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Abstract

Targeted sentiment analysis is the task of
jointly predicting target entities and their as-
sociated sentiment information. Existing re-
search efforts mostly regard this joint task as
a sequence labeling problem, building models
that can capture explicit structures in the out-
put space. However, the importance of cap-
turing implicit global structural information
that resides in the input space is largely unex-
plored. In this work, we argue that both types
of information (implicit and explicit structural
information) are crucial for building a success-
ful targeted sentiment analysis model. Our
experimental results show that properly cap-
turing both information is able to lead to bet-
ter performance than competitive existing ap-
proaches. We also conduct extensive experi-
ments to investigate our model’s effectiveness
and robustness1.

1 Introduction

Targeted sentiment analysis (TSA) is an impor-
tant task useful for public opinion mining (Pang
and Lee, 2008; Liu, 2010; Ortigosa et al., 2014;
Smailović et al., 2013; Li and Wu, 2010). The task
focuses on predicting the sentiment information
towards a specific target phrase, which is usually a
named entity, in a given input sentence. Currently,
TSA in the literature may refer to either of the two
possible tasks under two different setups: 1) pre-
dicting the sentiment polarity for a given specific
target phrase (Dong et al., 2014; Wang et al., 2016;
Zhang et al., 2016; Xue and Li, 2018); 2) jointly
predicting the targets together with the sentiment
polarity assigned to each target (Mitchell et al.,
2013; Zhang et al., 2015; Li and Lu, 2017; Ma
et al., 2018). In this paper, we focus on the latter
setup which was originally proposed by Mitchell

1We release our code at http://www.statnlp.
org/research/st.
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OZ and Shim Lim perform amazing magic on AGT 2018

Figure 1: TSA with targets in bold and their associated
sentiment on top. Boundaries for the sentiment scope
are highlighted in dashed boxes.

et al. (2013). Figure 1 presents an example sen-
tence containing three targets. Each target is asso-
ciated with a sentiment, where we use + for de-
noting positive polarity, 0 for neutral and − for
negative.

Existing research efforts mostly regard this
task as a sequence labeling problem by assign-
ing a tag to each word token, where the tags
are typically designed in a way that capture
both the target boundary as well as the targeted
sentiment polarity information together. Exist-
ing approaches (Mitchell et al., 2013; Zhang
et al., 2015; Ma et al., 2018) build models based
on conditional random fields (CRF) (Lafferty
et al., 2001) or structural support vector machines
(SSVM) (Taskar et al., 2005; Tsochantaridis et al.,
2005) to explicitly model the sentiment infor-
mation with structured outputs, where each tar-
geted sentiment prediction corresponds to exactly
one fixed output. While effective, such mod-
els suffer from their inability in capturing cer-
tain long-distance dependencies between senti-
ment keywords and their targets. To remedy this
issue, Li and Lu (2017) proposed their “sentiment
scope” model to learn flexible output representa-
tions. For example, three text spans with their
corresponding targets in bold are presented in Fig-
ure 1, where each target’s sentiment is character-
ized by the words appearing in the corresponding
text span. They learn from data for each target a
latent text span used for attributing its sentiment,
resulting in flexible output structures.

However, we note there are two major limi-

http://www.statnlp.org/research/st
http://www.statnlp.org/research/st
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tations with the approach of Li and Lu (2017).
First, their model requires a large number of hand-
crafted discrete features. Second, the model relies
on a strong assumption that the latent sentiment
spans do not overlap with one another. For exam-
ple, in Figure 1, their model will not be able to cap-
ture the interaction between the target word “OZ”
in the first sentiment span and the keyword “amaz-
ing” due to the assumptions made on the explicit
structures in the output space. One idea to resolve
this issue is to design an alternative mechanism to
capture such useful structural information that re-
sides in the input space.

On the other hand, recent literature shows that
feature learning mechanisms such as self-attention
have been successful for the task of sentiment
prediction when targets are given (Wang and Lu,
2018; He et al., 2018; Fan et al., 2018) (i.e., un-
der the first setup mentioned above). Such ap-
proaches essentially attempt to learn rich implicit
structural information in the input space that cap-
tures the interactions between a given target and
all other word tokens within the sentence. Such
implicit structures are then used to generate sen-
timent summary representation towards the given
target, leading to the performance boost.

However, to date capturing rich implicit struc-
tures in the joint prediction task that we focus
on (i.e., the second setup) remains largely unex-
plored. Unlike the first setup, in our setup the
targets are not given, we need to handle exponen-
tially many possible combinations of targets in the
joint task. This makes the design of an algorithm
for capturing both implicit structural information
from the input space and the explicit structural in-
formation from the output space challenging.

Motivated by the limitations and challenges, we
present a novel approach that is able to efficiently
and effectively capture the explicit and implicit
structural information for TSA. We make the fol-
lowing key contributions in this work:

• We propose a model that is able to prop-
erly integrate both explicit and implicit struc-
tural information, called EI. The model is
able to learn flexible explicit structural in-
formation in the output space while being
able to efficiently learn rich implicit struc-
tures by LSTM and self-attention for expo-
nentially many possible combinations of tar-
gets in a given sentence.
• We conducted extensive experiments to vali-

+ + 0
OZ and Shim Lim perform amazing magic on AGT 2018

B+ B+ B+ B0 B0

A+ A+ A+ A+A+
A0 A0

ES,+ EB,+ EE,+ ES,0

Figure 2: The structured output for representing enti-
ties and their sentiments with boundaries.

date our claim that both explicit and implicit
structures are indispensable in such a task,
and demonstrate the effectiveness and robust-
ness of our model.

2 Approach

Our objective is to design a model to extract tar-
gets as well as their associated targeted sentiments
for a given sentence in a joint manner. As we men-
tioned before, we believe that both explicit and im-
plicit structures are crucial for building a success-
ful model for TSA. Specifically, we first present an
approach to learn flexible explicit structures based
on latent CRF, and next present an approach to ef-
ficiently learn the rich implicit structures for expo-
nentially many possible combinations of targets.

2.1 Explicit Structure

Motivated by Li and Lu (2017), we design an ap-
proach based on latent CRF to model flexible sen-
timent spans to capture better explicit structures in
the output space. To do so, we firstly integrate tar-
get and targeted sentiment information into a label
sequence by using 3 types of tags in our EI model:
Bp, Ap, and Eε,p, where p ∈ {+,−, 0} indicates
the sentiment polarity and ε ∈ {B,M,E,S} denotes
the BMES tagging scheme2. We explain the mean-
ing of each type of tags as follows.

• Bp is used to denote that the current word is
part of a sentiment span with polarity p, but
appears before the target word or exactly as
the first word of the target.

• Ap is used to denote that the current word is
part of a sentiment span with polarity p, but
appears after the target word or exactly as the
last word of the target.

2B stands for the beginning of the target phrase, M for the
middle, E for the end and S for a single-word target.
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OZ and Shim Lim perform amazing magic on AGT 2018

B+ B+ B0 B0B0

A+ A+ A+ A+A+
A0 A0

ES,+ EB,+ EE,+ ES,0

Figure 3: An alternative structured output for the same
example with different sentiment boundaries.

• Eε,p is used to denote the current word is part
of a sentiment span with polarity p, and is
also a part of the target. The BMES sub-tag
ε denotes the position information within the
target phrase. For example, EB,+ represents
that the current word appears as the first word
of a target with the positive polarity.

We illustrate how to construct the label se-
quence for a specific combination of sentiment
spans of the given example sentence in Figure 2,
where three non-overlapping sentiment spans in
yellow are presented. Each such sentiment span
encodes the sentiment polarity in blue for a target
in bold in pink square. At each position, we al-
low multiple tags in a sequence to appear such that
the edge ApBp′ in red consistently indicates the
boundary between two adjacent sentiment spans.

The first sentiment span with positive (+) polar-
ity contains only one word which is also the target.
Such a single word target is also the beginning and
the end of the target. We use three tags B+, ES,+
and A+ to encode such information above.

The second sentiment span with positive (+)
polarity contains a two-word target “Shin Lim”.
The word “and” appearing before such target takes
a tag B+. The words “perform amazing magic”
appearing after such target take a tag A+ at each
position. As for the target, the word “Shin” at the
beginning of the target takes tags B+ and EB,+,
while the word “Lim” at the end of the target takes
tags EE,+ and A+.

The third sentiment span with neutral (0) polar-
ity contains a single-word target “AGT”. Similarly,
we use three tags B0, ES,0 and A0 to represent
such single word target. The word “on” appear-
ing before such target takes a tag B0. The word
“2018” appearing afterwards takes a tag A0.

Note that if there exists a target with length
larger than 2, the tag EM,p will be used. For ex-
ample in Figure 2, if the target phrase “Shin Lim”

is replaced by “Shin Bob Lim”, we will keep the
tags at “Shin” and “Lim” unchanged. We assign a
tag EM,+ at the word “Bob” to indicate that “Bob”
appears in the middle of the target by following the
BMES tagging scheme.

Finally, we represent the label sequence by con-
necting adjacent tags sequentially with edges. No-
tice that for a given input sentence and the out-
put targets as well as the associated targeted senti-
ment, there exist exponentially many possible la-
bel sequences, each specifying a different possible
combinations of sentiment spans. Figure 3 shows
a label sequence for an alternative combination of
the sentiment spans. Those label sequences repre-
senting the same input and output construct a la-
tent variable in our model, capturing the flexible
explicit structures in the output space.

We use a log-linear formulation to parameterize
our model. Specifically, the probability of predict-
ing a possible output y, which is a list of targets
and their associated sentiment information, given
an input sentence x, is defined as:

p(y|x) =
∑

h exp (s(x,y,h))∑
y′,h′ exp(s(x,y

′ ,h′))
(1)

where s(x,y,h) is a score function defined over
the sentence x and the output structure y, together
with the latent variable h that provides all the
possible combinations of sentiment spans for the
(x,y) tuple. We define E(x,y,h) as a set of all
the edges appearing in all the label sequences for
such combinations of sentiment spans. To com-
pute s(x,y,h), we sum up the scores of each edge
in E(x,y,h):

s(x,y,h) =
∑

e∈E(x,y,h)

φx(e)

where φx(e) is a score function defined over an
edge e for the input x.

The overall model is analogous to that of a
neural CRF (Peng et al., 2009; Do et al., 2010);
hence the inference and decoding follow standard
marginal and MAP inference procedures. For ex-
ample, the prediction of y follows the Viterbi-like
MAP inference procedure.

2.2 Implicit Structure
We propose a design for EI to efficiently learn rich
implicit structures for exponentially many combi-
nations of targets to predict. To do so, we ex-
plain the process to assign scores to each edge
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e from our neural architecture. The three yellow
boxes in Figure 4 compute scores for rich implicit
structures from the neural architecture consisting
of LSTM and self-attention.

Given an input token sequence x =
{x1, x2, · · · , xn} of length n, we first com-
pute the concatenated embedding ek = [wk; ck]
based on word embedding wk and character
embedding ck at position k.

As illustrated on the left part in Figure 4,
we then use a Bi-directional LSTM to encode
context features and obtain hidden states hk =
BiLSTM(e1, e2, · · · , en). We use two different
linear layers ft and fs to compute scores for tar-
get and sentiment respectively. The linear layer
ft returns a vector of length 4, with each value in
the vector indicating the score of the correspond-
ing tag under the BMES tagging scheme. The lin-
ear layer fs returns a vector of length 3, with each
value representing the score of a certain polarity
of +, 0,−. We assign such scores to each type of
edge as follows:

φx(E
k
ε,pE

k+1
ε′,p ) = ft(hk)ε

φx(E
k
ε,pA

k
p) = ft(hk)ε

φx(B
k
pB

k+1
p ) = fs(hk)p

φx(A
k
pA

k+1
p ) = fs(hk)p

φx(A
k
pB

k+1
p′ ) = fs(hk)p

Note that the subscript p and ε at the right hand
side of above equations denote the corresponding
index of the vector that ft or fs returns. We apply
ft on edges Ekε,pE

k+1
ε′,p and Ekε,pA

k
p , since words

at these edges are parts of the target phrase in a
sentiment span. Similarly, we apply fs on edges
Bk
pB

k+1
p ,Ak

pA
k+1
p and Ak

pB
k+1
p′ , since words at

these edges contribute the sentiment information
for the target in the sentiment span.

As illustrated in Figure 4, we calculate ak, the
output of self-attention at position k:

ak =

n∑
j=1

αk,jej

αk,j = softmax
j

(βk,j)

βk,j = UTReLu(W [ek; ej ] + b)

where αk,j is the normalized weight score for βk,j ,
and βk,j is the weight score calculated by target

ek = [wk; ck]

hk = BiLSTM(e1, e2, · · · , en) ak = SelfATT (e1, e2, · · · , en)

ft(hk) fs(hk) gs(ak)

0+ −B M E S 0+ −

Figure 4: Neural Architecture

representation at position k and contextual repre-
sentation at position j. In addition, W and b as
well as the attention matrix U are the weights to
be learned. Such a vector ak encodes the implicit
structures between the word xk and each word in
the remaining sentence.

Motivated by the character embeddings (Lam-
ple et al., 2016) which are generated based on hid-
den states at two ends of a subsequence, we en-
code such implicit structures for a target similarly.
For any target starting at the position k1 and end-
ing at the position k2, we could use ak1 and ak2
at two ends to represent the implicit structures of
such a target. We encode such information on the
edges Bk1

p Ek1ε,p and Ek2ε,pA
k2
p which appear at the

beginning and the end of a target phrase respec-
tively with sentiment polarity p. To do so, we as-
sign the scores calculated from the self-attention
to such two edges:

φx(B
k1
p Ek1ε,p) = gs(ak1)p

φx(E
k2
ε,pA

k2
p ) += gs(ak2)p

where gs returns a vector of length 3 with scores
of three polarities.

Note that hk and ak could be pre-computed at
every position k and assigned to the corresponding
edges. Such an approach allows us to maintain the
inference time complexity O(Tn), where T is the
maximum number of tags at each position which
is 9 in this work and n is the number of words in
the input sentence. This approach enables EI to ef-
ficiently learn rich implicit structures from LSTM
and self-attention for exponentially many combi-
nations of targets.

3 Experimental Setup

Data
We mainly conduct our experiments on the
datasets released by Mitchell et al. (2013). They
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#Target #+ #− #0

English 3,288 707 275 2,306
Spanish 6,658 1,555 1,007 4,096

(a) Statistics on polarity of named entities

Target length 1 2 3 >= 4

English 1,910 1,032 232 114
Spanish 4,201 1,794 417 246

(b) Statistics on target length

#Target 1 2 3 >= 4

English 1,692 465 135 58
Spanish 3,855 903 221 69

(c) Statistics on number of targets per sentence

Table 1: Corpus Statistics of Main Dataset

contain 2,350 English tweets and 7,105 Spanish
tweets, with target and targeted sentiment anno-
tated. See Table 1 for corpus statistics.

Evaluation Metrics
Following the previous works, we report the pre-
cision (P.), recall (R.) and F1 scores for target
recognition and targeted sentiment. Note that a
correct target prediction requires the boundary of
the target to be correct, and a correct targeted sen-
timent prediction requires both target boundary
and sentiment polarity to be correct.

Hyperparameters
We adopt pretrained embeddings from Penning-
ton et al. (2014) and Cieliebak et al. (2017) for En-
glish data and Spanish data respectively. We use a
2-layer LSTM (for both directions) with a hidden
dimension of 500 and 6003 for English data and
Spanish data respectively. The dimension of the
attention weight U is 300. As for optimization, we
use the Adam (Kingma and Ba, 2014) optimizer to
optimize the model with batch size 1 and dropout
rate 0.5. All the neural weights are initialized by
Xavier (Glorot and Bengio, 2010).

Training and Implementation
We train our model for a maximal of 6 epochs.
We select the best model parameters based on the
best F1 score on the development data after each
epoch. Note that we split 10% of data from the
training data as the development data4. The se-
lected model is then applied to the test data for

3We use a larger LSTM hidden size for Spanish since di-
mension of Spanish word embedding (200) is larger than di-
mension of English word embedding (100).

4Detailed split information is released with our code.

evaluation. During testing, we map words not ap-
pearing in the training data to the UNK token. Fol-
lowing the previous works, we perform 10-fold
cross validation and report the average results. Our
models and variants are implemented using Py-
Torch (Paszke et al., 2017).

Baselines
We consider the following baselines:

• Pipeline (Zhang et al., 2015) and Col-
lapse (Zhang et al., 2015) both are linear-
chain CRF models using discrete features and
embeddings. The former predicts targets first
and calculate targeted sentiment for each pre-
dicted target. The latter outputs a tag at each
position by collapsing the target tag and sen-
timent tag together.

• Joint (Zhang et al., 2015) is a linear-chain
SSVM model using both discrete features
and embeddings. Such a model jointly pro-
duces target tags and sentiment tags.

• Bi-GRU (Ma et al., 2018) and MBi-GRU (Ma
et al., 2018) are both linear-chain CRF mod-
els using word embeddings. The former uses
bi-directional GRU and the latter uses multi-
layer bi-directional GRU.

• HBi-GRU (Ma et al., 2018) and HMBi-
GRU (Ma et al., 2018) are both linear-chain
CRF models using word embeddings and
character embedding. The former uses bi-
directional GRU and the latter uses multi-
layer bi-directional GRU.

• SS (Li and Lu, 2017) and SS + emb (Li and
Lu, 2017) are both based on a latent CRF
model to learn flexible explicit structures.
The former uses discrete features and the lat-
ter uses both discrete features and word em-
beddings.

• SA-CRF is a linear-chain CRF model with
self-attention. Such a model concatenates
the hidden state from LSTM and a vector
constructed by self-attention at each position,
and feeds them into CRF as features. The
model attempts to capture rich implicit struc-
tures in the input space, but it does not put ef-
fort on explicit structures in the output space.

• E-I is a weaker version of EI. Such a model
removes the BMES sub-tags in the E tag,
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Model
Structure English Spanish

Target Recognition Targeted Sentiment Target Recognition Targeted Sentiment
Explicit Implicit P. R. F1 P. R. F1 P. R. F1 P. R. F1

Pipeline (Zhang et al., 2015) fixfixed MLP + discrete + emb 60.69 51.63 55.67 43.71 37.12 40.06 70.23 62.00 65.76 45.99 40.57 43.04
Joint (Zhang et al., 2015) fixfixed MLP + discrete + emb 61.47 49.28 54.59 44.62 35.84 39.67 71.32 61.11 65.74 46.67 39.99 43.02
Collapse (Zhang et al., 2015) fixfixed MLP + discrete + emb 63.55 44.98 52.58 46.32 32.84 38.36 73.51 53.30 61.71 47.69 34.53 40.00
Bi-GRU (Ma et al., 2018) fixfixed GRU + emb 58.13 43.46 49.62 45.76 32.29 37.73 65.24 53.02 58.45 46.33 37.50 41.45
MBi-GRU (Ma et al., 2018) fixfixed MGRU + emb 58.27 49.01 53.24 45.80 35.21 39.81 66.14 60.07 62.95 45.61 40.04 42.64
HBi-GRU (Ma et al., 2018) fixfixed GRU + emb + char 57.24 53.88 55.41 44.94 38.60 41.52 68.24 61.81 64.82 46.53 42.21 44.18
HMBi-GRU (Ma et al., 2018) fixfixed MGRU + emb + char 60.12 53.68 56.98 46.52 39.99 42.87 68.64 63.66 66.01 48.09 43.44 45.61
SS (Li and Lu, 2017) flexible discrete 63.18 51.67 56.83 44.57 36.48 40.11 71.49 61.92 66.36 46.06 39.89 42.75
SS + emb (Li and Lu, 2017) flexible discrete + emb 66.35 56.59 61.08 47.30 40.36 43.55 73.13 64.34 68.45 47.14 41.48 44.13
SA-CRF fixfixed LSTM + SA + emb + char 60.26 55.60 57.53 42.95 40.46 41.45 68.47 66.39 67.26 42.22 42.97 42.47
E-I flexible LSTM + SA + emb + char 67.11 58.37 62.34 47.47 41.31 44.11 73.47 65.91 69.44 47.80 42.90 45.19
EI- flexible LSTM + emb + char 68.67 57.52 62.54 48.73 40.89 44.42 72.62 66.97 69.61 47.06 43.45 45.14
EI flexible LSTM + SA + emb + char 69.70 58.33 63.48 49.78 41.71 45.37 74.25 68.37 71.17 48.10 44.29 46.11

Table 2: Main Results. fixed stands for chain structures and flexible for latent structures. discrete, emb and char
denote discrete features, word embeddings and character embeddings respectively. SA represents self-attention.

causing the model to learn less explicit struc-
tural information in the output space.

• EI- is a weaker version of EI. Such a model
removes the self-attention from EI, causing
the model to learn less expressive implicit
structures in the input space.

4 Results and Discussion

4.1 Main Results

The main results are presented in Table 2, where
explicit structures as well as implicit structures are
indicated for each model for clear comparisons.

In general, our model EI outperforms all
the baselines. Specifically, it outperforms the
strongest baseline EI- significantly with p < 0.01
on the English and Spanish datasets in terms of F1

scores5. Note that EI- which models flexible ex-
plicit structures and less implicit structural infor-
mation, achieves better performance than most of
the baselines, indicating flexible explicit structures
contribute a lot to the performance boost.

Now let us take a closer look at the differences
based on detailed comparisons. First of all, we
compare our model EI with the work proposed
by Zhang et al. (2015). The Pipeline model (based
on CRF) as well as Joint and Collapse models
(based on SSVM) in their work capture fixed ex-
plicit structures. Such two models rely on multi-
layer perceptron (MLP) to obtain the local context
features for implicit structures. These two models
do not put much effort to capture better explicit
structures and implicit structures. Our model EI
(and even EI-) outperforms these two models sig-
nificantly. We also compare our work with mod-

5We have conducted significance test using the bootstrap
resampling method (Koehn, 2004).

els in Ma et al. (2018), which also capture fixed
explicit structures. Such models leverage differ-
ent GRUs (single-layer or multi-layer) and differ-
ent input features (word embeddings and charac-
ter representations) to learn better contextual fea-
tures. Their best result by HMBi-GRU is obtained
with multi-layer GRU with word embeddings and
character embeddings. As we can see, our model
EI outperforms HMBi-GRU under all evaluation
metrics. On the English data, EI obtains 6.50
higher F1 score and 2.50 higher F1 score on target
recognition and targeted sentiment respectively.
On Spanish, EI obtains 5.16 higher F1 score and
0.50 higher F1 score on target recognition and tar-
geted sentiment respectively. Notably, compared
with HMBi-GRU, even EI- capturing the flexible
explicit structures achieves better performance on
most of metrics and obtains the comparable re-
sults in terms of precision and F1 score on Span-
ish. Since both EI and EI- models attempt to
capture the flexible explicit structures, the com-
parisons above imply the importance of modeling
such flexible explicit structures in the output space.

We also compare EI with E-I. The difference
between these two models is that E-I removes the
BMES sub-tags. Such a model captures less ex-
plicit structural information in the output space.
We can see that EI outperforms E-I. Such results
show that adopting BMES sub-tags in the output
space to capture explicit structural information is
beneficial.

Now we compare EI with SA-CRF which is a
linear-chain CRF model with self-attention. Such
a model attempts to capture rich implicit struc-
tures, and fixed explicit structures. The difference
between EI and SA-CRF is that our model EI cap-
tures flexible explicit structures in the output space
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Model
Subj (+/-,o) SA (+,-)

P. R. F1 P. R. F1

Zhang et al. (2015) 49.2 42.1 45.3 40.9 21.6 27.9
SS + emb (Li and Lu, 2017) 50.0 44.0 46.8 37.6 25.4 30.2
SA-CRF 44.8 45.2 44.9 35.2 25.6 29.3
EI- 49.7 45.8 47.6 43.0 24.9 30.2
EI 50.5 46.5 48.4 42.0 25.6 31.5

Table 3: Results on subjectivity as well as non-neutral
sentiment analysis on the Spanish dataset. Subj(+/-,o):
subjectivity for all polarities. SA(+,-): sentiment anal-
ysis for non-neutral polarities.

which model output representations as latent vari-
ables. We can see that EI outperforms SA-CRF on
all the metrics. Such a comparison also implies the
importance of capturing flexible explicit structures
in the output space.

Next, we focus on the comparisons with SS (Li
and Lu, 2017) and SS + emb (Li and Lu, 2017).
Such two models as well as our models all capture
the flexible explicit structures. As for the differ-
ence, both two SS models rely on hand-crafted dis-
crete features to capture implicit structures, while
our model EI and EI- learn better implicit struc-
tures by LSTM and self-attention. Furthermore,
our models only require word embeddings and
character embeddings as the input to our neural
architecture to model rich implicit structures, lead-
ing to a comparatively simpler and more straight-
forward design. The comparison here suggests
that LSTM and self-attention neural networks are
able to capture better implicit structures than hand-
crafted features.

Finally, we compare EI with EI-. We can see
that the F1 scores of targeted sentiment for both
English and Spanish produced by EI are 0.95 and
0.97 points higher than EI-. The main differ-
ence here is that EI makes use of self-attention
to capture richer implicit structures between each
target phrase and all words in the complete sen-
tence. The comparisons here indicate the impor-
tance of capturing rich implicit structures using
self-attention on this task.

Robustness

Overall, all these comparisons above based on em-
pirical results show the importance of capturing
both flexible explicit structures in the output space
and rich implicit structures by LSTM and self-
attention in the input space.

We analyze the model robustness by assessing
the performance on the targeted sentiment for tar-

gets of different lengths. For both English and
Spanish, we group targets into 4 categories respec-
tively, namely length of 1, 2, 3 and ≥ 4. Fig-
ure 5 reports the F1 scores of targeted sentiment
for such 4 groups on Spanish6. As we can see EI
outperforms all the baselines on all groups.

Furthermore, following the comparisons
in Zhang et al. (2015), we also measure the preci-
sion, recall and F1 of subjectivity and non-neutral
polarities on the Spanish dataset. Results are
reported in Table 37. The subjectivity measures
whether a target phrase expresses an opinion or
not according to Liu (2010). Comparing with
the best-performing system’s results reported
in Zhang et al. (2015) and Li and Lu (2017),
our model EI can achieve higher F1 scores on
subjectivity and non-neutral polarities.

Error Analysis

We conducted error analysis for our main model
EI. We calculate F1 scores based on the partial
match instead of exact match. The F1 scores for
target partial match is 76.04 and 83.82 for English
and Spanish respectively. We compare these two
numbers against 63.48 and 71.17 which are the
F1 scores based on exact match. This compar-
ison indicates that boundaries of many predicted
targets do not match exactly with those of the cor-
rect targets. Furthermore, we investigate the er-
rors caused by incorrect sentiment polarities. We
found that the major type of errors is to incorrectly
predict positive targets as neutral targets. Such er-
rors contribute 64% and 36% of total errors for
English and Spanish respectively. We believe they
are mainly caused by challenging expressions in
the tweet input text. Such challenging expressions
such as “below expectations” are very sparse in
the data, which makes effective learning for such
phrases difficult.

4.2 Effect of Implicit Structures

In order to understand whether the implicit struc-
tures are truly making contributions in terms of
the overall performance, we compare the perfor-
mance among four models: EI and EI- as well as
two variants EI (i:MLP) and EI (i:Identity) (where
i indicates the implicit structure). Such two vari-
ants replace the implicit structure by other compo-
nents:

6See the English results in the supplementary material.
7Only Spanish results are available in Zhang et al. (2015).
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Model
English Spanish

Target Recognition Targeted Sentiment Target Recognition Targeted Sentiment
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

EI 69.70 58.33 63.48 49.78 41.71 45.37 74.25 68.37 71.17 48.10 44.29 46.11
EI (i:MLP) 64.47 56.58 60.20 46.23 40.48 43.12 70.95 65.80 68.27 43.64 40.46 41.98
EI (i:Identity) 63.24 55.73 59.20 45.10 39.79 42.24 69.38 66.27 67.77 43.66 41.68 42.63
EI- 68.67 57.52 62.54 48.73 40.89 44.42 72.62 66.97 69.61 47.06 43.45 45.14

Table 4: Effect of Implicit Structures

Figure 5: Results of different lengths on Spanish

+ / 0 + / + + / +
Czech Republic , Greece and Russian ... sound good

Figure 6: An example sentence in the test data.

• EI (i:MLP) replaces self-attention by multi-
layer perceptron (MLP) for implicit struc-
tures. Such a variant attempts to capture im-
plicit structures for a target phrase towards
words restricted by a window of size 3 cen-
tered at the two ends of the target phrase.

• EI (i:Identity) replaces self-attention by an
identity layer8 as implicit structure. Such a
variant attempts to capture implicit structures
for a target phrase towards words at the two
ends of the target phrase exactly.

Overall, those variants perform worse than EI
on all the metrics. When the self-attention is re-
placed by MLP or the identity layer for implicit
structures, the performance drops a lot on both
target and targeted sentiment. Such two variants
EI (i:MLP) and EI (i:Identity) consider the words
within a small window centered at the two ends
of the target phrase, which might not be capable
of capturing the desired implicit structures. The
EI- model capturing less implicit structural infor-

8The identity layer returns the identical input data.

mation achieves worse results than EI, but ob-
tains better results than the two variants discussed
above. This comparison implies that properly cap-
turing implicit structures as the complement of ex-
plicit structural information is essential.

4.3 Qualitative Analysis

We present an example sentence in the test data in
Figure 6, where the gold targets are in bold, the
predicted targets are in the pink boxes, the gold
sentiment is in blue and predicted sentiment is in
red. EI makes all correct predictions for three
targets. EI- predicts correct boundaries for three
targets and the targeted sentiment predictions are
highlighted in Figure 6. As we can see, EI- incor-
rectly predicts the targeted sentiment on the first
target as neural (0). The first target here is far from
the sentiment expression “sound good” which is
not in the first sentiment span, making EI- not
capable of capturing such a sentiment expression.
This qualitative analysis helps us to better under-
stand the importance to capture implicit structures
using both LSTM and self-attention.

4.4 Additional Experiments

We also conducted experiments on multi-lingual
Restaurant datasets from SemEval 2016 Task
5 (Pontiki et al., 2016), where aspect target phrases
and aspect sentiments are provided. 9 We regard
each aspect target phrase as a target and assign
such a target with the corresponding aspect sen-
timent polarity in the data. Note that we remove
all the instances which contain no targets in the
training data. Following the main experiment, we
split 10% of training data as development set for
the selection of the best model during training.

We report the F1 scores of target and targeted
sentiment for English, Dutch and Russian10 re-
spectively in Table 5. The results show that EI

9See the supplementary material for data statistics.
10We use the pretrained embedding for Dutch and

Russian from https://github.com/Kyubyong/
wordvectors.

https://github.com/Kyubyong/wordvectors
https://github.com/Kyubyong/wordvectors
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achieves the best performance. The performance
of SS (Li and Lu, 2017) is much worse on Rus-
sian due to the inability of discrete features in SS
to capture the complex morphology in Russian.

5 Related Work

We briefly survey the research efforts on two types
of TSA tasks mentioned in the introduction. Note
that TSA is related to aspect sentiment analysis
which is to determine the sentiment polarity given
a target and an aspect describing a property of re-
lated topics.

Predicting sentiment for a given target
Such a task is typically solved by leveraging sen-
tence structural information, such as syntactic
trees (Dong et al., 2014), dependency trees (Wang
et al., 2016) as well as surrounding context based
on LSTM (Tang et al., 2016a), GRU (Zhang et al.,
2016) or CNN (Xue and Li, 2018). Another line
of works leverage self-attention (Liu and Zhang,
2017) or memory networks (Tang et al., 2016b) to
encode rich global context information. Wang and
Lu (2018) adopted the segmental attention (Kong
et al., 2016) to model the important text segments
to compute the targeted sentiment. Wang et al.
(2018) studied the issue that the different combi-
nations of target and aspect may result in differ-
ent sentiment polarity. They proposed a model to
distinguish such different combinations based on
memory networks to produce the representation
for aspect sentiment classification.

Jointly predicting targets and their associated
sentiment
Such a joint task is usually regarded as sequence
labeling problem. Mitchell et al. (2013) intro-
duced the task of open domain targeted sentiment
analysis. They proposed several models based on
CRF such as the pipeline model, the collapsed
model as well as the joint model to predict both
targets and targeted sentiment information. Their
experiments showed that the collapsed model and
the joint model could achieve better results, im-
plying the benefit of the joint learning on this task.
Zhang et al. (2015) proposed an approach based
on structured SVM (Taskar et al., 2005; Tsochan-
taridis et al., 2005) integrating both discrete fea-
tures and neural features for this joint task. Li and
Lu (2017) proposed the sentiment scope model
motivated from a linguistic phenomenon to repre-
sent the structure information for both the targets

Model
English Dutch Russian

target sent target sent target sent

SS (Li and Lu, 2017) 46.3 36.9 44.6 33.4 20.2 14.5
SS + emb (Li and Lu, 2017) 57.1 48.0 46.8 33.5 35.9 24.1
SA-CRF 60.8 51.4 49.7 34.0 54.2 43.4
EI- 57.7 48.2 47.2 33.7 52.8 38.9
EI 62.0 51.6 50.0 34.2 54.4 43.4

Table 5: F1 scores of targets (target) and their asso-
ciated sentiment (sent) on SemEval 2016 Restaurant
Dataset.

and their associated sentiment polarities. They
modelled the latent sentiment scope based on CRF
with latent variables, and achieved the best per-
formance among all the existing works. How-
ever, they did not explore much on the implicit
structural information and their work mostly re-
lied on hand-crafted discrete features. Ma et al.
(2018) adopted a multi-layer GRU to learn targets
and sentiments jointly by producing the target tag
and the sentiment tag at each position. They in-
troduced a constraint forcing the sentiment tag at
each position to be consistent with the target tag.
However, they did not explore the explicit struc-
tural information in the output space as we do in
this work.

6 Conclusion and Future Work

In this work, we argue that properly modeling both
explicit structures in the output space and the im-
plicit structures in the input space are crucial for
building a successful targeted sentiment analysis
system. Specifically, we propose a new model
that captures explicit structures with latent CRF,
and uses LSTM and self-attention to capture rich
implicit structures in the input space efficiently.
Through extensive experiments, we show that our
model is able to outperform competitive baseline
models significantly, thanks to its ability to prop-
erly capture both explicit and implicit structural
information.

Future work includes exploring approaches to
capture explicit and implicit structural information
to other sentiment analysis tasks and other struc-
tured prediction problems.
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