timated using discriminative method such as per-
ception. By caching the history of a and the trigger
features such as the times word w appears in his-
tory h, the trigger-based DLM aims to make full

38

(a) pLSA (b) LDA

(c) WVM (d) CSTM

Figure 2: The Graphical Models of Topic Models Included in Chameleon

use of the local context for ASR decoding.

2.3 Topic-based Paradigm
The topic-based paradigm is mathematically de-
fined as below:

P (w|c) =
∑

z

P (w|z)P (z|c) (2)

where z is the latent topic, P (w|z) is word proba-
bility given the topic and P (z|c) is topic probabil-
ity given the context c. Compared with the basic
n-gram language models and cache-based models,
the topic-based adaptation is able to predict word
probability based on a long-term history and cap-
ture the long dependencies from the semantic per-
spective. A variety of topic models are included
in Chameleon and their corresponding graphical
models are illustrated in Figure 2:

• PLSA (Hofmann, 1999)

• LDA (Blei et al., 2003)

• Word Vicinity Model (WVM) (Chen et al.,
2010)

• Conversational Speech Topic Model (CSTM)
(Song et al., 2019)

The CSTM model is a newly designed topic model
that is specialized for conversational speech. From

the graphical model of CSTM in Figure 2(d), we
can see that CSTM represents the words in a
speech dialogue corpus D as mixtures of K “top-
ics” and each “topic” is represented as a multino-
mial distribution over vocabulary of size V with
Dirichlet prior β. The topic distribution θ for each
speech dialogue is multinomial from a Dirichlet
prior with parameter α, and each word w in a
speech dialogue is drawn from a multinomial dis-
tribution of topic assignment z of the sentence
it belongs to. Compared with traditional topic
models such as LDA, CSTM has the ability to
capture the utterance boundaries by constraining
all the words in the same sentence sharing the
same topic. In addition, CSTM explicitly models
the “word burstiness” phenomena by allowing the
word probability in the same topic varies in differ-
ent documents, which is quite different from tradi-
tional topic models since their word probability in
the same topic is usually fixed. The model learn-
ing process of CSTM is inspired by the induc-
tive transfer learning mechanism (Pan and Yang,
2010) to make use of currently parallel training
frameworks for LDA (Yuan et al., 2015) and well-
trained open-sourced topic models (Jiang et al.,
2018).

We conduct a linear interpolation between the
conventional n-gram language model and the un-

39

igram model produced by the topic-based or the
cache-based LMA techniques as below:

pd(w|C) =λPTM (w|c)||PCache(w|c)
+ (1− λ)PLM (w|c) (3)

where PLM (w|c), PTM (w|c) and PCache(w|c) are
the probability given by n-gram language model,
topic-based language model and cache-based lan-
guage model respectively. λ is a trade-off param-
eter and empirically set by users. More sophisti-
cated interpolation method such as (Della Pietra
et al., 1992) can also be adopted for better perfor-
mance.

3 Performance of Chameleon

In this section, we briefly describe the perfor-
mance of some the aforementioned LMA tech-
niques in terms of perplexity and Word Error Rate
(WER). We use a custom service dataset in Man-
darin Chinese with around 1000 hours dialogue
speech in the experiments. 80% of speech data
is used to train a full-fledged ASR system using
Kaldi “chain” model, and the rest 20% of data is
reserved for development and testing.

3.1 Perplexity

Figure 3 compares the perplexity (PPL) of the
LMA techniques in Chameleon on testing data.
In order to ensure the fairness of the compari-
son, all methods under study are trained based
upon the transcript of the training data. We fur-
ther adapt the n-gram language model with PLSA,
LDA, Trigger-based DLM, WVM and CSTM re-
spectively, which results in the following adapted
language models: n-gram+PLSA, n-gram+LDA,
n-gram+Trigger-based DLM, n-gram+WVM, n-
gram + CSTM.

From Figure 3, we can observe that all the LMA
techniques in Chameleon are effective at reduc-
ing the perplexity of testing data, indicating that
they are helpful in predicting the words in test-
ing data. Among all LMA techniques, CSTM
achieves much lower perplexity than the other
topic-based methods. This confirms the assump-
tion that the latent topics discovered by CSTM
provides valuable long-range dependency infor-
mation of words. The superiority of CSTM over
LDA shows that CSTM provides better fit for con-
versational data.

Figure 3: Perplexity Evaluation

Figure 4: WER Evaluation

3.2 Lattice-rescoring

Since the ultimate goal of LMA is to improve ASR
results, we further examine and compare the effec-
tiveness of the LMA techniques in Chameleon in
term of WER. Figure 4 presents the WER of all
LMA techniques in Chameleon. This result shows
that the LMA techniques in Chameleon is effec-
tive to reduce the errors in ASR results, indicat-
ing that utilizing the long-distance dependencies
and richer semantic information is critical for ASR
systems.

4 Demonstration Description

In this section, we describe the testbed ASR sys-
tem and user interface of this demonstration. The
goal of the demonstration is to provide a interac-
tive approach for the users to experience the work-
ing mechanisms of a variety of the state-of-the-art
LMA techniques mentioned above.

4.1 Testbed ASR System

The whole system is deployed on a machine
with 314GB memory, 72 Intel Core Processor
(Xeon), Tesla K80 GPU and CentOS. We trained a
full-fledged ASR system based on conversational

40

Figure 5: The User Interface of Chameleon

speeches collected from real-life customer ser-
vice in Mandarin Chinese using the Kaldi toolkit1.
The Kaldi “chain” model is used for the acoustic
model. As for conventional language models, the
back-off n-gram language models are trained by
SRI Language Modeling Toolkit (SRILM) (Stol-
cke, 2002).

4.2 User Interface
We proceed to exhibit the three steps of using
Chameleon with a screenshot of the user interface
illustrated in Figure 5.

Step 1: The users can either upload recorded
audio files or record conversational speech in real-
time through the microphone provided by our sys-
tem. Optionally, the groundtruth transcript can be
provided by the user for the system to evaluate the
WER of different LMA techniques.

Step 2: The baseline n-gram language model
together with various LMA techniques described
in Section 2 can be freely chosen by the users.
A horizontal slider is also provided for the users
to customize the interpolation weight λ. In or-
der to facilitate the comparison of WER and
decoding results of different LMA techniques,
Chameleon supports applying two LMA tech-
niques and presents their results simultaneously in
a side-by-side fashion.

Step 3: When the user clicks the “Start Decod-
ing” button, the decoding process starts. The de-

1http://kaldi-asr.org/

coded results will be presented to the correspond-
ing text area after decoding completes. If the
groundtruth transcript is provided and the “Calcu-
late WER” button is clicked, the WER of the de-
coded results will be calculated and presented in
the interface.

5 Conclusion and Future Work

In this demonstration, we show a novel language
model adaptation toolkit named Chameleon that
reveals the the effectiveness and differences of the
state-of-the-art LMA techniques. Through this
demonstration, the audience will have a unique
journey of experiencing how LMA improves the
ASR performance. In the future, we plan to in-
clude more LMA techniques and investigate new
topic models dedicated for conversional speech
recognition. In addition, the hyperparameter tun-
ing step can be combined with current Automatic
Machine Learning (AutoML) techniques (Quan-
ming et al., 2018) to achieve better performance
and user experience.

6 Acknowledgements

This research is partially supported by HKRGC
GRF 16219816. We are grateful to the anonymous
reviewers for their constructive comments on this
paper.

41

References
David M Blei, Andrew Y Ng, and Michael I Jordan.

2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Kuan-Yu Chen, Hsuan-Sheng Chiu, and Berlin Chen.
2010. Latent topic modeling of word vicinity infor-
mation for speech recognition. In Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE Inter-
national Conference on, pages 5394–5397. IEEE.

Xie Chen. 2017. Scalable recurrent neural network
language models for speech recognition. In Thesis,
pages 0–186. Cambridge.

Stephen Della Pietra, Vincent Della Pietra, Robert L
Mercer, and Salim Roukos. 1992. Adaptive lan-
guage modeling using minimum discriminant esti-
mation. In [Proceedings] ICASSP-92: 1992 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, volume 1, pages 633–636. IEEE.

Ankur Gandhe, Ariya Rastrow, and Bjorn Hoffmeister.
2018. Scalable language model adaptation for spo-
ken dialogue systems. In 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 907–912.
IEEE.

Thomas Hofmann. 1999. Probabilistic latent semantic
analysis. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, pages 289–
296. Morgan Kaufmann Publishers Inc.

Di Jiang, Yuanfeng Song, Rongzhong Lian, Siqi Bao,
Jinhua Peng, Huang He, and Hua Wu. 2018. Fa-
milia: A configurable topic modeling framework
for industrial text engineering. arXiv preprint
arXiv:1808.03733.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

TF Kennedy, Robert S Provence, James L Broyan,
Patrick W Fink, Phong H Ngo, and Lazaro D Ro-
driguez. 2017. Topic models for rfid data modeling
and localization. In 2017 IEEE International Con-
ference on Big Data (Big Data), pages 1438–1446.
IEEE.

Roland Kuhn and Renato De Mori. 1990. A cache-
based natural language model for speech recogni-
tion. IEEE transactions on pattern analysis and ma-
chine intelligence, 12(6):570–583.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos.
1993. Trigger-based language models: A maximum
entropy approach. In 1993 IEEE International Con-
ference on Acoustics, Speech, and Signal Process-
ing, volume 2, pages 45–48. IEEE.

Rasmus E Madsen, David Kauchak, and Charles Elkan.
2005. Modeling word burstiness using the dirich-
let distribution. In Proceedings of the 22nd interna-
tional conference on Machine learning, pages 545–
552. ACM.

Fernanda de Oliveira Capela and Jose Emmanuel
Ramirez-Marquez. 2019. Detecting urban identity
perception via newspaper topic modeling. Cities,
93:72–83.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Yao Quanming, Wang Mengshuo, Jair Escalante Hugo,
Guyon Isabelle, Hu Yi-Qi, Li Yu-Feng, Tu Wei-Wei,
Yang Qiang, and Yu Yang. 2018. Taking human out
of learning applications: A survey on automated ma-
chine learning. arXiv preprint arXiv:1810.13306.

Natasha Singh-Miller and Michael Collins. 2007.
Trigger-based language modeling using a loss-
sensitive perceptron algorithm. In 2007 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing-ICASSP’07, volume 4, pages IV–25.
IEEE.

Yuanfeng Song, Di Jiang, Xueyang Wu, Qian Xu,
Raymond Chi-Wing Wong, and Qiang Yang. 2019.
Topic-aware dialogue speech recognition with trans-
fer learning. In Interspeech, Austria.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In Seventh international confer-
ence on spoken language processing.

Jonathan Wintrode and Sanjeev Khudanpur. 2014.
Combining local and broad topic context to improve
term detection. In Spoken Language Technology
Workshop (SLT), 2014 IEEE, pages 442–447. IEEE.

Hainan Xu, Tongfei Chen, Dongji Gao, Yiming
Wang, Ke Li, Nagendra Goel, Yishay Carmiel,
Daniel Povey, and Sanjeev Khudanpur. 2018. A
pruned rnnlm lattice-rescoring algorithm for auto-
matic speech recognition. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5929–5933. IEEE.

Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang
Wei, Xun Zheng, Eric Po Xing, Tie-Yan Liu, and
Wei-Ying Ma. 2015. Lightlda: Big topic models
on modest computer clusters. In Proceedings of the
24th International Conference on World Wide Web,
pages 1351–1361. International World Wide Web
Conferences Steering Committee.

42

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 43–48
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Controlling Sequence-to-Sequence Models - A Demonstration on
Neural-based Acrostic Generator

Liang-Hsin Shen, Pei-Lun Tai, Chao-Chung Wu, Shou-De Lin
Department of Computer Science and Information Engineering,

National Taiwan University
{laurice, b04902105, r05922042, sdlin}@csie.ntu.edu.tw

Abstract

An acrostic is a form of writing for which
the first token of each line (or other recurring
features in the text) forms a meaningful se-
quence. In this paper we present a generalized
acrostic generation system that can hide cer-
tain message in a flexible pattern specified by
the users. Different from previous works that
focus on rule-based solutions, here we adopt
a neural-based sequence-to-sequence model to
achieve this goal. Besides acrostic, users can
also specify the rhyme and length of the output
sequences. To the best of our knowledge, this
is the first neural-based natural language gen-
eration system that demonstrates the capability
of performing micro-level control over output
sentences.

1 Introduction

Acrostic is a form of writing aiming at hiding
messages in text, often used in sarcasm or to de-
liver private information. In previous works, En-
glish acrostic have been generated by searching
for paraphrases in WordNet’s synsets (Stein et al.,
2014). Synonyms that contain needed characters
replace the corresponding words in the context to
generate the acrostic. Nowadays Seq2Seq mod-
els have become a popular choice for text gen-
eration, including generating text from table (Liu
et al., 2018), summaries (Nallapati et al., 2016),
short-text conversations (Shang et al., 2015), ma-
chine translation (Bahdanau et al., 2015; Sutskever
et al., 2014) and so on. In contrast to a rule-based
or template-based generator, such Seq2Seq solu-
tions are often considered more general and cre-
ative, as they do not rely heavily on pre-requisite
knowledge or patterns to produce meaningful con-
tent. Although several works have presented au-
tomatic generation on rhymed text (Zhang and
Lapata, 2014; Ghazvininejad et al., 2016), the
works do not focus on controlling the rhyme

of the generated content. One drawback of a
neural-based Seq2Seq model is that the outputs
are hard to control since the generation follows
certain non-deterministic probabilistic model (or
language model), which makes it non-trivial to
impose a hard-constraint such as acrostic (i.e.
micro-controlling the position of a specific to-
ken) and rhyme. In this work, we present an
NLG system that allows the users to micro-control
the generation of a Seq2Seq model without any
post-processing. Besides specifying the tokens
and their corresponding locations for acrostic, our
model allows the users to choose the rhyme and
length of the generated lines. We show that
with simple adjustment, a Seq2Seq model such
as the Transformer (Vaswani et al., 2017) can
be trained to control the generation of the text.
Our demo system focuses on Chinese and English
lyrics, which can be regarded as a writing style
in between articles and poetry. We consider a
general version of acrostic writing, which means
the users can arbitrarily choose the position to
place acrostic tokens. The 2-minute demonstra-
tion video can be found at https://youtu.
be/9tX6ELCNMCE.

2 Model Description

Normally a neural-based Seq2Seq model is
learned using input/output sequences as training
pairs (Nallapati et al., 2016; Cho et al., 2014a). By
providing sufficient amount of such training pairs,
it is expected that the model learns how to produce
the output sequences based on the inputs. Here we
would like to first report a finding that a Seq2Seq
model is capable of discovering the hidden associ-
ations between inputting control signals and out-
putting sequences. Based on the finding we have
created a demo system to show that the users can
indeed guide the outputs of a Seq2Seq model in a

43

Figure 1: The structure of Transformer model.

fine-grained manner. In our demo, the users are al-
lowed to control three aspects of the generated se-
quences: rhyme, sentence length and the positions
of designated tokens. In other words, our Seq2Seq
model not only is capable of generate next line sat-
isfying the length and rhyme constraints provided
by the user, it can also produce the exact word at
a position specified by the user. The rhyme of a
sentence is the last syllable of the last word in that
sentence. The length of a sentence is the number
of tokens in that sentence. To elaborate how our
model is trained, we use three consecutive lines
(denoted as S1, S2, S3) of lyrics from the song
“Rhythm of the Rain” as an example. Normally a
Seq2Seq model is trained based on the following
input/output pairs.

S1: Listen to the rhythm of the falling
rain → S2: Telling me just what a fool
I’ve been

S2: Telling me just what a fool I’ve been
→ S3: I wish that it would go and let me
cry in vain

With some experiments on training Seq2Seq mod-
els, we have discovered an interesting fact: By
appending the control signals in the end of the
input sequences, after seeing sufficient amount of
such data, the Seq2Seq model can automatically
discover the association between input signals and
outputs. Once the associations are identified, then
we can use the control signals to guide the output
of the model. For instance, here we append addi-
tional control information to the end of the training
sequence as below

S1: Listen to the rhythm of the falling

rain || 1 Telling || IY N || 8 → S2:
Telling me just what a fool I’ve been

S2: Telling me just what a fool I’ve been
|| 2 wish 6 go || EY N || 12→ S3: I wish
that it would go and let me cry in vain

The three types of control signals are separated
by “||”. The first control signal indicates the po-
sition of the designated words. 1 Telling tells the
system the token Telling should be produced at
the first position of the output sequence s2. Sim-
ilarly, 2 wish 6 go means that the second/sixth
token in the output sequence shall be wish/go.
The second control signal is the rhyme of the
target sentence. For instance, IHN corresponds
to a specific rhyme (/In/) and EY N corresponds
to another (/en/). Note that here we use the formal
name of the rhyme (e.g. EY N) to improve read-
ability. To train our system, any arbitrary symbol
would work. The third part contains a digit (e.g.
8) to control the length of the output line.

By adding such additional information,
Seq2Seq models can eventually learn the
meaning of the control signal as they can
produce outputs according to those signals with
very high accuracy. Note that in our demo,
all results are produced by our Seq2Seq model
without any post-processing, nor do we provide
any prerequisite knowledge about what length,
rhyme or position really stands for to the model.

We train our system based on the Transformer
model (Vaswani et al., 2017), though additional
experiments show that other RNN-based Seq2Seq
models such as the one based on GRU (Cho et al.,
2014b) or LSTM would also work. The model
consists of an encoder and a decoder. Our encoder

44

Figure 2: The structure of our acrostic generating system.

consists of two identical layers when training
on Chinese lyrics and four identical layers when
training on English lyrics. Each layer includes
two sub-layers. The first is a multi-head attention
layer and the second one is a fully connected feed-
forward layer. Residual connections (He et al.,
2016) are implemented between the sub-layers.
The decoder also consists of two identical layers
when training on Chinese lyrics and four identical
layers when training on English lyrics.. Each layer
includes three sub-layers: a masked multi-head at-
tention layer, a multi-head attention layer that per-
forms attention over the output of encoder and a
fully-connected feed-forward layer. The model
structure is shown in Figure 1. Note that in the
original paper (Vaswani et al., 2017), Transformer
consists of six identical layers for both encoder
and decoder. To save resource, we start training
with fewer layers than the original paper and dis-
cover that the model still performs well. Thus, we
use fewer layers than the proposed Transformer
model.

3 User Interface

Figure 2 illustrates the interface and data flow of
our acrostic lyric generating system. First, there
are several conditions (or control signals) that
can be specified by the users:

• Rhyme: For Chinese lyrics, there are 33

different rhymes for users to choose from.
As for English lyrics, there are 30 different
rhymes for users to choose from.

• Theme of topic: The theme given by user
is used to generate the zeroth sentence. In
Chinese Acrostic demonstration, our system
would pick a sentence from training set that
is most similar to the user input, measured
by the number of n-grams. As for English
Acrostic demo, the user input of theme is di-
rectly used as the zeroth sentence.

• Length of each line: User can specify the
length of every single line (separated by ;).
For example, “5;6;7” means that the user
wants to generate acrostic that contains 3
lines, with length equals to 5, 6, 7, respec-
tively.

• The sequence of tokens to be hidden in the
output sequences.

• Hidden Pattern: The exact positions for each
token to be hidden. Apart from the common
options, such as hiding in the first/last posi-
tions of each sentence or hiding in the diag-
onal positions, our system offers a more gen-
eral and flexible way to define the pattern,
realized through the Draw It Myself op-
tion. As shown in the bottom right corner of

45

Figure 2, a table based on the length of each
line specified by the users is created for the
users to select the positions to place acrostic
tokens.

The generation is done on the server side. After
receiving the control signals provided by users,
the server first uses the given theme to search
for a related line (denoted as zeroth sequence)
from the lyric corpus, based on both sentence-level
matching and character-level matching. Then the
given condition of first sentence is appended to
this zeroth sequence to serve as initial input to
the Seq2Seq model for generating first line of out-
puts. Next, the given condition of second sentence
is appended to the generated first line as input to
generate the second line. The same process is re-
peated until all lines are generated.

4 Experiment and Results

4.1 Data set
We have two versions: one training on Chinese
lyrics and one on English lyrics.

The Chinese lyrics are crawled from Mojim
lyrics site and NetEase Cloud. To avoid rare char-
acters, the vocabulary size is set to the most fre-
quent 50,000 characters. The English lyrics are
crawled from Lyrics Freak. The vocabulary size is
set to the most frequent 50,000 words. For each
line of lyrics, we first calculate its length and then
retrieve the rhyme of the last token. To generate
the training pairs, we randomly append to the input
sequence some tokens and their positions of
the targeting sequence as the first control signal,
followed by the rhyme and then length. Below
are two example training pairs:

S1: Listen to the rhythm of the falling
rain || 2 me 3 just || IY N || 8 → S2:
Telling me just what a fool I’ve been

S2: Telling me just what a fool I’ve been
|| 2 wish 6 go 7 and || EY N || 12→ S3:
I wish that it would go and let me cry in
vain

In total there are about 651,339/1,000,000 training
pairs we use to train our Chinese/English acrostic
systems.

4.2 Evaluation
Our system has three controllable conditions on
generating acrostic: the positions of designated

tokens, the rhyme of each line and the length
of each line. The evaluation set consists of
30,000 lines that are not included in training data.
We first evaluate how accurate the control con-
ditions can be satisfied. As shown in Table 1,
the model can almost perfectly satisfy the request
from users. We also evaluate the quality of learned
language model for Chinese/English lyrics. The
bi-gram perplexity of original training corpus is
54.56/53.2. The bi-gram perplexity of generated
lyrics becomes lower (42.33/42.34), which indi-
cates the language model does learn a better way
to represent the lyrics data. In this experiment
we find that training on English lyrics is harder
than training on Chinese lyrics. English has strict
grammatical rules while Chinese lyrics have more
freedom in forming a sentence. We also observe
that the model tends to generate sentences that use
the same words that appear in their previous sen-
tences. This behavior might be learned from the
repetition of lyrics lines.

4.3 Demonstration of Results

We provide our system outputs from different as-
pects.

The first example in Figure 3 shows that we
can control the length of each line to produce a
triangle-shaped lyrics.

Figure 3: Length control of each sentence.

Second, we would like to demonstrate the re-
sults in generating acrostic. Some people use
acrostic to hide message that has no resemblance
with the content of the full text. We would show
both English and Chinese examples generated by
our system.

Figure 4 shows hiding a sentence in the first

46

Condition Accuracy(Chinese) Accuracy(English)
Character (CH) / Word (EN) Position 99.38% 98.21%
Rhyme 99.31% 97.67%
Sentence Length 99.90% 99.85%
Source Perplexity(Chinese) Perplexity(English)
Training data 54.56 53.2
Model generated data 42.33 42.34

Table 1: The accuracy of each condition tested on 30,000 lines and the perplexity of the original text and the text
generated by our model.

word of each sentences. The sentence that be-
ing concealed in the lyrics is I don′t like you,
which is very different from the meaning of the
full lyrics.

Figure 4: Message in English lyrics: I don′t like you.

Figure 5: Hidden message in Chinese lyrics:甚麼都可
以藏 with rhyme eng.

Figure 5 shows a Chinese acrostic generated by
our system. We hide a message 甚麼都可以藏
(Anything can be hidden) in the diagonal line of
a piece of lyrics that talks about relationship and
dream.

Third, we can also play with the visual shape of
the designated words. Figure 6 shows an example

Figure 6: Message in English lyrics: be the change
you wish to see in the world. To make the diamond
shape clearer, the words are aligned.

of hiding a sentence in the shape of diamond in the
generated lyrics. The message being concealed is
be the change you wish to see in the world.
Figure 7 shows that we can hide the message using
the shape of a heart.

Figure 7: The designated characters form a heart. The
sentence hidden in the lyrics is疏影橫斜水清淺暗香
浮動月黃昏 (The shadow reflects on the water and the
fragrance drifts under the moon with the color of dusk)
with rhyme i.

47

5 Conclusion

We show that by appending additional informa-
tion in the training input sequences, it is possi-
ble to train a Seq2Seq model whose outputs can
be controlled in a fine-grained level. This find-
ing enables us to design and demonstrate a gen-
eral acrostic generating system with various fea-
tures controlled, including the length of each line,
the rhyme of each line and the target tokens to be
produced and their corresponding positions. Our
results have shown that the proposed model not
only is capable of generating meaningful content,
it also follows the constraints with very high ac-
curacy. We believe that this finding can further
lead to other useful applications in natural lan-
guage generation.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014a. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Kyunghyun Cho, Bart van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and
Kevin Knight. 2016. Generating topical poetry. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016,
pages 1183–1191.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation
by structure-aware seq2seq learning. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 4881–
4888.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280–290.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conver-
sation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1577–1586.

Benno Stein, Matthias Hagen, and Christof Bräutigam.
2014. Generating acrostics via paraphrasing and
heuristic search. In COLING 2014, 25th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
August 23-29, 2014, Dublin, Ireland, pages 2018–
2029.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, pages 3104–
3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 6000–6010.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
pages 670–680.

48

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 49–54
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

EASSE: Easier Automatic Sentence Simplification Evaluation

Fernando Alva-Manchego
University of Sheffield

f.alva@sheffield.ac.uk

Louis Martin
Facebook AI Research

Inria
louismartin@fb.com

Carolina Scarton
University of Sheffield

c.scarton@sheffield.ac.uk

Lucia Specia
Imperial College London

l.specia@imperial.ac.uk

Abstract

We introduce EASSE, a Python package aim-
ing to facilitate and standardise automatic
evaluation and comparison of Sentence Sim-
plification (SS) systems. EASSE provides a
single access point to a broad range of eval-
uation resources: standard automatic metrics
for assessing SS outputs (e.g. SARI), word-
level accuracy scores for certain simplification
transformations, reference-independent qual-
ity estimation features (e.g. compression ra-
tio), and standard test data for SS evaluation
(e.g. TurkCorpus). Finally, EASSE generates
easy-to-visualise reports on the various met-
rics and features above and on how a partic-
ular SS output fares against reference simpli-
fications. Through experiments, we show that
these functionalities allow for better compari-
son and understanding of the performance of
SS systems.

1 Introduction

Sentence Simplification (SS) consists of modify-
ing the content and structure of a sentence to im-
prove its readability while retaining its original
meaning. For automatic evaluation of a simplifi-
cation output, it is common practice to use ma-
chine translation (MT) metrics (e.g. BLEU (Pap-
ineni et al., 2002)), simplicity metrics (e.g. SARI
(Xu et al., 2016)), and readability metrics (e.g.
FKGL (Kincaid et al., 1975)).

Most of these metrics are available in individual
code repositories, with particular software require-
ments that sometimes differ even in programming
language (e.g. corpus-level SARI is implemented
in Java, whilst sentence-level SARI is available
in both Java and Python). Other metrics (e.g.
SAMSA (Sulem et al., 2018b)) suffer from insuffi-
cient documentation or require executing multiple
scripts with hard-coded paths, which prevents re-
searchers from using them.

EASSE (Easier Automatic Sentence Simplifica-
tion Evaluation) is a Python package that provides
access to popular automatic metrics in SS evalu-
ation and ready-to-use public datasets through a
simple command-line interface. With this tool, we
make the following contributions: (1) we provide
popular automatic metrics in a single software
package, (2) we supplement these metrics with
word-level transformation analysis and reference-
less Quality Estimation (QE) features, (3) we pro-
vide straightforward access to commonly used
evaluation datasets, and (4) we generate a compre-
hensive HTML report for quantitative and qualita-
tive evaluation of a SS system. We believe this
package will facilitate evaluation and improve re-
producibility of results in SS. EASSE is avail-
able in https://github.com/feralvam/
easse.

2 Package Overview

2.1 Automatic Corpus-level Metrics

Although human judgements on grammaticality,
meaning preservation and simplicity are consid-
ered the most reliable method for evaluating a SS
system’s output (Štajner et al., 2016), it is common
practice to use automatic metrics. They are useful
for either assessing systems at development stage,
to compare different architectures, for model se-
lection, or as part of a training policy. EASSE
implementation works as a wrapper for the most
common evaluation metrics in SS:

BLEU is a precision-oriented metric that relies
on the proportion of n-gram matches between
a system’s output and reference(s). Previous
work (Xu et al., 2016) has shown that BLEU corre-
lates fairly well with human judgements of gram-
maticality and meaning preservation. EASSE uses

49

SACREBLEU (Post, 2018)1 to calculate BLEU.
This package was designed to standardise the pro-
cess by which BLEU is calculated: it only expects
a detokenised system’s output and the name of a
test set. Furthermore, it ensures that the same pre-
processing steps are used for the system output
and reference sentences.

SARI measures how the simplicity of a sentence
was improved based on the words added, deleted
and kept by a system. The metric compares the
system’s output to multiple simplification refer-
ences and the original sentence. SARI has shown
positive correlation with human judgements of
simplicity gain. We re-implement SARI’s corpus-
level version in Python (it was originally avail-
able in Java). In this version, for each operation
(ope ∈ {add, del, keep}) and n-gram order, preci-
sion pope(n), recall rope(n) and F1 fope(n) scores
are calculated. These are then averaged over the
n-gram order to get the overall operation F1 score
Fope:

fope(n) =
2× pope(n)× rope(n)

pope(n) + rope(n)

Fope =
1

k

∑

n=[1,..,k]

fope(n)

Although Xu et al. (2016) indicate that only preci-
sion should be considered for the deletion opera-
tion, we follow the Java implementation that uses
F1 score for all operations in corpus-level SARI.

SAMSA measures structural simplicity (i.e. sen-
tence splitting). This is in contrast to SARI, which
is designed to evaluate simplifications involv-
ing paraphrasing. EASSE re-factors the original
SAMSA implementation2 with some modifica-
tions: (1) an internal call to the TUPA parser (Her-
shcovich et al., 2017), which generates the seman-
tic annotations for each original sentence; (2) a
modified version of the monolingual word aligner
(Sultan et al., 2014) that is compatible with Python
3, and uses Stanford CoreNLP (Manning et al.,
2014)3 through their official Python interface; and
(3) a single function call to get a SAMSA score
instead of running a series of scripts.

1https://github.com/mjpost/sacreBLEU
2https://github.com/eliorsulem/SAMSA
3https://stanfordnlp.github.io/

stanfordnlp/corenlp_client.html

FKGL Readability metrics, such as Flesch-
Kincaid Grade Level (FKGL), are commonly re-
ported as measures of simplicity. They however
only rely on average sentence lengths and number
of syllables per word, so short sentences would
get good scores even if they are ungrammatical,
or do not preserve meaning (Wubben et al., 2012).
Therefore, these scores should be interpreted with
caution. EASSE re-implements FKGL by porting
publicly available scripts4 to Python 3 and fixing
some edge case inconsistencies (e.g. newlines in-
correctly counted as words or bugs with memoiza-
tion).

2.2 Word-level Analysis and QE Features

Word-level Transformation Analysis EASSE
includes algorithms to determine which specific
text transformations a SS system performs more
effectively. This is done based on word-level
alignment and analysis.

Since there is no available simplification dataset
with manual annotations of the transformations
performed, we re-use the annotation algorithms
from MASSAlign (Paetzold et al., 2017). Given a
pair of sentences (e.g. original and system output),
the algorithms use word alignments to identify
deletions, movements, replacements and copies
(see Fig. 1). This process is prone to some errors:
when compared to manual labels produced by four
annotators in 100 original-simplified pairs, the au-
tomatic algorithms achieved a micro-averaged F1
score of 0.61 (Alva-Manchego et al., 2017).

We generate two sets of automatic word-level
annotations: (1) between the original sentences
and their reference simplifications, and (2) be-
tween the original sentences and their automatic
simplifications produced by a SS system. Con-
sidering (1) as reference labels, we calculate the
F1 score of each transformation in (2) to esti-
mate their correctness. When more than one ref-
erence simplification exists, we calculate the per-
transformation F1 scores of the output against
each reference, and then keep the highest one as
the sentence-level score. The corpus-level scores
are the average of sentence-level scores.

Quality Estimation Features Traditional auto-
matic metrics used for SS rely on the existence and
quality of references, and are often not enough to
analyse the complex process of simplification. QE

4https://github.com/mmautner/
readability

50

Figure 1: Example of automatic transformation annotations based on word alignments between an original (top)
and a simplified (bottom) sentence. Unaligned words are DELETE. Words that are aligned to a different form are
REPLACE. Aligned words without an explicit label are COPY. A word whose relative index in the original sentence
changes in the simplified one is considered a MOVE.

leverages both the source sentence and the out-
put simplification to provide additional informa-
tion on specific behaviours of simplification sys-
tems which are not reflected in metrics such as
SARI. EASSE uses QE features from Martin et al.
(2018)’s open-source repository5. The QE fea-
tures currently available are: the compression ra-
tio of the simplification with respect to its source
sentence, its Levenshtein similarity, the average
number of sentence splits performed by the sys-
tem, the proportion of exact matches (i.e. original
sentences left untouched), average proportion of
added words, deleted words, and lexical complex-
ity score6.

2.3 Access to Test Datasets

EASSE provides access to three publicly avail-
able datasets for automatic SS evaluation (Ta-
ble 1): PWKP (Zhu et al., 2010), TurkCorpus (Xu
et al., 2016), and HSplit (Sulem et al., 2018a).
All of them consist of the data from the original
datasets, which are sentences extracted from En-
glish Wikipedia (EW) articles. EASSE can also
evaluate system’s outputs in other custom datasets
provided by the user.

PWKP Zhu et al. (2010) automatically aligned
sentences in 65,133 EW articles to their corre-
sponding versions in Simple EW (SEW). Since
the latter is aimed at English learners, its arti-
cles are expected to contain fewer words and sim-
pler grammar structures than those in their EW
counterpart. The test set split of PWKP contains
100 sentences, with 1-to-1 and 1-to-N alignments
(resp. 93 and 7 instances). The latter correspond to
instances of sentence splitting. Since this dataset
has only one reference for each original sentence,

5https://github.com/facebookresearch/
text-simplification-evaluation

6The lexical complexity score of a simplified sentence is
computed by taking the log-ranks of each word in the fre-
quency table. The ranks are then aggregated by taking their
third quartile.

Test Dataset Instances Alignment Type References

PWKP
93 1-to-1 1
7 1-to-N 1

TurkCorpus 359 1-to-1 8
HSplit 359 1-to-N 4

Table 1: Test datasets available in EASSE. An instance
corresponds to a source sentence with one or more pos-
sible references. Each reference can be composed of
one or more sentences.

it is not ideal for calculating automatic metrics that
rely on multiple references, such as SARI.

TurkCorpus Xu et al. (2016) asked crowdwork-
ers to simplify 2,359 original sentences extracted
from PWKP to collect multiple simplification ref-
erences for each one. This dataset was then ran-
domly split into tuning (2,000 instances) and test
(359 instances) sets. The test set only contains
1-to-1 alignments, mostly with instances of para-
phrasing and deletion. Each original sentence in
TurkCorpus has 8 simplified references. As such,
it is better suited for computing SARI and multi-
reference BLEU scores.

HSplit Sulem et al. (2018a) recognised that ex-
isting EW-based datasets did not contain sufficient
instances of sentence splitting. As such, they col-
lected four reference simplifications of this trans-
formation for all 359 original sentences in the
TurkCorpus test set. Even though SAMSA’s com-
putation does not require access to references, this
dataset can be used to compute an upperbound
on the expected performance of SS systems that
model this type of structural simplification.

2.4 HTML Report Generation

EASSE wraps all the aforementioned analyses
in a simple comprehensive HTML report that
can be generated with a single command. This
report compares the system output with human
reference(s) using simplification metrics and

51

QE features. It also plots the distribution of
compression ratios or Levenshtein similarities
between sources and simplifications over the test
set. Moreover, the analysis is broken down by
source sentence length in order to get insights
on how the model handles short source sentence
versus longer source sentences, e.g. does the
model keep short sentences unmodified more
often than long sentences? This report further
facilitates qualitative analysis of system out-
puts by displaying source sentences with their
respective simplifications. The modifications
performed by the model are highlighted for faster
and easier analysis. For visualisation, EASSE
samples simplification instances to cover different
behaviours of the systems. Instances that are
sampled include simplifications with sentence
splitting, simplifications that significantly modify
the source sentence, output sentences with a
high compression rate, those that display lexical
simplifications, among others. Each of these
aspects is illustrated with 10 instances. An
example of the report can be viewed at https:
//github.com/feralvam/easse/blob/
master/demo/report.gif.

3 Experiments

We collected publicly available outputs of sev-
eral SS systems (Sec. 3.1) to evaluate their per-
formance using the functionalities available in
EASSE. In particular, we compare them using au-
tomatic metrics, and provide some insights on the
reasoning behind their results (Sec. 3.2).

3.1 Sentence Simplification Systems

EASSE provides access to various SS system out-
puts that follow different approaches for the task.
For instance, we include those that rely on phrase-
based statistical MT, either by itself (e.g. PBSMT-
R (Wubben et al., 2012)), or coupled with seman-
tic analysis, (e.g. Hybrid (Narayan and Gardent,
2014)). We also include SBSMT-SARI (Xu et al.,
2016), which relies on syntax-based statistical
MT; DRESS-LS (Zhang and Lapata, 2017), a neu-
ral model using the standard encoder-decoder ar-
chitecture with attention combined with reinforce-
ment learning; and DMASS-DCSS (Zhao et al.,
2018), the current state-of-the-art in the TurkCor-
pus, which is based on the Transformer architec-
ture (Vaswani et al., 2017).

3.2 Comparison and Analysis of Scores

Automatic Metrics For illustration purposes,
we compare systems’ outputs using BLEU and
SARI in TurkCorpus (with 8 manual simplifica-
tion references), and SAMSA in HSplit. For cal-
culating Reference values in Table 2, we sample
one of the 8 human references for each instance as
others have done (Zhang and Lapata, 2017).

When reporting SAMSA scores, we only use
the first 70 sentences of TurkCorpus that also ap-
pear in HSplit.7 This allows us to compute Ref-
erence scores for instances that contain structural
simplifications (i.e. sentence splits). We calculate
SAMSA scores for each of the four manual sim-
plifications in HSplit, and choose the highest as an
upper-bound Reference value. The results for all
three metrics are shown in Table 2.

TurkCorpus HSplit

System SARI BLEU SAMSA

Reference 49.88 97.41 54.00

PBSMT-R 38.56 81.11 47.59
Hybrid 31.40 48.97 46.68
SBSMT-SARI 39.96 73.08 41.41
DRESS-LS 37.27 80.12 45.94
DMASS-DCSS 40.42 73.29 35.45

Table 2: Comparison of systems’ performance based
on automatic metrics.

DMASS-DCSS is the state-of-the-art in TurkCor-
pus according to SARI. However, it gets the lowest
SAMSA score, and the third to last BLEU score.
PBSMT-R is the best in terms of these two met-
rics. Finally, across all metrics, the Reference
stills gets the highest values, with significant dif-
ferences from the top performing systems.

Word-level Transformations In order to better
understand the previous results, we use the word-
level annotations of text transformations (Table 3).
Since SARI was design to evaluate mainly para-
phrasing transformations, the fact that SBSMT-
SARI is the best at performing replacements and
second place in copying explains its high SARI
score. DMASS-DCSS is second best in replace-
ments, while PBSMT-R (which achieved the high-
est BLEU score) is the best at copying. Hybrid is
the best at performing deletions, but is the worst
at replacements, which SARI mainly measures.

7At the time of this submission only a subset of 70 sen-
tences had been released from HSplit. However, the full cor-
pus will soon be available in EASSE.

52

The origin of the TurkCorpus set itself could ex-
plain some of these observations. According to
Xu et al. (2016), the annotators in TurkCorpus
were instructed to mainly produce paraphrases, i.e.
mostly replacements with virtually no deletions.
As such, copying words is also a significant trans-
formation, so systems that are good at perform-
ing it better mimic the characteristics of the human
simplifications in this dataset.

System Delete Move Replace Copy

PBSMT-R 34.18 2.64 23.65 93.50
Hybrid 49.46 7.37 1.03 70.73
SBSMT-SARI 28.42 1.26 37.21 92.89
DRESS-LS 40.31 1.43 12.62 86.76
DMASS-DCSS 38.03 5.10 34.79 86.70

Table 3: Transformation-based performance of the sen-
tence simplification systems in the TurkCorpus test set.

Quality Estimation Features Table 4 displays
a subset of QE features that reveal other aspects
of the simplification systems. For instance, the
scores make it clear that Hybrid compresses the
input way more than other systems (compression
ratio of 0.57 vs. ≥0.78 for the other systems) but
almost never adds new words (addition proportion
of 0.01). This additional information explains the
high Delete and low Replace performance of this
system in Table 3. DRESS-LS keeps the source
sentence unmodified 26% of the time, which does
not show in the word-level analysis. This confirms
that QE features are complementary to automatic
metrics and word-level analysis.

System
Compression

ratio
Exact

matches
Additions
proportion

Deletion
proportion

PBSMT-R 0.95 0.1 0.1 0.11
Hybrid 0.57 0.03 0.01 0.41
SBSMT-SARI 0.94 0.11 0.16 0.13
DRESS-LS 0.78 0.26 0.04 0.26
DMASS-DCSS 0.89 0.05 0.15 0.21

Table 4: Quality estimation features, which give addi-
tional information on the output of different systems.

Report Figure 2 displays the quantitative part
of the HTML report generated for the DMASS-
DCSS system. The report compares the system
to a reference human simplification. The “System
vs. Reference” table and the two plots indicate
that DMASS-DCSS closely matches different as-
pects of human simplifications, according to QE
features. This contributes to explaining the high
SARI score of the this system in Table 2.

Figure 2: Overview of the HTML report for the
DMASS-DCSS system (zoom in for more details).

4 Conclusion and Future Work

EASSE provides easy access to commonly used
automatic metrics as well as to more detailed
word-level transformation analysis and QE fea-
tures which allows us to compare the quality of
the generated outputs of different SS systems on
public test datsets. We reported some experiments
on the use of automatic metrics to obtain overall
performance scores, followed by measurements of
how effective the SS systems are at executing spe-
cific simplification transformations using word-
level analysis and QE features. The former analy-
sis provided insights about the simplification capa-
bilities of each system, which help better explain
the initial automatic scores.

In the future, we plan to continue developing
the transformation-based analysis algorithms, so
that more sophisticated transformations could be
identified (e.g. splitting or subject-verb-object re-
ordering). In addition, we expect to integrate more
QE features to cover other aspects of the simplifi-
cation process (e.g. depth of the dependency parse
tree to measure syntactic complexity).

References
Fernando Alva-Manchego, Joachim Bingel, Gustavo

Paetzold, Carolina Scarton, and Lucia Specia. 2017.
Learning how to simplify from explicit labeling of

53

complex-simplified text pairs. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 295–305, Taipei, Taiwan. AFNLP.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. ACL.

J.P. Kincaid, R.P. Fishburne, R.L. Rogers, and B.S.
Chissom. 1975. Derivation of new readability for-
mulas (automated readability index, fog count and
flesch reading ease formula) for navy enlisted per-
sonnel. Technical Report 8-75, Chief of Naval Tech-
nical Training: Naval Air Station Memphis. 49 p.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. ACL.

Louis Martin, Samuel Humeau, Pierre-Emmanuel
Mazaré, Éric de La Clergerie, Antoine Bordes, and
Benoı̂t Sagot. 2018. Reference-less quality estima-
tion of text simplification systems. In Proceedings
of the 1st Workshop on Automatic Text Adaptation
(ATA), pages 29–38, Tilburg, the Netherlands. ACL.

Shashi Narayan and Claire Gardent. 2014. Hybrid sim-
plification using deep semantics and machine trans-
lation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 435–445, Bal-
timore, Maryland. ACL.

Gustavo H. Paetzold, Fernando Alva-Manchego, and
Lucia Specia. 2017. Massalign: Alignment and an-
notation of comparable documents. In Proceedings
of the IJCNLP 2017, System Demonstrations, pages
1–4, Tapei, Taiwan. ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Philadelphia, Pennsylvania. ACL.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191. Association for Computational Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018a.
Bleu is not suitable for the evaluation of text simpli-
fication. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 738–744. ACL.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018b.
Semantic structural evaluation for text simplifica-
tion. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 685–696,
New Orleans, Louisiana. ACL.

Md Sultan, Steven Bethard, and Tamara Sumner. 2014.
Back to basics for monolingual alignment: Exploit-
ing word similarity and contextual evidence. Trans-
actions of the Association for Computational Lin-
guistics, 2:219–230.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Sander Wubben, Antal van den Bosch, and Emiel
Krahmer. 2012. Sentence simplification by mono-
lingual machine translation. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1015–1024, Jeju Island, Korea. ACL.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
595–605, Copenhagen, Denmark. ACL.

Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono,
and Bambang Parmanto. 2018. Integrating trans-
former and paraphrase rules for sentence simplifi-
cation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3164–3173, Brussels, Belgium. ACL.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of
the 23rd International Conference on Computa-
tional Linguistics, COLING ’10, pages 1353–1361,
Stroudsburg, PA, USA. ACL.

Sanja Štajner, Maja Popović, Horacio Saggion, Lucia
Specia, and Mark Fishel. 2016. Shared task on qual-
ity assessment for text simplification. In Proceeding
of the Workshop on Quality Assessment for Text Sim-
plification - LREC 2016, QATS 2016, pages 22–31,
Portorož, Slovenia. ELRA.

54

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 55–60
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

EGG: a toolkit for research on Emergence of lanGuage in Games

Eugene Kharitonov
Facebook AI

kharitonov@fb.com

Rahma Chaabouni
Facebook AI Research / LSCP
rchaabouni@fb.com

Diane Bouchacourt
Facebook AI

dianeb@fb.com

Marco Baroni
Facebook AI / ICREA
mbaroni@fb.com

Abstract

There is renewed interest in simulating lan-
guage emergence among deep neural agents
that communicate to jointly solve a task,
spurred by the practical aim to develop
language-enabled interactive AIs, as well as
by theoretical questions about the evolution of
human language. However, optimizing deep
architectures connected by a discrete commu-
nication channel (such as that in which lan-
guage emerges) is technically challenging. We
introduce EGG, a toolkit that greatly simpli-
fies the implementation of emergent-language
communication games. EGG’s modular de-
sign provides a set of building blocks that the
user can combine to create new games, eas-
ily navigating the optimization and architec-
ture space. We hope that the tool will lower the
technical barrier, and encourage researchers
from various backgrounds to do original work
in this exciting area.

1 Introduction

Studying the languages that emerge when neural
agents interact with each other recently became
a vibrant area of research (Havrylov and Titov,
2017; Lazaridou et al., 2016, 2018; Kottur et al.,
2017; Bouchacourt and Baroni, 2018; Lowe et al.,
2019). Interest in this scenario is fueled by the
hypothesis that the ability to interact through a
human-like language is a prerequisite for genuine
AI (Mikolov et al., 2016; Chevalier-Boisvert et al.,
2019). Furthermore, such simulations might lead
to a better understanding of both standard NLP
models (Chaabouni et al., 2019b) and the evolu-
tion of human language itself (Kirby, 2002).

For all its promise, research in this domain
is technically very challenging, due to the dis-
crete nature of communication. The latter pre-

A screencast demonstration of EGG is available at
https://vimeo.com/345470060

vents the use of conventional optimization meth-
ods, requiring either Reinforcement Learning al-
gorithms (e.g., REINFORCE; Williams 1992) or
the Gumbel-Softmax relaxation (Maddison et al.,
2016; Jang et al., 2016). The technical challenge
might be particularly daunting for researchers
whose expertise is not in machine learning, but
in fields such as linguistics and cognitive science,
that could contribute to this interdisciplinary re-
search area.

To lower the starting barrier and encourage
high-level research in this domain, we introduce
the EGG (Emergence of lanGuage in Games)
toolkit. EGG aims at

1. Providing reliable building bricks for quick
prototyping;

2. Serving as a library of pre-implemented
games;

3. Providing tools for analyzing the emergent
languages.

EGG is implemented in PyTorch (Paszke et al.,
2017) and it is licensed under the MIT license.
EGG can be installed from https://github.
com/facebookresearch/EGG.

Notable features of EGG include: (a) Prim-
itives for implementing single-symbol or
variable-length communication (with vanilla
RNNs (Elman, 1990), GRUs (Cho et al., 2014),
LSTMs (Hochreiter and Schmidhuber, 1997));1

(b) Training with optimization of the com-
munication channel through REINFORCE or
Gumbel-Softmax relaxation via a common
interface; (c) Simplified configuration of the
general components, such as check-pointing,
optimization, Tensorboard support,2 etc.; (d)

1EGG also provides an experimental support of Trans-
formers (Vaswani et al., 2017).

2https://www.tensorflow.org/
tensorboard

55

A simple CUDA-aware command-line tool for
hyperparameter grid-search.

2 EGG’s architecture

In the first iteration of EGG, we concentrate on a
simple class of games, involving a single, unidi-
rectional (Sender → Receiver) message. In turn,
messages can be either single-symbol or multi-
symbol variable-length sequences. Our motiva-
tion for starting with this setup is two-fold. First,
it corresponds to classic signaling games (Lewis,
1969), it already covers a large portion of the lit-
erature (e.g., 5 out of 6 relevant studies mentioned
in Introduction) and it allows exploring many in-
teresting research questions. Second, it constitutes
a natural first step for further development; in par-
ticular, the majority of components should remain
useful in multi-directional, multi-step setups.

2.1 Design principles

As different training methods and architectures are
used in the literature, our primary goal is to pro-
vide EGG users with the ability to easily navigate
the space of common design choices.

Building up on this idea, EGG makes switching
between Gumbel-Softmax relaxation-based and
REINFORCE-based training effortless, through
the simple choice of a different wrapper. Simi-
larly, one can switch between one-symbol commu-
nication and variable-length messages with little
changes in the code.3

We aim to maintain EGG minimalist and “hack-
able” by encapsulating the user-implemented
agent architectures, the Reinforce/GS agent wrap-
pers and the game logic into PyTorch modules.
The user can easily replace any part.

Finally, since virtually any machine-learning
experiment has common pieces, such as setting the
random seeds, configuring the optimizer, model
check-pointing, etc., EGG pre-implements many
of them, reducing the necessary amount of boiler-
plate code to the minimum.

2.2 EGG design

EGG, in its first iteration, operates over the follow-
ing entities. Firstly, there are two distinct agent
roles: Sender and Receiver. Sender and Receiver

3This also proved to be a convenient debugging mecha-
nism, as single-symbol communication is typically simpler
to train.

SymbolGameReinforce
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

RFAgentWrapper
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Sender
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Receiver
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Channel
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Inputs
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Sender Inputs
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Receiver Inputs
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Receiver Outputs
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

RFAgentWrapper
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1: Example of EGG’s game flow when using
REINFORCE. White boxes (Sender and Receiver) rep-
resent the user-implemented agent architectures. The
colored boxes are EGG-provided wrappers that im-
plement a REINFORCE-based scenario. For exam-
ple, SymbolGameReinforce is an instance of the Game
block. It sets up single-symbol Sender/Receiver game
optimized with REINFORCE. To use Gumbel-Softmax
relaxation-based training instead, the user only has to
change the EGG-provided wrappers.

are connected via a one-directional communica-
tion channel from the former to the latter, that has
to produce the game-specific output.

The next crucial entity is Game. It encapsu-
lates the agents and orchestrates the game sce-
nario: feeding the data to the agents, transmitting
the messages, and getting the output of Receiver.
Figure 1 illustrates EGG’s game flow in a specific
example. Game applies a user-provided loss func-
tion, which might depend on the outputs of Re-
ceiver, the message transmitted, and the data. The
value of the loss is minimized by a fourth entity,
Trainer. Trainer also controls model checkpoint-
ing, early stopping, etc.

The Trainer and Game modules are pre-
implemented in EGG. In a typical scenario, the
communication method (single or multiple symbol
messages) will be implemented by EGG-provided
wrappers. As a result, what is left for the user to
implement consists of: (a) the data stream, (b) core
(non-communication-related) parts of the agents,
(c) the loss. The data interface that is expected by
Trainer is an instance of the standard PyTorch data
loader utils.data.DataLoader.

To implement Sender, the user must define a
module that consumes the data and outputs a ten-
sor. On Receiver’s side, the user has to imple-
ment a module that takes an input consisting of a
message embedding and possibly further data, and
generates Receiver’s output.

Section 4 below provides examples of how to
implement agents, choose communication and op-
timization type, and train a game.

56

Figure 2: MNIST game: Defining and instantiating the
user-defined parts of the agents’ architecture.

3 Optimizing the communication
channel in EGG

EGG supports two widely adopted strategies for
learning with a discrete channel, Gumbel-Softmax
relaxation (used, e.g., by Havrylov and Titov
(2017)) and REINFORCE (used, e.g., by Lazari-
dou et al. (2016)). Below, we briefly review both
of them.

Gumbel-Softmax relaxation is based on the
Gumbel-Softmax (GS) (aka Concrete) distribu-
tion (Maddison et al., 2016; Jang et al., 2016),
that allows to approximate one-hot samples
from a Categorical distribution. At the same
time, GS admits reparametrization, hence allows
backpropagation-based training. Suppose that
Sender produces a distribution over the vocab-
ulary, with ith symbol having probability pi =
S(is). To obtain a sample from a corresponding
Gumbel-Softmax distribution, we take i.i.d. sam-
ples gi from the Gumbel(0, 1) distribution and
obtain the vector y with components yi:

yi =
exp((log pi + gi)/τ)∑
j exp((log pj + gj)/τ)

(1)

where τ is the temperature hyperparameter, which
controls the degree of relaxation. We treat y as
a relaxed symbol representation. In the case of
single-symbol communication, the embedding of
y is passed to Receiver. In case of variable-length
messages, the embedding is also fed into a RNN
cell to generate the next symbol in the message.

As a result, if Receiver and the game loss are
differentiable w.r.t. their inputs, we can get gra-
dients of all game parameters, including those of
Sender, via conventional backpropagation.

REINFORCE (Williams and Peng, 1991) is a
standard Reinforcement Learning algorithm. As-

sume that both agents are stochastic: Sender sam-
ples a message m, and Receiver samples its out-
put o. Let us fix a pair of inputs, is, ir, and
the ground-truth output l. Then, using the log-
gradient “trick”, the gradient of the expectation of
the loss L w.r.t. the vector of agents’ parameters
θ = θs

⊔
θr is:

Em,o [L(o, l)∇θ logP(m,o|θ)] (2)

where P(m,o|θ) specifies the joint probability
distribution over the agents’ outputs.

The gradient estimate is found by sampling
messages and outputs. A standard trick to reduce
variance of the estimator in Eq. 2 is to subtract
an action-independent baseline b from the opti-
mized loss (Williams, 1992). EGG uses the run-
ning mean baseline.

Importantly, the estimator in Eq. 2 allows us to
optimize agents even if the loss is not differen-
tiable (e.g., 0/1 loss). However, if the loss is dif-
ferentiable and Receiver is differentiable and de-
terministic, this can be leveraged by a “hybrid”
approach: the gradient of Receiver’s parameters
can be found by backpropagation, while Sender
is optimized with REINFORCE. This approach, a
special case of gradient estimation using stochas-
tic computation graphs as proposed by Schulman
et al. (2015), is also supported in EGG.

4 Implementing a game

In this Section we walk through the main steps to
build a communication game in EGG. We illus-
trate them through a MNIST (LeCun et al., 1998)
communication-based autoencoding task: Sender
observes an image and sends a message to Re-
ceiver. In turn, Receiver tries to reconstruct the
image. We only cover here the core aspects of the
implementation, ignoring standard pre- and post-
processing steps, such as data loading. The full
implementation can be found in an online tuto-
rial.4

We start by implementing the agents’ architec-
tures, as shown in Figure 2. Sender is passed
an input image to be processed by its pre-trained
vision module, and returns its output after a lin-
ear transformation. The way Sender’s output will
be interpreted depends on the type of communica-
tion to be used (discussed below). Receiver gets

4 https://colab.research.google.com/
github/facebookresearch/EGG/blob/master/
tutorials/EGG%20walkthrough%20with%20a%
20MNIST%20autoencoder.ipynb

57

(a) Single-symbol communication, Gumbel-Softmax
relaxation.

(b) Single-symbol communication, REINFORCE.

(c) Variable-length communication, Gumbel-Softmax
relaxation.

(d) Variable-length communication, REINFORCE.

Figure 3: MNIST game: The user can choose different communication wrappers to switch between training
regimes (Gumbel-Softmax or REINFORCE) and communication type (single-symbol or variable-length mes-
sages).

Figure 4: MNIST game: Once the agents and the game
are instantiated, the user must pass them to a Trainer,
which implements the training/validation loop, check-
pointing, etc.

an input from Sender and returns an image-sized
output with pixels valued in [0; 1]. Again, depend-
ing on the type of channel employed, the Receiver
input will have a different semantics.

In the case of one-symbol communication,
Sender’s output is passed through a softmax
layer and its output is interpreted as the probabil-
ities of sending a particular symbol. Hence, the
output dimensionality defines the size of the vo-
cabulary. In the case of variable-length messages,
Sender’s output specifies the initial hidden state of
an RNN cell. This cell is then “unrolled” to gen-
erate a message, until the end-of-sequence symbol
(eos) is produced or maximum length is reached.
Receiver’s input is an embedding of the message:
either the embedding of the single-symbol mes-
sage, or the last hidden state of the RNN cell that
corresponds to the eos symbol.

Once Sender and Receiver are defined, the
user wraps them into EGG-implemented wrap-
pers which determine the communication and
optimization scenarios. Importantly, the ac-
tual user-specified Sender and Receiver archi-
tectures can be agnostic to whether single-
symbol or variable-length communication is used;
and to whether Gumbel-Softmax relaxation- or
REINFORCE-based training is performed. In
Figure 3 we illustrate different communica-
tion/training scenarios: (a) single-symbol com-

munication, trained with Gumbel-Softmax relax-
ation, (b) single-symbol communication, trained
with REINFORCE, (c) variable-length communi-
cation, trained with Gumbel-Softmax relaxation,
(d) variable-length communication, trained with
REINFORCE.

Once the Game instance is defined, everything
is ready for training. That is, the user has to pass
the game instance to core.Trainer, as shown
in Figure 4.

We report some results obtained with the code
we just described. We used the following param-
eters. The vision module is a pre-trained LeNet-
1 (LeCun et al., 1990) instance, the maximal mes-
sage length is set to 2, the communication be-
tween the agents is done through LSTM units with
hidden-size 20, vocabulary size is 10. The agents
are trained with REINFORCE for 15 epochs with
batch size of 32, and the loss is per-pixel cross-
entropy.

In Figure 5 we illustrate the language that
emerges in this setup. To do this, we enumerate
all possible 100 two-symbol messages x, y and in-
put them to Receiver. We report all images that
Receiver produces. The eos symbol is fixed to be
0, hence if the first symbol is 0 then the second
symbol is ignored (top row of Figure 5).

Note that the first symbol x tends to denote
digit identity: x ∈ {2, 4, 7, 8, 9}. In contrast, the
second symbol y is either ignored (x ∈ {4, 8})
or specifies the style of the produced digit (x ∈
{3, 7}). The second symbol has the most striking
effect with x = 7, where y encodes the rotation
angle of the digit 1.

58

Figure 5: The emergent code-book in the MNIST auto-
encoder game. After training, we feed all 100 possible
two-symbol messages xy from the size-10 vocabulary
to Receiver and show the returned images. The rows
iterate over the first symbol x, the columns enumerate
the second symbol, y. The eos symbol has id 0.

5 Some pre-implemented games

EGG contains implementations of several games.
They (a) illustrate how EGG can be used to ex-
plore interesting research questions, (b) provide
reference usage patterns and building blocks, (c)
serve as means to ensure reproducibility of stud-
ies reported in the literature. For example, EGG
incorporates an implementation of the signaling
game of Lazaridou et al. (2016) and Bouchacourt
and Baroni (2018). It contains code that was re-
cently used to study the communicative efficiency
of artificial LSTM-based agents (Chaabouni et al.,
2019a) and the information-minimization proper-
ties of emergent discrete codes (Kharitonov et al.,
2019).5 Finally, EGG provides a pre-implemented
game that allows to train agents entirely via
the command line and external input/output files,
without having to write a single line of Python
code. We hope this will lower the learning curve
for those who want to experiment with language
emergence without previous coding experience.

6 Conclusion and future work

We introduced EGG, a toolkit for research on
emergence of language in games. We outlined its
main features design principles. Next, we briefly

5A small illustration can be run in Google Colab-
oratory: https://colab.research.google.
com/github/facebookresearch/EGG/blob/
master/egg/zoo/language_bottleneck/
mnist-style-transfer-via-bottleneck.
ipynb.

reviewed how training with a discrete communi-
cation channel is performed. Finally, we walked
through the main steps for implementing a MNIST
autoencoding game using EGG.

We intend to extend EGG in the following direc-
tions. First, we want to provide support for multi-
direction and multi-step communicative scenarios.
Second, we want to add more advanced tooling
for analyzing the properties of the emergent lan-
guages (such as compositionality; Andreas 2019).
We will also continue to enlarge the set of pre-
implemented games, to build a library of reference
implementations.

Acknowledgments

We are grateful to Roberto Dessı̀ and Tomek Ko-
rbak for their contributions to the EGG codebase
and to Serhii Havrylov for sharing his code with
us.

References
Jacob Andreas. 2019. Measuring compositionality in

representation learning. In ICLR, New Orleans, LA.

Diane Bouchacourt and Marco Baroni. 2018. How
agents see things: On visual representations in an
emergent language game. In EMNLP.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel
Dupoux, and Marco Baroni. 2019a. Anti-efficient
encoding in emergent communication. arXiv
preprint arXiv:1905.12561.

Rahma Chaabouni, Eugene Kharitonov, Alessandro
Lazaric, Emmanuel Dupoux, and Marco Baroni.
2019b. Word-order biases in deep-agent emergent
communication. In ACL.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,
Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. 2019.
BabyAI: First steps towards grounded language
learning with a human in the loop. In International
Conference on Learning Representations.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Jeffrey Elman. 1990. Finding structure in time. Cogni-
tive Science, 14:179–211.

Serhii Havrylov and Ivan Titov. 2017. Emergence of
language with multi-agent games: Learning to com-
municate with sequences of symbols. In NIPS.

59

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with Gumbel-Softmax.
arXiv preprint arXiv:1611.01144.

Eugene Kharitonov, Rahma Chaabouni, Diane Boucha-
court, and Marco Baroni. 2019. Information min-
imization in emergent languages. arXiv preprint
arXiv:1905.13687.

Simon Kirby. 2002. Natural language from artificial
life. Artificial life, 8(2):185–215.

Satwik Kottur, José MF Moura, Stefan Lee, and
Dhruv Batra. 2017. Natural language does not
emerge’naturally’in multi-agent dialog. arXiv
preprint arXiv:1706.08502.

Angeliki Lazaridou, Karl Moritz Hermann, Karl
Tuyls, and Stephen Clark. 2018. Emergence of
linguistic communication from referential games
with symbolic and pixel input. arXiv preprint
arXiv:1804.03984.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2016. Multi-agent cooperation and
the emergence of (natural) language. arXiv preprint
arXiv:1612.07182.

Yann LeCun, Bernhard E Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne E Hub-
bard, and Lawrence D Jackel. 1990. Handwritten
digit recognition with a back-propagation network.
In NIPS.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. 1998. Gradient-based learning ap-
plied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

David Lewis. 1969. Convention. Harvard University
Press, Cambridge, MA.

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle
Pineau, and Yann Dauphin. 2019. On the pitfalls of
measuring emergent communication. arXiv preprint
arXiv:1903.05168.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv
preprint arXiv:1611.00712.

Tomas Mikolov, Armand Joulin, and Marco Baroni.
2016. A roadmap towards machine intelligence.
In International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 29–
61. Springer.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

John Schulman, Nicolas Heess, Theophane Weber, and
Pieter Abbeel. 2015. Gradient estimation using
stochastic computation graphs. In NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Ronald J Williams and Jing Peng. 1991. Function opti-
mization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268.

60

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 61–66
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Entity resolution for noisy ASR transcripts

Arushi Raghuvanshi Varsha Embar‡ Vijay Ramakrishnan‡

Lucien Carroll Karthik Raghunathan
Cisco Systems

‡authors contributed equally

Abstract

Large vocabulary domain-agnostic Automatic
Speech Recognition (ASR) systems often mis-
transcribe domain-specific words and phrases.
Since these generic ASR systems are the first
component of most voice assistants in produc-
tion, building Natural Language Understand-
ing (NLU) systems that are robust to these er-
rors can be a challenging task. In this paper,
we focus on handling ASR errors in named en-
tities, specifically person names, for a voice-
based collaboration assistant. We demon-
strate an effective method for resolving person
names that are mistranscribed by black-box
ASR systems, using character and phoneme-
based information retrieval techniques and
contextual information, which improves accu-
racy by 40.8% on our production system. We
provide a live interactive demo to further illus-
trate the nuances of this problem and the effec-
tiveness of our solution.1

1 Introduction

General purpose ASR has improved by a large
margin in recent years, with a reported word er-
ror rate (WER) of less than 10% for English
voice search queries (Chiu et al., 2018). How-
ever for domain-specific vocabularies, uncommon
terms like proper nouns, non-native English ac-
cents, and noisy acoustic settings, the WER is still
high. Since ASR is the first component in a spoken
dialog system, errors introduced in the recognized
transcript cascade to downstream natural language
understanding (NLU) components, leading to un-
satisfactory user experiences. While building a
domain-specific ASR system could address this
problem (Gao et al., 2001; Zhao et al., 2018), do-
ing so requires prohibitively high amounts of data
and resources. Therefore, using a generic black-
box ASR system and handling mistranscriptions

1https://vimeo.com/345579360

as a post processing step is a more practical ap-
proach for most industry applications.

One such application affected by cascading
ASR errors is entity resolution. It involves identi-
fying and linking different references for the same
real world object to a canonical form. For task-
oriented dialog systems, robust entity resolution is
a challenging task because users generally refer to
entities informally using abbreviations and aliases,
rather than official standardized names, and for
many applications, entities tend to be domain-
specific, uncommon terms that are most often mis-
transcribed (Laurent et al., 2014).

Consider an office voice assistant that helps em-
ployees start a call with a colleague by name. The
assistant needs to 1) identify the name in the user
query and 2) resolve it to an employee within
the company. For instance, in a query Call John
please the extracted person name entity John could
resolve to John Scott Edwardson (ID: 576253).

While popular English names like John or
David are recognized by generic ASR systems
with high accuracy, less common or non-English
names are often mistranscribed. For example, Dial
into Dorlis’s meeting may get transcribed as Dial
into doorless is meeting, where the person name
entity is incorrectly transcribed as common En-
glish words. Similarly, Call Nguyen may be tran-
scribed as Call Newman, where the person name
entity is incorrectly transcribed as a different and
more common name. In the first case, the assis-
tant fails to identify an entity to place a call and
in the second it has the wrong name, leading to a
call to the wrong person. In either case, it appears
unintelligent to the end user.

ASR vendors provide some room for domain
personalization in the form of “hints”, i.e. a list
of expected phrases the ASR system can bias its
hypotheses towards. The number of allowed hints
is usually capped at a relatively small number (e.g.

61

500) and does not scale to the full set of domain-
specific vocabulary required (e.g. a few thousand
employee names in a company).

In this paper, we propose a scalable, unsuper-
vised solution for tackling the problem of en-
tity resolution of named entities in noisy ASR
transcripts for an enterprise collaboration assis-
tant. We demonstrate improvements on the task by
utilizing text and phoneme information retrieval
techniques along with contextual and personaliza-
tion information available in an enterprise setting.
This approach can easily be extended to other do-
mains,2 as demonstrated in MindMeld, our open
source conversational AI platform.

2 Related Work

Previous work on entity resolution for noisy text
mostly deals with spelling errors (Bassil and Se-
maan, 2012), ambiguous terms, or noise induced
through style of writing (like in social media plat-
forms) (Campbell et al., 2016). The problem of
noise induced through ASR errors is different in
nature. Some systems use a wide range of fea-
tures like lexical, syntactic, phonetic and seman-
tic features to identify presence of ASR errors in
transcripts, asking the user to clarify the intended
meaning when an error is detected (Hazen et al.,
2002; Prasad et al., 2012; Marin et al., 2015).
To detect out of vocabulary (OOV) name errors,
a multi-task recurrent neural network language
model was used by (Cheng et al., 2015).

Using a ranking mechanism on the n-best hy-
potheses generated by one or more ASR mod-
ules is another popular approach used in dialog
systems (Morbini et al., 2012). Re-ranking sys-
tems like (Corona et al., 2017) make use of a lan-
guage model and semantic parsing features, but
ignore any OOV words encountered, losing valu-
able information. While these approaches improve
downstream tasks like entity recognition (Zhai
et al., 2004; Hakkani-Tür et al., 2006), they can-
not correct to words that do not exist in one of the
hypothesized transcripts.

While these methods are not directly applicable
to our problem, we extend some of the features
and ideas discussed in these papers for entity res-
olution.

2https://www.mindmeld.com/docs/
blueprints/overview.html

3 Approach

Given a noisy ASR transcript of a user query that
potentially contains named entities, our goal is to
identify the span of text that corresponds to an en-
tity and resolve each identified span to a canonical
value that can be looked up in a database.

Our dialog system consists of a set of classi-
fiers, information retrieval components and a di-
alogue manager as described in Raghuvanshi et al.
(2018). We use MindMeld3 to build and train the
intent classifier and entity recognizer with crowd-
sourced data for all the intents handled by the as-
sistant including “call by name” which includes
“person name” entities. Since we operate on a
narrow domain, the model learns to rely on the
patterns of surrounding common English words,
which are generally transcribed correctly, to detect
entity spans which may be mistranscribed.

For entity resolution, we store the organiza-
tion’s employee database, metadata, and extracted
features in an inverted index which we describe
in 3.1. At inference time, for each detected per-
son name entity span, we extract the same features
from the span along with metadata and use infor-
mation retrieval methods to retrieve a ranked list
of the most likely matching canonical names.

3.1 Features

Our system utilizes four broad feature categories.
We describe each below and provide the imple-
mentation.4

3.1.1 Textual Similarity
For text-based retrieval, we leverage normaliza-
tion, character n-grams, word n-grams, and edge
n-grams. Exact matching is essential for resolv-
ing names that are already correctly transcribed.
Matching against normalized text accounts for
capitalization variations and special characters
(e.g. Oleary to O’Leary). Character n-grams ac-
count for spelling variations which are common in
entities like person names (e.g. Ashley to Ashlee).
Word or token n-grams are useful for partial name
matching (e.g. Carly Rae to Carly Rae Jepsen).
We observed that the phonemes at the edges of to-
kens tend to contribute more to our notion of pho-
netic similarity than some of the middle phonemes

3https://github.com/cisco/mindmeld
4https://github.com/cisco/mindmeld/

blob/master/mindmeld/components/entity_
resolver.py

62

(e.g. Monica seems more similar to Malika than
Sonic). Using edge n-grams accounts for this.

In addition, the index contains domain-specific
metadata of synonyms or in our case, common
nicknames. For example Sid is populated as
a common nickname for Siddharth, Teddy for
Theodore and Bob for Robert. This information
matches colloquial name utterances to the formal
“given” and “family” names in the index.

3.1.2 Phonetic Similarity
In many cases, relying solely on text matching
will return results that are phonetically different
from the original utterance. For example, Gau-
rav Sharma is transcribed as quarter shawarma,
which is textually more similar to Carter Warmac
than the original name, but phonetically quite dif-
ferent. In order to correct uncommon names for
which the mistranscriptions are often beyond sim-
ple text variations, phonetic features are essential.

As we are leveraging third party ASR systems
via APIs, we do not have direct access to the pho-
netic information from the original audio. Instead,
we use techniques to recover the phonetic repre-
sentation of the transcribed text. We use double
metaphone (Philips, 2000) as well as grapheme-to-
phoneme (G2P) representations (Daelemans and
van den Bosch, 1997) to generate our phonetic
features. Double metaphone is an algorithm that
maps tokens to approximate phonetic representa-
tions using rules and heuristics developed primar-
ily for English names, but extended to Chinese,
Romance, and Slavic languages. The G2P toolkit
in CMU Sphinx5 is a sequence-to-sequence deep
learning model that maps text to a phonetic repre-
sentation. Its coverage and accuracy is dependent
on the training data, which consists of common
English words as well as person names. We found
that the two representations had complementary
information, and we benefit from using both.

While this feature is essential, no phonetic en-
coding technique is perfect, and the same name
may have different phonetic representations when
spoken by people with different accents. There-
fore, it is important to balance it with the other
feature categories.

3.1.3 n-best Transcripts
Almost all off-the-shelf ASR systems return a
ranked n-best list of multiple possible transcripts.

5https://github.com/cmusphinx/
g2p-seq2seq

The n-best entity spans, extracted from each of the
alternate transcripts, provide additional phonetic
information about the original audio. In some
cases, the exact correct name may even exist in
one of the lower ranked transcripts. The reliability
of each hypothesis generally decreases as we go
down the n-best list, so while all n-best spans con-
tribute to selecting the final candidate, our weight-
ing scheme ensures that matches against higher
ranked alternates have a larger impact.

Consider an utterance Helen which was mis-
transcribed to Ellen, but in the n-best list (Ellen,
Hellen, Helena, Hella, Hello, Helen), all of the
other hypotheses start with an ‘H’, and the original
utterance Helen exists as one of the lower ranked
hypotheses. By utilizing the n-best list in conjunc-
tion with phonetic similarity features, our retrieval
method has a better chance of correcting to Helen.

3.1.4 Personalization Features
The personalization features are highly domain
and user specific, but have a high impact on the
precision of our model. For the use case of call-
ing a person, we capitalize on the observation that
a user is more likely to call someone they often
interact with or who is close to them in the organi-
zation hierarchy. The caller’s identity can be deter-
mined by a variety of methods including authenti-
cation, device pairing, face recognition, or speaker
identification. Based on information like the inter-
action frequency between employees, we generate
a personalization factor from the user’s identity to
help match the entity span to the intended name.

The personalization features are generalizable
across different domains. For instance, consider
a food ordering use-case where the user Alice is
trying to order a dish called “Dabo Kolo”. Based
on personalized knowledge that Alice regularly or-
ders Ethopian cuisine in San Francisco, we can ac-
cordingly boost relevant dish search matches even
if it was mistranscribed to “Debbie Carlo”.

3.2 Hyperparameter Tuning

We used a combination of manual and random
walk tuning to learn the optimum weights of the
different features. Quantitative evaluation is based
on whether the correct name exists in the top 1 or
top 5 ranked results. For the random walk tuning,
we define an objective function that optimizes the
recall score over these features.

As a production application, we are concerned
with not only recall, but also the relevance of the

63

other top results, and how egregious the errors are
when the correct name is not found. For tuning on
these qualitative factors, we rely on manual analy-
sis.

4 Data and Experimental Setup

We test our technique on a crowd-sourced dataset
of audio transcripts for the “call by name” in-
tent. The name used in each transcript was sam-
pled from ∼100 k employees in the directory of a
global company with up to 10 speakers for each
name. We used Google Speech-to-Text6 to collect
10-best ASR transcripts for each sample. Table 1
gives the overall stats and name type distribution
of the evaluation dataset.

Table 1: Summary of dataset used for evaluation

Samples # First Names # Full Names

2915 1234 1681

For evaluating the personalization features, we
augment the data with four different settings. For
each name span in the dataset, we record the en-
tity resolution accuracy for each of the following
scenarios:

1. Same team: the caller directly works with
the person they are trying to call

2. Same department: the caller is a few hops
away from the person they are trying to call

3. Different department: the caller has no pre-
vious interaction and is far removed from the
person they are trying to call

4. No information: the system is unable to
identify the caller

This ensures that the system is not over-optimizing
for close interaction distances and users are still
able to call people who they have little or no previ-
ous interaction with. We report the recall averaged
across these interaction distance settings.

Assuming that a person can only call someone
within the company, we populate the index with
all ∼100 k employees. For each entry, we have a
unique identifier, the full name of the employee,
common nicknames for the name, as well as the
job title and location. We also have an interaction
corpus which contains information on the previous
interaction history of users and the organizational

6https://cloud.google.com/
speech-to-text/

hierarchy which is used to generate a “personal-
ization score” between any two users in the index.

We evaluate our system using the IR metric of
recall at n (R@n). We report numbers for n = 1
and n = 5. R@1 evaluates the effectiveness of the
entity resolver by measuring the quality of the top
result, while R@5 gives the likelihood with which
the user can find the correct entity at least within
the top 5 suggestions provided by the system.

5 Results and Discussion

Our approach significantly improves the recall of
recovering the correct name from a noisy ASR
transcript. The final setup gives a 40.8% improve-
ment of R@1 over the baseline (Table 2). Table 3
breaks down the recall of the system by the inter-
action distances. For the most common scenario—
that of users calling those they often interact
with—the improvement is even larger. Because
these four categories of caller distance are equally
weighted in the optimization process, increased
recall in the cases of same team/department leads
to lower recall in the different department cases,
where personalization features are generally mis-
leading.

Table 2: Evaluation of the entity resolver with addition
of different features

Features R@1 R@5

+ Textual Features 0.100 0.120
+ Phonetic Features 0.255 0.347
+ n-best List 0.326 0.454
+ Personalization 0.508 0.627

Table 3: Performance of the final system based on the
distance between the caller and the callee

Caller Distance R@1 R@5

Same team 0.765 0.864
Same department 0.659 0.777
No information 0.326 0.454
Different department 0.281 0.412

The name resolution improvement converts an
unusable product to a reasonably intelligent one
with significantly less cost and computation than
alternate approaches of building a domain-specific
ASR. The remaining names that are not correctly
resolved in the top position, often appear in one
of the following ranked positions that a user can
scroll between, as illustrated by the R@5 metric,
or the name can be resolved by a follow-up query.

64

We also present the WER of the transcripts in
Table 4. While the entity resolution recall met-
ric is more relevant, the ASR metric of WER il-
lustrates the magnitude of errors in the original
ASR transcriptions and further reinforces the ef-
fectiveness of our system. We compare the full
user query transcripts from the ASR system with
the transcript where recognized name spans are re-
placed with the top ranked name string from our
entity resolution model. We find that using our IR
entity resolution approach we get a relative WER
reduction of 29.0% on name tokens and 12.0% on
the full query. Note that this additionally demon-
strates that this approach can be extended beyond
entity resolution to the task of ASR correction
with compelling results, particularly for correcting
mistranscriptions of domain-specific entities.

Table 4: WER comparison before and after ASR cor-
rection

Model Name WER Transcript WER

ASR transcripts 86.0 ± 1.6% 40.8 ± 0.6%
IR entity correction 61.1 ± 0.7% 35.9 ± 0.4%

5.1 Qualitative Analysis
We performed manual evaluation while tuning the
system, and found several broad categories of
ASR errors that appeared often. We analyze some
of them and discuss features of our ranking ap-
proach that help correct for those errors. These
examples can be visualized in our interactive UI.

• Language model of generic ASR systems incor-
rectly biases to common vocabulary.

Gold: Prasanth Reddy
ASR: croissant ready

In these cases, n-best lists are often the most im-
portant feature, since the less common name to-
kens usually appear in one of the alternate tran-
scripts.

• ASR model mistranscribes to similar phoneti-
cally but textually different tokens.

Gold: Kiran Prakash’s
ASR: Corrine precautious

In these cases, the phonetic features like double
metaphone and G2P are important, as they allow
us to match at a phonetic level.

• Entities are mistranscribed to other entities.
Gold: Didi
ASR: Stevie

Here, contextual features are the key. Names are
often mistranscribed to other more popular valid
names. A single ASR transcript may be a cor-
rectly transcribed name or a mistranscription of
another name, but personalization and the set of
n-best transcripts provide evidence of the cor-
rect transcription. In this example, if a user had
actually said Stevie, we shouldn’t only return
people whose name is Didi. However, if the in-
tended person is Didi, which is consistently mis-
transcribed to Stevie, we need a way to recover
that correct name. The personalization factor
can boost names like Didi towards the top of the
ranked list, instead of only returning names like
Stevie or Steven. The n-best list can also help
determine the confidence of the name. If all of
the transcripts contain Stevie, then that is likely
what the user actually said. But if the n-best re-
sults contain many terms which start with ‘D’,
then it is more likely the user said something
else and we can use this combined with other
signals to recover the correct name.

• Some phonemes are not recognized due to noisy
audio.

Gold: Mahojwal
ASR: my jaw

There are many cases where some phonemes
are dropped or added in the mistranscription.
Again, tuning to account for this type of noise
is a balancing act, since we don’t want our sys-
tem to hallucinate sounds that don’t exist in the
original utterance, but it needs to have enough
leeway that it can recover the correct name
from noisy transcripts where a phoneme may
be dropped or added. Fuzzy matching of both
characters and phonemes are useful for correct-
ing these cases.

Another error category is when the context
words i.e, words surrounding the name in a query,
are fused with the name token. For example, con-
nect me with Heather gets transcribed as connect
Merriweather. In such cases, the phonemes of the
name span in the transcript are different from those
of the intended name. While we do not evaluate
our method on such transcripts in this paper, they
form an important error category in the real world.
Fuzzy matching of characters and phonemes can
help correct these cases.

The interactive demo UI enables exploration of
these errors and of which features help correct for
them, as shown in the video submission.

65

6 Conclusion

We present a novel approach for handling ASR er-
rors in entity resolution, highlighting the advan-
tages of using contextual features for the task. Our
proposed approach shows promising results when
resolving error-prone domain-specific entities in
noisy ASR transcripts against an index of up to
hundreds of thousands of terms. Our results on the
use case of person name resolution for voice call-
ing can generalize to many other use cases with
a fixed set of resolvable terms, such as restaurant
names for food ordering, song titles in a music
player, or the resolution of actor names in a movie
browsing voice assistant.

Acknowledgments

This work has benefited from the comments, code,
and UI design contributions of Marvin Huang,
Chris Liu, Jui-Pin Wang, Chad Oakley, Qian Yu.

References
Youssef Bassil and Paul Semaan. 2012. ASR context-

sensitive error correction based on Microsoft n-gram
dataset. Journal of Computing, 4(1):34–42.

William M Campbell, Lin Li, C Dagli, Joel Acevedo-
Aviles, K Geyer, Joseph P Campbell, and C Priebe.
2016. Cross-domain entity resolution in social me-
dia. arXiv preprint arXiv:1608.01386.

Hao Cheng, Hao Fang, and Mari Ostendorf. 2015.
Open-domain name error detection using a multi-
task RNN. In Proceedings of the 2015 EMNLP,
pages 737–746.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen,
Anjuli Kannan, Ron J Weiss, Kanishka Rao, Katya
Gonina, Navdeep Jaitly, Bao Li, Jan Chorowski, and
Michiel Bacchiani. 2018. State-of-the-art speech
recognition with sequence-to-sequence models. In
2018 IEEE ICASSP.

Rodolfo Corona, Jesse Thomason, and Raymond
Mooney. 2017. Improving black-box speech recog-
nition using semantic parsing. In Proceedings of the
8th IJCNLP, volume 2, pages 122–127.

Walter M. P. Daelemans and Antal P. J. van den
Bosch. 1997. Language-independent data-oriented
grapheme-to-phoneme conversion. In Jan P. H. van
Santen, Joseph P. Olive, Richard W. Sproat, and Ju-
lia Hirschberg, editors, Progress in Speech Synthe-
sis, pages 77–89. Springer New York, New York.

Yuqing Gao, Bhuvana Ramabhadran, Julian Chen,
Hakan Erdogan, and Michael Picheny. 2001. Inno-
vative approaches for large vocabulary name recog-

nition. In 2001 IEEE ICASSP, volume 1, pages 53–
56.

Dilek Hakkani-Tür, Frédéric Béchet, Giuseppe Ric-
cardi, and Gokhan Tur. 2006. Beyond ASR 1-
best: Using word confusion networks in spoken lan-
guage understanding. Computer Speech & Lan-
guage, 20(4):495–514.

Timothy J Hazen, Theresa Burianek, Joseph Polifroni,
and Stephanie Seneff. 2002. Recognition confi-
dence scoring for use in speech understanding sys-
tems. Computer Speech & Language, 16:49–67.

Antoine Laurent, Sylvain Meignier, and Paul Deléglise.
2014. Improving recognition of proper nouns
in ASR through generating and filtering phonetic
transcriptions. Computer Speech & Language,
28(4):979–996.

Alex Marin, Mari Ostendorf, and Ji He. 2015. Learn-
ing phrase patterns for ASR name error detection
using semantic similarity. In INTERSPEECH-2015,
pages 1423–1427.

Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein,
Maarten Van Segbroeck, Kenji Sagae, Panayiotis
Georgiou, David R Traum, and Shri Narayanan.
2012. A reranking approach for recognition and
classification of speech input in conversational di-
alogue systems. In 2012 IEEE SLT, pages 49–54.
IEEE.

Lawrence Philips. 2000. The double metaphone search
algorithm. C/C++ Users J., 18(6):38–43.

Rohit Prasad, Rohit Kumar, Sankaranarayanan Anan-
thakrishnan, Wei Chen, Sanjika Hewavitharana,
Matthew Roy, Frederick Choi, Aaron Challenner,
Enoch Kan, Arvind Neelakantan, and Premkumar
Natarajan. 2012. Active error detection and reso-
lution for speech-to-speech translation. In IWSLT
2012.

Arushi Raghuvanshi, Lucien Carroll, and Karthik
Raghunathan. 2018. Developing production-level
conversational interfaces with shallow semantic
parsing. In Proceedings of the 2018 EMNLP: Sys-
tem Demonstrations, pages 157–162.

Lufeng Zhai, Pascale Fung, Richard Schwartz, Marine
Carpuat, and Dekai Wu. 2004. Using n-best lists
for named entity recognition from Chinese speech.
In Proceedings of HLT-NAACL 2004: Short Papers,
pages 37–40.

Yong Zhao, Jinyu Li, Shixiong Zhang, Liping Chen,
and Yifan Gong. 2018. Domain and speaker adapta-
tion for Cortana speech recognition. In 2018 IEEE
ICASSP, pages 5984–5988.

66

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 67–72
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

EUSP: An Easy-to-Use Semantic Parsing PlatForm

Bo An, Bo Chen, Xianpei Han, Le Sun
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences, Beijing, China
{anbo, chenbo, xianpei, sunle}@iscas.ac.cn

Abstract

Semantic parsing aims to map natural lan-
guage utterances into structured meaning rep-
resentations. We present a modular platform,
EUSP (Easy-to-Use Semantic Parsing Plat-
Form), that facilitates developers to build se-
mantic parser from scratch. Instead of requir-
ing a large amount of training data or com-
plex grammar knowledge, in our platform de-
velopers can build grammar-based semantic
parser or neural-based semantic parser through
configure files which specify the modules and
components that compose semantic parsing
system. A high quality grammar-based se-
mantic parsing system only requires domain
lexicons rather than costly training data for a
semantic parser. Furthermore, we provide a
browser-based method to generate the seman-
tic parsing system to minimize the difficulty
of development. Experimental results show
that the neural-based semantic parser system
achieves competitive performance on seman-
tic parsing task, and grammar-based semantic
parsers significantly improve the performance
of a business search engine.

1 Introduction

Artificially intelligent applications have been
emerging in various forms, such as intelligent re-
trieval, personal assistants, intelligent customer
service robot, etc. Most of the existing intelligent
applications are capable of understanding user nat-
ural language utterance and returning accurate in-
formation. One of the core components of these
systems is the semantic parser, which maps natu-
ral language utterances into formal meaning repre-
sentations that facilitate the computer to process.
Therefore, it is critically desirable to design an
easy-to-use platform that facilitates developers to
quickly build a high quality semantic parsing sys-
tem for various domains and applications.

query

3UHSURFHVVRU *UDPPDU�EDVHG�
6HPDQWLF�SDUVHU

1HXUDO�EDVHG
6HPDQWLF�SDUVHU

,2)RPDWWRU6HPDQWLF�SDUVHU

7RNHQL]HU

326

…

.* /H[LFRQ …

6SDU4/

/DPGD�
FDOFXOXV

6HPDQWLF
JUDSK

…

result

Figure 1: The framework of EUSP platform.

There are mainly two lines of work for seman-
tic parsing: grammar-based semantic parsing and
neural-based semantic parsing. Grammar-based
semantic parsers employ a set of grammars and
lexicons to generate meaning representations for a
given utterance. The grammar is a set of expert de-
fined rules to compose the semantic units into can-
didate meaning representations, which is based on
the principle of compositionality (Pelletier, 1994).
However, to implement grammar-based seman-
tic parsing system the developers have to under-
stand the complex grammar. What’s worse, these
parsers require an amount of training dataset that
is hard to annotate and only work in a specific
domain. Neural semantic parsers convert the ut-
terance directly to meaning representations, like
lambda-calculus (Dong and Lapata, 2016) and se-
mantic graph (Chen et al., 2018). One of the
major advantages of neural semantic parsing is
that the model is trained in an end-to-end way
without requiring the developers to understand the
complex theory. Unfortunately, neural semantic
parser requires a large amount of training data to
achieve competitive performance. Thus, it is sig-
nificantly and crucially desirable to develop a plat-
form for helping developers build semantic pars-
ing systems without requiring complex grammar
or costly training data.

To address the above challenges, we present
an easy-to-use semantic parsing platform (EUSP),
which aims to help developers to build a seman-

67

tic parser from scratch quickly. EUSP provides
two kinds of complementary models: grammar-
based semantic parser and neural-based seman-
tic parser. The grammar-based semantic parser
achieves competitive performance without train-
ing data, while neural-based semantic parsing is
more generalizable. The advantages of our plat-
form are trifold:

• Flexibility: it provides two kinds of semantic
parsing methods (grammar-based and neural-
based).

• Cold-Start and Continuous Optimizable: the
grammar-based parser only needs domain
lexicons, and both of grammar-based and
neural-based semantic parsers can be opti-
mized with training data.

• Plug and play: the generated semantic parser
is an independent module and can be plugged
in the original system without much modifi-
cation. And it could produce various formats
of outputs, like lambda-calculus and SparQL
(Sirin and Parsia, 2007), etc.

2 Related Work

Semantic parsing can benefit to many intelligent
applications, like intelligent retrieval, personal as-
sistant, etc. There exists a range of semantic pars-
ing toolkits, such as SEMPRE 1 (Berant et al.,
2013) and RASA NLU 2. Unfortunately, most of
these toolkits require both linguistic expertise and
a large amount of annotated data. CRUISE (Shen
et al., 2018) provide an utterance generation sys-
tem to reduce the human workload of data annota-
tion. However, CRUISE focuses on spoken lan-
guage understanding. In this paper, we present
a platform for building semantic parsing system
quickly and easily.

3 EUSP Platform Overview

EUSP 3, a modular platform, consists of various
modules, such as tokenizer, syntax parsing, se-
mantic parsing. Data is passed between different
modules in Json format. And developers can use
configure files to create different semantic parser
by customizing different modules.

1https://nlp.stanford.edu/software/sempre/
2https://github.com/RasaHQ/rasa nlu
3http://39.98.248.207:8000/nluweb

3.1 EUSP Workflow
The framework is shown in Figure 1, EUSP has
three main components: preprocessor, semantic
parser and QueryIO formatter, we will detailed de-
scribe these components in the following sections.

(i) Preprocessor component consists of var-
ious modules (tokenizer, name entity recognizer
(NER), syntax parser, etc) to generate useful infor-
mation for each utterance, including tokens, can-
didate entities, POS and syntax tree.

(ii) Semantic parser component includes two
kinds of semantic parsers: grammar-based and
neural-based. The grammar-based parser consists
of modules of lexicon recognizer, grammar com-
poser, scorer, reranker and trainer. The neural-
based semantic parser is implemented based on
our Seq2Action model (Chen et al., 2018), which
generates the semantic graph directly from the ut-
terance (with entity recognized).

(iii) IOformatter component generates differ-
ent formats of output based on the result of seman-
tic parser component, such lambda-calculus.

3.2 Preprocessor component
To extract useful information for semantic parsing,
EUSP firstly employs Stanford Tokenizer (Man-
ning et al., 2014) to divide an utterance into a se-
quence of tokens. Then, a string-based entity link-
ing algorithm (Blanco et al., 2015) is utilized to
link the tokens with the domain lexicons, which
generate the candidate name entities for semantic
parsing. Finally, we use Stanford CoreNLP (Man-
ning et al., 2014) to generate the part-of-speech
tags (POS) and constituency parse tree for the
given sequence of tokens.

3.3 Semantic parser component
The semantic parser component consists of two
kinds of semantic parsing methods, we will illus-
trate them in this section.

3.3.1 Grammar-based Semantic Parser
The framework of grammar-based semantic parser
is illustrated in Figure 2, it consists of four mod-
ules: lexicon, grammar, scorer and reranker.

Lexicon module consists of lexicon entries
which map the tokens to pre-defined types or
functions. For example, the word “texas” trig-
gers the function of {“EntityAttribute”: “State”}
and the word “states” triggers the function of
{“EntityType”: “State”}. The lexicon is defined
as Figure 3, where ‘Token’ represents the token

68

/H[LFRQtokens

*UDPPDU

5HUDQNHU

6FRUHU

parse results

units

candidates

Figure 2: The framework of grammar-based semantic
parser component.

which triggers the lexicon entry, and one token
could trigger several lexicon entries; ‘TokenType’
is the type of the entity, includes EntityClass, At-
tribute, AttributeValue, Value, Comparator, Com-
bination, Aggregator and NULLQuery; ‘Query-
Value’ is the triggered value of the token, such as
AttributePredicate, EntityFunction; ‘Normalized-
TokenValue’ refers normalization of some tokens;
‘DataType’ refers to the types of values, include
String, Int, Double, Boolean; ‘Score’ refers to the
score of the lexicon entry.

The domain lexicons are the key resource for
building semantic parser, in most case, EUSP only
needs coarse-grained domain lexicons, such as the
cell lexicon from Sogou 4.

Grammar module decides whether two kinds
of tokens can be composed and the result of com-
position. For example, the grammar rule Entity-
Function ∧ AttributePredicate → AttributeValue-
Function means ‘AttributeValueFunction’ can be
composed by ‘EntityFunction’ and ‘AttributePred-
icate’. Most of the grammar rules are pre-defined,
and developers don’t need to modify them. How-
ever, if the pre-defined grammar rules contradict
with the constraints of KG, the grammar rules
should comply with the constraints of knowledge
graph (KG). Thus we define two constraints of of
the grammar rules: (i) Attribute constraint: a
‘EntityFunction’ and a ‘AtttributePredict’ can be
composed only if the entity type has the specific
attribute. (ii) Value constraint: the type value of
‘AtttributePredict’ must be the same as ‘Attribute-
Value’.

Scorer module computes the confidence of
each parsed results of the given utterance. Due to
the ambiguity of the language, an utterance may
produce many different results. To resolve the
above issue, we calculate the confidences of the
parse results based on the composition features of

4https://pinyin.sogou.com/dict/

different grammar rules as Formula (1).

score(R) = F (R) ·Wparser (1)

where F (R) is the feature vector of the parse re-
sult R; Wparser refers to the trainable weight vec-
tor of features.

Reranker module further improves the parse
results by incorporating the global features of the
parse results, includes the size of tokens, the layers
of the composition, the coverage of the grammar,
etc. And the final confidence of a produced parse
result is calculated as Formula (2).

scoreReranker(R) = Fglobal(R) ·Wrank (2)

where Fglobal refers to the global feature vector of
the result and Wrank refers to the weight vector
of global features, which is also trainable. And
the final parse result is the one with maximum
scoreReranker(R).

3.3.2 Neural-based Semantic Parser
In this paper, we implement the neural-based se-
mantic parser based on Seq2Action (Chen et al.,
2018), which directly convert the utterance to
semantic graph, and both structural constraints
and semantic constraints are applied to ensure
the parse result confirms with domain-specific
schema. The framework of Seq2Action is il-
lustrated in Figure 4. It is worth mentioning
that we implement various neural-based semantic
parsing algorithms (such as Seq2Seq, Seq2Tree,
Coarse2Fine), developers can specify any one of
them through the configure file.

3.4 IOformatter component
To support more natural language applications,
EUSP platform implements an IOformatter com-
ponent, which can generate various kinds of se-
mantic representations for different usage, such as
SQL, lambda-calculus, frame semantic, etc.

4 Training Semantic Parser

Grammar-based Semantic Parser
It is worth mentioning that the grammar-based se-
mantic parser in our platform can generate high
quality results for many application (such as intel-
ligent retrieval, recommendation) without training
data. If the developers have enough training data,
the grammar-based semantic parser can be further
improved by optimizing the score of lexicon en-
tries, the weight vector Wparser and Wrank. The

69

Token TokenType #Q:QueryValue #N:NormalizedTokenValue #D:DataType #S:Score

Figure 3: The format of lexicons.

tokens 6HT�$FWLRQ
511�PRGHO

$FWLRQ
6HTXHQFH

6HPDQWLF�
UDSK.

constraints generate

construct

Figure 4: The framework of Seq2Action.

system uses a mini-batch gradient-based discrim-
inant online learning algorithm (Collins, 2002).
The training process is as Formula (3).

g(S) = F (R)− F (T)
g(S1, ..., Sk) = (g(S1) + ...+ g(Sk))/k

Wt+1 =Wt − α ∗ g(S1, ..., Sk)
(3)

where F (T) is the annotated result of an utterance
S; k is the number of instances in a mini-batch;Wt

is the parameters at t-th iteration; α is the learning
rate and g is the gradient which is calculated based
on SGD.

Neural-based Semantic Parser
The parameters of Seq2Action in our model in-
clude RNN parameters W s, W a, Uw, word em-
beddings φx and action embeddings φy. The
parameters are estimated based on training data.
Given an utterance X and action sequence Y (the
components of semantic graph), we maximize the
likelihood of the generated sequence of actions.
And the objective function is defined as Formula
(4). We employ standard stochastic gradient de-
scent algorithm to update the parameters.

L =

n∑

i=1

logP (Yi|Xi) (4)

4.1 Building Semantic Parser
To facilitate the developers to build the seman-
tic parser system for their applications, our plat-
form provides two methods to generate the seman-
tic parsers: the toolkit-based building method and
the browser-based building method.

The proposed toolkit consists of all the compo-
nents and modules needed for building a domain
specific semantic parsing system. The developers

Figure 5: The UI of grammar-based semantic parser.

Figure 6: The UI of neural-based semantic parser.

could quickly build a domain semantic parser ac-
cord to the instructions of the toolkit with the do-
main dependent lexicon.

Furthermore, our platform provides a more
easy-to-use way to build their semantic parser. We
provide a web page that the developers can upload
their domain lexicons and specify some key infor-
mation of the semantic parser (or default values),
and our platform will generate a compressed file
with the lexicon entries, grammar rules and pars-
ing engine. And developers can deploy the seman-
tic parser with necessary environment, like JDK
and Python development environment.

And we offer user friendly interfaces for devel-
opers to build and test their semantic parsers like
Figure 5 and Figure 6.

5 Experimental Evaluation

In this section, we implement neural semantic
parser and grammar semantic parser based on
EUSP platform for English and Chinese respec-
tively. We compare our method with several state-
of-the-art neural semantic parsers as well as the
baselines without leveraging constraints. Further-
more, we deploy our grammar-based semantic
parser in a Chinese business search engine to ver-

70

ify its value.

5.1 Neural-based Semantic Parser Results

We assess the performance of our method and
compare it with previous methods. We conduct
experiments on two datasets: GEO and ATIS.

GEO contains natural language questions about
494 US geography paired with corresponding Pro-
log database queries. Following (Zettlemoyer and
Collins, 2005), we use the standard 600/280 in-
stance splits for training/test.

ATIS contains natural language questions of a
flight database, with each question is annotated
with a lambda calculus query. Following (Zettle-
moyer and Collins, 2007), we use the standard
4473/448 instance splits for training/test.

We use 200 hidden units and 100 dimensional
word vectors for sentence encoding. And we
initialize all parameters by uniformly sampling
within the interval [−0.1, 0.1]. We train our model
for a total of 30 epochs with an initial learning rate
of 0.1, and halve the learning rate every 5 epochs
after epoch 15. We replace word vectors for words
occurring only once with a universal word vector.
We evaluate different systems using the standard
accuracy metric, and the accuracies on different
datasets are obtained.

Results
We compare our method with state-of-the-art neu-
ral based systems on both datasets. Because all
systems using the same train/test splits, we di-
rectly use the reported best performances from
their original papers for fair comparison.

For our method, we train our model with three
settings: the first one is the basic sequence-to-
action model without constraints Seq2Act; the
second one adds structure constraints in decod-
ing Seq2Act (+C1); the third one is the full
model which adds both structure and semantic
constraints Seq2Act (+C1+C2). The overall re-
sults are shown in Table 1.

From Table 1 we can see that: 1) Our
method achieved comparative performances on
both datasets. 2) By leveraging knowledge base
schema during decoding, semantic constraints
are effective for semantic parsing. Compared
to Seq2Act and Seq2Act (+C1), the Seq2Act
(+C1+C2) achieves the best performance on both
datasets. This is because semantic constraints can
further filter semantic illegal actions using selec-
tional preference and consistency between types.

Model GEO ATIS
Seq2Seq Models

(Jia and Liang, 2016) 85.0 76.3
(Jia and Liang, 2016)* (+data) 89.3 83.3
(Dong and Lapata, 2016) 2Seq 84.6 84.2
(Dong and Lapata, 2016)2Tree 87.1 84.6

(Dong and Lapata, 2018) 88.2 87.7
(Dong and Lapata, 2018)+oracle sketch 93.9 95.1

Seq2Action Models
Seq2Act 87.5 84.6

Seq2Act (+C1) 88.2 85.0
Seq2Act (+C1+C2) 88.9 85.5

Table 1: Test accuracies on GEO and ATIS datasets,
where * indicates systems with extra resources are used

Figure 7: The illustrate of semantic parser for search
engine.

5.2 Grammar-based Semantic Parser Results
In this section, we implement grammar-based se-
mantic parser for improving a Chinese intelligent
retrieval performance.

Evaluation definition
In this paper, our system parses the user query and
outputs useful information for the search engine,
such as the entities, user intents and confidences.
And the search engine can directly link to the enti-
ties and relations in the knowledge graph, instead
of just depending on the word features, and present
more relevant information or pages to the user.

Evaluation We use the following evaluation
metrics: (1) pageviews coverage (PV) : the cover-
age rate of pageviews of one domain; (2) entity re-
call (Recall): the recall of the entity in the queries;
(3) classification accuracy (Acc): the intent clas-
sification accuracy of the queries; (4) DCG: dis-
counted cumulative gain.

Experimental Settings
Due to the fact that most of the lexicon entries are
domain specific and most of user queries and in-
come refer to some top domains, such as medical,
entertainment, thus we conduct experiments on
three domains: medical, entertainment and novel.
And we implement three semantic parsers based
on the lexicons of these domains. The overall
framework of this task is illustrated in Figure 7.

As showed in Figure 7, there are three com-
ponents in our system: (i) We first use a domain
classifier to filter out the queries that don’t belong

71

the domain, we implement the classifier based on
SVM with word tfidf features and word embed-
dings. (ii) Then, the semantic parser component
parses the queries and produces the entities, at-
tributes, confidences, etc. (iii) Finally, the intent
detection component identifies the intent of the
queries based on the information generated above.

Results
We deploy our system in the pipeline of the busi-
ness search engine and give the parse results to the
search engine instead of plain queries. We com-
pare our system with the baseline search engine
without leveraging the parse results. To evaluate
the benefit of our system for the search engine, we
randomly select 2000 real user queries as input,
and manually evaluate the results from the search
engine. Table 2 presents our results. Overall, we
observe that by incorporating our semantic pars-
ing system all of the metrics of the search engine
improved in all of the domains by a large mar-
gin. Most importantly, all of three domain seman-
tic parsers are built only based on domain lexicons
without training data for semantic parsers.

Domain PV Recall Acc DCG
Medical 1.5% 22.5% 85% 1.53

Medical + SP 3.0% 39.1% 98% 1.63
Entertainment 2.4% 26.1% 87% 1.49

Entertainment + SP 4.9% 40.2% 99% 1.61
Novel 1.6% 36.0% 90% 1.58

Novel + SP 2.3% 46.1% 99% 1.67

Table 2: The overall results of the search engine, where
+SP indicates systems with leveraging results from se-
mantic parser.

6 Conclusion

We have presented an easy-to-use platform for
building domain semantic parsers from scratch,
without requiring developers to understand the
complex theory of semantic parsing. To reduce the
requirement of training data for semantic parser,
the grammar-based semantic parser can be gen-
erated only based on domain dependent lexicons
without requiring training data. Although we only
validate our model in search engines, our platform
is universal and can be easily embedded in appli-
cations such as question answering and dialogue.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China under Grants no.
61433015, 61572477 and 61772505.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Roi Blanco, Giuseppe Ottaviano, and Edgar Meij.
2015. Fast and space-efficient entity linking for
queries. In Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining,
pages 179–188. ACM.

Bo Chen, Le Sun, and Xianpei Han. 2018. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of Empirical methods in natural language process-
ing, pages 1–8.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

R. Jia and P. Liang. 2016. Data recombination for neu-
ral semantic parsing. In Association for Computa-
tional Linguistics (ACL).

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of the 52th Annual
Meeting of the Association for Computational Lin-
guistics: system demonstrations, pages 55–60.

Francis Jeffry Pelletier. 1994. The principle of seman-
tic compositionality. Topoi, 13(1):11–24.

Yilin Shen, Avik Ray, Abhishek Patel, and Hongxia
Jin. 2018. Cruise: Cold-start new skill development
via iterative utterance generation. In Proceedings of
ACL 2018, System Demonstrations, pages 105–110.

Evren Sirin and Bijan Parsia. 2007. Sparql-dl: Sparql
query for owl-dl. In OWLED, volume 258. Citeseer.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to log-
ical form. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Conference on Uncertainty in Arti-
ficial Intelligence.

72

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 73–78
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

FAMULUS: Interactive Annotation and Feedback Generation for
Teaching Diagnostic Reasoning

Jonas Pfeiffer1, Christian M. Meyer1, Claudia Schulz1,
Jan Kiesewetter2, Jan Zottmann2, Michael Sailer3, Elisabeth Bauer3,

Frank Fischer3, Martin R. Fischer2, Iryna Gurevych1

1 Ubiquitous Knowledge Processing (UKP) Lab, Technische Universität Darmstadt, Germany
2 Institute of Medical Education, University Hospital, LMU München, Germany
3 Chair of Education and Educational Psychology, LMU München, Germany

http://famulus-project.de

Abstract

Our proposed system FAMULUS helps stu-
dents learn to diagnose based on automatic
feedback in virtual patient simulations, and it
supports instructors in labeling training data.
Diagnosing is an exceptionally difficult skill
to obtain but vital for many different profes-
sions (e.g., medical doctors, teachers). Pre-
vious case simulation systems are limited to
multiple-choice questions and thus cannot give
constructive individualized feedback on a stu-
dent’s diagnostic reasoning process. Given ini-
tially only limited data, we leverage a (replace-
able) NLP model to both support experts in
their further data annotation with automatic
suggestions, and we provide automatic feed-
back for students. We argue that because the
central model consistently improves, our inter-
active approach encourages both students and
instructors to recurrently use the tool, and thus
accelerate the speed of data creation and anno-
tation. We show results from two user stud-
ies on diagnostic reasoning in medicine and
teacher education and outline how our system
can be extended to further use cases.

1 Introduction

Motivation. Supporting students in learning has
been the life purpose of many teachers throughout
history. With the growing number of people who
choose an academic path, it becomes increasingly
important to leverage automatic methods to guide
students and give them individualized feedback.

However, existing systems for technology-
enhanced learning, mostly address skills on recall-
ing, explaining, and applying knowledge, e.g., in
automatically generated language learning exer-
cises (Madnani et al., 2016) and math word prob-
lems (Koncel-Kedziorski et al., 2016). More com-
plex cognitive tasks such as diagnostic reasoning
require analytic and decision-making skills, for
which there are yet only few solutions, even though

diagnostic skills are vital for many professions (e.g.,
medical doctors searching for a therapy, teachers
identifying potential mental disorders at an early
stage, engineers diagnosing a machine failure, etc.).

Training diagnostic skills is hard and typically
relies on time-consuming and hard-to-control live
role-plays. Online case simulations involving so-
called virtual patients crystallized as an effective
alternative to role-playing games (Berman et al.,
2016; Jin et al., 2018). In case simulations, stu-
dents collect information on a virtual patient across
multiple screens, e.g., from patient–doctor dialogs,
lab results, and medical imaging. To date, the stu-
dents formulate their final diagnosis by means of
multiple-choice questions, which are easy to as-
sess, but prevent important analyses of the effec-
tiveness and the efficiency of the diagnostic rea-
soning process. This is why we propose to com-
plement multiple-choice questions with prompts
asking for explanations of the students’ thought pro-
cess. The open-form textual explanations enable
good insight into the diagnostic reasoning process
rather than only its result, leaving room for con-
structive methodological feedback. However, the
text analysis and feedback generation components
are highly complex and require advanced Natural
Language Processing (NLP) techniques.

Contributions. To tackle this task, we propose
our FAMULUS system to generate individual feed-
back on the students’ diagnostic skills. FAMULUS
integrates (a) state-of-the-art neural sequence la-
beling models to generate individualized feedback,
incorporated in our novel NeuralWeb service, and
(b) a corpus construction tool enabling interactive
model training with (c) an existing tool for conduct-
ing case simulations. The backbone of our system
is a sequence labeling approach to identify fine-
grained diagnostic entities (e.g., liver values, blood
pressure) and epistemic activities (Fischer et al.,

73

Figure 1: Excerpt of the generated feedback (bottom) to a student’s explanation of her/his diagnostic process (top).
Blue responses are covered by the text and highlighted in yellow. Black responses are not covered by the diagnosis.

2014) such as drawing conclusions and evidence
evaluation, in German text. We have previously
published the scientific foundation of our system
(Schulz et al., 2018b,a, 2019a), but introduce the
technical aspects of the system for the first time.
Additionally, for the first time, we evaluate its ap-
plicability to real-time use cases. Our evaluation re-
sults on the prediction quality and the annotation ef-
fectiveness are based on two user studies with Ger-
man medicine (Med) and teacher education (TEd)
students. We show how instructors are relieved
from the burden of pre-annotating huge amounts
of data by our interactive annotation workflow, and
we discuss the generated individualized feedback
that helps students acquire diagnostic skills. Fi-
nally, we explain how our system can be obtained,
re-used, and extended to further use cases.

2 Case Simulation Example

Imagine a Med student training her/his skills with
our system. She/he receives information about a
virtual patient: The 36 years old Ms. Hoffmann
reports about a common cold lasting for about one
week. In an interview, she mentions abnormal fa-
tigue, diminished appetite, nausea, and diarrhea.
Further questioning reveals that she stayed in San-
sibar about a month ago. Prior to her travel, she
was vaccinated against yellow fever.

Based on such inputs and further lab results, the
student explains her/his diagnosis (see Figure 1):
“Physical examination was clinically unremarkable.
But the lab results show noticeable inflammation
markers and liver values. Thick blood film was
negative, therefore Malaria was excluded as a di-
agnosis. Hepatitis serology was positive, which
assures the diagnosis.”

In order to automatically provide feedback, we
define a set of diagnostic classes covering fine-
grained diagnostic entities related to the case (e.g.,

names of diseases, medical examinations, thera-
pies) manually defined by domain experts, and
epistemic activities (Fischer et al., 2014) that char-
acterize the reasoning process. As epistemic activ-
ity classes, we use hypothesis generation (HG; the
derivation of possible answers to the problem), evi-
dence generation (EG; the derivation of evidence,
e.g., through deductive reasoning or observing phe-
nomena), evidence evaluation (EE; the assessment
of whether and to which degree evidence supports
an answer to the problem), and drawing conclu-
sions (DC; the aggregation and weighing of evi-
dence and knowledge to derive a final answer to
the problem) discussed by Schulz et al. (2019a).

FAMULUS analyzes the previously mentioned
diagnostic text and returns feedback on multiple im-
portant aspects related to the case. It successfully
detects all aspects verbalized in the text (e.g., the
discussion of tropical diseases; marked in blue in
Figure 1). Aspects that are not addressed in the text
are discussed and provide additional input to what
the student has missed (e.g., that the differential
diagnosis should consider a potential bowel dis-
ease due to the diarrhea). For the present example,
the student correctly diagnoses a Hepatitis variant
(correct would be Hepatitis A), which is positively
acknowledged in the generated feedback. In the
supplementary video material, we show two origi-
nal German diagnostic texts and the corresponding
feedback generated by our system.

3 System Architecture

FAMULUS consists of three intercommunicating
components introduced in this section.

3.1 NeuralWeb
NeuralWeb1 is a Python-based web service that
communicates with all other components and thus

1github.com/UKPLab/emnlp2019-NeuralWeb

74

Figure 2: Annotation suggestion (grey) and accepted
suggestion (orange) in the INCEpTION platform.

resembles the core of our system. It is responsi-
ble for interactive training and prediction of the
diagnostic classes and for the generation of individ-
ualized feedback. We divide its functionality in a
model and a feedback DB part, encompassed by a
wrapper class that can be easily adapted for new
machine learning methods and case studies.

Model. The wrapper class includes a loading
function which leverages the downstream model
architecture and copies the respective weights into
memory. The supported neural architectures are
written in Keras2, and PyTorch3 and are therefore
easy to adapt. NeuralWeb currently provides a re-
cent BiLSTM architecture (Reimers and Gurevych,
2017) implemented in Keras and Flair (Akbik et al.,
2018) implemented in PyTorch, which holds the
current state of the art on many sequence-labeling
tasks. A prediction function of the wrapper pre-
processes a text (sentence splitting and tokenization
using NLTK) and leverages the pre-trained model
to predict and return the diagnostic classes.

NeuralWeb additionally enables automatic re-
training of the model within the framework which
is useful when new data has been generated and
annotated, improving the model automatically.
This functionality is currently implemented for the
Keras-based model.

Feedback DB. The output of the model is a set
of discrete diagnostic class labels, which hardly
yield valuable feedback for users. It is thus essen-
tial to provide an additional description, indicating
whether or not the diagnosis is correct, what is
missing, and if the diagnostic process is sound. We
thus introduce a Feedback DB, which includes de-
scriptive text snippets written by experts. These
descriptions are associated with diagnostic classes
predicted by the model and a specific case study.
For example the patient in case 1 has Hepatitis
A, whereas the patient in case 2 does not. The
feedback for a student who diagnoses Hepatitis A
thus needs to be different with respect to the case
she/he currently works on. The Feedback DB is

2keras.io
3pytorch.org

an independent resource queried by the wrapper
class. With respect to the predicted labels, the
corresponding feedback text will be generated. FA-
MULUS finally returns the labeled texts spans of
the diagnostic text together with the feedback text
indicating the reasons for the prediction.

3.2 INCEpTION

Expert annotation by instructors is required due to
the complexity of labeling diagnostic texts. For
this reason, we leverage the INCEpTION text an-
notation platform (Klie et al., 2018) which enables
interactive semantic annotation. The recommender
system which provides instructors with automat-
ically generated annotation suggestions is one of
the key functionalities of the platform. Suggestions
can be obtained from various integrated classifiers
as well as from external sources such as Neural-
Web. The platform uses the user feedback (ac-
cepted/rejected annotations) as well as user-created
annotations to continually improve the classifiers.
We leverage this functionality to create an efficient
interactive annotation process for our diagnostic
classes and thus to create training data for our NLP
models. Figure 2 shows an example of the labeling
process with suggestions by our pre-trained model.

3.3 CASUS

CASUS4 is an interactive system designed for case
simulations with virtual patients. It incorporates all
aspects necessary for conducting diagnostic case
simulations (i.e., videos, images, text, audio inte-
gration). Students receive information relevant for
solving the case. They are subsequently required to
formulate their diagnosis in multiple-choice ques-
tions and our new, free-text prompts, directly in-
tegrated in CASUS. After submission, CASUS
presents the feedback received from NeuralWeb.

While CASUS is a sophisticated proprietary sim-
ulation tool, we would like to stress that this is not
a requirement. FAMULUS can be used with any
open-source front-end tool providing a text box
and communicating with NeuralWeb to print out
the individualized feedback. We provide a simple
version of such a tool in our GitHub repository
together with NeuralWeb.

4 FAMULUS Process

The FAMULUS system consists of an interactive
learning cycle connecting the three components

4www.instruct.eu

75

Figure 3: FAMULUS process for annotating data, train-
ing models, and generating individualized feedback.
During the cold-start phase, only the blue edges are
used, until enough labeled data exists to train a model.

introduced in §3 and illustrated in Figure 3.

Cold-Start. Because a small initial set of anno-
tated data is necessary to train a preliminary model
in NeuralWeb, ¬ few pilot users first submit their
diagnoses to the CASUS system. In this cold-start
phase, the users either do not receive any feedback
or a default feedback text. For our experiments,
all users receive a default gold diagnosis written
by experts, for the users to compare their results
manually. The students’ diagnostic texts are
sent to INCEpTION, where ® instructors label the
data according to the predefined annotation schema.
¯ The gold labels (visualized in green) are stored
and sent to NeuralWeb. Using this labeled train-
ing data, we can train our models to automatically
predict the diagnostic classes found in a given text.

Warm-Run. After an initial model has been
trained, a new set of users can benefit from the
trained model to receive individualized feedback.
¬ Similarly to the cold-start phase, users work
through the case study and submit their diagnosis
to the CASUS system. ° Instead of receiving a de-
fault feedback, the diagnosis is sent to NeuralWeb.
± NeuralWeb processes the text through the trained
model and generates individualized feedback with
regards to the Feedback DB. ² The individualized
feedback is sent back to CASUS which visualizes
it for the user.

Like in the cold-start phase, the diagnostic
text is also sent to INCEpTION. ³ But instead of
relying solely on the instructor, the trained model
in NeuralWeb predicts preliminary annotations (de-

EG EE HG DC

M
ed BiLSTM 71.60 80.20 69.28 65.32

UB 85.61 90.25 86.37 85.58

T
E

d BiLSTM 78.53 78.87 57.16 61.77
UB 93.29 90.71 81.77 82.11

Table 1: Individual macro-F1 scores following Schulz
et al. (2019a) for each of the epistemic activities. The
BiLSTM uses FastText embeddings (Bojanowski et al.,
2017). This architecture is equal to Flair when only us-
ing FastText embeddings. UB reports the human upper
bound (inter-annotator agreement) indicating room for
improvement.

noted in yellow) which are additionally presented
to the instructor (see Figure 2). ® These predic-
tions should increase the labeling speed, as in many
cases, the instructor simply has to accept the sug-
gestions the model has predicted. ¯ The validated
(green) labels are sent back to NeuralWeb and
´ the model can be interactively retrained for each
additional data point which has been labeled.

5 Evaluation

We employ our proposed FAMULUS architecture
in two studies yielding 1,107 Med and 944 TEd
diagnostic texts written for eight distinct cases per
domain. While a full analysis of the two studies is
beyond the scope of this paper, we focus on three
research questions highly relevant to the systemic
aspects of FAMULUS: (1) the quality of the pre-
dicted diagnostic classes, (2) the computation time
of the prediction and feedback generation system
to assess the applicability of our system in real-
time applications, and (3) the benefits of providing
annotation suggestions to the instructors.

Prediction quality. In Table 1, we report the per-
formance of the BiLSTM implementation for pre-
dicting epistemic activities in the Med and TEd
data. As we can see, the difficulty of predicting
the classes varies between different activities. De-
spite some room for improvement with respect to
the human upper bound (UB) based on inter-rater
agreement, the interactive nature of FAMULUS
helps in succeeding in this attempt by continually
improving the model when new data is available.

We conduct similar experiments for the predic-
tion of fine-grained diagnostic entities, but omit a
comprehensive discussion due to space limitations.

76

Figure 4: Prediction time for the submitted diagnostic
texts of TEd students. The illustrated model is Flair
with character and Flair embeddings, hidden size 256,
2 layer BiLSTM with CRF-head. The red dot indicates
the mean time and length of 3.15 seconds and 562 char-
acters respectively. The trendline is illustrated in black.
The experiment was conducted on a 13-inch 2017 Mac-
Book Pro with i7 Processor and 16GB RAM.

Computation time. In order to present the feasi-
bility of deploying FAMULUS in a real-time sce-
nario, we plot the inference times of the submitted
diagnostic texts in Figure 4. The inference time
includes sentence splitting, tokenization, model
prediction, and feedback generation using the Feed-
back DB. We find that on average the submitted
texts have a length of 562 characters with an aver-
age inference time of 3.15 seconds on a common
desktop machine. The different inference times for
similar text lengths are due to variable sentence
lengths, as longer sentences require more inference
time. We batch all sentences of one diagnostic text
and pass them through the model simultaneously.
As we can see in the graph, the automatic feed-
back generation does not surpass 9 seconds. This
is intuitively faster than any human is able to read,
process, and output feedback text, even by lever-
aging prewritten descriptions. This demonstrates
the effectiveness and scalability of FAMULUS in a
real-time scenario.

Annotation suggestions. To evaluate the effects
of providing annotation suggestions, we have con-
ducted an extensive study (Schulz et al., 2019b)
considering annotation time, annotation quality, po-
tential biases, and the ease of use. To this end, we
asked five Med and four TEd instructors to annotate
diagnostic texts. Two of the instructors per domain
did not receive any suggestions. For the remaining
instructors, we provided suggestions in multiple
phases using different models and setups. Overall,

we find positive effects yielding a speed-up of 34 to
42 seconds per annotated text. The instructors ac-
cept 56 % (Med) and 54 % (TEd) of the annotations.
While we observe a slightly higher inter-annotator
agreement if instructors receive suggestions, we
also study whether the instructors’ decisions are
influenced by the suggestions, but only observe a
negligible effect.

6 Dissemination

In this section, we introduce how the components
of our system can be obtained and linked with each
other. Additionally, we discuss multiple use cases
that can benefit from our architecture.

Availability. The NeuralWeb component is the
heart of our system and has been newly developed
for our purposes. We make NeuralWeb available
as open-source software in our GitHub repository
under the Apache License 2.0. We integrate the an-
notation suggestions generated by our system into
the INCEpTION annotation tool, which is avail-
able as open-source software under the Apache Li-
cense 2.0. To conduct the case simulations, we use
the CASUS system which can be obtained from
its publisher Instruct. We provide a simple but
free alternative to CASUS which includes only the
necessary functionality for the FAMULUS system,
which is to write the diagnostic text and visualize
feedback. This system, together with connection
functionalities to INCEpTION and CASUS, can be
found in our NeuralWeb repository.

For using FAMULUS, a server or virtual ma-
chine is needed on which the system is deployed.
A thorough description can be found in our GitHub
repository, including the respective URLs and ports
that need to be adapted.

Use cases. Our proposed architecture is primarily
useful to prepare and conduct case simulations that
train diagnostic skills based on text analysis and au-
tomated feedback generation methods. Besides de-
veloping new cases for the Med and TEd domains
which is the subject of our research, case simu-
lations can be useful for students in engineering
(e.g., diagnosing a machine failure), law (investi-
gating evidence in a lawsuit), economy (optimizing
business processes), and many more.

In order to leverage the FAMULUS system, three
prior steps need to be made, independent of our sys-
tem: (1) Expert instructors develop a set of case
studies, for which they provide all necessary in-

77

formation. The case study can be integrated into
a simulation tool such as CASUS or provided in
printed form. (2) The instructors define an annota-
tion schema, i.e. what kinds of diagnostic classes
should be annotated (e.g., observations of teachers
in a classroom). (3) As the individualized feed-
back can vary from case to case, corresponding
descriptions need to be defined by the instructors.

7 Conclusion

In this paper, we have introduced FAMULUS, a
case simulation system integrating interactive data
acquisition and model training, and individualized
feedback generation for students’ explanations of
diagnostic reasoning processes. Our analysis shows
how FAMULUS helps experts in annotating data
fast and reliable while successfully predicting en-
tities and activities occurring in diagnostic texts.
FAMULUS is applicable in real-time scenarios
and generates feedback much faster than humans.
While we focus specifically on diagnostic case sim-
ulations in medicine and teacher education, we
outline the steps necessary to adapt our approach
to many other disciplines requiring the training of
diagnostic skills. We open-source all components
necessary to employ FAMULUS in new case stud-
ies, hoping to encourage more research in this area.

Acknowledgments

This work has been supported by the German Fed-
eral Ministry of Education and Research (BMBF)
under the reference 16DHL1040 (FAMULUS).

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th COLING, pages
1638–1649.

Norman B. Berman, Steven J. Durning, Martin R.
Fischer, Soren Huwendiek, and Marc M. Triola.
2016. The Role for Virtual Patients in the Future
of Medical Education. Academic Medicine: Jour-
nal of the Association of American Medical Colleges,
91(9):1217–1222.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Frank Fischer, Ingo Kollar, Stefan Ufer, Beate So-
dian, Heinrich Hussmann, Reinhard Pekrun, Birgit
Neuhaus, Birgit Dorner, Sabine Pankofer, Martin R.

Fischer, Jan-Willem Strijbos, Moritz Heene, and Ju-
lia Eberle. 2014. Scientific Reasoning and Argu-
mentation: Advancing an Interdisciplinary Research
Agenda in Education. Frontline Learning Research,
4:28–45.

Lifeng Jin, David King, Amad Hussein, Michael White,
and Douglas Danforth. 2018. Using Paraphrasing
and Memory-Augmented Models to Combat Data
Sparsity in Question Interpretation with a Virtual Pa-
tient Dialogue System. In Proceedings of the Thir-
teenth Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA), pages 13–23.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th COLING: System Demon-
strations, pages 5–9.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A Math Word Problem Repository. In
Proceedings of the 2016 Conference of the NAACL,
pages 1152–1157.

Nitin Madnani, Jill Burstein, John Sabatini, Kietha Big-
gers, and Slava Andreyev. 2016. Language Muse:
Automated Linguistic Activity Generation for En-
glish Language Learners. In Proceedings of the 54th
Annual Meeting of the ACL: System Demonstrations,
pages 79–84.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
EMNLP, pages 338–348.

Claudia Schulz, Christian M. Meyer, and Iryna
Gurevych. 2019a. Challenges in the Automatic
Analysis of Students’ Diagnostic Reasoning. In Pro-
ceedings of the 33rd AAAI, pages 6974–6981.

Claudia Schulz, Christian M. Meyer, Jan Kiesewetter,
Michael Sailer, Elisabeth Bauer, Martin R. Fischer,
Frank Fischer, and Iryna Gurevych. 2019b. Analy-
sis of Automatic Annotation Suggestions for Hard
Discourse-Level Tasks in Expert Domains. In Pro-
ceedings of the 57th Annual Meeting of the ACL,
pages 2761–2772.

Claudia Schulz, Christian M. Meyer, Michael Sailer,
Jan Kiesewetter, Elisabeth Bauer, Frank Fischer,
Martin R. Fischer, and Iryna Gurevych. 2018a. Chal-
lenges in the Automatic Analysis of Students’ Diag-
nostic Reasoning. arXiv:1811.10550.

Claudia Schulz, Michael Sailer, Jan Kiesewetter, Elisa-
beth Bauer, Fischer Fischer, Martin R. Fischer, and
Iryna Gurevych. 2018b. Automatic recommenda-
tions for data coding: A use case from medical and
teacher education. In Proceedings of the 14th IEEE
International Conference on e-Science, pages 364–
365.

78

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 79–84
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Gunrock: A Social Bot for Complex and Engaging Long Conversations

Dian Yu, Michelle Cohn, Yi Mang Yang, Chun-Yen Chen, Weiming Wen
Jiaping Zhang, Mingyang Zhou, Kevin Jesse, Austin Chau, Antara Bhowmick

Shreenath Iyer, Giritheja Sreenivasulu, Sam Davidson, Ashwin Bhandare, Zhou Yu
University of California, Davis

{dianyu, mdcohn, yimyang, abtchen, wmwen, jpzhang, minzhou, krjesse}@ucdavis.edu
{amchau, abhowmick, shriyer, s.giritheja, ssdavidson, asbhandar, joyu}@ucdavis.edu

Abstract

Gunrock is the winner of the 2018 Amazon
Alexa Prize, as evaluated by coherence and en-
gagement from both real users and Amazon-
selected expert conversationalists. We focus
on understanding complex sentences and hav-
ing in-depth conversations in open domains.
In this paper, we introduce some innovative
system designs and related validation analysis.
Overall, we found that users produce longer
sentences to Gunrock, which are directly re-
lated to users’ engagement (e.g., ratings, num-
ber of turns). Additionally, users’ backstory
queries about Gunrock are positively corre-
lated to user satisfaction. Finally, we found
dialog flows that interleave facts and personal
opinions and stories lead to better user satis-
faction.

1 Introduction

Amazon Alexa Prize (Ram et al., 2018) provides
a platform to collect real human-machine conver-
sation data and evaluate performance on speech-
based social conversational systems. Our sys-
tem, Gunrock (Chen et al., 2018)1 addresses sev-
eral limitations of prior chatbots (Vinyals and Le,
2015; Zhang et al., 2018; Fang et al., 2018) in-
cluding inconsistency and difficulty in complex
sentence understanding (e.g., long utterances) and
provides several contributions: First, Gunrock’s
multi-step language understanding modules en-
able the system to provide more useful informa-
tion to the dialog manager, including a novel dia-
log act scheme. Additionally, the natural language
understanding (NLU) module can handle more
complex sentences, including those with corefer-
ence. Second, Gunrock interleaves actions to elicit
users’ opinions and provide responses to create an
in-depth, engaging conversation; while a related

1https://gunrock-ucdavis.weebly.com/
2018-system-demonstration.html

strategy to interleave task- and non-task functions
in chatbots has been proposed (Rudnicky, 2019),
no chatbots to our knowledge have employed a
fact/opinion interleaving strategy. Finally, we use
an extensive persona database to provide coherent
profile information, a critical challenge in building
social chatbots (Zhang et al., 2018). Compared
to previous systems (Fang et al., 2018), Gunrock
generates more balanced conversations between
human and machine by encouraging and under-
standing more human inputs (see Table 1 for an
example).

User 1: let’s chat
Gunrock 1: Hi, this is an Alexa Prize Socialbot. It’s nice

to talk to you again, George. I think last
time we were talking about movies. Would
you like to talk about it now?

User 2: sure [SPL] that would be great
Gunrock 2: By the way, I love to discover new movies.

I recently watched Crazy Rich Asians be-
cause someone told me it was hilarious.
What movie would you recommend to me?

User 3: ha [SPL] it’s a tough question [SPL] i don’t
think i have a good one to recommend
[SPL] wait [SPL] i think that stars born is
good

Gunrock 3: Yes I remember watching a star is born.
Hmm. If you had to rate this movie from
1 to 10, what would it be?

User 4: ten
Gunrock 4: A perfect 10! You have to tell me more.

What was so exceptional? When I watched
it, the music design really stood out to me.

User 5: when i watched it the music was amazing
[SPL] and bradley cooper was super tal-
ented in the movie [SPL] i really like him

Gunrock 5: You’ve got me wanting to watch the movie
again. Ouu, Maybe you will find this in-
teresting. Bradley Cooper claimed that his
dream was to be a director before he got into
acting and this was his directorial debut ...

Table 1: An example conversation between Gunrock
and a human user (User). Text in red represents ASR
errors while text in green represents ASR correction.
[SPL] represents a split of the sentences from a se-
quence of words from ASR.

79

2 System Architecture

Figure 1 provides an overview of Gunrock’s ar-
chitecture. We extend the Amazon Conversational
Bot Toolkit (CoBot) (Khatri et al., 2018) which
is a flexible event-driven framework. CoBot pro-
vides ASR results and natural language processing
pipelines through the Alexa Skills Kit (ASK) (Ku-
mar et al., 2017). Gunrock corrects ASR accord-
ing to the context (§2.1) and creates a natural lan-
guage understanding (NLU) (§2.2) module where
multiple components analyze the user utterances.
A dialog manager (DM) (§2.3) uses features from
NLU to select topic dialog modules and defines
an individual dialog flow. Each dialog module
leverages several knowledge bases (§2.4). Then
a natural language generation (NLG) (§2.5) mod-
ule generates a corresponding response. Finally,
we markup the synthesized responses and return
to the users through text to speech (TTS) (§2.6).
While we provide an overview of the system in
the following sections, for detailed system imple-
mentation details, please see the technical report
(Chen et al., 2018).

2.1 Automatic Speech Recognition

Gunrock receives ASR results with the raw text
and timestep information for each word in the se-
quence (without case information and punctua-
tion). Keywords, especially named entities such
as movie names, are prone to generate ASR errors
without contextual information, but are essential
for NLU and NLG. Therefore, Gunrock uses do-
main knowledge to correct these errors by com-
paring noun phrases to a knowledge base (e.g. a
list of the most popular movies names) based on
their phonetic information. We extract the primary
and secondary code using The Double Metaphone
Search Algorithm (Philips, 2000) for noun phrases
(extracted by noun trunks) and the selected knowl-
edge base, and suggest a potential fix by code
matching. An example can be seen in User 3 and
Gunrock 3 in Table 1.

2.2 Natural Language Understanding

Gunrock is designed to engage users in deeper
conversation; accordingly, a user utterance can
consist of multiple units with complete semantic
meanings. We first split the corrected raw ASR
text into sentences by inserting break tokens. An
example is shown in User 3 in Table 1. Mean-
while, we mask named entities before segmenta-

tion so that a named entity will not be segmented
into multiple parts and an utterance with a com-
plete meaning is maintained (e.g.,“i like the movie
a star is born”). We also leverage timestep infor-
mation to filter out false positive corrections. Af-
ter segmentation, our coreference implementation
leverages entity knowledge (such as person versus
event) and replaces nouns with their actual refer-
ence by entity ranking. We implement coreference
resolution on entities both within segments in a
single turn as well as across multiple turns. For
instance, “him” in the last segment in User 5 is re-
placed with “bradley cooper” in Table 1. Next, we
use a constituency parser to generate noun phrases
from each modified segment. Within the sequence
pipeline to generate complete segments, Gunrock
detects (1) topic, (2) named entities, and (3) sen-
timent using ASK in parallel. The NLU module
uses knowledge graphs including Google Knowl-
edge Graph 2 to call for a detailed description of
each noun phrase for understanding.

In order to extract the intent for each segment,
we designed MIDAS, a human-machine dialog act
scheme with 23 tags and implemented a multi-
label dialog act classification model using contex-
tual information (Yu and Yu, 2019). Next, the
NLU components analyzed on each segment in a
user utterance are sent to the DM and NLG mod-
ule for state tracking and generation, respectively.

2.3 Dialog Manager

We implemented a hierarchical dialog manager,
consisting of a high level and low level DMs. The
former leverages NLU outputs for each segment
and selects the most important segment for the sys-
tem as the central element using heuristics. For ex-
ample, “i just finished reading harry potter,” trig-
gers Sub-DM: Books. Utilizing the central ele-
ment and features extracted from NLU, input ut-
terances are mapped onto 11 possible topic dialog
modules (e.g., movies, books, animals, etc.), in-
cluding a backup module, retrieval.

Low level dialog management is handled by the
separate topic dialog modules, which use modu-
lar finite state transducers to execute various dia-
log segments processed by the NLU. Using topic-
specific modules enables deeper conversations that
maintain the context. We design dialog flows in
each of the finite state machines, as well. Dia-

2https://developers.google.com/
knowledge-graph/

80

Figure 1: Gunrock system architecture

log flow is determined by rule-based transitions
between a specified fixed set of dialog states. To
ensure that our states and transitions are effective,
we leverage large scale user data to find high prob-
ability responses and high priority responses to
handle in different contexts. Meanwhile, dialog
flow is customized to each user by tracking user
attributes as dialog context. In addition, each di-
alog flow is adaptive to user responses to show
acknowledgement and understanding (e.g., talking
about pet ownership in the animal module). Based
on the user responses, many dialog flow varia-
tions exist to provide a fresh experience each time.
This reduces the feeling of dialogs being scripted
and repetitive. Our dialog flows additionally inter-
leave facts, opinions, experiences, and questions
to make the conversation flexible and interesting.

In the meantime, we consider feedback signals
such as “continue” and “stop” from the current
topic dialog module, indicating whether it is able
to respond to the following request in the dialog
flow, in order to select the best response mod-
ule. Additionally, in all modules we allow mixed-
initiative interactions; users can trigger a new dia-
log module when they want to switch topics while
in any state. For example, users can start a new
conversation about movies from any other topic
module.

2.4 Knowledge Databases

All topic dialog modules query knowledge bases
to provide information to the user. To respond

to general factual questions, Gunrock queries the
EVI factual database 3, as well as other up-to-date
scraped information appropriate for the submod-
ule, such as news and current showing movies in a
specific location from databases including IMDB.
One contribution of Gunrock is the extensive Gun-
rock Persona Backstory database, consisting of
over 1,000 responses to possible questions for
Gunrock as well as reasoning for her responses for
roughly 250 questions (see Table 2). We designed
the system responses to elicit a consistent person-
ality within and across modules, modeled as a fe-
male individual who is positive, outgoing, and is
interested in science and technology.

User1: do you like jeopardy?
Gunrock1: Sure I like Jeopardy, especially when Watson

competed.
User2: why?
Gunrock2: I’m so impressed with the capabilities of a su-

percomputer.

Table 2: Example interaction between Gunrock and a
human user (User) querying Gunrock’s backstory.

2.5 Natural Language Generation
In order to avoid repetitive and non-specific re-
sponses commonly seen in dialog systems (Li
et al., 2015), Gunrock uses a template manager
to select from a handcrafted response templates
based on the dialog state. One dialog state can
map to multiple response templates with simi-

3https://www.evi.com/

81

lar semantic or functional content but differing
surface forms. Among these response templates
for the same dialog state, one is randomly se-
lected without repetition to provide variety unless
all have been exhausted. When a response tem-
plate is selected, any slots are substituted with ac-
tual contents, including queried information for
news and specific data for weather. For exam-
ple, to ground a movie name due to ASR errors or
multiple versions, one template is “Are you talk-
ing about {movie title} released in {release year}
starring {actor name} as {actor role}?”. Module-
specific templates were generated for each topic
(e.g., animals), but some of the templates are gen-
eralizable across different modules (e.g., “Whats
your favorite [movie | book | place to visit]?”)

In many cases, response templates correspond-
ing to different dialog acts are dynamically com-
posed to give the final response. For example,
an appropriate acknowledgement for the users re-
sponse can be combined with a predetermined
follow-up question.

2.6 Text To Speech

After NLG, we adjust the TTS of the system to
improve the expressiveness of the voice to con-
vey that the system is an engaged and active par-
ticipant in the conversation. We use a rule-based
system to systematically add interjections, specif-
ically Alexa Speechcons, and fillers to approxi-
mate human-like cognitive-emotional expression
(Tokuhisa and Terashima, 2006). For more on the
framework and analysis of the TTS modifications,
see (Cohn et al., 2019).

3 Analysis

From January 5, 2019 to March 5, 2019, we col-
lected conversational data for Gunrock. During
this time, no other code updates occurred. We an-
alyzed conversations for Gunrock with at least 3
user turns to avoid conversations triggered by acci-
dent. Overall, this resulted in a total of 34,432 user
conversations. Together, these users gave Gunrock
an average rating of 3.65 (median: 4.0), which was
elicited at the end of the conversation (“On a scale
from 1 to 5 stars, how do you feel about talking to
this socialbot again?”). Users engaged with Gun-
rock for an average of 20.92 overall turns (median
13.0), with an average of 6.98 words per utterance,
and had an average conversation time of 7.33 min-
utes (median: 2.87 min.). We conducted three

principal analyses: users’ response depth (§3.1),
backstory queries (§3.2), and interleaving of per-
sonal and factual responses (§3.3).

3.1 Response Depth: Mean Word Count

Two unique features of Gunrock are its ability to
dissect longer, complex sentences, and its meth-
ods to encourage users to be active conversational-
ists, elaborating on their responses. In prior work,
even if users are able to drive the conversation, of-
ten bots use simple yes/no questions to control the
conversational flow to improve understanding; as
a result, users are more passive interlocutors in the
conversation. We aimed to improve user engage-
ment by designing the conversation to have more
open-ended opinion/personal questions, and show
that the system can understand the users’ complex
utterances (See §2.2 for details on NLU). Accord-
ingly, we ask if users’ speech behavior will reflect
Gunrock’s technical capability and conversational
strategy, producing longer sentences.

We assessed the degree of conversational depth
by measuring users’ mean word count. Prior work
has found that an increase in word count has been
linked to improved user engagement (e.g., in a
social dialog system (Yu, 2016)). For each user
conversation, we extracted the overall rating, the
number of turns of the interaction, and the user’s
per-utterance word count (averaged across all ut-
terances). We modeled the relationship between
word count and the two metrics of user engage-
ment (overall rating, mean number of turns) in
separate linear regressions.

Figure 2: Mean user rating by mean number of words.
Error bars show standard error.

Results showed that users who, on average, pro-
duced utterances with more words gave signifi-
cantly higher ratings (β=0.01, SE=0.002, t=4.79,

82

p<0.001)4(see Figure 2) and engaged with Gun-
rock for significantly greater number of turns
(β=1.85, SE=0.05, t=35.58, p<0.001) (see Fig-
ure 2). These results can be interpreted as ev-
idence for Gunrock’s ability to handle complex
sentences, where users are not constrained to sim-
ple responses to be understood and feel engaged
in the conversation – and evidence that individu-
als are more satisfied with the conversation when
they take a more active role, rather than the system
dominating the dialog. On the other hand, another
interpretation is that users who are more talkative
may enjoy talking to the bot in general, and thus
give higher ratings in tandem with higher average
word counts.

3.2 Gunrock’s Backstory and Persona

We assessed the user’s interest in Gunrock by tag-
ging instances where the user triggered Gunrock’s
backstory (e.g., “What’s your favorite color?”).
For users with at least one backstory question, we
modeled overall (log) Rating with a linear regres-
sion by the (log) ‘Number of Backstory Questions
Asked’ (log transformed due to the variables’ non-
linear relationship). We hypothesized that users
who show greater curiosity about Gunrock will
display higher overall ratings for the conversa-
tion based on her responses. Overall, the num-
ber of times users queried Gunrock’s backstory
was strongly related to the rating they gave at
the end of the interaction (log:β=0.10, SE=0.002,
t=58.4, p<0.001)(see Figure 3). This suggests that
maintaining a consistent personality — and having
enough responses to questions the users are inter-
ested in — may improve user satisfaction.

3.3 Interleaving Personal and Factual
Information: Animal Module

Gunrock includes a specific topic module on an-
imals, which includes a factual component where
the system provides animal facts, as well as a more
personalized component about pets. Our system is
designed to engage users about animals in a more
casual conversational style (Ventola, 1979), elicit-
ing follow-up questions if the user indicates they
have a pet; if we are able to extract the pet’s name,
we refer to it in the conversation (e.g., “Oliver is
a great name for a cat!”, “How long have you had
Oliver?”). In cases where the user does not indi-

4β = Unstandardized Beta Coefficient, SE = Standard Er-
ror, t = T value, p = P value

Figure 3: Mean user rating based on number of queries
to Gunrock’s backstory. Error bars show standard error.

cate that they have a pet, the system solely pro-
vides animal facts. Therefore, the animal module
can serve as a test of our interleaving strategy: we
hypothesized that combining facts and personal
questions — in this case about the user’s pet —
would lead to greater user satisfaction overall.

We extracted conversations where Gunrock
asked the user if they had ever had a pet and cat-
egorized responses as “Yes”, “No”, or “NA” (if
users did not respond with an affirmative or nega-
tive response). We modeled user rating with a lin-
ear regression model, with predictor of “Has Pet’
(2 levels: Yes, No). We found that users who
talked to Gunrock about their pet showed signif-
icantly higher overall ratings of the conversation
(β=0.15, SE=0.06, t=2.53, p=0.016) (see Figure
4). One interpretation is that interleaving factual
information with more in-depth questions about
their pet result in improved user experience. Yet,
another interpretation is that pet owners may be
more friendly and amenable to a socialbot; for ex-
ample, prior research has linked differences in per-
sonality to pet ownership (Kidd and Kidds, 1980).

Figure 4: Mean user rating based ’Has Pet’. Error bars
show standard error.

83

4 Conclusion

Gunrock is a social chatbot that focuses on hav-
ing long and engaging speech-based conversations
with thousands of real users. Accordingly, our
architecture employs specific modules to handle
longer and complex utterances and encourages
users to be more active in a conversation. Analy-
sis shows that users’ speech behavior reflects these
capabilities. Longer sentences and more ques-
tions about Gunrocks’s backstory positively cor-
relate with user experience. Additionally, we find
evidence for interleaved dialog flow, where com-
bining factual information with personal opinions
and stories improve user satisfaction. Overall, this
work has practical applications, in applying these
design principles to other social chatbots, as well
as theoretical implications, in terms of the nature
of human-computer interaction (cf. ’Computers
are Social Actors’ (Nass et al., 1994)). Our results
suggest that users are engaging with Gunrock in
similar ways to other humans: in chitchat about
general topics (e.g., animals, movies, etc.), tak-
ing interest in Gunrock’s backstory and persona,
and even producing more information about them-
selves in return.

Acknowledgments

We would like to acknowledge the help from Ama-
zon in terms of financial and technical support.

References
Chun-Yen Chen, Dian Yu, Weiming Wen, Yi Mang

Yang, Jiaping Zhang, Mingyang Zhou, Kevin Jesse,
Austin Chau, Antara Bhowmick, Shreenath Iyer,
Giritheja Sreenivasulu, Runxiang Cheng, Ashwin
Bhandare, and Zhou Yu. 2018. Gunrock: Building a
human-like social bot by leveraging large scale real
user data. In 2nd Proceedings of Alexa Prize.

Michelle Cohn, Chun-Yen Chen, and Zhou Yu. 2019.
A large-scale user study of an alexa prize chatbot:
Effect of TTS dynamism on perceived quality of
social dialog. In Proceedings of the 20th SIGdial
Workshop on Discourse and Dialogue.

Hao Fang, Hao Cheng, Maarten Sap, Elizabeth Clark,
Ari Holtzman, Yejin Choi, Noah A. Smith, and
Mari Ostendorf. 2018. Sounding board: A user-
centric and content-driven social chatbot. CoRR,
abs/1804.10202.

Chandra Khatri, Behnam Hedayatnia, Anu Venkatesh,
Jeff Nunn, Yi Pan, Qing Liu, Han Song, Anna Got-
tardi, Sanjeev Kwatra, Sanju Pancholi, Ming Cheng,

Qinglang Chen, Lauren Stubel, Karthik Gopalakr-
ishnan, Kate Bland, Raefer Gabriel, Arindam Man-
dal, Dilek Hakkani-Tür, Gene Hwang, Nate Michel,
Eric King, and Rohit Prasad. 2018. Advancing
the state of the art in open domain dialog systems
through the alexa prize. CoRR, abs/1812.10757.

Aline H Kidd and Robert M Kidds. 1980. Personal-
ity characteristics and preferences in pet ownership.
Psychological Reports, 46(3):939–949.

Anjishnu Kumar, Arpit Gupta, Julian Chan, Sam
Tucker, Björn Hoffmeister, and Markus Dreyer.
2017. Just ASK: building an architecture for ex-
tensible self-service spoken language understand-
ing. CoRR, abs/1711.00549.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. CoRR,
abs/1510.03055.

Clifford Nass, Jonathan Steuer, and Ellen R Tauber.
1994. Computers are social actors. In Proceedings
of the SIGCHI conference on Human factors in com-
puting systems, pages 72–78. ACM.

Lawrence Philips. 2000. The double metaphone search
algorithm. C/C++ Users J., 18(6):38–43.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pet-
tigrue. 2018. Conversational AI: the science behind
the alexa prize. CoRR, abs/1801.03604.

Alexander I Rudnicky. 2019. C ha d: Chat-oriented
dialog systems. In Advanced Social Interaction with
Agents, pages 57–60. Springer.

Ryoko Tokuhisa and Ryuta Terashima. 2006. Relation-
ship between utterances and ”enthusiasm” in non-
task-oriented conversational dialogue. In Proceed-
ings of the 7th SIGdial Workshop on Discourse and
Dialogue.

Eija Ventola. 1979. The structure of casual conversa-
tion in english. Journal of pragmatics, 3(3-4):267–
298.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. CoRR, abs/1506.05869.

Dian Yu and Zhou Yu. 2019. Midas: A dia-
log act annotation scheme for open domain hu-
man machine spoken conversations. arXiv preprint
arXiv:1908.10023.

Zhou Yu. 2016. Situated Intelligent Interactive Sys-
tems. Ph.D. thesis, Carnegie Mellon University.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? CoRR, abs/1801.07243.

84

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 85–90
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

HARE: a Flexible Highlighting Annotator for Ranking and Exploration

Denis Newman-Griffis†,‡ and Eric Fosler-Lussier†
†Dept. of Computer Science and Engineering, The Ohio State University, Columbus, OH

‡Rehabilitation Medicine Dept., Clinical Center, National Institutes of Health, Bethesda, MD
{newman-griffis.1, fosler-lussier.1}@osu.edu

Abstract

Exploration and analysis of potential data
sources is a significant challenge in the appli-
cation of NLP techniques to novel informa-
tion domains. We describe HARE, a system
for highlighting relevant information in docu-
ment collections to support ranking and triage,
which provides tools for post-processing and
qualitative analysis for model development
and tuning. We apply HARE to the use case
of narrative descriptions of mobility informa-
tion in clinical data, and demonstrate its utility
in comparing candidate embedding features.
We provide a web-based interface for annota-
tion visualization and document ranking, with
a modular backend to support interoperability
with existing annotation tools.

1 Introduction

As natural language processing techniques be-
come useful for an increasing number of new in-
formation domains, it is not always clear how best
to identify information of interest, or to evaluate
the output of automatic annotation tools. This
can be especially challenging when target data in
the form of long strings or narratives of complex
structure, e.g., in financial data (Fisher et al., 2016)
or clinical data (Rosenbloom et al., 2011).

We introduce HARE, a Highlighting Annotator
for Ranking and Exploration. HARE includes
two main components: a workflow for supervised
training of automated token-wise relevancy tag-
gers, and a web-based interface for visualizing and
analyzing automated tagging output. It is intended
to serve two main purposes: (1) triage of docu-
ments when analyzing new corpora for the pres-
ence of relevant information, and (2) interactive
analysis, post-processing, and comparison of out-
put from different annotation systems.

In this paper, we demonstrate an application
of HARE to information about individuals’ mo-

bility status, an important aspect of functioning
concerned with changing body position or loca-
tion. This is a relatively new type of health-related
narrative information with largely uncharacterized
linguistic structure, and high relevance to overall
health outcomes and work disability programs. In
experiments on a corpus of 400 clinical records,
we show that with minimal tuning, our tagger is
able to produce a high-quality ranking of docu-
ments based on their relevance to mobility, and to
capture mobility-likely document segments with
high fidelity. We further demonstrate the use of
post-processing and qualitative analytic compo-
nents of our system to compare the impact of dif-
ferent feature sets and tune processing settings to
improve relevance tagging quality.

2 Related work

Corpus annotation tools are plentiful in NLP re-
search: brat (Stenetorp et al., 2012) and Know-
tator (Ogren, 2006) being two heavily used ex-
amples among many. However, the primary pur-
pose of these tools is to streamline manual anno-
tation by experts, and to support review and revi-
sion of manual annotations. Some tools, including
brat, support automated pre-annotation, but analy-
sis of these annotations and corpus exploration is
not commonly included. Other tools, such as Sci-
KnowMine,1 use automated techniques for triage,
but for routing to experts for curation rather than
ranking and model analysis. Document ranking
and search engines such as Apache Lucene,2 by
contrast, can be overly fully-featured for early-
stage analysis of new datasets, and do not directly
offer tools for annotation and post-processing.

Early efforts towards extracting mobility infor-
mation have illustrated that it is often syntactically

1https://www.isi.edu/projects/
sciknowmine/overview

2https://lucene.apache.org/

85

SpaCy WordPiece
Num documents 400

Avg tokens per doc 537 655
Avg mobility tokens per doc 97 112

Avg mobility segments per doc 9.2

Table 1: Statistics for dataset of mobility information,
using SpaCy and WordPiece tokenization.

and semantically complex, and difficult to ex-
tract reliably (Newman-Griffis and Zirikly, 2018;
Newman-Griffis et al., 2019). Some characteriza-
tion of mobility-related terms has been performed
as part of larger work on functioning (Skube et al.,
2018), but a lack of standardized terminologies
limits the utility of vocabulary-driven clinical NLP
tools such as CLAMP (Soysal et al., 2018) or
cTAKES (Savova et al., 2010). Thus, it forms a
useful test case for HARE.

3 System Description

Our system has three stages for analyzing docu-
ment sets, illustrated in Figure 1. First, data anno-
tated by experts for token relevance can be used to
train relevance tagging models, and trained mod-
els can be applied to produce relevance scores on
new documents (Section 3.1). Second, we pro-
vide configurable post-processing tools for clean-
ing and smoothing relevance scores (Section 3.2).
Finally, our system includes interfaces for review-
ing detailed relevance output, ranking documents
by their relevance to the target criterion, and an-
alyzing qualitative outcomes of relevance scoring
output (Sections 3.3-3.5); all of these interfaces al-
low interactive re-configuration of post-processing
settings and switching between output relevance
scores from different models for comparison.

For our experiments on mobility information,
we use an extended version of the dataset de-
scribed by Thieu et al. (2017), which consists of
400 English-language Physical Therapy initial as-
sessment and reassessment notes from the Reha-
bilitation Medicine Department of the NIH Clin-
ical Center. These text documents have been an-
notated at the token level for descriptions and as-
sessments of patient mobility status. Further in-
formation on this dataset is given in Table 1. We
use ten-fold cross validation for our experiments,
splitting into folds at the document level.

3.1 Relevance tagging workflow
All hyperparameters discussed in this section were
tuned on held-out development data in cross-

Docs

Backend

Preprocessing

Feature
Extraction

Token
Annotation

Post-
processing

Viewer Ranking

Frontend

Figure 1: HARE workflow for working with a set of
documents; outlined boxes indicate automated compo-
nents, and gray boxes signify user interfaces.

validation experiments. We report the best settings
here, and provide full comparison of hyperparam-
eter settings in the online supplements.3

3.1.1 Preprocessing

Different domains exhibit different patterns in to-
ken and sentence structure that affect preprocess-
ing. In clinical text, tokenization is not a consen-
sus issue, and a variety of different tokenizers are
used regularly (Savova et al., 2010; Soysal et al.,
2018). As mobility information is relatively un-
explored, we relied on general-purpose tokeniza-
tion with spaCy (Honnibal and Montani, 2017) as
our default tokenizer, and WordPiece (Wu et al.,
2016) for experiments using BERT. We did not ap-
ply sentence segmentation, as clinical toolkits of-
ten produced short segments that interrupted mo-
bility information in our experiments.

3.1.2 Feature extraction

Our system supports feature extraction for indi-
vidual tokens in input documents using both static
and contextualized word embeddings.

Static embeddings Using static (i.e., non-
contextualized) embeddings, we calculate input
features for each token as the mean embedding of
the token and 10 words on each side (truncated
at sentence/line breaks). We used FastText (Bo-
janowski et al., 2017) embeddings trained on a 10-
year collection of physical and occupational ther-
apy records from the NIH Clinical Center.

ELMo (Peters et al., 2018) ELMo features are
calculated for each token by taking the hidden
states of the two bLSTM layers and the token
layer, multiplying each vector by learned weights,
and summing to produce a final embedding. Com-
bination weights are trained jointly with the token
annotation model. We used a 1024-dimensional

3https://arxiv.org/abs/1908.11302

86

Figure 2: Precision, recall, and F-2 when varying bi-
narization threshold from 0 to 1, using ELMo embed-
dings. The threshold corresponding to the best F-2 is
marked with a dotted vertical line.

ELMo model pretrained on PubMed data4 for our
mobility experiments.

BERT (Devlin et al., 2019) For BERT features,
we take the hidden states of the final k layers of
the model; as with ELMo embeddings, these out-
puts are then multiplied by a learned weight vec-
tor, and the weighted layers are summed to cre-
ate the final embedding vectors.5 We used the
768-dimensional clinicalBERT (Alsentzer et al.,
2019) model6 in our experiments, extracting fea-
tures from the last 3 layers.

3.1.3 Automated token-level annotation
We model the annotation process of assigning
a relevance score for each token using a feed-
forward deep neural network that takes embedding
features as input and produces a binomial softmax
distribution as output. For mobility information,
we used a DNN with three 300-dimensional hid-
den layers, relu activation, and 60% dropout.

As shown in Table 1, our mobility dataset is
considerably imbalanced between relevant and ir-
relevant tokens. To adjust for this balance, for
each epoch of training, we used all of the rele-
vant tokens in the training documents, and sam-
pled irrelevant tokens at a 75% ratio to produce a
more balanced training set; negative points were
re-sampled at each epoch. As token predictions
are conditionally independent of one another given
the embedding features, we did not maintain any
sequence in the samples drawn. Relevant samples
were weighted at a ratio of 2:1 during training.

After each epoch, we evaluate the model on all
tokens in a held-out 10% of the documents, and
calculate F-2 score (preferring recall over preci-
sion) using 0.5 as the binarization threshold of
model output. We use an early stopping thresh-

4https://allennlp.org/elmo
5Note that as BERT is constrained to use WordPiece tok-

enization, it may use slightly longer token sequences than the
other methods.

6https://github.com/EmilyAlsentzer/
clinicalBERT

(a) No collapsing

(b) Collapse one blank

Figure 3: Collapsing adjacent segments illustration.

old of 1e-05 on this F-2 score, with a patience of 5
epochs and a maximum of 50 epochs of training.

3.2 Post-processing methods

Given a set of token-level relevance annotations,
HARE provides three post-processing techniques
for analyzing and improving annotation results.

Decision thresholding The threshold for bina-
rizing token relevance scores is configurable be-
tween 0 and 1, to support more or less conservative
interpretation of model output; this is akin to ex-
ploring the precision/recall curve. Figure 2 shows
precision, recall, and F-2 for different threshold-
ing values from our mobility experiments, using
scores from ELMo embeddings.

Collapsing adjacent segments We consider
any contiguous sequence of tokens with scores at
or above the binarization threshold to be a relevant
segment. As shown in Figure 3, multiple segments
may be interrupted by irrelevant tokens such as
punctuation, or by noisy relevance scores falling
below the binarization threshold. As multiple ad-
jacent segments may inflate a document’s overall
relevance, our system includes a setting to collapse
any adjacent segments that are separated by k or
fewer tokens into a single segment.

Viterbi smoothing By modeling token-level
decisions as conditionally independent of one an-
other given the input features, we avoid assump-
tions of strict segment bounds, but introduce some
noisy output, as shown in Figure 4. To reduce

(a) Without smoothing

(b) With smoothing

Figure 4: Illustration of Viterbi smoothing.

87

Figure 5: Annotation viewer interface.

some of this noise, we include an optional smooth-
ing component based on the Viterbi algorithm.

We model the “relevant”/“irrelevant” state se-
quence discriminatively, using annotation model
outputs as state probabilities for each timestep,
and calculate the binary transition probability ma-
trix by counting transitions in the training data.
We use these estimates to decode the most likely
relevance state sequence R for a tokenized line T
in an input document, along with the correspond-
ing path probability matrixW , whereWj,i denotes
the likelihood of being in state j at time i given
ri−1 and ti. In order to produce continuous scores
for each token, we then backtrace through R and
assign score si to token ti as the conditional prob-
ability that ri is “relevant”, given ri−1. Let Qj,i be
the likelihood of transitioning from state Ri−1 to
j, conditioned on Ti, as:

Qj,i =
Wj,i

WRi−1,i−1
(1)

The final conditional probability si is calculated
by normalizing over possible states at time i:

si =
Q1,i

Q0,i +Q1,i
(2)

These smoothed scores can then be binarized us-
ing the configurable decision threshold.

3.3 Annotation viewer
Annotations on any individual document can be
viewed using a web-based interface, shown in Fig-
ure 5. All tokens with scores at or above the de-
cision threshold are highlighted in yellow, with
each contiguous segment shown in a single high-
light. Configuration settings for post-processing
methods are provided, and update the displayed
annotations when changed. On click, each token
will display the score assigned to it by the anno-
tation model after post-processing. If the docu-
ment being viewed is labeled with gold annota-

Figure 6: Ranking interface.

tions, these are shown in bold red text. Addition-
ally, document-level summary statistics and eval-
uation measures, with current post-processing, are
displayed next to the annotations.

3.4 Document set ranking

3.4.1 Ranking methods
Relevance scoring methods are highly task-
dependent, and may reflect different priorities
such as information density or diversity of infor-
mation returned. In this system, we provide three
general-purpose relevance scorers, each of which
operates after any post-processing.

Segments+Tokens Documents are scored by
multiplying their number of relevant segments by
a large constant and adding the number of relevant
tokens to break any ties by segment count. As rel-
evant information may be sparse, no normalization
by document length is used.

SumScores Documents are scored by summing
the continuous relevance scores assigned to all of
their tokens. As with the Segments+Tokens scorer,
no adjustment is made for document length.

Density Document scores are the ratio of bina-
rized relevant tokens to total number of tokens.

The same scorer can be used to rank gold anno-
tations and model annotations, or different scorers
can be chosen. Ranking quality is evaluated using
Spearman’s ρ, which ranges from -1 (exact oppo-
site ranking) to +1 (same ranking), with 0 indicat-
ing no correlation between rankings. We use Seg-
ments+Tokens as default; a comparison of ranking
methods is in the online supplements.

3.4.2 Ranking interface
Our system also includes a web-based ranking in-
terface, which displays the scores and correspond-
ing ranking assigned to a set of annotated doc-
uments, as shown in Figure 6. For ease of vi-
sual distinction, we include colorization of rows
based on configurable score thresholds. Rank-

88

Embeddings Smoothing Annotation Ranking
Pr Rec F-2 ρ

Static No 59.0 94.7 84.4 0.862
Yes 60.5 93.7 84.3 0.899

ELMo No 60.2 94.1 84.4 0.771
Yes 66.5 91.4 84.8 0.886

BERT No 55.3 93.8 82.2 0.689
Yes 62.3 90.8 84.3 0.844

Table 2: Annotation and ranking evaluation results on
mobility documents, using three embedding sources.
Results are given with and without Viterbi smooth-
ing, using binarization threshold=0.5 and no collaps-
ing of adjacent segments. Pr=precision, Rec=recall,
ρ=Spearman’s ρ Pr/Rec/F2 are macro-averaged over
folds, ρ is over all test predictions.

ing methods used for model scores and gold an-
notations (when present) can be adjusted inde-
pendently, and our post-processing methods (Sec-
tion 3.2) can also be adjusted to affect ranking.

3.5 Qualitative analysis tools

We provide a set of three tools for performing
qualitative analysis of annotation outcomes. The
first measures lexicalization of each unique token
in the dataset with respect to relevance score, by
averaging the assigned relevance score (with or
without smoothing) for each instance of each to-
ken. Tokens with a frequency below a config-
urable minimum threshold are excluded.

Our other tools analyze the aggregate relevance
score patterns in an annotation set. For labeled
data, as shown in Figure 2, we provide a visual-
ization of precision, recall, and F-2 when vary-
ing the binarization threshold, including identify-
ing the optimal threshold with respect to F-2. We
also include a label-agnostic analysis of patterns in
output relevance scores, illustrated in Figure 7, as
a way to evaluate the confidence of the annotator.
Both of these tools are provided at the level of an
annotation set and individual documents.

3.6 Implementation details

Our automated annotation, post-processing, and
document ranking algorithms are implemented
in Python, using the NumPy and Tensorflow li-
braries. Our demonstration interface is imple-
mented using the Flask library, with all backend
logic handled separately in order to support mod-
ularity of the user interface.

Figure 7: Distribution of token relevance scores on mo-
bility data: (a) word2vec, (b) ELMo, and (c) BERT.

4 Results on mobility

Table 2 shows the token-level annotation and doc-
ument ranking results for our experiments on mo-
bility information. Static and contextualized em-
bedding models performed equivalently well on
token-level annotations; BERT embeddings actu-
ally underperformed static embeddings and ELMo
on both precision and recall. Interestingly, static
embeddings yielded the best ranking performance
of ρ = 0.862, compared to 0.771 with ELMo
and 0.689 with BERT. Viterbi smoothing makes a
minimal difference in token-level tagging, but in-
creases ranking performance considerably, partic-
ularly for contextualized models. It also produces
a qualitative improvement by trimming out extra-
neous tokens at the start of several segments, as
reflected by the improvements in precision.

The distribution of token scores from each
model (Figure 7) shows that all three embedding
models yielded a roughly bimodal distribution,
with most scores in the ranges [0, 0.2] or [0.7, 1.0].

5 Discussion

Though our system is designed to address differ-
ent needs from other NLP annotation tools, com-
ponents such as annotation viewing are also ad-
dressed in other established systems. Our imple-
mentation decouples backend analysis from the
front-end interface; in future work, we plan to add
support for integrating our annotation and ranking
systems into existing platforms such as brat. Our
tool can also easily be extended to both multi-class
and multilabel applications; for a detailed discus-
sion, see the online supplements.

In terms of document ranking methods, it may
be preferred to rank documents jointly instead of
independently, in order to account for challenges
such as duplication of information (common in
clinical data; Taggart et al. (2015)) or subtopics.

89

However, these decisions are highly task-specific,
and are an important focus for designing ranking
utility within specific domains.

6 Conclusions

We introduced HARE, a supervised system for
highlighting relevant information and interactive
exploration of model outcomes. We demonstrated
its utility in experiments with clinical records an-
notated for narrative descriptions of mobility sta-
tus. We also provided qualitative analytic tools
for understanding the outcomes of different an-
notation models. In future work, we plan to
extend these analytic tools to provide rationales
for individual token-level decisions. Additionally,
given the clear importance of contextual informa-
tion in token-level annotations, the static transition
probabilities used in our Viterbi smoothing tech-
nique are likely to degrade its effect on the out-
put. Adding support for dynamic, contextualized
estimations of transition probabilities will provide
more fine-grained modeling of relevance, as well
as more powerful options for post-processing.

Our system is available online at https://
github.com/OSU-slatelab/HARE/. This
research was supported by the Intramural Re-
search Program of the National Institutes of Health
and the US Social Security Administration.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly Available
Clinical BERT Embeddings. In Clinical NLP Work-
shop, pages 72–78. ACL.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. TACL, 5:135–146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT, pages 4171–4186. ACL.

Ingrid E Fisher, Margaret R Garnsey, and Mark E
Hughes. 2016. Natural Language Processing in Ac-
counting, Auditing and Finance: A Synthesis of the
Literature with a Roadmap for Future Research. In-
telligent Systems in Accounting, Finance and Man-
agement, 23(3):157–214.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Denis Newman-Griffis and Ayah Zirikly. 2018. Em-
bedding Transfer for Low-Resource Medical Named
Entity Recognition: A Case Study on Patient Mobil-
ity. In BioNLP, pages 1–11. ACL.

Denis Newman-Griffis, Ayah Zirikly, Guy Divita, and
Bart Desmet. 2019. Classifying the reported ability
in clinical mobility descriptions. In BioNLP.

Philip V Ogren. 2006. Knowtator: A Protégé plug-in
for annotated corpus construction. In NAACL-HLT,
pages 273–275, New York City, USA. ACL.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In NAACL-HLT, pages 2227–2237,
New Orleans, Louisiana. ACL.

S Trent Rosenbloom, Joshua C Denny, Hua Xu, Nancy
Lorenzi, William W Stead, and Kevin B Johnson.
2011. Data from clinical notes: a perspective on the
tension between structure and flexible documenta-
tion. JAMIA, 18(2):181–186.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical Text Analysis and Knowledge Extraction Sys-
tem (cTAKES): architecture, component evaluation
and applications. JAMIA, 17(5):507–513.

Steven J Skube, Elizabeth A Lindemann, Elliot G
Arsoniadis, Mari Akre, Elizabeth C Wick, and
Genevieve B Melton. 2018. Characterizing Func-
tional Health Status of Surgical Patients in Clini-
cal Notes. In AMIA Joint Summits, pages 379–388.
AMIA.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui Wu,
Serguei Pakhomov, Hongfang Liu, and Hua Xu.
2018. CLAMP – a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. JAMIA, 25(3):331–336.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a Web-based Tool for NLP-Assisted
Text Annotation. In EACL, pages 102–107. ACL.

Jane Taggart, Siaw-Teng Liaw, and Hairong Yu. 2015.
Structured data quality reports to improve EHR data
quality. Int J Med Info, 84(12):1094–1098.

Thanh Thieu, Jonathan Camacho, and Pei-Shu Ho et
al. 2017. Inductive identification of functional sta-
tus information and establishing a gold standard cor-
pus: A case study on the Mobility domain. In BIBM,
pages 2300–2302. IEEE.

Yonghui Wu, Mike Schuster, and Zhifeng Chen et
al. 2016. Google’s Neural Machine Transla-
tion System: Bridging the Gap between Hu-
man and Machine Translation. arXiv preprint
arXiv:1609.08144.

90

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 91–96
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Honkling: In-Browser Personalization for Ubiquitous Keyword Spotting

Jaejun Lee, Raphael Tang, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Abstract

Used for simple commands recognition on de-
vices from smart speakers to mobile phones,
keyword spotting systems are everywhere.
Ubiquitous as well are web applications,
which have grown in popularity and complex-
ity over the last decade. However, despite their
obvious advantages in natural language inter-
action, voice-enabled web applications are still
few and far between. We attempt to bridge this
gap with Honkling, a novel, JavaScript-based
keyword spotting system. Purely client-side
and cross-device compatible, Honkling can be
deployed directly on user devices. Our in-
browser implementation enables seamless per-
sonalization, which can greatly improve model
quality; in the presence of underrepresented,
non-American user accents, we can achieve up
to an absolute 10% increase in accuracy in the
personalized model with only a few examples.

1 Introduction

With the rapid proliferation of voice-enabled de-
vices such as the Amazon Echo and the Apple
iPhone, speech recognition systems are becoming
increasingly prevalent in our daily lives. Impor-
tantly, these systems improve safety and conve-
nience in hands-free interactions, such as using
Apple’s Siri to dial contacts while driving. How-
ever, a prominent drawback is that most of these
systems perform speech recognition in the cloud,
where a remote server receives from the device all
audio to be transcribed. Clearly, the privacy and
security implications are significant: servers may
be accessed by other people, authorized or not.
Thus, it is important to capture only the relevant
speech and not all incoming audio, while provid-
ing a pleasant hands-free experience.

Enter keyword spotting systems. They solve
the aforementioned issues by implementing an on-
device mechanism to awaken the intelligent agent,

e.g., “Okay, Google” for triggering the Google As-
sistant. This then allows the device to record and
transmit only a limited segment of speech, obvi-
ating the need to send everything to the cloud.
The task of keyword spotting (KWS) is to detect
the presence of specific phrases in a stream of au-
dio, often with the end goal of wake-word detec-
tion or simple command recognition on the device.
Currently, the state of the art uses lightweight
neural networks (Sainath and Parada, 2015; Tang
and Lin, 2018), which can perform inference in
real-time, even on low-end devices (Fernández-
Marqués et al., 2018; Tang et al., 2018).

Despite the popularity of voice-enabled prod-
ucts, web applications have yet to make use of
KWS. This is surprising, since modern web appli-
cations are supported on billions of devices rang-
ing from desktops to smartphones. We close the
gap between KWS systems and web applications
by building and evaluating a JavaScript-based, in-
browser KWS system. Exploiting the pervasive-
ness of JavaScript, our system can be deployed
directly on user devices, facilitating the develop-
ment of JavaScript-based, voice-enabled applica-
tions (Lee et al., 2019).

We observe, however, that the quality of
our models suffers on various accents that are
scarcely represented in our dataset—a problem
common in speech recognition (Huang et al.,
2004; Humphries et al., 1996). Fortunately,
our JavaScript-based application runs completely
client-side, enabling the development of personal-
ized models. To further improve the universality
of our system, we explore the benefits and costs of
fine-tuning an existing KWS model on a few user-
provided recordings, personalizing the application
for a given user.

Our main demonstration is Honkling,1 a novel

1http://honkling.ai

91

in-browser KWS system running previous state-
of-the-art models (Tang and Lin, 2018). We pro-
vide a set of comprehensive experimental results
for the latency of an in-browser KWS system on a
broad range of devices. We also evaluate the accu-
racy of KWS on various user accents and present a
mechanism for in-browser user accent adaptation.
On the Google Speech Commands dataset (War-
den, 2018), our most accurate in-browser model
achieves an accuracy of 94% while performing in-
ference in less than 30 milliseconds. With only
five user-recorded audio clips per keyword, Honk-
ling can be fine-tuned to improve accuracy by up
to an absolute 10%. Using hardware acceleration,
users only need to wait for eight seconds before
their Honkling becomes personalized.

2 Background and Related Work

KWS is the task of detecting a spoken phrase
in audio, applicable to simple command recog-
nition (Warden, 2018) and wake-word detec-
tion (Arik et al., 2017). Typically, KWS systems
must be small footprint, since the target platforms
are mobile phones, Internet-of-Things (IoT) de-
vices, and other portable electronics. To achieve
this goal, resource-efficient architectures using
convolutional neural networks (CNNs) (Tang and
Lin, 2018; Sainath and Parada, 2015) and recur-
rent neural networks (RNNs) (Arik et al., 2017)
have been proposed, while other techniques make
use of low-bitwidth weights (Fernández-Marqués
et al., 2018; Zhang et al., 2017). However, de-
spite the pervasiveness of modern web browsers
on a broad range of devices and the availability of
deep learning toolkits in JavaScript, a personaliz-
able, on-device KWS system in web applications
has not to our knowledge been explored.

In automatic speech recognition (ASR), the
presence of user accents often degrades recogni-
tion quality (Huang et al., 2004; Humphries et al.,
1996). Unfortunately, the solutions proposed in
previous work vary depending on the underlying
system, and little prior art exists using deep learn-
ing. The idea of fine-tuning neural networks to
increase accuracy for a group of accents is found
in Najafian et al. (2016); however, full ASR in-
volves much larger datasets and models, and thus
hours of extra training data are necessary for suc-
cessful adaptation. Surprisingly, there has been lit-
tle work on building KWS systems for user accent
personalization.

3 Data and Models

For consistency with past results (Tang and Lin,
2018; Tang et al., 2018), we train our models on
the first version of the Google Speech Commands
dataset (Warden, 2018), comprising 65,000 spo-
ken utterances for 30 short, one-second phrases.
As with Tang and Lin (2018), we pick the fol-
lowing twelve classes: “yes”, “no”, “stop”, “go”,
“left”, “right”, “on”, “off”, “up”, “down”, un-
known, and silence. The dataset contains roughly
2,000 examples per class, including a few back-
ground noise samples of both man-made and arti-
ficial noises, e.g., washing dishes and white noise.
As is standard in the speech processing literature,
all audio is in 16-bit PCM, 16kHz mono-channel
WAV format. We use the standard 80%, 10%, and
10% splits from the Speech Commands dataset for
the training, validation, and test sets, respectively.

3.1 Input Preprocessing

First, for dataset augmentation, the input is ran-
domly mixed with additive noise from the back-
ground noise set—this helps to decrease the gen-
eralization error and improve the robustness of the
model under noise (Ko et al., 2015). Following the
official TensorFlow implementation, we also ap-
ply a random time shift of UNIFORM[−100, 100]
milliseconds (ms). For feature extraction, we com-
pute 40-dimensional Mel-frequency cepstral co-
efficients (MFCCs), with a window size of 30ms
and a frame shift of 10ms, yielding a final prepro-
cessed input size of 101× 40 for each one-second
audio sample.

3.2 Model Architecture

We use the res8 and res8-narrow archi-
tectures from Tang and Lin (2018) as starting
points, which represent the prior state of the art
in residual CNNs (He et al., 2016) for KWS. In
both models, given the input X ∈ R101×40, we
first apply a 2D convolution layer with weights
W ∈ RCout×1×(3×3) and a padding of one on
all sides. This step results in an output of X̃ ∈
RCout×101×40, which we then downsample using
an average pooling layer with a kernel size of
(4 × 3). Next, the output is passed through a se-
ries of three residual blocks comprising convolu-
tion and batch normalization (Ioffe and Szegedy,
2015) layers. Finally, we average pool across the
channels and pass the features through a softmax
across the twelve classes.

92

Device Processor Platform
res8 res8-narrow

Lat. (ms) Acc. (%) Lat. (ms) Acc. (%)

GPU

Desktop GTX 1080 Ti PyTorch 1 94.3 1 91.2
Desktop GTX 1080 Ti Firefox 12 94.0 10 90.9
MacBook Pro (2017) Intel Iris Plus 650 Firefox 29 94.0 15 90.8
MacBook Air (2013) Intel HD 6000 Firefox 34 94.0 19 90.8
Galaxy S8 (2017) Adreno 540 Firefox 60 94.1 43 89.0

CPU

Desktop i7-4790k (quad) PyTorch 10 94.3 2 91.2
MacBook Pro (2017) i5-7287U (quad) PyTorch 12 94.3 3 91.2
Desktop i7-4790k (quad) Firefox 371 94.1 94 90.9
MacBook Pro (2017) i5-7287U (quad) Firefox 361 94.0 107 90.8
MacBook Air (2013) i5-4260U (dual) Firefox 485 94.0 115 90.8
Galaxy S8 (2017) Snapdragon 835 (octa) Firefox 1105 94.1 265 89.0

Table 1: Latency (lat.; 90th percentile) and accuracy (acc.) results on different platforms for the res8-* models.

In the previous description, we are free to
choose Cout to dictate the expressiveness and
computational footprint of the model; res8 and
res8-narrow choose 45 and 19, respectively.
In total, res8 contains 110K parameters and in-
curs 30 million multiplies per second of audio,
while res8-narrow uses 19.9K parameters and
incurs 5.7 million multiplies.

4 Honkling

Training neural networks in JavaScript from
scratch is ill-advised due to poorly optimized
computation routines such as matrix multiplica-
tion. Therefore, we use the official PyTorch
model implementations2 at training time. At in-
ference time, weights are transferred from Py-
Torch to a web application implemented in Tensor-
Flow.js.3 Since the official implementation uti-
lizes LibROSA (McFee et al., 2015) for audio
feature extraction, we instead use Meyda (Rawl-
inson et al., 2015), a JavaScript version of Lib-
ROSA. However, unlike Python, which is well
suited for developing audio processing applica-
tions, in-browser JavaScript presents challenges in
manipulating audio; for example, many browsers
restrict the sample rate of input audio to 44.1kHz
only. Due to such restrictions, the processed audio
in JavaScript differ from MFCCs extracted by Lib-
ROSA. Therefore, we have patched Meyda com-
prehensively to minimize the mismatches.

Overall, we successfully enable KWS func-
tionality in browsers without any server-side in-
ference. Since the audio data is quickly pro-
cessed within the browser, it is much more effi-
cient than transferring data over the network for
inference. Furthermore, users are now freed from

2http://honk.ai
3https://js.tensorflow.org

security and privacy implications, such as eaves-
dropping of network traffic and collection of per-
sonal speech data.

Measured with our university WiFi connection,
the average latency to Google servers is about
25ms with a standard deviation of 20ms. Network
latency is much higher for transferring audio data.
With a server written in Python, we measure an av-
erage latency of 481ms with a standard deviation
of 183ms for one second of 16kHz mono-channel
audio data. With in-browser inference, we achieve
a pure client-side architecture that does not suffer
from variable network latency.

The two main metrics for our KWS application
are accuracy and inference latency. To be consis-
tent with previous work, our experiments use the
same test set. We conduct experiments on desktop,
laptop, and smartphone configurations to demon-
strate the feasibility of our system on a broad range
of devices. These include the following: a desktop
with 16GB RAM, an i7-4790k CPU, and a GTX
1080 Ti; two laptop configurations, the MacBook
Pro (2017), with a quad-core i5-7287U CPU and
an Intel Iris Plus 650 GPU, and the MacBook Air
(2013), with a dual-core i5-4260U CPU and an In-
tel HD 6000 GPU; the Galaxy S8 as our smart-
phone configuration. Given this wide range of
devices, we decide to include results from Fire-
fox only, but Honkling is also available on other
browsers. Since TensorFlow.js is GPU capable,
experiments are conducted both with and with-
out GPU acceleration, which can be toggled in the
browser settings.

Table 1 summarizes 90th percentile latency and
recognition accuracy results for both res8 and
res8-narrow on various devices. Note that re-
sults with the PyTorch implementation on our lap-
top and desktop setups are included to compare

93

Figure 1: Accuracy varying the number of epochs (left) and the learning rate (right), with 95% confidence intervals
(shaded). original * and personalized * denote accuracy on the original and user test sets.

with our in-browser configurations. The origi-
nal implementation achieves an accuracy of 94.3%
for res8 and 91.2% for res8-narrow (see
the first few rows in Table 1). Slight differences
are observed across platforms due to a mismatch
of MFCC computations between LibROSA and
Meyda. However, the accuracy for each model is
consistent on every platform, confirming that our
in-browser implementation is robust.

Even though latency is processor dependent,
the res8-narrow model performs inference in
real time on every platform. Given that these de-
lays are perceived by humans to be near instanta-
neous (Miller, 1968), our system is sufficient for
real-time interactive web applications.

5 Personalization and Accent Adaptation

JavaScript applications run fully client-side and
are cross-device compatible, meaning that they
can be deployed directly on user devices, which
enables seamless personalization. In this paper,
to design a cross-device, cross-human KWS sys-
tem, we extend Honkling to adapt to various
user accents that are uncommon in the primarily
American-accented dataset.

To measure the effects of different user accents
on the KWS quality of Honkling, we evaluate
the accuracy of res8-narrow on datasets com-
prised of recordings from different people. In

these experiments, there are four participants: A,
B, C, and D. Users A and B are native speakers
of Canadian English while C has a British accent
and D has a Korean accent. From each person,
we collected 50 recordings for each of the twelve
classes, setting aside 40 recordings of each class
to construct a test set of 480 samples. We conduct
evaluations on the same twelve classes.

To quantify the amount of effort required from
the user for personalization, we begin by find-
ing the minimum number of recordings that leads
to improvements in accuracy. Next, we experi-
ment with different numbers of epochs and learn-
ing rates. Since we have shown that our JavaScript
implementation reproduces the PyTorch imple-
mentation with minimal differences, unless in-
dicated otherwise the following experiments are
conducted using PyTorch for convenience.

We report accuracy metrics under two dif-
ferent sets of conditions: original * and
personalized *, denoting accuracy on the
original test set and the user test set, respec-
tively (see Figure 1, dashed and solid lines). For
each condition, we conduct experiments with three
variations of training data size. The number that
follows each name denotes the number of record-
ings per keyword in the fine-tuning dataset. To
reduce the effects of outliers, we report averaged
results from 60 experiments with different ran-

94

Device Processor Platform
Number of Recordings

1 3 5

GPU
Desktop GTX 1080 Ti PyTorch 0.2 sec 0.2 sec 0.2 sec
Desktop GTX 1080 Ti Firefox 3.9 sec 5.9 sec 7.6 sec
MacBook Pro (2017) Intel Iris Plus 650 Firefox 7.2 sec 12.6 sec 27.0 sec

CPU

Desktop i7-4790k (quad) PyTorch 3.3 sec 6.0 sec 8.0 sec
MacBook Pro (2017) i5-7287U (quad) PyTorch 2.0 sec 5.9 sec 10.7 sec
Desktop i7-4790k (quad) Firefox 25.4 min 75.8 min 128.1 min
MacBook Pro (2017) i5-7287U (quad) Firefox 29.5 min 86.3 min 139.2 min

Table 2: Average in-browser fine-tuning efficiency for res8-narrow under different configurations.

dom seeds, where the training data is constructed
by randomly selecting the appropriate number of
recordings from the fine-tuning set. The test set
stays the same for each experiment.

Fine-tuning progress across epochs. In Figure 1,
we include in the labels of the plots both the accu-
racy of the base model and the accuracy on each
user test set. The left half of the figure shows the
fine-tuning progress across epochs, with the learn-
ing rate fixed to 0.01. As expected, accuracy on
the user test set is lower than on the original test
set prior to fine-tuning. For users A and B, the dif-
ferences are only a few percent, which seems ac-
ceptable in practice. However, the model achieves
an accuracy of only 76.8% and 80.5% for users
C and D, respectively, demonstrating the need for
personalization.

As fine-tuning proceeds across epochs, accu-
racy on the user recordings increases while accu-
racy on the original data decreases. We observe
diminishing returns with more epochs; 50 epochs
seem to be sufficient to maximize accuracy. After
convergence, the models generally achieve higher
accuracy on the user recordings than on the orig-
inal data, thus demonstrating successful adapta-
tion. We find that a single recording per keyword
is sufficient for personalization, as the fine-tuned
models exhibit higher accuracy on the user record-
ings for every user except user C.

Fine-tuning dataset size. Since more train-
ing data leads to a better representation of a
user’s speech patterns, it is no surprise that
an increase in accuracy is observed as more
recordings are added to the dataset; compare
personalized {1,3,5} in Figure 1.

However, we find that the accuracy converges
rapidly after a mere five recordings per key-
word; such a trend is evident for every user. Con-
cretely, the accuracy gap between one and three
recordings is substantially greater than the gap be-

tween three and five, suggesting that each addi-
tional recording provides rapidly diminishing re-
turns. Although using one sample per keyword
helps, results suggest that having at least three
recordings is desirable, since the marginal bene-
fit of two more recordings is quite large; in user
C’s case (see Figure 1, bottom left), we observe an
absolute improvement of almost 10 points.

Learning rate. In this experiment, we fix the
number of epochs to 25 and perform grid search
on the learning rate from 0.1 to 0.0001, stepping
by a factor of ten—see the right half of Figure 1.
Among the four different learning rates, we find
that choosing 0.01 consistently leads to the best
accuracy on user recordings for all three variations
of training data size.

Efficiency and application evaluation. Bring-
ing all the previous threads together, Honkling
supports in-browser personalization by fine-tuning
with user recordings. As we find that the num-
ber of recordings has a high correlation with the
quality of personalization, users have the option to
choose the number of recordings. Once recording
is completed, the base model is fine-tuned with the
best hyperparameter settings, for 50 epochs with
a learning rate of 0.01. The fine-tuned model is
then stored in the browser. At startup, Honkling
loads the stored model if it exists so users can keep
the application personalized even after the current
browser session ends.

Table 2 summarizes the in-browser fine-tuning
efficiency for res8-narrow on the 2017 Mac-
Book Pro and our desktop. We average results
over ten trials, where fine-tuning data is randomly
selected from the four user datasets from the pre-
vious experiment. To be consistent with our pre-
vious study on in-browser inference efficiency, we
conduct the experiments in Firefox. From the re-
sults, we find that, unsurprisingly, personalization
time increases with the data size. Since training

95

data size correlates with the final accuracy, users
have the option to trade off time and quality. For-
tunately, GPU acceleration can significantly de-
crease fine-tuning time. The same process that
consumes up to 2.3 hours on a CPU can be com-
pleted within 27 seconds on a GPU. With a GTX
1080 Ti, only 8 seconds are necessary to achieve
personalization with Honkling.

6 Conclusion

In this paper, we realize a new paradigm for serv-
ing neural network applications by implementing
Honkling, a JavaScript-based, in-browser KWS
system. On the popular Google Speech Com-
mands dataset, our model achieves an accuracy
of 94% while maintaining an inference latency of
less than 30 milliseconds on modern devices. The
purely client-side architecture allows our applica-
tion to be efficient and cross-device compatible,
with the additional benefit of supporting user per-
sonalization. Since many speech-based systems
suffer from accuracy degradation caused by dif-
ferences in accents and speaking styles, we sup-
port per-user personalization in Honkling. Based
on a small-scale study, we observe a substan-
tial increase in accuracy after spending only a
short amount of time fine-tuning on a few sample
recordings. These results pave the way for future
web applications that seamlessly support built-in
speech-based interactions.

Acknowledgments

This research was supported by the Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada.

References

Sercan O. Arik, Markus Kliegl, Rewon Child, Joel
Hestness, Andrew Gibiansky, Chris Fougner, Ryan
Prenger, and Adam Coates. 2017. Convolutional re-
current neural networks for small-footprint keyword
spotting. INTERSPEECH.

Javier Fernández-Marqués, W.-S. Tseng Vincent,
Sourav Bhattachara, and Nicholas D. Lane. 2018.
BinaryCmd: Keyword spotting with deterministic
binary basis. SysML.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. CVPR.

Chao Huang, Tao Chen, and Eric Chang. 2004. Accent
issues in large vocabulary continuous speech recog-
nition. International Journal of Speech Technology,
7:141–153.

Jason J. Humphries, Philip C. Woodland, and David
J. B. Pearce. 1996. Using accent-specific pronunci-
ation modelling for robust speech recognition. Inter-
national Conference on Spoken Language Process-
ing.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. ICML.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur. 2015. Audio augmentation for
speech recognition. INTERSPEECH.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019.
Universal voice-enabled user interfaces using
JavaScript. IUI.

Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W.
Ellis, Matt McVicar, Eric Battenberg, and Oriol Ni-
eto. 2015. librosa: Audio and music signal analysis
in Python. Python in Science Conference.

Robert B. Miller. 1968. Response time in man-
computer conversational transactions. Fall Joint
Computer Conference, Part I.

Maryam Najafian, Saeid Safavi, John H. L. Hansen,
and Martin Russell. 2016. Improving speech recog-
nition using limited accent diverse British English
training data with deep neural networks. Interna-
tional Workshop on Machine Learning for Signal
Processing.

Hugh Rawlinson, Nevo Segal, and Jakub Fiala. 2015.
Meyda: An audio feature extraction library for the
web audio API. Web Audio Conference.

Tara N. Sainath and Carolina Parada. 2015. Convolu-
tional neural networks for small-footprint keyword
spotting. INTERSPEECH.

Raphael Tang and Jimmy Lin. 2018. Deep resid-
ual learning for small-footprint keyword spotting.
ICASSP.

Raphael Tang, Weijie Wang, Zhucheng Tu, and Jimmy
Lin. 2018. An experimental analysis of the power
consumption of convolutional neural networks for
keyword spotting. ICASSP.

Pete Warden. 2018. Speech Commands: A
dataset for limited-vocabulary speech recognition.
arXiv:1804.03209.

Yundong Zhang, Naveen Suda, Liangzhen Lai, and
Vikas Chandra. 2017. Hello edge: Keyword spot-
ting on microcontrollers. arXiv:1711.07128.

96

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 97–102
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

IFlyLegal: A Chinese Legal System for Consultation, Law Searching, and
Document Analysis

Ziyue Wang†, Baoxin Wang†, Xingyi Duan†, Dayong Wu†, Shijin Wang†§, Guoping Hu†, Ting liu‡
†State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Beijing, China

‡Research Center for Social Computing and Information Retrieval,
Harbin Institute of Technology, Harbin, China

§iFLYTEK AI Research (Hebei), LangFang, China
†{zywang27,bxwang2,xyduan,dywu2,sjwang3,gphu}@iflytek.com

‡tliu@ir.hit.edu.cn

Abstract

Legal Tech is developed to help people with le-
gal services and solve legal problems via ma-
chines. To achieve this, one of the key require-
ments for machines is to utilize legal knowl-
edge and comprehend legal context. This
can be fulfilled by natural language processing
(NLP) techniques, for instance, text represen-
tation, text categorization, question answering
(QA) and natural language inference, etc. To
this end, we introduce a freely available Chi-
nese Legal Tech system (IFlyLegal) that bene-
fits from multiple NLP tasks. It is an integrated
system that performs legal consulting, multi-
way law searching, and legal document analy-
sis by exploiting techniques such as deep con-
textual representations and various attention
mechanisms. To our knowledge, IFlyLegal is
the first Chinese legal system that employs up-
to-date NLP techniques and caters for needs of
different user groups, such as lawyers, judges,
procurators, and clients. Since Jan, 2019, we
have gathered 2,349 users and 28,238 page
views (till June, 23, 2019).

1 Introduction

The term Legal Tech refers to legal technologies
that apply computer technologies to legal services,
such as legal consultation and judicial document
analysis. Such techniques are able to ease the load
of legal workers and provide easily accessible ser-
vices for clients. Recently, researchers are concen-
trating on enhancing Legal Tech with NLP tech-
niques (e.g., named entity recognition (Yin et al.,
2018), sequence labeling (Yan et al., 2018)). Stud-
ies have proven that NLP techniques are markedly
effective regarding several legal tasks, for in-
stance, charge prediction (Hu et al., 2018) and law
area classification (Sulea et al., 2017).

In industry, the majority of legal consultation
products are merely platforms that redirect users to
actual lawyers other than solving problems with a

Figure 1: Architecture of the legal system

compact and efficient intelligent system. The par-
tially automated ones, however, tend to have single
functionality, either document analysis like case
description analysis, or information acquiring like
law searching and legal consultancy. Despite of
plentiful advances in NLP, most of industrial ap-
plications remain constructed in conventional in-
formation retrieval (IR) manner or highly rely on
hand-crafted responses. They do not take advan-
tage of the most advanced algorithms in NLP and
deep learning and fail to cater for the following
needs: (i) flexibility: being flexible to compre-
hend various forms of questions or queries; (ii)
diversity: being able to generate different and cus-
tomized replies according to slight changes of in-
put queries; (iii) accuracy: being able to deliver re-
sponses that correctly answer the input questions.

In this paper, we present an integrated system
that adapts functionalities such as consultation and
document analysis to legal context. Taking ad-
vantage of recent advances in NLP, the legal sys-
tem can act as an artificial lawyer for clients and
as an assistant for legal workers. It is a practi-
cal system for answering legal questions, perform-
ing law searching in multiple modes, and analyz-
ing case descriptions. First, by coupling question-
answering and scoring models with external le-
gal knowledge such as statutes and legal com-
monsense, we design an architecture especially for

97

Figure 2: An illustration of the legal system

providing professional solutions to legal issues.
Second, inspired by natural language inference
task, we build a dedicated module to solving prob-
lems with statutes only, namely natural language
article inference. Last but not least, we construct
an analysis module to comprehend cases, predict
judicial sentences, and retrieve similar cases.

The main contributions of this work lie in the
followings: 1. It integrates the multiple legal ser-
vices, consultation, law searching and document
analysis, into a single application; 2. We propose a
new task, natural language article inference, which
replies to legal questions with a sets of possible
articles of law only; 3. All the utilized models
achieve practicable results.

2 Related Work

The current automated legal consultation applica-
tions usually rely on retrieving relevant text in-
formation from pre-constructed database contain-
ing legal question-answer pairs using text features
such as TF-IDF and bag-of-words (BoW). Do
et al. (2017) proposed QA models for legal con-
sultation, and Hang (2017) preformed legal ques-
tion classification with deep convolutional neural
network trained in multi-task manner.

Law searching is an unneglectable demand of
legal workers such as lawyers and procurators,
as they need to support their views with suffi-
cient articles. In industry, article retrieval applica-
tions simply parse inputs into phrases and adopt
common IR approaches. Academically, Zhang
et al. (2017) built a Chinese legal consultation sys-

tem to improve the precision of retrieving articles
and predicting sentences by exploiting legal prece-
dents when performing logical reasoning.

Legal document analysis is frequently viewed
as text representation and classification task. Hu
et al. (2018) introduces few-shot attributes to en-
rich the information of mapping from case de-
scriptions to charges, and Sulea et al. (2017) used
multiple SVM classifiers as an ensemble to per-
form law area classification.

3 Chinese Legal-tech System

The presented system consists of the following
blocks: consultation, law searching and case anal-
ysis. We will go into these blocks at length in this
section. Throughout the system, the LTP toolkit
(Che et al., 2010) is employed for Chinese word
segmentation, named entity recognition and se-
mantic parsing tasks. The overall system archi-
tecture is depicted in Figure 1. As this paper fo-
cuses on legal context processing, we will provide
details for principal modules related to legal ser-
vices and omit the others like chit-chat. For better
understanding, we will discuss experiments, user
studies and use cases in the following sections.

3.1 Consultation Block

This block is responsible for legal QA. It con-
tains four modules, one of which is called in-
tention recognition and natural language under-
standing (NLU) module that filters out chit-chats,
recognizes intentions of inputs, and analyzes the
queries. The other three, namely general le-

98

gal consulting, legal term explaining, and lawyer
recommending, are subsequent modules that re-
sponse to legal consultation concerning the rec-
ognized intention. This block accepts short ques-
tions appealing for legal support and outputs lit-
eral replies to the questions. We extract text
containing legal issues from public corpus (e.g.,
Wikipedia), and automatically collect web text
from Chinese legal forums and online communi-
ties for pre-training language models.

Intention Recognition and NLU module is the
basis of consultation block. It functions as the
combination of a gate and a converter. As we fo-
cus on legal scope, this module only admits legal
related content, meanwhile it rejects and redirects
the rest to an external chit-chat module. This is
achieved by a binary classifier that assigns label
“chat” or “legal” to each input. Then, the admitted
inputs are analyzed and rewritten for consultation
using pre-trained models and predefined features.

General Legal Consulting is an indispensable
module for a legal aid system. Following the idea
of general QA system (Quaresma and Rodrigues,
2005), we trained an end-to-end QA model es-
pecially for legal consulting using data collected
from online forums and communities. Note that
a legal consultation system should give neutral
replies, biased comments are thoroughly removed.
This module roles as a virtual lawyer who analyze
queries and response with appropriate answers.

Furthermore, the consultation block has two
complementary modules called legal Term expla-
nation and lawyer recommendation that compen-
sate the general legal consulting module with ex-
tra useful information. If a legal term appears by
itself as a query, it will be detected by intention
recognition module and fed into legal term expla-
nation module for detail descriptions. Lawyer rec-
ommendation module is personalized with regards
to users’ preferred features, for example, lawyer’s
location and statistical winning percentage.

3.2 Law Searching Block

Aiming to work as a legal assistant, this block per-
forms law searching in three manners. One is
query-based law searching that follows the idea
of standard IR approaches. Another is document-
based law searching that reads long documents
and retrieves applicable articles. The last is a novel
task, natural language based law searching. We
will discuss it in detail in the next paragraph.

0

500

1000

1500

2000

04/22-04/28 05/06-05/12 05/20-05/26 06/03-06/09 06/17-06/23

co
u
n
ts

(a) Total Page Views (per week).

0

100

200

300

400

500

04/22-04/28 05/06-05/12 05/20-05/26 06/03-06/09 06/17-06/23

se
co
n
d
s

(b) Average Viewing Time (per week).

Figure 3: User studies on cumulative page views (a)
and average viewing time (b) for the recent two months
(from April 22 to June 23)

Article inference is a natural language based
law searching approach without formatting the
queries. It is a challenging task on account that
the number of related statutes to a given ques-
tion sometimes remains unclear even if answered
by experienced lawyers, and that there are differ-
ent laws and regulations stating the same fact but
focusing on different aspects. Undoubtedly, we
can simply pair up the input question with all the
statutes and perform one-way sentence matching,
i.e. deducing articles from a question. Neverthe-
less, this will result in tremendous amount of sen-
tence pairs due to countless articles of various lev-
els and from different provinces and cities, which
makes it impossible to response immediately.

To address this issue, we need to generate a set
of candidate statutes to narrow down the searching
space and improve the predicting accuracy. We
part the article inference task into two consecutive
phases. Firstly, we train a law-level classifier that
categorizes inputs into 267 in-force Chinese laws
and extract articles from the top 3 resulting laws
as a coarse candidate set. The total number of this
set could go beyond a thousand since some laws
contain over 400 articles. So far, the candidate
space is still too large to achieve instant response.
We use a bidirectional LSTM architecture employ-
ing four perspective features from (Wang et al.,
2017) as an intermediate article inference model in
article-level to obtain a fine-grained candidate set.
Secondly, we slightly adapt the BERT model (De-
vlin et al., 2018) so that it becomes more sensitive

99

Metrics p@1(%) p@3(%)
Automatic 42.67 23.56
Human (Partial) 90.00 75.56
Human (Exact) 76.67 52.22

Table 1: The final test results of article inference task.
Human evaluation is contains three level, not match,
partially match and exact match.

Models p% r% f%
vanilla RNN 80.11 80.81 80.64
BiMPM 87.05 84.82 85.92
BERT 90.57 87.76 89.14

Table 2: The results of article inference (Test set posi-
tive:negative=1:4). BiMPM uses 4 perspective features
from Wang et al. (2017). BERT here is adapted from
Devlin et al. (2018).

to legal context. More concretely, the BERT-base
Chinese model is trained for another 300,000 steps
with 20% of all the question-article pairs. Then,
the model is fine-tuned for final article inference
task with the training data that has 1 correct article
out of 5 on average. In practice, we feed the fine-
grained candidate set obtained from phase one to
the fine-tuned BERT and get the inference results.
Eventually, 3 most probable articles are displayed
and mapped to the names of laws accordingly.

Query-based law searching provides retrievals
to queries asking for certain laws or as detailed
as certain statutes, which is the basic function
for a law searching application. It is achieved
by retrieving a set of articles with IR system and
weighting and ranking by multiple features like
textual similarity, priority and validity of laws.
Document-based law searching returns articles
with respect to a piece of case description. It reads
and analyzes case description and returns related
articles ordered by relevance to the description. In
practice, it can act as a fast candidate article pool
for a particular case in court trials. The difference
between this module and article inference lies in
the inputs where document-based searching deals
with massive formal text written by law experts
while article inference tackles arbitrary short oral
questions coming from daily life.

3.3 Case Analysis Block

Case description is an essential component of a
judicial document. It states the facts involved in
a case, including sequence of events, people pre-
senting during the event, consequences, etc. This
block reads and comprehends case descriptions

Functional Modules Accuracy%
Civil+criminal article prediction 78.0
Civil/criminal classification 95.5
Criminal accusation prediction 98.2
Civil cause prediction 84.3

Table 3: The results of analysis modules.

and reports the analysis results in different formats
including statistical graphs of sentences, similar
cases, relevant statutes and recommended lawyers.

Civil/Criminal Classification is a preliminary
task of case analyzing, since the judging crite-
ria and sentences varies with categories of cases.
Cases are generally divided into two classes, civil
and criminal. A civil case happens between cit-
izens and the penalty usually excludes the term
of imprisonment, while in a criminal case the de-
fendant is prosecuted by public prosecution organ
and would be sent to jail if proven guilty. This is
a binary classification task fulfilled by pre-trained
word vectors and 1-layer convolutional neural net-
work using case description data.

Case Analysis involves civil case analysis and
criminal case analysis. The results of both cat-
egories contains lists of similar cases, relevant
articles and recommended lawyers together with
their professional history. For sentences predic-
tion, civil case analysis outputs the possibilities of
accuser/defendant winning the lawsuit. The pre-
diction section of criminal case is also known as
automatic sentencing that models the sentencing
results given a paragraph of criminal case descrip-
tion. The sentences contain the predicted accusa-
tion, term of imprisonment and the legal grounds,
i.e. the articles of criminal law. We adopt the dis-
connected recurrent neural network described in
Wang (2018) for automatic sentencing task.

4 Experiments and User Study

We conduct experiments on all modules and will
report some important results in this section. User
studies on cumulative page views and average
viewing times are presented in figure 3. For the
consultation block, the testset contains 2000 ques-
tions with varying legal topics. The corresponding
replies are automatically obtained by the system.
The retrievals are manually scored between 1 to 5,
where 1 represents irrelevant answers and 5 stands
for the best matches. The system achieves an av-
erage precision of 80% for the top 1 retrievals.

We compare the results of article inference task

100

Figure 4: Use case 1: use case of consultation block.

regarding different models and list them in Ta-
ble 2. Statistics show that the vanilla RNN is able
to properly predict the article from the given can-
didates, but is much inferior to the other compli-
cated models. Yet, it is not the final result for
the task in practice due to the inconsistencies be-
tween the distributions of experimental and real
data. The manually created dataset has one correct
article out of 5 candidates on average. In reality,
surprisingly, it almost equals to pick up the only
one correct answer out of 600, making it an ex-
tremely challenging task. We evaluate the results
of 200 arbitrary questions by precision@n in two
ways, automatic and manual, and report in Table
1. Regardless of disappointing automatically eval-
uated results, manual evaluation reveals the practi-
cability of the models and proves that they are able
to figure out most of the answers.

The testset for the analysis block is automati-
cally extracted from the original court documents,
where categories are indicated in the titles and in-
formation like the relevant articles and sentences
are always listed at the end. We evaluate the per-
formance of analysis block with respects to the
following tasks: (i) civil and criminal article pre-
diction; (ii) binary classification of civil and crim-
inal cases; (iii) accusation prediction for crimi-
nal cases and (iv) cause prediction for civil cases,
which is the counterpart of accusation as to crimi-
nal cases. The results are listed in Table 3.

5 Use Cases

In this section, we will present cases illustrating
the three blocks, consultation, law searching and

Figure 5: Use case 2: use case of law searching block.

case analysis. Also, we encourage readers to try
IFlyLegal via scanning the QR code in figure 7.

Figure 4 is a use case of the consultation block.
The inputs can be arbitrary questions as long as
they contain legal issues, such as “How to divide
common property after divorce?” and “Is temporal
worker a legal labor relation?”. A proper answer
will be delivered along with a set of applicable
statutes. Figure 5 displays part of the law search-
ing results for the tested input “Criminal Law Arti-
cle 200”. It will be recognized as “Criminal Law”
plus a further restriction on the number of article,
“Article 200”. Figure 6 demonstrates the results
of case analysis block with a screen-shot of the
predicted sentences. The other information can be
found in the screencast.

6 Conclusion and Future works

We present a system called iFlyLegal for auto-
mated legal QA, multi-way law searching, and
multi-perspective legal document analysis. The
system is built upon a combination of classical
text features and deep learning techniques in NLP.
We conduct sufficient experiments and report im-
portant results in this paper. To help understand
our system, we illustrate several use cases with
snapshots and necessary literal explanation. These
cases also prove that our system is capable to ful-
fill user demands.

Taking into consideration the need for ease
of access, the system is demonstrated in form
of WeChat Mini Program, which is compact,
portable and freely available. Yet we will develop
a web-based version for those who prefer access-

101

(a) Input Interface. (b) Predicted Sentences.

Figure 6: Use Case 3: use case of analysis block. (a)
is the case description. (b) present the predicted sen-
tences.

Figure 7: Mini program QR code of IFlyLegal (scan-
ning via WeChat). We also provide a screencast for
readers who do not have a Wechat.

ing via computers. During maintaining, the mod-
els and topology behind would be improved along
with our researches. Although neural network is
regarded as “black box”, we are currently work-
ing on the explainability of our models and try-
ing to present users with evidences to the model-
generated outputs so as to be convincing. IFlyLe-
gal is an integrated and multi-functional system,
whose build-in modules are complex and can be
separated and adapted for different tasks such as
text categorization and natural language inference.
We intend to turn iFlyLegal into an NLP plat-
form for legal AI research to cater for the boosting
needs of NLP techniques in legal industrial and ex-
plore other valuable research topics of legal NLP.
In the future, we will investigate into adapting the
NLP research platform to other languages.

Acknowledgments

The authors would like to thank all the review-
ers for their insight reviews. This paper is
funded by National Key R&D Program of China

(No.2018YFC0807701).

References
Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. Ltp:

A chinese language technology platform. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics: Demonstrations, pages
13–16. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Phong-Khac Do, Huy-Tien Nguyen, Chien-Xuan Tran,
Minh-Tien Nguyen, and Minh-Le Nguyen. 2017.
Legal question answering using ranking svm and
deep convolutional neural network. arXiv preprint
arXiv:1703.05320.

Nga Tran Anh Hang. 2017. Applying deep neural net-
work to retrieve relevant civil law articles. In Pro-
ceedings of the Student Research Workshop associ-
ated with RANLP, pages 46–48.

Zikun Hu, Xiang Li, Cunchao Tu, Zhiyuan Liu, and
Maosong Sun. 2018. Few-shot charge prediction
with discriminative legal attributes. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 487–498.

Paulo Quaresma and Irene Pimenta Rodrigues. 2005.
A question answer system for legal information re-
trieval. In JURIX, pages 91–100.

Octavia-Maria Sulea, Marcos Zampieri, Shervin Mal-
masi, Mihaela Vela, Liviu P Dinu, and Josef van
Genabith. 2017. Exploring the use of text clas-
sification in the legal domain. arXiv preprint
arXiv:1710.09306.

Baoxin Wang. 2018. Disconnected recurrent neural
networks for text categorization. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 2311–2320.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814.

Yukun Yan, Daqi Zheng, Zhengdong Lu, and Sen
Song. 2018. Zooming network. arXiv preprint
arXiv:1810.02114.

Xiaoxiao Yin, Daqi Zheng, Zhengdong Lu, and
Ruifang Liu. 2018. Neural entity reasoner
for global consistency in ner. arXiv preprint
arXiv:1810.00347.

Ni Zhang, Yi-Fei Pu, Sui-Quan Yang, Ji-Liu Zhou, and
Jin-Kang Gao. 2017. An ontological chinese legal
consultation system. IEEE Access, 5:18250–18261.

102

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 103–108
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

INMT: Interactive Neural Machine Translation Prediction

Sebastin Santy1 Sandipan Dandapat2 Monojit Choudhury1 Kalika Bali1
1 Microsoft Research, Bangalore, India
2 Microsoft R&D, Hyderabad, India

{t-sesan, sadandap, monojitc, kalikab}@microsoft.com

Abstract

In this paper, we demonstrate an Interactive
Machine Translation interface, that assists hu-
man translators with on-the-fly hints and sug-
gestions. This makes the end-to-end transla-
tion process faster, more efficient, and cre-
ates high-quality translations. We augment the
OpenNMT backend with a mechanism to ac-
cept the user input and generate conditioned
translations.12

1 Introduction

Machine Translation (MT) has witnessed several
leaps of advancements and is now capable of pro-
ducing human level translations (Läubli et al.,
2018). However, a single source sentence can
be translated into multiple forms, often varying in
expression (Halliday, 1978), formality (Heylighen
and Dewaele, 1999) or context. Several real-world
documents such as books and news require such
translations. Even with performance of state-of-
the-art MT systems being at par with humans, cur-
rent MT systems are useful only for information
assimilation (Hutchins, 2009). Wider dissemina-
tion of translated content requires substantial man-
ual post processing, and saves only a little time
compared to a fully manual human translation.
Combining the pros of both human and machine
translation can potentially lead to streamlining of
the translation process by assisting humans with
producing high quality translations quicker.
This Machine Assisted Translation can be ei-

ther done through Post Editing (PE) or Interactive
Translation Prediction (ITP). In PE tools such as
MateCat (Federico et al., 2014), the translator is
provided with a complete translation and is asked
to edit tokens which they feel are not appropri-
ate. There are no suggestions provided by the ma-

1Screencast: https://youtu.be/DHan93R8d84
2Demo: inmt.southeastasia.cloudapp.azure.com/simple

chine beyond the initial gist. Interactive Trans-
lation started off with TransType (Langlais et al.,
2000), which uses a rule-based translation system.
With the introduction of StatisticalMachine Trans-
lation, it became easier to provide richer phrase
based suggestions, which led to creation of tools
such as CASMACAT (Alabau et al., 2014)3 and
LILT4. Green et al. (2014) extensively researched
the user experience of such systems and compared
between manual and assisted translation using var-
ious metrics. The current method of constrained
decoding, in particular coupled with the advent of
Neural Machine Translation (NMT), was put for-
ward by Wuebker et al. (2016) and Knowles and
Koehn (2016). All these studies have shown that
ITP provides improved translation quality com-
pared to PE, and also suggest that human trans-
lators prefer ITP over PE. However, due to heavy
resource (parallel data) requirements, the available
ITP systems work only for a handful of resource-
rich languages such as Spanish, Chinese, French
and German.
In this paper, we present a proof-of-concept in-

teractive translation system between English and
five Indic languages (Bengali, Hindi, Malayalam,
Tamil and Telugu) using state-of-the-art NMT
models. As Indian languages are resource poor,
we could use only 100-1500 thousand parallel sen-
tences for training. There are prominent syntactic
differences between Indic languages and English
such as the basic word order, which requires sub-
stantial replanning of the translation suggestions
in real time. These characteristics make ITP a
challenging problem for English to/from Indic lan-
guages. To the best of our knowledge, this is the
first ITP for Indic languages, and the only publicly
available Neural ITP system.

3http://www.casmacat.eu/
4http://lilt.com

103

2 Advantages of ITP

Interactive translation is beneficial to human
translators and translation seekers alike:

• Faster turnaround of document translations
The gisting and suggestion (refer Interface
Overview 5) helps the translator breeze through
the translation task with minimal typing. Our
preliminary study suggests that regular users use
relatively very less number of keystrokes in ITP
as compared to both manual typing and the PE
process.

• High quality translation due to human-
machine interaction
Language is inherently divergent and human
translators cannot quickly enumerate all accept-
able variants of a translation. On the other hand,
in general, machine translation has not yet reached
human quality though it can provide a number
of variants. Combining the strengths of both of
human and machine through interaction helps in
getting higher quality translations compared to the
individual processes. Another interesting usecase
of interactive MT is in low resource settings
where NMT is not able to churn out the most
fluent translation. However, along with human
help, this can lead to producing better translations,
as compared to other mixed-initiative processes
like post-editing often used in computer assisted
translation tools.

• Opens translation tasks to non-expert trans-
lators
Expert human translators are often scarce for a
large number of language pairs and are expensive
to hire. In some countries (such as in the Indian
subcontinent) it is easy to find multilingual
speakers with native and near-native proficiency
in multiple languages, and interactive MT systems
enable non-expert translators to perform transla-
tion tasks through gisting and suggestions. The
requirements of less proficiency also makes such
a system more amenable to a non-expert large
crowdsourced setting where the objective can be
to gather more data for low resource languages.

3 Methods

3.1 Neural Machine Translation
Neural MT paradigms, starting from
Seq2Seq (Bahdanau et al., 2014) to the current
state-of-the-art Transformer-based architec-

tures (Vaswani et al., 2017), use an encoder-
decoder combination along with attention which
helps in correct alignment of the tokens.
At time step t, the conditional probability of

generating output token yt given the full in-
put sequence x and the previously output tokens
y1, ..., yt−1 is:

p(yt|y1, ..., yt−1, x) = g(yt−1, st, ct) (1)

where g is a non-linearity function and st and ct are
the hidden state and context vector, respectively.
The vector ct is a weighted average of all encoder
hidden states with weights generated by the atten-
tion mechanism. We use sparsemax (Martins and
Astudillo, 2016) attention instead of the usual soft-
max attention as it helps in focusing on specific
source tokens similar to hard attention but still be-
ing differentiable. This is done in order to help
with word coverage visualization.

3.2 Interactive Neural Machine Translation

In INMT, instead of conditioning the prediction
of each token on the previous model predictions
{y1, ..., yt−1} (as is done above), we condition
based on the partial input from the human transla-
tor {y′1, ..., y′t−1}. This results in a new conditional
probability equation:

p(yt|y′1, ..., y′t−1, x) = g(y′t−1, st, ct) (2)

For producing multiple suggestions based on the
partial input, we rely on beam search decoding
which features in all current NMT architectures.
It selects the most probable full translation for a
given input sentence. If and when the translator
diverges from this full translation, a new beam
search is conducted from the partial input prefix
till end of sentence is encountered. A full beam
search (till end of sentence) is done only for gist-
ing. In case of suggestion, we do beam search of
maximum length of 2. Beam search has been criti-
cized for its lack of diversity (Gimpel et al., 2013),
which is why, showing full sentence suggestions
from beam search will present the translator with
very similar suggestions. Beam search with length
of 2 will produce bigrams with reasonable diver-
sity.

3.3 Character-Level Search

We use a word level sequence modelling for NMT
in this task, which does not allow partial words

104

Figure 1: Example sentence being translated. (a) Hindi to English and (b) English to Hindi.

to be input inherently. We introduce two differ-
ent techniques to help with character level sugges-
tions:

• Start with Partial Word Prefix
During beam search, at each timestep each word
in the vocabulary is assigned a score for k times,
where k is the beam width. We mask the vocabu-
lary set for words which only star with the partial
word prefix input by the translator. This helps in
getting top-k words which start with the intended
prefix.

• Closest to Partial Word Prefix
We also devise a edit distance-based (Yujian and
Bo, 2007) algorithm to rerank the beams which
not only helps in suggesting sentences with partial
word inputs but also helps in cases where the trans-
lator makes spelling mistakes for complex words.
The latter algorithm already includes tokens which
are limited by the former, but the former is faster
due to lesser search complexity. We provide an
option for the translator to select either one.

4 System Overview

We use OpenNMT (Klein et al., 2017), an open
source neural machine translation toolkit to build
the MT system.5 We write a new interactive trans-
lation mechanism to accept the user input and do
constrained decoding, which is plugged on top of
this toolkit. This helps in keeping up with the

5http://opennmt.net/

state-of-the-art models and other updates released
through the toolkit and still keeping the interac-
tion functional. The primary advantage of using
OpenNMT as our translation backend is that it is
highly efficient, modular, extensible and well doc-
umented. In order to add new models (e.g. ex-
tending to new languages etc.) into this system,
the models have to be trained based on OpenNMT
instructions. If the target language uses a non-
Latin script and users wish to use an Latin key-
board, the developer has to add an API to help
with transliteration. In our case, we use the openly
available Quillpad Indic Transliteration service for
Indic languages.6 There is also a default sup-
port for ISO romanizations (like ITRANS for Indic
Languages) which can help with transliterations,
though it might not be particularly convenient for
non-Latin.
We use the Django framework (Python) for

server purposes. The system makes use of the Py-
Torch (Paszke et al., 2017) version of OpenNMT
for its ease of use. The interface, which is de-
scribed below is made with JQuery (JavaScript)
and communicates with the server through sock-
ets - for interactive typing as they are faster and
AJAX requests for all other calls.

5 Interface Overview

The interface is designed similar to MateCat
(Federico et al., 2014) which is a open-source

6http://www.quillpad.in

105

Word Coverage and Translation Gisting Suggestions Keystrokes

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
Similarly , knowledge for mental health is necessary .

Similarly ,

↓ ↓ Enter ←↩

In the
The knowledge
Thus ,
So the

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge of knowledge is essential for mental health same way Tab Tab Tab Tab

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge of knowledge is essential for mental health

of knowledge
iis essential

is necessary
for mental

उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge is essential for mental health

is essential for
Enter ←↩is necessary for

is required to
उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक है
In the same way , knowledge is essential for mental health Page ↓

Table 1: Translation workflow when translating from “उसी पर्कार मानÙसक स्वास्थ्य के Ùलए ज्ञान कĢ पर्ािţ आवश्यक ह”ै
to “In the same way , knowledge is essential for mental health”. The bold black text shows the current state of
user input, the gray text shows gisting and suggestions. 10 keystrokes are required when using interactive typing,
whereas for manual typing 60 keystrokes will be required (Refer Keystroke Reduction 6.2)

freely available web-based post-editing transla-
tion software. In our interface, the user is able
to upload documents in the format they choose,
or just input free-flowing text. The user then
has to select the source and target language. The
next page will show tokenized sentences from
the input corpus on the left with a corresponding
right column where the user is expected to add
the translation. Figure 1 shows how the interface
looks. For each translation we use 2 different
techniques to assist in the translation flow:

(i) Translation gisting
Gisting the user with a full sentence translation
will prime the translator with a quick translation
with very less cognitive load. Users have much
less cognitive load when it comes to spotting
errors in the gisting, than trying to mentally
structure the translations. This accelerates the
translator’s initial time taken.

(ii) Translation suggestion
Gisting is not expected to always be what the
translator ideally wants. This would mean that the
translator needs to change the default gist which
the translation engine provides. Based on the
context of the previous sentence, the translation
engine also sends a maximum of 5 suggestions
from which the user can choose to select to move
forward with the translation. If the user can
find nothing from either the gist or suggestion,
the translator can choose to type. The user still
does not need to type the complete word, the

suggestions are assigned a score based on the
edit-distance between the partial input and the
tokens in the decoding lattice. The suggestions
are then re-ranked taking into account both the
edit-distance score along with the beam score.

Furthermore, we provide mechanisms which
allow increased throughput of translations as
below:

(iii) Word Coverage Visualization
The standard NMT architectures use attention
to correctly align the words from source to
target. We use sparsemax attention rather than
softmax, as it allows us to attend to a specific
word in context while translating. This helps in
an appropriate visualization of word coverage
which the translator can use to their benefit to
validate whether they have correctly translated the
sentence (cf. Table 1).

(iv) Transliteration
Languages, except the European ones generally
have a non-Latin script. Translators especially
non-expert ones usually use English keyboards
to type. Usually they are assisted with some
browser plugin like Google input tools which
helps them in transliterating whatever they type
in English to the target language. Here they
use English characters as phones rather than as
actual English words. However, such plugins
deteriorates the experience when it comes to such

106

an interactive interface, where each character is
used for translation and such post-replacement of
English to target language cannot work properly.
For experimentation, we use an openly available
transliterationAPI (Quillpad) for Indic Languages.

Throughmultiple design iterations and feedback
from our pre-pilot study, it was observed that cer-
tain keyboard commands are naturally helpful for
the translator to breeze through translations. Op-
tions available are:

• Tab : To get the next word from the selection

• Enter ←↩ : To get all the words from the selec-
tion.

• ↑ ↓ : To alter the selection between multiple
suggestions.

• Page ↑ Page ↓ : To traverse from one sentence
to another.

• End : To end the translation process and
download the translated document.

The system is designed in such a way that trans-
lators never need to take their hands off from the
keyboard. This helps in faster typing and selection
of suggestions.

6 Experiments

We use parallel corpus from OPUS (Tiedemann,
2012) to build our NMTmodel for 5 different Indic
Languages and English (en). These 5 Indic Lan-
guages include Bengali (bn), Hindi (hi), Malay-
alam (ml), Tamil (ta) and Telugu (te). The training
data from OPUS contain 100-1500 thousand par-
allel sentences each for the mentioned Indic lan-
guages. All our models have been tested on the
Indic Language Dataset (Post et al., 2012)7 which
contains around 1000 parallel sentences with each
sentence having 4 English references. This helps
us measure multi-reference BLEU score which is
often useful for relatively free word order lan-
guages.
We take inspiration from Aharoni et al. (2019)

to build a multilingual many-to-one and one-to-
many indic neural MT system based on the state
of the art transformer architecture (Vaswani et al.,

7The widely usedWMT testset is only available for Hindi.
Thus, to make the testset uniform across language we do not
use WMT testset for our experiments.

2017). We use the recommended set of parameters
for transformers from Vaswani et al. (2017) to get
comparable results. We conduct multiple simula-
tion experiments to show the efficacy of our sys-
tem.

6.1 BLEU Score Analysis
BLEU (Papineni et al., 2002) scores are the current
standard to evaluate MT performance. We mea-
sure the BLEU score of the generated gist after
a certain fraction - x% of words of the intended
translation has been provided. Table 2 shows the
average BLEU score for each language pair at dif-
ferent values of x. As we can see, after 40% of the
sentence has been provided by the user, rest of the
gist is almost always perfectly correct.

Data
Size

0% 10% 20% 40%

bn-en 1.1M 25.31 27.54 35.68 54.03
hi-en 1.5M 40.64 42.06 47.90 62.18
ml-en 897K 19.76 21.95 29.84 49.88
ta-en 428K 18.71 20.90 27.05 44.55
te-en 104K 11.92 14.57 21.17 41.98

Table 2: Multi-BLEU Score with x% of partial input

The difference in performance for different lan-
guages is presumably because of the amount of re-
sources available for each of them.

6.2 Keystroke Reduction
Keystroke Reduction algorithmically compares
the minimum number of keystrokes required when
typing interactively versus the same when man-
ually typing. Interactive typing accounts for the
keystrokes made when navigating through like ↑ ,
↓ , Tab , Enter ←↩ each of which is one keystroke,
whereas for manual typing, number of keystrokes
is determined by the number of characters in the
sentence. This allows us to get an approximate
idea of howmany keystrokes are being savedwhile
using interactive typing. We observe a reduction
of around 30% keystrokes for all the above men-
tioned languages.

7 Conclusion and Future Work

The system currently provides an interface for in-
teractive machine translation with a latency of less
than 0.5 seconds. However, a real-time interactive
application should focus on keeping latency to the

107

minimum. Network calls are the primary latency
bottleneck for web-based applications. We are cur-
rently working on adding support for front-end
deep learning frameworks such as TensorflowJS to
do heavy lifting for network intensive components
like dropdown suggestions on client side.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
arXiv preprint arXiv:1903.00089.

Vicent Alabau et al. 2014. Casmacat: A computer-
assisted translation workbench. In Proceedings of
the Demonstrations at the 14th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 25–28.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Marcello Federico et al. 2014. The matecat tool.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 129–132.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of
diversity in machine translation. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1100–1111.

Spence Green, Jason Chuang, Jeffrey Heer, and
Christopher D Manning. 2014. Predictive transla-
tion memory: A mixed-initiative system for human
language translation. In Proceedings of the 27th
annual ACM symposium on User interface software
and technology, pages 177–187. ACM.

Michael Alexander Kirkwood Halliday. 1978. Lan-
guage as social semiotic: The social interpretation
of language and meaning. Hodder Arnold.

Francis Heylighen and Jean-Marc Dewaele. 1999. For-
mality of language: definition, measurement and
behavioral determinants. Interner Bericht, Center
“Leo Apostel”, Vrije Universiteit Brüssel.

John Hutchins. 2009. Multiple uses of machine trans-
lation and computerised translation tools. Machine
Translation, pages 13–20.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction. In Proceedings
of the Association for Machine Translation in the
Americas, pages 107–120.

Philippe Langlais, George Foster, and Guy Lapalme.
2000. Transtype: a computer-aided translation typ-
ing system. In ANLP-NAACL 2000 Workshop: Em-
bedded Machine Translation Systems.

Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. arXiv preprint
arXiv:1808.07048.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning, pages 1614–1623.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Adam Paszke et al. 2017. Automatic differentiation in
pytorch. In NIPS-W.

Matt Post, Chris Callison-Burch, and Miles Osborne.
2012. Constructing parallel corpora for six indian
languages via crowdsourcing. In Proceedings of the
Seventh Workshop on Statistical Machine Transla-
tion, pages 401–409. Association for Computational
Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Lrec, volume 2012, pages 2214–
2218.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Joern Wuebker, Spence Green, John DeNero, Sasa
Hasan, and Minh-Thang Luong. 2016. Models and
inference for prefix-constrainedmachine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 66–75.

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. IEEE transactions on pattern anal-
ysis and machine intelligence, 29(6):1091–1095.

108

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 109–114
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Joey NMT: A Minimalist NMT Toolkit for Novices

Julia Kreutzer
Computational Linguistics

Heidelberg University
kreutzer@cl.uni-heidelberg.de

Joost Bastings
ILLC

University of Amsterdam
bastings@uva.nl

Stefan Riezler
Computational Linguistics & IWR

Heidelberg University
riezler@cl.uni-heidelberg.de

Abstract
We present Joey NMT, a minimalist neural
machine translation toolkit based on PyTorch
that is specifically designed for novices. Joey
NMT provides many popular NMT features in
a small and simple code base, so that novices
can easily and quickly learn to use it and adapt
it to their needs. Despite its focus on sim-
plicity, Joey NMT supports classic architec-
tures (RNNs, transformers), fast beam search,
weight tying, and more, and achieves perfor-
mance comparable to more complex toolk-
its on standard benchmarks. We evaluate the
accessibility of our toolkit in a user study
where novices with general knowledge about
Pytorch and NMT and experts work through
a self-contained Joey NMT tutorial, show-
ing that novices perform almost as well as
experts in a subsequent code quiz. Joey
NMT is available at https://github.
com/joeynmt/joeynmt.

1 Introduction

Since the first successes of neural machine trans-
lation (NMT), various research groups and indus-
try labs have developed open source toolkits spe-
cialized for NMT, based on new open source deep
learning platforms. While toolkits like OpenNMT
(Klein et al., 2018), XNMT (Neubig et al., 2018)
and Neural Monkey (Helcl and Libovický, 2017)
aim at readability and extensibility of their code-
base, their target group are researchers with a
solid background in machine translation and deep
learning, and with experience in navigating, un-
derstanding and handling large code bases. How-
ever, none of the existing NMT tools has been de-
signed primarily for readability or accessibility for
novices, nor has anyone studied quality and ac-
cessibility of such code empirically. On the other
hand, it is an important challenge for novices to
understand how NMT is implemented, what fea-
tures each toolkit implements exactly, and which

toolkit to choose in order to code their own project
as fast and simple as possible.

We present an NMT toolkit especially designed
for novices, providing clean, well documented,
and minimalistic code, that is yet of comparable
quality to more complex codebases on standard
benchmarks. Our approach is to identify the core
features of NMT that have not changed over the
last years, and to invest in documentation, simplic-
ity and quality of the code. These core features
include standard network architectures (RNN,
transformer, different attention mechanisms, input
feeding, configurable encoder/decoder bridge),
standard learning techniques (dropout, learning
rate scheduling, weight tying, early stopping cri-
teria), and visualization/monitoring tools.

We evaluate our codebase in several ways:
Firstly, we show that Joey NMT’s comment-to-
code ratio is almost twice as high as other toolk-
its which are roughly 9-10 times larger. Secondly,
we present an evaluation on standard benchmarks
(WMT17, IWSLT) where we show that the core
architectures implemented in Joey NMT achieve
comparable performance to more complex state-
of-the-art toolkits. Lastly, we conduct a user
study where we test the code understanding of
novices, i.e. students with basic knowledge
about NMT and PyTorch, against expert coders.
While novices, after having worked through a self-
contained Joey NMT tutorial, needed more time
to answer each question in an in-depth code quiz,
they achieved only marginally lower scores than
the experts. To our knowledge, this is the first user
study on the accessibility of NMT toolkits.

2 Joey NMT

2.1 NMT Architectures

This section formalizes the Joey NMT imple-
mentation of autoregressive recurrent and fully-

109

attentional models.
In the following, a source sentence of length lx

is represented by a sequence of one-hot encoded
vectors x1,x2, . . . ,xlx for each word. Analo-
gously, a target sequence of length ly is repre-
sented by a sequence of one-hot encoded vectors
y1,y2, . . . ,yly .

2.1.1 RNN
Joey NMT implements the RNN encoder-decoder
variant from Luong et al. (2015).

Encoder. The encoder RNN transforms the in-
put sequence x1, . . . ,xlx into a sequence of vec-
tors h1, . . . ,hlx with the help of the embeddings
matrix Esrc and a recurrent computation of states

hi = RNN(Esrc xi,hi−1); h0 = 0.

The RNN consists of either GRU or a LSTM units.
For a bidirectional RNN, hidden states from both
directions are are concatenated to form hi. The
initial encoder hidden state h0 is a vector of ze-
ros. Multiple layers can be stacked by using each
resulting output sequence h1, . . . ,hlx as the input
to the next RNN layer.

Decoder. The decoder uses input feeding (Lu-
ong et al., 2015) where an attentional vector s̃ is
concatenated with the representation of the previ-
ous word as input to the RNN. Decoder states are
computed as follows:

st = RNN([Etrg yt−1; s̃t−1], st−1)

s0 =

tanh(Wbridge hlx + bbridge) if bridge
hlx if last
0 otherwise

s̃t = tanh(Watt[st; ct] + batt)

The initial decoder state is configurable to be ei-
ther a non-linear transformation of the last encoder
state (“bridge”), or identical to the last encoder
state (“last”), or a vector of zeros.

Attention. The context vector ct is computed
with an attention mechanism scoring the previous
decoder state st−1 and each encoder state hi:

ct =
∑

i

ati · hi

ati =
exp(score(st−1,hi))∑
k exp(score(st−1,hk))

where the scoring function is a multi-layer percep-
tron (Bahdanau et al., 2015) or a bilinear transfor-
mation (Luong et al., 2015).

Output. The output layer produces a vector
ot = Wout s̃t, which contains a score for each to-
ken in the target vocabulary. Through a softmax
transformation, these scores can be interpreted as
a probability distribution over the target vocabu-
lary V that defines an index over target tokens vj .

p(yt = vj | x, y<t) =
exp(ot[j])∑|V|
k=1 exp(ot[k])

2.1.2 Transformer
Joey NMT implements the Transformer from
Vaswani et al. (2017), with code based on The An-
notated Transformer blog (Rush, 2018).

Encoder. Given an input sequence x1, . . . ,xlx ,
we look up the word embedding for each input
word using Esrcxi, add a position encoding to it,
and stack the resulting sequence of word embed-
dings to form matrix X ∈ Rlx×d, where lx is the
sentence length and d the dimensionality of the
embeddings.

We define the following learnable parameters:1

A ∈ Rd×da B ∈ Rd×da C ∈ Rd×do

where da is the dimensionality of the attention (in-
ner product) space and do the output dimensional-
ity. Transforming the input matrix with these ma-
trices into new word representations H

H = softmax
(
XAB>X>

)
︸ ︷︷ ︸

self-attention

XC

which have been updated by attending to all other
source words. Joey NMT implements multi-
headed attention, where this transformation is
computed k times, one time for each head with
different parameters A,B,C.

After computing all k Hs in parallel, we con-
catenate them and apply layer normalization and a
final feed-forward layer:

H = [H(1); . . . ;H(k)]

H ′ = layer-norm(H) +X

H (enc) = feed-forward(H ′) +H ′

We set do = d/k, so that H ∈ Rlx×d. Multiple of
these layers can be stacked by setting X = H (enc)

and repeating the computation.

1Exposition adapted from Michael Collins https://
youtu.be/jfwqRMdTmLo

110

Decoder. The Transformer decoder operates in
a similar way as the encoder, but takes the stacked
target embeddings Y∈Rly×d as input:

H = softmax
(
YAB>Y >

)
︸ ︷︷ ︸

masked self-attention

YC

For each target position attention to future in-
put words is inhibited by setting those attention
scores to −inf before the softmax. After obtain-
ing H ′ = H + Y , and before the feed-forward
layer, we compute multi-headed attention again,
but now between intermediate decoder representa-
tions H ′ and final encoder representations H (enc):

Z = softmax
(
H ′AB>H (enc)>)

︸ ︷︷ ︸
src-trg attention

H (enc)C

H (dec) = feed-forward(layer-norm(H ′ + Z))

We predict target words with H (dec)Wout.

2.2 Features
In the spirit of minimalism, we follow the 80/20
principle (Pareto, 1896) and aim to achieve 80%
of the translation quality with 20% of a common
toolkit’s code size. For this purpose we identi-
fied the most common features (the bare neces-
sities) in recent works and implementations.2 It
includes standard architectures (see §2.1), label
smoothing, dropout in multiple places, various at-
tention mechanisms, input feeding, configurable
encoder/decoder bridge, learning rate scheduling,
weight tying, early stopping criteria, beam search
decoding, an interactive translation mode, visual-
ization/monitoring of learning progress and atten-
tion, checkpoint averaging, and more.

2.3 Documentation
The code itself is documented with doc-strings and
in-line comments (especially for tensor shapes),
and modules are tested with unit tests. The doc-
umentation website3 contains installation instruc-
tions, a walk-through tutorial for training, tun-
ing and testing an NMT model on a toy task4,
an overview of code modules, and a detailed API
documentation. In addition, we provide thorough

2We refer the reader to the additional technical description
in https://arxiv.org/abs/1907.12484: Table 6
in Appendix A.1 compares Joey NMT’s features with several
popular NMT toolkits and shows that Joey NMT covers all
features that those toolkits have in common.

3https://joeynmt.readthedocs.io
4Demo video: https://youtu.be/PzWRWSIwSYc

Counts OpenNMT-py XNMT Joey NMT

Files 94 82 20
Code 10,287 11,628 2,250
Comments 3,372 4,039 1,393

Comment/Code Ratio 0.33 0.35 0.62

Table 1: Python code statistics for OpenNMT-py (com-
mit hash 624a0b3a), XNMT (a87e7b94) and Joey
NMT (e55b615).

answers to frequently asked questions regarding
usage, configuration, debugging, implementation
details and code extensions, and recommend re-
sources, such as data collections, PyTorch tutorials
and NMT background material.

2.4 Code Complexity

In order to facilitate fast code comprehension and
navigation (Wiedenbeck et al., 1999), Joey NMT
objects have at most one level of inheritance. Ta-
ble 1 compares Joey NMT with OpenNMT-py
and XNMT (selected for their extensibility and
thoroughness of documentation) in terms of code
statistics, i.e. lines of Python code, lines of com-
ments and number of files.5 OpenNMT-py and
XNMT have roughly 9-10x more lines of code,
spread across 4-5x more files than Joey NMT .
These toolkits cover more than the essential fea-
tures for NMT (see §2.2), in particular for other
generation or classification tasks like image cap-
tioning and language modeling. However, Joey
NMT’s comment-to-code ratio is almost twice as
high, which we hope will give code readers better
guidance in understanding and extending the code.

2.5 Benchmarks

Our goal is to achieve a performance that is com-
parable to other NMT toolkits, so that novices
can start off with reliable benchmarks that are
trusted by the community. This will allow them
to build on Joey NMT for their research, should
they want to do so. We expect novices to have lim-
ited resources available for training, i.e., not more
than one GPU for a week, and therefore we fo-
cus on benchmarks that are within this scope. Pre-
trained models, data preparation scripts and con-
figuration files for the following benchmarks will
be made available on https://github.com/
joeynmt/joeynmt.

5Using https://github.com/AlDanial/cloc

111

System Groundhog RNN Best RNN Transformer

en-de lv-en layers en-de lv-en en-de lv-en

NeuralMonkey 13.7 10.5 1/1 13.7 10.5 – –
OpenNMT-Py 18.7 10.0 4/4 22.0 13.6 – –
Nematus 23.9 14.3 8/8 23.8 14.7 – –
Sockeye 23.2 14.4 4/4 25.6 15.9 27.5 18.1
Marian 23.5 14.4 4/4 25.9 16.2 27.4 17.6
Tensor2Tensor – – – – – 26.3 17.7

Joey NMT 23.5 14.6 4/4 26.0 15.8 27.4 18.0

Table 2: Results on WMT17 newstest2017. Comparative scores are from Hieber et al. (2018).

WMT17. We use the settings of Hieber et al.
(2018), using the exact same data, pre-processing,
and evaluation using WMT17-compatible Sacre-
BLEU scores (Post, 2018).6 We consider the set-
ting where toolkits are used out-of-the-box to train
a Groundhog-like model (1-layer LSTMs, MLP
attention), the ‘best found’ setting where Hieber
et al. train each model using the best settings that
they could find, and the Transformer base setting.7

Table 2 shows that Joey NMT performs very well
compared against other shallow, deep and Trans-
former models, despite its simple code base.8

IWSLT14. This is a popular benchmark because
of its relatively small size and therefore fast train-
ing time. We use the data, pre-processing, and
word-based vocabulary of Wiseman and Rush
(2016) and evaluate with SacreBLEU.9 Table 3
shows that Joey NMT performs well here, with
both its recurrent and its Transformer model. We
also included BPE results for future reference.

System de-en

Wiseman and Rush (2016) 22.5
Bahdanau et al. (2017) 27.6
Joey NMT (RNN, word) 27.1
Joey NMT (RNN, BPE32k) 27.3
Joey NMT (Transformer, BPE32k) 31.0

Table 3: IWSLT14 test results.

6
BLEU+case.mixed+lang.[en-lv|en-de]+numrefs.1+smooth.exp+

test.wmt17+tok.13a+version.1.3.6
7Note that the scores reported for other models reflect

their state when evaluated in Hieber et al. (2018).
8Blog posts like Rush (2018) and Bastings (2018) also

offer simple code, but they do not perform as well.
9
BLEU+case.lc+numrefs.1+smooth.exp+tok.none+version.1.3.6

3 User Study

The target group for Joey NMT are novices who
will use NMT in a seminar project, a thesis, or an
internship. Common tasks are to re-implement a
paper, extend standard models by a small novel
element, or to apply them to a new task. In or-
der to evaluate how well novices understand Joey
NMT, we conducted a user study comparing the
code comprehension of novices and experts.

3.1 Study Design

Participants. The novice group is formed of
eight undergraduate students with a Computa-
tional Linguistics major that have all passed in-
troductory courses to Python and Machine Learn-
ing, three of them also a course about Neural Net-
works. None of them had practical experience
with training or implementing NMT models nor
PyTorch, but two reported theoretic understanding
of NMT. They attended a 20h crash course intro-
ducing NMT and Pytorch basics.10 Note that we
did not teach Joey NMT explicitly in class, but the
students independently completed the Joey NMT
tutorial.

As a control group (the “experts”), six gradu-
ate students with NMT as topic of their thesis or
research project participated in the study. In con-
trast to the novices, this group of participants has a
solid background in Deep Learning and NMT, had
practical experience with NMT. All of them had
previously worked with NMT in PyTorch.

Conditions. The participation in the study was
voluntary and not graded. Participants were not
allowed to work in groups and had a maximum

10See §?? in the supplemental material of https://
arxiv.org/abs/1907.12484 for details.

112

time of 3h to complete the quiz. They had pre-
viously locally installed Joey NMT11 and could
browse the code with the tools of their choice (IDE
or text editor). They were instructed to explore
the Joey NMT code with the help of the quiz, in-
formed about the purpose of the study, and agreed
to the use of their data in this study. Both groups
of participants had to learn about Joey NMT in a
self-guided manner, using the same tutorial, code,
and documentation. The quiz was executed on the
university’s internal e-learning platform. Partici-
pants could jump between questions, review their
answers before finally submitting all answers and
could take breaks (without stopping the timer).
Answers to the questions were published after all
students had completed the test.

Question design. The questions are not de-
signed to test the participant’s prior knowledge
on the topic, but to guide their exploration of the
code. The questions are either free text, multiple
choice or binary choice. There are three blocks of
questions:12

1. Usage of Joey NMT : nine questions on how
to interpret logs, check whether models were
saved, interpret attention matrices, pre-/post-
process, and to validate whether the model is
doing what it is built for.

2. Configuring Joey NMT : four questions that
make the users configure Joey NMT in such
a way that it works for custom situations, e.g.
with custom data, with a constant learning
rate, or creating model of desired size.

3. Joey NMT Code: eighteen questions target-
ing the detailed understanding of the Joey
NMT code: the ability to navigate between
python modules, identify dependencies, and
interpret what individual code lines are do-
ing, hypothesize how specific lines in the
code would have to get changed to change
the behavior (e.g. working with a different
optimizer). The questions in this block were
designed in a way that in order to find the cor-
rect answers, every python module contained
in Joey NMT had to be visited at least once.

11Joey NMT commit hash 0708d596, prior to the Trans-
former implementation.

12https://arxiv.org/abs/1907.12484 con-
tains the full list of questions, complete statistics and details
of the LME analysis.

Every question is awarded one point if answered
correctly. Some questions require manual grading,
most of them have one correct answer. We record
overall completion time and time per question.13

3.2 Analysis
Total duration and score. Experts took on av-
erage 77 min to complete the quiz, novices 118
min, which is significantly slower (one-tailed t-
test, p < 0.05). Experts achieved on average 82%
of the total points, novices 66%. According to the
t-test the difference in total scores between groups
is significant at p < 0.05. An ANOVA reveals
that there is a significant difference in total dura-
tion and scores within the novices group, but not
within the experts group.

Per question analysis. No question was incor-
rectly answered by everyone. Three questions (#6,
#11, #18) were correctly answered by everyone–
they were appeared to be easiest to answer and
did not require deep understanding of the code.
In addition, seven questions (#1, #13, #15, #21,
#22, #28, #29) were correctly answered by all ex-
perts, but not all novices–here their NMT expe-
rience was useful for working with hyperparame-
ters and peculiarities like special tokens. However,
for only one question, regarding the differences
in data processing between training and validation
(#16), the difference between average expert and
novice score was significant (at p < 0.05). Six
questions (#9, #18, #21, #25, #31) show a signifi-
cantly longer average duration for novices than ex-
perts. These questions concerned post-processing,
initialization, batching, end conditions for train-
ing termination and plotting, and required detailed
code inspection.

LME. In order to analyze the dependence of
scores and duration on particular questions and in-
dividual users, we performed a linear mixed ef-
fects (LME) analysis using the R library lme4
(Bates et al., 2015). Participants and questions are
treated as random effects (categorical), the level
of expertise as fixed effect (binary). Duration and
score per question are response variables.14 For
both response variables the variability is higher

13Time measurement is noisy, since full minutes are mea-
sured and students might take breaks at various points in time.

14Modeling expertise with higher granularity instead of the
binary classification into expertise groups (individual vari-
ables for experience with PyTorch, NMT and background in
deep learning) did not have a significant effect on the model,
since the number of participants is relatively low.

113

depending on the question than on the user (6x
higher for score, 2x higher for time). The inter-
cepts of the fixed effects show that novices score
on average 0.14 points less while taking 2.47 min
longer on each question than experts. The impact
of the fixed effect is significant at p < 0.05.

3.3 Findings
First of all, we observe that the design of the ques-
tions was engaging enough for the students be-
cause all participants invested at least 1h to com-
plete the quiz voluntarily. The experts also re-
ported having gained new insights into the code
through the quiz. We found that there are sig-
nificant differences between both groups: Most
prominently, the novices needed more time to an-
swer each question, but still succeeded in answer-
ing the majority of questions correctly. There are
larger variances within the group of novices, be-
cause they had to develop individual strategies to
explore the code and use the available resources
(documentation, code search, IDE), while experts
could in many cases rely on prior knowledge.

4 Conclusion

We presented Joey NMT, a toolkit for sequence-
to-sequence learning designed for NMT novices.
It implements the most common NMT features
and achieves performance comparable to more
complex toolkits, while being minimalist in its de-
sign and code structure. In comparison to other
toolkits, it is smaller in size and but more exten-
sively documented. A user study on code acces-
sibility confirmed that the code is comprehensibly
written and structured. We hope that Joey NMT
will ease the burden for novices to get started with
NMT, and can serve as a basis for teaching.

Acknowledgments

We would like to thank Sariya Karimova, Philipp
Wiesenbach, Michael Staniek and Tsz Kin Lam
for their feedback on the early stages of the code
and for their bug fixes. We also thank the student
and expert participants of the user study.

References
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,

Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Joost Bastings. 2018. The annotated encoder-decoder
with attention.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects mod-
els using lme4. Journal of Statistical Software,
67(1):1–48.

Jindřich Helcl and Jindřich Libovický. 2017. Neural
Monkey: An Open-source Tool for Sequence Learn-
ing. PBML.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2018. The sockeye neural machine translation
toolkit at amta 2018. In AMTA.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent
Nguyen, Jean Senellart, and Alexander Rush. 2018.
Opennmt: Neural machine translation toolkit. In
AMTA.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP.

Graham Neubig, Matthias Sperber, Xinyi Wang,
Matthieu Felix, Austin Matthews, Sarguna Padman-
abhan, Ye Qi, Devendra Sachan, Philip Arthur,
Pierre Godard, John Hewitt, Rachid Riad, and Lim-
ing Wang. 2018. XNMT: The extensible neural ma-
chine translation toolkit. In AMTA.

Vilfredo Pareto. 1896. Cours d’économie politique:
professé á l’Université de Lausanne, volume 1. F.
Rouge.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In WMT.

Alexander Rush. 2018. The annotated transformer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Susan Wiedenbeck, Vennila Ramalingam, Suseela
Sarasamma, and Cynthia L Corritore. 1999. A com-
parison of the comprehension of object-oriented and
procedural programs by novice programmers. Inter-
acting with Computers, 11(3):255–282.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In EMNLP, Austin, Texas.

114

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 115–120
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Journalist-in-the-Loop: Continuous Learning as a Service for Rumour
Analysis

Twin Karmakharm Nikolaos Aletras
Department of Computer Science

University of Sheffield, UK
[t.karmakharm, n.aletras, k.bontcheva]@sheffield.ac.uk

Kalina Bontcheva

Abstract

Automatically identifying rumours in social
media and assessing their veracity is an im-
portant task with downstream applications in
journalism. A significant challenge is how to
keep rumour analysis tools up-to-date as new
information becomes available for particular
rumours that spread in a social network.

This paper presents a novel open-source web-
based rumour analysis tool that can continuous
learn from journalists. The system features a
rumour annotation service that allows journal-
ists to easily provide feedback for a given so-
cial media post through a web-based interface.
The feedback allows the system to improve
an underlying state-of-the-art neural network-
based rumour classification model. The sys-
tem can be easily integrated as a service into
existing tools and platforms used by journal-
ists using a REST API.

1 Introduction

Identifying rumours and assessing their veracity in
social media is an important task with downstream
applications in journalism (Zubiaga et al., 2018a).
Such tools can be used to make journalists more
productive and also have the potential to be valu-
able tools in informing the public about the ve-
racity of rumours especially during political crises
and pre-electoral periods (Tsakalidis et al., 2018).

Individual and collaborative manual approaches
to rumour analysis do not scale due to the large
volume and velocity of user generated content
(Konstantinovskiy et al., 2018). On the other hand,
automatic machine learning-based approaches are
often falling short on accuracy, when presented
with previously unseen rumours (Zubiaga et al.,
2018a).

Current rumour analysis practices also tend to
entail journalists making decisions using a dis-
parate set of tools, such as Google reverse im-

age search, Tweetdeck, or more experimental ma-
chine learning-based rumour or video analysis al-
gorithms. Even the latest research projects in these
areas, e.g. PHEME (Derczynski and Bontcheva,
2014), InVID (Teyssou et al., 2017), Hoaxy (Shao
et al., 2016), envisage the computer algorithms
as intelligence augmentation tools for the journal-
ists, used to scale up their abilities to deal with a
large volume, velocity, and variety of social con-
tent with uncertain veracity.

Even though large amounts of new human in-
sights and evidence accumulate over time, journal-
ists cannot use this to improve their tools since the
machine learning models behind them are not up-
datable. This is a major limitation on the practical
usefulness of these tools, since our latest research
(Lukasik et al., 2015) on rumour stance and verac-
ity classification, for example, demonstrated that
giving the machine learning models as few as just
ten human-labelled examples from a newly emerg-
ing rumour can improve the algorithm accuracy by
at least 10%.

Therefore, not only journalists can benefit from
using machine intelligence to improve their pro-
ductivity, but also the underlying algorithms can
get smarter, if only journalists could feed back the
new evidence in a way that enables the tools to
learn from such new data.

This paper presents a new open source web ser-
vice for rumour analysis1 that can improve over
time by using feedback from journalists. The main
user requirement is for journalists to invest mini-
mal time and effort providing the additional man-
ual feedback which in turn will yield productiv-
ity gains from the more accurate machine learn-
ing models. From a technological perspective, the
assumption being tested is that continuous learn-
ing and human which computation techniques can

1https://tweetveracity.gate.ac.uk

115

be used to underpin an easy to use misinformation
analysis interface for journalists. Due to this being
a prototype project, we focus initially on rumour
analysis and only on Twitter.

To test this hypothesis, we have built a pro-
totype web service that brings together state-of-
the-art machine learning-based algorithms for ru-
mour detection (Aker et al., 2019). Journalists are
able to access the service via a web-based applica-
tion interface from their desktop or mobile devices
and monitor and verify emerging rumours in so-
cial media. The web application uses the machine
learning algorithms, in order to quickly gather and
present journalists with evidence around the narra-
tives being monitored, e.g. how fast is the rumour
spreading and which are the users who are most af-
fected; who are the key proponents; is the rumour
attracting polarised opinions and discussions; how
likely is the rumour to be true. Our main aim is
to support much more complex types of analysis,
than just focusing on the veracity of an individual
piece of information, e.g. has an image or a video
been tampered with.

2 Related Work

In 2016 alone, the Duke Reporters Lab reported
a 50% increase in global fact-checking by me-
dia and independent fact-checking organisations.2

Journalists and news editors currently use largely
manual processes for analysis, investigation, and
verification of social media and other online con-
tent. A limited number of production quality tools
are currently available to support them in the indi-
vidual steps of this process, with much of the tech-
nology still in research and experimental phases.

In more detail, existing projects and tools are
mostly focused on images/video forensics and ver-
ification (e.g. InVID (Teyssou et al., 2017), RE-
VEAL3), crowdsourced verification (e.g. Check-
Desk4, Veri.ly5), fact-checking claims made by
politicians (e.g. Politifact6, FactCheck.org7, Full-
Fact8), citizen journalism (e.g. Citizen Desk),
repositories of checked facts/rumours/websites
(e.g. Emergent (Ferreira and Vlachos, 2016),

2https://reporterslab.org/
global-fact-checking-up-50-percent

3https://revealproject.eu/
4https://meedan.com/en/check/
5https://veri.ly
6https://www.politifact.com/
7https://www.factcheck.org/
8https://fullfact.org/

FactCheck 7 , Decodex9), or pre-trained machine
learning models and tools, which however can-
not be adapted by the journalists to new data
(e.g. PHEME (Derczynski and Bontcheva, 2014),
REVEAL3).

There are also existing tools for visualising and
analysing online rumours which are related to the
user interface of our system:

• RumorLens (Resnick et al., 2014) is a pro-
totype aimed at citizens and journalists, to
help detect rumours early, then classify posts
as spreading or correcting the given rumour,
and also visualising its spread. A human-in-
the-loop learning showed good results on the
tweet retrieval task. This motivated us to pro-
pose extending this approach to other rumour
and misinformation analysis tasks.

• TwitterTrails (Metaxas et al., 2015) is an in-
teractive, web-based tool that visualises the
origin and propagation characteristics of a ru-
mour and its refutation, on Twitter. Another
visualisation-based framework for studying
rumour propagation is RumourFlow (Dang
et al., 2016).

• Hoaxy (Shao et al., 2016) is a recent
open-source tool focused on visualising and
searching over claims and fact checks. Such
sophisticated visualisations are out of scope
of our system, but relevant open-source vi-
sualisation tools, e.g. from Hoaxy, could be
integrated in the future.

• CrossCheck10 was a collaborative rumour
checking project led by First Draft and
Google News Lab, during the French elec-
tions. Its output was a useful dataset of false
or unverified rumours.

• Meedan’s Check4 is an open-source break-
ing news verification platform, which how-
ever does not support continuously updated
machine learning methods.

• ClaimBuster (Hassan et al., 2017) is a tool
which gathered volunteer and expert-based
claim annotations to train machine learning
methods for claim classification (factual vs

9https://www.lemonde.fr/verification/
10https://crosscheck.firstdraftnews.

org/france-en/

116

non-factual). In contrast, we propose a ser-
vice where rumour annotation is carried out
as a side effect of the journalist workflow,
as well as having a wider range of machine
learning methods, for different rumour anal-
ysis tasks.

However, to the best of our knowledge, the
above tools do not consider using feedback pro-
vided by journalists to continuously update their
underlying rumour classification models.

3 Journalist-in-the-Loop System
Overview

The system is an integration of state-of-the-art ma-
chine learning algorithms for detecting emerging
rumours; analysing the online narratives around
them for stance and temporal evolution; and au-
tomatic veracity classification. The starting point
are our open source algorithms from the PHEME
project (Derczynski and Bontcheva, 2014) adapted
to fit the learning paradigm, so the models evolve
as more journalist-labelled data comes in.

The core of the rumour analysis service consists
of three main parts: (1) a rumour classification
system; (2) a rumour annotation service; and (3)
a database which stores the training data required
by the classification system and allows the system
to be updated continuously using the newly anno-
tated rumours. The diagram in Fig. 1 provides an
overview of the system.

4 Rumour Classification System

The rumour classification system contains and
manages the model that is used for classifying new
unseen rumours. The system is built on top of the
PyTorch11 deep learning framework and consists
of three components.

First, the data processing component is used to
transform text into a representation suitable for
the Rumour Classification Model where its in-
puts and outputs are described in Section 4.1. If
there are many annotations provided by the user
for the same piece of rumour, the system chooses
the most frequent one. The processed text is then
transformed into a set of matrices that can be di-
rectly used in the model training process.

Second, the model training component trains
and validates the model using the available anno-
tated rumours dataset prepared by the data pro-

11https://pytorch.org

cessing component. The dataset is randomised
and split in to training (80%) and testing (20%)
sets. In this case, there is no validation dataset as
there is currently no further tuning of hyperparam-
eters, hence more data is dedicated for training the
model instead. Once the training is complete, the
model’s parameters are then saved to be used in
the next stage.

Finally, the prediction component offers an in-
terface for making predictions on new unseen ru-
mours which is used directly by the Rumour An-
notation Service as described in Section 5. The
component uses the stored model’s parameters
from the last stage.

4.1 Rumour Classification Model

The model used in the Rumour Classification Sys-
tem is based on the state-of-the-art rumour verac-
ity classification algorithm of Aker et al. (2019).
It is a recurrent network which classifiers Twitter
rumours into three categories, true, false or unver-
ified. A diagram of the model can be seen in Fig.
2.

The model takes three inputs. First input is the
source tweets, the text is cleaned and tokenized
before being fed into the network. The second in-
put are the recurring terms that occur frequently
and which are associated to each veracity cate-
gory (e.g. the word ‘live’ has strong association
with true rumours). In this case, only the recur-
ring terms that are associated with false rumours
are used as they are shown to give the best result.
The third input is the stance related to the tweet
obtained from the comments associated with the
tweet. The stance are proportions of associated
tweets which either support the original tweet, de-
nies it or are neutral (e.g. further questions or sim-
ply making comments without supporting or deny-
ing).

The tokenized source tweets and recurring
terms are embedded using the pre-trained Google
news word2vec model (Mikolov et al., 2013). The
embedded source tweets and recurring terms are
then fed into an attention layer that uses the re-
curring terms to weight the importance of the
source tweet words. The output of the atten-
tion layer is fed into a Long-Short Term Mem-
ory (LSTM) layer (Hochreiter and Schmidhuber,
1997) that generates a single 10-feature vector.
The LSTMs output feature vector is concatenated
with the stance input and fed in to a dense layer

117

Figure 1: Data flow diagram of the rumour classification service.

Figure 2: Network diagram of the rumour veracity
model.

for a three-category classification output.

4.2 Data and Initial Results

The initial data source used for seeding the ru-
mour veracity classification model is the Ru-
mourEval2017 dataset (Derczynski et al., 2017)
which is derived from the PHEME dataset (Zubi-
aga et al., 2018b). The RumourEval2017 dataset
contains 325 Twitter conversation threads dis-
cussing rumours with respect to eight different
man-made events like Germanwings Air Crash,
Charlie Hebdo, Ottowa Shootings, etc. Each
thread in the dataset is annotated as true, false
or unverified. Also each reply to a source tweet
is annotated with one of the labels: supporting,

denying, questioning and commenting. It is split
into training, development and test set as in the
RumourEval2017 challenge with 272, 25 and 28
rumours respectively. The dataset has a majority
class baseline of 0.429.

Evaluation is performed by comparing against
several state-of-the-art approaches – NileTMRG
(Enayet and El-Beltagy, 2017), Branch LSTM
(Zubiaga et al., 2018b), Multi-task Learning
(Kochkina et al., 2018), vanilla LSTM (without
inner-attention), LSTM with soft attention (Bah-
danau et al., 2014) and our Inner-Attention al-
gorithm. The algorithms achieved F-1 scores of
0.539, 0.558, 0.491, 0.528, 0.496, 0.616 and accu-
racy of 0.571, 0.571, 0.5, 0.537, 0.5, and 0.607 re-
spectively. We expect the results should improve
as more data is added to the training set through
the Rumour Annotation Service. Further analysis
and discussion of the algorithm and its evaluation
can be found in Aker et al. (2019).

5 Rumour Annotation Service

The Rumour Annotation Service part provides the
functionality needed for annotating rumours and
storing them in a database. It has a role of an in-
terface for interacting with users. It retrieves the
social media posts, classifies them using the Ru-
mour Classification System and sends this infor-
mation back to the user. Since journalists’ time
is precious, we focus on scenarios where they are
asked to label no more than ten to fifteen examples
per rumour. Journalists will optionally be able to
provide further examples if this fit their workflow.

The service can be accessed through a web
Graphical User Interface (GUI) front-end (Fig. 3)
that can be used standalone or as REST API which
makes it possible to be easily incorporated into ex-
isting journalist platforms and tools. As long as

118

Figure 3: A screenshot of the web-based interface. The source tweet is shown on the top left. The veracity
classification is displayed below the tweet on a single axis scale that ranges between False (red), Unverified (grey)
and True (green). Metadata about the tweet is shown on the right. Replies to the tweet are shown on the bottom
left where journalists can annotate the stance of each reply.

a journalist chooses to annotate a rumour, it will
be instantly stored into the database, allowing the
classification system to get updated regularly by
leveraging the newly annotated rumours.

The journalist can currently make two types of
annotations. Firstly, annotations on the veracity of
the rumour itself. Whether it is true, false, or un-
verified, and are encouraged to provide evidence
for making this claim. Secondly, they can anno-
tate on the stance of the responses to the rumour.
The stance of the response can either be to sup-
port the claim, deny the claim, or to offer further
questions or comments, which we currently regard
as neutral stance. When creating a dataset for
re-training with user-provided annotations, each
tweet, for both rumour veracity and stance classifi-
cation, uses the class with the majority vote. Each
tweet must also have 50% or more votes in the ma-
jority category to be used.

6 Conclusion and Future Work

This paper presented an open source web service
for analysis of rumours on social media. The sys-
tem uses a state-of-the-art deep neural network

model (Aker et al., 2019) to classify Twitter ru-
mours and allows journalists to provide annotated
feedback to the system allowing the predictions to
be improved as it is used.

In the future, we intend to also integrate a ru-
mour stance classifier. User credibility will be
taken into account to affect the influence of their
annotations by analysing the accuracy and quality
of provided evidence. In this demo, we focused
only on the Twitter platform but we plan to offer
support for other social media platforms, such as
Reddit and 4chan. Finally, as new rumour classifi-
cation models are developed, they could easily be
integrated into the system to provide an ensemble
of predictions.

Acknowledgements

This research was supported by a Google DNI Pro-
totype project and the WeVerify project (partially
funded by the European Commission under con-
tract number 825297).

119

References
Ahmet Aker, Alfred Sliwa, Fahim Dalvi, and Kalina

Bontcheva. 2019. Rumour verification through re-
curring information and an inner-attention mech-
anism. Online Social Networks and Media,
13:100045.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Anh Dang, Abidalrahman Moh’d, Evangelos Milios,
and Rosane Minghim. 2016. What is in a ru-
mour: Combined visual analysis of rumour flow and
user activity. In Proceedings of the 33rd Computer
Graphics International, CGI ’16, pages 17–20, New
York, NY, USA. ACM.

L Derczynski and Kalina Bontcheva. 2014. Pheme:
Veracity in digital social networks. CEUR Workshop
Proceedings, 1181:19–22.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for ru-
mours. Proceedings of the 11th International Work-
shop on Semantic Evaluation (SemEval-2017).

Omar Enayet and Samhaa R El-Beltagy. 2017.
Niletmrg at semeval-2017 task 8: Determining ru-
mour and veracity support for rumours on twitter. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 470–
474.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: Human language technologies,
pages 1163–1168.

Naeemul Hassan, Anil Nayak, Vikas Sable, Chengkai
Li, Mark Tremayne, Gensheng Zhang, Fatma Ar-
slan, Josue Caraballo, Damian Jimenez, Siddhant
Gawsane, Shohedul Hasan, Minumol Joseph, and
Aaditya Kulkarni. 2017. Claimbuster: the first-ever
end-to-end fact-checking system. Proceedings of
the VLDB Endowment, 10:1945–1948.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga.
2018. All-in-one: Multi-task learning for rumour
verification. arXiv preprint arXiv:1806.03713.

Lev Konstantinovskiy, Oliver Price, Mevan Babakar,
and Arkaitz Zubiaga. 2018. Towards automated
factchecking: Developing an annotation schema and
benchmark for consistent automated claim detec-
tion.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Estimating collective judgement of rumours
in social media. ArXiv, abs/1506.00468.

Panagiotis Takas Metaxas, Samantha Finn, and Eni
Mustafaraj. 2015. Using twittertrails.com to in-
vestigate rumor propagation. In Proceedings of
the 18th ACM Conference Companion on Computer
Supported Cooperative Work & Social Computing,
CSCW’15 Companion, pages 69–72, New York,
NY, USA. ACM.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Paul Resnick, Samuel Carton, Souneil Park, Yuncheng
Shen, and Nicole Zeffer. 2014. Rumorlens: A sys-
tem for analyzing the impact of rumors and correc-
tions in social media. In Proc. Computational Jour-
nalism Conference, pages 10121–0701.

Chengcheng Shao, Giovanni Luca Ciampaglia,
Alessandro Flammini, and Filippo Menczer. 2016.
Hoaxy: A platform for tracking online misinfor-
mation. In Proceedings of the 25th International
Conference Companion on World Wide Web, WWW
’16 Companion, pages 745–750, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Denis Teyssou, Jean-Michel Leung, Evlampios
Apostolidis, Konstantinos Apostolidis, Symeon
Papadopoulos, Markos Zampoglou, Olga Pa-
padopoulou, and Vasileios Mezaris. 2017. The invid
plug-in: Web video verification on the browser. In
Proceedings of the First International Workshop on
Multimedia Verification, MuVer ’17, pages 23–30,
New York, NY, USA. ACM.

Adam Tsakalidis, Nikolaos Aletras, Alexandra I
Cristea, and Maria Liakata. 2018. Nowcasting the
stance of social media users in a sudden vote: The
case of the Greek Referendum. In Proceedings of
the 27th ACM International Conference on Infor-
mation and Knowledge Management, CIKM, pages
367–376.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva,
Maria Liakata, and Rob Procter. 2018a. Detection
and resolution of rumours in social media: A survey.
ACM Computing Surveys (CSUR), 51(2):32.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob
Procter, Michal Lukasik, Kalina Bontcheva, Trevor
Cohn, and Isabelle Augenstein. 2018b. Discourse-
aware rumour stance classification in social media
using sequential classifiers. Information Processing
& Management, 54(2):273–290.

120

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 121–126
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

LIDA: Lightweight Interactive Dialogue Annotator

Edward Collins
Wluper Ltd.

London, United Kingdom
ed@wluper.com

Nikolai Rozanov
Wluper Ltd.

London, United Kingdom
nikolai@wluper.com

Bingbing Zhang
Wluper Ltd.

London, United Kingdom
bingbing@wluper.com

Abstract

Dialogue systems have the potential to change
how people interact with machines but are
highly dependent on the quality of the data
used to train them. It is therefore impor-
tant to develop good dialogue annotation tools
which can improve the speed and quality of di-
alogue data annotation. With this in mind, we
introduce LIDA, an annotation tool designed
specifically for conversation data. As far as
we know, LIDA is the first dialogue annotation
system that handles the entire dialogue anno-
tation pipeline from raw text, as may be the
output of transcription services, to structured
conversation data. Furthermore it supports the
integration of arbitrary machine learning mod-
els as annotation recommenders and also has
a dedicated interface to resolve inter-annotator
disagreements such as after crowdsourcing an-
notations for a dataset. LIDA is fully open
source, documented and publicly available 1.

1 Introduction

Of all the milestones on the road to creating arti-
ficial general intelligence perhaps one of the most
significant is giving machines the ability to con-
verse with humans. Dialogue systems are be-
coming one of the most active research areas in
Natural Language Processing (NLP) and Machine
Learning (ML). New, large dialogue datasets such
as MultiWOZ (Budzianowski et al., 2018) have
allowed data-hungry deep learning algorithms to
be applied to dialogue systems, and challenges
such as the Dialogue State Tracking Challenge
(DSTC) (Henderson et al., 2014) and Amazon’s
Alexa Prize (Khatri et al., 2018) encourage com-
petition among teams to produce the best systems.

The quality of a dialogue system dependents on
the quality of the data used to train the system.

1https://github.com/Wluper/lida

Creating a high-quality dialogue dataset incurs a
large annotation cost, which makes good dialogue
annotation tools essential to ensure the highest
possible quality. Many annotation tools exist for a
range of NLP tasks but none are designed specifi-
cally for dialogue with modern usability principles
in mind - in collecting MultiWOZ, for example,
Budzianowski et al. (2018) had to create a bespoke
annotation interface.

In this paper, we introduce LIDA, a web ap-
plication designed to make dialogue dataset cre-
ation and annotation as easy and fast as possible.
In addition to following modern principles of us-
ability, LIDA integrates best practices from other
state-of-the-art annotation tools such as INCEp-
TION (Klie et al., 2018), most importantly by al-
lowing arbitrary ML models to be integrated as an-
notation recommenders to suggest annotations for
data. Any system with the correct API can be in-
tegrated into LIDA’s back end, meaning LIDA can
be used as a front end for researchers to interact
with their dialogue systems and correct their re-
sponses, then save the interaction as a future test
case.

When data is crowdsourced, it is good prac-
tice to have multiple annotators label each piece
of data to reduce noise and mislabelling (Deng
et al., 2009). Once you have multiple annotations,
it is important to be able to resolve conflicts by
highlighting where annotators disagreed so that
an arbiter can decide on the correct annotation.
To this end, LIDA provides a dedicated interface
which automatically finds where annotators have
disagreed and displays the labels alongside a per-
centage of how many annotators selected each la-
bel, with the majority annotated labels selected by
default.

1.1 Main Contributions

Our main contributions with this tool are:

121

Annotation Tool Turn/Dialogue Seg-
mentation

Classification Labels Edit Dialogues/Turns Recommenders Inter-Annotator
Disagreement
Resolution

Language

LIDA YES YES YES YES YES PYTHON
INCEpTion (Klie et al., 2018) NO YES NO YES YES/NO4 JAVA
GATE (Cunningham, 2002) NO YES NO NO YES/NO 5 JAVA
TWIST (Pluss, 2012) YES NO YES NO NO -
BRAT (Stenetorp et al., 2012) NO YES NO YES NO PYTHON
DOCCANO3 NO YES NO NO NO PYTHON
DialogueView (Heeman et al., 2002) YES YES YES NO NO TcK/TK

Table 1: Annotator Tool Comparison Table
Turn/Dialogue Segmentation: segment raw text into turns and dialogues. Classification Labels: label classification data. Edit
Dialogues/Turns: allow users to add/edit/delete new turns or dialogues. Recommenders: ML models to suggest annotations.
Inter-Annotator Disagreement Resolution: whether the system has an interface to resolve disagreements between different

annotators. Language: what programming language the system uses

• A modern annotation tool designed specifi-
cally for task-oriented conversation data

• The first dialogue annotator capable of han-
dling the full dialogue annotation pipeline
from turn and dialogue segmentation through
to labelling structured conversation data

• Easy integration of dialogue systems and rec-
ommenders to provide annotation sugges-
tions

• A dedicated interface to resolve inter-
annotator disagreements for dialogue data

2 Related Work

Various annotation tools have been developed for
NLP tasks in recent years. Table 1 compares LIDA
with other recent annotation tools. TWIST (Pluss,
2012) is a dialogue annotation tool which consists
of two stages: turn segmentation and content fea-
ture annotation. Turn segmentation allows users
to highlight and create new turn segments from
raw text. After this, users can annotate sections of
text in a segment by highlighting them and select-
ing from a predefined feature list. However, this
tool doesn’t allow users to specify custom anno-
tations or labels and doesn’t support classification
or slot-value annotation. This is not compatible
with modern dialogue datasets which require such
annotations (Budzianowski et al., 2018).

INCEpTION (Klie et al., 2018) is a semantic
annotation platform for interactive tasks that re-
quire semantic resources like entity linking. It pro-
vides machine learning models to suggest annota-
tions and allows users to collect and model knowl-
edge directly in the tool. GATE (Cunningham,
2002) is an open source tool that provides prede-
fined solutions for many text processing tasks. It is
powerful because it allows annotators to enhance
the provided annotation tools with their own Java

code, making it easily extensible and provides an
enormous number of predefined features. How-
ever, GATE is a large and complicated tool with a
significant setup cost - its instruction manual alone
is over 600 pages long2. Despite their large fea-
ture sets, INCEpTION and GATE are not designed
for annotating dialogue and cannot display data as
turns, an important feature for dialogue datasets.

BRAT (Stenetorp et al., 2012) and Doccano3 are
web-based annotation tools for tasks such as text
classification and sequence labeling. They have
intuitive and user-friendly interfaces which aim to
make the creation of certain types of dataset such
as classification or sequence labelling datasets as
fast as possible. BRAT also supports annotation
suggestions by integrating ML models. However,
like INCEpTION4 and GATE5, they are not de-
signed for annotating dialogues and do not support
generation of formatted conversational data from a
raw text file such as may be output by a transcrip-
tion service. LIDA aims to fill these gaps by pro-
viding a lightweight, easy-to-setup annotation tool
which displays data as a series of dialogues, sup-
ports integration of arbitrary ML models as rec-
ommenders and supports segmentation of raw text
into dialogues and turns.

DialogueView (Heeman et al., 2002) is a tool
for dialogue annotation. However, the main use-
cases are not focused on building dialogue sys-
tems, rather it is focused on segmenting recorded
conversations. It supports annotating audio files
as well as discourse segmentation - hence, granu-
lar labelling of the dialogue, recommenders, inter-

2https://gate.ac.uk/sale/tao/tao.pdf
3https://github.com/chakki-works/doccano
4Getting the scores is available as a plugin:

https://dkpro.github.io/dkpro-statistics/dkpro-agreement-
poster.pdf - resolving the issues seems to be not supported

5Again inter-annotator score calculation capabilities are
available as separate plug-in https://gate.ac.uk/releases/gate-
5.1-beta1-build3397-ALL/doc/tao/splitch10.html - however
support for resolutions is not apparent

122

annotator agreement, and slot-value labelling is
not possible with DialogueView.

3 System Overview

LIDA is built according to a client-server architec-
ture with the front end written in standard web lan-
guages (HTML/CSS/JavaScript) that will run on
any browser. The back end written in Python us-
ing the Flask6 web framework as a RESTful API.

The main screen which lists all available dia-
logues is shown in Figure 3, in the Appendix. The
buttons below this list allow a user to add a blank
or formatted dialogue file. Users can also drag and
drop files in this screen to upload them. The user
is then able to add, delete or edit any particular
dialogue. There is also a button to download the
whole dataset as a JSON file on this page. Click-
ing on a dialogue will take users to the individual
dialogue annotation screen shown in Figure 1.

LIDA uses the concept of a “turn” to organise
how a dialogue is displayed and recorded. A turn
consists of a query by the user followed by a re-
sponse from the system, with an unlimited num-
ber of labels allowed for each user query. The
user query and system response are displayed in
the large area on the left of the interface, while
the labels for each turn are shown in the scrol-
lable box on the right. There are two forms that
these labels can currently take which are particu-
larly relevant for dialogue: multilabel classifica-
tion and slot-value pair.

An example of multilabel classification is
whether the user was informing the system or re-
questing a piece of information. An example of
a slot-value pair is whether the user mentioned
the type of restaurant they’d like to eat at (slot:
restaurant-type) and if so what it was (value: ital-
ian, for example). The front-end code is written in
a modular form so that it is easy for researchers us-
ing LIDA to add custom types of labels and anno-
tations, such as sequence classification, to LIDA.

Once annotation is complete, users can resolve
inter-annotator disagreements on the resolution
screen. Here, each dialogue is listed along with
the number of different people who have annotated
it. More annotations can be added by dragging
and dropping dialogue files into this screen. When
the user clicks on one of these dialogues, they are
taken to the resolution screen shown in Figure 2.
Here, all of the disagreements in a dialogue are

6http://flask.pocoo.org/

listed and the label which annotators disagreed on
is also shown. The label most frequently selected
by annotators is assigned as correct by default,
and the arbiter can accept this annotation simply
by pressing “Enter” or else re-label the data item.
Once the arbiter has checked an annotation, it is
displayed as “Accepted” in the error list and the
dialogue file automatically saved.

3.1 Use Cases
3.1.1 Experimenting with Dialogue Systems
While generic evaluation metrics are important for
understanding the performance of a dialogue sys-
tem, another important method of evaluation is
to talk to the dialogue system and see if it gives
subjectively satisfying results. This gives the re-
searcher insight into which part of the system most
urgently needs improvement faster than perform-
ing more complex error analysis. However, if the
user talks to their dialogue system through a ter-
minal interface, they have no way of correcting
the system when it answers incorrectly. The re-
searcher should be able to record every interaction
they have with their system and correct the predic-
tions of the system easily and quickly. That way,
the researcher will be able to use each previous
recorded interaction as a test case for future ver-
sions of their system.

LIDA is designed with this in mind - a dialogue
system can be integrated in the back end so that it
will run whenever the user enters a new query in
the front end. The user will then be able to eval-
uate whether the system gave the correct answer
and correct the labels it gets wrong using the front
end. LIDA will record these corrections and allow
the user to download the interaction with their di-
alogue system with the corrected labels so that it
can be used as a test case in future versions of the
system.

3.1.2 Creating a New Dialogue Dataset
Users can create a blank dialogue on LIDA’s home
screen, then enter queries in the box shown at the
bottom of Figure 1. Along with whole dialogue
systems, arbitrary ML models can be added as rec-
ommenders in the back end. Once the user hits
“Enter”, the query is run through the recommender
models in the back end and the suggested annota-
tions displayed for the label. If no recommender
is specified in the back end, the label will be left
blank. Users can delete turns and navigate be-
tween them using “Enter” or the arrow keys. The

123

Figure 1: Turn List : A list of turns for one specific dialogue, users can add new turns, delete turns, edit utterances
and annotate labels here.

name of the dialogue being annotated can be seen
next to the “Back” button at the top left of the
screen and can be edited by clicking on it.

3.1.3 Annotating An Existing Dataset
Datasets can be uploaded via drag-and-drop to the
home screen of the system, or paths can be spec-
ified in the back end if the system were being
used for crowdsourcing. Datasets can be in one
of two forms, either a “.txt” file such as may be
produced by a transcription service, or a format-
ted “.json” file, a common format for dialogue
data (Budzianowski et al., 2018; Henderson et al.,
2014). Once the user has uploaded their data, their
dialogue(s) will appear on the home screen. The
user can click on each dialogue and will be taken
to the single dialogue annotation screen shown
in Figure 1 to annotate it. If the user uploaded
a text file, they will be taken to a dialogue and
turn segmentation screen. Following the same
constraints imposed in MultiWOZ (Budzianowski
et al., 2018) and DSTC (Henderson et al., 2014),
this turn segmenter assumes that there are only two
participants in the dialogue: the user and the sys-
tem, and that the user asks the first query. The
user separates each utterance in the dialogue by a
blank line, and separates dialogues with a triple
equals sign (“===”). Once the user clicks “Done”,
the text file will automatically be parsed into the
correct JSON format and each query run through
the recommenders in the back-end to obtain anno-

tation suggestions.

3.1.4 Resolving Annotator Disagreement
Researchers could use LIDA’s main interface to
crowdsource annotations for a dialogue dataset.
Once they have several annotations for each dia-
logue, they can upload these to the inter-annotator
resolution interface of LIDA. The disagreements
between annotators will be detected, with a per-
centage shown beside each label to show how
many annotators selected it. The label with the
highest percentage of selections is checked by de-
fault. The arbiter can accept the majority label
simply by pressing “Enter” and can change er-
rors with the arrow keys to facilitate fast resolu-
tion. This interface also displays an averaged (over
turns) version of Cohen’s Kappa (Cohen, 1960),
the total number of annotations, total number of
errors and averaged (over turns) accuracy.

3.2 Features7

Specifying Custom Labels LIDA’s configura-
tion is controlled by a single script in the back
end. This script defines which labels will be dis-
played in the UI and is easy to extend. Users can
define their own labels by altering this configura-
tion script. If a user wishes to add a new label, all
they need to do is specify the label’s name, its type

7We refer the reader to visit the public repository for
a full documentation https://github.com/Wluper/
lida.

124

Figure 2: Screenshot of the inter-annotator disagreement resolution screen.

(classification or slot-value pair, currently) and the
possible values the classification can take. Along-
side the label specification, they can also specify
a recommender to use for the label values. The
label will then automatically be displayed in the
front end. Note that labels in uploaded datasets
will only be displayed if the label has an entry in
the configuration file.

Custom Recommenders When creating a dia-
logue dataset from scratch, LIDA is most power-
ful when used in conjunction with recommenders
which can suggest annotations for user queries
to be corrected by the annotator. State-of-the-art
tools such as INCEpTION (Klie et al., 2018) em-
phasise the importance of being able to use recom-
menders in annotation systems. Users can spec-
ify arbitrary ML models to use for each label in
LIDA’s back end. The back end is written in
Python, the de facto language for machine learn-
ing, so researchers can directly integrate models
written in Python to the back end. This is in con-
trast to tools such as INCEpTION (Klie et al.,
2018) and GATE (Cunningham, 2002) which are
written in Java and so require extra steps to inte-
grate a Python-based model. To integrate a rec-
ommender, the user simply provides an instanti-
ated Python object in the configuration file that
has a method called “transform” that takes a single
string and returns a predicted label.

Dialogue and Turn Segmentation from Raw
Data When uploading a .txt file, users can seg-
ment each utterance and each dialogue with a sim-
ple interface. This means that raw dialogue data
with no labels, such as obtained from a transcrip-
tion service, can be uploaded and processed into a
labelled dialogue. Segmented dialogues and turns
are automatically run through every recommender
to give suggested labels for each utterance.

4 Evaluation

Table 1 shows a comparison of LIDA to other an-
notation tools. To our knowledge, LIDA is the
only annotation tool designed specifically for di-
alogue systems which supports the full pipeline of
dialogue annotation from raw text to labelled dia-
logue to inter-annotator resolution and can also be
used to test the subjective performance of a dia-
logue system.

To test LIDA’s capabilities, we designed a sim-
ple experiment: we took a bespoke dataset of 154
dialogues with an average of 3.5 turns per dialogue
and a standard deviation of 1.55. The task was to
assign three classification labels to each user utter-
ance in each dialogue. Each annotator was given a
time limit of 1 hour and told to annotate as many
dialogues as they could in that time. We had six
annotators perform this task, three of whom were
familiar with the system and three of whom had
never seen it before.

125

These annotators annotated an average of 79 di-
alogues in one hour with a standard deviation of
30, which corresponds to an average of 816.5 indi-
vidual annotations. The annotators who had never
seen the system before annotated an average of 60
dialogues corresponding to an average of 617 in-
dividual annotations.

Once we had these six annotations, we per-
formed a second experiment whereby a single ar-
biter resolved inter-annotator disagreements. In
one hour, the arbiter resolved 350 disagreements
and noted that resolution was slowest when resolv-
ing queries with a high degree of disagreement.

These results show that LIDA provides fast an-
notation sufficient for collecting large scale data.
At the recorded pace of the annotators who had
not seen the system before, 100 workers could cre-
ate a dialogue dataset of 6000 dialogues with ap-
proximately 6000 ∗ 3.5 = 21000 turns with three
annotations per turn in one hour. In large scale col-
lections, such as MultiWOZ (Budzianowski et al.,
2018) where 1249 workers were used, much larger
datasets with richer annotations could be created.
Clearly annotation quantity will depend on the dif-
ficulty of the task, length of dialogue and number
of labels to be assigned to each utterance but our
results suggest that a high speed is achievable.

5 Conclusion

We present LIDA, an open source, web-based an-
notation system designed specifically for dialogue
data. LIDA implements state-of-the-art annotation
techniques including recommenders, fully cus-
tomisable labels and inter-annotator disagreement
resolution. LIDA is the only dialogue annotation
tool which can handle the full pipeline of dia-
logue dataset creation from turn and dialogue seg-
mentation to structured conversation data to inter-
annotator disagreement resolution.

Future work will look at adding new label types
to LIDA, adding the possibility to have more than
two actors in the conversation, a centralised ad-
min page, additional labelling (e.g. co-reference
resolution) and in general enhancing usability as
users provide feedback. Our hope is that this work
will find applications and usability beyond what
we have outlined and developed so far and that
with a community effort a modern and highly ac-
cessible tool will become widely available.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological
measurement, 20(1):37–46.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223–254.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Peter A. Heeman, Fan Yang, and Susan E. Strayer.
2002. DialogueView - an annotation tool for dia-
logue. In Proceedings of the Third SIGdial Work-
shop on Discourse and Dialogue, pages 50–59,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263–272.

Chandra Khatri, Behnam Hedayatnia, Anu Venkatesh,
Jeff Nunn, Yi Pan, Qing Liu, Han Song, Anna Got-
tardi, Sanjeev Kwatra, Sanju Pancholi, et al. 2018.
Advancing the state of the art in open domain dia-
log systems through the alexa prize. arXiv preprint
arXiv:1812.10757.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9.

Brian Pluss. 2012. Twist dialogue annota-
tion tool. http://mcs.open.ac.uk/
nlg/non-cooperation/resources/
user-guide.pdf.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

126

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 127–132
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

LINSPECTOR WEB: A Multilingual Probing Suite for Word
Representations

Max Eichler, Gözde Gül Şahin & Iryna Gurevych
Research Training Group AIPHES and UKP Lab

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
max.eichler@gmail.com, {sahin,gurevych}@ukp.tu-darmstadt.de

Abstract

We present LINSPECTOR WEB, an open
source multilingual inspector to analyze word
representations. Our system provides re-
searchers working in low-resource settings
with an easily accessible web based probing
tool to gain quick insights into their word
embeddings especially outside of the English
language. To do this we employ 16 sim-
ple linguistic probing tasks such as gender,
case marking, and tense for a diverse set of
28 languages. We support probing of static
word embeddings along with pretrained Al-
lenNLP models that are commonly used for
NLP downstream tasks such as named entity
recognition, natural language inference and
dependency parsing. The results are visual-
ized in a polar chart and also provided as a
table. LINSPECTOR WEB is available as an
offline tool or at https://linspector.
ukp.informatik.tu-darmstadt.de.

1 Introduction

Natural language processing (NLP) has seen
great progress after the introduction of contin-
uous, dense, low dimensional vectors to repre-
sent text. The field has witnessed the creation of
various word embedding models such as mono-
lingual (Mikolov et al., 2013), contextualized (Pe-
ters et al., 2018), multi-sense (Pilehvar et al.,
2017) and dependency-based (Levy and Goldberg,
2014); as well as adaptation and design of neu-
ral network architectures for a wide range of NLP
tasks. Despite their impressive performance, inter-
preting, analyzing and evaluating such black-box
models have been shown to be challenging, which
even led to a set of workshop series (Linzen et al.,
2018).

Early works for evaluating word representa-
tions (Faruqui and Dyer, 2014a,b; Nayak et al.,
2016) have mostly focused on English and used

either the word similarity or a set of downstream
tasks. However datasets for either of those tasks
do not exist for many languages, word similarity
tests do not necessarily correlate well with down-
stream tasks and evaluating embeddings on down-
stream tasks can be too computationally demand-
ing for low-resource scenarios. To address some
of these challenges, Shi et al. (2016); Adi et al.
(2017); Veldhoen et al. (2016); Conneau et al.
(2018) have introduced probing tasks, a.k.a. di-
agnostic classifiers, that take as input a represen-
tation generated by a fully trained neural model
and output predictions for a linguistic feature of
interest. Due to its simplicity and low computa-
tional cost, it has been employed by many studies
summarized by Belinkov and Glass (2019), mostly
focusing on English. Unlike most studies, Köhn
(2015) introduced a set of multilingual probing
tasks, however its scope has been limited to syn-
tactic tests and 7 languages. More importantly it is
not accessible as a web application and the source
code does not have support to probe pretrained
downstream NLP models out of the box.

Given the above information, most of the lower-
resource non-English academic NLP communities
still suffer from (1) the amount of required hu-
man and computational resources to search for
the right model configuration, and (2) the lack
of diagnostics tools to analyze their models to
gain more insights into what is captured. Re-
cently, Şahin et al. (2019) proposed 16 multilin-
gual probing tasks along with the corresponding
datasets and found correlations between certain
probing and downstream tasks and demonstrated
their efficacy as diagnostic tools. In this paper,
we employ these datasets to develop LINSPEC-
TOR WEB that is designed to help researchers with
low-resources working on non-English languages
to (1) analyze, interpret, and visualize various lay-
ers of their pretrained AllenNLP (Gardner et al.,

127

#Lang #Task-Type Web Offline Static Models Layers Epochs
(Faruqui and Dyer, 2014a) 4 10-WST × × ×

(Nayak et al., 2016) 1 7-DT × × ×
(Köhn, 2015) 7 7-PT × ×

Ours 28 16-PT × × × × × ×

Table 1: Features of previous evaluation applications compared to Ours (LINSPECTOR WEB). #Lang: Number
of supported languages, #Task-Type: Number and type of the tasks, where WST: Word similarity tasks, DT:
Downstream Tasks, PT: Probing Tasks. Static: Static word embeddings and Models: Pretrained downstream
models.

2018) models at different epochs and (2) measure
the performance of static word embeddings for
language-specific linguistic properties. To the best
of our knowledge, this is the first web application
that (a) performs online probing; (b) enables users
to upload their pretrained downstream task mod-
els to automatically analyze different layers and
epochs; and (c) has support for 28 languages with
some of them being extremely low-resource such
as Quechuan.

2 Previous Systems

A now retired evaluation suite for word em-
beddings was wordvectors.org (Faruqui and
Dyer, 2014a). The tool provided evaluation
and visualization for antonyms, synonyms, and
female-male similarity; and later it was updated to
support German, French, and Spanish word em-
beddings (Faruqui and Dyer, 2014b). For a visu-
alization the user could enter multiple tokens and
would receive a 2 dimensional chart to visualize
the cosine distance between the tokens. Therefore
it was limited by the amount of tokens, a human
could enter and analyze. VecEval (Nayak et al.,
2016) is another web based suite for static En-
glish word embeddings that perform evaluation on
a set of downstream tasks which may take several
hours. The visualization is similar to LINSPEC-
TOR WEB reporting both charts and a table. Both
web applications do not support probing of inter-
mediate layers of pretrained models or the addi-
tion of multiple epochs. Köhn (2015) introduced
an offline, multilingual probing suite for static em-
beddings limited in terms of the languages and the
probing tasks. A comparison of the system fea-
tures of previous studies is given in Table 1.

3 LINSPECTOR WEB

Our system is targeted at multilingual researchers
working with low-resource settings. It is designed
as a web application to enable such users to probe
their word representations with minimal effort and

computational requirements by simply uploading
a file. The users can either upload their pretrained
static embeddings files (e.g. word2vec (Mikolov
et al., 2013), fastText (Bojanowski et al., 2016),
GloVe (Pennington et al., 2014)); 1or their pre-
trained archived AllenNLP models. In this ver-
sion, we only give support to AllenNLP, due to its
high usage rate by low-resource community and
being up-to-date, i.e., containing state-of-the-art
models for many NLP tasks and being continu-
ously maintained at the Allen Institute for Artifi-
cial Intelligence (Gardner et al., 2018).

3.1 Scope of Probing

We support 28 languages from very diverse lan-
guage families. 2 The multilingual probing
datasets (Şahin et al., 2019) used in this system are
language-specific, i.e., languages with a gender
system are probed for gender, whereas languages
with a rich case-marking system are probed for
case. The majority of the probing tasks probe
for morpho-syntactic properties (e.g. case, mood,
person) which have been shown to correlate well
with syntactic and semantic parsing for a num-
ber of languages, where a small number of tasks
probe for surface (e.g. word length) or semantic
level properties (e.g. pseudoword). Finally, there
are two morphological comparison tasks (Odd-
/Shared Morphological Feature) aiming to find the
unique distinct/shared morphological feature be-
tween two tokens, which have been shown to cor-
relate well with the NLI task. The current probing
tasks are type-level (i.e., do not contain ambigu-
ous words) and are filtered to keep only the fre-
quent words. These tasks are (1) domain indepen-
dent and (2) contain valuable information encoded
via subwords in many languages (e.g. the Turkish

1
Since our probing datasets are publicly available, fastText embeddings for unknown

words in our dataset can be generated by the user locally via the provided functions in (Şahin
et al., 2019).

2
Arabic, Armenian, Basque, Bulgarian, Catalan, Czech, Danish, Dutch, English, Esto-

nian, Finnish, French, German, Greek, Hungarian, Italian, Macedonian, Polish, Portuguese,
Quechuan, Romanian, Russian, Serbian, Serbo-Crotian, Spanish, Swedish, Turkish and
Vietnamese

128

Figure 1: Left: Language selection, Middle: Probing task selection, Right: Uploading model.

word gelemeyenlerden “he/she is one of the folks
who can not come” encodes sentence-level infor-
mation). 3

3.2 Features: Models, Layers and Epochs
We support the following classifier architectures
implemented by AllenNLP: BiaffineDependen-
cyParser (Dozat and Manning, 2016), CrfTag-
ger (Sutton et al., 2007), SimpleTagger (Gard-
ner et al., 2018), ESIM (Chen et al., 2017). Bi-
affineDependencyParser and CrfTagger are high-
lighted as the default choice for dependency pars-
ing and named entity recognition by (Gardner
et al., 2018), while ESIM was picked as one of
two available natural language inference models,
and SimpleTagger support was added as the entry
level AllenNLP classifier to solve tasks like parts-
of-speech tagging.

The users can choose the layers they want to
probe. This allows the users to analyze what lin-
guistic information is captured by different lay-
ers of the model (e.g., POS information in lower
layers, semantic information in higher levels). It
is possible to select any AllenNLP encoder layer
for classifiers with token, sentence, or document
based input and models with dual input (e.g.
ESIM: premise, hypothesis) that allow probing of
selected layers depending on their internal archi-
tecture as described in Sec. 4.2. Additionally a
user can specify up to 3 epochs for probing to in-
spect what their model learns and forgets during
training. This is considered a crucial feature as
it provides insights on learning dynamics of mod-
els (Saphra and Lopez, 2019). For instance, a user
diagnosing a pretrained NLI task, can probe for
the tasks that have been shown to correlate well
(Mood, Person, Polarity, and Tense) (Şahin et al.,
2019) for additional epochs, and analyze how their

3Users can choose probing tasks either intuitively or rely
on earlier studies e.g., that show a linguistic feature has been
beneficial for the downstream task. Therefore not every prob-
ing task is needed during a specific evaluation.

performance evolves during training. After the di-
agnostic classifiers are trained and tested on the
specified language, model, layer, and epochs, the
users are provided with (1) accuracies of each task
visualized in a polar chart, (2) a table containing
accuracy and loss for each probing test, and (3)
in case of additional epochs, accuracies for other
epochs are overlaid on the chart and columns are
added to the table for easy comparison as shown
in Fig. 2-Right.

The uploaded model files are deleted immedi-
ately after probing, however the results can be
saved or shared via a publicly accessible URL. The
project is open source and easily extendable to ad-
ditional languages, probing tasks and AllenNLP
models. New languages can be added simply by
adding train, dev, and test data for selected prob-
ing tasks and adding one database entry. Similarly
new probing tasks can be defined following (Şahin
et al., 2019). In case the new tasks differ by input
type, a custom AllenNLP dataset reader and clas-
sifier should be added. It can be extended to new
AllenNLP models by adding the matching predic-
tor to the supported list or writing a custom pre-
dictor if the model requires dual input values (e.g.
ESIM). Finally, other frameworks (e.g. ONNX
format) can be supported by adding a method to
extract embeddings from the model.

4 System Description

LINSPECTOR WEB is based on the Python Django
framework 4 which manages everything related
to performance, security, scalability, and database
handling.

4.1 Frontend
First, the user selects the language of the model
and a number of probing tests they want to per-
form. The probing test selection menu will vary
with the selected language. Next the user has to

4
https://www.djangoproject.com

129

Figure 2: Left: Layer selection example, Right: Polar chart result shown for different epochs for pretrained Arabic
BiaffineDependencyParser.

Figure 3: Backend architecture

upload an archived AllenNLP model or a static
embeddings file. The input pipeline is shown in
Fig. 1. The upload is handled asynchronously us-
ing custom AJAX code to support large files, pre-
vent timeouts, and give the user some progress
feedback. The backend detects if an uploaded file
is an archived AllenNLP model and provides a list
of layers if that is the case as shown in Fig. 2-
Left. Probing is handled asynchronously by the
backend. A JSON API endpoint gives progress
feedback to the frontend which displays a progress
bar and the currently executed probing test to the
user. Finally results are displayed in an interac-
tive chart and a table. For the user interface, we
use the Bootstrap framework 5 that provides us
with modern, responsive, and mobile compatible
HTML and CSS. The visualization is done using
the Highcharts library. 6

4.2 Backend

The structure of the backend system is shown in
Fig. 3 and the main components are explained be-
low.

5
https://getbootstrap.com

6
https://www.highcharts.com

Layers: To get a list of layers an archived
AllenNLP model is loaded using a standard
AllenNLP API. Since every AllenNLP classi-
fier inherits from the PyTorch (Paszke et al.,
2017) class torch.nn.Module, we gather
two levels of immediate submodules using
the named children() API. First we ex-
tract high level AllenNLP modules including all
Seq2SeqEncoder, Seq2VecEncoder, and
FeedForwardmodules by testing each submod-
ule for a get input dim() method. Then we
extract low level modules which can be either Al-
lenNLP modules e.g. AugmentedLstm or Py-
Torch modules e.g. Linear by testing for the
attributes input size or in features. All
those modules are then returned as available prob-
ing layers. We require the input dimension later
and since there is no standard API we have to ex-
clude some submodules. 7 Finally we don’t sup-
port models that require additional linguistic infor-
mation such as POS tags.

Getting Embeddings: PyTorch modules allow
us to register forward hooks. A hook is a call-
back which receives the module, input, and out-
put every time an input is passed through the mod-
ule. For AllenNLP models we register such a call-
back to the selected encoding layer. Then each
time a token is passed through the model, it passes
through the encoder and the callback receives the
input vector. The most reliable way to pass to-
kens through a model is using AllenNLP predic-

7By analyzing the AllenNLP codebase and PyTorch
modules used in their sample configurations, we de-
cided to support modules providing their dimension us-
ing get input dim(), input size, or in features;
which may change with future versions of AllenNLP.

130

tors. There is a matching predictor for every model
which are regularly tested and updated. We gather
all tokens from our intrinsic probing data and pass
it through the predictor. For every token the for-
ward hook is called in the background which then
provides us with the vector. The token and vec-
tor are then written to a temporary file. During
the embedding extraction, the progress is reported
back to the frontend periodically in 30 steps. For
static embeddings all lines that match the embed-
ding dimension are written to a temporary file and
malformed data is removed.

Probing: Finally the gathered embeddings are
loaded as a pretrained non-trainable embedding
layer for a single linear layer custom build Al-
lenNLP classifier. The classifier is trained and
evaluated using the intrinsic probing data for the
specified probing test. We use 20 epochs with
early stopping, a patience of 5, and gradient clip-
ping of 0.5. The evaluation accuracy and loss are
then returned. For contrastive probing tasks (Odd-
/Shared Morphological Feature) a similar linear
classifier that takes concatenated tokens as input,
is used.

Asynchronous probing is handled using the
Python Celery framework 8, the RabbitMQ mes-
sage broker 9, and the Eventlet execution pool 10.
When the user starts probing, a new Celery task
is created in the backend which executes all prob-
ing tasks specified by the user asynchronously and
reports the progress back to the frontend. Finally
the results are saved in a PostgreSQL or SQLite-
database using the Django Celery Results applica-
tion.

4.3 Tests
We have trained BiaffineDependencyParser, Crf-
Tagger, SimpleTagger, and ESIM AllenNLP mod-
els for Arabic, Armenian, Czech, French, and
Hungarian with varying dimensions. We have
tested the intrinsic probing data, layer selec-
tion, consistency of metrics, contrastive and non-
contrastive classifiers, and all probing tests for
multiple combinations of languages, dimensions,
and AllenNLP models. Static embeddings are
tested using pretrained fastText files for the same
languages. In addition, the file upload was tested
with files up to 8 GB over a DSL 50k connection.

8
http://www.celeryproject.org

9
https://www.rabbitmq.com

10
https://eventlet.net

4.4 Training Times

The LINSPECTOR WEB server is hosted in uni-
versity data center with a state-of-the-art internet
connection which allows for fast upload speeds.
Therefore, the overall upload speed mostly de-
pends on the users connection. For a single prob-
ing task, embedding extraction, training, and eval-
uation is around a few minutes.

5 Conclusion

Researchers working on non-English languages
under low-resource settings have lacked a tool
that would assist with model selection via
providing linguistic insights, to this date. To
address this, we presented LINSPECTOR WEB,
an open source, web-based evaluation suite with
16 probing tasks for 28 languages; which can
probe pretrained static word embeddings and
various layers of a number of selected AllenNLP
models. The tool can easily be extended for
additional languages, probing tasks, probing
models and AllenNLP models. LINSPECTOR

WEB is available at https://linspector.
ukp.informatik.tu-darmstadt.de
and the source code for the server is released
with https://github.com/UKPLab/
linspector-web along with the installation
instructions for the server. The system is currently
being extended to support contextualized word
embeddings with contextualized probing tasks
using the Universal Dependency Treebanks (Nivre
et al., 2019).

6 Acknowledgements

This work has been supported by the DFG-
funded research training group “Adaptive Prepara-
tion of Information form Heterogeneous Sources”
(AIPHES, GRK 1994/1), and also by the Ger-
man Federal Ministry of Education and Re-
search (BMBF) under the promotional reference
01UG1816B (CEDIFOR) and as part of the Soft-
ware Campus program under the promotional ref-
erence 01IS17050.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings.

131

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
TACL, 7:49–72.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In ACL 2017, Van-
couver, Canada, July 30 - August 4, Volume 1: Long
Papers, pages 1657–1668.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single \$&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers, pages 2126–2136.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. CoRR, abs/1611.01734.

Manaal Faruqui and Chris Dyer. 2014a. Community
evaluation and exchange of word vectors at word-
vectors.org. In ACL 2014, June 22-27, 2014, Balti-
more, MD, USA, System Demonstrations, pages 19–
24.

Manaal Faruqui and Chris Dyer. 2014b. Improving
vector space word representations using multilin-
gual correlation. In EACL 2014, April 26-30, 2014,
Gothenburg, Sweden, pages 462–471.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language pro-
cessing platform.

Arne Köhn. 2015. What’s in an embedding? analyzing
word embeddings through multilingual evaluation.
In EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 2067–2073.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In ACL 2014, June 22-27,
2014, Baltimore, MD, USA, Volume 2: Short Papers,
pages 302–308.

Tal Linzen, Grzegorz Chrupała, and Afra Alishahi.
2018. Proceedings of the 2018 emnlp workshop
blackboxnlp: Analyzing and interpreting neural net-
works for nlp. Association for Computational Lin-
guistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In NIPS 2013 - Volume 2, NIPS’13, pages
3111–3119.

Neha Nayak, Gabor Angeli, and Christopher D Man-
ning. 2016. Evaluating word embeddings using a
representative suite of practical tasks. In RepE-
val@ACL, pages 19–23.

Joakim Nivre, Mitchell Abrams, Željko Agić, and
et al. 2019. Universal dependencies 2.4. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Lin-
guistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL-HLT 2018, New Orleans,
Louisiana, USA, June 1-6, 2018, Volume 1 (Long Pa-
pers), pages 2227–2237.

Mohammad Taher Pilehvar, José Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards
a seamless integration of word senses into down-
stream NLP applications. In ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers,
pages 1857–1869.

Gözde Gül Şahin, Clara Vania, Ilia Kuznetsov, and
Iryna Gurevych. 2019. Linspector: Multilingual
probing tasks for word representations. arXiv
preprint arXiv:1903.09442.

Naomi Saphra and Adam Lopez. 2019. Understand-
ing learning dynamics of language models with
SVCCA. In NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 3257–3267.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
String-Based Neural MT Learn Source Syntax? In
EMNLP 2016, Austin, Texas, USA, November 1-4,
2016, pages 1526–1534.

Charles A. Sutton, Andrew McCallum, and Khashayar
Rohanimanesh. 2007. Dynamic conditional random
fields: Factorized probabilistic models for labeling
and segmenting sequence data. Journal of Machine
Learning Research, 8:693–723.

Sara Veldhoen, Dieuwke Hupkes, and Willem H.
Zuidema. 2016. Diagnostic classifiers revealing
how neural networks process hierarchical struc-
ture. In Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic ap-
proaches @NIPS 2016), Barcelona, Spain, Decem-
ber 9, 2016.

132

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 133–138
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

MAssistant: A Personal Knowledge Assistant for MOOC Learners

Lan Jiang Shuhan Hu Mingyu Huang Zhichun Wang∗

Jinjian Yang Xiaoju Ye Wei Zheng
Beijing Normal University, Beijing, P. R. China, 100875

https://kg.bnu.edu.cn

Abstract
Massive Open Online Courses (MOOCs) have
developed rapidly and attracted large number
of learners. In this work, we present MAs-
sistant system, a personal knowledge assis-
tant for MOOC learners. MAssistant helps
users to trace the concepts they have learned
in MOOCs, and to build their own concept
graphs. There are three key components in
MAssistant: (i) a large-scale concept graph
built from open data sources, which contains
concepts in various domains and relations
among them; (ii) a browser extension which
interacts with learners when they are watch-
ing video lectures, and presents important con-
cepts to them; (iii) a web application allowing
users to explore their personal concept graphs,
which are built based on their learning activ-
ities on MOOCs. MAssistant will facilitate
the knowledge management task for MOOC
learners, and make the learning on MOOCs
easier.

1 Introduction

Massive Open Online Courses (MOOCs) have ex-
perienced a rapid development since 2012. Many
MOOC platforms have been launched, including
Coursera1, edX2, and Udacity3 etc. MOOCs have
become increasingly popular, and attracted mil-
lions of online users. By 2018, Coursera has en-
rolled 37 million students, and the total number of
MOOC learners all over the world has reached 100
million4. Compared to traditional online learning
courses, MOOCs provide a new and flexible way
for people to acquire knowledge and skills.

MOOC lectures are mainly delivered in short
videos, each video covers a specific topic. When

∗ Corresponding author: Z.Wang(zcwang@bnu.edu.cn)
1https://www.coursera.org
2https://www.edx.org
3https://www.udacity.com
4https://www.classcentral.com/report/moocs-stats-and-

trends-2018/

taking courses on MOOC platforms, learners will
meet important concepts in video lectures. Usu-
ally, learners will take notes about the important
concepts, and figure out key relations among them.
After finishing one or several courses, revisiting
and organizing the learned concepts is very impor-
tant for learners to build their own knowledge sys-
tem. To facilitate the knowledge management task
for MOOC learners, we build a personal knowl-
edge assistant system called MAssistant. MAs-
sistant has a large-scale concept graph built from
open data, which covers concepts and their rela-
tions in various domains. MAssistant can identify
and record important concepts in MOOC lectures
for its users, and provide user-friendly interfaces
to allow users to annotate and explore concepts
they have learned. By interacting with users dur-
ing their learning activities on MOOCs, MAssis-
tant is able to generate a personal concept graph
for each user, which contains inter-connected con-
cepts, lectures and courses.

MAssistant can be accessed at https://
kg.bnu.edu.cn. There is also a screen-
cast at https://youtu.be/X40X1T9fNJg
which demonstrates the usage of our system. We
believe that MAssistant can make the study easier
for MOOC learners.

2 System Architecture

Figure 1 shows the overall architecture of our
MAssistant system. In the backend of our sys-
tem, a concept graph and a database are used to
support the functions of MAssistant. The con-
cept graph is built from several open datasets, in-
cluding Wikipedia5, WikiData6, MultiWiBi7, and
WordNet8. It contains concepts and their rela-

5https://www.wikipedia.org
6https://www.wikidata.org/
7http://wibitaxonomy.org
8https://wordnet.princeton.edu

133

Server Database

Users

Show concept graph and a
list of concepts

Set learning states
of concepts

Request to
change or
get data

Return structured data
that will be used to
display

Several views to explore
knowledge graph:
course page, concept
page and timeline.

Request for knowledge graph

Request for knowledge graph

Return users
knowledge graph

Request for users data

Return users data

Change database &
Request for lecture data

Return lecture data

Web ApplicationBrowser Extension

Backend

Frontend

Users

Share users login state

Concept Graph
Calculate concept graph

Request to get concept graph

Figure 1: System architecture of MAssistant

tions in various domains, and serves as the key
basis of our system. There is also a concept link-
ing component associated with the concept graph,
which identifies and links concepts in courses to
the concept graph. The database is used to store
user-specific information on concepts and courses.
Learned concepts and courses are all recorded in
the database for each user. Users’ personal con-
cept graphs are subgraphs of the system’s con-
cept graph, which are generated based on the user-
specific information in the database. In the fron-
tend, our system uses a browser extension and a
web application to offer users helpful functions
on tracing concepts in MOOCs. The browser ex-
tension interacts with users when they are watch-
ing video lectures, and the web application allows
users to explore their personal concept graphs af-
ter leaving MOOC platforms.

3 User Interfaces

Figure 2 shows the overview of MAssistant’s user
interfaces. MAssistant interacts with users via a
browser extension and a web application. This
section introduces them in detail.

3.1 Browser Extension

The browser extension is installed in the browser,
which can be used by users when they are taking
MOOC lectures. When watching a video lecture,
the user can click the icon of the extension, which

will activate a popup window in the upper right
corner of the browser. The popup window shows
important concepts in the current lecture opened
in the browser, and let users do simple annotations
on concepts. As shown in Figure 2, the window of
browser extension shows a concept timeline and a
concept graph to users.

Concept Highlights in Timeline. When a user
opens the webpage of a video lecture in the
browser, the browser extension of MAssistant ex-
tracts important concepts from the transcript of
the video, and presents them in a timeline to the
user. The concepts are listed by the order in which
they appear in the video. Users can quickly get an
overview of the concepts mentioned in the lecture,
which helps them to well understand the knowl-
edge structure of the lecture. Users can click the
concept in the timeline, and a webpage in our web
application will be opened to show more informa-
tion on the concept.

Concept Graph with Learning States. The
browser extension visualizes a small concept
graph illustrating important relations among con-
cepts. By right clicking on the concepts in the
graph, users can easily annotate the concepts in
one of three states: leanred, learning, and tolearn.
Learned concepts are those learners have already
mastered; concepts in tolearn state are unfamiliar
to the learners; concepts in learning state are those
that the learners are learning but haven’t mastered

134

Course Page

Web Application
Browser Extension

Concept List

Concept Graph

Figure 2: Overview of MAssistant’s interfaces

yet. MAssistant will record users’ annotations on
the concepts, and later users can get a summary of
their knowledge states in the web application.

3.2 Web Application

The web application provides users with their
personal concept graphs, which contains all the
MOOCs and concepts they have learned. MAs-
sistant presents several views to users to explore
their concept graphs, including a visualization of
concept graph, a course page, a concept page and
a study timeline.
Visualization of concept graph. As shown in
Figure 2, the homepage of MAssistant visualizes
a personal concept graph for a login user. The
graph contains all the MOOC lectures and con-
cepts that the user has learned so far. Lectures are
nodes in gray in the graph. Concepts are in three
colors, each of which identifies a different learn-
ing state of the concept. If a concept appears in a
lecture, there is a link between them in the graph.
This concept graph is a personalized one, differ-
ent users get distinct graphs built from their own
learning experiences on MOOCs. When clicking
on the nodes in the concept graph, users will be
directed to pages of the corresponding courses or
concepts.
Course page. The course page shows lectures and
concepts in the courses a user has learned. For
each course, a tree structure is generated in the

course page, which organizes lectures and con-
cepts in it. Figure 3 shows an example of the tree
for the Machine Learning course in Coursera. The
root of the tree is the course Machine Learning,
the inner nodes are lectures in the course, the leaf
nodes are concepts in the corresponding lectures.
The concepts are also in colors, representing their
learning states of the current user. By clicking the
lecture nodes or concept nodes, the user will be di-
rected to the MOOC platforms or the concept page
in our web application.

Concept page. The concept page shows detailed
information of a specific concept. As shown in
Figure 4, there are three sections in the concept
page. The first section shows the definition of the
concept, which is obtained from Wikipedia. The
second section visualizes important concept rela-
tions of the current one. Three kinds of relations
are shown, including IsA, Prerequisite, and Relat-
edTo. Details about how concepts’ relations are
established will be introduced in Section 4.

Study Timeline. The study timeline displays all
the MOOC lectures a user has taken in the order of
the occurrence time, as shown in Figure 5. Con-
cepts are also outlined together with the lectures in
which they appeared. Users can review the learn-
ing history in their study timelines.

135

Figure 3: Tree structure showing lectures and concepts in a course

4 Concept Graph of MAssistant

The basis of MAssistant system is a large-scale
concept graph. This section introduces how this
concept graph is built and how the lectures are
linked to the concept graph.

4.1 Creating Concepts

To build a concept graph covering concepts in var-
ious domains, data from Wikipedia is used as the
knowledge source. Wikipedia contains huge num-
ber of articles and rich links among them. Each
article in Wikipedia describes a subject with texts
and structured tables. In this work, we consider
each Wikipedia page describing a concept, and
create a concept in our concept graph from ev-
ery Wikipedia page. Some pages in Wikipedia
are created for administration purposes, they are
excluded from our concept graph. By the above
method, 17,688,418 concepts are created in the
concept graph.

4.2 Creating Relations

We consider three kinds of relations between con-
cepts to be useful and important for knowledge
learning. They are IsA, Prerequisite, and Relat-
edTo. IsA relation defines the hierarchy of con-
cepts, which is indispensable for helping learn-
ers to organize the learned concepts. Prerequi-
site relation identifies the dependencies between

concepts in the learning process, which tells the
learning orders of concepts. RelatedTo relation
connects highly related concepts in the concept
graph, which is helpful for recommending new
concepts to the learners. There are 7,054,983 IsA
relations, 15,614,563 Prerequisite relations, and
823,494,078 RelatedTo relations in the concept
graph. The methods of creating these relations are
introduced as follows.
IsA Relation. Several approaches have been pro-
posed to extract IsA relations from Wikipedia.
Some approaches focus on extracting IsA rela-
tions from the category network of Wikipedia, oth-
ers obtain IsA relations from Wikipedia articles.
Among the previous approaches, MultiWiBi (Flati
et al., 2016) automatically creates concept hier-
archy by integrating the taxonomy of Wikipedia
pages and categories in multiple languages. The
taxonomy built by MultiWiBi has high quality and
coverage. We use the IsA relations in MultiWiBi
to establish IsA relations among concepts in our
concept graph. We also obtain IsA relations from
WordNet and Wikidata, and import them to our
concept graph. For WordNet, we treat nouns in it
as concepts, and extract hypernym-hyponym rela-
tions in WordNet as IsA relations among concepts.
For WikiData, we treat each item as a concept,
and extract instance of and subclass of relations
as IsA relations. After obtaining IsA relations from
WordNet and Wikidata, we first match their con-

136

Figure 4: Concept page in MAssistant

cepts with those in our concept graph, and then
add the IsA relations to the concept graph.
Prerequisite Relation Prerequisite relations be-
tween concepts can be discovered from Wikipedia
links (Liang et al., 2015), university curricu-
lum (Liang et al., 2017) and MOOCs (Pan et al.,
2017). Mainly following the work of Liang
et al. (2018), we discover prerequisite relations
among concepts by using features computed from
Wikipedia links and MOOC lectures. Table 1 out-
lines all the features we use. To restrict the number
of candidate prerequisite relations, we only select
concept pairs appearing in the same MOOC lec-
tures or directly linked to each other in Wikipedia
as the candidates. For each candidate concept pair,
we first compute the features in Table 1, and then
feed the features to a logistic regression model
to determine whether they have the prerequisite
relation. The logistic regression model is pre-
trained on the Wikipedia concept map dataset built
by Wang et al. (2016) .
RelatedTo Relation. RelatedTo relation con-
nects concepts that have high semantic related-
ness. To automatically create the RelatedTo re-
lation between concepts, we compute relatedness

Figure 5: Study timeline in MAssistant

Table 1: Features for discovering prerequisite relations
between concepts A and B

Features Explanation
RefD Reference distance of A and B in

Wikipedia (Liang et al., 2015).
In degree The in degree of A/B in Wikipedia.
Out degree The out degree of A/B in

Wikipedia.
#Links Number of links from A/B to B/A.
Link proportion The proportion of common in-links

shared by A and B.
NGD The normalized Google Distance

between A and B (Milne and Wit-
ten, 2008) .

#Cooccurrence Number of times that A and B ap-
pearing in the same MOOC lec-
tures.

of concepts using word embedding and network
embedding techniques. More specifically, we
first build a corpus containing only concepts by
extracting sequences of anchor texts (concepts’
names) in Wikipedia pages. Then the Skip-gram
model (Mikolov et al., 2013) is used to learn em-
beddings of concepts in the corpus. Besides, we
also build a network of concepts by using page
links in Wikipedia. The node2vec model (Grover
and Leskovec, 2016) is used to learn embeddings
of concepts in the network. The relatedness of two
concepts are computed as the average of the co-

137

sine similarities between their word embeddings
and network embeddings. Two kinds of embed-
dings capture both textual and topological context
information of concepts, we believe that combin-
ing them leads to more accurate concept related-
ness. To avoid computing relatedness of all the
concepts pairs, we restrict the candidate concepts
of RelatedTo relation to those have direct links to
each other in Wikipedia. Concept pairs with relat-
edness no less than a threshold (0.3 in our system)
will be linked by RelatedTo relation in our concept
graph.

4.3 Concept Linking

Concept linking is to identify concepts mentioned
in a MOOC lecture, and link them to the target
concepts in our concept graph. Concept linking is
important to build connections between MOOCs
and our concept graph. To achieve this task, our
system first gets the transcripts of the lectures via
the browser extension, and then use the DBpedia-
Spotlight9 to annotate Wikipedia links in the tran-
scripts. Since the concepts in our concept graph
are all from Wikipedia, the annotated Wikipedia
links can be easily replaced with concepts in our
concept graph.

Although DBpedia-Spotlight can find concepts
in the transcripts with high precision, not all the
detected concepts are important in the lectures.
Presenting all the identified concepts to users will
not help them at all. Among all the detected con-
cepts, we need to find the key concepts in the lec-
tures. Therefore, we use a greedy concept selec-
tion method to incrementally select concepts hav-
ing high relatedness to the main subject of the lec-
tures. First, concepts appearing in the lecture ti-
tle are taken as the initial key concepts; then, the
concept having the highest average relatedness to
the already selected ones is incrementally added
to the set of key concepts. The selection process
finishes when the relatedness between the selected
concepts and the new one is less than a threshold.

5 Conclusion and Future Work

This paper presents MAssistant, a personal knowl-
edge assistant for MOOC learners. MAssistant
provides users with helpful functions to trace the
concepts they have learned in MOOCs, and to
build their own concept graphs. MAssistant is
already in service at https://kg.bnu.edu.

9https://www.dbpedia-spotlight.org

cn, and the documentation of the system is avail-
able at https://massistant.github.io.

In the future work, we will develop more func-
tions for users to interact with MAssistant. For
example, MAssistant will allow users to add or
delete concepts in their personal concept graph.
In addition, we will also study how to use users’
annotations on concepts to improve the quality of
concept relations in MAssistant system.

References
T. Flati, D. Vannella, T. Pasini, and R. Navigli.

Multiwibi: The multilingual wikipedia bitaxonomy
project. Artificial Intelligence, 241:66 – 102, 2016.
ISSN 0004-3702.

A. Grover and J. Leskovec. Node2vec: Scalable fea-
ture learning for networks. In Proceedings of the
22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 855–864, 2016. ISBN 978-1-4503-4232-2.

C. Liang, Z. Wu, W. Huang, and C. L. Giles. Measur-
ing prerequisite relations among concepts. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1668–
1674, Sept. 2015.

C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles.
Recovering concept prerequisite relations from uni-
versity course dependencies. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, AAAI’17, pages 4786–4791, 2017.

C. Liang, J. Ye, S. Wang, B. Pursel, and C. L. Giles.
Investigating active learning for concept prerequisite
learning. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Ef-
ficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

D. Milne and I. H. Witten. An effective, low-
cost measure of semantic relatedness obtained from
wikipedia links. In Proceedings of the first AAAI
Workshop on Wikipedia and Artificial Intelligence,
2008.

L. Pan, C. Li, J. Li, and J. Tang. Prerequisite rela-
tion learning for concepts in MOOCs. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1447–1456, Vancouver, Canada, July
2017. Association for Computational Linguistics.

S. Wang, A. Ororbia, Z. Wu, K. Williams, C. Liang,
B. Pursel, and C. L. Giles. Using prerequisites to ex-
tract concept maps fromtextbooks. In Proceedings
of the 25th ACM International on Conference on In-
formation and Knowledge Management, CIKM ’16,
pages 317–326, 2016. ISBN 978-1-4503-4073-1.

138

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 139–144
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

MedCATTrainer: A Biomedical Free Text Annotation Interface with
Active Learning and Research Use Case Specific Customisation

Thomas Searle1, Zeljko Kraljevic1, Rebecca Bendayan1,
Daniel Bean1, Richard Dobson1,2

1Department of Biostatistics and Health Informatics,
Kings College London, London, U.K.

2Institute of Health Informatics, University College London,
222 Euston Road, London NW1 2DA, U.K.

{firstname.lastname}@kcl.ac.uk

Abstract

We present MedCATTrainer1 an interface
for building, improving and customising a
given Named Entity Recognition and Linking
(NER+L) model for biomedical domain text.
NER+L is often used as a first step in deriving
value from clinical text. Collecting labelled
data for training models is difficult due to the
need for specialist domain knowledge. Med-
CATTrainer offers an interactive web-interface
to inspect and improve recognised entities
from an underlying NER+L model via active
learning. Secondary use of data for clinical re-
search often has task and context specific crite-
ria. MedCATTrainer provides a further inter-
face to define and collect supervised learning
training data for researcher specific use cases.
Initial results suggest our approach allows for
efficient and accurate collection of research
use case specific training data.

1 Introduction

We present a flexible web-based open-source
use-case configurable interface and workflow for
biomedical text concept annotation - MedCAT-
Trainer2.

Murdoch and Detsky (2013) estimates that 80%
of biomedical data is stored in unstructured text
such as Electronic health records (EHRs). Al-
though EHRs have seen widespread global adop-
tion, effective secondary use of the data remains
difficult (Elkin et al., 2010). However, sig-
nificant progress has been made on agreement
and usage of standardised terminologies such
as the Systematized Nomenclature of Medical
Clinical Terms (SNOMED-CT) (Stearns et al.,
2001) and the Unified Medical Language System
(UMLS)(Bodenreider, 2004). Annotating EHR
text with these concept databases is often seen as

1https://www.youtube.com/watch?v=lM914DQjvSo
2https://github.com/CogStack/MedCATtrainer

a first step in delivering data driven applications
such as precision medicine, clinical decision sup-
port or real time disease surveillance (Assale et al.,
2019).

EHR text annotation is challenging due to the
use of domain specific terms, abbreviations, mis-
spellings and terseness. Text can also be ‘copy-
pasted’ from prior notes, structured tables entered
into unstructured form, content with varying tem-
porality and scanned images of physical docu-
ments (Botsis et al., 2010). Annotation is further
complicated as researchers have task and context
specific parameters. For example, whether fam-
ily history or suspected diagnoses are considered
relevant to the task.

MedCAT3, manuscript in preparation (Zeljko
and Lucasz, 2019), is a Medical Concept
Annotation Tool that uses unsupervised machine
learning to recognise and link medical concepts
with clinical terminologies such as UMLS. Med-
CAT, like similar tools, uses a concept database to
find and link concept mentions inside of biomedi-
cal documents. In addition it has disambiguation,
spell-checking and the option for supervised learn-
ing for improved disambiguation.

We introduce a novel web based application that
supplements usage of a biomedical NER+L mod-
els, such as MedCAT. Our contributions are as fol-
lows:

1. Concept Inspection and Addition: an in-
terface that to inspect the identified concepts
from free text, and add missing concepts to an
existing NER+L model. This interface aligns
with MedCAT, but could also be used with
other models that have similar capabilities.

2. Active Learning: an interface for active
learning, enabling users to provide minimal

3https://github.com/CogStack/MedCAT

139

training data to assist in improving and cor-
recting the NER+L. This interface requires
that the backing NER+L system supports ac-
tive learning.

3. Clinical Research Question Specific Anno-
tation: a further interface for configurable
use case specific annotation of identified con-
cepts. Allowing for the collection of research
question specific training data. For exam-
ple, annotating specific temporal features of
a concept.

2 Related Work

Outside of the biomedical domain general pur-
pose annotation interfaces have been developed
for most popular NLP tasks such as NER, NEL,
relation extraction, entity normalisation, depen-
dency parsing, chunking etc. Popular choices in-
clude open-source tools such as BRAT (Stenetorp
et al., 2012) that also allows for managing the dis-
tribution, monitoring and collection of annotated
corpora. General purpose tools with active learn-
ing include the commercial product Prodigy4. Al-
though these tools are mature and offer advanced
features they can be complex to setup and do not
offer integration with existing biomedical domain
NER+L systems.

Prior work on biomedical NER+L includes
MetaMAP (Aronson, 2001) and CTakes (Savova
et al., 2010). Both have provided interfaces to in-
spect recognised entities but they have not pro-
vided means to correct and amend concepts or
specify further annotations for specific research
questions.

Another tool for biomedical NER+L, SemEHR
Wu et al. (2018), offers features to add custom pre
and post processing steps and research specific use
cases, but does not directly improve the NER+L
model via an interface. Instead it treats the pro-
vided NER+L model as a black-box model.

3 MedCATTrainer

MedCATTrainer is a web-based interface for
inspecting, adding and correcting biomedical
NER+L models through active learning. An ad-
ditional interface allows for research specific an-
notations to be defined and collected for training
of supervised learning models.

4https://explosion.ai/blog/prodigy-annotation-tool-active-
learning

The interfaces are built with Vue.js5 for
the front-end and the python6 web framework
Django7 for the web API and integration with
NER+L models such as MedCAT. We use the
Django admin features to allow administrators
to configure research question specific supervised
learning tasks.

MedCATTrainer is deployed via a Docker8 con-
tainer. This ensures users can build, deploy
and run MedCATTrainer cross-platform without
lengthy build and run processes, advanced infras-
tructure knowledge or root access to systems. This
is especially important in health informatics as
hospital infrastructure is often restrictive. Med-
CATTrainer allows researchers to build on top
of existing biomedical domain ontologies, such
as UMLS, for two use cases. Firstly, improv-
ing the underlying NER+L model by adding syn-
onyms, abbreviations, multi-token concepts and
misspellings directly from the interface. Secondly,
by allowing research use case specific annotations
to be defined and collected for training of super-
vised learning models.

3.1 Concept Inspection and Addition

Figure 1a shows the ‘Train Annotations’ interface.
Users can inspect and correct the concepts iden-
tified by the underlying NER+L model. Entities
that have not been recognised can also be added
to the NER+L model concept database. This al-
lows researchers to test the learnt entity recogni-
tion/linking capabilities of the model whilst tai-
loring it to recognise sub-domain specific lexicon.
This can include abbreviations or misspellings
common to specific corpora. Figure 1b shows
the form entry to add new concepts to the un-
derlying concept database. Semantically equiva-
lent texts can be added under the same Concept
Unique Identifier along with synonyms. Advanced
NER+L tools (e.g. MedCAT) learn from the con-
textual embeddings of words to disambiguate fu-
ture occurrences. MedCATTrainer provides a text-
box for entering the surrounding context tokens to
assist with concept disambiguation.

3.2 Active Learning

Annotating biomedical domain text for NER+L
requires expert knowledge and therefore cannot be

5https://vuejs.org/
6https://www.python.org/
7https://www.djangoproject.com/
8https://www.docker.com

140

(a) The MedCATTrainer interface for viewing identified con-
cepts by the underlying NER+L model of a publicly availablea

neurological consultation summary showing the concept meta-
data and active learning feedback input controls.

ahttps://bit.ly/2RLcdJx (b) Side panel for the addition of new concepts.

Figure 1: The interfaces for inspecting annotations and the addition of concepts.

easily crowd sourced. Active learning is a com-
mon approach to provide a minimal set of high
value training examples for manual annotation.
Examples are valued with respect to expected im-
provement in classification performance once la-
belled and the model retrained (Settles, 2009).

We use a simple strategy of certainty based se-
lective sampling (Lewis and Catlett, 1994) to dis-
play low confidence examples. Concretely, given
a trained model M, and the total set of annota-
tions predicted on a new document d by model M
is L = {l1, l2, . . . ln} where the model labelled
the document with n annotations. An annotation
li has an associated confidence cli probability in
the annotation. An annotation manager defines δ,
a confidence cutoff score. The set of annotations
A shown to an annotator is therefore Φ(L) where
Φ(li) = cli > δ.

Each human annotator is instructed to review
each identified concept and provide feedback on
correctness. Feedback is provided through the ac-
tion of clicking the ‘tick’ for correct or ‘cross’ for
incorrect as shown in the top right of Figure 1a.

If an identified concept is incorrect human an-
notators are asked to provide feedback, rerun the
NER+L model (top left ‘Rerun the Annotator’),
and then confirm if the misidentified concept has
been corrected. More feedback can be provided
if needed. Our pilot test users found this quickly
resulted in the correctly identified and linked con-
cept as text spans often only have one or two alter-
native concepts.

3.3 Clinical Research Question Specific
Annotation

It would be infeasible to have a clinical terminol-
ogy to define every possible contextual represen-
tation of a concept. For example, disambiguation
of ‘seizure’ for a symptom of epilepsy and ‘first
seizure clinic’ for a clinic that provides epilepsy
care or ’history of seizures’ for a historical case of
epilepsy.

Our second interface solves this problem by al-
lowing clinical researchers to define use case ori-
entated tasks and associated annotations for pre-
viously identified and linked concepts. Custom
classifiers are then trained and layered over the ex-
isting NER+L model for context specific concept
disambiguation. An example configured screen
for ’Temporality’ and ’Phenotyping’ tasks for an
ongoing clinical research project is shown in Fig-
ure 2 - using replacement publicly available data.
The top bar lists the overall task name followed by
the number of documents to be annotated. The top
right corner opens the current task help document,
listing annotation guidelines for this use-case.

The left panel itemises each text span, the asso-
ciated Concept Unique Identifier (CUI) - that the
NER+L model has identified and linked with the
text, and the current value of each task specific an-
notation. The value ‘n/a’ indicates the task has not
been completed for that span. Users can choose
any order of the text spans to annotate. The cur-
rently selected text span is highlighted in the ta-
ble and within the central text area showing the
entirety of the document. Clinical notes can be

141

Figure 2: Task and context specific annotation interface configured for ‘Temporality’ and ‘Phenotype’ tasks

long in length. Clicking a text span from the side-
bar scrolls the central text area to the correspond-
ing span assisting human annotators in locating
the span to annotate. The text area also highlights
each spans current annotated value for the current
task.

The bottom bottom bar lists the current task and
the possible annotation values. Figure 2 shows the
‘Temporality’ task and the associated annotation
values ‘Is Historical’ and ‘Not Historical‘. The
values are in context to a seizure care pathway use
case and are defined as any currently experienced
mention of seizure symptoms in present clinical
encounter. Use cases and associated tasks values
are configurable via the admin interface.

The bottom right corner provides navigation be-
tween text spans and tasks via the arrow buttons.
Navigating between spans highlights the current
span to be annotated in the main left sidebar and
auto scrolls to the next span in the main text area.
The navigation controls here, the sidebar and the
main text area allow human annotators to com-
plete the task in any order they are comfortable.

The ‘Incomplete’ button marks the current doc-
ument to be revisited at a later date. Samples
are marked incomplete if the NER+L model has
misidentified the concept or there is a genuine am-
biguity. The ‘Submit’ button marks the document
as complete. Both actions store and retrieve the
next document if there is one available. If there
are no more files to annotate a dialog prompts the
user to return to the home screen.

Corpora are currently directly uploaded via a
use case management screen. Future deploy-
ments will directly ingest documents via an elas-

ticsearch9 connector to hospital EHR deployments
of CogStack (Jackson et al., 2018) an EHR in-
gestion, transformation and search service de-
ployed at King’s College Hospital (KCH) and
South London and Maudsley(SLaM) NHS Foun-
dation Trusts, UK.

4 Results

We ran an initial small scale pilot experiment to
test the suitability of our use case specific tool
to quickly and accurately collect training data la-
belling the temporal features of seizure symptoms.
This is similar to the task shown in Figure 2.
We used MIMIC3 (Johnson et al., 2016), a de-
identified publicly available database of ICU ad-
mission data that includes observations, consulta-
tion and discharge summary reports. We randomly
sampled 127 discharge summaries that contained
one or more token occurrences that match the
regular expression ‘seizure|seizre|seizur|siezure’,
where | is an OR operator between the text tested
to be present. We intentionally rely on a rule-based
NER mode (i.e. the regex) here to demonstrate
our tools flexibility to use possible alternatives to
MedCAT if desired.

We asked 2 human non-clinical annotators to la-
bel temporal features of each occurrence in rela-
tion to a ‘present’, i.e. ‘chief complaint: seizure’
or ‘historical’, i.e. ‘family history of seizures’,
mention of the term. Both took approximately
35 minutes to review all 127 documents. We
achieve an percent agreement of 89% and a Co-
hen’s Kappa κ = 0.695, Table 1. Both annota-
tors marked some records as incomplete as they ei-
ther mostly referred to non symptomatic mentions

9https://www.elastic.co/

142

R1* R2* R1 R2
Documents 107 117 100 100
Concepts 351 344 317 317
Historical 67 80 79 65

Not Historical 276 264 238 252

Table 1: Total labelled ‘seizure’ symptom concepts and
for each human annotator (R1, R2) for the ‘temporal-
ity’ task of labelling concepts that have occurred the
past relative to the hospital episode. * indicates raw
numbers before taking into account the intersection of
notes between annotators

of seizure, i.e. ‘anti-seizure meds prophylaxis’ or
the prevention of future seizures. This resulted in
each rater having differing total documents ‘sub-
mitted’ as there are some document with mixes of
the above occurrences. We took the intersection of
submitted documents from both raters to compute
the final agreement scores.

Using the collected data we fit a simple Sckit-
learn10 Random Forest (RF) classifier model
demonstrating the effectiveness of the data collec-
tion in being able to easily fit a well performing
model for the task of recognising temporality of
seizure symptoms. We took a random 70/30 train
test split, took 100 characters either side of the
labelled ‘seizure’ occurrence, tokenized the plain
text on whitespace then used a TF-IDF vectoriser
with the default English stop-words list. We ran a
grid search across TF-IDF and random forest clas-
sifier parameters, with a 3 fold cross validation and
found the best fitting parameters: TF-IDF features
500 (range:500, 1000, 10000), RF maximum num-
ber trees of 100 range(100, 300, 500, 1000) and
maximum tree depth 20 (range: 5, 20, 50, 75).
We achieve an accuracy of this binary classifica-
tion task of 92% and f1 score .79.

5 Discussion and Future Work

From our labelling exercise we demonstrate the
speed and accuracy of our configurable use case
specific interface. Strong scores across % agree-
ment, Cohen’s Kappa and trained model accuracy
indicate good agreement between annotators, in-
terpretations of the task and reasonable signal cap-
tured even with this small data set. Although, it is
likely the model is over-fitting due to the size of
the data set. Given the prior experiment - across
two raters - gathering enough accurate data to, for

10https://scikit-learn.org/stable/index.html

example, fine-tune a pretrained language model
based classifier would be of the order of hours of
manual labelling for approx 2k samples. We see
this rapid labelling ability as a key strength of our
interface.

We foresee that trained classifiers will likely
generalise to additional research questions. For
example language used to express temporality of
seizures is likely to be similar to temporality of
stroke or myocardial infarction.

Generally, training models across use cases will
likely capture shared semantics. This suggests
particular use cases would require less examples to
train as annotated data or the model itself could be
reused, therefore jump-starting clinical research.
If a model is not performing for a new use case,
further data could be collected to fine tune the
model to a specific task, context or sub-domain
corpora.

Clinically, domain experts in the neurology de-
partment of KCH, with varying levels of exper-
tise (medical student to practising consultant) are
scheduled to participate in the use case shown in
Figure 2 in the coming months.

Our initial testing, not shown above due to
space, of the active learning approach for improv-
ing the bound NER+L model suggests we can im-
prove performance with minimal training data.

6 Conclusions

We have presented a lightweight, flexible,
web-based, open-source annotation interface for
biomedical domain text. MedCATTrainer is inte-
grated with a biomedical NER+L model and al-
lows for addition of missing concepts, improve-
ments to the underlying NER+L model through
active learning, and a configurable interface for
clinical researchers to define annotations specific
for their research questions. Preliminary results
show promise for our interface and our approach
to biomedical NER+L, which is often seen as a
first step in deriving value from data sources such
as electronic health records.

Acknowledgments

DMB is funded by a UKRI Innovation Fel-
lowship as part of Health Data Research UK
(MR/S00310X/1). RB is funded in part by grant
MR/R016372/1 for the Kings College London
MRC Skills Development Fellowship programme
funded by the UK Medical Research Council

143

(MRC) and by grant IS-BRC-1215-20018 for the
National Institute for Health Research (NIHR)
Biomedical Research Centre at South London
and Maudsley NHS Foundation Trust and Kings
College London. RD’s work is supported by
1.National Institute for Health Research (NIHR)
Biomedical Research Centre at South London and
Maudsley NHS Foundation Trust and Kings Col-
lege London. 2. Health Data Research UK, which
is funded by the UK Medical Research Coun-
cil, Engineering and Physical Sciences Research
Council, Economic and Social Research Council,
Department of Health and Social Care (England),
Chief Scientist Office of the Scottish Govern-
ment Health and Social Care Directorates, Health
and Social Care Research and Development Divi-
sion (Welsh Government), Public Health Agency
(Northern Ireland), British Heart Foundation and
Wellcome Trust. 3. The National Institute for
Health Research University College London Hos-
pitals Biomedical Research Centre. This paper
represents independent research part funded by
the National Institute for Health Research (NIHR)
Biomedical Research Centre at South London and
Maudsley NHS Foundation Trust and Kings Col-
lege London. The views expressed are those of
the author(s) and not necessarily those of the NHS,
MRC, NIHR or the Department of Health and So-
cial Care.

References
A R Aronson. 2001. Effective mapping of biomedical

text to the UMLS metathesaurus: the MetaMap pro-
gram. Proc. AMIA Symp., pages 17–21.

Michela Assale, Linda Greta Dui, Andrea Cina, Andrea
Seveso, and Federico Cabitza. 2019. The revival of
the notes field: Leveraging the unstructured content
in electronic health records. Front. Med., 6:66.

Olivier Bodenreider. 2004. The unified medical
language system (UMLS): integrating biomedical
terminology. Nucleic Acids Res., 32(Database
issue):D267–70.

Taxiarchis Botsis, Gunnar Hartvigsen, Fei Chen, and
Chunhua Weng. 2010. Secondary use of EHR: Data
quality issues and informatics opportunities. Sum-
mit Transl Bioinform, 2010:1–5.

Peter L Elkin, Brett E Trusko, Ross Koppel, Ted Sper-
off, Daniel Mohrer, Saoussen Sakji, Inna Gurewitz,
Mark Tuttle, and Steven H Brown. 2010. Secondary
use of clinical data. Stud. Health Technol. Inform.,
155:14–29.

Richard Jackson, Ismail Kartoglu, Clive Stringer,
Genevieve Gorrell, Angus Roberts, Xingyi Song,
Honghan Wu, Asha Agrawal, Kenneth Lui, Tudor
Groza, Damian Lewsley, Doug Northwood, Amos
Folarin, Robert Stewart, and Richard Dobson. 2018.
CogStack - experiences of deploying integrated in-
formation retrieval and extraction services in a large
national health service foundation trust hospital.
BMC Med. Inform. Decis. Mak., 18(1):47.

Alistair E W Johnson, Tom J Pollard, Lu Shen, Li-
Wei H Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. 2016. MIMIC-III,
a freely accessible critical care database. Sci Data,
3:160035.

David D Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In William W Cohen and Haym Hirsh, editors, Ma-
chine Learning Proceedings 1994, pages 148–156.
Morgan Kaufmann, San Francisco (CA).

Travis B Murdoch and Allan S Detsky. 2013. The
inevitable application of big data to health care.
JAMA, 309(13):1351–1352.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo
clinical text analysis and knowledge extraction sys-
tem (cTAKES): architecture, component evaluation
and applications. J. Am. Med. Inform. Assoc.,
17(5):507–513.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

M Q Stearns, C Price, K A Spackman, and A Y Wang.
2001. SNOMED clinical terms: overview of the de-
velopment process and project status. Proc. AMIA
Symp., pages 662–666.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: A web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL ’12, pages 102–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Honghan Wu, Giulia Toti, Katherine I Morley, Zina M
Ibrahim, Amos Folarin, Richard Jackson, Ismail
Kartoglu, Asha Agrawal, Clive Stringer, Darren
Gale, Genevieve Gorrell, Angus Roberts, Matthew
Broadbent, Robert Stewart, and Richard J B Dob-
son. 2018. SemEHR: A general-purpose semantic
search system to surface semantic data from clinical
notes for tailored care, trial recruitment, and clinical
research. J. Am. Med. Inform. Assoc., 25(5):530–
537.

Kraljevic Zeljko and Roguski Lucasz. 2019.
Cogstack/medcat: First release of medcat.

144

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 145–150
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Memory Grounded Conversational Reasoning

Seungwhan Moon, Pararth Shah, Anuj Kumar, Rajen Subba
Facebook Assistant

{shanemoon, pararths, anujk, rasubba@}fb.com

Abstract
We demonstrate a conversational system
which engages the user through a multi-modal,
multi-turn dialog over the user’s memories.
The system can perform QA over memories
by responding to user queries to recall spe-
cific attributes and associated media (e.g. pho-
tos) of past episodic memories. The system
can also make proactive suggestions to sur-
face related events or facts from past memo-
ries to make conversations more engaging and
natural. To implement such a system, we col-
lect a new corpus of memory grounded con-
versations, which comprises human-to-human
role-playing dialogs given synthetic memory
graphs with simulated attributes. Our proof-
of-concept system operates on these synthetic
memory graphs, however it can be trained and
applied to real-world user memory data (e.g.
photo albums, etc.) We present the architec-
ture of the proposed conversational system,
and example queries that the system supports.

1 Introduction

In the last few decades, people have been stor-
ing an increasing amount of their life’s memories
in the form of digital multimedia, e.g. photos,
videos and textual posts. Retrieving one’s mem-
ories from these memory banks and reminiscing
about events from one’s personal and professional
life is a prevalent desire among many users. Tra-
ditionally, the interfaces to access these memories
are either (i) keyword based search systems which
demand specific keyword combinations to iden-
tify and retrieve the correct memories, or (ii) cat-
alog based browsing systems that allow scrolling
through memories across a single dimension, most
commonly, time of creation. However, we posit
that a more natural way of interacting with one’s
memories is through a flexible interface that can
support fuzzy queries by referencing memories
through various attributes, such as events, people,

Figure 1: Memory Grounded Conversational Rea-
soning between a user and the assistant with a parallel
(a) dialog and (b) memory graph pair. Dialog transi-
tions can be captured as walks over a memory graph.
(c) Some of the memories can be inferred from pho-
tos or other media, which are surfaced to the user when
they are available and relevant.

locations or activities associated with them, and
that can enable the user to explore other relevant
memories connected through one of many dimen-
sions, e.g. same group of people, same location,
etc., thereby not being restricted to browsing only
temporally adjacent memories.

We present a conversational system that pro-
vides a natural interface for retrieving and brows-
ing through one’s memories. The system sup-
ports conversational QA capability for open-ended
querying of memories, and also supports the abil-
ity to proactively surface related memories that the
user would naturally be interested in consuming.
An important element of such an open-ended di-
alog system is its ability to ground conversations
with past memories of users, making the interac-
tions more personal and engaging.

145

Figure 2: Memory Walker Chatbot UI for memory grounded conversations between a user and the assistant.

Figure 1 shows an example interaction sup-
ported by the demonstrated system, spanning mul-
tiple episodic memories that are represented as a
graph composed of memory nodes and related en-
tity nodes connected via relational edges. The ex-
ample above shows three key novel features of
the demonstrated system: 1) the ability of query-
ing a personal database to answer various com-
plex user queries (memory recall QA), 2) surfac-
ing photos most relevant to the dialog, and 3) iden-
tifying other memories to surface that are relevant
to conversational contexts, resulting in increased
engagement and coherent interactions.

Our system consists of several components:
First, we use the Memory Graph Networks (MGN)
model, which learns natural graph paths among
episodic memory nodes, conditioned over dialog
contexts. MGN can introduce new memory nodes
relevant to conversational contexts when memory
nodes are activated as a result of graph walks. Sec-
ond, the QA module takes as input user query
utterances and infers correct answers given can-
didate memory graph nodes activated with the
MGN model. Specifically, we utilize multiple
sub-module nets such as CHOOSE, COUNT, etc.,
to support discrete reasoning questions that can-
not be handled directly via graph networks. Fi-
nally, the photo recommender module then uses

the MGN graph node embeddings and the gener-
ated attention scores to retrieve the most relevant
photos for each dialog response.

Section 2 provides a detailed description of the
system’s user interface, method and data collec-
tion setup. Section 3 provides an analysis of
demonstrations performed via the system, and
Section 4 lists related work.

2 Memory Grounded Conversations

2.1 User Interface

The goal of the demonstrated system is to establish
a natural user interface (UI) for interacting with
memories. Figure 2 shows the UI of the demon-
strated system, composed of two main sections:
the media section (left) and the chat section (right;
highlighted yellow: assistant, blue: user). This is a
simple yet powerful interface for interacting with
memories, for the following reasons:

Flexible. The UI enables natural language QA
queries through text or voice input. This UI can be
deployed in a desktop, web or mobile application,
or on a connected home device like smart TVs.
For each user memory recall query, the system
provides a corresponding answer from the mem-
ory graph. In Figure 2 part 1, the user retrieves
a memory related to an activity (skiing) through a
textual question.

146

Figure 3: Memory Dialog Dataset Collection Interface, with an example. (a) User-playing agent is provided with
partial memory information to query about. (b) Assistant-playing agent has the ground-truth information about the
target memory as well as all related memories. (c) The two agents generate dialogs, grounded on the synthetic
memories that they are presented with.

Visual. The UI can display visual content con-
nected to the memories, and allow for further
queries into the content of the image or video. Au-
thors’ personal photos are used in the demonstra-
tion, attached with synthetically generated mem-
ory graphs.

Contextual. The system keeps track of the con-
versational context within a user session, allowing
the user to refer to entities present in the dialog or
media. In Figure 2 part 2, the user refers to the
event mentioned in the previous system response
and asks a further question regarding who attended
the event.

Proactive. The system can insert conver-
sational recommendations for exploring related
memories based on the system’s model of which
memories are naturally interesting for users to
consume in a particular context. In Figure 2 part 2,
the system suggests to the user other memory in-
stances that share the same activity and set of peo-
ple. The system can make the suggestions more
personalized by learning the sequences in which
users like to explore memories, from the user’s
past sessions.

2.2 Dataset: Memory Dialog

Synthetic Memory Graph: For the proposed sys-
tem, we first bootstrap the large-scale memory col-
lection through a synthetic memory graph gen-
erator, which creates multiple artificial episodic
memory graph nodes with connections to real en-
tities appearing on common-fact KGs (e.g. loca-

tions, events, public entities). We first build a syn-
thetic social graph of users, where each user is as-
signed to a random interest profile as a probability
distribution over the ‘activity’ space. We then iter-
atively generate a memory node and its associated
attributes and entities by sampling activities, par-
ticipants, locations, entities, time, etc. each from a
manually defined ontology. Through the realistic
memory graph that is synthetically generated, we
avoid the need for extracting memory graphs from
other structured sources (e.g. photo albums) which
are often private or limited in size. Note also that
by representing the memory database in a graph
format, it allows for flexible operations required
for complex QA and conversational reasoning.
Wizard-of-Oz Setup: We collect the Memory Di-
alog dataset in a Wizard-of-Oz setting (Shah et al.,
2018) by connecting two crowd-workers to en-
gage in a role-playing chat session either as a
user or an assistant, with the joint goal of creat-
ing natural and engaging dialogs (Figure 3). The
user-playing agent is given a memory node from
the synthetic memory graph with some of the at-
tributes hidden, and asked to initiate a conversa-
tion about those missing attributes to simulate a
memory recall query. The assistant-playing agent
is provided with a set of memories and photos
relevant to user’s questions, and is instructed to
use one or more of these memories to answer the
question and frame a free-form conversational re-
sponse. In addition, the assistant agent is en-
couraged to proactively bring up any other memo-

147

Figure 4: Overall architecture of the demonstrated system. Candidate memory nodes m = {m(k)} are provided
as input memory slots for each query q. The Memory Graph Network then traverses the memory graph to expand
the initial memory slots and activate other relevant entity and memory nodes. The output paths of MGN are
then used to trigger proactive memory reference, if relevant. The Answer Module executes the predicted neural
programs to decode answers given intermediate network outputs. The photo recommender is then called to retrieve
relevant photos (e.g. photos of the reference memory that includes the answer to a query).

ries relevant to conversational contexts that would
make the interaction more engaging and interest-
ing (e.g. memories with the same group of peo-
ple, at the same location as the reference mem-
ory, etc.). The two agents continue this process to
explore the given memory graph, until one of the
agents decides to end the conversation.

2.3 Method

Figure 4 illustrates the overall architecture and the
model components of the demonstrated system.
Input Module: For a given query q, its rele-
vant memory nodes m = {m(k)}Kk=1 for slot size
K are provided as initial memory slots via graph
searches. The Query Encoder then encodes the in-
put query with a language model. Specifically, we
represent each textual query with a state-of-the-art
attention-based Bi-LSTM language model (Con-
neau et al., 2017). The Memory Encoder then en-
codes each memory slot based on both its struc-
tural features (graph embeddings) and contextual
multi-modal features from its neighboring nodes
(e.g. attribute values). We construct memory
graph embeddings to encode structural contexts of
each memory node via the graph embeddings pro-
jection approaches (Bordes et al., 2013), in which
semantically similar nodes are distributed closer in
the embeddings space.

Memory Graph Networks: To utilize encoded
candidate memory nodes for memory recall QA
and proactive memory reference, we first uti-
lize the Memory Graph Networks (MGN) (Moon
et al., 2019b). MGN stores memory graph nodes
as initial memory slots, where additional con-
texts and answer candidates can be succinctly ex-
panded and reached via graph traversals. For each
(q,m(k)) pair, MGN predicts optimal memory slot
expansion steps: p(k) = {[p(k)

e,t ;p
(k)
n,t]}Tt=1 for

edge paths pe and corresponding node paths pn.
The LSTM-based sequence model is trained to
learn the optimal path with ground-truth node and
relation paths. The attended memory nodes are
then used to answer user memory recall queries
(QA module), and to predict relevant memory
nodes to surface as a response to the previous con-
versational contexts (Recommender Module).
QA Modules: An estimated answer â =
QA(m,q) is predicted given a query and MGN
graph path output from initial memory slots.

We then define the memory attention to attenu-
ate or amplify all activated memory nodes based
on their compatibility with query, formulated as
follows:

β = MLP(q, {m(k)}, {p(k)}) (1)

α = Softmax(W>
β β) ∈ RK (2)

148

Question and Answer Model Preidction

Top-k Answers Other Relevant Memory Nodes

Q: Where did Emma and I go after we watched Neptune Oyster {Star Wars IV, John, Mar 2014, ...}
the new Star Wars movie? // A: Neptune Oyster AMC Theatre {Emma, hiking, July 2017, ...}

Q: When did I last go skiing with Emily? Feb 2017 {skiing, Emily, Dec 2016, ...}
A: Feb 2017 Jan 2016 {Emily, soccer, ...}
Q: Show me the photos of when I went to the [photo 1] {baseball, Mia, Dodgers, May 2016, ...}

Dodgers game with Mia this year. // A: [photo 1] [photo 2] {Mia, movie, April 2018, ...}

Table 1: Example output: Model predictions the top-k answers and the attended memory nodes are partially
shown for each question and ground-truth answer pair.

Next, the model outputs a module program
{u(k)} for several sub-module networks (e.g.
CHOOSE, COUNT, ...) via the multi-layer percep-
tion module selector network, which outputs the
module label probability {u(k)} for each memory
node:

{u(k)} = Softmax(MLP(q, {m(k)})) (3)

Each module network produces an answer vec-
tor, the aggregated result of which determines the
top-k answers to be returned.
Photo Memory Recommender: The memory at-
tention values (α) and the path outputs are then
used to proactively recommend relevant photos as-
sociated with each activated memory node m(k):

{i(k)} = Softmax(MLP(α(k),p(k)))∀k (4)

where the output score is used to rank the can-
didate photos. Photos with the top score (above
threshold) are then finally surfaced along with
their memory nodes. We leave this threshold as
a tunable hyper-parameter that can determine the
proactive behavior of the system in introducing
other relevant memories given previous conversa-
tional contexts.

3 Demonstration

Table 1 shows some of the example output from
the demonstrated system given the input query
and memory graph nodes. It can be seen that the
model is able to predict answers by combining
answer contexts from multiple components (walk
path, node attention, neural modules, etc.) In gen-
eral, the model successfully explores the respec-
tive single-hop or multi-hop relations within the
memory graph. The activated nodes via graph
traversals are then used as input for each neural
module, the aggregated results of which are the fi-
nal top-k answer predictions. The model also at-
tends on other relevant memory nodes which often

have some of the key attributes shared with the tar-
get reference memory (e.g. same activity, people,
location, etc.). At test time, we can proactively
present these relevant memories to users along
with their associated media contents for more en-
gaging memory-grounded conversations.

4 Related Work

End-to-end dialog systems: There have been
a number of studies on end-to-end dialog sys-
tems, often focused on task or goal oriented dialog
systems such as conversational recommendations
(Bordes et al., 2017; Sun and Zhang, 2018), infor-
mation querying (Williams et al., 2017; de Vries
et al., 2018; Reddy et al., 2018), etc. Many of
the public datasets are collected via bootstrapped
simulations (Bordes et al., 2017), Wizard-of-Oz
setup (Zhang et al., 2018; Wei et al., 2018; Moon
et al., 2019a), or online corpus (Li et al., 2016).
In our work, we propose a unique setup for di-
alog systems called memory-grounded conversa-
tions, where the focus is on grounding human con-
versations with past user memories for both the
goal-oriented task (memory recall QA) and the
more open-ended dialogs (proactive memory ref-
erence). Our Memory Dialog dataset uses the pop-
ular Wizard-of-Oz setup between role-playing hu-
man annotators, where the reference memories are
bootstrapped through memory graph generator.
QA Systems: Structured QA systems have been
very popular due to the popularity of the fact-
retrieval assistant products, which solve fact-
retrieval QA queries with large-scale common fact
knowledge graphs (Bordes et al., 2015; Xu et al.,
2016; Dubey et al., 2018). Most of the work typ-
ically utilize an entity linking system and a QA
model for predicting graph operations e.g. through
template matching approaches, etc. For QA sys-
tems with unstructured knowledge sources (e.g.
machine reading comprehension), the approaches

149

that utilize Memory Networks with explicit mem-
ory slots (Weston et al., 2014; Sukhbaatar et al.,
2016) are widely used for their capability of tran-
sitive reasoning. In our work, we utilize Mem-
ory Graph Networks (MGN) (Moon et al., 2019b)
to store graph nodes as memory slots and expand
slots via graph traversals, to effectively handle
complex memory recall queries and to identify rel-
evant memories to surface next.
Visual QA systems answer queries based on the
contexts from provided images (Antol et al., 2015;
Wang et al., 2018; Wu et al., 2018). Jiang et al.
(2018) propose the visual memex QA task which
addresses similar domains given a dataset com-
posed of multiple photo albums. We extend the
problem domain to the conversational settings
where the focus is the increased engagement with
users through natural multi-modal interactions.
Our work also extends the QA capability by utiliz-
ing semantic and structural contexts from memory
and knowledge graphs, instead of relying solely on
meta information and multi-modal content avail-
able in photo albums.

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In ICCV.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog.
ICLR.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory network. arxiv.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP.

Mohnish Dubey, Debayan Banerjee, Debanjan Chaud-
huri, and Jens Lehmann. 2018. Earl: Joint entity and
relation linking for question answering over knowl-
edge graphs. ESWC.

Lu Jiang, Junwei Liang, Liangliang Cao, Yannis Kalan-
tidis, Sachin Farfade, and Alexander Hauptmann.
2018. Memexqa: Visual memex question answer-
ing. arxiv.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P
Spithourakis, Jianfeng Gao, and Bill Dolan. 2016.
A persona-based neural conversation model. ACL.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019a. Opendialkg: Explainable conver-
sational reasoning with attention-based walks over
knowledge graphs. ACL.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019b. Walk the memory: Memory
graph networks for explainable memory-grounded
question answering. CoNLL.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2018. Coqa: A conversational question answering
challenge. arXiv preprint arXiv:1808.07042.

Pararth Shah, Dilek Hakkani-Tur, Bing Liu, and
Gokhan Tur. 2018. Bootstrapping a neural conversa-
tional agent with dialogue self-play, crowdsourcing
and on-line reinforcement learning. In NAACL.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2016. End-to-end memory net-
works. NIPS.

Yueming Sun and Yi Zhang. 2018. Conversational rec-
ommender system. SIGIR.

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi
Parikh, Jason Weston, and Douwe Kiela. 2018.
Talk the walk: Navigating new york city through
grounded dialogue. ECCV.

Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick, and
Anton van den Hengel. 2018. Fvqa: Fact-based vi-
sual question answering. PAMI.

Wei Wei, Quoc Le, Andrew Dai, and Jia Li. 2018.
Airdialogue: An environment for goal-oriented di-
alogue research. In EMNLP.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig.
2017. Hybrid code networks: practical and efficient
end-to-end dialog control with supervised and rein-
forcement learning. ACL.

Qi Wu, Chunhua Shen, Peng Wang, Anthony Dick, and
Anton van den Hengel. 2018. Image captioning and
visual question answering based on attributes and
external knowledge. PAMI.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering on
freebase via relation extraction and textual evidence.
ACL.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? ACL.

150

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 151–156
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Multilingual, Multi-scale and Multi-layer Visualization of
Sequence-based Intermediate Representations

Carlos Escolano∗�, Marta R. Costa-jussà∗�, Elora Lacroux� and Pere-Pau Vázquez?�
∗ TALP Research Center, �Universitat Politècnica de Catalunya, Barcelona

? ViRVIG Group
{carlos.escolano,marta.ruiz}@upc.edu

lacrouxelora@gmail.com,pere.pau@cs.upc.edu

Abstract

The main alternatives nowadays to deal
with sequences are Recurrent Neural Net-
works (RNN), Convolutional Neural Networks
(CNN) architectures and the Transformer. In
this context, RNN’s, CNN’s and Transformer
have most commonly been used as an encoder-
decoder architecture with multiple layers in
each module. Far beyond this, these architec-
tures are the basis for the contextual word em-
beddings which are revolutionizing most natu-
ral language downstream applications.

However, intermediate layer representations in
sequence-based architectures can be difficult
to interpret. To make each layer representation
within these architectures more accessible and
meaningful, we introduce a web-based tool
that visualizes them both at the sentence and
token level. We present three use cases. The
first analyses gender issues in contextual word
embeddings. The second and third are show-
ing multilingual intermediate representations
for sentences and tokens and the evolution of
these intermediate representations along the
multiple layers of the decoder and in the con-
text of multilingual machine translation.

1 Introduction

The Transformer (Vaswani et al., 2017) is a pow-
erful architecture that was initially proposed to
train neural machine translation. This architec-
ture deals with variable sequences by concate-
nating feed-forward networks and attention-based
mechanisms. While the composed modules of the
Transformer may not be complex by themselves, it
is the composition of several layers of these mod-
ules that make the architecture less interpretable.

We are aiming at providing a tool to give in-
sights to the sentences and token representation
from each layer in the Transformer. Far beyond
the Transfomer interpretation which has become

by de-facto the state-of-the-art in machine transla-
tion, our tool is able to represent intermediate rep-
resentations of other sequence-based architectures
such as RNNs (Bahdanau et al., 2014) or ConvS2S
(Gehring et al., 2017) as well. Note that sequence-
based architectures are having impact in many
multimodal applications such as image captioning
and speech recognition (Kaiser et al., 2017; Chan
et al., 2016).

The uses of our visualization tool are quite a few
varying from social bias, multilingual or linguis-
tic analysis. In particular, we focus in analysing
the gender inequalities in contextual word embed-
dings and the common language representation in
a multilingual machine translation system.

2 Visualization tool

In this section we present a multi-scale and multi-
layer visualization tool for the sequence-based ar-
chitectures, available as tool1 and as a demo2. The
tool is implemented in Python using the Bokeh li-
brary for data visualization and the Flask library
as web microfamework to embed the Bokeh dash-
boards on the webpage.

The tool consists in using as input fixed-
representations, being a matrix of dimensions the
embedding size per sentence length (in tokens).
Therefore, the input data required are the sen-
tences to be represented (txt), the sentence rep-
resentations (json) and optionally the tokens em-
beddings (json). Then, a UMAP (McInnes et al.,
2018) dimensionality reduction is performed to
plot the representation of this multidimensional
data in two dimensions. This dimensionality re-
duction is performed for the fixed-representations
at the sentence and token level. The tool com-
prises two views: multi-scale intermediate repre-

1https://github.com/elorala/interlingua-visualization
2https://upc-nmt-vis.herokuapp.com/

151

sentation for one layer and multi-layer sentence
representation. These three views can be either
monolingual or multilingual. The main page of
the tool comprises these three views for the user to
choose.

We describe these three views on different use
cases. For the first view, we show the use cases
of detection of gender bias in contextual word em-
beddings and common representation in multilin-
gual machine translation. For the second view, the
use case builds on layer interpretation of multi-
way parallel sentences in a translation decoder and
showing which layer carries out higher semantic
meaning.

2.1 Multi-scale Intermediate representation

This visualization consists of two coordinated
views, that encode different information through
scatterplots. The one on the left shows the M sen-
tence intermediate representations. Each dot in the
sentence graph corresponds to one sentence, by
hovering on a point we visualize the sentence as
well as the arrows to the corresponding translation
sentences, in case we are working with multilin-
gual data. There is an option to visualize a partic-
ular sentence by writing it in the search bar. The
search bar has an autocomplete feature (activated
when typing two characters) and then, the user can
click on the right suggestion.

The right view shows the tokens. Initially, when
no sentence from the previous view is selected,
this plot shows all vocabulary tokens. By brushing
over one or more sentences (in left view), the right
view filters out the tokens not belonging to the se-
lected sentence (and the tokens that compose the
parallel sentences in the other languages). Once
the user selects a sentence by clicking or search-
ing, only the words from this sentence (and its
translations) remain on the chart. By hovering on
a point, the user can see the text of the word, anal-
ogously to the sentences view.

Sentences and tokens can be simultaneously vi-
sualized for all languages that we are studying and
we can interpret the intermediate representation in
terms of both granularity levels. See Figures 4 and
5 which are as well examples of the second use
case (explained as follows).

Use case 1: Gender bias in Contextual Word
Embeddings. The objective of this use case is
to visualize the contextual word representations
on a set of occupational vocabulary. We use the

ELMO implementation (Peters et al., 2018), based
on RNNs and as data, we use 1019 sentences
from previous work (Font and Costa-jussà, 2019)
that follow the next template I’ve known him/her
for a long time, my friend works as a occupa-
tion. Examples of occupations include: account-
ing clerk, nurse midwife or biological scientist.
Since we have two sets: one for female templates
and another for male templates, we use the two
sets as if they were different languages. We vi-
sualize 2-dimensional representations of sentences
and words. For sentences (see Figure 1), we see
that sentences with similar professions (i.e. finan-
cial manager, personal financial advisor) tend to
be close in the space for both female and male
versions. However, when visualizing words, in
the case of financial manager, words for female
and male representation are placed in very distant
points in the space as seen in Figure 2. On the
contrary, words for female and male representa-
tion in the case of personal financial advisor are
represented together as seen in Figure 3. So, we
conclude that financial in a male/female context
is differently represented if attached to manager
but the same financial is similarly represented in
male/female context if attached to personal and
advisor. Our tool allows to visualize that contex-
tual word embeddings encode gender biases and
this conclusion is coherent with previous literature
experiments (Basta et al., 2019).

Figure 1: Contextual word embedding representation
at the sentence level (sentences I’ve known him/her for
a long time, my friend is a financial manager/personal
financial advisor). Sentences referring to males are in
green, sentences referring to females are in red.

152

Figure 2: Contextual word embedding representation
at the token level financial manager.

Figure 3: Contextual word embedding representation
at the token level personal financial advisor.

Use case 2: Multilingual common representa-
tion in translation. Nowadays, there are two
main architectures for multilingual neural machine
translation which are a universal shared encoder
and decoder and independent multiple encoders
and decoders. In both cases, there is an inter-
mediate representation where sentences that have
similar meanings should be represented close in
the space. For our second and third use case, we
use the intermediate representations of the multi-
lingual Transformer-based architecture presented
in (Escolano et al., 2019). Basically, the archi-
tecture consists in independent encoders and de-
coders with a forced-interlingua space. This sys-
tem is trained on data extracted from the UN
(Ziemski et al., 2016) and EPPS datasets (Koehn,
2005) that provide 15 million parallel sentences

between English and Spanish and French. new-
stest2012 and newstest2013 were used as valida-
tion and test sets, respectively. These sets provide
parallel data between the 3 languages.

Figure 4 shows 130 sentences extracted from
the test set, in the 3 languages at hand and in
the common space (at the output of the encoder).
When we select a particular sentence (e.g. peo-
ple accept orders .), for each token in the sentence
selected, the user can select to visualize the token
representations (e.g. people) as shown in Figure
5. From this visualization we conclude that the
model is not able to group together sentences with
the same meaning across languages.

2.2 Multi-layer sentence representation

This visualization shows T layers simultaneously
for single or multiple languages in a small multi-
ples design. This facilitates the analysis of sen-
tence representation evolution across all the layers
of the Transformer at once. See Figure 6.

On each view, we can display the sentence by
hovering. In order to emphasize the distances be-
tween the translations and to have a better insight
of the evolution, the link between the most dissim-
ilar are displayed on the plots. By hovering on the
lines, the user can obtain the cosine distance value
computed on SciPy. On the views, only the dis-
tances superior to 1 are displayed. Even if the di-
mensionality reduction of UMAP does show inter-
pretable distances (McInnes et al., 2018), showing
consecutive layers of the Transformer, and seeing
the evolution of the representations allows us to
draw hints about the layer roles as we will see in
the third use case.

Finally, the tool allows for analysis in multiple
layers and languages. This means that initially,
the multiple layers represented on the dashboard
are in one particular language. However, the user
can switch to the multiple layers from another lan-
guage by using the selection tool at the top of
the page. Since all views are synchronized, upon
changing the language set, all of them change ac-
cordingly.

Use case 3: Multilingual Layer Interpreta-
tion in Translation Decoding Encoders and de-
coders in a neural machine translation system are
usually composed of different layers. The role
of each layer is difficult to interpret. Visualizing
sentences at each of these layers can help us on
identifying the sentence distance evolution giving

153

Figure 4: Multilingual common representation at the sentence level (sentence people accept orders .). English in
red, Spanish in green and French in blue.

Figure 5: Multilingual common representation at the
token level (token people).

us hints of different linguistic roles for the layers
when compared between them.

In the current example, we are representing the
same set and architecture as in use case 2, but for
the 6 decoder layers. Figure 6 shows the plot for
these layers and Figure 7 shows how it performs
hovering on a point (e.g. showing sentences, un-
expected consequences., right) and hovering on a
line (e.g. showing distance measure, left). Since
we show sentences with the same meaning in dif-
ferent languages, we interpret that the layer that
tends to better cluster sentences compared to con-
tiguous layers is the one with higher semantic im-
plications. From Figure 6, we conclude that higher
layers in the decoder (specially 4 and 5) better
group sentences (see axes values).

3 Adaptability

In this paper, we have discussed three use cases.
However, our tool is highly flexible and adaptable,

and it allows for a large variety of tasks. The sys-
tem only requires data to be formatted as a JSON
file following the structures defined in Figure 8.

The structure from use cases 1 and 2 defines
the relation between sentence and token repre-
sentations. For each token and embedding a 2-
dimensional is defined, showing its coordinates in
the final plots.

On the other side, the structure from use case
3 contains the representations of the layers to be
plotted and it is described as an array containing
the coordinates for each sentence.

This implementation allows our tool to be ag-
nostic to factors such as vocabulary sizes and di-
mensionality reductions techniques, as they are
applied before JSON creation.

4 Related Work

Given the versatility of the sequence architectures,
the current tool feeds from vast research areas in-
cluding contextual word embeddings, multilingual
models, visualization and interpretability of se-
quence models, zero-shot learning. However, we
just refer here to the closest and recent works.

Gender bias. Gender bias has recently been
analysed in contextual word embeddings (Zhao
et al., 2019; Basta et al., 2019). Our tool aims
at following-up this kind of research to work to-
wards techniques that are able to neutralize these
and other social biases.

154

Figure 6: Decoder layer multilingual sentence representation.

Figure 7: Decoder layer multilingual sentence representation: distance and sentences.

Figure 8: Required JSON structures: (Left) use cases 1
and 2 and (Right) use case 3

Multilinguality analysis. It is quite a common
practice to visualize intermediate representations
of sequence-to-sequence models (Johnson et al.,
2017; Escolano et al., 2019). Our tool is not lim-
ited to this sentence representation of the interme-
diate representation, but it also includes the token-
level representation. By simultaneously provid-
ing this two-granularity level representation we
are aiming at a deeper analysis for monolingual,

cross-lingual and multilingual natural language
processing downstream applications in general.

Linguistic insights. (Raganato and Tiedemann,
2018) show interesting findings about syntactic
and semantic behavior across Transformer layers.
Following this research line, our tool can further
analyse how similar sentences in multiple lan-
guages evolve in their intermediate layer repre-
sentations as well as monolingual sentences with
same syntactic or morphological patterns.

Finally, regarding related visualizations and
demonstrations, authors in (Li et al., 2016) make
an visual analysis of neural models specifically
in natural language processing (but focusing on
previous architectures to the Transformer), while
(Vig, 2019) analyse the attention in the Trans-
former at multiple-scales and show different use
cases on contextual word embeddings. Our tool
further adds to these previous works by focusing
on the intermediate representations.

155

5 Conclusions

We have presented an extremely flexible and
adaptable visualization tool for multilingual inter-
mediate representations of text both at the sen-
tence and token’s level. Together with our tool
we have presented three use cases in the context
of gender bias analysis in contextual word embed-
dings and for multilingual intermediate represen-
tations of machine translation.

Acknowledgements

Authors want to thank Christine Raouf Basta
for sharing her expertise in contextual word
embeddings. This work is supported by a
Google Faculty Research Award. This work
is also supported by the Spanish Ministerio
de Economı́a y Competitividad, the European
Regional Development Fund and the Agen-
cia Estatal de Investigación, through the post-
doctoral senior grant Ramón y Cajal, con-
tracts TEC2015-69266-P and TIN2017-88515-
C2-1-R(GEN3DLIVE) (MINECO/FEDER,EU),
and contract PCIN-2017-079 (AEI/MINECO).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christine Basta, Marta R. Costa-jussà, and Noe Casas.
2019. Evaluating the underlying gender bias in con-
textualized word embeddings. In Proc. of the 1st
ACL Workshop on Gender Bias for Natural Lan-
guage Processing.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In ICASSP.

Carlos Escolano, Marta R. Costa-jussà, and Jos A. R.
Fonollosa. 2019. From bilingual to multilingual
neural machine translation by incremental training.
In Proc. of the ACL Student Research Workshop.

Joel Escudé Font and Marta R. Costa-jussà. 2019.
Equalizing gender biases in neural machine transla-
tion with word embeddings techniques. In Proc. of
the 1st ACL Workshop on Gender Bias for Natural
Language Processing.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-

ings of the 34th ICML - Volume 70, pages 1243–
1252. JMLR.org.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Googles multilingual neural machine
translation system: Enabling zero-shot translation.
Transactions of the Association for Computational
Linguistics, 5:339–351.

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer,
Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. 2017. One model to learn them
all. arXiv preprint arXiv:1706.05137.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691, San Diego, California. As-
sociation for Computational Linguistics.

Leland McInnes, John Healy, Nathaniel Saul, and
Lukas Grossberger. 2018. Umap: Uniform mani-
fold approximation and projection. The Journal of
Open Source Software, 3(29):861.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference
of the NAACL, pages 2227–2237, New Orleans.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297, Brussels, Belgium.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proc. of the ACL
System Demonstrations.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cot-
terell, Vicente Ordonez, and Kai-Wei Chang. 2019.
Gender bias in contextualized word embeddings. In
Proceedings of the 2019 Conference of the NAACL,
pages 629–634, Minneapolis, Minnesota.

Michal Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel corpus
v1. 0. In Lrec.

156

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 157–162
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

MY-AKKHARA:
A Romanization-based Burmese (Myanmar) Input Method

Chenchen Ding, Masao Utiyama, and Eiichiro Sumita
Advanced Translation Technology Laboratory,

Advanced Speech Translation Research and Development Promotion Center,
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan
{chenchen.ding, mutiyama, eiichiro.sumita}@nict.go.jp

Abstract

MY-AKKHARA is a method used to input
Burmese texts encoded in the Unicode
standard, based on commonly accepted Latin
transcription. By using this method, arbitrary
Burmese strings can be accurately inputted
with 26 lowercase Latin letters. Meanwhile,
the 26 uppercase Latin letters are designed
as shortcuts of lowercase letter sequences.
The frequency of Burmese characters is
considered in MY-AKKHARA to realize an
efficient keystroke distribution on a QWERTY
keyboard. Given that the Unicode standard
has not been extensively used in digitization
of Burmese, we hope that MY-AKKHARA can
contribute to the widespread use of Unicode
in Myanmar and can provide a platform
for smart input methods for Burmese in the
future. An implementation of MY-AKKHARA
running in Windows is released at http:
//www2.nict.go.jp/astrec-att/
member/ding/my-akkhara.html

1 Introduction

Burmese (Myanmar) script is an abugida system,
wherein basic characters can be modified using di-
acritics at all directions or can be combined verti-
cally, rather than a simple left-to-right horizontal
writing (Ding et al., 2016). Details of the Burmese
language can be referred to in Okell and Allott
(2001), Okell (2010a,b), and Okano (2007).

Although its use is encouraged in the govern-
ment and universities, the use of Unicode for
Burmese script1 is not currently widespread. Tra-
ditional shape-based typefaces such as Zawgyi2

are preferred for daily use. The issue can be
regarded as path dependence due to traditional
typewriters, wherein the input is exactly based

1https://www.unicode.org/charts/PDF/
U1000.pdf

2https://code.google.com/archive/p/
zawgyi/downloads

ခြ ကြ ခြြိ ကြြိ ခြ ကြ ခြြိ ကြြိ

မ ဲ့ မြိ ဲ့ ခမြိ ြို့

8 shape variants of Zawgyi for Unicode 103C ခ

3 position variants in Zawgyi for Unicode 1037 ဲ့

2 size and position variants
in Zawgyi for Unicode 102F

Figure 1: Shape, size, and position variants in Zawgyi
for identical Unicode characters. The characters may
affect each other: for those with gray background, the
shape of 103C is determined by the inside combina-
tion, size and position of 102F by 103C, and the posi-
tion of 1037 by 102F.

on character shape, rather than the phonetic val-
ues of characters (Fig. 1). Zawgyi separately en-
codes all possible variants of characters and dia-
critics, and allows users to select correct variants
manually. Hence, a redundant character set be-
comes incompatible with the Unicode standard,
and extra effort is required for users to utilize
typeface in detail. To provide a better interface
and promote Unicode for Burmese digitization,
we design a Burmese input method referred to
as MY-AKKHARA by Romanization based on the
Unicode standard. MY-AKKHARA is generally
based on the mnemonics used in Unicode and
the Myanmar Language Committee Transcription
System (Department of the Myanmar Language
Commission, 2014). The efficiency of the key dis-
tribution on the QWERTY keyboard layout is also
considered in the design of MY-AKKHARA.

The implementation of MY-AKKHARA running
in Windows has been released. In this paper,
we first review the default layouts of Burmese
provided in Windows (Win) and Macintosh
(Mac) and subsequently provide detailed descrip-
tions of MY-AKKHARA. In addition, the keystroke
distribution of different methods is compared.

157

2 Win and Mac Burmese Keyboards

The keyboard layouts used to input Burmese in
Unicode have been provided in Win and Mac
operating systems. Figure 2 illustrates the de-
fault layouts of the Burmese Unicode keyboard
in these two mainstream operating systems. Both
of the layouts are a simple mapping from char-
acters to keys. Excluding special punctuation
marks and native number digits, 63 Unicode char-
acters are required to represent modern standard
Burmese textual data, from Unicode 1000 to
104F.3 Therefore, 26 keys with shift are not suf-
ficient to cover the character set. In both of the
layouts, extra punctuation (or digit), or alternative
keys are necessary in typing.

The Win layout is adjusted from the traditional
layout of a typewriter, by removing redundant
character varieties and re-arranging the characters
inputted using the Shift-key. Considering that
this layout has a large portion of the traditional one
but with a certain difference, many Win users are
not interested in switching to this layout. Hence
non-Unicode fonts are still inputted using the tra-
ditional keyboard in practice. Moreover, the Mac
layout is completely redesigned based on Roman-
ization manner, wherein the Burmese characters
are arranged on the basis of their pronunciations
as represented by the letters on a QWERTY key-
board. However, the design is inflexible, without
considering the practical use of Burmese charac-
ters. Thus, the positioning of fingers when typing
is tricky. The comparison of the keystroke distri-
bution will be presented in Section 4.

3 MY-AKKHARA: Proposed Input Method

The proposed MY-AKKHARA is inspired by the
Mac layout and deemed highly natural and ef-
ficient. Rather than a simple mapping between
the Unicode characters and keys, we also fa-
cilitate character alternation processing by using
the inputted Latin letters. Specifically, double
keystrokes of e, f, h, i, j, r, u, v, w, and y,
and the h- and g-keys at the middle of a QWERTY
keyboard are used to alternate characters. This de-
sign naturally integrates the Romanization into the
character alternation processing. The q-key is re-
served to disambiguate in obscure cases through
which the input method can precisely input any

3Within this range, from 1040 to 104B are Burmese dig-
its and punctuation marks; 1022, 1028, 1033, 1034, and
1035 are not used for standard Burmese.

strings with the Unicode Burmese characters.4

Lowercase a, o, x, and 26 uppercase Latin let-
ters are assigned as optional shortcuts. Figure 3
shows an example on the technique of inputting
a Burmese string with rare and stacked characters
using the proposed method.

The instruction of the proposed input method
can be printed by users on an A4 paper (Fig. 4).
The proposed method can be formulated primarily
through a finite-state automaton (Hopcroft et al.,
2013), receiving strings comprising 23 lowercase
Latin letters (excluding a, o, and x) and transit-
ing among different states that represent Burmese
characters. The Appendix provides the descrip-
tion of the automaton.

The shortcuts can be grouped in the following
four categories:

• three lowercase letters for common combina-
tions: a=qevq, o=qiuq, and x=qngfq;

• uppercase letters to save double keystrokes:
E=qee, F=qff, H=qhh, I=qii, J=qjj,
R=qrr, U=quu, V=qvv, W=qww, and Y=qyy;

• uppercase letters to save h/g: B=qbh, C=qch,
D=qdh, G=qgh, K=qkh, L=qlg, M=qmg,
P=qph, Q=qg, T=qth, and Z=qzh; and

• uppercase letters for other cases: A=qegg,
N=qny, O=qsr, S=quug, and X=qng.

Lowercase letters a, o, and x can consider-
ably save keystrokes. Note that the shortcuts
have a preceding q in the implementation through
which disambiguation can be realized. The recom-
mended uppercase letters are Y, H, and Q, which
can resolve almost all ambiguous cases when typ-
ing orthographically correct Burmese texts.

Two issues related to normalizing the encoding
of the Burmese script in Unicode are addressed:

• 102B is a variant of 102C, exclusively used
for narrow characters of 1001, 1002, 1004,
1012, 1015, and 101D. This alternation is ex-
ecuted automatically when typing v or a (i.e.,
shortcut for ev). However, qv and qvg can ex-
actly input 102C and 102B, respectively.

• 1037 and 103A can appear successively; how-
ever, their order is not precisely identified.
103A 1037 will always be normalized in Uni-
code into the recommended order 1037 103A.
4It is possible to intentionally input orthographically in-

correct Burmese strings; however, orthographically correct
strings can be inputted more naturally than incorrect ones.

158

17
31

3E
3B

2E
2D

39
3A

3D
2B

36
37

32
3C

12
2F

13
30

02
38

07
16

0C
11

03
01

20
1C

1A
18

09
0A

26
2C

08
06

1D
10

23
14

4E
19

24
21

4C
15

25
00

4D
04

3F
1E

0F
05

27
1F

2A
29 4F

0D 0B 1B0E

Win

4F
3A 2D2F

32
3127

3C
1B

110C
100B

3B
1A

3026
2F25

2E24
2D23

29
312C

16
15 36

2A
312C3A 4E

4D
4C

2B
2C

3F
1E

13 0E
12 0D

3A
39

03
02

3E
1F

08
07

01
00

20
1C

0A
09 38

043A39

04 21
06
05

3D
1D

18
17

0F
14

36
19 37Mac

Figure 2: Default Burmese layout in Win (left) and Mac (right). Only the final two digits of Unicode are shown
for a compact presentation. The places of f- and j- keys on a QWERTY keyboard are marked by bold frame. For
each key, the lower character is inputted using simple keystroke, whereas the upper character requires pressing the
Shift-key. On the Mac keyboard, some character combinations are mapped on one key, which is underlined in
the figure. Meanwhile several rare characters require Alt-key, which is in gray color. Note that 103A and 1036
marked with gray background appear two times on the Mac keyboard.

k

က

n

ကန

g

ကင

g

ကဏ

t

ကဏတ

h

ကဏထ

g

ကဏ္ဌ

k

ကဏ္ဌက

a

ကဏ္ဌကကော

c

ကဏ္ဌကကောစကဏ်

f

ကဏ္

f

X F T ကဏ္ဌကက

e v

Figure 3: Example of the proposed input method. The top row is the typed Latin letters; the inputted Burmese
string after each keystroke is presented in an increasing manner. Latin letters with frame are the shortcuts and
those with dark background are special design that should be remembered by users. Burmese strings with gray
background have a character alternation from their previous status. Although g and h are regarded as alternation
operators, they are also part of the Romanization, i.e., the first g after n and h after t. The shortcuts mainly save
the extra alternation by g, h and double keystroke (i.e., X, T, and F). Lowercase a is a shortcut for an extremely
common character combination that can be inputted using ev.

4 Keystroke Distribution

The Burmese language has two different styles:
literary and colloquial. For the literary style data,
the publicly accessible Burmese dataset in the
Asian Language Treebank (ALT) project (Riza
et al., 2016) is used, containing approximately
20, 000 long sentences from news articles.5 For
the colloquial style data, we use an in-house trans-
lated Burmese version of the Basic Travel Ex-
pression Corpus (BTEC) (Kikui et al., 2003),
comprising approximately 400, 000 daily expres-
sions. Figures 5 and 6 show the comparison of the
keystroke distribution in Win and Mac keyboards
and by MY-AKKHARA, respectively.

The middle area of the Mac keyboard has not
been efficiently used. Although the uppercase F
can be used instead of lowercase q, the frequency
of the Shift-key will increase considerably. The
keystroke is more focused at the middle of the key-
board by MY-AKKHARA than that on the Win and
Mac keyboards. The use of the Shift-key is op-
tional in MY-AKKHARA, depending on the users’

5http://www2.nict.go.jp/astrec-att/
member/mutiyama/ALT/my-nova-170405.zip

preference. When the Shift-key is completely
applied, the frequency is less than two times that
of used in Win keyboard, and it is approximately
equal to the lower bound used in Mac keyboard.
Generally, index fingers are mostly utilized and lit-
tle fingers have fewer burdens in MY-AKKHARA.

5 Conclusion and Future Work

In this study, a Romanization-based Burmese in-
put method called MY-AKKHARA is proposed to
promote the Unicode standard for Burmese digi-
tization. MY-AKKHARA can also be regarded as
a Burmese-specified, lossless coding version of
Ding et al. (2018), providing a platform to develop
a further fuzzy and smart Burmese input method.

References
Department of the Myanmar Language Commission.

2014. Myanmar-English dictionary (Myanma-
anggalip abidan), 12 edition. Ministry of Educa-
tion, the Republic of the Union of Myanmar.

Chenchen Ding, Masao Utiyama, and Eiichiro Sumita.
2018. Simplified Abugidas. In Proc. of ACL, Vol. 2,
pages 491–495.

159

1
0
0
0

1
0
0
1

1
0
0
2

1
0
0
3

1
0
0
4

1
0
2
1

1
0
2
3

1
0
2
4

1
0
2
5

1
0
2
6

1
0
2
7

1
0
2
9

1
0
2
A

က
ခ

ဂ
ဃ

င
အ

ဣ
ဤ

ဥ
ဦ

ဧ
ဩ

ဪ

k
k
h
|
K

g
|
Q

g
h
|
G

n
g
|
X

v
v
|
V

i
g

i
i
g
|
I
g

u
g

u
u
g
|
U
g
|
S

e
g

s
r
|
O

s
r
g
|
O
g

1
0
0
5

1
0
0
6

1
0
0
7

1
0
0
8

1
0
0
A

1
0
0
9

စ
ဆ

ဇ
ဈ

ည
ဉ

c
c
h
|
C

z
z
h
|
Z

n
y
|
N

n
y
g
|
N
g

1
0
0
B

1
0
0
C

1
0
0
D

1
0
0
E

1
0
0
F

1
0
2
B

1
0
2
C

1
0
2
D

1
0
2
E

1
0
2
F

1
0
3
0

1
0
3
1

1
0
3
2

ဋ
ဌ

ဍ
ဎ

ဏ
ါ

ါ

ါ

ါ

ါ

ါ

ေ
ါ

ါ

t
g

t
h
g
|
T
g

d
g

d
h
g
|
D
g

n
g
g
|
X
g

v
g

v
i

i
i
|
I

u
u
u
|
U

e
e
e
|
E

1
0
1
0

1
0
1
1

1
0
1
2

1
0
1
3

1
0
1
4

တ
ထ

ဒ
ဓ

န

t
t
h
|
T

d
d
h
|
D

n

1
0
1
5

1
0
1
6

1
0
1
7

1
0
1
8

1
0
1
9

1
0
3
6

1
0
3
7

1
0
3
8

1
0
3
9

1
0
3
A

1
0
2
D

1
0
2
F

1
0
3
1

1
0
2
C

1
0
0
4

1
0
3
A

ပ
ဖ

ဗ
ဘ

မ
ါ

ါ

ါ

ါ

ါ

ါ
 ါ

ေ
ါ
ါ

င

p
p
h
|
P

b
b
h
|
B

m
m
g
|
M

j
j
|
J

j
f
f
|
F

f
o

a
x

1
0
1
A

1
0
1
B

1
0
1
C

1
0
1
D

1
0
1
E

1
0
3
F

ယ
ရ

လ
ဝ

သ
ဿ

y
y
|
Y

r
r
|
R

l
w
w
|
W

s
s
g

1
0
1
F

1
0
2
0

1
0
2
1

1
0
3
B

1
0
3
C

1
0
3
D

1
0
3
E

1
0
4
C

1
0
4
D

1
0
4
E

1
0
4
F

ဟ
ဠ

အ
ါ

ြါ
ါ

ါ

၌
၍

၎
၏

h
h
|
H

l
g
|
L

v
v
|
V

y
r

w
h

n
g
g
g
|
X
g
g

r
r
g
|
R
g

l
g
g
|
L
g

e
g
g
|
A

C
o
n
s
o
n
a
n
t
s

V
a
r
i
o
u
s

S
i
g
n
s

D
e
p
e
n
d
e
n
t

C
o
n
s
o
n
a
n
t

S
i
g
n
s

I
n
d
e
p
e
n
d
e
n
t

V
o
w
e
l
s

D
e
p
e
n
d
e
n
t

V
o
w
e
l

S
i
g
n
s

V
a
r
i
o
u
s

S
i
g
n
s

C
o
m
b
i
n
e
d

V
o
w
e
l

S
i
g
n
s

Figure
4:

Proposed
inputm

ethod.
In

each
cell,the

U
nicode,the

B
urm

ese
character,and

the
inputm

anner
are

illustrated
from

top
to

bottom
.

For
B

urm
ese

characters
having

m
ore

than
one

w
ay

to
input,verticalbaris

used
to

separate
differentm

anners.

160

q [

M

f j

Shift:22.2%~36.2%

f j

Shift:25.3%

f j

Shift:13.7%

f j

2% 4% 6% 8% 10%~

Win Mac

MY-AKKHARA

Figure 5: Keystroke distribution on the ALT literary data. The upper-left and upper-right diagrams are Win
and Mac keyboards, respectively. The lower images are MY-AKKHARA, with Shift not used (left) and Shift
completely used (right) manners, respectively. The usage frequency of the Shift-key is also presented. Note that
103A and 1036 appear twice on the Mac keyboard. The two characters are counted by using q and [to input in
the diagram, where the frequency of Shift-key is 22.2%. The two character can be also inputted by uppercase F
and M. If they are always inputted using the Shift-key, then the frequency of Shift-key increases to 36.2%.

q [

M

f j

Shift:20.6%~33.3%

f j

Shift:22.6%

f j

Shift:14.4%

f j

2% 4% 6% 8% 10%~

Win Mac

MY-AKKHARA

Figure 6: Keystroke distribution on the BTEC colloquial data. The configuration is the same as that of Fig. 5.

Chenchen Ding, Ye Kyaw Thu, Masao Utiyama, and
Eiichiro Sumita. 2016. Word segmentation for
Burmese (Myanmar). ACM TALLIP, 15(4):22.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2013. Introduction to Automata Theory, Lan-
guages, and Computation, 3 edition. Pearson.

Genichiro Kikui, Eiichiro Sumita, Toshiyuki
Takezawa, and Seiichi Yamamoto. 2003. Cre-
ating corpora for speech-to-speech translation. In
Proc. of EUROSPEECH, pages 381–384.

Kenji Okano. 2007. Colloquial Burmese (Myanmar)
Grammar. Kokusai Gogakusha. (in Japanese).

John Okell. 2010a. Burmese – An introduction to the
Spoken Language, Book 1. Northern Illinois Univer-
sity Press.

John Okell. 2010b. Burmese – An introduction to the
Spoken Language, Book 2. Northern Illinois Univer-
sity Press.

John Okell and Anna Allott. 2001. Burmese / Myan-
mar Dictionary of Grammatical Forms. Routledge.

Hammam Riza, Michael Purwoadi, Teduh Ulinian-
syah, Aw Ai Ti, Sharifah Mahani Aljunied, Lu-
ong Chi Mai, Vu Tat Thang, Nguyen Phuong Thai,
Vichet Chea, Rapid Sun, Sethserey Sam, Sopheap
Seng, Khin Mar Soe, Khin Thandar Nwet, Masao
Utiyama, and Chenchen Ding. 2016. Introduction
of the Asian language treebank. In Proc. of O-
COCOSDA, pages 1–6.

Appendix

Figure 7 shows the overall configuration. Routes
connecting the the initial (qs) and final (qs) states
are listed in Figs. 8 – 16, where qn, (n ∈ N) are
Burmese characters.6 Although all qn can be the
final states, a separate qe is used for clarity, and a
q is marked explicitly on all the arcs to qe.

qsstart qe
Figs. 8 – 16

ε

Figure 7: Overall configuration of the automaton.

qs q1 q2 qe
σ1 σ2

q
q

Figure 8: Simplest case. When σ2 is h, (σ1, q1, q2)
can be (k, 00, 01), (g, 02, 03), (c, 05, 06),
(z, 07, 08), (p, 15, 16), and (b, 17, 18). When σ2 is
g, (σ1, q1, q2) is (m, 19, 36). When σ2 = σ1,
(σ1, q1, q2) can be (y, 3B, 1A), (w, 3D, 1C), and
(h, 3E, 1D). All σ1 are natural Romanization. When
σ2 is h, it is also a part of the Romanization.

6Unicode is referred to by the final two digits for brevity.

161

qs q1 q2 q3 qe
σ1 σ2

q

g

q

q

Figure 9: Two-step alternation. When (σ1, σ2) is
(l, g), (q1, q2, q3) is (1C, 20, 4E). Here, l is a natural
Romanization for 101C and 1020, whereas 104E is
a special abbreviated mark with l as onset. When
(σ1, σ2) is (r, r), (q1, q2, q3) is (3C, 1B, 4D),
respectively. Here, r is a natural Romanization for
103C and 101B, whereas 104D is a special
abbreviated mark with r as onset.

qs q1 q2 q3 qe
v v

g
q

q

q

Figure 10: Alternation variant of Fig. 9. (q1, q2, q3) is
(2C, 21, 2B). Considering that 102C and 1021 are
frequently used, the convenient v-key is assigned
instead the natural Romanization by a.

qs q1 q2 q3 q4 qe
s g

r

q

q

g
q

q

Figure 11: Alternation in Fig. 8 with an extra branch.
(q1, q2, q3, q4) is (1E, 3F, 29, 2A). Here, s is a
natural Romanization for 101E, whereas 103F,
1029, and 102A are extremely obscure.

qs q1 q2 q3 q4 qe
σ h

g

q

g
q

q
q

Figure 12: Alternation by h and g. (σ, q1, q2, q3, q4)
can be (t, 10, 11, 0B, 0C), and (d, 12, 13, 0D, 0E).
Both t and d are the natural Romanization, and h is
also a part of the Romanization.

qs q1 q2 q4 q6 qe

q3 q5

n g

y

q

g

q

g

q

g
q

q

q

Figure 13: Most complex alternation.
(q1, q2, q3, q4, q5, q6) is (14, 04, 0A, 0F, 09, 4C).
Here, n, ng and ny are the natural Romanization for
1014, 1004, and 100A, respectively. Other
alternated characters are rare.

qs q1 q2 qe
σ

σ

q

σ q

Figure 14: Doubled and looped alternation. (σ, q1, q2)
can be (j, 38, 37), and (f, 3A, 39). Here, 1038 and
103A are remarkably frequent marks; hence
convenient j- and f-keys are assigned, respectively.

qs q1 q2 q3 q4 qe
σ σ

g

q

σ
g

q

q
q

Figure 15: Combination of Figs. 12 and 14.
(σ, q1, q2, q3, q4) can be (i, 2D, 2E, 23, 24), and
(u, 2F, 30, 25, 26). Here, i and u are the natural
Romanization for the corresponding characters.

qs q1 q2 q3 q4 qe
e e

g

q

e
q

g
q

q

Figure 16: Alternation in Fig. 14 with an extra branch.
(q1, q2, q3, q4) is (31, 32, 27, 4F). Here, e is a natural
Romanization for 1031, 1032 and 1027, whereas
104F is an abbreviated mark derived from 1027.

162

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 163–168
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

NeuronBlocks: Building Your NLP DNN Models Like Playing Lego

Ming Gong § Linjun Shou § Wutao Lin§ Zhijie Sang§ Quanjia Yan‡

Ze Yang§ Feixiang Cheng§ Daxin Jiang§
§ STCA NLP Group, Microsoft, Beijing, China

‡ Research Center for Ubiquitous Computing Systems, ICT, CAS, Beijing, China

{migon, lisho, wutlin, zhsang, yaze, fecheng, djiang}@microsoft.com
yanquanjia17s@ict.ac.cn

Abstract

Deep Neural Networks (DNN) have been
widely employed in industry to address vari-
ous Natural Language Processing (NLP) tasks.
However, many engineers find it a big over-
head when they have to choose from multi-
ple frameworks, compare different types of
models, and understand various optimization
mechanisms. An NLP toolkit for DNN models
with both generality and flexibility can greatly
improve the productivity of engineers by sav-
ing their learning cost and guiding them to find
optimal solutions to their tasks. In this pa-
per, we introduce NeuronBlocks1 2, a toolkit
encapsulating a suite of neural network mod-
ules as building blocks to construct various
DNN models with complex architecture. This
toolkit empowers engineers to build, train, and
test various NLP models through simple con-
figuration of JSON files. The experiments on
several NLP datasets such as GLUE, WikiQA
and CoNLL-2003 demonstrate the effective-
ness of NeuronBlocks.

1 Introduction
Deep Neural Networks (DNN) have been widely
employed in industry for solving various Natu-
ral Language Processing (NLP) tasks, such as text
classification, sequence labeling, question answer-
ing, etc. However, when engineers apply DNN
models to address specific NLP tasks, they often
face the following challenges.

• Multiple DNN frameworks, including Tensor-
Flow, PyTorch, Keras, etc. It is a big overhead
to learn how to program under the frameworks.

• Diverse and fast evolving DNN models, such as
CNN, RNN, and Transformer. It takes big ef-
forts to understand the intuition and maths be-
hind these models.

1Code: https://github.com/Microsoft/NeuronBlocks
2Demo: https://youtu.be/x6cOpVSZcdo

• Various regularization and optimization mech-
anisms. To tune model performance for both
quality and efficiency, model developers have
to gain experience in Dropout, Normalization,
Mixed precision training, etc.

• Coding and debugging complexity. Program-
ming under DNN frameworks requires devel-
opers to be familiar with the built-in packages
and interfaces. It needs much expertise to de-
velop, debug, and optimize code.

• Platform compatibility. It requires extra cod-
ing work to run on different platforms, such as
Linux/Windows, GPU/CPU.

The above challenges often hinder the produc-
tivity of engineers, and result in less optimal so-
lutions to their given tasks. This motivates us to
develop an NLP toolkit for DNN models. Before
designing this NLP toolkit, we conducted a sur-
vey among engineers and identified a spectrum of
three typical personas.

• The first type of engineers prefer off-the-shelf
networks. Given a specific task, they expect
the toolkit to suggest several end-to-end net-
work architectures, and then they simply focus
on collecting the training data, and tuning the
model parameters. They hope the whole pro-
cess to be extremely agile and easy.

• The second type of engineers would like to
build the networks by themselves. However, in-
stead of writing each line of code from scratch,
they hope the toolkit to provide a rich gallery
of reusable modules as building blocks. Then
they can compare various model architectures
constructed by the building blocks.

• The last type of engineers are advanced users.
They want to reuse most part of the exist-
ing networks, but for critical components, they
would like to make innovations and create their
own modules. They hope the toolkit to have

163

an open infrastructure, so that customized mod-
ules can be easily plugged in.

To satisfy the requirements of all the above
three personas, the NLP toolkit has to be generic
enough to cover as many tasks as possible. At the
same time, it also needs to be flexible enough to
allow alternative network architectures as well as
customized modules. Therefore, we analyzed the
NLP jobs submitted to a commercial centralized
GPU cluster. Table 1 showed that about 87.5%
NLP related jobs belong to a few common tasks,
including sentence classification, text matching,
sequence labeling, machine reading comprehen-
sion (MRC), etc. It further suggested that more
than 90% of the networks were composed of sev-
eral common components, such as embedding,
CNN/RNN, Transformer and so on.

Tasks Ratio
Text matching 39.4%

Sentence classification 27.3%
Sequence labeling 14.7%

MRC 6.0%
Others 12.5%

Table 1: Task analysis of NLP DNN jobs submitted to a
commercial centralized GPU cluster.

Based on the above observations, we developed
NeuronBlocks, a DNN toolkit for NLP tasks. The
basic idea is to provide two layers of support to
the engineers. The upper layer targets common
NLP tasks. For each task, the toolkit contains
several end-to-end network templates, which can
be immediately instantiated with simple configu-
ration. The bottom layer consists of a suite of
reusable and standard components, which can be
adopted as building blocks to construct networks
with complex architecture. By following the in-
terface guidelines, users can also contribute to this
gallery of components with their own modules.

The technical contributions of NeuronBlocks
are summarized into the following three aspects.

• Block Zoo: categorize and abstract the most
commonly used DNN components into stan-
dard and reusable blocks. The blocks within
the same category can be used exchangeably.

• Model Zoo: identify the most popular NLP
tasks and provide alternative end-to-end net-
work templates (in JSON format) for each task.

• Platform Compatibility: support both Linux
and Windows machines, CPU/GPU chips, as
well as GPU platforms such as PAI3.

3https://github.com/Microsoft/pai

2 Related Work

There are several general-purpose deep learning
frameworks, such as TensorFlow, PyTorch and
Keras, which have gained popularity in NLP com-
munity. These frameworks offer huge flexibil-
ity in DNN model design and support various
NLP tasks. However, building models under these
frameworks requires a large overhead of master-
ing these framework details. Therefore, higher
level abstraction to hide the framework details is
favored by many engineers.

There are also several popular deep learning
toolkits in NLP, including OpenNMT (Klein et al.,
2017), AllenNLP (Gardner et al., 2018) etc. Open-
NMT is an open-source toolkit mainly target-
ing neural machine translation or other natural
language generation tasks. AllenNLP provides
several pre-built models for NLP tasks, such as
semantic role labeling, machine comprehension,
textual entailment, etc. Although these toolkits re-
duce the development cost, they are limited to cer-
tain tasks, and thus not flexible enough to support
new network architectures or new components.

3 Design

Neuronblocks is built on PyTorch. The overall
framework is illustrated in Figure 1. It consists of
two layers: the Block Zoo and the Model Zoo. In
Block Zoo, the most commonly used components
of neural networks are categorized into several
groups according to their functions. Within each
category, several alternative components are en-
capsulated into standard and reusable blocks with
a consistent interface. These blocks serve as basic
and exchangeable units to construct complex net-
work architectures for different tasks. In Model
Zoo, the most popular NLP tasks are identified.
For each task, several end-to-end network tem-
plates are provided in the form of JSON configu-
ration files. Users can simply browse these config-
urations and choose one to instantiate. The whole
task can be completed without any coding efforts.

3.1 Block Zoo
We recognize the following major functional cat-
egories of neural network components. Each cat-
egory covers as many commonly used modules as
possible. The Block Zoo is an open framework,
and more modules can be added in the future.

• Embedding Layer: Word/character embed-
ding and extra handcrafted feature embedding

164

GPU Box (Train)

Model Visualizer

Tensorflow, PyTorch, CNTK, etc.

Textual
Entailment

QnA Relevance

Slot Tagging

MRC

Domain
classifier

Q-Q sim

Model Zoo (JSONs)

LSTMConvolution Pooling

GRU Transformer QRNN

GloVe CharEmbedding PosTagEmbed

Blocks Zoo
LossFunc Metrics

PAI (Train)

Figure 1: The overall framework of NeuronBlocks.

such as pos-tagging are supported.
• Neural Network Layers: Block zoo provides

common layers like RNN, CNN, QRNN (Brad-
bury et al., 2017), Transformer (Vaswani et al.,
2017), Highway network, Encoder Decoder ar-
chitecture, etc. We also support multiple atten-
tion layers, such as Linear/Bi-linear Attention,
Bidirectional attention flow (Seo et al., 2017),
etc. Meanwhile, regularization layers such as
Dropout, Layer Norm, etc are also supported.

• Loss Function: All built-in loss functions in
PyTorch are supported.

• Metrics: For classification task, Area Un-
der Curve (AUC), Accuracy, F1 metrics
are supported. For sequence labeling task,
F1/Accuracy are supported. For knowledge
distillation task, MSE/RMSE are supported.
For MRC task, ExactMatch/F1 are supported.

3.2 Model Zoo
In NeuronBlocks, we identify four types of most
popular NLP tasks. For each task, we provide var-
ious end-to-end network templates.

• Text Classification and Matching. Tasks such
as domain/intent classification, question an-
swer matching are supported.

• Sequence Labeling. Predict each token in a
sequence into predefined types. Common tasks
include NER, POS tagging, Slot tagging, etc.

• Knowledge Distillation (Hinton et al., 2015).
Teacher-Student based knowledge distillation
is one common approach for model com-
pression. NeuronBlocks provides knowledge

distillation template to train light-weight stu-
dent model to imitate heavy DNN models like
BERT/GPT.

• Extractive Machine Reading Comprehen-
sion. Given question and passage, this task is
to predict the start and end positions of the an-
swer spans in the passage.

3.3 User Interface
NeuronBlocks provides convenient user interface4

for users to build, train, and test DNN models. The
details are described in the following.

• I/O interface. This part defines model in-
put/output, such as training data, pre-trained
models/embeddings, model saving path, etc.

• Model Architecture interface. This is the key
part of the configuration file, which defines the
whole model architecture. Figure 2 shows an
example of how to specify a model architecture
using the blocks in NeuronBlocks. To be more
specific, it consists of a list of layers/blocks to
construct the architecture, where the blocks are
supplied in the gallery of Block Zoo.

• Training Parameters interface. In this part,
the model optimizer as well as all other training
hyper parameters are indicated.

3.4 Workflow
Figure 3 shows the workflow of building DNN
models in NeuronBlocks. Users only need to write
a JSON configuration file. They can either instan-
tiate an existing template from Model Zoo, or con-
struct a new architecture based on the blocks from
Block Zoo. This configuration file is shared across
training, test, and prediction.

For model hyper-parameter tuning or architec-
ture modification, users just need to change the
JSON configuration file. Advanced users can also
contribute novel customized blocks5 into Block
Zoo, as long as they follow the same interface
guidelines with the existing blocks. These new
blocks can be further shared across all users for
model architecture design. Moreover, Neuron-
Blocks has flexible platform support, such as
GPU/CPU, GPU management platforms like PAI.

4 Experiments
To verify the performance of NeuronBlocks, we
conducted extensive experiments for common

4https://github.com/microsoft/NeuronBlocks/blob/
master/Tutorial.md

5https://github.com/microsoft/NeuronBlocks/blob/
master/Contributing.md

165

M i c r o s o f t i s i n S e a t t l e

RNN/CNN RNN/CNN RNN/CNN RNN/CNN

Microsoft inis Seattle

BiLSTM BiLSTM BiLSTM BiLSTM

CRF CRF CRF CRF

S-ORG S-LOCO O

Attention Attention Attention Attention

Character
Embedding

Word
Embedding

"architecture":[
{

"output_layer_flag": true,
"layer_id": "output",
"layer": "CRF",
"conf": {...},
"inputs": [“sentence_attn"]

},
{

"layer_id": "sentence_attn",
"layer": "LinearAttention",
"conf": {...},
"inputs":["sentence_bilstm"]

},
{

"layer_id": "sentence_bilstm",
"layer": "BiLSTM",
"conf": {...},
"inputs": ["embedding"]

},
{
"layer_id": "embedding"
"layer": "Embedding",
"conf": {

"word": {"cols": ["word"]},
"char": {"cols":["word_char"],

"type":"LSTMCharEmbedding"}
}

}
]

Figure 2: A Model architecture interface example of sequence labeling model in NeuronBlocks.

Results(F1-score) WLSTM+CRF WLSTM WCNN+CRF WCNN

Nochar Literature 89.31± 0.1(N) 87.00(M-16)
88.49± 0.17(N) 88.65± 0.2(N) 88.50± 0.05(N)

NeuronBlocks 89.34 88.50 88.72 88.51

CLSTM Literature 90.94(L-16)
91.08± 0.08(N)

89.15(L-16)
90.77± 0.06(N) 90.48± 0.23(N) 90.28± 0.30(N)

NeuronBlocks 91.03 90.67 90.27 90.37

CCNN Literature

90.91± 0.2(C-16)
91.21(M-16)
90.87± 0.13(P-17)
91.11± 0.21(N)

89.36(M-16)
90.60± 0.11(N) 90.28± 0.09(N) 90.51± 0.19(N)

NeuronBlocks 91.38 90.63 90.41 90.36

Table 2: NeuronBlocks results on CoNLL-2003 English NER testb dataset. The abbreviation (C-16)= (Chiu and Nichols,
2016), (L-16)= (Lample et al., 2016), (M-16)= (Ma and Hovy, 2016), (N)= (Yang et al., 2018), (P-17)= (Peters et al., 2017).

Model CoLA SST-2 QQP MNLI QNLI RTE WNLI
BiLSTM (Literature) 17.6 87.5 85.3/82.0 66.7 77.0 58.5 56.3

+Attn (Literature) 17.6 87.5 87.7/83.9 70.0 77.2 58.5 60.6
BiLSTM (NeuronBlocks) 20.4 87.5 86.4/83.1 69.8 79.8 59.2 59.2

+Attn (NeuronBlocks) 25.1 88.3 87.8/83.9 73.6 81.0 58.9 59.8

Table 3: NeuronBlocks results on GLUE benchmark development sets. As described in (Wang et al., 2019), for CoLA, we
report Matthews correlation. For QQP, we report accuracy and F1. For MNLI, we report accuracy averaged over the matched
and mismatched development sets. For all other tasks we report accuracy. All values have been scaled by 100. Please note that
results on the development sets are reported, since GLUE does not distribute labels for the test sets.

Model Zoo
(Existing Model JSON files)

Model Building Blocks

Model Architecture
Building

Model Training

Model Inference

JSON model

JSON model
+ Model weights

Windows/
Linux

CPU/GPU PAI

Windows/
Linux

CPU/GPU

Figure 3: The workflow of NeuronBlocks.

NLP tasks on public data sets including CoNLL-
2003 (Sang and Meulder, 2003), GLUE bench-
mark (Wang et al., 2019), and WikiQA cor-
pus (Yang et al., 2015). The experimental results
showed that the models built with NeuronBlocks
can achieve reliable and competitive results on

various tasks, with productivity greatly improved.

4.1 Sequence Labeling
We evaluated NeuronBlocks on CoNLL-
2003 (Sang and Meulder, 2003) English NER
dataset, following most works on the same task.
This dataset includes four types of named entities,
namely, PERSON, LOCATION, ORGANIZA-
TION, and MISC. We adopted BIOES tagging
scheme instead of IOB, as many previous works
indicated meaningful improvement with BIOES
scheme (Ratinov and Roth, 2009). Table 2 shows
the results on CoNLL-2003 Englist testb dataset,
with 12 different combinations of network lay-
ers/blocks, such as word/character embedding,
CNN/LSTM and CRF. The results suggest that
the flexible combination of layers/blocks in Neu-

166

Model Inference Speed
QPS Parameters Performance

AUC
Teacher Model (BERTbase) 448 110M 0.9112

Student Model (BiLSTMAttn+TextCNN) 11128 13.63M 0.8941

Table 4: NeuronBlocks results on Knowledge Distillation task.

ronBlocks can easily reproduce the performance
of original models, with comparative or slightly
better performance.

4.2 GLUE Benchmark
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) is a col-
lection of natural language understanding tasks.
We experimented on the GLUE benchmark tasks
using BiLSTM and Attention based models. As
shown in Table 3, the models built by Neuron-
Blocks can achieve competitive or even better re-
sults on GLUE tasks with minimal coding efforts.

4.3 Knowledge Distillation
In teacher-student based knowledge distillation, a
lightweight student model is trained by imitating
the output of heavy teacher model like BERT. We
evaluated on a binary classification dataset called
Domain Classification Dataset, which was col-
lected from a commercial search engine. Each
sample in this dataset consists of two parts, i.e.,
a query and a binary label indicating whether
the query belongs to a specific domain. Table 4
shows the results, where AUC is used as the eval-
uation criteria and Queries per Second (QPS) is
used to measure inference speed. By leveraging
knowledge distillation, the student model by Neu-
ronBlocks managed to get 24.8 times inference
speedup with only small performance regression
compared with BERTbase

6 fine-tuned classifier.

4.4 WikiQA
The WikiQA corpus (Yang et al., 2015) is a pub-
licly available dataset for open-domain question
answering. This dataset contains 3,047 questions
from Bing query logs, each associated with some
candidate answer sentences from Wikipedia. We
conducted experiments on WikiQA dataset using
CNN, BiLSTM, and Attention based models. The
results are shown in Table 5. The models built in
NeuronBlocks achieved competitive or even better
results with simple model configurations.

5 Conclusion and Future Work
In this paper, we introduce NeuronBlocks, a DNN
toolkit for NLP tasks built on PyTorch, targeting

6https://github.com/huggingface/
pytorch-transformers

Model AUC
CNN ((Yang et al., 2015)) 73.59

CNN-Cnt ((Yang et al., 2015)) 75.33
CNN (NeuronBlocks) 74.79

BiLSTM (NeuronBlocks) 76.73
BiLSTM+Attn (NeuronBlocks) 75.48

BiLSTM+MatchAttn (NeuronBlocks) 78.54

Table 5: NeuronBlocks results on WikiQA.

three types of engineers, and provides a two-layer
solution to satisfy the requirements from all three
types of users. To be more specific, the Model Zoo
consists of various templates for the most com-
mon NLP tasks, while the Block Zoo supplies a
gallery of alternative layers/modules for the net-
works. Such design achieves a balance between
generality and flexibility. Extensive experiments
have verified the effectiveness of this approach.
NeuronBlocks has been widely used in a product
team of a commercial search engine, and signif-
icantly improved the productivity for developing
NLP DNN approaches.

As an open-source toolkit, we will further ex-
tend it in various directions. The following names
a few examples.

• Multi-task learning (MTL). In MTL, multiple
related tasks are jointly trained so that knowl-
edge learned in one task can benefit other tasks.

• Pre-training and fine-tuning. Deep pre-training
models such as ELMo (Peters et al., 2018),
GPT (Radford et al., 2018), BERT (Devlin
et al., 2019) are new directions in NLP.

• Sequence generation task. Sequence genera-
tion is widely used in NLP fields such as ma-
chine translation (Bahdanau et al., 2015), text
summarization (See et al., 2017), and dialogue
systems (Wen et al., 2015).

• AutoML (Elsken et al., 2019). NeuronBlocks
facilitates users to build models on top of
Model Zoo and Block Zoo. With the integra-
tion of AutoML, the toolkit can further support
automatic model architecture design.

6 Acknowledgements

We sincerely thank the anonymous reviewers for
their valuable suggestions.

167

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2017. Quasi-recurrent neural net-
works.

Jason P. C. Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional lstm-cnns. TACL,
4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. pages 4171–4186.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. 2019. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–
21.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language pro-
cessing platform. arXiv preprint arXiv:1803.07640.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
pages 67–72.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016, pages 260–270.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, pages 1756–1765.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. pages 2227–2237.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Lev-Arie Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning,
CoNLL 2009, Boulder, Colorado, USA, June 4-5,
2009, pages 147–155.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning, CoNLL 2003, Held in cooper-
ation with HLT-NAACL 2003, Edmonton, Canada,
May 31 - June 1, 2003, pages 142–147.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. pages 1073–1083.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
hao Su, David Vandyke, and Steve J. Young.
2015. Semantically conditioned lstm-based natural
language generation for spoken dialogue systems.
pages 1711–1721.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
COLING 2018, Santa Fe, New Mexico, USA, August
20-26, 2018, pages 3879–3889.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018.

168

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 169–174
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

OpenNRE: An Open and Extensible Toolkit for
Neural Relation Extraction

Xu Han∗ , Tianyu Gao∗, Yuan Yao, Demin Ye, Zhiyuan Liu† , Maosong Sun
Department of Computer Science and Technology, Tsinghua University, Beijing, China

Institute for Artificial Intelligence, Tsinghua University, Beijing, China
State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China

{hanxu17,gty16,yy18,ydm18}@mails.tsinghua.edu.cn

Abstract

OpenNRE is an open-source and extensible
toolkit that provides a unified framework to
implement neural models for relation extrac-
tion (RE). Specifically, by implementing typ-
ical RE methods, OpenNRE not only al-
lows developers to train custom models to ex-
tract structured relational facts from the plain
text but also supports quick model valida-
tion for researchers. Besides, OpenNRE pro-
vides various functional RE modules based
on both TensorFlow and PyTorch to main-
tain sufficient modularity and extensibility,
making it becomes easy to incorporate new
models into the framework. Besides the
toolkit, we also release an online system to
meet real-time extraction without any training
and deploying. Meanwhile, the online sys-
tem can extract facts in various scenarios as
well as aligning the extracted facts to Wiki-
data, which may benefit various downstream
knowledge-driven applications (e.g., informa-
tion retrieval and question answering). More
details of the toolkit and online system can
be obtained from http://github.com/
thunlp/OpenNRE.

1 Introduction

Relation extraction (RE) aims to predict relational
facts from the plain text, e.g., extracting (Newton,
the Member of, the Royal Society) from the
sentence “Newton served as the president of the
Royal Society”. Because RE models can extract
structured information for various downstream ap-
plications, many efforts have been devoted to re-
searching RE. As the rapid development of deep
learning in the recent years, neural relation extrac-
tion (NRE) models show the strong ability to ex-
tracting relations and achieve great performance,

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

which makes more and more researchers and in-
dustry developers pay attention to this field.

Although the current NRE models are effec-
tive and have been applied for various scenar-
ios, including supervised learning paradigm (Zeng
et al., 2014a; Nguyen and Grishman, 2015; Zhang
et al., 2015; Zhou et al., 2016), distantly super-
vised learning paradigm (Zeng et al., 2015; Lin
et al., 2016; Han et al., 2018b), few-shot learn-
ing paradigm (Han et al., 2018c; Gao et al., 2019;
Ye and Ling, 2019; Soares et al., 2019; Zhang
et al., 2019), there still lack an effective and sta-
ble toolkit to support the implementation, deploy-
ment and evaluation of models. In fact, for other
tasks related to RE, there have been already some
effective and long-term maintained toolkits, such
as Spacy1 for named entity recognition (NER),
TagMe (Ferragina and Scaiella, 2010) for entity
linking (EL), OpenKE (Han et al., 2018a) for
knowledge embedding, and Stanford OpenIE (An-
geli et al., 2015) for open information extraction.
Hence, it becomes necessary and significant to
systematically develop an efficient and effective
toolkit for RE.

To this end, we develop an open and exten-
sible toolkit for designing and implementing RE
models, especially for NRE models, which is
named “OpenNRE”. The toolkit prioritizes oper-
ational efficiency based on TensorFlow and Py-
Torch, which support quick model training and
validation. Meanwhile, the toolkit maintains suffi-
cient system encapsulation and model extensibil-
ity, which can meet some individual requirements
of incorporating new models. To keep the ease of
use, we implement many typical RE models and
provide a unified framework for their data process-
ing, model training, and experimental evaluation.
For those developers aiming at training custom

1https://spacy.io

169

Mark Twain and Olivia Langdon corresponded
throughout 1868. She rejected his first marriage
proposal, but they were married in Elmira, New
York in February 1870. Then, Twain owned a
stake in the Buffalo Express newspaper and
worked as an editor and writer. While they were
living in Buffalo, their son Langdon died of
diphtheria at the age of 19 months. They had
three daughters: Susy Clemens, Clara Clemens,
and Jean Clemens.

 B I E O O S S
Ernest Miller Hemingway was an American journalist

Ernest Hemingway was raised in Oak Park, Illinois [Ernest Hemingway] [Oak Park, Illinois]
place of birth

In 1921, Ernest Hemingway married Hadley
Richardson, the first of his four wives

Hadley Richardson was the first wife of American
author Ernest Hemingway

… …

[Ernest Hemingway] [Hadley Richardson]
spouse

…

sibling of

child of place of death

spouse of occupation

[Olivia Langdon]

[Buffalo]

[Mark Twain]

[Jean Clemens]

[Clara Clemens]

[Susy Clemens]

[Langdon]
[editor]

[writer]

NER

Bag-level RE

Document-level RE

Sentence-level RE

Ernest Miller Hemingway was an American journalist

Few-shot RE

London is the capital of the U.K

Washington is the capital of the U.S.A

Newton served as the president of the Royal Society

Leibniz was a member of the Prussian Academy of Sciences

Samuel Langhorne Clemens, better known by his pen name Mark Twain

Alexei Maximovich Peshkov, primarily known as Maxim Gorky

capital of

capital of

member of

member of

birth name

birth name

Euler was elected a foreign member of the Royal Swedish Academy of Sciences

?

Su
pp

or
tin

g
Se

t
Q

ue
ry

Figure 1: The examples of all application scenarios in OpenNRE.

models, they can quickly start up their RE system
based on OpenNRE, without knowing too many
technical details and writing tedious glue code. An
online system is also available to extract structured
relational facts from the text with friendly interac-
tive interfaces and fast reaction speed. We will
provide long-term maintenance to fix bugs and
meet new requests for OpenNRE, and we think
both researchers and industry developers can ben-
efit from our toolkit.

2 Application Scenarios

OpenNRE is designed for various scenarios for
RE, including sentence-level RE, bag-level RE,
document-level RE, and few-shot RE. For com-
pleting a full pipeline of extracting structured in-
formation, we also enable OpenNRE to have the
capacity of entity-oriented applications to a certain
extent, e.g., NER and EL. The examples of these
application scenarios are all shown in Figure 1.

2.1 Entity-Oriented Applications

For extracting structured information from plain
text, it requires to extract entities from text and
then predict relations between entities. In normal
RE scenarios, all entity mentions have been al-
ready annotated and RE models are just required
to classify relations for all annotated entity pairs.
Although the entity-oriented applications are not
the focus of our toolkit, we still implement spe-
cific modules for NER (Lample et al., 2016) and
EL (Han et al., 2011). The NER modules can
detect words or phrases (also named entity men-
tions) representing real-world objects. In Open-
NRE, we provide two approaches for NER, one is

based on spaCy, the other is based on fine-tuning
BERT (Devlin et al., 2019). The EL modules
can align those entity mentions to the entities in
Wikidata (Vrandečić and Krötzsch, 2014) based
on TagMe (Ferragina and Scaiella, 2010).

2.2 Sentence-Level Relation Extraction
The conventional methods often handle RE in the
supervised learning paradigm and extract the re-
lation between two entities mentioned within one
sentence. As shown in Figure 1, each sentence
is first manually annotated with two entity men-
tions. Then models are required to predict the rela-
tion between those annotated entity mentions. As
there are many efforts to adopt models for this set-
ting (Zeng et al., 2014a; Zhang et al., 2015; Zhou
et al., 2016), OpenNRE is specially designed for
the sentence-level RE scenario.

2.3 Bag-Level Relation Extraction
The supervised RE methods suffer from several
problems, especially their requirements of ade-
quate annotated data for training. As manually
labeling large amounts of data is expensive and
time-consuming, Mintz et al. (2009) introduce
distant supervision to automatically label large
amounts of data for RE by aligning knowledge
graphs and text. Although distant supervision
brings sufficient auto-labeled data, it also leads to
the wrong labeling problem. Considering an en-
tity pair may occur several times in different sen-
tences, and there is a significant probability that
some of these sentences can express the relation
between the entity pair. Hence Riedel et al. (2010)
and Hoffmann et al. (2011) introduce to aggregate
the sentences mentioning the same entity pair into

170

a entity-pair bag. As shown in Figure 1, synthe-
sizing the features of different sentences in a bag
can provide more reliable information and result in
more accurate predictions. The Bag-level setting
is widely applied by various distantly supervised
RE methods (Zeng et al., 2015; Lin et al., 2016;
Han et al., 2018b), and thus it is also integrated
into OpenNRE.

2.4 Document-Level Relation Extraction

Yao et al. (2019) have pointed out that multiple
entities in documents often exhibit complex inter-
sentence relations rather than intra-sentence re-
lations. Besides, as shown in Figure 1, a large
number of relational facts are expressed in multi-
ple sentences, e.g., Langdon is the sibling of Jean
Clemens. Hence, it is hard to extract these inter-
sentence relations with both the sentence-level and
bag-level settings. Although the document-level
RE setting is not widely explored by the current
work, we argue that this scenario remains an open
problem for future research, and still integrate
document-level RE into OpenNRE.

2.5 Few-Shot Relation Extraction

Though we can train a usable and stable RE
system based on the above-mentioned scenarios,
which can well predict those relations appearing
frequently in data, some long-tail relations with
few instances in data are still neglected. Recently,
some methods have been proposed to provide a
different view of this problem by formalizing RE
as a few-shot learning problem (Han et al., 2018c;
Gao et al., 2019; Ye and Ling, 2019; Soares et al.,
2019; Zhang et al., 2019). As shown in Figure 1,
each relation only have a handful of instances in
the supporting set in a few-shot RE scenario, and
models are required to be capable of accurately
capturing relation patterns of these small amounts
of training instances. Considering few-shot RE is
important for handling long-tail relations, Open-
NRE also provides a custom platform for further
research in this direction.

3 Toolkit Design and Implementation

Our goal of designing OpenNRE is achieving the
balance among system encapsulation, operational
efficiency, model extensibility, and ease of use.

For system encapsulation, we build a unified un-
derlying platform to encapsulate various data pro-
cessing and training strategies, so that developers

Framework

Train MethodModel Eval Method

Encoder

Tokenizer Forward

Forward

Data Loader

Framework

Model

Sentence-Level RE
Bag-Level RE
Few-Shot RE

Softmax Classifier
Instance-Level Attention
Prototypical Networks

…

…

CNN
BERT
…

Encoder

Architecture of OpenNRE

Example Code

Word Tokenization
Word Piece Tokenization
…

Tokenization

Tokenization

Module

Convolutional NN
Pooling
…

Module

Figure 2: The architecture and example code of Open-
NRE. The structure shows the contents of each part of
OpenNRE and how they are related. Based on Open-
NRE, one can use only a few lines of code to define,
train and evaluate RE models of different scenarios.

can maximize the reuse of code to avoid unneces-
sary redundant model implementations. For oper-
ational efficiency, OpenNRE is based on Tensor-
Flow and PyTorch, which enables developers to
train models on GPUs. For model extensibility,
we systematically implement various neural mod-
ules and some special algorithms (e.g., adversarial
training (Wu et al., 2017) and reinforcement learn-
ing (Feng et al., 2018)). Hence, it is easy to im-
plement new RE models based on OpenNRE. We
also implement some typical RE models so as to
conveniently train custom models for specific ap-
plication scenarios.

More specifically, OpenNRE attains the above
four design objects through implementing the fol-
lowing five components.

3.1 Tokenization
The tokenization component is responsible for to-
kenizing input text into several input tokens. In
OpenNRE, we implement both word-level tok-
enization and subword-level tokenization. These
two operations satisfy most tokenization demands
and help developers get rid of spending too
much time writing glue code for data process-
ing. For building a new tokenizer, extending the

171

BasicTokenizer class and implementing spe-
cific tokenization operations is convenient.

3.2 Module
The module component consists of various func-
tional neural modules for model implementation,
such as the essential network layers, some pool-
ing operations, and activation functions. In order
to adapt these modules for RE scenarios, we also
implement some special RE neural modules (e.g.,
piece-wise pooling operation (Zeng et al., 2015)).
Using these atomic modules to construct and de-
ploy RE systems has a high degree of freedom.

3.3 Encoder
The encoder is applied to encode text into its
corresponding embeddings to provide seman-
tic features. In OpenNRE, we implement the
BaseEncoder class based on the tokenization
and module components, which can provide ba-
sic functions of text tokenization and embedding
lookup. By extending the BaseEncoder class
and implementing specific neural encoding archi-
tecture, we can implement various specific en-
coders. In OpenNRE, we have implemented the
common convolutional and recurrent neural en-
coders, as well as the pre-trained encoder BERT.

3.4 Model
Some developers may not require to implement
and verify their own RE models, and their main
demand is to easily train and deploy custom mod-
els. To this end, we also replicate several typi-
cal RE models (Zeng et al., 2015; Zhang et al.,
2015). Some special algorithms for enhancing RE
models are also included in the toolkit, such as
attention mechanism (Lin et al., 2016), adversar-
ial training (Wu et al., 2017), and reinforcement
learning (Feng et al., 2018). On the one hand, the
model component enables us to train custom mod-
els without having to understand all technical de-
tails. On the other hand, the implemented models
in this model component are all tutorial examples
to show how to build models with OpenNRE.

3.5 Framework
The framework module is mainly responsible for
integrating other four components and support-
ing various functions (including data processing,
model training, model optimizing, and model eval-
uating). In OpenNRE, for all application scenar-
ios mentioned in Section 2, we have implemented

Model Wiki80 SemEval

CNN 63.93 71.11
BERT 84.57 84.02

BERT-Entity 86.61 84.21

Table 1: Accuracies of various models on Wiki80 and
SemEval 2010 Task-8 under the single sentence setting.

Model F1 F1 (*)

BERT 0.880 -
BERT-Entity 0.883 0.892

Table 2: Micro F1 scores of various models on Se-
mEval 2010 Task-8 under the sentence-level RE set-
ting. “(*)” indicates the original results from Soares
et al. (2019).

their corresponding framework. For other future
potential application scenarios, we have also re-
served interfaces for their implementation.

4 Experiment and Evaluation

In this section, we evaluate our toolkit on several
benchmark datasets in different RE scenarios. The
evaluation results show that our implementation of
some state-of-the-art models with OpenNRE can
achieve comparable or even better performance, as
compared to the original papers.

4.1 Sentence-Level Relation Extraction

We experiment on two different encoders for
sentence-level relation extraction: CNN (Zeng
et al., 2014b) and BERT (Devlin et al., 2019). For
CNN, we follow the setting of Nguyen and Gr-
ishman (2015), including using word and position
embeddings. For BERT, we follow the setting of
Soares et al. (2019). “BERT” in our paper refers
to using entity markers in input and taking [CLS]
as output. “BERT-Entity” refers to using entity
markers in input and taking entity start as output
like Soares et al. (2019).

We carry out experiments on two datasets of
sentence-level RE: SemEval 2010 Task-8 (Hen-
drickx et al., 2009) and Wiki80. SemEval 2010
Task-8 contains 19 relations and 10,717 instances,
17.4% of which are with no relation. Wiki80 is
derived from FewRel (Han et al., 2018c), a large
scale few-shot dataset. It contains 80 relations and
56,000 instances from Wikipedia and Wikidata
(Vrandečić and Krötzsch, 2014). Since Wiki80
is not an official benchmark, we directly report
the results on the validation set. From Table 1
we can see that BERT-based models perform bet-

172

Model 5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot (*) 5-Way 5-Shot (*)

Prototype-CNN 74.5 88.4 69.2 84.8
Prototype-BERT 80.7 89.6 - -

BERT-PAIR 88.3 93.2 - -

Table 3: Accuracies of various models on FewRel under the different few-shot settings. “(*)” indicates the original
results taken from Han et al. (2018c).

Model AUC F1 AUC (*) F1 (*)

CNN-ATT 0.333 0.397 0.318 0.380
CNN-ADV 0.337 0.406 - -
CNN-RL 0.276 0.429 - 0.42

Table 4: AUC and F1 scores of various models on
NYT10 under the bag-level RE setting. “(*)” indi-
cates the original results taken from Lin et al. (2016)
and Feng et al. (2018).

ter than the CNN model and achieve promising
results on both datasets. Our implementation of
BERT-Entity with OpenNRE achieves comparable
results to the original work in Table 2.

4.2 Bag-Level Relation Extraction

We implement models with instance-level atten-
tion (Lin et al., 2016), adversarial training (Wu
et al., 2017) and reinforcement learning (Feng
et al., 2018) for bag-level relation extraction. Note
that the latter two are based on the instance-level
attention mechanism. We use the same CNN en-
coder as Section 4.1 and denote the three mod-
els as “CNN-ATT”, “CNN-ADV” and “CNN-RL”.
We evaluate those three models on NYT10 (Riedel
et al., 2010), a distantly supervised dataset based
on New York Times corpus and FreeBase (Bol-
lacker et al., 2008). Table 4 shows that our ver-
sion of bag-level RE models achieves comparable
or even better results than the original papers.

4.3 Few-Shot Relation Extraction

We experiment on Prototypical Networks (Snell
et al., 2017) for few-shot RE. For the encoder se-
lection, we take CNN and BERT as described in
Section 4.1. We also implement a model named
“BERT-PAIR”, which takes one supporting sen-
tence and one query sentence as input, and di-
rectly outputs the probability that they share the
same relation with the BERT sequence classifica-
tion model. The experiments are carried out on
FewRel described in Section 4.1. From Table 3
we can see that for both few-shot settings, our ver-
sion achieves better results than the original results
from Han et al. (2018c), proving that our imple-

Figure 3: An example of the online system.

mentation with OpenNRE is robust.

5 Online System

Besides the toolkit, we also release an online sys-
tem. As shown in Figure 3, we train a model in the
sentence-level RE scenario and deploy the model
for online access. The online system can be di-
rectly applied for extracting structured facts from
plain text. Meanwhile, all extracted entity men-
tions and relations can be aligned to Wikidata.

6 Conclusion

We propose OpenNRE, an open and extensible
toolkit for relation extraction. OpenNRE achieves
the balance among system encapsulation, opera-
tional efficiency, model extensibility, and ease of
use. Based on OpenNRE, either training custom
models or quick model validation becomes easy.
Some experimental results also demonstrate that
the models implemented by OpenNRE are effi-
cient and effective, which can achieve compara-
ble or even better performance as compared to
the original papers. Furthermore, an online sys-
tem is also available for meeting real-time extrac-
tion without training and deploying. In the future,
we will provide long-term maintenance to fix bugs
and meet new requests.

Acknowledgments

This work is supported by the National Key Re-
search and Development Program of China (No.

173

2018YFB1004503) and the National Natural Sci-
ence Foundation of China (NSFC No. 61572273,
61772302). Han and Gao are supported by 2018
and 2019 Tencent Rhino-Bird Elite Training Pro-
gram respectively. Gao is also supported by Ts-
inghua University Initiative Scientific Research
Program.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and Christo-

pher D Manning. 2015. Leveraging linguistic structure for
open domain information extraction. In Proceedings of
ACL.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,
and Jamie Taylor. 2008. Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In
Proceedings of SIGMOD.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of NAACL-HLT.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xiaoyan
Zhu. 2018. Reinforcement learning for relation classifica-
tion from noisy data. In Proceedings of AAAI.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME: on-the-fly
annotation of short text fragments (by wikipedia entities).
In Proceedings of CIKM.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. 2019.
Hybrid attention-based prototypical networks for noisy
few-shot relation classification. In Proceedings of AAAI.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective entity
linking in web text: a graph-based method. In Proceed-
ings of SIGIR.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. 2018a. Openke: An open
toolkit for knowledge embedding. In Proceedings of
EMNLP.

Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng
Li. 2018b. Hierarchical relation extraction with coarse-to-
fine grained attention. In Proceedings of EMNLP.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018c. Fewrel: A large-
scale supervised few-shot relation classification dataset
with state-of-the-art evaluation. In Proceedings of
EMNLP.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakowicz.
2009. Semeval-2010 task 8: Multi-way classification of
semantic relations between pairs of nominals. In Proceed-
ings of the Workshop on SemEval.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettle-
moyer, and Daniel S Weld. 2011. Knowledge-based weak
supervision for information extraction of overlapping re-
lations. In Proceedings of ACL.

Guillaume Lample, Miguel Ballesteros, Sandeep Subrama-
nian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. In Proceed-
ings of NAACL-HLT.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2016. Neural relation extraction with se-
lective attention over instances. In Proceedings of ACL.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction without
labeled data. In Proceedings of ACL-IJCNLP.

Thien Huu Nguyen and Ralph Grishman. 2015. Relation ex-
traction: Perspective from convolutional neural networks.
In Proceedings of the NAACL-HLT.

Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010.
Modeling relations and their mentions without labeled
text. In Proceedings of ECML-PKDD.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Proto-
typical networks for few-shot learning. In Proceedings of
NIPS.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and
Tom Kwiatkowski. 2019. Matching the blanks: Distribu-
tional similarity for relation learning. In Proceedings of
ACL.

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a
free collaborative knowledgebase. Communications of the
ACM.

Yi Wu, David Bamman, and Stuart Russell. 2017. Adver-
sarial training for relation extraction. In Proceedings of
EMNLP.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin,
Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou, and
Maosong Sun. 2019. Docred: A large-scale document-
level relation extraction dataset. In Proceedings of ACL.

Zhi-Xiu Ye and Zhen-Hua Ling. 2019. Multi-level matching
and aggregation network for few-shot relation classifica-
tion. In Proceedings of ACL.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015.
Distant supervision for relation extraction via piece-
wise convolutional neural networks. In Proceedings of
EMNLP.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014a. Relation classification via convolutional
deep neural network. In Proceedings of COLING.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014b. Relation classification via convolutional
deep neural network. In Proceedings of COLING.

Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming Yang.
2015. Bidirectional long short-term memory networks for
relation classification. In Proceedings of PACLIC.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong
Sun, and Qun Liu. 2019. Ernie: Enhanced language rep-
resentation with informative entities. In Proceedings of
ACL.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-based bidirec-
tional long short-term memory networks for relation clas-
sification. In Proceedings of ACL.

174

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 175–180
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

ParaQG: A System for Generating Questions and Answers from
Paragraphs

Vishwajeet Kumar1,3,4, Sivaanandh Muneeswaran2, Ganesh Ramakrishnan3, and Yuan-Fang Li4

1IITB-Monash Research Academy, Mumbai, India
2Mepco Schlenk Engineering College, Tamilnadu, India

3IIT Bombay, Mumbai, India
4Monash University, Melbourne, Australia

Abstract

Generating syntactically and semantically
valid and relevant questions from paragraphs
is useful with many applications. Manual gen-
eration is a labour-intensive task, as it requires
the reading, parsing and understanding of long
passages of text. A number of question gener-
ation models based on sequence-to-sequence
techniques have recently been proposed. Most
of them generate questions from sentences
only, and none of them is publicly available
as an easy-to-use service. In this paper, we
demonstrate ParaQG, a Web-based system for
generating questions from sentences and para-
graphs. ParaQG incorporates a number of
novel functionalities to make the question gen-
eration process user-friendly. It provides an
interactive interface for a user to select an-
swers with visual insights on generation of
questions. It also employs various faceted
views to group similar questions as well as
filtering techniques to eliminate unanswerable
questions.

1 Introduction

Asking relevant and intelligent questions has al-
ways been an integral part of human learning, as
it can help assess user understanding of a piece of
text (a comprehension, an article, etc.). However,
forming questions manually is an arduous task.
Automated question generation (QG) systems can
help alleviate this problem by learning to gener-
ate questions on a large scale efficiently. A QG
system has many applications in a wide variety of
areas such as FAQ generation, intelligent tutoring
systems, automating reading comprehension, and
virtual assistants/chatbots. For a QG system, the
task is to generate syntactically coherent, semanti-
cally correct and natural questions from text. Ad-
ditionally, it is highly desirable that the questions
are relevant to the text and are pivoted on answers
present in the text. Distinct from other natural lan-

Figure 1: Example: Questions generated from the same
paragraph across choices of pivotal answer(s).

guage generation tasks such as summarisation and
paraphrasing, answers play an important role in
question generation. Different questions can be
formed from the same passage based on the choice
of the pivotal answer. The pivotal answer is the
span of text from the input passage around which
a question is generated. The pivotal answer can be
either selected manually by the user, automatically
by the system or by a combination of the two. For
example in Figure 1 it can be seen that based on
different answers selected (highlighted in different
colours), our system generates different questions.

Neural network-based sequence-to-sequence
(Seq2Seq) models represent the state-of-the-art in
question generation. Most of these models (Du
et al., 2017; Kumar et al., 2018; Song et al., 2018;
Kumar et al., 2019c,b) take single sentence as in-
put, thus limiting their usefulness in real-world
settings. Some recent techniques tackle the prob-
lem of question generation from paragraphs (Zhao
et al., 2018). However, none of the above works is
publicly available as an online service.

In this work we present ParaQG, an interac-
tive Web-based question generation system to gen-
erate correct, meaningful and relevant questions

175

from sentences, and paragraphs. Given a pas-
sage of text as input, users can manually select
a set of answer spans to ask questions about (i.e.
choose answers) from an automatically curated set
of noun phrases and named entities. Questions
are then generated by a combination of a (novel)
sequence-to-sequence model with dynamic dictio-
naries, the copy mechanism (Gu et al., 2016) and
the global sparse-max attention (Martins and As-
tudillo, 2016).

ParaQG incorporates the following main fea-
tures.

1. An interactive, user-configurable Web appli-
cation to automatically generate questions
from a sentence, or a paragraph based on user
selected answers, with visual insights on the
generated questions.

2. A technique to create faceted views of the
generated questions having overlapping or
similar answers. Given an input passage,
the same answer may appear multiple times
in different spans, from which similar ques-
tions can be generated. ParaQG detects and
presents the generated questions based on
a grouped/faceted view of similar answer
spans, thus allowing easy selection by users.

3. A novel question filtering technique based on
BERT (Devlin et al., 2018) to eliminate unan-
swerable questions from the text.

To the best of our knowledge we are the first to
propose and develop an interactive system that
generates questions based on the answers selected
by users. The rest of the paper is organized as fol-
lows. We discuss related work in Section 2. In
Section 3, We describe the architecture of ParaQG.
This is followed by details of the demonstration
in Section 4 and the implementation in Section 5.
Conclusion is discussed in Section 6.

2 Related Work

Automatically generating questions and answers
from text is a challenging task. This task can
be traced back to 1976 when Wolfe (1976) pre-
sented their system AUTOQUEST, which exam-
ined the generation of Wh-questions from single
sentences. This was followed by several pattern
matching (Hirschman et al., 1999) and linear re-
gression (Ng et al., 2000) based models. These
approaches are heavily dependent on either rules

or question templates, and require deep linguistic
knowledge, yet are not exhaustive enough. Recent
successes in neural machine translation (Sutskever
et al., 2014; Cho et al., 2014) have helped address
these issues by letting deep neural nets learn the
implicit rules from data. This approach has in-
spired application of sequence-to-sequence learn-
ing to automated question generation. Serban
et al. (2016) proposed an attention-based (Bah-
danau et al., 2014; Luong et al., 2015) approach
to question generation from a pre-defined template
of knowledge base triples (subject, relation, ob-
ject). We proposed multi-hop question generation
(Kumar et al., 2019a) from knowledge graphs us-
ing transformers (Vaswani et al., 2017). Du et
al. (2017) proposed an attention-based sequence
learning approach to question generation.

Most existing work focuses on generating ques-
tions from text without concerning itself with
answ er generation. In our previous work (Ku-
mar et al., 2018), we presented a pointer network-
based model that predicts candidate answers and
generates a question by providing a pivotal answer
as an input to the decoder. Our model for question
generation combines a rich set of linguistic fea-
tures, pointer network-based answer selection, and
an improved decoder, and is able to generate ques-
tions that are relatively more relevant to the given
sentence than the questions generated without the
answer signal.

Overall, the broad finding has been that it is
important to either be provided with or learn to
choose pivotal answer spans to ask questions about
from an input passage. Founded on this observa-
tion, our system facilitates users with an option to
either choose answer spans from the pre-populated
set of named entities and noun phrases or manu-
ally select custom answer spans interactively. Our
system, ParaQG, presented in this paper uses a
novel four-stage procedure: (1) text review, (2)
pivotal answer selection (3) automatic question
generation pertaining to the selected answer, and
(4) filtering and grouping questions based on con-
fidence scores and different facets of the selected
answer.

3 System Architecture

ParaQG generates questions from sentences and
paragraphs following a four-stage interactive pro-
cedure: (a) paragraph review, (b) answer selec-
tion, (c) question generation with associated confi-

176

dence score, and (d) question filtering and group-
ing based on answer facets. Given a paragraph,
ParaQG first reviews the content automatically
and then flags any unprocessable characters (e.g.
Unicode characters) and URLs, which the user are
prompted to edit or remove (Section 3.1). Next,
the user is provided with an option to select an
answer from the list of candidate answers iden-
tified by the system. Alternatively, the user can
select custom answer spans from the passage to
ask question about (Section 3.2). In the third
step, the selected pivotal spans are encoded into
the paragraph and fed to the question generation
module. The question generation module is a
sequence-to-sequence model with dynamic dictio-
naries, reusable copy attention and global sparse-
max attention. This module attempts to automati-
cally generate the most relevant as well as syntac-
tically and semantically correct questions around
the selected pivotal answers (Section 3.3). In the
last step the unanswerable questions are filtered
out using a BERT-based question filtering module
(Section 3.4). The questions that remain are pre-
sented by grouping their associated answers. Each
group of answers (which we also refer to as an
answer-based facet) corresponds to some unique
stem form of those answer words.

3.1 Paragraph Review

Since every sentence/word in a paragraph may not
be question-worthy, it is important to filter out
those that are not. Given a paragraph text, the sys-
tem automatically reviews its contents to check if
the paragraph contains any non-ASCII characters,
URLs etc., and flags them for users to edit, as il-
lustrated in Figure 2a.

3.2 Answer Selection

ParaQG allows users to select any named entity
or noun phrase present in the paragraph as a piv-
otal answer. As mentioned earlier, a user is pre-
sented with a list of all the named entities and noun
phrases as extracted using the Stanford CoreNLP
tagger to choose pivotal answers from. Alterna-
tively, users can manually select a set of spans
from the passage as pivotal answers, as shown in
Figure 2d. The selected answer is encoded in the
source sentence using the BIO (Begin, Inside, Out-
side) notation.

3.3 Question Generation

Similar to our previous work (Kumar et al., 2018),
we encode the pivotal answer spans in the pas-
sage using BIO notation, and train a sequence-to-
sequence model augmented with dynamic dictio-
nary, copy mechanism and global sparse-max at-
tention. Our question generation module consists
of a paragraph encoder and a question decoder.
The encoder represents the paragraph input as a
single fixed-length continuous vector. This vector
representation of the paragraph is passed to the de-
coder with reusable copy mechanism and sparse-
max attention to generate questions.

3.4 BERT-based Question Filtering

We use the BERTbase (Devlin et al., 2018) model
to filter out unanswerable questions generated by
our model. we fine-tune BERT on SQuAD 2.0(Ra-
jpurkar et al., 2018). SQuAD 2.0 extends SQuAD
with over 50000 unanswerable questions. The
unanswerable questions are flagged with the at-
tribute is impossible.

We represent input question (question generated
by our QG model) and the passage in a single
packed sequence of tokens, while using a special
token [SEP] to separate the question from the pas-
sage. Similar to (Devlin et al., 2018) we use a spe-
cial classification token [CLS] at the start of every
sequence. Let us denote the final hidden represen-
tation of the [CLS] token by C and the final hid-
den representation for the ith input token by Ti.
For each unanswerable question, we represent the
start and end answer index using a [CLS] token
as it does not have any answer start and end in-
dex. Similar to (Devlin et al., 2018), we compare
the score of no-answer span with the score of best
non-null answer span to predict the answerability
of a question. Score of no-answer span is calcu-
lated as: snull = S.C + E.C where S ∈ RH is
the vector representation of answer start index and
E ∈ RH is the vector representation of answer
end index. The score of a non-null answer span is
defined as si,j = maxj>=i{S.Ti + E.Tj} If the
score of snull − si,j > V , where V is a threshold
calculated using a validation set, then the question
is not answerable using the paragraph.

3.5 Grouped/Faceted Views of Questions

We group together all answers and their corre-
sponding question(s) that have the same stemmed
form. For example, two potential answer spans

177

(a) Reviewing paragraph content. (b) Selecting pivotal answers from named entities.

(c) Selecting pivotal answers from noun phrases. (d) Interactive pivotal answer selection.

Figure 2: Main steps of ParaQG.

‘switching’ and ‘switches’ would have the same
stemmed form ‘switch’. Thus, the spans ‘switch-
ing’ and ‘switches’, and their associated ques-
tion(s) would be grouped together under the same
stemmed form ‘switch’. Summarily, each such
question group yields a faceted view of the ques-
tion set. Within each group, the questions are
sorted in decreasing order of their probabilities.
We calculate the intra-question probability (con-
fidence score) by normalizing the beam score x
as: ex

1+ex . The final inter-question probability of a
question-answer pair is calculated from the ques-
tion with maximum intra-question probability p

as: p−min(P)
max(P)−min(P) , where P is the set of maximum

probability scores across answers.

4 Demonstration Details

ParaQG is available as an interactive and fully-
featured Web application. A video of the ParaQG
system is available at https://youtu.be/
BLChd18kz1c. The ParaQG system is acces-
sible at https://www.cse.iitb.ac.in/

˜vishwajeet/paraqg.html. Important
features of the Web application are discussed be-
low.

Input and content review: A user can copy any
paragraph and paste it in the text area (Fig. 2a),
and subsequently will be asked to review and re-
move/edit unprocessable contents (Fig. 2a).

Interactive pivotal answer selection: ParaQG
provides an interactive user interface for users to
select pivotal answers. A user has an option to

select a pivotal answers either from a set of noun
phrases or from a set of named entities present in
the paragraph. To choose a pivotal answer from
a set of named entities, the user can click on the
Named Entities tab (Figure 2b). Similarly, to se-
lect a noun phrase present in the paragraph as the
pivotal answer, the user can click on the Noun
Phrases tab (Figure 2c). Once a user clicks on ei-
ther of the tabs he/she will be presented with pre-
highlighted noun phrases/named entities as pivotal
answers. The user can subsequently deselect a piv-
otal answer by clicking on it.

Custom pivotal answer selection: Alterna-
tively, the user can click on the Custom Answers
tab (Figure 2d) and manually select the most im-
portant spans in the paragraph as the pivotal an-
swers. The users can also select overlapping
spans.

Automatic question and answer generation:
Finally, the user is presented with the question
generated as well as the answer to that question
along with confidence score. For example for the
paragraph input by the user in Figure 2b, the ques-
tions as well as the answers are generated and
shown to the the user (Figure 3) along with their
confidence score.

Visualization of decoder attention weights us-
ing heat maps: ParaQG also presents to the user
heat maps of the decoder attention weights be-
tween words in the paragraph and words in the
question generated. A user can click on the at-
tention weights button next to each question (Fig-

178

Figure 3: Editing question and answers.

Figure 4: Filtering questions based on confidence
score.

ure 3) to generate the attention weights heat map
between words in the paragraph and words in the
generated question (Fig. 5). Decoder attention
weights represent the weights ParaQG gives to the
words in the paragraph while generating the ques-
tion words. For example, while decoding the ques-
tion word “in”, the system gives the highest weight
to the paragraph word “1909”. Similarly, the ques-
tion word “disease” is generated by attending over
the word “disease” in the paragraph.

Filtering and grouping questions: User can fil-
ter generated questions based on confidence scores
using inter-question filter (Label 2 in figure 4) and
intra-question filter (Label 1 in Fig. 4). The intra-
question filter provides the user with a knob to fil-
ter questions based on the confidence score. The
inter-question filter provides the user with a knob
to filter low quality question-answer pairs gener-
ated from the paragraph in its entirety. We fil-
ter out unanswerable questions using our BERT-
based model (explained in Section 3.4). We also
group answers (and thus their associated ques-
tions) based on the stemmed form of the answer.
Label 1 in Fig. 6 depicts one such answer group,
whereas the generated question set is depicted by
Label 2 in Fig. 6.

Editing questions with history of edits and
Download generated questions and answers:
If users are not satisfied with the generated ques-

Figure 5: Attention weight visualization.

Figure 6: Clustering question based on different facets
of the answer.

tion answer pairs he/she may edit it. The system
stores all version of questions and answers. Users
can download the final generated set of questions
and answers in JSON or text format at the end.

5 Implementation Details

ParaQG1 comprises the frontend user interface,
the backend question generator and a BERT-based
question filtering module. The question generator
model is implemented using the PyTorch2 frame-
work. We trained the question generator model on
the SQuAD 1.0 (Rajpurkar et al., 2016) dataset.
We use pre-trained GloVe word vectors of 300 di-
mension and fix them during training. We employ
a 2-layer Bi-LSTM encoder and a single-layer Bi-
LSTM decoder of hidden size 600. For optimiza-
tion we use SGD with annealing. We set the initial
learning rate to 0.1. We train the model for 20
epochs with batch size 64. Dropout of 0.3 was
applied between vertical Bi-LSTM stacks. Our
question generator module provide a REST API to
which we can send requests and receive responses
from in JSON format. The embedded Javascript is
used as the template rendering engine to render the
front-end of the web application along with Boot-
strap 4 for responsiveness. Express is the Web ap-
plication framework used for server-side on top of

1The source code is availble for download at https://
github.com/sivaanandhmuneeswaran/qg-ui

2https://pytorch.org/

179

Node.js. For the BERT-based filtering module, we
finetune the BERTbase model on SQuAD 2.0 for
3 epochs, and set learning rate to 3e-5 and batch
size to 12.

6 Conclusion

Question generation from text is a task useful in
many application domains, yet manual generation
is labour-intensive and expensive. We presented
a novel online system, ParaQG, to automatically
generate questions from paragraph based on piv-
otal answers. The system allows users to select a
set of pivotal answers and then generates a ranked
set of questions for each answer. ParaQG also fil-
ters out unanswerble question using a BERT-based
model. ParaQG is available as a Web application,
which also incorporates a novel heat map-based
visualization that shows attention weights of the
decoder.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th ACL,
pages 1342–1352. ACL.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th ACL (Volume 1: Long Papers), volume 1,
pages 1631–1640.

Lynette Hirschman, Marc Light, Eric Breck, and
John D Burger. 1999. Deep read: A reading com-
prehension system. In ACL, pages 325–332. ACL.

Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakr-
ishnan, Guilin Qi, Lianli Gao, and Yuan-Fang Li.
2019a. Difficulty-controllable multi-hop question
generation from knowledge graphs. In ISWC.

Vishwajeet Kumar, N. Joshi, Arijit Mukherjee, Ganesh
Ramakrishnan, and Preethi Jyothi. 2019b. Cross-
lingual training for automatic question generation.
In ACL.

Vishwajeet Kumar, Ganesh Ramakrishnan, and Yuan-
Fang Li. 2018. Automating reading comprehen-
sion by generating question and answer pairs. In
PAKDD. Springer.

Vishwajeet Kumar, Ganesh Ramakrishnan, and Yuan-
Fang Li. 2019c. Putting the horse before the cart:
A generator-evaluator framework for question gen-
eration from text. SIGNLL Conference on Compu-
tational Natural Language Learning, CoNLL 2019.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In ICML, pages 1614–
1623.

Hwee Tou Ng, Leong Hwee Teo, and Jennifer
Lai Pheng Kwan. 2000. A machine learning ap-
proach to answering questions for reading compre-
hension tests. In SIGDAT-EMNLP, ACL-Volume 13,
pages 124–132. ACL.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you dont know: Unanswerable ques-
tions for squad. In ACL, pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
factoid questions with recurrent neural networks:
The 30m factoid question-answer corpus. arXiv
preprint arXiv:1603.06807.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context infor-
mation for natural question generation. In NAACL-
HLT, volume 2, pages 569–574.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

John H Wolfe. 1976. Automatic question genera-
tion from text-an aid to independent study. ACM
SIGCSE Bulletin, 8(1):104–112.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In EMNLP 2018, pages 3901–3910.

180

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 181–186
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

PolyResponse: A Rank-based Approach to Task-Oriented Dialogue with
Application in Restaurant Search and Booking

Matthew Henderson, Ivan Vulić, Iñigo Casanueva, Paweł Budzianowski, Daniela Gerz,

Sam Coope, Georgios Spithourakis, Tsung-Hsien Wen, Nikola Mrkšić, Pei-Hao Su

PolyAI Limited, London, UK
poly-ai.com

Abstract

We present PolyResponse, a conversational
search engine that supports task-oriented dia-
logue. It is a retrieval-based approach that by-
passes the complex multi-component design
of traditional task-oriented dialogue systems
and the use of explicit semantics in the form
of task-specific ontologies. The PolyResponse
engine is trained on hundreds of millions of
examples extracted from real conversations: it
learns what responses are appropriate in dif-
ferent conversational contexts. It then ranks a
large index of text and visual responses accord-
ing to their similarity to the given context, and
narrows down the list of relevant entities dur-
ing the multi-turn conversation. We introduce
a restaurant search and booking system pow-
ered by the PolyResponse engine, currently
available in 8 different languages.

1 Introduction and Background

Task-oriented dialogue systems are primarily de-
signed to search and interact with large databases
which contain information pertaining to a certain
dialogue domain: the main purpose of such sys-
tems is to assist the users in accomplishing a well-
defined task such as flight booking (El Asri et al.,
2017), tourist information (Henderson et al., 2014),
restaurant search (Williams, 2012), or booking a
taxi (Budzianowski et al., 2018). These systems
are typically constructed around rigid task-specific
ontologies (Henderson et al., 2014; Mrkšić et al.,
2015) which enumerate the constraints the users
can express using a collection of slots (e.g., PRICE

RANGE for restaurant search) and their slot values
(e.g., CHEAP, EXPENSIVE for the aforementioned
slots). Conversations are then modelled as a se-
quence of actions that constrain slots to particular
values. This explicit semantic space is manually
engineered by the system designer. It serves as
the output of the natural language understanding
component as well as the input to the language

generation component both in traditional modular
systems (Young, 2010; Eric et al., 2017) and in
more recent end-to-end task-oriented dialogue sys-
tems (Wen et al., 2017; Li et al., 2017; Bordes et al.,
2017; Budzianowski et al., 2018, inter alia).

Working with such explicit semantics for task-
oriented dialogue systems poses several critical
challenges on top of the manual time-consuming
domain ontology design. First, it is difficult to
collect domain-specific data labelled with explicit
semantic representations. As a consequence, de-
spite recent data collection efforts to enable training
of task-oriented systems across multiple domains
(El Asri et al., 2017; Budzianowski et al., 2018),
annotated datasets are still few and far between, as
well as limited in size and the number of domains
covered.1 Second, the current approach constrains
the types of dialogue the system can support, re-
sulting in artificial conversations, and breakdowns
when the user does not understand what the system
can and cannot support. In other words, training
a task-based dialogue system for voice-controlled
search in a new domain always implies the com-
plex, expensive, and time-consuming process of
collecting and annotating sufficient amounts of in-
domain dialogue data.

In this paper, we present a demo system based on
an alternative approach to task-oriented dialogue.
Relying on non-generative response retrieval we
describe the PolyResponse conversational search
engine and its application in the task of restau-
rant search and booking. The engine is trained on

1For instance, the recently published MultiWOZ dataset
(Budzianowski et al., 2018) contains a total of 115,424 dia-
logue turns scattered over 7 target domains. Other standard
task-based datasets are typically single-domain and by several
orders of magnitude smaller: DSTC2 (Henderson et al., 2014)
contains 23,354 turns, Frames (El Asri et al., 2017) 19,986
turns, and M2M (Shah et al., 2018) spans 14,796 turns. On the
other hand, the Reddit corpus which supports our system com-
prises 3.7B comments spanning a multitude of topics, divided
into 256M (Reddit) conversational threads and generating
727M context-reply pairs.

181

hundreds of millions of real conversations from a
general domain (i.e., Reddit), using an implicit rep-
resentation of semantics that directly optimizes the
task at hand. It learns what responses are appropri-
ate in different conversational contexts, and conse-
quently ranks a large pool of responses according
to their relevance to the current user utterance and
previous dialogue history (i.e., dialogue context).

The technical aspects of the underlying conver-
sational search engine are explained in detail in our
recent work (Henderson et al., 2019b), while the
details concerning the Reddit training data are also
available in another recent publication (Henderson
et al., 2019a). In this demo, we put focus on the
actual practical usefulness of the search engine by
demonstrating its potential in the task of restau-
rant search, and extending it to deal with multi-
modal data. We describe a PolyReponse system
that assists the users in finding a relevant restaurant
according to their preference, and then addition-
ally helps them to make a booking in the selected
restaurant. Due to its retrieval-based design, with
the PolyResponse engine there is no need to en-
gineer a structured ontology, or to solve the dif-
ficult task of general language generation. This
design also bypasses the construction of dedicated
decision-making policy modules. The large rank-
ing model already encapsulates a lot of knowledge
about natural language and conversational flow.

Since retrieved system responses are presented
visually to the user, the PolyResponse restaurant
search engine is able to combine text responses
with relevant visual information (e.g., photos from
social media associated with the current restau-
rant and related to the user utterance), effectively
yielding a multi-modal response. This setup of
using voice as input, and responding visually is
becoming more and more prevalent with the rise
of smart screens like Echo Show and even mixed
reality. Finally, the PolyResponse restaurant search
engine is multilingual: it is currently deployed in
8 languages enabling search over restaurants in
8 cities around the world. System snapshots in
four different languages are presented in Figure 2,
while screencast videos that illustrate the dialogue
flow with the PolyResponse engine are available at:
https://tinyurl.com/y3evkcfz.

2 PolyResponse: Conversational Search

The PolyResponse system is powered by a single
large conversational search engine, trained on a

conversational
context

conversational
reply

photo captions

photos

 Reddit
727M (context, reply) pairs

 Yelp
200K (image, caption) pairs

Figure 1: The PolyResponse ranking model: it encodes
conversational contexts, replies, and photos to respec-
tive vectors hc, hr, and hp.

large amount of conversational and image data, as
shown in Figure 1. In simple words, it is a ranking
model that learns to score conversational replies
and images in a given conversational context. The
highest-scoring responses are then retrieved as sys-
tem outputs. The system computes two sets of
similarity scores: 1) S(r, c) is the score of a candi-
date reply r given a conversational context c, and
2) S(p, c) is the score of a candidate photo p given
a conversational context c. These scores are com-
puted as a scaled cosine similarity of a vector that
represents the context (hc), and a vector that repre-
sents the candidate response: a text reply (hr) or
a photo (hp). For instance, S(r, c) is computed as
S(r, c) = Ccos(hr, hc), where C is a learned con-
stant. The part of the model dealing with text input
(i.e., obtaining the encodings hc and hr) follows
the architecture introduced recently by Henderson
et al. (2019b). We provide only a brief recap here;
see the original paper for further details.

Text Representation. The model, implemented
as a deep neural network, learns to respond by
training on hundreds of millions context-reply (c, r)
pairs. First, similar to Henderson et al. (2017), raw
text from both c and r is converted to unigrams
and bigrams. All input text is first lower-cased
and tokenised, numbers with 5 or more digits get
their digits replaced by a wildcard symbol #, while
words longer than 16 characters are replaced by a
wildcard token LONGWORD. Sentence boundary
tokens are added to each sentence. The vocabulary
consists of the unigrams that occur at least 10 times
in a random 10M subset of the Reddit training set
(see Figure 1) plus the 200K most frequent bigrams
in the same random subset.

182

During training, we obtain d-dimensional feature
representations (d = 320) shared between contexts
and replies for each unigram and bigram jointly
with other neural net parameters.2 A state-of-the-
art architecture based on transformers (Vaswani
et al., 2017) is then applied to unigram and bigram
vectors separately, which are then averaged to form
the final 320-dimensional encoding. That encod-
ing is then passed through three fully-connected
non-linear hidden layers of dimensionality 1, 024.
The final layer is linear and maps the text into the
final l-dimensional (l = 512) representation: hc
and hr. Other standard and more sophisticated
encoder models can also be used to provide final
encodings hc and hr, but the current architecture
shows a good trade-off between speed and efficacy
with strong and robust performance in our empiri-
cal evaluations on the response retrieval task using
Reddit (Al-Rfou et al., 2016), OpenSubtitles (Li-
son and Tiedemann, 2016), and AmazonQA (Wan
and McAuley, 2016) conversational test data, see
(Henderson et al., 2019a) for further details.3

In training the constant C is constrained to lie
between 0 and

√
l.4 Following Henderson et al.

(2017), the scoring function in the training ob-
jective aims to maximise the similarity score of
context-reply pairs that go together, while minimis-
ing the score of random pairings: negative exam-
ples. Training proceeds via SGD with batches com-
prising 500 pairs (1 positive and 499 negatives).

Photo Representation. Photos are represented
using convolutional neural net (CNN) models pre-
trained on ImageNet (Deng et al., 2009). We
use a MobileNet model with a depth multiplier
of 1.4, and an input dimension of 224 × 224 pix-
els as in (Howard et al., 2017).5 This provides a
1, 280× 1.4 = 1, 792-dimensional representation
of a photo, which is then passed through a single
hidden layer of dimensionality 1, 024 with ReLU
activation, before being passed to a hidden layer of
dimensionality 512 with no activation to provide
the final representation hp.

2The model deals with out-of-vocabulary unigrams and
bigrams by assigning a random id from 0 to 50,000 to each;
this is then used to look up their embedding.

3The comparisons of performance in the response retrieval
task are also available online at: https://github.com/
PolyAI-LDN/conversational-datasets/.

4It is initialised to a random value between 0.5 and 1, and
invariably converges to

√
l by the end of training. Empirically,

this helps with learning.
5The pretrained model downloaded from TensorFlow Slim.

Data Source 1: Reddit. For training text repre-
sentations we use a Reddit dataset similar to Al-
Rfou et al. (2016). Our dataset is large and provides
natural conversational structure: all Reddit data
from January 2015 to December 2018, available
as a public BigQuery dataset, span almost 3.7B
comments (Henderson et al., 2019a). We prepro-
cess the dataset to remove uninformative and long
comments by retaining only sentences containing
more than 8 and less than 128 word tokens. After
pairing all comments/contexts c with their replies
r, we obtain more than 727M context-reply (c, r)
pairs for training, see Figure 1.

Data Source 2: Yelp. Once the text encod-
ing sub-networks are trained, a photo encoder is
learned on top of a pretrained MobileNet CNN,
using data taken from the Yelp Open dataset:6 it
contains around 200K photos and their captions.
Training of the multi-modal sub-network then max-
imises the similarity of captions encoded with the
response encoder hr to the photo representation hp.
As a result, we can compute the score of a photo
given a context using the cosine similarity of the
respective vectors. A photo will be scored highly if
it looks like its caption would be a good response
to the current context.7

Index of Responses. The Yelp dataset is used at
inference time to provide text and photo candidates
to display to the user at each step in the conversa-
tion. Our restaurant search is currently deployed
separately for each city, and we limit the responses
to a given city. For instance, for our English system
for Edinburgh we work with 396 restaurants, 4,225
photos (these include additional photos obtained us-
ing the Google Places API without captions), 6,725
responses created from the structured information
about restaurants that Yelp provides, converted us-
ing simple templates to sentences of the form such
as “Restaurant X accepts credit cards.”, 125,830
sentences extracted from online reviews.

PolyResponse in a Nutshell. The system jointly
trains two encoding functions (with shared word
embeddings) f(context) and g(reply) which pro-
duce encodings hc and hr, so that the similarity

6https://www.yelp.com/dataset
7Note that not all of the Yelp dataset has captions, which

is why we need to learn the photo representation. If a photo
caption is available, then the response vector representation of
the caption is averaged with the photo vector representation
to compute the score. If a caption is not available at inference
time, we use only the photo vector representation.

183

S(c, r) is high for all (c, r) pairs from the Reddit
training data and low for random pairs. The encod-
ing function g() is then frozen, and an encoding
function t(photo) is learnt which makes the similar-
ity between a photo and its associated caption high
for all (photo, caption) pairs from the Yelp dataset,
and low for random pairs. t is a CNN pretrained
on ImageNet, with a shallow one-layer DNN on
top. Given a new context/query, we then provide
its encoding hc by applying f(), and find plausi-
ble text replies and photo responses according to
functions g() and t(), respectively. These should
be responses that look like answers to the query,
and photos that look like they would have captions
that would be answers to the provided query.

At inference, finding relevant candidates given a
context reduces to computing hc for the context c ,
and finding nearby hr and hp vectors. The response
vectors can all be pre-computed, and the nearest
neighbour search can be further optimised using
standard libraries such as Faiss (Johnson et al.,
2017) or approximate nearest neighbour retrieval
(Malkov and Yashunin, 2016), giving an efficient
search that scales to billions of candidate responses.

The system offers both voice and text input and
output. Speech-to-text and text-to-speech conver-
sion in the PolyResponse system is currently sup-
ported by the off-the-shelf Google Cloud tools.8

3 Dialogue Flow

The ranking model lends itself to the one-shot task
of finding the most relevant responses in a given
context. However, a restaurant-browsing system
needs to support a dialogue flow where the user
finds a restaurant, and then asks questions about
it. The dialogue state for each search scenario is
represented as the set of restaurants that are consid-
ered relevant. This starts off as all the restaurants
in the given city, and is assumed to monotonically
decrease in size as the conversation progresses until
the user converges to a single restaurant. A restau-
rant is only considered valid in the context of a new
user input if it has relevant responses corresponding
to it. This flow is summarised here:

S1. Initialise R as the set of all restaurants in the
city. Given the user’s input, rank all the responses
in the response pool pertaining to restaurants in R.

S2. Retrieve the top N responses r1, r2, . . . , rN
with corresponding (sorted) cosine similarity

8https://cloud.google.com/speech-to-text/;
https://cloud.google.com/text-to-speech/

scores: s1 ≥ s2 ≥ . . . ≥ sN .

S3. Compute probability scores pi ∝ exp(a · si)
with

∑N
i=1 pi, where a > 0 is a tunable constant.

S4. Compute a score qe for each restaurant/entity
e ∈ R, qe =

∑
i:ri∈e pi.

S5. Update R to the smallest set of restaurants with
highest q whose q-values sum up to more than a
predefined threshold t.

S6. Display the most relevant responses associated
with the updated R, and return to S2.

If there are multiple relevant restaurants, one
response is shown from each. When only one
restaurant is relevant, the top N responses are all
shown, and relevant photos are also displayed. The
system does not require dedicated understanding,
decision-making, and generation modules, and this
dialogue flow does not rely on explicit task-tailored
semantics. The set of relevant restaurants is kept
internally while the system narrows it down across
multiple dialogue turns. A simple set of predefined
rules is used to provide a templatic spoken system
response: e.g., an example rule is “One review of
e said r”, where e refers to the restaurant, and r
to a relevant response associated with e. Note that
while the demo is currently focused on the restau-
rant search task, the described “narrowing down”
dialogue flow is generic and applicable to a variety
of applications dealing with similar entity search.

The system can use a set of intent classifiers to
allow resetting the dialogue state, or to activate the
separate restaurant booking dialogue flow. These
classifiers are briefly discussed in §4.

4 Other Functionality

Multilinguality. The PolyResponse restaurant
search is currently available in 8 languages and
for 8 cities around the world: English (Edinburgh),
German (Berlin), Spanish (Madrid), Mandarin
(Taipei), Polish (Warsaw), Russian (Moscow), Ko-
rean (Seoul), and Serbian (Belgrade). Selected
snapshots are shown in Figure 2, while we also pro-
vide videos demonstrating the use and behaviour
of the systems at: https://tinyurl.com/
y3evkcfz. A simple MT-based translate-to-
source approach at inference time is currently used
to enable the deployment of the system in other
languages: 1) the pool of responses in each lan-
guage is translated to English by Google Translate
beforehand, and pre-computed encodings of their
English translations are used as representations of

184

(a) English system. City: Edinburgh. (b) French system. City: Paris.

(c) German system. City: Berlin. (d) Mandarin system. City: Taipei.

Figure 2: Snapshots of the PolyResponse demo system for restaurant search in four different languages. Restaurant
names are anonymised. Translations of non-English sentences are provided in parentheses; they are not part of the
system output. The output also comprises relevant photos associated with the current restaurant.

Figure 3: An example showing how the system can re-
trieve parts of the menu as responses to the current user
utterance (if they are relevant to the utterance).

each foreign language response; 2) a provided user
utterance (i.e., context) is translated to English on-
the-fly and its encoding hc is then learned. We plan
to experiment with more sophisticated multilingual
models in future work.

Voice-Controlled Menu Search. An additional
functionality enables the user to get parts of the
restaurant menu relevant to the current user utter-
ance as responses. This is achieved by performing
an additional ranking step of available menu items
and retrieving the ones that are semantically rele-
vant to the user utterance using exactly the same
methodology as with ranking other responses. An
example of this functionality is shown in Figure 3.

Resetting and Switching to Booking. The
restaurant search system needs to support the dis-
crete actions of restarting the conversation (i.e.,
resetting the set R), and should enable transfer-
ring to the slot-based table booking flow. This is
achieved using two binary intent classifiers, that
are run at each step in the dialogue. These classi-
fiers make use of the already-computed hc vector
that represents the user’s latest text. A single-layer
neural net is learned on top of the 512-dimensional
encoding, with a ReLU activation and 100 hidden
nodes.9 To train the classifiers, sets of 20 rele-
vant paraphrases (e.g., “Start again”) are provided
as positive examples. Finally, when the system
successfully switches to the booking scenario, it
proceeds to the slot filling task: it aims to extract
all the relevant booking information from the user
(e.g., date, time, number of people to dine). The en-
tire flow of the system illustrating both the search
phase and the booking phase is provided as the
supplemental video material.

5 Conclusion and Future Work

This paper has presented a general approach to
search-based dialogue that does not rely on explicit

9Using the Reddit encoding has shown better generalisa-
tion when compared to models learned from scratch. This fol-
lows a recent trend where small robust classifiers are learned
on pretrained large models (Devlin et al., 2018).

185

semantic representations such as dialogue acts or
slot-value ontologies, and allows for multi-modal
responses. In future work, we will extend the cur-
rent demo system to more tasks and languages, and
work with more sophisticated encoders and rank-
ing functions. Besides the initial dialogue flow
from this work (§3), we will also work with more
complex flows dealing, e.g., with user intent shifts.

References
Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-

Hsuan Sung, Brian Strope, and Ray Kurzweil. 2016.
Conversational contextual cues: The case of person-
alization and history for response ranking. CoRR,
abs/1606.00372.

Antoine Bordes, Y.-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
ICLR.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - A
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. In EMNLP, pages
5016–5026.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Fei-Fei Li. 2009. ImageNet: A large-scale
hierarchical image database. In CVPR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. In SIGDIAL, pages 207–219.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In SIGDIAL,
pages 37–49.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. CoRR, abs/1705.00652.

Matthew Henderson, Pawel Budzianowski, Iñigo
Casanueva, Sam Coope, Daniela Gerz, Girish
Kumar, Nikola Mrkšić, Georgios Spithourakis,
Pei-Hao Su, Ivan Vulić, and Tsung-Hsien Wen.
2019a. A repository of conversational datasets. In
NLP4ConvAI Workshop, pages 1–10.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014. Word-based dialog state tracking with
recurrent neural networks. In SIGDIAL.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo
Casanueva, Paweł Budzianowski, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola
Mrkšić, and Pei-Hao Su. 2019b. Training neural re-
sponse selection for task-oriented dialogue systems.
In ACL, pages 5392–5404.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. 2017.
MobileNets: Efficient convolutional neural net-
works for mobile vision applications. CoRR,
abs/1704.04861.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. In IJCNLP,
pages 733–743.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In LREC.

Yury A. Malkov and D. A. Yashunin. 2016. Efficient
and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs.
CoRR, abs/1603.09320.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. In ACL, pages 794–799.

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, and
Gokhan Tür. 2018. Bootstrapping a neural conversa-
tional agent with dialogue self-play, crowdsourcing
and on-line reinforcement learning. In NAACL-HLT,
pages 41–51.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 6000–6010.

Mengting Wan and Julian McAuley. 2016. Modeling
ambiguity, subjectivity, and diverging viewpoints
in opinion question answering systems. In ICDM,
pages 489–498.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In EACL, pages 438–449.

Jason D. Williams. 2012. A belief tracking challenge
task for spoken dialog systems.

Steve Young. 2010. Still talking to machines (cogni-
tively speaking). In INTERSPEECH, pages 1–10.

186

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 187–192
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

PyOpenDial: A Python-based Domain-Independent Toolkit for
Developing Spoken Dialogue Systems with Probabilistic Rules

Youngsoo Jang1∗, Jongmin Lee1∗, Jaeyoung Park1∗,
Kyeng-Hun Lee3, Pierre Lison4, Kee-Eung Kim1,2

1 School of Computing, KAIST, Daejeon, Republic of Korea
2 Graduate School of AI, KAIST, Daejeon, Republic of Korea

3 Samsung Electronics, Seoul, Republic of Korea
4 Norwegian Computing Center, Oslo, Norway

{ysjang,jmlee,jypark}@ai.kaist.ac.kr,
kyenghun.lee@samsung.com, plison@nr.no, kekim@cs.kaist.ac.kr

Abstract

We present PyOpenDial, a Python-based
domain-independent, open-source toolkit for
spoken dialogue systems. Recent advances in
core components of dialogue systems, such as
speech recognition, language understanding,
dialogue management, and language genera-
tion, harness deep learning to achieve state-of-
the-art performance. The original OpenDial,
implemented in Java, provides a plugin archi-
tecture to integrate external modules, but lacks
Python bindings, making it difficult to inter-
face with popular deep learning frameworks
such as Tensorflow or PyTorch. To this end,
we re-implemented OpenDial in Python and
extended the toolkit with a number of novel
functionalities for neural dialogue state track-
ing and action planning. We describe the over-
all architecture and its extensions, and illus-
trate their use on an example where the system
response model is implemented with a recur-
rent neural network.

1 Introduction

Spoken dialogue systems (SDSs) allow interac-
tions between users and machines through nat-
ural language conversations. These systems are
composed of a broad range of components such
as speech recognition, language understanding,
dialogue management, language generation, and
speech synthesis. Recent SDS frameworks, such
as AT&T Statistical Dialogue Toolkit (Williams
et al., 2010), OpenDial (Lison and Kennington,
2016), and PyDial (Ultes et al., 2017) aim to
integrate these complex and diverse components
through a modular architecture.

Spoken dialogue systems may either adopt sym-
bolic or statistical approaches to perform lan-

∗*:These authors contributed equally.
This work was supported by MOTIE (KEIT No.

10063424), MSIT (IITP No. 2017-0-01779 XAI, IITP No.
2019-0-00075-001), and Samsung Research.

Figure 1: Information-state architecture for PyOpen-
Dial.

guage understanding, dialogue management and
language generation. Statistical approaches, in-
cluding but not limited to (Young et al., 2013;
Ultes et al., 2017) rely on probabilistic models
of dialogue interactions and allows these models
to be estimated from data. Symbolic approaches,
on the other hand, model the dialogue interaction
using finite-state automata or logical methods de-
signed by the developer. Of our particular interest
is OpenDial, a Java-based open-source toolkit that
combines the benefits of both statistical and sym-
bolic approaches.

In recent years, deep learning has shown to
achieve promising performance results in many
tasks related to dialogues, such as speech recog-
nition (Graves et al., 2013), language understand-
ing (Radford et al., 2018), dialogue management
(Williams et al., 2017) and language generation
(Yu et al., 2016). Given that one of the most pop-
ular programming languages for deep learning li-
braries is Python, e.g. Tensorflow (Abadi et al.,
2016) and PyTorch (Paszke et al., 2017), the inte-
gration of neural conversational models would be
a straightforward task if OpenDial itself was writ-
ten in Python.

To this end, we developed PyOpenDial, an
open-source SDS framework that re-implements
OpenDial in Python and integrates a range of
novel functionalities, such as the possibility to

187

track neural dialogue state and the use of Monte
Carlo Tree Search for forward planning. PyOpen-
Dial inherits the original architectural design of
OpenDial, and extends the XML domain specifi-
cation so that various deep learning models can
be directly used for SDS components. We include
the negotiation dialogue domain in (Lewis et al.,
2017) as an example to show how to integrate with
external components trained by deep learning.

2 Architecture

2.1 Dialogue State

PyOpenDial inherits the information-state frame-
work in OpenDial (Larsson and Traum, 2000):
All the components in the toolkit operates on the
shared information state that represents the dia-
logue state arising from the interaction between
the user and the machine (see Figure 1). The dia-
logue state is represented by a Bayesian network
(BN), a directed graphical model for encoding
the probability distribution of the dialogue state.
Hence, the dialogue state consists of a factored
representation of state variables on a dialogue,
which are random variables, and conditional de-
pendencies between them.

2.2 Workflow

PyOpenDial adopts the probabilistic rules used in
OpenDial (Lison, 2014; Lison and Kennington,
2016) to update the dialogue state represented by a
Bayesian Network during the conversation. These
rules follow a if...then...else skeleton that map log-
ical conditions on a subset of state variables to a
probability or utility distribution on another subset
of state variables. Two types of rules are provided:
probability rules and utility rules. The probability
rule defines the probabilistic change of state vari-
ables through a probability distribution over ef-
fects, each of which is an assignment on the state
variables, given a logical condition of state vari-
ables. The utility rule defines utilities on the val-
ues of action variables given a logical conditions
of state variables. These probabilistic rules are
specified in the domain XML file. Examples are
shown in Listing 1, where line 13-23 contains the
probability rule and line 27-38 contains the utility
rule.

These probabilistic rules can be grouped ac-
cording to subtasks, such as language understand-
ing, dialogue management, language generation
and etc. Each group is defined as a model. Each

1 <initialstate>
2 <variable id="movie_rnn">
3 <value>@chatbot.MovieRNN</value>
4 </variable>
5 <variable id="music_rnn">
6 <value>@chatbot.MusicRNN</value>
7 </variable>
8 </initialstate>
9

10 <function name="gen_u_m">chatbot.generate</function>
11 <!-- User intent recognition -->
12 <model trigger="u_u">
13 <rule>
14 <case>
15 <condition>
16 <if var="u_u" value="movie" relation="contains"/>
17 </condition>
18 <effect prob="1">
19 <set var="a_u" value="movie"/>
20 </effect>
21 </case>
22 · · ·
23 </rule>
24 </model>
25 <!-- System utterance generation -->
26 <model trigger="a_u">
27 <rule>
28 <case>
29 <condition>
30 <if var="a_u" value="movie"/>
31 </condition>
32 <effect util="1">
33 <set var="u_m"
34 value="@gen_u_m({movie_rnn},{u_u})"/>
35 </effect>
36 </case>
37 · · ·
38 </rule>
39 </model>

Listing 1: A simple example domain XML specifica-
tion for an RNN-based chat-bot. Here, u u stands for
the user utterance, a u for the user intent and u m for
the system utterance.

model is associated with a subset of state vari-
ables, called trigger variables. Each model mon-
itors the change of its trigger variables. When
one or more trigger variables are updated during
a conversation, the probabilistic rules on the cor-
responding model are applied to the dialogue state
by instantiating the rule with the current dialogue
state. Note that these updates may result to trigger
other models, hence the procedure causes a chain
of updates on the dialogue state through the proba-
bilistic rules of the models. In summary, the work-
flow of PyOpenDial is basically a series of appli-
cations of probabilistic rules to the dialogue state.

Since this workflow is basically the same
as in OpenDial, we refer the readers to Li-
son (2014), Lison and Kennington (2016), and
the OpenDial toolkit website (http://www.
opendial-toolkit.net) for more details on
the XML specification of the domain modeling.

188

Figure 2: User interface for PyOpenDial.

2.3 Extensions to OpenDial

Custom Variable Types Neural models such as
recurrent neural networks (RNNs) have become
a popular choice for various dialogue processing
tasks, given their capability to be trained end-to-
end and infer complex latent representations of the
dialogue state. In these models, the dialogue state
is typically represented as a vector-valued predic-
tion computed from a complex mapping from in-
put to output. In contrast, the original OpenDial
only supports updates on primitive data types (e.g.
boolean, double, string, double array, and set) via
human-readable probabilistic rules similar to de-
cision trees. In order to overcome this limitation,
we extend the specification of the dialogue state
to include complex variable types and functional
values to allow arbitrarily complex mappings of
conditional variables, e.g. latent vectors in neural
models that encode the dialogue context.

This is achieved by extending the domain XML
specification to allow for variable types expressed
through complex functions that can be integrated
in probabilistic rules. In Listing 1, two such
custom variables are defined: movie rnn and
music rnn, which are instances of MovieRNN
and MusicRNN respectively (line 2-7), represent-
ing pre-trained RNN-based generation models.
Line 10 assigns gen u m to function generate
in module chatbot, which executes the neural
model. This particular function takes two argu-
ments (namely the generation model and a user ut-
terance) as input and returns the system utterance
as output.

Predictive models Dialogue management is, at
its core, a sequential decision-making problem,

where the goal of the system is to select actions
that fulfill the system objectives while minimising
associated costs. One way to achieve this objec-
tive is through forward planning, i.e. enabling the
system to search for actions that yield the maxi-
mum expected utility over a given horizon. For-
ward planning requires the specification of predic-
tive models (such as user simulation models) to
be able to predict the consequences of the system
actions on the current interaction. PyOpenDial
provides the planning-only option to models,
which makes the model triggered only when for-
ward planning is performed. This allows the sys-
tem to explicitly differentiate between observed
and predicted values in the dialogue state. The
specific use-case of this feature is described in
Section 4 with Listing 2 (line 30).

3 Implementation

PyOpenDial is implemented in Python and is
released under the MIT opensource license.
The toolkit is available through the GitHub
code repository at (https://github.com/
KAIST-AILab/PyOpenDial) 1. The toolkit
additionally provides a graphical user interface
that helps fast-prototyping and test-driving the
system. The graphical user interface, shown in
Figure 2, displays the domain and dialogue history
and take the user’s next input (text or speech).

PyOpenDial implements all the core compo-
nents and modules of OpenDial, including the
BN inference algorithm and the probabilistic rule
engine. We also introduced a number of new
modules, including the Monte-Carlo tree search
(MCTS) (Kocsis and Szepesvári, 2006) planner
and the basic speech-to-text and text-to-speech
modules using Google Speech APIs.

MCTS Planner In dialogue management, plan-
ning algorithms are often used to search for the
system action that maximizes the sum of utilities
in the long-term horizon so as to optimally react to
the user.

The baseline planning algorithm in OpenDial is
a lookahead forward planner that fully expands the
search tree up to the planning horizon H:

Qt(b, a) = U(b, a) + γmax
a′

Eo|b,a
[
Qt+1(b

ao, a′)
]

where b is the dialogue state, a is the value of
the action variables, o is the possible observation

1More dialogue domain examples combined with deep
neural networks can be found in the GitHub repository.

189

when taking action a in the state b, bao is the di-
alogue state updated from b after action a and
observation o, γ ∈ [0, 1) is the discount factor,
U(b, a) is the instantaneous utility of a at the dia-
logue state b, and QH(b, a) = 0 for all b, a. Af-
ter computing Q0(b, a) from the recursive equa-
tion, the forward planner chooses the final value of
the action variable given by argmaxaQ0(b, a). A
major limitation of the forward planner is that the
search becomes infeasible in the planning horizon
as well as the branching factor (i.e. the number of
candidate actions and observations).

On the other hand, MCTS combines tree search
with Monte-Carlo simulation so that the search
effort is non-uniformly invested into promising
nodes. One of the most basic MCTS algorithms
is UCT (Kocsis and Szepesvári, 2006), which per-
forms iterative simulation on the search tree by
following the UCB rule to select actions at inter-
mediate nodes

argmaxa

[
Q(b, a) + c

√
logN(b)
N(b,a)

]

where c is the exploration constant that balances
exploration and exploitation trade-off, Q(b, a) is
the average of the sampled sum of utilities,N(b) is
the number of simulations performed through the
dialogue state b, N(b, a) is the number of times
action a is selected in b. More recent versions of
MCTS algorithms have shown great successes in
many large sequential-decision making problems
such as playing Go (Silver et al., 2016).

PyOpenDial includes an MCTS planner, and we
shall demonstrate its effectiveness in the next sec-
tion by comparing its performance with the for-
ward planner, using the negotiation dialogue do-
main that requires long-term planning.

Google Speech Modules PyOpenDial provides
new speech modules based on Google speech API:
The speech recognition module that uses Google
speech-to-text API and the speech synthesis mod-
ule that uses Google text-to-speech API 2. These
modules can also be replaced with other custom-
developed speech recognition and speech synthe-
sis modules.

4 Application Domain

In this section, we demonstrate the aptitude of
PyOpenDial using the negotiation dialogue do-
main (Lewis et al., 2017) as an example. In this

2https://cloud.google.com/text-to-speech,
https://cloud.google.com/speech-to-text

1 <initialstate>
2 <variable id="rnn">
3 <value>@nego.NegotiationRNN</value>
4 </variable>
5 <variable id="h"><value> </value></variable>
6 · · ·
7 </initialstate>
8
9 <function name="gen_u_m">nego.gen_u_m</function>

10 <function name="gen_u_u">nego.gen_u_u</function>
11 <function name="reward">nego.reward</function>
12 · · ·
13 <model trigger="u_u">
14 <rule>
15 <case>
16 <condition>
17 <if var="current_step" value="Negotiation"/>
18 </condition>
19 <effect util="0.001">
20 <set var="u_m" value="@gen_u_m({rnn},{h},0)"/>
21 </effect>
22 · · ·
23 <effect util="0.001">
24 <set var="u_m" value="@gen_u_m({rnn},{h},19)"/>
25 </effect>
26 </case>
27 </rule>
28 </model>
29
30 <model trigger="u_m" planning-only="true">
31 <rule>
32 <case>
33 <condition>
34 <if var="current_step" value="Negotiation"/>
35 </condition>
36 <effect>
37 <set var="u_u" value="@gen_u_u({rnn},{h})"/>
38 </effect>
39 </case>
40 </rule>
41 </model>
42
43 <model trigger="current_step">
44 <rule>
45 <case>
46 <condition>
47 <if var="current_step" value="Result"/>
48 </condition>
49 <effect util="@reward({rnn},{h})">
50 <set var="current_step" value="Terminated"/>
51 </effect>
52 </case>
53 </rule>
54 </model>
55 · · ·

Listing 2: A simplified XML specification for the ne-
gotiation dialogue domain.

domain, two agents (i.e. the user and the system)
negotiate on 3 types of items, and the negotiation
domain has the following unique characteristics:
(1) the simulated utterances of the system and the
user are generated from the RNN of system and
user models, which is done seamlessly thanks to
Python-based implementation of the framework,
(2) a long-term dialogue planning is required to
get a high reward in the negotiation since the util-
ity signal is given only at the very end of the poten-
tially very long dialogue; thus an MCTS planner is
desirable.

190

4.1 Domain Description
In the negotiation dialogue domain, 3 types of
items (i.e. books, hats, balls) are divided be-
tween two agents through natural language dia-
logue. There is a finite amount of each item (5
to 7 total items and 1 to 4 individual items), and
the agents have different utility functions that rep-
resent the agent’s preference. The utility function
for each agent is defined randomly while satisfy-
ing the following constraints: (1) The maximally
achievable utility for each agent should be 10; (2)
Each item must always have a non-zero utility for
at least one agent; (3) At least one item must al-
ways have a non-zero utility for both agents. If
an agreement is reached at the end of the nego-
tiation, each agent receives a reward equal to the
total utility of obtained items. If the decisions are
in conflict, both agents receive a reward of 0. Fig-
ure 2 shows the negotiation dialogue example be-
tween user and system in PyOpenDial, and List-
ing 2 presents a simplified version of the domain
XML specification.

4.2 RNN-based Natural Language
Generation Model

In implementing this dialogue system, we first pre-
trained an RNN model that imitates negotiation di-
alogues between two humans, following the super-
vised training scheme described in (Lewis et al.,
2017). This RNN model has the ability to gen-
erate natural language utterances, taking into ac-
count the previous dialogue history and the given
context (i.e. value and count of each item). We
use this RNN to generate candidates of system ut-
terances (line 19-25 in Listing 2) and to generate
user utterances for the user simulation model that
is used during multi-horizon planning (line 37 in
Listing 2). This RNN model uses PyTorch and is
imported into PyOpenDial as decribed next.

4.3 Domain XML Specification
In this section, we briefly explain how the negotia-
tion domain is specified in the XML format shown
in Listing 2, which is an abbreviation of the full
version distributed with PyOpenDial.

Declaration We declare rnn state variable, an
instance of NegotiationRNN class (line 2-4).
The class has a pre-trained RNN model, described
in the previous section, as a member variable
and generates actual (user or system) utterance
through the RNN model. To represent the dialogue

history, we also declare a state variable h (line 5),
which maintains the user and system utterances up
to the current turn. We then declare two func-
tions, gen u m and gen u u, to generate utter-
ances (line 9-10). gen u m is used to generate the
set of candidate system utterances and gen u u is
used as the user simulator in the planner to search
for the best system action that maximizes the over-
all utility within the planning horizon. Finally, we
declare the function rewardwhich returns the re-
ward at the end of the negotiation (line 11)

System Utterance Generation The utility rule
specifies the utility associated with each candidate
system action. In order to harness the system ut-
terance directly generated by NegotiationRNN
and support dialogue planning, we add 20 effects
in the utility rule, each corresponding to a system
utterance sampled from NegotiationRNN, and
assign the same immediate utility of 0.001 (line
13-28)3. The actual, final utility is decided only
when the negotiation has finished, and the plan-
ner described next will search for the best system
utterance (among 20 candidates) using long-term
planning.

Planning The planner requires a user simulation
model for long-term planning. The user simula-
tion model is given in line 30-41. Note that we
set the planning-only tag for the user sim-
ulation model (line 30), in order to prevent the
user simulation model from overwriting the actual
user utterance u u during planning. At the end of
simulated dialogue, the final utility determined by
negotiation is obtained from the python function
reward. The variable current step is set to
“Terminated” to represent the end of a dialogue.

4.4 Experiments
Using the negotiation dialogue domain, we com-
pare the performances of two planning algorithms,
the forward planner and the MCTS planner, and a
naive baseline that only maximizes the immediate
utility without planning. The planning horizons
were set to 3 for the forward planner and 7 for the
MCTS planner, which made both planners take ap-
proximately same amount of search time.

As reported in Table 1, planning (using either
Forward or MCTS) improves the negotiation out-
come over the baseline in terms of both reward and

3(Py)OpenDial includes None action with utility 0 by de-
fault, thus we assigned small positive utility to the generated
utterances to be distinguished from the None action.

191

Reward Planning time (s) % Agreed
Baseline 4.96 ± 0.12 - 81.8
Forward 5.27 ± 0.12 2.28 ± 0.05 87.3
MCTS 5.68 ± 0.12 2.03 ± 0.03 88.9

Table 1: Experimental results for the negotiation ex-
ample. Baseline denotes the result of negotiation be-
tween two RNN models (without planning). Forward
and MCTS represents the negotiation result between
the corresponding planner and the RNN model. All the
results are averaged over 3000 dialogues and report the
2×(standard error).

agreement rate, and the MCTS planner further out-
performs the forward planner. This is mainly due
to the fact that the reward signal in the negotia-
tion domain only comes at the very end of the di-
alogue, thus in the early stages of the dialogue, no
meaningful reward signal can be obtained within
the short planning horizon of the forward planner.
In contrast, MCTS performs Monte-Carlo simula-
tions all the way towards the end of the dialogue
in most cases and thus captures the final utility.

5 Conclusion

In this paper, we presented PyOpenDial, a Python-
based open-source dialogue system toolkit that in-
herits the architectural design of OpenDial and ex-
tends the domain XML specification for integrat-
ing deep learning models.

We showed the aptitude of PyOpenDial by pre-
senting how the negotiation dialogue domain can
be implemented, seamlessly integrating with deep
learning model trained for natural language gen-
eration. We also demonstrated the efficacy of the
new MCTS dialogue planner, significantly outper-
forming the basic forward planner.

We look forward to active contribution from
the developer community towards refining and im-
proving PyOpenDial.

References
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation, pages 265–283, 2016.

A. Graves, A. Mohamed, and G. Hinton. Speech
recognition with deep recurrent neural networks. In
2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2013.

L. Kocsis and C. Szepesvári. Bandit based Monte-
Carlo planning. In European conference on machine
learning, pages 282–293, 2006.

S. Larsson and D. R. Traum. Information state and di-
alogue management in the TRINDI dialogue move
engine toolkit. Natural language engineering, 6(3-
4):323–340, 2000.

M. Lewis, D. Yarats, Y. Dauphin, D. Parikh, and D. Ba-
tra. Deal or no deal? end-to-end learning of nego-
tiation dialogues. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2443–2453, 2017.

P. Lison. Structured Probabilistic Modelling for Dia-
logue Management. PhD thesis, University of Oslo,
February 2014.

P. Lison and C. Kennington. Opendial: A toolkit
for developing spoken dialogue systems with prob-
abilistic rules. In Proceedings of ACL-2016 System
Demonstrations, pages 67–72, 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in PyTorch.
2017.

A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever. Improving language understanding by
generative pre-training. 2018.

D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mas-
tering the game of Go with deep neural networks and
tree search. Nature, pages 484–489, 2016.

S. Ultes, L. M. Rojas Barahona, P.-H. Su, D. Vandyke,
D. Kim, I. n. Casanueva, P. Budzianowski,
N. Mrkšić, T.-H. Wen, M. Gasic, and S. Young.
PyDial: A Multi-domain Statistical Dialogue Sys-
tem Toolkit. In Proceedings of ACL 2017, System
Demonstrations, pages 73–78, 2017.

J. D. Williams, I. Arizmendi, and A. Conkie. Demon-
stration of AT&T “let’s go”: A production-grade sta-
tistical spoken dialog system. In 2010 IEEE Spoken
Language Technology Workshop, 2010.

J. D. Williams, K. Asadi, and G. Zweig. Hybrid code
networks: practical and efficient end-to-end dialog
control with supervised and reinforcement learning.
CoRR, abs/1702.03274, 2017.

S. Young, M. Gai, B. Thomson, and J. D. Williams.
POMDP-based statistical spoken dialog systems: A
review. Proceedings of the IEEE, 101(5), 2013.

L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Se-
quence generative adversarial nets with policy gra-
dient. CoRR, abs/1609.05473, 2016.

192

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 193–198
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Redcoat: A Collaborative Annotation Tool for
Hierarchical Entity Typing

Michael Stewart(), Wei Liu()and Rachel Cardell-Oliver
The University of Western Australia

35 Stirling Highway, Crawley, Western Australia
michael.stewart@research.uwa.edu.au, wei.liu@uwa.edu.au, and

rachel.cardell-oliver@uwa.edu.au

Abstract
We introduce Redcoat, a web-based annota-
tion tool that supports collaborative hierarchi-
cal entity typing. As an annotation tool, Red-
coat also facilitates knowledge elicitation by
allowing the creation and continuous refine-
ment of concept hierarchies during annotation.
It aims to minimise not only annotation time
but the time it takes for project creators to
set up and distribute projects to annotators.
Projects created using the web-based interface
can be rapidly distributed to a list of email ad-
dresses. Redcoat handles the propagation of
documents amongst annotators and automati-
cally scales the annotation workload depend-
ing on the number of active annotators. In this
paper we discuss these key features and outline
Redcoat’s system architecture. We also high-
light Redcoat’s unique benefits over existing
annotation tools via a qualitative comparison.

1 Introduction

Recent successes of deep learning in natural lan-
guage processing (NLP) is largely fuelled by high
quality annotated datasets. Annotation tools pro-
vide the means to label data, and are vital for ob-
taining good results across a wide range of NLP
tasks such as named entity recongition1, question
answering2, and natural language inference3. One
common underlying sub-component of these NLP
tasks is entity typing, which involves identifying
the type(s) of every entity in a document. Entity
typing is also an enabling technique for utilising
unstructured text in visualisation and knowledge
discovery (Stewart et al., 2017).

Many recent entity typing taxonomies are struc-
tured in a hierarchy as opposed to a flat set of
types. FIGER (Ling and Weld, 2012), for ex-
ample, is a 112-class shallow hierarchy derived

1https://www.i2b2.org/NLP/DataSets/
2https://rajpurkar.github.io/SQuAD-explorer/
3https://nlp.stanford.edu/projects/snli/

from Freebase. TypeNet (Murty et al., 2017), de-
rived from Freebase and Wordnet, features over
1900 types with an average depth of 7.8. It has
been shown that incorporating these hierarchies
into deep learning models improves classification
accuracy (Murty et al., 2018; Ren et al., 2016).

Despite the needs of deep learning algorithms
for labelled data with hierarchical entity types, a
review of existing annotation tools shows there is
no support for multi-label tagging using hierarchi-
cal taxonomies. Existing annotation tools, which
are designed for the labelling of entity recogni-
tion data as opposed to entity typing data, only
support one label per token. These systems also
do not allow for the modification of the taxonomy
during annotation. This lack of support is espe-
cially troublesome for real-world applications that
are domain specific and typically with no stan-
dard category hierarchies. A tool that can leverage
the annotation efforts as knowledge elicitation for
domain taxonomy creation and refinement is very
much in need.

While many annotation tools claim to maximise
the speed of annotation, few tools also optimise the
time it takes for a project creator to set up and dis-
tribute an annotation project. BRAT (Rapid An-
notation Tool) (Stenetorp et al., 2012), the most
popular annotation tool, requires project creators
to read documentation, split their data into fold-
ers, set up a web server, and email their annotators
links to their respective folders.

In light of these current issues, we introduce
Redcoat, a web-based collaborative annotation
tool for hierarchical entity typing. Redcoat was
built with four primary goals in mind:

1. Hierarchical: Support entity hierarchies and
multi-label annotation.

2. Flexible: Allow hierarchy refinement during
annotation.

193

3. Rapid: Reduce annotation time and time
taken for project creation and distribution.

4. Easy to use: Keep it simple and intuitive for
both annotator and project owner.

This paper is structured as follows. We begin
by reviewing existing annotation tools. We then
outline Redcoat’s key features, namely its intuitive
and rapid project creation interface, annotation in-
terface, and project dashboard. We describe Red-
coat’s system architecture and then present a qual-
itative comparison between Redcoat and existing
annotation tools. Finally, we provide a link to an
online demonstration of Redcoat as well as a code
repository link and demonstration video.

2 Related work

Among the several open source annotation tools
available, the most popular is BRAT (Stenetorp
et al., 2012), a web-based annotation tool that is
designed to maximise annotation speed. BRAT
supports the annotation of a wide variety of NLP
tasks, including entity recognition, event extrac-
tion, and POS tagging. It also offers corpus search
functionality.

GATE Teamware (Bontcheva et al., 2013) is an-
other popular web-based annotation tool. It places
a stronger emphasis on user management than
BRAT, allowing for multiple user roles. It also
provides automatic pre-processing of documents
to improve annotation speed.

WebAnno (Yimam et al., 2013), based on
the BRAT editor, features a strong emphasis on
crowdsourcing via the CrowdFlower platform4.
WebAnno also allows for the annotation of sev-
eral NLP tasks. Unlike BRAT, however, WebAnno
uses a relational database to model users, projects,
documents, and tags. This provides useful features
such as project monitoring and user management.

More recent annotation tools include
SAWT (Samih et al., 2016), a lightweight
web-based annotation tool that aims for simplicity
and ease of use. Yedda (Yang et al., 2018) offers
label recommendations via machine learning
and provides both command line and web-based
interfaces. SANTO (Hartung et al., 2018), which
is designed primarily for slot-filling tasks, enables
the formation of relational structures from an
ontology. It also visualises the annotations of

4Crowdflower. https://crowdflower.com

every user at once to help project owners mon-
itor and curate the quality of the annotations.
TALEN (Mayhew and Roth, 2018) is another
recent tool that specialises in the annotation of
low resource entities (i.e. where the annota-
tors do not speak the language of the dataset).
EasyTree (Tratz and Phan, 2018) is specifically
designed for the annotation of dependency trees,
and is integrated with Amazon Mechanical Turk
crowdsourcing platform.

Several commercial annotation tools also exist,
such as LightTag5, TagTog6, and Prodigy7. While
these tools offer an array of features, their pricing
can be prohibitive for researchers.

3 Redcoat - Key features

3.1 Intuitive and rapid project creation

Upload
data

Create
hierarchy

Annotator
emails

Project
options

Create
project

Figure 1: Redcoat’s project creation process.

One of Redcoat’s most notable features is its
web-based project creation interface, which en-
ables users to set up an annotation project and
rapidly distribute it to a list of annotators. The pro-
cess of project creation is shown in Figure 1. The
project setup page allows for the user’s dataset to
be dragged and dropped into a web-based form.
The dataset is automatically tokenised by Redcoat
prior to being stored in the database.

3.1.1 Hierarchical entity categories
Unlike many annotation tools, Redcoat supports
the development of hierarchical entity categories
and allows for each token to be labelled with more
than one type. Users may specify their entity cate-
gories as either plain text with proper indentation,
or as a hierarchy using an interactive tree diagram.
Figure 2 shows an example hierarchy being built
by the creator of an annotation project using the in-
terface. Users may create, rename and delete cat-
egories by right clicking on categories within the
tree diagram. Users may also simply paste their
categories into a text box, denoting hierarchy lev-
els via space characters, and the tree will automat-
ically generate based on the given text.

5LightTag. https://www.lighttag.io/
6TagTog. http://docs.tagtog.net/
7Prodigy. https://prodi.gy/

194

Figure 2: The category hierarchy generation window,
which allows users to easily create, edit, and delete cat-
egories via an interactive tree diagram. In this exam-
ple the user has loaded the FIGER preset and has right
clicked on the “park” category to open the menu.

Redcoat also features three category hierar-
chy presets: NER, the standard Named Entity
Recognition classes (PER, LOC, ORG, MISC),
FIGER (Ling and Weld, 2012) (fine-grained entity
recognition), and Mining, containing categories
specific to workplace accident data in the mining
industry. Selecting one of these presets via a drop-
down menu instantly loads the corresponding hi-
erarchy. UMLS8 and SNOMED CT9 are planned
to be pre-loaded for medical dataset annotation.

3.1.2 Automatic project distribution
Project creators may specify a list of the email
addresses of their annotators. Upon completion
of the setup form, Redcoat sends an invitation to
every valid email address in the list using Send-
grid10, a transactional email service. Users are in-
vited to annotate the project regardless of whether
they have registered for Redcoat, preventing the
need for the project creator to coordinate the cre-
ation of user accounts.

3.1.3 Document propagation
In contrast to other annotation platforms, Redcoat
automatically scales the annotation load of each
annotator according to the number of users that
have accepted their invitations to begin annotating.
The documents are not split up into distinct sets,
where each user has their own set of documents to
annotate; they are instead distributed to annotators
on a first-come-first-serve basis. The load of each
annotator therefore depends entirely on how many

8UMLS. https://www.nlm.nih.gov/research/umls/
9SNOMED CT. http://www.snomed.org/

10Sendgrid. https://sendgrid.com/

annotators are actively annotating the project. If,
for example, a project creator specifies 10 email
addresses on the setup form, but only 5 of them ac-
cept their invitations the next day, each annotator
would be required to annotate 20% of the corpus.
Once the remaining 5 users accept invitation, the
load per annotator drops to 10%.

The project creator may also specify the “over-
lap”, i.e. the number of times each document
should be annotated. An overlap of 2, for exam-
ple, would mean each annotator would label 40%
of the corpus (if 5 users have accepted invitation)
and 20% of the corpus (if 10 users have accepted).
Specifying an overlap value greater than 1 ensures
more consistent data at the cost of annotation time.

3.2 Annotation interface

Figure 3: Redcoat’s simple annotation interface. (1)
shows a Wikipedia summary of the selected token. (2)
is the entity categories, which may be organised in a
hierarchical structure and modified during annotation.
(3) is the annotation interface. (4) shows a zoomed-in
view of a selection of tokens.

Redcoat offers a simple annotation interface de-
signed to maximise the speed of annotation. This
interface is shown in Figure 3. The category hier-
archy is displayed in the left menu, and categories
may be expanded and minimised by clicking on
them. Annotators may also search for categories
using the built-in search menu.

The annotation interface allows for the use of
both mouse and keyboard, providing annotators
with a way to rapidly annotate documents if they
elect to familiarise themselves with the hotkeys
associated with navigating the documents (arrow
keys) and the hierarchy (W, A, S, and D). The cate-
gories in the hierarchy also have associated numer-
ical hotkeys, circled in Figure 3, aiming to speed
up annotation.

Upon annotating a token, the token is automat-
ically labelled with all of the label’s parent cate-
gories. Annotators may remove individual labels

195

by clicking on the labels that appear underneath
the annotated tokens.

The interface also presents an optional sum-
mary of the selected token taken from Wikipedia
via the MediaWiki API11 to reduce the need to
Google search during annotation.

3.2.1 Modification of hierarchy
Redcoat allows for the modification of the cate-
gory hierarchy during annotation. The extent to
which the hierarchy should be modifiable is de-
termined by the project creator. There are three
options: full permission, whereby the hierarchy
may be fully modified, create only, where anno-
tators may only add new categories but may not
delete them, and no modification. Deleted cate-
gories, along with their child categories, are re-
moved from every annotation automatically.

The ability to modify the hierarchy is useful
for domain-specific datasets for which there are
no standard category hierarchies. Project creators
need not worry that their hierarchy does not con-
tain every possible category in the dataset, as it
may be updated dynamically. The flexible hier-
archy allows for the development of categories to
be an iterative process, thereby making the anno-
tation process help with knowledge elicitation.

3.2.2 Automatic labelling
Redcoat provides an automatic labelling process
to speed up annotation. Prior to presenting the
documents to the annotator, any tokens that di-
rectly correspond to categories in the hierarchy are
labelled with their corresponding type(s). For ex-
ample, if a document contains the words “right
arm”, and body part/arm/right arm is a
category in the hierarchy, the token span will be
labelled with body part/arm/right arm,
body part/arm, and body part. Any incor-
rect labels may be deleted by the annotator. This
process is implemented using regular expression
parsing and does not noticeably affect load time.

3.3 Project dashboard
Redcoat’s project dashboard, as shown in Fig-
ure 4a, provides a way for project creators and an-
notators to quickly view all projects they’ve cre-
ated or are currently annotating. The projects list
may be sorted, filtered, and searched. Upon click-
ing a project users are presented with a detailed
summary of the entire project. Project creators

11MediaWiki API. http://en.wikipedia.org/w/api.php

(a) Redcoat’s Projects dashboard, which shows all
projects the user has created and is involved in. Users
may click on a project to bring up a detailed view of
that project.

may view further details about their own projects,
such as a list of pending/accepted invitations and
a list of annotators that provides the ability to
quickly download the completed annotations of
the project.

3.3.1 Exporting annotations
Project creators may download annotated docu-
ments either per-annotator or for all annotators at
once. At present these annotations are exported
to the same JSON-based format used by state-
of-the-art entity typing systems12. The “down-
load all” button compiles the annotations of ev-
ery user into a dataset that contains the most
commonly-assigned label for each token, provid-
ing project creators with a machine-learning-ready
dataset with little effort.

4 System architecture

DocumentGroups

_id: Object

times_annotated: Number

display_name: String

last_recommended: Date

project_id: String

documents: Array

DocumentGroupAnnotations

_id: Object

project_id: String

labels: Array

docgroup_id: Object

user_id: Object

Projects

_id: String

project_name: String

project_desc: String

category_hierarchy: Array

overlap: Number

user_id: Object

user_ids: Object

hierarchy_permissions: String

file_metadata: Object

completed_annotations: Number

ProjectInvitations

_id: Object

inviting_user_id: Object

user_email: String

project_id: String

Users

_id: Object

admin: Boolean

recent_projects: Array

username: String

email: String

docgroups_annotated: Array

salt: String

hash: String

WipProjects

(same fields as Projects)

user_emails: Array

distribute_self: String

Figure 4: Redcoat’s underlying MongoDB schema.

Redcoat is written in Node.js13 and features an
underlying MongoDB schema, shown in Figure 4.

12AFET. https://github.com/INK-USC/AFET
13Node.js. https://nodejs.org

196

System Web-based
project creation

Project
monitoring

Curation
feature

Document
propagation

Class labels
Dynamic Hierarchical Multi-label

BRAT 7 7 7 7 7 3 7
GATE 3 3 3 7 7 7 7

SANTO 3 3 7 7 7 7 7
SAWT 3 3 7 7 7 7 7

YEDDA 3 3 7 7 7 7 7
WebAnno 3 3 3 7 7 7 7
Redcoat 3 3 3 3 3 3 3

Table 1: A comparison of existing annotation tools with Redcoat. Dynamic refers to the ability for any user to
modify the class labels during annotation.

The Project model stores information re-
lated to a project. DocumentGroup is a set of
10 documents belonging to a particular project.
The documents are stored as arrays after tokeni-
sation. DocumentGroupAnnotation stores
the labels a particular user has assigned to a
DocumentGroup. ProjectInvitations
stores the invitations of a project, and is con-
nected to the User table via user email as op-
posed to user id so that the invitation persists
if the user has not yet registered. Finally, the
WIPProject model stores information about a
“work in progress” project, which is transferred to
a new project upon completion of the setup form.
This model allows for the data the user uploads to
be persistent across refreshes and devices.

The category hierarchy is stored in the
Project model as an array. Categories are
stored in the form of strings, with different hierar-
chy levels represented by slashes (e.g. person,
person/boilermaker). This array, along
with every other field in each model, is subject to
schema validation in order to ensure that the data
is correctly stored. The category hierarchy, in par-
ticular, is validated both client and server side us-
ing a strict validation algorithm.

The majority of the front-end Javascript is writ-
ten in jQuery14. The category hierarchy visu-
alisation is implemented using D3.js15. Sev-
eral other open-source libraries are used through-
out the front-end, including DataTables16 and
jsTree17.

5 Comparison with existing tools

Table 1 provides a qualitative comparison between
Redcoat and other existing annotation tools.

14jQuery. https://jquery.com
15D3.js. https://d3js.org
16DataTables. https://datatables.net
17jsTree. https://www.jstree.com

Web-based project creation is present in all
tools except BRAT, which requires data owners to
split their dataset into multiple folders and place
them into the appropriate location on their remote
server. Consequently, project monitoring is also
not present in BRAT, restricting the applicability
of the system for real-world projects.

Few tools have a curation feature, allowing
owners to specify the correct tags assigned to a to-
ken across tags provided by a set of annotators.
Redcoat does not provide a formal curation inter-
face, but includes automatic curation that selects
commonly-assigned labels across annotators when
downloading all annotations at once. This vastly
simplifies the curation process and saves project
creators considerable amounts of time.

Redcoat’s document propagation sets it apart
from other tools. Annotation workload is auto-
matically scaled depending on the number of ac-
tive annotators, preventing the need to manually
assign documents to annotators.

Redcoat also allows annotators to modify the
class labels, and supports both hierarchical entity
categories and multi-label annotation. Aside from
BRAT’s ability to visualise label hierarchies, these
features are not present in any other annotation
tool.

Our qualitative analysis shows Redcoat is a
highly flexible and powerful annotation tool, of-
fering many benefits that distinguish it from other
tools. It optimises speed, flexibility and ease of use
while supporting hierarchical entity categories.

6 System demonstration

A demo of Redcoat is deployed online at
http://agent.csse.uwa.edu.au/redcoat/. Users may
create an account via the Register button on the
homepage and set up a project immediately. A
video of a demonstration of the system is available
at https://youtu.be/igtR8Sfi8oo.

197

The source code is publicly available on
GitHub18. The Readme file outlines how to set
up Redcoat locally.

7 Conclusion and future work

In this paper we have introduced Redcoat, a col-
laborative annotation tool for hierarchical entity
typing. It supports a variety of novel features, such
as the ability to model entity categories as a hierar-
chy, label each token with more than one label, and
update the hierarchy during annotation. Users may
create projects using the web-based interface and
quickly distribute their project to a list of email ad-
dresses. Redcoat handles the propagation of docu-
ments amongst users and automatically scales the
annotation workload depending on the number of
active annotators. These features distinguish Red-
coat from existing annotation tools.

While Redcoat as presented here is ready to
be used, there are still features under ongoing
development. We are working on incorporating
our deep-learning-based entity typing algorithms
to make intelligent suggestions to support contin-
uous automatic tagging. We also plan to visualise
the annotation results and activity of annotators.

8 Acknowledgements

This research was funded by an Australian Post-
graduate Award Scholarship and a UWA Safety
Net Top-up Scholarship. The project is also sup-
ported by ARC DP150102405 and the NVIDIA
GPU academic grant program.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation, 47(4):1007–
1029.

Matthias Hartung, Hendrik ter Horst, Frank Grimm,
Tim Diekmann, Roman Klinger, and Philipp Cimi-
ano. 2018. Santo: A web-based annotation tool for
ontology-driven slot filling. In Proceedings of ACL
2018, System Demonstrations, pages 68–73. Associ-
ation for Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained
entity recognition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, pages 94–100. AAAI Press.

18https://github.com/Michael-Stewart-Webdev/redcoat

Stephen Mayhew and Dan Roth. 2018. Talen: Tool for
annotation of low-resource entities. In Proceedings
of ACL 2018, System Demonstrations, pages 80–86.
Association for Computational Linguistics.

Shikhar Murty, Patrick Verga, Luke Vilnis, and Andrew
McCallum. 2017. Finer grained entity typing with
typenet. arXiv preprint arXiv:1711.05795.

Shikhar Murty, Patrick Verga, Luke Vilnis, Irena
Radovanovic, and Andrew McCallum. 2018. Hier-
archical losses and new resources for fine-grained
entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 97–109.

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji,
and Jiawei Han. 2016. Afet: Automatic fine-grained
entity typing by hierarchical partial-label embed-
ding. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1369–1378.

Younes Samih, Wolfgang Maier, and Laura Kallmeyer.
2016. Sawt: Sequence annotation web tool. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Code Switching, pages 65–70.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Michael Stewart, Wei Liu, Rachel Cardell-Oliver, and
Mark Griffin. 2017. An interactive web-based
toolset for knowledge discovery from short text log
data. In International Conference on Advanced
Data Mining and Applications, pages 853–858.
Springer.

Stephen Tratz and Nhien Phan. 2018. A web-based
system for crowd-in-the-loop dependency treebank-
ing. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC-2018).

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. Yedda: A lightweight collaborative text span
annotation tool. In Proceedings of ACL 2018, Sys-
tem Demonstrations, pages 31–36. Association for
Computational Linguistics.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6.

198

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 199–204
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

SEAGLE: A Platform for Comparative Evaluation of
Semantic Encoders for Information Retrieval

Fabian David Schmidt∗, Markus Dietsche∗, Simone Paolo Ponzetto and Goran Glavaš

Data and Web Science Group
University of Mannheim

fabian.david.schmidt@hotmail.de
dietsche.markus@googlemail.com

{simone, goran}@informatik.uni-mannheim.de

Abstract

We introduce SEAGLE,1 a platform for com-
parative evaluation of semantic text encod-
ing models on information retrieval (IR) tasks.
SEAGLE implements (1) word embedding ag-
gregators, which represent texts as algebraic
aggregations of pretrained word embeddings
and (2) pretrained semantic encoders, and al-
lows for their comparative evaluation on arbi-
trary (monolingual and cross-lingual) IR col-
lections. We benchmark SEAGLE’s models
on monolingual document retrieval and cross-
lingual sentence retrieval. SEAGLE function-
ality can be exploited via an easy-to-use web
interface and its modular backend (micro-
service architecture) can easily be extended
with additional semantic search models.

1 Introduction and Motivation

Traditional IR models operate on lexical overlap
and fail to identify relevance when documents and
queries differently lexicalize concepts. Semantic
search seeks to overcome such lexical mismatches
between document and user queries (Li and Xu,
2014). Early approaches to semantic search re-
lied on external resources like WordNet (Moldovan
and Mihalcea, 2000) and Wikipedia (Strube and
Ponzetto, 2006), suffering from the resource’s lim-
ited coverage. More recent semantic search sys-
tems (Vulić and Moens, 2015; Litschko et al., 2018;
Nogueira and Cho, 2019) remedy for those cover-
age issues by encoding text using distributional
word vectors (i.e., word embeddings) (Mikolov
et al., 2013; Bojanowski et al., 2017) and neural
text encoders (Devlin et al., 2018).

While there is a plethora of semantic text en-
coding models, there have been few attempts to
empirically compare them on IR tasks. In this

∗These authors contributed equally to this paper.
1SEAGLE is available on GitHub and demonstrated on

YouTube.

work, we aim to allow for such comparative eval-
uations on arbitrary IR test collections. We in-
troduce SEAGLE, a platform for concurrent ex-
ecution and comparative evaluation of semantic
search models. SEAGLE implements most recently
proposed (1) word embedding aggregation models
(Arora et al., 2017; Rücklé et al., 2018; Yang et al.,
2019; Zhelezniak et al., 2019) as well as (2) two
pretraining-based text encoders (Gysel et al., 2017;
Devlin et al., 2018) and allows users to evaluate
them on arbitrary IR collections. Coupled with
pretrained cross-lingual embedding spaces (Glavaš
et al., 2019), SEAGLE also supports cross-lingual
search. The platform’s modular architecture based
on micro-services makes it easy to extend it with
additional semantic encoding models. SEAGLE is
accessible via an easy-to-use web interface.

2 Semantic Representation Models

We first describe SEAGLE’s semantic encoders, be-
longing to two categories: word embedding aggre-
gators and pre-trained text encoders.

2.1 Word Embedding Aggregators

Word embedding aggregators encode the text by
aggregating pretrained d-dimensional embeddings
of its words. Formally, a document matrix Vd ∈
RN×d sequentially stacks embeddings ti ∈ Rd

corresponding to tokens ti (i ∈ {1, · · · , N}) of
document d from the collection D. A weight wi is
computed for every token ti and the contribution of
the embedding ti to the document representation
d ∈ Rd is scaled according to wi.

Continuos Bag-of-Words (CBOW) simply aver-
ages the rows of the document embedding matrix
Vd. Put differently, CBOW computes the simple
average of the word embeddings, i.e., it assigns
equal weights (wi=1/N) to all embeddings.

Term Frequency-Inverse Document Frequency

199

(TF-IDF) aggregator computes the weight wi as
the product of term ti’s relative frequency within
the document d (TF) and the inverse of proportion
of documents in the collection containing ti (IDF).
The assumption is that (1) more frequent words
contribute more to the document’s meaning, as do
(2) the terms that are more specific to the document
(i.e., do not occur in many other documents).

Smooth Inverse Frequency (SIF) conflates bias-
adjusted weighted word embeddings to generate
document embeddings (Arora et al., 2017):

d =
1

N

∑

ti∈d

a

a+ p(ti|D)
ti (1)

Weight wi of a term ti is a smoothed inverse of the
probability of ti under the unigram language model
built from the whole collection D, with a being the
smoothing factor. In the next step, common compo-
nent removal (CCR) is applied to every document
vector d: let X ∈ Rd×|D| be the matrix obtained
by stacking vectors of all collection documents as
columns. Each document vector d is then replaced
with d − uu>d, where u is the left singular vec-
tor of X . CCR aims to eliminate the similarities
between document vectors that originate from syn-
tactic rather than semantic similarities.

Concatenated Power Means (CPM) generalizes
the aggregation of word vectors to their chosen
powers (Rücklé et al., 2018):

dp = (
tp1 + · · ·+ tpn

N
)
1
p (2)

Choices for p constitute a hyperparameter and
determine the dimensionality of the resulting docu-
ment embedding, as dp for different p are concate-
nated into a final document representation. Power
means can reduce a set of vectors to a geometric
mean (p = 0), arithmetic mean (p = 1), mini-
mum (p = −∞), and maximum (p = ∞). We
concatenate the last three to generate the final doc-
ument embedding, and then, following the original
work (Rücklé et al., 2018), perform element-wise
z-normalization over document vectors d.

Geometric Embedding (GEM) weighs word em-
beddings ti by summing their novelty, signifi-
cance, and uniqueness scores (Yang et al., 2019)
and correcting the resulting document vectors for
(document-dependent) principal components via
CCR. Let W i = [ti−m, ti−1, · · · , ti+m, ti] ∈
Rd×(2m+1) be the contextual window of the token
ti with m neighbours.

The novelty score of ti is computed as the nor-
malized minimal distance from from ti to the sub-
space spanned by the vectors of context words. The
significance score captures the semantic alignment
between the vectors ti and the context W i as the
similarity between ti and singular vectors of W i

obtained via SVD. Intuitively, a token is more sig-
nificant the more it is aligned with the context’s
principal components. Lastly, the uniqueness score
quantifies the alignment between the word vector
and the principal directions computed on the whole
collection. A token highly aligned with collection’s
principal components is an uninformative word and
should receive a low weight.2

DynaMax-Jaccard (DJ) is a non-parametric sim-
ilarity measure (Zhelezniak et al., 2019). The al-
gorithm projects stacked word embeddings of a
query q ∈ RM×d and stacked word embeddings
of a document d ∈ RN×d into the shared space
U ∈ R(M+N)×d. Features for q and d are then
max-pooled along the rows of projections, respec-
tively. Feature generation tests the degree of mem-
bership of q and d in U and represents an extension
of set theory to real-valued vectors. Accordingly,
the fuzzy Jaccard index measures the similarity be-
tween query and document representations and is
computed as follows: stacked features are min- and
max-pooled over rows and the sum of minima over
the sum of maxima yields the fuzzy Jaccard score.

2.2 Semantic Text Encoders

BERT (Devlin et al., 2018) is a general-purpose
unsupervised pretraining model based on the Trans-
former architecture that can dynamically pre-
dict contextualized token vectors. We integrate
bert-as-a-service (Xiao, 2018) to infer
document embeddings: we average-pool stacked
token representations in each of BERT’s Trans-
former’s layers (second to fourth from the last
layer) and concatenate the resulting averaged rep-
resentations of each layer to obtain a document
embedding d. We then element-wise z-normalize
d. Because BERT’s positional encoding limits the
maximal sequence length, we dissect collection
documents into 256-token segments (with 32 token
overlap between adjacent segments). The final doc-
ument embedding d is the average of 256-token
segments’ embeddings generated by BERT.

2For more details on GEM, we refer the reader to the
original work (Yang et al., 2019).

200

Neural Vector Space Model (NVSM) jointly
learns token and document representations (Gy-
sel et al., 2017). Specifically, during training (in-
ference), relevant queries are modeled as CBOW
embeddings of n-grams (query) sampled from the
source document and then mapped via a learned
transformation onto the document space. NVSM
then learns its parameters (word and document em-
beddings; mapping), such that the mapped n-grams
(queries) are most similar to the respective docu-
ment representation. The model accounts for the
lack of positive supervision (the number of rele-
vance judgments is typically rather limited) via
negative sampling and a contrastive maximum like-
lihood loss. For more details on NVSM, we refer
the reader to the original work (Gysel et al., 2017).

3 Benchmarking Semantic Models

We benchmark the above semantic search models
on two retrieval tasks: (1) monolingual document
retrieval on the LATimes test collection (112.082
documents, 114 queries, and 2.094 positive rel-
evance judgments) (2) cross-lingual sentence re-
trieval on the subset of Europarl’s sentence-aligned
corpora: we compile 5.000 aligned sentence trans-
lations between English (EN), Italian (IT), German
(DE), and Finnish (FI). Following the specifici-
ties of each collection, we measure performance
on LATimes collection in terms of NDCG@100,
MAP@1000, and Precision@10; and in terms of
MRR and Hits@1, 5, 10 for Europarl. We addition-
ally evaluate BM25, a robust probabilistic retrieval
model (Robertson et al., 2009) as a baseline for the
monolingual document retrieval. BM25 captures
only lexical overlaps between documents queries,
i.e., it cannot capture any semantic alignment not
originating from shared terms.

3.1 Experimental Setup

All required corpus statistics (e.g., IDF or com-
mon components) are computed offline on the
document collection as a preprocessing step. For
all aggregation based methods (see §2.1) we em-
ploy 300-dimensional fastText embeddings (Bo-
janowski et al., 2017), pretrained on Wikipedia.3

For cross-lingual sentence retrieval, we first in-
duce the shared bilingual word embedding spaces
by projecting the EN vectors to the monolin-
gual space of the target language (IT, DE, or

3Available at https://fasttext.cc/docs/en/
pretrained-vectors.html

FI). To this end, following (Glavaš et al., 2019),
we use 5K automatically obtained word trans-
lation pairs to induce the projection matrices
by solving the Procrustes problem. We in-
fer contextualized embeddings with pretrained
BERT models using Bert-Large, Uncased
(Whole Word Masking) and Bert-Base,
Multilingual Cased4 for LATimes and Eu-
roparl, respectively. Except for BERT, we lower-
case and tokenize text using BlingFire.5 For
NVSM, we trim the vocabulary to 60k most fre-
quent non-stop words and learn 512 dimensional
word and document embeddings with a tanh acti-
vation mapping on sampled n-grams of length 16
with 10 contrastive examples.

3.2 Results

Table 1 summarizes the monolingual document re-
trieval and cross-lingual sentence retrieval results.
NVSM yields the best retrieval performance on the
monolingual document retrieval task, suggesting
that reliable word and document representations
can be learned from regular-size retrieval collec-
tions. Among the embedding aggregation models,
SIF seems to display the best performance. The
fact that BM25, a semantically unaware baseline,
outperforms all semantic models on document re-
trieval is discouraging. However, this may merely
be an artifact of the LATimes dataset: out of 2.094
relevances, the document contains some (all) query
terms in 1.975 (647) cases.

The cross-lingual sentence retrieval shows that
all semantic search models outperform the simple
word embedding averaging. Overall, DynaMax-
Jaccard (DJ) yields the strongest performance, only
trailing SIF on the EN-FI evaluation. In EN-FI sce-
nario the common component removal (CCR) step
included in SIF strongly boosts the performance
(SIF weighting without CCR yields merely 41.1%
MRR). Our cross-lingual sentence retrieval based
on the pre-trained multilingual BERT model ex-
hibits strong performance across all three language
pairs – on EN-IT and EN-DE it lags behind DJ by
a small margin and substantially outperforms all
other aggregators; on EN-FI it outperforms DJ but
falls behind the surprisingly effective SIF (with
CCR). BERT’s and DJ’s effectiveness, however,
significantly drop in the monolingual document

4https://github.com/google-research/
bert

5https://github.com/Microsoft/
BlingFire

201

LATimes Europarl

EN-EN EN-IT EN-DE EN-FI

Model NDCG MAP P@10 MRR H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR H@1 H@5 H@10

CBOW 28.4 18.8 14.6 59.4 52.9 66.4 71.1 55.4 48.7 62.7 67.5 38.3 30.7 46.6 52.8
TF-IDF 29.8 21.8 18.1 68.4 63.0 74.5 78.4 63.6 57.6 70.2 74.8 42.2 34.6 50.3 57.6

SIF 34.1 28.8 25.9 86.4 82.4 91.2 93.1 80.2 75.3 86.0 88.8 61.8 54.0 70.6 75.9
CPM 30.0 21.5 17.4 78.9 73.3 85.6 88.6 72.1 65.6 79.3 83.6 42.7 33.6 52.2 59.6
GEM 26.8 22.2 19.2 81.0 76.5 86.7 89.4 74.7 68.6 82.0 85.9 42.5 34.4 50.7 58.0

DJ 23.0 14.3 11.6 93.7 92.1 95.6 96.6 89.0 86.3 92.2 94.0 51.1 42.3 61.3 67.6

NVSM 31.8 34.9 29.7 – – – – – – – – – – – –
BERT 20.2 12.4 11.5 87.3 84.4 90.6 92.7 87.4 84.5 90.8 92.7 56.5 49.2 64.9 71.0

BM25 38.0 42.0 32.5 – – – – – – – – – – – –

Table 1: Results of the comparative evaluation of semantic search models on: (1) monolingual document retrieval
(LATimes); metrics: NDCG@100, MAP@1000 and Precision@10; and (2) cross-lingual sentence retrieval (Eu-
roparl, 5K sentence pairs, EN-DE, EN-IT, and EN-FI); metrics: MRR and Hits@{1, 5, 10}.

retrieval setup where the models need to encode
much longer documents.

Lastly, the complexity and runtime of the eval-
uated models should not be ignored. As a rule
of thumb, CBOW, TF-IDF, SIF and CPM, are
quite efficient and resource-light, whereas the re-
maining algorithms become increasingly resource-
demanding and decreasingly efficient – from GEM,
and DJ, which require embedding aggregation over
the whole collection, over predicting vectors with
BERT (one inference for each max. length to-
ken segment), to NVSM, for which any collection
change warrants model retraining.

4 Architecture & Interface

SEAGLE is implemented as an application based on
micro-services, consisting of a web client (see fig-
ure 1) for configuration and search and network
daemons (see figure 2), one for each semantic
search model. Such a modularized architecture
facilitates the implementation and addition of new
semantic search models (as new daemons).

4.1 SEAGLE’s Architecture

browser

Seagle web frontend daemon 1

daemon 2

daemon n

file system (documents)

init
downloadshttp

TCP/IP

JSON

nginx

Python + django

PostgreSQL socket

Bootstrap

Figure 1: web front end components

Seagle is a Python application, based on the

Django6 framework for web development. It in-
dexes document collections (i.e., all document rep-
resentations required by semantic search models)
within a PostgreSQL database.7 It runs on a ng-
inx8 web-server and utilises Bootstrap9 to ensure
responsiveness.

Communication between the web application
and the network daemons implementing the seman-
tic search models is conducted through web sockets
via TCP/IP and a JSON API. TCP was chosen over
UDP so network daemons themselves can have a in-
creased degree of control about how many searches
and initializations are executed in parallel. This
becomes relevant in case of large document collec-
tions and computationally intensive algorithms.

Seagle
web frontend

Seagle network daemon

socker
TCP/IP
JSON

Python

method container

 JSON
settings

Figure 2: network daemon layout

Network Daemon Server. On the server side
SEAGLE’s Python-based network daemons contain
the actual semantic search models. They are sup-
plied with the document collection via the front-
end and do not need to access the file system them-
selves. Each daemon comes with a template which
implements the API and loads its settings from a
local JSON file (see figure 2) containing setup in-
formation (e.g., the port on which it should run).
To implement new functionality the template needs

6https://www.djangoproject.com/
7https://www.postgresql.org/
8https://www.nginx.com/
9https://getbootstrap.com/

202

to be extended with an actual method, containing
the initialization function (i.e., a specification of
the document indexing procedure for a particular
retrieval model) and the search function (i.e., the
specification of the ranking function for a partic-
ular model). In case multiple network daemons
running on the same machine, they should all run
on different ports.

Backend Deployment. SEAGLE daemons com-
prise a modular backend in which all semantic em-
bedding models reuse I/O and evaluation functions,
allowing for easy integration of additional search
methods. Moreover, for efficiency, we implement
all encoders using matrix and vector operations
from Numpy.10 While SEAGLE offers an easy-to-
use web interface, semantic search models can be
executed and evaluated from the command line.

A major benefit of the micro service architecture
is its distributability on multiple machines. The
main reason for multi-machine deployment of SEA-
GLE’s backend is the computational complexity of
some search models. Considering that for some
models it might take hours or days to initialize (i.e.,
index) large document collections, the initialization
process can be significantly reduced by deploying
computation intensive models to different machines
and running them in parallel.

4.2 SEAGLE Interface

A. menu

1. collections 2. queries 3. methods

4. evaluation 5. results X. admin

Figure 3: Components of SEAGLE’s web interface

SEAGLE’s web interface allows users, with-
out programming and IR knowledge, to easily in-
dex document collections, select desired semantic
search models and conduct comparative retrieval
evaluations. Its core functionality is wrapped up in
a easy to navigate one page layout and bundles 5
components (see figure 3):

1. Collections: Allows selection of one or multi-
ple collections of documents on which meth-
ods are going to be evaluated.

10SEAGLE’s reliance on Numpy routines requires a care-
fully tuned Numpy installation linked to fast linear algebra
libraries.

Figure 4: SEAGLE’s queries component

2. Queries (see figure 4): 2.1. Manually add
and remove queries (and their respective doc-
ument relevance annotations); 2.2. Bundle
CSV import and export & download of arbi-
trary number of queries with relevance anno-
tations.

3. Methods: Select which semantic search meth-
ods to execute and evaluate.

4. Evaluation (see figure 5): 4.1. Change evalua-
tion parameters, e.g. include or exclude evalu-
ation metrics or specify the number of results
to be shown for each method. 4.2. Contains a
summary of collections, queries and methods,
which are going to be evaluated along with
the button triggering the evaluation process.

5. Results: 5.1. Bar charts of evaluation metrics,
(e.g. MAP) or execution time per method.
5.2. A query explorer, allowing real-time ex-
ploration of executed conducted queries and
top-ranked results by selected search models.
(see figure 6)

Figure 5: SEAGLE’s evaluation component

Figure 6: SEAGLE’s evaluation component

203

Additionally, there is a quick-link component for
administration (X. admin), enabling quick setup
and modifications of SEAGLE’s backend.

5 Conclusion

We presented SEAGLE, a platform implementing a
number of strong baselines for semantic IR and al-
lowing for their comparative evaluation on arbitrary
test collections. We benchmark the implemented
semantic search models on monolingual document
retrieval and cross-lingual sentence retrieval tasks,
offering insights into their comparative advantages
and shortcomings. Our benchmarking results indi-
cate that there is no single best-performing seman-
tic search model for all settings and that the users
must consider various factors when selecting the
best model for their retrieval task.

SEAGLE offers a satisfying out-of-the-box so-
lution for fast benchmarking of semantic retrieval
models on arbitrary collections. The platform’s
web interface allows the user to effortlessly index
document collections, select semantic search mod-
els and their hyperparameter setup, comparatively
evaluate selected models and finally visualize the
results for manual inspection. SEAGLE’s modular
architecture (based on network daemon templates)
allows for fast implementation of new search mod-
els and their inclusion into comparative evaluations
in a plug-and-play fashion.

Acknowledgments

We thank Leon Schüller and Siying Liu, who con-
tributed to the original student project on which
SEAGLE is based on. Additionally, we thank Hans-
Peter Zorn from inovex GmbH for his feedback
over the course of the same student project.

References

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Goran Glavaš, Robert Litschko, Sebastian Ruder, and
Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. arXiv
preprint arXiv:1902.00508.

Christophe Van Gysel, Maarten de Rijke, and Evan-
gelos Kanoulas. 2017. Neural vector spaces
for unsupervised information retrieval. CoRR,
abs/1708.02702.

Hang Li and Jun Xu. 2014. Semantic matching in
search. Found. Trends Inf. Retr., 7(5):343–469.

Robert Litschko, Goran Glavaš, Simone Paolo
Ponzetto, and Ivan Vulić. 2018. Unsupervised cross-
lingual information retrieval using monolingual data
only. In SIGIR, pages 1253–1256.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Proceedings of NIPS, pages 3111–
3119.

Dan I Moldovan and Rada Mihalcea. 2000. Using
wordnet and lexical operators to improve internet
searches. IEEE Internet Computing, 4(1):34–43.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

Andreas Rücklé, Steffen Eger, Maxime Peyrard, and
Iryna Gurevych. 2018. Concatenated power mean
embeddings as universal cross-lingual sentence rep-
resentations. arXiv.

Michael Strube and Simone Paolo Ponzetto. 2006.
Wikirelate! computing semantic relatedness using
wikipedia. In AAAI, volume 6, pages 1419–1424.

Ivan Vulić and Marie-Francine Moens. 2015. Monolin-
gual and cross-lingual information retrieval models
based on (bilingual) word embeddings. In SIGIR,
pages 363–372.

Han Xiao. 2018. bert-as-service. https://
github.com/hanxiao/bert-as-service.

Ziyi Yang, Chenguang Zhu, and Weizhu Chen. 2019.
Zero-training sentence embedding via orthogonal
basis.

Vitalii Zhelezniak, Aleksandar Savkov, April Shen,
Francesco Moramarco, Jack Flann, and Nils Y. Ham-
merla. 2019. Don’t settle for average, go for the
max: Fuzzy sets and max-pooled word vectors. In
International Conference on Learning Representa-
tions.

204

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 205–210
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

A Stylometry Toolkit for Latin Literature

Thomas J. Bolt,1 Jeffrey H. Flynt,2 Pramit Chaudhuri,1 Joseph P. Dexter3†
1 Department of Classics, University of Texas at Austin

2 Department of Molecular Biosciences, University of Texas at Austin
3 Neukom Institute for Computational Science, Dartmouth College
† Corresponding author: joseph.p.dexter@dartmouth.edu

Abstract

Computational stylometry has become an in-
creasingly important aspect of literary criti-
cism, but many humanists lack the technical
expertise or language-specific NLP resources
required to exploit computational methods.
We demonstrate a stylometry toolkit for analy-
sis of Latin literary texts, which is freely avail-
able at www.qcrit.org/stylometry.
Our toolkit generates data for a diverse range
of literary features and has an intuitive point-
and-click interface. The features included
have proven effective for multiple literary
studies and are calculated using custom heuris-
tics without the need for syntactic parsing. As
such, the toolkit models one approach to the
user-friendly generation of stylometric data,
which could be extended to other premod-
ern and non-English languages underserved by
standard NLP resources.

1 Introduction

Stylometry, the quantitative analysis of writing
style, is an longstanding yet active area of re-
search in literary studies. Traditional applications
of stylometry in both classical and modern literary
scholarship have focused on authorship attribution
and establishing relative chronology (Mosteller
and Wallace, 1964; Marriott, 1979; Fitch, 1981;
Vickers, 2004; Jockers and Witten, 2010; Stover
et al., 2016). In recent years, new digital tools
and computational methods, especially machine
learning (Long and So, 2016; Dexter et al., 2017),
have allowed researchers to address more fine-
grained literary critical questions and have also
given rise to novel frameworks for literary anal-
ysis, such as ‘distant reading’ and ‘macroanaly-
sis’ (Moretti, 2013; Jockers, 2013; Piper, 2018;
Underwood, 2019).

Much research in computational stylometry has
focused on English literature due in part to the rich

NLP resources available for the English language,
especially high-quality syntactic parsing. NLP re-
sources for many premodern and non-English lan-
guages are, by contrast, at an earlier stage of de-
velopment or entirely lacking. Moreover, many
of the academic disciplines studying these lan-
guages are smaller than for English, and thus the
community of potential developers is correspond-
ingly reduced. These factors suggest the need for
user-friendly stylometric tools, which can provide
a wide range of literary data for under-resourced
languages and are suitable for use by humanists
lacking a computational background.

Syntactic parsing, which remains at an early
stage of development for Latin,1 is not a prereq-
uisite for the successful application of computa-
tional stylometry to literary problems. Our prior
work has shown that custom heuristics can enable
extraction of a wide range of features useful for
the study of Latin literature, in particular syntac-
tic markers, non-content words, and elements of
sound and rhythm (Dexter et al., 2017; Chaudhuri
et al., 2018). Here we report development of a
point-and-click stylometry toolkit to enable easy
generation of such data for a corpus containing al-
most all major classical Latin texts.

Other recently developed stylometry packages,
such as the “stylo” R package and Lexomics, are
aimed at audiences with a range of computational
expertise (Eder et al., 2016; Drout et al., 2007).
These packages, however, have typically been de-
veloped for general-purpose application to multi-
ple languages instead of a single language. Focus-
ing on the latter creates opportunities for targeting
language-specific features, which often play a cru-
cial role in literary style.

1See, for example, the recent progress of the Clas-
sical Language Toolkit (CLTK) (www.cltk.org) and
StanfordNLP (https://stanfordnlp.github.io/
stanfordnlp/index.html).

205

The need for a point-and-click toolkit is partic-
ularly acute in classical studies. Although clas-
sical philologists have long applied stylometry to
shed light on questions of authorship, relatively
few studies have employed digital tools. Excep-
tions have tended to focus on a restricted set of
features, such as relative word frequency (Stover
et al., 2016) or average sentence length (Marriott,
1979; Clayman, 1981). Such limitations may be
due in part to the absence of an accurate method
for syntactic parsing, and in part to a more gen-
eral lack of collaboration to date between clas-
sical philologists and NLP specialists. By im-
proving the accessibility of rich philological data,
our toolkit should further promote the adoption
of quantitative approaches by literary critics. At
the same time, the toolkit bridges the gap between
classical studies and research on English, in which
computational approaches are more common and
are supported by a more extensive technical appa-
ratus.

2 Toolkit

Our toolkit provides researchers working with
Latin literature access to large-scale stylomet-
ric data difficult to acquire by non-computational
methods and enables humanists without specialist
digital training to construct custom datasets.

The design goal for the toolkit is to provide
an intuitive and easy-to-use interface hosted in a
web browser. The interface is point-and-click and
can be used by researchers with no prior program-
ming or NLP experience. Users can choose from
over 700 Latin texts, which comprise almost all
of the surviving corpus of classical Latin. The
texts were originally digitized by the Perseus Dig-
ital Library and further developed by the Tesserae
Project (Crane, 1996; Coffee et al., 2012). Texts
can be selected by author, text, or book (roughly
the ancient equivalent of a chapter). Searches can
be as fine-grained as examining a single book, or
as large-scale as analyzing the entire built-in cor-
pus in one go (Figure 1).

Next, users select the stylometric features to an-
alyze for their chosen corpus. They can run anal-
yses using any combination of the twenty-six fea-
tures (Figure 2 shows a sample output). The re-
sults are displayed on a spreadsheet in the web
browser and can be downloaded as a CSV file. In
addition, a user can produce simple visualizations
(e.g., a bar chart comparing the values of a partic-

ular feature across a set of texts) inside the toolkit.
The ease with which the toolkit can be used

does not limit its versatility. A user can create a
custom corpus of texts preselected from the ex-
isting database, which is close to comprehensive
for canonical material, or upload texts of their
own for analysis. This latter functionality is es-
pecially important for understudied texts, such as
those produced in Late Antiquity and during the
Renaissance, the sum total of which far exceeds
the quantity of extant classical Latin. While dig-
ital versions are available for many post-classical
texts, for the most part the later periods are not
well served by the prominent tools or repositories
in the field, which maintain a classical focus. Our
toolkit allows users to analyze any text available
in electronic form. Furthermore, if a work is not
available online, a user may upload a plain text file
or transcribe it directly into the upload interface.

3 Features

Our feature set comprises twenty-six stylometric
features across four broad syntactic and grammat-
ical categories (pronouns and non-content adjec-
tives, subordinate clauses, conjunctions, and mis-
cellaneous, as listed in Table 1) and is described in
detail in a previous publication (Chaudhuri et al.,
2018). Some features are lexical (e.g., preposi-
tions), while others are syntactic (e.g., sentence
length) or address semantic and rhetorical aspects
of the texts (e.g., superlatives and interrogative
sentences). Taken together, the features offer a
rich and diverse, albeit necessarily partial, profile
of Latin literary style.

An important aspect of our toolkit is that it
does not depend on syntactic parsing, named en-
tity recognition, or other NLP methods that have
not been developed fully for classical Latin (Erd-
mann et al., 2016). We employ three strate-
gies to circumvent current technical limitations.
The majority of features (Alius, Idem, Ipse, Iste,
Quidam, Demonstrative Pronouns, Personal Pro-
nouns, Third-Person Pronouns, Atque + Conso-
nant, Antequam, Cum, Dum, Priusquam, Quin,
Quominus, Ut, and Prepositions) are computed us-
ing hard-coded lists of almost all possible forms
of the relevant Latin words. While some features
(e.g., Quin or Dum) are frequencies of a single
form, others (e.g., Demonstrative Pronouns) in-
volve long lists of morphological variants. Other
features are estimated based on the frequency of a

206

Figure 1: On the left, drop-down menu for text selection; on the right, a list of texts that have been selected.

Figure 2: Sample output from the toolkit for a selection of Latin literary texts.

signal n-gram. For instance, all regular superlative
adjectives include the n-gram -issim- (e.g., largis-
simus, “most abundant” or clarissima, “clearest”).
As this n-gram is extremely rare outside of su-
perlatives, we could curate a near-comprehensive
list of exclusions (e.g., dissimilis, “unlike”). We
use a similar strategy to capture the instances of
selected gerunds and gerundives, which contain
the n-grams -ndus, -ndum, -ndarum, or -ndorum.
A third class of features are determined using
punctuation (e.g., question marks to assess the fre-
quency of direct interrogative sentences or to filter
interrogative pronouns, which have many forms
in common with relative pronouns, from relative
clause counts).

The precision and recall of each of these heuris-
tics is discussed in detail in (Chaudhuri et al.,
2018). We emphasize that these approaches are
not intended as a substitute for NLP, but rather
as a stopgap for philologists until more substan-
tial resources become available for classical lan-

guages. We expect that the overall usefulness of
the toolkit will increase as our heuristics are ren-
dered obsolete by improvements in part-of-speech
tagging and dependency parsing for Latin.

Our features are drawn from a wide array of
sources in order to maximize the capture of infor-
mation pertinent to Latin literary style. Some fea-
tures, such as prepositions, are inspired by stud-
ies of other languages, where they have proven
useful for the characterization of genres or sub-
genres (Jockers, 2013). Most features, however,
are based on previous studies of Latin style and are
designed to capture aspects specific to the Latin
language (Adams, 1972; Adams et al., 2005). For
example, atque (“and”) followed by a word begin-
ning with a consonant is a stylistic feature that is
associated with certain influential figures writing
early in the tradition. When later authors employ
atque + consonant, they do so either in imitation of
these figures specifically, or to recall an archaizing
style more generally.

207

Feature
Pronouns and non-content adjectives

1 Alius
2 Idem
3 Ipse
4 Iste
5 Quidam
6 Demonstrative Pronouns
7 Personal Pronouns
8 Third-Person Pronouns

Conjunctions
9 Atque + Consonant
10 Conjunctions

Subordinate clauses
11 Antequam
12 Cum
13 Dum
14 Priusquam
15 Quin
16 Quominus
17 Conditional Markers
18 Fraction of Sentences with Relative Clauses
19 Mean Length of Relative Clauses

Miscellaneous
20 Ut
21 Interrogative Sentences
22 Mean Length of Sentences
23 Prepositions
24 Regular Superlatives
25 Selected Gerunds & Gerundives
26 Selected Vocatives

Table 1: Full set of Latin stylometric features.

4 Literary Importance

The stylometric data generated by the toolkit sheds
light on a variety of literary problems. The sim-
plest type of analysis involves a single feature cal-
culated across a small number of texts. Past re-
search in Ancient Greek stylometry, for instance,
has shown that sentence length constitutes one
meaningful difference between the early Home-
ric hexameter tradition and the Hellenistic tradi-
tion, since later writers use longer sentences even
as they retain other core aspects such as formu-
laic language and meter (Clayman, 1981). Fig-
ure 3 shows the mean sentence length of most of
the surviving classical Latin epics as calculated
by the toolkit. Three texts, De Rerum Natura
by Lucretius, Astronomicon by Manilius, and the

Georgics by Vergil, have noticeably longer sen-
tences on average (mean length >140 characters,
compared to <125 characters for the other epics).
An attractive explanation for the three anomalous
texts is that they are all identified with a sub-
genre of epic known as “didactic,” a specific class
which purports to teach its readers philosophy or
a specialized technical skill, such as astrology or
farming. The sentences are longer plausibly be-
cause detailed treatment of intricate philosophi-
cal or technical issues requires more complex sen-
tences than typically more straightforward narra-
tive action or direct speech, which represent the
principal content of the other epics.

Figure 3: Mean sentence length of Latin epic poems (in
characters). Error bars denote one s.d. across the eight
poems.

The toolkit also reveals that Latin drama has a
higher frequency of personal pronouns than other
verse genres, as shown in Figure 4. This is no
doubt due to drama’s dialogic form: characters
speak to each other directly, often employing first
(“I” or “we”) and second person (“you”) pro-
nouns. Many other literary genres primarily em-
ploy a narrative structure in which a narrator de-
scribes the action. This narrative type often uses
third person pronouns (“he,”“she,” “it”), but rarely
uses first or second person pronouns. Accordingly,
the frequency of personal pronoun use is higher in
drama. While this difference may be intuitive to a
reader, the large-scale data generated by the toolkit
offers quantitative evidence of a genre’s formal
style, which would otherwise be difficult if not im-

208

possible to calculate by hand.

Figure 4: Mean per-character frequency of personal
pronouns in the major genres of Latin literature. Er-
ror bars denote one s.d. across the texts within each of
the four genres.

Finally, the toolkit can also generate input data
for supervised and unsupervised machine learning
analyses. In our recent study of Latin prose and
verse, we trained a random forest classifier using
all 26 features to distinguish the two genres with
high (>97%) accuracy (Chaudhuri et al., 2018).
The underlying data can now be produced easily
using the toolkit, and similar datasets can be con-
structed for other machine learning applications.

5 Conclusion and Future Work

This paper introduces a stylometry toolkit for
Latin literature, which incorporates a diverse fea-
ture set demonstrably useful for literary criticism.
The toolkit includes a point-and-click interface
to maximize usage among core domain special-
ists, principally researchers in the humanities, who
may not have specialized computational training.
Future versions of the toolkit will further diver-
sify the feature set, incorporating high-frequency
n-grams and sense-pauses alongside the existing
categories (Fitch, 1981; Dexter et al., 2017), and
will leverage expected advances in Latin NLP to
improve the methods for calculation of existing
features.

In related work, we have developed a similar
feature set for Ancient Greek, which has been used
to classify prose and verse and, at a more fine-
grained level, epic and drama (Gianitsos et al.,

2019). Our work on Old English has demonstrated
the utility of related features for various literary
and attribution studies (Neidorf et al., 2019). After
extension of the current toolkit to Ancient Greek
and Old English, we plan in due course to incor-
porate other underserved languages, in particular
Bengali.

Acknowledgments

This work was conducted under the auspices of the
Quantitative Criticism Lab (www.qcrit.org),
an interdisciplinary group co-directed by P.C. and
J.P.D. and supported by a National Endowment for
the Humanities Digital Humanities Start-Up Grant
(grant number HD-10 248410-16) and an Ameri-
can Council of Learned Societies (ACLS) Digital
Extension Grant. T.J.B. was supported by an En-
gaged Scholar Initiative Fellowship from the An-
drew W. Mellon Foundation, P.C. by an ACLS
Digital Innovation Fellowship and a Mellon New
Directions Fellowship, and J.P.D. by a Neukom
Fellowship.

References
J.N. Adams. 1972. The language of the later books

of Tacitus’ Annals. The Classical Quarterly,
22(2):350–373.

J.N. Adams, M. Lapidge, and T. Reinhardt. 2005. In-
troduction. In J.N. Adams, M. Lapidge, and T. Rein-
hardt, editors, Aspects of the Language of Latin
Prose. Proceedings of the British Academy, 129,
pages 1–36. Oxford University Press, Oxford.

P. Chaudhuri, J.P. Dexter, T. Dasgupta, and K. Iyer.
2018. A small set of stylometric features differen-
tiates Latin prose and verse. Digital Scholarship in
the Humanities.

D.L. Clayman. 1981. Sentence length in Greek hex-
ameter poetry. In R. Grotjahn, editor, Hexameter
Studies. Quantitative Linguistics 11, pages 107–136.
Brockmeyer, Bochum.

N. Coffee, J.-P. Koenig, S. Poornima, R. Ossewaarde,
C. Forstall, and S. Jacobson. 2012. Intertextuality in
the digital age. Transactions of the American Philo-
logical Association, 142(2):383–422.

G. Crane. 1996. Building a digital library: The Perseus
Project as a case study in the humanities. In Pro-
ceedings of the First ACM International Conference
on Digital Libraries, pages 3–10.

J.P Dexter, T. Katz, N. Tripuraneni, T. Dasgupta,
A. Kannan, J.A. Brofos, J.A. Bonilla Lopez, L.A.

209

Schroeder, A. Casarez, M. Rabinovich, A. Haim-
son Lushkov, and P. Chaudhuri. 2017. Quantita-
tive criticism of literary relationships. Proceed-
ings of the National Academy of Sciences USA,
114(16):E3195–204.

M.D.C. Drout, M.J. Kahn, M.D. LeBlanc, and C. Nel-
son. 2007. Of dendrogrammatology: Lexomic
methods for analyzing relationships among Old En-
glish poems. Journal of English and Germanic
Philology, 110(3):301–336.

M. Eder, J. Rybicki, and M. Kestemont. 2016. Sty-
lometry with R: A package for computational text
analysis. The R Journal, 8(1):107–121.

A. Erdmann, C. Brown, B. Joseph, M. Janse, P. Ajaka,
M. Elsner, and M.-C. de Marneffe. 2016. Chal-
lenges and solutions for Latin named entity recogni-
tion. In Proceedings of the Workshop on Language
Technology Resources and Tools for Digital Human-
ities (LT4DH), pages 85–93, Osaka, Japan.

J.G. Fitch. 1981. Sense-pauses and relative dating
in Seneca, Sophocles and Shakespeare. American
Journal of Philology, 102(3):289–307.

E.T. Gianitsos, T.J. Bolt, P. Chaudhuri, and J.P. Dexter.
2019. Stylometric classification of Ancient Greek
literary texts by genre. In Proceedings of the 3rd
Joint SIGHUM Workshop on Computational Lin-
guistics for Cultural Heritage, Social Sciences, Hu-
manities and Literature, pages 52–60, Minneapolis,
USA.

M. Jockers. 2013. Macroanalysis. University of Illi-
nois Press, Champaign, IL.

M. Jockers and D.M. Witten. 2010. A compara-
tive study of machine learning methods for author-
ship attribution. Literary and Linguistic Computing,
25(2):215–223.

H. Long and R.J. So. 2016. Literary pattern recog-
nition: Modernism between close reading and ma-
chine learning. Critical Inquiry, 42(2):235–267.

I. Marriott. 1979. The authorship of the Historia Au-
gusta: Two computer studies. Journal of Roman
Studies, 69:65–77.

F. Moretti. 2013. Distant Reading. Verso, London.

F. Mosteller and D.L. Wallace. 1964. Inference and
Disputed Authorship: The Federalist. Addison-
Wesley, Reading, MA.

L. Neidorf, M.S. Krieger, M. Yakubek, P. Chaudhuri,
and J.P. Dexter. 2019. Large-scale quantitative pro-
filing of the Old English verse tradition. Nature Hu-
man Behaviour, 3(6):560–567.

A. Piper. 2018. Enumerations: Data and Literary
Study. University of Chicago Press, Chicago.

J. Stover, Y. Winter, M. Koppel, and M. Keste-
mont. 2016. Computational authorship verification
method attributes a new work to a major 2nd century
African author. Journal of the Association for Infor-
mation Science and Technology, 67(1):239–243.

T. Underwood. 2019. Distant Horizons: Digital Evi-
dence and Literary Change. University of Chicago
Press, Chicago.

B. Vickers. 2004. Shakespeare, Co-author: A Histori-
cal Study of Five Collaborative Plays. Oxford Uni-
versity Press, Oxford.

210

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 211–216
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

A Summarization System for Scientific Documents

Shai Erera1, Michal Shmueli-Scheuer1, Guy Feigenblat1, Ora Peled Nakash2,
Odellia Boni1, Haggai Roitman1, Doron Cohen1, Bar Weiner1, Yosi Mass1, Or Rivlin1,

Guy Lev1, Achiya Jerbi1, Jonathan Herzig1, Yufang Hou1, Charles Jochim1,
Martin Gleize1, Francesca Bonin1, Debasis Ganguly1, David Konopnicki1

1IBM Research, 2IBM Cloud
davidko@il.ibm.com

Abstract

We present a novel system providing sum-
maries for Computer Science publications.
Through a qualitative user study, we identi-
fied the most valuable scenarios for discov-
ery, exploration and understanding of scien-
tific documents. Based on these findings, we
built a system that retrieves and summarizes
scientific documents for a given information
need, either in form of a free-text query or by
choosing categorized values such as scientific
tasks, datasets and more. Our system ingested
270,000 papers, and its summarization mod-
ule aims to generate concise yet detailed sum-
maries. We validated our approach with hu-
man experts.

1 Introduction

The publication rate of scientific papers is ever in-
creasing and many tools such as Google Scholar,
Microsoft Academic and more, provide search ca-
pabilities and allow researchers to find papers of
interest. In Computer Science, and specifically,
natural language processing, machine learning,
and artificial intelligence, new tools that go be-
yond search capabilities are used to monitor1, ex-
plore (Singh et al., 2018), discuss and comment2

publications. Yet, there is still a high information
load on researchers that seek to keep up-to-date.
Summarization of scientific papers can mitigate
this issue and expose researchers with adequate
amount of information in order to reduce the load.

Many tools for text summarization are avail-
able3. However, such tools target mainly news
or simple documents, not taking into account the
characteristics of scientific papers i.e., their length
and complexity.

1arxiv-sanity.com
2groundai.com/
3github.com/miso-belica/sumy,ivypanda.

com/online-text-summarizer

A summarization system for scientific publica-
tions requires many underlying technologies: first,
extracting structure, tables and figures from PDF
documents, then, identifying important entities,
and, finally, generating a useful summary. We
chose to provide summarization as part of a search
system as it is the most common interface to con-
sume scientific content, regardless of the task.

Use-cases. We identified the most valuable sce-
narios for scientific paper usage through a qualita-
tive user study. We interviewed six potential users:
a PhD student, two young researchers, two senior
researchers, and a research strategist, all in the
NLP domain. Users were asked to describe when
do they access scientific papers, how often does it
happens, how do they explore content, and finally,
what are their pain-points with current tools. Top
scenarios were, by order of frequency, (1) keeping
updated on current work, (2) preparing a research
project/grant request, (3) preparing related works
when writing a paper, (4) checking the novelty of
an idea, and (5) learning a new domain or technol-
ogy. While (2), (3), (4), and (5) are important, it
seems that they happen only a few times a year,
whereas scenario (1) happens on a daily/weekly
basis. All users mentioned information overload
as their main problem, and, foremost, the efforts
incurred by reading papers. Thus, we decided to
focus on scenario (1). We further asked the users
to describe: (a) how do they search and (b) the
strategy they use to decide whether they want to
read a paper. For (a), users mentioned searching
by using either keywords, entities (e.g., task name,
dataset name, benchmark name), or citation. In
this scenario, users are familiar with their research
topic, and hence can be very focused. Some ex-
amples queries were “state of the art results for
SQUAD” or “using BERT in abstractive summa-
rization”. For (b), users first read the title, and if

211

relevant, continue to the abstract. Here, users men-
tioned, that in many cases, they find the abstract
not informative enough in order to determine rel-
evance. Hence the importance of summarization
for helping researchers understand the gist of a
paper without the need to read it entirely or even
opening the PDF file.

Approach and Contribution. We present a
novel summarization system for Computer Sci-
ence publications, named IBM Science Summa-
rizer, which can be useful foremost to the ACL
community, and to researchers at large. It pro-
duces summaries focused around an information
need provided by the user - a natural language
query, scientific tasks (e.g., “Machine Transla-
tion”), datasets or academic venues. IBM Science
Summarizer summarizes the various sections of
a paper independently, allowing users to focus on
the relevant sections for the task at hand. In do-
ing so, the system exploits the various entities and
the user’s interactions, like the user query, in order
to provide a relevant summary. We validated our
approach with human experts. The system is avail-
able at: https://ibm.biz/sciencesum.

2 Related Work

Numerous tools support the domain of scientific
publications including search, monitoring, explor-
ing and more. For automatic summarization, ef-
forts mostly concentrated on automated generation
of survey papers (Jha et al., 2015; Jie et al., 2018).
Surveyor (Jha et al., 2015) considers both content
and discourse of source papers when generating
survey papers. CitationAS (Jie et al., 2018) au-
tomatically generates survey papers using citation
content for the medical domain. The main differ-
ences between these systems and ours is that they
create summaries from multi-documents, while
our tool summarizes individual papers and sup-
ports query-focused summaries.

For supporting the ACL community, CL
Scholar (Singh et al., 2018) presents a graph min-
ing tool on top of the ACL anthology and en-
ables exploration of research progress. Tutori-
alBank (Fabbri et al., 2018) helps researchers to
learn or stay up-to-date in the NLP field. Recently,
paperswithcode4 is an open resource for ML pa-
pers, code and leaderboards. Our work is comple-
mentary to these approaches and provide the first

4paperswithcode.com/

Documents, Entities,
query

query

Analysis &
Enrichment

Query
execution

Summarization

User query SummaryPDF

JSON

Text, Tables,
Figures

extraction

Metadata
enrichment

Entity
extraction

Elasticsearch
(a) (b)

Figure 1: IBM Science Summarizer Framework.

tool for automatic summarization and exploration
of scientific documents.5

3 System Overview

IBM Science Summarizer’s main purpose is
to support discovery, exploration and understand-
ing of scientific papers by providing summaries.
The system has two parts. First, an ingestion
pipeline parses and indexes papers’ content from
arXiv.com and ACL anthology, as depicted in Fig-
ure 1(a). Second, a search engine (backed up by a
UI), supports search and exploration, coupled with
summarization, as shown in Figure 1(b).

Figure 2 shows the user-interface for IBM Sci-
ence Summarizer. Users interact with the sys-
tem by posing natural language queries, or by
using filters on the metadata fields such as con-
ference venue, year, and author, or entities (e.g.,
tasks, datasets)6. User experience is an impor-
tant usability factor. Thus, our UI provides in-
dicators to help users explore and understand re-
sults. Specifically, associating a comprehensive
structure with each result allows users to navigate
inside content in a controlled manner: each sec-
tion shows clearly the elements that are computed
by the system (section summary, detected entities,
etc.) and the elements that are directly extracted
from the original paper. This clear distinction al-
lows users to have visibility into the systems’ con-
tributions (Flavian et al., 2009).

4 Ingestion Pipeline

Our system contains 270,000 papers from
arXiv.org (“Computer Science” subset) and the

5For clarity, more related works are referred to in the var-
ious sections of this paper.

6In this case, there is no user query.

212

Figure 2: IBM Science Summarizer UI.

ACL anthology7. The ingestion pipeline consists
of paper acquisition, extracting the paper’s text,
tables and figures and enriching the paper’s data
with various annotations and entities.

Paper Parsing. We use Science-Parse8 to ex-
tract the PDF text, tables and figures. Science-
Parse outputs a JSON record for each PDF, which
among other fields, contains the title, abstract text,
metadata (such as authors and year), and a list
of the sections of the paper, where each record
holds the section’s title and text. We have merged
sub-sections into their containing sections and this
resulted in about 6-7 merged sections per article
(e.g., see Fig. 2). Science-Parse also supports ex-
tracting figures and tables into an image file, as
well as caption text.

In addition, we detect figure and table refer-
ences in the extracted text. We extract tasks,
datasets and metric (see details below). Finally,
we use Elasticsearch9 to index the papers, where
for each paper we index its title, abstract text, sec-
tions text and some metadata.

7We removed duplication between the two by using Jac-
card similarity on the titles and authors.

8github.com/allenai/science-parse
9https://www.elastic.co

Entities Extraction. Entities in our system are
of three types, task (e.g., “Question Answering”),
dataset (e.g., “SQuAD2.0”), and metric (e.g.,
“F1”). We utilize both a dictionary-based ap-
proach and learning-based approach as follows.
First, we adopted the manual curated dictionaries
of paperswithcode5. Since those dictionaries may
not cover all evolving topics, we further developed
a module that automatically extracts entities. Dif-
ferently from previous work on information ex-
traction from scientific literature which mainly fo-
cused on the abstract section (Gábor et al., 2018;
Luan et al., 2018), we analyze the entire paper and
extract the above three types of entities that are
related to the paper’s main research findings. We
cast this problem as a textual entailment task: we
treat paper contents as text and the targeting Task-
Dataset-Metric (TDM) triples as hypothesis. The
textual entailment approach forces our model to
focus on learning the similarity patterns between
text and various triples. We trained our mod-
ule on a dataset consisting of 332 papers in the
NLP domain, and it achieves a macro-F1 score of
56.6 and a micro-F1 score of 66.0 for predicting
TDM triples on a testing dataset containing 162
papers (Hou et al., 2019). In total, our system in-
dexed 872 tasks, 345 datasets, and 62 metrics from
the entire corpus.

213

5 Summarization

This module generates a concise, coherent, infor-
mative summary for a given scientific paper that
covers the main content conveyed in the text. The
summary can either be focused around a query,
or query agnostic (a generic summary)10. Scien-
tific papers are complex: they are long, structured,
cover various subjects and the language may be
quite different between sections, e.g., the intro-
duction is quite different than the experiments sec-
tion. To ensure our summarizer assigns sufficient
attention to each of these aspects we have opted to
generate a standalone summary for each section.
This way we summarize a shorter, more focused
text, and the users can navigate more easily as they
are given the structure of the paper. Each of these
section-based summaries are eventually composed
together into one paper summary.

Scientific papers summarization goes back
more than thirty years. Some of these works fo-
cus on summarizing content (Paice, 1981; Paice
and Jones, 1993), while others focused on citation
sentences (citation-aware summarization) (Elkiss
et al., 2008; Qazvinian and Radev, 2008; Abu-
Jbara and Radev, 2011). Recently, Yasunaga et al.
(2019) released a large-scale dataset, Scisumm-
Net, including summaries produced by humans for
over 1000 scientific papers using solely the pa-
pers abstract and citations. While citations data
encompasses the impact of the paper and views
from the research community, it is not available
for newly-published papers, and tends to lead to
high level and shorter summaries (Scisumm-Net
average summary length is 151 words). We opted
to focus on more extensive, detailed summaries
which do not rely on citations data. As mentioned
above, the inputs to the summarization module
are an (optional) query and entities (task, dataset,
metric), and the relevant papers returned by the
search/filtering (see Fig. 2). Given a retrieved pa-
per and the optional query Q (or entity), we de-
scribe next how a summary is produced for each
section D in the paper.

Query Handling. If present, Q can either be
short and focused or verbose. If short, it is ex-
panded using query expansion (Xu et al., 2009).
This pseudo-relevance feedback transforms Q into
a profile of 100 unigram terms, obtained from an-

10Note that in order to optimize the response time, the pro-
duction system currently offers query agnostic summaries.

alyzing the top papers that are returned from our
corpus as a response to the given query. Alterna-
tively, in the case of a verbose query, a Fixed-Point
term weighting schema (Paik and Oard, 2014) is
applied in order to rank the terms of the query.

Alternatively, if only filtering is applied and
there is no query, the keyphrases of the paper are
extracted and used as a surrogate for the query. In
this case, all keywords in the generated query are
given the same weight.

Pre-Processing. Sentences are segmented us-
ing the NLTK library and each sentence is tok-
enized, lower cased and stop words are removed.
Then, each sentence is transformed into a uni-
grams and bi-grams bag-of-words representations,
where each n-gram is associated with its relative
frequency in the text.

Summarization Algorithm. In general, sum-
maries can either be extractive or an abstractive.
In the extractive case, a summary is generated by
selecting a subset of sentences from the original
input. Abstractive summarizers, on the other hand,
can also paraphrase input text. In many cases, ex-
tractive summarization generates grammatical and
focused summaries while abstractive techniques
require heavy supervision, are limited to short
documents and may transform meaning (Gambhir
and Gupta, 2017).

In our system, summarization is applied on
D using a state-of-the-art unsupervised, extrac-
tive, query focused summarization algorithm, in-
spired by (Feigenblat et al., 2017), whose details
are briefly described as follows. The algorithm
gets a paper section, a natural language query Q,
a desired summary length (in our case, 10 sen-
tences11), and a set of entities associated with the
query EQ. The output S is a subset of sentences
from D selected through an unsupervised opti-
mization scheme. To this end, the sentence subset
selection problem is posed as a multi-criteria opti-
mization problem, where several summary quality
objectives are be considered. The selection is ob-
tained using the Cross Entropy (CE) method (Ru-
binstein and Kroese, 2004). Optimization starts
by assigning a uniform importance probability to
each sentence in D. Then, CE works iteratively,
and, at each iteration, it samples summaries us-
ing a learnt distribution over the sentences, and

11We leave the study of variable-length section summaries
for future work.

214

evaluates the quality of these summaries by apply-
ing a target function. This function takes into ac-
count several quality prediction objectives, which
(for simplicity) are multiplied together. The learn-
ing process employs an exploration-exploitation
trade-off in which the importance of a sentence is
a fusion between its importance in previous itera-
tions and its importance in the current one.

The following five summary quality predic-
tors are used by Feigenblat et al. (2017): query
saliency, entities coverage, diversity, text coverage
and sentence length. Query saliency measures to
what extent the summary contains query related
terms as expressed by the cosine similarity be-
tween the unigrams bag-of-words representation
of the summary and the query terms. Entities cov-
erage measures to what extent the set of entities
identified in a summary shares the same set of en-
tities with EQ, measured by the Jaccard similar-
ity between the sets. The aim of this objective is
to produce a summary that is more aligned with
the information need provided explicitly (as a filter
specified by the user) or implicitly (learnt from the
query terms). Diversity lays towards summaries
with a diverse language model using the entropy
of the unigrams bag-of-words representation of the
summary. Text coverage measures the summary
coverage of D as measured by cosine similarity
between the bi-gram bag-of-words representation
of a summary and D. Finally, the length objec-
tive biases towards summaries that include longer
sentences, which tend to be more informative.

6 Human Evaluation

IBM Science Summarizer summarization
paradigm is section-based, i.e., each section is
summarized independently, and then all sections’
summaries are combined into the paper’s sum-
mary. In order to evaluate this paradigm, we
approached 12 authors from the NLP community,
and asked them to evaluate summaries of two
papers that they have co-authored (preferably as
the first author). For each paper, we generated
two summaries of two types: the section-based
summary as described above, and a second
summary generated using the same algorithm but
ignoring sections (i.e., treating the paper content
as flat text), a section-agnostic summary. For the
section-based summary, each section’s summary
length was fixed to 10 sentences. The length of
the section-agnostic summary was defined as the

length of the section-based summary. In total 24
papers, and 48 summaries were evaluated.

Tasks. The authors evaluated summaries of each
summary type, section-agnostic and section-based
(in random order), by performing the following 3
tasks per summary: (1) for each sentence in the
summary, we asked them to indicate whether they
would consider it as a part of a summary of their
paper (i.e., precision oriented measure); (2) we
asked them to evaluate how well each of the sec-
tions of the paper is covered in the summary (i.e.,
coverage/recall); and (3) we asked them to glob-
ally evaluate the quality of the summary. For tasks
(2) and (3) we used a 1-5 scale, ranging from very
bad to excellent, 3 means good.

Analysis. The objective of the analysis is to find
quantitative scores for each summary type to fa-
cilitate a comparison between them. For task (1),
for each paper, we calculated the precision scores
of the two summary types, and then computed the
average score for each summary type across all
papers. For task (2), we calculated an average
score for each paper and summary type by aver-
aging over the sections scores. Then, we obtained
the average of these scores for each summary type
across all papers. Finally, for task (3), we simply
averaged the scores given by the authors to each
summary type. To further quantify the evaluation,
we analyzed how well each summary type did for
each of the 3 tasks. For that we counted the num-
ber of times that each summary type scored better
than the other, and then divided by the total num-
ber of papers, to obtain the “% wins”.

Results. Table 1 summarizes the results across
the 3 tasks. For example, for task (2), for 68% of
the papers, the section-based summary was scored
higher, while, for 22% the section-agnostic sum-
mary was scored higher (for 10% of the papers,
the summaries were scored equally). The average
score for section-based summaries was 3.32 with
standard deviation of 0.53. Notably, the quality
of the section-based summaries significantly out-
performs the section-agnostic summaries on all 3
tasks, supporting our proposed paradigm.

7 Conclusion

We presented IBM Science Summarizer, the
first system that provides researchers a tool to sys-
tematically explore and consume summaries of
scientific papers. As future work, we plan to add

215

Task Section-agnostic Section-based
% wins Avg. score (std) % wins Avg. score (std)

(1) 37 0.54 (0.17) 63 0.6 (0.18)†
(2) 22 3 (0.56) 68 3.32 (0.53) †
(3) 4.5 2.86 (0.56) 36 3.22 (0.61) ‡

Table 1: Tasks results for section-agnostic, and section-
based. † - The results were significant with p < 0.05.
‡- The results were significant with p < 0.005.

support for additional entities e.g., methods, and
to increase our corpus to include more papers. Fi-
nally, we plan to provide this tool to the commu-
nity as an open service and conduct an extensive
user study about the usage and quality of the sys-
tem, including automatic evaluation of the sum-
maries.

References
Amjad Abu-Jbara and Dragomir Radev. 2011. Co-

herent citation-based summarization of scientific pa-
pers. In Proceedings of the 49th Annual HLT, HLT
’11, pages 500–509. Association for Computational
Linguistics.

Aaron Elkiss, Siwei Shen, Anthony Fader, Güneş
Erkan, David States, and Dragomir Radev. 2008.
Blind men and elephants: What do citation sum-
maries tell us about a research article? J. Am. Soc.
Inf. Sci. Technol., 59(1):51–62.

Alexander Fabbri, Irene Li, Prawat Trairatvorakul, Yi-
jiao He, Weitai Ting, Robert Tung, Caitlin West-
erfield, and Dragomir Radev. 2018. Tutorialbank:
A manually-collected corpus for prerequisite chains,
survey extraction and resource recommendation. In
Proceedings of the 56th ACL, pages 611–620.

Guy Feigenblat, Haggai Roitman, Odellia Boni, and
David Konopnicki. 2017. Unsupervised query-
focused multi-document summarization using the
cross entropy method. In Proceedings of the 40th
International ACM SIGIR, pages 961–964.

Carlos Flavian, Raquel Gurrea, and Carlos Orus. 2009.
Web design: a key factor for the website success.
Journal of Systems and Information Technology,
11(2):168–184.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proceedings SemEval@NAACL-
HLT 2018, pages 679–688.

Mahak Gambhir and Vishal Gupta. 2017. Recent auto-
matic text summarization techniques: A survey. Ar-
tif. Intell. Rev., 47(1):1–66.

Yufang Hou, Charles Jochim, Martin Gleize, Francesca
Bonin, and Debasis Ganguly. 2019. Identification
of tasks, datasets, evaluation metrics, and numeric
scores for scientific leaderboards construction. vol-
ume arXiv:1906.09317.

Rahul Jha, Reed Coke, and Dragomir Radev. 2015.
Surveyor: A system for generating coherent survey
articles for scientific topics. In Proceedings of the
Twenty-Ninth AAAI, AAAI’15, pages 2167–2173.

Wang Jie, Zhang Chengzhi, Zhang Mengying, and
Deng Sanhong. 2018. Citationas: A tool of auto-
matic survey generation based on citation content*.
Journal of Data and Information Science, 3(2).

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of enti-
ties, relations, and coreference for scientific knowl-
edge graph construction. In Proceedings of EMNLP
2018, pages 3219–3232.

C. D. Paice. 1981. The automatic generation of litera-
ture abstracts: An approach based on the identifica-
tion of self-indicating phrases. In Proceedings of the
3rd Annual ACM SIGIR, SIGIR ’80, pages 172–191.

Chris D. Paice and Paul A. Jones. 1993. The identi-
fication of important concepts in highly structured
technical papers. In Proceedings of the 16th Annual
International ACM SIGIR, SIGIR ’93, pages 69–78,
New York, NY, USA. ACM.

Jiaul H. Paik and Douglas W. Oard. 2014. A fixed-
point method for weighting terms in verbose infor-
mational queries. CIKM ’14, pages 131–140, New
York, NY, USA. ACM.

Vahed Qazvinian and Dragomir R. Radev. 2008. Sci-
entific paper summarization using citation summary
networks. In Proceedings of the 22Nd International
Conference on Computational Linguistics - Volume
1, COLING ’08, pages 689–696.

Reuven Y. Rubinstein and Dirk P. Kroese. 2004. The
Cross Entropy Method: A Unified Approach To
Combinatorial Optimization, Monte-carlo Simula-
tion. Springer-Verlag, Berlin, Heidelberg.

Mayank Singh, Pradeep Dogga, Sohan Patro, Dhi-
raj Barnwal, Ritam Dutt, Rajarshi Haldar, Pawan
Goyal, and Animesh Mukherjee. 2018. Cl scholar:
The acl anthology knowledge graph miner. In Pro-
ceedings of the NAACL 2018.

Yang Xu, Gareth J.F. Jones, and Bin Wang. 2009.
Query dependent pseudo-relevance feedback based
on wikipedia. In Proceedings of the 32Nd Interna-
tional ACM SIGIR, pages 59–66.

Michihiro Yasunaga, Jungo Kasai, Rui Zhang, Alexan-
der Richard Fabbri, Irene Li, Dan Friedman, and
Dragomir R. Radev. 2019. Scisummnet: A large an-
notated corpus and content-impact models for scien-
tific paper summarization with citation networks. In
AAAI 2019.

216

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 217–222
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

A System for Diacritizing Four Varieties of Arabic

Hamdy Mubarak Ahmed Abdelali Kareem Darwish Mohamed Eldesouki
Younes Samih Hassan Sajjad

{hmubarak,aabdelali}@qf.org.qa
Qatar Computing Research Institute, HBKU Research Complex, Doha 5825, Qatar

Abstract

Short vowels, aka diacritics, are more of-
ten omitted when writing different varieties
of Arabic including Modern Standard Arabic
(MSA), Classical Arabic (CA), and Dialectal
Arabic (DA). However, diacritics are required
to properly pronounce words, which makes di-
acritic restoration (a.k.a. diacritization) essen-
tial for language learning and text-to-speech
applications. In this paper, we present a sys-
tem for diacritizing MSA, CA, and two vari-
eties of DA, namely Moroccan and Tunisian.
The system uses a character level sequence-
to-sequence deep learning model that requires
no feature engineering and beats all previous
SOTA systems for all the Arabic varieties that
we test on.

1 Introduction

Most varieties of Arabic are typically written with-
out short vowels, aka diacritics, and readers need
to recover such diacritics to properly pronounce
words. Modern Standard Arabic (MSA) and Clas-
sical Arabic (CA) use two types of diacritics,
namely: core-word diacritics, which specify lex-
ical selection, and case endings, which generally
indicate syntactic role. Conversely, Arabic Di-
alects mostly use core-word diacritics and usually
use a silence diacritic (sukun) for case-endings.
For example, given the present tense MSA and
CA verb “yfhm”1 can be diacritized as “yafoham”
(meaning: “he understands”) or “yufah∼im” (“he
explains”). Both can accept dammah (u), fatHa
(a), or sukun (o) as grammatical case endings ac-
cording to surrounding context. The equivalent
version in some Arabic dialects is “byfhm”, which
can be diacritized as “biyifohamo” (“he under-
stands”) or “biyofah∼imo” (“he explains”). This
highlights the complexity of the task of recovering

1Buckwalter Arabic transliteration scheme is used
throughout the paper.

the diacritics, a prerequisite for Language Learn-
ing (Asadi, 2017) and Text to Speech (Sherif,
2018) among other applications.

In this paper, we present a system that employs
a character-based sequence-to-sequence model
(seq2seq) (Britz et al., 2017; Cho et al., 2014;
Kuchaiev et al., 2018) for diacritizing four dif-
ferent varieties of Arabic. We use the approach
described by Mubarak et al. (2019), which they
applied to MSA only, to build a system that ef-
fectively diacritizes MSA, CA, and and two va-
rieties of Dialectal Arabic (DA), namely Moroc-
can (MA) and Tunisian (TN). Our system beats
all previously reported SOTA results for the afore-
mentioned varieties of Arabic. The underlying
approach treats diacritic recovery as a translation
problem, where a sequential encoder and a se-
quential decoder are employed with undiacritized
characters as input and diacritized characters as
output. The system is composed of four main
componenets, namely: 1) a web application that
efficiently handles concurrent user diacritization
requests; 2) a text tokenization and cleaning mod-
ule based on Farasa (Abdelali et al., 2016), a
SOTA Arabic NLP toolkit; 3) Arabic variety iden-
tifier based on a fastText (Joulin et al., 2016), a
deep learning classification toolkit, to properly as-
certain the appropriate diacritization model; and 4)
a Neural Machine Translation (NMT) based archi-
tecture, based on OpenNMT (Klein et al., 2017),
to translate sequences of undiacritized characters
to diacritized sequences.

The contributions in this paper are:

• We deploy a web-based system that di-
acritizes four varieties of Arabic (MSA,
CA, DA-MA, and DA-TN) with appropriate
RESTful API.

• We employ one architecture to effectively di-
acritize the different varieties. The model re-

217

quires no feature engineering or external re-
sources such as segmenters or POS taggers.
Our system surpasses SOTA results for all va-
rieties of Arabic that we test on.

• We created large training and test datasets for
CA that are highly consistent. We plan to
make the test set, which is composed of 5,000
sentences (400k words) publicly available.

Figure 1: System architecture

2 System Architecture

2.1 Web Application
Figure 1 showcases the component of our demo.
In a web browser, the user submits a sentence to
diacritize. An instance of NGiNX web server re-
ceives the user request and routes it to the under-
lying application server. The application server is
composed of two parts, namely “Flask” and “GU-
nicorn” (a.k.a. Green Unicorn). Flask is a web
framework that deploys Python-based web appli-
cation. Due to Flask’s load restriction, where it
does not handle concurrent requests and lacks se-
curity, we use GUnicorn, which is a web server
gateway interface, as an interface between NG-
INX and Flask to handle concurrent requests and
to properly handle security issues. Gunicorn con-
verts NGINX requests into Python objects, which

are usable by the Flask frameworks. We make
the diacritizer available as a web application and a
web service that are freely accessible at: https:
//bit.ly/2IdFRVE.

2.2 Arabic Preprocessing
Flask deploys our diacritization application, which
is composed of multiple components. The first
component is Farasa segmenter (Abdelali et al.,
2016), which is a SOTA publicly available Arabic
processing toolkit. From the Farasa utilities, we
use tokenization and text cleaning. Tokenization
processes the text stream character by character
to produce individual tokens composed of letters
and numbers. Normalization maps Hindi numbers
to Arabic numbers, converts non-Arabic extended
Arabic script letters, such as those from Farsi or
Urdu, to the closest Arabic letters, and removes
all non-Arabic letters and numbers.

2.3 Arabic Variety Identification
The user may explicitly specify the variety of Ara-
bic that they have entered. Available options in-
clude MSA, CA, DA-MA, and DA-TN. If the user
does not specify the variety of Arabic, we em-
ploy a variety ID classifier. For this, we use a
character-based deep-leaning classifier using fast-
Text (Joulin et al., 2016) with character segments
ranging between 3 and 6 grams, a learning rate
of 0.05, and 50 training epochs. we opted to use
characters for classification instead of words be-
cause Arabic is a complex language with a rich
morphology, and many prefixes and suffixes can
be attached to words. Also for dialectal Arabic,
words can be written in many different accepted
ways due to the lack of a standard orthography.

2.4 Diacritization
For diacritization, Mubarak et al. (2019) show the
effectiveness of using Neural Machine Transla-
tion (NMT) framework to properly diacritize MSA
while recovering both core-word diacritics and
case-endings jointly and without the need for any
feature engineering. We use their approach to train
diacritizers for MSA, and we extend their work
to train diacritizers for CA, DA-MA, and DA-TN.
The method is composed of three component:
The first component produces overlapping sliding
window sequences of n words. Diacritization re-
quires that word and character orderings are pre-
served. Thus, the NMT model needs to be con-
strained to avoid word and character re-ordering,

218

insertion, and deletions. As in Mubarak et al.
(2019), we enforce these constraints using a slid-
ing window strategy, where the model is trained
and tested on consecutive text windows of fixed
length of 7 words.

The second component is an NMT model,
which translates undiacritized sequences of char-
acters to diacritized sequences. We use the Open-
NMT implementation. Formally, given a word se-
quence wi in source sentence Ssrc, we want to
map it to the diacritized word w′

i in target sentence
Strg such that:

Ssrc = w0, w1, w2,, wn

Strg = w′
0, w

′
1, w

′
2,, w

′
n

(1)

and:

wi = c0, c1, .., cm c ∈ {C,L}.
C : Arabic characters

w′
i = c0v0, c1v1, .., cmvm v ∈ {V,Ø}
V : Arabic diacritics

(2)

The third is a voting component. Since a word
may appear in multiple consecutive windows, we
get multiple diacritized versions of every word.
This allows us to use voting to select the most
common diacritized form for a word. In case of
a tie, we favor the window in which the word ap-
pears exactly in the middle. Table 1 provides an
example for a three words sentence “ktb Alwld
Aldrs” (the boy wrote the lesson) with a 3 word
sliding window.

Source Target
<s> <s> k t b <s> <s> ka ta ba
<s> k t b A l w l d <s> ka ta ba A lo wa la du
k t b A l w l d A l d r s ka ta ba A lo wa la du

A l d∼a ro sa
A l w l d A l d r s <e> A lo wa la du A l d∼a ro sa

<e>
A l d r s <e> <e> A l d∼a ro sa <e> <e>

Table 1: Example sentence: “ktb Alwld Aldrs” with
context window size of 3. Symbols “<s>” and “<e>”
are added to mark start and end of the sentence.

3 Data and Training

For MSA, we used a diacritized corpus of 4.5m
words for training (Darwish et al., 2017; Mubarak
et al., 2019). This corpus covers different genres
such as politics, economy, religion, sports, society,
etc. And for testing, we used the freely available
WikiNews corpus (Darwish et al., 2017) which
contains 18.3k words and covers multiple genres.

For CA, we obtained a classical diacritized cor-
pus of 65m words from a publisher. We used 5k
random sentences (400k words) for testing, and
we used the remaining words for training. We are
making the test set available at: https://bit.
ly/2KuOvkN.
For DA, we used the corpora described in
(Darwish et al., 2018), which is composed of
two diacritized translations of the New Tes-
tament into Moroccan (DA-MA) and Tunisian
(DA-TN). These corpora contain 166k and 157k
words respectively. For each dialect, we split
the diacritized corpora into 70/10/20 for train-
ing/validation/testing splits respectively. Our
splits exactly match those of Abdelali et al. (2018).
We used 5-fold cross validation.

Table 3 lists the details of the training and test
sets including the unique diacritized and undia-
critized tokens and the percentage of OOVs in the
test set that don’t appear in the training set. For
MSA and CA, we randomly used 10% of the train-
ing set for validation and the rest for training.

3.1 Training
For variety identification, given the diacritization
training sets, we trained the classifier using 7,000
random sentences from each corpus and we used
1,000 sentences for testing. As the testing se-
quences increase in length (more input words), the
accuracy of the classifier increases as in Table 2.

Input length 5 10 15 20
Accuracy 93.8 98.5 99.0 99.1

Table 2: Arabic variety identification per input length

When building the diacritization models, we
used the OpenNMT-tf implementation for training
with the hyperparameters suggested in the Open-
NMT website2. We used two RNN layers of size
500 each and embeddings of size 300. We ran 1M
training epochs for each system, which took on av-
erage 8 to 24 hours per system.

4 Evaluation and Analysis

For evaluation, we report on the results of evalu-
ating the models as well as the performance of the
deployed system.

4.1 System Results
Table 4 summarizes the results per dataset and
compares our system to other SOTA systems on

2https://github.com/OpenNMT/OpenNMT-tf

219

Train Test
Word Total Uniq Total Uniq OOV%

MSA Diac. 4.5m 333k 18.3k 7.9k 5.0
Undiac. 209k 6.8k 3.3

CA Diac. 65.6m 489k 409k 39k 3.6
Undiac. 254k 29k 2.3

DA- Diac. 151k 16.3k 15.4k 4.1k 19.5
MA Undiac. 15.9k 4.0k 19.0

DA- Diac. 142k 17.2k 15.3k 4.4k 21.5
TN Undiac. 16.6k 4.3k 20.7

Table 3: Number of words in training and test data for
MSA, CA, and DA

identical test sets. WER is computed at word-
level, and hence the whole word is counted as an
error if a single character therein receives an in-
correct diacritic. Since we did not have access to
systems that are specially tuned for CA, we com-
pared our system to Farasa (Darwish et al., 2017),
which was tuned for MSA. As the results clearly
show, using the NMT model at character level
consistently produced better results than all SOTA
systems. This confirms the previous conclusions
of (Mubarak et al., 2019) about the superiority
of using a character based seq2seq model for dia-
critization. While previously published results us-
ing DNN BiLSTM approaches have improved the
results over other machine learning approaches;
NMT invariably reduced the errors further – be-
tween 25% to 60%.

Setup WER%

MSA Our System 4.5
Microsoft ATKS (Said et al., 2013) 12.3
Farasa (Darwish et al., 2017) 12.8
RDI (Rashwan et al., 2015) 16.0
MADAMIRA (Pasha et al., 2014) 19.0
MIT (Belinkov and Glass, 2015) 30.5

CA Our System 3.7
Farasa (Darwish et al., 2017) 12.8

DA- Our System 1.4
MA Bi-LSTM DNN (Abdelali et al., 2018) 2.7

CRF (Darwish et al., 2018) 2.9

DA- Our System 2.5
TN Bi-LSTM DNN (Abdelali et al., 2018) 3.6

CRF (Darwish et al., 2018) 3.8

Table 4: Results and comparison of full diacritization
systems.

4.2 System Performance

The system is running on a Microsoft Azure vir-
tual machine with 4 CPU cores and 16 gigabytes
of memory. The system does not require a GPU

for decoding. We configured the application server
to handle 100 concurrent requests, with each re-
quest containing a text sentence. In our testing,
the system is able to process 10,000 requests in
14.9 seconds with zero failures. In other words,
the server is able to handle 672 requests per sec-
ond, with each request finishing in 149 millisec-
onds on average. Implementing memory mapped
files to minimize disk access would further speed
up the processing of requests and enhance the per-
formance of the system.

4.3 Error Analysis

For MSA: we randomly selected 100 word-core
and 100 case-ending errors to ascertain the most
common error types. For case-endings, the top 4
error types were: long-distance dependency (e.g.
coordination or verb subj/obj), which is an artifact
of using limited context – 24% of errors; confu-
sion between different syntactic functions (e.g. N
N vs. N ADJ or V Subj vs. V Obj) – 22%; wrong
selection of morphological analysis (e.g. present
tense vs. past tense) – 20%; and named entities
(NEs) – 16%. For long distance dependencies, in-
creasing context size may help in some case, but
may introduce additional errors. Perhaps combin-
ing multiple context sizes may help. As for word-
cores, the top 4 errors were: incorrect selection for
ambiguous words, where most of these errors were
related to active vs. passive voice – 60%; NEs –
32%; borrowed words – 4%; and words with mul-
tiple valid diacritized words – 4%.
For CA: We randomly selected 100 errors and
the top 4 error types, which summed up to 85%
of errors, were: wrong diacritized form selec-
tion – 36% of errors (e.g. “Almalik” (the king)
vs. “Almalak” (the angel)); long-distance depen-
dency (e.g. coordination or verb subj/obj as in “jA’
Alnby mlk”, (an angel came to the prophet) where
the object preceded the subject) – 32%; confusion
between different syntactic functions (e.g. N N vs.
N ADJ) – 9%; confusion between different suf-
fixes or prefixes, (e.g. “katabta” (you wrote) vs.
“katabat” (she wrote)) – 8%. We also found that
in 7% of the differences, the diacritizations of both
the reference and system output were in fact cor-
rect (e.g. “jinAzp” and “janAzp” (funeral)).
For DA: We manually inspected 100 random er-
rors. The bulk of these errors (71%) came from
confusing the vowels a, i, and u, with sukun or
sukun-shaddah. This is normal due to the high fre-

220

Figure 2: Screenshot for the demo site https://
bit.ly/2IdFRVE

quency of sukkun in both Moroccan and Tunisian
dialects compared to other varieties of Arabic (Ab-
delali et al., 2018). In about 8% of the cases, which
involved NEs, the gold reference was not consis-
tently diacritized, making it difficult for the sys-
tem to learn properly. In an additional 5%, the
system hallucinated producing output that is com-
pletely untethered from the source material (e.g.
“$ayaTino” (the devil) vs. “$iTnino” (non-word)).
These type of errors are likely an artifact of the
seq2seq model. We plan to handle these errors
in future by aligning input and output words and
make sure that output letters are exactly the same
as input, and by handling special characters that
sometimes appear in DA. The remaining errors
(16%) were due to erroneous selections, where for
example, the system confused between feminine
and masculine pronouns (e.g. “noti” (you: Fem.)
vs. “nota” (you: masc.)).

5 Related Work

While the bulk of Arabic diacritic recovery re-
search was devoted to MSA diacritization, work
on CA and DA is still scarce. This can be at-
tributed to many factors, primarily the absence of
large standard resources.

In early experiments on CA diacritization by
Gal (2002) and Elshafei et al. (2006), they used
the Qur’anic text, composed of 18,623 diacritized
words, and a Hidden Markov Model. Gal (2002)
reported a word error rate (WER) of 14%, and
Elshafei et al. (2006) reported a character error
rate of 2.5%. As for DA, a number of sys-
tems designed either solely for diacritization or
that supports the diacritization among other func-
tionalities. Linguistic Data Consortium (LDC)
CallHome corpus, containing 160K words worth

of transcripts of informal Egyptian Arabic was
among the earlier resources used for DA. Em-
ployed technologies varied from manually crafted
rules (Vergyri and Kirchhoff, 2004), finite state
transducer and support vector machine (Habash
et al., 2012; Khalifa et al., 2017; Jarrar et al.,
2017), Conditional Random Fields (Darwish et al.,
2018), and Deep Neural Networks (Abdelali et al.,
2018). While there is no standard dataset for eval-
uation, recent reported performance on Moroccan
and Tunisian was a WER of 2.7% and 3.6% re-
spectively (Abdelali et al., 2018).

Similarly, for MSA, LDC Arabic Treebank
(Part 2)3 and its successor Part 3 (ATB3) v 1.0
and 3.2 were used with a myriad of technolo-
gies (Habash and Rambow, 2007; Pasha et al.,
2014; Abandah et al., 2015) that combines SVM
classifier and Recurrent Neural Networks. Aban-
dah et al. (2015) reported a WER of 9.07% us-
ing a neural architecture consisting of two Recur-
rent Neural network layers with 250 nodes each.
Darwish et al. (2017) used a corpus of 4.5m fully
diacritized words to train an SVM classifier that
achieved a 12.76% WER.

In sum, three resources were explored for dia-
critics recovery, namely:
– For CA: Qura’nic text with 18k words.
– For DA: LDC CallHome with 160k words; the
Moroccan and Tunisian Bibles with 166k and
157k words respectively.
– For MSA: LDC Arabic Treebank with 340k
words (v3.2); and a proprietary corpus of 4.5m
words (Darwish et al., 2017).

6 Conclusion

In this paper, we introduced a system for dia-
critizing four different varieties of Arabic, namely
MSA, CA, DA-TN, and DA-MA. The system em-
ploys a character based seq2seq model without
the need for any feature engineering while beat-
ing other SOTA systems. The system is deployed
as a web application with corresponding RESTful
API. Our WER results respectively for MSA, CA,
DA-MA, and DA-Tunisian are: 4.5%, 3.7%, 1.4%,
and 2.5%. We plan to extend the system by inte-
grating diacritization models for other dialects and
to make the system more robust to handle different
kinds of input texts with special characters, which
are prevalent in tweets.

3https://catalog.ldc.upenn.edu/
LDC2004T02

221

References
Gheith A. Abandah, Alex Graves, Balkees Al-Shagoor,

Alaa Arabiyat, Fuad Jamour, and Majid Al-Taee.
2015. Automatic diacritization of arabic text us-
ing recurrent neural networks. International Journal
on Document Analysis and Recognition (IJDAR),
18(2):183–197.

Ahmed Abdelali, Mohammed Attia, Younes Samih,
Kareem Darwish, and Hamdy Mubarak. 2018. Di-
acritization of maghrebi arabic sub-dialects. arXiv
preprint arXiv:1810.06619.

Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and
Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for arabic. In Proceedings of NAACL-
HLT 2016 (Demonstrations), pages 11–16. Associa-
tion for Computational Linguistics.

Ibrahim A. Asadi. 2017. Reading arabic with the di-
acritics for short vowels: vowelised but not nec-
essarily easy to read. Writing Systems Research,
9(2):137–147.

Yonatan Belinkov and James Glass. 2015. Arabic di-
acritization with recurrent neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2281–
2285, Lisbon, Portugal.

Denny Britz, Anna Goldie, Thang Luong, and Quoc
Le. 2017. Massive Exploration of Neural Machine
Translation Architectures. ArXiv e-prints.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Kareem Darwish, Ahmed Abdelali, Hamdy Mubarak,
Younes Samih, and Mohammed Attia. 2018. Dia-
critization of moroccan and tunisian arabic dialects:
A CRF approach. In OSACT 3: The 3rd Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, page 62.

Kareem Darwish, Hamdy Mubarak, and Ahmed Abde-
lali. 2017. Arabic diacritization: Stats, rules, and
hacks. In Proceedings of the Third Arabic Natural
Language Processing Workshop, pages 9–17.

Moustafa Elshafei, Husni Al-Muhtaseb, and Mansour
Alghamdi. 2006. Statistical methods for automatic
diacritization of arabic text. In The Saudi 18th Na-
tional Computer Conference. Riyadh, volume 18,
pages 301–306.

Ya’akov Gal. 2002. An HMM approach to vowel
restoration in arabic and hebrew. In Proceedings of
the ACL-02 workshop on Computational approaches
to Semitic languages, pages 1–7. Association for
Computational Linguistics.

Nizar Habash, Ramy Eskander, and Abdelati Hawwari.
2012. A morphological analyzer for egyptian arabic.
In SIGMORPHON 2012, pages 1–9. ACL.

Nizar Habash and Owen Rambow. 2007. Arabic di-
acritization through full morphological tagging. In
HLT-NAACL, pages 53–56.

Mustafa Jarrar, Nizar Habash, Faeq Alrimawi, Diyam
Akra, and Nasser Zalmout. 2017. Curras: an anno-
tated corpus for the palestinian arabic dialect. Lan-
guage Resources and Evaluation, 51(3):745–775.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Salam Khalifa, Sara Hassan, and Nizar Habash. 2017.
A morphological analyzer for gulf arabic verbs.
WANLP 2017, page 35.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints.

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vi-
taly Lavrukhin, Carl Case, and Paulius Micike-
vicius. 2018. Openseq2seq: extensible toolkit
for distributed and mixed precision training of
sequence-to-sequence models. arXiv preprint
arXiv:1805.10387.

Hamdy Mubarak, Ahmed Abdelali, Hassan Sajjad,
Younes Samih, and Kareem Darwish. 2019. Highly
effective arabic diacritization using sequence to se-
quence modeling. In Proceedings of NAACL-HLT
2019.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan M Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In LREC-2014, Reykjavik, Iceland.

Mohsen Rashwan, Ahmad Al Sallab, M. Raafat, and
Ahmed Rafea. 2015. Deep learning framework with
confused sub-set resolution architecture for auto-
matic arabic diacritization. In IEEE Transactions
on Audio, Speech, and Language Processing, pages
505–516.

Ahmed Said, Mohamed El-Sharqwi, Achraf Chalabi,
and Eslam Kamal. 2013. A hybrid approach for ara-
bic diacritization. In Natural Language Processing
and Information Systems, pages 53–64, Berlin, Hei-
delberg.

Youssef Sherif. 2018. Arabic tacotron text to speech.

Dimitra Vergyri and Katrin Kirchhoff. 2004. Auto-
matic diacritization of arabic for acoustic model-
ing in speech recognition. In Proceedings of the
workshop on computational approaches to Arabic
script-based languages, COLING’04, pages 66–73,
Geneva, Switzerland.

222

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 223–228
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Tanbih: Get To Know What You Are Reading
Yifan Zhang1, Giovanni Da San Martino1, Alberto Barrón-Cedeño2, Salvatore Romeo1,

Jisun An1, Haewoon Kwak1, Todor Staykovski3, Israa Jaradat4, Georgi Karadzhov5,
Ramy Baly6, Kareem Darwish1, James Glass6, Preslav Nakov1

1Qatar Computing Research Institute, HBKU, 2Università di Bologna, Forlı̀, Italy
3Sofia University 4University of Texas at Arlington, 5SiteGround Hosting EOOD

6MIT Computer Science and Artificial Intelligence Laboratory
{yzhang,gmartino,sromeo,jan,hkwak,kdarwish,pnakov}@hbku.edu.qa
a.barron@unibo.it, todorstaykovski@gmail.com, {baly,glass}@mit.edu

israa.jaradat@mavs.uta.edu, gogokaradjov@gmail.com

Abstract

We introduce Tanbih, a news aggregator with
intelligent analysis tools to help readers un-
derstanding what is behind a news story. Our
system displays news grouped into events and
generates media profiles that show the general
factuality of reporting, the degree of propa-
gandistic content, hyper-partisanship, leading
political ideology, general frame of reporting,
and stance with respect to various claims and
topics of a news outlet. In addition, we auto-
matically analyze each article in order to detect
whether it is propagandistic and to determine
its stance with respect to a number of contro-
versial topics.

1 Introduction

Nowadays, more and more readers consume news
online. The reduced costs and, generally speak-
ing, the less strict regulations with respect to the
standard press, have led to the proliferation of on-
line news media. However, this does not necessar-
ily entail that readers are exposed to a plurality of
viewpoints as news consumed via social networks
are known to reinforce the bias of the user (Flax-
man et al., 2016) because of filtering bubbles and
echo chambers. Moreover, visiting multiple web-
sites to gather a more comprehensive analysis of
an event might be too time-consuming for the av-
erage reader.

News aggregators —such as Flipboard1, News
Lens2 and Google News3—, gather news from dif-
ferent sources and, in the case of the latter two,
cluster them into events. In addition, News Lens
displays all articles about an event in a timeline
and provides additional information, such as sum-
mary of the event and a description for each entity
mentioned in an article.

1http://flipboard.com
2http://newslens.berkeley.edu
3http://news.google.com.

While these news aggregators help readers to get
a more comprehensive coverage of an event, some
of the sources might be unknown to the user, and
thus he/she could naturally question the validity
and the trustworthiness of the information pro-
vided. Deep analysis of the content published by
news outlets has been performed by expert jour-
nalists. For example, Media Bias/Fact Check4 pro-
vides reports on the bias and factuality of report-
ing of entire news outlets, whereas Snopes5, Poli-
tifact,6 and FactCheck7 are popular fact-checking
websites. All these manual efforts cannot cope
with the rate at which news contents are produced.

Here, we propose Tanbih, a news platform that
displays news grouped into events and provides
additional information about the articles and their
media source in order to promote media literacy. It
automatically generates profiles for the news me-
dia with reports on their factuality, leading po-
litical ideology, hyper-partisanship, use of propa-
ganda, and bias. Furthermore, Tanbih automati-
cally categorizes articles in English and Arabic,
flags potentially propagandistic ones, and exam-
ines their framing bias.

2 System Architecture

The architecture of Tanbih is sketched in Figure 1.
The system consists of three main components: an
online streaming processing pipeline for data col-
lection and article level analysis, offline process-
ing for event and media source level analysis, and
a website for delivering news to the users. The
online streaming processing pipeline continuously
retrieves articles in English and Arabic, which are
then translated, categorized, and analyzed for their
general frame of reporting and use of propaganda.

4http://mediabiasfactcheck.com
5http://www.snopes.com/
6http://www.politifact.com/
7http://www.factcheck.org/

223

Figure 1: The architecture of Tanbih. The arrows indicate the information flow.

We perform clustering on the articles that have
been collected every 30 minutes. The offline
processing includes factuality prediction, leading
political ideology detection, audience reach and
Twitter user based bias prediction at the media
level, and stance detection and aggregation of
statistics at the article level, e.g., propaganda index
(see Section 2.3) for each news medium. The of-
fline processing does not have strict time require-
ments, and thus the choice of the models we de-
velop favors accuracy over speed.

In order to run everything in a streaming and
scalable fashion, we use KAFKA8 as a messaging
queue and Kubernetes9, thus ensuring scalability
and fault-tolerant deployment. In the following,
we describe each component of the system. We
have open-sourced the code for some of those, and
we plan to do that for the remaining ones in the
near future.

2.1 Crawlers and Translation
Our crawlers collect articles from a growing list
of sources10, which currently includes 155 RSS
feeds, 82 Twitter accounts and two websites. Once
a link to an article has been obtained from any of
these sources, we rely on the Newspaper3k Python
library to extract its contents.11 After dedupli-
cation based on both URL and text content, our
crawlers currently download 7k-10k articles per
day. As of present, we have more than 700k ar-
ticles stored in our database. We use QCRI’s Ma-
chine Translation (Dalvi et al., 2017) to translate
English content into Arabic and vice versa. Since
translation is performed offline, we select the most
accurate system in Dalvi et al. (2017), i.e., the
neural-based one.

8http://kafka.apache.org
9http://kubernetes.io

10http://www.tanbih.org/about
11http://newspaper.readthedocs.io

2.2 Section Categorization

We built a model to classify an article into one
of six news sections: Entertainment, Sports, Busi-
ness, Technology, Politics, and Health. We built a
corpus using the New York Times articles from the
FakeNews dataset12 published between January 1,
2000 and December 31, 2017. We extracted the
news section information embedded in the arti-
cle URL and we used a total of 538k articles for
training our models using TF.IDF representation.
On a test set of 107k articles, our best-performing
logistic regression model achieved F1 scores of
0.82, 0.58, 0.80, and 0.90 for Sports, Business,
Technology, and Politics, respectively. The overall
F1 for the baseline was 0.497.

2.3 Propaganda Detection

We developed a propaganda detection component
to flag articles that could be potentially propa-
gandistic, i.e., purposefully biased to influence its
readers and ultimately to pursue a specific agenda.
Given a corpus of news that is labelled as pro-
pagandistic/non propagandistic (Barrón-Cedeño
et al., 2019), we train a maximum entropy classi-
fier on 51k articles, represented with various style-
related features, such as character n-grams and
a number of vocabulary richness and readability
measures, and we obtain state-of-the-art F1=82.89
on a separate test set of 10k articles. We refer to
the score p ∈ [0, 1] of the classifier as propaganda
index, and we define the following propaganda la-
bels, which we use to flag articles (see Figure 2;
right news): very unlikely (p < 0.2), unlikely
(0.2 ≤ p < 0.4), somehow (0.4 ≤ p < 0.6),
likely (0.6 ≤ p < 0.8), and very likely (p ≥ 0.8).

12http://github.com/several27/
FakeNewsCorpus

224

2.4 Framing Bias Detection

Framing is a central concept in political communi-
cation, which intentionally emphasizes or ignores
certain dimensions of an issue (Entman, 1993).
In Tanbih, we infer the frames of news articles,
thus making them explicit. In particular, we use
the Media Frames Corpus (MFC) (Card et al.,
2015) to train a fine-tuned BERT model to detect
topic-agnostic media frames. For training, we use
a small learning rate of 0.0002, a maximum se-
quence length of 128, and a batch size of 32. Our
model, when trained on 11k articles from MFC,
achieved an accuracy of 66.7% on a test set of
1,138 articles. This is better than the previously
reported state-of-the-art (58.4%) on a subset of
MFC (Ji and Smith, 2017).

2.5 Factuality of Reporting and Leading
Political Ideology of a Source

The factuality of reporting and the bias of an in-
formation source are key indicators that investiga-
tive journalists use to judge the reliability of in-
formation. In Tanbih, we model the factuality
and the bias at the media level, learning from the
Media Bias/Fact Check (MBFC) website, which
covers over 2,800 news outlets. The model im-
proves over our recent research (Baly et al., 2018,
2019; Dinkov et al., 2019), and combines informa-
tion from articles published by the target medium,
from their Wikipedia page accounts, from their so-
cial media accounts (Twitter, Facebook, Youtube)
as well as from the social media accounts of the
users who interact with the medium. We model
factuality on a 3-point scale (low, mixed and high),
with 80.1% accuracy (baseline 46.0%), and bias
on a 7-point left-to-right scale, with 69% accuracy
(baseline 24.7%), and also on a 3-point scale, with
81.9% accuracy (baseline 37.1%).

2.6 Stance Detection

Stance detection aims to identify the relative per-
spective of a piece of text with respect to a claim,
typically modeled using labels such as agree, dis-
agree, discuss, and unrelated. An interesting ap-
plication of stance detection is medium profiling
with respect to controversial topics. In this setting,
given a particular medium, the stance for each arti-
cle is computed with respect to a set of predefined
claims. The stance of a medium is then obtained
by aggregating the article-level stances. In Tanbih,
the stance is used to profile media sources.

We implemented our stance detection model as
fine-tuning of BERT on the FNC-1 dataset from
the Fake News Challenge13. Our model outper-
formed the best submitted system (Hanselowski
et al., 2018), obtaining an F1macro of 75.30 and
an F1 of 69.61, 49.76, 83.01, and 98.81 for agree,
disagree, discuss, and unrelated, respectively.

2.7 Audience Reach
User interactions on Facebook enable the platform
to generate comprehensive user profiles for gen-
der, age, income bracket, and political preferences.
After marketers have determined a set of criteria
for their target audience, Facebook can provide
them with an estimate of the size of this audience
on its platform. As an illustration, there are about
160K Facebook users who are 20 years old, are
very liberal, are female, and have an interest in
The New York Times. In Tanbih, we use the polit-
ical leaning of Facebook users who follow a news
medium as a feature to potentially improve media
bias and factuality prediction; we also show it in
the media profiles. To get the audience of each
news medium, we use Facebook’s Marketing API
to extract the demographic data of the medium’s
audience with a focus on audience members who
reside in USA and their political leanings (ideol-
ogy): (Very Conservative, Conservative, Moder-
ate, Liberal, and Very Liberal).14

2.8 Twitter User-Based Bias Classification
Controversial social and political issues may spur
social media users to express their opinion through
sharing supporting newspaper articles. Our intu-
ition is that the bias of news sources can be in-
ferred based on the bias of social media users.
For example, if articles from a news source are
strictly shared by left- or right-leaning users, then
the source is likely left- or right-leaning, respec-
tively. Similarly, if it is being cited by both groups,
then it is likely closer to the center. We used an un-
supervised user-based stance detection method on
different controversial topics in order to find core
groups of right- and left-leaning users (Darwish
et al., 2019). Given that the stance detection pro-
duces clusters with nearly perfect purity (> 97%
purity), we used the identified core users to train a
deep learning-based classifier, fastText, using the
accounts that they retweeted as features to further
tag more users.

13http://www.fakenewschallenge.org/
14These are only available for US-based Facebook users.

225

Next, we computed a valence score for each news
outlet and for each topic. The valence scores range
between -1 and 1, with higher absolute values in-
dicating being cited with greater proportion by one
group as opposed to the other. The score is calcu-
lated as follows (Conover et al., 2011):

V (u) = 2

tf(u,C0)
total(C0)

tf(u,C0)
total(C0)

+ tf(u,C1)
total(C1)

− 1 (1)

where tf(u,C0) is the number of times (term
frequency) item u is cited by group C0, and
total(C0) is the sum of the term frequencies of all
items cited by C0. tf(u,C1) and total(C1) are de-
fined in a similar fashion. We subdivided the range
between -1 and 1 into 5 equal size ranges and we
assigned the labels far-left, left, center, right, and
far-right to those ranges.

2.9 Event Identification / Clustering
The clustering module aggregates news articles
into stories. The pipeline is divided into two
stages: (i) local topic identification and (ii) long-
term topic matching for story generation.

For step (i), we represent each article as a
TF.IDF vector, built from the title and the body
concatenated. The pre-processing consists of
casefolding, lemmatization, punctuation and stop-
word removal. In order to obtain the preliminary
clusters, in stage (i), we compute the cosine simi-
larity between all article pairs in a predefined time
window. We set n = 6 as the number of days
withing a window with an overlap of three days.
The resulting matrix of similarities for each win-
dow is then used to build a graph G = (V,E),
where V is the set of vertices, i.e., the news ar-
ticles, and E is the set of edges. An edge be-
tween two articles {di, dj} ∈ V is drawn only if
sim(di, dj) ≥ T1, with T1 = 0.31. We selected
all parameters empirically on the training part of
the corpus from (Miranda et al., 2018). The se-
quence of overlapping local graphs is merged in
the order of their creation, thus generating sto-
ries from the topics. After merging, a commu-
nity detection algorithm is used in order to find
the correct assignment of the nodes into clusters.
We used one of the fastest modularity-based algo-
rithms: the Louvain method (Blondel et al., 2008).

For step (ii), the topics created from the pre-
ceding stage are merged if the cosine similarity
sim(ti, tj) ≥ T2, where ti (tj) is the mean of all
vectors belonging to topic i (j), with T2 = 0.8.

Figure 2: The Tanbih main page.

The model achieved state-of-the-art perfor-
mance on the testing partition of the corpus
from Miranda et al. (2018): an F1 of 98.11 and
an F1BCubed

of 94.41.15 As a comparison, the best
model described in (Miranda et al., 2018) achieved
an F1 of 94.1. See Staykovski et al. (2019) for
further details.

3 Interface

The home page of Tanbih16 displays news articles
grouped into stories (see the screenshot in Fig-
ure 2). Each story is displayed as a card. The
users can go back and forth between the articles
from the same event by clicking on the left/right
arrows below the title of the article. A propaganda
label is displayed if the article is predicted to be
likely propagandistic. Such an example is shown
on the right of Figure 2. The source of each article
is displayed with the logo or the avatar of the re-
spective news organization, and it links to a special
profile page for this organization (see Figure 3).
On the top-left of the home page, Tanbih provides
language selection buttons, currently English and
Arabic only, to switch the language the news are
display in. Finally, a search box in the top-right
corner allows the user to find the profile page of a
particular news medium of interest.

On the media profile page (Figure 3a), a short
extract from the Wikipedia page of the medium
is displayed on the top, with recently published
articles on the right-hand side. The profile page
includes a number of statistics automatically de-
rived from the models in Section 2. We use as an
example Figure 3, which shows screenshots of the
profile of CNN.17

15F1BCubed is an evaluation measure specifically designed
to evaluate clustering algorithms (Amigó et al., 2009).

16http://www.tanbih.org
17Here is a direct link to the profile: http://www.

tanbih.org/media/1

226

(a) (b) (c)

Figure 3: A partial screenshot of the media profile page for CNN in Tanbih.

The first two charts in Figure 3a show the cen-
trality and the hyper-partisanship (we can see that
CNN is estimated to be fairly central and low
in hyper-partisanship) and the distribution of pro-
pagandistic articles (CNN publishes mostly non-
propagandistic articles).

Figure 3b shows the overall framing bias distri-
bution for the medium (CNN focuses mostly on
cultural identity and politics), and the factuality
of reporting (CNN is mostly factual). The pro-
file also shows the leading political ideology of the
medium on a 3-point and also on a 7-point scale.

Figure 3c shows the audience reach of the
medium and the bias classification according to
users’ retweets (see Section 2.8). We can see that
CNN is popular among readers with all political
views, although it tends to have a left-leaning ide-
ology on the topics listed. The profile also fea-
tures reports on the stance of CNN with respect to
a number of topics.

Finally, Tanbih features pages about specific
topics. These are accessible via the search box on
the top-right of Tanbih’s main page. An example is
given in Figure 4, which shows the topic page for
the Khashoggi’s murder. Recent stories about this
topic are listed on the top of the page, followed by
statistics such as the number of countries, the num-
ber of articles, and the number of media reporting
on it. A map shows how much reporting there is
on the event per country, which allows users to get
an idea of how important the topic is there.

Figure 4: A partial screenshot of the topic page for the
Khashoggi Murder in Tanbih.

The topic page further features charts showing
(i) the top countries in terms of coverage of the
event, both in absolute and in relative numbers
with respect to the total number of articles pub-
lished, and (ii) the media sources that published
most propagandistic content on the topic, again
both in absolute and in relative terms with respect
to the total number of articles published by the re-
spective medium on the topic. Finally, the topic
page displays plots showing the overall distribu-
tion of propagandistic articles and of the overall
framing bias when reporting on the topic.

227

4 Conclusions and Future Work

We have introduced Tanbih, a news aggregator that
performs media-level and article-level analysis of
the news aiming to help users better understand
what they are reading. Tanbih features factual-
ity prediction, propaganda detection, stance detec-
tion, leading political ideology identification, me-
dia framing bias detection, event clustering, and
machine translation.

In future work, we plan to include more me-
dia sources, especially from non-English speak-
ing regions and to add interactive components,
e.g., letting users ask a question about a spe-
cific topic. We also plan to add sentence-level
and sub-sentence-level annotations for check-
worthiness (Jaradat et al., 2018) and fine-grained
propaganda (Da San Martino et al., 2019).

Acknowledgements

This research is part of the Tanbih project,18 which
aims to limit the effect of “fake news”, propaganda
and media bias by making users aware of what
they are reading. It is developed in collaboration
between the Qatar Computing Research Institute
(QCRI), HBKU and the MIT Computer Science
and Artificial Intelligence Laboratory (CSAIL).

References
Enrique Amigó, Julio Gonzalo, Javier Artiles, and

Felisa Verdejo. 2009. A comparison of extrinsic
clustering evaluation metrics based on formal con-
straints. Inf. Retr., 12(4):461–486.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proc. of EMNLP’18, pages 3528–3539.

Ramy Baly, Georgi Karadzhov, Abdelrhman Saleh,
James Glass, and Preslav Nakov. 2019. Multi-task
ordinal regression for jointly predicting the trustwor-
thiness and the leading political ideology of news
media. In Proc. of NAACL-HLT’19, pages 2109–
2116.

Alberto Barrón-Cedeño, Giovanni Da San Martino, Is-
raa Jaradat, and Preslav Nakov. 2019. Proppy: Or-
ganizing news coverage on the basis of their propa-
gandistic content. Information Processing and Man-
agement, 56(5):1849–1864.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Journal

18http://tanbih.qcri.org/

of Statistical Mechanics: Theory and Experiment,
2008(10):P10008.

Dallas Card, Amber E Boydstun, Justin H Gross, Philip
Resnik, and Noah A Smith. 2015. The media frames
corpus: Annotations of frames across issues. In
Proc. of ACL ’15, pages 438–444.

Michael Conover, Jacob Ratkiewicz, Matthew R Fran-
cisco, Bruno Gonçalves, Filippo Menczer, and
Alessandro Flammini. 2011. Political polarization
on Twitter. In Proc. of ICWSM’11, pages 89–96.

Giovanni Da San Martino, Seunghak Yu, Alberto
Barron-Cedeno, Rostislav Petrov, and Preslav
Nakov. 2019. Fine-grained analysis of propaganda
in news articles. In Proc. of EMNLP’19.

Fahim Dalvi, Yifan Zhang, Sameer Khurana, Nadir
Durrani, Hassan Sajjad, Ahmed Abdelali, Hamdy
Mubarak, Ahmed Ali, and Stephan Vogel. 2017.
QCRI live speech translation system. In Proc. of
EACL’17, pages 61–64.

Kareem Darwish, Peter Stefanov, Michaël J Aupetit,
and Preslav Nakov. 2019. Unsupervised user stance
detection on Twitter. In Proc. of ICWSM’20.

Yoan Dinkov, Ahmed Ali, Ivan Koychev, and Preslav
Nakov. 2019. Predicting the leading political ide-
ology of Youtube channels using acoustic, textual
and metadata information. In Proc. of INTER-
SPEECH’19.

Robert M Entman. 1993. Framing: Toward clarifica-
tion of a fractured paradigm. Journal of communi-
cation, 43(4):51–58.

Seth Flaxman, Sharad Goel, and Justin M Rao. 2016.
Filter bubbles, echo chambers, and online news con-
sumption. Public opinion quarterly, 80(S1):298–
320.

Andreas Hanselowski, Avinesh P.V.S., Benjamin
Schiller, Felix Caspelherr, Debanjan Chaudhuri,
Christian M. Meyer, and Iryna Gurevych. 2018. A
retrospective analysis of the fake news challenge
stance-detection task. In Proc. of COLING’18,
pages 1859–1874.

Israa Jaradat, Pepa Gencheva, Alberto Barrón-Cedeño,
Lluı́s Màrquez, and Preslav Nakov. 2018. Claim-
Rank: Detecting check-worthy claims in Arabic and
English. In Proc. of NAACL-HLT ’18, pages 26–30.

Yangfeng Ji and Noah A. Smith. 2017. Neural dis-
course structure for text categorization. In Proc.
ACL’17, pages 996–1005.

Sebastião Miranda, Arturs Znotins, Shay B. Cohen,
and Guntis Barzdins. 2018. Multilingual clustering
of streaming news. In Proc. of EMNLP’18, pages
4535–4544.

Todor Staykovski, Alberto Barrón-Cedeño, Giovanni
Da San Martino, and Preslav Nakov. 2019. Dense
vs. sparse representations for news stream cluster-
ing. In Proc. of Text2story’19, pages 47–52.

228

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 229–234
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

TEASPN: Framework and Protocol
for Integrated Writing Assistance Environments

Masato Hagiwara1 Takumi Ito2,3 Tatsuki Kuribayashi2,3

Jun Suzuki2,4 Kentaro Inui2,4

1Octanove Labs LLC 2Tohoku University 3Langsmith Inc. 4RIKEN AIP
masato@octanove.com

{t-ito, kuribayashi, jun.suzuki, inui}@ecei.tohoku.ac.jp

Abstract

Language technologies play a key role in as-
sisting people with their writing. Although
there has been steady progress in e.g., gram-
matical error correction (GEC), human writ-
ers are yet to benefit from this progress due
to the high development cost of integrating
with writing software. We propose TEASPN1,
a protocol and an open-source framework for
achieving integrated writing assistance envi-
ronments. The protocol standardizes the way
writing software communicates with servers
that implement such technologies, allowing
developers and researchers to integrate the lat-
est developments in natural language process-
ing (NLP) with low cost. As a result, users
can enjoy the integrated experience in their fa-
vorite writing software. The results from ex-
periments with human participants show that
users use a wide range of technologies and
rate their writing experience favorably, allow-
ing them to write more fluent text.

1 Introduction

Language technologies have been playing an im-
portant role in assisting people in writing natu-
ral language texts, such as essays, emails, busi-
ness documents, and academic papers. There
has been considerable progress on writing assis-
tance technologies (or WATs in short) in the past
few decades in fields such as NLP and computer-
aided language learning (CALL). For example, in
one of such areas, grammatical error correction
(GEC) (Leacock et al., 2010), new models and
systems are developed and published month after
month, breaking the previous evaluation records
and advancing state of the art. The recent develop-
ment in neural language models enabled the com-

1See https://www.teaspn.org/demo for the
screencast and https://www.teaspn.org/ for more
general info about TEASPN.

Backend

Research Models

Writing Software

Writing Software

Research Models

Editor Word ProcessorWeb frontend

OSS
Spell

Checker

Commercial
Products

Commercial
API

B
E
FO

R
E

A
F
T
E
R

TEASPN

OSS Spell
Checker

Editor Editor EditorWord
Processor

Web frontend

Suggestion
Model

SearchGEC Model

Suggestion
Model

SearchGEC Model

Figure 1: Writing software before and after TEASPN.

pletion of a prompt with long, realistic looking yet
coherent passages (Radford et al., 2019).

However, real-world users such as writers who
can and should benefit the most from WATs are yet
to reap the fruits from these research efforts. Aside
from a small number of commercial products,
notably Grammarly2 and Smart Compose (Chen
et al., 2019), and research systems such as WriteA-
head (Yen et al., 2015; Chang and Chang, 2015)
and CroVeWA (Soyer et al., 2015), we see few
examples of user-facing applications and exper-
iments that make use of recent development in
WATs. Many models are confined in research im-
plementations that are not easily accessible to end
users and the larger society. WATs, however, are
not truly useful until they are integrated into user-
facing writing applications such as editors and
word processors (collectively called writing soft-
ware in this paper) and interact with end users in
a dynamic and intuitive manner. This “great di-
vide” (see Figure 1 BEFORE) between applica-

2https://www.grammarly.com/

229

tions and academia is not unique in the domain of
writing assistance, but a widespread phenomenon
across many fields in machine learning and NLP,
as pointed out by Wagstaff (2012).

One cause of this “great divide” is the high de-
velopment cost for integrating and bridging both
sides. Since there is a wide range of WATs, it is
impractical, if not impossible, for developers of
writing software to support all types of such tech-
nologies that come in different packages in dif-
ferent programming languages. Similarly, since
there is a large selection of writing software, WAT
researchers and developers cannot afford to offer
their solutions in such a way that most writing
software packages can benefit from them. If there
are N types of writing software and M types of
WATs, there can be N×M combinations between
the two sides. As a result, writers often need to
rely on many different writing software solutions
and switch between many different applications
and websites (search engines, grammar checkers,
dictionaries and thesauri, etc.) in order to com-
plete their tasks.

In this paper, we propose TEASPN (Text Edit-
ing Assistance Smartness Protocol for Natural
Language; pronounced “teaspoon”), a protocol
and a framework for achieving integrated writ-
ing assistance environments, as a solution to this
“great divide” problem (Figure 1 AFTER). In-
spired by and built upon Language Server Protocol
(LSP)3, a similar protocol for integrating software
development environments, TEASPN provides an
open protocol that standardizes the way writing
software and WATs communicate with each other.
We also released the TEASPN SDK (software de-
velopment kit) as an open source library, which
eases the cost of making WATs compatible with
TEASPN. As a result, by using TEASPN,

• Developers of writing software can easily in-
tegrate state-of-the-art WATs into their edi-
tors and word processors just by following
the protocol.
• Developers and researchers of WATs can

support major writing software applications
without worrying about the development
cost, just by using the TEASPN SDK.
• Writers can benefit from integrated writing

experience provided by their favorite writing
software and WATs.

3https://microsoft.github.io/
language-server-protocol/

Finally, we implemented a demo TEASPN
server that integrates WATs using latest develop-
ments in NLP (e.g., a neural language model and
seq2seq-based paraphrasing) and ran experiments
with real human writers to verify the framework’s
effectiveness. The experimental results demon-
strated that our integrated writing assistance sys-
tem developed with TEASPN provides better writ-
ing experience for human writers.

2 Related Work

Writing assistance Use of language technolo-
gies for assisting writing in a second language
(L2) has been extensively explored, especially for
non-native English speakers. One of the most ac-
tive research areas is GEC (Leacock et al., 2010),
where several new models are published every
year and commercial systems such as Grammarly
are actively developed. Other research-based
systems include WriteAhead (Yen et al., 2015;
Chang and Chang, 2015), an interactive writ-
ing environment that provides users with gram-
matical patterns mined from large corpora, and
CroVeWA (Soyer et al., 2015), a crosslingual sen-
tence search system for L2 writers. FLOW (Chen
et al., 2012) is another writing assistance system
that allows users to type in their first languages
(L1) and suggests words and phrases in L2. Run-
ning syntactic analysis and visualizing sentence
structures have also been explored for L2 reading
assistance (Faltin, 2003; Srdanović, 2011).

In addition to L2 learners, the use of technolo-
gies for assisting human translators has also been
a focus of research. TransType (Langlais et al.,
2000) is a translation assistance system that sug-
gests completions for the text to the human transla-
tor in an interactive manner. In SemEval 2014, van
Gompel et al. (2014) presented an L2 writing as-
sistance task where systems find the proper trans-
lation of a word given a context in L2. Other writ-
ing assistance systems (not necessarily L2 learn-
ers) include assisting users with composing an
email by auto-completion (Chen et al., 2019) and
reply suggestion (Kannan et al., 2016).

LSP The N × M problem mentioned in Sec-
tion 1 is not unique to writing assistance. In
software development, there can be N differ-
ent types of integrated development environments
(IDEs) and M different programming languages,
making the integration cost proportionally expen-
sive to N × M . LSP solved this problem by

230

proposing an open protocol that standardizes the
way IDEs communicate with servers that offer
language smartness technologies such as syntax
checking and completion. As of today, LSP is
widely adopted and supported by more than 70
servers and 20 development environments.

Since there is a large overlap between author-
ing in programming and natural languages, we
built TEASPN as a “fork” of LSP. There are a
few features that we need to design and implement
specifically for writing assistance, namely, syntax
highlighting and external resource search, which
makes TEASPN incompatible with LSP. However,
we re-purposed many LSP data models and fea-
tures for TEASPN. Being able to leverage exist-
ing resources for LSP gives TEASPN a great head
start for a wide adoption.

Protocols for NLP Language Grid (Ishida,
2006) is a platform where language providers
(e.g., translation systems) and linguistic resources
(e.g., dictionaries) are connected via semantic
Web technologies to provide language services
to communities. The NLP Interchange For-
mat (NIF) (Hellmann et al., 2012) is a standard
that aims to achieve interoperability between dif-
ferent NLP tools and resources by defining an
RDL/OWL-based format. Although these projects
have seen some real-world success, their adoption
is quite limited as of this writing, compared to the
aforementioned LSP, which powers at least a cou-
ple of millions of developers worldwide both for
Visual Studio Code (VS code)4 and Atom5. We
believe the key to the wide adoption of any pro-
tocol is the focus on the right scope, practicality,
and ease of development, which are the guiding
principles for TEASPN.

3 TEASPN

3.1 Overview

TEASPN adopts a client-server architecture (Fig-
ure 2), where a client (writing software such as
an editor or a word processor) communicates with
a server that provides WATs. The client and the
server communicate over the TEASPN protocol,
an HTTP-like protocol which uses JSON-RPC (re-
mote procedure call)6 to encode the message body.

4https://code.visualstudio.com/blogs/
2017/11/16/connect

5https://blog.atom.io/2016/03/28/
atom-reaches-1m-users.html

6http://www.jsonrpc.org/

Writing
Software

TEASPN
Server

TEASPN
Protocol

TEASPN
SDK

Inherit

TEASPN
Client Library

TEASPN
Handler

Base Class

Handler
Implementation

GEC
Module

Compl.
Module

Syntax
Highlight

…

Figure 2: Architecture of TEASPN.

Requests can be sent in both directions, which are
often triggered by some events (such as user input)
and can be responded with additional data (such as
results of GEC). TEASPN clients and servers can
be written in any programming language as long
as they conform to the protocol.

3.2 Features

By integrating a large selection of WATs in a sin-
gle platform, TEASPN makes them available to
writers at their fingertips and is expected to im-
prove writing effectiveness. Table 1 shows the list
of WATs that are supported by TEASPN. Notice
that the list includes a wide range of WATs that
have been extensively investigated the literature
(e.g., GEC and search) as well as the ones that are
less explored (e.g., syntax highlighting and jump).

Although we were able to build many WAT fea-
tures upon existing ones from LSP, there were two
features that we needed to design from scratch
specifically for TEASPN—syntax highlighting and
search. While syntax highlighting is usually han-
dled on the client side for programming languages
using shallow lexical analysis, syntactic analyses
of natural language can be too costly and complex
to be handled solely by the client. Therefore, we
defined a new type of request and related type dec-
larations so that it can be handled by the server.

The second feature, search, enables writers to
search external linguistic resources. While the
search feature for LSP is limited to the files in the
same workspace, writers of natural language texts
often need to consult a wide variety of resources
such as corpora and dictionaries.

231

Feature Description

Syntax highlighting Highlighting parts of text
Grammatical error detection (GED) Detecting typological and grammatical errors
Grammatical error correction (GEC) Automatically correcting issues detected by GED
Completion Completing or suggest succeeding text
Text rewriting Rewriting part of text (paraphrasing, translation, etc.)
Jump Jumping to other locations (coreference, definitions, etc.)
Hover Showing extra information about the location (e.g., definition)
Search Searching external resources such as corpora and dictionaries

Table 1: WATs supported by TEASPN.

3.3 Developers of Writing Software

By adopting TEASPN, developers of writing soft-
ware can easily integrate WATs into their editors
and word processors. The fact that a large number
of IDEs and editors already support LSP helps to a
great extent. For example, in the sample TEASPN
client implementation7 we provide for VS Code,
we needed to modify less than 200 lines of Type-
Script code to make it compatible with the TEA-
SPN protocol while leveraging the existing library
for LSP. We were also able to implement prelimi-
nary TEASPN clients for Atom and Sublime text8

with little modification to existing code.

3.4 Developers of WATs

Developers and researchers of WATs can make
their technologies available to major writing soft-
ware just by using TEASPN without writing any
client code. To facilitate the development pro-
cess, we released the TEASPN SDK, which in-
cludes a library and a sample TEASPN server im-
plementation in Python, one of the most popular
programming languages for developing language
technologies as of late. The library takes care
of low-level communication and text synchroniza-
tion with the client, letting WAT developers just
inherit the TEASPN handler base class and fo-
cus on implementing the missing core NLP logic.
As an example, Figure 3 shows a simplified code
snippet for implementing completion. Notice the
brevity of the code. We also provide a simple yet
working TEASPN server implementation in the
SDK for reference to accelerate the development.

4 Experiments and Implementation

4.1 Experiments

In this section, we develop a demo TEASPN sys-
tem and investigate its effectiveness through ex-

7https://github.com/teaspn/teaspn-sdk
8https://www.sublimetext.com/

@overrides
def get_completion_list(
 self, position: Position) -> CompletionList:
 """Handle autocomplete."""
 offset = self._position_to_offset(position)
 context = self._text[:offset]

 items = []
 # ... add completion items ...
 return CompletionList(isIncomplete=True, items=items)

Figure 3: Code snippet for computing completion

periments with end-users (writers) in order to an-
swer the following research question:

Does the integrated writing assistance environ-
ment developed with TEASPN provide better writ-
ing experience and help write better texts?

To explore the effectiveness of integrated writ-
ing assistance environment, we compared the fol-
lowing two conditions. In the INTEGRATED
condition, participants used an editor (VS Code)
equipped with TEASPN, where many WATs were
available, while in the BASELINE condition, they
used the same editor with no WATs activated,
while being allowed to use any other writing tools
outside the editor (e.g., Grammarly and Web dic-
tionaries). The BASELINE condition was set up
to simulate the real situation that writers face,
where writing assisting technologies are imple-
mented separately outside the editor.

The participants of our experiments consist of
twelve college students or researchers in NLP with
a diverse L1 distribution: Bengali: 1, Chinese:
1, Croatian: 1, German: 1, Hindi: 1, Japanese:
6, Spanish: 1. They were directed to go through
two writing sessions, one for each condition men-
tioned above, during which they wrote English
text within five sentences in response to two dif-
ferent prompts: (i) write about an activity you en-
joy, such as a hobby, and (ii) write about your
hometown. The prompts and the writing environ-
ments were combined randomly. Before the writ-
ing sessions came an instruction session, where

232

Figure 4: Screenshot of our demo system.
the authors of this paper showed the participants
all the features of the demo system for a demon-
stration purpose. After the writing sessions, they
were asked questions regarding their writing expe-
rience. Because the focus of this experiment is to
evaluate the integrated writing assistance environ-
ment, participants are instructed not to consider
the performance of individual WATs.

4.2 Implementation of the Demo System

We implemented a demo system using the TEA-
SPN framework which has all of the features
shown in Table 1. See Figure 4 for the screenshot.

For syntax highlighting, we used the depen-
dency parser SpaCy9. Head tokens with specific
dependency relation10 were highlighted in differ-
ent colors. As for the GEC and GED features,
we used the open-source GEC tool LanguageTool
3.211. We implemented two types of comple-
tion features: one which suggests the likely next
phrases given the context using a neural language
model (Radford et al., 2019) and the other one
which suggests a set of words consistent with the
characters being typed. We built a seq2seq para-
phrase model trained on PARANMT-50M (Wiet-
ing and Gimpel, 2018) for the text rewriting fea-
ture, which allows the writer to select a part of
the text and chooses among paraphrases. As for
the jump feature, we used a coreference resolution
model12 to jump from a selected expression to its
antecedent. The hover feature shows the definition
of a hovered word using WordNet13. Finally, we
implemented a full-text search feature using the
open multilingual sentence dataset Tatoeba14 and
used Elasticsearch 7.1.115 for indexing and search.

9https://spacy.io/
10ROOT, nsubj, nsubjpass, and dobj in the CLEAR

style tag set.
11https://github.com/languagetool-org/

languagetool/releases/tag/v3.2
12https://github.com/huggingface/

neuralcoref
13https://wordnet.princeton.edu/
14https://tatoeba.org/eng/
15https://www.elastic.co

0% 20% 40% 60% 80% 100%

0

4

8

12

INTEGRATED
About the same
BASELINE

Q1. Which condition provides a better writing experience?

Q2. Is there a difference in quality between the two texts?
If yes, in which condition was the better text written?

Q3. Which of the features did you use?

Syntax highlig
ht

GED / GEC

Phrase completio
n

Word
completio

n

Text re
writi

ng

Jump (coreference)

Hover (dictio
nary)

Search (example)

% Participants

Pa

rti
ci

pa
nt

s

% Participants

Figure 5: Response summary of the questionnaire.

Condition Perplexity # Chars. (mean ± std)

BASELINE 37.8 379 ± 116

INTEGRATED 26.4 335 ± 91

Table 2: Statistics of the written texts.

5 Results and Analysis

After the writing sessions, the participants re-
sponded to a questionnaire including the following
questions: Q1: Which environment provides a bet-
ter writing experience?, Q2: Is there a difference
in quality between the two texts? If yes, in which
environment was the better text written?, and Q3:
Which of the following features did you use?

Figure 5 summarizes the responses from the
participants. Ten out of twelve (83.3%) partici-
pants rated their experience favorably (Q1), and
40% believed they were able to write better texts in
the INTEGRATED condition (Q2), demonstrating
the effectiveness of the integrated writing assis-
tance environment with TEASPN. The responses
for Q3 show that an average participant used 3.2
WAT features in the INTEGRATED condition16.
This suggests that the writers can benefit from an
integrated environment with various WATs acti-
vated.

We ran further analyses on the texts written by
the participants during the writing sessions. Ta-
ble 2 shows some statistics of the written texts
in the two experimental conditions. Perplexity
was calculated using the pretrained GPT-2 model
(small, 117M parameters) (Radford et al., 2019).
The texts written in the INTEGRATED condi-
tion had lower perplexity, suggesting that the in-
tegrated writing environment helped them write

16Note that we assume that every participant used syntax
highlighting, which is activated by default.

233

more fluent and/or typical English text. This re-
sult backs up the subjective responses from the
participants indicating they were able to produce
better texts in the INTEGRATED condition than
the other. We also note that the texts written in the
INTEGRATED condition were relatively shorter.
This could be due to the fact that the participants
were still spending some of their time observing
and figuring out the behavior of the assisting fea-
tures and spending slightly less time actually writ-
ing. We believe this trend will disappear or even
reverse itself as they get more used to the inte-
grated writing experience and the quality of the
inidividual WATs improve.

6 Conclusion and Future Work

We proposed TEASPN, a framework and a proto-
col which standardizes the way writing software
communicates with writing assistance technolo-
gies, to achieve integrated writing assistance en-
vironments. In addition, we released the TEASPN
SDK as an open source library, which eases the
cost of making WATs compatible with TEASPN.
We developed a demo system which implements
various assistance technologies based on latest
NLP developments and ran experiments with hu-
man participants. The result demonstrated that
they rated their integrated writing experience fa-
vorably, potentially helping them write more flu-
ent and better text.

In future work, by making this a larger com-
munity effort, we wish to broaden the support
lineup for writing software while developing vari-
ous writing assistance features with TEASPN, fur-
ther closing the gap between the latest develop-
ments in NLP and real-world human users.

References
Jim Chang and Jason Chang. 2015. WriteAhead2:

Mining lexical grammar patterns for assisted writ-
ing. In Proceedings of the NAACL 2015 System
Demonstrations, pages 106–110.

Mei-Hua Chen, Shih-Ting Huang, Hung-Ting Hsieh,
Ting-Hui Kao, and Jason S. Chang. 2012. FLOW: A
first-language-oriented writing assistant system. In
Proceedings of ACL 2012 System Demonstrations,
pages 157–162.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yi-
nan Wang, Andrew M. Dai, Zhifeng Chen, Timothy
Sohn, and Yonghui Wu. 2019. Gmail smart com-
pose: Real-time assisted writing.

Anne Vandeventer Faltin. 2003. Natural language pro-
cessing tools for computer assisted language learn-
ing. Linguistik Online, 17(5):137–153.

Maarten van Gompel, Iris Hendrickx, Antal van den
Bosch, Els Lefever, and Véronique Hoste. 2014. Se-
mEval 2014 task 5 - L2 writing assistant. In Pro-
ceedings of SemEval 2014, pages 36–44.

Sebastian Hellmann, Jens Lehmann, and Soren Auer.
2012. NIF: An ontology-based and linked-data-
aware NLP interchange format. Technical report,
Working Draft.

Toru Ishida. 2006. Language Grid: An infrastruc-
ture for intercultural collaboration. In IEEE/IPSJ
Symposium on Applications and the Internet (SAINT
2006), pages 96–100.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Gre-
gory S. Corrado, László Lukács, Marina Ganea, Pe-
ter Young, and Vivek Ramavajjala. 2016. Smart re-
ply: Automated response suggestion for email. In
Proceedings of KDD 2016.

Philippe Langlais, George Foster, and Guy Lapalme.
2000. TransType: a computer-aided translation typ-
ing system. In ANLP-NAACL 2000 Workshop: Em-
bedded Machine Translation Systems.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated Grammatical
Error Detection for Language Learners. Morgan &
Claypool.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAI.

Hubert Soyer, Goran Topić, Pontus Stenetorp, and
Akiko Aizawa. 2015. CroVeWA: Crosslingual
vector-based writing assistance. In Proceedings of
NAACL 2015 System Demonstrations, pages 91–95,
Denver, Colorado.

Irena Srdanović. 2011. Evaluating e-resources for
Japanese language learning. In Proceedings of eLex
2011, pages 260–267.

Kiri Wagstaff. 2012. Machine learning that matters. In
Proceedings of the Twenty-Ninth International Con-
ference on Machine Learning (ICML), pages 529–
536.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence
embeddings with millions of machine translations.
In Proceedings of ACL 2018, pages 451–462.

Tzu-Hsi Yen, Jian-Cheng Wu, Jim Chang, Joanne Bois-
son, and Jason Chang. 2015. WriteAhead: Mining
grammar patterns in corpora for assisted writing. In
Proceedings of ACL-IJCNLP 2015 System Demon-
strations, pages 139–144.

234

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 235–240
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

TellMeWhy: Learning to Explain Corrective Feedback for Second
Language Learners

Yi-Huei Lai, Jason Chang
National Tsing Hua University, Hsinchu, Taiwan

{yima, jason}@nlplab.cc

Abstract

We present a writing prototype feedback sys-
tem, TellMeWhy, to provide explanations of er-
rors in submitted essays. In our approach, the
sentence with corrections is analyzed to iden-
tify error types and problem words, aimed at
customizing explanations based on the context
of the error. The method involves learning the
relation of errors and problem words, gener-
ating common feedback patterns, and extract-
ing grammar patterns, collocations and exam-
ple sentences. At run-time, a sentence with
corrections is classified, and the problem word
and template are identified to provide detailed
explanations. Preliminary evaluation shows
that the method has potential to improve ex-
isting commercial writing services.

1 Introduction

Many English essays and sentences with gram-
matical errors (e.g., ‘We discussed about the is-
sue.’) are submitted by L2 learners to writ-
ing services every day, and an increasing num-
ber of online grammar checkers specifically tar-
get learners’ essays. For example, Write & Im-
prove (writeandimprove.com) pinpoints an
error without explaining the correction. Gram-
marly (www.grammarly.com) corrects gram-
matical errors and provides context-insensitive ex-
amples using pre-compiled information.

Writing services such as Write & Improve and
Grammarly typically use canned text to explain a
common error. However, corrective feedback with
the most useful and comprehensive explanations
may contain collocations, grammar, and context-
sensitive examples. These systems could provide
better explanations to the user, if the context of the
correction is taken into consideration.

Consider the sentence ‘We discussed about the
issue.’ The best explanation for the error is prob-
ably not (1) and (2) which only state the obvious

Figure 1: Example TellMeWhy-GEC for the error ‘We dis-
cussed about the issue.’

(i.e. editing operations for a correction), but rather
(3) which explains using the grammar patterns of
the problem word (i.e., discuss) with a simple ex-
ample.

(1) This word about may not be needed. Is your writing
clearer without it? (from Write & Improve)

(2) The preposition seems unnecessary after the verb dis-
cussed. Consider removing the preposition. (from
Grammarly)

Examples:

7 The government advocated to recycling.

3 The government advocated recycling.
(3) discuss sth (WITHOUT about/on): ‘He simply re-

fuses to discuss the matter.’

Compare talk about, a discussion about/on: ‘They

want to talk about what to do next.’ (from Longman

Common Error Dictionary (Turton and Heaton, 1996))

We present a prototype system, TellMeWhy,
with three functions: GEC (in Figure 1), Find-
Example, and Suggest. Suggest displays statisti-
cal data of erroneous and corrected usage to ex-
plain correctness; GEC and FindExample explain
corrections using linguistic characteristics. With
an underlying grammatical error correction (GEC)
system, we will provide feedback based on the
correction made by the GEC. However, if the GEC
system can not detect an error, our explanation
module cannot be activated. For this, FindExam-
ple can search for a sentence with correction edits

235

and display explanations so TellMeWhy will not
being limited by the underlying GEC system.

At run-time, TellMeWhy starts with a given sen-
tence, potentially with corrections made by the
underlying GEC system or submitted to FindEx-
ample. TellMeWhy then generates feedback after
identifying error types, problem words, and lin-
guistic information as described in Section 3.1.
We develop explanation templates based on hand-
crafted training data. In our prototype, TellMeWhy
returns the feedback to the end user directly (Fig-
ure 1); also, the feedback can be shown to a human
rater in order to assist them in rating essays.

2 Related Work

Corrective feedback on learners’ writing has been
an area of active research. Recently, the state-of-
the-art in the research has been represented in Lea-
cock et al. (2010) involving many automated ap-
proaches to detect a wide range of error types.

To generate explanations, most writing services
adopt the approach of canned text with table look-
up schemes (Andersen et al., 2013). This ap-
proach, despite providing basic explanations, is
not optimal, because canned feedback tends to be
superficial and context-insensitive. Additionally,
canned feedback is limited to common grammat-
ical errors, without covering lexical error types,
such as word-choice errors.

Providing corrective feedback and explaining
how the correction improves grammaticality and
adheres to idiomatic principles (Sinclair, 1991)
have long been an important research area in
Teaching English as Second Language (TESOL).
Bitchener et al. (2005) concluded that proper er-
ror feedback is significant in improving English
writing. In this work, we focus on identifying the
problem-causing word and providing a compre-
hensive and context-sensitive explanation based
on the problem word.

In a study more closely related to our work,
Nicholls (2003) describes an error coding scheme
for lexicography and English Language Teaching
(ELT) research based on a Cambridge Learner
Corpus. Turton and Heaton (1996) compiled ex-
amples of common errors organized by problem
words based on Longman Learners’ Corpus. Chen
et al. (2017) describes methods for providing ex-
planations based on grammar patterns.

We used the data in Turton and Heaton (1996)
as the main source of training data and adopted

(1) Classifying the error type
(2) Extracting grammar patterns, collocations as

well as examples and definitions
(3) Calculating co-occurrence frequency of pairs of

an edit and neighboring words
(4) Building explanation templates based on hand-

crafted training data

Figure 2: Outline of the process used to train the TellMeWhy
system

the explaining strategy proposed by Chen et al.
(2017). The main difference between our work
and Chen et al. (2017) is that Chen et al. (2017)
provided limited error types with grammar pat-
terns as explanation, while our method provides
context-sensitive explanations of more error types.

In contrast to the existing systems on corrective
feedback, TellMeWhy provides comprehensive ex-
planations for multiple error types with an under-
lying GEC system. Additionally, to provide good
explanations, a promising approach is to automati-
cally classify the error and extract a problem word
nearby to tailor the explanation to the context of
the error.

3 The TellMeWhy System

We focus on providing comprehensive feedback
on a given English sentence with corrections. The
feedback is returned as an output to the end user
directly. It is important to detect the potential
problem-causing word and classify the error. Our
goal is returning a context-sensitive explanation
using the problem word and the error type to in-
stantiate suitable explanation template and fetch
reference linguistic information.

3.1 Learning to Provide Feedback
We attempt to learn to generate an informative and
comprehensive explanation that matches the error
and context (in particular, the problem word). Our
learning process is shown in Figure 2.

In the first stage of the learning process (Step
(1) in Figure 2), we analyze sentences with a cor-
rection annotated with a problem-causing word
which is a word regularly causing the specific er-
ror. As we will describe in Section 3.1, we use
Turton and Heaton (1996) for training. Based
on an existing method, ERRANT (Bryant et al.,
2017), we analyze differences between a sentence
containing an error and a corrected sentence. Then
we produce an error type including an edit type
(insert, delete, and replace) and PoS of the edit

236

Table 1: top 10 error codes

Code Gloss Samples Sentence
1. SP Spelling [-Fortunaly-]{+Fortunately+}, the police found her.
2. RV Replace v. How to [-make-]{+create+} a better hairstyle.
3. RT Replace prep. We should invest more money [-to-]{+in+} education.
4. MD Missing det. School finishes at five in {+the+} afternoon.
5. R Replace w. Some people tried to enter without [-any-]{+a+} ticket.
6. RN Replace n. Television provides many [-advantages-]{+benefits+}.
7. FV Form v. The problems have been [-arised-]{+arisen+} due to overpopulation.
8. MT Missing prep. He apologized {+to+} her for the long delay.
9. UD Useless det. I have work to do. I don’t have [-a-] time for anything else.
10. UT Useless prep. We discussed [-about-] the issue.

(1) Generating a set of phrase templates in the form
of PoS tags

(2) Extracting grammar patterns for all keywords
in the given corpus annotated by PoS based on
phrase templates

(3) Extracting exemplary instances for all patterns of
all keywords

Figure 3: Outline of the pattern extraction process

(e.g., (DEL, PREP, about)). For simplicity, we
limit ourselves to Top 10 most common error types
(in Table 1) in CLE-FCE (Yannakoudakis et al.,
2011) and associated error types (i.e., extending
error types from Top 10, such as from replacing
a word, to deleting a word or missing a word) to
derive explanation templates. To sum up, we limit
ourselves to provide explanation for error types re-
lated to editing a verb, adjective, noun, preposi-
tions and function words (e.g., articles).

In the second stage of the learning algorithm
(Step (2) in Figure 2), we extract reference in-
formation. First, we extract grammar patterns
from Corpus of Contemporary American English
(COCA1) using an existing method (in Figure 3)
described in Chang and Chang (2015). Subse-
quently, we store examples corresponded to a key-
word’s grammar patterns (e.g., (discuss, V n): is-
sue, topic, matters). Next, we build a collocation
dictionary with dependency relation information
using triples (e.g., (eat, V:obj:N, bananas)). The
relation (e.g., V:obj:N) is produced by a depen-
dency parser using COCA. Finally, we store def-
initions in Online Cambridge Dictionary to ex-
plain word-choice errors (e.g., ‘accept’ education).
Additionally, Online Cambridge Dictionary gives
a pair of English-Chinese definition and a guide
word (e.g., TAKE, APPROVE) for each sense of a
polysemous word (e.g., accept). The guide words
are instrumental for us to find the closest sense be-
tween erroneous and correction words.

In the third stage of the learning algorithm
(Step (3) in Figure 2), we calculate co-occurrence
frequency of pairs of an edit and neighboring

1www.english-corpora.org/coca

(1) Generating skipped bigrams from a large corpus
and storing corresponded distance

(2) Filtering the collocates
(3) Filtering the distances for each collocates

Figure 4: Outline of the Smadja’s process

words using the EF-Cambridge Open Language
Database EFCAMDAT (Geertzen et al. (2013) and
Huang et al. (2018)). Then, we use the method
proposed by Smadja (1993) (in Figure 4) to cal-
culate co-occurrence frequency of pairs of an edit
and neighboring words with the goal of select-
ing the most potential neighboring word triggering
the edit. In other words, we assume the problem-
causing word as a collocate of the edit.

In the fourth and final stage of training (Step
(4) in Figure 2), we formulate a feedback template
for each error type, classified by ERRANT. For
each error type, we observe and exploit the con-
sistent patterns of feedback in Turton and Heaton
(1996) to design the templates. For example, we
formulate an explanation template for unnecessary
preposition error with three components: problem
word, grammar pattern, and example. An exam-
ple feedback template is shown in Table 2. After
inferencing from explanation instances of each er-
ror type, we develop type-specific templates with
slots to be filled with specific information: prob-
lem words along with a grammar pattern, colloca-
tions and examples.

3.2 Run-Time Feedback

Once feedback templates have been designed and
reference information for problem words has been
extracted, they are stored in tables.

At run-time, users submit an essay possibly
with some errors (e.g., We discussed about the is-
sue). The underlying GEC system corrects the es-
say with edits (e.g., We discussed [-about-] the is-
sue). Next, TellMeWhy determines the error type
(e.g., (DEL,PREP,about)) and the problem word
(e.g., discussed). We then produce as follows.

First, we handle corrections in the input sen-
tence one by one. We correct an input sentence
with multiple corrections to be only one correction
edit temporally and iteratively. After recording the
correction information (e.g., the editing type, er-
roneous and correction word), we also correct the
only one correction because correction tags could
influence a tagger to tag each word with PoS. An-
notated the input sentence with PoS, we could ex-

237

Table 2: Sample correction-feedback pairs from the training collection

Problem Word Sentence and Feedback Analysis
discuss 7 They would like to discuss about what to do next. $pw = ‘discuss’

3 They would like to discuss what to do next. $edits = (DEL, PREP, about)
discuss sth (WITHOUT about/on): $gp = V n
He simply refuses to discuss the matter.
There is nothing to discuss.

Template feedback($pw,$gp,$edits) = $pw $gp (WITHOUT $edits[2]): $example($pw,$gp)
1 $gp denotes a grammar pattern.
2 $pw denotes a problem-trigger word.
3 $example denotes an example consisting a grammar pattern based on a problem word.

Table 3: Template for Replace a Preposition

Problem Word Sentence and Feedback Analysis
arm 7 She would not stop crying until I held her on my arms. $pw = arm

3 She would not stop crying until I held her in my arms. $edits = (RP, PREP, on, in)
(hold sb/sth) in your arms (NOT on): $gp = in N
He had a great pile of books in his arms.

Template feedback($pw,$gp,$edits) = $gp (NOT $edits[2]): $example($pw,$gp)

tract grammar patterns in the input sentence cov-
ering correction using the method in Figure 3.

Next, to make feedback relevant to the context,
we identify the most potential problem verb, noun
or adjective through the highest co-occurrence fre-
quency of the correction and potential problem
words. The problem word is then used to instan-
tiate the explanation template and fetch reference
information of grammar patterns, collocations, ex-
amples, and problem word definitions.

4 Experiment and Evaluation

TellMeWhy was designed to generate explanations
containing grammar, definitions, collocations, and
examples. Thus, TellMeWhy was trained by us-
ing the Longman Dictionary Of Common Errors
(Turton and Heaton, 1996) as the main source of
knowledge. In this section, we first present the de-
tails of training. Next, we describe common error
types tested. Finally, we introduce feedback strat-
egy and evaluate the experimental results.

4.1 Training TellMeWhy

We used 70% of common errors and explanations
in Turton and Heaton (1996) to train TellMeWhy.
Turton and Heaton (1996) contains a collection
of approximately 2,500 common errors and ex-
planations. Table 2 shows one sample correction-
explanation pairs with a problem word and an ex-
planation template. Additionally, we used EF-
CAMDAT, a corpus of real learners’ writings with
edits by human graders and containing over 83
million words from 1 million essays written by
174,000 learners, to compute co-occurrence fre-
quency of edits and problem words.

By analyzing a sentence with errors and their
correction pairs, we produced error types includ-
ing three edits: replace, insert, and delete, and
PoS of the erroneous and correction words. We
found that explaining strategies are highly related
to error type. Therefore, we customized explain-
ing strategies for each error type.

For errors related to replacing a preposition.
First, we use a template (in Table 3) that shows the
grammar patterns of the problem-causing word.
The potential problem words are the closest noun,
verb, or adjective to the erroneous preposition
such as ‘held’ and ‘arms’. We detected grammar
patterns (in Figure 3) for each potential problem
word (e.g., hold: V in n, arm: in N). The most
relevant grammar pattern is selected by highest
co-occurrence frequency of a problem word and
the edit calculated in advance using EFCAMDAT
through the method proposed by Smadja (1993).
Then, we ranked collocations of an edit-problem-
word pair (e.g., ([-on-]{+in+}, arm), (hold, [-on-
]{+in+})) by highest co-occurrence frequency of
a problem word and the edit.

As for errors related to replacing function words
(e.g., articles and demonstratives), which form a
closed set, we exploited feedback in Turton and
Heaton (1996) and rules in Cobuild et al. (2005).
Nevertheless, determiner errors related to time
(e.g., in ‘the’ morning and at night) are difficult
to handle using general determiner rules. In that
case, we followed Turton and Heaton (1996) time-
specific rules.

With respect to cases of replacing open-class
words (i.e., verb, noun, and adjective), we han-
dled the errors by cases: (1) spelling, (2) tense,

238

Table 4: Template for Replacing a Word

Problem Word Sentence and Feedback Analysis
abandon 7 Since capital punishment was abandoned, the crime rate has increased. $pw = abandon

3 Since capital punishment was abolished, the crime rate has increased. $edits = (RP, VERB, abandon, abolish)
abandon = give up a plan, activity or attempt to do something, without being successful: $col[0] = [plan, activity]
Bad weather forced them to abandon the search.
Without government support, the project will have to be abandoned.

Template feedback($edits,$col) =
$edits[2] = $def($edits[2]) and usually paired with $col[0] : $example($edits[2])
$edits[3] = $def($edits[3]) and usually paired with $col[1] : $example($edits[3])

1 $def denotes a definition of a word.
2 $col denotes a collocation of $pw

Table 5: Scores (0-2) for explanations on top 10 er-
ror codes, generated by four systems: TellMeWhy-GEC
(TMW-GEC),TellMeWhy-FindExample (TMW-FE) Gram-
marly (GL) and Write & Improve (W&I)

Code Gloss TMW-GEC TMW-FE GL W&I
1. SP Spelling 2 2 2 2
2. RV Replace v. 1.3
3. RT Replace prep. 2 1.8 1 1
4. MD Missing det. 2 1.8 1 1
5. R Replace w. 1.67 1.8 1.71 1
6. RN Replace n. 1.6 1
7. FV Form v. 0.8 1 1.4 1
8. MT Missing prep. 2 1.6 0.83
9. UD Useless det. 1 0.9 2 1
10. UT Useless prep. 1.67 1.5 1 1

Average score 1.64 1.53 1.37 1.13

(3) word choice errors. Spelling and tense errors
associate with morphological variation and could
be detected directly and explained easily as such.

A word-choice example pair of correction and
feedback from Turton and Heaton (1996) is shown
in Table 4. From this, we found word choice mis-
take is often made because users do not understand
the definition of erroneous and corrected words
very well. With this in mind, we first used the defi-
nitions from Online Cambridge Dictionary for the
erroneous and corrected words (e.g., ‘abandon’ vs
‘abolish’). To determine the contextually appro-
priate senses for polysemous words, we replaced
erroneous and corrected words with all possible
guide words (e.g., ‘abandon’: leave, stop; ‘abol-
ish’: abolish) in Online Cambridge Dictionary.
Second, we calculated cosine similarity between
pairs of error-correction (e.g., leave-abolish and
stop-abolish) using Word2vec. We choose the pair
of senses with the highest cosine similarity to dis-
play definitions. Additionally, word-choice errors
could be caused by miscollocation. We also pro-
vided related collocations with frequency to ex-
plain why the correction word is more appropriate.

4.2 Evaluation

Once we have trained TellMeWhy as described,
we evaluated the performance using ten randomly-

Table 6: The number of testcases can be corrected by three
systems: TellMeWhy-GEC (TMW-GEC), Grammarly (GL)
and Write & Improve (W&I)

Code Gloss TMW-GEC GL W&I
1. SP Spelling 10 10 10
2. RV Replace v. 0 0 0
3. RT Replace prep. 4 6 1
4. MD Missing det. 5 6 1
5. R Replace w. 6 7 5
6. RN Replace n. 0 0 1
7. FV Form v. 7 8 3
8. MT Missing prep. 4 6 0
9. UD Useless det. 7 9 3
10. UT Useless prep. 9 8 3

selected sentences for each top 10 common error
type. We also evaluated problem word detection
performance using Turton and Heaton (1996).

Two functions in our systems are used to
evaluate explanations: TellMeWhy-GEC and
TellMeWhy-FindExample. The former has an un-
derlying GEC system. The latter is a writing ex-
amples search engine so that users can submit a
sentence with known correction edits to under-
stand why the edit makes sense; additionally, we
can evaluate performance without being limited by
the underlying GEC system.

One evaluation of comparison between TellMe-
Why and other commercial systems is shown in
Table 5 was evaluated by ten sentences for each
error type and carried out by a linguist. A wrong
explanation (such as a wrong problem word, in-
appropriate corrective feedback) gets zero point,
while a correct explanation (i.e., identifying the
problem word correctly but providing context-
insensitive examples) gets one point. Explanations
related to a problem word and context receive two
points. However, the score of feedback on errors
that TellMeWhy-GEC, Grammarly, and Write &
Improve cannot detect does not count into the aver-
age score; besides, the correction performance of
each system is shown in Table 6. The evaluation
results show that TellMeWhy is considerably better

239

than the existing services and able to explain more
error types, such as word-choice and collocation
errors, and provides context-sensitive information.

The other evaluation is the performance of
problem word identification. We evaluated
problem word identification using Turton and
Heaton (1996) containing approximately 2,500
edit-feedback pairs. We evaluated TellMeWhy us-
ing the rest 30% of the dataset (i.e., 750 edit-
feedback pairs). Additionally, we limited our-
selves to evaluate for Top 10 error types and ex-
tension types defined in the first stage of Section
3.1. Those types of test data account for 616 edit-
ing sentences out of 750 edit-feedback pairs. For
our evaluation, we treated keywords organized by
Turton and Heaton (1996) as ground truth. The ac-
curacy of problem word identification is approxi-
mately 80% (493/616).

5 Future Work and Summary

In this paper, we have described a system for learn-
ing to provide corrective feedback on English sen-
tences with corrections. The method involves clas-
sifying errors into different error types, identifying
potential problem words, selecting closest senses
between misuse and corrected words, and extract-
ing collocations as well as grammar patterns. We
have implemented and evaluated the method as ap-
plied to real sentences. In preliminary evaluation,
we have shown that the method outperforms the
existing commercial systems for many error types,
especially an error triggered by a verb or adjective.

Many avenues exist for future research and im-
provement of our system. For example, we could
extend our method to handle more error types,
such as sentence patterns (e.g., One ... Another
... The other, so ... that). Collocation knowledge
and selectional preference could be used to im-
prove the explanation of word-choice error types
so that explanations may contain word concepts
collocating with a problem word. Additionally,
better methods such as learning-based approach to
identifying problem words could be implemented.

References
Øistein E Andersen, Helen Yannakoudakis, Fiona

Barker, and Tim Parish. 2013. Developing and test-
ing a self-assessment and tutoring system. In Pro-
ceedings of the eighth workshop on innovative use
of NLP for building educational applications, pages
32–41.

John Bitchener, Stuart Young, and Denise Cameron.
2005. The effect of different types of corrective
feedback on esl student writing. Journal of second
language writing, 14(3):191–205.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 793–805.

Jim Chang and Jason Chang. 2015. Writeahead2: Min-
ing lexical grammar patterns for assisted writing. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations, pages 106–110.

Jhih-Jie Chen, Jim Chang, Ching-Yu Yang, Mei-Hua
Chen, and Jason S Chang. 2017. Extracting formu-
laic expressions and grammar and edit patterns to
assist academic writing. EUROPHRAS 2017: Com-
putational and Corpus-based Phraseology: Recent
Advances and Interdisciplinary Approaches.

Collins Cobuild et al. 2005. Collins Cobuild English
Grammar. Collins Cobuild.

Jeroen Geertzen, Theodora Alexopoulou, and Anna
Korhonen. 2013. Automatic linguistic annotation of
large scale l2 databases: The ef-cambridge open lan-
guage database (efcamdat). In Proceedings of the
31st Second Language Research Forum. Somerville,
MA: Cascadilla Proceedings Project.

Yan Huang, Akira Murakami, Theodora Alexopoulou,
and Anna Korhonen. 2018. Dependency parsing
of learner english. International Journal of Corpus
Linguistics, 23(1):28–54.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated grammatical
error detection for language learners. Synthesis lec-
tures on human language technologies, 3(1):1–134.

Diane Nicholls. 2003. The cambridge learner corpus:
Error coding and analysis for lexicography and elt.
In Proceedings of the Corpus Linguistics 2003 con-
ference, volume 16, pages 572–581.

John Sinclair. 1991. Corpus, concordance, colloca-
tion. Oxford University Press.

Frank Smadja. 1993. Retrieving collocations from text:
Xtract. Computational linguistics, 19(1):143–177.

ND Turton and JB Heaton. 1996. Longman dictionary
of common errors. new edition.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 180–189. Association for Computational
Linguistics.

240

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 241–246
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

UER: An Open-Source Toolkit for Pre-training Models

Zhe Zhao1,2,♠ Hui Chen2,♣ Jinbin Zhang2,♣ Xin Zhao1,♠ Tao Liu1,♠

Wei Lu1,♠ Xi Chen3,� Haotang Deng2,♣ Qi Ju2,♣,∗ Xiaoyong Du1,♠

1 School of Information and DEKE, MOE, Renmin University of China, Beijing, China
2 Tencent AI Lab

3 School of Electronics Engineering and Computer Science, Peking University, Beijing, China
♠{helloworld, zhaoxinruc, tliu, lu-wei, duyong}@ruc.edu.cn

♣{chenhuichen, westonzhang, haotangdeng, damonju}@tencent.com
�{mrcx}@pku.edu.cn

Abstract

Existing works, including ELMO and BERT,
have revealed the importance of pre-training
for NLP tasks. While there does not exist a
single pre-training model that works best in
all cases, it is of necessity to develop a frame-
work that is able to deploy various pre-training
models efficiently. For this purpose, we
propose an assemble-on-demand pre-training
toolkit, namely Universal Encoder Represen-
tations (UER). UER is loosely coupled, and
encapsulated with rich modules. By assem-
bling modules on demand, users can either re-
produce a state-of-the-art pre-training model
or develop a pre-training model that remains
unexplored. With UER, we have built a model
zoo, which contains pre-trained models based
on different corpora, encoders, and targets (ob-
jectives). With proper pre-trained models, we
could achieve new state-of-the-art results on a
range of downstream datasets.

1 Introduction

Pre-training has been well recognized as an es-
sential step for NLP tasks since it results in re-
markable improvements on a range of downstream
datasets (Devlin et al., 2018). Instead of train-
ing models on a specific task from scratch, pre-
training models are firstly trained on general-
domain corpora, then followed by fine-tuning on
downstream tasks. Thus far, a large number of
works have been proposed for finding better pre-
training models. Existing pre-training models
mainly differ in the following three aspects:

1) Model encoder.
Commonly-used encoders include RNN

(Hochreiter and Schmidhuber, 1997), CNN (Kim,
2014), AttentionNN (Bahdanau et al., 2014), and
their combinations (Zhou et al., 2016). Recently,

∗∗ Corresponding author.

Transformer (a structure based on attentionNN)
is shown to be a more powerful feature extractor
compared with other encoders (Vaswani et al.,
2017).
2) Pre-training target (objective).

Using proper target is one of the keys to the suc-
cess of pre-training. While the language model
is most commonly used (Radford et al., 2018),
many works focus on seeking better targets such as
masked language model (cloze test) (Devlin et al.,
2018) and machine translation (McCann et al.,
2017).
3) Fine-tuning strategy.

Using a proper fine-tuning strategy is also im-
portant to the performance of pre-training models
on downstream tasks. A commonly-used strategy
is to regard pre-trained models as feature extrac-
tors (Kiros et al., 2015).

Table 1 lists 8 popular pre-training models and
their main differences (Kiros et al., 2015; Lo-
geswaran and Lee, 2018; McCann et al., 2017;
Conneau et al., 2017; Peters et al., 2018; Howard
and Ruder, 2018; Radford et al., 2018; Devlin
et al., 2018). In additional to encoder, target, and
fine-tuning strategy, corpus is also listed in Table
1 as an important factor for pre-training models.

There are many open-source implementations
of pre-training models, such as Google BERT1,
ELMO from AllenAI2, GPT and BERT from Hug-
gingFace3. However, these works usually focus
on the designs of either one or a few pre-training
models. Due to the diversity of the downstream
tasks and the computational resources constraint,
there does not exist a single pre-training model
that works best in all cases. BERT is one of the
most widely used pre-training models. It exploits

1https://github.com/google-research/bert
2https://github.com/allenai/bilm-tf
3https://github.com/huggingface

241

Model Corpus Encoder Target
Skip-thoughts Bookcorpus GRU Conditioned LM

Quick-thoughts Bookcorpus+UMBCcorpus GRU Sentence prediction
CoVe English-German Bi-LSTM Machine translation

Infersent Natural language inference LSTM;GRU;CNN;LSTM+Attention Classification
ELMO 1billion benchmark Bi-LSTM Language model

ULMFiT Wikipedia LSTM Language model
GPT Bookcorpus; 1billion benchmark Transformer Language model

BERT Wikipedia+bookcorpus Transformer Cloze+sentence prediction

Table 1: 8 pre-training models and their differences. For space constraint of the table, fine-tuning strategies of different
models are described as follows: Skip-thoughts, quick-thoughts, and infersent regard pre-trained models as feature extractors.
The parameters before output layer are frozen. CoVe and ELMO transfer word embedding to downstream tasks, with other
parameters in neural networks uninitialized. ULMFit, GPT, and BERT fine-tune entire networks on downstream tasks.

GRU LSTM CNN

Max poolingMean pooling

Machine
translation

Transformer
self-attention

RecNN

NN combinations

Attention

RNN CNN

Classification

Supervised
Language

model
Cloze
test

Auto
encoder

Sentence
prediction

Unsupervised

Transformer
self-attention

Cloze
test

Sentence
prediction

Wikipedia

Bookcorpus

Corpus

Subencoder layer

Encoder layer

Target layer

General-domain
corpus

Supervised
task

corpus

BERT

+

+

+

Figure 1: The architecture of UER (pre-training part).
We can combine modules in UER to implement BERT
model.

two unsupervised targets for pre-training. But in
some scenarios, supervised information is critical
to the performance of downstream tasks (Conneau
et al., 2017; McCann et al., 2017). Besides, in
many cases, BERT is excluded due to its efficiency
issue. Based on above reasons, it is often the case
that one should adopt different pre-training mod-
els in different application scenarios.

In this work, we introduce UER, a general
framework that is able to facilitate the develop-
ments of various pre-training models. UER main-
tains model modularity and supports research ex-
tensibility. It consists of 4 components: suben-
coder, encoder, target, and downstream task fine-
tuning. The architecture of UER (pre-training
part) is shown in Figure 1. Ample modules are im-
plemented in each component. Users could assem-

ble different modules to implement existing mod-
els such as BERT (right part in Figure 1), or de-
velop a new pre-training model by implementing
customized modules. Clear and robust interfaces
allow users to assemble (or add) modules with as
few restrictions as possible.

With the help of UER, we build a Chinese pre-
trained model zoo based on different corpora, en-
coders, and targets. Different datasets have their
own characteristics. Selecting proper models from
the model zoo can largely boost the performance
of downstream datasets. In this work, we use
Google BERT as baseline model. We provide
some use cases that are based on UER, and the re-
sults show that our models can either achieve new
state-of-the-art performance, or achieve competi-
tive results with an efficient running speed.

UER is built on PyTorch and supports dis-
tributed training mode. Clear instructions and
documentations are provided to help users read
and use UER codes. The UER toolkit and the
model zoo are publicly available at https://
github.com/dbiir/UER-py.

2 Related Work

2.1 Pre-training for deep neural networks

Using word embedding to initialize neural net-
work’s first layer is one of the most commonly
used strategies for NLP tasks (Mikolov et al.,
2013; Kim, 2014). Inspired by the success of
word embedding, some recent works try to ini-
tialize entire networks (not just first layer) with
pre-trained parameters (Howard and Ruder, 2018;
Radford et al., 2018). They train a deep neural
network upon large corpus, and fine-tune the pre-
trained model on specific downstream tasks. One
of the most influential works among them is BERT
(Devlin et al., 2018). BERT extracts text fea-
tures with 12/24 Transformer layers, and exploits

242

masked language model task and sentence predic-
tion task as training targets (objectives). The draw-
back of BERT is that it requires expensive compu-
tational resources. Thankfully, Google makes its
pre-trained models publicly available. So we can
directly fine-tune on Google’s models to achieve
competitive results on many NLP tasks.

2.2 NLP toolkits
Many NLP models have tens of hyper-parameters
and various tricks, and some of which exert large
impacts on final performance. Sometimes it is un-
likely to report all details and their effects in re-
search paper. This may lead to a huge gap be-
tween research papers and code implementations.
To solve the above problem, some works are pro-
posed to implement a class of models in a frame-
work. This type of work includes OpenNMT
(Klein et al., 2017), fairseq (Ott et al., 2019) for
neural machine translation; glyph (Zhang and Le-
Cun, 2017) for classification; NCRF++ (Yang and
Zhang, 2018) for sequence labeling; Hyperwords
(Levy et al., 2015), ngram2vec (Zhao et al., 2017)
for word embedding, to name a few.

Recently, we witness many influential pre-
training works such as GPT, ULMFiT, and BERT.
We think it could be useful to develop a frame-
work to facilitate reproducing and refining those
models. UER provides the flexibility of building
pre-training models of different properties.

3 Architecture

In this section, we firstly introduce the core com-
ponents in UER and the modules that we have
implemented in each component. Figure 1 il-
lustrates UER’s framework and detailed modules
(pre-training part). Modularity design of UER
largely facilitates the use of pre-training models.
At the end of this section, we will give some case
studies to illustrate how to use UER effectively.

3.1 Subencoder
This layer learns word vectors from subword fea-
tures. For English, we use character as subword
features. For Chinese4, we use radical and pinyin
as subword features. As a result, the model can
be aware of internal structures of words. Sub-
word information has been explored in many NLP

4We don’t do word segmentation on Chinese corpus. We
regard each Chinese character as a word. Internal structures
such as radical and pinyin are regarded as Chinese subword
features.

tasks such as text classification (Zhang and Le-
Cun, 2017) and word embedding (Joulin et al.,
2016). In the pre-training literature, ELMO ex-
ploits subencoder layer. In UER, we implement
RNN and CNN as subencoders, and use mean
pooling or max pooling upon hidden states to ob-
tain fixed-length word vectors.

3.2 Encoder
This layer learns features from word vectors. UER
implements a series of basic encoders, includ-
ing LSTM, GRU, CNN, GatedCNN, and Atten-
tionNN. Users can use these basic encoders di-
rectly, or use their combinations. The output of an
encoder can be fed into another encoder, forming
networks of arbitrary layers. UER provides ample
examples of combining basic encoders (e.g. CNN
+ LSTM). Users can also build their custom com-
binations with basic encoders in UER.

Currently, Transformer (a structure based on
multi-headed self-attention) becomes a popular
text feature extractor and is proven to be effec-
tive for many NLP tasks. We implement Trans-
former module and integrate it into UER. With
Transformer module, we can implement models
such as GPT and BERT easily.

3.3 Target (objective)
Using suitable target is the key to the success of
pre-training. Many papers in this field propose
their targets and show their advantages over other
ones. UER consists of a range of targets. Users
can choose one of them, or use multiple targets
and give them different weights. In this section
we introduce targets implemented in UER.

• Language model (LM). Language model is
one of the most commonly used targets. It
trains model to make it useful to predict cur-
rent word given previous words.

• Masked LM (MLM, also known as cloze
test). The model is trained to be useful to pre-
dict masked word given surrounding words.
MLM utilizes both left and right contexts to
predict words. LM only considers the left
context.

• Autoencoder (AE). The model is trained to
be useful to reconstruct input sequence as
close as possible.

The above targets are related with word predic-
tion. We call them word-level targets. Some works

243

show that introducing sentence-level task into tar-
gets can benefit pre-training models (Logeswaran
and Lee, 2018; Devlin et al., 2018).

• Next sentence prediction (NSP). The model
is trained to predict if the two sentences are
continuous. Sentence prediction target is
much more efficient than word-level targets.
It doesn’t involve sequentially decoding of
words and softmax layer over entire vocab-
ulary.

Above targets are unsupervised tasks (also
known as self-supervised tasks). However, super-
vised tasks can provide additional knowledge that
raw corpus can not provide.

• Neural machine translation (NMT). CoVe
(McCann et al., 2017) proposes to use NMT
to pre-train model. The implementation of
NMT target is similar with autoencoder. Both
of them involve encoding source sentences
and sequentially decoding words of target
sentences.

• Classification (CLS). Infersent (Conneau
et al., 2017) proposes to use natural language
inference task (three-way classification) to
pre-train model.

Most pre-training models use above targets in-
dividually. It is worth trying to use multiple targets
at the same time. Some targets are complementary
to each other, e.g. word-level target and sentence-
level target (Devlin et al., 2018), unsupervised tar-
get and supervised target. In experiments section,
we demonstrate that proper selection of target is
important. UER provides the flexibility to users in
trying different targets and their combinations.

3.4 Fine-tuning

UER exploits similar fine-tuning strategy with
ULMFiT, GPT, and BERT. Models on down-
stream tasks share structures and parameters with
pre-training models except that they have differ-
ent target layers. The entire models are fine-tuned
on downstream tasks. This strategy performs ro-
bustly in practice. We also find that feature ex-
tractor strategy produces inferior results on mod-
els such as GPT and BERT.

Most pre-training works involve 2 stages, pre-
training and fine-tuning. But UER supports 3
stages: 1) pre-training on general-domain corpus;

2) pre-training on downstream dataset; 3) fine-
tuning on downstream dataset. Stage 2 enables
models to get familiar with the distributions of
downstream datasets (Howard and Ruder, 2018;
Radford et al., 2018). It is also called semi-
supervised fine-tuning strategy in the work of Dai
and Le (2015) since stage 2 is unsupervised and
stage 3 is supervised.

3.5 Case Studies

In this section, we show how UER facilitates the
use of pre-training models. First of all, we demon-
strate that UER can build most pre-training mod-
els easily. As shown in the following code, only a
few lines are required to construct models with the
interfaces in UER.

1 # I m p l e m e n t a t i o n o f BERT .
2 embedding = BertEmbedding (a rgs , v o c a b s i z e)
3 e n c o d e r = B e r t E n c o d e r (a r g s)
4 t a r g e t = B e r t T a r g e t (a rgs , v o c a b s i z e)
5
6 # I m p l e m e n t a t i o n o f GPT .
7 embedding = BertEmbedding (a rgs , v o c a b s i z e)
8 e n c o d e r = GptEncoder (a r g s)
9 t a r g e t = LmTarget (a rgs , v o c a b s i z e)

10
11 # I m p l e m e n t a t i o n o f Quick−t h o u g h t s .
12 embedding = Embedding (a rgs , v o c a b s i z e)
13 e n c o d e r = GruEncoder (a r g s)
14 t a r g e t = NspTarge t (a rgs , None)
15
16 # I m p l e m e n t a t i o n o f I n f e r S e n t .
17 embedding = Embedding (a rgs , v o c a b s i z e)
18 e n c o d e r = LstmEncoder (a r g s)
19 t a r g e t = C l s T a r g e t (a rgs , None)

In practice, users can assemble different suben-
coder, encoder, and target modules without any
code work. Users can specify modules through op-
tions –subencoder, –encoder, and –target. More
details are available in quickstart and instructions
of UER’s github project. UER provides ample
modules. Users can try different module combina-
tions according to their downstream datasets. Be-
sides trying modules implemented by UER, users
can also develop their customized modules and in-
tegrate them into UER seamlessly.

4 Experiments

To evaluate the performance of UER, experi-
ments are conducted on a range of datasets,
each of which falls into one of four categories:
sentence classification, sentence pair classifica-
tion, sequence labeling, and document-based QA.
BERT-base uncased English model and BERT-
base Chinese model are used as baseline models.
In section 4.1, UER is tested on several evalua-
tion benchmarks to demonstrate that it can pro-
duce models as intended. In section 4.2, we ap-

244

Implementation SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
HuggingFace 93.0 83.8 89.4 90.7 84.0/84.4 89.0 61.0 53.5

UER 92.4 83.0 89.3 91.0 84.0/84.0 91.5 66.8 56.3

Table 2: The performance of HuggingFace’s implementation and UER’s implementation on GLUE benchmark.

Implementation XNLI LCQMC MSRA-NER ChnSentiCorp nlpcc-dbqa
ERNIE 77.2 87.0 92.6 94.3 94.6
UER 77.5 86.6 93.6 94.3 94.6

Table 3: The performance of ERNIE’s implementation and UER’s implementation on ERNIE benchmark.

ply pre-trained models in our model zoo to dif-
ferent downstream datasets. Significant improve-
ments are witnessed when proper encoders and
targets are selected. For space constraint, we put
some contents in UER’s github project, including
dataset and corpus details, system speed, and part
of qualitative/quantitative evaluation results.

4.1 Reproducibility

This section uses English/Chinese benchmarks to
test BERT implementation of UER. For English,
we use sentence and sentence pair classification
datasets in GLUE benchmark (dev set) (Wang
et al., 2019). For Chinese, we use five datasets of
different types: sentiment analysis, sequence la-
beling, question pair matching, natural language
inference, and document-based QA (provided by
ERNIE5). Table 2 and 3 compare UER’s perfor-
mance to other publicly available systems. We can
observe that UER could match the performance
of HuggingFace’s and ERNIE’s implementations.
Results of HuggingFace and ERNIE are reported
on their github projects. Results of UER can be
reproduced by scripts in UER’s github project.

4.2 Influence of targets and encoders

In this section, we give some examples of select-
ing pre-trained models given downstream datasets.
Three Chinese sentiment analysis datasets are
used for evaluation. They are Douban book re-
view, Online shopping review, and Chnsenticorp
datasets.

First of all, we use UER to pre-train on large-
scale Amazon review corpus with different targets.
The parameters are initialized by BERT-base Chi-
nese model. The target of original BERT consists
of MLM and NSP. However, NSP is not suitable
for sentence-level reviews (we have to split re-
views into multiple parts). Therefore we remove
NSP target. In addition, Amazon reviews are at-

5https://github.com/PaddlePaddle/ERNIE

tached with users’ ratings. To this end, we can
exploit CLS target for pre-training (similar with
InferSent). We fine-tune these pre-trained models
(with different targets) on downstream datasets.
The results are shown in Table 4. BERT base-
line (BERT-base Chinese) is pre-trained upon Chi-
nese Wikipedia. We can observe that pre-training
on Amazon review corpus can improve the results
significantly. Using CLS target achieves the best
results in most cases.

Dataset Douban. Shopping. Chn.
BERT baseline 87.5 96.3 94.3

MLM 88.1 97.0 95.0
CLS 88.3 97.0 95.8

Table 4: Performance of pre-training models with dif-
ferent targets.

BERT requires heavy computational resources.
To achieve better efficiency, we use UER to substi-
tute 12-layers Transformer encoder with a 2-layers
LSTM encoder (embedding size and hidden size
are 512 and 1024). We still use the above senti-
ment analysis datasets for evaluation. The model
is firstly trained on mixed large corpus with LM
target, and then trained on large-scale Amazon re-
view corpus with LM and CLS targets. Table 5
lists the results of different encoders. Compared
with BERT baseline, LSTM encoder can achieve
comparable or even better results when proper cor-
pora and targets are selected.

Dataset Douban. Shopping. Chn.
BERT baseline 87.5 96.3 94.3

LSTM 80.3 94.0 88.3
LSTM+pre-training 86.5 96.9 94.5

Table 5: Performance of pre-training models with dif-
ferent encoders.

For space constraint, this section only uses sen-
timent analysis datasets as examples to analyze
the influence of different targets and encoders.
More tasks and pre-trained models are discussed

245

in UER’s github project.

5 Conclusion

This paper describes UER, an open-source toolkit
for pre-training on general-domain corpora and
fine-tuning on downstream tasks. We demonstrate
that UER can largely facilitate implementations
of different pre-training models. With the help
of UER, we pre-train models based on different
corpora, encoders, targets and make these mod-
els publicly available. By using proper pre-trained
models, we can achieve significant improvements
over BERT, or achieve competitive results with an
efficient training speed.

Acknowledgments

This work is supported by National Natural
Science Foundation of China Grant No.U1711262
and No.61472428, 2018 Tencent Rhino-Bird Elite
Training Program.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. EMNLP.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
NIPS.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
ACL.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL., 3.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. arXiv preprint arXiv:1803.02893.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In NIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. NAACL.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. arXiv
preprint arXiv:1806.05626.

Xiang Zhang and Yann LeCun. 2017. Which encoding
is the best for text classification in chinese, english,
japanese and korean?

Zhe Zhao, Tao Liu, Shen Li, Bofang Li, and Xiaoyong
Du. 2017. Ngram2vec: Learning improved word
representations from ngram co-occurrence statistics.
EMNLP.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In ACL., volume 2.

246

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 247–252
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

Visualizing Trends of Key Roles in News Articles

Chen Xia1∗, Haoxiang Zhang1∗, Jacob Moghtader2, Allen Wu2, Kai-Wei Chang1

1University of California Los Angeles, 2Taboola
kasinxc@cs.ucla.edu; haoxiangzhx@gmail.com;

{jacob.m, allen.wu}@taboola.com; kw@kwchang.net

Abstract
There are tons of news articles generated ev-
ery day reflecting the activities of key roles
such as people, organizations and political par-
ties. Analyzing these key roles allows us to
understand the trends in news. In this paper,
we present a demonstration system that visu-
alizes the trend of key roles in news articles
based on natural language processing tech-
niques. Specifically, we apply a semantic role
labeler and the dynamic word embedding tech-
nique to understand relationships between key
roles in the news across different time periods
and visualize the trends of key role and news
topics change over time.

1 Introduction

Nowadays, numerous news articles describing dif-
ferent aspects of topics are flowing through the
internet and media. Underneath the news flow,
key roles including people and organizations inter-
act with each other and involve in various events
over time. With the overwhelmed information, ex-
tracting relations between key roles allows users to
better understand what a key person is doing and
how he/she is related to different news topics. To
understand the action of key roles, we provide a
semantic level analysis using semantic role label-
ing (SRL). To measure the trend of news topics, a
word vector level analysis is supported using dy-
namic word embeddings.

In our system, we show that a semantic role la-
beller, which identifies subject, object, and verb in
a sentence, provides a snapshot of news articles.
Analyzing the change of verbs with fixed subject
over time can track the actions of key roles. Be-
sides, the relationships between subjects and ob-
jects reflect how key roles are involved in different
events. We implemented the semantic role ana-
lyzer based on the SRL model in AllenNLP, which

∗Equal contribution.

formulates a BIO tagging problem (He et al.,
2017) and uses deep bidirectional LSTMs to label
semantic roles (Gardner et al., 2018).

On the other hand, word embeddings map
words to vectors such that the embedding space
captures the semantic similarity between words.
We apply dynamic word embeddings to analyze
the temporal changes, and leverage these to study
the trend of news related to a key role. For ex-
ample, President Trump is involved in many news
events; therefore, he is associated with various
news topics. By analyzing the association between
“Trump” and other entities in different periods, we
can characterize news trends around him. For ex-
ample, in February 2019, “Trump” participated in
the North Korea-United States Summit in Hanoi,
Vietnam. The word embedding trained on news
articles around that time period identifies “Trump”
is closely associated with “Kim Jun Un” (the Pres-
ident of North Korea) and “Vietnam” (the country
hosted the summit).

We create a system based on two datasets col-
lected by Taboola, a web advertising company. 1)
Trump dataset contains 20,833 English news ti-
tles in late April to early July 2018. 2) Newsroom
dataset contains approximately 3 million English
news articles published in October 2018 to March
2019. The former provides a controllable exper-
iment environment to study news related to Pres-
ident Donald Trump, and the second provides a
comprehensive corpus covering wide ranges of
news in the U.S. Source code of the demo is avail-
able at https://bit.ly/32f8k3t and more
details are in (Zhang, 2019; Xia, 2019).

2 Related Work

Various systems to visualize the transition of top-
ics in news articles have been published. Kawai
et al. (2008) detected news sentiment and visu-

247

Figure 1: System Overview.

alized them based on date and granularity such
as city, prefecture, and country. Ishikawa and
Hasegawa (2007) developed a system called T-
Scroll (Trend/Topic-Scroll) to visualize the tran-
sition of topics extracted from news articles. Fitz-
patrick et al. (2003) provided an interactive system
called BreakingStory to visualize change in on-
line news. Cui et al. (2010) introduced TextWheel
to convey the dynamic natures of news streams.
Feldman et al. (1998) introduced Trend Graphs for
visualizing the evolution of concept relationships
in large document collections. Unlike these works,
our analysis focuses on the key roles in news arti-
cles. We extract semantic roles and word vectors
from news articles to understand the action and vi-
sualize the trend of these key roles.

3 System Overview

To visualize the news trends, we apply semantic
role analysis and word embedding techniques.

For semantic roles, we first construct a tree
graph with subject as root, verbs as the first layer
and objects as leaf nodes by extracting semantic
roles with SRL (Gardner et al., 2018). Then we
aggregate the tree graphs by collecting tree with
the same subject and similar verb and object. Be-
yond applying simple string matching to identify
same object and subject, we also apply a corefer-
ence resolution system (CoRef) to identify phrases
refer to the same entity. As a result, we create a
forest visualization where each tree represents the
activities of a key role.

For word embeddings, we first train individ-
ual word vectors model for each month’s data.
However, there is no guarantee that coordinate
axes of different models have similar latent seman-

Figure 2: Tree Graph for Semantic Role Visualization.

tics; therefore, we perform alignment algorithm to
project all the word vectors into the same space.
Once the embeddings are aligned, we are able to
identify the shift of association between key roles
and other news concepts based on their positions
in the embedding space.

3.1 Visualization by Semantic Roles
Tree Graph for Semantic Roles We provide users
with a search bar to explore roles of interest. For
example, when searching for Trump, a tree graph
is presented with Trump as root. The second layer
of the tree is all of the verbs labeled together with
subject Trump, e.g., blamed and liked in Figure 2.
The edge label represents how many times two
nodes, subject (e.g, Trump) and Verb (e.g., liked),
appear together in a news sentence in the corpus.
The edge label reflects the total number of seman-
tic role combination in the given dataset, which
depicts the importance of a news action.

Forest Graph for Semantic Roles In news ar-
ticles, President Trump have different references,
such as Donald Trump, the president of the United
States, and pronoun “he” – a well-known task,
called coreference resolution. When generating
semantic trees, the system should not look only for
Trump but also other references. To realize this,
we preprocess the dataset with CoRef system (Lee
et al., 2017) in AllenNLP (Gardner et al., 2018)
and generate local coreference clusters for each
news article. To obtain a global view, we merge
the clusters across documents together until none
of them shares a common role. A visualization
demo for CoRef is also provided.

In Figure 3, the CoRef system clusters “the
Philladelphia Eagles” with “the Eagles”, and “Hi-
lary” with “Hilary Clinton”. The red nodes are
center roles, which are representative phrases. For
example, “the Philladelphia Eagles” and “Hilary
Clinton” are the center roles of their correspond-
ing cluster.

We use the following three rules to determine
which phrases are center roles. If phrases are

248

Figure 3: Coreference Resolution Clusters.

tied, the one with longest length will be se-
lected: LongestSpan method selects the role with
longest length. WordNet method marks spans not
in the WordNet (Miller, 1998) as specific roles.
NameEntity method marks roles in the name entity
list generated by latent dirichlet allocation as spe-
cific ones. Both WordNet and NameEntity meth-
ods select the most frequent role as the center role.

Merging Algorithms for Semantic Roles Fi-
nally, we use the following rule-based approach to
merge trees with same referent subject by CoRef.

1) Merging Objects with the Same Verb To
better visualize the semantic roles, we merge ob-
jects with similar meaning if they are associated
with same verb. To measure the similarity, we gen-
erate bag-of-word representations with TF-IDF
scores for each object. If the cosine similarity be-
tween the representations of two objects is larger
than a threshold, we merge the two nodes. We then
sum up the frequency weights on the edges of all
merging objects to form a new edge.

2) Merging Verbs with the Same Subject
Verbs like believe, say and think convey simi-
lar meanings. Merging such verbs can emphasize
the key activities of the key roles. The similarity
between verbs associated with the same subject is
calculated by cosine similarity between word vec-
tors using word2vec (Mikolov et al., 2013). In par-
ticular, we merge two verbs if their cosine similar-
ity is larger than a threshold. By showing a cer-
tain range of edge labels, the system is also capa-
ble of filtering out verbs with extreme high or low
frequency such as say, as these verbs carry less
meaningful information.

Modifier, Negative and Lemmatization While
our news analysis is mainly based on subject-verb-
object relations, we also consider other semantic
roles identified by the SRL model. For example,
we include identification of modifier so that we

can recognize the difference between “resign” and
“might resign”. We also add negation as an extra
sentiment information. Verbs have different forms
and tenses (e.g., win, won, winning). If we merge
all verbs with the same root form, we can obtain a
larger clusters and reduce duplicated trees. How-
ever, for some analysis, the tense of verbs are im-
portant. Therefore, we provide Lemmatizating as
an option in our system.

3.2 Dynamic Word Embeddings

Dynamic word embeddings model align word em-
beddings trained on corpora collected in different
time periods (Hamilton et al., 2016). It divides
data into time slices and obtains the word vector
representations of each time slice separately. To
capture how the trends in news change monthly,
we train a word2vec word embedding model on
news articles collected in each month. We then
apply the orthogonal Procrustes to align the em-
beddings from different time periods by learning a
transformation R(t) ∈ Rd×d:

R(t) = argminQ>Q=I ‖W(t)Q−W(t+1)‖,

where W (t) ∈ Rd×V is the learned word embed-
dings of each month t (d is the dimension of word
vector, and V is the size of vocabulary).

N-Gram To represent named entities such as
‘white house’ in the word embeddings, we treat
phrases in news articles as single words. The max
length of phrases is set as 4 to avoid large vocabu-
lary size.

Absolute Drift Inspired by Rudolph and Blei
(2018), we define a metric that is suitable to detect
which words fluctuate the most relative to the key
word wk. Denote cos(wk, wi, t) as the cosine sim-
ilarities between the word wi and the key word wk

at time t. For top n words close to wk, calculate
the absolute drift of each word wi by summing the
cosine similarity differences.

drift(wi) =
T∑

t=2

| cos(wk, wi, t)−cos(wk, wi, t−1)|

After finding meaningful words that fluctuate the
most, cosine similarities between these words and
wk of each month can be plotted to present possi-
ble useful interpretations.

249

Figure 4: Action Tracking for LeBron James

4 Case Studies

4.1 Semantic Roles

Action Tracking on Verbs We apply semantic
role labelling model to newsroom dataset col-
lected from October 2018 to February 2019 on
taxonomy: /sports/basketball and search for sub-
ject LeBron James, a basketball player.

For each month, we generate the top frequent
verbs from sentences where LeBron James is
marked as the subject. We found that the top
verbs include “Leave”, “Score” and “Miss”. Ex-
ample sentences include: ”LeBron James leave
the Cleveland Cavaliers”, ”LeBron James score
points” and ”LeBron James miss games”.

We further show the ranking of these verbs in
different months in Figure 4. As results show the
verb “leave” ranks at the top around October due
to an earlier announcement that Lebron James will
leave the Cavaliers. However, the frequency falls
in January.

Meanwhile, news on LeBron James miss games
ranked first and the verb “score” doesn’t co-occur
with LeBron James in January due to his injury.

To explain the absence, we list the top 5 fre-
quent verbs are listed below. Verbs that occur with
LeBron James only in December and January are
colored in red.

From this analysis, we can see that LeBron
James was suffering the groin strain injury in Jan-
uary, causing his absence of the game.

Breaking News Tracking on Objects We run
our algorithm to analyze news article under the
topic: /sports/basketball, which has 75,827 peices
of news title descriptions. We search Lakers as
subject in every month and sum up all the label

rank verbs for Le-
Bron James

fixed main objects

1 miss games

2 suffer a groin strain injury
3 make no fixed main objects
4 leave Cleveland Cavaliers
5 lead the team

Table 1: Verb Rankings for LeBron James in January

Figure 5: Breaking News Tracking on Trade Rumors.

weights on the edges between verb and object.

W (V, o|S = s) =
∑

v∈V
W (v, o|S = s), (1)

where W (v, o|S = s) denotes the weight on edges
between all the verbs v ∈ V and a specific object
o under certain subject s.

We rank all objects based on Eq. (1) and the
top 5 objects associated with the subject “Lak-
ers” are: “Davis”, “James”, “Game”, “Ariza”,
and “Others”. We further show the pie chart to
demonstrate the percentage of each object associ-
ated with “Lakers” in different months.

The purple part in Figure 5 shows that the num-
ber of news mentioning Anthony Davis and Lakers
suddenly emerged and even beat James and Lak-
ers in January but gradually decreased in Febru-
ary. The breaking news about Anthony and Lak-
ers disappeared completely in March. The event
happened in January and February was the trade
rumors on Davis. After the trade deadlines, the
topic eventually disappeared.

4.2 Dynamic Word Embeddings

2D Visualization The t-SNE embedding method
(Maaten and Hinton, 2008) is used to visualize the
word embeddings in two dimensions. First, given

250

Rank Dec 2018 Jan 2019 Feb 2019 Mar 2019

1 los angeles lakers los angeles lakers los angeles lakers los angeles lakers
2 lebron james pelicans lebron james lebron james
3 lonzo ball lebron james clippers clippers
4 clippers lonzo ball pelicans kevin durant
5 brandon ingram anthony davis boston celtics lonzo ball
6 kevin durant cavs kyle kuzma lebron
7 anthony davis boston celtics tobias harris giannis antetokounmpo
8 raptors rockets anthony davis magic johnson

Table 2: Top 5 Words closest to the Word ‘lakers’ in Each Month.

a word w that we are interested in, the nearest
neighbors of w at different time periods are put to-
gether. Next, the t-SNE embeddings of these word
vectors are calculated and visualized in a 2D plot.

Figure 6: Shifts of the Word ‘Max’.

On March 10 2019, the Boeing 737 MAX 8
aircraft crashed shortly after takeoff. After this
fatal crash, aviation authorities around the world
grounded the Boeing 737 MAX series. Figure 6
shows that dynamic word embeddings capture this
sudden trend change. In particular, before March
2019 (from when the ‘max Mar19’ embedding is
obtained), the word ‘max’ was close to different
people names. When the crash happened or after-
wards, the word ‘max’ immediately shifts to words
such as ‘boeing’, ‘737’ and ‘grounding’.

Top Nearest Nighbors Listing the top nearest
neighbors (words that have highest cosine similar-
ities with the key word) of the key word w inside a
table also shows some interesting results. For ex-
ample, Table 2 confirms with Figure 5 that break-
ing news of Anthony Davis and Lakers happened

because of the trade rumors.

Figure 7: Cosine Similarities with ‘Unemployment’.

Changing Words with Absolute Drift Fig-
ure 7 displays the cosine similarity changes with
respect to ‘unemployment’. One thing we can in-
fer from this figure is that as the economy (‘gdp’)
shows a strong signal (‘boosting’) in the first quar-
ter of 2019, the unemployment rate reaches a
‘record-low’ position. According to National Pub-
lic Radio, the first quarter’s gross domestic prod-
uct of U.S. grew at an annual rate of 3.2%, which
is a strong improvement compared to the 2.2% at
the end of last year. In addition, the Labor De-
partment reported that 196,000 jobs were added
in March, and the unemployment is near 50-year
lows.

5 Conclusion

We presented a visualization system for analyzing
news trends by applying semantic roles and word
embeddings. We demonstrated that our system
can track actions and breaking news. It can also
detect meaningful words that change the most. Fu-

251

ture work will focus on adding entity linking to
subjects, providing more semantic roles informa-
tion. Also, we plan to work on qualitative assess-
ment on the quality of the trends and other word
embedding models like Glove(Pennington et al.,
2014).

6 Acknowledgment

This work was supported in part by a gift grant
from Taboola. We acknowledge feedback from
anonymous reviewers and fruitful discussions with
the Taboola team at Los Angeles.

References
Weiwei Cui, Hong Zhou, Huamin Qu, Wenbin Zhang,

and Steven Skiena. 2010. A dynamic visual inter-
face for news stream analysis. In Proceedings of the
first international workshop on Intelligent visual in-
terfaces for text analysis, pages 5–8. ACM.

Ronen Feldman, Yonatan Aumann, Amir Zilberstein,
and Yaron Ben-Yehuda. 1998. Trend graphs: Vi-
sualizing the evolution of concept relationships in
large document collections. In European Sympo-
sium on Principles of Data Mining and Knowledge
Discovery, pages 38–46. Springer.

Jean Anne Fitzpatrick, James Reffell, and Moryma Ay-
delott. 2003. Breakingstory: visualizing change in
online news. In CHI’03 Extended Abstracts on Hu-
man Factors in Computing Systems, pages 900–901.
ACM.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language pro-
cessing platform. arXiv preprint arXiv:1803.07640.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
473–483.

Yoshiharu Ishikawa and Mikine Hasegawa. 2007. T-
scroll: Visualizing trends in a time-series of docu-
ments for interactive user exploration. In Interna-
tional Conference on Theory and Practice of Digital
Libraries, pages 235–246. Springer.

Yukiko Kawai, Yusuke Fujita, Tadahiko Kumamoto,
Jianwei Jianwei, and Katsumi Tanaka. 2008. Us-
ing a sentiment map for visualizing credibility of
news sites on the web. In Proceedings of the 2nd
ACM workshop on Information credibility on the
web, pages 53–58. ACM.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. arXiv preprint arXiv:1707.07045.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Maja Rudolph and David Blei. 2018. Dynamic embed-
dings for language evolution. In Proceedings of the
2018 World Wide Web Conference on World Wide
Web, pages 1003–1011.

Chen Xia. 2019. Extracting global entities information
from news. Master’s thesis, University of Califor-
nia, Los Angeles, California, US, 6.

Haoxiang Zhang. 2019. Dynamic word embedding for
news analysis. Master’s thesis, University of Cali-
fornia, Los Angeles, California, US, 6.

252

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 253–258
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

VizSeq: A Visual Analysis Toolkit for Text Generation Tasks

Changhan Wang†, Anirudh Jain*‡, Danlu Chen† and Jiatao Gu†
† Facebook AI Research, ‡ Stanford University

{changhan, danluchen, jgu}@fb.com, anirudhj@stanford.edu

Abstract

Automatic evaluation of text generation tasks
(e.g. machine translation, text summariza-
tion, image captioning and video description)
usually relies heavily on task-specific metrics,
such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). They, however, are ab-
stract numbers and are not perfectly aligned
with human assessment. This suggests in-
specting detailed examples as a complement
to identify system error patterns. In this paper,
we present VizSeq, a visual analysis toolkit for
instance-level and corpus-level system eval-
uation on a wide variety of text generation
tasks. It supports multimodal sources and mul-
tiple text references, providing visualization in
Jupyter notebook or a web app interface. It can
be used locally or deployed onto public servers
for centralized data hosting and benchmark-
ing. It covers most common n-gram based
metrics accelerated with multiprocessing, and
also provides latest embedding-based metrics
such as BERTScore (Zhang et al., 2019).

1 Introduction

Many natural language processing (NLP) tasks
can be viewed as conditional text generation prob-
lems, where natural language texts are generated
given inputs in the form of text (e.g. machine
translation), image (e.g. image captioning), au-
dio (e.g. automatic speech recognition) or video
(e.g. video description). Their automatic evalu-
ation usually relies heavily on task-specific met-
rics. Due to the complexity of natural language
expressions, those metrics are not always perfectly
aligned with human assessment. Moreover, met-
rics only produce abstract numbers and are limited
in illustrating system error patterns. This suggests
the necessity of inspecting detailed evaluation ex-
amples to get a full picture of system behaviors as

* Work carried out during an internship at Facebook.

Sources
Text

Image
Audio

References
Text 1
Text 2

Text N

…

Predictions
Model 1 Text
Model 2 Text

Model K Text

…

VizSeq

Web App

Jupyter Notebook

Video

evaluate.py

multi-process
scorers

Figure 1: An overview of VizSeq. VizSeq takes multi-
modal sources, text references as well as model predic-
tions as inputs, and analyzes them visually in Jupyter
notebook or in a web app interface. It can also be used
without visualization as a normal Python package.

well as seek improvement directions.
A bunch of softwares have emerged to facili-

tate calculation of various metrics or demonstrat-
ing examples with sentence-level scores in an in-
tegrated user interface: ibleu (Madnani, 2011),
MTEval 1, MT-ComparEval (Klejch et al., 2015),
nlg-eval (Sharma et al., 2017), Vis-Eval Met-
ric Viewer (Steele and Specia, 2018), compare-
mt (Neubig et al., 2019), etc. Quite a few of them
are collections of command-line scripts for met-
ric calculation, which lack visualization to bet-
ter present and interpret the scores. Some of
them are able to generate static HTML reports to
present charts and examples, but they do not al-
low updating visualization options interactively.
MT-ComparEval is the only software we found
that has an interactive user interface. It is, how-
ever, written in PHP, which unlike Python lacks a
complete NLP eco-system. The number of met-
rics it supports is also limited and the software
is no longer being actively developed. Support
of multiple references is not a prevalent stan-
dard across all the softwares we investigated, and

1https://github.com/odashi/mteval

253

Source Type Example Tasks

Text machine translation, text summarization,
dialog generation, grammatical error cor-
rection, open-domain question answering

Image image captioning, visual question answer-
ing, optical character recognition

Audio speech recognition, speech translation
Video video description
Multimodal multimodal machine translation

Table 1: Example text generation tasks supported by
VizSeq. The sources can be from various modalities.

Metrics VizSeq compare-
mt

nlg-
eval

MT-
Compar-
Eval

BLEU
chrF
METEOR
TER
RIBES
GLEU
NIST
ROUGE
CIDEr
WER

LASER
BERTScore

Table 2: Comparison of VizSeq and its counterparts on
n-gram-based and embedding-based metric coverage.

none of them supports multiple sources or sources
in non-text modalities such as image, audio and
video. Almost all the metric implementations are
single-processed, which cannot leverage the mul-
tiple cores in modern CPUs for speedup and better
scalability.

With the above limitations identified, we want
to provide a unified and scalable solution that
gets rid of all those constraints and is enhanced
with a user-friendly interface as well as the lat-
est NLP technologies. In this paper, we present
VizSeq, a visual analysis toolkit for a wide va-
riety of text generation tasks, which can be used
for: 1) instance-level and corpus-level system er-
ror analysis; 2) exploratory dataset analysis; 3)
public data hosting and system benchmarking. It
provides visualization in Jupyter notebook or a
web app interface. A system overview can be
found in Figure 1. We open source the software
at https://github.com/facebookresearch/vizseq.

BLEU METEOR chrF CIDEr
0
5

10
15
20
25
30
35

Ti
m

e
(s

ec
on

ds
) 1 process

2 processes
4 processes

Figure 2: VizSeq implements metrics with multipro-
cessing speedup. Speed test is based on a 36k evalua-
tion set for BLEU, METEOR and chrF, and a 41k one
for CIDEr. CPU: Intel Core i7-7920HQ @ 3.10GHz

2 Main Features of VizSeq

2.1 Multimodal Data and Task Coverage

VizSeq has built-in support for multiple sources
and references. The number of references is al-
lowed to vary across different examples, and the
sources are allowed to come from different modal-
ities, including text, image, audio and video. This
flexibility enables VizSeq to cover a wide range of
text generation tasks and datasets, far beyond the
scope of machine translation, which previous soft-
wares mainly focus on. Table 1 provides a list of
example tasks supported by Vizseq.

2.2 Metric Coverage and Scalability

Table 2 shows the comparison of VizSeq and its
counterparts on metric coverage.

N-gram-based metrics To the extent of our
knowledge, VizSeq has the best coverage of com-
mon n-gram-based metrics, including BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), ME-
TEOR (Banerjee and Lavie, 2005), TER (Snover
et al., 2006), RIBES (Isozaki et al., 2010),
chrF (Popović, 2015) and GLEU (Wu et al.,
2016) for machine translation; ROUGE (Lin,
2004) for summarization and video description;
CIDEr (Vedantam et al., 2015) for image caption-
ing; and word error rate for speech recognition.

Embedding-based metrics N-gram-based met-
rics have difficulties in capturing semantic sim-
ilarities since they are usually based on ex-
act word matches. As a complement, VizSeq
also integrates latest embedding-based metrics
such as BERTScore (Zhang et al., 2019) and
LASER (Artetxe and Schwenk, 2018). This is
rarely seen in the counterparts.

Scalability We re-implemented all the n-gram-
based metrics with multiprocessing, allowing

254

1 from vizseq.scorers import
register_scorer

2

3 @register_scorer(’metric name’)
4 def calculate_score(
5 hypothesis: List[str],
6 references: List[List[str]],
7 n_processes: int = 2,
8 verbose: bool = False
9) -> Tuple[float, List[float]]:

10 return corpus_score, sentence_scores

Figure 3: VizSeq metric API. Users can define and reg-
ister their new metric by implementing this function.

users to fully utilize the power of modern multi-
core CPUs. We tested our multi-process versions
on large evaluation sets and observed significant
speedup against original single-process ones (see
Figure 2). VizSeq’s embedding-based metrics are
implemented using PyTorch (Paszke et al., 2017)
framework and their computation is automatically
parallelized on CPU or GPU by the framework.

Versatility VizSeq’s rich metric collection is not
only available in Jupyter notebook or in the web
app, it can also be used in any Python scripts.
A typical use case is periodic metric calculation
during model training. VizSeq’s implementations
save time, especially when evaluation sets are
large or evaluation is frequent. To allow user-
defined metrics, we designed an open metric API,
whose definition can be found in Figure 3.

2.3 User-Friendly Interface

Given the drawbacks of simple command-line in-
terface and static HTML interface, we aim at visu-
alized and interactive interfaces for better user ex-
perience and productivity. VizSeq provides visu-
alization in two types of interfaces: Jupyter note-
book and web app. They share the same visual
analysis module (Figure 4). The web app interface
additionally has a data uploading module (Fig-
ure 9) and a task/dataset browsing module (Fig-
ure 10), while the Jupyter notebook interface gets
data directly from Python variables. The analysis
module includes the following parts.

Example grouping VizSeq uses sentence tags
to manage example groups (data subsets of differ-
ent interest, can be overlapping). It contains both
user-defined and machine-generated tags (e.g. la-
bels for identified languages, long sentences, sen-
tences with rare words or code-switching). Met-
rics will be calculated and visualized by different

1

2

3

4

5

Figure 4: VizSeq example viewing. (1) keyword search
box, tag and model filters, sorting and page size op-
tions; (2) left: example index, right: user-defined tags
(blue) and machine-generated tags (grey); (3) multi-
modal sources and Google Translate integration; (4)
model predictions with highlighted matched (blue) and
unmatched (red) n-grams; (5) sentence-level scores
(highest ones among models in boldface, lowest ones
in italics with underscore).

example groups as a complement to scores over
the entire dataset.

Example viewing VizSeq presents examples
with various sentence-level scores and visualized
alignments of matched/unmatched reference n-
grams in model predictions. It also has Google
Translate integration to assist understanding of
text sources in unfamiliar languages as well as
providing a baseline translation model. Exam-
ples are listed in multiple pages (bookmarkable in
web app) and can be sorted by various orders, for
example, by a certain metric or source sentence
lengths. Tags or n-gram keywords can be used to
filter out examples of interest.

Dataset statistics VizSeq provides various
corpus-level statistics, including: 1) counts of
sentences, tokens and characters; 2) source and
reference length distributions; 3) token frequency
distribution; 4) list of most frequent n-grams (with
links to associated examples); 5) distributions
of sentence-level scores by models (Figure 5, 6
and 7). Statistics are visualized in zoomable
charts with hover text hints.

Data export Statistics in VizSeq are one-click
exportable: charts into PNG or SVG images (with

255

1

2 3

Figure 5: VizSeq dataset statistics. (1) sentence, to-
ken and character counts for source and reference sen-
tences; (2) length distributions of source and reference
sentences; (3) token frequency distribution. Plots are
zoomable and exportable to SVG or PNG images.

Figure 6: VizSeq dataset statistics: most frequent n-
grams (n=1,2,3,4). Each listed n-gram is clickable to
show associated examples in the dataset.

users’ zooming applied) and tables into CSV or
LATEX (copied to clipboard).

2.4 Data Management and Public Hosting

VizSeq web app interface gets new data from the
data uploading module (Figure 9) or a REST-
ful API. Besides local deployment, the web app
back-end can also be deployed onto public servers
and provide a general solution for hosting public
benchmarks on a wide variety of text generation
tasks and datasets.

In VizSeq, data is organized by special folder
structures as follows, which is easy to maintain:

<task>/<eval set>/source_*.{txt,zip}
<task>/<eval set>/reference_*.txt
<task>/<eval set>/tag_*.txt
<task>/<eval set>/<model>/prediction.txt
<task>/<eval set>/__cfg__.json

When new data comes in, scores, n-grams and
machine-generated tags will be pre-computed and
cached onto disk automatically. A file monitoring
and versioning system (based on file hashes, sizes
or modification timestamps) is employed to detect

1

2 3

Figure 7: VizSeq corpus-level metric viewing. (1) dis-
tributions of sentence-level scores by models; (2) one-
click export of tabular data to CSV and LATEX (copied
to clipboard); (3) corpus-level and group-level (by sen-
tence tags) scores (highest ones among models in bold-
face, lowest ones in italics with underscore).

Figure 8: VizSeq sentence tag distribution view. In this
example, tags are source-target language directions in
a multilingual machine translation dataset.

file changes and trigger necessary updates on pre-
computed results. This is important for support-
ing evaluation during model training where model
predictions change over training epochs.

3 Example Use Cases of VizSeq

We validate the usability of VizSeq with multiple
tasks and datasets, which are included as examples
in our Github repository:

• WMT14 English-German2: a classic medium-
size dataset for bilingual machine translation.

• Gigaword3: a text summarization dataset.

• COCO captioning 2015 (Lin et al., 2014): a
classic image captioning dataset where VizSeq
can present source images with text targets.

2http://www.statmt.org/wmt14/translation-task.html
3https://github.com/harvardnlp/sent-summary

256

Figure 9: VizSeq data uploading. Users need to orga-
nize the files by given folder structures and pack them
into a zip file for upload. VizSeq will unpack the files
to the data root folder and perform integrity checks.

Figure 10: VizSeq task/dataset browsing. Users need
to select a dataset and models of interest to proceed to
the analysis module.

• WMT16 multimodal machine translation task
14: English-German translation with an image
the sentences describe. VizSeq can present both
text and image sources, and calculate the official
BLEU, METEOR and TER metrics.

• Multilingual machine translation on TED talks
dataset (Ye et al., 2018): translation from 58
languages into English. VizSeq can use lan-
guage directions as sentence tags to generate
score breakdown by languages. The test set has
as many as 165k examples, where VizSeq multi-
process scorers run significantly faster than
single-process ones. The integrated Google
Translate can help with understanding source
sentences in unfamiliar languages.

• IWSLT17 English-German speech translation5:
VizSeq can present English audios with English
transcripts and German text translations.

• YouCook (Das et al., 2013) video description:
VizSeq enables inspecting generated text de-
4https://www.statmt.org/wmt16/multimodal-task.html
5https://sites.google.com/site/iwsltevaluation2017

scriptions with presence of video contents.

4 Related Work

With the thrive of deep learning, task-agnostic
visualization toolkits such as Tensorboard6, vis-
dom7 and TensorWatch8, have emerged in need of
monitoring model statistics and debugging model
training. Model interpretability is another moti-
vation for visualization. In NLP, softwares have
been developed to interpret model parameters (e.g.
attention weights) and inspect prediction genera-
tion process: LM (Rong and Adar, 2016), Open-
NMT visualization tool (Klein et al., 2018) and
Seq2Seq (Strobelt et al., 2019). For machine trans-
lation, toolkits are made to perform metric calcu-
lation and error analysis: ibleu (Madnani, 2011),
MTEval 9, MT-ComparEval (Klejch et al., 2015),
nlg-eval (Sharma et al., 2017), Vis-Eval Metric
Viewer (Steele and Specia, 2018) and compare-
mt (Neubig et al., 2019).

5 Conclusion

In this paper, we present VizSeq, a visual anal-
ysis toolkit for {text, image, audio, video}-to-
text generation system evaluation, dataset analysis
and benchmark hosting. It is accessible as a web
app or a Python package in Jupyter notebook or
Python scripts. VizSeq is currently under active
development and our future work includes: 1) en-
abling image-to-text and video-to-text alignments;
2) adding human assessment modules; 3) integra-
tion with popular text generation frameworks such
as fairseq10, opennmt11 and tensor2tensor12.

Acknowledgments

We thank the anonymous reviewers for their com-
ments. We also thank Ann Lee and Pratik Ring-
shia for helpful discussions on this project.

References
Mikel Artetxe and Holger Schwenk. 2018. Mas-

sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. arXiv
preprint arXiv:1812.10464.

6https://github.com/tensorflow/tensorboard
7https://github.com/facebookresearch/visdom
8https://github.com/microsoft/tensorwatch
9https://github.com/odashi/mteval

10https://github.com/pytorch/fairseq
11https://github.com/OpenNMT/OpenNMT-py
12https://github.com/tensorflow/tensor2tensor

257

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Pradipto Das, Chenliang Xu, Richard F Doell, and Ja-
son J Corso. 2013. A thousand frames in just a few
words: Lingual description of videos through latent
topics and sparse object stitching. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2634–2641.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second
international conference on Human Language Tech-
nology Research, pages 138–145. Morgan Kauf-
mann Publishers Inc.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944–952. Association for Computational
Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent
Nguyen, Jean Senellart, and Alexander M. Rush.
2018. Opennmt: Neural machine translation toolkit.

Ondřej Klejch, Eleftherios Avramidis, Aljoscha Bur-
chardt, and Martin Popel. 2015. Mt-compareval:
Graphical evaluation interface for machine transla-
tion development. The Prague Bulletin of Mathe-
matical Linguistics, 104(1):63–74.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Nitin Madnani. 2011. ibleu: Interactively debugging
and scoring statistical machine translation systems.
In 2011 IEEE Fifth International Conference on Se-
mantic Computing, pages 213–214. IEEE.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. arXiv preprint arXiv:1903.07926.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Maja Popović. 2015. chrf: character n-gram f-score
for automatic mt evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395.

Xin Rong and Eytan Adar. 2016. Visual tools for de-
bugging neural language models. In Proceedings of
ICML Workshop on Visualization for Deep Learn-
ing.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating nat-
ural language generation. CoRR, abs/1706.09799.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200.

David Steele and Lucia Specia. 2018. Vis-eval metric
viewer: A visualisation tool for inspecting and eval-
uating metric scores of machine translation output.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations, pages 71–75.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2019. Seq2seq-vis: A visual
debugging tool for sequence-to-sequence models.
IEEE transactions on visualization and computer
graphics, 25(1):353–363.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recog-
nition, pages 4566–4575.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Qi Ye, Sachan Devendra, Felix Matthieu, Padmanab-
han Sarguna, and Neubig Graham. 2018. When
and why are pre-trained word embeddings useful for
neural machine translation. In HLT-NAACL.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

258

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 259–264
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

What’s Wrong with Hebrew NLP?
And How to Make it Right

Reut Tsarfaty Amit Seker Shoval Sadde Stav Klein
Open University of Israel, University Road 1, Ra’anana, Israel
{reutts,shovalsa,amitse,stavkl}@openu.ac.il

Abstract

For languages with simple morphology, such
as English, automatic annotation pipelines
such as spaCy or Stanford’s CoreNLP success-
fully serve AI/DS projects in academia and the
industry. For many morphologically-rich lan-
guages (MRLs), similar pipelines show sub-
optimal performance that limits their applica-
bility for text analysis in research and com-
merical use. The suboptimal performance is
mainly due to errors in early morphological
disambiguation decisions, which cannot be re-
covered later in the pipeline, yielding incoher-
ent annotations on the whole. In this paper
we describe the design and use of the ONLP
suite, a joint morpho-syntactic parsing frame-
work for processing Modern Hebrew texts.
The joint inference over morphology and syn-
tax substantially limits error propagation, and
leads to high accuracy. ONLP provides rich
and expressive output which already serves di-
verse academic and commercial needs. Its ac-
companying demo further serves educational
activities, introducing Hebrew NLP intricacies
to researchers and non-researchers alike.

1 Introduction

NLP pipelines for the automatic annotation of un-
structured texts are at the core of language tech-
nology applications for Data Science, Text Ana-
lytics and Artificial Intelligence. For English, an-
notation pipelines such as spaCy (Honnibal and
Montani, 2017) or Stanford’s CoreNLP (Manning
et al., 2014) successfully deliver the ability to au-
tomatically annotate unstructured texts with their
underlying linguistic structures, including: Part-
of-Speech (POS) Tags, Morphological Features,
Dependency Relations, Named Entities, and so on.
These annotations serve research labs, non-profit
organizations and commercial endeavors in their
quest to make sense of the vast amount of unstruc-
tured data available to them.

Universal processing pipelines such as UDPipe
(Straka et al., 2016) aim to serve a range of other
languages, but unfortunately, their performance
on many morphologically rich languages (MRLs)
(Tsarfaty et al., 2010), and in particular Semitic
languages, is not on a par with their performance
on English. This, in turn, greatly limits their appli-
cability for further research and commercial use.
The main reason for this sub-optimal performance
on Semitic languages is that the pipeline design
inherent in these frameworks is inappropriate for
languages that exhibit extreme morphological am-
biguity in their input stream. This is because errors
made in morphological segmentation and disam-
biguation early on, jeopardize the system accuracy
down the pipeline. For Hebrew, this performance
gap has long been a show-stopper for advancing
Language Technology and Artificial Intelligence
for the Hebrew-speaking community. With this
contribution, we aim to remedy this situation.

In this paper we describe the design and use of
the ONLP system, a joint morphological-syntactic
parsing framework for processing the Semitic
language Modren Hebrew (Henceforth, Hebrew).
The system is accurate, efficient, and provides rich
and expressive output including: Segmentation,
POS tags, Lemmas, Features and Labeled Depen-
dencies. The joint training and inference over the
different layers substantially limits error propaga-
tion, and leads in turn to speed and high accuracy.
Among the technical advantages of the ONLP suite
are its open license, an easy 3-step installation,
and a single package with all elements included
— no need to train or maintain individual compo-
nents separately. The ONLP suite already serves
academic and commercial projects in diverse do-
mains. Its accompanying online demo has fur-
ther proved valuable for educational purposes, ex-
posing CS/NLP and non-CS researchers and engi-
neers to the intricacies of Semitic NLP.

259

2 The Linguistic Challenge

In morphologically-rich languages (MRLs), each
input token may consist of multiple lexical and
functional units (henceforth, morphemes), each of
which serves a particular role in the overall syn-
tactic or semantic representation. In Hebrew, for
example, the token ‘ ‘וכשמהמעבדה! corresponds to
five word tokens in English, each of which car-
rying its distinct role: ‘ו!‘ (and, CC), ‘ ‘כש! (when,
REL), ‘ ‘מְ! (from, IN), ‘ ‘ה! (the, DT), ‘ ‘מעבדה! (lab,
NN).1 This means that in order to process Hebrew
texts, one first needs to segment the Hebrew to-
kens into their constituting morphemes. At the
same time, Hebrew raw tokens are highly ambigu-
ous. A token such as: ‘הקפה!‘ may be interpreted
as ‘ ‘הקפה! (orbit, NN), ‘ ‘ה! + ‘קפה!‘ (the+coffee,
DT+NN), or ‘!Pהק’+ ‘ ’של! + ‘היא!‘ (perimeter of
her, NN+POSS+PRP), etc. This is further com-
plicated by the lack of diacritics in standardized
texts, meaning that most vowels are not present,
and thus out of context no reading is a-priory more
likely than the others. Only in context the correct
interpretation and segmentation become apparent.

These facts create an apparent loop in the de-
sign of NLP pipelines for Hebrew: syntactic pars-
ing requires morphological disambiguation – but
morphological disambiguation requires syntactic
context. This apparent loop has called for the de-
velopment of joint systems rather than pipelines,
for Semitic languages processing (Tsarfaty, 2006;
Green and Manning, 2010). This joint hypothesis
has proven useful for Hebrew and Arabic phrase-
structure parsing (Goldberg and Tsarfaty, 2008;
Green and Manning, 2010; Goldberg and Elhadad,
2011). The ONLP suite is a dependency-based
parsing framework implementing this joint hy-
pothesis, over the entire morpho-syntactic search-
space, as depicted in Figure 1 (More et al., 2019).

3 The Architectural Design

The core of ONLP is YAP (Yet Another Parser),
a morpho-syntactic parser for morphological and
syntactic analysis of Hebrew Texts. YAP re-
implements and extends the structure-prediction
framework of Zhang and Clark (2011). We de-
scribe YAP in detail in More and Tsarfaty (2016)
and More et al. (2019). Here we only provide a
bird’s eye view of the architecture.

1We use the annotation conventions of Sima’an et al.
(2001) that underlie the Hebrew SPMRL scheme http://
www.spmrl.org/spmrl2013-sharedtask.html.

Figure 1: The Joint Morpho-Syntactic Search-Space.
Lattice paths vary in length. Each lattice path can be
assigned an exponential number of dependency trees.

In YAP we embrace the extreme morpholog-
ical ambiguity in Hebrew. That is, we do not
aim to resolve morphological ambiguity via pre-
processing. The input to YAP is the complete Mor-
phological Analysis (MA) of an input sentence x,
termed here MA(x). MA(x) is a lattice structure,
consisting of all possible morphological analysis
possibilities of the input sentence, as seen in the
middle of Figure 1. Each lattice arc is a tuple
specifying the start-index, end-index, the form of
the segment, its part-of-speech, lemma, features,
and the index of the raw token the arc

originated from. An arc in the lattice can serve
as a node in a syntactic dependency tree. Each
contiguous path in the lattice presents one valid
morphological segmentation of the sentence, for
which a dependency tree can be assigned, as in
Figure 1. For each path in the lattice, there is an
exponential number of dependency trees that are
potentially applicable.

We refer to the task of selecting the most
likely lattice-path as Morphological Disambigua-
tion (MD), and to the task of selecting the most
likely dependency tree for a given path as Depen-
dency Parsing (DEP). For an input sentence x, our
goal is to jointly predict a single pair of MD(x)
and DEP(x) that are consistent with one another,
and form the most-likely analysis of the sentence.

The MD component is the transition-based
morphological parser of More and Tsarfaty

260

(2016), which is formally based on the structure-
prediction framework of Zhang and Clark (2011).
MD accepts a sentence lattice MA(x) as input
and delivers a selected sequence of arcs (mor-
phemes) MD(x) as output. The transition-based
system for MD selects arcs for MD one at a
time. It decodes the lattice using beam-search, and
keeps the K-best paths at each step, scored accord-
ing to morpheme-level and token-level features,
weighted via structured-perceptron learning.

The DEP component is a re-implementation of
the Zhang and Nivre (2011) dependency parser for
English, adapted for Hebrew. We assume an Arc-
Eager transition system and beam-search decod-
ing. Feature weights are learned via the structured
perceptron. We employ a carefully-designed fea-
ture set that reflects linguistic properties of He-
brew such as its rich morphological paradigms,
flexible word-order, agreement, etc. This provides
SOTA results on Hebrew dependency parsing, al-
beit in Oracle (i.e., gold morphology) scenario.

Seen that both the MD and DEP realize the
same formal framework and computational ma-
chinery, we can easily unify them and treat the
morpho-synactic task as a single objective. The
transition systems are combined and the beam-
search decoder interleaves morphological and syn-
tactic decisions. Now morphological decisions
may be affected by syntactic content, and vice
versa. The architecture is depicted in Figure 2.
In More et al. (2019) we compared the perfor-
mance of our joint system to our own pipeline,
and to other parsing systems available for Hebrew.
Our empirical results in More and Tsarfaty (2016);
More et al. (2019) show significant improvements
of YAP’s joint model for both the morphological
and syntactic tasks, over all standalone morpho-
logical or syntactic parsers available for Hebrew.

4 The Annotation Scheme

We deliver automatic morpho-syntactic annota-
tion of Hebrew texts based on the scheme of
the SPMRL Hebrew dependency treebank. The
SPMRL Hebrew scheme employs the labels of
Sima’an et al. (2001) for morphology and POS
tags, and the Unified-SD scheme of Tsarfaty
(2013) for the labeled dependencies.2 Specifically,
we deliver the following annotation layers:

2With an eye for future comparability, we further devel-
oped a conversion algorithm to convert the dependency tree
from Unified-SD to Universal Dependencies (UD).https:
//universaldependencies.org/

Figure 2: A bird’s eye view of the Architecture

Morphological Segmentation The most basic
form of analysis of Hebrew texts is the segmenta-
tion of raw tokens into multiple meaning-bearing
units that we call morphemes.3 Due to ortho-
graphic and phonological processes, some mor-
phemes do not appear explicitly in the surface
form. Our segmentation recovers all morphemes,
both overt and covert. For example, the token
’בבית!‘ (in the house) is segmented as ’ב!‘ + ’ה!‘
+ .’בית!‘

Part-of-Speech (POS) Tags Each morphologi-
cal segment is assigned a single Part-of-Speech tag
category that indicates its syntactic role. The set
of tags used by the system is based on the SPMRL
scheme which in turn adopts the POS labels from
Sima’an et al. (2001) (detailed in our appendix).

Morphological Features Along with the POS
category, we specify for each segment the prop-
erties that are signalled by inflectional morphol-
ogy. The scheme encodes the following prop-
erties: Number [S (Singular) / P (Plural) / D
(Dual)], Gender [F (Female) / M (Male) / F,M
(both)], Person [1 / 2 / 3 / A (All)],4 and Tense
[Past, Present, Future, Imperative, Infinitive].5

Lemmas Each segment is also assigned a
lemma, i.e., the cannonical representation of its
core (uninflected) meaning.6 For Hebrew nouns
and adjectives, the lemma is chosen to be the
Masculine-Singular form. For verbs, the lemma is
in the Masculine-Singular-3per form in Past tense.

3In UD they are called words. In Hebrew NLP they are
called segments. We use morphemes or segments herein.

4A is used in cases where all analyses are valid, such as in
Beinoni form - ’אוכלת!‘ (I/you/she eat.singular.feminine)

5Present-tense verbs and participles are tagged ‘Beinoni’.
6Note that due to high morphological fusion in Hebrew,

simple surface-based stemming will not suffice.

261

Dependency Tree The dependency tree is de-
fined over all morphological segments and an ar-
tificial root node. It consists of a set of labeled
binary relations that indicate the bi-lexical depen-
dencies between segments. Note that the SPMRL
dependency scheme, as opposed to UD, always se-
lects functional heads, rather than lexical heads.
The dependency labeling is based on the scheme
from Tsarfaty (2013), repeated in the appendix.

Lattices As explained in section 3 above, a word
can be segmented into morphemes in multiple
ways, which are constrained by a broad-coverage
lexicon. In addition to the parsed output, we make
available for each input sentence its sentence lat-
tice, i.e. the set of all possible segmentations
for a given sentence, along with all possible mor-
phosyntactic analyses for each arc.

5 Technical Details and Forms of Use

YAP is implemented in the Go language.7 It re-
quires 6GB of RAM to run, and employs a sim-
ple 3-step installation, given in the supplementray
material. The input to the system is a tokenized
sentence, with tokens appearing one per line, and
a line break after every sentence.8 The output is
a dependency tree (where each node in the tree
is a lattice arc) provided in the CoNLL-X format
(Buchholz and Marsi, 2006). YAP is trained on
the Hebrew section of the SPMRL shared task. It
also makes use of the broad-coverage lexicon of
Itai and Wintner (2008) for finding all potential
lattice paths. In case of out-of-vocabulary (OOV)
items, we employ a simple heuristic where we sug-
gest the 10 most-likely analyses of rare tokens ob-
served during training.

Simple Use | Command line From the com-
mand line, one can process one input file at a time,
with a single sentence or more. The input file must
be formatted with a single token per line, and an
empty line denoting the end of every sentence.

Processing a file is done in 2 steps: First, run
Morphological Analysis using ./yap hebma to
generate a sentence lattice containing all possible
morphological breakdowns of each token. YAP
will save the lattice to the file specified via the
-out flag.

7https://golang.org/
8We assume the tokenization convention of MILA (Itai

and Wintner, 2008).

Now you can run joint Morphological Disam-
biguation and Dependency Parsing using ./yap
joint to jointly predict the best lattice path and
corresponding dependency tree. The input to this
command is the output file generated in the pre-
vious step, and there are 3 output files: one con-
taining word segments, one containing the disam-
biguated lattice path, and one containing the com-
plete dependency tree in CoNLL-X format.

Advanced Use | RESTful API YAP can run as a
RESTful server that accepts parse requests. To do
this simply start the server, listening on localhost
port 8000. Now you can call the joint endpoint
with a json object containing the list of tokens to
process in the HTTP data payload. The response
is a json object containing the three output levels
(MA, MD and Dep). You can use jq and sed (or
any other json and line processing tools) to format
the (tab separated value) responses and reassemble
the output. Check our appendix for an illustration.

Educational Use | The Online Demo In 2018
we decided to create an online demo of the system,
for educational purposes: (i) To expose NLP/AI
researchers to NLP capabilities available for He-
brew. (ii) To educate non-CS scientists and engi-
neers who work with Hebrew data (e.g., digital hu-
manities) on text annotations that can potentially
be useful for their applications. (iii) To launch out-
reach activities where we teach what is NLP to the
local community (e.g., school kids).9

To use the demo, simply go to onlp.openu.
ac.il and type a Hebrew sentence in the textbox.
The demo is built with Django and Bootstrap web
frameworks. It sends the user’s Hebrew text input
to the ONLP server, which returns a CoNLL-X for-
matted parse along with the complete sentence lat-
tice. Pre-processing includes pre-morphological
tokenization of the input, where punctuation is be-
ing separated from the tokens. Double quotation
marks are being separated from the word unless
they appear before the last character of the word,
to avoid over-segmentation of acronyms.10 The
tokenized sequence is then passed to the ONLP

server. The CoNLL-X output is then processed
into the following layers: the FORM column is
concatenated and presented as ”Segmented Text”,
and the POS, LEMMA, FEATS and DEPS are pre-

9E.g., https://www.youtube.com/watch?v=
TFwQeoKpznA&feature=youtu.be

10Acronyms in Hebrew are written with a quotation mark
before the last letter, e.g. ’ארה!”ב!‘ (USA) .

262

Tok MA MD POS Lem Feats Deps Joint
Tasks
MILA X X
NITE X X X
Hebrew-NLP X
Adler X X X
Goldberg X
Pipelines
UDPipe X X X X X X X
CoreNLP X X X X X X X
ONLP X X X X X X X X

Table 1: Existing Coverage for Hebrew NLP Tasks

sented in separate accordion tabs. Furthermore,
the demo presents the sentence lattice which is the
input to the joint parser. This is useful for debug-
ging, and for analyzing lexical-coverage in out-of-
domain scenarios.

Expert Use | Out of Domain Scenarios A bot-
tleneck for the system in out-of-domain parsing
scenarios is the coverage of the lexicon. We
rely on a general-purpose lexicon containing over
500K entries. OOV words are treated via heuris-
tics we designed, which are suitable for the gen-
eral case only. However, identifying vocabulary
items accurately may be critical when applying the
parser to new domains with domain-specific infor-
mation (medical, financial, political, etc.). Fortu-
nately, we can extend the system with a domain-
specific lexicon, thus extending the MA coverage.
Due to joint inference, the availability of a bet-
ter suited lexical analysis triggers better lexico-
syntactic decisions on the whole.11

6 Related and Future Work

Hebrew NLP in general and Hebrew parsing in
particular are known to be challenging, due to in-
teresting linguistic properties, the scarcity of an-
notated data, and the small research community
around. So, Hebrew has been seriously under-
studied in NLP. During the early 2000s, the MILA
knowledge center was established, where the two
of the main Hebrew resources for NLP were devel-
oped: the Hebrew treebank (Sima’an et al., 2001)
and the Hebrew Lexicon (Itai and Wintner, 2008).

Morphological Taggers for Hebrew using local
linear-context have been trained on these data and
were made available for free use (Adler and El-
hadad, 2006; Bar-haim et al., 2008). However,
their performance was not on a par with parallel
tools for English and thus insufficient for commer-
cial use. Hebrew dependency parsing was initially

11We discuss how exactly this is executed in the appendix.

provided by Goldberg and Elhadad (2009), but
the parser provided unlabeled dependency, and the
pipeline relied on Adler’s morphological tagger.
This left the predicted dependency trees inaccurate
and unsatisfying. Joint morpho-syntactic models
for constituency-based parsing based on Tsarfaty
(2010) showed good performance on benchmark
data, but was never released for open use.

With the development of the UD treebanks
collection, general frameworks such as UDPipe
(Straka et al., 2016) and CoreNLP (Manning et al.,
2014) have been trained on the Hebrew UD tree-
bank, and made the model available. However,
these models provide performance that is still far
from satisfactory. As we also demonstrate in our
screen-cast,12 these systems make critical mis-
takes, even with the simplest sentences. We con-
jecture that this is due to their inherent pipeline
assumption: initial layers of processing present
many mistakes. due to the extreme morphological
ambiguity, and later layers cannot recover.13 No-
tably, neural-network models utilizing word em-
beddings, (e.g., UDPipe) also lag behind.

Table 1 shows the task-coverage of existing
tools and toolkits for NLP in Hebrew, academic
as well as private initiatives (NITE,Hebrew-NLP).
The task-coverage of the ONLP suite we present
is on a par with international standards (UD-
Pipe, CoreNLP), and its level of performance was
shown to exceed all existing models (More et al.,
2019). We are currently working towards Named-
Entity Recognition as well as Open Information
Extraction, to be added to ONLP in the near future.

7 Conclusion

This paper presents ONLP, a complete language-
processing framework for automatic annotation of
Modern Hebrew Texts. The framework covers
morphological segmentation, POS tags, lemmas
and features, and dependency parsing, predicted
jointly. The system is easy to install and to use,
and we support multiple forms of usage fitting
user-personas with different needs. We hope the
availability of an open-source, accurate, and easy-
to-use system for NLP in Hebrew will benefit the
local NLP open-source community and greatly ad-
vance Hebrew language technology research and
development, in academia and in the industry.

12https://www.youtube.com/watch?v=
H6pvh1x20FQ

13Our detailed qualitative error analysis in More et al.
(2019) indeed confirms this conjecture.

263

Acknowledgements

We thank the NLPH community, in particular
Shay Palachi, Amit Shkolnick and Yuval Fein-
stein, for discussion and insightful comments. We
further thank Avi Bivas (Israel Innovation Author-
ity) and Milo Avisar for promoting NLP initia-
tives in Israel. This research is supported by an
ISF grant (1739/26) and an ERC Starting grant
(677352), for which we are grateful.

References
Meni Adler and Michael Elhadad. 2006. An unsuper-

vised morpheme-based hmm for Hebrew morpho-
logical disambiguation. In ACL. The Association for
Computer Linguistics.

Roy Bar-haim, Khalil Sima’an, and Yoad Winter. 2008.
Part-of-speech tagging of Modern Hebrew text. Nat-
ural Language Engineering, 14(2):223–251.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of CoNLL, pages 149–164.

Yoav Goldberg and Michael Elhadad. 2009. Hebrew
dependency parsing: Initial results. In Proceed-
ings of the 11th International Conference on Parsing
Technologies, IWPT ’09, pages 129–133.

Yoav Goldberg and Michael Elhadad. 2011. Joint He-
brew segmentation and parsing using a PCFGLA lat-
tice parser. In Proceedings of ACL.

Yoav Goldberg and Reut Tsarfaty. 2008. A sin-
gle framework for joint morphological segmentation
and syntactic parsing. In Proceedings of ACL.

Spence Green and Christopher D. Manning. 2010. Bet-
ter Arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of COLING.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Alon Itai and Shuly Wintner. 2008. Language re-
sources for Hebrew. Language Resources and Eval-
uation, 42(1):75–98.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings ACL: system demon-
strations, pages 55–60.

Amir More, Amit Seker, Victoria Basmova, and Reut
Tsarfaty. 2019. Joint transition-based models for
morpho-syntactic parsing: Parsing strategies for
MRLs and a case study from modern Hebrew.
Transactions of the Association for Computational
Linguistics, 7:33–48.

Amir More and Reut Tsarfaty. 2016. Data-driven mor-
phological analysis and disambiguation for morpho-
logically rich languages and universal dependencies.
In Proceedings of COLING, pages 337–348. The
COLING 2016 Organizing Committee.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and N. Nativ. 2001. Building a tree-bank of Modern
Hebrew text. Traitment Automatique des Langues,
42(2).

Milan Straka, Jan Hajic, and Jana Straková. 2016. Ud-
pipe: Trainable pipeline for processing conll-u files
performing tokenization, morphological analysis,
pos tagging and parsing. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. Euro-
pean Language Resources Association (ELRA).

Reut Tsarfaty. 2006. Integrated morphological and
syntactic disambiguation for modern Hebrew. In
Proceedings ACL-CoLing Student Research Work-
shop, pages 49–54, Stroudsburg, PA, USA. ACL.

Reut Tsarfaty. 2010. Relational-realizational parsing.
Ph.D. thesis.

Reut Tsarfaty. 2013. A unified morphosyntactic
scheme for stanford dependencies. In Proceedings
of ACL.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, San-
dra Kübler, Marie Candito, Jennifer Foster, Yannick
Versley, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(spmrl): What, how and whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statis-
tical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 1–12, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics, 37(1):105–151.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the ACL, HLT ’11, pages 188–193,
Stroudsburg, PA, USA. ACL.

A Resources
1. Paper Appendix and Supplementary Materials:
https://arxiv.org/abs/1908.05453
2. Github:
https://github.com/OnlpLab/yap
3. Demo - Website:
http://onlp.openu.org.il
4. Demo - Screencast:
https://www.youtube.com/watch?v=
H6pvh1x20FQ
5. API Docker Image:
https://hub.docker.com/r/onlplab/
yap-api
6. SPMRL-to-UD Conversion:
https://github.com/OnlpLab/Hebrew_UD
7. ONLP Lab Website:
http://onlp.openu.org.il/home

264

Author Index

Abdelali, Ahmed, 217
Akkalyoncu Yilmaz, Zeynep, 19
Aletras, Nikolaos, 115
Alva-Manchego, Fernando, 49
An, Bo, 67
An, Jisun, 223

Bali, Kalika, 103
Baly, Ramy, 223
Baroni, Marco, 55
Barrón-Cedeño, Alberto, 223
Bastings, Joost, 109
Bauer, Elisabeth, 73
Bean, Daniel, 139
Bendayan, Rebecca, 139
Bhandare, Ashwin, 79
Bhowmick, Antara, 79
Bo, Chen, 67
Bolt, Thomas J., 205
Boni, Odellia, 211
Bonin, Francesca, 211
Bontcheva, Kalina, 115
Bouchacourt, Diane, 55
Budzianowski, Paweł, 181

Cardell-Oliver, Rachel, 193
Carroll, Lucien, 61
Casanueva, Iñigo, 181
Castelli, Vittorio, 31
Chaabouni, Rahma, 55
Chakravarti, Rishav, 31
Chang, Jason, 235
Chang, Kai-Wei, 247
Chau, Austin, 79
Chaudhuri, Pramit, 205
Chen, Chun Yen, 79
Chen, Danlu, 253
Chen, Hui, 241
Chen, Xi, 241
Cheng, Feixiang, 163
Choudhury, Monojit, 103
Chowdhury, Md. Faisal Mahbub, 25
Cohen, Doron, 211
Cohn, Michelle, 79

Collins, Edward, 121
Coope, Sam, 181
Costa-jussà, Marta R., 151

Da San Martino, Giovanni, 223
Dagan, Ido, 1
Dandapat, Sandipan, 103
Darwish, Kareem, 217, 223
Dash, Sarthak, 25
Davidson, Sam, 79
Deng, Haotang, 241
Dexter, Joseph P., 205
Dietsche, Markus, 199
Ding, Chenchen, 157
Dobson, Richard, 139
Du, Xiaoyong, 241
Duan, Xingyi, 97

Eichler, Max, 127
Eldesouki, Mohamed, 217
Embar, Varsha, 61
Erera, Shai, 211
Escolano, Carlos, 151

Fauceglia, Nicolas Rodolfo, 25
Feigenblat, Guy, 211
Ferritto, Anthony, 31
Fischer, Frank, 73
Fischer, Martin R., 73
Florian, Radu, 31
Flynt, Jeffrey H., 205
Fosler-Lussier, Eric, 85

Gao, Tianyu, 169
Gardner, Matt, 7
Gerz, Daniela, 181
Glass, James, 223
Glass, Michael, 31
Glavaš, Goran, 199
Gleize, Martin, 211
Gliozzo, Alfio, 25
Gong, Ming, 163
Gu, Jiatao, 253
Gurevych, Iryna, 73, 127

265

Hagiwara, Masato, 229
Han, Xianpei, 67
Han, Xu, 169
Henderson, Matthew, 181
Herzig, Jonathan, 211
Hou, Yufang, 211
Hu, Guoping, 97
Hu, Shuhan, 133
Huang, Mingyu, 133

Inui, Kentaro, 229
Ito, Takumi, 229
Iyer, Shreenath, 79

Jain, Anirudh, 253
Jang, Youngsoo, 187
Jaradat, Israa, 223
Jerbi, Achiya, 211
Jesse, Kevin, 79
Jiang, Daxin, 163
Jiang, Di, 37
Jiang, Lan, 133
Jochim, Charles, 211
Ju, Qi, 241

Karadzhov, Georgi, 223
Karmakharm, Twin, 115
Kharitonov, Eugene, 55
Kiesewetter, Jan, 73
Kim, Kee-Eung, 187
Klein, Stav, 259
Konopnicki, David, 211
Korat, Daniel, 1
Kraljevic, Zeljko, 139
Kreutzer, Julia, 109
Kumar, Anuj, 145
kumar, vishwajeet, 175
Kuribayashi, Tatsuki, 229
Kwak, Haewoon, 223

Lacroux, Elora, 151
Lai, Yi-Huei, 235
Lee, Jaejun, 91
Lee, Jongmin, 187
Lee, Kyeng-Hun, 187
Lev, Guy, 211
Li, Yuan-Fang, 175
Lin, Jimmy, 19, 91
Lin, Shou-De, 43
Lin, Wutao, 163
Lison, Pierre, 187
Liu, Tao, 241
Liu, Ting, 97

Liu, Wei, 193
Liu, Zhiyuan, 169
Lu, Wei, 241

Mamou, Jonathan, 1
Martin, Louis, 49
Mass, Yosi, 211
Meyer, Christian M., 73
Mihindukulasooriya, Nandana, 25
Moghtader, Jacob, 247
Moon, Seungwhan, 145
Mrkšić, Nikola, 181
Mubarak, Hamdy, 217
Muneeswaran, Sivaanandh, 175
Murdock, J William, 31

Nakov, Preslav, 223
Newman-Griffis, Denis, 85

Pan, Lin, 31
Park, Jaeyoung, 187
Peled Nakash, Ora, 211
Pendus, Cezar, 31
Pereg, Oren, 1
Pfeiffer, Jonas, 73
Ponzetto, Simone Paolo, 199

Qu, Lizhen, 13

Raghunathan, Karthik, 61
Raghuvanshi, Arushi, 61
Ramakrishnan, Ganesh, 175
Ramakrishnan, Vijay, 61
Riezler, Stefan, 109
Rivlin, Or, 211
Roitman, Haggai, 211
Romeo, Salvatore, 223
Roukos, Salim, 31
Rozanov, Nikolai, 121

Sadde, Shoval, 259
Şahin, Gözde Gül, 127
Sailer, Michael, 73
Sajjad, Hassan, 217
Sakrajda, Andrzej, 31
Samih, Younes, 217
Sang, Zhijie, 163
Santy, Sebastin, 103
Scarton, Carolina, 49
Schmidt, Fabian David, 199
Schulz, Claudia, 73
Searle, Thomas, 139
Seker, Amit, 259

Shah, Pararth, 145
Shen, Liang-Hsin, 43
Shmueli-Scheuer, Michal, 211
Shou, Linjun, 163
Sil, Avi, 31
Singh, Sameer, 7
Song, Yuanfeng, 37
Specia, Lucia, 49
Spithourakis, Georgios, 181
Sreenivasulu, Giritheja, 79
Staykovski, Todor, 223
Stewart, Michael, 193
Su, Pei-Hao, 181
Subba, Rajen, 145
Subramanian, Sanjay, 7
Sumita, Eiichiro, 157
Sun, Le, 67
Sun, Maosong, 169
Suzuki, Jun, 229

Tai, Pei-Lun, 43
Tang, Raphael, 91
Tsarfaty, Reut, 259
Tuyls, Jens, 7

Utiyama, Masao, 157

Vázquez, Pere-Pau, 151
Vulić, Ivan, 181

Wallace, Eric, 7
Wang, Baoxin, 97
Wang, Changhan, 253
Wang, Junlin, 7
Wang, Shengjin, 19
Wang, Shijin, 97
Wang, Zhichun, 133
Wang, Ziyue, 97
Wasserblat, Moshe, 1
Weiner, Bar, 211
Wen, Tsung-Hsien, 181
Wen, Weiming, 79
Wong, Raymond Chi-Wing, 37
Wu, Allen, 247
Wu, Chao-Chung, 43
Wu, Dayong, 97

Xia, Chen, 247
Xu, Chenchen, 13
Xu, Qian, 37
Xu, Qiongkai, 13

Yan, Quanjia, 163

Yang, Jinjian, 133
Yang, Qiang, 37
Yang, Wei, 19
Yang, Yi Mang, 79
Yang, Ze, 163
Yao, Yuan, 169
Ye, Deming, 169
Ye, Xiaoju, 133
Yu, Dian, 79
Yu, Zhou, 79

Zhang, Bingbing, 121
Zhang, Haotian, 19
Zhang, Haoxiang, 247
Zhang, Jiaping, 79
Zhang, Jinbin, 241
Zhang, Yifan, 223
Zhao, Weiwei, 37
Zhao, Xin, 241
Zhao, Zhe, 241
Zheng, Wei, 133
Zhou, Mingyang, 79
Zottmann, Jan, 73

	ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System
	AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
	ALTER: Auxiliary Text Rewriting Tool for Natural Language Generation
	Applying BERT to Document Retrieval with Birch
	Automatic Taxonomy Induction and Expansion
	CFO: A Framework for Building Production NLP Systems
	Chameleon: A Language Model Adaptation Toolkit for Automatic Speech Recognition of Conversational Speech
	Controlling Sequence-to-Sequence Models - A Demonstration on Neural-based Acrostic Generator
	EASSE: Easier Automatic Sentence Simplification Evaluation
	EGG: a toolkit for research on Emergence of lanGuage in Games
	Entity resolution for noisy ASR transcripts
	EUSP: An Easy-to-Use Semantic Parsing PlatForm
	FAMULUS: Interactive Annotation and Feedback Generation for Teaching Diagnostic Reasoning
	Gunrock: A Social Bot for Complex and Engaging Long Conversations
	HARE: a Flexible Highlighting Annotator for Ranking and Exploration
	Honkling: In-Browser Personalization for Ubiquitous Keyword Spotting
	IFlyLegal: A Chinese Legal System for Consultation, Law Searching, and Document Analysis
	INMT: Interactive Neural Machine Translation Prediction
	Joey NMT: A Minimalist NMT Toolkit for Novices
	Journalist-in-the-Loop: Continuous Learning as a Service for Rumour Analysis
	LIDA: Lightweight Interactive Dialogue Annotator
	LINSPECTOR WEB: A Multilingual Probing Suite for Word Representations
	MAssistant: A Personal Knowledge Assistant for MOOC Learners
	MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation
	Memory Grounded Conversational Reasoning
	Multilingual, Multi-scale and Multi-layer Visualization of Intermediate Representations
	MY-AKKHARA: A Romanization-based Burmese (Myanmar) Input Method
	NeuronBlocks: Building Your NLP DNN Models Like Playing Lego
	OpenNRE: An Open and Extensible Toolkit for Neural Relation Extraction
	ParaQG: A System for Generating Questions and Answers from Paragraphs
	PolyResponse: A Rank-based Approach to Task-Oriented Dialogue with Application in Restaurant Search and Booking
	PyOpenDial: A Python-based Domain-Independent Toolkit for Developing Spoken Dialogue Systems with Probabilistic Rules
	Redcoat: A Collaborative Annotation Tool for Hierarchical Entity Typing
	SEAGLE: A Platform for Comparative Evaluation of Semantic Encoders for Information Retrieval
	A Stylometry Toolkit for Latin Literature
	A Summarization System for Scientific Documents
	A System for Diacritizing Four Varieties of Arabic
	Tanbih: Get To Know What You Are Reading
	TEASPN: Framework and Protocol for Integrated Writing Assistance Environments
	TellMeWhy: Learning to Explain Corrective Feedback for Second Language Learners
	UER: An Open-Source Toolkit for Pre-training Models
	Visualizing Trends of Key Roles in News Articles
	VizSeq: a visual analysis toolkit for text generation tasks
	What's Wrong with Hebrew NLP? And How to Make it Right

