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Abstract

Answer selection is an important research
problem, with applications in many areas. Pre-
vious deep learning based approaches for the
task mainly adopt the Compare-Aggregate ar-
chitecture that performs word-level compari-
son followed by aggregation. In this work, we
take a departure from the popular Compare-
Aggregate architecture, and instead, propose a
new gated self-attention memory network for
the task. Combined with a simple transfer
learning technique from a large-scale online
corpus, our model outperforms previous meth-
ods by a large margin, achieving new state-of-
the-art results on two standard answer selec-
tion datasets: TrecQA and WikiQA.

1 Introduction and Related Work

Answer selection is an important task, with appli-
cations in many areas (Lai et al., 2018). Given a
question and a set of candidate answers, the task is
to identify the most relevant candidate. Previous
work on answer selection typically relies on fea-
ture engineering, linguistic tools, or external re-
sources (Wang et al., 2007; Wang and Manning,
2010; Heilman and Smith, 2010; Yih et al., 2013;
Yao et al., 2013). Recently, with the renaissance of
neural network models, many deep learning based
methods have been proposed to address the task
(Tay et al., 2017b; Shen et al., 2017; Wang et al.,
2017; Bian et al., 2017; Tymoshenko and Mos-
chitti, 2018; Tay et al., 2018; Tayyar Madabushi
et al., 2018; Yoon et al., 2019). They outperform
traditional techniques. A common trait of a num-
ber of these deep learning methods is the use of
the Compare-Aggregate architecture (Wang and
Jiang, 2017). Typically in this architecture, con-
textualized vector representations of small units
such as words of the question and the candidate
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are first compared and aligned. After that, these
comparison results are then aggregated to calcu-
late a score indicating the relevance between the
question and the candidate. On standard answer
selection datasets such as TrecQA (Wang et al.,
2007) or WikiQA (Yang et al., 2015), Compare-
Aggregate approaches achieve very competitive
performance. However, they still have some limi-
tations. For example, the first few layers of most
previous Compare-Aggregate models encode the
question-candidate pair into sequences of contex-
tualized vector representations separately (Wang
et al., 2017; Shen et al., 2017; Bian et al., 2017).
These sequences are independent and completely
ignore the information from the other sequence.

In this work, we take a departure from the
popular Compare-Aggregate architecture, so in-
stead, we propose a mix between two very
successful architectures in machine comprehen-
sion and sequence modeling, the memory net-
work (Sukhbaatar et al., 2015) and the self-
attention architecture (Vaswani et al., 2017). In
the context of answer selection, the self-attention
architecture allows us to learn the contextual rep-
resentation of elements in the sequence with re-
spect to both the question and the answer, while
the multi-hop reasoning memory network allows
us to refine the decision over multiple steps. To
this end, we propose a new memory-based, gated
self-attention architecture for the task of answer
selection. Combined with a simple transfer learn-
ing technique from a large-scale online corpus, our
model achieves new state-of-the-art results on the
TrecQA and WikiQA datasets.

In the following parts, we first describe our
gated self-attention memory network for answer
selection in Section 2. We then go into details
our transfer learning approach in Section 3. After
that, we describe the conducted experiments and
their results in Section 4. Finally, we conclude this
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work in Section 5.

2 Gated Self-Attention Memory Network

2.1 The gated self-attention mechanism
The gated attention mechanism (Dhingra et al.,
2017; Tran et al., 2017) extends the popular scalar-
based attention mechanism by calculating a real
vector gate to control the flow of information, in-
stead of a scalar value. Let’s denote the sequence
of input vectors as X = [x1..xn]. If we have
context information c, then in traditional attention
mechanism, association score αi is usually calcu-
lated as a normalized dot product between the two
vectors c and xi (Equation 1) where i ∈ [1..n].

αi =
exp(cT xi)∑

j∈[1..n] exp(cT xj)
(1)

For the gated attention mechanism, the associ-
ation between two vectors c and xi is represented
by gate vector gi as follows:

gi = σ
(
f(c, xi)

)
(2)

where σ denotes the element-wise sigmoid func-
tion. Function f is a parameterized function and
thus, is more flexible in modelling the interaction
between vectors c and xi.

In this work, we propose a new type of self-
attention based on the gated attention mechanism
described above, and we refer to it as the gated
self-attention mechanism (GSAM). We want to
condition the gate vector not only on a context vec-
tor and a single input vector but also on the entire
sequence of inputs. Therefore, we design function
f to be dependent on all the inputs in the sequence
and the context vector. To calculate the gate for
input xi, first, each of the inputs in the input se-
quence and the context vector will present an indi-
vidual gate “vote”. Then, the votes are aggregated
to calculate gate gi for xi. This process is illus-
trated in Equation 3:

vj = Wxj + b ; vc = Wc + b

sji = xTi vj ; sci = xTi vc

αj
i =

exp(sji )∑
k∈[1..n] exp(s

k
i ) + exp(sci )

αc
i =

exp(sci )∑
k∈[1..n] exp(s

k
i ) + exp(sci )

gi = fi(c,X)

= σ

(∑
j

(
αj
i xj
)
+ αc

i c

)
(3)

where W and b are learnable parameters shared
among functions f1 ... fn. Vectors vs are linear-
transformed inputs which are used to calculate the
self attentions. sji is the unnormalized attention
score of input xj put on xi and αj

i is the normalized
score. We use affine-transformed inputs v and x
to calculate the self-attention instead of just x to
break the attention symmetry phenomenon.

2.2 Combining with the memory network
In most previous memory network architectures,
interactions between memory cells are relatively
limited. At each hop, a single control vector is
used to interpret each memory cell independently.
To overcome this limitation, we combine GSAM
described in Section 2.1 with the memory net-
work architecture to create a new network called
the Self-Attention Memory Network (GSAMN).
Figure 1 shows the simplified computation flow of
GSAMN. In each reasoning hop, instead of using
only context vector c to interpret the inputs, we
use GSAM. Let ck be the controlling context and
xk1 ... xkn be the memory values at the kth reason-
ing hop. Each memory cell update from the kth

hop to the next hop is calculated as the gated self-
attention update (Equation 4).

gi = fi(ck, X)

xk+1
i = gi � xki

(4)

The controller’s update is a combination of the
gated self-attention above, and the memory net-
work’s traditional aggregate update. As the mem-
ory state values have already been attended to by
the gating mechanism, we only need to average
them (not weighted average).

.

gc = fc(ck, X)

ck+1 = gc � ck +
1

n

∑
i

xk+1
i

(5)

2.3 GSAMN for answer selection
In the context of answer selection, we concatenate
question Q and candidate answer A to a single se-
quence and treat the task as a binary classification
problem. Given the GSAMN architecture above,
we can use final controller state cT as the represen-
tation of the sequence. The matching probability
P (A |Q) is finally calculated as follows:

P (A |Q) = σ

(
Wc cT + bc

)
(6)
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Figure 1: Simplified computation flow of the Gated
Self-Attention Memory Network

where Wc and bc are learnable parameters. We
can initialize the memory values x01 ... x0n us-
ing any representation model such as word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), ELMo (Peters et al., 2018), or BERT (De-
vlin et al., 2018). The control vector c is a ran-
domly initialized learnable vector.

3 Transfer Learning

Previous studies on answer selection have focused
mostly on small-scale datasets. On the other hand,
many community question answering (CQA) plat-
forms such as Yahoo Answers and Stack Exchange
have become an essential source of information
for many people. The amount of data (i.e., ques-
tions and answers) in these CQA platforms is
huge and encompasses many domains and topics.
This provides a great opportunity to apply transfer
learning techniques to improve answer selection
systems trained on limited datasets.

We crawled question-answer pairs related to
various topics from Stack Exchange 1. After that,
we removed every pair that contains text written in
a language different from English. Furthermore,
to ensure that in each collected pair the answer is
highly relevant to the question, we removed pairs
whose answers have less than two up-votes from
community users. Finally, because training an-
swer selection models also require negative exam-
ples, for each question, we sampled several real
answers not related to the question to build up neg-
ative pairs. In the end, our dataset has 628,706

1https://stackexchange.com/

positive pairs and 9,874,758 negative pairs in to-
tal. We refer to our newly collected dataset as
StackExchangeQA. Table 1 shows some examples
of positive question-answer pairs from the dataset.
The dataset has question-answer pairs from many
different domains and topics. The code for con-
structing the StackExchangeQA dataset is avail-
able online 2.

In this work, we employ a basic transfer learn-
ing technique. The first step is to pre-train our
answer selection model on the StackExchangeQA
dataset. Then, the second step is to fine-tune the
same model on a target dataset of interest such
as TrecQA or WikiQA. Despite the simplicity of
the technique, the performance of our model im-
proves substantially compared to not using trans-
fer learning. Different from previous works which
use source datasets that were manually annotated
(Min et al., 2017; Chung et al., 2018), our source
dataset required minimal effort to obtain and pre-
process. The choice of crawling question-answer
pairs from the Stack Exchange website was arbi-
trary. We could also have crawled data from web-
sites such as Yahoo Answers instead.

4 Experiments and Results

To evaluate the effectiveness of our proposed
answer selection model, we use two datasets:
TrecQA and WikiQA. The TrecQA dataset (Wang
et al., 2007) was created from the TREC Ques-
tion Answering tracks. There are two versions
of TrecQA: raw and clean. Both versions have
the same training set but their development and
test sets differ. In this study, we use the clean
version of the dataset that removed questions in
development and test sets with no answers or
only positive/negative answers. The clean version
has 1,229/65/68 questions and 53,417/1,117/1,442
question-answer pairs for the train/dev/test split.
The WikiQA dataset (Yang et al., 2015) was con-
structed from real queries of Bing and Wikipedia.
Following the literature (Yang et al., 2015; Bian
et al., 2017; Shen et al., 2017), we removed
all questions with no correct answers before
training and evaluating answer selection models.
The excluded WikiQA has 873/126/243 questions
and 8,627/1,130/2,351 question-answer pairs for
train/dev/test split.

Similar to previous work, we report the model

2https://github.com/laituan245/
StackExchangeQA

https://stackexchange.com/
https://github.com/laituan245/StackExchangeQA
https://github.com/laituan245/StackExchangeQA
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Domain QA Pair

Academia Question: Is it okay for a PhD student to go on holidays in breaks?
Answer: Do you have an adviser? Have you talked to them about this? Most should be fine with
you taking some time off to visit your family, but you should probably discuss longer breaks with
them to work out all the details.

Apple Product Question: What hidden features have you found in iOS 6?
Answer: Newly downloaded apps have a “new” label on the home screen.

Chemistry Question: Hydrochloric acid vs hydrogen chloride?
Answer: Hydrochloric acid is an aqueous solution of hydrogen chloride.

Cooking Question: How do I prevent tomatoes from falling in a green salad?
Answer: I work around this by serving tomatoes on the top of the individual salads after they’ve
been portioned out. I’m not sure of a way to keep them incorporated.

Philosophy Question: What did Socrates teach which lead to his conviction that he spoiled youth and taught
other Gods?
Answer: I think in general one of the problems Socrates’ contemporaries may have had with him
was not so much what he taught but how he taught. Perhaps Socrates’ method of philosophy was
characterised more by testing propositions through questioning, than any strict concern with formu-
lating a set of propositions on any one subject.

Table 1: Examples of positive question-answer pairs from the StackExchangeQA dataset

performance as the mean average precision (MAP)
and mean reciprocal rank (MRR) 3. In all experi-
ments, we use the base version of BERT (Devlin
et al., 2018) to initialize the memory of our pro-
posed architecture. We fine-tune the BERT em-
beddings during training. We set the number of
reasoning hops to be 2. We use the Adam op-
timizer with a learning rate of 5e-5, β1 = 0.9,
β2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10 percent of the total
number of training steps, and linear decay of the
learning rate. We did hyper-parameter tuning on
the development sets.

It is worth noting that, we have experimented
with various values for the number of reasoning
hops. We found that using 2 hops gives the best
performance on the tested datasets while using
larger number of hops decreases the performance
slightly. We attribute the diminishing returns in in-
creasing the number of hops to the limited size of
the TrecQA and WikiQA datasets. Many previous
works related to memory networks also use small
number of memory hops (Weston et al., 2015;
Sukhbaatar et al., 2015; Miller et al., 2016; Zhang
et al., 2018).

4.1 Comparison with Previous Methods

Table 2 summarizes the performances of our pro-
posed models and compares them to the base-
lines on the TrecQA and WikiQA datasets. The

3https://aclweb.org/aclwiki/Question_
Answering_(State_of_the_art)

full model [BERT + GSAMN+ Transfer Learning]
outperforms the previous state-of-the-art methods
by a large margin. Note that by simply fine-tuning
the pre-trained BERT embeddings, one can eas-
ily achieve very competitive performance on both
datasets. This is expected as BERT has been pre-
trained on a massive amount of unlabeled data.
However, our proposed techniques do add a signif-
icant amount of performance. The gain from using
all of our proposed techniques is larger than the
difference between fine-tuning BERT model com-
pared to previous systems in the TrecQA dataset.

4.2 Ablation Analysis
We aim to analyze the relative effectiveness of dif-
ferent components of our full model. From the
original BERT baseline, we add one component
at a time and evaluate the performance of the par-
tial models on the datasets. From Table 2, we can
see that both the variants [BERT + GSAMN] and
[BERT + Transfer Learning] have better perfor-
mance than the original BERT baseline. However,
both of the partial variants still perform worse than
the one with all the techniques. This shows that al-
though each of our proposed components is effec-
tive by itself, we need to combine them together in
order to achieve the best performance.

4.3 GSAMN versus Transformer
It was an iterative process to arrive at the current
design of GSAMN. We aim to analyze whether the
improvement in performance comes from the in-
ductive bias that we introduced into the architec-

https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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Model
TrecQA WikiQA

MAP MRR MAP MRR

BERT + GSAMN+ Transfer 0.914 0.957 0.857 0.872
BERT + Transformers + Transfer 0.895 0.939 0.831 0.848
BERT + GSAMN 0.906 0.949 0.821 0.832
BERT + Transformers 0.886 0.926 0.813 0.828
ELMo + Compare-Aggregate 0.850 0.898 0.746 0.762
BERT + Transfer 0.902 0.949 0.832 0.849
BERT 0.877 0.922 0.810 0.827
QC + PR + MP CNN (2018) 0.865 0.904 — —
IWAN + sCARNN (2018) 0.829 0.875 0.716 0.722
IWAN (2017) 0.822 0.889 0.733 0.750
Compare-Aggregate (2017) 0.821 0.899 0.748 0.758
BiMPM (2017) 0.802 0.875 0.718 0.731
HyperQA (2017a) 0.784 0.865 0.705 0.720
NCE-CNN (2016) 0.801 0.877 — —
Attentive Pooling CNN (2016) 0.753 0.851 0.689 0.696
W&I (2015) 0.746 0.820 — —

Table 2: Results on the TrecQA and WikiQA datasets

ture or simply from having more parameters due
to added complexity. To this end, we evaluated
the performances of two variants [BERT + Trans-
formers] and [BERT + Transformers + Transfer
Learning]. These model variants simply use two
Transformer layers (Vaswani et al., 2017) on top of
BERT instead of using our GSAMN architecture.
Table 2 clearly shows that GSAMN outperforms
the Transformer based variants, with or without
the transfer learning component.

We have experimented with adding more Trans-
former layers on top of BERT but the performance
did not improve. For example, using 6 extra Trans-
former layers only achieves a MAP score of 0.885
on the TrecQA dataset. This is reasonable be-
cause BERT by itself already contains 12 Trans-
former layers. Without a new kind of layer such as
our proposed GSAMN architecture, stacking more
Transformer layers will not be helpful, especially
in this case where the tested datasets are not large.

4.4 GSAMN versus Compare-Aggregate

Finally, we have a comparison between our
full model and the Compare-Aggregate frame-
work. Most previous Compare-Aggregate archi-
tectures use traditional word embeddings such as
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014). In contrast, our full model
uses BERT which is an arguably more powerful
language representation model. To this end, we

implemented a Compare-Aggregate variant that
uses dynamic-clip attention (Bian et al., 2017).
We use ELMo (Peters et al., 2018) to represent
the input words to the implemented Compare-
Aggregate architecture. We use ELMo instead
of BERT because BERT is in subword-level
while one of the intuitions behind the Compare-
Aggregate variant is about comparing word-level
representations. In addition, we have tested the
variant [BERT + Compare-Aggregate] but found it
to be worse than the version [ELMo + Compare-
Aggregate]. The results in Table 2 show that
our model significantly outperforms [ELMo +
Compare-Aggregate] as well.

5 Conclusions

In this paper, we propose a new gated self-
attention memory network architecture for answer
selection. Combined with a simple transfer learn-
ing technique from a large-scale CQA corpus, the
model achieves the state-of-the-art performance
on two well-studied answer selection datasets:
TrecQA and WikiQA. In the future, we plan to in-
vestigate more transfer learning techniques for uti-
lizing the large volume of existing CQA data. In
addition, we plan to apply our self-attention mem-
ory network on other sentence matching tasks such
as natural language inference, paraphrase identifi-
cation, or measuring semantic relatedness.
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