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Abstract

Theory of mind, i.e., the ability to reason about
intents and beliefs of agents is an important
task in artificial intelligence and central to re-
solving ambiguous references in natural lan-
guage dialogue. In this work, we revisit the
evaluation of theory of mind through question
answering. We show that current evaluation
methods are flawed and that existing bench-
mark tasks can be solved without theory of
mind due to dataset biases. Based on prior
work, we propose an improved evaluation pro-
tocol and dataset in which we explicitly con-
trol for data regularities via a careful examina-
tion of the answer space. We show that state-
of-the-art methods which are successful on ex-
isting benchmarks fail to solve theory-of-mind
tasks in our proposed approach.

1 Introduction

Humans interact and communicate with other peo-
ple in a highly efficient way, as described for in-
stance as Grice’s cooperative principle (Grice et al.,
1975). Inferring other people’s mental state is a
crucial component of cognitive development, play-
ing a role in how humans learn the meaning of
words (Bloom, 2002), distinguish beliefs from real-
ity (Gopnik and Astington, 1988), predict people’s
behavior (Wimmer and Perner, 1983), understand
what others refer to, and reduce ambiguity in con-
versation (Clark, 1981; Keysar et al., 2000). This
ability to reason about the mental state of other
agents, called theory of mind, is thus an impor-
tant component of an intelligent system aiming to
emulate and interact with humans.

In developmental psychology, classic tests such
as the Sally-Anne test (Baron-Cohen et al., 1985)
have been used to assess the ability to infer false
beliefs in others. Recently, Grant et al. (2017) and
Nematzadeh et al. (2018) proposed to adapt these
tests to evaluate the capability of machine learning

models to form a theory of mind. The key insight
of Grant et al. (2017) was to cast them as ques-
tion answering tasks, where a system is given a
story and has to answer questions about the beliefs
of agents in that story. This allows to adapt the
bAbi benchmarking protocol (Weston et al., 2016)
to evaluate theory of mind capabilities of modern
neural network architectures: stories are automati-
cally generated so that a suitably large number of
examples can be provided for training.

We believe this is a promising approach for ad-
vancing research on theory of mind, as it decouples
its evaluation from problems such as multi-agent
systems, game theory, and meta-learning, which
are all components of other evaluation methods (Ra-
binowitz et al., 2018; Bard et al., 2019). However,
artificial data runs the risk of displaying hidden ar-
tifacts and biases that correlate with the prediction
task and can be exploited by models (Jabri et al.,
2016; Gururangan et al., 2018; Poliak et al., 2018).
The highly systematic nature of data generation
puts synthetic benchmarks at an even higher risk of
overestimating the target competence of interest.

This paper shows that current theory-of-mind
QA benchmarks do indeed suffer from data biases,
and are perfectly solvable without theory of mind.
To overcome this, we propose an improved evalua-
tion method and dataset1. We then show that state-
of-the-art memory-augmented models – which are
successful on existing benchmarks – fail to solve
theory-of-mind tasks in our improved approach.

2 Theory of Mind Benchmarks

This section briefly reviews the Sally-Anne test and
related paradigms for evaluating theory of mind.

First-Order Beliefs The so-called Sally-Anne
test (Baron-Cohen et al., 1985) examines children’s

1Our code and dataset will be made available at
https://github.com/facebookresearch/ToMi
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ability to reason about other agents’ false beliefs.
The child observes the actions of two agents (Sally,
Anne). First, Sally puts an object into a container.
Second, Anne moves the object without Sally ob-
serving this action. Third, the child is asked multi-
ple questions about reality and the agents’ beliefs:

First-Order Belief : Where will Sally look for the
marble?

Reality: Where is the marble really?

Memory: Where was the marble in the beginning?

The first question tests the ability of the child
to infer the correct mental state of Sally, i.e., that
she has the false belief of the marble being in the
basket. The reality and memory questions ensure
that the child has a correct understanding of the
state of the world and is not responding at chance.

Second-Order Beliefs ”Sally-Anne”-type ques-
tions are well-suited to evaluate first-order beliefs.
Nematzadeh et al. (2018) proposed to also evalu-
ate second-order theory of mind, i.e., the ability
to infer beliefs about beliefs. Perner and Wimmer
(1985) proposed a set of experiments to test such
second-order beliefs in children. The experiments
can be summarized as follows: Two agents (Mary,
John) see an icecream van in the park. The vendor
tells them that he will be in the park all afternoon.
After Mary leaves the park, the vendor decides
to leave the park and tells John he is going to the
church. On the way to the church, the vendor meets
Mary and tells her also that he will be at the church.
The child is then asked the following question:

Second-Order Belief : Where does John think
Mary will go to get ice-cream?

As control, children are also asked memory, re-
ality, and first-order belief questions.

Psychology Tests as AI Benchmarks Grant
et al. (2017) cast the aforementioned experiments
as question answering tasks and proposed to create
a bAbi-style dataset (Weston et al., 2016) to evalu-
ate theory of mind in artificial intelligence models.
For instance, this is the bAbi question-answering
task version of the Sally-Anne test:

Sally puts a marble in her basket
Sally leaves the room
Anne moves the marble in her box

Q: Where would Sally look for the marble?
A: Basket

Nematzadeh et al. (2018) evaluate several mod-
ern neural network architectures over the resulting
dataset and report that all fail on theory-of-mind
tasks, especially when irrelevant sentences are in-
troduced into stories at test time. In the following,
we refer to these benchmarks as ToM-bAbi.

3 Evaluating Theory of Mind Evaluation

This section examines shortcomings of ToM-bAbi
for evaluating a model’s theory of mind abilities
and proposes an improved approach.

Related Work on Dataset Artifacts It is chal-
lenging to determine what specific competence is
revealed by the successful completion of a task,
as illustrated by the case of Clever Hans, the fa-
mous horse whose skill at reading human reactions
passed for arithmetic ability (Pfungst, 1911). Re-
cent analyses of several AI benchmarks have un-
covered similar difficulties when probing learning
models. In the domain of visual question answer-
ing, baselines solely relying on candidate answers
have shown surprisingly good performance (Jabri
et al., 2016), leading to the creation of a carefully
designed diagnostic dataset (Johnson et al., 2017).
Similarly, natural language inference benchmarks
have been shown to be vulnerable to bias exploita-
tion (Gururangan et al., 2018; Poliak et al., 2018),
and multimodal machine translation benchmarks
have been demonstrated to be too simple to re-
quire multi-modality (Caglayan et al., 2019). We
follow the same approach here of examining the
performance of a baseline that does not make use
of a type of information crucial to the target com-
petence. Taking “reasoning about another agent”
as a working definition of theory of mind, a rea-
sonable prerequisite of benchmarks probing theory
of mind competence is that they be impossible to
solve without some input about the other agent.

Leveraging Dataset Biases in ToM-bAbi Re-
viewing the generation process of ToM-bAbi un-
covers predictable regularities that allow a model
to use corner-cutting heuristics instead of keeping
track of agents: the stories follow a strict event se-
quence template for each task type, shown in Fig. 1.
The ToM-bAbi dataset takes precautions to guard
against the most simplistic heuristic (e.g., ’always
output the location of line 4’) by adding irrelevant
sentences at random places as noise, but many regu-
larities and correlations remain. These regularities
make it possible to construct a parsimonious set
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Algorithm 1: Rules to solve ToM-bAbi
Data: question q, story s
Result: location l
if “beginning” ∈ q then // Memory

l← location of first object occurrence;
else if “really” ∈ q then // Reality

l← location of last object occurrence;
else if “look” ∈ q then // 1st Order

if “exited” ∈ s after last “object is in”
then

l← location of last object
occurrence before last “exited”;

else
l← location of last object

occurrence;
end

else if “think” ∈ q then // 2nd Order
if “exited” ∈ s after last “object is in”
then

l← location of last object
occurrence before first “exited”;

else
l← location of last object

occurrence;
end

end

of rules that perfectly solve all tasks without ever
extracting any information about the agents. As
shown in the pseudo-code implementation of Algo-
rithm 1, these rules only involve simple lexical and
ordinal patterns (code provided in the supplemental
material).

Towards Robust ToM Evaluation in QA To in-
crease robustness against such regularities and cor-
relations, we build upon the ideas of ToM-bAbi but
improve data generation and evaluation in multiple
ways. We refer to the supplementary material for
the full pseudo-code of our dataset generator.

First, to generate a balanced dataset over story
types, ToM-bAbi uses different generators for true-
belief, false-belief, and second-order false-belief
stories. However, the different generators add clear
biases to the data which can be exploited to iden-
tify the story type (for example, lack of the word
“exited” signals a true belief story – see Fig. 1). To
overcome this issue, we use the same randomized
generation method for all stories and keep track of
which type is produced. We then sample from this
randomized story generator with rejection to create

a balanced dataset over all three types of stories.
Second, to decrease the amount of information

that can be predicted from any given event, we add
the following random distractors during data gen-
eration: actions of unrelated agents to decorrelate
actions from answers, distractor statements about
locations and objects to make the number of men-
tions less informative, randomization of the order
of exit/move/re-entry actions, and randomization
of the agent whose beliefs are being queried. This
leads to stories that are a lot less predictable (see
examples in Fig. 1).

Third, theory of mind manifests in “Sally-Anne”
type tests through the understanding that an agent’s
belief is different from the actual state of the world,
and that both coexist at the same moment. It is
therefore crucial to evaluate both, the ability to in-
fer the state of the world and the mental state of
an agent. Although current benchmarks include
reality and memory control questions, only one
type of question is asked for each different, sepa-
rately generated story. This can obscure revealing
correlations in the models’ responses e.g., that ac-
curacy in first-order belief questions is associated
with lower performance on reality questions. Since
a correct answer to a false-belief question is only
meaningful if the reality question is also answered
correctly, it is especially important to check that
the models can distinguish between states for each
story. For this reason, we propose to systematically
ask all question types for each generated story. In
particular, for a single story involving agents A, B,
and object O, we ask all following questions:

Reality: Where is O?

Memory: Where was O in the beginning?

First-Order Belief A: Where will A look for O?

First-Order Belief B: Where will B look for O?

Second-Order Belief A: Where does A believe B
will look for O?

Second-Order Belief B: Where does B believe A
will look for O?

Furthermore, we propose to count a story s as an-
swered correctly if all questions about s are jointly
correct, and to measure overall accuracy as the
fraction of correctly answered stories. This ensures
that a model is not acquiring theory of mind at the
expense of its ability to perform other tasks and
that it correctly answers reality and false-beliefs
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ToM-bAbi dataset

Three types of stories

1 〈A〉 entered 〈L〉
2 〈B〉 entered 〈L〉
3 Phone rang. // Distractor can appear anywhere
4 The 〈O〉 is in 〈C1〉.
5 〈B〉 exited 〈L〉 // if story type 1 or 2
6 〈A〉 moved the 〈O〉 to 〈C2〉.
7 〈A〉 exited the 〈L〉 // if story type 2
8 〈B〉 entered the 〈L〉 // if story type 2

Example story

1 Isla entered the bathroom.
2 Benjamin entered the bathroom.
3 The cabbage is in the green pantry.
4 Phone rang.
5 Isla moved the cabbage to the red drawer.

Answers for each story-question pair

Story 1 Story 2 Story 3

First Order C1 C2 C2
Second Order C1 C1 C2
Memory C1 C1 C1
Reality C2 C2 C2

ToMi dataset

Examples of stories from the ToMi dataset

1 Oliver dislikes the kitchen
2 Carter entered the porch.
3 Abigail entered the porch.
4 The potato is in the green suitcase.
5 Abigail exited the porch.
6 Abigail entered the hall.
7 Carter moved the potato to the green envelope.
8 Oliver entered the hall.

1 Mila entered the closet.
2 Isla entered the closet.
3 Ava entered the closet.
4 The orange is in the blue container.
5 Isla exited the closet.
6 Isla entered the garage.
7 Ava moved the orange to the green bathtub.

1 William entered the staircase.
2 Aiden entered the staircase.
3 Aiden exited the staircase.
4 Aria entered the staircase.
5 The potato is in the red drawer.
6 Aiden dislikes the grapefruit
7 William moved the potato to the blue container.
8 Aria exited the staircase.

Figure 1: Left:Stories from the ToM-bAbi dataset follow three strict templates, with the possible random insertion
of the distractor phrase “Phone rang.” This makes it easier to devise rules to locate the answers for all pairs of
question and story types, as shown in Alg. 1. For example, C1 always appears in the same sentence as the first
object occurrence. Right: the ToMi dataset we propose is generated with considerably more randomness, with
distractor phrases, distractor locations, distractor characters, and shuffling of the order of actions.

questions jointly. Formally, we define this joint
accuracy as

AccJ(S) =
1

|S|
∑
s∈S

∏
q∈Qs

1(âq = aq) (1)

where 1 : {⊥,>} → {0, 1} is the indicator
function, S the set of all stories, Qs the set of all
questions about story s, and aq, âq are the correct
and the model’s answer for question q respectively.

4 Experimental Evaluation

This section evaluates state-of-the-art question an-
swering methods on the original ToM-bAbI and on
our improved dataset. We follow Nematzadeh et al.
(2018) and consider Memory Networks (MemNN;
Sukhbaatar et al. 2015), Relation Networks (Rel-
Net; Santoro et al. 2017, and Recurrent Entity Net-
works (EntNet; Henaff et al. 2017), which solve
the original bAbI question answering tasks.

Table 1 shows the average accuracy over all
questions for the original ToM-bAbI benchmarks
(ToM-easy, ToM) and our improved dataset (ToMi).

Table 1: Accuracy on benchmark datasets. “Aver-
age” indicates the average accuracy over all questions.
“Joint” indicates the joint accuracy as defined in Eq. (1).

Average Joint

ToM-easy ToM ToMi ToMi

Rules 100.0 100.0 77.5 36.5

MemNN 100.0 90.7 77.2 44.3
EntNet 100.0 94.9 90.6 66.8
RelNet 100.0 94.4 86.0 57.4

Moreover, for ToMi we also show the joint ac-
curacy as defined in Equation (1). Algorithm 1
achieves perfect accuracy on ToM-easy and ToM.
Since all QA models have the capacity to capture
these simple heuristics, it is not surprising that they
also perform very well on the original benchmarks,
i.e., perfect accuracy on ToM-easy and over 90%
percent accuracy on ToM.2 Moreover, we found
that the drop in accuracy in ToM is mostly caused

2These results are better than in the ToM-bAbI paper. Com-
munication with the authors has not provided clear reasons
why, so this may be due to more extensive optimization.
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Table 2: Average accuracy by question type (MemNN)

ToM-easy ToM ToMi

Memory 100.0 71.9 98.90
Reality 100.0 100.0 93.39
First-Order 100.0 98.6 70.72
Second-Order 100.0 95.3 64.66

Table 3: Average accuracy per question type in ToMi.
“FB” and “‘w/o FB” indicate question-story pairs that
do and do not involve false beliefs, respectively.

MemNN RelNet EntNet

w
/o

FB

First Order 85.45 96.42 94.29
Second Order 82.67 95.37 85.08
Reality 93.39 100.0 100.0
Memory 98.90 99.90 100.0

FB

First Order 12.62 10.40 54.95
Second Order 17.27 17.81 36.55

by memory questions. This is because ToM stories
are significantly longer and the location of the first
occurrence of the queried object can exceed the
memory capacity of the models. Table 2 shows an
ablation for MemNNs that illustrates this effect.

By contrast, Algorithm 13 and QA models fail to
solve the ToMi tasks. This is especially clear when
looking at the joint accuracy of Table 1, which is
not inflated by easy-to-answer memory and reality
questions. Our ablation in Table 3 provides further
insights into these results. It lists the average accu-
racy per question type and further splits the results
into false-belief and non-false-belief question-story
pairs. All models do reasonably well on question-
story pairs that do not involve false beliefs, i.e.,
where the mental state of an agent should coincide
with the state of the world. However, for question-
story pairs with false beliefs, all models fail to pro-
vide correct answers consistently. Recurrent Entity
Networks, which explicitly aim to keep track of the
state of the world, are performing best on false be-
liefs tasks, indicating that this is a useful inductive
bias for QA models on theory-of-mind tasks.

5 Discussion

Theory of mind is an important component of intel-
ligent systems which interact with humans. In the
context of natural language, theory of mind is not

3A more elaborate set of rules could solve the tasks, but
would require to take the agents into account.

only of interest because of its evaluation through
question answering but also because it is a crucial
component to understand references and reduce
ambiguities. This work re-examined the evaluation
of theory of mind through bAbi-style question an-
swering tasks. We revealed exploitable regularities
in the generated data of existing benchmarks, and
proposed to remedy this with a new dataset and
evaluation method. We also showed that existing
question answering methods that were capable of
solving the previously proposed benchmarks are
not able to solve the new tasks anymore. In future
work, we aim at developing models to solve the
newly proposed tasks.

Achieving this would demonstrate some level
of ability to reason about first- and second-order
false beliefs. But an important point to keep in
mind when using our benchmark is that it still re-
lies on synthetic data and tasks. We chose this
approach since synthetic data generation can be
especially useful in novel and early-stage research
efforts, as it provides a controlled environment and
allows for detailed analyses of a model’s ability
to solve a task. However, while methods such as
Recurrent Entity Networks have shown promise
for keeping track of the state-of-the-world in our
experiments, this is still in scenarios where the com-
plexity of natural language is relatively simple. On
real-world data, this ability would be much weaker
as it would require additional competencies such
as co-reference resolution, handling polysemy and
ambiguities, and common-sense reasoning. There-
fore, solving the tasks we propose can only be con-
sidered a prerequisite for a fully functional theory
of mind which will ultimately have to be evaluated
in real-world scenarios.
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