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Abstract

Determining temporal relations (e.g., before

or after) between events has been a challeng-
ing natural language understanding task, partly
due to the difficulty to generate large amounts
of high-quality training data. Consequently,
neural approaches have not been widely used
on it, or showed only moderate improvements.
This paper proposes a new neural system that
achieves about 10% absolute improvement in
accuracy over the previous best system (25%
error reduction) on two benchmark datasets.
The proposed system is trained on the state-
of-the-art MATRES dataset and applies con-
textualized word embeddings, a Siamese en-
coder of a temporal common sense knowledge
base, and global inference via integer linear
programming (ILP). We suggest that the new
approach could serve as a strong baseline for
future research in this area.

1 Introduction

Temporal relation (TempRel) extraction has been
considered as a major component of understand-
ing time in natural language (Do et al., 2012; Uz-
Zaman et al., 2013; Minard et al., 2015; Llorens
et al., 2015; Ning et al., 2018a). However, the an-
notation process for TempRels is known to be time
consuming and difficult even for humans, and ex-
isting datasets are usually small and/or have low
inter-annotator agreements (IAA); e.g., UzZaman
et al. (2013); Chambers et al. (2014); O’Gorman
et al. (2016) reported Kohen’s  and F1 in the 60’s.
Albeit the significant progress in deep learning
nowadays, neural approaches have not been used
extensively for this task, or showed only moder-
ate improvements (Dligach et al., 2017; Lin et al.,
2017; Meng and Rumshisky, 2018). We think it
is important for to understand: is it because we
missed a “magic” neural architecture, because the
training dataset is small, or because the quality of
the dataset should be improved?

Recently, Ning et al. (2018c) introduced a new
dataset called Multi-Axis Temporal RElations for

Start-points (MATRES). MATRES is still rela-
tively small in its size (15K TempRels), but has a
higher annotation quality from its improved task
definition and annotation guideline. This paper
uses MATRES to show that a long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) system can readily outperform the previ-
ous state-of-the-art system, CogCompTime (Ning
et al., 2018d), by a large margin. The fact that a
standard LSTM system can significantly improve
over a feature-based system on MATRES indicates
that neural approaches have been mainly dwarfed
by the quality of annotation, instead of specific
neural architectures or the small size of data.

To gain a better understanding of the standard
LSTM method, we extensively compare the us-
age of various word embedding techniques, in-
cluding word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), FastText (Bojanowski
et al., 2016), ELMo (Peters et al., 2018), and
BERT (Devlin et al., 2018), and show their im-
pact on TempRel extraction. Moreover, we further
improve the LSTM system by injecting knowl-
edge from an updated version of TEMPROB, an
automatically induced temporal common sense
knowledge base that provides typical TempRels
between events1 (Ning et al., 2018b). Altogether,
these components improve over CogCompTime
by about 10% in F1 and accuracy. The proposed
system is public2 and can serve as a strong base-
line for future research.

2 Related Work

Early computational attempts to TempRel extrac-
tion include Mani et al. (2006); Chambers et al.

1For example, “explode” typically happens before “die”.
2https://cogcomp.org/page/publication_

view/879

https://cogcomp.org/page/publication_view/879
https://cogcomp.org/page/publication_view/879
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(2007); Bethard et al. (2007); Verhagen and Puste-
jovsky (2008), which aimed at building classic
learning algorithms (e.g., perceptron, SVM, and
logistic regression) using hand-engineered fea-

tures extracted for each pair of events. The fron-
tier was later pushed forward through continuous
efforts in a series of SemEval workshops (Ver-
hagen et al., 2007, 2010; UzZaman et al., 2013;
Bethard et al., 2015, 2016, 2017), and signifi-
cant progresses were made in terms of data an-
notation (Styler IV et al., 2014; Cassidy et al.,
2014; Mostafazadeh et al., 2016; O’Gorman et al.,
2016), structured inference (Chambers and Juraf-
sky, 2008a; Do et al., 2012; Chambers et al., 2014;
Ning et al., 2018a), and structured machine learn-
ing (Yoshikawa et al., 2009; Leeuwenberg and
Moens, 2017; Ning et al., 2017).

Since TempRel is a specific relation type, it is
natural to borrow recent neural relation extraction
approaches (Zeng et al., 2014; Zhang et al., 2015;
Zhang and Wang, 2015; Xu et al., 2016). There
have indeed been such attempts, e.g., in clinical
narratives (Dligach et al., 2017; Lin et al., 2017;
Tourille et al., 2017) and in newswire (Cheng
and Miyao, 2017; Meng and Rumshisky, 2018;
Leeuwenberg and Moens, 2018). However, their
improvements over feature-based methods were
moderate (Lin et al. (2017) even showed negative
results). Given the low IAAs in those datasets, it
was unclear whether it was simply due to the low
data quality or neural methods inherently do not
work well for this task.

A recent annotation scheme, Ning et al.
(2018c), introduced the notion of multi-axis to
represent the temporal structure of text, and iden-
tified that one of the sources of confusions in hu-
man annotation is asking annotators for TempRels
across different axes. When annotating only same-
axis TempRels, along with some other improve-
ments to the annotation guidelines, MATRES was
able to achieve much higher IAAs.3 This dataset
opens up opportunities to study neural methods for
this problem. In Sec. 3, we will explain our pro-
posed LSTM system, and also highlight the major
differences from previous neural attempts.

3 Neural TempRel Extraction

One major disadvantage of feature-based systems
is that errors occurred in feature extraction prop-

3Between experts: Kohen’s  ⇡ 0.84. Among crowd-
sourcers: accuracy 88%. More details in Ning et al. (2018c).

agate to subsequent modules. Here we study the
usage of LSTM networks4 on the TempRel extrac-
tion problem as an end-to-end approach that only
takes a sequence of word embeddings as input
(assuming that the position of events are known).
Conceptually, we need to feed those word embed-
dings to LSTMs and obtain a vector representa-
tion for a particular pair of events, which is fol-
lowed by a fully-connected, feed-forward neural
network (FFNN) to generate confidence scores for
each output label. Based on the confidence scores,
global inference is performed via integer linear
programming (ILP), which is a standard procedure
used in many existing works to enforce the tran-
sitivity property of time (Chambers and Jurafsky,
2008b; Do et al., 2012; Ning et al., 2017). An
overview of the proposed network structure and
corresponding parameters can be found in Fig. 1.
Below we also explain the main components.

3.1 Handling Event Positions

Each TempRel is associated with two events, and
for the same text, different pairs of events possess
different relations, so it is critical to indicate the
positions of those events when we train LSTMs
for the task. The most straightforward way is to
concatenate the hidden states from both time steps
that correspond to the location of those events
(Fig. 1b). Dligach et al. (2017) handled this is-
sue differently, by adding XML tags immediately
before and after each event (Fig. 1a). For example,
in the sentence, After eating dinner, he slept com-

fortably, where the two events are bold-faced, they
will convert the sequence into After <e1> eating

</e1> dinner, he <e2> slept </e2> comfortably.

The XML markups, which was initially proposed
under the name of position indicators for relation
extraction (Zhang and Wang, 2015), uniquely in-
dicate the event positions to LSTM, such that the
final output of LSTM can be used as a represen-
tation of those events and their context. We com-
pare both methods in this paper, and as we show
later, the straightforward concatenation method is
already as good as XML tags for this task.

3.2 Common Sense Encoder (CSE)

In naturally occurring text that expresses
TempRels, connective words such as since,

4We also tried convolutional neural networks but did not
observe that CNNs improved performance significantly com-
pared to the LSTMs. Comparison between LSTM and CNN
is also not the focus of this paper.
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Figure 1: Overview of the neural network structures studied in this paper. Networks (a) and (b) are two ways to
handle event positions in LSTMs (Sec. 3.1). (c) The Siamese network used to fit TemProb (Sec. 3.2). Once trained
on TemProb, the Siamese network is fixed when training other parts of the system. (d) The FFNN that generates
confidence scores for each label. Sizes of hidden layers are already noted. Embeddings of the same color share the
same matrix.

when, or until are often not explicit; never-
theless, humans can still infer the TempRels
using common sense with respect to the events.
For example, even without context, we know
that die is typically after explode and schedule

typically before attend. Ning et al. (2018b) was
an initial attempt to acquire such knowledge, by
aggregating automatically extracted TempRels
from a large corpus. The resulting knowledge
base, TEMPROB, contains observed frequencies
of tuples (v1, v2, r) representing the probability
of verb 1 and verb 2 having relation r and it was
shown a useful resource for TempRel extraction.

However, TEMPROB is a simple counting
model and fails (or is unreliable) for unseen (or
rare) tuples. For example, we may see (ambush,
die) less frequently than (attack, die) in a corpus,
and the observed frequency of (ambush, die) be-
ing before or after is thus less reliable. However,
since “ambush” is semantically similar to “attack”,
the statistics of (attack, die) can actually serve as
an auxiliary signal to (ambush, die). Motivated
by this idea, we introduce common sense encoder
(CSE): We fit an updated version of TEMPROB via
a Siamese network (Bromley et al., 1994) that gen-
eralizes to unseen tuples through the resulting em-
beddings for each verb (Fig. 1c). Note that the
TEMPROB we use is reconstructed using the same

method described in Ning et al. (2018b) with the
base method changed to CogCompTime. Once
trained, CSE will remain fixed when training the
LSTM part (Fig. 1a or b) and the feedforward neu-
ral network part (Fig. 1d). We only use CSE for
its output. In the beginning, we tried to directly
use the output (i.e., a scalar) and the influence on
performance was negligible. Therefore, here we
discretize the CSE output, change it to categori-
cal embeddings, concatenate them with the LSTM
output, and then produce the confidence scores
(Fig. 1d).

4 Experiments

4.1 Data

The MATRES dataset5 contains 275 news articles
from the TempEval3 workshop (UzZaman et al.,
2013) with newly annotated events and TempRels.
It has 3 sections: TimeBank (TB), AQUAINT
(AQ), and Platinum (PT). We followed the official
split (i.e., TB+AQ for training and PT for testing),
and further set aside 20% of the training data as the
development set to tune learning rates and epochs.
We also show our performance on another dataset,

5http://cogcomp.org/page/publication_
view/834

http://cogcomp.org/page/publication_view/834
http://cogcomp.org/page/publication_view/834
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TCR6 (Ning et al., 2018a), which contains both
temporal and causal relations and we only need
the temporal part. The label set for both datasets
are before, after, equal, and vague.

Purpose #Doc #Events #TempRels
TB+AQ Train 255 8K 13K

PT Test 20 537 837
TCR Test 25 1.3K 2.6K

Table 1: TimeBank (TB), AQUAINT (AQ), and Plat-
inum (PT) are from MATRES (Ning et al., 2018c) and
TCR from Ning et al. (2018a).

4.2 Results and Discussion

We compare with the most recent version of
CogCompTime, the state-of-the-art on MATRES.7

Note that in Table 2, CogCompTime performed
slightly different to Ning et al. (2018d): Cog-
CompTime reportedly had F1=65.9 (Table 2
Line 3 therein) and here we obtained F1=66.6.
In addition, Ning et al. (2018d) only reported F1

scores, while we also use another two metrics for
a more thorough comparison: classification accu-
racy (acc.) and temporal awareness Faware, where
the awareness score is for the graphs represented
by a group of related TempRels (more details in
the appendix). We also report the average of those
three metrics in our experiments.

Table 2 compares the two different ways to han-
dle event positions discussed in Sec. 3.1: position
indicators (P.I.) and simple concatenation (Con-
cat), both of which are followed by network (d) in
Fig. 1 (i.e., without using Siamese yet). We exten-
sively studied the usage of various pretrained word
embeddings, including conventional embeddings
(i.e., the medium versions of word2vec, GloVe,
and FastText provided in the Magnitude package
(Patel et al., 2018)) and contextualized embed-
dings (i.e., the original ELMo and large uncased
BERT, respectively); except for the input embed-
dings, we kept all other parameters the same. We
used cross-entropy loss and the StepLR optimizer
in PyTorch that decays the learning rate by 0.5 ev-
ery 10 epochs (performance not sensitive to it).

Comparing to the previously used P.I. (Dligach
et al., 2017), we find that, with only two excep-
tions (underlined in Table 2), the Concat system
saw consistent gains under various embeddings

6http://cogcomp.org/page/publication_
view/835

7http://cogcomp.org/page/publication_
view/844

and metrics. In addition, contextualized embed-
dings (ELMo and BERT) expectedly improved
over the conventional ones significantly, although
no statistical significance were observed between
using ELMo or BERT (more significance tests in
Appendix).

System Emb. Acc. F1 Faware Avg.

P.I.

word2vec 63.2 67.6 60.5 63.8
GloVe 64.5 69.0 61.1 64.9

FastText 60.5 64.7 59.5 61.6

ELMo 67.5 73.9 63.0 68.1

BERT 68.8 73.6 61.7 68.0

Concat

word2vec 65.0 69.5 59.4 64.6
GloVe 64.9 69.5 60.9 65.1

FastText 64.0 68.6 60.1 64.2

ELMo 67.7 74.0 63.3 68.3
BERT 69.1 74.4 63.7 69.1

Concat+CSE ELMo 71.7 76.7 66.0 71.5

BERT 71.3 76.3 66.5 71.4

CogCompTime - 61.6 66.6 60.8 63.0

Table 2: Performances on the MATRES test set (i.e.,
the PT section). CogCompTime (Ning et al., 2018d)
is the previous state-of-the-art feature-based system.
Position indicator (P.I.) and concatenation (Concat)
are two ways to handle event positions in LSTMs
(Sec. 3.1). Concat+CSE achieves significant improve-
ment over CogCompTime on MATRES.

Given the above two observations, we further
incorporated our common sense encoder (CSE)
into “Concat” with ELMo and BERT in Table 2.
We split TEMPROB into train (80%) and vali-
dation (20%). The proposed Siamese network
(Fig. 1c) was trained by minimizing the cross-
entropy loss using Adam (Kingma and Ba, 2014)
(learning rate 1e-4, 20 epochs, and batch size 500).
We first see that CSE improved on top of Con-
cat for both ELMo and BERT under all metrics,
confirming the benefit of TEMPROB; second, as
compared to CogCompTime, the proposed Con-
cat+CSE achieved about 10% absolute gains in
accuracy and F1, 5% in awareness score Faware,
and 8% in the three-metric-average metric, with
p < 0.001 per the McNemar’s test. Roughly
speaking, the 8% gain is contributed by LSTMs
for 2%, contextualized embeddings for 4%, and
CSE for 2%. Again, no statistical significance
were observed between using ELMo and BERT.
Table 3 furthermore applies CogCompTime and
the proposed Concat+CSE system on a different
test set called TCR (Ning et al., 2018a). Both sys-
tems achieved better scores (suggesting that TCR
is easier than MATRES), while the proposed sys-

http://cogcomp.org/page/publication_view/835
http://cogcomp.org/page/publication_view/835
http://cogcomp.org/page/publication_view/844
http://cogcomp.org/page/publication_view/844
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tem still outperformed CogCompTime by roughly
8% under the three-metric-average metric, consis-
tent with our improvement on MATRES.

System Emb. Acc. F1 Faware Avg.

CogCompTime - 68.1 70.7 61.6 66.8

Concat+CSE ELMo 80.8 78.6 69.9 76.4

BERT 78.4 77.0 69.0 74.9
Table 3: Further evaluation of the proposed system, i.e.,
Concat (Table 3.1) plus CSE (Sec. 3.2), on the TCR
dataset (Ning et al., 2018a).

5 Conclusion

Temporal relation extraction has long been an im-
portant yet challenging task in natural language
processing. Lack of high-quality data and dif-
ficulty in the learning problem defined by pre-
vious annotation schemes inhibited performance
of neural-based approaches. The discoveries that
LSTMs readily improve the feature-based state-
of-the-art CogCompTime on the MATRES and
TCR datasets by a large margin not only give the
community a strong baseline, but also indicate that
the learning problem is probably better defined by
MATRES and TCR. Therefore, we should move
along that direction to collect more high-quality
data, which can facilitate more advanced learning
algorithms in the future.
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Säckinger, and Roopak Shah. 1994. Signature ver-
ification using a “siamese” time delay neural net-
work. In The Conference on Advances in Neural

Information Processing Systems (NIPS), pages 737–
744.

Taylor Cassidy, Bill McDowell, Nathanel Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proc. of the An-

nual Meeting of the Association of Computational

Linguistics (ACL), pages 501–506.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the

Association for Computational Linguistics, 2:273–
284.

Nathanael Chambers and Dan Jurafsky. 2008a. Jointly
combining implicit constraints improves temporal
ordering. In Proc. of the Conference on Em-

pirical Methods for Natural Language Processing

(EMNLP).

Nathanael Chambers and Daniel Jurafsky. 2008b. Un-
supervised Learning of Narrative Event Chains. In
Proceedings of the 46th Annual Meeting of the As-

sociation for Computational Linguistics, ACL 2008,
pages 789–797.

Nathanael Chambers, Shan Wang, and Dan Juraf-
sky. 2007. Classifying temporal relations between
events. In Proceedings of the 45th Annual Meeting

of the ACL on Interactive Poster and Demonstration

Sessions, pages 173–176. Association for Computa-
tional Linguistics.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional LSTM over depen-
dency paths. In Proc. of the Annual Meeting of

the Association of Computational Linguistics (ACL),
volume 2, pages 1–6.



6208

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Thomas G. Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learn-
ing algorithms. Neural Computation.

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. volume 2, pages 746–751.

Quang Do, Wei Lu, and Dan Roth. 2012. Joint infer-
ence for event timeline construction. In Proceedings

of the Conference on Empirical Methods in Natural

Language Processing (EMNLP).

Brian S Everitt. 1992. The analysis of contingency ta-

bles.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Artuur Leeuwenberg and Marie-Francine Moens.
2017. Structured learning for temporal relation ex-
traction from clinical records. In Proceedings of the

15th Conference of the European Chapter of the As-

sociation for Computational Linguistics.

Artuur Leeuwenberg and Marie-Francine Moens.
2018. Temporal information extraction by predict-
ing relative time-lines. Proc. of the Conference on

Empirical Methods for Natural Language Process-

ing (EMNLP).

Chen Lin, Timothy Miller, Dmitriy Dligach, Steven
Bethard, and Guergana Savova. 2017. Repre-
sentations of time expressions for temporal rela-
tion extraction with convolutional neural networks.
BioNLP 2017, pages 322–327.

Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. 2015. SemEval-2015 Task 5: QA
TEMPEVAL - evaluating temporal information un-
derstanding with question answering. In Proceed-

ings of the 9th International Workshop on Semantic

Evaluation (SemEval 2015), pages 792–800.

Inderjeet Mani, Marc Verhagen, Ben Wellner,
Chong Min Lee, and James Pustejovsky. 2006. Ma-
chine learning of temporal relations. In Proceedings

of the 21st International Conference on Compu-

tational Linguistics and the 44th annual meeting

of the Association for Computational Linguistics,
pages 753–760. Association for Computational
Linguistics.

Yuanliang Meng and Anna Rumshisky. 2018. Context-
aware neural model for temporal information extrac-
tion. In Proc. of the Annual Meeting of the Associa-

tion of Computational Linguistics (ACL), volume 1,
pages 527–536.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Distributed Representations of Words
and Phrases and their Compositionality. In Proceed-

ings of NIPS 2013, pages 1–9.

Anne-Lyse Minard, Manuela Speranza, Eneko
Agirre, Itziar Aldabe, Marieke van Erp, Bernardo
Magnini, German Rigau, Ruben Urizar, and Fon-
dazione Bruno Kessler. 2015. SemEval-2015 Task
4: TimeLine: Cross-document event ordering. In
Proceedings of the 9th International Workshop

on Semantic Evaluation (SemEval 2015), pages
778–786.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James Allen, and Lucy Vanderwende.
2016. CaTeRS: Causal and temporal relation
scheme for semantic annotation of event structures.
In Proceedings of the 4th Workshop on Events: Def-

inition, Detection, Coreference, and Representation,
pages 51–61.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A
structured learning approach to temporal relation
extraction. In Proceedings of the Conference on

Empirical Methods for Natural Language Process-

ing (EMNLP), pages 1038–1048, Copenhagen, Den-
mark.

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth.
2018a. Joint reasoning for temporal and causal re-
lations. In Proceedings of the Annual Meeting of

the Association of Computational Linguistics (ACL),
pages 2278–2288.

Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth.
2018b. Improving temporal relation extraction with
a globally acquired statistical resource. In Proceed-

ings of the Annual Meeting of the North American

Association of Computational Linguistics (NAACL),
pages 841–851.

Qiang Ning, Hao Wu, and Dan Roth. 2018c. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the Annual Meeting of the Asso-

ciation of Computational Linguistics (ACL), pages
1318–1328.

Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and
Dan Roth. 2018d. Cogcomptime: A tool for under-
standing time in natural language. In Proceedings

of the Conference on Empirical Methods for Natu-

ral Language Processing (EMNLP).

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. In Proceedings of the 2nd Work-

shop on Computing News Storylines (CNS 2016),



6209

pages 47–56, Austin, Texas. Association for Com-
putational Linguistics.

Ajay Patel, Alexander Sands, Chris Callison-Burch,
and Marianna Apidianaki. 2018. Magnitude: A fast,
efficient universal vector embedding utility package.
Proc. of the Conference on Empirical Methods for

Natural Language Processing (EMNLP).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of the Annual Meeting of the

North American Association of Computational Lin-

guistics (NAACL).

William F Styler IV, Steven Bethard, Sean Finan,
Martha Palmer, Sameer Pradhan, Piet C de Groen,
Brad Erickson, Timothy Miller, Chen Lin, Guergana
Savova, et al. 2014. Temporal annotation in the clin-
ical domain. Transactions of the Association for

Computational Linguistics, 2:143.

Julien Tourille, Olivier Ferret, Aurelie Neveol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: A bi-lstm approach for de-
tecting narrative containers. In Proc. of the Annual

Meeting of the Association of Computational Lin-

guistics (ACL), volume 2, pages 224–230.

Naushad UzZaman, Hector Llorens, James Allen, Leon
Derczynski, Marc Verhagen, and James Pustejovsky.
2013. SemEval-2013 Task 1: TEMPEVAL-3: Eval-
uating time expressions, events, and temporal rela-
tions. *SEM, 2:1–9.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. SemEval-2007 Task 15: TempEval tempo-
ral relation identification. In Proceedings of the 4th

International Workshop on Semantic Evaluations,
pages 75–80. Association for Computational Lin-
guistics.

Marc Verhagen and James Pustejovsky. 2008. Tem-
poral processing with the TARSQI toolkit. In 22nd

International Conference on on Computational Lin-

guistics: Demonstration Papers, pages 189–192.
Association for Computational Linguistics.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. SemEval-2010 Task 13:
TempEval-2. In Proceedings of the 5th international

workshop on semantic evaluation, pages 57–62. As-
sociation for Computational Linguistics.

Zhenqi Xu, Jiani Hu, and Weihong Deng. 2016. Recur-
rent convolutional neural network for video classifi-
cation. In Multimedia and Expo (ICME), 2016 IEEE

International Conference on, pages 1–6. IEEE.

Katsumasa Yoshikawa, Sebastian Riedel, Masayuki
Asahara, and Yuji Matsumoto. 2009. Jointly identi-
fying temporal relations with markov logic. In Pro-

ceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the

AFNLP: Volume 1-Volume 1, pages 405–413. Asso-
ciation for Computational Linguistics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proc. the Inter-

national Conference on Computational Linguistics

(COLING), pages 2335–2344.

Dongxu Zhang and Dong Wang. 2015. Relation classi-
fication via recurrent neural network. arXiv preprint

arXiv:1508.01006.

Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming
Yang. 2015. Bidirectional long short-term memory
networks for relation classification. In Proceedings

of the 29th Pacific Asia Conference on Language,

Information and Computation, pages 73–78.


