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Abstract

Elazar and Goldberg (2018) showed that pro-
tected attributes can be extracted from the rep-
resentations of a debiased neural network for
mention detection at above-chance levels, by
evaluating a diagnostic classifier on a held-
out subsample of the data it was trained on.
We revisit their experiments and conduct a se-
ries of follow-up experiments showing that,
in fact, the diagnostic classifier generalizes
poorly to both new in-domain samples and
new domains, indicating that it relies on corre-
lations specific to their particular data sample.
We further show that a diagnostic classifier
trained on the biased baseline neural network
also does not generalize to new samples. In
other words, the biases detected in Elazar and
Goldberg (2018) seem restricted to their par-
ticular data sample, and would therefore not
bias the decisions of the model on new sam-
ples, whether in-domain or out-of-domain. In
light of this, we discuss better methodologies
for detecting bias in our models.

1 Introduction

Several approaches have been proposed to learn
classifiers that are invariant (unbiased with re-
spect) to protected attributes: cost-sensitive (Agar-
wal et al., 2018), regularization-based (Bechavod
and Ligett, 2017), and adversarial (Ganin and
Lempitsky, 2015). In the adversarial approach, a
model learns representations x that should be pre-
dictive for a main task y and oblivious to a pro-
tected attribute z.

Adversarial training has been used to learn data
representations that are invariant to demographic
attributes (Raff and Sylvester, 2018; Beutel et al.,
2017; Li et al., 2018), as well as representa-
tions invariant to domain differences (Ganin and
Lempitsky, 2015), clean or noisy speech (Sriram
et al., 2018), and invariant to differences between

source languages in multi-lingual machine trans-
lation (Xie et al., 2017). Elazar and Goldberg
(2018) argue, however, that adversarial learning
does not fully remove sensitive demographic traits
from the data representations. This conclusion is
based on the observation that a diagnostic clas-
sifier trained over the supposedly debiased data
representations could still predict gender, age and
race above chance level in their experimental set-
up.

In general, diagnostic classifiers are trained on
data representations to predict the protected de-
mographic attributes in question as well as pos-
sible, i.e., the classifier picks up on any correla-
tions, strong or weak, between data representa-
tions and the demographic classes. Correlations
come in different flavours: PREVALENT: Certain
features are indicative of gender in most contexts,
e.g., the distribution of phrases like ‘as a mother’
or ‘as a guy’. SAMPLE-SPECIFIC: Some fea-
tures are indicative of gender within a particular
domain/sample, e.g. bling may correlate with a
particular range of ages in a sample of reviews of
accessories, and yet another range in reviews of
movies. ACCIDENTAL: Yet, other features may
show a correlation with the protected attribute in a
given dataset, while in fact being completely unre-
lated to it. The correlation is unexpected and par-
ticular to a finite data sample.

This paper presents a follow-up to the experi-
ments in Elazar and Goldberg (2018) and exam-
ines what kind of correlation the data representa-
tions in their models exhibit with demographic at-
tributes: PREVALENT, SAMPLE-SPECIFIC or AC-
CIDENTAL correlations. We do this by not only
evaluating the diagnostic classifiers on in-sample
data, but also on new samples, as well as across
textual domains. We also explore what the models
learn in a more qualitative manner.
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GENDER AGE

Train Dev Test Train Dev Test

PAN16 TWIT 148 10 10 148 10 10
CF TWIT – – 6.4 – – –
100 AUTH TWIT – – 49.6 – – –
PAN14 BLOGS – – 12.8 – – 8
PAN14 REVIEWS – – 13 – – 8.4
PAN14 SOME – – 10 – – 10
PAN16 RAND – – 10 – – 10

Table 1: Dataset sizes (in 1000 sentences).

Contributions Our contributions are method-
ological. We show that the diagnostic classifiers
used to establish gender and age bias in Elazar
and Goldberg (2018) (a) rely only on sample-
specific patterns to predict gender and age, and
(b) do therefore not generalize to new samples
or domains. Surprisingly, we also show that this
also holds for the biased baseline model in their
experiments, suggesting that the particular repre-
sentations induced for the mention detection task
in Elazar and Goldberg (2018) were not biased
with respect to protected demographic attributes.
This does not show whether the data is biased, or
whether adversarial training is a good or poor de-
biasing technique; merely that Elazar and Gold-
berg (2018) did not properly establish any of these
things. Our contributions are, as said, method-
ological, and we believe this case study highlights
the key difficulties establishing bias in model rep-
resentations.

2 Adversarial Attribute Removal with
Diagnostic Classifiers

In adversarial attribute removal, a model is trained
with a two-fold objective: learning to solve a main
task and unlearning to predict a protected attribute
(+ADV). A model trained without the second ob-
jective is referred to as a non-adversarial model
(-ADV). The architecture of Elazar and Goldberg
(2018) consists of a single-layer LSTM encoder,
and two multi-layer perceptrons – one for each
task. The main task p(y|x) is learned as usual,
with loss being backpropagated through the rele-
vant perceptron and the encoder. The attribute un-
learning is achieved by training the relevant per-
ceptron to predict p(z|x), where z is the protected
attribute, while also punishing the encoder for let-
ting any signal through that could allow the per-
ceptron to do so (Ganin and Lempitsky, 2015). Af-
ter training, a diagnostic classifier, an attacker, is
used to evaluate the effectiveness of the adversar-

ial training. The language encoder is used to ob-
tain representations of the input data, and the diag-
nostic classifier is trained to predict the protected
attributes from these representations, without ac-
cess to the encoder or to the original inputs. Since
the dataset is balanced and the targets are binary,
leakage is defined in Elazar and Goldberg (2018)
as any demographic attribute prediction accuracy
over 50.0% by the diagnostic classifier.

Preprocessing Table 1 shows sizes for all used
datasets. Our main dataset, PAN16 TWIT (Rangel
et al., 2016), is split into train and development,
following Elazar and Goldberg (2018). We further
remove 10,000 sentences from their train data to
use as a held-out test split, making sure there is
no author overlap between training and test data.
This means that we have 12,000 fewer sentences
in our train split than Elazar and Goldberg (2018),
but we report results on exactly the same devel-
opment split as well as on the new held-out test
split. PAN16 TWIT is balanced using undersam-
pling with respect to main task and demographic
attribute (gender and age respectively) which is
why there are separate datasets for GENDER and
AGE. Our main observation here is that training,
development and test splits and random subsam-
ples of one sample of data. Using random sub-
samples this way is common in machine learning,
including bias detection studies (Elazar and Gold-
berg, 2018; Zhao et al., 2019) and probing stud-
ies (Ravfogel et al., 2018; Lin et al., 2019), but
is known to overestimate performance (Glober-
son and Roweis, 2016), in particular for high-
dimensional problems.

Replication We start by replicating the experi-
ment of Elazar and Goldberg (2018) using their
code on PAN16 TWIT with their data splits. The
main task is predicting the mentions of other Twit-
ter users after removing all user names in the
tweets. The protected demographic attributes are
age and gender, both with binary targets. Our
development results (main and diagnostic classi-
fier) which are comparable to Elazar and Goldberg
(2018) are reported in Table 6 in the Appendix;
test set results are also in Table 4. Our results re-
main comparable to those obtained in Elazar and
Goldberg (2018), albeit the diagnostic classifier is
able to achieve 3.92 percentage points less leakage
for gender and 2.59 percentage points for age, pos-
sibly due to the reduction in training data. Adver-
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AGE GENDER

Mean RStD Mean RStD

-ADV 14.48 0.34 5.40 0.16
+ADV 5.3 0.45 3.68 0.22

Table 2: Mean and relative standard deviation of
the leakage of 10 attackers trained on different sub-
samples of the training data (PAN16 TWIT). Evaluated
on the test set.

sarial training reduces the leakage of demographic
attributes, but the diagnostic classifier is still able
to predict the sensitive demographic attribute from
the data representations significantly better than
chance (line 1 of Table 4). Significance test is ob-
tained by checking subsampled test set accuracies
against the 95% confidence interval of a random
distribution.

3 In-Sample Analysis

In §4, we use out-of-sample and cross-domain
evaluation to show that the model trained above
relies on spurious or ACCIDENTAL correlations.
In this section, as a supplement, we train 10 at-
tackers on different random subsamples of 50%
of the training data to explore the robustness of
the observed leakage. Each attacker is evaluated
on the same PAN16 TWIT test data. Furthermore,
we present a qualitative analysis of what the above
model has learned.

Table 2 shows the mean and relative standard
deviation (RStD) of the leakage of the 10 diagnos-
tic classifiers in each setting. The leakage, unsur-
prisingly, is larger for the non-adversarial condi-
tion than the adversarial condition.

Extracting leaked samples We further analyse
the tweets that were correctly labelled by the dif-
ferent attackers. Given that these are binary classi-
fication tasks, we consider labels predicted with a
high probability to be leaked, and labels predicted
with a probability close to 0.5 to be randomly cho-
sen. We sort all of the correctly labelled test ex-
amples by the probability assigned to the label by
the attacker. We denote the top n samples as the
leaked samples, where n is the amount of leakage
observed for a model1.

1e.g., with a subsampled test accuracy of 54.4%, we take
the 4.4% most confidently predicted tweets for each subsam-
pled model and only use the intersection from all models.

GENDER AGE

M F n Y O n

-ADV 52.1 47.9 142 69.1 30.9 553
+ADV 100. 0. 37 57.9 42.1 145

Table 3: Class distribution for the confidently predicted
tweets and number of tweets per model condition for
M(ale), F(emale) and Y(oung), O(ld)

We use the intersection of leaked samples
across the attackers, under the assumption that
samples that were correctly labelled by all ten
models (and with high probability) are most likely
to exhibit protected attribute leakage. After dedu-
plicating, we have 179 sentences correctly labelled
for Gender, and 698 sentences for age, as reported
in Table 3. We call these the LEAKED sentences.
(There are no female-authored sentences that are
confidently predicted after adversarial training).

Exploring leaked samples Out of the LEAKED

gender sentences, the top 10 sentences which re-
ceived the highest confident scores are presented
in Table 7 in the Appendix. 28 subjects rated how
confident they were about the gender of the au-
thor on a 9-point scale. Subjects were recruited via
the authors’ professional and private networks and
were not compensated for the time they spent. All
subjects were unaware of the origin of the tweets,
and the sentences were presented in a random or-
der. The scale was calibrated such that the ex-
tremes represented Very certain about the author
being a man (1) or a woman (9), with 5 a neutral
middle value. The mean for sentences by male au-
thors selected without adversarial training is 4.68
and for females 5.69. With adversarial training,
this mean is 4.83. The mean of sentences extracted
from the model trained with adversarial training is
closest to the neutral value 5, but independent t-
tests show that the differences between all classes
are insignificant (p > 0.05). Therefore, the results
show that humans had difficulties determining the
gender of the author. This is contrary to the find-
ings of Flekova et al. (2016), but is similar by the
unaveraged results of Burger et al. (2011). This
indicates that the data did not exhibit (m)any ob-
vious predictors of gender or age.

In addition to this study, we also use this data
to visualize what our diagnostic classifiers focus
on. For this purpose, we use the models from Sec-
tion 2, trained on the full PAN16 TWIT dataset,
and perform feature analysis using uptraining: Us-
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(a) GENDER −ADV (b) GENDER +ADV

(c) AGE −ADV (d) AGE +ADV

Figure 1: Biased n-grams in a linear simulation of
the attacker model in Elazar and Goldberg (2018).
Red=female, blue=male, green=young, brown=old.
The size corresponds to the size of the coefficient.

ing a transparent, linear model to approximate our
deep model (Bastani et al., 2017), we train a logis-
tic regression model with L1 regularization on the
train set representations, relabeled by the predic-
tions of our diagnostic classifier. We then study
the coefficients of this linear model. The data
is represented using the 10,000 most frequent n-
grams.2 We also use the confidence of the diag-
nostic classifier for importance weighting during
training; note that the predicted classes are not bal-
anced.3 For gender and age, and for our baseline
and our adversarially trained system, we uptrain
10 models on random 50% subsets of the train-
ing data and average coefficients to filter out noise.
Figure 1 shows word clouds for the n-grams in the
LEAKED sentences, with word size reflecting the
size of the avg. coefficients in the uptrained linear
models. We observe that for models with no ad-
versarial training, a few n-grams dominate the co-
efficients. In the models where adversarial training
was used, there are no large coefficients dominat-
ing the space, suggesting that the model succeeded
in removing strong correlates; we note that these
correlates do not intuitively relate strongly to gen-
der or age.

2n-gram representations are less expressive than LSTM
encodings, but given the short length of tweets, we assume
up to 5-gram representation capture most relevant patterns.

3Table 5 in the Appendix provides an overview of the
class distribution.

AGE GENDER

TEST SET -ADV +ADV -ADV +ADV

PAN16 TWIT 67.86* 53.45* 56.79* 53.74*

PAN16 RAND 50.13 50.32 49.50 50.00

100 AUTH TWIT – – 50.92 52.57
CF TWITTER – – 51.63* 50.74*

BLOGS 50.63* 55.12* 50.85 49.95
REVIEWS 51.03 50.26 50.44 49.28
SOME 50.32 50.16 50.34 48.34

Table 4: Cross-sample diagnostic classifier accuracy of
classification of demographic attribute when trained on
PAN16 TWIT data and evaluated on different test sets.
Significantly different from random *=p < 0.01.

4 Out-of-Sample and Cross-Domain
Evaluation

In our main set of experiments, we now evalu-
ate the adversarial and non-adversarial diagnos-
tic classifiers across different samples and differ-
ent domains. We use the following datasets for
these experiments: PAN14 (Rangel et al., 2014)4

- we include the English data from PAN14 for
the following domains: BLOGS, hotel REVIEWS,
and Social Media (SOME). The PAN14 data are
not annotated for the mention task, but this is
not necessary to evaluate the diagnostic classi-
fier on the protected, demographic attribute. We
also use data from Crowdflower’s Gender Classi-
fier data (CF TWIT), manually annotated for gen-
der5. We also made a new Twitter dataset with
manually annotated gender for 100 authors (100
AUTH TWIT) for the purpose of evaluating on a
different Twitter sample, following the approach
used to create PAN16 TWIT – detailed in Ap-
pendix A. The datasets are balanced with respect
to demographic attributes, and the Twitter datasets
are balanced with respect to mentions. We also
construct an artificial dataset from PAN16 TWIT

where the main task labels are preserved but the
demographic label is randomly shuffled (PAN16
RAND), allowing us to run experiments with no
PREVALENT or SAMPLE-SPECIFIC gender corre-
lations, only ACCIDENTAL. This experiment sup-
plements our in-sample analysis in §3 and shows
that our models are not overly expressive, indicat-
ing that the sample-specific correlations detected

4We do not include PAN14-Twitter, since the PAN16
TWIT training data subsumes the data from PAN14.

5Downloaded from https://d1p17r2m4rzlbo.
cloudfront.net/wp-content/uploads/2016/
03/gender-classifier-DFE-791531.csv

https://d1p17r2m4rzlbo.cloudfront.net/wp-content/uploads/2016/03/gender-classifier-DFE-791531.csv
https://d1p17r2m4rzlbo.cloudfront.net/wp-content/uploads/2016/03/gender-classifier-DFE-791531.csv
https://d1p17r2m4rzlbo.cloudfront.net/wp-content/uploads/2016/03/gender-classifier-DFE-791531.csv
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in Elazar and Goldberg (2018) are relatively sim-
ple associations.

The results in Table 4 show, however, that the
performance and leakage of the adversarial models
do not generalize well across domains, but for the
most part the performance of the non-adversarial
models doesn’t either. This is the main result pre-
sented here: The leakage shown in Elazar and
Goldberg (2018) does not transfer across domains,
but also does not even generalize to a new sam-
ple within the same domain. This suggests that
the leakage is merely spurious correlations in a
small, finite sample of data. Accuracies are, as
expected, mostly lower when adversarial training
is employed, but for the 100 AUTH TWIT sam-
ple, the non-adversarial accuracy is close to ran-
dom, while the adversarial accuracy is two points
higher: it appears that the adversarial component
has merely served as a regularizer during training.

5 Conclusion and Discussion

We examined the methodology used in Elazar and
Goldberg (2018) to establish bias in the represen-
tations of adversarial machine learning architec-
tures designed to protect demographic attributes.6

Our results suggest that when measuring demo-
graphic parity using a diagnostic classifier, one
needs to be careful in controlling for spurious cor-
relations that are limited to just one specific sam-
ple of data. In-sample correlations are not neces-
sarily meaningful in high-dimensional problems,
and while they can be lead to worse performance
on test time (Globerson and Roweis, 2016), they
do not lead to demographic bias in practice, when
our models are deployed on new samples of data.
In order to get more realistic assessments of repre-
sentation bias with respect to protected attributes,
we therefore need to test the out-of-sample gen-
eralization of detected bias/leakage, and, perhaps,
to qualitatively inspect the observed leakage pat-
terns.

We repeat here that none of our results say any-
thing about whether the datasets used in Elazar
and Goldberg (2018) are biased or not, or whether
other models induced from this data are likely to
exhibit biases. Our contribution is mainly method-

6The methodology is not only found in Elazar and Gold-
berg (2018). The same methodology can be found in other
papers on detecting bias in machine learning models, for ex-
ample, Zhao et al. (2019), as well as in several papers probing
neural network representations for linguistic knowledge, for
example, Lin et al. (2019).

ological: What we have shown is that the method-
ology in Elazar and Goldberg (2018), i.e., in-
sample evaluation of diagnostic classifiers, is not
sufficient to establish bias/leakage beyond the cur-
rent data sample. Instead we propose out-of-
sample and cross-domain evaluation, as well as
more qualitative investigation of the induced diag-
nostic classifiers. Our results are also orthogonal
to the main contribution of Elazar and Goldberg
(2018), which is to show that adversarial debias-
ing is not always able to remove bias.
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